WO2024034640A1 - Capacitor and manufacturing method therefor - Google Patents

Capacitor and manufacturing method therefor Download PDF

Info

Publication number
WO2024034640A1
WO2024034640A1 PCT/JP2023/029104 JP2023029104W WO2024034640A1 WO 2024034640 A1 WO2024034640 A1 WO 2024034640A1 JP 2023029104 W JP2023029104 W JP 2023029104W WO 2024034640 A1 WO2024034640 A1 WO 2024034640A1
Authority
WO
WIPO (PCT)
Prior art keywords
foil
terminal
hole
cathode foil
piece
Prior art date
Application number
PCT/JP2023/029104
Other languages
French (fr)
Japanese (ja)
Inventor
秀之 大道
卓哉 深山
航太 福島
圭祐 田邉
理帆グミラール 前田
Original Assignee
日本ケミコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ケミコン株式会社 filed Critical 日本ケミコン株式会社
Publication of WO2024034640A1 publication Critical patent/WO2024034640A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/055Etched foil electrodes

Definitions

  • the present disclosure relates to a capacitor including a cathode foil including a carbon layer and a method for manufacturing the same.
  • a capacitor includes an anode foil, a cathode foil, and a separator placed between the anode foil and the cathode foil, and is capable of storing electricity.
  • a basic capacitor including a cathode foil made only of aluminum foil is known.
  • a capacitor including a cathode foil including an aluminum foil and a carbon layer formed on the aluminum foil has been known (for example, Patent Document 1).
  • the carbon layer has the effect of increasing the capacitance of the cathode foil, for example.
  • Electrode foils such as anode foils and cathode foils and lead terminals are connected by connection means such as stitch connections.
  • connection means such as stitch connections.
  • a stitch needle is inserted through the overlapping lead terminal and electrode foil from the lead terminal side, a terminal hole and a terminal piece are formed in the lead terminal, and a through hole and a terminal piece are formed in the electrode foil.
  • Foil pieces are formed.
  • the terminal piece passes through the through hole in the electrode foil and protrudes from the back surface of the electrode foil.
  • the terminal piece and foil piece are pressed and stacked on the back side of the electrode foil. As a result, a stitched connection portion is formed, and the electrode foil and the lead terminal are connected.
  • the carbon layer has a lower coefficient of static friction than metal foil such as aluminum foil, and the cathode foil containing the carbon layer is more slippery than the cathode foil consisting only of metal foil. Therefore, when connecting the terminal piece to the cathode foil, more specifically, when the terminal piece and the foil piece press the cathode foil, the foil piece moves from the base portion toward the tip of the foil piece. Therefore, the pressing force of the terminal piece and foil piece is dispersed in the pressing direction and the moving direction of the foil piece, so with a cathode foil containing a carbon layer, the terminal piece is pressed against the cathode foil more than with a cathode foil made only of metal foil. The pressing force for this decreases. Due to the reduced pressing force, there is a problem that it is difficult to fix the cathode foil with the terminal piece.
  • the terminal piece and the foil piece press the cathode foil
  • the contact area between the cathode foil and the terminal piece is not fixed, the pressed part of the cathode foil will be difficult to stretch, and the base metal of the cathode foil will move away from the carbon layer. In other words, the metal foil) is difficult to expose.
  • the connection force of the carbon layer to the terminal piece is electrically and physically lower than the connection force of the metal foil to the terminal piece.
  • an object of the present disclosure is to provide a stitch connection structure suitable for, for example, a cathode foil including a carbon layer.
  • the capacitor includes a cathode foil and a lead terminal.
  • the cathode foil includes a base foil and a carbon layer formed on the base foil, and has a through hole.
  • the lead-out terminal has a flat portion placed on the terminal placement surface of the cathode foil, and is formed on the flat portion and led out through the through hole to a side opposite to the terminal placement surface of the cathode foil. and a bent terminal piece, and is connected to the cathode foil by sandwiching the cathode foil between the flat part and the terminal piece.
  • the cathode foil has a base material exposed surface where the base material foil is exposed at the tip of the foil piece extending from the edge of the through hole, and the base material exposed surface is connected to the base of the terminal piece.
  • the base material exposed surface connects with the terminal piece.
  • the exposed surface of the base material may intersect with the penetrating direction of the through hole.
  • an angle between the penetrating direction of the through hole and the exposed surface of the base material may be 45 degrees or more and 90 degrees or less.
  • the exposed base surface may have an exposed length greater than the thickness of the cathode foil in a central cross section passing through the central portion of the terminal piece.
  • the lead terminal may be connected to the cathode foil at a stitch connection portion.
  • the extraction terminal may have a metal surface portion and a hardened surface portion that is harder than the metal surface portion.
  • the metal surface portion may contact the substrate foil in a first region of the stitch connection, and the hardened surface portion may be laminated to the carbon layer in a second region of the stitch connection. .
  • a method for manufacturing a capacitor includes a step of producing or preparing a cathode foil that includes a base foil and a carbon layer formed on the base foil, and has a foil removal hole. a step of arranging a flat part of the drawer terminal on the cathode foil so as to cover the foil removal hole, and inserting the stitch needle from the drawer terminal side so that the stitch needle passes through the foil removal hole.
  • a through hole formed by the foil removal hole through which the stitch needle is inserted through the terminal and the cathode foil and a foil piece are formed in the cathode foil, and a foil piece is formed in the cathode foil from the terminal hole and the edge of the terminal hole.
  • the end has a base material exposed surface where the base material foil is exposed, and when the stitch needle is inserted through the drawer terminal and the cathode foil, the base material exposed surface is formed on the foil piece, and the base material exposed surface is formed on the foil piece.
  • the foil piece moves to one side of the terminal, and the exposed surface of the base material intersects with the pressing direction of the terminal piece to connect with the terminal piece.
  • the cross-sectional area of the perforation portion of the stitch needle may satisfy the following formula.
  • S2 Cross-sectional area of the pull-out terminal located inside the through-hole
  • FIG. 2 is a diagram showing a cross section taken along the line IIA-IIA in FIG. 1.
  • FIG. It is a figure which shows an example of the end surface of a cathode foil. It is a figure which shows an example of the formation process of the foil removal hole in cathode foil. It is a figure which shows an example of the connection process of the extraction terminal to electrode foil.
  • FIG. 3 is a diagram for explaining the arrangement of stitch needles and foil removal holes. It is a figure for explaining an example of stress and movement of a member at the time of pressing.
  • FIG. 3 is a diagram illustrating an example of a comparison of contact resistances of capacitors according to an example and a comparative example.
  • FIG. 3 is a diagram for explaining connection of a lead terminal to a cathode foil.
  • FIG. 1 shows an example of a terminal connection portion of a capacitor according to an embodiment.
  • FIG. 2 shows a cross section taken along line IIA-IIA in FIG.
  • FIG. 3 shows an example of the end face of the cathode foil.
  • the configurations shown in FIGS. 1 to 3 are examples, and the technology of the present disclosure is not limited to such configurations.
  • the terminal connection portion includes the connection location where the lead terminal 4 is connected to the cathode foil 6 by stitch connection, that is, the stitch connection portion 10 and its surrounding portion.
  • the stitch connection portion 10 is a region where the terminal piece 34 overlaps at least the flat portion 32 and the cathode foil 6, and is a shaded portion in A of FIG.
  • FIG. 2 is an example of a central cross section passing through the center of the terminal piece 34, and the center of the terminal piece 34 is connected to a line passing through the tip 40 of the terminal piece 34 and the center C of the base 38.
  • FIG. 2B is an enlarged view of region IIB shown in FIG. 2A.
  • the capacitor 2 is an example of an electronic component, and is, for example, an electrolytic capacitor.
  • the capacitor 2 includes, for example, a capacitor element, a lead terminal 4, an electrolyte, a sealing member such as insulating rubber, and an exterior case such as an aluminum case.
  • the capacitor element filled with electrolyte and a portion of the lead-out terminal 4 are inserted into the exterior case, and a sealing member is installed in the opening of the exterior case.
  • the drawer terminal 4 penetrates the sealing member and protrudes from the sealing member.
  • the capacitor element includes a cathode foil 6, an anode foil, and a separator.
  • the cathode foil 6, anode foil and separator are stacked and wound to form a wound element such that the separator is placed between the cathode foil 6 and the anode foil. This wound element forms the capacitor element.
  • the cathode foil 6 constitutes the cathode of the capacitor 2.
  • the cathode foil 6 is, for example, a strip-shaped foil, and includes a base foil 12 and a carbon layer 14.
  • the base foil 12 is, for example, a valve metal foil such as aluminum foil, tantalum foil, niobium foil, titanium foil, hafnium foil, zirconium foil, zinc foil, tungsten foil, bismuth foil, or antimony foil.
  • the surface of the base foil 12 has unevenness 16 formed by etching, for example, and the surface area of the base foil 12 is expanded.
  • the surface of the base foil 12 may include, for example, tunnel-shaped or cavernous etching pits, and these tunnel-shaped or cavernous etching pits may form the unevenness 16.
  • the carbon layer 14 is arranged, for example, on both sides of the base foil 12.
  • the carbon layer 14 may be arranged only on one surface of the base foil 12. As shown in FIG. 3, the carbon layer 14 partially penetrates into the concavo-convex portions 16, so that the carbon layer 14 closely adheres to and engages with the concavo-convex portions 16 of the base foil 12. That is, the carbon layer 14 has a surface shape that engages with the unevenness 16.
  • the carbon layer 14 is arranged on the outside of the base foil 12, and the cathode foil 6 has a two-layer structure of the base foil 12 and the carbon layer 14, or a three-layer structure with the carbon layer 14 arranged on both sides of the base foil 12. ing.
  • the carbon layer 14 contains a carbon material as a main material, and further contains a binder and a dispersant as additives.
  • Carbon materials include activated carbon, carbon black, carbon nanohorn, amorphous carbon, natural graphite, artificial graphite, graphitized Ketjenblack, mesoporous carbon, and fibrous carbon.
  • Activated carbon is produced, for example, from natural plant tissues such as coconut shells, synthetic resins such as phenol, and those derived from fossil fuels such as coal, coke, or pitch.
  • Carbon blacks include Ketjen black, acetylene black, channel black or thermal black.
  • Fibrous carbon includes carbon nanotubes, carbon nanofibers, and the like.
  • the carbon nanotube may be a single-walled carbon nanotube with a single layer of graphene sheets, or a multi-walled carbon nanotube (MWCNT) with two or more layers of graphene sheets rolled coaxially to form a multilayered tube wall.
  • MWCNT multi-walled carbon nanotube
  • the carbon material is preferably carbon black, which is spherical carbon.
  • carbon black which is spherical carbon black with an average primary particle size of 100 nanometers or less
  • the carbon layer 14 becomes dense.
  • the carbon layer 14 is in close contact with the base foil 12, and the interfacial resistance between the carbon layer 14 and the base foil 12 tends to decrease.
  • the carbon material is preferably a mixture containing spherical carbon and graphite.
  • Graphite is, for example, natural graphite, artificial graphite, or graphitized Ketjenblack, and has a shape such as flaky, scale-like, lump-like, earth-like, spherical, or flake-like.
  • the graphite is preferably in the form of scales or flakes, and the aspect ratio of the short axis to the long axis of the graphite is preferably in the range of 1:5 to 1:100.
  • the scale-like or flaky graphite having the above-mentioned aspect ratio can push spherical carbon into the unevenness 16 such as an etching pit, so that a part of the carbon layer 14 can be formed even inside the etching pit. Therefore, the carbon layer 14 can firmly adhere to the base foil 12 due to the anchor effect.
  • the mass ratio of graphite to the mixture of graphite and spherical carbon is, for example, in the range of 25% or more and 90% or less.
  • the binder is a resin binder such as styrene-butadiene rubber, polyvinylidene fluoride, or polytetrafluoroethylene, and binds the carbon material.
  • the dispersant is, for example, sodium carboxymethyl cellulose.
  • the cathode foil 6 has a through hole 18 and a foil piece 20.
  • the foil piece 20 extends from the edge 22 of the through hole 18 and is folded back at the edge 22.
  • the foil piece 20 is folded over the cathode foil 6 itself to form a folded portion 24 on the outside of the edge 22.
  • the foil piece 20 has a base material exposed surface 28 on which the base material foil 12 is exposed at the tip and the vicinity of the tip (hereinafter, the tip and the vicinity of the tip will be referred to as the "tip part").
  • the base material exposed surface 28 may extend to the edge 22 of the through hole 18 .
  • the exposed surface 28 of the base material is not covered with the carbon layer 14, and bare metal (that is, the valve metal described above) is exposed.
  • the base material exposed surface 28 intersects with the direction of penetration of the through hole 18, which is represented by the double-headed arrow shown in FIG. 2B. That is, the base material exposed surface 28 is not parallel to the penetration direction, but is inclined or perpendicular to the penetration direction. It is preferable that the angle ⁇ between the penetrating direction of the through hole 18 and the exposed surface 28 of the base material is, for example, 45 degrees or more and 90 degrees or less. As the angle ⁇ increases toward 90 degrees, the exposed base surface 28 and the portion of the terminal piece 34 that connects to the exposed base surface 28 are arranged to face each other, so that connectivity becomes more stable.
  • the base material exposed surface 28 and the portion of the terminal piece 34 connected to the base material exposed surface 28 are arranged to face each other, the pressing force applied during stitch connection is efficiently transmitted to the connecting portion. Therefore, the pressing force applied to the base material exposed surface 28 increases, and the physical and electrical connection between the base material exposed surface 28 and the lead-out terminal 4 becomes stronger.
  • the pressing force at the time of stitch connection is, for example, parallel to the penetrating direction of the through hole 18, and the pressing direction of the terminal piece 34 and the foil piece 20 is parallel to the penetrating direction of the through hole 18.
  • This pressing force can be decomposed into a first component force perpendicular to the exposed surface 28 of the base material and a second component force parallel to the exposed surface 28 of the base material using a vector.
  • the angle ⁇ is 45 degrees
  • the first component force is one half of the root of the pressing force (that is, 1/ ⁇ 2), and the pressing force is reduced due to the slope of the base material exposed surface 28. can be suppressed to about 30%.
  • the anode foil constitutes the anode of the capacitor 2.
  • the anode foil is, for example, the valve metal foil described above, and is a strip-shaped foil.
  • An enlarged surface portion having a porous structure is formed on the surface of the anode foil.
  • the porous structure consists of, for example, tunnel-like pits formed by etching, cavernous pits, or voids between densely packed powders.
  • the surface of the enlarged surface portion includes a dielectric oxide film formed by chemical conversion treatment.
  • the anode foil is connected to the anode side lead-out terminal by a stitch connection or other connection means.
  • the separator is placed between the anode foil and the cathode foil 6 to prevent short circuits between the anode foil and the cathode foil 6.
  • the separator is an insulating material, including kraft as a separator member, and may also include other separator members such as Manila hemp, esparto, hemp, rayon, cellulose, and mixtures thereof.
  • the lead terminal 4 is made of a conductive metal such as aluminum.
  • the lead terminal 4 is, for example, a lead terminal including a lead wire, a terminal portion, and a terminal piece 34.
  • the terminal portion is made of an aluminum wire, and is made up of a substantially cylindrical round bar portion and a flat portion 32 formed by press working or the like on one end side of the aluminum wire. An inclined portion whose thickness decreases linearly to the thickness of the flat portion 32 is formed between the round bar portion and the flat portion 32.
  • the lead wire is made of, for example, a metal wire, and is connected to the round bar portion by arc welding.
  • the flat portion 32 overlaps the terminal mounting surface of the cathode foil 6 and includes a terminal hole 36 .
  • the terminal hole 36 is arranged at a position overlapping the through hole 18.
  • the terminal piece 34 is formed on the flat part 32, extends from the edge of the terminal hole 36 of the flat part 32, passes through the through hole 18, and is led out to the side opposite to the terminal mounting surface of the cathode foil 6. is pressed against the opposite side of the
  • the lead terminal 4 is connected to the cathode foil 6 at the stitch connection portion 10 by sandwiching the cathode foil 6 between the flat portion 32 and the bent terminal piece 34.
  • the terminal piece 34 covers the entire foil piece 20 in the central cross-section shown in FIG. 2, for example, and is connected to the base material exposed surface 28 facing the terminal piece 34. That is, the base material exposed surface 28 exists between the base 38 and the tip 40 of the terminal piece 34.
  • the valve metal connection between the terminal piece 34 and the exposed base surface 28 suppresses slippage or relative movement of the cathode foil 6 and strengthens the physical and electrical connection.
  • the electrolyte is an electrolytic solution, a gel electrolyte, a solid electrolyte containing a conductive polymer, etc.
  • a so-called hybrid electrolytic capacitor may be formed by including an electrolytic solution or gel electrolyte and a solid electrolyte containing a conductive polymer.
  • the solvent may be either a protic polar solvent or an aprotic polar solvent.
  • the protic polar solvent include monohydric alcohols, polyhydric alcohols, oxyalcohol compounds, and water.
  • the aprotic polar solvent include sulfone type, amide type, lactone type, cyclic amide type, nitrile type, and oxide type.
  • the solute contains anionic and cationic components, and is typically an organic acid or a salt thereof, an inorganic acid or a salt thereof, a complex compound of an organic acid and an inorganic acid, or an ionically dissociable salt thereof; or a combination of two or more.
  • An acid serving as an anion and a base serving as a cation may be separately added to the electrolytic solution as solute components.
  • a conductive polymer is contained in the electrolyte layer.
  • the conductive polymer is a conjugated polymer or a doped conjugated polymer.
  • the conjugated polymer any known conjugated polymer can be used without particular limitation.
  • Conjugated polymers include polypyrrole, polythiophene, polyfuran, polyaniline, polyacetylene, polyphenylene, polyphenylene vinylene, polyacene, polythiophene vinylene, etc., with poly(3,4-ethylenedioxythiophene) being preferred.
  • the conjugated polymer may be used alone, two or more types may be used in combination, or a copolymer of two or more types of monomers may be used.
  • FIG. 4 shows an example of the process of forming foil removal holes in the cathode foil in the capacitor manufacturing process.
  • FIG. 5 shows an example of the step of connecting the lead terminal to the electrode foil in the capacitor manufacturing process.
  • the configurations shown in FIGS. 4 and 5 are examples, and the technology of the present disclosure is not limited to the configurations shown in FIGS. 4 and 5.
  • the manufacturing process of the capacitor 2 is an example of the capacitor manufacturing method of the present disclosure, and includes, for example, an anode foil manufacturing process, a cathode foil 6 manufacturing process, a separator manufacturing process, a lead terminal 4 manufacturing process, and an electrode foil manufacturing process.
  • the process includes a process of connecting the lead terminal 4, a process of manufacturing the capacitor element, and a process of encapsulating the capacitor element.
  • an enlarged surface portion having a porous structure is formed on the surface of the valve metal foil described above, and a dielectric oxide film is applied to the surface of the valve metal foil with the enlarged surface portion formed thereon by chemical conversion treatment. form.
  • the enlarged surface portion is formed by direct current etching, alternating current etching, or vapor deposition or sintering of metal particles on the valve metal foil.
  • direct current or alternating current etching a direct or alternating current is typically applied to a valve metal foil immersed in an acidic aqueous solution containing halogen ions, such as hydrochloric acid.
  • An anode foil is produced by cutting the valve metal foil on which the dielectric oxide film is formed.
  • the base foil 12 is produced by, for example, forming the unevenness 16 on the surface of the valve metal foil described above by etching.
  • the etching of the cathode foil 6 may be the same as or different from the etching of the anode foil.
  • a carbon layer 14 is formed on the base foil 12, and the cathode foil 6 is produced. The thickness of the carbon layer 14 is adjusted to, for example, 1 to 2 ⁇ m.
  • the carbon layer 14 is formed, for example, as follows.
  • the above-mentioned carbon material, binder, and dispersant are added to the diluted liquid and mixed by a dispersion process such as a mixer, jet mixing, ultracentrifugation, and ultrasonication to form a slurry.
  • a dispersion process such as a mixer, jet mixing, ultracentrifugation, and ultrasonication to form a slurry.
  • the diluent include alcohol, hydrocarbon solvents, aromatic solvents, amide solvents, water, and mixtures thereof.
  • Alcohol is, for example, methanol, ethanol or 2-propanol.
  • the amide solvent is, for example, N-methyl-2-pyrrolidone (NMP) or N,N-dimethylformamide (DMF).
  • the slurry is applied to the base foil 12, the solvent is evaporated to form the carbon layer 14, and the carbon layer 14 is pressed.
  • the press can, for example, push the carbon material into the pores of the unevenness 16 and deform the carbon material along the uneven surface of the unevenness 16, thereby improving, for example, the adhesion between the carbon layer 14 and the base foil 12. Improves fixing properties.
  • the press aligns the graphite and deforms the graphite along the unevenness 16 of the base foil 12.
  • the press forces the spherical carbon into the unevenness 16, brings the slurry into close contact with the base foil 12, and as a result, brings the carbon layer 14 into close contact with the base foil 12.
  • the carbon material is only spherical carbon, for example, spherical carbon having an average primary particle diameter of 100 nanometers or less enters the unevenness 16, and the interfacial resistance between the carbon layer 14 and the base foil 12 can be reduced.
  • the carbon material is only spherical carbon, the coefficient of static friction on the surface of the carbon layer 14 is improved, and when the terminal piece 34 is pressed against the cathode foil 6, it becomes difficult to slip, and a stitch connection with stable connectivity can be obtained. .
  • the cathode foil 6 with the carbon layer 14 formed on the base foil 12 is cut into strips.
  • a foil removal hole 52 (C in FIG. 4) is formed in the cathode foil 6 cut into strips.
  • the foil removal hole 52 is formed, for example, as follows. As shown in FIG. 4A, the base foil 12 with the carbon layer 14 is placed on the mounting surface of a punching table 56 having punched holes 54. As shown in FIG. As shown in FIGS.
  • a hole punching means 58 having a slightly smaller cross section than the punch hole 54 is inserted into the punch hole 54 from the mounting surface side, and the carbon layer 14 on the punch hole 54 and The base foil 12 is cut off by cutting such as shearing or breaking, and a foil removal hole 52 is formed in the base foil 12 together with the carbon layer 14 .
  • the base foil 12 is not covered with the carbon layer 14 and is exposed.
  • the cut surface 60 is an example of the edge of the foil removal hole 52, and forms the base material exposed surface 28 in the capacitor 2.
  • the foil removal hole 52 has the same or approximately the same size and shape as the cross section of the hole punching means 58. That is, the size and shape of the foil removal hole 52 can be adjusted by adjusting the cross section of the punching means 58 and the size or shape of the punch hole 54. As shown in FIG. 6, the foil removal hole 52 is, for example, a square or a substantially square whose length on one side is L1.
  • the separator member described above is cut to produce a separator.
  • the flat portion 32 is formed by, for example, pressing one end side of the substantially cylindrical round rod portion made of the conductive metal described above.
  • the side of the round bar portion where the flat portion 32 is not formed is connected to the lead wire by arc welding or the like to produce the lead terminal 4 before stitch connection.
  • the lead terminal 4 is connected to the cathode foil 6 and the anode foil, respectively.
  • the flat portion 32 is superimposed on the upper surface of the cathode foil 6, that is, the terminal arrangement surface.
  • a second mold 64 such as an upper mold is installed on the top surface of the lead-out terminal 4. Therefore, the cathode foil 6 and the lead-out terminal 4 are sandwiched between the first mold 62 and the second mold 64 and held by the first mold 62 and the second mold 64.
  • the first mold 62 has a through hole 66 and the second mold 64 has a through hole 68.
  • the through hole 68 is smaller than the through hole 66 and is arranged directly above the through hole 66.
  • Stitch needle 70 is positioned above through-hole 68
  • foil removal hole 52 of cathode foil 6 is positioned directly below through-hole 68 and stitch needle 70 .
  • the stitch needle 70 has, for example, a cylindrical shaft portion and an acute-angled, quadrangular pyramid-shaped tip portion, and the projection view 74 of the perforation portion 72 (B in FIG. 5) of the stitch needle 70 onto the cathode foil 6 (FIG. 6) is, for example, a square or a substantially square whose length on one side is L2.
  • the perforation part 72 is a part of the tip of the stitch needle 70, and is a contact part of the pull-out terminal of the stitch needle 70 inserted to the set position.
  • the stitch needle 70 stops and the expansion of the through hole 18 and the terminal hole 36 basically stops. As shown in FIG.
  • the position of the stitch needle 70 in the rotational direction is adjusted so that the projected view 74 is rotated, for example, by 45 degrees with respect to the foil removal hole 52.
  • the projected view 74 is rotated, for example, by 45 degrees with respect to the foil removal hole 52, the cathode foil 6 is not present in the area of the center C shown in FIG. exists. Therefore, the stress applied to the foil pieces 20 existing in the area of the center C is smaller than that of the foil pieces 20 existing in the areas sandwiching the center C when the stitch needle 70 is inserted through the cathode foil 6.
  • the rotation of the projection 74 with respect to the foil removal hole 52 is not limited to 45 degrees. For example, any angle may be used as long as the same or similar structure as the capacitor 2 can be obtained.
  • the stitch needle 70 which has the above-described structure and whose position in the rotational direction has been adjusted, is lowered in the direction of the block arrow shown in FIG. 5A, and as shown in FIG. It is inserted into the foil removal hole 52 of the drawer terminal 4 and the cathode foil 6 from the drawer terminal 4 side.
  • a through hole 18 and a foil piece 20 are formed in the cathode foil 6, and a terminal hole 36 and a terminal piece 34 are formed in the lead-out terminal 4.
  • the cut surface 60 of the foil removal hole 52 will be placed on the formed foil piece 20, and both the foil piece 20 and the terminal piece 34 will move in the insertion direction of the stitch needle 70 (that is, downward). become. In other words, the cut surface 60 moves toward the terminal piece 34 together with the foil piece 20.
  • the lowered stitch needle 70 is raised and removed from the pull-out terminal 4 and the cathode foil 6.
  • the perforation part 72 of the stitch needle 70 comes into contact with the surface of the terminal hole 36 formed in the pull-out terminal 4, as shown in FIG. 5B.
  • the perforation 72 is a part of an acute-angled, quadrangular pyramid-shaped tip. Therefore, in the terminal hole 36, the opening distance changes in the direction of penetration of the terminal hole 36 or the direction of insertion of the stitch needle 70.
  • the opening distance on the lower surface of the lead-out terminal 4 (the surface in contact with the cathode foil 6) is smaller than the opening distance in the upper surface of the lead-out terminal 4 (the surface opposite to the surface in contact with the cathode foil 6). That is, the opening area of the terminal hole 36 gradually increases from the bottom surface to the top surface of the drawer terminal 4, and the side surface of the terminal hole 36 has a wide angle from the bottom surface to the top surface of the drawer terminal 4.
  • the mold 76 has, for example, a flat pressing surface on the upper side and is arranged below the through hole 66.
  • the mold 76 is raised in the direction of the block arrow shown in FIG.
  • the terminal piece 34 and the foil piece 20 are sandwiched between the second mold 64 and the mold 76.
  • the terminal piece 34 and the foil piece 20 are folded back by pressing, and the lead-out terminal 4 is connected to the cathode foil 6.
  • the cut surface 60 of the foil removal hole 52 is stretched by pressing, and the base material exposed surface 28 having an exposed length larger than the thickness T1 of the cathode foil 6 is formed.
  • the cross-sectional area of the perforation 72 is adjusted, for example, to satisfy the following formula (1).
  • equation (1) the following equation (2) is obtained.
  • the opening area of the foil removal hole 52 may be adjusted.
  • Cross-sectional area of perforation 72>S1-S2...(2) S1: Opening area of foil removal hole 52
  • S2 Cross-sectional area of pull-out terminal 4 located inside through-hole 18
  • S2 is, for example, the annular area of the lead-out terminal 4 located on the broken line BL shown in FIG. This is the cross-sectional area of the pull-out terminal 4 between the perforations 72.
  • S1 the total area of the cross-sectional area of the perforation part 72 and S2 is larger than S1
  • the foil removal hole 52 tends to expand, and the cut surface 60 of the foil removal hole 52 tends to move in the insertion direction of the stitch needle 70. In other words, it becomes easier to obtain the base material exposed surface 28 facing the terminal piece 34.
  • the length L2 of one piece of the projection view 74 (that is, the length of one piece of the perforation part 72) may be adjusted using the following formula (3) instead of formulas (1) and (2).
  • the cross-sectional area of the perforation part 72 or the opening area S1 of the foil removal hole 52 is adjusted so as to satisfy the following formula (4) or formula (5), or the length L2 of one piece of the perforation part 72 or the opening area S1 of the foil removal hole 52 is adjusted to satisfy the following formula (4) or formula (5).
  • the length L1 of one side is adjusted to satisfy the following formula (6) or formula (7), it becomes easier to obtain the base material exposed surface 28 facing the terminal piece 34.
  • the upper limit of the cross-sectional area of the perforation 72, the lower limit of the opening area S1, and the upper limit of the length L2 are set so that the base material exposed surface 28 is arranged closer to the through hole 18 than the tip 40 of the terminal piece 34.
  • a lower limit value of the length L1 may be set.
  • the stress acting in the direction perpendicular to or intersecting the pressing direction (for example, along the lower surface of the pull-out terminal 4) is reduced, and the terminal piece 34 is moved in the direction of the dashed arrow D2 shown in FIG. , along the surface of the cathode foil 6).
  • the portion of the pull-out terminal 4 near the hole occupies the space 78 before being pressed. It is assumed that when the stress P acts in the pressing direction or substantially in the pressing direction, the portion of the pull-out terminal 4 near the hole cannot move into the space 78. Therefore, stress is expected to act in a direction perpendicular to or crossing the pressing direction, and the terminal piece 34 may be more likely to move in the direction of the dashed arrow D2 than in the state shown in B of FIG. is assumed.
  • the process of connecting the lead terminal 4 to the anode foil may be the same as or different from the process of connecting the lead terminal 4 to the cathode foil 6.
  • the first separator is placed between the anode foil and the cathode foil 6, and the second separator is placed outside the anode foil or the cathode foil 6.
  • a capacitor element is produced by winding the anode foil, the cathode foil 6, and the first and second separators.
  • a capacitor element impregnated with an electrolyte such as an electrolytic solution is inserted into the exterior case, and then a sealing member is attached to the opening of the exterior case to produce the capacitor 2.
  • the size of the foil piece 20 is suppressed. Therefore, the elongation of the cathode foil 6, especially the foil piece 20, during pressing is suppressed, and the dispersion of the pressing force is suppressed. Further, the protrusion or exposure of the foil piece 20 from the terminal piece 34 is suppressed.
  • the foil piece 20 protruding from the terminal piece 34 does not contribute to electrical connectivity or connection strength.
  • the exposed base surface 28 at the tip of the foil piece 20 has a structure that does not come into contact with the terminal piece 34.
  • the pressing force applied during stitch connection acts as a force that presses the terminal piece 34 against the base material exposed surface 28. Acts on exposed surface 28. Therefore, compared to the case where the base material exposed surface 28 is parallel to the penetration direction, the physical and electrical connection between the terminal piece 34 and the foil piece 20 can be strengthened. Furthermore, since the pressing force applied during stitch connection stretches the base material exposed surface 28, the contact area between the metal materials can be increased compared to when the base material exposed surface 28 is parallel to the penetration direction. .
  • a stitch connection suitable for the properties of the cathode foil 6 including the carbon layer 14 can be realized, and the stability or reliability of the capacitor 2 provided with the cathode foil 6 including the carbon layer 14 can be improved.
  • the stitch needle 70 forms a terminal hole 36 whose opening area gradually increases from the bottom surface to the top surface of the pull-out terminal 4. Therefore, when the mold 76 presses the pull-out terminal 4 and the cathode foil 6, the area near the hole of the pull-out terminal 4 can move into the space 78, and the terminal piece 34 is moved in the direction along the surface of the cathode foil 6. Movement is suppressed.
  • the capacitor 2 according to the embodiment is a capacitor 2 according to an embodiment in which the length L1 of one side of the foil removal hole 52 and the length L2 of one side of the perforation part 72 are adjusted to the values shown below. Note that the thickness of the flat portion 32 is 0.23 mm, and the thickness T1 of the cathode foil 6 is 20 ⁇ m. ⁇ L1: 0.50mm ⁇ L2: 0.51mm
  • the capacitor according to the comparative example is a capacitor manufactured in the same manufacturing process as the capacitor 2 according to the example, except that the foil removal hole 52 was not formed. Since the foil removal hole 52 was not formed, the capacitor according to the comparative example has a larger foil piece than the foil piece 20 of the capacitor 2 according to the example, and does not include the base material exposed surface 28 due to the cut surface 60. .
  • the contact resistance of the capacitor 2 according to the example is compared with the contact resistance of the capacitor according to the comparative example.
  • the average value (Ave), maximum value (Max), and minimum value (Min) of the contact resistance (unit: m ⁇ ) of the five capacitors 2 are as follows. They were 0.78, 0.82, and 0.74.
  • the average value, maximum value, and minimum value of the contact resistance (unit: m ⁇ ) of the five capacitors were 0.80, 0.94, and 0.74, respectively.
  • FIG. 8B shows the measurement results of contact resistance in a graph.
  • the average value is represented by a black square, and the maximum and minimum values are represented by white circles.
  • the bidirectional arrow in the graph shown in FIG. 8B represents the width of the variation.
  • a decrease in the average value of contact resistance was observed and a decrease in the width of variation was observed as compared to the capacitor according to the comparative example. It has been found that by providing the foil removal hole 52 in the cathode foil 6 in advance, the stability of the connection of the capacitor 2 is improved.
  • FIG. 9 shows an example of experimental results for the first to fifth samples.
  • Figure 10 shows the sample.
  • the first to fifth samples include a cathode foil 84 and a lead terminal 86, as shown in FIG.
  • the lead-out terminal 86 is a terminal similar to the lead-out terminal 4 already described in the embodiment, and is connected to the cathode foil 84 by stitch connection at three connecting portions 88-1, 88-2, and 88-3.
  • the distance between the centers of adjacent connecting portions 88-1, 88-2, and 88-3 is 3.0 mm.
  • the connecting portion 88-1 is closer to the side edge 90 of the cathode foil 84 than the connecting portions 88-2 and 88-3, and the distance between the center of the connecting portion 88-1 and the side edge 90 is 2.5 mm.
  • the first to fifth samples include a cathode foil 84 and a lead terminal 86 for a capacitor, which are larger in product size than those of the example and comparative example, and the size of the lead terminal 86 is larger than that of the example and comparative example. It is different from the pull-out terminal 4.
  • the thickness of the flat portion is 0.29 mm.
  • the cathode foils 84 of the first to fourth samples include the base foil 12 already described in the embodiment and a layer formed on one side of the base foil 12.
  • the layers formed on the base foil 12 are a carbon layer 14, a titanium carbide layer (thickness: 0.1 to 0.12 ⁇ m), and a titanium nitride layer (thickness: It is a double layer of titanium and carbon (thickness: approximately 0.08 ⁇ m).
  • the cathode foil 84 of the fifth sample was made only of aluminum foil.
  • the carbon layer 14 is the carbon layer 14 described in the embodiment.
  • the titanium carbide layer, the titanium nitride layer, and the titanium/carbon double layer are formed by vapor deposition such as physical vapor deposition (PVD) or chemical vapor deposition (CVD).
  • the titanium and carbon double layer has a base layer of titanium layer and a top layer of carbon layer.
  • the cathode foil 84 of the first sample was manufactured by mixing carbon and a resin binder to create a slurry, applying the created slurry to an etched aluminum foil, and pressing it.
  • the cathode foil 84 of the second sample was produced by forming a titanium carbide layer on an etched aluminum foil by arc ion plating.
  • the cathode foil 84 of the third sample was fabricated by forming a titanium nitride layer on an etched aluminum foil by arc ion plating.
  • the cathode foil 84 of the fourth sample was produced by forming a titanium layer on an etched aluminum foil by sputtering, and then forming a carbon layer on the formed titanium layer by sputtering.
  • the stitch needle used in stitch connection has a square pyramid-shaped tip, the length of one side of the square pyramid is 0.8 mm, and the angle of the tip is 20 degrees.
  • the first to fifth samples are produced by stitch-connecting a lead terminal 86 to a cathode foil 84 having a 0.9 mm square foil removal hole 52.
  • the first to fifth samples are produced by stitch-connecting the lead terminal 86 to the cathode foil 84 in which the foil removal hole 52 is not formed.
  • a resistance meter (manufactured by Hioki Electric Co., Ltd., model number: RM3545) was brought into contact with the round bar part of the pull-out terminal 86 and the cathode foil 84, and the resistance was measured at no load, at 0.5 tension, and at 1.0 tension. .
  • the measured resistance is the resistance (contact resistance) between the contact points that the probe of the ohmmeter contacts, and includes the resistance of the cathode foil 84, the resistance of the lead terminal 86, and the connection resistance of the lead terminal 86 to the cathode foil 84. including.
  • 0.5 tension means pulling the end of the round bar portion of the pull-out terminal 86 by about 0.5 mm in parallel to the perpendicular line to the cathode foil 84 so that tension acts between the pull-out terminal 86 and the cathode foil 84.
  • 1.0 tension means that the end of the round bar portion of the pull-out terminal 86 is pulled by approximately 1.0 mm in parallel to the perpendicular line to the cathode foil 84 so that tension is applied between the pull-out terminal 86 and the cathode foil 84.
  • No load indicates that the end of the round bar portion of the extraction terminal 86 is not pulled.
  • the capacitor element, the lead-out terminal 4, the outer case, the sealing member, the electrolyte, etc. are not limited to those described in the embodiment. These materials may be other materials employed in aluminum electrolytic capacitors or similar capacitors.
  • the pull-out terminal 4 may be a tab terminal
  • the sealing member may be a phenol laminate to which an external terminal is attached. After the capacitor element is impregnated with electrolyte, the lead-out terminal 4 led out from the capacitor element may be connected to the external terminal of the sealing member, and the capacitor element and the sealing member are inserted into the outer case and sealed with the sealing member. It is also possible to have a similar structure.
  • the capacitor element may be a laminated element in which a plurality of flat anode foils, cathode foils 6, and separators are laminated, for example.
  • the material of the carbon layer 14 is not limited to that described in the embodiment.
  • the material forming the carbon layer 14 may be any conductive material containing carbon.
  • the state of contact or engagement of the carbon layer 14 with the base foil 12 is not limited to that described in the embodiment.
  • the lead terminal 4 is placed on the cathode foil 6, the stitch needle 70 pierces the lead terminal 4 and the cathode foil 6 from above, and the mold 76 is inserted into the lead terminal 4 and the cathode foil 6 from below.
  • the cathode foil 6 is pressed.
  • the lead terminal 4, the cathode foil 6, the stitch needle 70, and the mold 76 may be arranged upside down or rotated by an arbitrary angle relative to the arrangement described in the embodiment, for example.
  • the stitch needle 70 is inserted through the drawer terminal 4 and the cathode foil 6, and then the first The holding by the mold 62 and the second mold 64 is released, and with at least the terminal piece 34 formed, the cathode foil 6 and the lead-out terminal 4 are sent to the next process, and at least the surface side on which the terminal piece 34 is formed is separated.
  • the stitch connection portion 10 may be formed by pressing from the pullout terminal 4 side with a mold having a flat pressing surface.
  • the foil removal hole 52 formed in the cathode foil 6 and the through hole of the first mold 62 are The cathode foil 6 was placed on the first mold 62 so that the two molds 66 were aligned, and the cathode foil 6 and the lead-out terminal 4 were both sandwiched and held between the first mold 62 and the second mold 64 and connected.
  • the foil removal hole 52 is formed using the through hole 66 of the first mold 62 without using the drilling table 56, and this state is maintained to perform the process of connecting the lead terminal 4 to the cathode foil 6. You may go.
  • the stitching is performed so that the projection 74 of the perforation part 72 (B in FIG. 5) of the stitch needle 70 onto the cathode foil 6 is rotated by 45 degrees with respect to the foil removal hole 52.
  • the rotation may be adjusted to be less than 45 degrees or more than 45 degrees.
  • the foil removal hole 52 and the projection 74 of the perforation part 72 of the stitch needle 70 onto the cathode foil 6 are at the same angle, that is, when the projection 74 coincides with the foil removal hole 52, or when the projection 74 is It may be adjusted so that it is one size larger or smaller than the removal hole 52.
  • the cathode foil 6 includes the foil piece 20. However, the cathode foil 6 may not include the foil piece 20 and the base material exposed surface 28 may be formed on the upper surface of the edge 22 of the through hole 18 shown in FIG. 2B.
  • the cut surface 60 of the foil removal hole 52 may move slightly due to the insertion of the stitch needle 70, and this slightly moved cut surface 60 is pressed.
  • a base material exposed surface 28 may be formed at the edge 22 of the through hole 18 .
  • the base material exposed surface 28 exists at the edge 22 of the through hole 18 without the foil piece 20
  • the base material foil 12 and the terminal piece 34 will come into direct contact with each other at the edge 22 of the through hole 18, and the terminal piece 34 will not touch the terminal piece 34 when pressed. Relative movement between the cathode foils 6 is suppressed, and dispersion of the pressing force is suppressed.
  • the shape of the foil removal hole 52 is not limited to a square or a substantially square.
  • the shape of the tip of the stitch needle 70 is not limited to the quadrangular pyramid shape. It may be a rectangle or a regular polygon other than a square.
  • the carbon layer 14 may be formed on the base foil 12 in which the foil removal holes 52 are formed. Since the surface unevenness of the cut surface 60 is small, the base material foil 12 on the cut surface 60 can be stretched by pressing, and can be exposed from the carbon layer 14 to form the base material exposed surface 28.
  • the extraction terminal 4 may have a metal surface portion 92 and a hardened surface portion 94.
  • the metal surface portion 92 mainly contains the non-oxidized conductive metal contained in the lead-out terminal 4 and may contain a small amount of oxide of the conductive metal contained in the lead-out terminal 4.
  • the hardened surface portion 94 is, for example, an oxidized surface portion containing an oxide of the conductive metal contained in the lead-out terminal 4, and is harder than the metal surface portion 92.
  • a terminal connection such as a stitch connection 10
  • the metal surface 92 contacts the base foil 12, for example in a first region 96.
  • the hardened surface portion 94 comes into contact with the carbon layer 14, for example in the second region 98, and the hardened surface portion 94 and the carbon layer 14 are laminated.
  • the terminal connection portion may be a portion where the base material exposed surface 28 is placed, or may be a portion different from the portion where the base material exposed surface 28 is placed.
  • the first region 96 and the second region 98 are formed, for example, by the steps shown below.
  • the pull-out terminal 4 (for example, the terminal piece 34) has, for example, a metal surface portion 92 and a hardened surface portion 94 on the surface
  • the cathode foil 6 (for example, a foil Piece 20) has a carbon layer 14 covering base foil 12.
  • the lead terminal 4 may have only a hardened surface portion 94 on its surface
  • the cathode foil 6 may partially have a carbon layer 14 on its surface.
  • the pressing force When the lead terminal 4 is pressed against the cathode foil 6 in the direction of the block arrow in FIG. 12B, the pressing force generates tension in the lead terminal 4 and the cathode foil 6 in the direction of the broken line arrow.
  • the hard hardened surface portion 94 digs into the carbon layer 14, for example, to form a second region 98 as shown in FIG. In the second region 98, slippage or relative movement between the extraction terminal 4 and the cathode foil 6 is suppressed, for example, by a spike effect.
  • the tension stretches or expands the lead terminal 4 and the cathode foil 6 along the contact surface of the lead terminal 4 and the cathode foil 6.
  • a metal surface portion 92 having higher deformability than the hardened surface portion 94 extends or expands, and in the cathode foil 6, for example, a portion in contact with the metal surface portion 92 expands or expands. or elongate or elongate in response to elongation.
  • the elongation or expansion of the cathode foil 6 causes, for example, the carbon layer 14 to tear and separate, and the base foil 12 is exposed between the torn carbon layers 14 .
  • a first region 96 is formed by contacting the exposed base foil 12 with the metal surface portion 92 .
  • the hardened surface portion 94 and carbon layer 14 that overlap each other may be torn and separated.
  • the number of second regions 98 in which the hardened surface portion 94 overlaps the carbon layer 14 increases, and first regions 96 are formed between the second regions 98 .
  • the metal surface portion 92 may come into contact with the carbon layer 14 to form the third region 100, and the hardened surface portion 94 may come into contact with the base foil 12. , a fourth region 102 may be formed.
  • the lead terminal 4 has the metal surface portion 92 and the hardened surface portion 94 and the first region 96 and the second region 98 are formed, the following effects can be obtained, for example.
  • the foil piece 20 is folded over the cathode foil 6.
  • the carbon layers 14 overlap each other, and the cathode foil 6 becomes slippery.
  • the surface roughness of the carbon layer 14 becomes small, and the cathode foil 6 becomes easy to slip.
  • the biting of the hardened surface portion 94 can effectively work against such slippery cathode foil 6.
  • the technology of the present disclosure is useful because it can be used for connecting a cathode foil containing a carbon layer and an extraction terminal, and for a capacitor containing these.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

The purpose of the present disclosure is to provide a stitching connection structure suited to cathode foil that includes a carbon layer, for example. Cathode foil (6) includes base-material foil (12) and a carbon layer (14) formed onto the base-material foil, and has a through hole (18). A lead terminal (4) includes: a flat section (32) that is carried on a terminal-carrying surface of the cathode foil; and a terminal strip (34) that is formed on the flat section and that passes through the through hole and is led out to the surface on the opposite side from the terminal-carrying surface of the cathode foil and is folded over. The lead terminal is connected to the cathode foil by the cathode foil being sandwiched between the flat section and the terminal strip. The cathode foil has, at a tip-end portion of a foil strip (20) extending from an edge portion (22) of the through hole, a base-material exposed surface (28) in which the base-material foil is exposed. The base-material exposed surface is disposed between a root (38) and a tip (40) of the terminal strip, and connects with the terminal strip.

Description

コンデンサおよびその製造方法Capacitor and its manufacturing method
 本開示は、カーボン層を含む陰極箔を備えるコンデンサおよびその製造方法に関する。
The present disclosure relates to a capacitor including a cathode foil including a carbon layer and a method for manufacturing the same.
 コンデンサは、陽極箔と、陰極箔と、陽極箔および陰極箔の間に配置されたセパレータとを含み、電気を蓄えることが可能である。このようなコンデンサに関し、アルミニウム箔のみからなる陰極箔を含む基本的なコンデンサが知られている。また、近年、アルミニウム箔とアルミニウム箔上に形成されたカーボン層を含む陰極箔を備えるコンデンサが知られている(たとえば、特許文献1)。カーボン層は、たとえば陰極箔の静電容量を高めるという作用を有する。 A capacitor includes an anode foil, a cathode foil, and a separator placed between the anode foil and the cathode foil, and is capable of storing electricity. Regarding such capacitors, a basic capacitor including a cathode foil made only of aluminum foil is known. Furthermore, in recent years, a capacitor including a cathode foil including an aluminum foil and a carbon layer formed on the aluminum foil has been known (for example, Patent Document 1). The carbon layer has the effect of increasing the capacitance of the cathode foil, for example.
特開2006-80111号公報Japanese Patent Application Publication No. 2006-80111
 陽極箔、陰極箔などの電極箔と引出し端子は、ステッチ接続などの接続手段により接続される。ステッチ接続を形成するためのステッチ接続処理では、互いに重ねられた引出し端子および電極箔に引出し端子側からステッチ針が挿通され、引出し端子に端子孔および端子片が形成され、電極箔に貫通孔および箔片が形成される。端子片は、電極箔の貫通孔を通って電極箔の背面から突出する。端子片および箔片は押圧されて、電極箔の背面に重ねられる。その結果、ステッチ接続部が形成され、電極箔と引出し端子が接続される。 Electrode foils such as anode foils and cathode foils and lead terminals are connected by connection means such as stitch connections. In the stitch connection process for forming a stitch connection, a stitch needle is inserted through the overlapping lead terminal and electrode foil from the lead terminal side, a terminal hole and a terminal piece are formed in the lead terminal, and a through hole and a terminal piece are formed in the electrode foil. Foil pieces are formed. The terminal piece passes through the through hole in the electrode foil and protrudes from the back surface of the electrode foil. The terminal piece and foil piece are pressed and stacked on the back side of the electrode foil. As a result, a stitched connection portion is formed, and the electrode foil and the lead terminal are connected.
 ところで、カーボン層は、アルミニウム箔などの金属箔よりも低い静止摩擦係数を有し、カーボン層を含む陰極箔は、金属箔のみからなる陰極箔よりも滑り易い。そのため、端子片を陰極箔に接続する際、より詳細には、端子片および箔片が陰極箔を押圧する際、箔片が根本部分から箔片の先端方向に移動する。そのため、端子片および箔片の押圧力が押圧方向および箔片の移動方向に分散されるため、カーボン層を含む陰極箔では、金属箔のみからなる陰極箔よりも端子片を陰極箔に押し当てるための押圧力が減少する。押圧力の減少のため、端子片により陰極箔が固定しづらいという課題がある。 Incidentally, the carbon layer has a lower coefficient of static friction than metal foil such as aluminum foil, and the cathode foil containing the carbon layer is more slippery than the cathode foil consisting only of metal foil. Therefore, when connecting the terminal piece to the cathode foil, more specifically, when the terminal piece and the foil piece press the cathode foil, the foil piece moves from the base portion toward the tip of the foil piece. Therefore, the pressing force of the terminal piece and foil piece is dispersed in the pressing direction and the moving direction of the foil piece, so with a cathode foil containing a carbon layer, the terminal piece is pressed against the cathode foil more than with a cathode foil made only of metal foil. The pressing force for this decreases. Due to the reduced pressing force, there is a problem that it is difficult to fix the cathode foil with the terminal piece.
 また、端子片および箔片が陰極箔を押圧する際に、陰極箔と端子片の接触部が固定されていないと、陰極箔の被押圧部が伸びにくく、カーボン層から陰極箔の地金(つまり金属箔)が露出しにくい。端子片に対するカーボン層の接続力は、端子片に対する金属箔の接続力に比べて電気的および物理的に低いという課題がある。 In addition, when the terminal piece and the foil piece press the cathode foil, if the contact area between the cathode foil and the terminal piece is not fixed, the pressed part of the cathode foil will be difficult to stretch, and the base metal of the cathode foil will move away from the carbon layer. In other words, the metal foil) is difficult to expose. There is a problem in that the connection force of the carbon layer to the terminal piece is electrically and physically lower than the connection force of the metal foil to the terminal piece.
 そこで、本開示は、たとえばカーボン層を含む陰極箔に適したステッチ接続構造を提供することを目的とする。
Therefore, an object of the present disclosure is to provide a stitch connection structure suitable for, for example, a cathode foil including a carbon layer.
 本開示の第1の側面によれば、コンデンサは陰極箔と、引出し端子とを備える。陰極箔は、基材箔と、該基材箔上に形成されたカーボン層とを含み、貫通孔を有する。引出し端子は、前記陰極箔の端子載置面に載置される平坦部と、前記平坦部に形成され、前記貫通孔を通って前記陰極箔の前記端子載置面の反対面側に導出されるとともに折り曲げられた端子片とを含み、前記平坦部および前記端子片の間に前記陰極箔を挟むことにより前記陰極箔に接続される。前記陰極箔は、前記貫通孔の縁部から伸びる箔片の先端部に、前記基材箔が露出している基材露出面を有し、前記基材露出面は、前記端子片の根本と先端の間に配置されて、前記基材露出面が前記端子片と接続する。 According to the first aspect of the present disclosure, the capacitor includes a cathode foil and a lead terminal. The cathode foil includes a base foil and a carbon layer formed on the base foil, and has a through hole. The lead-out terminal has a flat portion placed on the terminal placement surface of the cathode foil, and is formed on the flat portion and led out through the through hole to a side opposite to the terminal placement surface of the cathode foil. and a bent terminal piece, and is connected to the cathode foil by sandwiching the cathode foil between the flat part and the terminal piece. The cathode foil has a base material exposed surface where the base material foil is exposed at the tip of the foil piece extending from the edge of the through hole, and the base material exposed surface is connected to the base of the terminal piece. The base material exposed surface connects with the terminal piece.
 上記コンデンサにおいて、前記基材露出面は、前記貫通孔の貫通方向に対して交差してもよい。 In the above capacitor, the exposed surface of the base material may intersect with the penetrating direction of the through hole.
 上記コンデンサにおいて、前記端子片の中央部を通る中央断面において、前記貫通孔の前記貫通方向と前記基材露出面との成す角度が45度以上90度以下であってもよい。 In the above capacitor, in a central cross section passing through a central portion of the terminal piece, an angle between the penetrating direction of the through hole and the exposed surface of the base material may be 45 degrees or more and 90 degrees or less.
 上記コンデンサにおいて、前記端子片の中央部を通る中央断面において、前記基材露出面は、前記陰極箔の厚さよりも大きい露出長を有してもよい。 In the above capacitor, the exposed base surface may have an exposed length greater than the thickness of the cathode foil in a central cross section passing through the central portion of the terminal piece.
 上記コンデンサにおいて、前記引出し端子は、ステッチ接続部で前記陰極箔に接続されてもよい。前記引出し端子は、金属表面部と該金属表面部よりも硬い硬化表面部とを有してもよい。前記金属表面部は、前記ステッチ接続部の第一領域で前記基材箔と接触してもよく、前記硬化表面部は、前記ステッチ接続部の第二領域で前記カーボン層に積層してもよい。 In the above capacitor, the lead terminal may be connected to the cathode foil at a stitch connection portion. The extraction terminal may have a metal surface portion and a hardened surface portion that is harder than the metal surface portion. The metal surface portion may contact the substrate foil in a first region of the stitch connection, and the hardened surface portion may be laminated to the carbon layer in a second region of the stitch connection. .
 本開示の第2の側面によれば、コンデンサの製造方法は、基材箔と、該基材箔上に形成されたカーボン層とを含み、箔除去孔を有する陰極箔を作製または準備する工程と、前記箔除去孔を覆うように、前記陰極箔に引出し端子の平坦部を配置する工程と、ステッチ針が前記箔除去孔を挿通するように、前記ステッチ針を前記引出し端子側から前記引出し端子および前記陰極箔に挿通して、前記ステッチ針が挿通された前記箔除去孔により形成される貫通孔と箔片とを前記陰極箔に形成するとともに、端子孔と前記端子孔の縁部から前記貫通孔を通って伸びる端子片とを前記引出し端子に形成する工程と、前記端子片を押圧して、前記陰極箔と前記引出し端子とを接続する工程とを備え、前記箔除去孔の縁端は、前記基材箔が露出する基材露出面を有し、前記ステッチ針を前記引出し端子および前記陰極箔に挿通した時に、前記基材露出面が前記箔片に形成されるとともに、前記箔片が前記端子片側に移動し、前記基材露出面が前記端子片の押圧方向に対して交差し、前記端子片と接続する。 According to a second aspect of the present disclosure, a method for manufacturing a capacitor includes a step of producing or preparing a cathode foil that includes a base foil and a carbon layer formed on the base foil, and has a foil removal hole. a step of arranging a flat part of the drawer terminal on the cathode foil so as to cover the foil removal hole, and inserting the stitch needle from the drawer terminal side so that the stitch needle passes through the foil removal hole. A through hole formed by the foil removal hole through which the stitch needle is inserted through the terminal and the cathode foil and a foil piece are formed in the cathode foil, and a foil piece is formed in the cathode foil from the terminal hole and the edge of the terminal hole. forming the lead-out terminal with a terminal piece extending through the through-hole; and pressing the terminal piece to connect the cathode foil and the lead-out terminal; The end has a base material exposed surface where the base material foil is exposed, and when the stitch needle is inserted through the drawer terminal and the cathode foil, the base material exposed surface is formed on the foil piece, and the base material exposed surface is formed on the foil piece. The foil piece moves to one side of the terminal, and the exposed surface of the base material intersects with the pressing direction of the terminal piece to connect with the terminal piece.
 上記コンデンサの製造方法において、前記ステッチ針の穿孔部の断面積は、以下の式を満たしてもよい。
   穿孔部の断面積>S1-S2
  S1: 前記箔除去孔の開口面積
  S2: 前記貫通孔の内部に位置する引出し端子の断面積
In the capacitor manufacturing method described above, the cross-sectional area of the perforation portion of the stitch needle may satisfy the following formula.
Cross-sectional area of perforation>S1-S2
S1: Opening area of the foil removal hole S2: Cross-sectional area of the pull-out terminal located inside the through-hole
 本開示の上記側面によれば、たとえば次のいずれかの効果が得られる。 According to the above aspects of the present disclosure, for example, any of the following effects can be obtained.
 (1) 貫通孔の縁部から伸びる箔片の先端部にある基材露出面が端子片と接続するので、カーボン層を介さずに基材箔と端子片が直接接触し、金属系材料同士の接触により物理的および電気的な接続が安定する。 (1) The exposed surface of the base material at the tip of the foil piece extending from the edge of the through hole connects with the terminal piece, so the base foil and the terminal piece come into direct contact without the carbon layer, and the metal materials The contact ensures a stable physical and electrical connection.
 (2) 箔片の先端部に基材露出面がある場合、箔片の先端部で、基材箔と端子片の直接接触により押圧時の端子片と箔片の間の相対移動が抑制され、押圧力の分散が抑制される。 (2) If there is an exposed surface of the base material at the tip of the foil piece, the relative movement between the terminal piece and the foil piece during pressing is suppressed due to direct contact between the base material foil and the terminal piece at the tip of the foil piece. , the dispersion of the pressing force is suppressed.
 (3) 陰極箔の性質に適したステッチ接続を実現できる。 (3) A stitch connection suitable for the properties of the cathode foil can be realized.
 (4) カーボン層を含む陰極箔を備えるコンデンサの安定性または信頼性を高めることができる。
(4) The stability or reliability of a capacitor equipped with a cathode foil containing a carbon layer can be improved.
実施の形態に係るコンデンサの端子接続部の一例を示す図である。It is a figure showing an example of the terminal connection part of the capacitor concerning an embodiment. 図1のIIA-IIA線断面を示す図である。2 is a diagram showing a cross section taken along the line IIA-IIA in FIG. 1. FIG. 陰極箔の端面の一例を示す図である。It is a figure which shows an example of the end surface of a cathode foil. 陰極箔への箔除去孔の形成工程の一例を示す図である。It is a figure which shows an example of the formation process of the foil removal hole in cathode foil. 電極箔への引出し端子の接続工程の一例を示す図である。It is a figure which shows an example of the connection process of the extraction terminal to electrode foil. ステッチ針および箔除去孔の配置を説明するための図である。FIG. 3 is a diagram for explaining the arrangement of stitch needles and foil removal holes. 押圧時の応力および部材の移動の一例を説明するための図である。It is a figure for explaining an example of stress and movement of a member at the time of pressing. 実施例および比較例に係るコンデンサの接触抵抗の比較の一例を示す図である。FIG. 3 is a diagram illustrating an example of a comparison of contact resistances of capacitors according to an example and a comparative example. 第1の試料から第5の試料の実験結果の一例を示す図である。It is a figure which shows an example of the experimental result of a 5th sample from a 1st sample. 試料を示す図である。It is a figure showing a sample. 変形例に係るコンデンサの端子接続部の断面の一例を示す図である。It is a figure which shows an example of the cross section of the terminal connection part of the capacitor|condenser based on a modification. 陰極箔への引出し端子の接続を説明するための図である。FIG. 3 is a diagram for explaining connection of a lead terminal to a cathode foil.
 図1は、実施の形態に係るコンデンサの端子接続部の一例を示している。図2は、図1のIIA-IIA線断面を示している。図3は、陰極箔の端面の一例を示している。図1から図3に示す構成は一例であって、斯かる構成に本開示の技術が限定されるものではない。端子接続部は、ステッチ接続により引出し端子4が陰極箔6に接続されている接続場所、つまりステッチ接続部10とその周囲部分を含むものとする。ステッチ接続部10は、端子片34が少なくとも平坦部32および陰極箔6に重ねられている領域であって、図1のAにおいて網掛けが付されている部分である。図2に示されている断面は、端子片34の中央部を通る中央断面の一例であって、端子片34の中央部は、端子片34の先端40と根本38の中心Cとを通る線により定義される。図2のBは、図2のAに示されている領域IIBの拡大図である。 FIG. 1 shows an example of a terminal connection portion of a capacitor according to an embodiment. FIG. 2 shows a cross section taken along line IIA-IIA in FIG. FIG. 3 shows an example of the end face of the cathode foil. The configurations shown in FIGS. 1 to 3 are examples, and the technology of the present disclosure is not limited to such configurations. The terminal connection portion includes the connection location where the lead terminal 4 is connected to the cathode foil 6 by stitch connection, that is, the stitch connection portion 10 and its surrounding portion. The stitch connection portion 10 is a region where the terminal piece 34 overlaps at least the flat portion 32 and the cathode foil 6, and is a shaded portion in A of FIG. The cross section shown in FIG. 2 is an example of a central cross section passing through the center of the terminal piece 34, and the center of the terminal piece 34 is connected to a line passing through the tip 40 of the terminal piece 34 and the center C of the base 38. Defined by FIG. 2B is an enlarged view of region IIB shown in FIG. 2A.
 コンデンサ2は電子部品の一例であり、たとえば電解コンデンサである。コンデンサ2は、たとえばコンデンサ素子と、引出し端子4と、電解質と、絶縁性ゴムなどの封口部材と、アルミニウムケースなどの外装ケースとを含む。電解質が充填されたコンデンサ素子および引出し端子4の一部が外装ケースの内部に挿入され、封口部材が外装ケースの開口部に設置される。引出し端子4は、封口部材を貫通し、封口部材から突出する。 The capacitor 2 is an example of an electronic component, and is, for example, an electrolytic capacitor. The capacitor 2 includes, for example, a capacitor element, a lead terminal 4, an electrolyte, a sealing member such as insulating rubber, and an exterior case such as an aluminum case. The capacitor element filled with electrolyte and a portion of the lead-out terminal 4 are inserted into the exterior case, and a sealing member is installed in the opening of the exterior case. The drawer terminal 4 penetrates the sealing member and protrudes from the sealing member.
 コンデンサ素子は、陰極箔6と、陽極箔と、セパレータとを含む。セパレータが陰極箔6と陽極箔の間に配置されるように、陰極箔6、陽極箔およびセパレータは重ねられるとともに巻回されて、巻回素子が形成される。この巻回素子がコンデンサ素子を形成する。 The capacitor element includes a cathode foil 6, an anode foil, and a separator. The cathode foil 6, anode foil and separator are stacked and wound to form a wound element such that the separator is placed between the cathode foil 6 and the anode foil. This wound element forms the capacitor element.
 陰極箔6は、コンデンサ2の陰極を構成する。陰極箔6は、たとえば帯状の箔であって、基材箔12とカーボン層14とを含む。基材箔12は、たとえば、アルミニウム箔、タンタル箔、ニオブ箔、チタン箔、ハフニウム箔、ジルコニウム箔、亜鉛箔、タングステン箔、ビスマス箔、アンチモン箔などの弁作用金属箔である。基材箔12の表面は、図3に示されているように、たとえばエッチングにより形成された凹凸16を有し、基材箔12の表面積が拡大されている。基材箔12の表面は、たとえばトンネル状または海綿状のエッチングピットを含んでもよく、このトンネル状または海綿状のエッチングピットが凹凸16を形成してもよい。 The cathode foil 6 constitutes the cathode of the capacitor 2. The cathode foil 6 is, for example, a strip-shaped foil, and includes a base foil 12 and a carbon layer 14. The base foil 12 is, for example, a valve metal foil such as aluminum foil, tantalum foil, niobium foil, titanium foil, hafnium foil, zirconium foil, zinc foil, tungsten foil, bismuth foil, or antimony foil. As shown in FIG. 3, the surface of the base foil 12 has unevenness 16 formed by etching, for example, and the surface area of the base foil 12 is expanded. The surface of the base foil 12 may include, for example, tunnel-shaped or cavernous etching pits, and these tunnel-shaped or cavernous etching pits may form the unevenness 16.
 カーボン層14は、たとえば基材箔12の両面に配置されている。カーボン層14は、基材箔12の一面にのみ配置されてもよい。カーボン層14は、図3に示されているように部分的に凹凸16の内部に侵入し、そのため基材箔12の凹凸16に密着かつ係合している。つまり、カーボン層14は凹凸16に係合する表面形状を有する。カーボン層14は基材箔12の外側に配置され、陰極箔6は基材箔12およびカーボン層14による二層構造または基材箔12の両面にカーボン層14を配置した三層構造を有している。カーボン層14は、主材として炭素材を含み、更に、添加剤としてバインダーおよび分散剤を含む。 The carbon layer 14 is arranged, for example, on both sides of the base foil 12. The carbon layer 14 may be arranged only on one surface of the base foil 12. As shown in FIG. 3, the carbon layer 14 partially penetrates into the concavo-convex portions 16, so that the carbon layer 14 closely adheres to and engages with the concavo-convex portions 16 of the base foil 12. That is, the carbon layer 14 has a surface shape that engages with the unevenness 16. The carbon layer 14 is arranged on the outside of the base foil 12, and the cathode foil 6 has a two-layer structure of the base foil 12 and the carbon layer 14, or a three-layer structure with the carbon layer 14 arranged on both sides of the base foil 12. ing. The carbon layer 14 contains a carbon material as a main material, and further contains a binder and a dispersant as additives.
 炭素材は、活性炭、カーボンブラック、カーボンナノホーン、無定形炭素、天然黒鉛、人造黒鉛、黒鉛化ケッチェンブラック、メソポーラス炭素、繊維状炭素などである。活性炭は、たとえば、やしがらなどの天然植物組織、フェノールなどの合成樹脂、石炭、コークスまたはピッチなどの化石燃料由来のものを原料として生成される。カーボンブラックは、ケッチェンブラック、アセチレンブラック、チャネルブラックまたはサーマルブラックなどである。繊維状炭素は、カーボンナノチューブ、カーボンナノファイバなどである。カーボンナノチューブは、グラフェンシートが1層である単層カーボンナノチューブでも、2層以上のグラフェンシートが同軸状に丸まり、チューブ壁が多層をなす多層カーボンナノチューブ(MWCNT)でもよい。 Carbon materials include activated carbon, carbon black, carbon nanohorn, amorphous carbon, natural graphite, artificial graphite, graphitized Ketjenblack, mesoporous carbon, and fibrous carbon. Activated carbon is produced, for example, from natural plant tissues such as coconut shells, synthetic resins such as phenol, and those derived from fossil fuels such as coal, coke, or pitch. Carbon blacks include Ketjen black, acetylene black, channel black or thermal black. Fibrous carbon includes carbon nanotubes, carbon nanofibers, and the like. The carbon nanotube may be a single-walled carbon nanotube with a single layer of graphene sheets, or a multi-walled carbon nanotube (MWCNT) with two or more layers of graphene sheets rolled coaxially to form a multilayered tube wall.
 炭素材は、球状炭素であるカーボンブラックが好ましい。一次粒子径が平均100ナノメートル以下である球状のカーボンブラックを用いることにより、カーボン層14は密になる。また、陰極箔6の表面にエッチングにより形成された凹凸16の開口径よりも小さな粒子径のカーボンブラックを用いることにより、カーボンブラックが凹凸16の深部に入り込みやすく、カーボン層14は陰極箔6の基材箔12と密着し、カーボン層14と基材箔12との界面抵抗は下がり易くなる。炭素材は、球状炭素と黒鉛とを含む混合物が好ましい。黒鉛は、たとえば天然黒鉛、人造黒鉛、または黒鉛化ケッチェンブラックなどであり、鱗片状、鱗状、塊状、土状、球状または薄片状などの形状を有する。黒鉛は、鱗片状または薄片状であることが好ましく、黒鉛の短径と長径とのアスペクト比が1:5~1:100の範囲であることが好ましい。既述のアスペクト比を有する鱗片状または薄片状の黒鉛は、たとえばエッチングピットなどの凹凸16に球状カーボンを押し込み、カーボン層14の一部がエッチングピットの内部にまで形成できる。そのため、アンカー効果により、カーボン層14が強固に基材箔12に密着できる。 The carbon material is preferably carbon black, which is spherical carbon. By using spherical carbon black with an average primary particle size of 100 nanometers or less, the carbon layer 14 becomes dense. In addition, by using carbon black with a particle size smaller than the opening diameter of the unevenness 16 formed by etching on the surface of the cathode foil 6, the carbon black easily penetrates deep into the unevenness 16, and the carbon layer 14 is formed on the surface of the cathode foil 6. The carbon layer 14 is in close contact with the base foil 12, and the interfacial resistance between the carbon layer 14 and the base foil 12 tends to decrease. The carbon material is preferably a mixture containing spherical carbon and graphite. Graphite is, for example, natural graphite, artificial graphite, or graphitized Ketjenblack, and has a shape such as flaky, scale-like, lump-like, earth-like, spherical, or flake-like. The graphite is preferably in the form of scales or flakes, and the aspect ratio of the short axis to the long axis of the graphite is preferably in the range of 1:5 to 1:100. The scale-like or flaky graphite having the above-mentioned aspect ratio can push spherical carbon into the unevenness 16 such as an etching pit, so that a part of the carbon layer 14 can be formed even inside the etching pit. Therefore, the carbon layer 14 can firmly adhere to the base foil 12 due to the anchor effect.
 炭素材が黒鉛と球状炭素の混合物である場合において、黒鉛と球状炭素の併用による作用を得るため、黒鉛と球状炭素の混合物に対する黒鉛の質量比〔黒鉛の質量/(黒鉛の質量+球状炭素の質量)〕は、たとえば25%以上90%以下の範囲である。 When the carbon material is a mixture of graphite and spherical carbon, in order to obtain the effect of a combination of graphite and spherical carbon, the mass ratio of graphite to the mixture of graphite and spherical carbon [mass of graphite / (mass of graphite + mass of spherical carbon) mass)] is, for example, in the range of 25% or more and 90% or less.
 バインダーは、たとえばスチレンブタジエンゴム、ポリフッ化ビニリデンまたはポリテトラフルオロエチレンなどの樹脂系バインダーであって、炭素材を結合させる。分散剤は、たとえばカルボキシメチルセルロースナトリウムである。 The binder is a resin binder such as styrene-butadiene rubber, polyvinylidene fluoride, or polytetrafluoroethylene, and binds the carbon material. The dispersant is, for example, sodium carboxymethyl cellulose.
 陰極箔6は貫通孔18および箔片20を有する。箔片20は貫通孔18の縁部22から伸びるとともに縁部22で折返されている。箔片20は、折返しにより陰極箔6自体に重ねられて、縁部22の外側に折り重ね部24が形成されている。箔片20は、箔片20の先端および先端近傍(以下、先端および先端近傍を「先端部」という)に、基材箔12が露出している基材露出面28を有する。基材露出面28は、貫通孔18の縁部22まで延びていてもよい。基材露出面28は、カーボン層14に覆われておらず、地金(つまり既述の弁作用金属)が露出している。基材露出面28は、図2のBに示されている双方向矢印により表されている貫通孔18の貫通方向に対して交差する。つまり、基材露出面28は、貫通方向に平行ではなく、傾斜または直交する。貫通孔18の貫通方向と基材露出面28との成す角度θは、たとえば45度以上90度以下であることが好ましい。角度θが90度に向けて大きくなるにつれて、基材露出面28と端子片34の基材露出面28と接続する部分が対向するような配置となるため、接続性が安定化する。また、ステッチ接続時に加えられる押圧力が、基材露出面28と端子片34の基材露出面28と接続する部分が対向するような配置となるため、押圧力が接続部分に効率よく伝わる。そのため、基材露出面28に加えられる押圧力が大きくなり、基材露出面28と引出し端子4との間の物理的および電気的な接続が強くなる。 The cathode foil 6 has a through hole 18 and a foil piece 20. The foil piece 20 extends from the edge 22 of the through hole 18 and is folded back at the edge 22. The foil piece 20 is folded over the cathode foil 6 itself to form a folded portion 24 on the outside of the edge 22. The foil piece 20 has a base material exposed surface 28 on which the base material foil 12 is exposed at the tip and the vicinity of the tip (hereinafter, the tip and the vicinity of the tip will be referred to as the "tip part"). The base material exposed surface 28 may extend to the edge 22 of the through hole 18 . The exposed surface 28 of the base material is not covered with the carbon layer 14, and bare metal (that is, the valve metal described above) is exposed. The base material exposed surface 28 intersects with the direction of penetration of the through hole 18, which is represented by the double-headed arrow shown in FIG. 2B. That is, the base material exposed surface 28 is not parallel to the penetration direction, but is inclined or perpendicular to the penetration direction. It is preferable that the angle θ between the penetrating direction of the through hole 18 and the exposed surface 28 of the base material is, for example, 45 degrees or more and 90 degrees or less. As the angle θ increases toward 90 degrees, the exposed base surface 28 and the portion of the terminal piece 34 that connects to the exposed base surface 28 are arranged to face each other, so that connectivity becomes more stable. Further, since the base material exposed surface 28 and the portion of the terminal piece 34 connected to the base material exposed surface 28 are arranged to face each other, the pressing force applied during stitch connection is efficiently transmitted to the connecting portion. Therefore, the pressing force applied to the base material exposed surface 28 increases, and the physical and electrical connection between the base material exposed surface 28 and the lead-out terminal 4 becomes stronger.
 ステッチ接続時の押圧力は、たとえば貫通孔18の貫通方向に平行であって、端子片34および箔片20の押圧方向は貫通孔18の貫通方向に平行である。この押圧力は、ベクトルを用いて、基材露出面28に垂直な第一の分力と基材露出面28に平行な第二の分力に分解することができる。角度θが45度であると、第一の分力は押圧力のルート2分の1(つまり、1/√2)であり、基材露出面28が傾斜していることによる押圧力の低下を約30パーセントに抑制することができる。 The pressing force at the time of stitch connection is, for example, parallel to the penetrating direction of the through hole 18, and the pressing direction of the terminal piece 34 and the foil piece 20 is parallel to the penetrating direction of the through hole 18. This pressing force can be decomposed into a first component force perpendicular to the exposed surface 28 of the base material and a second component force parallel to the exposed surface 28 of the base material using a vector. When the angle θ is 45 degrees, the first component force is one half of the root of the pressing force (that is, 1/√2), and the pressing force is reduced due to the slope of the base material exposed surface 28. can be suppressed to about 30%.
 陽極箔は、コンデンサ2の陽極を構成する。陽極箔は、たとえば既述の弁作用金属箔であって、帯状の箔である。陽極箔の表面には多孔質構造を有する拡面部が形成されている。多孔質構造は、たとえば、エッチングにより形成されたトンネル状のピット、海綿状のピット、または密集した紛体間の空隙により成る。拡面部の表面は、化成処理により形成された誘電体酸化皮膜を含んでいる。陽極箔は、陽極側の引出し端子にステッチ接続または他の接続手段により接続される。 The anode foil constitutes the anode of the capacitor 2. The anode foil is, for example, the valve metal foil described above, and is a strip-shaped foil. An enlarged surface portion having a porous structure is formed on the surface of the anode foil. The porous structure consists of, for example, tunnel-like pits formed by etching, cavernous pits, or voids between densely packed powders. The surface of the enlarged surface portion includes a dielectric oxide film formed by chemical conversion treatment. The anode foil is connected to the anode side lead-out terminal by a stitch connection or other connection means.
 セパレータは、陽極箔と陰極箔6の間に配置され、陽極箔と陰極箔6の間の短絡を防止する。セパレータは、絶縁材料であって、セパレータ部材としてクラフトを含み、マニラ麻、エスパルト、ヘンプ、レーヨン、セルロース、これらの混合材などの他のセパレータ部材を含んでもよい。 The separator is placed between the anode foil and the cathode foil 6 to prevent short circuits between the anode foil and the cathode foil 6. The separator is an insulating material, including kraft as a separator member, and may also include other separator members such as Manila hemp, esparto, hemp, rayon, cellulose, and mixtures thereof.
 引出し端子4は、たとえばアルミニウムなどの導電性金属で形成されている。引出し端子4は、たとえば、リード線と端子部と端子片34とを含むリード端子である。端子部は、アルミニウム線から構成されており、略円柱形状の丸棒部と、アルミニウム線の一端側がプレス加工等された平坦部32から構成される。丸棒部と平坦部32の間には、平坦部32の厚みまで直線的に厚みが減少する傾斜部が形成されている。リード線はたとえば金属線から構成されており、アーク溶接で丸棒部に接続されている。平坦部32は、陰極箔6の端子載置面に重ねられており、端子孔36を含む。端子孔36は、貫通孔18に重なる位置に配置される。端子片34は、平坦部32に形成され、平坦部32の端子孔36の縁部から伸び、貫通孔18を通って陰極箔6の端子載置面の反対面側に導出され、陰極箔6の反対面に圧接される。引出し端子4は、平坦部32および折り曲げられた端子片34の間に陰極箔6を挟むことによりステッチ接続部10で陰極箔6に接続される。端子片34は、たとえば、図2に示されている中央断面において箔片20の全体を覆い、端子片34に面している基材露出面28に接続される。つまり、基材露出面28が端子片34の根本38と先端40の間に存在する。端子片34および基材露出面28の弁作用金属の接続により、陰極箔6の滑りまたは相対移動が抑制されるとともに、物理的および電気的な接続が強くなる。 The lead terminal 4 is made of a conductive metal such as aluminum. The lead terminal 4 is, for example, a lead terminal including a lead wire, a terminal portion, and a terminal piece 34. The terminal portion is made of an aluminum wire, and is made up of a substantially cylindrical round bar portion and a flat portion 32 formed by press working or the like on one end side of the aluminum wire. An inclined portion whose thickness decreases linearly to the thickness of the flat portion 32 is formed between the round bar portion and the flat portion 32. The lead wire is made of, for example, a metal wire, and is connected to the round bar portion by arc welding. The flat portion 32 overlaps the terminal mounting surface of the cathode foil 6 and includes a terminal hole 36 . The terminal hole 36 is arranged at a position overlapping the through hole 18. The terminal piece 34 is formed on the flat part 32, extends from the edge of the terminal hole 36 of the flat part 32, passes through the through hole 18, and is led out to the side opposite to the terminal mounting surface of the cathode foil 6. is pressed against the opposite side of the The lead terminal 4 is connected to the cathode foil 6 at the stitch connection portion 10 by sandwiching the cathode foil 6 between the flat portion 32 and the bent terminal piece 34. The terminal piece 34 covers the entire foil piece 20 in the central cross-section shown in FIG. 2, for example, and is connected to the base material exposed surface 28 facing the terminal piece 34. That is, the base material exposed surface 28 exists between the base 38 and the tip 40 of the terminal piece 34. The valve metal connection between the terminal piece 34 and the exposed base surface 28 suppresses slippage or relative movement of the cathode foil 6 and strengthens the physical and electrical connection.
 電解質は、電解液、ゲル電解質、導電性高分子を含む固体電解質などである。電解質が電解液またはゲル電解質と、導電性高分子を含む固体電解質とを備えて所謂ハイブリッド型の電解コンデンサが形成されてもよい。 The electrolyte is an electrolytic solution, a gel electrolyte, a solid electrolyte containing a conductive polymer, etc. A so-called hybrid electrolytic capacitor may be formed by including an electrolytic solution or gel electrolyte and a solid electrolyte containing a conductive polymer.
 電解コンデンサの電解液では、溶媒に溶質が溶解されており、必要に応じて添加剤が添加されている。溶媒はプロトン性の極性溶媒または非プロトン性の極性溶媒の何れでもよい。プロトン性の極性溶媒は、たとえば、一価アルコール類、多価アルコール類、オキシアルコール化合物類、水などである。非プロトン性の極性溶媒は、たとえば、スルホン系、アミド系、ラクトン類、環状アミド系、ニトリル系、オキシド系などである。溶質は、アニオンおよびカチオンの成分を含み、典型的には、有機酸若しくはその塩、無機酸若しくはその塩、または有機酸と無機酸との複合化合物若しくはそのイオン解離性のある塩であり、単独でまたは2種以上を組み合わせて用いられる。アニオンとなる酸およびカチオンとなる塩基が溶質成分として別々に電解液に添加されてもよい。 In the electrolytic solution of an electrolytic capacitor, a solute is dissolved in a solvent, and additives are added as necessary. The solvent may be either a protic polar solvent or an aprotic polar solvent. Examples of the protic polar solvent include monohydric alcohols, polyhydric alcohols, oxyalcohol compounds, and water. Examples of the aprotic polar solvent include sulfone type, amide type, lactone type, cyclic amide type, nitrile type, and oxide type. The solute contains anionic and cationic components, and is typically an organic acid or a salt thereof, an inorganic acid or a salt thereof, a complex compound of an organic acid and an inorganic acid, or an ionically dissociable salt thereof; or a combination of two or more. An acid serving as an anion and a base serving as a cation may be separately added to the electrolytic solution as solute components.
 固体電解質を用いる場合は、たとえば、導電性ポリマーが電解質層に含有される。導電性ポリマーは共役系高分子またはドーピングされた共役系高分子である。共役系高分子は、公知の共役系高分子を特に限定なく使用することができる。共役系高分子は、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリン、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリアセン、ポリチオフェンビニレンなどであり、ポリ(3,4-エチレンジオキシチオフェン)などが好ましい。共役系高分子は、単独で用いられてもよく、2種類以上を組み合わせても良く、または、2種以上のモノマーの共重合体であってもよい。 When using a solid electrolyte, for example, a conductive polymer is contained in the electrolyte layer. The conductive polymer is a conjugated polymer or a doped conjugated polymer. As the conjugated polymer, any known conjugated polymer can be used without particular limitation. Conjugated polymers include polypyrrole, polythiophene, polyfuran, polyaniline, polyacetylene, polyphenylene, polyphenylene vinylene, polyacene, polythiophene vinylene, etc., with poly(3,4-ethylenedioxythiophene) being preferred. The conjugated polymer may be used alone, two or more types may be used in combination, or a copolymer of two or more types of monomers may be used.
 図4は、コンデンサの製造工程のうち、陰極箔への箔除去孔の形成工程の一例を示している。図5は、コンデンサの製造工程のうち、電極箔への引出し端子の接続工程の一例を示している。図4および図5に示す構成は一例であり、図4および図5に示されている構成により本開示の技術が限定されるものではない。 FIG. 4 shows an example of the process of forming foil removal holes in the cathode foil in the capacitor manufacturing process. FIG. 5 shows an example of the step of connecting the lead terminal to the electrode foil in the capacitor manufacturing process. The configurations shown in FIGS. 4 and 5 are examples, and the technology of the present disclosure is not limited to the configurations shown in FIGS. 4 and 5.
 コンデンサ2の製造工程は、本開示のコンデンサの製造方法の一例であって、たとえば陽極箔の作製工程、陰極箔6の作製工程、セパレータの作製工程、引出し端子4の作製工程、電極箔への引出し端子4の接続工程、コンデンサ素子の作製工程、コンデンサ素子の封入工程を含む。 The manufacturing process of the capacitor 2 is an example of the capacitor manufacturing method of the present disclosure, and includes, for example, an anode foil manufacturing process, a cathode foil 6 manufacturing process, a separator manufacturing process, a lead terminal 4 manufacturing process, and an electrode foil manufacturing process. The process includes a process of connecting the lead terminal 4, a process of manufacturing the capacitor element, and a process of encapsulating the capacitor element.
 陽極箔の作製工程では、たとえば、既述の弁作用金属箔の表面に多孔質構造を有する拡面部を形成し、拡面部が形成された弁作用金属箔の表面に化成処理により誘電体酸化皮膜を形成する。拡面部は、直流エッチング、交流エッチング、または弁作用金属箔への金属粒子などの蒸着もしくは焼結により形成される。直流エッチングまたは交流エッチングでは、典型的には、塩酸などのハロゲンイオンを含む酸性水溶液中に漬けられた弁作用金属箔に直流電流または交流電流が印加される。誘電体酸化皮膜が形成された弁作用金属箔を裁断して、陽極箔が作製される。 In the anode foil manufacturing process, for example, an enlarged surface portion having a porous structure is formed on the surface of the valve metal foil described above, and a dielectric oxide film is applied to the surface of the valve metal foil with the enlarged surface portion formed thereon by chemical conversion treatment. form. The enlarged surface portion is formed by direct current etching, alternating current etching, or vapor deposition or sintering of metal particles on the valve metal foil. In direct current or alternating current etching, a direct or alternating current is typically applied to a valve metal foil immersed in an acidic aqueous solution containing halogen ions, such as hydrochloric acid. An anode foil is produced by cutting the valve metal foil on which the dielectric oxide film is formed.
 陰極箔6の作製工程では、たとえば、エッチングにより既述の弁作用金属箔の表面に凹凸16を形成して、基材箔12が作製される。陰極箔6のエッチングは、陽極箔のエッチングと同じでもよく、異なっていてもよい。基材箔12にカーボン層14を形成し、陰極箔6が作製される。カーボン層14の厚さは、たとえば1~2μmに調整される。 In the step of producing the cathode foil 6, the base foil 12 is produced by, for example, forming the unevenness 16 on the surface of the valve metal foil described above by etching. The etching of the cathode foil 6 may be the same as or different from the etching of the anode foil. A carbon layer 14 is formed on the base foil 12, and the cathode foil 6 is produced. The thickness of the carbon layer 14 is adjusted to, for example, 1 to 2 μm.
 カーボン層14は、たとえば次のように形成される。既述の炭素材、バインダーおよび分散剤を希釈液に加え、ミキサー、ジェットミキシング(噴流衝合)、超遠心処理、超音波処理などの分散処理によりこれらを混合して、スラリーを形成する。希釈液は、たとえばアルコール、炭化水素系溶媒、芳香族系溶媒、アミド系溶媒、水およびこれらの混合物などである。アルコールは、たとえばメタノール、エタノールまたは2-プロパノールである。アミド系溶媒は、たとえばN-メチル-2-ピロリドン(NMP)またはN,N-ジメチルホルムアミド(DMF)である。 The carbon layer 14 is formed, for example, as follows. The above-mentioned carbon material, binder, and dispersant are added to the diluted liquid and mixed by a dispersion process such as a mixer, jet mixing, ultracentrifugation, and ultrasonication to form a slurry. Examples of the diluent include alcohol, hydrocarbon solvents, aromatic solvents, amide solvents, water, and mixtures thereof. Alcohol is, for example, methanol, ethanol or 2-propanol. The amide solvent is, for example, N-methyl-2-pyrrolidone (NMP) or N,N-dimethylformamide (DMF).
 スラリーを基材箔12に塗布し、溶媒を揮発させてカーボン層14を形成し、カーボン層14をプレスする。プレスは、たとえば炭素材を凹凸16の細孔にまで押し込むことができ、炭素材を凹凸16の凹凸面に沿って変形させることができ、たとえばカーボン層14と基材箔12との密着性および定着性を向上させる。炭素材が黒鉛を含む場合、プレスは、黒鉛を整列させるとともに、黒鉛を基材箔12の凹凸16に沿うように変形させる。プレスは、黒鉛が凹凸16に圧接されるときに球状炭素を凹凸16の内部に押し込み、スラリーを基材箔12に密着させ、その結果、カーボン層14を基材箔12に密着させる。炭素材が球状炭素のみの場合、たとえば一次粒子径が平均100ナノメートル以下である球状炭素が凹凸16に入り込み、カーボン層14と基材箔12との界面抵抗が低減できる。また、炭素材が球状炭素のみの場合、カーボン層14の表面の静止摩擦係数が向上し、端子片34を陰極箔6に押圧した際に滑りにくくなり、接続性が安定したステッチ接続が得られる。 The slurry is applied to the base foil 12, the solvent is evaporated to form the carbon layer 14, and the carbon layer 14 is pressed. The press can, for example, push the carbon material into the pores of the unevenness 16 and deform the carbon material along the uneven surface of the unevenness 16, thereby improving, for example, the adhesion between the carbon layer 14 and the base foil 12. Improves fixing properties. When the carbon material contains graphite, the press aligns the graphite and deforms the graphite along the unevenness 16 of the base foil 12. When the graphite is pressed against the unevenness 16, the press forces the spherical carbon into the unevenness 16, brings the slurry into close contact with the base foil 12, and as a result, brings the carbon layer 14 into close contact with the base foil 12. When the carbon material is only spherical carbon, for example, spherical carbon having an average primary particle diameter of 100 nanometers or less enters the unevenness 16, and the interfacial resistance between the carbon layer 14 and the base foil 12 can be reduced. In addition, when the carbon material is only spherical carbon, the coefficient of static friction on the surface of the carbon layer 14 is improved, and when the terminal piece 34 is pressed against the cathode foil 6, it becomes difficult to slip, and a stitch connection with stable connectivity can be obtained. .
 基材箔12にカーボン層14を形成した陰極箔6を帯状に裁断する。次に、帯状に裁断した陰極箔6に箔除去孔52(図4のC)を形成する。箔除去孔52は、たとえば次のように形成される。図4のAに示すように、カーボン層14を伴う基材箔12が、抜き穴54を有する穴あけ台56の載置面に載置される。図4のAから図4のCに示すように、抜き穴54よりもわずかに小さい断面を有する穴あけ手段58が載置面側から抜き穴54に挿入され、抜き穴54上のカーボン層14および基材箔12がせん断、破断などの切断により切り取られ、カーボン層14を伴う基材箔12に箔除去孔52が形成される。箔除去孔52の切断面60では、基材箔12がカーボン層14に覆われておらず露出する。切断面60は、箔除去孔52の縁端の一例であって、コンデンサ2において基材露出面28を形成することになる。 The cathode foil 6 with the carbon layer 14 formed on the base foil 12 is cut into strips. Next, a foil removal hole 52 (C in FIG. 4) is formed in the cathode foil 6 cut into strips. The foil removal hole 52 is formed, for example, as follows. As shown in FIG. 4A, the base foil 12 with the carbon layer 14 is placed on the mounting surface of a punching table 56 having punched holes 54. As shown in FIG. As shown in FIGS. 4A to 4C, a hole punching means 58 having a slightly smaller cross section than the punch hole 54 is inserted into the punch hole 54 from the mounting surface side, and the carbon layer 14 on the punch hole 54 and The base foil 12 is cut off by cutting such as shearing or breaking, and a foil removal hole 52 is formed in the base foil 12 together with the carbon layer 14 . At the cut surface 60 of the foil removal hole 52, the base foil 12 is not covered with the carbon layer 14 and is exposed. The cut surface 60 is an example of the edge of the foil removal hole 52, and forms the base material exposed surface 28 in the capacitor 2.
 箔除去孔52は、穴あけ手段58の断面と同じまたは略同じ大きさおよび形状を有する。つまり、箔除去孔52の大きさおよび形状は、穴あけ手段58の断面および抜き穴54の大きさ調整または形状調整により調整することができる。箔除去孔52は、図6に示すように、たとえば、一辺の長さがL1である正方形または略正方形である。 The foil removal hole 52 has the same or approximately the same size and shape as the cross section of the hole punching means 58. That is, the size and shape of the foil removal hole 52 can be adjusted by adjusting the cross section of the punching means 58 and the size or shape of the punch hole 54. As shown in FIG. 6, the foil removal hole 52 is, for example, a square or a substantially square whose length on one side is L1.
 セパレータの作製工程では、既述のセパレータ部材を裁断して、セパレータが作製される。 In the separator production process, the separator member described above is cut to produce a separator.
 引出し端子4の作製工程では、既述の導電性金属からなる略円柱形状の丸棒部の一方端側をたとえばプレスして平坦部32を形成する。丸棒部の平坦部32が形成されていない側とリード線をアーク溶接などにより接続して、ステッチ接続前の引出し端子4を作製する。 In the manufacturing process of the lead-out terminal 4, the flat portion 32 is formed by, for example, pressing one end side of the substantially cylindrical round rod portion made of the conductive metal described above. The side of the round bar portion where the flat portion 32 is not formed is connected to the lead wire by arc welding or the like to produce the lead terminal 4 before stitch connection.
 電極箔への引出し端子4の接続工程では、引出し端子4を陰極箔6および陽極箔にそれぞれ接続する。 In the step of connecting the lead terminal 4 to the electrode foil, the lead terminal 4 is connected to the cathode foil 6 and the anode foil, respectively.
 図5のAに示すように、ステッチ接続前の陰極箔6が下型などの第1の型62の上に設置され、箔除去孔52を覆うように、ステッチ接続前の引出し端子4(具体的には平坦部32)が陰極箔6の上面、つまり端子配置面に重ねられる。上型などの第2の型64が引出し端子4の上面に設置される。そのため、陰極箔6および引出し端子4が第1の型62および第2の型64の間に挟まれて、第1の型62および第2の型64により保持される。 As shown in FIG. Specifically, the flat portion 32) is superimposed on the upper surface of the cathode foil 6, that is, the terminal arrangement surface. A second mold 64 such as an upper mold is installed on the top surface of the lead-out terminal 4. Therefore, the cathode foil 6 and the lead-out terminal 4 are sandwiched between the first mold 62 and the second mold 64 and held by the first mold 62 and the second mold 64.
 第1の型62は透孔66を有し、第2の型64は透孔68を有している。透孔68は透孔66よりも小さく、透孔66の真上に配置されている。ステッチ針70は透孔68の上に配置され、陰極箔6の箔除去孔52は透孔68およびステッチ針70の真下に配置される。 The first mold 62 has a through hole 66 and the second mold 64 has a through hole 68. The through hole 68 is smaller than the through hole 66 and is arranged directly above the through hole 66. Stitch needle 70 is positioned above through-hole 68 , and foil removal hole 52 of cathode foil 6 is positioned directly below through-hole 68 and stitch needle 70 .
 ステッチ針70は、たとえば、円柱状の軸部と、鋭角且つ四角錐形の先端部とを有し、ステッチ針70の穿孔部72(図5のB)の陰極箔6上への投影図74(図6)は、たとえば、一辺の長さがL2である正方形または略正方形である。穿孔部72はステッチ針70の先端部の一部であって、設定位置まで挿入されたステッチ針70の引出し端子接触部分である。穿孔部72が引出し端子4に到達した時、ステッチ針70が停止するとともに基本的には貫通孔18および端子孔36の拡大が停止する。図6に示すように、箔除去孔52に対して投影図74がたとえば45度回転するように、ステッチ針70の回転方向の位置が調整される。箔除去孔52に対して投影図74がたとえば45度回転すると、図1に示されている中心Cの領域には、陰極箔6が存在せず、中心Cを挟む領域には、陰極箔6が存在する。そのため、中心Cの領域に存在する箔片20は、中心Cを挟む領域に存在する箔片20より、ステッチ針70を陰極箔6に挿通したときに加わる応力が少ない。ステッチ針70の挿通時の応力が少ないことで、中心Cの領域にある基材露出面28は、中心Cを挟む領域にある基材露出面28より安定して形成されており、ステッチ接続の接続状態を確認する場合には好適である。箔除去孔52に対する投影図74の回転は、45度に限定されるものではない。たとえば、コンデンサ2と同一または類似の構造が得れるのであれば、どのような角度でもよい。 The stitch needle 70 has, for example, a cylindrical shaft portion and an acute-angled, quadrangular pyramid-shaped tip portion, and the projection view 74 of the perforation portion 72 (B in FIG. 5) of the stitch needle 70 onto the cathode foil 6 (FIG. 6) is, for example, a square or a substantially square whose length on one side is L2. The perforation part 72 is a part of the tip of the stitch needle 70, and is a contact part of the pull-out terminal of the stitch needle 70 inserted to the set position. When the perforation portion 72 reaches the pull-out terminal 4, the stitch needle 70 stops and the expansion of the through hole 18 and the terminal hole 36 basically stops. As shown in FIG. 6, the position of the stitch needle 70 in the rotational direction is adjusted so that the projected view 74 is rotated, for example, by 45 degrees with respect to the foil removal hole 52. When the projected view 74 is rotated, for example, by 45 degrees with respect to the foil removal hole 52, the cathode foil 6 is not present in the area of the center C shown in FIG. exists. Therefore, the stress applied to the foil pieces 20 existing in the area of the center C is smaller than that of the foil pieces 20 existing in the areas sandwiching the center C when the stitch needle 70 is inserted through the cathode foil 6. Since there is less stress when the stitch needle 70 is inserted, the base material exposed surface 28 in the region of the center C is formed more stably than the base material exposed surface 28 in the region sandwiching the center C, and the stitch connection is made easier. This is suitable for checking the connection status. The rotation of the projection 74 with respect to the foil removal hole 52 is not limited to 45 degrees. For example, any angle may be used as long as the same or similar structure as the capacitor 2 can be obtained.
 既述の構造を有し、回転方向の位置が調整されたステッチ針70を図5のAに示されているブロック矢印の向きに下降させ、図5のBに示すように、ステッチ針70が引出し端子4および陰極箔6の箔除去孔52に引出し端子4側から挿通される。ステッチ針70の挿通により、貫通孔18および箔片20が陰極箔6に形成され、端子孔36および端子片34が引出し端子4に形成される。箔除去孔52の切断面60は、形成された箔片20上に配置されることになり、箔片20および端子片34ともに、ステッチ針70の挿通方向(つまり、下方向)に移動することになる。つまり、切断面60は箔片20とともに端子片34側に移動することになる。下降されたステッチ針70を上昇させて、ステッチ針70を引出し端子4および陰極箔6から抜き去る。 The stitch needle 70, which has the above-described structure and whose position in the rotational direction has been adjusted, is lowered in the direction of the block arrow shown in FIG. 5A, and as shown in FIG. It is inserted into the foil removal hole 52 of the drawer terminal 4 and the cathode foil 6 from the drawer terminal 4 side. By inserting the stitch needle 70, a through hole 18 and a foil piece 20 are formed in the cathode foil 6, and a terminal hole 36 and a terminal piece 34 are formed in the lead-out terminal 4. The cut surface 60 of the foil removal hole 52 will be placed on the formed foil piece 20, and both the foil piece 20 and the terminal piece 34 will move in the insertion direction of the stitch needle 70 (that is, downward). become. In other words, the cut surface 60 moves toward the terminal piece 34 together with the foil piece 20. The lowered stitch needle 70 is raised and removed from the pull-out terminal 4 and the cathode foil 6.
 ステッチ針70が停止した時、図5のBに示されているように、ステッチ針70の穿孔部72が、引出し端子4に形成される端子孔36の表面に接触する。穿孔部72は鋭角且つ四角錐形の先端部の一部である。そのため、端子孔36では、端子孔36の貫通方向もしくはステッチ針70の挿通方向において開口距離が変化する。たとえば、引出し端子4の下面(陰極箔6との接触面)における開口距離は、引出し端子4の上面(陰極箔6との接触面の反対面)における開口距離よりも小さくなる。つまり、端子孔36の開口の面積は、引出し端子4の下面から上面に向けて次第に大きくなり、端子孔36の側面は、引出し端子4の下面から上面に向けて広角を有する。 When the stitch needle 70 stops, the perforation part 72 of the stitch needle 70 comes into contact with the surface of the terminal hole 36 formed in the pull-out terminal 4, as shown in FIG. 5B. The perforation 72 is a part of an acute-angled, quadrangular pyramid-shaped tip. Therefore, in the terminal hole 36, the opening distance changes in the direction of penetration of the terminal hole 36 or the direction of insertion of the stitch needle 70. For example, the opening distance on the lower surface of the lead-out terminal 4 (the surface in contact with the cathode foil 6) is smaller than the opening distance in the upper surface of the lead-out terminal 4 (the surface opposite to the surface in contact with the cathode foil 6). That is, the opening area of the terminal hole 36 gradually increases from the bottom surface to the top surface of the drawer terminal 4, and the side surface of the terminal hole 36 has a wide angle from the bottom surface to the top surface of the drawer terminal 4.
 成形型76は、たとえば平坦な押し当て面を上側に有し、透孔66の下側に配置される。成形型76を図5のBに示されているブロック矢印の向きに上昇させ、押し当て面が引出し端子4および陰極箔6、特に端子片34および箔片20を陰極箔6側から押圧する。図5のCに示されるように、端子片34および箔片20は第2の型64と成形型76の間に挟まれる。端子片34および箔片20が押圧により折返されて、引出し端子4が陰極箔6に接続される。また、押圧により箔除去孔52の切断面60が引き伸ばされて、陰極箔6の厚さT1よりも大きい露出長を有する基材露出面28が形成されることになる。 The mold 76 has, for example, a flat pressing surface on the upper side and is arranged below the through hole 66. The mold 76 is raised in the direction of the block arrow shown in FIG. As shown in FIG. 5C, the terminal piece 34 and the foil piece 20 are sandwiched between the second mold 64 and the mold 76. The terminal piece 34 and the foil piece 20 are folded back by pressing, and the lead-out terminal 4 is connected to the cathode foil 6. Moreover, the cut surface 60 of the foil removal hole 52 is stretched by pressing, and the base material exposed surface 28 having an exposed length larger than the thickness T1 of the cathode foil 6 is formed.
 穿孔部72の断面積、つまり投影図74の面積は、たとえば、以下の式(1)を満たすように調整される。式(1)を変形すると、以下の式(2)が得られる。穿孔部72の断面積の代わりに箔除去孔52の開口面積が調整されてもよい。
   穿孔部72の断面積+S2>S1         ・・・(1)
   穿孔部72の断面積>S1-S2         ・・・(2)
  S1: 箔除去孔52の開口面積
  S2: 貫通孔18の内部に位置する引出し端子4の断面積
The cross-sectional area of the perforation 72, that is, the area of the projected view 74, is adjusted, for example, to satisfy the following formula (1). By transforming equation (1), the following equation (2) is obtained. Instead of the cross-sectional area of the perforation part 72, the opening area of the foil removal hole 52 may be adjusted.
Cross-sectional area of perforation 72 + S2 > S1 ... (1)
Cross-sectional area of perforation 72>S1-S2...(2)
S1: Opening area of foil removal hole 52 S2: Cross-sectional area of pull-out terminal 4 located inside through-hole 18
 S2は、たとえば図2のAに示されている破線BL上に位置する引出し端子4の環状面積であって、図5のBに示されているステッチ針70の挿通状態において、陰極箔6と穿孔部72の間の引出し端子4の断面積である。穿孔部72の断面積とS2の合計面積がS1よりも大きいと、箔除去孔52が拡大し易く、箔除去孔52の切断面60がステッチ針70の挿通方向に移動し易くなる。つまり、端子片34に面している基材露出面28が得られ易くなる。 S2 is, for example, the annular area of the lead-out terminal 4 located on the broken line BL shown in FIG. This is the cross-sectional area of the pull-out terminal 4 between the perforations 72. When the total area of the cross-sectional area of the perforation part 72 and S2 is larger than S1, the foil removal hole 52 tends to expand, and the cut surface 60 of the foil removal hole 52 tends to move in the insertion direction of the stitch needle 70. In other words, it becomes easier to obtain the base material exposed surface 28 facing the terminal piece 34.
 式(1)、式(2)に代えて以下の式(3)により投影図74の一片の長さ(つまり、穿孔部72の一片の長さ)L2を調整してもよい。
   L2+2×T2>L1              ・・・(3)
  T2: 貫通孔18の内部に位置する引出し端子4の厚さ(たとえば、図2のAに示されている破線BLの長さ)
The length L2 of one piece of the projection view 74 (that is, the length of one piece of the perforation part 72) may be adjusted using the following formula (3) instead of formulas (1) and (2).
L2+2×T2>L1...(3)
T2: Thickness of the pull-out terminal 4 located inside the through hole 18 (for example, the length of the broken line BL shown in A of FIG. 2)
 穿孔部72の断面積もしくは箔除去孔52の開口面積S1が以下の式(4)または式(5)を満たすように調整され、または穿孔部72の一片の長さL2もしくは箔除去孔52の一辺の長さL1が以下の式(6)または式(7)を満たすように調整されると、端子片34に面している基材露出面28がさらに得られ易くなる。
   穿孔部72の断面積≧S1            ・・・(4)
   穿孔部72の断面積>S1            ・・・(5)
   L2≧L1                   ・・・(6)
   L2>L1                   ・・・(7)
The cross-sectional area of the perforation part 72 or the opening area S1 of the foil removal hole 52 is adjusted so as to satisfy the following formula (4) or formula (5), or the length L2 of one piece of the perforation part 72 or the opening area S1 of the foil removal hole 52 is adjusted to satisfy the following formula (4) or formula (5). When the length L1 of one side is adjusted to satisfy the following formula (6) or formula (7), it becomes easier to obtain the base material exposed surface 28 facing the terminal piece 34.
Cross-sectional area of perforation 72≧S1...(4)
Cross-sectional area of perforation 72>S1...(5)
L2≧L1...(6)
L2>L1...(7)
 穿孔部72の断面積が大きくなるにつれて、基材露出面28が貫通孔18から離れることになる。そこで、基材露出面28が端子片34の先端40よりも貫通孔18側に配置されるように、穿孔部72の断面積の上限値、開口面積S1の下限値、長さL2の上限値または長さL1の下限値が設定されてもよい。 As the cross-sectional area of the perforation 72 becomes larger, the base material exposed surface 28 becomes farther away from the through-hole 18. Therefore, the upper limit of the cross-sectional area of the perforation 72, the lower limit of the opening area S1, and the upper limit of the length L2 are set so that the base material exposed surface 28 is arranged closer to the through hole 18 than the tip 40 of the terminal piece 34. Alternatively, a lower limit value of the length L1 may be set.
 成形型76の押し当て面が、図7のBに示されているブロック矢印D1の方向に引出し端子4および陰極箔6を押圧すると、応力Pが押圧方向またはほぼ押圧方向に作用する。図7のAに示されているように、端子孔36の開口の面積は、引出し端子4の下面から上面に向けて次第に大きくなる。そのため、端子孔36の周囲に配置されている引出し端子4の孔近傍部は、引出し端子4の上面側において、端子孔36の側面近傍の空間部78に移動することができる。そのため、押圧方向に直交または交差する方向(たとえば、引出し端子4の下面に沿う方向)に作用する応力が小さくなり、端子片34が図7のBに示されている破線矢印D2の方向(つまり、陰極箔6の表面に沿う方向)に移動し難くなる。 When the pressing surface of the mold 76 presses the lead terminal 4 and the cathode foil 6 in the direction of the block arrow D1 shown in FIG. 7B, stress P acts in the pressing direction or substantially in the pressing direction. As shown in FIG. 7A, the opening area of the terminal hole 36 gradually increases from the bottom surface to the top surface of the pull-out terminal 4. Therefore, the hole-nearby portion of the pull-out terminal 4 disposed around the terminal hole 36 can move to the space 78 near the side surface of the terminal hole 36 on the upper surface side of the pull-out terminal 4. Therefore, the stress acting in the direction perpendicular to or intersecting the pressing direction (for example, along the lower surface of the pull-out terminal 4) is reduced, and the terminal piece 34 is moved in the direction of the dashed arrow D2 shown in FIG. , along the surface of the cathode foil 6).
 端子孔36の開口の面積が、引出し端子4の下面と上面との間においてほぼ同じである場合、引出し端子4の孔近傍部が、押圧前に空間部78を占めることが想定される。応力Pが押圧方向またはほぼ押圧方向に作用した時に引出し端子4の孔近傍部が空間部78に移動することができないことが想定される。そのため、押圧方向に直交または交差する方向に応力が作用することが想定され、図7のBに示されている状態に比べて、端子片34が破線矢印D2の方向に移動し易くなることが想定される。 If the area of the opening of the terminal hole 36 is approximately the same between the bottom surface and the top surface of the pull-out terminal 4, it is assumed that the portion of the pull-out terminal 4 near the hole occupies the space 78 before being pressed. It is assumed that when the stress P acts in the pressing direction or substantially in the pressing direction, the portion of the pull-out terminal 4 near the hole cannot move into the space 78. Therefore, stress is expected to act in a direction perpendicular to or crossing the pressing direction, and the terminal piece 34 may be more likely to move in the direction of the dashed arrow D2 than in the state shown in B of FIG. is assumed.
 陽極箔への引出し端子4の接続工程は、陰極箔6への引出し端子4の接続工程と同じでもよく、異なっていてもよい。 The process of connecting the lead terminal 4 to the anode foil may be the same as or different from the process of connecting the lead terminal 4 to the cathode foil 6.
 コンデンサ素子の作製工程では、第1のセパレータを陽極箔および陰極箔6の間に配置するとともに第2のセパレータを陽極箔または陰極箔6の外側に配置する。陽極箔、陰極箔6、第1および第2のセパレータを巻回して、コンデンサ素子が作製される。 In the manufacturing process of the capacitor element, the first separator is placed between the anode foil and the cathode foil 6, and the second separator is placed outside the anode foil or the cathode foil 6. A capacitor element is produced by winding the anode foil, the cathode foil 6, and the first and second separators.
 コンデンサ素子の封入工程では、電解液などの電解質が含浸されたコンデンサ素子が外装ケースの内部に挿入され、その後外装ケースの開口部に封口部材が取り付けられて、コンデンサ2が作製される。 In the capacitor element encapsulation process, a capacitor element impregnated with an electrolyte such as an electrolytic solution is inserted into the exterior case, and then a sealing member is attached to the opening of the exterior case to produce the capacitor 2.
 実施の形態によれば、たとえば以下の効果が得られる。 According to the embodiment, for example, the following effects can be obtained.
 (1) 基材露出面28が端子片34と接続するので、カーボン層14を介さずに基材箔12と端子片34が直接接触し、金属系材料同士の接触により物理的および電気的な接続が安定する。 (1) Since the base material exposed surface 28 is connected to the terminal piece 34, the base material foil 12 and the terminal piece 34 are in direct contact without intervening the carbon layer 14, and physical and electrical The connection becomes stable.
 (2) 箔片20の先端部で、基材箔12と端子片34の直接接触により押圧時の端子片34と箔片20の間の相対移動が抑制され、押圧力の分散が抑制される。 (2) Direct contact between the base foil 12 and the terminal piece 34 at the tip of the foil piece 20 suppresses the relative movement between the terminal piece 34 and the foil piece 20 during pressing, and suppresses the dispersion of the pressing force. .
 (3) 陰極箔6にあらかじめ箔除去孔52を形成したことにより、箔片20の大きさが抑制される。そのため、押圧時の陰極箔6、特に箔片20の伸びが抑制され、押圧力の分散が抑制される。また、端子片34からの箔片20の飛び出しまたは露出が抑制される。端子片34から飛び出した箔片20は、電気的接続性や接続強度に寄与する部分ではない。一方で、端子片34から箔片20が飛び出すと箔片20の先端部の基材露出面28は、端子片34と接触しない構造となる。そのため、金属系同士の接触による相対移動の抑制効果がなく、箔片20は根本部分から箔片20の先端方向に移動し易くなり、押圧力の分散による陰極箔6と引出し端子4との接続性の低下が懸念される。箔片20の飛び出しまたは露出の抑制により、押圧力の分散が抑制され、陰極箔6と引出し端子4との接続性が安定する。 (3) By forming the foil removal hole 52 in advance in the cathode foil 6, the size of the foil piece 20 is suppressed. Therefore, the elongation of the cathode foil 6, especially the foil piece 20, during pressing is suppressed, and the dispersion of the pressing force is suppressed. Further, the protrusion or exposure of the foil piece 20 from the terminal piece 34 is suppressed. The foil piece 20 protruding from the terminal piece 34 does not contribute to electrical connectivity or connection strength. On the other hand, when the foil piece 20 pops out from the terminal piece 34, the exposed base surface 28 at the tip of the foil piece 20 has a structure that does not come into contact with the terminal piece 34. Therefore, there is no effect of suppressing relative movement due to contact between metals, and the foil piece 20 easily moves from the root portion toward the tip of the foil piece 20, and the connection between the cathode foil 6 and the lead-out terminal 4 is achieved by dispersing the pressing force. There are concerns about a decline in sexuality. By suppressing the protrusion or exposure of the foil piece 20, the dispersion of the pressing force is suppressed, and the connectivity between the cathode foil 6 and the lead-out terminal 4 is stabilized.
 (4) 基材露出面28が貫通孔18の貫通方向に対して交差するので、ステッチ接続時に加えられる押圧力が、端子片34を基材露出面28に押し付ける力として端子片34および基材露出面28に作用する。そのため、基材露出面28が貫通方向に対して平行な場合に比べて、端子片34および箔片20の物理的および電気的な接続を強化することができる。また、ステッチ接続時に加えられる押圧力が基材露出面28を伸ばすので、基材露出面28が貫通方向に対して平行な場合に比べて、金属系材料同士の接触面積を大きくすることができる。 (4) Since the base material exposed surface 28 intersects with the penetration direction of the through hole 18, the pressing force applied during stitch connection acts as a force that presses the terminal piece 34 against the base material exposed surface 28. Acts on exposed surface 28. Therefore, compared to the case where the base material exposed surface 28 is parallel to the penetration direction, the physical and electrical connection between the terminal piece 34 and the foil piece 20 can be strengthened. Furthermore, since the pressing force applied during stitch connection stretches the base material exposed surface 28, the contact area between the metal materials can be increased compared to when the base material exposed surface 28 is parallel to the penetration direction. .
 (5) カーボン層14を含む陰極箔6の性質に適したステッチ接続を実現でき、カーボン層14を含む陰極箔6を備えるコンデンサ2の安定性または信頼性を高めることができる。 (5) A stitch connection suitable for the properties of the cathode foil 6 including the carbon layer 14 can be realized, and the stability or reliability of the capacitor 2 provided with the cathode foil 6 including the carbon layer 14 can be improved.
 (6) ステッチ針70は、引出し端子4の下面から上面に向けて開口の面積が次第に大きくなる端子孔36を形成する。そのため、成形型76が引出し端子4および陰極箔6を押圧するとき、引出し端子4の孔近傍部が空間部78に移動することができ、陰極箔6の表面に沿う方向への端子片34の移動が抑制される。 (6) The stitch needle 70 forms a terminal hole 36 whose opening area gradually increases from the bottom surface to the top surface of the pull-out terminal 4. Therefore, when the mold 76 presses the pull-out terminal 4 and the cathode foil 6, the area near the hole of the pull-out terminal 4 can move into the space 78, and the terminal piece 34 is moved in the direction along the surface of the cathode foil 6. Movement is suppressed.
 実施例に係るコンデンサ2は、箔除去孔52の一辺の長さL1および穿孔部72の一片の長さL2が以下に示す値に調整されている実施の形態に係るコンデンサ2である。なお、平坦部32の厚さは0.23mmであり、陰極箔6の厚さT1は20μmである。
・L1: 0.50mm
・L2: 0.51mm
The capacitor 2 according to the embodiment is a capacitor 2 according to an embodiment in which the length L1 of one side of the foil removal hole 52 and the length L2 of one side of the perforation part 72 are adjusted to the values shown below. Note that the thickness of the flat portion 32 is 0.23 mm, and the thickness T1 of the cathode foil 6 is 20 μm.
・L1: 0.50mm
・L2: 0.51mm
 比較例に係るコンデンサは、箔除去孔52を形成しなかったことを除き、実施例に係るコンデンサ2の製造工程と同じ工程で作製されたコンデンサである。箔除去孔52が形成されなかったため、比較例に係るコンデンサは、実施例に係るコンデンサ2の箔片20よりも大きな箔片を有し、切断面60に起因する基材露出面28を含まない。 The capacitor according to the comparative example is a capacitor manufactured in the same manufacturing process as the capacitor 2 according to the example, except that the foil removal hole 52 was not formed. Since the foil removal hole 52 was not formed, the capacitor according to the comparative example has a larger foil piece than the foil piece 20 of the capacitor 2 according to the example, and does not include the base material exposed surface 28 due to the cut surface 60. .
 実施例に係るコンデンサ2の接触抵抗を比較例に係るコンデンサの接触抵抗と比較する。図8のAに示すように、実施例に係るコンデンサ2において、五つのコンデンサ2の接触抵抗(単位:mΩ)の平均値(Ave)、最大値(Max)、最小値(Min)はそれぞれ、0.78、0.82、0.74であった。比較例に係るコンデンサにおいて、五つのコンデンサの接触抵抗(単位:mΩ)の平均値、最大値、最小値はそれぞれ、0.80、0.94、0.74であった。 The contact resistance of the capacitor 2 according to the example is compared with the contact resistance of the capacitor according to the comparative example. As shown in A of FIG. 8, in the capacitor 2 according to the example, the average value (Ave), maximum value (Max), and minimum value (Min) of the contact resistance (unit: mΩ) of the five capacitors 2 are as follows. They were 0.78, 0.82, and 0.74. In the capacitor according to the comparative example, the average value, maximum value, and minimum value of the contact resistance (unit: mΩ) of the five capacitors were 0.80, 0.94, and 0.74, respectively.
 図8のBは、接触抵抗の測定結果をグラフで示している。図8のBに示されているグラフにおいて、平均値は黒い四角で表され、最大値および最小値は白い丸で表されている。図8のBに示されているグラフ中の双方向矢印は、ばらつきの幅を表している。実施例に係るコンデンサ2は、比較例に係るコンデンサと比較して、接触抵抗の平均値の低下が認められ、ばらつきの幅の減少が認められた。予め陰極箔6に箔除去孔52を設けることにより、コンデンサ2の接続の安定性が向上することが解った。 FIG. 8B shows the measurement results of contact resistance in a graph. In the graph shown in FIG. 8B, the average value is represented by a black square, and the maximum and minimum values are represented by white circles. The bidirectional arrow in the graph shown in FIG. 8B represents the width of the variation. In the capacitor 2 according to the example, a decrease in the average value of contact resistance was observed and a decrease in the width of variation was observed as compared to the capacitor according to the comparative example. It has been found that by providing the foil removal hole 52 in the cathode foil 6 in advance, the stability of the connection of the capacitor 2 is improved.
 図9は、第1の試料から第5の試料の実験結果の一例を示している。図10は、試料を示している。 FIG. 9 shows an example of experimental results for the first to fifth samples. Figure 10 shows the sample.
 第1の試料から第5の試料は、図10に示すように、陰極箔84と引出し端子86とを含む。引出し端子86は、実施の形態で既述の引出し端子4と同様の端子であり、三つの接続部88-1、88-2、88-3でステッチ接続により陰極箔84に接続されている。隣接する接続部88-1、88-2、88-3の中心間距離は3.0mmである。接続部88-1は、接続部88-2、88-3よりも陰極箔84の側端90に近く、接続部88-1の中心と側端90の間の距離は2.5mmである。なお、第1の試料から第5の試料は、実施例及び比較例より製品のサイズが大きいコンデンサ用の陰極箔84および引出し端子86を含み、引出し端子86の大きさが実施例および比較例の引出し端子4と異なる。第1の試料から第5の試料では、平坦部の厚さは、0.29mmである。 The first to fifth samples include a cathode foil 84 and a lead terminal 86, as shown in FIG. The lead-out terminal 86 is a terminal similar to the lead-out terminal 4 already described in the embodiment, and is connected to the cathode foil 84 by stitch connection at three connecting portions 88-1, 88-2, and 88-3. The distance between the centers of adjacent connecting portions 88-1, 88-2, and 88-3 is 3.0 mm. The connecting portion 88-1 is closer to the side edge 90 of the cathode foil 84 than the connecting portions 88-2 and 88-3, and the distance between the center of the connecting portion 88-1 and the side edge 90 is 2.5 mm. Note that the first to fifth samples include a cathode foil 84 and a lead terminal 86 for a capacitor, which are larger in product size than those of the example and comparative example, and the size of the lead terminal 86 is larger than that of the example and comparative example. It is different from the pull-out terminal 4. In the first to fifth samples, the thickness of the flat portion is 0.29 mm.
 第1の試料から第4の試料の陰極箔84は、実施の形態で既述の基材箔12と、基材箔12の片面上に形成された層とを含む。第1の試料から第4の試料において、基材箔12上に形成された層は、それぞれ、カーボン層14、炭化チタン層(厚さ:0.1~0.12μm)、窒化チタン層(厚さ:0.1~0.12μm)、チタンとカーボンの二重層(厚さ:約0.08μm)である。第5の試料の陰極箔84は、アルミニウム箔のみからなる。カーボン層14は、実施の形態で述べたカーボン層14である。炭化チタン層、窒化チタン層、チタンとカーボンの二重層は、物理蒸着(PVD)、化学蒸着(CVD)などの蒸着により形成される。チタンとカーボンの二重層は、チタン層の下地層とカーボン層の上地層とを有する。 The cathode foils 84 of the first to fourth samples include the base foil 12 already described in the embodiment and a layer formed on one side of the base foil 12. In the first to fourth samples, the layers formed on the base foil 12 are a carbon layer 14, a titanium carbide layer (thickness: 0.1 to 0.12 μm), and a titanium nitride layer (thickness: It is a double layer of titanium and carbon (thickness: approximately 0.08 μm). The cathode foil 84 of the fifth sample was made only of aluminum foil. The carbon layer 14 is the carbon layer 14 described in the embodiment. The titanium carbide layer, the titanium nitride layer, and the titanium/carbon double layer are formed by vapor deposition such as physical vapor deposition (PVD) or chemical vapor deposition (CVD). The titanium and carbon double layer has a base layer of titanium layer and a top layer of carbon layer.
 第1の試料の陰極箔84は、カーボンと樹脂系バインダーとを混合してスラリーを作製し、エッチングしたアルミニウム箔に、作製されたスラリーを塗布するとともにプレスすることにより作製された。第2の試料の陰極箔84は、エッチングしたアルミニウム箔にアークイオンプレーティング法により炭化チタン層を形成することにより作製された。第3の試料の陰極箔84は、エッチングしたアルミニウム箔にアークイオンプレーティング法により窒化チタン層を形成することにより作製された。第4の試料の陰極箔84は、エッチングしたアルミニウム箔にスパッタリング法によりチタン層を形成し、形成されたチタン層にスパッタリング法によりカーボン層を形成することにより作製された。 The cathode foil 84 of the first sample was manufactured by mixing carbon and a resin binder to create a slurry, applying the created slurry to an etched aluminum foil, and pressing it. The cathode foil 84 of the second sample was produced by forming a titanium carbide layer on an etched aluminum foil by arc ion plating. The cathode foil 84 of the third sample was fabricated by forming a titanium nitride layer on an etched aluminum foil by arc ion plating. The cathode foil 84 of the fourth sample was produced by forming a titanium layer on an etched aluminum foil by sputtering, and then forming a carbon layer on the formed titanium layer by sputtering.
 ステッチ接続で使用されるステッチ針は、四角錐形の先端部を有し、四角錐の一辺の長さが0.8mmであり、先端部の角度が20度である。第1から第5の試料(箔除去孔あり)は、0.9mm角の箔除去孔52を有する陰極箔84に引出し端子86をステッチ接続することにより作製される。第1から第5の試料(箔除去孔なし)は、箔除去孔52が形成されていない陰極箔84に引出し端子86をステッチ接続することにより作製される。 The stitch needle used in stitch connection has a square pyramid-shaped tip, the length of one side of the square pyramid is 0.8 mm, and the angle of the tip is 20 degrees. The first to fifth samples (with foil removal holes) are produced by stitch-connecting a lead terminal 86 to a cathode foil 84 having a 0.9 mm square foil removal hole 52. The first to fifth samples (without foil removal holes) are produced by stitch-connecting the lead terminal 86 to the cathode foil 84 in which the foil removal hole 52 is not formed.
 引出し端子86の丸棒部および陰極箔84に抵抗計(日置電機株式会社製、型番:RM3545)を接触させて、無負荷時、0.5引張時、および1.0引張時に抵抗を測定した。測定される抵抗は、抵抗計の探針が接触する接触点間の抵抗(接触抵抗)であり、陰極箔84の抵抗と、引出し端子86の抵抗と、陰極箔84に対する引出し端子86の接続抵抗とを含む。0.5引張は、引出し端子86と陰極箔84の間に張力が作用するように、陰極箔84に対する垂線に平行に引出し端子86の丸棒部の端部を0.5mmほど引っ張ることを表す。1.0引張は、引出し端子86と陰極箔84の間に張力が作用するように、陰極箔84に対する垂線に平行に引出し端子86の丸棒部の端部を1.0mmほど引っ張ることを表す。無負荷は、引出し端子86の丸棒部の端部を引っ張らないことを表す。 A resistance meter (manufactured by Hioki Electric Co., Ltd., model number: RM3545) was brought into contact with the round bar part of the pull-out terminal 86 and the cathode foil 84, and the resistance was measured at no load, at 0.5 tension, and at 1.0 tension. . The measured resistance is the resistance (contact resistance) between the contact points that the probe of the ohmmeter contacts, and includes the resistance of the cathode foil 84, the resistance of the lead terminal 86, and the connection resistance of the lead terminal 86 to the cathode foil 84. including. 0.5 tension means pulling the end of the round bar portion of the pull-out terminal 86 by about 0.5 mm in parallel to the perpendicular line to the cathode foil 84 so that tension acts between the pull-out terminal 86 and the cathode foil 84. . 1.0 tension means that the end of the round bar portion of the pull-out terminal 86 is pulled by approximately 1.0 mm in parallel to the perpendicular line to the cathode foil 84 so that tension is applied between the pull-out terminal 86 and the cathode foil 84. . No load indicates that the end of the round bar portion of the extraction terminal 86 is not pulled.
 図9に示されている実験結果から、第1の試料では、箔除去孔52を形成したか否かにより、明確な抵抗値の差が確認された。これに対し、第2~第5の試料では、箔除去孔52を形成したか否かによる抵抗値の差が明確でなかった。バインダーを含むカーボン層14では、箔除去孔52の形成の効果が特に認められることが確認された。バインダーを含むカーボン層14では、押圧力が平面方向に分散し易い。そのため、カーボン層14は接続性への影響が大きいものと考えられ、箔除去孔52を形成することにより得られる効果が高いものと考えられる。 From the experimental results shown in FIG. 9, it was confirmed that in the first sample, there was a clear difference in resistance value depending on whether or not the foil removal hole 52 was formed. On the other hand, in the second to fifth samples, the difference in resistance value depending on whether or not the foil removal hole 52 was formed was not clear. It was confirmed that the effect of forming the foil removal holes 52 was particularly noticeable in the carbon layer 14 containing the binder. In the carbon layer 14 containing a binder, the pressing force is easily dispersed in the plane direction. Therefore, the carbon layer 14 is considered to have a large influence on connectivity, and it is considered that the effect obtained by forming the foil removal holes 52 is high.
 実施の形態および実施例の特徴事項や変形例を以下に列挙する。 Features and modifications of the embodiments and examples are listed below.
 (1) コンデンサ素子、引出し端子4、外装ケース、封口部材、電解質などは実施の形態で述べたものに限定されない。これらの素材は、アルミ電解コンデンサまたは類似のコンデンサで採用されている他の素材でもよい。たとえば、引出し端子4はタブ端子でもよく、封口部材は外部端子を取り付けたフェノール積層板でもよい。コンデンサ素子に電解液を含浸させた後、コンデンサ素子から導出した引出し端子4を封口部材の外部端子に接続してもよく、コンデンサ素子および封口部材を外装ケースに挿入して、封口部材で封止した構造としてもよい。コンデンサ素子は、たとえば平坦な複数の陽極箔、陰極箔6およびセパレータが積層された積層素子でもよい。カーボン層14の素材は実施の形態で述べたものに限定されない。カーボン層14を形成する素材は、カーボンを含む任意の導電性部材でもよい。また、基材箔12に対するカーボン層14の密着または係合状態は、実施の形態で述べたものに限定されない。 (1) The capacitor element, the lead-out terminal 4, the outer case, the sealing member, the electrolyte, etc. are not limited to those described in the embodiment. These materials may be other materials employed in aluminum electrolytic capacitors or similar capacitors. For example, the pull-out terminal 4 may be a tab terminal, and the sealing member may be a phenol laminate to which an external terminal is attached. After the capacitor element is impregnated with electrolyte, the lead-out terminal 4 led out from the capacitor element may be connected to the external terminal of the sealing member, and the capacitor element and the sealing member are inserted into the outer case and sealed with the sealing member. It is also possible to have a similar structure. The capacitor element may be a laminated element in which a plurality of flat anode foils, cathode foils 6, and separators are laminated, for example. The material of the carbon layer 14 is not limited to that described in the embodiment. The material forming the carbon layer 14 may be any conductive material containing carbon. Furthermore, the state of contact or engagement of the carbon layer 14 with the base foil 12 is not limited to that described in the embodiment.
 (2) 実施の形態および実施例では、引出し端子4が陰極箔6の上に配置され、ステッチ針70が上から引出し端子4および陰極箔6を刺し、成形型76が下から引出し端子4および陰極箔6を押圧している。引出し端子4、陰極箔6、ステッチ針70および成形型76がたとえば実施の形態で述べたこれらの配置に対して上下逆になるように、または任意の角度ほど回転させて配置されてもよい。 (2) In the embodiments and examples, the lead terminal 4 is placed on the cathode foil 6, the stitch needle 70 pierces the lead terminal 4 and the cathode foil 6 from above, and the mold 76 is inserted into the lead terminal 4 and the cathode foil 6 from below. The cathode foil 6 is pressed. The lead terminal 4, the cathode foil 6, the stitch needle 70, and the mold 76 may be arranged upside down or rotated by an arbitrary angle relative to the arrangement described in the embodiment, for example.
 (3) 実施の形態および実施例では、陰極箔6と引出し端子4の両方を第1の型62と第2の型64に挟んで保持した状態で、ステッチ針70を引出し端子4および陰極箔6に挿通し、端子片34および箔片20を押圧して、ステッチ接続部10を形成したが、これに限らない。たとえば、陰極箔6と引出し端子4の両方を第1の型62と第2の型64に挟んで保持した状態で、ステッチ針70を引出し端子4および陰極箔6に挿通した後、第1の型62と第2の型64による保持を解除し、少なくとも端子片34が形成された状態で、陰極箔6と引出し端子4を次の工程に送り、少なくとも端子片34が形成された面側と、引出し端子4側から挟むように平坦な押し当て面を備える成形型で押圧してステッチ接続部10を形成してもよい。 (3) In the embodiments and examples, with both the cathode foil 6 and the lead-out terminal 4 held between the first mold 62 and the second mold 64, the stitch needle 70 is pulled out between the lead-out terminal 4 and the cathode foil. 6 and press the terminal piece 34 and the foil piece 20 to form the stitch connection part 10, but the invention is not limited thereto. For example, with both the cathode foil 6 and the drawer terminal 4 held between the first die 62 and the second die 64, the stitch needle 70 is inserted through the drawer terminal 4 and the cathode foil 6, and then the first The holding by the mold 62 and the second mold 64 is released, and with at least the terminal piece 34 formed, the cathode foil 6 and the lead-out terminal 4 are sent to the next process, and at least the surface side on which the terminal piece 34 is formed is separated. Alternatively, the stitch connection portion 10 may be formed by pressing from the pullout terminal 4 side with a mold having a flat pressing surface.
 (4) 実施の形態および実施例では、抜き穴54を有する穴あけ台56を用いて箔除去孔52を形成した後、陰極箔6に形成した箔除去孔52と第1の型62の透孔66を合わせるようにして、陰極箔6を第1の型62に設置し、陰極箔6と引出し端子4の両方を第1の型62と第2の型64に挟んで保持した状態で接続したが、これに限らない。たとえば、穴あけ台56を用いず、第1の型62の透孔66を利用して、箔除去孔52を形成し、その状態を維持して、陰極箔6への引出し端子4の接続工程を行ってもよい。 (4) In the embodiments and examples, after the foil removal hole 52 is formed using the punching table 56 having the punched hole 54, the foil removal hole 52 formed in the cathode foil 6 and the through hole of the first mold 62 are The cathode foil 6 was placed on the first mold 62 so that the two molds 66 were aligned, and the cathode foil 6 and the lead-out terminal 4 were both sandwiched and held between the first mold 62 and the second mold 64 and connected. However, it is not limited to this. For example, the foil removal hole 52 is formed using the through hole 66 of the first mold 62 without using the drilling table 56, and this state is maintained to perform the process of connecting the lead terminal 4 to the cathode foil 6. You may go.
 (5) 実施の形態および実施例では、箔除去孔52に対してステッチ針70の穿孔部72(図5のB)の陰極箔6上への投影図74が45度回転するように、ステッチ針70の回転方向の位置を調整したが、これに限らない。たとえば、45度より小さく、もしくは、45度以上回転するように調整してもよい。また、箔除去孔52と、ステッチ針70の穿孔部72の陰極箔6上への投影図74が同じ角度、つまり、投影図74が箔除去孔52と一致する場合や、投影図74が箔除去孔52より一回り大きい、もしくは小さくなるように調整してもよい。 (5) In the embodiments and examples, the stitching is performed so that the projection 74 of the perforation part 72 (B in FIG. 5) of the stitch needle 70 onto the cathode foil 6 is rotated by 45 degrees with respect to the foil removal hole 52. Although the position of the needle 70 in the rotational direction is adjusted, the present invention is not limited thereto. For example, the rotation may be adjusted to be less than 45 degrees or more than 45 degrees. In addition, when the foil removal hole 52 and the projection 74 of the perforation part 72 of the stitch needle 70 onto the cathode foil 6 are at the same angle, that is, when the projection 74 coincides with the foil removal hole 52, or when the projection 74 is It may be adjusted so that it is one size larger or smaller than the removal hole 52.
 (6) 実施の形態および実施例では陰極箔6が箔片20を含んでいる。しかしながら、陰極箔6が箔片20を含まず、図2のBに示されている貫通孔18の縁部22の上面に基材露出面28が形成されてもよい。陰極箔6への引出し端子4の接続工程では、ステッチ針70の挿通により、箔除去孔52の切断面60がわずかに移動してもよく、このわずかに移動した切断面60が押圧されて、貫通孔18の縁部22に基材露出面28が形成されてもよい。箔片20がなく貫通孔18の縁部22に基材露出面28が存在すると、貫通孔18の縁部22で、基材箔12と端子片34の直接接触により押圧時の端子片34と陰極箔6の間の相対移動が抑制され、押圧力の分散が抑制される。 (6) In the embodiments and examples, the cathode foil 6 includes the foil piece 20. However, the cathode foil 6 may not include the foil piece 20 and the base material exposed surface 28 may be formed on the upper surface of the edge 22 of the through hole 18 shown in FIG. 2B. In the process of connecting the lead terminal 4 to the cathode foil 6, the cut surface 60 of the foil removal hole 52 may move slightly due to the insertion of the stitch needle 70, and this slightly moved cut surface 60 is pressed. A base material exposed surface 28 may be formed at the edge 22 of the through hole 18 . If the base material exposed surface 28 exists at the edge 22 of the through hole 18 without the foil piece 20, the base material foil 12 and the terminal piece 34 will come into direct contact with each other at the edge 22 of the through hole 18, and the terminal piece 34 will not touch the terminal piece 34 when pressed. Relative movement between the cathode foils 6 is suppressed, and dispersion of the pressing force is suppressed.
 (7) 箔除去孔52の形状は、正方形または略正方形に限定されない。ステッチ針70の先端部の形状は、四角錐形状に限定されない。長方形でもよく、正方形以外の正多角形でもよい。 (7) The shape of the foil removal hole 52 is not limited to a square or a substantially square. The shape of the tip of the stitch needle 70 is not limited to the quadrangular pyramid shape. It may be a rectangle or a regular polygon other than a square.
 (8) 箔除去孔52が形成された基材箔12にカーボン層14が形成されてもよい。切断面60の表面凹凸が小さいので、切断面60における基材箔12が押圧により伸びることができ、カーボン層14から露出して基材露出面28を形成することができる。 (8) The carbon layer 14 may be formed on the base foil 12 in which the foil removal holes 52 are formed. Since the surface unevenness of the cut surface 60 is small, the base material foil 12 on the cut surface 60 can be stretched by pressing, and can be exposed from the carbon layer 14 to form the base material exposed surface 28.
 (9) 図11に示されているように、引出し端子4が金属表面部92および硬化表面部94を有してもよい。金属表面部92は、引出し端子4に含まれる非酸化の導電性金属を主に含み、引出し端子4に含まれる導電性金属の酸化物をわずかに含んでいてもよい。硬化表面部94は、たとえば、引出し端子4に含まれる導電性金属の酸化物を含む酸化表面部であって、金属表面部92よりも硬い。ステッチ接続部10などの端子接続部において、金属表面部92は、たとえば第一領域96で基材箔12と接触する。硬化表面部94は、たとえば第二領域98でカーボン層14に接触して、硬化表面部94とカーボン層14とが積層する。端子接続部は、基材露出面28が配置されている部分でもよく、基材露出面28が配置されている部分とは異なる部分でもよい。 (9) As shown in FIG. 11, the extraction terminal 4 may have a metal surface portion 92 and a hardened surface portion 94. The metal surface portion 92 mainly contains the non-oxidized conductive metal contained in the lead-out terminal 4 and may contain a small amount of oxide of the conductive metal contained in the lead-out terminal 4. The hardened surface portion 94 is, for example, an oxidized surface portion containing an oxide of the conductive metal contained in the lead-out terminal 4, and is harder than the metal surface portion 92. In a terminal connection, such as a stitch connection 10, the metal surface 92 contacts the base foil 12, for example in a first region 96. The hardened surface portion 94 comes into contact with the carbon layer 14, for example in the second region 98, and the hardened surface portion 94 and the carbon layer 14 are laminated. The terminal connection portion may be a portion where the base material exposed surface 28 is placed, or may be a portion different from the portion where the base material exposed surface 28 is placed.
 第一領域96および第二領域98は、たとえば以下に示す工程により形成される。 The first region 96 and the second region 98 are formed, for example, by the steps shown below.
 図12のAに示されているように、押圧前において、引出し端子4(たとえば端子片34)は、表面に、たとえば金属表面部92および硬化表面部94を有し、陰極箔6(たとえば箔片20)は、基材箔12を覆うカーボン層14を有する。引出し端子4は、表面に硬化表面部94のみを有してもよく、陰極箔6は、表面に部分的にカーボン層14を有していてもよい。 As shown in FIG. 12A, before pressing, the pull-out terminal 4 (for example, the terminal piece 34) has, for example, a metal surface portion 92 and a hardened surface portion 94 on the surface, and the cathode foil 6 (for example, a foil Piece 20) has a carbon layer 14 covering base foil 12. The lead terminal 4 may have only a hardened surface portion 94 on its surface, and the cathode foil 6 may partially have a carbon layer 14 on its surface.
 図12のBにおけるブロック矢印の方向に引出し端子4が陰極箔6に押圧されると、押圧力は、引出し端子4および陰極箔6において、破線矢印の方向の張力を発生させる。硬い硬化表面部94は、たとえばカーボン層14に食い込み、図11に示すように第二領域98が形成される。第二領域98では、引出し端子4および陰極箔6の間の滑りまたは相対移動が、たとえばスパイク効果により抑制される。張力は、引出し端子4および陰極箔6を、引出し端子4および陰極箔6の接触面に沿って伸長または伸展する。引出し端子4では、硬化表面部94よりも高い変形性を有するたとえば金属表面部92が伸長または伸展し、陰極箔6では、たとえば金属表面部92に接触している部分が金属表面部92の伸長または伸展に応じて伸長または伸展する。陰極箔6の伸長または伸展は、たとえばカーボン層14を断裂および離間させ、基材箔12が断裂したカーボン層14の間に表出する。金属表面部92が表出した基材箔12に接触して、第一領域96が形成される。 When the lead terminal 4 is pressed against the cathode foil 6 in the direction of the block arrow in FIG. 12B, the pressing force generates tension in the lead terminal 4 and the cathode foil 6 in the direction of the broken line arrow. The hard hardened surface portion 94 digs into the carbon layer 14, for example, to form a second region 98 as shown in FIG. In the second region 98, slippage or relative movement between the extraction terminal 4 and the cathode foil 6 is suppressed, for example, by a spike effect. The tension stretches or expands the lead terminal 4 and the cathode foil 6 along the contact surface of the lead terminal 4 and the cathode foil 6. In the lead-out terminal 4, for example, a metal surface portion 92 having higher deformability than the hardened surface portion 94 extends or expands, and in the cathode foil 6, for example, a portion in contact with the metal surface portion 92 expands or expands. or elongate or elongate in response to elongation. The elongation or expansion of the cathode foil 6 causes, for example, the carbon layer 14 to tear and separate, and the base foil 12 is exposed between the torn carbon layers 14 . A first region 96 is formed by contacting the exposed base foil 12 with the metal surface portion 92 .
 互いに重なっている硬化表面部94およびカーボン層14が断裂および離間してもよい。この場合、硬化表面部94がカーボン層14に重なっている第二領域98の数が増加し、第二領域98の間に第一領域96が形成される。 The hardened surface portion 94 and carbon layer 14 that overlap each other may be torn and separated. In this case, the number of second regions 98 in which the hardened surface portion 94 overlaps the carbon layer 14 increases, and first regions 96 are formed between the second regions 98 .
 引出し端子4が陰極箔6に接続される工程で、金属表面部92がカーボン層14に接触して第三領域100が形成されてもよく、硬化表面部94が基材箔12に接触して、第四領域102が形成されてもよい。 In the process of connecting the lead terminal 4 to the cathode foil 6, the metal surface portion 92 may come into contact with the carbon layer 14 to form the third region 100, and the hardened surface portion 94 may come into contact with the base foil 12. , a fourth region 102 may be formed.
 引出し端子4が金属表面部92および硬化表面部94を有し、第一領域96および第二領域98が形成されると、たとえば次のような効果が得られる。 When the lead terminal 4 has the metal surface portion 92 and the hardened surface portion 94 and the first region 96 and the second region 98 are formed, the following effects can be obtained, for example.
 (a) 引出し端子4の金属表面部92が陰極箔6の基材箔12と接触する。そのため、陰極箔6に対する引出し端子4の接続が、金属系材料同士の接触により物理的および電気的に安定する。 (a) The metal surface portion 92 of the lead-out terminal 4 contacts the base foil 12 of the cathode foil 6. Therefore, the connection of the lead terminal 4 to the cathode foil 6 is physically and electrically stable due to the contact between the metal materials.
 (b) 第二領域98において硬化表面部94がカーボン層14に食込み、引出し端子4に対する陰極箔6の滑りまたは相対移動が抑制される。押圧力の減少が抑制され、引出し端子4と陰極箔6の接続の容易性を高めることができる。 (b) The hardened surface portion 94 bites into the carbon layer 14 in the second region 98, and the sliding or relative movement of the cathode foil 6 with respect to the lead-out terminal 4 is suppressed. A reduction in the pressing force is suppressed, and the ease of connection between the lead terminal 4 and the cathode foil 6 can be improved.
 (c) 引出し端子4の接続時に、金属表面部92が伸長または伸展する。硬化表面部94により陰極箔6の滑りまたは相対移動が抑制されるので、金属表面部92に接触している陰極箔6の部分が伸長または伸展して基材箔12を表出させ、金属表面部92を基材箔12に接触させることができる。 (c) When the pull-out terminal 4 is connected, the metal surface portion 92 expands or expands. Since the sliding or relative movement of the cathode foil 6 is suppressed by the hardened surface portion 94, the portion of the cathode foil 6 that is in contact with the metal surface portion 92 stretches or expands to expose the base foil 12, and the metal surface The portion 92 can be brought into contact with the base foil 12.
 (d) ステッチ接続部10では、箔片20が陰極箔6に折り重ねられている。つまり、カーボン層14同士が重なり、陰極箔6が滑り易くなる。また、カーボン層14の形成過程において、カーボンが押圧されているので、カーボン層14の表面粗さが小さくなり、陰極箔6が滑り易くなる。このような滑り易い陰極箔6に対して、硬化表面部94の食込みは有効に作用できる。 (d) At the stitch connection portion 10, the foil piece 20 is folded over the cathode foil 6. In other words, the carbon layers 14 overlap each other, and the cathode foil 6 becomes slippery. Furthermore, since the carbon is pressed during the formation process of the carbon layer 14, the surface roughness of the carbon layer 14 becomes small, and the cathode foil 6 becomes easy to slip. The biting of the hardened surface portion 94 can effectively work against such slippery cathode foil 6.
 以上説明したように、本開示の最も好ましい実施の形態などについて説明したが、本開示は、上記記載に限定されるものではなく、請求の範囲に記載され、または明細書に開示された発明の要旨に基づき、当業者において様々な変形や変更が可能であることは勿論であり、斯かる変形や変更が、本開示の範囲に含まれることは言うまでもない。 As explained above, the most preferred embodiment of the present disclosure has been described, but the present disclosure is not limited to the above description, and the present disclosure is not limited to the invention described in the claims or disclosed in the specification. It goes without saying that those skilled in the art can make various modifications and changes based on the gist, and it goes without saying that such modifications and changes are included within the scope of the present disclosure.
 本開示の技術は、カーボン層を含む陰極箔と引出し端子の接続およびこれらを含むコンデンサに用いることができ、有用である。 The technology of the present disclosure is useful because it can be used for connecting a cathode foil containing a carbon layer and an extraction terminal, and for a capacitor containing these.
 2 コンデンサ
 4、86 引出し端子
 6、84 陰極箔
 10 ステッチ接続部
 12 基材箔
 14 カーボン層
 16 凹凸
 18 貫通孔
 20 箔片
 22 縁部
 24 折り重ね部
 28 基材露出面
 32 平坦部
 34 端子片
 36 端子孔
 38 根本
 40 先端
 52 箔除去孔
 54 抜き穴
 56 穴あけ台
 58 穴あけ手段
 60 切断面
 70 ステッチ針
 72 穿孔部
 74 投影図
 76 成形型
 78 空間部
 88-1、88-2、88-3 接続部
 90 側端
 92 金属表面部
 94 硬化表面部
 96 第一領域
 98 第二領域
 100 第三領域
 102 第四領域
2 Capacitor 4, 86 Output terminal 6, 84 Cathode foil 10 Stitch connection part 12 Base material foil 14 Carbon layer 16 Unevenness 18 Through hole 20 Foil piece 22 Edge 24 Folded part 28 Base material exposed surface 32 Flat part 34 Terminal piece 36 Terminal hole 38 Root 40 Tip 52 Foil removal hole 54 Punch hole 56 Drilling stand 58 Drilling means 60 Cutting surface 70 Stitch needle 72 Perforation part 74 Projection view 76 Molding mold 78 Space part 88-1, 88-2, 88-3 Connection part 90 side edge 92 metal surface portion 94 hardened surface portion 96 first region 98 second region 100 third region 102 fourth region

Claims (7)

  1.  基材箔と、該基材箔上に形成されたカーボン層とを含み、貫通孔を有する陰極箔と、
     前記陰極箔の端子載置面に載置される平坦部と、前記平坦部に形成され、前記貫通孔を通って前記陰極箔の前記端子載置面の反対面側に導出されるとともに折り曲げられた端子片とを含み、前記平坦部および前記端子片の間に前記陰極箔を挟むことにより前記陰極箔に接続される引出し端子と
     を備え、
     前記陰極箔は、前記貫通孔の縁部から伸びる箔片の先端部に、前記基材箔が露出している基材露出面を有し、前記基材露出面は、前記端子片の根本と先端の間に配置されて、前記基材露出面が前記端子片と接続する
    ことを特徴とするコンデンサ。
    A cathode foil including a base foil and a carbon layer formed on the base foil, and having a through hole;
    a flat portion placed on the terminal placement surface of the cathode foil; and a flat portion formed on the flat portion that is led out through the through hole to the side opposite to the terminal placement surface of the cathode foil and bent. and a lead-out terminal connected to the cathode foil by sandwiching the cathode foil between the flat part and the terminal piece,
    The cathode foil has a base material exposed surface where the base material foil is exposed at the tip of the foil piece extending from the edge of the through hole, and the base material exposed surface is connected to the base of the terminal piece. A capacitor, wherein the capacitor is disposed between tips of the capacitor, and the exposed surface of the base material is connected to the terminal piece.
  2.  前記基材露出面は、前記貫通孔の貫通方向に対して交差することを特徴とする請求項1に記載のコンデンサ。 The capacitor according to claim 1, wherein the exposed surface of the base material intersects with the penetration direction of the through hole.
  3.  前記端子片の中央部を通る中央断面において、前記貫通孔の前記貫通方向と前記基材露出面との成す角度が45度以上90度以下であることを特徴とする請求項2に記載のコンデンサ。 3. The capacitor according to claim 2, wherein in a central cross section passing through a central portion of the terminal piece, an angle between the penetrating direction of the through hole and the exposed surface of the base material is 45 degrees or more and 90 degrees or less. .
  4.  前記端子片の中央部を通る中央断面において、前記基材露出面は、前記陰極箔の厚さよりも大きい露出長を有することを特徴とする請求項1に記載のコンデンサ。 2. The capacitor according to claim 1, wherein the exposed surface of the base material has an exposed length greater than the thickness of the cathode foil in a central cross section passing through the central portion of the terminal piece.
  5.  前記引出し端子は、ステッチ接続部で前記陰極箔に接続され、
     前記引出し端子は、金属表面部と該金属表面部よりも硬い硬化表面部とを有し、
     前記金属表面部は、前記ステッチ接続部の第一領域で前記基材箔と接触し、
     前記硬化表面部は、前記ステッチ接続部の第二領域で前記カーボン層に積層することを特徴とする請求項1に記載のコンデンサ。
    the lead-out terminal is connected to the cathode foil at a stitch connection;
    The pull-out terminal has a metal surface portion and a hardened surface portion that is harder than the metal surface portion,
    the metal surface contacts the base foil in a first region of the stitch connection;
    2. The capacitor of claim 1, wherein the hardened surface is laminated to the carbon layer in a second region of the stitch connection.
  6.  基材箔と、該基材箔上に形成されたカーボン層とを含み、箔除去孔を有する陰極箔を作製または準備する工程と、
     前記箔除去孔を覆うように、前記陰極箔に引出し端子の平坦部を配置する工程と、
     ステッチ針が前記箔除去孔を挿通するように、前記ステッチ針を前記引出し端子側から前記引出し端子および前記陰極箔に挿通して、前記ステッチ針が挿通された前記箔除去孔により形成される貫通孔と箔片とを前記陰極箔に形成するとともに、端子孔と前記端子孔の縁部から前記貫通孔を通って伸びる端子片とを前記引出し端子に形成する工程と、
     前記端子片を押圧して、前記陰極箔と前記引出し端子とを接続する工程と
     を備え、
     前記箔除去孔の縁端は、前記基材箔が露出する基材露出面を有し、
     前記ステッチ針を前記引出し端子および前記陰極箔に挿通した時に、前記基材露出面が前記箔片に形成されるとともに、前記箔片が前記端子片側に移動し、
     前記基材露出面が前記端子片の押圧方向に対して交差し、前記端子片と接続する
    ことを特徴とするコンデンサの製造方法。
    A step of producing or preparing a cathode foil that includes a base foil and a carbon layer formed on the base foil and has a foil removal hole;
    arranging a flat part of a lead terminal on the cathode foil so as to cover the foil removal hole;
    The stitch needle is inserted through the drawer terminal and the cathode foil from the drawer terminal side so that the stitch needle is inserted through the foil removal hole, thereby forming a penetration formed by the foil removal hole into which the stitch needle is inserted. forming a hole and a foil piece in the cathode foil, and forming a terminal hole and a terminal piece extending from the edge of the terminal hole through the through hole in the lead-out terminal;
    pressing the terminal piece to connect the cathode foil and the pull-out terminal,
    The edge of the foil removal hole has a base material exposed surface where the base material foil is exposed,
    When the stitch needle is inserted through the lead-out terminal and the cathode foil, the exposed surface of the base material is formed on the foil piece, and the foil piece moves to one side of the terminal,
    A method for manufacturing a capacitor, characterized in that the exposed surface of the base material intersects with the pressing direction of the terminal piece and is connected to the terminal piece.
  7.  前記ステッチ針の穿孔部の断面積は、以下の式を満たす
       穿孔部の断面積>S1-S2
      S1: 前記箔除去孔の開口面積
      S2: 前記貫通孔の内部に位置する引出し端子の断面積
    ことを特徴とする請求項6に記載のコンデンサの製造方法。
    The cross-sectional area of the perforation of the stitch needle satisfies the following formula: Cross-sectional area of perforation>S1-S2
    7. The method for manufacturing a capacitor according to claim 6, wherein S1: opening area of the foil removal hole; S2: cross-sectional area of a lead-out terminal located inside the through-hole.
PCT/JP2023/029104 2022-08-10 2023-08-09 Capacitor and manufacturing method therefor WO2024034640A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022127902 2022-08-10
JP2022-127902 2022-08-10

Publications (1)

Publication Number Publication Date
WO2024034640A1 true WO2024034640A1 (en) 2024-02-15

Family

ID=89851659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029104 WO2024034640A1 (en) 2022-08-10 2023-08-09 Capacitor and manufacturing method therefor

Country Status (1)

Country Link
WO (1) WO2024034640A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080111A (en) * 2004-09-07 2006-03-23 Matsushita Electric Ind Co Ltd Aluminum electrolytic capacitor and its manufacturing method
JP2010239059A (en) * 2009-03-31 2010-10-21 Nippon Chemicon Corp Electrolytic capacitor and method of manufacturing the same
WO2020059609A1 (en) * 2018-09-21 2020-03-26 日本ケミコン株式会社 Electrode body, electrolytic capacitor including electrode body, and method of manufacturing electrode body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080111A (en) * 2004-09-07 2006-03-23 Matsushita Electric Ind Co Ltd Aluminum electrolytic capacitor and its manufacturing method
JP2010239059A (en) * 2009-03-31 2010-10-21 Nippon Chemicon Corp Electrolytic capacitor and method of manufacturing the same
WO2020059609A1 (en) * 2018-09-21 2020-03-26 日本ケミコン株式会社 Electrode body, electrolytic capacitor including electrode body, and method of manufacturing electrode body

Similar Documents

Publication Publication Date Title
JP7363794B2 (en) Electrode body, electrolytic capacitor including the electrode body, and method for manufacturing the electrode body
JP6134917B2 (en) Capacitors
KR20170137028A (en) Nanostructured electrode for energy storage device
JP2011199088A (en) Solid electrolytic capacitor
JP2011199086A (en) Solid electrolytic capacitor
WO2022045122A1 (en) Electrolytic capacitor and method for producing electrolytic capacitor
JP2023103483A (en) Electrode body, electrolytic capacitor including the same, and manufacturing method for electrode body
JP5921802B2 (en) Solid electrolytic capacitor
WO2024034640A1 (en) Capacitor and manufacturing method therefor
JP2005223197A (en) Electrolytic capacitor
JP4831771B2 (en) Solid electrolytic capacitor
WO2023132212A1 (en) Capacitor and method for manufacturing same
TWI579877B (en) Solid electrolytic capacitors
JP2024016384A (en) Capacitor and manufacturing method thereof
CN116783670A (en) Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor
JP2007180404A (en) Solid electrolytic capacitor and manufacturing method thereof
JP2023100570A (en) Capacitor, and method for manufacturing the same
JP2024087207A (en) Capacitor and method for manufacturing the capacitor
JP2023023395A (en) Capacitor and manufacturing method of the same
JP2023085753A (en) Capacitor and method for manufacturing the same
JP2021097163A (en) Electrolytic capacitor and manufacturing method thereof
JP2023146859A (en) Capacitor and method for manufacturing the same
WO2024135578A1 (en) Capacitor, and manufacturing method and usage method for capacitor
JP2003168633A (en) Solid electrolytic capacitor, its manufacturing method, conductive composite material, and its manufacturing method
JP2010238876A (en) Electrode for electric storage device, and method of manufacturing the same, electric storage device element, and lithium ion capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852602

Country of ref document: EP

Kind code of ref document: A1