WO2024034583A1 - Method for producing halogenated alkene compound - Google Patents

Method for producing halogenated alkene compound Download PDF

Info

Publication number
WO2024034583A1
WO2024034583A1 PCT/JP2023/028820 JP2023028820W WO2024034583A1 WO 2024034583 A1 WO2024034583 A1 WO 2024034583A1 JP 2023028820 W JP2023028820 W JP 2023028820W WO 2024034583 A1 WO2024034583 A1 WO 2024034583A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
compound
group
compound represented
halogenated
Prior art date
Application number
PCT/JP2023/028820
Other languages
French (fr)
Japanese (ja)
Inventor
祥子 卯田
友亮 江藤
新吾 中村
隆行 松永
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2024034583A1 publication Critical patent/WO2024034583A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • C09K13/08Etching, surface-brightening or pickling compositions containing an inorganic acid containing a fluorine compound
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa

Definitions

  • the present disclosure relates to a method for producing a halogenated alkene compound.
  • Patent Document 1 discloses that a specific halogenated alkane compound is subjected to a dehydrohalogenation reaction (see, for example, Patent Document 1).
  • An object of the present disclosure is to provide a method that can efficiently obtain a halogenated alkene compound.
  • the present disclosure includes the following configurations.
  • R 1 -CR 2 CR 3 -R 4 (1)
  • R 1 , R 2 , R 3 and R 4 are the same or different and represent a hydrogen atom, a halogen atom or a haloalkyl group. However, one of R 2 and R 3 is a hydrogen atom, and the other is a halogen atom.
  • a compound represented by, and A manufacturing method, wherein the compound represented by the general formula (1) and the unsaturated compound are different compounds.
  • Item 2. The manufacturing method according to item 1, wherein in the general formulas (1) and (2), R 1 and R 4 are a fluorine atom or a perfluoroalkyl group.
  • the amount of the unsaturated compound supplied is 0.001 to 0.40 mol per 1 mol of the halogenated alkane compound represented by the general formula (2). Manufacturing method described.
  • Item 5 The production method according to any one of Items 1 to 4, wherein the dehydrohalogenation reaction is performed in a gas phase.
  • R 1 -CR 2 CR 3 -R 4 (1)
  • R 1 , R 2 , R 3 and R 4 are the same or different and represent a hydrogen atom, a halogen atom or a haloalkyl group. However, one of R 2 and R 3 is a hydrogen atom, and the other is a halogen atom.
  • R 1 -CH CH-R 4 (5)
  • R 1 and R 4 are the same or different and represent a hydrogen atom, a halogen atom, or a haloalkyl group.
  • Section 8. The composition according to item 7, wherein the content of the halogenated alkane compound represented by the general formula (6) is 0.10 to 10.0 mol%.
  • Section 9 The composition according to any one of items 6 to 8, which is used as a cleaning gas, an etching gas, a refrigerant, a heat transfer medium, or a building block for organic synthesis.
  • a halogenated alkene compound can be efficiently synthesized.
  • selectivity means the ratio (mol%) of the total molar amount of target compounds contained in the outflow gas to the total molar amount of compounds other than the raw material compounds in the outflow gas from the reactor outlet. do.
  • conversion rate refers to the ratio (mol%) of the total molar amount of compounds other than the raw material compound contained in the outflow gas from the reactor outlet to the molar amount of the raw material compound supplied to the reactor. means.
  • yield means the ratio (mol %) of the total molar amount of the target compound contained in the outflow gas from the reactor outlet to the molar amount of the raw material compound supplied to the reactor.
  • halogenated butyne compounds represented by hexafluoro-2-butyne can be synthesized by performing dehydrohalogenation reaction twice using a specific halogenated alkane compound as a starting material.
  • a step of dehydrohalogenating a halogenated alkane compound represented by a catalyst in the presence of an unsaturated compound, The unsaturated compound has general formula (3): R 5 -CR 6 CR 7 -R 8 (3) [R 5 , R 6 , R 7 and R 8 are the same or different and represent a hydrogen atom or an organic group.
  • R 9 -C ⁇ C-R 10 (4) [In the formula, R 9 and R 10 are the same or different and represent a hydrogen atom or an organic group. ] A compound represented by, and The compound represented by the general formula (1) and the unsaturated compound are different compounds.
  • the dehydrohalogenation reaction by performing the dehydrohalogenation reaction of the halogenated alkane compound represented by the above general formula (2) in the presence of a specific unsaturated compound, the dehydrohalogenation reaction generates Hydrogen halides can be trapped in specific unsaturated compounds. Therefore, the raw material halogenated alkane compound reacts almost quantitatively, and 1 mol of hydrogen halide is eliminated per 1 mol of the halogenated alkane compound represented by the general formula (2).
  • the halogenated alkene compound represented by 1) can be selectively obtained.
  • the halogenated alkane compound as a substrate that can be used in the production method of the present disclosure has the general formula (2): R 1 -CHR 2 -CXR 3 -R 4 (2) [In the formula, R 1 , R 2 , R 3 and R 4 are the same or different and represent a hydrogen atom, a halogen atom or a haloalkyl group. However, one of R 2 and R 3 is a hydrogen atom, and the other is a halogen atom. X represents a halogen atom. ] It is a halogenated alkane compound represented by
  • the halogen atoms represented by R 1 , R 2 , R 3 and R 4 include fluorine atom, chlorine atom, bromine atom and iodine atom.
  • the haloalkyl group represented by R 1 , R 2 , R 3 and R 4 means an alkyl group in which at least one hydrogen atom is substituted with a halogen atom.
  • a fluoroalkyl group an alkyl group in which at least one hydrogen atom is substituted with a fluorine atom
  • a perfluoroalkyl group an alkyl group in which all hydrogen atoms are substituted with fluorine atoms.
  • haloalkyl groups an alkyl group in which at least one hydrogen atom is substituted with a chlorine atom is called a chloroalkyl group, and an alkyl group in which all hydrogen atoms are substituted with chlorine atoms is called a perchloroalkyl group. to be called.
  • an alkyl group in which at least one hydrogen atom is substituted with a bromine atom is called a bromoalkyl group
  • an alkyl group in which all hydrogen atoms are substituted with a bromine atom is called a perbromoalkyl group. to be called.
  • a fluoroalkyl group is preferred, and a perfluoroalkyl group is more preferred, from the viewpoint of the conversion rate of the reaction, the selectivity and yield of the halogenated alkene compound represented by the general formula (1), and the like.
  • the haloalkyl group can be linear, branched, or cyclic. Among these, linear haloalkyl groups are preferred from the viewpoints of conversion rate of reaction, selectivity and yield of the halogenated alkene compound represented by general formula (1), and the like.
  • the number of carbon atoms in the haloalkyl group is not particularly limited, but is preferably from 1 to 5 from the viewpoint of the conversion rate of the reaction, the selectivity and yield of the halogenated alkene compound represented by the general formula (1), etc. , 1 to 4 are more preferred, and 1 to 3 are even more preferred.
  • fluoroalkyl groups include trifluoromethyl groups, pentafluoroethyl groups, heptafluoropropyl groups, and the like.
  • specific examples of the chloroalkyl group include a trichloromethyl group, a pentachloroethyl group, a heptachloropropyl group, and the like.
  • specific examples of the bromoalkyl group include a tribromomethyl group, a pentabromoethyl group, a heptabromopropyl group, and the like.
  • the halogenated alkene compound represented by the general formula (1) also functions as an intermediate for obtaining a halogenated alkyne compound through a dehydrohalogenation reaction.
  • one of R 2 and R 3 in general formula (2) is a hydrogen atom, and the other is a halogen atom.
  • R 1 and R 4 are fluorine atoms or fluoroalkyl groups from the viewpoint of reaction conversion rate, selectivity and yield of the halogenated alkene compound represented by general formula (1), etc. is preferred, a fluorine atom or a perfluoroalkyl group is more preferred, and a perfluoroalkyl group is even more preferred.
  • the halogen atom represented by X includes a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • halogenated alkane compounds as substrates satisfying such conditions include CF 2 HCF 2 H, CFH 2 CF 3 , CCl 2 HCCl 2 H, CClH 2 CCl 3 , CBr 2 HCBr 2 H, and CBrH.
  • halogenated alkane compounds can be used alone or in combination of two or more.
  • a halogenated alkane compound publicly known or commercially available products can be employed.
  • R 1 and R 4 are trifluoromethyl groups
  • R 2 is a fluorine atom
  • the following reaction equation: CF 3 CFHCFHCF 3 ⁇ CF 3 CF CHCF 3 + HF It is preferable to carry out the dehydrofluorination reaction according to the following.
  • the catalyst used in the production method of the present disclosure is preferably an activated carbon catalyst, a zeolite catalyst, a chromium oxide catalyst, a silica alumina catalyst, or the like.
  • an activated carbon catalyst preferably an activated carbon catalyst, a zeolite catalyst, a chromium oxide catalyst, a silica alumina catalyst, or the like.
  • these catalysts both non-fluorinated catalysts and fluorinated catalysts can be employed.
  • the activated carbon catalyst is not particularly limited, and includes powdered activated carbon such as crushed carbon, compacted carbon, granulated carbon, and spherical carbon. It is preferable to use powdered activated carbon having a particle size of 4 mesh (4.75 mm) to 100 mesh (0.150 mm) in JIS test (JIS Z8801).
  • These activated carbons can be used alone or in combination of two or more.
  • As these activated carbons publicly known or commercially available products can be used.
  • Activated carbon exhibits stronger activity when fluorinated, so fluorinated activated carbon, which is obtained by fluorinating activated carbon in advance before use in the reaction, can also be used as an activated carbon catalyst. That is, as the activated carbon catalyst, both non-fluorinated activated carbon and fluorinated activated carbon can be used.
  • fluorinating agents for fluorinating activated carbon include inorganic fluorinating agents such as F 2 and HF, hydrofluorocarbons (HFC) such as hexafluoropropene, chlorofluorocarbons (CFC) such as chlorofluoromethane, Organic fluorinating agents such as hydrochlorofluorocarbons (HCFCs) can also be used.
  • inorganic fluorinating agents such as F 2 and HF
  • hydrofluorocarbons (HFC) such as hexafluoropropene
  • chlorofluorocarbons (CFC) such as chlorofluoromethane
  • Organic fluorinating agents such as hydrochlorofluorocarbons (HCFCs) can also be used.
  • Examples of the method for fluorinating activated carbon include a method of fluorinating by flowing the above-mentioned fluorinating agent under atmospheric pressure at a temperature of about room temperature (25° C.) to 400° C.
  • zeolites As the zeolite catalyst, a wide variety of known types of zeolites can be employed. For example, crystalline hydrated aluminosilicates of alkali metals or alkaline earth metals are preferred.
  • the crystal form of zeolite is not particularly limited, and examples thereof include A type, X type, LSX type, and the like.
  • the alkali metal or alkaline earth metal in the zeolite is not particularly limited, and examples thereof include potassium, sodium, calcium, lithium, and the like.
  • a zeolite catalyst exhibits stronger activity when fluorinated, so the zeolite catalyst can be fluorinated in advance before being used in a reaction and used as a fluorinated zeolite catalyst.
  • fluorinating agent for fluorinating the zeolite catalyst for example, inorganic fluorinating agents such as F 2 and HF, fluorocarbon-based organic fluorinating agents such as hexafluoropropene, etc. can be used.
  • Examples of the method for fluorinating the zeolite catalyst include a method of fluorinating the zeolite catalyst by flowing the above-mentioned fluorinating agent under atmospheric pressure at a temperature of about room temperature (25° C.) to 400° C.
  • the chromium oxide catalyst is not particularly limited, but when chromium oxide is expressed as CrO m , 1.5 ⁇ m ⁇ 3.0 is preferable, 2.0 ⁇ m ⁇ 2.75 is more preferable, and 2.0 More preferably, ⁇ m ⁇ 2.3. Further, when chromium oxide is expressed as CrO m ⁇ nH 2 O, it may be hydrated so that the value of n is 3 or less, particularly 1.0 to 1.5.
  • the fluorinated chromium oxide catalyst can be prepared by fluorination of the chromium oxide catalyst described above. This fluorination can be performed using, for example, HF, fluorocarbon, or the like. Such a fluorinated chromium oxide catalyst can be synthesized, for example, according to the method described in JP-A-05-146680.
  • the silica alumina catalyst is a composite oxide catalyst containing silica (SiO 2 ) and alumina (Al 2 O 3 ), and the silica content is, for example, 20 to 90% by mass, assuming the total amount of silica and alumina to be 100% by mass. , in particular 50 to 80% by weight of catalyst can be used.
  • a silica alumina catalyst exhibits stronger activity when fluorinated, it can also be used as a fluorinated silica alumina catalyst by fluorinating the silica alumina catalyst in advance before using it in the reaction.
  • fluorinating agent for fluorinating the silica alumina catalyst for example, inorganic fluorinating agents such as F 2 and HF, fluorocarbon-based organic fluorinating agents such as hexafluoropropene, etc. can be used.
  • a method for fluorinating a silica alumina catalyst for example, a method of fluorinating by flowing the above-mentioned fluorinating agent under atmospheric pressure at a temperature of about room temperature (25° C.) to 400° C. can be mentioned.
  • the above catalysts can be used alone or in combination of two or more. Furthermore, the above-mentioned catalyst may be a known or commercially available product.
  • activated carbon catalysts activated carbon or fluorinated activated carbon
  • chromium oxide catalysts chromium oxide or fluorinated chromium oxide
  • activated carbon catalysts Activated carbon or fluorinated activated carbon
  • zeolite catalyst when using the above-mentioned zeolite catalyst, chromium oxide catalyst, silica alumina catalyst, etc. as a catalyst, it is also possible to support it on a carrier.
  • a carrier examples include carbon, alumina (Al 2 O 3 ), zirconia (ZrO 2 ), silica (SiO 2 ), titania (TiO 2 ), and the like.
  • carbon activated carbon, amorphous carbon, graphite, diamond, etc. can be used.
  • the catalyst when dehydrohalogenating a halogenated alkane compound in the presence of a catalyst in the gas phase, for example, the catalyst may be brought into contact with the halogenated alkane compound in a solid state (solid phase).
  • the catalyst may be in the form of a powder, but a pellet form is preferable when it is employed in a gas phase continuous flow reaction.
  • the specific surface area of the catalyst measured by the BET method (hereinafter sometimes referred to as "BET specific surface area”) is usually preferably 10 to 3000 m 2 /g, more preferably 15 to 2500 m 2 /g, and 20 to 2000 m 2 /g is more preferable, and 30 to 1500 m 2 /g is particularly preferable.
  • BET specific surface area of the catalyst is within this range, the density of the catalyst particles is not too small, so that a halogenated alkene compound can be obtained with higher selectivity and yield. It is also possible to further improve the conversion rate of the halogenated alkane compound.
  • the unsaturated compound means a compound having at least one unsaturated bond (double bond, triple bond, etc.).
  • This unsaturated compound can trap hydrogen halide generated by the dehydrohalogenation reaction of the halogenated alkane compound represented by general formula (2). Note that when an unsaturated compound traps hydrogen halide, a hydrogen halide addition reaction occurs to the unsaturated compound.
  • the hydrogen halide generated by the dehydrohalogenation reaction of the halogenated alkane compound represented by the general formula (2) reacts with the target product, the halogenated alkene compound represented by the general formula (1). This can suppress the production of the halogenated alkane compound represented by general formula (2), which is a raw material.
  • the equilibrium of the dehydrohalogenation reaction tilts toward the product side (the side of the halogenated alkene compound represented by the general formula (1)), and the raw material, the general formula (2)
  • the halogenated alkene compound represented by reacts almost quantitatively, and the halogenated alkene compound represented by general formula (1) can be obtained with high selectivity and high yield.
  • the addition reaction between an olefin, that is, a compound having an unsaturated bond, and a hydrogen halide is a reaction in the energy orbit of the highest occupied orbital (HOMO) of the olefin and the lowest unoccupied orbital (LUMO) of the hydrogen halide. Therefore, the smaller the difference in energy level between the highest occupied molecular orbital (HOMO) of the olefin and the lowest unoccupied molecular orbital (LUMO) of the hydrogen halide, the higher the reactivity becomes.
  • the unsaturated compound to be added and the halogenated alkene compound represented by general formula (1) undergo an addition reaction with the same hydrogen halide, the highest occupied orbital (HOMO) of the halogenated alkene compound and the lowest vacancy of the hydrogen halide
  • the difference in the energy level of the orbital (LUMO) is caused by the level of the energy level of the highest occupied orbital (HOMO) of the halogenated alkene compound.
  • the unsaturated compound is a compound represented by the general formula (4) having a triple bond
  • the highest occupied orbital (HOMO) of the compound represented by the general formula (4) having a triple bond is If the energy level is higher than the highest occupied orbital (HOMO) of the halogenated alkene compound represented by formula (1), hydrogen fluoride can be trapped by the compound represented by general formula (4) having a triple bond. The reaction occurs preferentially over the reverse reaction of the halogenated alkene compound represented by general formula (1) with hydrogen fluoride.
  • the unsaturated compound it is preferable to select a compound whose highest occupied orbital (HOMO) is higher than the highest occupied orbital (HOMO) of the halogenated alkene compound represented by the general formula (1).
  • HOMO highest occupied orbital
  • HOMO highest occupied orbital
  • HOMO highest occupied orbital
  • halogenated alkene compound represented by general formula (1) It is preferable to have a rank.
  • the highest occupied orbital (HOMO) of the unsaturated compound is 0.1 eV higher than the highest occupied orbital (HOMO) of the halogenated alkene compound represented by the general formula (1). It is preferably 0.2 to 30 eV higher, and even more preferably 0.5 to 15 eV higher.
  • Examples of the organic groups represented by R 5 , R 6 , R 7 and R 8 in general formula (3), which are unsaturated compounds, and the organic groups represented by R 9 and R 10 in general formula (4), include: Halogen atom, cyano group, substituted or unsubstituted alkyl group, substituted or unsubstituted alkoxy group, substituted or unsubstituted aryl group, substituted or unsubstituted amino group, substituted or unsubstituted thiol group, ester group (-COOR), carbonyl group (-COR), a substituted or unsubstituted carboxyl group, a nitro group, a sulfo group, an amide group (-CONR 2 , -NRCOR), and the like.
  • R may be the same or different and include a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted
  • R 9 and R 10 include a fluorine atom, Examples include chlorine atom, bromine atom and iodine atom.
  • the organic groups represented by R 5 , R 6 , R 7 and R 8 and in the general formula (4), the alkyl groups as the organic groups represented by R 9 and R 10 are linear Any of a shape, a branched shape, and a cyclic shape can be adopted. Among these, straight-chain alkyl groups are preferred from the viewpoints of reaction conversion, selectivity and yield of the halogenated alkene compound represented by general formula (1), and the like.
  • the number of carbon atoms in the alkyl group is not particularly limited, but is preferably from 1 to 5 from the viewpoint of the conversion rate of the reaction, the selectivity and yield of the halogenated alkene compound represented by the general formula (1), etc. , 1 to 4 are more preferred, and 1 to 3 are even more preferred.
  • alkyl groups include methyl, ethyl, and n-propyl groups.
  • the alkyl group can also have a substituent.
  • substituents that an alkyl group can have include a hydroxyl group, the above halogen atom, a cyano group, an alkoxy group mentioned below, an aryl group mentioned below, an amino group mentioned below, a thiol group mentioned below, an ester group mentioned above, and a carbonyl group mentioned above. , the below-mentioned carboxyl group, the above-mentioned amide group, and the like.
  • the organic groups represented by R 5 , R 6 , R 7 and R 8 and the alkoxy groups as organic groups represented by R 9 and R 10 in general formula (4) are linear, Both branched and cyclic structures can be employed. Among these, linear alkoxy groups are preferred from the viewpoints of conversion rate of reaction, selectivity and yield of the halogenated alkene compound represented by general formula (1), and the like.
  • the number of carbon atoms in the alkoxy group is not particularly limited, but is preferably from 1 to 5 from the viewpoint of the conversion rate of the reaction, the selectivity and yield of the halogenated alkene compound represented by the general formula (1), etc. , 1 to 4 are more preferred, and 1 to 3 are even more preferred.
  • alkoxy groups include methoxy groups, ethoxy groups, n-propoxy groups, and the like.
  • the alkoxy group can also have a substituent.
  • substituents that the alkoxy group can have include a hydroxyl group, the above-mentioned halogen atom, the above-mentioned cyano group, the above-mentioned alkoxy group, the below-mentioned aryl group, the below-mentioned amino group, the below-mentioned thiol group, the above-mentioned amide group, and the like.
  • the organic groups represented by R 5 , R 6 , R 7 and R 8 and the aryl group as the organic group represented by R 9 and R 10 in general formula (4) are not particularly limited.
  • the selectivity and yield of the halogenated alkene compound represented by the general formula (1) those having 6 to 20 carbon atoms are preferable, and those having 6 to 12 carbon atoms are more preferable. , 6 to 10 are more preferred.
  • the aryl group may be monocyclic or polycyclic (eg, bicyclic, tricyclic, etc.), but is preferably monocyclic.
  • aryl group examples include phenyl group, naphthyl group, biphenyl group, pentalenyl group, indenyl group, anthranyl group, tetracenyl group, pentacenyl group, pyrenyl group, perylenyl group, fluorenyl group, phenanthryl group, etc. It will be done.
  • the aryl group can also have a substituent.
  • substituents that the aryl group can have include a hydroxyl group, the above halogen atom, a cyano group, the above alkyl group, the above alkoxy group, the above aryl group, the below-mentioned amino group, the below-mentioned thiol group, the above-mentioned ester group, the above-mentioned Examples include a carbonyl group, a carboxyl group described below, and the above-mentioned amide group.
  • the amino group can also have a substituent.
  • substituents that the amino group can have include a hydroxyl group, the above halogen atom, the above cyano group, the above alkyl group, the above alkoxy group, the above aryl group, the above amino group, the below-mentioned thiol group, the above ester group, and the above carbonyl group. group, the below-mentioned carboxyl group, the above-mentioned amide group, and the like.
  • the thiol group can also have a substituent.
  • substituents that the thiol group can have include a hydroxyl group, the halogen atom, the cyano group, the alkyl group, the alkoxy group, the aryl group, the amino group, the thiol group, the ester group, and the carbonyl group. , the below-mentioned carboxyl group, the above-mentioned amide group, and the like.
  • the carboxyl group can also have a substituent.
  • substituents that a carboxyl group can have include a hydroxyl group, the above halogen atom, a cyano group, the above alkyl group, the above alkoxy group, the above aryl group, the above amino group, the above thiol group, the above ester group, and the above carbonyl group. , the above carboxyl group, the above amide group, and the like.
  • the organic group is preferably a halogen atom, a halogenated alkyl group, etc. from the viewpoint of the conversion rate of the reaction, the selectivity and yield of the halogenated alkene compound represented by the general formula (1), and a fluorine atom , a fluoroalkyl group, etc. are more preferable, and a fluorine atom, a perfluoroalkyl group, etc. are even more preferable.
  • the compound represented by general formula (3) is a compound different from the target compound, the halogenated alkene compound represented by general formula (1).
  • the reaction temperature is preferably 300 to 450°C. At this reaction temperature, it is easy to trap hydrogen halide, it is difficult to decompose and ignite, and it is easy to improve the conversion rate of the reaction, the selectivity and yield of the halogenated alkene compound represented by the general formula (1), etc. From this point of view, it is preferable that at least one of the decomposition temperature, ignition point, and critical point of the unsaturated compound is higher than the reaction temperature, and all of the decomposition temperature, ignition point, and critical point are higher than the reaction temperature, regardless of the presence or absence of measured values. More preferably, it is higher than the temperature.
  • the energy level of the highest occupied orbital (HOMO) of these unsaturated compounds is preferably adjusted as follows.
  • the highest occupied orbital (HOMO) of the unsaturated compound is the highest occupied molecular orbital (HOMO) of the halogenated alkene compound represented by the general formula (1) produced by dehydrohalogenation of the halogenated alkane compound represented by the general formula (2). It is preferable to select the unsaturated compound so that the energy level is higher than the occupied orbital (HOMO). Therefore, the energy level of the highest attacked orbit (HOMO) of the unsaturated compound is preferably -15 eV to 40 eV, more preferably -14 eV to 35 eV, and even more preferably -13 eV to 30 eV.
  • These unsaturated compounds can be used alone or in combination of two or more.
  • unsaturated compounds known or commercially available products can be employed.
  • the amount of the unsaturated compound used there is no particular restriction on the amount of the unsaturated compound used, but from the viewpoint of the conversion rate of the reaction, the selectivity and yield of the halogenated alkene compound represented by the general formula (1), etc. It is preferably 0.001 to 0.40 mol, more preferably 0.01 to 0.40 mol, and more preferably 0.05 to 0.40 mol per mol of the halogenated alkane compound represented by general formula (2). 20 mol is more preferred.
  • the dehydrohalogenation reaction of a halogenated alkane compound in the present disclosure is preferably carried out in a gas phase, particularly from the viewpoint of productivity.
  • a gas phase particularly from the viewpoint of productivity.
  • a halogenated alkane compound as a raw material compound is continuously charged into a reactor, and a halogenated alkene compound as a target compound is continuously extracted from the reactor. It can be carried out either by a method or a batch method. In the present disclosure, for the purpose of further suppressing the reverse reaction, it is preferable to carry out the process using a gas phase continuous flow system.
  • an inert gas atmosphere is preferable from the viewpoint of suppressing deterioration of the catalyst.
  • the inert gas include nitrogen, helium, argon, and the like. Among these inert gases, nitrogen is preferred from the viewpoint of reducing costs.
  • reaction temperature is set so that the dehydrohalogenation reaction proceeds more efficiently to further improve the conversion rate, and the target compound From the viewpoint of being able to obtain a halogenated alkene compound with higher selectivity and higher yield, the temperature is preferably 300 to 450°C, more preferably 350 to 450°C, and even more preferably 350 to 400°C.
  • the reaction time for dehydrohalogenating the halogenated alkane compound in the present disclosure is, for example, when a gas phase flow system is adopted, the contact time (W/F) of the raw material compound with the catalyst [ W: weight of catalyst (g), F: flow rate of raw material compound (cc/sec)] is a point of view where the conversion rate of the reaction is particularly high and the halogenated alkane compound can be obtained in higher yield and higher selectivity. Therefore, 12 to 45 g ⁇ sec/cc is preferable, 15 to 40 g ⁇ sec/cc is more preferable, and even more preferably 20 to 30 g ⁇ sec/cc.
  • the above-mentioned contact time means the time during which the raw material compound and the catalyst are in contact with each other.
  • the flow rate of the raw material compound means the flow rate of the halogenated alkane compound represented by the general formula (2), which does not contain the above-mentioned unsaturated compounds.
  • the reaction pressure at which the halogenated alkane compound is dehydrohalogenated in the present disclosure is such that the dehydrohalogenation reaction proceeds more efficiently to further improve the conversion rate, and the target compound halogen From the viewpoint of being able to obtain the alkene compound with higher selectivity and higher yield, the pressure is preferably 0 kPa or higher, more preferably 10 kPa or higher, even more preferably 20 kPa or higher, and particularly preferably 30 kPa or higher.
  • the upper limit of the reaction pressure is not particularly limited and is usually about 2 MPa. Note that in this disclosure, unless otherwise specified, pressure is referred to as gauge pressure.
  • the reactor in which the halogenated alkane compound, catalyst, and unsaturated compound are charged and reacted may be of any shape and shape as long as it can withstand the above temperature and pressure.
  • the structure is not particularly limited.
  • the reactor include a vertical reactor, a horizontal reactor, and a multitubular reactor.
  • the material of the reactor include glass, stainless steel, iron, nickel, and iron-nickel alloy.
  • a halogenated alkene compound represented by the general formula (1) can be obtained by performing a purification treatment according to a conventional method if necessary.
  • Target compound (halogenated alkene compound)
  • R 1 , R 2 , R 3 and R 4 are the same or different and represent a hydrogen atom, a halogen atom or a haloalkyl group. However, one of R 2 and R 3 is a hydrogen atom, and the other is a halogen atom.
  • the highest occupied orbital (HOMO) of the unsaturated compound is the halogenated alkene represented by the general formula (1) produced by dehydrohalogenation of the halogenated alkane compound represented by the general formula (2). Since it is preferable to select an unsaturated compound so that the energy level is higher than the highest occupied orbital (HOMO) of the compound, the highest occupied orbital (HOMO) of the halogenated alkene compound represented by the general formula (1) is selected. ) is preferably -25 eV to 10 eV, more preferably -20 eV to 5 eV, even more preferably -15 eV to -5 eV.
  • the halogenated alkene compound thus obtained can be used as a cleaning gas; an etching gas for forming cutting-edge microstructures in semiconductors, liquid crystals, etc.; a deposit gas; a refrigerant; a heat transfer medium; a building block for organic synthesis, etc. It can be effectively used for various purposes. Deposit gas and building blocks for organic synthesis will be described later.
  • composition Although a halogenated alkene compound can be obtained as described above, it may also be obtained in the form of a composition containing the desired compound.
  • the halogenated alkene compound represented by general formula (1) has the general formula (5):
  • R 1 -CH CH-R 4 (5)
  • R 1 and R 4 are the same or different and represent a hydrogen atom, a halogen atom, or a haloalkyl group.
  • halogen atom and haloalkyl group represented by R 1 and R 4 can be those explained above.
  • this composition contains hydrogen halide generated in the dehydrohalogenation reaction of a halogenated alkane represented by the general formula (1), and an unsaturated hydrogen halide represented by the general formula (3) or the general formula (4).
  • General formula (6) in which the compound undergoes an addition reaction: R 5 -CR 6 R 11 -CR 7 R 12 -R 8 (6)
  • R 5 , R 6 , R 7 and R 8 are the same or different and represent a hydrogen atom or an organic group.
  • One of R 11 and R 12 is a hydrogen atom, and the other is a halogen atom.
  • It may also contain a halogenated alkane compound represented by
  • the content of the halogenated alkene compound represented by general formula (1) is 50 to 80 mol%, 54 to 79 mol%, and 58 to 78 mol%, assuming that the total amount of the composition of the present disclosure is 100 mol%. , 62 to 77 mol%, 65 to 76 mol%, etc.
  • the content of the halogenated alkene compound represented by general formula (5) is 12 to 40 mol%, 13 to 37 mol%, 14 to 34 mol%. It can also be set to mol%, 15 to 30 mol%, 16 to 27 mol%, etc.
  • the content of the halogenated alkene compound represented by the general formula (6) is preferably 0.10 to 10.0 mol%, and 0.15 to 9 mol%, assuming the total amount of the composition of the present disclosure as 100 mol%. It can also be set to 0.5 mol%, 0.20 to 9.0 mol%, 0.25 to 8.5 mol%, 0.30 to 8.0 mol%, etc.
  • the halogenated alkene compound represented by the general formula (1) as described above can be converted to Because it can be obtained with high yield and high selectivity, it is possible to reduce the amount of components other than the halogenated alkene compound represented by general formula (1) in the composition of the present disclosure. , the effort required for purification to obtain the halogenated alkene compound represented by general formula (1) can be reduced.
  • the halogenated alkene compound represented by the general formula (1) is , it is possible to obtain a high reaction conversion rate, high yield, and high selectivity, and as a result, components other than the halogenated alkene compound represented by general formula (1) in the composition can be reduced. It is possible to do so. According to the production method of the present disclosure, it is possible to reduce the effort required for purification to obtain the halogenated alkene compound represented by general formula (1).
  • composition containing the halogenated alkene compound of the present disclosure can be used as a cleaning gas; an etching gas for forming cutting-edge microstructures of semiconductors, liquid crystals, etc., as well as a deposit gas, as in the case of the halogenated alkene compound alone It can also be effectively used in various applications such as refrigerants, heat transfer media, and building blocks for organic synthesis.
  • the deposit gas is a gas that deposits an etching-resistant polymer layer.
  • the building block for organic synthesis means a substance that can be a precursor of a compound having a highly reactive skeleton.
  • a fluorine-containing organosilicon compound such as CF 3 Si(CH 3 ) 3
  • a fluoroalkyl group such as a CF 3 group is introduced and the composition is reacted with a cleaning agent or a fluorine-containing pharmaceutical intermediate. It is possible to convert it into a substance that can become.
  • the raw material compound is a halogenated alkane compound represented by general formula (2), in which R 1 and R 4 are trifluoromethyl groups, and R 2 is fluorine.
  • R3 is a hydrogen atom
  • X is a fluorine atom
  • the following reaction formula: CF 3 CFHCFHCF 3 ⁇ CF 3 CF CHCF 3 + HF Accordingly, a halogenated alkene compound was obtained by dehydrofluorination reaction.
  • Examples 1 to 3 and comparative example 1 10 g of activated carbon catalyst (manufactured by Osaka Gas Chemical Co., Ltd.; specific surface area: 1200 m 2 /g) was added as a catalyst to a SUS pipe (outer diameter: 1/2 inch) serving as a reaction tube. After drying at 200° C.
  • the reaction proceeded in a gas phase continuous flow system.
  • the reaction tube was heated to 350°C to start the dehydrofluorination reaction.

Abstract

The present invention provides a method for producing a halogenated alkene compound which is represented by general formula (1): R1-CR2=CR3-R4, the method comprising a step for subjecting a halogenated alkane compound which is represented by general formula (2): R1-CHR2-CXR3-R4 to a dehydrohalogenation reaction in the presence of a catalyst and an unsaturated compound. The unsaturated compound is represented by general formula (3): R5-CR6=CR7-R8 or general formula (4): R9-C≡C-R10, and the compound represented by general formula (1) and the unsaturated compound are different from each other. A halogenated alkene compound can be achieved efficiently by this production method.

Description

ハロゲン化アルケン化合物の製造方法Method for producing halogenated alkene compounds
 本開示は、ハロゲン化アルケン化合物の製造方法に関する。 The present disclosure relates to a method for producing a halogenated alkene compound.
 ハロゲン化アルケン化合物の製造方法として、例えば、特許文献1では、特定のハロゲン化アルカン化合物を脱ハロゲン化水素反応することが知られている(例えば、特許文献1参照)。 As a method for producing a halogenated alkene compound, for example, Patent Document 1 discloses that a specific halogenated alkane compound is subjected to a dehydrohalogenation reaction (see, for example, Patent Document 1).
国際公開第2020/171011号International Publication No. 2020/171011
 本開示は、ハロゲン化アルケン化合物を効率よく得ることができる方法を提供することを目的とする。 An object of the present disclosure is to provide a method that can efficiently obtain a halogenated alkene compound.
 本開示は、以下の構成を包含する。 The present disclosure includes the following configurations.
 項1.一般式(1):
-CR=CR-R   (1)
[式中、R、R、R及びRは同一又は異なって、水素原子、ハロゲン原子又はハロアルキル基を示す。ただし、R及びRの片方は水素原子であり、他方はハロゲン原子である。]
で表されるハロゲン化アルケン化合物の製造方法であって、
一般式(2):
-CHR-CXR-R   (2)
[式中、R、R、R及びRは前記に同じである。Xはハロゲン原子を示す。]
で表されるハロゲン化アルカン化合物を、触媒と、不飽和化合物の存在下、脱ハロゲン化水素反応する工程を備え、
前記不飽和化合物が、一般式(3):
-CR=CR-R   (3)
[式中、R、R、R及びRは同一又は異なって、水素原子又は有機基を示す。]
、又は一般式(4):
-C≡C-R10   (4)
[式中、R及びR10は同一又は異なって、水素原子又は有機基を示す。]
で表される化合物であり、且つ、
前記一般式(1)で表される化合物と前記不飽和化合物とは異なる化合物である、製造方法。
Item 1. General formula (1):
R 1 -CR 2 =CR 3 -R 4 (1)
[In the formula, R 1 , R 2 , R 3 and R 4 are the same or different and represent a hydrogen atom, a halogen atom or a haloalkyl group. However, one of R 2 and R 3 is a hydrogen atom, and the other is a halogen atom. ]
A method for producing a halogenated alkene compound represented by
General formula (2):
R 1 -CHR 2 -CXR 3 -R 4 (2)
[In the formula, R 1 , R 2 , R 3 and R 4 are the same as above. X represents a halogen atom. ]
A step of dehydrohalogenating a halogenated alkane compound represented by a catalyst in the presence of an unsaturated compound,
The unsaturated compound has general formula (3):
R 5 -CR 6 =CR 7 -R 8 (3)
[In the formula, R 5 , R 6 , R 7 and R 8 are the same or different and represent a hydrogen atom or an organic group. ]
, or general formula (4):
R 9 -C≡C-R 10 (4)
[In the formula, R 9 and R 10 are the same or different and represent a hydrogen atom or an organic group. ]
A compound represented by, and
A manufacturing method, wherein the compound represented by the general formula (1) and the unsaturated compound are different compounds.
 項2.前記一般式(1)及び(2)において、前記R及びRがフッ素原子又はパーフルオロアルキル基である、項1に記載の製造方法。 Item 2. Item 2. The manufacturing method according to item 1, wherein in the general formulas (1) and (2), R 1 and R 4 are a fluorine atom or a perfluoroalkyl group.
 項3.前記不飽和化合物の最高被占有軌道(HOMO)のエネルギー準位が、前記一般式(1)で表されるハロゲン化アルケン化合物の最高被占有軌道(HOMO)よりも高い、項1又は2に記載の製造方法。 Section 3. Item 1 or 2, wherein the energy level of the highest occupied orbital (HOMO) of the unsaturated compound is higher than the highest occupied orbital (HOMO) of the halogenated alkene compound represented by the general formula (1). manufacturing method.
 項4.前記不飽和化合物の供給量が、前記一般式(2)で表されるハロゲン化アルカン化合物1モルに対して、0.001~0.40モルである、項1~3のいずれか1項に記載の製造方法。 Section 4. In any one of Items 1 to 3, the amount of the unsaturated compound supplied is 0.001 to 0.40 mol per 1 mol of the halogenated alkane compound represented by the general formula (2). Manufacturing method described.
 項5.前記脱ハロゲン化水素反応を気相で行う、項1~4のいずれか1項に記載の製造方法。 Section 5. Item 5. The production method according to any one of Items 1 to 4, wherein the dehydrohalogenation reaction is performed in a gas phase.
 項6.一般式(1):
-CR=CR-R   (1)
[式中、R、R、R及びRは同一又は異なって、水素原子、ハロゲン原子又はハロアルキル基を示す。ただし、R及びRの片方は水素原子であり、他方はハロゲン原子である。]
で表されるハロゲン化アルケン化合物を50~80モル%と、
一般式(5):
-CH=CH-R   (5)
[式中、R及びRは同一又は異なって、水素原子、ハロゲン原子又はハロアルキル基を示す。]
で表されるハロゲン化アルケン化合物を12~40モル%と
を含有する、組成物。
Item 6. General formula (1):
R 1 -CR 2 =CR 3 -R 4 (1)
[In the formula, R 1 , R 2 , R 3 and R 4 are the same or different and represent a hydrogen atom, a halogen atom or a haloalkyl group. However, one of R 2 and R 3 is a hydrogen atom, and the other is a halogen atom. ]
50 to 80 mol% of a halogenated alkene compound represented by
General formula (5):
R 1 -CH=CH-R 4 (5)
[In the formula, R 1 and R 4 are the same or different and represent a hydrogen atom, a halogen atom, or a haloalkyl group. ]
A composition containing 12 to 40 mol% of a halogenated alkene compound represented by:
 項7.さらに、一般式(6):
-CR11-CR12-R   (6)
[式中、R、R、R及びRは同一又は異なって、水素原子又は有機基を示す。R11及びR12の片方は水素原子であり、他方はハロゲン原子である。]
で表されるハロゲン化アルカン化合物を含有する、項6に記載の組成物。
Section 7. Furthermore, general formula (6):
R 5 -CR 6 R 11 -CR 7 R 12 -R 8 (6)
[In the formula, R 5 , R 6 , R 7 and R 8 are the same or different and represent a hydrogen atom or an organic group. One of R 11 and R 12 is a hydrogen atom, and the other is a halogen atom. ]
Item 7. The composition according to Item 6, which contains a halogenated alkane compound represented by:
 項8.前記一般式(6)で表されるハロゲン化アルカン化合物の含有量が0.10~10.0モル%である、項7に記載の組成物。 Section 8. Item 8. The composition according to item 7, wherein the content of the halogenated alkane compound represented by the general formula (6) is 0.10 to 10.0 mol%.
 項9.クリーニングガス、エッチングガス、冷媒、熱移動媒体又は有機合成用ビルディングブロックとして用いられる、項6~8のいずれか1項に記載の組成物。 Section 9. The composition according to any one of items 6 to 8, which is used as a cleaning gas, an etching gas, a refrigerant, a heat transfer medium, or a building block for organic synthesis.
 本開示によれば、ハロゲン化アルケン化合物を効率よく合成することができる。 According to the present disclosure, a halogenated alkene compound can be efficiently synthesized.
 本明細書において、「含有」は、「含む(comprise)」、「実質的にのみからなる(consist essentially of)」、及び「のみからなる(consist of)」のいずれも包含する概念である。 In this specification, "contain" is a concept that includes all of "comprise," "consist essentially of," and "consist of."
 また、本明細書において、数値範囲を「A~B」で示す場合、A以上B以下を意味する。 Furthermore, in this specification, when a numerical range is indicated by "A to B", it means from A to B.
 本開示において、「選択率」とは、反応器出口からの流出ガスにおける原料化合物以外の化合物の合計モル量に対する、当該流出ガスに含まれる目的化合物の合計モル量の割合(モル%)を意味する。 In the present disclosure, "selectivity" means the ratio (mol%) of the total molar amount of target compounds contained in the outflow gas to the total molar amount of compounds other than the raw material compounds in the outflow gas from the reactor outlet. do.
 本開示において、「転化率」とは、反応器に供給される原料化合物のモル量に対する、反応器出口からの流出ガスに含まれる原料化合物以外の化合物の合計モル量の割合(モル%)を意味する。 In the present disclosure, "conversion rate" refers to the ratio (mol%) of the total molar amount of compounds other than the raw material compound contained in the outflow gas from the reactor outlet to the molar amount of the raw material compound supplied to the reactor. means.
 本開示において、「収率」とは、反応器に供給される原料化合物のモル量に対する、反応器出口からの流出ガスに含まれる目的化合物の合計モル量の割合(モル%)を意味する。 In the present disclosure, "yield" means the ratio (mol %) of the total molar amount of the target compound contained in the outflow gas from the reactor outlet to the molar amount of the raw material compound supplied to the reactor.
 ヘキサフルオロ-2-ブチンに代表されるハロゲン化ブチン化合物は、特定のハロゲン化アルカン化合物を出発物質として、脱ハロゲン化水素反応を2回施すことにより合成されることが知られている。 It is known that halogenated butyne compounds represented by hexafluoro-2-butyne can be synthesized by performing dehydrohalogenation reaction twice using a specific halogenated alkane compound as a starting material.
 ここで、ハロゲン化アルカン化合物から脱ハロゲン化水素反応を行うと、ハロゲン化水素が遊離する。生成物であるハロゲン化アルケン化合物と遊離したハロゲン化水素とが反応すると、再度原料であるハロゲン化アルカン化合物を生成するため、ハロゲン化ブチン化合物を得るために、ハロゲン化アルカン化合物を出発物質として、1回の脱ハロゲン化水素反応ではなく、2回の脱ハロゲン化水素反応を施すことにより収率が向上する。 Here, when a dehydrohalogenation reaction is performed from a halogenated alkane compound, hydrogen halide is liberated. When the product halogenated alkene compound reacts with the liberated hydrogen halide, the halogenated alkane compound, which is the raw material, is produced again.In order to obtain the halogenated butyne compound, the halogenated alkane compound is used as a starting material. The yield is improved by performing two dehydrohalogenation reactions instead of one dehydrohalogenation reaction.
 一方、本開示では、ハロゲン化アルカン化合物から脱ハロゲン化水素反応を、特定の不飽和化合物の存在下で行うことで、当該脱ハロゲン化水素反応により生成するハロゲン化水素を、特定の不飽和化合物にトラップさせることができる。このため、原料であるハロゲン化アルカン化合物が、ほぼ定量的に反応し、ハロゲン化アルケン化合物を高い選択率且つ高い収率で得ることができる。 On the other hand, in the present disclosure, by performing a dehydrohalogenation reaction from a halogenated alkane compound in the presence of a specific unsaturated compound, hydrogen halide generated by the dehydrohalogenation reaction is transferred to a specific unsaturated compound. can be trapped. Therefore, the halogenated alkane compound as a raw material reacts almost quantitatively, and the halogenated alkene compound can be obtained with high selectivity and high yield.
 1.ハロゲン化アルケン化合物の製造方法
 本開示のハロゲン化アルケン化合物の製造方法は、
一般式(1):
-CR=CR-R   (1)
[式中、R、R、R及びRは同一又は異なって、水素原子、ハロゲン原子又はハロアルキル基を示す。ただし、R及びRの片方は水素原子であり、他方はハロゲン原子である。]
で表されるハロゲン化アルケン化合物の製造方法であって、
一般式(2):
-CHR-CXR-R   (2)
[式中、R、R、R及びRは前記に同じである。Xはハロゲン原子を示す。]
で表されるハロゲン化アルカン化合物を、触媒と、不飽和化合物の存在下、脱ハロゲン化水素反応する工程を備え、
前記不飽和化合物が、一般式(3):
-CR=CR-R   (3)
[R、R、R及びRは同一又は異なって、水素原子又は有機基を示す。]
、又は一般式(4):
-C≡C-R10   (4)
[式中、R及びR10は同一又は異なって、水素原子又は有機基を示す。]
で表される化合物であり、且つ、
前記一般式(1)で表される化合物と前記不飽和化合物とは異なる化合物である。
1. Method for producing a halogenated alkene compound The method for producing a halogenated alkene compound of the present disclosure includes:
General formula (1):
R 1 -CR 2 =CR 3 -R 4 (1)
[In the formula, R 1 , R 2 , R 3 and R 4 are the same or different and represent a hydrogen atom, a halogen atom or a haloalkyl group. However, one of R 2 and R 3 is a hydrogen atom, and the other is a halogen atom. ]
A method for producing a halogenated alkene compound represented by
General formula (2):
R 1 -CHR 2 -CXR 3 -R 4 (2)
[In the formula, R 1 , R 2 , R 3 and R 4 are the same as above. X represents a halogen atom. ]
A step of dehydrohalogenating a halogenated alkane compound represented by a catalyst in the presence of an unsaturated compound,
The unsaturated compound has general formula (3):
R 5 -CR 6 =CR 7 -R 8 (3)
[R 5 , R 6 , R 7 and R 8 are the same or different and represent a hydrogen atom or an organic group. ]
, or general formula (4):
R 9 -C≡C-R 10 (4)
[In the formula, R 9 and R 10 are the same or different and represent a hydrogen atom or an organic group. ]
A compound represented by, and
The compound represented by the general formula (1) and the unsaturated compound are different compounds.
 本開示によれば、上記した一般式(2)で表されるハロゲン化アルカン化合物の脱ハロゲン化水素反応を、特定の不飽和化合物の存在下に行うことで、当該脱ハロゲン化水素反応により生成するハロゲン化水素を、特定の不飽和化合物にトラップさせることができる。このため、原料であるハロゲン化アルカン化合物が、ほぼ定量的に反応し、一般式(2)で表されるハロゲン化アルカン化合物1モルに対して1モルのハロゲン化水素が脱離した一般式(1)で表されるハロゲン化アルケン化合物を選択的に得ることができる。 According to the present disclosure, by performing the dehydrohalogenation reaction of the halogenated alkane compound represented by the above general formula (2) in the presence of a specific unsaturated compound, the dehydrohalogenation reaction generates Hydrogen halides can be trapped in specific unsaturated compounds. Therefore, the raw material halogenated alkane compound reacts almost quantitatively, and 1 mol of hydrogen halide is eliminated per 1 mol of the halogenated alkane compound represented by the general formula (2). The halogenated alkene compound represented by 1) can be selectively obtained.
 (1-1)原料化合物(ハロゲン化アルカン化合物)
 本開示の製造方法において使用できる基質としてのハロゲン化アルカン化合物は、上記のとおり、一般式(2):
-CHR-CXR-R   (2)
[式中、R、R、R及びRは同一又は異なって、水素原子、ハロゲン原子又はハロアルキル基を示す。ただし、R及びRの片方は水素原子であり、他方はハロゲン原子である。Xはハロゲン原子を示す。]
で表されるハロゲン化アルカン化合物である。
(1-1) Raw material compound (halogenated alkane compound)
The halogenated alkane compound as a substrate that can be used in the production method of the present disclosure has the general formula (2):
R 1 -CHR 2 -CXR 3 -R 4 (2)
[In the formula, R 1 , R 2 , R 3 and R 4 are the same or different and represent a hydrogen atom, a halogen atom or a haloalkyl group. However, one of R 2 and R 3 is a hydrogen atom, and the other is a halogen atom. X represents a halogen atom. ]
It is a halogenated alkane compound represented by
 一般式(2)において、R、R、R及びRで示されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。 In general formula (2), the halogen atoms represented by R 1 , R 2 , R 3 and R 4 include fluorine atom, chlorine atom, bromine atom and iodine atom.
 一般式(2)において、R、R、R及びRで示されるハロアルキル基は、少なくとも1個の水素原子がハロゲン原子で置換されたアルキル基を意味する。ハロアルキル基のなかでも、少なくとも1個の水素原子がフッ素原子で置換されたアルキル基はフルオロアルキル基と称し、全ての水素原子がフッ素原子で置換されたアルキル基は、パーフルオロアルキル基と称する。また、ハロアルキル基のなかでも、少なくとも1個の水素原子が塩素原子で置換されたアルキル基はクロロアルキル基と称し、全ての水素原子が塩素原子で置換されたアルキル基は、パークロロアルキル基と称する。また、ハロアルキル基のなかでも、少なくとも1個の水素原子が臭素原子で置換されたアルキル基はブロモアルキル基と称し、全ての水素原子が臭素原子で置換されたアルキル基は、パーブロモアルキル基と称する。なかでも、反応の転化率、一般式(1)で表されるハロゲン化アルケン化合物の選択率及び収率等の観点から、フルオロアルキル基が好ましく、パーフルオロアルキル基がより好ましい。 In general formula (2), the haloalkyl group represented by R 1 , R 2 , R 3 and R 4 means an alkyl group in which at least one hydrogen atom is substituted with a halogen atom. Among haloalkyl groups, an alkyl group in which at least one hydrogen atom is substituted with a fluorine atom is referred to as a fluoroalkyl group, and an alkyl group in which all hydrogen atoms are substituted with fluorine atoms is referred to as a perfluoroalkyl group. Furthermore, among haloalkyl groups, an alkyl group in which at least one hydrogen atom is substituted with a chlorine atom is called a chloroalkyl group, and an alkyl group in which all hydrogen atoms are substituted with chlorine atoms is called a perchloroalkyl group. to be called. Furthermore, among haloalkyl groups, an alkyl group in which at least one hydrogen atom is substituted with a bromine atom is called a bromoalkyl group, and an alkyl group in which all hydrogen atoms are substituted with a bromine atom is called a perbromoalkyl group. to be called. Among these, a fluoroalkyl group is preferred, and a perfluoroalkyl group is more preferred, from the viewpoint of the conversion rate of the reaction, the selectivity and yield of the halogenated alkene compound represented by the general formula (1), and the like.
 ハロアルキル基は、直鎖状、分岐鎖状及び環状のいずれも採用することができる。なかでも、反応の転化率、一般式(1)で表されるハロゲン化アルケン化合物の選択率及び収率等の観点から、直鎖状ハロアルキル基が好ましい。 The haloalkyl group can be linear, branched, or cyclic. Among these, linear haloalkyl groups are preferred from the viewpoints of conversion rate of reaction, selectivity and yield of the halogenated alkene compound represented by general formula (1), and the like.
 ハロアルキル基の炭素数は、特に制限されるわけではないが、反応の転化率、一般式(1)で表されるハロゲン化アルケン化合物の選択率及び収率等の観点から、1~5が好ましく、1~4がより好ましく、1~3がさらに好ましい。 The number of carbon atoms in the haloalkyl group is not particularly limited, but is preferably from 1 to 5 from the viewpoint of the conversion rate of the reaction, the selectivity and yield of the halogenated alkene compound represented by the general formula (1), etc. , 1 to 4 are more preferred, and 1 to 3 are even more preferred.
 このようなフルオロアルキル基としては、具体的には、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基等が挙げられる。また、クロロアルキル基としては、具体的には、トリクロロメチル基、ペンタクロロエチル基、ヘプタクロロプロピル基等が挙げられる。また、ブロモアルキル基としては、具体的には、トリブロモメチル基、ペンタブロモエチル基、ヘプタブロモプロピル基等が挙げられる。 Specific examples of such fluoroalkyl groups include trifluoromethyl groups, pentafluoroethyl groups, heptafluoropropyl groups, and the like. Further, specific examples of the chloroalkyl group include a trichloromethyl group, a pentachloroethyl group, a heptachloropropyl group, and the like. Further, specific examples of the bromoalkyl group include a tribromomethyl group, a pentabromoethyl group, a heptabromopropyl group, and the like.
 一般式(1)で表されるハロゲン化アルケン化合物は、その後、脱ハロゲン化水素反応によりハロゲン化アルキン化合物を得るための中間体としても機能することから、一般式(1)で表されるハロゲン化アルケン化合物からの脱ハロゲン化水素を許容するため、一般式(2)におけるR及びRの片方は水素原子であり、他方はハロゲン原子である。 The halogenated alkene compound represented by the general formula (1) also functions as an intermediate for obtaining a halogenated alkyne compound through a dehydrohalogenation reaction. In order to allow dehydrohalogenation from the alkene compound, one of R 2 and R 3 in general formula (2) is a hydrogen atom, and the other is a halogen atom.
 一般式(2)において、R及びRとしては、反応の転化率、一般式(1)で表されるハロゲン化アルケン化合物の選択率及び収率等の観点から、フッ素原子又はフルオロアルキル基が好ましく、フッ素原子又はパーフルオロアルキル基がより好ましく、パーフルオロアルキル基がさらに好ましい。 In general formula (2), R 1 and R 4 are fluorine atoms or fluoroalkyl groups from the viewpoint of reaction conversion rate, selectivity and yield of the halogenated alkene compound represented by general formula (1), etc. is preferred, a fluorine atom or a perfluoroalkyl group is more preferred, and a perfluoroalkyl group is even more preferred.
 一般式(2)において、Xで示されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。 In general formula (2), the halogen atom represented by X includes a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 このような条件を満たす基質としてのハロゲン化アルカン化合物としては、具体的には、CFHCFH、CFHCF、CClHCClH、CClHCCl、CBrHCBrH、CBrHCBr、CFCFHCFH、CFCHCF、CClCClHCClH、CClCHCCl、CBrCBrHCBrH、CBrCHCBr、CFCFHCFHCF、CFCHCFCF、CClCClHCClHCCl、CClCHCClCCl、CBrCBrHCBrHCBr、CBrCHCBrCBr、CHCF、CHCCl、CHCBr、CFCFCH、CClCClCH、CBrCBrCH、CFCHCFCH、CFCHFCFCH、CClCHCClCH、CClCHClCClCH、CBrCHCBrCH、CBrCHBrCBrCH等が挙げられる。 Specifically, halogenated alkane compounds as substrates satisfying such conditions include CF 2 HCF 2 H, CFH 2 CF 3 , CCl 2 HCCl 2 H, CClH 2 CCl 3 , CBr 2 HCBr 2 H, and CBrH. 2 CBr3 , CF3CFHCF2H , CF3CH2CF3 , CCl3CClHCCl2H , CCl3CH2CCl3 , CBr3CBrHCBr2H , CBr3CH2CBr3 , CF3CFHCFH CF3 , CF3 _ CH2CF2CF3 , CCl3CClHCClHCCl3 , CCl3CH2CCl2CCl3 , CBr3CBrHCBrHCBr3 , CBr3CH2CBr2CBr3 , CH3CF3 , CH3C Cl3 , CH3CBr3 , _ _ _ _ CF3CF2CH3 , CCl3CCl2CH3 , CBr3CBr2CH3 , CF3CH2CF2CH3 , CF3CHFCF2CH3 , CCl3CH2CCl2CH3 , CCl3CH ClCCl2 _ _ _ _ _ _ _ _ Examples include CH 3 , CBr 3 CH 2 CBr 2 CH 3 , CBr 3 CHBrCBr 2 CH 3 and the like.
 これらのハロゲン化アルカン化合物は、単独で用いることもでき、2種以上を組合せて用いることもできる。このようなハロゲン化アルカン化合物は、公知又は市販品を採用することができる。 These halogenated alkane compounds can be used alone or in combination of two or more. As such a halogenated alkane compound, publicly known or commercially available products can be employed.
 (1-2)脱フッ化水素反応
 本開示におけるハロゲン化アルカン化合物から脱フッ化水素反応させる工程では、以下の反応式:
-CHR-CXR-R → R-CR=CR-R + HX
に従い、脱ハロゲン化水素反応を行うことができる。
(1-2) Dehydrofluorination reaction In the step of causing a dehydrofluorination reaction from a halogenated alkane compound in the present disclosure, the following reaction formula is used:
R 1 -CHR 2 -CXR 3 -R 4 → R 1 -CR 2 =CR 3 -R 4 + HX
The dehydrohalogenation reaction can be carried out according to the following.
 なかでも、反応の転化率、一般式(1)で表されるハロゲン化アルケン化合物の選択率及び収率等の観点から、R及びRがトリフルオロメチル基、Rがフッ素原子、Rが水素原子、Xがフッ素原子であることが好ましい。つまり、以下の反応式:
CFCFHCFHCF → CFCF=CHCF + HF
に従い、脱フッ化水素反応を行うことが好ましい。
Among these, from the viewpoint of the conversion rate of the reaction, the selectivity and yield of the halogenated alkene compound represented by the general formula (1), R 1 and R 4 are trifluoromethyl groups, R 2 is a fluorine atom, R It is preferable that 3 is a hydrogen atom and X is a fluorine atom. In other words, the following reaction equation:
CF 3 CFHCFHCF 3 → CF 3 CF=CHCF 3 + HF
It is preferable to carry out the dehydrofluorination reaction according to the following.
 (1-3)触媒
 本開示におけるハロゲン化アルカン化合物から脱ハロゲン化水素反応させる工程は、触媒の存在下に行う。
(1-3) Catalyst The step of dehydrohalogenating a halogenated alkane compound in the present disclosure is performed in the presence of a catalyst.
 本開示の製造方法において使用される触媒としては、活性炭触媒、ゼオライト触媒、酸化クロム触媒、シリカアルミナ触媒等が好ましい。これらの触媒は、フッ素化されていない触媒及びフッ素化された触媒のいずれも採用することができる。 The catalyst used in the production method of the present disclosure is preferably an activated carbon catalyst, a zeolite catalyst, a chromium oxide catalyst, a silica alumina catalyst, or the like. As these catalysts, both non-fluorinated catalysts and fluorinated catalysts can be employed.
 活性炭触媒としては、特に制限はなく、破砕炭、成形炭、顆粒炭、球状炭等の粉末活性炭が挙げられる。粉末活性炭は、JIS試験(JIS Z8801)で、4メッシュ(4.75mm)~100メッシュ(0.150mm)の粒度を示す粉末活性炭を用いることが好ましい。 The activated carbon catalyst is not particularly limited, and includes powdered activated carbon such as crushed carbon, compacted carbon, granulated carbon, and spherical carbon. It is preferable to use powdered activated carbon having a particle size of 4 mesh (4.75 mm) to 100 mesh (0.150 mm) in JIS test (JIS Z8801).
 これらの活性炭は、単独で用いることもでき、2種以上を組合せて用いることもできる。これらの活性炭は、公知又は市販品を採用することができる。 These activated carbons can be used alone or in combination of two or more. As these activated carbons, publicly known or commercially available products can be used.
 活性炭は、フッ素化することにより、より強い活性を示すようになるため、反応に用いる前に、予め活性炭をフッ素化したフッ素化活性炭を活性炭触媒として用いることもできる。つまり、活性炭触媒としては、フッ素化されていない活性炭及びフッ素化活性炭のいずれも使用することができる。 Activated carbon exhibits stronger activity when fluorinated, so fluorinated activated carbon, which is obtained by fluorinating activated carbon in advance before use in the reaction, can also be used as an activated carbon catalyst. That is, as the activated carbon catalyst, both non-fluorinated activated carbon and fluorinated activated carbon can be used.
 活性炭をフッ素化するためのフッ素化剤としては、例えば、F、HF等の無機フッ素化剤の他、ヘキサフルオロプロペン等のハイドロフルオロカーボン(HFC)、クロロフルオロメタン等のクロロフルオロカーボン(CFC)、ハイドロクロロフルオロカーボン(HCFC)等の有機フッ素化剤も用いることができる。 Examples of fluorinating agents for fluorinating activated carbon include inorganic fluorinating agents such as F 2 and HF, hydrofluorocarbons (HFC) such as hexafluoropropene, chlorofluorocarbons (CFC) such as chlorofluoromethane, Organic fluorinating agents such as hydrochlorofluorocarbons (HCFCs) can also be used.
 活性炭をフッ素化する方法としては、例えば、室温(25℃)~400℃程度の温度条件下に大気圧下で上記したフッ素化剤を流通させてフッ素化する方法を挙げることができる。 Examples of the method for fluorinating activated carbon include a method of fluorinating by flowing the above-mentioned fluorinating agent under atmospheric pressure at a temperature of about room temperature (25° C.) to 400° C.
 ゼオライト触媒としては、公知の種類のゼオライトを広く採用することができる。例えば、アルカリ金属又はアルカリ土類金属の結晶性含水アルミノ珪酸塩が好ましい。ゼオライトの結晶形は、特に限定されず、A型、X型、LSX型等が挙げられる。ゼオライト中のアルカリ金属又はアルカリ土類金属は、特に限定されず、カリウム、ナトリウム、カルシウム、リチウム等が挙げられる。 As the zeolite catalyst, a wide variety of known types of zeolites can be employed. For example, crystalline hydrated aluminosilicates of alkali metals or alkaline earth metals are preferred. The crystal form of zeolite is not particularly limited, and examples thereof include A type, X type, LSX type, and the like. The alkali metal or alkaline earth metal in the zeolite is not particularly limited, and examples thereof include potassium, sodium, calcium, lithium, and the like.
 ゼオライト触媒は、フッ素化することにより、より強い活性を示すようになるため、反応に用いる前に、予めゼオライト触媒をフッ素化してフッ素化ゼオライト触媒として用いることができる。 A zeolite catalyst exhibits stronger activity when fluorinated, so the zeolite catalyst can be fluorinated in advance before being used in a reaction and used as a fluorinated zeolite catalyst.
 ゼオライト触媒をフッ素化するためのフッ素化剤としては、例えば、F、HF等の無機フッ素化剤、ヘキサフルオロプロペン等のフルオロカーボン系の有機フッ素化剤等を用いることができる。 As the fluorinating agent for fluorinating the zeolite catalyst, for example, inorganic fluorinating agents such as F 2 and HF, fluorocarbon-based organic fluorinating agents such as hexafluoropropene, etc. can be used.
 ゼオライト触媒をフッ素化する方法としては、例えば、室温(25℃)~400℃程度の温度条件下に大気圧下で上記したフッ素化剤を流通させてフッ素化する方法を挙げることができる。 Examples of the method for fluorinating the zeolite catalyst include a method of fluorinating the zeolite catalyst by flowing the above-mentioned fluorinating agent under atmospheric pressure at a temperature of about room temperature (25° C.) to 400° C.
 酸化クロム触媒については、特に制限されないが、酸化クロムをCrOで表記した場合に、1.5<m<3.0が好ましく、2.0<m<2.75がより好ましく、2.0<m<2.3がさらに好ましい。また、酸化クロムをCrO・nHOで記した場合に、nの値が3以下、特に1.0~1.5となるように水和していてもよい。 The chromium oxide catalyst is not particularly limited, but when chromium oxide is expressed as CrO m , 1.5<m<3.0 is preferable, 2.0<m<2.75 is more preferable, and 2.0 More preferably, <m<2.3. Further, when chromium oxide is expressed as CrO m ·nH 2 O, it may be hydrated so that the value of n is 3 or less, particularly 1.0 to 1.5.
 フッ素化された酸化クロム触媒は、上記した酸化クロム触媒のフッ素化により調製することができる。このフッ素化は、例えば、HF、フルオロカーボン等を用いて行うことができる。このようなフッ素化された酸化クロム触媒は、例えば、特開平05-146680号公報に記載されている方法にしたがって合成することができる。 The fluorinated chromium oxide catalyst can be prepared by fluorination of the chromium oxide catalyst described above. This fluorination can be performed using, for example, HF, fluorocarbon, or the like. Such a fluorinated chromium oxide catalyst can be synthesized, for example, according to the method described in JP-A-05-146680.
 シリカアルミナ触媒は、シリカ(SiO)及びアルミナ(Al)を含む複合酸化物触媒であり、シリカ及びアルミナの総量を100質量%として、例えば、シリカの含有量が20~90質量%、特に50~80質量%の触媒を使用することができる。 The silica alumina catalyst is a composite oxide catalyst containing silica (SiO 2 ) and alumina (Al 2 O 3 ), and the silica content is, for example, 20 to 90% by mass, assuming the total amount of silica and alumina to be 100% by mass. , in particular 50 to 80% by weight of catalyst can be used.
 シリカアルミナ触媒は、フッ素化することにより、より強い活性を示すようになるため、反応に用いる前に、予めシリカアルミナ触媒をフッ素化してフッ素化シリカアルミナ触媒として用いることもできる。 Since a silica alumina catalyst exhibits stronger activity when fluorinated, it can also be used as a fluorinated silica alumina catalyst by fluorinating the silica alumina catalyst in advance before using it in the reaction.
 シリカアルミナ触媒をフッ素化するためのフッ素化剤としては、例えば、F、HF等の無機フッ素化剤、ヘキサフルオロプロペン等のフルオロカーボン系の有機フッ素化剤等を用いることができる。 As the fluorinating agent for fluorinating the silica alumina catalyst, for example, inorganic fluorinating agents such as F 2 and HF, fluorocarbon-based organic fluorinating agents such as hexafluoropropene, etc. can be used.
 シリカアルミナ触媒をフッ素化する方法としては、例えば、室温(25℃)~400℃程度の温度条件下に大気圧下で上記したフッ素化剤を流通させてフッ素化する方法を挙げることができる。 As a method for fluorinating a silica alumina catalyst, for example, a method of fluorinating by flowing the above-mentioned fluorinating agent under atmospheric pressure at a temperature of about room temperature (25° C.) to 400° C. can be mentioned.
 上記した触媒は、単独で用いることもでき、2種以上を組合せて用いることもできる。また、上記した触媒は、公知又は市販品を採用することができる。 The above catalysts can be used alone or in combination of two or more. Furthermore, the above-mentioned catalyst may be a known or commercially available product.
 これらのなかでも、転化率、選択率及び収率の観点から、活性炭触媒(活性炭又はフッ素化された活性炭)、酸化クロム触媒(酸化クロム又はフッ素化された酸化クロム)等が好ましく、活性炭触媒(活性炭又はフッ素化された活性炭)がより好ましい。 Among these, from the viewpoint of conversion rate, selectivity, and yield, activated carbon catalysts (activated carbon or fluorinated activated carbon), chromium oxide catalysts (chromium oxide or fluorinated chromium oxide), etc. are preferable, and activated carbon catalysts ( Activated carbon or fluorinated activated carbon) is more preferred.
 また、触媒として上記したゼオライト触媒、酸化クロム触媒、シリカアルミナ触媒等を使用する場合は、担体に担持させることも可能である。このような担体としては、例えば、炭素、アルミナ(Al)、ジルコニア(ZrO)、シリカ(SiO)、チタニア(TiO)等が挙げられる。炭素としては、活性炭、不定形炭素、グラファイト、ダイヤモンド等を用いることができる。 Further, when using the above-mentioned zeolite catalyst, chromium oxide catalyst, silica alumina catalyst, etc. as a catalyst, it is also possible to support it on a carrier. Examples of such carriers include carbon, alumina (Al 2 O 3 ), zirconia (ZrO 2 ), silica (SiO 2 ), titania (TiO 2 ), and the like. As carbon, activated carbon, amorphous carbon, graphite, diamond, etc. can be used.
 本開示の製造方法において、気相において、触媒の存在下にハロゲン化アルカン化合物を脱ハロゲン化水素反応させるに当たっては、例えば、触媒を固体の状態(固相)でハロゲン化アルカン化合物と接触させることが好ましい。この場合、触媒の形状は粉末状とすることもできるが、ペレット状のほうが気相連続流通式の反応に採用する場合には好ましい。 In the production method of the present disclosure, when dehydrohalogenating a halogenated alkane compound in the presence of a catalyst in the gas phase, for example, the catalyst may be brought into contact with the halogenated alkane compound in a solid state (solid phase). is preferred. In this case, the catalyst may be in the form of a powder, but a pellet form is preferable when it is employed in a gas phase continuous flow reaction.
 触媒のBET法により測定した比表面積(以下、「BET比表面積」と言うこともある。)は、通常10~3000m/gが好ましく、15~2500m/gがより好ましく、20~2000m/gがさらに好ましく、30~1500m/gが特に好ましい。触媒のBET比表面積がこのような範囲にある場合、触媒の粒子の密度が小さ過ぎることがないため、より高い選択率及び収率でハロゲン化アルケン化合物を得ることができる。また、ハロゲン化アルカン化合物の転化率をより向上させることも可能である。 The specific surface area of the catalyst measured by the BET method (hereinafter sometimes referred to as "BET specific surface area") is usually preferably 10 to 3000 m 2 /g, more preferably 15 to 2500 m 2 /g, and 20 to 2000 m 2 /g is more preferable, and 30 to 1500 m 2 /g is particularly preferable. When the BET specific surface area of the catalyst is within this range, the density of the catalyst particles is not too small, so that a halogenated alkene compound can be obtained with higher selectivity and yield. It is also possible to further improve the conversion rate of the halogenated alkane compound.
 (1-4)不飽和化合物
 本開示においては、上記したハロゲン化アルカン化合物を脱ハロゲン化水素反応する工程は、不飽和化合物の存在下で行う。
(1-4) Unsaturated Compound In the present disclosure, the step of dehydrohalogenating the halogenated alkane compound described above is performed in the presence of an unsaturated compound.
 なお、不飽和化合物は、不飽和結合(二重結合、三重結合等)を少なくとも1個有する化合物を意味する。 Note that the unsaturated compound means a compound having at least one unsaturated bond (double bond, triple bond, etc.).
 この不飽和化合物は、一般式(2)で表されるハロゲン化アルカン化合物の脱ハロゲン化水素反応により生じるハロゲン化水素をトラップすることができる。なお、不飽和化合物がハロゲン化水素をトラップすると、不飽和化合物に対してハロゲン化水素付加反応が発生する。 This unsaturated compound can trap hydrogen halide generated by the dehydrohalogenation reaction of the halogenated alkane compound represented by general formula (2). Note that when an unsaturated compound traps hydrogen halide, a hydrogen halide addition reaction occurs to the unsaturated compound.
 例えば、一般式(2)で表されるハロゲン化アルカン化合物としてCFCFHCFHCFを用い、不飽和化合物としてCFCF=CFCFを用いた場合には、以下の反応式:
CFCFHCFHCF → CFCF=CHCF + HF
によりフッ化水素が発生するところ、以下の反応式:
CFCF=CFCF + HF → CFCFCFHCF
により生成したフッ化水素がトラップされる。
For example, when CF 3 CFHCFHCF 3 is used as the halogenated alkane compound represented by the general formula (2) and CF 3 CF=CFCF 3 is used as the unsaturated compound, the following reaction formula:
CF 3 CFHCFHCF 3 → CF 3 CF=CHCF 3 + HF
When hydrogen fluoride is generated, the following reaction formula:
CF 3 CF=CFCF 3 + HF → CF 3 CF 2 CFHCF 3
Hydrogen fluoride generated by this is trapped.
 このように、一般式(2)で表されるハロゲン化アルカン化合物の脱ハロゲン化水素反応により発生するハロゲン化水素が、目的物である一般式(1)で表されるハロゲン化アルケン化合物と反応して原料である一般式(2)で表されるハロゲン化アルカン化合物が生成することを抑制することができる。 In this way, the hydrogen halide generated by the dehydrohalogenation reaction of the halogenated alkane compound represented by the general formula (2) reacts with the target product, the halogenated alkene compound represented by the general formula (1). This can suppress the production of the halogenated alkane compound represented by general formula (2), which is a raw material.
 不飽和化合物がハロゲン化水素をトラップすることにより、脱ハロゲン化水素反応の平衡が生成物側(一般式(1)で表されるハロゲン化アルケン化合物側)に傾き、原料である一般式(2)で表されるハロゲン化アルカン化合物が、ほぼ定量的に反応し、一般式(1)で表されるハロゲン化アルケン化合物を高い選択率且つ高い収率で得ることができる。 When the unsaturated compound traps the hydrogen halide, the equilibrium of the dehydrohalogenation reaction tilts toward the product side (the side of the halogenated alkene compound represented by the general formula (1)), and the raw material, the general formula (2) The halogenated alkene compound represented by ) reacts almost quantitatively, and the halogenated alkene compound represented by general formula (1) can be obtained with high selectivity and high yield.
 ここで、オレフィン、すなわち不飽和結合をもつ化合物とハロゲン化水素の付加反応は、オレフィンの最高被占有軌道(HOMO)とハロゲン化水素の最低空軌道(LUMO)のエネルギー軌道での反応となる。このため、反応性の高さはオレフィンの最高被占有軌道(HOMO)とハロゲン化水素の最低空軌道(LUMO)のエネルギー準位の差が小さければ小さいほど高くなる。 Here, the addition reaction between an olefin, that is, a compound having an unsaturated bond, and a hydrogen halide is a reaction in the energy orbit of the highest occupied orbital (HOMO) of the olefin and the lowest unoccupied orbital (LUMO) of the hydrogen halide. Therefore, the smaller the difference in energy level between the highest occupied molecular orbital (HOMO) of the olefin and the lowest unoccupied molecular orbital (LUMO) of the hydrogen halide, the higher the reactivity becomes.
 添加する不飽和化合物、及び一般式(1)で表されるハロゲン化アルケン化合物は同じハロゲン化水素と付加反応するため、ハロゲン化アルケン化合物の最高被占有軌道(HOMO)とハロゲン化水素の最低空軌道(LUMO)のエネルギー準位差の大小はハロゲン化アルケン化合物の最高被占有軌道(HOMO)のエネルギー準位の高低に起因する。 Since the unsaturated compound to be added and the halogenated alkene compound represented by general formula (1) undergo an addition reaction with the same hydrogen halide, the highest occupied orbital (HOMO) of the halogenated alkene compound and the lowest vacancy of the hydrogen halide The difference in the energy level of the orbital (LUMO) is caused by the level of the energy level of the highest occupied orbital (HOMO) of the halogenated alkene compound.
 不飽和化合物の最高被占有軌道(HOMO)が一般式(1)で表されるハロゲン化アルケン化合物の最高被占有軌道(HOMO)よりも高い場合、不飽和化合物によるフッ化水素をトラップする反応の方が一般式(1)で表されるハロゲン化アルケン化合物とフッ化水素による逆反応よりも優先的に起こる。 When the highest occupied orbital (HOMO) of the unsaturated compound is higher than the highest occupied orbital (HOMO) of the halogenated alkene compound represented by general formula (1), the reaction of trapping hydrogen fluoride by the unsaturated compound is This occurs more preferentially than the reverse reaction between the halogenated alkene compound represented by general formula (1) and hydrogen fluoride.
 同様に、不飽和化合物が三重結合を有する一般式(4)で表される化合物である場合も、三重結合を有する一般式(4)で表される化合物の最高被占有軌道(HOMO)が一般式(1)で表されるハロゲン化アルケン化合物の最高被占有軌道(HOMO)よりも高いエネルギー準位であれば、三重結合を有する一般式(4)で表される化合物によるフッ化水素のトラップ反応の方が一般式(1)で表されるハロゲン化アルケン化合物のフッ化水素との逆反応よりも優先的に生じる。 Similarly, when the unsaturated compound is a compound represented by the general formula (4) having a triple bond, the highest occupied orbital (HOMO) of the compound represented by the general formula (4) having a triple bond is If the energy level is higher than the highest occupied orbital (HOMO) of the halogenated alkene compound represented by formula (1), hydrogen fluoride can be trapped by the compound represented by general formula (4) having a triple bond. The reaction occurs preferentially over the reverse reaction of the halogenated alkene compound represented by general formula (1) with hydrogen fluoride.
 つまり、不飽和化合物としては、最高被占有軌道(HOMO)が一般式(1)で表されるハロゲン化アルケン化合物の最高被占有軌道(HOMO)よりも高い化合物を選択することが好ましい。 That is, as the unsaturated compound, it is preferable to select a compound whose highest occupied orbital (HOMO) is higher than the highest occupied orbital (HOMO) of the halogenated alkene compound represented by the general formula (1).
 このため、本開示で使用する不飽和化合物は、具体的には、一般式(3):
-CR=CR-R   (3)
[式中、R、R、R及びRは同一又は異なって、水素原子又は有機基を示す。]
、又は一般式(4):
-C≡C-R10   (4)
[式中、R及びR10は同一又は異なって、水素原子又は有機基を示す]
で表される化合物であり、
 一般式(3)、及び(4)で表される化合物の最高被占有軌道(HOMO)は一般式(1)で表されるハロゲン化アルケン化合物の最高被占有軌道(HOMO)よりも高いエネルギー準位を持つことが好ましい。
Therefore, the unsaturated compound used in the present disclosure specifically has the general formula (3):
R 5 -CR 6 =CR 7 -R 8 (3)
[In the formula, R 5 , R 6 , R 7 and R 8 are the same or different and represent a hydrogen atom or an organic group. ]
, or general formula (4):
R 9 -C≡C-R 10 (4)
[In the formula, R 9 and R 10 are the same or different and represent a hydrogen atom or an organic group]
It is a compound represented by
The highest occupied orbital (HOMO) of the compounds represented by general formulas (3) and (4) is at a higher energy level than the highest occupied orbital (HOMO) of the halogenated alkene compound represented by general formula (1). It is preferable to have a rank.
 このような観点から、不飽和化合物の最高被占有軌道(HOMO)は、一般式(1)で表されるハロゲン化アルケン化合物の最高被占有軌道(HOMO)と比較して、0.1eV以上高いことが好ましく、0.2~30eV高いことがより好ましく、0.5~15eV高いことがさらに好ましい。 From this point of view, the highest occupied orbital (HOMO) of the unsaturated compound is 0.1 eV higher than the highest occupied orbital (HOMO) of the halogenated alkene compound represented by the general formula (1). It is preferably 0.2 to 30 eV higher, and even more preferably 0.5 to 15 eV higher.
 不飽和化合物である一般式(3)におけるR、R、R及びRで示される有機基、及び一般式(4)におけるR及びR10で示される有機基としては、例えば、ハロゲン原子、シアノ基、置換若しくは非置換アルキル基、置換若しくは非置換アルコキシ基、置換若しくは非置換アリール基、置換若しくは非置換アミノ基、置換若しくは非置換チオール基、エステル基(-COOR)、カルボニル基(-COR)、置換若しくは非置換カルボキシル基、ニトロ基、スルホ基、アミド基(-CONR、-NRCOR)等が挙げられる。なお、Rは同一又は異なって、置換若しくは非置換アルキル基、置換若しくは非置換アルコキシ基、置換若しくは非置換アリール基等が挙げられる。 Examples of the organic groups represented by R 5 , R 6 , R 7 and R 8 in general formula (3), which are unsaturated compounds, and the organic groups represented by R 9 and R 10 in general formula (4), include: Halogen atom, cyano group, substituted or unsubstituted alkyl group, substituted or unsubstituted alkoxy group, substituted or unsubstituted aryl group, substituted or unsubstituted amino group, substituted or unsubstituted thiol group, ester group (-COOR), carbonyl group (-COR), a substituted or unsubstituted carboxyl group, a nitro group, a sulfo group, an amide group (-CONR 2 , -NRCOR), and the like. Note that R may be the same or different and include a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryl group, and the like.
 一般式(3)において、R、R、R及びRで示される有機基、及び一般式(4)R及びR10で示される有機基としてのハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。 In the general formula (3), the organic groups represented by R 5 , R 6 , R 7 and R 8 and the halogen atom as the organic group represented by the general formula (4) R 9 and R 10 include a fluorine atom, Examples include chlorine atom, bromine atom and iodine atom.
 一般式(3)において、R、R、R及びRで示される有機基、及び一般式(4)において、R及びR10で示される有機基としてのアルキル基は、直鎖状、分岐鎖状及び環状のいずれも採用することができる。なかでも、反応の転化率、一般式(1)で表されるハロゲン化アルケン化合物の選択率及び収率等の観点から、直鎖状アルキル基が好ましい。 In the general formula (3), the organic groups represented by R 5 , R 6 , R 7 and R 8 and in the general formula (4), the alkyl groups as the organic groups represented by R 9 and R 10 are linear Any of a shape, a branched shape, and a cyclic shape can be adopted. Among these, straight-chain alkyl groups are preferred from the viewpoints of reaction conversion, selectivity and yield of the halogenated alkene compound represented by general formula (1), and the like.
 アルキル基の炭素数は、特に制限されるわけではないが、反応の転化率、一般式(1)で表されるハロゲン化アルケン化合物の選択率及び収率等の観点から、1~5が好ましく、1~4がより好ましく、1~3がさらに好ましい。 The number of carbon atoms in the alkyl group is not particularly limited, but is preferably from 1 to 5 from the viewpoint of the conversion rate of the reaction, the selectivity and yield of the halogenated alkene compound represented by the general formula (1), etc. , 1 to 4 are more preferred, and 1 to 3 are even more preferred.
 このようなアルキル基としては、具体的には、メチル基、エチル基、n-プロピル基等が挙げられる。 Specific examples of such alkyl groups include methyl, ethyl, and n-propyl groups.
 アルキル基は、置換基を有することもできる。アルキル基が有することのでき置換基としては、例えば、水酸基、上記ハロゲン原子、シアノ基、後述のアルコキシ基、後述のアリール基、後述のアミノ基、後述のチオール基、上記エステル基、上記カルボニル基、後述のカルボキシル基、上記アミド基等が挙げられる。 The alkyl group can also have a substituent. Examples of substituents that an alkyl group can have include a hydroxyl group, the above halogen atom, a cyano group, an alkoxy group mentioned below, an aryl group mentioned below, an amino group mentioned below, a thiol group mentioned below, an ester group mentioned above, and a carbonyl group mentioned above. , the below-mentioned carboxyl group, the above-mentioned amide group, and the like.
 一般式(3)において、R、R、R及びRで示される有機基、及び一般式(4)R及びR10で示される有機基としてのアルコキシ基は、直鎖状、分岐鎖状及び環状のいずれも採用することができる。なかでも、反応の転化率、一般式(1)で表されるハロゲン化アルケン化合物の選択率及び収率等の観点から、直鎖状アルコキシ基が好ましい。 In general formula (3), the organic groups represented by R 5 , R 6 , R 7 and R 8 and the alkoxy groups as organic groups represented by R 9 and R 10 in general formula (4) are linear, Both branched and cyclic structures can be employed. Among these, linear alkoxy groups are preferred from the viewpoints of conversion rate of reaction, selectivity and yield of the halogenated alkene compound represented by general formula (1), and the like.
 アルコキシ基の炭素数は、特に制限されるわけではないが、反応の転化率、一般式(1)で表されるハロゲン化アルケン化合物の選択率及び収率等の観点から、1~5が好ましく、1~4がより好ましく、1~3がさらに好ましい。 The number of carbon atoms in the alkoxy group is not particularly limited, but is preferably from 1 to 5 from the viewpoint of the conversion rate of the reaction, the selectivity and yield of the halogenated alkene compound represented by the general formula (1), etc. , 1 to 4 are more preferred, and 1 to 3 are even more preferred.
 このようなアルコキシ基としては、具体的には、メトキシ基、エトキシ基、n-プロポキシ基等が挙げられる。 Specific examples of such alkoxy groups include methoxy groups, ethoxy groups, n-propoxy groups, and the like.
 アルコキシ基は、置換基を有することもできる。アルコキシ基が有することのできる置換基としては、例えば、水酸基、上記ハロゲン原子、シアノ基、上記アルコキシ基、後述のアリール基、後述のアミノ基、後述のチオール基、上記アミド基等が挙げられる。 The alkoxy group can also have a substituent. Examples of substituents that the alkoxy group can have include a hydroxyl group, the above-mentioned halogen atom, the above-mentioned cyano group, the above-mentioned alkoxy group, the below-mentioned aryl group, the below-mentioned amino group, the below-mentioned thiol group, the above-mentioned amide group, and the like.
 一般式(3)において、R、R、R及びRで示される有機基、及び一般式(4)R及びR10で示される有機基としてのアリール基としては、特に制限されないが、反応の転化率、一般式(1)で表されるハロゲン化アルケン化合物の選択率及び収率等の観点から、炭素数が6~20のものが好ましく、6~12のものがより好ましく、6~10のものがさらに好ましい。該アリール基は、単環式又は多環式(例えば2環式、3環式等)のいずれでも有り得るが、好ましくは単環式である。 In general formula (3), the organic groups represented by R 5 , R 6 , R 7 and R 8 and the aryl group as the organic group represented by R 9 and R 10 in general formula (4) are not particularly limited. However, from the viewpoint of the conversion rate of the reaction, the selectivity and yield of the halogenated alkene compound represented by the general formula (1), those having 6 to 20 carbon atoms are preferable, and those having 6 to 12 carbon atoms are more preferable. , 6 to 10 are more preferred. The aryl group may be monocyclic or polycyclic (eg, bicyclic, tricyclic, etc.), but is preferably monocyclic.
 該アリール基としては、具体的には、例えばフェニル基、ナフチル基、ビフェニル基、ペンタレニル基、インデニル基、アントラニル基、テトラセニル基、ペンタセニル基、ピレニル基、ペリレニル基、フルオレニル基、フェナントリル基等が挙げられる。 Specific examples of the aryl group include phenyl group, naphthyl group, biphenyl group, pentalenyl group, indenyl group, anthranyl group, tetracenyl group, pentacenyl group, pyrenyl group, perylenyl group, fluorenyl group, phenanthryl group, etc. It will be done.
 アリール基は、置換基を有することもできる。アリール基が有することのできる置換基としては、例えば、水酸基、上記ハロゲン原子、シアノ基、上記アルキル基、上記アルコキシ基、上記アリール基、後述のアミノ基、後述のチオール基、上記エステル基、上記カルボニル基、後述のカルボキシル基、上記アミド基等が挙げられる。 The aryl group can also have a substituent. Examples of substituents that the aryl group can have include a hydroxyl group, the above halogen atom, a cyano group, the above alkyl group, the above alkoxy group, the above aryl group, the below-mentioned amino group, the below-mentioned thiol group, the above-mentioned ester group, the above-mentioned Examples include a carbonyl group, a carboxyl group described below, and the above-mentioned amide group.
 アミノ基は、置換基を有することもできる。アミノ基が有することのできる置換基としては、例えば、水酸基、上記ハロゲン原子、シアノ基、上記アルキル基、上記アルコキシ基、上記アリール基、上記アミノ基、後述のチオール基、上記エステル基、上記カルボニル基、後述のカルボキシル基、上記アミド基等が挙げられる。 The amino group can also have a substituent. Examples of substituents that the amino group can have include a hydroxyl group, the above halogen atom, the above cyano group, the above alkyl group, the above alkoxy group, the above aryl group, the above amino group, the below-mentioned thiol group, the above ester group, and the above carbonyl group. group, the below-mentioned carboxyl group, the above-mentioned amide group, and the like.
 チオール基は、置換基を有することもできる。チオール基が有することのできる置換基としては、例えば、水酸基、上記ハロゲン原子、シアノ基、上記アルキル基、上記アルコキシ基、上記アリール基、上記アミノ基、上記チオール基、上記エステル基、上記カルボニル基、後述のカルボキシル基、上記アミド基等が挙げられる。 The thiol group can also have a substituent. Examples of substituents that the thiol group can have include a hydroxyl group, the halogen atom, the cyano group, the alkyl group, the alkoxy group, the aryl group, the amino group, the thiol group, the ester group, and the carbonyl group. , the below-mentioned carboxyl group, the above-mentioned amide group, and the like.
 カルボキシル基は、置換基を有することもできる。カルボキシル基が有することのできる置換基としては、例えば、水酸基、上記ハロゲン原子、シアノ基、上記アルキル基、上記アルコキシ基、上記アリール基、上記アミノ基、上記チオール基、上記エステル基、上記カルボニル基、上記カルボキシル基、上記アミド基等が挙げられる。 The carboxyl group can also have a substituent. Examples of substituents that a carboxyl group can have include a hydroxyl group, the above halogen atom, a cyano group, the above alkyl group, the above alkoxy group, the above aryl group, the above amino group, the above thiol group, the above ester group, and the above carbonyl group. , the above carboxyl group, the above amide group, and the like.
 なかでも、有機基としては、反応の転化率、一般式(1)で表されるハロゲン化アルケン化合物の選択率及び収率等の観点から、ハロゲン原子、ハロゲン化アルキル基等が好ましく、フッ素原子、フルオロアルキル基等がより好ましく、フッ素原子、パーフルオロアルキル基等がさらに好ましい。 Among these, the organic group is preferably a halogen atom, a halogenated alkyl group, etc. from the viewpoint of the conversion rate of the reaction, the selectivity and yield of the halogenated alkene compound represented by the general formula (1), and a fluorine atom , a fluoroalkyl group, etc. are more preferable, and a fluorine atom, a perfluoroalkyl group, etc. are even more preferable.
 ただし、一般式(3)で表される化合物は、目的物である一般式(1)で表されるハロゲン化アルケン化合物とは異なる化合物である。 However, the compound represented by general formula (3) is a compound different from the target compound, the halogenated alkene compound represented by general formula (1).
 なお、本開示では、後述のように、反応温度は300~450℃であることが好ましい。この反応温度において、ハロゲン化水素をトラップしやすくし、分解及び発火しにくく、反応の転化率、一般式(1)で表されるハロゲン化アルケン化合物の選択率及び収率を向上させやすい等の観点から、不飽和化合物は、測定値の有無に関わらず、分解温度、発火点及び臨界点のうち少なくとも1つが反応温度よりも高いことが好ましく、分解温度、発火点及び臨界点の全てが反応温度よりも高いことがより好ましい。 Note that in the present disclosure, as described later, the reaction temperature is preferably 300 to 450°C. At this reaction temperature, it is easy to trap hydrogen halide, it is difficult to decompose and ignite, and it is easy to improve the conversion rate of the reaction, the selectivity and yield of the halogenated alkene compound represented by the general formula (1), etc. From this point of view, it is preferable that at least one of the decomposition temperature, ignition point, and critical point of the unsaturated compound is higher than the reaction temperature, and all of the decomposition temperature, ignition point, and critical point are higher than the reaction temperature, regardless of the presence or absence of measured values. More preferably, it is higher than the temperature.
 以上のような条件を満たす不飽和化合物としては、一般式(3)で表される化合物として、CFCF=CFCF、CClCCl=CClCCl、CBrCBr=CBrCBr、CF=CH、CHF=CHF、CHCl=CHCl、CHBr=CHBr、CF=CFH、CBr=CBrH、CCl=CCl、CBr=CBr、CHF=CHCF3、CHCl=CHCCl、CFCF=CHCl、CClCCl=CHCl、CFCH=CHCl、CClCH=CHCl、CClCCl=CH、CH=CClCN、CH=CBrCN、CH=CHCOOCH、CHOCH=CHCOOCH、CHCHCH=CHCOOCH、CH=C(C)COOCH、(CHC=CHCOOCH、CH=CHCHOH、CHCHCH=CHOH、CHCH=CHCHOH、CHCH=CHOCH、CH=CHCHN(CH等が挙げられ、一般式(4)で表される化合物として、CFC≡CCF、CH≡CCHCOOCH等が挙げられる。 Examples of unsaturated compounds satisfying the above conditions include compounds represented by general formula (3) such as CF 3 CF=CFCF 3 , CCl 3 CCl=CClCCl 3 , CBr 3 CBr=CBrCBr 3 , CF 2 =CH 2 , CHF=CHF, CHCl=CHCl, CHBr=CHBr, CF2 =CFH, CBr2 =CBrH, CCl2 = CCl2 , CBr2 = CBr2 , CHF=CHCF3 , CHCl= CHCCl3 , CF3CF = CHCl , CCl3CCl =CHCl, CF3CH =CHCl, CCl3CH=CHCl, CCl3CCl= CH2 , CH2 =CClCN, CH2 =CBrCN, CH2 = CHCOOCH3 , CH3OCH = CHCOOCH3 , CH3CH2CH = CHCOOCH3 , CH2 =C( C2H5 ) COOCH3 , ( CH3 ) 2C = CHCOOCH3 , CH2 = CHCH2OH , CH3CH2CH =CHOH, CH3CH =CHCH 2 OH, CH 3 CH=CHOCH 3 , CH 2 =CHCH 2 N(CH 3 ) 2, etc., and as a compound represented by the general formula (4), CF 3 C≡CCF 3 , CH≡CCH 2 COOCH 3 and the like.
 これら不飽和化合物の最高被占有軌道(HOMO)のエネルギー準位は以下のように調整することが好ましい。不飽和化合物の最高被占有軌道(HOMO)が、一般式(2)で表されるハロゲン化アルカン化合物の脱ハロゲン化水素で生成する一般式(1)で表されるハロゲン化アルケン化合物の最高被占有軌道(HOMO)よりもエネルギー準位が高くなるように不飽和化合物を選択することが好ましい。このため、不飽和化合物の最高被戦軌道(HOMO)のエネルギー準位は-15eV~40eVが好ましく、-14eV~35eVがより好ましく、-13eV~30eVがさらに好ましい。 The energy level of the highest occupied orbital (HOMO) of these unsaturated compounds is preferably adjusted as follows. The highest occupied orbital (HOMO) of the unsaturated compound is the highest occupied molecular orbital (HOMO) of the halogenated alkene compound represented by the general formula (1) produced by dehydrohalogenation of the halogenated alkane compound represented by the general formula (2). It is preferable to select the unsaturated compound so that the energy level is higher than the occupied orbital (HOMO). Therefore, the energy level of the highest attacked orbit (HOMO) of the unsaturated compound is preferably -15 eV to 40 eV, more preferably -14 eV to 35 eV, and even more preferably -13 eV to 30 eV.
 なお、最高被占有軌道(HOMO)のエネルギー準位の値はMM2計算を用いて構造最適化した後に、拡張ヒュッケル法にて電子構造を計算することにより算出する。結果を表1に示す。 Note that the value of the energy level of the highest occupied orbital (HOMO) is calculated by optimizing the structure using MM2 calculation and then calculating the electronic structure using the extended Huckel method. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 これらの不飽和化合物は、単独で用いることもでき、2種以上を組合せて用いることもできる。このような不飽和化合物は、公知又は市販品を採用することができる。
Figure JPOXMLDOC01-appb-T000001
These unsaturated compounds can be used alone or in combination of two or more. As such unsaturated compounds, known or commercially available products can be employed.
 本開示の製造方法において、不飽和化合物の使用量は特に制限はないが、反応の転化率、一般式(1)で表されるハロゲン化アルケン化合物の選択率及び収率等の観点から、原料化合物である一般式(2)で表されるハロゲン化アルカン化合物1モルに対して0.001~0.40モルが好ましく、0.01~0.40モルがより好ましく、0.05~0.20モルがさらに好ましい。 In the production method of the present disclosure, there is no particular restriction on the amount of the unsaturated compound used, but from the viewpoint of the conversion rate of the reaction, the selectivity and yield of the halogenated alkene compound represented by the general formula (1), etc. It is preferably 0.001 to 0.40 mol, more preferably 0.01 to 0.40 mol, and more preferably 0.05 to 0.40 mol per mol of the halogenated alkane compound represented by general formula (2). 20 mol is more preferred.
 (1-5)脱ハロゲン化水素反応の例示
 本開示におけるハロゲン化アルカン化合物の脱ハロゲン化水素反応は、特に生産性の観点からは、気相で行うことが好ましい。本開示におけるハロゲン化アルカン化合物から脱ハロゲン化水素反応させる工程を気相で行う場合、溶媒を用いる必要がなく産廃が生じず、生産性に優れるという利点がある。
(1-5) Illustration of dehydrohalogenation reaction The dehydrohalogenation reaction of a halogenated alkane compound in the present disclosure is preferably carried out in a gas phase, particularly from the viewpoint of productivity. When the step of dehydrohalogenating a halogenated alkane compound in the present disclosure is performed in a gas phase, there is an advantage that there is no need to use a solvent, no industrial waste is generated, and productivity is excellent.
 本開示におけるハロゲン化アルカン化合物の脱ハロゲン化水素反応は、反応器に原料化合物であるハロゲン化アルカン化合物を連続的に仕込み、当該反応器から目的化合物であるハロゲン化アルケン化合物を連続的に抜き出す流通式及びバッチ式のいずれの方式によっても実施することができる。本開示では、さらに逆反応を抑制することを目的として、気相連続流通式で実施することが好ましい。 In the dehydrohalogenation reaction of a halogenated alkane compound in the present disclosure, a halogenated alkane compound as a raw material compound is continuously charged into a reactor, and a halogenated alkene compound as a target compound is continuously extracted from the reactor. It can be carried out either by a method or a batch method. In the present disclosure, for the purpose of further suppressing the reverse reaction, it is preferable to carry out the process using a gas phase continuous flow system.
 本開示におけるハロゲン化アルカン化合物の脱ハロゲン化水素反応を気相連続流通式で行う場合は、装置、操作等を簡略化できるとともに、経済的に有利である。 When the dehydrohalogenation reaction of the halogenated alkane compound in the present disclosure is performed in a gas phase continuous flow system, the equipment, operation, etc. can be simplified and it is economically advantageous.
 本開示におけるハロゲン化アルカン化合物の脱ハロゲン化水素反応を行う際の雰囲気については、触媒の劣化を抑制する点から、不活性ガス雰囲気下が好ましい。当該不活性ガスは、窒素、ヘリウム、アルゴン等が挙げられる。これらの不活性ガスのなかでも、コストを抑える観点から、窒素が好ましい。 Regarding the atmosphere when performing the dehydrohalogenation reaction of the halogenated alkane compound in the present disclosure, an inert gas atmosphere is preferable from the viewpoint of suppressing deterioration of the catalyst. Examples of the inert gas include nitrogen, helium, argon, and the like. Among these inert gases, nitrogen is preferred from the viewpoint of reducing costs.
 (1-6)反応温度
 本開示におけるハロゲン化アルカン化合物を脱ハロゲン化水素反応させる工程では、反応温度は、より効率的に脱ハロゲン化水素反応を進行させて転化率をより向上させ、目的化合物であるハロゲン化アルケン化合物をより高い選択率及びより高い収率で得ることができる観点から、300~450℃が好ましく、350~450℃がより好ましく、350~400℃がさらに好ましい。
(1-6) Reaction temperature In the step of dehydrohalogenating the halogenated alkane compound in the present disclosure, the reaction temperature is set so that the dehydrohalogenation reaction proceeds more efficiently to further improve the conversion rate, and the target compound From the viewpoint of being able to obtain a halogenated alkene compound with higher selectivity and higher yield, the temperature is preferably 300 to 450°C, more preferably 350 to 450°C, and even more preferably 350 to 400°C.
 (1-7)反応時間
 本開示におけるハロゲン化アルカン化合物を脱ハロゲン化水素反応させる反応時間は、例えば気相流通式を採用する場合には、原料化合物の触媒に対する接触時間(W/F)[W:触媒の重量(g)、F:原料化合物の流量(cc/sec)]は、反応の転化率が特に高く、ハロゲン化アルカン化合物をより高収率及び高選択率に得ることができる観点から、12~45g・sec/ccが好ましく、15~40g・sec/ccがより好ましく、20~30g・sec/ccがさらに好ましい。なお、上記接触時間とは、原料化合物及び触媒が接触する時間を意味する。ここで、原料化合物の流量は、上記した不飽和化合物を含まない、一般式(2)で表されるハロゲン化アルカン化合物の流量を意味する。
(1-7) Reaction time The reaction time for dehydrohalogenating the halogenated alkane compound in the present disclosure is, for example, when a gas phase flow system is adopted, the contact time (W/F) of the raw material compound with the catalyst [ W: weight of catalyst (g), F: flow rate of raw material compound (cc/sec)] is a point of view where the conversion rate of the reaction is particularly high and the halogenated alkane compound can be obtained in higher yield and higher selectivity. Therefore, 12 to 45 g·sec/cc is preferable, 15 to 40 g·sec/cc is more preferable, and even more preferably 20 to 30 g·sec/cc. Note that the above-mentioned contact time means the time during which the raw material compound and the catalyst are in contact with each other. Here, the flow rate of the raw material compound means the flow rate of the halogenated alkane compound represented by the general formula (2), which does not contain the above-mentioned unsaturated compounds.
 (1-8)反応圧力
 本開示におけるハロゲン化アルカン化合物を脱ハロゲン化水素反応させる反応圧力は、より効率的に脱ハロゲン化水素反応を進行させて転化率をより向上させ、目的化合物であるハロゲン化アルケン化合物をより高い選択率及びより高い収率で得ることができる観点から、0kPa以上が好ましく、10kPa以上がより好ましく、20kPa以上がさらに好ましく、30kPa以上が特に好ましい。反応圧力の上限は特に制限はなく、通常、2MPa程度である。なお、本開示において、圧力については特に表記が無い場合はゲージ圧とする。
(1-8) Reaction pressure The reaction pressure at which the halogenated alkane compound is dehydrohalogenated in the present disclosure is such that the dehydrohalogenation reaction proceeds more efficiently to further improve the conversion rate, and the target compound halogen From the viewpoint of being able to obtain the alkene compound with higher selectivity and higher yield, the pressure is preferably 0 kPa or higher, more preferably 10 kPa or higher, even more preferably 20 kPa or higher, and particularly preferably 30 kPa or higher. The upper limit of the reaction pressure is not particularly limited and is usually about 2 MPa. Note that in this disclosure, unless otherwise specified, pressure is referred to as gauge pressure.
 本開示におけるハロゲン化アルカン化合物の脱ハロゲン化水素反応において、ハロゲン化アルカン化合物、触媒及び不飽和化合物を投入して反応させる反応器としては、上記温度及び圧力に耐え得るものであれば、形状及び構造は特に限定されない。反応器としては、例えば、縦型反応器、横型反応器、多管型反応器等が挙げられる。反応器の材質としては、例えば、ガラス、ステンレス、鉄、ニッケル、鉄ニッケル合金等が挙げられる。 In the dehydrohalogenation reaction of a halogenated alkane compound in the present disclosure, the reactor in which the halogenated alkane compound, catalyst, and unsaturated compound are charged and reacted may be of any shape and shape as long as it can withstand the above temperature and pressure. The structure is not particularly limited. Examples of the reactor include a vertical reactor, a horizontal reactor, and a multitubular reactor. Examples of the material of the reactor include glass, stainless steel, iron, nickel, and iron-nickel alloy.
 脱ハロゲン化水素反応終了後は、必要に応じて常法にしたがって精製処理を行い、一般式(1)で表されるハロゲン化アルケン化合物を得ることができる。 After the dehydrohalogenation reaction is completed, a halogenated alkene compound represented by the general formula (1) can be obtained by performing a purification treatment according to a conventional method if necessary.
 (1-9)目的化合物(ハロゲン化アルケン化合物)
 このようにして得られる本開示の目的化合物は、一般式(1):
-CR=CR-R   (1)
[式中、R、R、R及びRは同一又は異なって、水素原子、ハロゲン原子又はハロアルキル基を示す。ただし、R及びRの片方は水素原子であり、他方はハロゲン原子である。]
で表されるハロゲン化アルケン化合物である。
(1-9) Target compound (halogenated alkene compound)
The target compound of the present disclosure obtained in this manner has the general formula (1):
R 1 -CR 2 =CR 3 -R 4 (1)
[In the formula, R 1 , R 2 , R 3 and R 4 are the same or different and represent a hydrogen atom, a halogen atom or a haloalkyl group. However, one of R 2 and R 3 is a hydrogen atom, and the other is a halogen atom. ]
It is a halogenated alkene compound represented by
 一般式(1)におけるR、R、R及びRは、上記した一般式(2)におけるR、R、R及びRと対応している。このため、製造しようとする一般式(1)で表されるハロゲン化アルケン化合物は、例えば、具体的には、CFH=CF、CClH=CCl、CBrH=CBr、CFCH=CF、CFCF=CFH、CClCH=CCl、CClCCl=CClH、CBrCH=CBr、CBrCBr=CBrH、CFCF=CHCF、CClCCl=CHCCl、CBrCBr=CHCBr、CH=CF、CH=CCl、CH=CBr、CFCF=CH、CClCCl=CH、CBrCBr=CH、CFCHCF=CH、CFCH=CFCH、CFCHFCF=CH、CFCFCH=CF、CHCFCH=CF、CClCHCCl=CH、CClCH=CClCH、CClCHClCCl=CH、CClCClCH=CCl、CHCClCH=CCl、CBrCHCBr=CH、CBrCH=CBrCH、CBrCHBrCBr=CH、CBrCBrCH=CBr、CHCBrCH=CBr等が挙げられる。これらの化合物は、Z体及びE体をいずれも包含する。 R 1 , R 2 , R 3 and R 4 in general formula (1) correspond to R 1 , R 2 , R 3 and R 4 in general formula (2) described above. Therefore, the halogenated alkene compound represented by the general formula (1) to be produced is, for example, CFH=CF 2 , CClH=CCl 2 , CBrH=CBr 2 , CF 3 CH=CF 2 , CF3CF = CFH , CCl3CH= CCl2 , CCl3CCl =CClH, CBr3CH= CBr2 , CBr3CBr = CBrH, CF3CF = CHCF3 , CCl3CCl = CHCCl3 , CBr3CBr = CHCBr3 , CH2 = CF2 , CH2 =CCl2 , CH2 = CBr2 , CF3CF = CH2 , CCl3CCl= CH2 , CBr3CBr = CH2 , CF3CH2CF = CH 2 , CF3CH = CFCH3 , CF3CHFCF = CH2 , CF3CF2CH = CF2 , CH3CF2CH = CF2 , CCl3CH2CCl = CH2 , CCl3CH =CClCH3 , CCl3CHClCCl = CH2 , CCl3CCl2CH = CCl2 , CH3CCl2CH = CCl2 , CBr3CH2CBr = CH2 , CBr3CH = CBrCH3 , CBr3CHBrCBr = CH2 , C Br 3 CBr2CH = CBr2 , CH3CBr2CH = CBr2, etc. are mentioned. These compounds include both Z-form and E-form.
 上記のとおり、不飽和化合物の最高被占有軌道(HOMO)が、一般式(2)で表されるハロゲン化アルカン化合物の脱ハロゲン化水素で生成する一般式(1)で表されるハロゲン化アルケン化合物の最高被占有軌道(HOMO)よりもエネルギー準位が高くなるように不飽和化合物を選択することが好ましいため、一般式(1)で表されるハロゲン化アルケン化合物の最高被戦軌道(HOMO)のエネルギー準位は-25eV~10eVが好ましく、-20eV~5eVがより好ましく、-15eV~-5eVがさらに好ましい。 As mentioned above, the highest occupied orbital (HOMO) of the unsaturated compound is the halogenated alkene represented by the general formula (1) produced by dehydrohalogenation of the halogenated alkane compound represented by the general formula (2). Since it is preferable to select an unsaturated compound so that the energy level is higher than the highest occupied orbital (HOMO) of the compound, the highest occupied orbital (HOMO) of the halogenated alkene compound represented by the general formula (1) is selected. ) is preferably -25 eV to 10 eV, more preferably -20 eV to 5 eV, even more preferably -15 eV to -5 eV.
 なお、最高被占有軌道(HOMO)のエネルギー準位の値はMM2計算を用いて構造を最適化した後に、拡張ヒュッケル法にて電子構造を計算することにより算出する。結果を表2に示す。 Note that the value of the energy level of the highest occupied orbital (HOMO) is calculated by optimizing the structure using MM2 calculation and then calculating the electronic structure using the extended Huckel method. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 このようにして得られたハロゲン化アルケン化合物は、クリーニングガス;半導体、液晶等の最先端の微細構造を形成するためのエッチングガス;デポジットガス;冷媒;熱移動媒体;有機合成用ビルディングブロック等の各種用途に有効利用できる。デポジットガス及び有機合成用ビルディングブロックについては後述する。
Figure JPOXMLDOC01-appb-T000002
The halogenated alkene compound thus obtained can be used as a cleaning gas; an etching gas for forming cutting-edge microstructures in semiconductors, liquid crystals, etc.; a deposit gas; a refrigerant; a heat transfer medium; a building block for organic synthesis, etc. It can be effectively used for various purposes. Deposit gas and building blocks for organic synthesis will be described later.
 2.組成物
 以上のようにして、ハロゲン化アルケン化合物を得ることができるが、目的化合物を含む組成物の形で得られることもある。
2. Composition Although a halogenated alkene compound can be obtained as described above, it may also be obtained in the form of a composition containing the desired compound.
 本開示の製造方法によれば、例えば、一般式(1)で表されるハロゲン化アルケン化合物と、不純物であるハロゲン化アルケン化合物を含む組成物として得られることもある。この場合、不純物であるハロゲン化アルケン化合物は、一般式(5):
-CH=CH-R   (5)
[式中、R及びRは同一又は異なって、水素原子、ハロゲン原子又はハロアルキル基を示す。]
で表されるハロゲン化アルケン化合物であることができる。
According to the production method of the present disclosure, it may be obtained, for example, as a composition containing the halogenated alkene compound represented by general formula (1) and the halogenated alkene compound as an impurity. In this case, the halogenated alkene compound as an impurity has the general formula (5):
R 1 -CH=CH-R 4 (5)
[In the formula, R 1 and R 4 are the same or different and represent a hydrogen atom, a halogen atom, or a haloalkyl group. ]
It can be a halogenated alkene compound represented by
 一般式(5)において、R及びRで示されるハロゲン原子及びハロアルキル基としては、上記説明したものを採用できる。 In general formula (5), the halogen atom and haloalkyl group represented by R 1 and R 4 can be those explained above.
 つまり、一般式(5)で表される化合物としては、例えば、CFH=CFH、CClH=CClH、CBrH=CBrH、CH=CFH、CH=CClH、CH=CBrH、CFCH=CFH、CClCH=CClH、CBrCH=CBrH、CFCH=CHCF、CClCH=CHCCl、CBrCH=CHCBr、CFCH=CH、CClCH=CH、CBrCH=CH、CFCHCH=CH、CFCH=CHCH、CFCHFCH=CH、CFCFCH=CHF、CHCFCH=CHF、CClCHCH=CH、CClCH=CHCH、CClCHClCH=CH、CClCClCH=CHCl、CHCClCH=CHCl、CBrCHCH=CH、CBrCH=CHCH、CBrCHBrCH=CH、CBrCBrCH=CHBr、CHCBrCH=CHBr等が挙げられる。これらの化合物は、Z体及びE体をいずれも包含する。 That is, as a compound represented by general formula (5), for example, CFH=CFH, CClH=CClH, CBrH=CBrH, CH2 =CFH, CH2 =CClH, CH2 =CBrH, CF3CH =CFH, CCl3CH =CClH, CBr3CH=CBrH , CF3CH= CHCF3 , CCl3CH = CHCCl3 , CBr3CH = CHCBr3 , CF3CH = CH2 , CCl3CH = CH2 , CBr3CH = CH2 , CF3CH2CH = CH2 , CF3CH = CHCH3, CF3CHFCH= CH2 , CF3CF2CH = CHF , CH3CF2CH = CHF, CCl3CH2CH = CH 2 , CCl3CH = CHCH3 , CCl3CHClCH = CH2 , CCl3CCl2CH =CHCl, CH3CCl2CH = CHCl, CBr3CH2CH = CH2 , CBr3CH = CHCH3 , CBr3 Examples include CHBrCH = CH2 , CBr3CBr2CH =CHBr, CH3CBr2CH =CHBr, and the like. These compounds include both Z-form and E-form.
 また、この組成物は、一般式(1)で表されるハロゲン化アルカンの脱ハロゲン化水素反応で発生するハロゲン化水素と、一般式(3)又は一般式(4)で表される不飽和化合物が付加反応した一般式(6):
-CR11-CR12-R   (6)
[式中、R、R、R及びRは同一又は異なって、水素原子又は有機基を示す。R11及びR12の片方は水素原子であり、他方はハロゲン原子である。]
で表されるハロゲン化アルカン化合物を含むこともある。
In addition, this composition contains hydrogen halide generated in the dehydrohalogenation reaction of a halogenated alkane represented by the general formula (1), and an unsaturated hydrogen halide represented by the general formula (3) or the general formula (4). General formula (6) in which the compound undergoes an addition reaction:
R 5 -CR 6 R 11 -CR 7 R 12 -R 8 (6)
[In the formula, R 5 , R 6 , R 7 and R 8 are the same or different and represent a hydrogen atom or an organic group. One of R 11 and R 12 is a hydrogen atom, and the other is a halogen atom. ]
It may also contain a halogenated alkane compound represented by
 一般式(6)において、R、R、R及びRで示される有機基や、R11及びR12で示されるハロゲン原子としては、上記説明したものを採用できる。 In general formula (6), the organic groups represented by R 5 , R 6 , R 7 and R 8 and the halogen atoms represented by R 11 and R 12 can be those described above.
 一般式(6)で表される化合物としては、添加した不飽和化合物、すなわち一般式(3)又は一般式(4)で表される化合物にハロゲン化水素が付加した1種類又は2種類の化合物である。すなわち、一般式(6)で表される化合物は、対応する不飽和化合物にハロゲン化アルカン(2)から脱離したハロゲン化水素が付加した化合物であり、例えば、[CFCFHCFCF(添加不飽和化合物CFCF=CFCFにHF付加)]、[CClCClHCClCCl(添加不飽和化合物CClCCl=CClCClにHCl付加)]、[CBrCBrHCBrCBr(添加不飽和化合物CBrCBr=CBrCBr3 にHBr付加)]、[CFCH、CHFCHF、CHFCHCl、CFClCH、CHFCHBr又はCFBrCH(添加不飽和化合物CF=CHにHF、HCl又はHBr付加)]、[CHFCHF、又はCFClCFH(添加不飽和化合物CFH=CFHにHF又はHCl付加)]、[CHClCHCl、又はCHFClCHCl(添加不飽和化合物CHCl=CHClにHF又はHCl付加)]、CHClBrCHBr、又はCHBrCHBr(添加不飽和化合物CHBr=CHBrにHCl又はHBr付加)]、[CFCHF、CFClCHF、CFHCHF、又はCFHCHFCl(添加不飽和化合物CF=CHFにHF又はHCl付加)]、[CHBrCHBr(添加不飽和化合物CBr=CHBrにHBr付加)]、[CFClCHCl、又はCClCHCl(添加不飽和化合物CCl=CClにHF又はHCl付加)]、[CBrCHBr(添加不飽和化合物CBr=CBrにHBr付加)]、[CHFCHFCF、CHFCHCF、CHFClCHCF、又はCHFCHClCF(添加不飽和化合物CHF=CHCFにHF又はHCl付加)]、[CHClCHClCCl、CHClCHCCl、CHFClCHCCl、又はCHClCHFCCl(添加不飽和化合物CHCl=CHCClにHF又はHCl付加)]、[CFCFCHCl、 CFCHFCHFCl、又はCFCFClCHCl(添加不飽和化合物CFCF=CHClにHF又はHCl付加)]、[CClCClCHCl、又はCClCHClCHCl(添加不飽和化合物CClCCl=CHClにHCl付加)]、[CClCHClCHCl、CClCClCH、又はCClCFClCH(添加不飽和化合物CClCCl=CHにHF又はHCl付加)]、[CFCHCHFCl、CFCHFCHCl、CFCHCHClBr、CFCHCHCl、CFCHClCHCl、又はCFCHBrCHCl(添加不飽和化合物CFCH=CHClにHF、HCl又はHBr付加)]、[CClCHCHCl、CClCHClCHCl、又はCClCHCHFCl(添加不飽和化合物CClCH=CHClにHF又はHCl付加)]、[CHCClCN、又はCHClCHClCN(添加不飽和化合物CH=CClCNにHCl付加)]、[CHBrCHBrCN(添加不飽和化合物CH=CBrCNにHBr付加)]、[CHCHFCOOCH、CHCHClCOOCH、CHCHBrCOOCH、CHClCHCOOCH、又はCHBrCHCOOCH(添加不飽和化合物CH=CHCOOCHにHF、HCl又はHBr付加)]、[CHOCHCHClCOOCH、又はCHOCHCHBrCOOCH(添加不飽和化合物CHOCH=CHCOOCHにHCl又はHBr付加)]、[CHCHCHCHClCOOCH、又はCHCHCHCHBrCOOCH(添加不飽和化合物CHCHCH=CHCOOCHにHCl又はHBr付加)]、[CHCBr(CHCH)COOCH(添加不飽和化合物CH=C(C)COOCHにHBr付加)]、[(CHCHCHClCOOCH、(CHCHCHBrCOOCH、又は(CHCBrCHCOOCH(添加不飽和化合物(CHC=CHCOOCHにHCl又はHBr付加)]、[CHCHFCHOH、CHCHClCHOH、CHCHBrCHOH、CHFCHCHOH、CHClCHCHOH、又はCHBrCHCHOH(添加不飽和化合物CH=CHCHOHにHF、HCl又はHBr付加)]、[CHCHCHFCHOH、CHCHCHClCHOH、又はCHCHCHBrCHOH(添加不飽和化合物CHCHCH=CHOHにHF、HCl又はHBr付加)]、[CHCHFCHCHOH、CHCHClCHCHOH、CHCHBrCHCHOH、CHCHCFHCHOH、CHCHCClHCHOH、又はCHCHCBrHCHOH(添加不飽和化合物CHCH=CHCHOHにHF、HCl又はHBr付加)]、[CHCHClCHOCH、又はCHCHBrCHOCH(添加不飽和化合物CHCH=CHOCHにHCl又はHBr付加)]、[CHClCHCHN(CH、又はCHBrCHCHN(CH(添加不飽和化合物CH=CHCHN(CHにHCl又はHBr付加)]、[CHCClCHCOOCH、又はCHClCHCHCOOCH(添加不飽和化合物CH≡CCHCOOCHにHCl付加)]
等が挙げられる。
The compound represented by general formula (6) is one or two types of compounds in which hydrogen halide is added to the added unsaturated compound, that is, the compound represented by general formula (3) or general formula (4). It is. That is, the compound represented by the general formula (6) is a compound in which hydrogen halide released from the halogenated alkane (2) is added to the corresponding unsaturated compound, for example, [CF 3 CFHCF 2 CF 3 ( Added unsaturated compound CF 3 CF=HF addition to CFCF 3 )], [CCl 3 CClHCCl 2 CCl 3 (added unsaturated compound CCl 3 CCl=CClCCl 3 added HCl)], [CBr 3 CBrHCBr 2 CBr 3 (added unsaturated compound CCl 3 CCl=CCICCl 3 added with HCl)] Saturated compound CBr 3 CBr = HBr addition to CBrCBr 3 )], [CF 3 CH 3 , CHF 2 CH 2 F, CHF 2 CH 2 Cl, CF 2 ClCH 3 , CHF 2 CH 2 Br or CF 2 BrCH 3 (without addition) Saturated compound CF 2 =CH 2 with addition of HF, HCl or HBr)], [CHF 2 CH 2 F, or CFClCFH 2 (added unsaturated compound CFH = CFH with addition of HF or HCl)], [CHCl 2 CH 2 Cl, or CHFClCH 2 Cl (addition of unsaturated compound CHCl=CHCl with addition of HF or HCl)], CHClBrCH 2 Br, or CHBr 2 CH 2 Br (addition of unsaturated compound CHBr=CHBr with addition of HCl or HBr)], [CF 3 CH 2 F, CF 2 ClCH 2 F, CF 2 HCHF 2 , or CF 2 HCHFCl (addition of HF or HCl to the added unsaturated compound CF 2 =CHF)], [CHBr 2 CHBr 2 (added to the added unsaturated compound CBr 2 =CHBr)] HBr addition)], [CFCl 2 CHCl 2 , or CCl 3 CHCl 2 (HF or HCl addition to the added unsaturated compound CCl 2 = CCl 2 )], [CBr 3 CHBr 2 (added unsaturated compound CBr 2 = CBr 2 HBr addition)], [ CH2FCHFCF3 , CHF2CH2CF3 , CHFClCH2CF3 , or CH2FCHClCF3 ( HF or HCl addition to the added unsaturated compound CHF= CHCF3 )], [ CH2ClCHClCCl3 , CHCl2CH2CCl3 , CHFClCH2CCl3 , or CH2ClCHFCCl3 ( HF or HCl addition to the added unsaturated compound CHCl= CHCCl3 )], [ CF3CF2CH2Cl , CF3CHFCHFCl , or CF 3 CFClCH 2 Cl (HF or HCl addition to the added unsaturated compound CF 3 CF=CHCl)], [CCl 3 CCl 2 CH 2 Cl, or CCl 3 CHClCHCl 2 (HCl addition to the added unsaturated compound CCl 3 CCl=CHCl) ], [ CCl3CHClCH2Cl , CCl3CCl2CH3 , or CCl3CFClCH3 ( HF or HCl addition to the added unsaturated compound CCl3CCl = CH2 )], [ CF3CH2CHFCl , CF3CHFCH 2 Cl, CF 3 CH 2 CHClBr, CF 3 CH 2 CHCl 2 , CF 3 CHClCH 2 Cl, or CF 3 CHBrCH 2 Cl (addition of HF, HCl or HBr to the added unsaturated compound CF 3 CH=CHCl)], [CCl 3 CH 2 CHCl 2 , CCl 3 CHClCH 2 Cl, or CCl 3 CH 2 CHFCl (addition of HF or HCl to the added unsaturated compound CCl 3 CH=CHCl)], [CH 3 CCl 2 CN, or CH 2 ClCHClCN (added unsaturated compound CCl 3 CH=CHCl)] Saturated compound CH 2 = CClCN with HCl addition)], [CH 2 BrCHBrCN (added unsaturated compound CH 2 = CBrCN with HBr addition)], [CH 3 CHFCOOCH 3 , CH 3 CHClCOOCH 3 , CH 3 CHBrCOOCH 3 , CH 2 ClC H 2 COOCH 3 , or CH 2 BrCH 2 COOCH 3 (addition of unsaturated compound CH 2 =CHCOOCH 3 with addition of HF, HCl or HBr)], [CH 3 OCH 2 CHClCOOCH 3 , or CH 3 OCH 2 CHBrCOOCH 3 (added unsaturated compound HCl or HBr addition to the compound CH 3 OCH=CHCOOCH 3 )], [CH 3 CH 2 CH 2 CHClCOOCH 3 , or CH 3 CH 2 CH 2 CHBrCOOCH 3 (addition of unsaturated compound CH 3 CH 2 CH=CHCOOCH 3 to HCl or HBr addition)], [ CH3CBr ( CH2CH3 ) COOCH3 (HBr addition to the added unsaturated compound CH2 =C( C2H5 ) COOCH3 )], [( CH3 ) 2CHCHClCOOCH3 , ( CH 3 ) 2 CHCHBrCOOCH 3 , or (CH 3 ) 2 CBrCH 2 COOCH 3 (HCl or HBr addition to the added unsaturated compound (CH 3 ) 2 C=CHCOOCH)], [CH 3 CHFCH 2 OH, CH 3 CHClCH 2 OH , CH 3 CHBrCH 2 OH, CH 2 FCH 2 CH 2 OH, CH 2 ClCH 2 CH 2 OH, or CH 2 BrCH 2 CH 2 OH (Addition of HF, HCl or HBr to the added unsaturated compound CH 2 =CHCH 2 OH) ], [CH 3 CH 2 CHFCH 2 OH, CH 3 CH 2 CHClCH 2 OH, or CH 3 CH 2 CHBrCH 2 OH (addition of HF, HCl or HBr to the added unsaturated compound CH 3 CH 2 CH=CHOH)], [ CH3CHFCH2CH2OH , CH3CHClCH2CH2OH , CH3CHBrCH2CH2OH , CH3CH2CFHCH2OH , CH3CH2CClHCH2OH , or CH3CH2CBrH CH 2 OH ( added _ Addition of HF, HCl or HBr to the unsaturated compound CH 3 CH=CHCH 2 OH)], [CH 3 CHClCH 2 OCH 3 , or CH 3 CHBrCH 2 OCH 3 (addition of HCl or HBr to the unsaturated compound CH 3 CH=CHOCH 3 ) addition)], [ CH2ClCH2CH2N ( CH3 ) 2 , or CH2BrCH2CH2N ( CH3 ) 2 (Addition of unsaturated compound CH2 = CHCH2N ( CH3 ) 2 to HCl or HBr addition)], [CH 3 CCl 2 CH 2 COOCH 3 or CHCl 2 CH 2 CH 2 COOCH 3 (HCl addition to added unsaturated compound CH≡CCH 2 COOCH 3 )]
etc.
 この本開示の組成物の総量を100モル%として、一般式(1)で表されるハロゲン化アルケン化合物の含有量は50~80モル%であり、54~79モル%、58~78モル%、62~77モル%、65~76モル%等とすることもできる。 The content of the halogenated alkene compound represented by general formula (1) is 50 to 80 mol%, 54 to 79 mol%, and 58 to 78 mol%, assuming that the total amount of the composition of the present disclosure is 100 mol%. , 62 to 77 mol%, 65 to 76 mol%, etc.
 また、この本開示の組成物の総量を100モル%として、一般式(5)で表されるハロゲン化アルケン化合物の含有量は12~40モル%であり、13~37モル%、14~34モル%、15~30モル%、16~27モル%等とすることもできる。 Furthermore, when the total amount of the composition of the present disclosure is 100 mol%, the content of the halogenated alkene compound represented by general formula (5) is 12 to 40 mol%, 13 to 37 mol%, 14 to 34 mol%. It can also be set to mol%, 15 to 30 mol%, 16 to 27 mol%, etc.
 また、この本開示の組成物の総量を100モル%として、一般式(6)で表されるハロゲン化アルケン化合物の含有量は0.10~10.0モル%が好ましく、0.15~9.5モル%、0.20~9.0モル%、0.25~8.5モル%、0.30~8.0モル%等とすることもできる。 Further, the content of the halogenated alkene compound represented by the general formula (6) is preferably 0.10 to 10.0 mol%, and 0.15 to 9 mol%, assuming the total amount of the composition of the present disclosure as 100 mol%. It can also be set to 0.5 mol%, 0.20 to 9.0 mol%, 0.25 to 8.5 mol%, 0.30 to 8.0 mol%, etc.
 なお、本開示の製造方法によれば、ハロゲン化アルケン組成物として得られた場合であっても、上記のように一般式(1)で表されるハロゲン化アルケン化合物を、反応の転化率を高く、また、高収率且つ高選択率で得ることができるため、本開示の組成物中の一般式(1)で表されるハロゲン化アルケン化合物以外の成分を少なくすることが可能であるため、一般式(1)で表されるハロゲン化アルケン化合物を得るための精製の労力を削減することができる。 According to the production method of the present disclosure, even when obtained as a halogenated alkene composition, the halogenated alkene compound represented by the general formula (1) as described above can be converted to Because it can be obtained with high yield and high selectivity, it is possible to reduce the amount of components other than the halogenated alkene compound represented by general formula (1) in the composition of the present disclosure. , the effort required for purification to obtain the halogenated alkene compound represented by general formula (1) can be reduced.
 本開示の製造方法によれば、一般式(1)で表されるハロゲン化アルケン化合物を含む組成物として得られた場合であっても、一般式(1)で表されるハロゲン化アルケン化合物を、反応の転化率を高く、また、高収率且つ高選択率で得ることができるため、その結果、前記組成物中の一般式(1)で表されるハロゲン化アルケン化合物以外の成分を少なくすることが可能である。本開示の製造方法によれば、一般式(1)で表されるハロゲン化アルケン化合物を得る為の精製の労力を削減することができる。 According to the production method of the present disclosure, even when obtained as a composition containing the halogenated alkene compound represented by the general formula (1), the halogenated alkene compound represented by the general formula (1) is , it is possible to obtain a high reaction conversion rate, high yield, and high selectivity, and as a result, components other than the halogenated alkene compound represented by general formula (1) in the composition can be reduced. It is possible to do so. According to the production method of the present disclosure, it is possible to reduce the effort required for purification to obtain the halogenated alkene compound represented by general formula (1).
 本開示のハロゲン化アルケン化合物を含む組成物は、ハロゲン化アルケン化合物単独の場合と同様に、クリーニングガス;半導体、液晶等の最先端の微細構造を形成するためのエッチングガス等の他、デポジットガス、冷媒、熱移動媒体、有機合成用ビルディングブロック等の各種用途にも有効利用できる。 The composition containing the halogenated alkene compound of the present disclosure can be used as a cleaning gas; an etching gas for forming cutting-edge microstructures of semiconductors, liquid crystals, etc., as well as a deposit gas, as in the case of the halogenated alkene compound alone It can also be effectively used in various applications such as refrigerants, heat transfer media, and building blocks for organic synthesis.
 前記デポジットガスとは、エッチング耐性ポリマー層を堆積させるガスである。 The deposit gas is a gas that deposits an etching-resistant polymer layer.
 前記有機合成用ビルディングブロックとは、反応性が高い骨格を有する化合物の前駆体となり得る物質を意味する。例えば、本開示の組成物とCFSi(CH等の含フッ素有機ケイ素化合物とを反応させると、CF基等のフルオロアルキル基を導入して洗浄剤や含フッ素医薬中間体と成り得る物質に変換することが可能である。 The building block for organic synthesis means a substance that can be a precursor of a compound having a highly reactive skeleton. For example, when the composition of the present disclosure is reacted with a fluorine-containing organosilicon compound such as CF 3 Si(CH 3 ) 3 , a fluoroalkyl group such as a CF 3 group is introduced and the composition is reacted with a cleaning agent or a fluorine-containing pharmaceutical intermediate. It is possible to convert it into a substance that can become.
 以上、本開示の実施形態を説明したが、特許請求の範囲の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能である。 Although the embodiments of the present disclosure have been described above, various changes in form and details can be made without departing from the spirit and scope of the claims.
 以下に実施例を示し、本開示の特徴を明確にする。本開示はこれら実施例に限定されるものではない。 Examples are shown below to clarify the features of the present disclosure. The present disclosure is not limited to these examples.
 実施例1~3のハロゲン化アルケン化合物の製造方法では、原料化合物は、一般式(2)で表されるハロゲン化アルカン化合物において、R及びRはトリフルオロメチル基とし、Rはフッ素原子とし、Rは水素原子とし、Xはフッ素原子とし、以下の反応式:
CFCFHCFHCF → CFCF=CHCF + HF
に従って、脱フッ化水素反応により、ハロゲン化アルケン化合物を得た。
In the methods for producing halogenated alkene compounds of Examples 1 to 3, the raw material compound is a halogenated alkane compound represented by general formula (2), in which R 1 and R 4 are trifluoromethyl groups, and R 2 is fluorine. atom, R3 is a hydrogen atom, X is a fluorine atom, and the following reaction formula:
CF 3 CFHCFHCF 3 → CF 3 CF=CHCF 3 + HF
Accordingly, a halogenated alkene compound was obtained by dehydrofluorination reaction.
 実施例1~3及び比較例1
 反応管であるSUS配管(外径:1/2インチ)に、触媒として活性炭触媒(大阪ガスケミカル(株)製;比表面積1200m/g)を10g加えた。窒素雰囲気下、200℃で2時間乾燥した後、圧力を常圧、CFCFHCFHCF(原料化合物)と活性炭触媒との接触時間であるW/F[W:触媒の重量(g)、F:原料化合物であるCFCFHCFHCFの流量(cc/sec)]が23g・sec/cc又は47g・sec/ccとなるように、反応管にCFCFHCFHCF(原料化合物)を流通させた。その後、実施例1~3では、CFCFHCFHCF(原料化合物)1モルに対して0.01~0.20モル(1~20モル%)のCFCF=CFCF(原料化合物)を流通させた。
Examples 1 to 3 and comparative example 1
10 g of activated carbon catalyst (manufactured by Osaka Gas Chemical Co., Ltd.; specific surface area: 1200 m 2 /g) was added as a catalyst to a SUS pipe (outer diameter: 1/2 inch) serving as a reaction tube. After drying at 200° C. for 2 hours in a nitrogen atmosphere, the pressure was reduced to normal pressure and W/F, which is the contact time between CF 3 CFHCFHCF 3 (raw material compound) and activated carbon catalyst [W: weight of catalyst (g), F: CF 3 CFHCFHCF 3 (raw material compound) was flowed through the reaction tube such that the flow rate (cc/sec) of CF 3 CFHCFHCF 3 (raw material compound) was 23 g·sec/cc or 47 g·sec/cc. Thereafter, in Examples 1 to 3, CF 3 CF=CFCF 3 (raw material compound) was distributed in an amount of 0.01 to 0.20 mol (1 to 20 mol %) per 1 mol of CF 3 CFHCFHCF 3 (raw material compound). I let it happen.
 反応は、気相連続流通式で進行させた。 The reaction proceeded in a gas phase continuous flow system.
 反応管を350℃で加熱して脱フッ化水素反応を開始した。 The reaction tube was heated to 350°C to start the dehydrofluorination reaction.
 脱フッ化水素反応を開始してから1時間後に、除害塔を通った留出分を集めた。 One hour after the start of the dehydrofluorination reaction, the distillate that had passed through the abatement tower was collected.
 その後、ガスクロマトグラフィー((株)島津製作所製、商品名「GC-2014」)を用いてガスクロマトグラフィー/質量分析法(GC/MS)により質量分析を行い、NMR(JEOL社製、商品名「400YH」)を用いてNMRスペクトルによる構造解析を行った。質量分析及び構造解析の結果から、目的化合物としてCFCF=CHCFが生成したことが確認された。結果を表3に示す。 Thereafter, mass spectrometry was performed using gas chromatography/mass spectrometry (GC/MS) using gas chromatography (manufactured by Shimadzu Corporation, trade name "GC-2014"), and NMR (manufactured by JEOL, trade name "GC-2014"). Structural analysis by NMR spectrum was performed using "400YH"). From the results of mass spectrometry and structural analysis, it was confirmed that CF 3 CF=CHCF 3 was produced as the target compound. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Claims (9)

  1. 一般式(1):
    -CR=CR-R   (1)
    [式中、R、R、R及びRは同一又は異なって、水素原子、ハロゲン原子又はハロアルキル基を示す。ただし、R及びRの片方は水素原子であり、他方はハロゲン原子である。]
    で表されるハロゲン化アルケン化合物の製造方法であって、
    一般式(2):
    -CHR-CXR-R   (2)
    [式中、R、R、R及びRは前記に同じである。Xはハロゲン原子を示す。]
    で表されるハロゲン化アルカン化合物を、触媒と、不飽和化合物の存在下、脱ハロゲン化水素反応する工程を備え、
    前記不飽和化合物が、一般式(3):
    -CR=CR-R   (3)
    [式中、R、R、R及びRは同一又は異なって、水素原子又は有機基を示す。]
    、又は一般式(4):
    -C≡C-R10   (4)
    [式中、R及びR10は同一又は異なって、水素原子又は有機基を示す。]
    で表される化合物であり、且つ、
    前記一般式(1)で表される化合物と前記不飽和化合物とは異なる化合物である、製造方法。
    General formula (1):
    R 1 -CR 2 =CR 3 -R 4 (1)
    [In the formula, R 1 , R 2 , R 3 and R 4 are the same or different and represent a hydrogen atom, a halogen atom or a haloalkyl group. However, one of R 2 and R 3 is a hydrogen atom, and the other is a halogen atom. ]
    A method for producing a halogenated alkene compound represented by
    General formula (2):
    R 1 -CHR 2 -CXR 3 -R 4 (2)
    [In the formula, R 1 , R 2 , R 3 and R 4 are the same as above. X represents a halogen atom. ]
    A step of dehydrohalogenating a halogenated alkane compound represented by a catalyst in the presence of an unsaturated compound,
    The unsaturated compound has general formula (3):
    R 5 -CR 6 =CR 7 -R 8 (3)
    [In the formula, R 5 , R 6 , R 7 and R 8 are the same or different and represent a hydrogen atom or an organic group. ]
    , or general formula (4):
    R 9 -C≡C-R 10 (4)
    [In the formula, R 9 and R 10 are the same or different and represent a hydrogen atom or an organic group. ]
    A compound represented by, and
    A manufacturing method, wherein the compound represented by the general formula (1) and the unsaturated compound are different compounds.
  2. 前記一般式(1)及び(2)において、前記R及びRがフッ素原子又はパーフルオロアルキル基である、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein in the general formulas (1) and (2), the R 1 and R 4 are a fluorine atom or a perfluoroalkyl group.
  3. 前記不飽和化合物の最高被占有軌道(HOMO)のエネルギー準位が、前記一般式(1)で表されるハロゲン化アルケン化合物の最高被占有軌道(HOMO)よりも高い、請求項1又は2に記載の製造方法。 Claim 1 or 2, wherein the energy level of the highest occupied orbital (HOMO) of the unsaturated compound is higher than the highest occupied orbital (HOMO) of the halogenated alkene compound represented by the general formula (1). Manufacturing method described.
  4. 前記不飽和化合物の供給量が、前記一般式(2)で表されるハロゲン化アルカン化合物1モルに対して、0.001~0.40モルである、請求項1~3のいずれか1項に記載の製造方法。 Any one of claims 1 to 3, wherein the amount of the unsaturated compound supplied is 0.001 to 0.40 mol per 1 mol of the halogenated alkane compound represented by the general formula (2). The manufacturing method described in.
  5. 前記脱ハロゲン化水素反応を気相で行う、請求項1~4のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 4, wherein the dehydrohalogenation reaction is carried out in a gas phase.
  6. 一般式(1):
    -CR=CR-R   (1)
    [式中、R、R、R及びRは同一又は異なって、水素原子、ハロゲン原子又はハロアルキル基を示す。ただし、R及びRの片方は水素原子であり、他方はハロゲン原子である。]
    で表されるハロゲン化アルケン化合物を50~80モル%と、
    一般式(5):
    -CH=CH-R   (5)
    [式中、R及びRは同一又は異なって、水素原子、ハロゲン原子又はハロアルキル基を示す。]
    で表されるハロゲン化アルケン化合物を12~40モル%と
    を含有する、組成物。
    General formula (1):
    R 1 -CR 2 =CR 3 -R 4 (1)
    [In the formula, R 1 , R 2 , R 3 and R 4 are the same or different and represent a hydrogen atom, a halogen atom or a haloalkyl group. However, one of R 2 and R 3 is a hydrogen atom, and the other is a halogen atom. ]
    50 to 80 mol% of a halogenated alkene compound represented by
    General formula (5):
    R 1 -CH=CH-R 4 (5)
    [In the formula, R 1 and R 4 are the same or different and represent a hydrogen atom, a halogen atom, or a haloalkyl group. ]
    A composition containing 12 to 40 mol% of a halogenated alkene compound represented by:
  7. さらに、一般式(6):
    -CR11-CR12-R   (6)
    [式中、R、R、R及びRは同一又は異なって、水素原子又は有機基を示す。R11及びR12の片方は水素原子であり、他方はハロゲン原子である。]
    で表されるハロゲン化アルカン化合物を含有する、請求項6に記載の組成物。
    Furthermore, general formula (6):
    R 5 -CR 6 R 11 -CR 7 R 12 -R 8 (6)
    [In the formula, R 5 , R 6 , R 7 and R 8 are the same or different and represent a hydrogen atom or an organic group. One of R 11 and R 12 is a hydrogen atom, and the other is a halogen atom. ]
    The composition according to claim 6, containing a halogenated alkane compound represented by:
  8. 前記一般式(6)で表されるハロゲン化アルカン化合物の含有量が0.10~10.0モル%である、請求項7に記載の組成物。 The composition according to claim 7, wherein the content of the halogenated alkane compound represented by the general formula (6) is 0.10 to 10.0 mol%.
  9. クリーニングガス、エッチングガス、冷媒、熱移動媒体又は有機合成用ビルディングブロックとして用いられる、請求項6~8のいずれか1項に記載の組成物。 Composition according to any one of claims 6 to 8, used as a cleaning gas, etching gas, refrigerant, heat transfer medium or building block for organic synthesis.
PCT/JP2023/028820 2022-08-08 2023-08-07 Method for producing halogenated alkene compound WO2024034583A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022126582 2022-08-08
JP2022-126582 2022-08-08

Publications (1)

Publication Number Publication Date
WO2024034583A1 true WO2024034583A1 (en) 2024-02-15

Family

ID=89851845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028820 WO2024034583A1 (en) 2022-08-08 2023-08-07 Method for producing halogenated alkene compound

Country Status (2)

Country Link
JP (1) JP2024023159A (en)
WO (1) WO2024034583A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013519629A (en) * 2010-02-12 2013-05-30 ダイキン工業株式会社 Method for producing fluorine-containing alkene compound
WO2020171011A1 (en) * 2019-02-21 2020-08-27 ダイキン工業株式会社 Halogenated alkene compound and method for manufacturing fluorinated alkyne compound
WO2020170980A1 (en) * 2019-02-21 2020-08-27 ダイキン工業株式会社 Method for producing halogenated butene
WO2020204146A1 (en) * 2019-04-04 2020-10-08 ダイキン工業株式会社 Method for producing perfluoroalkyne compound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013519629A (en) * 2010-02-12 2013-05-30 ダイキン工業株式会社 Method for producing fluorine-containing alkene compound
WO2020171011A1 (en) * 2019-02-21 2020-08-27 ダイキン工業株式会社 Halogenated alkene compound and method for manufacturing fluorinated alkyne compound
WO2020170980A1 (en) * 2019-02-21 2020-08-27 ダイキン工業株式会社 Method for producing halogenated butene
WO2020204146A1 (en) * 2019-04-04 2020-10-08 ダイキン工業株式会社 Method for producing perfluoroalkyne compound

Also Published As

Publication number Publication date
JP2024023159A (en) 2024-02-21

Similar Documents

Publication Publication Date Title
US20230234902A1 (en) Process for synthesis of fluorinated olefins
US7880040B2 (en) Method for producing fluorinated organic compounds
US7897823B2 (en) Process for production of azeotrope compositions comprising hydrofluoroolefin and hydrogen fluoride and uses of said azeotrope compositions in separation processes
KR101349634B1 (en) Method for producing fluorinated organic compounds
JP6827246B2 (en) Method for producing halogenated butene compound
JP2009532365A (en) Co-production of hydrofluoroolefin
US11655199B2 (en) Methods for producing halogenated alkene compound and fluorinated alkyne compound
TW509666B (en) Process for producing a perfluorocarbon
WO2010095764A1 (en) Process for preparing fluorine-containing alkyne compound
US20230242466A1 (en) Methods for producing halogenated alkene compound and fluorinated alkyne compound
JP5246327B2 (en) Method for producing fluorine-containing propene by gas phase fluorination
TWI777113B (en) The production method of cyclobutene
JPWO2011162335A1 (en) Method for producing 1,1-dichloro-2,2,3,3,3-pentafluoropropane
WO2024034583A1 (en) Method for producing halogenated alkene compound
WO2019230456A1 (en) Method for producing fluorine-containing propene
US10259761B2 (en) Method for producing fluorinated olefins
RU2793785C2 (en) Method for producing halogenated alkene compound and fluorinated alkyne compound
TWI836011B (en) Methods for producing halogenated alkyne compounds and methods for producing halogenated alkyne compounds
KR20100053815A (en) Process for the preparation of decafluorocyclohexene
JP2972912B2 (en) New fluorinated vinyl ether
WO2023286753A1 (en) Method for producing alkene
JP2021011474A (en) Manufacturing method of fluorinated vinyl compound
JP2023514239A (en) Method for producing iodofluoroalkane compound
JP2001261605A (en) Monofluoroethyl-1,1,2,2-tetrafluoroethyl ether and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852545

Country of ref document: EP

Kind code of ref document: A1