WO2024034557A1 - Puncturing technique assistance system, puncturing assistance image generation device, and puncturing assistance image generation method - Google Patents

Puncturing technique assistance system, puncturing assistance image generation device, and puncturing assistance image generation method Download PDF

Info

Publication number
WO2024034557A1
WO2024034557A1 PCT/JP2023/028708 JP2023028708W WO2024034557A1 WO 2024034557 A1 WO2024034557 A1 WO 2024034557A1 JP 2023028708 W JP2023028708 W JP 2023028708W WO 2024034557 A1 WO2024034557 A1 WO 2024034557A1
Authority
WO
WIPO (PCT)
Prior art keywords
puncture
auxiliary image
target point
image generation
tip
Prior art date
Application number
PCT/JP2023/028708
Other languages
French (fr)
Japanese (ja)
Inventor
登志一 大島
達夫 中本
Original Assignee
学校法人立命館
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人立命館 filed Critical 学校法人立命館
Publication of WO2024034557A1 publication Critical patent/WO2024034557A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography

Definitions

  • the present disclosure relates to a puncture technique assistance system, a puncture assistance image generation device, and a puncture assistance image generation method.
  • puncture techniques such as intravenous injection and thoracentesis have required highly skilled doctors.
  • both the blood vessel that is the target of puncture and the tip of the puncture needle are small in size.
  • the puncture needle that has entered the blood vessel and the body cannot be visually recognized. Therefore, the puncture procedure is very difficult.
  • Non-Patent Document 1 proposes a method of measuring the position and orientation of an ultrasound probe using a polygon model constructed in advance from a plurality of ultrasound tomograms, and superimposing and displaying the ultrasound tomograms. .
  • the present disclosure provides a puncture technique assistance system, a puncture assistance image generation device, and a puncture assistance image generation method that realize assistance in a puncture procedure.
  • the puncturing technique assisting system of the present disclosure is a puncturing technique assisting system used to assist puncturing techniques.
  • the puncture technique assistance system includes a probe, a measuring device, and a puncture assistance image generation device.
  • the probe acquires an arbitrarily specified tomographic image of the patient.
  • the measuring device measures the position and orientation of a puncture instrument used in a puncture procedure.
  • the puncture auxiliary image generation device generates auxiliary image data indicating the state of puncture based on the tomographic image and measurement data from the measuring device, and displays the auxiliary image data on a display.
  • the puncture auxiliary image generation device uses the measurement data to align the puncture device, the tomographic plane of the probe, and the puncture target point inside the patient's body, and the puncture needle of the puncture device, the tomographic plane, and the puncture target point obtained by the alignment. , generates auxiliary image data that indicates the positional relationship of the puncture target point and is superimposed on the tomographic image.
  • puncture technique assistance system puncture assistance image generation device, and puncture assistance image generation method of the present disclosure, it is possible to easily perform a puncture procedure in a short time.
  • puncture technique assistance system puncture assistance image generation device, and puncture assistance image generation method of the present disclosure, it is possible to perform a puncture procedure easily and in a short time.
  • FIG. 1 is a block diagram showing a puncture technique assistance system.
  • FIG. 2 is a schematic diagram illustrating puncturing using a puncturing instrument and an ultrasonic probe.
  • FIG. 2 is a schematic diagram showing the positional relationship of a measuring device, a mounting device, a puncture device, and an ultrasound probe.
  • FIG. 2 is a block diagram showing a puncture auxiliary image generation device.
  • FIG. 2 is a schematic diagram illustrating an input device of the puncture auxiliary image generation device.
  • FIG. 2 is a schematic diagram illustrating a puncturing device and a cone showing first data. It is another schematic diagram explaining a puncture device and 1st data.
  • FIG. 3 is a schematic diagram illustrating a puncture device and a first cone used to generate second data.
  • FIG. 3 is a schematic diagram illustrating a puncture device and a first cone used to generate second data.
  • FIG. 3 is a schematic diagram illustrating a puncturing device and a second cone used to generate second data.
  • FIG. 3 is a schematic diagram illustrating a puncture device and a third cone used to generate second data. It is a schematic diagram explaining the positional relationship between the tip of a puncture needle and a puncture target point.
  • FIG. 2 is a schematic diagram illustrating an example of the positional relationship between the ultrasound probe, the puncture needle, and the puncture target point when the tip of the puncture needle is far from the puncture target point.
  • 8A is a schematic diagram illustrating the positional relationship between the tomographic plane, the puncture target point, and the first cone in the case of FIG. 8A. FIG. This is an example of auxiliary image data in the case of FIG. 8A.
  • FIG. 7 is a schematic diagram illustrating another example of the positional relationship between the ultrasound probe, the puncture needle, and the puncture target point when the tip of the puncture needle approaches the puncture target point.
  • 9A is a schematic diagram illustrating the positional relationship between the tomographic plane, the puncture target point, the first cone, and the second cone in the case of FIG. 9A.
  • FIG. This is an example of auxiliary image data in the case of FIG. 9A.
  • This is an example of auxiliary image data when the puncture needle is not perpendicular to the tomographic plane.
  • FIG. 7 is a schematic diagram illustrating another example of the positional relationship between the ultrasound probe, the puncture needle, and the puncture target point when the tip of the puncture needle is the puncture target point.
  • FIG. 10A is a schematic diagram illustrating the positional relationship between the tomographic plane, the puncture target point, the first cone, and the second cone in the case of FIG. 10A.
  • FIG. This is an example of auxiliary image data in the case of FIG. 10A.
  • FIG. 7 is a schematic diagram illustrating another example of the positional relationship between the ultrasound probe, the puncture needle, and the puncture target point after the tip of the puncture needle passes the puncture target point.
  • FIG. 11A is a schematic diagram illustrating the positional relationship between the tomographic plane, the puncture target point, the first cone, and the second cone in the case of FIG. 11A. This is an example of auxiliary image data in the case of FIG. 11A.
  • 12 is a flowchart illustrating a process for generating an auxiliary image for a puncture technique.
  • 12A is a flowchart illustrating a part of the process in FIG. 12A in detail.
  • 3 is a flowchart illustrating processing for generating position and orientation data.
  • the puncture procedure assistance system can be used to assist a doctor in performing a puncture procedure on a patient.
  • Puncture procedure is an act in which a doctor inserts a puncture needle of a puncture device into a patient's body for treatment or diagnosis.
  • the puncture assist system will be used in a puncture procedure in which a doctor inserts a puncture needle into a blood vessel using a puncture instrument while checking ultrasound tomographic images using an ultrasound device in order to inject a drug into a patient's blood vessel.
  • puncture techniques include lumbar puncture, thoracentesis, ascites puncture, etc. in addition to puncturing blood vessels.
  • the puncture technique assistance system of the present disclosure can be used even in these cases.
  • the same configurations will be designated by the same reference numerals and the description will be omitted.
  • Tomographic plane refers to a plane inside the human body on which ultrasonic waves are transmitted by an ultrasonic device and an ultrasonic tomographic image is generated.
  • a tomographic image of a tomographic plane obtained using an ultrasound device is used.
  • other tomographic images can be used instead of the tomographic images obtained using the ultrasound device.
  • a tomographic image obtained using an X-ray device may be used.
  • a tomographic image obtained using a magnetic device may be used.
  • FIG. 1 shows an example of a puncture procedure assistance system according to an embodiment.
  • a puncture technique assistance system 1 includes a puncture assistance image generation device 10, a mounting device 30, and a measuring device 20.
  • the mounting device 30 is worn by a user who is a doctor who performs a puncture procedure.
  • the measuring device 20 measures the position and orientation of a specific object used in a puncture procedure.
  • this puncture procedure assistance system 1 is used by a doctor who is a user to puncture a patient using an ultrasound device 50 and a puncture instrument 40.
  • the example shown in FIG. 2 shows the positional relationship among the ultrasound probe 51 of the ultrasound device 50, the puncture device 40, and a part of the patient's body.
  • At least the mounting device 30, the measuring device 20, the ultrasound device 50, and the puncture device 40 exist in the same space.
  • the puncture auxiliary image generation device 10 may exist in another space as long as it can communicate with the other devices 20 to 40 via a network.
  • the puncture device 40 has a puncture needle 41 that is inserted into the patient's body.
  • the puncture device 40 is used for the purpose of inserting a puncture needle 41 into a patient's body and injecting a medical solution into the patient's body.
  • the ultrasound device 50 is used to obtain ultrasound tomographic images of a patient.
  • the ultrasound device 50 includes an ultrasound probe 51 and a processing device 52.
  • the ultrasonic probe 51 generates and transmits ultrasonic waves into the patient's body, and receives ultrasonic waves reflected within the body.
  • the processing device 52 uses the ultrasound received by the ultrasound probe 51 to generate an ultrasound tomographic image.
  • the ultrasound device 50 may have a display that displays ultrasound tomographic images. The user can grasp the internal state of the patient, the position of the puncture needle of the puncture instrument 40, etc. from the ultrasound tomographic image generated by the ultrasound device 50.
  • the ultrasound device 50 transmits the ultrasound tomographic image generated by the processing device 52 to the puncture auxiliary image generation device 10.
  • the measuring device 20 measures the positions and postures of the mounting device 30, the puncture device 40, and the ultrasound probe 51.
  • the measuring device 20 is an optical tracker having a light projecting means 21, a light receiving means 22, and a processing device 23.
  • the light projecting means 21 projects infrared light onto the reflector.
  • the reflector is attached to the mounting device 30, the puncture instrument 40, and the ultrasound probe 51 as a marker.
  • the light receiving means 22 receives the infrared light reflected by the reflector.
  • the processing device 23 processes the infrared light received by the light receiving means 22 and measures the positions and postures of the mounting device 30, the puncture device 40, and the ultrasound probe 51.
  • the measuring device 20 registers in advance the relationship between the shapes of the mounting device 30, the puncture instrument 40, and the ultrasonic probe 51 and the attachment positions of the plurality of reflectors attached to each as a target. Then, the measuring device 20 transmits the infrared light received by the light receiving means 22 to the puncturing auxiliary image generating device 10, the mounting device 30, the puncturing device 40, and the ultrasonic probe 51, which are measured by the processing device 23. The position and orientation of the device are transmitted as measurement data.
  • a passive type is shown in which the measuring device 20 has a light projecting means 21 and a light receiving means 22, and the marker is a reflector, but the present invention is not limited to this.
  • the measuring device 20 may adopt an active type.
  • the measuring device when the marker is a light-emitting means, the measuring device includes only a light-receiving means and does not include a light-emitting means, and measures the position of each marker by receiving the light emitted from the marker with the light-receiving means. This measures the position and orientation of the object.
  • the light projecting means 21 and the light receiving means 22 are configured as an integrated camera, for example.
  • the positions and postures of the mounting device 30, puncture instrument 40, and ultrasound probe 51 can be measured.
  • the measurement device 20 uses multiple cameras. . Therefore, the measuring device 20 includes multiple sets of light projecting means 21 and light receiving means 22.
  • the mounting device 30, the puncture instrument 40, and the ultrasound probe 51 whose positions and postures are to be measured are each equipped with a plurality of reflectors in advance.
  • the light receiving means 22 receives signals emitted from the light projecting means 21 and reflected by the reflector, and measures their positions and orientations.
  • the plurality of sets of light projecting means 21 and light receiving means 22 are preferably installed above and in front of the user, specifically, in front of the user's head. In other words, it is preferable to install it not on the back side of the user but above the user's hand side. Furthermore, it is preferable that the plurality of reflectors 60 be attached to the upper part of the ultrasound probe 51, specifically, on the side opposite to the ultrasound transmission/reception side. In this way, by installing the light projecting means 21 and the light receiving means 22 above the user and attaching the reflector 60 above the ultrasound probe 51, it is possible not only to prevent the user from being disturbed during the puncturing procedure.
  • the plurality of reflectors 60 of the mounting device 30 be attached above, specifically, on the top side of the user's head when wearing the device.
  • the plurality of reflectors 60 be attached above, specifically, on the distal side of the puncture needle 41 in the puncture device 40.
  • the positions and postures of the mounting device 30, puncture instrument 40, and ultrasound probe 51 are expressed using a world coordinate system expressed by the X-axis, Y-axis, and Z-axis, respectively. Thereby, the positional relationship between each device can also be specified.
  • Various positions and orientations to be described later are also based on this world coordinate system, but since they are displayed on the display 32 of the mounting device 30 for the user to see, each position and orientation is based on the viewpoint of the user of the mounting device 30. They are also relatively transformed and drawn in the transformed position and orientation.
  • the puncture auxiliary image generation device 10 generates auxiliary image data indicating the state of puncture by the puncture instrument 40 based on the ultrasound tomographic image received from the ultrasound device 50 and the measurement data received from the measurement device 20. Furthermore, the puncture auxiliary image generation device 10 transmits the generated auxiliary image data to the mounting device 30 and displays it on the display 32.
  • the configuration of the puncture auxiliary image generation device 10 will be described later using FIG. 4A.
  • the auxiliary image data includes first data showing the state of the puncture device 40 three-dimensionally in the surrounding environment image taken by the camera 31 of the mounting device 30, which will be described later, and first data showing the condition of the puncture device 40 in an ultrasound image. and second data two-dimensionally indicating the status of the instrument 40.
  • the mounting device 30 includes a camera 31 and a display 32.
  • the camera 31 photographs the surrounding environment.
  • the display 32 displays the surrounding environment image photographed by the camera 31 and the auxiliary image data received from the puncture auxiliary image generation device 10.
  • the mounting device 30 is a device that can be mounted on the user's head, and has a display that can display an image for puncturing assistance in conjunction with the direction of the head, such as a head-mounted display or smart glasses. It is. When using smart glasses, it is preferable that the smart glasses have a sense of stability on the user's head when worn, to the same extent as a head-mounted display, since instability will impede the puncturing procedure.
  • the camera 31 is attached to match the user's line of sight.
  • the surrounding environment photographed by the camera 31 is an image aligned with the user's line of sight.
  • the surrounding environment photographed by the camera 31 is the surrounding environment that can be visually recognized by the user when the mounting device 30 is not worn. If the user is facing forward, the camera 31 will photograph the front of the user, and if the user is facing toward the user, the camera 31 will photograph the user's hand.
  • the mounting device 30 includes separate displays 32 for the right eye and for the left eye, and each display 32 displays a stereoscopic image that takes into account actual parallax.
  • the mounting device 30 may separately include a camera 31 that captures a left-eye image to be displayed on the right-eye display 32 and a camera 31 that captures a left-eye image to be displayed on the left-eye display 32. preferable.
  • the puncture auxiliary image generation device 10 is an information processing device such as a personal computer that includes a control device 11, a storage device 12, and a communication device 13. Furthermore, the puncture auxiliary image generation device 10 can include an input device 14 and an output device 15.
  • the control device 11 is a controller that controls the entire puncture auxiliary image generation device 10.
  • the control device 11 reads and executes a computer program stored in the storage device 12, thereby realizing various processes for generating auxiliary image data.
  • the control device 11 may realize a predetermined function by cooperation between a general-purpose computer that is hardware and software, or may be a hardware circuit designed exclusively for realizing a predetermined function.
  • the control device 11 can be realized by various processors such as a CPU, MPU, GPU, FPGA, DSP, and ASIC.
  • the storage device 12 is a recording medium that records various information.
  • the storage device 12 is realized by, for example, a RAM, a ROM, a flash memory, an SSD (Solid State Drive), a hard disk drive, another storage device, or an appropriate combination thereof.
  • the storage device 12 stores computer programs executed by the control device 11 and various data used to generate auxiliary image data.
  • the communication device 13 is a communication means according to the specifications of the external device to enable data communication with external devices (for example, the measuring device 20, the mounting device 30, the ultrasonic device 50, etc.).
  • the above-mentioned data communication is wired and/or wireless data communication, and may be performed according to a communication specification designed specifically for the device or a known communication standard.
  • wired data communication is a communication controller of a semiconductor integrated circuit that operates in accordance with video signal standards such as HDMI (registered trademark), Ethernet (registered trademark) standards, and/or USB (registered trademark) standards, etc. This is done by using it as the device 13.
  • wireless data communication is based on Bluetooth, which is a short-range wireless communication standard for digital devices, the IEEE802.11 standard for LAN (Local Area Network), and/or the fourth generation so-called 4G/5G for mobile communication. /This is performed by using, as the communication device 13, a communication controller of a semiconductor integrated circuit that operates in accordance with a fifth generation mobile communication system or the like.
  • the input device 14 may be an operation button, a keyboard, a touch panel, a microphone, etc., which are used for operations for generating and displaying auxiliary image data and inputting data. Since the puncture auxiliary image generation device 10 is used during a puncture procedure, it is not preferable for the user's hands to use input means such as a keyboard. Therefore, even a pedal that the user does not use during a puncture procedure can be used as the input device 14. Specifically, as the input device 14, pedals 141 to 143 as shown in FIG. 4B may be installed in advance at the user's feet.
  • the output device 15 may be a display, a speaker, or the like that is used to output signals and data for generating and displaying auxiliary image data.
  • the auxiliary image data generated by the puncture auxiliary image generation device 10 is displayed on the display 32 of the mounting device 30.
  • the puncture auxiliary image generation device 10 may display the image displayed on the display 32 on a display, which is the output device 15, so that the image displayed on the display 32 can be viewed by a user other than the user wearing the mounting device 30. This allows, for example, a doctor in training who does not wear the mounting device 30 to easily understand the puncture technique by referring to the image displayed on the display 32 of the mounting device 30.
  • the puncture auxiliary image generation device 10 upon receiving a request signal for generating and displaying auxiliary image data, executes a series of processes for generating auxiliary image data. Specifically, the puncture auxiliary image generation device 10 executes each process in the control device 11 as a process of generating auxiliary image data.
  • This request for generation and display of auxiliary image data is operated, for example, by pressing the pedal 141 described using FIG. 4B.
  • a mode is set in which generation and display of auxiliary image data is enabled, and auxiliary image data is continuously generated and displayed every frame until this mode is canceled.
  • the pedal 141 again, the auxiliary image data generation and display mode is canceled and the auxiliary image data is not displayed.
  • the control device 11 acquires measurement data indicating the positions and postures of the mounting device 30, the puncture device 40, and the ultrasound probe 51 from the measurement device 20. Further, the control device 11 generates an ultrasound tomographic image from the ultrasound device 50 . The control device 11 uses the acquired measurement data and the ultrasonic tomographic image to generate auxiliary image data including first data and second data.
  • the first data is information that three-dimensionally indicates the positional relationship between the puncture target point and the puncture needle 41, and is superimposed on the surrounding environment image.
  • the second data is information that indicates the positional relationship between the puncture target point, the puncture needle 41, and the tomographic plane, and is superimposed on the ultrasound tomographic image.
  • the control device 11 transmits the generated auxiliary image data to the mounting device 30 and displays it on the display 32. At this time, the control device 11 superimposes the ultrasonic tomographic image on the real environment image including at least a part of the patient's body, the puncture device 40, and the ultrasonic probe 51 photographed by the camera 31, and It is preferable to display each image on the display 32 by superimposing auxiliary image data on the sonic tomographic image.
  • control device 11 performs processing such as generation of auxiliary image data and display of each image data on the display 32 for the right eye in order to generate a stereoscopic image with parallax. It is preferable to perform this separately for the left eye and for the left eye.
  • the "information indicating the positional relationship" included in the auxiliary image data includes a "guide figure” indicating the positional relationship between the tip of the puncture needle 41 and the puncture target point.
  • the "guide figure” included in the first data is a puncture needle 41 whose apex is the puncture target point and is set by the user's instruction when the tip of the puncture needle 41 contacts the skin to be punctured. It is a cone whose base is a plane perpendicular to the puncture needle 41 with the tip of the puncture needle 41 as its center. In this embodiment, an example in which the cone used as the first data is a cone will be described.
  • the diameter of the bottom surface of the cone is not limited, and can be determined, for example, by the ratio to the height of the cone.
  • the "guide figure" included in the second data is represented by a cross section of a plurality of pyramids provided with the puncture needle 41 as an axis, with the tomographic plane as a reference.
  • the plurality of cones used to generate the second data are also cones. Therefore, the cross section of the cone is circular.
  • the pyramid is not limited to a cone, but may be a pyramid such as a square pyramid.
  • the tomographic plane is not necessarily obtained perpendicularly to the central axes of the plurality of cones, so it may be an ellipse instead of a perfect circle.
  • the cross section of the first cone is shown by a broken line
  • the cross section of the second cone is shown by a chain line
  • the cross section of the third cone is shown by a chain double dot line.
  • FIGS. 5A and 5B show cones used as the first data.
  • the cone serving as the first data is set with the puncture target point T as the apex, the puncture target point as the apex, the tip 411 of the puncture needle 41 as the center, and a plane perpendicular to the puncture needle 41 as the base.
  • This cone itself is three-dimensionally superimposed on the surrounding environment image as first data.
  • the position of the puncture needle 41 is indicated by a solid line Ln
  • the extension line of the puncture needle is indicated by a broken line Le.
  • the first data may include these lines Ln and Le.
  • a broken line shows an example of a cross section of the first cone used to generate the second data, specifically, a vertical cross section along the central axis of the first cone.
  • the first cone has a central axis L of the puncture needle 41 as its central axis, and has an apex P1 located a first predetermined distance L1 behind the tip of the puncture needle 41, and when the tip of the puncture needle 41 approaches the puncture target point. , the cross section of the first cone in the tomographic plane is formed to be small.
  • the apex P1 of the first cone is located a predetermined distance L1 from the tip of the puncture needle 41 toward the main body of the puncture instrument 40, and the bottom surface of the first cone is located in the puncturing direction.
  • a cross section taken on a tomographic plane by ultrasound transmitted and received by the first conical ultrasound probe 51 will be referred to as a first cross section.
  • the height of each cone is adjusted as appropriate depending on the puncturing operation during use. More specifically, during puncturing, the length is preferably greater than the distance that the puncturing instrument 40 moves and the distance that the tip of the puncturing needle 41 moves.
  • FIG. 6B shows an example of a cross section of the second cone, specifically, a vertical cross section (dotted chain line) along the central axis of the second cone. Note that in FIG. 6B, a longitudinal section (broken line) of the first cone is also shown for reference.
  • the second cone has the central axis L of the puncture needle 41 as its central axis, and has an apex P2 located a second predetermined distance L2 ahead from the tip of the puncture needle 41, and when the tip of the puncture needle 41 approaches the puncture target point.
  • the cross section of the second cone at the fault plane is formed to be large.
  • the apex P2 of the second cone is located on the central axis L of the puncture needle 41 at a predetermined distance L2 from the tip of the puncture needle 41 in the opposite direction to the main body of the puncture instrument 40, and The bottom surface exists on the main body side of the puncture device 40.
  • the cross section taken by the ultrasonic waves transmitted and received by the second conical ultrasonic probe 51 will be referred to as a second cross section.
  • the first cone and the second cone intersect with each other at a position perpendicular to the central axis at the tip of the puncture needle 41, with their respective cone side surfaces (the oblique sides in the figure) intersecting each other.
  • FIG. 6C shows an example of a cross section of the third cone, specifically, a vertical cross section (double-dashed line) along the central axis of the third cone.
  • a longitudinal section (dotted chain line) of the second cone is also shown for reference.
  • the third cone has the central axis L of the puncture needle 41 as its central axis, the tip of the puncture needle 41 as the apex P3, and the puncture needle 41 moves away from the puncture target point after the tip of the puncture needle 41 passes the puncture target point. It is formed so that the cross section becomes large. Further, the third cone is formed such that the slope of the cone side surface is gentler than that of the second cone.
  • the apex P3 of the third cone exists at the tip of the puncture needle 41, and the bottom surface of the third cone exists on the main body side of the puncture instrument 40.
  • the third cone has a gentler oblique side than the second cone, the oblique side of the second cone and the oblique side of the third cone are closer to the main body of the puncture instrument 40 than the tip of the puncture needle 41. Cross on the sides.
  • the length specified at the intersection of the tip of the puncture needle 41, the oblique side of the second cone, and the oblique side of the third cone is defined as a third predetermined distance L3.
  • the second cone and the third cone are located at a position perpendicular to the central axis L at a position retracted a third predetermined distance from the tip of the puncture needle 41 toward the main body of the puncture device 40.
  • the sides of the pyramid (the hypotenuses in the figure) intersect.
  • the cross section taken by the ultrasonic waves transmitted and received by the third conical ultrasonic probe 51 is referred to as the third cross section.
  • the puncture auxiliary image generation device 10 generates second data of auxiliary image data that includes the position of the puncture target point and the above-mentioned first to third cross sections as guide figures.
  • “C” indicates the patient's skin surface
  • "U” indicates the ultrasonic wave U (position of the tomographic plane) transmitted and received by the ultrasound probe 51
  • "T” indicates the puncture target point.
  • (1) to (5) are respectively (1) the state before puncturing, (2) the state after puncturing where the tip of the puncturing needle 41 is away from the puncturing target point T, and (3) the state of the puncturing needle 41.
  • a state in which the tip of the puncture needle 41 is close to the puncture target point T, (4) a state in which the tip of the puncture needle 41 has reached the puncture target point T, and (5) a state in which the tip of the puncture needle 41 has passed the puncture target point T are shown.
  • An example of auxiliary image data in each of these states will be explained using FIGS. 8A to 11C.
  • FIG. 8A is a schematic diagram illustrating how a doctor punctures a blood vessel B of a patient while referring to an ultrasound tomographic image obtained by the ultrasound probe 51.
  • the puncture needle 41 puncturing the patient is shown by a broken line.
  • FIG. 8A shows a state in which puncture has started ((2) in FIG. 7), and before the distance between the tip of the puncture needle 41 and the puncture target point T of the patient's blood vessel B reaches the second predetermined distance L2. Show the situation.
  • the puncture target point T is located on the blood vessel B where the tomographic plane defined by the path of the ultrasound wave U transmitted and received by the ultrasound probe 51 and the extension line of the puncture needle 41 intersect.
  • the doctor changes the inclination of the ultrasound probe 51 and changes the inclination of the puncture instrument 40, as shown by the arrow in FIG. Also move. Thereby, the doctor can find the puncture target point T where the extension line of the puncture needle 41 and the blood vessel B intersect on the tomographic plane defined by the path of the ultrasound wave U.
  • the tip of the puncture needle 41 is distal from the puncture target point T, specifically, at a position farther than the predetermined distance L2.
  • the first cone is a conical shape that spreads toward the front side of the puncture, with the apex P1 located a predetermined distance L1 behind the tip of the puncture needle 41 as a reference.
  • the second cone has a conical shape that spreads toward the rear of the puncture, with the apex P2 located a predetermined distance L2 ahead of the tip of the puncture needle 41 as a reference.
  • the third cone has a conical shape that widens toward the rear of the puncture needle 41 with the tip of the puncture needle 41 as a reference. Therefore, as shown in FIG. 8B, in the tomographic plane defined by the ultrasonic waves U transmitted and received by the ultrasonic probe 51, only the first cross section is obtained by the first to third cones.
  • the second data of the auxiliary image data includes only the outer periphery of the first cross section and the puncture target point T. Therefore, the distance between the tip of the puncture needle 41 and the puncture target point T is at least a predetermined distance L2 defined by the apex P2 of the second cone and the intersection of the hypotenuses of the first cone and the second cone.
  • the second data includes only the puncture target point T and the first cross section. Then, as the distance between the puncture target point T and the tip of the puncture needle 41 becomes smaller, the size of the first cross section becomes smaller. Therefore, the user who confirms the second data, which is the guide figure, can grasp the degree of insertion of the puncture needle 41 according to the size of the first cross section.
  • FIG. 9A shows a state in which the puncture progresses and the tip of the puncture needle 41 approaches the puncture target point T within the second predetermined distance L2 ((3) in FIG. 7).
  • the second cone is a conical shape that spreads toward the rear side of the puncture needle 41 with reference to the apex P2 at a predetermined position forward from the tip of the puncture needle. Therefore, as shown in FIG. 9B, the cross sections obtained by the plurality of cones in the tomographic plane based on the ultrasonic wave U are a first cross section and a second cross section.
  • the second data of the auxiliary image data includes the outer circumference of the first cross section, the outer circumference of the second cross section existing inside the first cross section, and the puncture target point T. Therefore, the distance between the tip of the puncture needle 41 and the puncture target point T is within a predetermined distance L2 defined by the apex P2 of the second cone and the intersection of the hypotenuses of the first cone and the second cone.
  • the second data includes the puncture target point T, the first cross section, and the second cross section located within the first cross section.
  • the user who confirms the second data can grasp the degree of insertion of the puncture needle 41 according to the sizes of the first cross section and the second cross section.
  • the puncture needle 41 is no longer perpendicular to the tomographic plane due to a change in the inclination of the ultrasound probe 51, the first cross section and the second cross section will not be a perfect circle, as shown in FIG. 9D. It becomes an ellipse. Therefore, by checking the second data, the user can grasp the degree to which the puncture needle 41 has reached the puncture target point T as well as the degree of inclination of the puncture needle 41.
  • FIG. 10A shows a state in which the puncture progresses further and the tip of the puncture needle 41 reaches the puncture target point T ((4) in FIG. 7).
  • the first cone and the second cone are arranged at a position perpendicular to the central axis at the tip of the puncture needle 41 so that their hypotenuses overlap. Therefore, when the puncture needle 41 is inserted perpendicularly to the tomographic plane based on the ultrasonic wave U and the tip of the puncture needle 41 reaches the puncture target point T as shown in FIG.
  • the cross section shown is a state in which the first cross section and the second cross section overlap. Therefore, as shown in FIG.
  • the second data when the tip of the puncture needle 41 reaches the puncture target point T, the second data indicates that the first cross section and the second cross section overlap with the puncture target point T. include.
  • the state in which the first cross section and the second cross section overlap is shown by a solid line, but the display method is not limited as long as it is possible to understand that they overlap.
  • the user who checks the second data of the auxiliary image data understands that the tip of the puncture needle 41 has reached the puncture target point T by understanding the state in which the first cross section and the second cross section overlap. be able to.
  • FIG. 11A shows a state in which the tip of the puncture needle 41 has passed through the puncture target point T on the blood vessel B ((5) in FIG. 7).
  • the cross sections obtained by the plurality of cones are the first cross section, the second cross section, and the third cross section on the tomographic plane based on the ultrasonic wave U.
  • FIG. 11B shows the cross sections obtained by the plurality of cones.
  • the second data of the auxiliary image data includes the puncture target point T, the outer periphery of the first cross section, the outer periphery of the third cross section located on the outer periphery of the first cross section, and the second data of the auxiliary image data. and the outer periphery of the cross section of 2.
  • the second cone and the third cone have different apex positions and different inclinations of the side surfaces of the cone. Therefore, there is a portion where the hypotenuses of the second cone and the third cone intersect. As a result, the second outer periphery is on the outside up to the intersection, but the third outer periphery is on the outside from the intersection.
  • the second data includes the first cross section within the second cross section. Further, depending on the degree of insertion depth of the tip of the puncture needle 41, specifically, when the passage of the puncture target point T of the tip of the puncture needle 41 is shorter than the predetermined distance L3, the third cross section becomes the second cross section. This will be the inside of the cross section. When the passage of the puncture target point T of the tip of the puncture needle 41 is longer than the predetermined distance L3, the second cross section becomes inside the third cross section.
  • the puncture target point T is shown as a cross
  • the first cross section is shown with a broken line
  • the second cross section is shown with a dashed line
  • the third cross section is shown with a dashed double dotted line.
  • the overlap between the first cross section and the second cross section is shown by a solid line
  • the present invention is not limited thereto.
  • the puncture target point T may be shown by a dot or a circle.
  • each cross section may be shown as solid lines in different colors.
  • the puncture auxiliary image generation device 10 receives position and orientation data acquired by the measurement device 20 from the measurement device 20 (S001).
  • the position and orientation data includes information indicating the positions and orientations of the puncture device 40, the ultrasound probe 51, and the mounting device 30. Note that acquisition of position and orientation data in the measuring device 20 will be described later using a flowchart shown in FIG.
  • the puncture auxiliary image generation device 10 acquires video data captured by the camera 31 of the mounting device 30 and displays it on the output device 15 (S002).
  • the puncture auxiliary image generation device 10 generates data for a calibration process (first calibration data) for the video data acquired in step S002 for a calibration process that specifies the tip of the puncture needle 41 in the puncture instrument 40 later. data). At the same time, the puncture auxiliary image generation device 10 receives data for a calibration process (second calibration data) for a calibration process that specifies the position of the tip of the ultrasound probe 51 (S003).
  • the data for the calibration process (first data for calibration) is "difference correction data" between the position and orientation of the tip of the puncture needle 41 and the position and orientation of the puncture instrument 40 received in step S001.
  • the data for calibration processing is "difference correction data" between the position and orientation of the tip of the ultrasound probe 51 and the measured position and orientation of the ultrasound probe 51 received in step S001. be.
  • the calibration processing data (first calibration data and second calibration data) received in step S003 is used for calibration processing, that is, the position and measurement of the tips of the puncture needle 41 and the ultrasound probe 51.
  • This is difference correction data that corrects the deviation from the position that was specified.
  • the puncture auxiliary image generation device 10 performs a calibration process for specifying the position of the tip of the puncture needle 41 in the puncture instrument 40, and a calibration process for specifying the position of the tip of the ultrasound probe 51 (S004).
  • the calibration process uses the position and orientation of the puncture instrument 40 and the ultrasound probe 51 included in the position and orientation data received from the measuring device 20 in step S001, and the data for the calibration process received in step S003. Thereby, the tip of the puncture needle 41 and the tip of the ultrasound probe 51 are identified, and subsequent processing is executed.
  • the puncture auxiliary image generation device 10 acquires an ultrasound tomographic image obtained by the ultrasound probe 51 (S005).
  • the puncture auxiliary image generation device 10 acquires video data of the real environment captured by the camera 31 mounted on the mounting device 30 (S006).
  • the video data of the real environment acquired here includes the state of the real environment that would be visible if the user was not wearing the mounting device 30.
  • the video data of the real environment includes the skin near the affected area of the patient, as well as the puncture device 40 and the ultrasound probe 51.
  • the puncture auxiliary image generation device 10 causes the display 32 of the mounting device 30 to display the video data acquired in step S006 as a real environment video (S007).
  • the puncture auxiliary image generation device 10 trims the video data acquired in step S006. You may perform processing such as the following.
  • the puncture auxiliary image generation device 10 causes the display 32 of the mounting device 30 to display the ultrasound tomographic image acquired in step S005 (S008). At this time, the puncture auxiliary image generation device 10 superimposes the ultrasound tomographic image on the corresponding position on the real environment image displayed in step S007. Specifically, the puncture auxiliary image generation device 10 uses the position of the ultrasound probe 51 and the position of the mounting device 30 indicated by the position and orientation data received in step S001 to generate an ultrasound tomographic image on the real environment image. Determine the position.
  • the puncture auxiliary image generation device 10 generates auxiliary image data (S009). Details of the generation of auxiliary image data will be explained using the flowchart shown in FIG. 12B.
  • the puncture auxiliary image generation device 10 displays the auxiliary image data generated in step S009 on the display 32 of the mounting device 30 (S010). At this time, the puncture auxiliary image generation device 10 superimposes the first data of the auxiliary image data on the real environment video displayed in step S007. Furthermore, the puncture auxiliary image generation device 10 superimposes the second data of the auxiliary image data on the corresponding position on the ultrasound tomographic image displayed in step S008.
  • the puncture auxiliary image generation device 10 uses the position of the ultrasound probe 51 and the position of the mounting device 30 indicated by the position and orientation data received in step S001, and the position of the ultrasound tomographic image determined in step S010. , determine the position of auxiliary image data on the real environment image and on the ultrasound tomographic image.
  • each procedure of the puncture technique assistance method is not limited to the processing order shown in FIG. 12A.
  • the acquisition of the positions and postures of the puncture instrument 40, the ultrasound probe 51, the mounting device 30, etc. may be performed simultaneously.
  • display of the real environment image, ultrasound tomographic image, and auxiliary image data on the display of the mounting device 30 may also be performed simultaneously.
  • the puncture auxiliary image generation device 10 When the puncture auxiliary image generation device 10 receives a request for puncture target registration (YES in S101), it registers the intersection of the tomographic plane and the central axis of the puncture needle 41 as a "puncture target point" (S102).
  • the request for "puncture target registration” is generally set at the time when the user, such as a doctor performing the puncture procedure, punctures the skin with the puncture needle at the beginning of the puncture procedure. Furthermore, once a puncture target point is registered, the already registered puncture target point is used for frames of video data that are subsequently acquired.
  • the puncture auxiliary image generation device 10 guides the position of the "tomographic plane” where ultrasound waves are transmitted and received based on the position and orientation of the ultrasound probe 51 acquired in step S001.
  • the image representing this tomographic plane is the ultrasound tomographic image acquired in step S005.
  • the puncture auxiliary image generation device 10 guides the "central axis of the puncture needle” in three-dimensional space based on the position and orientation of the puncture instrument 40 acquired in step S001.
  • the puncture auxiliary image generation device 10 registers the intersection of the thus derived “tomographic plane” and the "central axis of the puncture needle” as a "puncture target point.”
  • the user can request registration of a puncture target point by pressing the pedal 143 shown in FIG. 4B.
  • the puncture auxiliary image generation device 10 when receiving the instruction to register a puncture target, registers the position of the tip of the puncture needle 41 as a "puncture starting point" (S103).
  • the puncture auxiliary image generation device 10 determines the "puncture needle tip position" in the three-dimensional space based on the position and orientation of the puncture device 40 acquired in step S001 and the size of the puncture device 40 stored in advance in the storage device 12. ”.
  • the puncture auxiliary image generation device 10 draws the mark of the puncture target point registered in step S102 (S104). Note that if there is no instruction to register the puncture target (NO in S101), the puncture target point is registered in the previous frame, so the puncture target point is registered based on the puncture target point registered in the previous frame. Draw a mark.
  • the puncture auxiliary image generation device 10 generates a cone, which is part of the first data, whose axis is a line connecting the puncture start point registered in step S103 to the puncture target point registered in step S102, and whose apex is the puncture target point. is drawn (S105). This cone allows the direction of the puncture needle 41 to be indicated.
  • the puncture auxiliary image generation device 10 draws a line segment indicating the position of the puncture needle 41 as part of the first data (S106). For example, the puncture auxiliary image generation device 10 draws a line segment indicating the position of the puncture needle 41, as shown by line Ln in FIG. 5B. In relation to the drawing of the main line segment, in order to make the state of the puncture needle 41 visible, the line segment is drawn not as an intersection on a tomographic image but as a line segment for grasping the three-dimensional position of the puncture needle 41. The direction of the main line segment is made to coincide with the direction about the puncture needle 41 as the axis. The puncture auxiliary image generation device 10 guides the position of the puncture needle 41 based on the position and orientation of the puncture instrument 40 acquired in step S001.
  • the puncture auxiliary image generation device 10 draws a line segment indicating the extension of the puncture needle 41 as part of the first data (S107). For example, the puncture auxiliary image generation device 10 draws a line segment three-dimensionally indicating the position of the extension of the puncture needle 41, as shown by line Le in FIG. 5B. At this time, the puncture auxiliary image generation device 10 draws at least an extension line of the puncture needle 41 from the tip of the puncture needle 41 to the tomographic plane. Also, at this time, the puncture auxiliary image generation device 10 draws an extension line of the puncture needle 41 in a state where at least either the color or the line type is different from the puncture needle 41 drawn in step S106. The puncture auxiliary image generation device 10 guides the extension line of the puncture needle 41 based on the position and orientation of the puncture instrument 40 acquired in step S001.
  • the puncture auxiliary image generation device 10 draws an intersection mark at the intersection of the central axis of the puncture needle 41 and the tomographic plane as part of the first data (S108).
  • the puncture auxiliary image generation device 10 guides the central axis of the puncture needle 41 based on the position and orientation of the puncture instrument 40 acquired in step S001.
  • the puncture auxiliary image generation device 10 bases the tomographic plane on the position and orientation of the ultrasound probe 51 acquired in step S001. Since the tomographic plane changes in accordance with the inclination of the ultrasound probe 51, the position of the intersection between the central axis of the puncture needle 41 and the tomographic plane also changes in accordance with the change in the tomographic plane. In this way, the puncture auxiliary image generation device 10 generates the first data through the processes of steps S105 to S108.
  • the puncture auxiliary image generation device 10 generates, as part of the second data, a cross-section in a tomographic plane of a first cone that has its apex at a position a predetermined distance L1 behind the tip of the puncture needle 41 and opens toward the puncture direction.
  • a certain first cross section is drawn (S109). This first cross section shows the depth of the puncture needle 41. Specifically, as the first cross section becomes smaller, the puncture depth of the puncture needle 41 becomes deeper.
  • the puncture auxiliary image generation device 10 generates, as part of the second data, a tomographic plane of a second cone that opens rearward from the puncture direction side and has its apex at a position a predetermined distance L2 ahead of the tip of the puncture needle 41.
  • a second cross section is drawn (S110). This second cross section shows the degree to which the tip of the puncture needle 41 approaches the tomographic plane. Specifically, when the tip of the puncture needle 41 approaches the puncture target point T within a second predetermined distance L2, the second cross section is drawn, and when the puncture depth of the puncture needle 41 becomes deeper, The second cross section becomes larger.
  • the puncture auxiliary image generation device 10 generates, as part of the second data, a third cross section that is a cross section of a third cone that has the tip of the puncture needle 41 as its apex and opens rearward from the puncture direction side. is drawn (S111).
  • This third cross section shows the degree to which the tip of the puncture needle 41 has passed through the tomographic plane. Specifically, when the tip of the puncture needle 41 passes the puncture target point T, a third cross section is drawn, and as the passing distance increases, the third cross section becomes larger. In this way, the second data is generated by the processing of steps S109 to S111.
  • the measuring device 20 acquires image data using a plurality of light projecting means 21 and light receiving means 22 (S201).
  • markers used for specifying the positions and postures of the puncture device 40, the ultrasound probe 51, and the mounting device 30 are attached in advance to the puncture device 40, the ultrasound probe 51, and the mounting device 30.
  • the image data observed by the light receiving means 22 includes markers attached to the puncture device 40, the ultrasound probe 51, and the mounting device 30.
  • the measuring device 20 generates position and orientation data in the processing device 23 using the image data acquired in step S201 (S202). Specifically, the processing device 23 processes the markers attached to the puncture device 40, the ultrasound probe 51, and the mounting device 30 for each corresponding frame of a plurality of image data, that is, for each frame acquired at the same timing. Detect position and orientation. The processing device 23 also generates position and orientation data. The position and orientation data indicates the positions and orientations of the puncture instrument 40, the ultrasound probe 51, and the mounting device 30 using the unified coordinate system as described above. For example, when the wearing device 30 is a head-mounted display, the puncture auxiliary image generation device 10 can determine the position and posture of the head of the user who wears the wearing device 30. It is possible to determine which direction the user's head is facing.
  • the measurement device 20 transmits the position and orientation data generated in step S202 to the puncture auxiliary image generation device 10 (S005).
  • the position and orientation data transmitted by the measuring device 20 in step S202 is received by the puncture auxiliary image generation device 10 in step S001.
  • the generation and transmission of position and orientation data by the measuring device 20 shown in FIG. 13 are repeatedly and continuously performed, for example, while the puncturing auxiliary image generation device 10 assists the puncturing procedure.
  • the process shown in the flowchart shown in FIG. 13 continues to operate asynchronously with the process shown in the flowchart shown in FIG. 12A while the process shown in the flowchart shown in FIG. 12A is executed. Therefore, the puncture auxiliary image generation device 10 uses the position and orientation data continuously received from the measurement device 20 to acquire the positions and orientations of the puncture instrument 40, ultrasound probe 51, and mounting device 30 in real time, and performs puncture. It can be used to generate auxiliary images for procedures.
  • the puncture auxiliary image generation device 10 generates first data that three-dimensionally indicates the positional relationship between the puncture target point T and the puncture needle 41, which is generated according to the puncture target point T and the puncture start point. generate.
  • the puncture auxiliary image generation device 10 displays first to third cross sections whose display states differ depending on the distance between the puncture needle 41 and the puncture target point T and the depth of the puncture needle 41, as well as the puncture target point T. generating second data containing the second data;
  • the puncture auxiliary image generation device 10 displays the first data superimposed on the surrounding environment image, and displays the first data superimposed on the ultrasound tomographic image.
  • the puncture technique assistance system 1 superimposes and displays auxiliary image data including first data and second data representing the puncture situation in addition to the ultrasonic tomographic image on the user's environmental video. , to realize mixed reality (MR).
  • MR mixed reality
  • the user of the puncture procedure assistance system 1 can check the auxiliary image data, which is a guide figure that indicates the distance between the puncture target point T and the puncture needle 41, which cannot be fully grasped using ultrasound tomograms alone.
  • the puncturing situation of the puncturing needle 41 can be grasped.
  • the puncture procedure assistance system, puncture assistance image generation device, and puncture assistance image generation method of the present disclosure are useful for assisting puncture procedures.
  • Puncture technique assistance system 10 Puncture assistance image generation device 11 Control device 12 Storage device 13 Communication device 14 Input device 15 Output device 20 Measuring device 21 Light projecting means 22 Light receiving means 23 Processing device 30 Mounting device 31 Camera 32 Display 40 Puncture instrument 41 Puncture needle 50 Ultrasonic device 51 Ultrasonic probe 52 Processing device

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

Provided is a puncturing technique assistance system that makes a puncturing technique easy. The puncturing technique assist system is used to assist puncturing techniques. The puncturing technique assist system includes a probe, a measurement device, and a puncturing assistance image generation device. The probe acquires a patient tomographic image which was freely specified. The measurement device measures a position and an attitude of a puncturing instrument used in the puncturing technique. The puncturing assistance image generation device generates, on the basis of the tomographic image and measurement data from the measurement device, assistance image data indicating a state of the puncturing, and displays the assistance image data on a display. The puncturing assistance image generation device: uses the measurement data to position the puncturing instrument, a fault plane of the probe, and a puncture target point on the body of the patient; indicates the positional relationships, obtained through the positioning, between a puncture needle of the puncturing instrument, the fault plane, and the puncture target point; and generates the assistance image data to be superimposed on the tomographic image.

Description

穿刺手技補助システム、穿刺補助画像生成装置及び穿刺補助画像生成方法Puncture technique assistance system, puncture assistance image generation device, and puncture assistance image generation method
 本開示は、穿刺手技補助システム、穿刺補助画像生成装置及び穿刺補助画像生成方法に関する。 The present disclosure relates to a puncture technique assistance system, a puncture assistance image generation device, and a puncture assistance image generation method.
 従来から、静脈注射や胸腔穿刺等の穿刺手技は、医師の熟練した技術が要求されてきた。例えば、穿刺の目標である血管及び穿刺針の先端の双方のサイズが小さい。加えて、血管及び体内に侵入した穿刺針は、目視では視認することができない。したがって、穿刺手技は、非常に困難である。また、体内での穿刺針の状況等は、目視で容易に把握することができないため、若い医師による技術の習得も困難であった。より多くの医師によって容易かつ短時間で穿刺手技が可能となれば、患者の負担も軽減され、また、患者は迅速に必要な処置を受けることができる。 Conventionally, puncture techniques such as intravenous injection and thoracentesis have required highly skilled doctors. For example, both the blood vessel that is the target of puncture and the tip of the puncture needle are small in size. In addition, the puncture needle that has entered the blood vessel and the body cannot be visually recognized. Therefore, the puncture procedure is very difficult. Furthermore, since the condition of the puncture needle inside the body cannot be easily grasped visually, it has been difficult for young doctors to learn the technique. If more doctors can perform puncture procedures easily and in a short time, the burden on patients will be reduced, and patients will be able to receive necessary treatment quickly.
 非特許文献1には、事前に複数の超音波断層像から構築したポリゴンモデルを用いて、超音波プローブの位置及び姿勢を計測して、超音波断層像を重畳表示する手法が提案されている。 Non-Patent Document 1 proposes a method of measuring the position and orientation of an ultrasound probe using a polygon model constructed in advance from a plurality of ultrasound tomograms, and superimposing and displaying the ultrasound tomograms. .
 本開示は、穿刺手技の補助を実現する穿刺手技補助システム、穿刺補助画像生成装置及び穿刺補助画像生成方法を提供する。 The present disclosure provides a puncture technique assistance system, a puncture assistance image generation device, and a puncture assistance image generation method that realize assistance in a puncture procedure.
 本開示の穿刺手技補助システムは、穿刺手技の補助に利用される穿刺手技補助システムである。穿刺手技補助システムは、プローブと、計測装置と、穿刺補助画像生成装置とを備える。プローブは、患者の任意に指定する断層像を取得する。計測装置は、穿刺手技に利用される穿刺器具の位置及び姿勢を計測する。穿刺補助画像生成装置は、断層像及び計測装置による計測データに基づいて、穿刺の状態を示す補助画像データを生成し、当該補助画像データをディスプレイに表示させる。穿刺補助画像生成装置は、計測データを用いて、穿刺器具、プローブの断層面、及び、患者体内の穿刺目標点の位置合わせし、位置合わせによって得られた穿刺器具の穿刺針、断層面、及び、穿刺目標点の位置関係を示し、断層像に重畳する補助画像データを生成する。 The puncturing technique assisting system of the present disclosure is a puncturing technique assisting system used to assist puncturing techniques. The puncture technique assistance system includes a probe, a measuring device, and a puncture assistance image generation device. The probe acquires an arbitrarily specified tomographic image of the patient. The measuring device measures the position and orientation of a puncture instrument used in a puncture procedure. The puncture auxiliary image generation device generates auxiliary image data indicating the state of puncture based on the tomographic image and measurement data from the measuring device, and displays the auxiliary image data on a display. The puncture auxiliary image generation device uses the measurement data to align the puncture device, the tomographic plane of the probe, and the puncture target point inside the patient's body, and the puncture needle of the puncture device, the tomographic plane, and the puncture target point obtained by the alignment. , generates auxiliary image data that indicates the positional relationship of the puncture target point and is superimposed on the tomographic image.
 本開示の穿刺手技補助システム、穿刺補助画像生成装置及び穿刺補助画像生成方法を使用することにより、容易かつ短時間での穿刺手技を実現することができる。 By using the puncture technique assistance system, puncture assistance image generation device, and puncture assistance image generation method of the present disclosure, it is possible to easily perform a puncture procedure in a short time.
 本開示の穿刺手技補助システム、穿刺補助画像生成装置及び穿刺補助画像生成方法によれば、容易かつ短時間での穿刺手技を可能とする。 According to the puncture technique assistance system, puncture assistance image generation device, and puncture assistance image generation method of the present disclosure, it is possible to perform a puncture procedure easily and in a short time.
穿刺手技補助システムを示すブロック図である。FIG. 1 is a block diagram showing a puncture technique assistance system. 穿刺器具及び超音波プローブを利用する穿刺を説明する概略図である。FIG. 2 is a schematic diagram illustrating puncturing using a puncturing instrument and an ultrasonic probe. 計測装置、装着装置、穿刺器具及び超音波プローブの位置関係を示す概略図である。FIG. 2 is a schematic diagram showing the positional relationship of a measuring device, a mounting device, a puncture device, and an ultrasound probe. 穿刺補助画像生成装置を示すブロック図である。FIG. 2 is a block diagram showing a puncture auxiliary image generation device. 穿刺補助画像生成装置の入力装置を説明する概略図である。FIG. 2 is a schematic diagram illustrating an input device of the puncture auxiliary image generation device. 穿刺器具と第1のデータを示す円錐を説明する概略図である。FIG. 2 is a schematic diagram illustrating a puncturing device and a cone showing first data. 穿刺器具と第1のデータを説明する他の概略図である。It is another schematic diagram explaining a puncture device and 1st data. 穿刺器具と第2のデータの生成に利用される第1の円錐を説明する概略図である。FIG. 3 is a schematic diagram illustrating a puncture device and a first cone used to generate second data. 穿刺器具と第2のデータの生成に利用される第2の円錐を説明する概略図である。FIG. 3 is a schematic diagram illustrating a puncturing device and a second cone used to generate second data. 穿刺器具と第2のデータの生成に利用される第3の円錐を説明する概略図である。FIG. 3 is a schematic diagram illustrating a puncture device and a third cone used to generate second data. 穿刺針の先端と穿刺目標点との位置関係を説明する概略図である。It is a schematic diagram explaining the positional relationship between the tip of a puncture needle and a puncture target point. 穿刺針の先端が穿刺目標点から遠い場合の超音波プローブ、穿刺針及び穿刺目標点の位置関係の一例を説明する概略図である。FIG. 2 is a schematic diagram illustrating an example of the positional relationship between the ultrasound probe, the puncture needle, and the puncture target point when the tip of the puncture needle is far from the puncture target point. 図8Aの場合の断層面、穿刺目標点及び第1の円錐の位置関係を説明する概略図である。8A is a schematic diagram illustrating the positional relationship between the tomographic plane, the puncture target point, and the first cone in the case of FIG. 8A. FIG. 図8Aの場合の補助画像データの一例である。This is an example of auxiliary image data in the case of FIG. 8A. 穿刺針の先端が穿刺目標点に近づいた場合の超音波プローブ、穿刺針及び穿刺目標点の位置関係の他の例を説明する概略図である。FIG. 7 is a schematic diagram illustrating another example of the positional relationship between the ultrasound probe, the puncture needle, and the puncture target point when the tip of the puncture needle approaches the puncture target point. 図9Aの場合の断層面、穿刺目標点、第1の円錐及び第2の円錐の位置関係を説明する概略図である。9A is a schematic diagram illustrating the positional relationship between the tomographic plane, the puncture target point, the first cone, and the second cone in the case of FIG. 9A. FIG. 図9Aの場合の補助画像データの一例である。This is an example of auxiliary image data in the case of FIG. 9A. 穿刺針が断層面に垂直でない場合の補助画像データの一例である。This is an example of auxiliary image data when the puncture needle is not perpendicular to the tomographic plane. 穿刺針の先端が穿刺目標点である場合の超音波プローブ、穿刺針及び穿刺目標点の位置関係の他の例を説明する概略図である。FIG. 7 is a schematic diagram illustrating another example of the positional relationship between the ultrasound probe, the puncture needle, and the puncture target point when the tip of the puncture needle is the puncture target point. 図10Aの場合の断層面、穿刺目標点、第1の円錐及び第2の円錐の位置関係を説明する概略図である。10A is a schematic diagram illustrating the positional relationship between the tomographic plane, the puncture target point, the first cone, and the second cone in the case of FIG. 10A. FIG. 図10Aの場合の補助画像データの一例である。This is an example of auxiliary image data in the case of FIG. 10A. 穿刺針の先端が穿刺目標点を通過した後の超音波プローブ、穿刺針及び穿刺目標点の位置関係の他の例を説明する概略図である。FIG. 7 is a schematic diagram illustrating another example of the positional relationship between the ultrasound probe, the puncture needle, and the puncture target point after the tip of the puncture needle passes the puncture target point. 図11Aの場合の断層面、穿刺目標点、第1の円錐及び第2の円錐の位置関係を説明する概略図である。FIG. 11A is a schematic diagram illustrating the positional relationship between the tomographic plane, the puncture target point, the first cone, and the second cone in the case of FIG. 11A. 図11Aの場合の補助画像データの一例である。This is an example of auxiliary image data in the case of FIG. 11A. 穿刺手技の補助画像の生成の処理を説明するフローチャートである。12 is a flowchart illustrating a process for generating an auxiliary image for a puncture technique. 図12Aの処理の一部を詳細に説明するフローチャートである。12A is a flowchart illustrating a part of the process in FIG. 12A in detail. 位置姿勢データの生成の処理を説明するフローチャートである。3 is a flowchart illustrating processing for generating position and orientation data.
 以下に、図面を参照して本開示に係る穿刺手技補助システム、穿刺補助画像生成装置及び穿刺補助画像生成方法について説明する。ここでは、穿刺手技補助システムは、医師による患者への穿刺手技の補助に利用することができる。 Hereinafter, a puncture technique assistance system, a puncture assistance image generation device, and a puncture assistance image generation method according to the present disclosure will be described with reference to the drawings. Here, the puncture procedure assistance system can be used to assist a doctor in performing a puncture procedure on a patient.
 「穿刺手技」は、治療や診断のため、医師が患者の体内に穿刺器具の穿刺針を挿入する行為である。以下では、穿刺手技補助システムを、医師が患者の血管へ薬液の注入のため、超音波装置を用いて超音波断層像を確認しながら、穿刺器具により血管に穿刺針を刺す穿刺手技に使用する例で説明する。しかしながら、穿刺手技には、血管への穿刺の他、腰椎穿刺、胸腔穿刺、腹水穿刺等がある。本開示の穿刺手技補助システムは、これらの場合であっても、利用することができる。なお、以下の説明では、同一の構成について、同一の符号を付して説明を省略する。 "Puncture procedure" is an act in which a doctor inserts a puncture needle of a puncture device into a patient's body for treatment or diagnosis. In the following, the puncture assist system will be used in a puncture procedure in which a doctor inserts a puncture needle into a blood vessel using a puncture instrument while checking ultrasound tomographic images using an ultrasound device in order to inject a drug into a patient's blood vessel. Let's explain with an example. However, puncture techniques include lumbar puncture, thoracentesis, ascites puncture, etc. in addition to puncturing blood vessels. The puncture technique assistance system of the present disclosure can be used even in these cases. In the following description, the same configurations will be designated by the same reference numerals and the description will be omitted.
 「断層面」は、超音波装置によって超音波が送信され、超音波断層像の生成の対象となる人体内部の面をいう。 "Tomographic plane" refers to a plane inside the human body on which ultrasonic waves are transmitted by an ultrasonic device and an ultrasonic tomographic image is generated.
 なお、以下の実施形態では、超音波装置を用いて得られた断層面の断層像を利用する例で説明する。しかしながら、超音波装置を用いて得られた断層像に代えて、他の断層像を利用することができる。例えば、X線装置を用いて得られた断層像を利用してもよい。また例えば、磁気装置を用いて得られた断層像を利用してもよい。 Note that in the following embodiments, an example will be described in which a tomographic image of a tomographic plane obtained using an ultrasound device is used. However, other tomographic images can be used instead of the tomographic images obtained using the ultrasound device. For example, a tomographic image obtained using an X-ray device may be used. Alternatively, for example, a tomographic image obtained using a magnetic device may be used.
 図1に、実施形態に係る穿刺手技補助システムの一例を示す。本開示に係る穿刺手技補助システム1は、穿刺補助画像生成装置10、装着装置30及び計測装置20を備える。装着装置30は、穿刺手技を行う医師であるユーザに装着される。計測装置20は、穿刺手技に利用される特定の物体の位置及び姿勢を計測する。この穿刺手技補助システム1は、図2に一例を示すように、ユーザである医師が、超音波装置50及び穿刺器具40を用いて、患者に穿刺する際に利用される。図2に示す例では、超音波装置50の超音波プローブ51、穿刺器具40及び患者の身体の一部の位置関係を示す。少なくとも、装着装置30、計測装置20、超音波装置50及び穿刺器具40は、同一空間内に存在する。しかしながら、穿刺補助画像生成装置10は、他の装置20~40とネットワークを介して通信可能であれば、他の空間に存在してもよい。 FIG. 1 shows an example of a puncture procedure assistance system according to an embodiment. A puncture technique assistance system 1 according to the present disclosure includes a puncture assistance image generation device 10, a mounting device 30, and a measuring device 20. The mounting device 30 is worn by a user who is a doctor who performs a puncture procedure. The measuring device 20 measures the position and orientation of a specific object used in a puncture procedure. As an example is shown in FIG. 2, this puncture procedure assistance system 1 is used by a doctor who is a user to puncture a patient using an ultrasound device 50 and a puncture instrument 40. The example shown in FIG. 2 shows the positional relationship among the ultrasound probe 51 of the ultrasound device 50, the puncture device 40, and a part of the patient's body. At least the mounting device 30, the measuring device 20, the ultrasound device 50, and the puncture device 40 exist in the same space. However, the puncture auxiliary image generation device 10 may exist in another space as long as it can communicate with the other devices 20 to 40 via a network.
 穿刺器具40は、患者の体内に挿入される穿刺針41を有する。例えば、穿刺器具40は、患者の体内に穿刺針41を挿入し、薬液を患者の体内に注入する目的で利用される。 The puncture device 40 has a puncture needle 41 that is inserted into the patient's body. For example, the puncture device 40 is used for the purpose of inserting a puncture needle 41 into a patient's body and injecting a medical solution into the patient's body.
 超音波装置50は、患者の超音波断層像の取得に利用する。具体的には、超音波装置50は、超音波プローブ51と、処理装置52とを有する。超音波プローブ51は、超音波を生成して患者の体内に送信するとともに、体内で反射した超音波を受信する。処理装置52は、超音波プローブ51で受信した超音波を用いて超音波断層像を生成する。また、超音波装置50は、超音波断層像を表示するディスプレイを有してもよい。ユーザは、超音波装置50で生成される超音波断層像から、患者の体内の状態や、穿刺器具40の穿刺針の位置等を把握することができる。超音波装置50は、穿刺補助画像生成装置10に処理装置52で生成した超音波断層像を送信する。 The ultrasound device 50 is used to obtain ultrasound tomographic images of a patient. Specifically, the ultrasound device 50 includes an ultrasound probe 51 and a processing device 52. The ultrasonic probe 51 generates and transmits ultrasonic waves into the patient's body, and receives ultrasonic waves reflected within the body. The processing device 52 uses the ultrasound received by the ultrasound probe 51 to generate an ultrasound tomographic image. Further, the ultrasound device 50 may have a display that displays ultrasound tomographic images. The user can grasp the internal state of the patient, the position of the puncture needle of the puncture instrument 40, etc. from the ultrasound tomographic image generated by the ultrasound device 50. The ultrasound device 50 transmits the ultrasound tomographic image generated by the processing device 52 to the puncture auxiliary image generation device 10.
 計測装置20は、装着装置30と、穿刺器具40と、超音波プローブ51との位置及び姿勢を計測する。例えば、計測装置20は、投光手段21と、受光手段22と、処理装置23とを有する光学式トラッカーである。投光手段21は、リフレクタに対して赤外光を投光する。リフレクタは、装着装置30と、穿刺器具40と、超音波プローブ51とに、マーカとして取り付けられる。受光手段22は、リフレクタで反射された赤外光を受光する。処理装置23は、受光手段22で受光した赤外光を処理して装着装置30、穿刺器具40及び超音波プローブ51の位置及び姿勢を計測する。計測装置20は、装着装置30、穿刺器具40及び超音波プローブ51の各形状と、それぞれにターゲットとして取り付けた複数のリフレクタの取り付け位置との関係を予め登録する。そして、計測装置20は、受光手段22で受光する赤外光から、計測装置20は、穿刺補助画像生成装置10に処理装置23で計測された装着装置30、穿刺器具40及び超音波プローブ51それぞれの位置及び姿勢を、計測データとして送信する。なお、ここでは、計測装置20が投光手段21及び受光手段22を有し、マーカがリフレクタであるパッシブ形式の一例を示すが、これに限定されない。例えば、計測装置20は、アクティブ形式を採用してもよい。具体的には、マーカが発光手段である場合、計測装置は、受光手段のみを備え、投光手段を備えず、マーカから発光された光を受光手段で受光して各マーカの位置を計測することで、対象物の位置及び姿勢を計測する。 The measuring device 20 measures the positions and postures of the mounting device 30, the puncture device 40, and the ultrasound probe 51. For example, the measuring device 20 is an optical tracker having a light projecting means 21, a light receiving means 22, and a processing device 23. The light projecting means 21 projects infrared light onto the reflector. The reflector is attached to the mounting device 30, the puncture instrument 40, and the ultrasound probe 51 as a marker. The light receiving means 22 receives the infrared light reflected by the reflector. The processing device 23 processes the infrared light received by the light receiving means 22 and measures the positions and postures of the mounting device 30, the puncture device 40, and the ultrasound probe 51. The measuring device 20 registers in advance the relationship between the shapes of the mounting device 30, the puncture instrument 40, and the ultrasonic probe 51 and the attachment positions of the plurality of reflectors attached to each as a target. Then, the measuring device 20 transmits the infrared light received by the light receiving means 22 to the puncturing auxiliary image generating device 10, the mounting device 30, the puncturing device 40, and the ultrasonic probe 51, which are measured by the processing device 23. The position and orientation of the device are transmitted as measurement data. Here, an example of a passive type is shown in which the measuring device 20 has a light projecting means 21 and a light receiving means 22, and the marker is a reflector, but the present invention is not limited to this. For example, the measuring device 20 may adopt an active type. Specifically, when the marker is a light-emitting means, the measuring device includes only a light-receiving means and does not include a light-emitting means, and measures the position of each marker by receiving the light emitted from the marker with the light-receiving means. This measures the position and orientation of the object.
 投光手段21及び受光手段22は、例えば、一体となるカメラとして構成される。ここで、複数の方向からの信号を取得することで、装着装置30、穿刺器具40及び超音波プローブ51の位置及び姿勢を計測することができる。また、装着装置30、穿刺器具40及び超音波プローブ51の位置及び姿勢は固定でなく変動するため、同時に複数方向から画像を取得する必要があるため、計測装置20は、複数のカメラを利用する。したがって、計測装置20は、複数組の投光手段21及び受光手段22を有する。具体的には、位置及び姿勢の計測対象とする装着装置30、穿刺器具40及び超音波プローブ51にはそれぞれ予め複数のリフレクタが備えられている。受光手段22は、投光手段21から発光され、リフレクタで反射した信号を受光してそれらの位置及び姿勢を計測する。 The light projecting means 21 and the light receiving means 22 are configured as an integrated camera, for example. Here, by acquiring signals from a plurality of directions, the positions and postures of the mounting device 30, puncture instrument 40, and ultrasound probe 51 can be measured. Furthermore, since the positions and postures of the mounting device 30, the puncture device 40, and the ultrasound probe 51 are not fixed but vary, it is necessary to acquire images from multiple directions at the same time. Therefore, the measurement device 20 uses multiple cameras. . Therefore, the measuring device 20 includes multiple sets of light projecting means 21 and light receiving means 22. Specifically, the mounting device 30, the puncture instrument 40, and the ultrasound probe 51 whose positions and postures are to be measured are each equipped with a plurality of reflectors in advance. The light receiving means 22 receives signals emitted from the light projecting means 21 and reflected by the reflector, and measures their positions and orientations.
 ここで、図3に一例を示すように、複数組の投光手段21及び受光手段22は、ユーザの上前方、具体的には、ユーザの頭上前方に設置されることが好ましい。換言すると、ユーザの背面側ではなくて手元側の上方に設置されることが好ましい。また、複数のリフレクタ60は、超音波プローブ51において、上方、具体的には、超音波の送受信側とは反対側に取り付けられることが好ましい。このように、投光手段21及び受光手段22をユーザの上方に設置し、リフレクタ60を超音波プローブ51の上方に取り付けることで、穿刺手技におけるユーザへの妨げを防止することができるばかりではなく、ユーザの身体等によって投光手段21からの投光及び受光手段22での受光が妨げられるのを防止することができる。加えて、このような配置によって信号の送受信を確実にすることも可能となるため、計測装置20によって、位置及び姿勢の計測の精度の低下を防ぐことができる。また、同様の効果を得るため、装着装置30についても、複数のリフレクタ60は、上方、具体的には、装着時のユーザの頭頂側に取り付けられることが好ましい。さらに、穿刺器具40についても、複数のリフレクタ60は、上方、具体的には、穿刺器具40における穿刺針41の遠位側に取り付けられることが好ましい。 Here, as an example shown in FIG. 3, the plurality of sets of light projecting means 21 and light receiving means 22 are preferably installed above and in front of the user, specifically, in front of the user's head. In other words, it is preferable to install it not on the back side of the user but above the user's hand side. Furthermore, it is preferable that the plurality of reflectors 60 be attached to the upper part of the ultrasound probe 51, specifically, on the side opposite to the ultrasound transmission/reception side. In this way, by installing the light projecting means 21 and the light receiving means 22 above the user and attaching the reflector 60 above the ultrasound probe 51, it is possible not only to prevent the user from being disturbed during the puncturing procedure. It is possible to prevent the projection of light from the light projecting means 21 and the reception of light by the light receiving means 22 from being obstructed by the user's body or the like. In addition, such an arrangement makes it possible to ensure the transmission and reception of signals, so that the measuring device 20 can prevent a decrease in accuracy in position and orientation measurements. Further, in order to obtain the same effect, it is preferable that the plurality of reflectors 60 of the mounting device 30 be attached above, specifically, on the top side of the user's head when wearing the device. Furthermore, regarding the puncture device 40 as well, it is preferable that the plurality of reflectors 60 be attached above, specifically, on the distal side of the puncture needle 41 in the puncture device 40.
 このとき、装着装置30、穿刺器具40及び超音波プローブ51の位置及び姿勢は、それぞれ、X軸、Y軸及びZ軸で表す世界座標系を用いて表される。これにより、各装置同士の位置関係も特定することができる。後述する各種の位置及び姿勢も、この世界座標系を基準とするが、装着装置30のディスプレイ32に表示してユーザに視認させるため、それぞれの位置及び姿勢は、装着装置30のユーザの視点に合わせて相対的に変換され、変換された位置及び姿勢で描画する。 At this time, the positions and postures of the mounting device 30, puncture instrument 40, and ultrasound probe 51 are expressed using a world coordinate system expressed by the X-axis, Y-axis, and Z-axis, respectively. Thereby, the positional relationship between each device can also be specified. Various positions and orientations to be described later are also based on this world coordinate system, but since they are displayed on the display 32 of the mounting device 30 for the user to see, each position and orientation is based on the viewpoint of the user of the mounting device 30. They are also relatively transformed and drawn in the transformed position and orientation.
 穿刺補助画像生成装置10は、超音波装置50から受信した超音波断層像及び計測装置20から受信した計測データに基づいて、穿刺器具40による穿刺の状態を示す補助画像データを生成する。また、穿刺補助画像生成装置10は、生成した補助画像データを装着装置30に送信し、ディスプレイ32に表示させる。穿刺補助画像生成装置10の構成は、図4Aを用いて後述する。ここで、補助画像データは、後述する装着装置30のカメラ31で撮影された周辺環境画像中で、穿刺器具40の状況を3次元的に示す第1のデータと、超音波画像中で、穿刺器具40の状況を2次元的に示す第2のデータとを含む。 The puncture auxiliary image generation device 10 generates auxiliary image data indicating the state of puncture by the puncture instrument 40 based on the ultrasound tomographic image received from the ultrasound device 50 and the measurement data received from the measurement device 20. Furthermore, the puncture auxiliary image generation device 10 transmits the generated auxiliary image data to the mounting device 30 and displays it on the display 32. The configuration of the puncture auxiliary image generation device 10 will be described later using FIG. 4A. Here, the auxiliary image data includes first data showing the state of the puncture device 40 three-dimensionally in the surrounding environment image taken by the camera 31 of the mounting device 30, which will be described later, and first data showing the condition of the puncture device 40 in an ultrasound image. and second data two-dimensionally indicating the status of the instrument 40.
 装着装置30は、カメラ31と、ディスプレイ32とを備える。カメラ31は、周囲環境を撮影する。ディスプレイ32は、カメラ31で撮影された周辺環境画像及び穿刺補助画像生成装置10から受信した補助画像データを表示する。例えば、装着装置30は、ユーザの頭部に装着可能な装置であって、頭部の方向に連動して穿刺補助のための画像を表示可能なディスプレイを有する、例えば、ヘッドマウントディスプレイやスマートグラスである。スマートグラスを利用する場合、不安定であると穿刺手技の妨げになるため、装着時にヘッドマウントディスプレイと同程度に装着時にユーザの頭部で安定感があることが好ましい。カメラ31は、ユーザの視線に合わせて取り付けられている。したがって、カメラ31が撮影する周囲環境は、ユーザの視線に合わせた画像である。具体的には、カメラ31が撮影する周囲環境は、装着装置30を装着していない場合に、ユーザが視認することのできる周囲環境である。仮に、ユーザが前方を向いている場合には、カメラ31はユーザ前方を撮影し、ユーザが手元を向いている場合には、ユーザの手元を撮影する。 The mounting device 30 includes a camera 31 and a display 32. The camera 31 photographs the surrounding environment. The display 32 displays the surrounding environment image photographed by the camera 31 and the auxiliary image data received from the puncture auxiliary image generation device 10. For example, the mounting device 30 is a device that can be mounted on the user's head, and has a display that can display an image for puncturing assistance in conjunction with the direction of the head, such as a head-mounted display or smart glasses. It is. When using smart glasses, it is preferable that the smart glasses have a sense of stability on the user's head when worn, to the same extent as a head-mounted display, since instability will impede the puncturing procedure. The camera 31 is attached to match the user's line of sight. Therefore, the surrounding environment photographed by the camera 31 is an image aligned with the user's line of sight. Specifically, the surrounding environment photographed by the camera 31 is the surrounding environment that can be visually recognized by the user when the mounting device 30 is not worn. If the user is facing forward, the camera 31 will photograph the front of the user, and if the user is facing toward the user, the camera 31 will photograph the user's hand.
 また、装着装置30は、右目用と左目用とで別々のディスプレイ32を備え、各ディスプレイ32に実際の視差を考慮した立体画像を表示させることが好ましい。この場合、装着装置30は右目用のディスプレイ32に表示させる左目用の画像を撮影するカメラ31と、左目用のディスプレイ32に表示させる左目用の画像を撮影するカメラ31とを別々に備えることが好ましい。 It is also preferable that the mounting device 30 includes separate displays 32 for the right eye and for the left eye, and each display 32 displays a stereoscopic image that takes into account actual parallax. In this case, the mounting device 30 may separately include a camera 31 that captures a left-eye image to be displayed on the right-eye display 32 and a camera 31 that captures a left-eye image to be displayed on the left-eye display 32. preferable.
 図4Aに示すように、穿刺補助画像生成装置10は、制御装置11、記憶装置12及び通信装置13を備えるパーソナルコンピュータ等の情報処理装置である。また、穿刺補助画像生成装置10は、入力装置14及び出力装置15を備えることができる。 As shown in FIG. 4A, the puncture auxiliary image generation device 10 is an information processing device such as a personal computer that includes a control device 11, a storage device 12, and a communication device 13. Furthermore, the puncture auxiliary image generation device 10 can include an input device 14 and an output device 15.
 制御装置11は、穿刺補助画像生成装置10全体の制御を司るコントローラである。例えば、制御装置11は、記憶装置12に記憶されるコンピュータプログラムを読み出して実行することにより、補助画像データの生成を実行するための各種処理を実現する。制御装置11は、ハードウェアである汎用コンピュータとソフトウェアとの協働により所定の機能を実現してもよいし、所定の機能を実現する専用に設計されたハードウェア回路でもよい。これらを総合すると、制御装置11は、CPU、MPU、GPU、FPGA、DSP、ASIC等、種々のプロセッサで実現することができる。 The control device 11 is a controller that controls the entire puncture auxiliary image generation device 10. For example, the control device 11 reads and executes a computer program stored in the storage device 12, thereby realizing various processes for generating auxiliary image data. The control device 11 may realize a predetermined function by cooperation between a general-purpose computer that is hardware and software, or may be a hardware circuit designed exclusively for realizing a predetermined function. In summary, the control device 11 can be realized by various processors such as a CPU, MPU, GPU, FPGA, DSP, and ASIC.
 記憶装置12は、種々の情報を記録する記録媒体である。記憶装置12は、例えば、RAM、ROM、フラッシュメモリ、SSD(Solid State Drive)、ハードディスクドライブ、その他の記憶デバイス又はそれらを適宜組み合わせて実現される。記憶装置12は、制御装置11が実行するコンピュータプログラムと、補助画像データの生成に使用する種々のデータ等を格納する。 The storage device 12 is a recording medium that records various information. The storage device 12 is realized by, for example, a RAM, a ROM, a flash memory, an SSD (Solid State Drive), a hard disk drive, another storage device, or an appropriate combination thereof. The storage device 12 stores computer programs executed by the control device 11 and various data used to generate auxiliary image data.
 通信装置13は、外部の装置(例えば、計測装置20、装着装置30、超音波装置50等)とのデータ通信を可能とするための、外部装置の仕様による通信手段である。上述したデータ通信は、有線および/または無線によるデータ通信であり、装置固有に設計された通信仕様、もしくは公知の通信規格にしたがって行われ得る。例えば、有線によるデータ通信は、HDMI(登録商標)などの映像信号規格、イーサネット(登録商標)規格、および/またはUSB(登録商標)規格等に準拠して動作する半導体集積回路の通信コントローラを通信装置13として用いることによって行われる。また無線によるデータ通信は、デジタル機器用の近距離無線通信規格であるBluetooth、LAN(Local Area Network)に関するIEEE802.11規格、および/または移動体通信に関する、いわゆる4G/5Gと呼ばれる、第4世代/第5世代移動通信システム等に準拠して動作する半導体集積回路の通信コントローラを通信装置13として用いることによって行われる。 The communication device 13 is a communication means according to the specifications of the external device to enable data communication with external devices (for example, the measuring device 20, the mounting device 30, the ultrasonic device 50, etc.). The above-mentioned data communication is wired and/or wireless data communication, and may be performed according to a communication specification designed specifically for the device or a known communication standard. For example, wired data communication is a communication controller of a semiconductor integrated circuit that operates in accordance with video signal standards such as HDMI (registered trademark), Ethernet (registered trademark) standards, and/or USB (registered trademark) standards, etc. This is done by using it as the device 13. In addition, wireless data communication is based on Bluetooth, which is a short-range wireless communication standard for digital devices, the IEEE802.11 standard for LAN (Local Area Network), and/or the fourth generation so-called 4G/5G for mobile communication. /This is performed by using, as the communication device 13, a communication controller of a semiconductor integrated circuit that operates in accordance with a fifth generation mobile communication system or the like.
 入力装置14は、補助画像データの生成及び表示のための操作やデータの入力に利用される、操作ボタン、キーボード、タッチパネル、マイクロフォン等でありうる。穿刺補助画像生成装置10は、穿刺手技の際に利用されるため、ユーザの手はキーボード等の手を用いる入力手段の利用は好ましくない。したがって、ユーザが穿刺手技で利用することのないペダルも入力装置14として利用することができる。具体的には、入力装置14として、予め、図4Bに示すようなペダル141~143を、ユーザの足元に設置してもよい。ユーザは、穿刺手技を行いながら、足でペダルを押下して所望の操作入力を実行することで、手を用いることなく、穿刺手技を継続しながら足によって補助画像データの生成及び表示のために必要な操作をすることができる。なお、図4Bに示す例では、扇形状の基台上に、3つのペダル141~143が設けられる一例であるが、入力装置14として用いるペダルの形状、数、設置方法等についてはこれに限定されない。 The input device 14 may be an operation button, a keyboard, a touch panel, a microphone, etc., which are used for operations for generating and displaying auxiliary image data and inputting data. Since the puncture auxiliary image generation device 10 is used during a puncture procedure, it is not preferable for the user's hands to use input means such as a keyboard. Therefore, even a pedal that the user does not use during a puncture procedure can be used as the input device 14. Specifically, as the input device 14, pedals 141 to 143 as shown in FIG. 4B may be installed in advance at the user's feet. While performing the puncture procedure, the user presses the pedal with his/her foot to perform the desired operation input, thereby generating and displaying auxiliary image data with his or her feet while continuing the puncture procedure without using his/her hands. You can perform the necessary operations. Note that in the example shown in FIG. 4B, three pedals 141 to 143 are provided on a fan-shaped base, but the shape, number, installation method, etc. of the pedals used as the input device 14 are limited to this. Not done.
 出力装置15は、補助画像データの生成及び表示のための信号やデータの出力に利用される、ディスプレイ、スピーカ等でありうる。穿刺補助画像生成装置10で生成される補助画像データは、装着装置30のディスプレイ32で表示される。穿刺補助画像生成装置10は、ディスプレイ32に表示される画像を、装着装置30を装着するユーザ以外も視認可能とするため、出力装置15であるディスプレイに表示してもよい。これにより、例えば、装着装置30を装着しない研修中の医師等に対し、装着装置30のディスプレイ32で表示される映像を参考にして穿刺手技を把握しやすくさせることができる。 The output device 15 may be a display, a speaker, or the like that is used to output signals and data for generating and displaying auxiliary image data. The auxiliary image data generated by the puncture auxiliary image generation device 10 is displayed on the display 32 of the mounting device 30. The puncture auxiliary image generation device 10 may display the image displayed on the display 32 on a display, which is the output device 15, so that the image displayed on the display 32 can be viewed by a user other than the user wearing the mounting device 30. This allows, for example, a doctor in training who does not wear the mounting device 30 to easily understand the puncture technique by referring to the image displayed on the display 32 of the mounting device 30.
 例えば、穿刺補助画像生成装置10は、補助画像データの生成及び表示のリクエストの信号を受け付けると、補助画像データの生成の一連の処理を実行する。具体的には、穿刺補助画像生成装置10は、補助画像データの生成の処理として、制御装置11において、各処理を実行する。この補助画像データの生成及び表示のリクエストは、例えば、図4Bを用いて説明したペダル141の押下により操作される。例えば、ペダル141の押下により、補助画像データの生成及び表示が有効なモードとなり、本モードを解除するまで継続的に、補助画像データが毎フレーム生成及び表示される。再度ペダル141が押下されることにより、補助画像データの生成及び表示のモードが解除され補助画像データが表示されないこととなる。 For example, upon receiving a request signal for generating and displaying auxiliary image data, the puncture auxiliary image generation device 10 executes a series of processes for generating auxiliary image data. Specifically, the puncture auxiliary image generation device 10 executes each process in the control device 11 as a process of generating auxiliary image data. This request for generation and display of auxiliary image data is operated, for example, by pressing the pedal 141 described using FIG. 4B. For example, by pressing the pedal 141, a mode is set in which generation and display of auxiliary image data is enabled, and auxiliary image data is continuously generated and displayed every frame until this mode is canceled. By pressing the pedal 141 again, the auxiliary image data generation and display mode is canceled and the auxiliary image data is not displayed.
 制御装置11は、計測装置20から、装着装置30、穿刺器具40及び超音波プローブ51のそれぞれの位置及び姿勢を示す計測データを取得する。また、制御装置11は、超音波装置50から超音波断層像を生成する。制御装置11は、取得した計測データと、超音波断層像を用いて、第1のデータと、第2のデータとを含む補助画像データを生成する。第1のデータは、穿刺目標点、及び、穿刺針41の位置関係を3次元的に示し、周辺環境画像に重畳する情報である。第2のデータは、穿刺目標点、穿刺針41、及び、断層面の位置関係を示し、超音波断層像に重畳する情報である。 The control device 11 acquires measurement data indicating the positions and postures of the mounting device 30, the puncture device 40, and the ultrasound probe 51 from the measurement device 20. Further, the control device 11 generates an ultrasound tomographic image from the ultrasound device 50 . The control device 11 uses the acquired measurement data and the ultrasonic tomographic image to generate auxiliary image data including first data and second data. The first data is information that three-dimensionally indicates the positional relationship between the puncture target point and the puncture needle 41, and is superimposed on the surrounding environment image. The second data is information that indicates the positional relationship between the puncture target point, the puncture needle 41, and the tomographic plane, and is superimposed on the ultrasound tomographic image.
 制御装置11は、生成した補助画像データを、装着装置30に送信し、ディスプレイ32に表示させる。このとき、制御装置11は、カメラ31で撮影された患者の身体の少なくとも一部と、穿刺器具40と、超音波プローブ51とを含む現実環境画像に超音波断層像を重畳させるとともに、その超音波断層像に補助画像データを重畳させて、各画像をディスプレイ32に表示させることが好ましい。 The control device 11 transmits the generated auxiliary image data to the mounting device 30 and displays it on the display 32. At this time, the control device 11 superimposes the ultrasonic tomographic image on the real environment image including at least a part of the patient's body, the puncture device 40, and the ultrasonic probe 51 photographed by the camera 31, and It is preferable to display each image on the display 32 by superimposing auxiliary image data on the sonic tomographic image.
 なお、右目用と左目用とで別々のディスプレイ32を備える場合、制御装置11は、補助画像データの生成及び各画像データの表示等の処理を、視差のある立体映像を生成するため、右目用と左目用とでそれぞれ別々に実行することが好ましい。 Note that when separate displays 32 are provided for the right eye and for the left eye, the control device 11 performs processing such as generation of auxiliary image data and display of each image data on the display 32 for the right eye in order to generate a stereoscopic image with parallax. It is preferable to perform this separately for the left eye and for the left eye.
 補助画像データが含む「位置関係を示す情報」は、穿刺針41の先端と穿刺目標点との位置関係を示す「ガイド図形」を含む。ここで、第1のデータに含まれる「ガイド図形」は、穿刺目標点を頂点とし、穿刺対象の皮膚に穿刺針41の先端が接したときにユーザからの指示によって設定される、穿刺針41の先端を中心として穿刺針41に垂直な面を底面とする錐体である。本実施形態では、第1のデータとして利用される錐体は、円錐である一例で説明する。また、この円錐の底面の直径は限定されず、例えば、円錐の高さとの比によって定めることができる。また、第2のデータに含まれる「ガイド図形」は、穿刺針41を軸として設けられる複数の錐体の、断層面を基準とする断面で表される。本実施形態では、第2のデータの生成に利用される複数の錐体も円錐である一例で説明する。したがって、錐体の断面は、円形である。しかしながら、錐体は円錐に限られず、四角錐等の角錐であってもよい。なお、断層面は、複数の円錐の中心軸に垂直に得られるとは限られないため、正円ではなく、楕円となる場合もあり得る。また、後述する例では、第1の円錐の断面を破線、第2の円錐の断面を一点鎖線、第3の円錐の断面を二点鎖線で示す。 The "information indicating the positional relationship" included in the auxiliary image data includes a "guide figure" indicating the positional relationship between the tip of the puncture needle 41 and the puncture target point. Here, the "guide figure" included in the first data is a puncture needle 41 whose apex is the puncture target point and is set by the user's instruction when the tip of the puncture needle 41 contacts the skin to be punctured. It is a cone whose base is a plane perpendicular to the puncture needle 41 with the tip of the puncture needle 41 as its center. In this embodiment, an example in which the cone used as the first data is a cone will be described. Further, the diameter of the bottom surface of the cone is not limited, and can be determined, for example, by the ratio to the height of the cone. Further, the "guide figure" included in the second data is represented by a cross section of a plurality of pyramids provided with the puncture needle 41 as an axis, with the tomographic plane as a reference. In this embodiment, an example will be described in which the plurality of cones used to generate the second data are also cones. Therefore, the cross section of the cone is circular. However, the pyramid is not limited to a cone, but may be a pyramid such as a square pyramid. Note that the tomographic plane is not necessarily obtained perpendicularly to the central axes of the plurality of cones, so it may be an ellipse instead of a perfect circle. Further, in the example described later, the cross section of the first cone is shown by a broken line, the cross section of the second cone is shown by a chain line, and the cross section of the third cone is shown by a chain double dot line.
 図5A及び図5Bに、第1のデータとして利用される円錐を示す。第1のデータとなる円錐は、穿刺目標点Tを頂点とし、穿刺目標点を頂点とし、穿刺針41の先端411を中心として穿刺針41に垂直な面を底面として設定される。この円錐自体が、第1のデータとして、周辺環境画像に三次元的に重畳される。図5A及び図5Bに示す例では、穿刺針41の位置を実線Lnで示し、穿刺針の延長線を破線Leで示す。第1データは、これらの線Ln、Leを含んでもよい。このように第1のデータとして示される円錐の頂点に向けて穿刺針を進めることで、穿刺目標点に穿刺針41の先端を到達させることができる。 FIGS. 5A and 5B show cones used as the first data. The cone serving as the first data is set with the puncture target point T as the apex, the puncture target point as the apex, the tip 411 of the puncture needle 41 as the center, and a plane perpendicular to the puncture needle 41 as the base. This cone itself is three-dimensionally superimposed on the surrounding environment image as first data. In the example shown in FIGS. 5A and 5B, the position of the puncture needle 41 is indicated by a solid line Ln, and the extension line of the puncture needle is indicated by a broken line Le. The first data may include these lines Ln and Le. By advancing the puncture needle toward the apex of the cone indicated as the first data in this manner, the tip of the puncture needle 41 can reach the puncture target point.
 図6Aに、第2のデータの生成に利用される第1の円錐の断面、具体的には、第1の円錐の中心軸に沿った縦断面の一例を破線で示す。第1の円錐は、穿刺針41の中心軸Lを中心軸とし、穿刺針41の先端から第1の所定距離L1後方に頂点P1が位置し、穿刺針41の先端が穿刺目標点に近接すると、断層面での第1の円錐の断面が小さくなるように形成される。換言すると、第1の円錐の頂点P1は、穿刺針41の先端を基準として所定距離L1、穿刺器具40の本体側に存在し、第1の円錐の底面は、穿刺方向に存在する。以下では、第1の円錐の超音波プローブ51で送受信される超音波による断層面での断面を第1の断面とする。例えば、各円錐の高さは、使用時の穿刺動作に応じて適宜調整される。より具体的には、穿刺において、穿刺器具40が動く距離や穿刺針41の先端が動く距離よりも大きい長さが好ましい。 In FIG. 6A, a broken line shows an example of a cross section of the first cone used to generate the second data, specifically, a vertical cross section along the central axis of the first cone. The first cone has a central axis L of the puncture needle 41 as its central axis, and has an apex P1 located a first predetermined distance L1 behind the tip of the puncture needle 41, and when the tip of the puncture needle 41 approaches the puncture target point. , the cross section of the first cone in the tomographic plane is formed to be small. In other words, the apex P1 of the first cone is located a predetermined distance L1 from the tip of the puncture needle 41 toward the main body of the puncture instrument 40, and the bottom surface of the first cone is located in the puncturing direction. In the following, a cross section taken on a tomographic plane by ultrasound transmitted and received by the first conical ultrasound probe 51 will be referred to as a first cross section. For example, the height of each cone is adjusted as appropriate depending on the puncturing operation during use. More specifically, during puncturing, the length is preferably greater than the distance that the puncturing instrument 40 moves and the distance that the tip of the puncturing needle 41 moves.
 図6Bに、第2の円錐の断面、具体的には、第2の円錐の中心軸に沿った縦断面(一点鎖線)の一例を示す。なお、図6Bにおいて、参考のため、第1の円錐の縦断面(破線)も示す。第2の円錐は、穿刺針41の中心軸Lを中心軸とし、穿刺針41の先端から第2の所定距離L2前方に頂点P2が位置し、穿刺針41の先端が穿刺目標点に近接すると断層面での第2の円錐の断面が大きくなるように形成される。換言すると、第2の円錐の頂点P2は、穿刺針41の中心軸L上で、穿刺針41の先端から所定距離L2、穿刺器具40の本体とは逆方向に存在し、第2の円錐の底面は、穿刺器具40の本体側に存在する。以下では、第2の円錐の超音波プローブ51で送受信される超音波による断層面での断面を第2の断面とする。なお、第1の円錐と第2の円錐とは、穿刺針41の先端において中心軸と垂直な位置で、それぞれの錐体側面(図では斜辺)が交差する。 FIG. 6B shows an example of a cross section of the second cone, specifically, a vertical cross section (dotted chain line) along the central axis of the second cone. Note that in FIG. 6B, a longitudinal section (broken line) of the first cone is also shown for reference. The second cone has the central axis L of the puncture needle 41 as its central axis, and has an apex P2 located a second predetermined distance L2 ahead from the tip of the puncture needle 41, and when the tip of the puncture needle 41 approaches the puncture target point. The cross section of the second cone at the fault plane is formed to be large. In other words, the apex P2 of the second cone is located on the central axis L of the puncture needle 41 at a predetermined distance L2 from the tip of the puncture needle 41 in the opposite direction to the main body of the puncture instrument 40, and The bottom surface exists on the main body side of the puncture device 40. Hereinafter, the cross section taken by the ultrasonic waves transmitted and received by the second conical ultrasonic probe 51 will be referred to as a second cross section. Note that the first cone and the second cone intersect with each other at a position perpendicular to the central axis at the tip of the puncture needle 41, with their respective cone side surfaces (the oblique sides in the figure) intersecting each other.
 図6Cに、第3の円錐の断面、具体的には、第3の円錐の中心軸に沿った縦断面(二点鎖線)の一例を示す。図3Cにおいて、参考のため、第2の円錐の縦断面(一点鎖線)も示す。第3の円錐は、穿刺針41の中心軸Lを中心軸とし、穿刺針41の先端を頂点P3とし、穿刺針41の先端が穿刺目標点を通過後に、穿刺針41が穿刺目標点から遠ざかると断面が大きくなるように形成される。また、第3の円錐は、第2の円錐よりも錐体側面の傾斜が緩やかに形成される。換言すると、第3の円錐の頂点P3は、穿刺針41の先端に存在し、第3の円錐の底面は、穿刺器具40の本体側に存在する。また、第3の円錐は、第2の円錐よりも斜辺が緩やかであるため、第2の円錐の斜辺と、第3の円錐の斜辺とは、穿刺針41の先端よりも穿刺器具40の本体側において、交差する。また、穿刺針41の先端と、第2の円錐の斜辺と第3の円錐の斜辺とが交差する位置で特定される長さを第3の所定距離L3とする。具体的には、第2の円錐と第3の円錐とは、穿刺針41の先端から穿刺器具40の本体側へ第3の所定距離後退した位置において中心軸Lと垂直な位置で、それぞれの錐体側面(図では斜辺)が交差する。ここでは、第3の円錐の超音波プローブ51で送受信される超音波による断層面での断面を第3の断面とする。 FIG. 6C shows an example of a cross section of the third cone, specifically, a vertical cross section (double-dashed line) along the central axis of the third cone. In FIG. 3C, a longitudinal section (dotted chain line) of the second cone is also shown for reference. The third cone has the central axis L of the puncture needle 41 as its central axis, the tip of the puncture needle 41 as the apex P3, and the puncture needle 41 moves away from the puncture target point after the tip of the puncture needle 41 passes the puncture target point. It is formed so that the cross section becomes large. Further, the third cone is formed such that the slope of the cone side surface is gentler than that of the second cone. In other words, the apex P3 of the third cone exists at the tip of the puncture needle 41, and the bottom surface of the third cone exists on the main body side of the puncture instrument 40. Further, since the third cone has a gentler oblique side than the second cone, the oblique side of the second cone and the oblique side of the third cone are closer to the main body of the puncture instrument 40 than the tip of the puncture needle 41. Cross on the sides. Further, the length specified at the intersection of the tip of the puncture needle 41, the oblique side of the second cone, and the oblique side of the third cone is defined as a third predetermined distance L3. Specifically, the second cone and the third cone are located at a position perpendicular to the central axis L at a position retracted a third predetermined distance from the tip of the puncture needle 41 toward the main body of the puncture device 40. The sides of the pyramid (the hypotenuses in the figure) intersect. Here, the cross section taken by the ultrasonic waves transmitted and received by the third conical ultrasonic probe 51 is referred to as the third cross section.
 穿刺補助画像生成装置10では、穿刺目標点の位置と、上述した第1乃至第3の断面をガイド図形として含む、補助画像データの第2データを生成する。図7において、「C」は患者の皮膚表面を示し、「U」は超音波プローブ51で送受信される超音波U(断層面の位置)を示し、「T」は穿刺目標点を示す。このとき、(1)乃至(5)は、それぞれ、(1)穿刺前の状態、(2)穿刺後の穿刺針41の先端が穿刺目標点Tから離れた状態、(3)穿刺針41の先端が穿刺目標点Tに近接した状態、(4)穿刺針41の先端が穿刺目標点Tに達した状態、(5)穿刺針41の先端が穿刺目標点Tと通過した状態を示す。これら各状態にある場合の補助画像データの一例を、図8A乃至図11Cを用いて説明する。 The puncture auxiliary image generation device 10 generates second data of auxiliary image data that includes the position of the puncture target point and the above-mentioned first to third cross sections as guide figures. In FIG. 7, "C" indicates the patient's skin surface, "U" indicates the ultrasonic wave U (position of the tomographic plane) transmitted and received by the ultrasound probe 51, and "T" indicates the puncture target point. At this time, (1) to (5) are respectively (1) the state before puncturing, (2) the state after puncturing where the tip of the puncturing needle 41 is away from the puncturing target point T, and (3) the state of the puncturing needle 41. A state in which the tip of the puncture needle 41 is close to the puncture target point T, (4) a state in which the tip of the puncture needle 41 has reached the puncture target point T, and (5) a state in which the tip of the puncture needle 41 has passed the puncture target point T are shown. An example of auxiliary image data in each of these states will be explained using FIGS. 8A to 11C.
 図8Aは、医師が超音波プローブ51で取得する超音波断層像を参考にしながら、患者の血管Bに穿刺した様子を説明する概略図である。なお、図8Aにおいて、患者に穿刺した穿刺針41を、破線で示す。図8Aは、穿刺を開始した状態(図7の(2))であって、穿刺針41の先端が患者の血管Bの穿刺目標点Tとの距離が第2の所定距離L2となる前の様子を示す。ここで、穿刺目標点Tは、超音波プローブ51で送受信される超音波Uの経路によって定義される断層面と、穿刺針41の延長線が交わる血管B上に位置する。図8Aに示すように超音波プローブ51の傾きを変更させることで、患者の皮膚表面に対する送受信される超音波の角度を変化させることができ、これに応じて、超音波断層像の範囲を変化させることができる。したがって、医師は、穿刺針41を患者に穿刺する前の針先が皮膚に当たった状態で、図8Aの矢印で示すように、超音波プローブ51の傾きを変更させるとともに、穿刺器具40の傾きも動かす。これにより、医師は、超音波Uの経路によって定義される断層面上に、穿刺針41の延長線と血管Bとが交わる穿刺目標点Tを見つけ出すことができる。 FIG. 8A is a schematic diagram illustrating how a doctor punctures a blood vessel B of a patient while referring to an ultrasound tomographic image obtained by the ultrasound probe 51. In addition, in FIG. 8A, the puncture needle 41 puncturing the patient is shown by a broken line. FIG. 8A shows a state in which puncture has started ((2) in FIG. 7), and before the distance between the tip of the puncture needle 41 and the puncture target point T of the patient's blood vessel B reaches the second predetermined distance L2. Show the situation. Here, the puncture target point T is located on the blood vessel B where the tomographic plane defined by the path of the ultrasound wave U transmitted and received by the ultrasound probe 51 and the extension line of the puncture needle 41 intersect. By changing the inclination of the ultrasound probe 51 as shown in FIG. 8A, it is possible to change the angle of the transmitted and received ultrasound with respect to the patient's skin surface, and accordingly change the range of the ultrasound tomographic image. can be done. Therefore, before puncturing the patient with the puncture needle 41, the doctor changes the inclination of the ultrasound probe 51 and changes the inclination of the puncture instrument 40, as shown by the arrow in FIG. Also move. Thereby, the doctor can find the puncture target point T where the extension line of the puncture needle 41 and the blood vessel B intersect on the tomographic plane defined by the path of the ultrasound wave U.
 図8Aに示す穿刺を開始した状態では、穿刺針41の先端は、穿刺目標点Tから遠位、具体的には、所定距離L2よりも遠い位置にある。図6A乃至6Cを用いて上述したように、第1の円錐は、穿刺針41の先端から所定距離L1後方の頂点P1を基準として、穿刺の前方側に広がる錐形である。第2の円錐は、穿刺針41の先端から所定距離L2前方の頂点P2を基準として、穿刺の後方側に広がる錐形である。第3の円錐は、穿刺針41の先端を基準として、穿刺針41の後方側に広がる錐形である。したがって、図8Bに示すように、超音波プローブ51で送受信される超音波Uで定義される断層面で、第1乃至第3の円錐によって得られる断面は、第1の断面のみとなる。この場合、図8Cに示すように、補助画像データの第2のデータは、第1の断面の外周と、穿刺目標点Tとのみを含む。したがって、穿刺針41の先端と穿刺目標点Tとの間が、第2の円錐の頂点P2と、第1の円錐及び第2の円錐の斜辺の交点とで規定される所定距離L2以上であるとき、第2のデータは、穿刺目標点Tと、第1の断面のみを含む。そして、穿刺目標点Tと、穿刺針41の先端との距離が近づくにつれて、第1の断面のサイズが小さくなる。このため、ガイド図形である第2のデータを確認するユーザは、第1の断面のサイズに応じて、穿刺針41の挿入の程度を把握することができる。 In the state where the puncture has started as shown in FIG. 8A, the tip of the puncture needle 41 is distal from the puncture target point T, specifically, at a position farther than the predetermined distance L2. As described above using FIGS. 6A to 6C, the first cone is a conical shape that spreads toward the front side of the puncture, with the apex P1 located a predetermined distance L1 behind the tip of the puncture needle 41 as a reference. The second cone has a conical shape that spreads toward the rear of the puncture, with the apex P2 located a predetermined distance L2 ahead of the tip of the puncture needle 41 as a reference. The third cone has a conical shape that widens toward the rear of the puncture needle 41 with the tip of the puncture needle 41 as a reference. Therefore, as shown in FIG. 8B, in the tomographic plane defined by the ultrasonic waves U transmitted and received by the ultrasonic probe 51, only the first cross section is obtained by the first to third cones. In this case, as shown in FIG. 8C, the second data of the auxiliary image data includes only the outer periphery of the first cross section and the puncture target point T. Therefore, the distance between the tip of the puncture needle 41 and the puncture target point T is at least a predetermined distance L2 defined by the apex P2 of the second cone and the intersection of the hypotenuses of the first cone and the second cone. At this time, the second data includes only the puncture target point T and the first cross section. Then, as the distance between the puncture target point T and the tip of the puncture needle 41 becomes smaller, the size of the first cross section becomes smaller. Therefore, the user who confirms the second data, which is the guide figure, can grasp the degree of insertion of the puncture needle 41 according to the size of the first cross section.
 図9Aは、穿刺が進み、穿刺針41の先端が穿刺目標点Tに第2の所定距離L2の範囲内に近づいた状態を示す(図7の(3))。ここで、図6Bを用いて上述したように、第2の円錐は、穿刺針の先端から所定位置前方の頂点P2を基準として、穿刺針41の後方側に広がる錐形である。したがって、図9Bに示すように、超音波Uを基準とする断層面で、複数の円錐によって得られる断面は、第1の断面と、第2の断面となる。このように穿刺針41の先端が穿刺目標点Tから所定距離L2の範囲内に近づいた場合、図9Bに示すように、第1の円錐内に、第2の円錐が存在する。したがって、図9Cに示すように、補助画像データの第2のデータは、第1の断面の外周と、その内部に存在する第2の断面の外周と、穿刺目標点Tとを含む。したがって、穿刺針41の先端と穿刺目標点Tとの間が、第2の円錐の頂点P2と、第1の円錐及び第2の円錐の斜辺の交点とで規定される所定距離L2の範囲内であるとき、第2のデータは、穿刺目標点Tと、第1の断面と、第1の断面内に位置する第2の断面を含む。そして、穿刺目標点Tと、穿刺針41の先端との距離が近づくにつれて、第1の断面のサイズが小さくなり、第2の断面のサイズは大きくなる。したがって、ガイド図形である第2のデータを確認するユーザは、第1の断面及び第2の断面のサイズに応じて、穿刺針41の挿入の程度を把握することができる。なお、超音波プローブ51の傾きが変化したことにより、穿刺針41が断層面に対して垂直でなくなった場合、図9Dに示すように第1の断面及び第2の断面は、正円ではなく楕円となる。したがって、ユーザは、第2のデータを確認することで、穿刺針41の穿刺目標点Tへの到達の度合いとともに、穿刺針41の傾きの度合いも把握することができる。 FIG. 9A shows a state in which the puncture progresses and the tip of the puncture needle 41 approaches the puncture target point T within the second predetermined distance L2 ((3) in FIG. 7). Here, as described above using FIG. 6B, the second cone is a conical shape that spreads toward the rear side of the puncture needle 41 with reference to the apex P2 at a predetermined position forward from the tip of the puncture needle. Therefore, as shown in FIG. 9B, the cross sections obtained by the plurality of cones in the tomographic plane based on the ultrasonic wave U are a first cross section and a second cross section. When the tip of the puncture needle 41 approaches within the predetermined distance L2 from the puncture target point T in this way, a second cone exists within the first cone, as shown in FIG. 9B. Therefore, as shown in FIG. 9C, the second data of the auxiliary image data includes the outer circumference of the first cross section, the outer circumference of the second cross section existing inside the first cross section, and the puncture target point T. Therefore, the distance between the tip of the puncture needle 41 and the puncture target point T is within a predetermined distance L2 defined by the apex P2 of the second cone and the intersection of the hypotenuses of the first cone and the second cone. When , the second data includes the puncture target point T, the first cross section, and the second cross section located within the first cross section. As the distance between the puncture target point T and the tip of the puncture needle 41 becomes smaller, the size of the first cross section becomes smaller and the size of the second cross section becomes larger. Therefore, the user who confirms the second data, which is the guide figure, can grasp the degree of insertion of the puncture needle 41 according to the sizes of the first cross section and the second cross section. Note that if the puncture needle 41 is no longer perpendicular to the tomographic plane due to a change in the inclination of the ultrasound probe 51, the first cross section and the second cross section will not be a perfect circle, as shown in FIG. 9D. It becomes an ellipse. Therefore, by checking the second data, the user can grasp the degree to which the puncture needle 41 has reached the puncture target point T as well as the degree of inclination of the puncture needle 41.
 図10Aは、さらに穿刺が進み、穿刺針41の先端が穿刺目標点Tに達した状態を示す(図7の(4))。ここで、図6Bを用いて上述したように、第1の円錐と第2の円錐とは、穿刺針41の先端において中心軸と垂直な位置で、斜辺が重なるように配置される。したがって、超音波Uを基準とする断層面に対して穿刺針41が垂直に挿入され、図10Bに示すように、穿刺針41の先端が穿刺目標点Tに達したとき、複数の円錐によって得られる断面は、第1の断面と第2の断面とが重なった状態である。したがって、図10Cに示すように、穿刺針41の先端が穿刺目標点Tに達したとき、第2のデータは、穿刺目標点Tと、重なった状態の第1の断面及び第2の断面を含む。図10Cの第2のデータにおいて、第1の断面と第2の断面が重なった状態を実線で示すが、重なったことが把握することができれば、表示方法は限定されない。補助画像データの第2のデータを確認するユーザは、第1の断面及び第2の断面が重なった状態を把握することで、穿刺針41の先端が穿刺目標点Tに到達したことを把握することができる。 FIG. 10A shows a state in which the puncture progresses further and the tip of the puncture needle 41 reaches the puncture target point T ((4) in FIG. 7). Here, as described above using FIG. 6B, the first cone and the second cone are arranged at a position perpendicular to the central axis at the tip of the puncture needle 41 so that their hypotenuses overlap. Therefore, when the puncture needle 41 is inserted perpendicularly to the tomographic plane based on the ultrasonic wave U and the tip of the puncture needle 41 reaches the puncture target point T as shown in FIG. The cross section shown is a state in which the first cross section and the second cross section overlap. Therefore, as shown in FIG. 10C, when the tip of the puncture needle 41 reaches the puncture target point T, the second data indicates that the first cross section and the second cross section overlap with the puncture target point T. include. In the second data of FIG. 10C, the state in which the first cross section and the second cross section overlap is shown by a solid line, but the display method is not limited as long as it is possible to understand that they overlap. The user who checks the second data of the auxiliary image data understands that the tip of the puncture needle 41 has reached the puncture target point T by understanding the state in which the first cross section and the second cross section overlap. be able to.
 また、穿刺針41の先端が穿刺目標点Tを通過する場合もある。図11Aは、穿刺針41の先端が血管B上の穿刺目標点Tを通過した状態を示す(図7の(5))。このような場合、図11Bに示すように、超音波Uを基準とする断層面で、複数の円錐によって得られる断面は、第1の断面、第2の断面、第3の断面となる。この場合、図11Cに示すように、補助画像データの第2のデータは、穿刺目標点Tと、第1の断面の外周と、第1の断面の外周にある第3の断面の外周及び第2の断面の外周とを含む。ここで、図11Cを用いて上述したように、第2の円錐と第3の円錐とは、頂点の位置が異なるとともに、錐体側面の傾斜の傾きが異なる。したがって第2の円錐と第3の円錐とは、斜辺が交差する部分がある。これにより、交差部分までは第2の外周が外側であるが、交差部分からは第3の外周が外側となる。したがって、穿刺針41の先端が穿刺目標点Tを通過すると、第2のデータは、第2の断面内に、第1の断面を含む。また、穿刺針41の先端の挿入深さの程度に応じて、具体的には、穿刺針41の先端の穿刺目標点Tの通過が所定距離L3より短いとき、第3の断面が第2の断面の内側となる。穿刺針41の先端の穿刺目標点Tの通過が所定距離L3より長いとき、第2の断面が第3の断面の内側となる。 Additionally, the tip of the puncture needle 41 may pass through the puncture target point T. FIG. 11A shows a state in which the tip of the puncture needle 41 has passed through the puncture target point T on the blood vessel B ((5) in FIG. 7). In such a case, as shown in FIG. 11B, the cross sections obtained by the plurality of cones are the first cross section, the second cross section, and the third cross section on the tomographic plane based on the ultrasonic wave U. In this case, as shown in FIG. 11C, the second data of the auxiliary image data includes the puncture target point T, the outer periphery of the first cross section, the outer periphery of the third cross section located on the outer periphery of the first cross section, and the second data of the auxiliary image data. and the outer periphery of the cross section of 2. Here, as described above using FIG. 11C, the second cone and the third cone have different apex positions and different inclinations of the side surfaces of the cone. Therefore, there is a portion where the hypotenuses of the second cone and the third cone intersect. As a result, the second outer periphery is on the outside up to the intersection, but the third outer periphery is on the outside from the intersection. Therefore, when the tip of the puncture needle 41 passes through the puncture target point T, the second data includes the first cross section within the second cross section. Further, depending on the degree of insertion depth of the tip of the puncture needle 41, specifically, when the passage of the puncture target point T of the tip of the puncture needle 41 is shorter than the predetermined distance L3, the third cross section becomes the second cross section. This will be the inside of the cross section. When the passage of the puncture target point T of the tip of the puncture needle 41 is longer than the predetermined distance L3, the second cross section becomes inside the third cross section.
 なお、図8C、図9C、図10C及び図11Cに示す例では、穿刺目標点Tをクロス、第1の断面を破線、第2の断面を一点鎖線、第3の断面を二点鎖線で示し、第1の断面と第2の断面の重なりを実線で示したが、これに限定されない。例えば、穿刺目標点Tは、仮に、クロスではなく点や円等で示す方が分かりやすい場合、点や円で示してもよい。例えば、全ての線を異なる色の実線で示す方が分かりやすい場合、各断面を異なる色の実線で示してもよい。 In the examples shown in FIGS. 8C, 9C, 10C, and 11C, the puncture target point T is shown as a cross, the first cross section is shown with a broken line, the second cross section is shown with a dashed line, and the third cross section is shown with a dashed double dotted line. Although the overlap between the first cross section and the second cross section is shown by a solid line, the present invention is not limited thereto. For example, if it is easier to understand the puncture target point T by a dot or a circle instead of a cross, the puncture target point T may be shown by a dot or a circle. For example, if it is easier to understand if all lines are shown as solid lines in different colors, each cross section may be shown as solid lines in different colors.
〈穿刺手技の補助画像の生成方法〉
 図12A及び12Bに示すフローチャートを用いて、本開示に係る穿刺補助画像生成装置10における穿刺手技の補助画像の生成方法について説明する。
<How to generate auxiliary images for puncture technique>
A method for generating an auxiliary image for a puncture technique in the puncture auxiliary image generation device 10 according to the present disclosure will be described using the flowcharts shown in FIGS. 12A and 12B.
 まず、穿刺補助画像生成装置10は、計測装置20から、計測装置20で取得された位置姿勢データを受信する(S001)。位置姿勢データは、穿刺器具40、超音波プローブ51及び装着装置30の位置及び姿勢を示す情報を含む。なお、計測装置20における位置姿勢データの取得については、図13に示すフローチャートを用いて後述する。 First, the puncture auxiliary image generation device 10 receives position and orientation data acquired by the measurement device 20 from the measurement device 20 (S001). The position and orientation data includes information indicating the positions and orientations of the puncture device 40, the ultrasound probe 51, and the mounting device 30. Note that acquisition of position and orientation data in the measuring device 20 will be described later using a flowchart shown in FIG.
 次に穿刺補助画像生成装置10は、例えば、装着装置30のカメラ31で撮影された映像データを取得し出力装置15に表示する(S002)。 Next, the puncture auxiliary image generation device 10, for example, acquires video data captured by the camera 31 of the mounting device 30 and displays it on the output device 15 (S002).
 穿刺補助画像生成装置10は、ステップS002において取得された映像データに対して、後に、穿刺器具40において穿刺針41の先端を特定する校正処理のために、校正処理用のデータ(第1の校正用のデータ)を受け付ける。また同時に、穿刺補助画像生成装置10は、超音波プローブ51の先端の位置を特定する校正処理のために、校正処理用のデータ(第2の校正用のデータ)を受け付ける(S003)。校正処理用のデータ(第1の校正用のデータ)は、穿刺針41の先端の位置及び姿勢とステップS001で受信した穿刺器具40の位置姿勢との「差分補正データ」である。校正処理用のデータ(第2の校正用のデータ)は、超音波プローブ51の先端の位置・姿勢とステップS001で受信した超音波プローブ51の計測された位置姿勢との「差分補正データ」である。具体的には、ステップS003で受け付ける校正処理用データ(第1の校正用のデータ及び第2の校正用のデータ)は、校正処理、すなわち穿刺針41および超音波プローブ51の先端の位置と計測された位置とのずれを補正する差分補正データである。初回のみユーザに設定される校正処理用データを受け付けて保存する。2回目以降は、初回に保存された校正処理用データが読み出され、受け付けられる。 The puncture auxiliary image generation device 10 generates data for a calibration process (first calibration data) for the video data acquired in step S002 for a calibration process that specifies the tip of the puncture needle 41 in the puncture instrument 40 later. data). At the same time, the puncture auxiliary image generation device 10 receives data for a calibration process (second calibration data) for a calibration process that specifies the position of the tip of the ultrasound probe 51 (S003). The data for the calibration process (first data for calibration) is "difference correction data" between the position and orientation of the tip of the puncture needle 41 and the position and orientation of the puncture instrument 40 received in step S001. The data for calibration processing (data for second calibration) is "difference correction data" between the position and orientation of the tip of the ultrasound probe 51 and the measured position and orientation of the ultrasound probe 51 received in step S001. be. Specifically, the calibration processing data (first calibration data and second calibration data) received in step S003 is used for calibration processing, that is, the position and measurement of the tips of the puncture needle 41 and the ultrasound probe 51. This is difference correction data that corrects the deviation from the position that was specified. Accepts and saves the calibration processing data set by the user only for the first time. From the second time onward, the data for calibration processing saved at the first time is read out and accepted.
 続いて、穿刺補助画像生成装置10は、穿刺器具40において穿刺針41の先端の位置を特定する校正処理と、超音波プローブ51において先端の位置を特定する校正処理を行う(S004)。校正処理には、ステップS001で計測装置20から受信した位置姿勢データに含まれる穿刺器具40および超音波プローブ51の位置姿勢と、ステップS003で受け付けた校正処理用のデータとが利用される。これにより、穿刺針41の先端及び超音波プローブ51の先端が特定された上でその後の処理が実行される。 Subsequently, the puncture auxiliary image generation device 10 performs a calibration process for specifying the position of the tip of the puncture needle 41 in the puncture instrument 40, and a calibration process for specifying the position of the tip of the ultrasound probe 51 (S004). The calibration process uses the position and orientation of the puncture instrument 40 and the ultrasound probe 51 included in the position and orientation data received from the measuring device 20 in step S001, and the data for the calibration process received in step S003. Thereby, the tip of the puncture needle 41 and the tip of the ultrasound probe 51 are identified, and subsequent processing is executed.
 また、穿刺補助画像生成装置10は、超音波プローブ51によって得られた超音波断層像を取得する(S005)。 Additionally, the puncture auxiliary image generation device 10 acquires an ultrasound tomographic image obtained by the ultrasound probe 51 (S005).
 その後、穿刺補助画像生成装置10は、装着装置30に搭載されるカメラ31によって撮影された現実環境の映像データを取得する(S006)。ここで取得する現実環境の映像データは、仮に、ユーザが装着装置30を装着していない場合に視認可能な現実環境の状態を含む。具体的には、現実環境の映像データは、患者の患部近傍の皮膚とともに、穿刺器具40及び超音波プローブ51を含む。 Thereafter, the puncture auxiliary image generation device 10 acquires video data of the real environment captured by the camera 31 mounted on the mounting device 30 (S006). The video data of the real environment acquired here includes the state of the real environment that would be visible if the user was not wearing the mounting device 30. Specifically, the video data of the real environment includes the skin near the affected area of the patient, as well as the puncture device 40 and the ultrasound probe 51.
 その後、穿刺補助画像生成装置10は、装着装置30のディスプレイ32に、ステップS006で取得した映像データを、現実環境映像として表示させる(S007)。ここで、仮に、カメラ31で撮影される映像データが、装着装置30を装着するユーザの実際の視野より広い場合、穿刺補助画像生成装置10は、例えば、ステップS006で取得した映像データをトリミングする等の処理を施してもよい。 Thereafter, the puncture auxiliary image generation device 10 causes the display 32 of the mounting device 30 to display the video data acquired in step S006 as a real environment video (S007). Here, if the video data captured by the camera 31 is wider than the actual field of view of the user wearing the mounting device 30, the puncture auxiliary image generation device 10, for example, trims the video data acquired in step S006. You may perform processing such as the following.
 また、穿刺補助画像生成装置10は、装着装置30のディスプレイ32に、ステップS005で取得した超音波断層像を表示させる(S008)。このとき、穿刺補助画像生成装置10は、ステップS007で表示させた現実環境映像上の対応する位置に、超音波断層像を重畳させる。具体的には、穿刺補助画像生成装置10は、ステップS001で受信した位置姿勢データで示される超音波プローブ51の位置及び装着装置30の位置を用いて、現実環境映像上の超音波断層像の位置を決定する。 Furthermore, the puncture auxiliary image generation device 10 causes the display 32 of the mounting device 30 to display the ultrasound tomographic image acquired in step S005 (S008). At this time, the puncture auxiliary image generation device 10 superimposes the ultrasound tomographic image on the corresponding position on the real environment image displayed in step S007. Specifically, the puncture auxiliary image generation device 10 uses the position of the ultrasound probe 51 and the position of the mounting device 30 indicated by the position and orientation data received in step S001 to generate an ultrasound tomographic image on the real environment image. Determine the position.
 穿刺補助画像生成装置10は、補助画像データを生成する(S009)。補助画像データの生成の詳細については、図12Bに示すフローチャートを用いて説明する。 The puncture auxiliary image generation device 10 generates auxiliary image data (S009). Details of the generation of auxiliary image data will be explained using the flowchart shown in FIG. 12B.
 穿刺補助画像生成装置10は、装着装置30のディスプレイ32に、ステップS009で生成した補助画像データを表示させる(S010)。このとき、穿刺補助画像生成装置10は、ステップS007で表示させた現実環境映像の上に、補助画像データの第1のデータを重畳させる。また、穿刺補助画像生成装置10は、ステップS008で表示させた超音波断層像上の対応する位置に、補助画像データの第2のデータを重畳させる。ここでは、穿刺補助画像生成装置10は、ステップS001で受信した位置姿勢データで示される超音波プローブ51の位置、装着装置30の位置と、ステップS010で決定した超音波断層像の位置を用いて、現実環境映像上及び超音波断層像上の補助画像データの位置を決定する。 The puncture auxiliary image generation device 10 displays the auxiliary image data generated in step S009 on the display 32 of the mounting device 30 (S010). At this time, the puncture auxiliary image generation device 10 superimposes the first data of the auxiliary image data on the real environment video displayed in step S007. Furthermore, the puncture auxiliary image generation device 10 superimposes the second data of the auxiliary image data on the corresponding position on the ultrasound tomographic image displayed in step S008. Here, the puncture auxiliary image generation device 10 uses the position of the ultrasound probe 51 and the position of the mounting device 30 indicated by the position and orientation data received in step S001, and the position of the ultrasound tomographic image determined in step S010. , determine the position of auxiliary image data on the real environment image and on the ultrasound tomographic image.
 その後も穿刺手技が継続する間(S011でYES)、ステップS001~S011の処理を繰り返す。 Thereafter, while the puncturing procedure continues (YES in S011), the processes of steps S001 to S011 are repeated.
 なお、穿刺手技の補助の方法の各手順は、図12Aに示す処理の順序に限定されない。例えば、穿刺器具40、超音波プローブ51、及び装着装置30等の位置及び姿勢の取得は同時に実行されてもよい。また例えば、装着装置30のディスプレイへの現実環境映像、超音波断層像、及び補助画像データの表示も同時に実行されてもよい。 Note that each procedure of the puncture technique assistance method is not limited to the processing order shown in FIG. 12A. For example, the acquisition of the positions and postures of the puncture instrument 40, the ultrasound probe 51, the mounting device 30, etc. may be performed simultaneously. Further, for example, display of the real environment image, ultrasound tomographic image, and auxiliary image data on the display of the mounting device 30 may also be performed simultaneously.
 次に、図12Bに示すフローチャートを用いて、図12AのフローチャートのステップS009に示す補助画像データの生成の処理の詳細について説明する。 Next, details of the process of generating auxiliary image data shown in step S009 of the flowchart of FIG. 12A will be described using the flowchart shown in FIG. 12B.
 穿刺補助画像生成装置10は、穿刺目標登録のリクエストを受け付けると(S101でYES)、断層面と、穿刺針41の中心軸との交点を「穿刺目標点」として登録する(S102)。ここで、「穿刺目標登録」のリクエストは、穿刺手技の実施開始時、穿刺手技を行う医師等のユーザが、穿刺針を皮膚に正に穿刺する時点で設定することが一般的である。また、一度、穿刺目標点が登録されると、その後に続いて取得される映像データのフレームについては、既に登録された穿刺目標点が利用される。具体的には、穿刺目標の登録は、穿刺針41の針先が患者の皮膚に接し、穿刺針41の針先が穿刺の目標となる血管に向けられた状態で行われる。穿刺補助画像生成装置10は、ステップS001で取得した超音波プローブ51の位置及び姿勢に基づいて、超音波が送受信される「断層面」の位置を導く。この断層面を表す画像が、ステップS005で取得される超音波断層像である。また、穿刺補助画像生成装置10は、ステップS001で取得した穿刺器具40の位置及び姿勢に基づいて、三次元空間上の「穿刺針の中心軸」を導く。さらに、穿刺補助画像生成装置10は、このようにして導いた「断層面」と「穿刺針の中心軸」との交点を、「穿刺目標点」として登録する。例えば、ユーザは、図4Bに示したペダル143を押下することにより、穿刺目標点の登録をリクエストすることができる。 When the puncture auxiliary image generation device 10 receives a request for puncture target registration (YES in S101), it registers the intersection of the tomographic plane and the central axis of the puncture needle 41 as a "puncture target point" (S102). Here, the request for "puncture target registration" is generally set at the time when the user, such as a doctor performing the puncture procedure, punctures the skin with the puncture needle at the beginning of the puncture procedure. Furthermore, once a puncture target point is registered, the already registered puncture target point is used for frames of video data that are subsequently acquired. Specifically, registration of the puncture target is performed with the needle tip of the puncture needle 41 in contact with the patient's skin and with the needle tip of the puncture needle 41 directed toward the blood vessel that is the puncture target. The puncture auxiliary image generation device 10 guides the position of the "tomographic plane" where ultrasound waves are transmitted and received based on the position and orientation of the ultrasound probe 51 acquired in step S001. The image representing this tomographic plane is the ultrasound tomographic image acquired in step S005. Furthermore, the puncture auxiliary image generation device 10 guides the "central axis of the puncture needle" in three-dimensional space based on the position and orientation of the puncture instrument 40 acquired in step S001. Furthermore, the puncture auxiliary image generation device 10 registers the intersection of the thus derived "tomographic plane" and the "central axis of the puncture needle" as a "puncture target point." For example, the user can request registration of a puncture target point by pressing the pedal 143 shown in FIG. 4B.
 また、穿刺補助画像生成装置10は、穿刺目標登録の指示を受け付けたとき、穿刺針41の先端位置を、「穿刺開始点」として登録する(S103)。穿刺補助画像生成装置10は、ステップS001で取得した穿刺器具40の位置及び姿勢と、予め記憶装置12に記憶される穿刺器具40のサイズとに基づいて、三次元空間上の「穿刺針先端位置」を導く。 Furthermore, when receiving the instruction to register a puncture target, the puncture auxiliary image generation device 10 registers the position of the tip of the puncture needle 41 as a "puncture starting point" (S103). The puncture auxiliary image generation device 10 determines the "puncture needle tip position" in the three-dimensional space based on the position and orientation of the puncture device 40 acquired in step S001 and the size of the puncture device 40 stored in advance in the storage device 12. ”.
 穿刺補助画像生成装置10は、ステップS102で登録された穿刺目標点の印を描画する(S104)。なお、仮に穿刺目標登録の指示がなかった場合(S101でNO)、以前のフレームで穿刺目標点が登録されているため、以前のフレームで登録された穿刺目標点に基づいて、穿刺目標点の印を描画する。 The puncture auxiliary image generation device 10 draws the mark of the puncture target point registered in step S102 (S104). Note that if there is no instruction to register the puncture target (NO in S101), the puncture target point is registered in the previous frame, so the puncture target point is registered based on the puncture target point registered in the previous frame. Draw a mark.
 穿刺補助画像生成装置10は、ステップS103で登録した穿刺開始点から、ステップS102で登録した穿刺目標点を結ぶ線を軸とし、穿刺目標点を頂点とする第1のデータの一部である円錐を描画する(S105)。この円錐により、穿刺針41の方向を示すことができる。 The puncture auxiliary image generation device 10 generates a cone, which is part of the first data, whose axis is a line connecting the puncture start point registered in step S103 to the puncture target point registered in step S102, and whose apex is the puncture target point. is drawn (S105). This cone allows the direction of the puncture needle 41 to be indicated.
 穿刺補助画像生成装置10は、第1のデータの一部として、穿刺針41の位置を示す線分を描画する(S106)。例えば、穿刺補助画像生成装置10は、図5Bの線Lnに示すように、穿刺針41の位置を示す線分を描画する。本線分の描画に関わり、穿刺針41の状態を視認できるようにするために、断層像上の交わりとしてではなく、3次元的な穿刺針41の位置を把握するための線分として描画する。本線分の方向は、穿刺針41を軸とする方向に一致させる。穿刺補助画像生成装置10は、ステップS001で取得した穿刺器具40の位置及び姿勢に基づいて、穿刺針41の位置を導く。 The puncture auxiliary image generation device 10 draws a line segment indicating the position of the puncture needle 41 as part of the first data (S106). For example, the puncture auxiliary image generation device 10 draws a line segment indicating the position of the puncture needle 41, as shown by line Ln in FIG. 5B. In relation to the drawing of the main line segment, in order to make the state of the puncture needle 41 visible, the line segment is drawn not as an intersection on a tomographic image but as a line segment for grasping the three-dimensional position of the puncture needle 41. The direction of the main line segment is made to coincide with the direction about the puncture needle 41 as the axis. The puncture auxiliary image generation device 10 guides the position of the puncture needle 41 based on the position and orientation of the puncture instrument 40 acquired in step S001.
 穿刺補助画像生成装置10は、第1データの一部として、穿刺針41の延長線を示す線分を描画する(S107)。例えば、穿刺補助画像生成装置10は、図5Bの線Leに示すように、穿刺針41の延長線の位置を3次元的に示す線分を描画する。このとき、穿刺補助画像生成装置10は、少なくとも、穿刺針41の先端から、断層面までの穿刺針41の延長線を描画する。またこのとき、穿刺補助画像生成装置10は、ステップS106で描画した穿刺針41と少なくとも色又は線種のいずれかが異なる状態で、穿刺針41の延長線を描画する。穿刺補助画像生成装置10は、穿刺針41の延長線を、ステップS001で取得した穿刺器具40の位置及び姿勢に基づいて導く。 The puncture auxiliary image generation device 10 draws a line segment indicating the extension of the puncture needle 41 as part of the first data (S107). For example, the puncture auxiliary image generation device 10 draws a line segment three-dimensionally indicating the position of the extension of the puncture needle 41, as shown by line Le in FIG. 5B. At this time, the puncture auxiliary image generation device 10 draws at least an extension line of the puncture needle 41 from the tip of the puncture needle 41 to the tomographic plane. Also, at this time, the puncture auxiliary image generation device 10 draws an extension line of the puncture needle 41 in a state where at least either the color or the line type is different from the puncture needle 41 drawn in step S106. The puncture auxiliary image generation device 10 guides the extension line of the puncture needle 41 based on the position and orientation of the puncture instrument 40 acquired in step S001.
 穿刺補助画像生成装置10は、第1のデータの一部として、穿刺針41の中心軸と、断層面との交点に交点の印を描画する(S108)。穿刺補助画像生成装置10は、穿刺針41の中心軸を、ステップS001で取得した穿刺器具40の位置及び姿勢に基づいて導く。また、穿刺補助画像生成装置10は、断層面を、ステップS001で取得した超音波プローブ51の位置及び姿勢に基づく。断層面は、超音波プローブ51の傾きに合わせて変化するので、断層面の変化に合わせて穿刺針41の中心軸と断層面との交点の位置も変化する。このように、穿刺補助画像生成装置10は、ステップS105~S108の処理によって、第1のデータを生成する。 The puncture auxiliary image generation device 10 draws an intersection mark at the intersection of the central axis of the puncture needle 41 and the tomographic plane as part of the first data (S108). The puncture auxiliary image generation device 10 guides the central axis of the puncture needle 41 based on the position and orientation of the puncture instrument 40 acquired in step S001. Furthermore, the puncture auxiliary image generation device 10 bases the tomographic plane on the position and orientation of the ultrasound probe 51 acquired in step S001. Since the tomographic plane changes in accordance with the inclination of the ultrasound probe 51, the position of the intersection between the central axis of the puncture needle 41 and the tomographic plane also changes in accordance with the change in the tomographic plane. In this way, the puncture auxiliary image generation device 10 generates the first data through the processes of steps S105 to S108.
 穿刺補助画像生成装置10は、第2のデータの一部として、穿刺針41の先端から所定距離L1後方の位置を頂点とし、穿刺方向側に開く第1の円錐の、断層面での断面である第1の断面を描画する(S109)。この第1の断面は、穿刺針41の深さを示す。具体的には、第1の断面が小さくなると、穿刺針41の穿刺深さが深くなる。 The puncture auxiliary image generation device 10 generates, as part of the second data, a cross-section in a tomographic plane of a first cone that has its apex at a position a predetermined distance L1 behind the tip of the puncture needle 41 and opens toward the puncture direction. A certain first cross section is drawn (S109). This first cross section shows the depth of the puncture needle 41. Specifically, as the first cross section becomes smaller, the puncture depth of the puncture needle 41 becomes deeper.
 穿刺補助画像生成装置10は、第2のデータの一部として、穿刺針41の先端から所定距離L2前方の位置を頂点とし、穿刺方向側から後方に開く第2の円錐の、断層面での断面である第2の断面を描画する(S110)。この第2の断面は、穿刺針41の先端が断層面に接近する度合いを示す。具体的には、穿刺針41の先端が、穿刺目標点Tと第2の所定距離L2の範囲内に近接したときに第2の断面が描画され、穿刺針41の穿刺深さが深くなると、第2の断面が大きくなる。 The puncture auxiliary image generation device 10 generates, as part of the second data, a tomographic plane of a second cone that opens rearward from the puncture direction side and has its apex at a position a predetermined distance L2 ahead of the tip of the puncture needle 41. A second cross section is drawn (S110). This second cross section shows the degree to which the tip of the puncture needle 41 approaches the tomographic plane. Specifically, when the tip of the puncture needle 41 approaches the puncture target point T within a second predetermined distance L2, the second cross section is drawn, and when the puncture depth of the puncture needle 41 becomes deeper, The second cross section becomes larger.
 穿刺補助画像生成装置10は、第2のデータの一部として、穿刺針41の先端を頂点とし、穿刺方向側から後方に開く第3の円錐の、断層面での断面である第3の断面を描画する(S111)。この第3の断面は、穿刺針41の先端が断層面を通過した度合いを示す。具体的には、穿刺針41の先端が、穿刺目標点Tを通過すると第3の断面が描画され、その通過距離が大きくなると、第3の断面が大きくなる。このように、ステップS109~S111の処理によって、第2のデータが生成される。 The puncture auxiliary image generation device 10 generates, as part of the second data, a third cross section that is a cross section of a third cone that has the tip of the puncture needle 41 as its apex and opens rearward from the puncture direction side. is drawn (S111). This third cross section shows the degree to which the tip of the puncture needle 41 has passed through the tomographic plane. Specifically, when the tip of the puncture needle 41 passes the puncture target point T, a third cross section is drawn, and as the passing distance increases, the third cross section becomes larger. In this way, the second data is generated by the processing of steps S109 to S111.
〈位置姿勢データの生成方法〉
 続いて、図13に示すフローチャートを用いて、計測装置20における位置姿勢データの生成方法の一例を説明する。
<How to generate position and orientation data>
Next, an example of a method for generating position and orientation data in the measuring device 20 will be described using the flowchart shown in FIG. 13.
 まず、計測装置20は、複数の投光手段21及び受光手段22を用いて画像データを取得する(S201)。ここで、穿刺器具40、超音波プローブ51及び装着装置30には、予め、穿刺器具40、超音波プローブ51及び装着装置30の位置及び姿勢の特定に利用されるマーカが取り付けられる。また、受光手段22で観測される画像データには、穿刺器具40、超音波プローブ51及び装着装置30に取り付けられたマーカを含む。 First, the measuring device 20 acquires image data using a plurality of light projecting means 21 and light receiving means 22 (S201). Here, markers used for specifying the positions and postures of the puncture device 40, the ultrasound probe 51, and the mounting device 30 are attached in advance to the puncture device 40, the ultrasound probe 51, and the mounting device 30. Further, the image data observed by the light receiving means 22 includes markers attached to the puncture device 40, the ultrasound probe 51, and the mounting device 30.
 計測装置20は、処理装置23において、ステップS201において取得した画像データを用いて、位置姿勢データを生成する(S202)。具体的には、処理装置23は、複数の画像データの対応するフレーム毎、すなわち、同一タイミングで取得されたフレーム毎に、穿刺器具40、超音波プローブ51及び装着装置30に取り付けられたマーカの位置及び姿勢を検出する。また処理装置23は、位置姿勢データを生成する。位置姿勢データは、穿刺器具40、超音波プローブ51及び装着装置30の位置及び姿勢を、上述したような統一した座標系を用いて示す。例えば、装着装置30がヘッドマウントディスプレイであるとき、穿刺補助画像生成装置10は、装着装置30を装着するユーザの頭部の位置及び姿勢を求めることができるため、ユーザの頭部の位置と、ユーザの頭部がどの方向を向いているかを求めることができる。 The measuring device 20 generates position and orientation data in the processing device 23 using the image data acquired in step S201 (S202). Specifically, the processing device 23 processes the markers attached to the puncture device 40, the ultrasound probe 51, and the mounting device 30 for each corresponding frame of a plurality of image data, that is, for each frame acquired at the same timing. Detect position and orientation. The processing device 23 also generates position and orientation data. The position and orientation data indicates the positions and orientations of the puncture instrument 40, the ultrasound probe 51, and the mounting device 30 using the unified coordinate system as described above. For example, when the wearing device 30 is a head-mounted display, the puncture auxiliary image generation device 10 can determine the position and posture of the head of the user who wears the wearing device 30. It is possible to determine which direction the user's head is facing.
 計測装置20は、ステップS202において生成した位置姿勢データを、穿刺補助画像生成装置10に送信する(S005)。ステップS202で計測装置20によって送信された位置姿勢データは、穿刺補助画像生成装置10においてステップS001で受信される。 The measurement device 20 transmits the position and orientation data generated in step S202 to the puncture auxiliary image generation device 10 (S005). The position and orientation data transmitted by the measuring device 20 in step S202 is received by the puncture auxiliary image generation device 10 in step S001.
 なお、図13に示す計測装置20での位置姿勢データの生成及び送信は、例えば、穿刺補助画像生成装置10で穿刺手技を補助する間、繰り返し継続して実行される。具体的には、図13に示すフローチャートの処理は、図12Aに示すフローチャートの処理が実行される間、図12Aに示すフローチャートの処理と非同期で、継続して稼働する。したがって、穿刺補助画像生成装置10は、計測装置20から継続して受信する位置姿勢データを利用して、穿刺器具40、超音波プローブ51及び装着装置30の位置及び姿勢をリアルタイムで取得し、穿刺手技の補助画像の生成に利用することができる。 Note that the generation and transmission of position and orientation data by the measuring device 20 shown in FIG. 13 are repeatedly and continuously performed, for example, while the puncturing auxiliary image generation device 10 assists the puncturing procedure. Specifically, the process shown in the flowchart shown in FIG. 13 continues to operate asynchronously with the process shown in the flowchart shown in FIG. 12A while the process shown in the flowchart shown in FIG. 12A is executed. Therefore, the puncture auxiliary image generation device 10 uses the position and orientation data continuously received from the measurement device 20 to acquire the positions and orientations of the puncture instrument 40, ultrasound probe 51, and mounting device 30 in real time, and performs puncture. It can be used to generate auxiliary images for procedures.
 穿刺補助画像生成装置10は、上述したように、穿刺目標点Tと穿刺開始点とに応じて生成された穿刺目標点Tと穿刺針41との位置関係を3次元的に示す第1のデータを生成する。また、穿刺補助画像生成装置10は、穿刺目標点Tとともに、穿刺針41と穿刺目標点Tとの距離や、穿刺針41の深さに応じて表示状態が異なる第1乃至第3の断面を含む第2のデータを生成する。また、穿刺補助画像生成装置10は、第1のデータを周辺環境画像中に重畳させて表示し、第1のデータを超音波断層像上に重畳させて表示させる。換言すると、穿刺手技補助システム1は、ユーザの環境映像に、超音波断層像に加えて、穿刺の状況を表す第1のデータ及び第2のデータを含む補助画像データを重ねて表示することで、複合現実(MR)を実現する。これにより、穿刺手技補助システム1のユーザは、超音波断層像だけでは十分に把握することのできない穿刺目標点Tと穿刺針41との距離を示すガイド図形である補助画像データを確認しながら、穿刺針41の穿刺状況を把握することができる。 As described above, the puncture auxiliary image generation device 10 generates first data that three-dimensionally indicates the positional relationship between the puncture target point T and the puncture needle 41, which is generated according to the puncture target point T and the puncture start point. generate. In addition, the puncture auxiliary image generation device 10 displays first to third cross sections whose display states differ depending on the distance between the puncture needle 41 and the puncture target point T and the depth of the puncture needle 41, as well as the puncture target point T. generating second data containing the second data; Furthermore, the puncture auxiliary image generation device 10 displays the first data superimposed on the surrounding environment image, and displays the first data superimposed on the ultrasound tomographic image. In other words, the puncture technique assistance system 1 superimposes and displays auxiliary image data including first data and second data representing the puncture situation in addition to the ultrasonic tomographic image on the user's environmental video. , to realize mixed reality (MR). As a result, the user of the puncture procedure assistance system 1 can check the auxiliary image data, which is a guide figure that indicates the distance between the puncture target point T and the puncture needle 41, which cannot be fully grasped using ultrasound tomograms alone. The puncturing situation of the puncturing needle 41 can be grasped.
 本開示の穿刺手技補助システム、穿刺補助画像生成装置及び穿刺補助画像生成方法は、穿刺手技の補助に有用である。 The puncture procedure assistance system, puncture assistance image generation device, and puncture assistance image generation method of the present disclosure are useful for assisting puncture procedures.
1 穿刺手技補助システム
10 穿刺補助画像生成装置
11 制御装置
12 記憶装置
13 通信装置
14 入力装置
15 出力装置
20 計測装置
21 投光手段
22 受光手段
23 処理装置
30 装着装置
31 カメラ
32 ディスプレイ
40 穿刺器具
41 穿刺針
50 超音波装置
51 超音波プローブ
52 処理装置
1 Puncture technique assistance system 10 Puncture assistance image generation device 11 Control device 12 Storage device 13 Communication device 14 Input device 15 Output device 20 Measuring device 21 Light projecting means 22 Light receiving means 23 Processing device 30 Mounting device 31 Camera 32 Display 40 Puncture instrument 41 Puncture needle 50 Ultrasonic device 51 Ultrasonic probe 52 Processing device

Claims (10)

  1.  穿刺手技の補助に利用される穿刺手技補助システムであって、
     患者の任意に指定する断層像を取得するプローブと、
     穿刺手技に利用される穿刺器具の位置及び姿勢を計測する計測装置と、
     前記断層像及び前記計測装置による計測データに基づいて、穿刺の状態を示す補助画像データを生成し、当該補助画像データをディスプレイに表示させる穿刺補助画像生成装置と、
     を備え、
     前記穿刺補助画像生成装置は、
     前記計測データを用いて、前記穿刺器具、前記プローブの断層面、及び、患者体内の穿刺目標点の位置合わせし、
     前記位置合わせによって得られた前記穿刺器具の穿刺針、前記断層面、及び、前記穿刺目標点の位置関係を示し、前記断層像に重畳する前記補助画像データを生成する、
     穿刺手技補助システム。
    A puncture procedure assistance system used to assist puncture procedures,
    a probe that acquires an arbitrarily specified tomographic image of a patient;
    A measuring device that measures the position and posture of a puncture device used in a puncture procedure;
    a puncture auxiliary image generation device that generates auxiliary image data indicating a puncture state based on the tomographic image and measurement data by the measuring device, and displays the auxiliary image data on a display;
    Equipped with
    The puncture auxiliary image generation device includes:
    using the measurement data to align the puncture device, the tomographic plane of the probe, and the puncture target point within the patient's body;
    Indicating the positional relationship between the puncture needle of the puncture device, the tomographic plane, and the puncture target point obtained by the alignment, and generating the auxiliary image data to be superimposed on the tomographic image;
    Puncture procedure assistance system.
  2.  穿刺手技の補助に利用される穿刺手技補助システムであって、
     患者の超音波断層像を取得する超音波プローブと、
     穿刺手技に利用される穿刺器具の位置及び姿勢を計測する計測装置と、
     前記超音波断層像及び前記計測装置による計測データに基づいて、穿刺の状態を示す補助画像データを生成し、当該補助画像データをディスプレイに表示させる穿刺補助画像生成装置と、
     を備え、
     前記穿刺補助画像生成装置は、
     前記計測データを用いて、前記穿刺器具、前記超音波プローブの断層面、及び、患者体内の穿刺目標点の位置合わせし、
     前記位置合わせによって得られた前記穿刺器具の穿刺針、前記断層面、及び、前記穿刺目標点の位置関係を示し、前記超音波断層像に重畳する前記補助画像データを生成する、
     穿刺手技補助システム。
    A puncture procedure assistance system used to assist puncture procedures,
    an ultrasound probe that obtains ultrasound tomographic images of a patient;
    A measuring device that measures the position and posture of a puncture device used in a puncture procedure;
    a puncture auxiliary image generation device that generates auxiliary image data indicating a puncture state based on the ultrasound tomogram and measurement data by the measuring device, and displays the auxiliary image data on a display;
    Equipped with
    The puncture auxiliary image generation device includes:
    using the measurement data to align the puncture device, the tomographic plane of the ultrasound probe, and the puncture target point within the patient's body;
    Indicating the positional relationship between the puncture needle of the puncture device, the tomographic plane, and the puncture target point obtained by the alignment, and generating the auxiliary image data to be superimposed on the ultrasound tomographic image;
    Puncture procedure assistance system.
  3.  前記ディスプレイ及び周囲環境を撮像するカメラを有し、穿刺手技を行うユーザに装着される装着装置をさらに備え、
     前記計測装置は、
     前記超音波プローブ及び前記穿刺器具とともに、前記装着装置の位置及び姿勢を計測し、
     前記穿刺補助画像生成装置は、
     前記カメラで撮影した前記患者、前記穿刺器具及び前記超音波プローブを含む現実環境画像上の、前記計測装置における計測結果を考慮した位置に、前記補助画像データを重ねて表示する
     請求項2に記載の穿刺手技補助システム。
    further comprising a mounting device that has the display and a camera that captures images of the surrounding environment and is worn by a user performing a puncture procedure,
    The measuring device is
    measuring the position and orientation of the mounting device together with the ultrasound probe and the puncture device;
    The puncture auxiliary image generation device includes:
    3. The auxiliary image data is superimposed and displayed on a real environment image including the patient, the puncture device, and the ultrasound probe captured by the camera, at a position that takes into account the measurement results of the measurement device. puncture procedure assistance system.
  4.  演算装置を備え、穿刺手技の補助に利用される補助画像データを生成する穿刺補助画像生成装置であって、
     前記演算装置は、
     計測装置から、患者の超音波断層像を取得する超音波プローブと、穿刺手技に利用される穿刺器具の位置及び姿勢を計測した計測データを受け付け、
     前記計測データを用いて、前記穿刺器具、前記超音波プローブの断層面、及び、患者体内の穿刺目標点の位置合わせを実行し、
     前記超音波プローブから超音波断層像を受け付け、
     前記位置合わせによって得られた前記穿刺器具の穿刺針、前記断層面、及び、前記穿刺目標点の位置関係を示し、前記超音波断層像に重畳する前記補助画像データを生成するステップと、
     前記超音波断層像が表示される表示装置に前記補助画像データを表示させるステップと、
     を実行する穿刺補助画像生成装置。
    A puncture auxiliary image generation device that includes a calculation device and generates auxiliary image data used to assist a puncture procedure,
    The arithmetic device is
    Receives measurement data from the measurement device that measures the position and posture of the ultrasound probe that acquires ultrasound tomographic images of the patient and the puncture instrument used in the puncture procedure,
    Using the measurement data, aligning the puncture device, the tomographic plane of the ultrasound probe, and the puncture target point within the patient's body;
    receiving an ultrasound tomographic image from the ultrasound probe;
    generating the auxiliary image data to be superimposed on the ultrasound tomographic image, indicating the positional relationship between the puncture needle of the puncture device, the tomographic plane, and the puncture target point obtained by the alignment;
    displaying the auxiliary image data on a display device on which the ultrasound tomographic image is displayed;
    A puncture auxiliary image generation device that performs
  5.  前記位置関係を表す情報は、前記穿刺針の先端、及び、前記断層面に位置する前記穿刺目標点との距離を示すガイド図形を含む
     請求項4に記載の穿刺補助画像生成装置。
    The puncture auxiliary image generation device according to claim 4, wherein the information representing the positional relationship includes a guide figure indicating a distance between the tip of the puncture needle and the puncture target point located on the tomographic plane.
  6.  前記ガイド図形は、前記穿刺針を軸として設けられる複数の錐体の、前記断層面を基準とする断面で表される
     請求項5に記載の穿刺補助画像生成装置。
    The puncture auxiliary image generation device according to claim 5, wherein the guide figure is represented by a cross section of a plurality of pyramids provided with the puncture needle as an axis, with the tomographic plane as a reference.
  7.  前記複数の錐体は、
     前記穿刺針の中心軸を中心軸とし、前記穿刺針の先端から第1の所定距離後方に頂点が位置し、前記穿刺針の先端が前記穿刺目標点に近接すると、前記断層面での断面が小さくなる第1の錐体と、
     前記穿刺針の中心軸を中心軸とし、前記穿刺針の先端から第2の所定距離前方に頂点が位置し、前記穿刺針の先端が前記穿刺目標点に近接すると、前記断層面での断面が大きくなる第2の錐体と、
     前記穿刺針の中心軸を中心軸とし、前記穿刺針の先端を頂点とし、前記第2の錐体よりも錐体側面の傾斜が緩やかで、前記穿刺針の先端が前記穿刺目標点を通過すると、前記断層面での断面が大きくなる第3の錐体とを含み、
     前記位置関係を表す情報は、
     前記穿刺針の先端と前記穿刺目標点との間が前記第2の所定距離以上であるとき、前記第1の錐体の第1の断面のみを含み、
     前記穿刺針の先端と前記穿刺目標点との間が前記第2の所定距離未満であるとき、前記第1の断面内に、前記第2の錐体の第2の断面が含まれ、
     前記穿刺針の先端が前記穿刺目標点に接触すると、前記第1の断面と前記第2の断面とを重なった状態で含み、
     前記穿刺針の先端が前記穿刺目標点を通過すると、前記第2の断面内に、前記第1の断面が含まれるとともに、前記穿刺針の先端の挿入深さに応じて、前記第3の錐体の第3の断面が大きく表される
     請求項6に記載の穿刺補助画像生成装置。
    The plurality of cones are:
    With the central axis of the puncture needle as the central axis, the apex is located a first predetermined distance backward from the tip of the puncture needle, and when the tip of the puncture needle approaches the puncture target point, the cross section on the tomographic plane a first cone that becomes smaller;
    When the apex is located a second predetermined distance forward from the tip of the puncture needle with the central axis of the puncture needle as the central axis, and the tip of the puncture needle approaches the puncture target point, the cross section on the tomographic plane a second cone that grows larger;
    The central axis of the puncture needle is the central axis, the tip of the puncture needle is the apex, and the slope of the side surface of the cone is gentler than that of the second cone, and when the tip of the puncture needle passes the puncture target point, , a third cone whose cross section on the tomographic plane becomes larger,
    The information representing the positional relationship is
    When the distance between the tip of the puncture needle and the puncture target point is at least the second predetermined distance, only the first cross section of the first cone is included;
    When the distance between the tip of the puncture needle and the puncture target point is less than the second predetermined distance, a second cross section of the second cone is included in the first cross section,
    When the tip of the puncture needle contacts the puncture target point, the first cross section and the second cross section are overlapped,
    When the tip of the puncture needle passes the puncture target point, the first cross section is included in the second cross section, and the third conical section is included depending on the insertion depth of the tip of the puncture needle. The puncture auxiliary image generation device according to claim 6, wherein the third cross section of the body is displayed in a large size.
  8.  前記複数の錐体は、円錐又は正角錐である
     請求項7に記載の穿刺補助画像生成装置。
    The puncture auxiliary image generation device according to claim 7, wherein the plurality of cones are cones or regular pyramids.
  9.  前記ガイド図形は、前記穿刺目標点を頂点とし、穿刺針の先端を底面の中心とする底面とする錐体である
     請求項5に記載の穿刺補助画像生成装置。
    The puncture auxiliary image generation device according to claim 5, wherein the guide figure is a cone with the puncture target point as the apex and the tip of the puncture needle as the center of the bottom surface.
  10.  前記錐体は、円錐又は正角錐である
     請求項9に記載の穿刺補助画像生成装置。
    The puncture auxiliary image generation device according to claim 9, wherein the cone is a cone or a regular pyramid.
PCT/JP2023/028708 2022-08-08 2023-08-07 Puncturing technique assistance system, puncturing assistance image generation device, and puncturing assistance image generation method WO2024034557A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-126576 2022-08-08
JP2022126576A JP2024023038A (en) 2022-08-08 2022-08-08 Puncture manipulation assisting system, puncture assistance image generation device and puncture assistance image generation method

Publications (1)

Publication Number Publication Date
WO2024034557A1 true WO2024034557A1 (en) 2024-02-15

Family

ID=89851785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028708 WO2024034557A1 (en) 2022-08-08 2023-08-07 Puncturing technique assistance system, puncturing assistance image generation device, and puncturing assistance image generation method

Country Status (2)

Country Link
JP (1) JP2024023038A (en)
WO (1) WO2024034557A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212680A (en) * 2007-03-06 2008-09-18 General Electric Co <Ge> Method and apparatus for tracking points in ultrasound image
US20080234575A1 (en) * 2007-03-20 2008-09-25 Siemens Aktiengesellschaft Method and device for making correction information available
JP2011206281A (en) * 2010-03-30 2011-10-20 Fujifilm Corp Ultrasonic diagnostic apparatus
JP2012040220A (en) * 2010-08-20 2012-03-01 Ge Medical Systems Global Technology Co Llc Medical imaging system
JP2013240369A (en) * 2012-05-17 2013-12-05 Toshiba Corp Ultrasonic diagnostic apparatus, and control program
JP2014028125A (en) * 2012-06-29 2014-02-13 Toshiba Corp Ultrasonic diagnostic apparatus and control program
JP2017146758A (en) * 2016-02-17 2017-08-24 株式会社菊池製作所 Overlapping image display system
JP2018050655A (en) * 2016-09-26 2018-04-05 キヤノンメディカルシステムズ株式会社 Ultrasonic diagnostic apparatus and medical image processing program
WO2020137215A1 (en) * 2018-12-27 2020-07-02 富士フイルム株式会社 Ultrasonic diagnostic device and control method for ultrasonic diagnostic device
WO2020157985A1 (en) * 2019-02-01 2020-08-06 TCC Media Lab株式会社 Composite image generation system and initial condition resetting system
JP2021045272A (en) * 2019-09-17 2021-03-25 株式会社菊池製作所 Echo guide system for acupuncture

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212680A (en) * 2007-03-06 2008-09-18 General Electric Co <Ge> Method and apparatus for tracking points in ultrasound image
US20080234575A1 (en) * 2007-03-20 2008-09-25 Siemens Aktiengesellschaft Method and device for making correction information available
JP2011206281A (en) * 2010-03-30 2011-10-20 Fujifilm Corp Ultrasonic diagnostic apparatus
JP2012040220A (en) * 2010-08-20 2012-03-01 Ge Medical Systems Global Technology Co Llc Medical imaging system
JP2013240369A (en) * 2012-05-17 2013-12-05 Toshiba Corp Ultrasonic diagnostic apparatus, and control program
JP2014028125A (en) * 2012-06-29 2014-02-13 Toshiba Corp Ultrasonic diagnostic apparatus and control program
JP2017146758A (en) * 2016-02-17 2017-08-24 株式会社菊池製作所 Overlapping image display system
JP2018050655A (en) * 2016-09-26 2018-04-05 キヤノンメディカルシステムズ株式会社 Ultrasonic diagnostic apparatus and medical image processing program
WO2020137215A1 (en) * 2018-12-27 2020-07-02 富士フイルム株式会社 Ultrasonic diagnostic device and control method for ultrasonic diagnostic device
WO2020157985A1 (en) * 2019-02-01 2020-08-06 TCC Media Lab株式会社 Composite image generation system and initial condition resetting system
JP2021045272A (en) * 2019-09-17 2021-03-25 株式会社菊池製作所 Echo guide system for acupuncture

Also Published As

Publication number Publication date
JP2024023038A (en) 2024-02-21

Similar Documents

Publication Publication Date Title
CN106456135B (en) Medical system
US11596480B2 (en) Navigation, tracking and guiding system for the positioning of operatory instruments within the body of a patient
US6690964B2 (en) Method and device for visualization of positions and orientation of intracorporeally guided instruments during a surgical intervention
WO2017211225A1 (en) Method and apparatus for positioning navigation in human body by means of augmented reality based upon real-time feedback
TWI678181B (en) Surgical guidance system
US20150049174A1 (en) System and method for non-invasive patient-image registration
US20150327841A1 (en) Tracking in ultrasound for imaging and user interface
CN109549689A (en) A kind of puncture auxiliary guide device, system and method
WO2013035393A1 (en) Ultrasound diagnostic device and ultrasound image display method
WO2015109251A1 (en) Injection site training system
JP6116754B2 (en) Device for stereoscopic display of image data in minimally invasive surgery and method of operating the device
JP2011206281A (en) Ultrasonic diagnostic apparatus
KR101538658B1 (en) Medical image display method and apparatus
US8666476B2 (en) Surgery assistance system
CN103948432A (en) Algorithm for augmented reality of three-dimensional endoscopic video and ultrasound image during operation
WO2014129425A1 (en) Ultrasonic diagnostic device and medical image processing device
JP2008018015A (en) Medical display unit and system
JP4661688B2 (en) Optical biological measurement apparatus, optical biological measurement apparatus program, and optical biological measurement method
CN110288653A (en) A kind of Multi-angle ultrasound image interfusion method, system and electronic equipment
EP4355876A1 (en) Augmented reality system for real space navigation and surgical system using the same
TWI679960B (en) Surgical instrument guidance system
KR101600985B1 (en) Medical imaging system using wireless capsule endoscope and medical image reconstruction method for the same
WO2024034557A1 (en) Puncturing technique assistance system, puncturing assistance image generation device, and puncturing assistance image generation method
EP2954846B1 (en) Swipe to see through ultrasound imaging for intraoperative applications
CN113081273B (en) Punching auxiliary system and surgical robot system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852519

Country of ref document: EP

Kind code of ref document: A1