WO2024034439A1 - Reflective mask blank for euv lithography, method for manufacturing same, reflective mask for euv lithography, and method for manufacturing same - Google Patents

Reflective mask blank for euv lithography, method for manufacturing same, reflective mask for euv lithography, and method for manufacturing same Download PDF

Info

Publication number
WO2024034439A1
WO2024034439A1 PCT/JP2023/027892 JP2023027892W WO2024034439A1 WO 2024034439 A1 WO2024034439 A1 WO 2024034439A1 JP 2023027892 W JP2023027892 W JP 2023027892W WO 2024034439 A1 WO2024034439 A1 WO 2024034439A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
crystal structure
euv lithography
reflective mask
mask blank
Prior art date
Application number
PCT/JP2023/027892
Other languages
French (fr)
Japanese (ja)
Inventor
良輔 清
慧之 築山
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2024034439A1 publication Critical patent/WO2024034439A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof

Definitions

  • the present invention relates to a reflective mask blank for EUV lithography used in extreme ultraviolet (EUV) lithography in semiconductor manufacturing, etc., a method for manufacturing the same, and a reflective mask for EUV lithography using the reflective mask blank for EUV lithography. and its manufacturing method.
  • EUV extreme ultraviolet
  • the pattern resolution limit is about 1/2 of the exposure wavelength.
  • the wavelength is said to be about 1/4 of the exposure wavelength, and even when using the liquid immersion method using an ArF laser (193 nm), the limit is expected to be about 20 nm to 30 nm.
  • EUV lithography which is an exposure technology that uses EUV light with a shorter wavelength than ArF laser, is seen as promising.
  • EUV light refers to light rays with wavelengths in the soft X-ray region or vacuum ultraviolet region. Specifically, it refers to a light beam with a wavelength of about 10 nm to 20 nm, particularly about 13.5 nm ⁇ 0.3 nm.
  • EUV light is easily absorbed by all materials, and the refractive index of materials is close to 1 at this wavelength. Therefore, a refractive optical system such as the conventional photolithography method using visible light or ultraviolet light cannot be used. For this reason, EUV lithography uses reflective optics, ie, reflective masks and mirrors.
  • a reflective mask used in EUV lithography has a mask pattern made of an absorbing film that absorbs EUV light on a multilayer reflective film that reflects EUV light with a short wavelength of about 13.5 nm.
  • the refractive index of the absorbing film is low, and it is also possible to control the reflectance of the absorbing film to an arbitrary value. desirable.
  • Patent Document 1 in an absorbing film containing tantalum (Ta) and niobium (Nb), by changing the composition ratio of Ta and Nb, a phase shift mask can be obtained in which the reflectance of the absorbing film has wide selectivity. It is stated that
  • the absorption film described in Patent Document 1 is an alloy, so the alloy composition ratio needs to be controlled, and the refractive index is relatively high, so it is necessary to form the alloy film with a thickness of about 60 nm. there were.
  • examples of materials with a low refractive index include ruthenium (Ru), and in order to change the reflectance, it is necessary to use iridium (Ir), etc., which has a larger absorption coefficient for EUV light. is possible.
  • Ru ruthenium
  • Ir iridium
  • noble metal materials such as Ru and Ir are used as they are, their crystallinity is too high and the LER (line edge roughness), which indicates the roughness of the absorption film pattern, deteriorates, so they are not suitable for reflective masks for EUV lithography. It has been difficult to form the required fine mask pattern.
  • the present invention has been made in view of these circumstances, and provides a reflective mask for EUV lithography that can reduce the crystallite size of the absorbing film and produce a reflective mask with good LER after patterning of the absorbing film.
  • the present invention aims to provide a type mask blank and a method for manufacturing the same, and a reflective mask for EUV lithography using a reflective mask blank for EUV lithography and a method for manufacturing the same.
  • the present inventors have determined that the crystal structure of the absorbing film of a reflective mask blank for EUV lithography has been determined in the bulk state of metal element X at normal pressure (1 atm), A crystal structure having a first crystal structure that is stable at 25° C. and a second crystal structure different from the first crystal structure, and the second crystal structure is determined by a peak separation method in an X-ray diffraction (XRD) method.
  • XRD X-ray diffraction
  • a reflective mask blank for EUV lithography in which a multilayer reflective film that reflects EUV light and an absorption film that absorbs EUV light are laminated in this order from the substrate side on a substrate, the absorption film being , a first crystal structure containing metal element X as a main component, wherein the crystal structure of the absorption film is a crystal structure that is stable at normal pressure (1 atm) and 25° C. in the bulk state of the metal element X; It has a second crystal structure different from the first crystal structure, and has a peak in the range of 30° ⁇ 2 ⁇ 55° by a peak separation method in an X-ray diffraction (XRD) method using CuK ⁇ rays as a radiation source.
  • XRD X-ray diffraction
  • the peak area ratio of the second crystal structure calculated when the XRD peak having the top is separated into the first crystal structure and the second crystal structure is 9% or more, a reflective mask blank for EUV lithography.
  • the metal element X is ruthenium (Ru), rhodium (Rh), palladium (Pd), silver (Ag), rhenium (Re), osmium (Os), iridium (Ir), platinum (Pt),
  • the absorption film further includes element Z, and the element Z includes hydrogen (H), boron (B), carbon (C), nitrogen (N), oxygen (O), chromium (Cr), and niobium. (Nb), molybdenum (Mo), hafnium (Hf), tantalum (Ta), and tungsten (W), the EUV lithography according to [1] or [2] above. Reflective mask blank for use.
  • the absorption film contains Ru as a main component, and has a peak top diffraction angle 2 ⁇ of 84° in the range of 75° ⁇ 2 ⁇ 90° in an X-ray diffraction (XRD) method using CuK ⁇ rays as a radiation source.
  • XRD X-ray diffraction
  • the reflective mask blank for EUV lithography according to [2] above, which has an angle of 5° or less.
  • the first crystal structure is one of a face-centered cubic (fcc) structure and a hexagonal close-packed (hcp) structure
  • the second crystal structure is one of a face-centered cubic (fcc) structure and a hexagonal close-packed (hcp) structure.
  • the reflective mask blank for EUV lithography according to any one of [1] to [4] above, which has the other close-packed (hcp) structure.
  • An etching mask film is further provided on the absorption film, and the etching mask film is made of aluminum (Al), Hf, yttrium (Y), Cr, Nb, titanium (Ti), Mo, Ta, and Si.
  • the reflective mask blank for EUV lithography according to any one of [1] to [8] above, comprising at least one member selected from the group consisting of: [10]
  • the reflective mask blank for EUV lithography according to [9] above, wherein the etching mask film further contains at least one selected from the group consisting of O, N, and B.
  • a reflective mask for EUV lithography wherein an opening pattern is formed in the absorption film of the reflective mask blank for EUV lithography according to any one of [1] to [10] above.
  • a method for manufacturing a reflective mask blank for EUV lithography comprising forming a multilayer reflective film that reflects EUV light on a substrate, and forming an absorbing film that absorbs EUV light on the multilayer reflective film, the method comprising: The film contains a metal element and a second crystal structure different from the first crystal structure, and the range of 30° ⁇ 2 ⁇ 55° is determined by a peak separation method in an X-ray diffraction (XRD) method using CuK ⁇ rays as a radiation source.
  • XRD X-ray diffraction
  • a method for producing a reflective mask blank for EUV lithography comprising patterning the absorbing film in the reflective mask blank for EUV lithography manufactured by the method for manufacturing a reflective mask blank for EUV lithography according to [12] above to form an opening pattern. manufacturing method.
  • a reflective mask blank for EUV lithography that can produce a reflective mask with good LER after patterning of the absorbing film by reducing the crystallite size of the absorbing film, and a method for manufacturing the EUV
  • a reflective mask for EUV lithography using a reflective mask blank for lithography and a method for manufacturing the same can be provided.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of a reflective mask blank for EUV lithography of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing another embodiment of the reflective mask blank for EUV lithography of the present invention.
  • 1 is a schematic cross-sectional view showing an embodiment of a reflective mask for EUV lithography of the present invention.
  • 3 is a diagram (part 1) showing a procedure for forming a pattern on the reflective mask blank for EUV lithography shown in FIG. 2.
  • FIG. FIG. 3 is a diagram illustrating a procedure for forming a pattern on the EUV lithography reflective mask blank shown in FIG. 2 (part 2).
  • FIG. 3 is a diagram showing a procedure for forming a pattern on the reflective mask blank for EUV lithography shown in FIG. 2 (part 3);
  • FIG. 3 is a diagram showing a procedure for forming a pattern on the reflective mask blank for EUV lithography shown in FIG. 2 (Part 4);
  • FIG. It is a crystal lattice image (TEM image) of a sample in an example. It is an electron diffraction pattern of a sample in an example.
  • TEM image crystal lattice image
  • Constant metal element X as a main component means "the content of metal element X in the absorption film is 50 atomic % or more.”
  • the number of metal elements X is not limited to one type, but also includes a plurality of types.
  • "containing metal element X as a main component” means "the total content of each metal element X in the absorption film is 50 atomic percent or more" It means that.
  • the terms "on a substrate, on a layer,” and on a film include not only the case where the material is in contact with the upper surface of the film, etc., but also the upper part that is not in contact with the upper surface of the film, etc.
  • film B on film A may mean that film A and film B are in contact with each other, or that another film or the like may be interposed between film A and film B.
  • above here does not necessarily mean a high position in the vertical direction, but indicates a relative positional relationship.
  • the refractive index is a weighted average value based on the refractive index of each film, taking into account the thickness.
  • Sputter etching is a physical etching process in which ions, neutral particles, etc. generated from etching gas are accelerated by discharge plasma, etc., and collide with the material to be etched, thereby repelling the particles of the material to be etched (sputtering). , and refers to things that are not primarily chemical reactions.
  • “chemical dry etching” is a chemical etching process in which the etching gas causes a chemical reaction on the surface of the material to be etched, producing reaction products with the material to be etched, such as ions, etc. Although it may be accompanied by a sputter assist effect, it is distinguished from physical etching in that it generates a reaction product that is easily volatilized and desorbed by a chemical reaction.
  • the reaction product can be said to be easily volatilized and desorbed if the boiling point is, for example, 400° C. or lower. Note that the boiling point is a value at normal pressure (1 atmosphere).
  • the thickness of the formed film, etc. is a value measured by an X-ray reflectance method.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of a reflective mask blank for EUV lithography of the present invention.
  • a reflective mask blank 1a for EUV lithography shown in FIG. 1 includes a multilayer reflective film 12 that reflects EUV light on a substrate 11, and a protective film that protects the multilayer reflective film 12 from etching when forming a mask pattern. 13 (also called a cap layer) and an absorption film 14 that absorbs EUV light are laminated in this order from the substrate 1 side.
  • the reflective mask blank for EUV lithography according to an embodiment of the present invention, only the substrate 11, the multilayer reflective film 12, and the absorbing film 14 are essential components in the configuration shown in FIG. Any component.
  • an antireflection film (not shown) may be formed on the absorption film 14 to facilitate pattern defect inspection after mask processing.
  • a buffer layer (not shown) is provided between the protective film 13 and the absorption film 14 to protect the multilayer reflective film 12 during dry etching or defect correction. may be formed.
  • the reflective mask blank for EUV lithography of the present invention like the reflective mask blank 1b for EUV lithography in FIG.
  • a multilayer reflective film 12 that reflects EUV light and a mask pattern formed on the substrate 11.
  • a protective film 13 for protecting the multilayer reflective film 12 from actual etching; an absorbing film 14 for absorbing EUV light; and an etching mask film 15 made of a material resistant to the etching conditions of the absorbing film 14. may be formed in this order.
  • the substrate 11 preferably has a low coefficient of thermal expansion at 20°C, preferably 0 ⁇ 0.050 ⁇ 10 ⁇ 7 /°C, more preferably 0 ⁇ 0°C, from the viewpoint of preventing distortion of the transferred pattern due to heat during EUV exposure. 0.030 ⁇ 10 ⁇ 7 /°C, more preferably 0 ⁇ 0.025 ⁇ 10 ⁇ 7 /°C. Further, it is preferable that the substrate 11 has excellent resistance (chemical resistance) to a cleaning liquid used in the manufacturing process of a reflective mask for EUV lithography. Suitable materials for the substrate 11 include, for example, SiO 2 -TiO 2 glass, multicomponent glass ceramics, and the like. Further, as the material of the substrate 11, crystallized glass in which a ⁇ -quartz solid solution is precipitated, quartz glass, silicon, metal, etc. can also be used.
  • the substrate 11 preferably has excellent smoothness from the viewpoint of enabling pattern transfer with high reflectance and high precision, and has a root mean square roughness Rq of preferably 0.15 nm or less, more preferably 0.10 nm.
  • the thickness is preferably 0.05 nm or less.
  • the substrate 11 has a flatness (TIR; Total Indicated Reading) of preferably 100 nm or less, more preferably 50 nm or less, and even more preferably 30 nm or less, from the viewpoint of enabling pattern transfer with high reflectance and high precision. be.
  • TIR Total Indicated Reading
  • the root mean square roughness Rq of the substrate 11 can be measured by the method shown in the example.
  • the substrate 11 preferably has high rigidity from the viewpoint of preventing deformation due to stress of the film laminated thereon, and has a Young's modulus of preferably 50 GPa or more, more preferably 60 GPa or more, and even more preferably is 65 GPa or more.
  • the size, thickness, etc. of the substrate 11 are appropriately determined based on the design values of the mask, etc.
  • a SiO 2 -TiO 2 glass having an outer diameter of 6 inches (152 mm) square and a thickness of 0.25 inches (6.3 mm) was used.
  • the depth of concave defects and the height of convex defects on the surface of the substrate 11 on which the multilayer reflective film 12 is formed are preferably 2 nm or less, more preferably 1 nm or less, and still more preferably 0.0 nm or less. 5 nm or less, and the half width of these concave defects and convex defects is preferably 60 nm or less, more preferably 30 nm or less, still more preferably 15 nm or less.
  • the half-width of a concave defect refers to the width at 1/2 the depth of the concave defect.
  • the half-width of a convex defect refers to the width at a position half the height of the convex defect.
  • the multilayer reflective film 12 preferably has a structure in which a plurality of layers containing elements having different refractive indexes as main components are periodically laminated.
  • the thickness of each film constituting the multilayer reflective film 12 and the repetition period of lamination are appropriately set according to the film material, desired reflectance of EUV light, and the like.
  • the multilayer reflective film 12 has a structure in which one period is a set of one high refractive index layer and one low refractive index layer, and about 30 to 60 periods are laminated.
  • the high refractive index layer/low refractive index layer is generally a Mo/Si multilayer reflective film, but is not limited to this, and includes, for example, a Ru/Si multilayer reflective film, a Mo/Be multilayer reflective film, Mo compound/Si compound multilayer reflective film, Si/Mo/Ru multilayer reflective film, Si/Mo/Ru/Mo multilayer reflective film, Si/Ru/Mo multilayer reflective film, Si/Ru/Mo/Ru multilayer reflective film, etc. Can be mentioned.
  • the multilayer reflective film 12 preferably has a reflectance of 60% or more, more preferably 62% or more, and still more preferably 65% or more of EUV light having a wavelength of around 13.5 nm and incident light at an incident angle of 6°. Further, even when the protective film 13 is provided on the multilayer reflective film 12, the maximum value of the light reflectance at a wavelength of 13.5 nm is preferably 60% or more, more preferably 62% or more, and still more preferably 65% or more. It is.
  • the multilayer reflective film 12 can be formed, for example, by forming each constituent film to a desired thickness using a known film forming method such as magnetron sputtering or ion beam sputtering.
  • a known film forming method such as magnetron sputtering or ion beam sputtering.
  • argon (Ar) gas gas pressure 1.3 ⁇ 10 ⁇ 2 to 2.7 ⁇ 10 ⁇ 2 Pa
  • a Si film was first deposited to a thickness of 4.5 nm using a Si target, and then a Mo target was deposited.
  • a Mo film is formed to a thickness of 2.3 nm using the following method. By repeating this as one cycle and stacking the Mo film/Si film for 30 to 60 cycles, a Mo/Si multilayer reflective film can be formed.
  • a protective film 13 may be formed on the uppermost surface of the multilayer reflective film 12 .
  • the protective film 13 is provided for the purpose of protecting the multilayer reflective film 12 so that the multilayer reflective film 12 is not damaged by the etching process when a pattern is formed on the absorbing film 14 (described later) using an etching process, usually a dry etching process. It will be done. Therefore, as the material for the protective film, it is preferable to select a material that is less affected by the etching process of the absorption film 14, that is, has a slower etching rate than the absorption film 14, and is less susceptible to damage by this etching process.
  • the protective film 13 is also provided for the purpose of preventing the multilayer reflective film 12 from being oxidized during EUV exposure and reducing the reflectance of EUV light.
  • the protective film 13 preferably contains at least one element selected from the group consisting of Ru, Pd, Ir, Rh, Pt, zirconium (Zr), Nb, Ta, Ti, and Si. , Ru, Rh, and Si.
  • Ru is also a constituent material of the absorption film 14, when Ru is used as the material of the protective film 13, it is preferable to use an alloy with other elements such as RuZr.
  • the protective film 13 may not only be a single layer but may also be a stack of two or more layers.
  • the protective film 13 may contain only Rh, but it may also contain an Rh compound.
  • the Rh compound may contain at least one element selected from the group consisting of Ru, Nb, Mo, Ta, Ir, Pd, Zr, Y, and Ti.
  • the extinction coefficient can be reduced while suppressing an increase in the refractive index, and the reflectance for EUV light can be improved. Further, by adding Ru, Ta, Ir, Pd, or Y to Rh, durability against etching gas and sulfuric acid peroxide can be improved. Sulfuric acid peroxide is used for removing resist films, cleaning reflective masks, and the like.
  • the protective film 13 may further include at least one element selected from the group consisting of O, N, and B. That is, oxides, nitrides, oxynitrides, and borides of the above elements may be used. Specific examples include ZrO 2 and SiO 2 .
  • the protective film 13 has two or more laminated layers
  • at least one layer constituting the protective film 13 may be formed of Rh or a Rh compound.
  • the protective film 13 may have a layer that does not contain Rh.
  • the thickness of the protective film 13 is preferably 1.5 nm or more and 4.0 nm or less, more preferably 2.0 nm or more and 3.5 nm or less. If the thickness of the protective film 13 is 1.5 nm or more, the etching resistance is good. Moreover, if the thickness of the protective film 13 is 4.0 nm or less, a decrease in reflectance to EUV light can be suppressed.
  • the density of the protective film 13 is preferably 10.0 g/cm 3 or more and 14.0 g/cm 3 or less. If the density of the protective film 13 is 10.0 g/cm 3 or more, the etching resistance is good. Further, if the density of the protective film 13 is 14.0 g/cm 3 or less, a decrease in reflectance to EUV light can be suppressed.
  • the root mean square roughness (Rq) of the upper surface of the protective film 13, that is, the surface on which the absorption film 14 of the protective film 13 is formed is preferably 0.300 nm or less, more preferably 0.150 nm or less. If the root mean square roughness (Rq) is 0.300 nm or less, the absorbing film 14 and the like can be formed smoothly on the protective film 13. Further, scattering of EUV light can be suppressed, and reflectance for EUV light can be improved.
  • the root mean square roughness (Rq) of the upper surface of the protective film 13, that is, the surface of the protective film 13 on which the absorption film 14 is formed is preferably 0.050 nm or more.
  • the protective film 13 can be formed using a well-known film forming method such as a magnetron sputtering method or an ion beam sputtering method.
  • a well-known film forming method such as a magnetron sputtering method or an ion beam sputtering method.
  • a magnetron sputtering method for example, an Ru target and a Zr target are used as the targets, and Ar gas (gas pressure 1.0 ⁇ 10 ⁇ 2 to 1.0 ⁇ 10 0 Pa) is used as the sputtering gas. ) to form a film with a thickness of 2 to 3 nm at a deposition rate of 0.020 to 1.000 nm/sec and a power input to the Ru target and Zr target of 100 W or more and 600 W or less, respectively. .
  • absorption film 14 examples include a binary film that sufficiently absorbs incident EUV light, and a phase shift film that shifts part of the incident EUV light to a desired phase and reflects it. Among these, from the viewpoint of improving the contrast of the transferred pattern, a phase shift film that shifts a part of the incident EUV light to a desired phase and reflects it is preferable.
  • the absorption film 14 contains the metal element X as a main component, and the crystal structure of the absorption film 14 is a first crystal structure that is stable at normal pressure (1 atm) and 25° C. in the bulk state of the metal element X. structure, and a second crystal structure different from the first crystal structure.
  • the first crystal structure is one of a face-centered cubic lattice (fcc) structure and a hexagonal close-packed (hcp) structure
  • the second crystal structure is a face-centered cubic (fcc) structure and a hexagonal close-packed structure.
  • the other is a packed (hcp) structure.
  • the crystal structure of the absorption film 14 includes a first crystal structure that is stable in the bulk state of the metal element X at normal pressure (1 atm) and 25° C., and a second crystal structure that is different from the first crystal structure.
  • a first crystal structure that is stable in a bulk crystal and a metastable second crystal structure that is not stable in a bulk crystal coexist.
  • the peak area ratio of the second crystal structure is not particularly limited as long as it is 9% or more, but from the viewpoint of reducing the crystallinity of the absorption film 14, it is preferably larger, more preferably 12% or more, More preferably, it is 16% or more, particularly preferably 20% or more.
  • the peak area ratio of the second crystal structure is determined by a peak separation method in an X-ray diffraction (XRD) method using CuK ⁇ rays as a radiation source. It is calculated when the peak is separated into the first crystal structure and the second crystal structure, and the peak area of the second crystal structure is calculated by dividing the peak area of the first crystal structure and the second crystal structure.
  • metal element Pt, and Au are preferred.
  • Ru, Rh, Ir, and Pt are more preferred, and Ru, Ir, and Pt are particularly preferred, from the viewpoint of chemical resistance during processing of the absorbent film.
  • a material having a large extinction coefficient k is particularly preferable, and Ir and Pt are particularly preferable.
  • These may be used alone (single element) or in combination of two or more.
  • the two or more types of metal elements may form an alloy.
  • the second crystal structure is a metastable crystal structure that is not stable at normal pressure (1 atm) and 25° C. in a bulk state different from the first crystal structure.
  • the content of the metal element is at least 60 at%, more preferably at least 60 at%, even more preferably at least 70 at%.
  • the absorption film 14 in which the metal element hcp) structure, and the second metastable crystal structure which is not stable in the bulk state at normal pressure (1 atm) and 25° C. is the face-centered cubic lattice (fcc) structure.
  • the absorption film 14 in which the metal element The crystal structure is a face-centered cubic lattice (FCC) structure, and the metastable second crystal structure that is not stable in the bulk state at normal pressure (1 atm) and 25° C. is a hexagonal close-packed (HCP) structure.
  • the absorption film 14 further contains element Z.
  • element Z is not particularly limited, but from the viewpoint of reducing the crystallite size, H, B, C, N, O, Cr, Nb, Mo, Hf, Ta, and W are preferable, and H, B, C, N , O, Cr, Hf, Ta, and W are more preferred, H, B, C, N, O, Cr, Ta, and W are even more preferred, and B, C, N, O, Cr, Ta, and W are particularly preferred. These may be used alone (single element) or in combination of two or more.
  • the content of element Z in the absorption film 14 is not particularly limited, but is preferably 50 atoms in order to have optical properties (refractive index n and extinction coefficient k) suitable for obtaining a desired phase difference. % or less, more preferably 40 atom % or less, still more preferably 30 atom % or less.
  • the ratio of the Ru content (atomic %) to the Ta content (atomic %) (Ru/Ta) is, for example, 30 to 80. If the ratio of Ru content to Ta content (Ru/Ta) is 30 or more, the hydrogen resistance of the absorption film 14 can be improved. If the ratio of Ru content to Ta content (Ru/Ta) is 80 or less, the first selectivity is large and the processability of the absorption film 14 is good.
  • the ratio of Ru content to Ta content (Ru/Ta) is preferably 30 to 80, more preferably 30 to 70, and still more preferably 30 to 60.
  • the ratio (Ru/Cr) of the Ru content (atomic %) to the Cr content (atomic %) is, for example, 1 to 15. If the ratio of Ru content to Cr content (Ru/Cr) is 1 or more, the hydrogen resistance of the absorption film 14 can be improved. If the ratio of Ru content to Cr content (Ru/Cr) is 15 or less, the first selectivity is large and the processability of the absorption film 14 is good.
  • the ratio of Ru content to Cr content (Ru/Cr) is preferably 1 to 15, more preferably 2 to 12, even more preferably 3 to 10, particularly preferably 4 to 8. .
  • the ratio (Ir/Ta) of the Ir content (atomic %) to the Ta content (atomic %) is, for example, 1 to 35. If the ratio of Ir content to Ta content (Ir/Ta) is 1 or more, the hydrogen resistance of the absorption film 14 can be improved. If the ratio of Ir content to Ta content (Ir/Ta) is 35 or less, the first selectivity is large and the processability of the absorption film 14 is good.
  • the ratio of Ir content to Ta content (Ir/Ta) is preferably 1 to 35, more preferably 1 to 30, still more preferably 1 to 20, particularly preferably 1 to 15. , most preferably from 2 to 10.
  • the thickness of the absorption film 14 is not particularly limited, but from the viewpoint of suppressing shadowing effects (sometimes called projection effects), it is preferably 60 nm or less, more preferably 55 nm or less, and still more preferably 50 nm or less. Moreover, from the viewpoint of obtaining a desired retardation, it is preferably 10 nm or more, more preferably 15 nm or more.
  • the absorption film 14 when the absorbing film 14 contains Ru as a main component, the absorption film 14 has a peak in the range of 75° ⁇ 2 ⁇ 90° in an X-ray diffraction (XRD) method using CuK ⁇ rays as a radiation source.
  • the diffraction angle 2 ⁇ of the top is preferably 84.5° or less, more preferably 80.0 to 84.0°, and even more preferably 81.0 to 84.0°.
  • An absorbent film lower layer may be further provided between the absorbent film 14 and the protective film 13.
  • the absorbent film lower layer is a layer formed in contact with the uppermost surface of the protective film 13.
  • the absorption film 14 can be formed using a well-known film forming method such as a reactive sputtering method, a magnetron sputtering method, or an ion beam sputtering method using the following procedure.
  • the absorption film 14 When forming the absorption film 14 using a reactive sputtering method, for example, it contains argon (Ar) gas, O 2 gas, and N 2 gas, and the volume ratio of O 2 is 0 to 30 vol%, N
  • the reactive sputtering method may be performed using a target containing Ru or Ir in an atmosphere where the volume ratio of 2 is 0 to 50 vol %.
  • Conditions for the reactive sputtering method other than those mentioned above may be carried out under the following conditions.
  • Gas pressure 5 ⁇ 10 ⁇ 2 to 1.0 Pa, preferably 1 ⁇ 10 ⁇ 1 to 8 ⁇ 10 ⁇ 1 Pa, more preferably 2 ⁇ 10 ⁇ 1 to 4 ⁇ 10 ⁇ 1 Pa.
  • Input power density per target area 1.0 to 15.0 W/cm 2 , preferably 3.0 to 12.0 W/cm 2 , more preferably 4.0 to 10.0 W/cm 2 .
  • Film forming rate 0.010 to 1.000 nm/sec, preferably 0.015 to 0.500 nm/sec, more preferably 0.050 to 0.400 nm/sec.
  • the root mean square roughness Rq of the surface of the absorption film 14 measured using an atomic force microscope is used as an index of the smoothness of the surface of the absorption film 14.
  • the root mean square roughness Rq of the surface of the absorption film 14 is preferably 0.50 nm or less, more preferably 0.45 nm or less, and still more preferably 0.50 nm or less. It is 40 nm or less.
  • phase difference between the reflected light of EUV light from the multilayer reflective film 12 and the reflected light of EUV light from the absorption film 14 is preferably 150 to 250 degrees, more preferably 180 to 250 degrees, and still more preferably 200 degrees. ⁇ 250 degrees.
  • An antireflection film (not shown) is preferably laminated on the absorption film 14 to prevent reflection when DUV light (deep ultraviolet light) with a wavelength of 190 to 260 nm is used in the inspection process.
  • the reflective mask for EUV lithography is inspected for defects in the mask pattern formed on the absorption film 14. In this mask inspection, the presence or absence of defects is determined mainly based on the optical data of the reflected light of the inspection light. Therefore, the light that passes through the mask cannot be used as the inspection light, and DUV light is used. Therefore, for accurate inspection, it is preferable to provide an antireflection film on the absorption film 14 to prevent reflection of DUV light, which is the inspection light.
  • the antireflection film is preferably formed of a material that has a lower refractive index for DUV light than the absorption film 14.
  • the constituent material of the antireflection film include a material containing Ta as a main component and one or more components selected from Hf, Ge, Si, B, N, H, and O in addition to Ta. Specific examples include TaO, TaON, TaONH, TaHfO, TaHfON, TaBSiO, TaBSiON, and the like.
  • the antireflection film can be formed by forming a film to a desired thickness using, for example, a known film forming method such as magnetron sputtering or ion beam sputtering.
  • the material constituting the buffer layer is not particularly limited, and examples thereof include materials containing SiO 2 , Cr, Ta, etc. as main components.
  • a resist film can be made thinner by providing a layer (etching mask film) of a material that is resistant to the etching conditions of the absorbing film on the absorbing film. That is, by forming an etching mask film and lowering the relative speed (etching selectivity) of the etching mask film when the etching speed of the absorbing film is set to 1 under the etching conditions of the absorbing film, the resist The film can be made thinner.
  • the etching mask film 15 is required to have a sufficiently high etching selectivity under the etching conditions for the absorption film 14. Therefore, the etching mask film 15 is required to have high etching resistance against dry etching using O 2 or a mixed gas of O 2 and halogen gas (chlorine gas, fluorine gas) as the etching gas. .
  • the etching mask film 15 is preferably removable with a cleaning solution using an acid or a base, which is used as a cleaning solution for a resist film in EUV lithography.
  • cleaning liquids used for the above purpose include sulfuric acid peroxide (SPM), ammonia peroxide, and hydrofluoric acid.
  • SPM is a solution containing sulfuric acid and hydrogen peroxide, and the sulfuric acid and hydrogen peroxide can be mixed at a volume ratio of preferably 4:1 to 1:3, more preferably 3:1.
  • the temperature of the SPM is preferably controlled to 100° C. or higher in order to improve the etching rate.
  • Ammonia peroxide is a mixed solution of ammonia and hydrogen peroxide, and can mix NH 4 OH, hydrogen peroxide, and water in a volume ratio of preferably 1:1:5 to 3:1:5. .
  • the temperature of ammonia peroxide is preferably controlled at 70 to 80°C.
  • the etching mask film 15 preferably contains at least one element selected from the group consisting of Al, Hf, Y, Cr, Nb, Ti, Mo, Ta, and Si.
  • Etching mask film 15 may further include at least one element selected from the group consisting of O, N, and B. That is, oxides, oxynitrides, nitrides, and borides of the above elements may be used.
  • constituent materials of the etching mask film 15 include Al-based materials such as Al, Al 2 O 3 and AlN; Hf-based materials such as Hf and HfO 2 ; Y-based materials such as Y and Y 2 O 3 ; ; Cr-based materials such as Cr, Cr 2 O 3 and CrN; Nb-based materials such as Nb, Nb 2 O 5 and NbON; Mo-based materials such as Mo, MoO 3 and MoON; Ta, Ta 2 O 5, TaON, etc. Ta-based materials; Si-based materials such as Si, SiO 2 and Si 3 N 4 ; and the like.
  • the etching mask film 15 made of Nb-based material or Mo-based material can be etched by dry etching using chlorine-based gas as an etching gas.
  • the etching mask film 15 made of a Si-based material can be etched by dry etching using a fluorine-based gas as an etching gas. Note that when a Si-based material is used as the etching mask film 15, removal using hydrofluoric acid as a cleaning solution is preferable.
  • the thickness of the etching mask film 15 is preferably 20 nm or less in terms of removability with a cleaning solution.
  • the etching mask film 15 made of Nb-based material preferably has a film thickness of 5 to 15 nm.
  • the etching mask film 15 can be formed by a known film forming method, for example, a magnetron sputtering method or an ion beam sputtering method.
  • a gas containing an inert gas (hereinafter simply referred to as an inert gas) containing at least one of He, Ar, Ne, Kr, and Xe and oxygen is used.
  • an inert gas containing at least one of He, Ar, Ne, Kr, and Xe and oxygen
  • a reactive sputtering method using an Nb target may be performed in an atmosphere.
  • the magnetron sputtering method specifically, it may be performed under the following film forming conditions.
  • Gas pressure 5.0 ⁇ 10 ⁇ 2 to 1.0 Pa, preferably 1.0 ⁇ 10 ⁇ 1 to 8.0 ⁇ 10 ⁇ 1 Pa, more preferably 2.0 ⁇ 10 ⁇ 1 to 4.0 ⁇ 10 -1 Pa
  • Input power density per target area 1.0 to 15.0 W/cm 2 , preferably 3.0 to 12.0 W/cm 2 , more preferably 4.0 to 10.0 W/cm 2
  • Film formation rate 0.010 to 1.0 nm/sec, preferably 0.015 to 0.50 nm/sec, more preferably 0.020 to 0.30 nm/sec
  • Distance between target and substrate 50 to 500 mm, preferably 100 to 400 mm, more preferably 150 to 300 mm
  • the concentration of the inert gas is in the same concentration range as the Ar gas concentration described above.
  • the total concentration of the inert gases is in the same concentration range as the above-mentioned Ar gas concentration.
  • the reflective mask blanks 1a and 1b for EUV lithography of this embodiment may be provided with a known functional film in reflective mask blanks for EUV lithography in addition to the films and layers described above.
  • a back conductive film is formed on the surface (back surface) of the substrate 11 opposite to the multilayer reflective film 12. You can leave it there.
  • the back conductive film preferably has a sheet resistance of 100 ⁇ / ⁇ or less, and a known configuration can be applied. Examples of the constituent material of the back conductive film include Si, TiN, Mo, Cr, TaSi, and the like.
  • the thickness of the back conductive film can be, for example, 10 to 1000 nm.
  • the back conductive film is formed to a desired thickness using a known film forming method such as magnetron sputtering, ion beam sputtering, chemical vapor deposition (CVD), vacuum evaporation, or electroplating. It can be formed by coating.
  • a method for manufacturing a reflective mask blank for EUV lithography includes forming a multilayer reflective film that reflects EUV light on a substrate, and an absorbing film that absorbs EUV light on the formed multilayer reflective film.
  • a method for manufacturing a reflective mask blank for EUV lithography wherein the absorption film contains a metal element X as a main component, and the crystal structure of the absorption film is in the bulk state of the metal element ), has a first crystal structure as a stable crystal structure at 25 ° C. and a second crystal structure different from the first crystal structure, and the peak area ratio of the second crystal structure is 9% or more. be. Note that the method for forming the multilayer reflective film and the method for forming the absorbing film are as described above.
  • FIG. 3 is a schematic cross-sectional view showing an embodiment of a reflective mask for EUV lithography of the present invention.
  • a pattern (absorbing film pattern) 140 is formed on the absorbing film 14 of the reflective mask blank 1a for EUV lithography shown in FIG. That is, a multilayer reflective film 12 that reflects EUV light, a protective film 13 of the multilayer reflective film 12, and an absorption film 14 that absorbs EUV light are formed on the substrate 11 in this order, and a pattern is formed on the absorption film 14. (Absorbing film pattern) 140 is formed.
  • the substrate 11, multilayer reflective film 12, protective film 13, and absorption film 14 are the same as those of the reflective mask blank 1a for EUV lithography described above.
  • the absorption film of the reflective mask blank 1b for EUV lithography manufactured by the method for manufacturing a reflective mask blank for EUV lithography according to an embodiment of the present invention 14 is patterned to form a pattern (absorbing film pattern) 140.
  • a resist film 30 is formed on the etching mask film 15 of the reflective mask blank 1b for EUV lithography.
  • a resist pattern 300 is formed on the resist film 30 using an electron beam drawing machine.
  • an etching mask film pattern 150 is formed on the etching mask film 15, as shown in FIG.
  • an absorbing film pattern 140 is formed on the absorbing film 14, as shown in FIG.
  • the reflective mask 2 for EUV lithography in which the absorption film pattern 140 is exposed is obtained.
  • acid or base is used to remove the remaining resist pattern 300, resist film 30, and etching mask film 15. Cleaning is carried out using a cleaning solution.
  • the reflective mask for EUV lithography of the present invention has a mask pattern formed on the absorption film 14 of the reflective mask blanks 1a and 1b for EUV lithography of this embodiment.
  • lithography can be applied, and the etching process is preferably performed as shown in FIGS. 3 to 7 described above. That is, to form a mask pattern on the reflective mask blanks 1a and 1b for EUV lithography, the absorbing film 14 of the reflective mask blanks 1a and 1b for EUV lithography is subjected to a sputter etching process, and then a chemical dry etching process is performed. is preferred.
  • Examples 1 to 12 are examples, and Examples 9 to 12 are comparative examples.
  • Example 1 to Example 12 (Production of reflective mask blank for EUV lithography) A reflective mask blank for EUV lithography including a substrate, a multilayer reflective film, a protective film, and an absorbing film in this order was produced.
  • a SiO 2 -TiO 2 -based glass substrate (outer size: 6 inches (152 mm) square, thickness: 6.3 mm) was prepared.
  • This glass substrate has a thermal expansion coefficient of 0.020 ⁇ 10 ⁇ 7 /°C at 20°C, a Young's modulus of 67 GPa, a Poisson's ratio of 0.17, and a specific stiffness of 3.07 ⁇ 10 7 m. 2 / s2 .
  • the quality assurance area of the first main surface of the substrate had a root mean square roughness Rq of 0.150 nm or less and a flatness of 100 nm or less by polishing.
  • a Cr film with a thickness of 100 nm was formed on the second main surface of the substrate using a magnetron sputtering method.
  • the sheet resistance of the Cr film was 100 ⁇ / ⁇ . Note that the root mean square roughness Rq of the substrate was measured using an atomic force microscope according to JISB0601:2013.
  • a Mo/Si multilayer reflective film was formed as the multilayer reflective film.
  • the Mo/Si multilayer reflective film was formed by repeating 40 times of forming a Si film (4.5 nm thick) and a Mo film (2.3 nm thick) using an ion beam sputtering method.
  • the total film thickness of the Mo/Si multilayer reflective film was 272 nm ((4.5 nm+2.3 nm) ⁇ 40).
  • Rh film single layer, film thickness 2.5 nm
  • ion beam sputtering method As a protective film, a Rh film (single layer, film thickness 2.5 nm) was formed using an ion beam sputtering method.
  • a Ru-based absorption film was formed by the method shown in the following "Ru-based absorption film” (Examples 1 to 4 and 9 to 11), and a Ru-based absorption film was formed by the method shown in the following "Ir-based absorption film” (Examples 5 to 8 and 12). ) to form an Ir-based absorption film.
  • ⁇ Ru-based absorption film> Using a Ru target, a C target, a Ta target, and a Cr3C2 target, adjust the Ar, O2 , and N2 gas flow rates and the power input to each target so that the absorption film composition shown in Table 1 is obtained by reactive sputtering. Then, absorbent films were formed under the following conditions (1) to (6). A DC power source was used for each target.
  • ⁇ Ir-based absorption film> Reactive sputtering was performed using an Ir target, a Ta target, a Ta 60 B 40 target, and a B target.
  • a DC power source was used for sputtering the Ir target, Ta target, and Ta 60 B 40 target, and an RF power source was used for sputtering the B target.
  • the Ir-based absorption film was formed under the same conditions as the Ru-based absorption film.
  • the elemental compositions (atomic %) of the absorption films of Examples 1 to 12 were measured by X-ray photoelectron spectroscopy (XPS). Note that the composition ratio of Ru and C in Example 3 was measured by energy dispersive X-ray analysis (EDX) because the peaks overlap in XPS and measurement is difficult. In addition, B in Examples 5 to 7 and B and O in Example 8 could not be quantified by XPS because they were outside the detection limit, but it was confirmed that they were contained in the membrane by secondary ion mass spectrometry (SIMS). did. The measured elemental compositions (atomic %) are shown in Table 1.
  • the thickness of 35 nm for the absorption films of Examples 1 to 12 was measured by an X-ray reflectance (XRR) method.
  • Crystallinity of the absorption film was measured using an X-ray diffraction analyzer (MiniFlex II) manufactured by Rigaku Corporation. Crystallite size was calculated using Scherrer's equation for the full width at half maximum of the peak with the highest intensity in the range of 2 ⁇ from 30° to 55°. The measured crystallite sizes are shown in Table 1.
  • Example 1 For the measurement of the TEM image, the thin sample of Example 1 was used, which had been polished from both the absorption film surface side and the substrate side using a focused ion beam method to a thickness of about 50 nm. The sample thin section was observed by TEM using NEOARM manufactured by JEOL Ltd., and a crystal lattice image (TEM image) (FIG. 8) and an electron diffraction pattern (FIG. 9) of the sample were obtained.
  • FIG. 9 also shows simulation results of electron diffraction patterns using the hcp crystal structure of Ru (ICSD No. 76155) and the fcc crystal structure of Ru (ICSD No. 235808) as crystal structure models.
  • the peak area ratio of the second crystal structure is 12 to 90%, so the crystallite size of the absorbing film can be reduced, thereby forming a pattern of the absorbing film. It was possible to produce a reflective mask with good subsequent LER.
  • the peak area ratio of the second crystal structure is 0 to 8%, the crystallite size of the absorbing film cannot be reduced, so that after patterning the absorbing film, It was not possible to produce a reflective mask with good LER.
  • the reflective mask blank for EUV lithography and the manufacturing method thereof of the present invention, and the reflective mask for EUV lithography using the reflective mask blank for EUV lithography and the manufacturing method thereof of the present invention are suitably used for EUV lithography in semiconductor manufacturing etc. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

Provided is a reflective mask blank for EUV lithography in which a multilayer reflective film that reflects EUV light and an absorption film that absorbs EUV light are laminated on a substrate in the stated order from the substrate side, wherein the absorption film contains a metal element X as a main component, the crystal structure of the absorption film has a first crystal structure that serves as a stable crystal structure in the bulk state of the metal element X at normal pressure (1 atm) and 25°C and a second crystal structure that is different from the first crystal structure, and the peak area ratio of the second crystal structure is 9% or greater.

Description

EUVリソグラフィ用反射型マスクブランク及びその製造方法、並びに、EUVリソグラフィ用反射型マスク及びその製造方法Reflective mask blank for EUV lithography and method for manufacturing the same; Reflective mask for EUV lithography and method for manufacturing the same
 本発明は、半導体製造等における極端紫外線(EUV;Extreme Ultraviolet)リソグラフィに用いられるEUVリソグラフィ用反射型マスクブランク及びその製造方法、並びに、EUVリソグラフィ用反射型マスクブランクを用いたEUVリソグラフィ用反射型マスク及びその製造方法に関する。 The present invention relates to a reflective mask blank for EUV lithography used in extreme ultraviolet (EUV) lithography in semiconductor manufacturing, etc., a method for manufacturing the same, and a reflective mask for EUV lithography using the reflective mask blank for EUV lithography. and its manufacturing method.
 従来、半導体産業において、Si基板等に微細なパターンからなる集積回路を形成する上で必要な微細パターンの転写技術として、可視光や紫外光を用いたフォトリソグラフィ法が使用されてきた。しかし、半導体デバイスの微細化が加速する一方で、従来のフォトリソグラフィ法の限界に近づいてきた。フォトリソグラフィ法の場合、パターンの解像限界は露光波長の1/2程度である。液浸法を用いても露光波長の1/4程度と言われており、ArFレーザ(193nm)の液浸法を用いても20nm~30nm程度が限界と予想される。そこで20nm~30nm以降の露光技術として、ArFレーザよりさらに短波長のEUV光を用いた露光技術のEUVリソグラフィが有望視されている。本明細書において、EUV光とは、軟X線領域又は真空紫外線領域の波長の光線を指す。具体的には波長10nm~20nm程度、特に13.5nm±0.3nm程度の光線を指す。 Conventionally, in the semiconductor industry, photolithography using visible light or ultraviolet light has been used as a technique for transferring fine patterns necessary for forming integrated circuits consisting of fine patterns on Si substrates and the like. However, as the miniaturization of semiconductor devices accelerates, the limits of conventional photolithography methods are approaching. In the case of photolithography, the pattern resolution limit is about 1/2 of the exposure wavelength. Even when using the liquid immersion method, the wavelength is said to be about 1/4 of the exposure wavelength, and even when using the liquid immersion method using an ArF laser (193 nm), the limit is expected to be about 20 nm to 30 nm. Therefore, as an exposure technology for 20 nm to 30 nm and beyond, EUV lithography, which is an exposure technology that uses EUV light with a shorter wavelength than ArF laser, is seen as promising. In this specification, EUV light refers to light rays with wavelengths in the soft X-ray region or vacuum ultraviolet region. Specifically, it refers to a light beam with a wavelength of about 10 nm to 20 nm, particularly about 13.5 nm±0.3 nm.
 EUV光は、あらゆる物質に対して吸収されやすく、且つこの波長で物質の屈折率が1に近い。そのため、従来の可視光又は紫外光を用いたフォトリソグラフィ法のような屈折光学系を使用できない。このため、EUVリソグラフィでは、反射光学系、すなわち反射型マスクとミラーとが使用される。 EUV light is easily absorbed by all materials, and the refractive index of materials is close to 1 at this wavelength. Therefore, a refractive optical system such as the conventional photolithography method using visible light or ultraviolet light cannot be used. For this reason, EUV lithography uses reflective optics, ie, reflective masks and mirrors.
 EUVリソグラフィに用いられる反射型マスクは、波長13.5nm程度の短波長のEUV光を反射する多層反射膜の上に、EUV光を吸収する吸収膜によるマスクパターンが設けられている。多層反射膜からの反射光と吸収膜からの反射光との位相差を大きくするためには、吸収膜の屈折率が低いことが望ましく、また、吸収膜は、任意の反射率に制御できることが望ましい。 A reflective mask used in EUV lithography has a mask pattern made of an absorbing film that absorbs EUV light on a multilayer reflective film that reflects EUV light with a short wavelength of about 13.5 nm. In order to increase the phase difference between the reflected light from the multilayer reflective film and the reflected light from the absorbing film, it is desirable that the refractive index of the absorbing film is low, and it is also possible to control the reflectance of the absorbing film to an arbitrary value. desirable.
 例えば、特許文献1に、タンタル(Ta)及びニオブ(Nb)を含む吸収膜において、Ta及びNbの組成比を変化させることにより、吸収膜の反射率が広い選択性をもつ位相シフトマスクが得られることが記載されている。 For example, in Patent Document 1, in an absorbing film containing tantalum (Ta) and niobium (Nb), by changing the composition ratio of Ta and Nb, a phase shift mask can be obtained in which the reflectance of the absorbing film has wide selectivity. It is stated that
特開2021-174003号公報JP 2021-174003 Publication
 しかしながら、特許文献1に記載の吸収膜は、合金であり、合金組成比を制御する必要があり、また、屈折率が比較的大きく、合金による膜を厚さ60nm程度で形成することが必要であった。 However, the absorption film described in Patent Document 1 is an alloy, so the alloy composition ratio needs to be controlled, and the refractive index is relatively high, so it is necessary to form the alloy film with a thickness of about 60 nm. there were.
 これに対して、屈折率が低い材料として、例えば、ルテニウム(Ru)が挙げられ、また、反射率を変化させるためには、EUV光の吸収係数がより大きいイリジウム(Ir)等を用いること等が考えられる。しかしながら、RuやIr等の貴金属系材料をそのまま用いると結晶性が高すぎるために、吸収膜パターンの粗さを示すLER(Line edge roughness)が悪化してしまうため、EUVリソグラフィ用反射型マスクに要求される微細なマスクパターンの形成は困難であった。 On the other hand, examples of materials with a low refractive index include ruthenium (Ru), and in order to change the reflectance, it is necessary to use iridium (Ir), etc., which has a larger absorption coefficient for EUV light. is possible. However, if noble metal materials such as Ru and Ir are used as they are, their crystallinity is too high and the LER (line edge roughness), which indicates the roughness of the absorption film pattern, deteriorates, so they are not suitable for reflective masks for EUV lithography. It has been difficult to form the required fine mask pattern.
 本発明は、このような状況に鑑みてなされたものであり、吸収膜の結晶子サイズを小さくして、吸収膜のパターン形成後のLERが良好な反射型マスクを作製可能なEUVリソグラフィ用反射型マスクブランク及びその製造方法、並びに、EUVリソグラフィ用反射型マスクブランクを用いたEUVリソグラフィ用反射型マスク及びその製造方法を提供することを目的とする。 The present invention has been made in view of these circumstances, and provides a reflective mask for EUV lithography that can reduce the crystallite size of the absorbing film and produce a reflective mask with good LER after patterning of the absorbing film. The present invention aims to provide a type mask blank and a method for manufacturing the same, and a reflective mask for EUV lithography using a reflective mask blank for EUV lithography and a method for manufacturing the same.
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、EUVリソグラフィ用反射型マスクブランクの吸収膜の結晶構造を、金属元素Xのバルク状態で、常圧(1気圧)、25℃において安定な結晶構造としての第1の結晶構造と該第1の結晶構造と異なる第2の結晶構造とを有する結晶構造とし、X線回折(XRD)法におけるピーク分離法による前記第2の結晶構造のピーク面積比が9%以上となるように調整することにより、前記課題を解決し得ることを見出し、本発明を完成させた。 As a result of extensive research in order to solve the above problems, the present inventors have determined that the crystal structure of the absorbing film of a reflective mask blank for EUV lithography has been determined in the bulk state of metal element X at normal pressure (1 atm), A crystal structure having a first crystal structure that is stable at 25° C. and a second crystal structure different from the first crystal structure, and the second crystal structure is determined by a peak separation method in an X-ray diffraction (XRD) method. The inventors have discovered that the above problem can be solved by adjusting the peak area ratio of the crystal structure of 9% or more, and have completed the present invention.
 すなわち、本発明は下記の通りである。
[1]基板上に、EUV光を反射する多層反射膜と、EUV光を吸収する吸収膜とが、この順に基板側から積層されたEUVリソグラフィ用反射型マスクブランクであって、前記吸収膜は、金属元素Xを主成分として含み、前記吸収膜の結晶構造が、前記金属元素Xのバルク状態で、常圧(1気圧)、25℃において安定な結晶構造としての第1の結晶構造と、該第1の結晶構造と異なる第2の結晶構造とを有し、線源としてCuKα線を用いたX線回折(XRD)法におけるピーク分離法により、30°≦2θ≦55°の範囲にピークトップを有するXRDピークを前記第1の結晶構造と前記第2の結晶構造とにピーク分離した際に算出される前記第2の結晶構造のピーク面積比(前記第2の結晶構造のピーク面積/(前記第1の結晶構造のピーク面積+前記第2の結晶構造のピーク面積))が9%以上である、EUVリソグラフィ用反射型マスクブランク。
[2]前記金属元素Xが、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、銀(Ag)、レニウム(Re)、オスミウム(Os)、イリジウム(Ir)、白金(Pt)、及び金(Au)からなる群より選択される少なくとも1種である、上記[1]に記載のEUVリソグラフィ用反射型マスクブランク。
[3]前記吸収膜は、元素Zをさらに含み、前記元素Zは、水素(H)、ホウ素(B)、炭素(C)、窒素(N)、酸素(O)、クロム(Cr)、ニオブ(Nb)、モリブデン(Mo)、ハフニウム(Hf)、タンタル(Ta)、及びタングステン(W)からなる群より選択される少なくとも1種である、上記[1]又は[2]に記載のEUVリソグラフィ用反射型マスクブランク。
[4]前記吸収膜はRuを主成分として含み、線源としてCuKα線を用いたX線回折(XRD)法において、75°≦2θ≦90°の範囲のピークトップの回折角2θが84.5°以下である、上記[2]に記載のEUVリソグラフィ用反射型マスクブランク。
[5]前記第1の結晶構造が、面心立方格子(fcc)構造及び六方最密充填(hcp)構造の一方であり、前記第2の結晶構造が面心立方格子(fcc)構造及び六方最密充填(hcp)構造の他方である、上記[1]~[4]のいずれかに記載のEUVリソグラフィ用反射型マスクブランク。
[6]前記吸収膜中の前記金属元素Xの含有量が50原子%以上であり、前記吸収膜中の前記元素Zの含有量が50原子%以下である、上記[3]に記載のEUVリソグラフィ用反射型マスクブランク。
[7]前記吸収膜の膜厚が60nm以下である、上記[1]~[6]のいずれかに記載のEUVリソグラフィ用反射型マスクブランク。
[8]前記多層反射膜の上に前記多層反射膜を保護する保護膜をさらに有し、前記保護膜は、Ru、Rh及びケイ素(Si)から選択される少なくとも1つの元素を含む、上記[1]~[7]のいずれかに記載のEUVリソグラフィ用反射型マスクブランク。
[9]前記吸収膜の上にエッチングマスク膜をさらに有し、前記エッチングマスク膜は、アルミニウム(Al)、Hf、イットリウム(Y)、Cr、Nb、チタン(Ti)、Mo、Ta及びSiからなる群より選択される少なくとも1種を含む、上記[1]~[8]のいずれかに記載のEUVリソグラフィ用反射型マスクブランク。
[10]前記エッチングマスク膜は、O、N及びBからなる群から選択される少なくとも1種をさらに含む、上記[9]に記載のEUVリソグラフィ用反射型マスクブランク。
[11]上記[1]~[10]のいずれかに記載のEUVリソグラフィ用反射型マスクブランクの前記吸収膜に、開口パターンが形成されている、EUVリソグラフィ用反射型マスク。
[12]基板上にEUV光を反射する多層反射膜を形成し、前記多層反射膜上にEUV光を吸収する吸収膜を形成するEUVリソグラフィ用反射型マスクブランクの製造方法であって、前記吸収膜は、金属元素Xを主成分として含み、前記吸収膜の結晶構造が、前記金属元素Xのバルク状態で、常圧(1気圧)、25℃において安定な結晶構造としての第1の結晶構造と、該第1の結晶構造と異なる第2の結晶構造とを有し、線源としてCuKα線を用いたX線回折(XRD)法におけるピーク分離法により、30°≦2θ≦55°の範囲にピークトップを有するXRDピークを前記第1の結晶構造と前記第2の結晶構造とにピーク分離した際に算出される前記第2の結晶構造のピーク面積比(前記第2の結晶構造のピーク面積/(前記第1の結晶構造のピーク面積+前記第2の結晶構造のピーク面積))が9%以上である、EUVリソグラフィ用反射型マスクブランクの製造方法。
[13]上記[12]に記載のEUVリソグラフィ用反射型マスクブランクの製造方法によって製造したEUVリソグラフィ用反射型マスクブランクにおける吸収膜をパターニングして、開口パターンを形成する、EUVリソグラフィ用反射型マスクの製造方法。
That is, the present invention is as follows.
[1] A reflective mask blank for EUV lithography in which a multilayer reflective film that reflects EUV light and an absorption film that absorbs EUV light are laminated in this order from the substrate side on a substrate, the absorption film being , a first crystal structure containing metal element X as a main component, wherein the crystal structure of the absorption film is a crystal structure that is stable at normal pressure (1 atm) and 25° C. in the bulk state of the metal element X; It has a second crystal structure different from the first crystal structure, and has a peak in the range of 30°≦2θ≦55° by a peak separation method in an X-ray diffraction (XRD) method using CuKα rays as a radiation source. The peak area ratio of the second crystal structure calculated when the XRD peak having the top is separated into the first crystal structure and the second crystal structure (peak area of the second crystal structure/ (Peak area of the first crystal structure+peak area of the second crystal structure)) is 9% or more, a reflective mask blank for EUV lithography.
[2] The metal element X is ruthenium (Ru), rhodium (Rh), palladium (Pd), silver (Ag), rhenium (Re), osmium (Os), iridium (Ir), platinum (Pt), The reflective mask blank for EUV lithography according to [1] above, which is at least one member selected from the group consisting of gold (Au).
[3] The absorption film further includes element Z, and the element Z includes hydrogen (H), boron (B), carbon (C), nitrogen (N), oxygen (O), chromium (Cr), and niobium. (Nb), molybdenum (Mo), hafnium (Hf), tantalum (Ta), and tungsten (W), the EUV lithography according to [1] or [2] above. Reflective mask blank for use.
[4] The absorption film contains Ru as a main component, and has a peak top diffraction angle 2θ of 84° in the range of 75°≦2θ≦90° in an X-ray diffraction (XRD) method using CuKα rays as a radiation source. The reflective mask blank for EUV lithography according to [2] above, which has an angle of 5° or less.
[5] The first crystal structure is one of a face-centered cubic (fcc) structure and a hexagonal close-packed (hcp) structure, and the second crystal structure is one of a face-centered cubic (fcc) structure and a hexagonal close-packed (hcp) structure. The reflective mask blank for EUV lithography according to any one of [1] to [4] above, which has the other close-packed (hcp) structure.
[6] The EUV according to [3] above, wherein the content of the metal element X in the absorption film is 50 atomic% or more, and the content of the element Z in the absorption film is 50 atomic% or less. Reflective mask blank for lithography.
[7] The reflective mask blank for EUV lithography according to any one of [1] to [6] above, wherein the absorption film has a thickness of 60 nm or less.
[8] A protective film for protecting the multilayer reflective film is further provided on the multilayer reflective film, the protective film containing at least one element selected from Ru, Rh, and silicon (Si). The reflective mask blank for EUV lithography according to any one of [1] to [7].
[9] An etching mask film is further provided on the absorption film, and the etching mask film is made of aluminum (Al), Hf, yttrium (Y), Cr, Nb, titanium (Ti), Mo, Ta, and Si. The reflective mask blank for EUV lithography according to any one of [1] to [8] above, comprising at least one member selected from the group consisting of:
[10] The reflective mask blank for EUV lithography according to [9] above, wherein the etching mask film further contains at least one selected from the group consisting of O, N, and B.
[11] A reflective mask for EUV lithography, wherein an opening pattern is formed in the absorption film of the reflective mask blank for EUV lithography according to any one of [1] to [10] above.
[12] A method for manufacturing a reflective mask blank for EUV lithography, comprising forming a multilayer reflective film that reflects EUV light on a substrate, and forming an absorbing film that absorbs EUV light on the multilayer reflective film, the method comprising: The film contains a metal element and a second crystal structure different from the first crystal structure, and the range of 30°≦2θ≦55° is determined by a peak separation method in an X-ray diffraction (XRD) method using CuKα rays as a radiation source. The peak area ratio of the second crystal structure calculated when the XRD peak having the peak top is separated into the first crystal structure and the second crystal structure (the peak area ratio of the second crystal structure) A method for producing a reflective mask blank for EUV lithography, wherein the area/(peak area of the first crystal structure+peak area of the second crystal structure)) is 9% or more.
[13] A reflective mask for EUV lithography, comprising patterning the absorbing film in the reflective mask blank for EUV lithography manufactured by the method for manufacturing a reflective mask blank for EUV lithography according to [12] above to form an opening pattern. manufacturing method.
 本発明によれば、吸収膜の結晶子サイズを小さくして、吸収膜のパターン形成後のLERが良好な反射型マスクを作製可能なEUVリソグラフィ用反射型マスクブランク及びその製造方法、並びに、EUVリソグラフィ用反射型マスクブランクを用いたEUVリソグラフィ用反射型マスク及びその製造方法を提供できる。 According to the present invention, there is provided a reflective mask blank for EUV lithography that can produce a reflective mask with good LER after patterning of the absorbing film by reducing the crystallite size of the absorbing film, and a method for manufacturing the EUV A reflective mask for EUV lithography using a reflective mask blank for lithography and a method for manufacturing the same can be provided.
本発明のEUVリソグラフィ用反射型マスクブランクの一実施形態を示す概略断面図である。1 is a schematic cross-sectional view showing one embodiment of a reflective mask blank for EUV lithography of the present invention. 本発明のEUVリソグラフィ用反射型マスクブランクの他の一実施形態を示す概略断面図である。FIG. 3 is a schematic cross-sectional view showing another embodiment of the reflective mask blank for EUV lithography of the present invention. 本発明のEUVリソグラフィ用反射型マスクの一実施形態を示す概略断面図である。1 is a schematic cross-sectional view showing an embodiment of a reflective mask for EUV lithography of the present invention. 図2に示すEUVリソグラフィ用反射型マスクブランクにパターン形成する手順を示した図である(その1)。3 is a diagram (part 1) showing a procedure for forming a pattern on the reflective mask blank for EUV lithography shown in FIG. 2. FIG. 図2に示すEUVリソグラフィ用反射型マスクブランクにパターン形成する手順を示した図である(その2)。FIG. 3 is a diagram illustrating a procedure for forming a pattern on the EUV lithography reflective mask blank shown in FIG. 2 (part 2). 図2に示すEUVリソグラフィ用反射型マスクブランクにパターン形成する手順を示した図である(その3)。3 is a diagram showing a procedure for forming a pattern on the reflective mask blank for EUV lithography shown in FIG. 2 (part 3); FIG. 図2に示すEUVリソグラフィ用反射型マスクブランクにパターン形成する手順を示した図である(その4)。3 is a diagram showing a procedure for forming a pattern on the reflective mask blank for EUV lithography shown in FIG. 2 (Part 4); FIG. 実施例における試料の結晶格子像(TEM像)である。It is a crystal lattice image (TEM image) of a sample in an example. 実施例における試料の電子回折図形である。It is an electron diffraction pattern of a sample in an example.
 本明細書における用語及び表記の定義及び意義を以下に示す。
 「金属元素Xを主成分として含む」とは、「吸収膜中の金属元素Xの含有量が50原子%以上である」ことを意味する。但し、金属元素Xは1種の場合のみならず、複数種である場合をも含む。ここで、金属元素Xが複数種である場合には、「金属元素Xを主成分として含む」とは、「吸収膜中の金属元素Xの各含有量の合計が50原子%以上である」ことを意味する。例えば、吸収膜の成分がルテニウム(Ru)40原子%、イリジウム(Ir)40原子%、タンタル(Ta)20原子%である場合も、金属元素Xであるルテニウム(Ru)及びイリジウム(Ir)の各含有量(40原子%、40原子%)の合計が80原子%であるので、「金属元素Xを主成分として含む」に該当する。
 基板上、層上及び膜上(以下、膜等上と略称する。)とは、膜等の上面に接する場合のみならず、膜等の上面に接していない上方も含む意味である。例えば、「膜A上の膜B」とは、膜Aと膜Bとが接していてもよく、膜Aと膜Bとの間に他の膜等が介在していてもよい。また、ここで言う「上」とは、必ずしも鉛直方向における高い位置を意味する場合に限られず、相対的な位置関係を示すものである。
 屈折率は、各膜の屈折率に基づいて、厚さを加味して加重平均した値とする。
 「スパッタエッチング」とは、放電プラズマ等によりエッチングガスから生じたイオンや中性粒子等を加速して被エッチング材料に衝突させて、被エッチング材料の粒子を弾き飛ばすこと(スパッタリング)による物理的エッチングであり、化学反応を主としないものを言うものとする。これに対して、「ケミカルドライエッチング」とは、主に、エッチングガスが被エッチング材料表面で化学反応を起こして、被エッチング材料との反応生成物を生じることによる化学的エッチングであり、イオン等によるスパッタアシスト作用を伴うこともあるが、化学反応により揮発して脱離しやすい反応生成物を生じさせる点で、物理的エッチングとは区別されるものとする。反応生成物は、沸点を目安として、例えば、沸点が400℃以下であれば、揮発して脱離しやすいと言える。なお、沸点は、常圧(1気圧)での値である。
 成膜した膜等の厚さは、X線反射率法により測定される値である。
Definitions and meanings of terms and notations used in this specification are shown below.
"Containing metal element X as a main component" means "the content of metal element X in the absorption film is 50 atomic % or more." However, the number of metal elements X is not limited to one type, but also includes a plurality of types. Here, when there are multiple types of metal element X, "containing metal element X as a main component" means "the total content of each metal element X in the absorption film is 50 atomic percent or more" It means that. For example, even if the components of the absorption film are 40 at% ruthenium (Ru), 40 at% iridium (Ir), and 20 at% tantalum (Ta), the metal elements X, ruthenium (Ru) and iridium (Ir), Since the total of each content (40 atomic %, 40 atomic %) is 80 atomic %, it corresponds to "contains metal element X as a main component".
The terms "on a substrate, on a layer," and on a film (hereinafter abbreviated as "on a film, etc.") include not only the case where the material is in contact with the upper surface of the film, etc., but also the upper part that is not in contact with the upper surface of the film, etc. For example, "film B on film A" may mean that film A and film B are in contact with each other, or that another film or the like may be interposed between film A and film B. Moreover, "above" here does not necessarily mean a high position in the vertical direction, but indicates a relative positional relationship.
The refractive index is a weighted average value based on the refractive index of each film, taking into account the thickness.
"Sputter etching" is a physical etching process in which ions, neutral particles, etc. generated from etching gas are accelerated by discharge plasma, etc., and collide with the material to be etched, thereby repelling the particles of the material to be etched (sputtering). , and refers to things that are not primarily chemical reactions. On the other hand, "chemical dry etching" is a chemical etching process in which the etching gas causes a chemical reaction on the surface of the material to be etched, producing reaction products with the material to be etched, such as ions, etc. Although it may be accompanied by a sputter assist effect, it is distinguished from physical etching in that it generates a reaction product that is easily volatilized and desorbed by a chemical reaction. The reaction product can be said to be easily volatilized and desorbed if the boiling point is, for example, 400° C. or lower. Note that the boiling point is a value at normal pressure (1 atmosphere).
The thickness of the formed film, etc. is a value measured by an X-ray reflectance method.
[EUVリソグラフィ用反射型マスクブランク]
 以下、本発明の実施形態について、図面を参照して説明する。
 図1は、本発明のEUVリソグラフィ用反射型マスクブランクの一実施形態を示す概略断面図である。
 図1に示すEUVリソグラフィ用反射型マスクブランク1aは、基板11上に、EUV光を反射する多層反射膜12と、マスクパターンを形成する際のエッチングから多層反射膜12を保護するための保護膜13(キャップ層とも呼ばれる。)と、EUV光を吸収する吸収膜14とが、この順に基板1側から積層されている。但し、本発明の一実施形態のEUVリソグラフィ用反射型マスクブランクにおいて、図1に示す構成中、基板11、多層反射膜12、及び吸収膜14のみが必須の構成要素であり、保護膜13は任意の構成要素である。
 また、本発明のEUVリソグラフィ用反射型マスクブランクは、マスク加工後のパターン欠陥検査を容易にするための反射防止膜(図示せず)が、吸収膜14上に形成されていてもよい。
 また、本発明のEUVリソグラフィ用反射型マスクブランクは、ドライエッチングや欠陥修正時に多層反射膜12を保護するための、バッファー層(図示せず)が、保護膜13と吸収膜14との間に形成されていてもよい。
 さらに、本発明のEUVリソグラフィ用反射型マスクブランクは、図2のEUVリソグラフィ用反射型マスクブランク1bのように、基板11上に、EUV光を反射する多層反射膜12と、マスクパターンを形成する際のエッチングから多層反射膜12を保護するための保護膜13と、EUV光を吸収する吸収膜14と、吸収膜14のエッチング条件に対して耐性を有する材料で構成されたエッチングマスク膜15とが、この順に形成されていてもよい。
[Reflective mask blank for EUV lithography]
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic cross-sectional view showing one embodiment of a reflective mask blank for EUV lithography of the present invention.
A reflective mask blank 1a for EUV lithography shown in FIG. 1 includes a multilayer reflective film 12 that reflects EUV light on a substrate 11, and a protective film that protects the multilayer reflective film 12 from etching when forming a mask pattern. 13 (also called a cap layer) and an absorption film 14 that absorbs EUV light are laminated in this order from the substrate 1 side. However, in the reflective mask blank for EUV lithography according to an embodiment of the present invention, only the substrate 11, the multilayer reflective film 12, and the absorbing film 14 are essential components in the configuration shown in FIG. Any component.
Further, in the reflective mask blank for EUV lithography of the present invention, an antireflection film (not shown) may be formed on the absorption film 14 to facilitate pattern defect inspection after mask processing.
Further, in the reflective mask blank for EUV lithography of the present invention, a buffer layer (not shown) is provided between the protective film 13 and the absorption film 14 to protect the multilayer reflective film 12 during dry etching or defect correction. may be formed.
Furthermore, the reflective mask blank for EUV lithography of the present invention, like the reflective mask blank 1b for EUV lithography in FIG. 2, has a multilayer reflective film 12 that reflects EUV light and a mask pattern formed on the substrate 11. a protective film 13 for protecting the multilayer reflective film 12 from actual etching; an absorbing film 14 for absorbing EUV light; and an etching mask film 15 made of a material resistant to the etching conditions of the absorbing film 14. may be formed in this order.
 以下、EUVリソグラフィ用反射型マスクブランク1a,1bの個々の構成要素を説明する。 Hereinafter, individual components of the reflective mask blanks 1a and 1b for EUV lithography will be explained.
(基板)
 基板11は、EUV露光時の熱による転写パターンの歪み防止の観点から、20℃における熱膨張係数が低いことが好ましく、好ましくは0±0.050×10-7/℃、より好ましくは0±0.030×10-7/℃、さらに好ましくは0±0.025×10-7/℃である。また、基板11は、EUVリソグラフィ用反射型マスクの製造プロセスで使用される洗浄液への耐性(耐薬品性)に優れていることが好ましい。
 基板11の材料としては、例えば、SiO-TiO系ガラス、多成分系ガラスセラミックス等が好適に挙げられる。また、基板11の材料として、β-石英固溶体が析出した結晶化ガラス、石英ガラス、シリコン、金属等を使用することもできる。
(substrate)
The substrate 11 preferably has a low coefficient of thermal expansion at 20°C, preferably 0±0.050×10 −7 /°C, more preferably 0±0°C, from the viewpoint of preventing distortion of the transferred pattern due to heat during EUV exposure. 0.030×10 −7 /°C, more preferably 0±0.025×10 −7 /°C. Further, it is preferable that the substrate 11 has excellent resistance (chemical resistance) to a cleaning liquid used in the manufacturing process of a reflective mask for EUV lithography.
Suitable materials for the substrate 11 include, for example, SiO 2 -TiO 2 glass, multicomponent glass ceramics, and the like. Further, as the material of the substrate 11, crystallized glass in which a β-quartz solid solution is precipitated, quartz glass, silicon, metal, etc. can also be used.
 基板11は、パターン転写を高反射率且つ高精度で行えるようにする観点から、平滑性に優れることが好ましく、二乗平均平方根粗さRqが、好ましくは0.15nm以下、より好ましくは0.10nm以下、さらに好ましくは0.05nm以下である。
 基板11は、パターン転写を高反射率且つ高精度で行えるようにする観点から、平坦度(TIR;Total Indicated Reading)としては、好ましくは100nm以下、より好ましくは50nm以下、さらに好ましくは30nm以下である。
 なお、基板11の二乗平均平方根粗さRqは、実施例に示す方法で測定できる。
The substrate 11 preferably has excellent smoothness from the viewpoint of enabling pattern transfer with high reflectance and high precision, and has a root mean square roughness Rq of preferably 0.15 nm or less, more preferably 0.10 nm. The thickness is preferably 0.05 nm or less.
The substrate 11 has a flatness (TIR; Total Indicated Reading) of preferably 100 nm or less, more preferably 50 nm or less, and even more preferably 30 nm or less, from the viewpoint of enabling pattern transfer with high reflectance and high precision. be.
Note that the root mean square roughness Rq of the substrate 11 can be measured by the method shown in the example.
 基板11は、その上に積層される膜等の応力による変形を防止する観点から、高い剛性を有していることが好ましく、ヤング率が、好ましくは50GPa以上、より好ましくは60GPa以上、さらに好ましくは65GPa以上である。 The substrate 11 preferably has high rigidity from the viewpoint of preventing deformation due to stress of the film laminated thereon, and has a Young's modulus of preferably 50 GPa or more, more preferably 60 GPa or more, and even more preferably is 65 GPa or more.
 基板11の大きさや厚さ等はマスクの設計値等により適宜決定される。後で示す実施例では外形6インチ(152mm)角で、厚さ0.25インチ(6.3mm)のSiO-TiO系ガラスを使用した。 The size, thickness, etc. of the substrate 11 are appropriately determined based on the design values of the mask, etc. In the example shown later, a SiO 2 -TiO 2 glass having an outer diameter of 6 inches (152 mm) square and a thickness of 0.25 inches (6.3 mm) was used.
 基板11の多層反射膜12が形成される側の表面に欠点が存在しないのが好ましい。しかし、欠点が存在していても、凹状欠点及び/又は凸状欠点によって位相欠点が生じなければよい。具体的には、基板11の多層反射膜12が形成される側の表面における凹状欠点の深さ及び凸状欠点の高さが、好ましくは2nm以下、より好ましくは1nm以下、さらに好ましくは0.5nm以下であり、且つ、これら凹状欠点及び凸状欠点の半値幅が、好ましくは60nm以下、より好ましくは30nm以下、さらに好ましくは15nm以下である。凹状欠点の半値幅とは、凹状欠点の深さの1/2深さ位置での幅を指す。凸状欠点の半値幅とは、凸状欠点の高さの1/2高さ位置での幅を指す。 It is preferable that there be no defects on the surface of the substrate 11 on which the multilayer reflective film 12 is formed. However, even if a defect exists, it is sufficient that no phase defect occurs due to a concave defect and/or a convex defect. Specifically, the depth of concave defects and the height of convex defects on the surface of the substrate 11 on which the multilayer reflective film 12 is formed are preferably 2 nm or less, more preferably 1 nm or less, and still more preferably 0.0 nm or less. 5 nm or less, and the half width of these concave defects and convex defects is preferably 60 nm or less, more preferably 30 nm or less, still more preferably 15 nm or less. The half-width of a concave defect refers to the width at 1/2 the depth of the concave defect. The half-width of a convex defect refers to the width at a position half the height of the convex defect.
(多層反射膜)
 多層反射膜12は、EUV光の反射率を高くする観点から、屈折率の異なる元素を主成分とする複数の層を周期的に積層させた構成であることが好ましい。多層反射膜12を構成する各膜の厚さ及び積層の繰り返し周期は、膜材料及びEUV光の所望の反射率等に応じて適宜設定される。一般に、多層反射膜12は、高屈折率層1層と低屈折率層1層との組を1周期とし、30~60周期程度積層された構造を有する。
 高屈折率層/低屈折率層としては、Mo/Si多層反射膜が一般的であるが、これに限定されるものではなく、例えば、Ru/Si多層反射膜、Mo/Be多層反射膜、Mo化合物/Si化合物多層反射膜、Si/Mo/Ru多層反射膜、Si/Mo/Ru/Mo多層反射膜、Si/Ru/Mo多層反射膜、Si/Ru/Mo/Ru多層反射膜等が挙げられる。
(Multilayer reflective film)
From the viewpoint of increasing the reflectance of EUV light, the multilayer reflective film 12 preferably has a structure in which a plurality of layers containing elements having different refractive indexes as main components are periodically laminated. The thickness of each film constituting the multilayer reflective film 12 and the repetition period of lamination are appropriately set according to the film material, desired reflectance of EUV light, and the like. Generally, the multilayer reflective film 12 has a structure in which one period is a set of one high refractive index layer and one low refractive index layer, and about 30 to 60 periods are laminated.
The high refractive index layer/low refractive index layer is generally a Mo/Si multilayer reflective film, but is not limited to this, and includes, for example, a Ru/Si multilayer reflective film, a Mo/Be multilayer reflective film, Mo compound/Si compound multilayer reflective film, Si/Mo/Ru multilayer reflective film, Si/Mo/Ru/Mo multilayer reflective film, Si/Ru/Mo multilayer reflective film, Si/Ru/Mo/Ru multilayer reflective film, etc. Can be mentioned.
 多層反射膜12は、波長13.5nm付近のEUV光の入射角6°の入射光の反射率が、好ましくは60%以上、より好ましくは62%以上、さらに好ましくは65%以上である。また、多層反射膜12の上に保護膜13を設けた場合でも、波長13.5nmの光線反射率の最大値が、好ましくは60%以上、より好ましくは62%以上、さらに好ましくは65%以上である。 The multilayer reflective film 12 preferably has a reflectance of 60% or more, more preferably 62% or more, and still more preferably 65% or more of EUV light having a wavelength of around 13.5 nm and incident light at an incident angle of 6°. Further, even when the protective film 13 is provided on the multilayer reflective film 12, the maximum value of the light reflectance at a wavelength of 13.5 nm is preferably 60% or more, more preferably 62% or more, and still more preferably 65% or more. It is.
 多層反射膜12は、例えば、マグネトロンスパッタ法、イオンビームスパッタ法等の公知の成膜方法を用いて、構成する各膜を所望の厚さで成膜することにより形成できる。
 例えば、イオンビームスパッタ法で、Mo/Si多層反射膜を形成する場合、アルゴン(Ar)ガス(ガス圧1.3×10-2~2.7×10-2Pa)をスパッタガスとして、イオン加速電圧300~1500V、成膜速度0.030~0.300nm/secで、まず、Siターゲットを用いて、厚さ4.5nmになるようにSi膜を成膜し、次に、Moターゲットを用いて、厚さ2.3nmになるようにMo膜を成膜する。これを1周期として、Mo膜/Si膜を30~60周期繰り返して積層させることにより、Mo/Si多層反射膜を形成できる。
The multilayer reflective film 12 can be formed, for example, by forming each constituent film to a desired thickness using a known film forming method such as magnetron sputtering or ion beam sputtering.
For example, when forming a Mo/Si multilayer reflective film by ion beam sputtering, argon (Ar) gas (gas pressure 1.3×10 −2 to 2.7×10 −2 Pa) is used as the sputtering gas to At an accelerating voltage of 300 to 1500 V and a deposition rate of 0.030 to 0.300 nm/sec, a Si film was first deposited to a thickness of 4.5 nm using a Si target, and then a Mo target was deposited. A Mo film is formed to a thickness of 2.3 nm using the following method. By repeating this as one cycle and stacking the Mo film/Si film for 30 to 60 cycles, a Mo/Si multilayer reflective film can be formed.
(保護膜)
 多層反射膜12の最上面には、保護膜13が形成されていてもよい。保護膜13は、エッチングプロセス、通常はドライエッチングプロセスにより後述する吸収膜14にパターン形成する際に、多層反射膜12がエッチングプロセスによりダメージを受けないよう、多層反射膜12の保護を目的として設けられる。したがって保護膜の材質としては、吸収膜14のエッチングプロセスによる影響を受けにくい、つまりこのエッチング速度が吸収膜14よりも遅く、しかもこのエッチングプロセスによるダメージを受けにくい物質を選択することが好ましい。
 また、保護膜13は、EUV露光時に多層反射膜12が酸化して、EUV光の反射率が低下することを防止する目的でも設けられる。
(Protective film)
A protective film 13 may be formed on the uppermost surface of the multilayer reflective film 12 . The protective film 13 is provided for the purpose of protecting the multilayer reflective film 12 so that the multilayer reflective film 12 is not damaged by the etching process when a pattern is formed on the absorbing film 14 (described later) using an etching process, usually a dry etching process. It will be done. Therefore, as the material for the protective film, it is preferable to select a material that is less affected by the etching process of the absorption film 14, that is, has a slower etching rate than the absorption film 14, and is less susceptible to damage by this etching process.
The protective film 13 is also provided for the purpose of preventing the multilayer reflective film 12 from being oxidized during EUV exposure and reducing the reflectance of EUV light.
 上記の特性を満たすため、保護膜13は、Ru、Pd、Ir、Rh、Pt、ジルコニウム(Zr)、Nb、Ta、Ti及びSiからなる群から選択される少なくとも1つの元素を含むことが好ましく、Ru、Rh及びSiからなる群から選択される少なくとも1つの元素を含むことがより好ましい。但し、Ruは、吸収膜14の構成材料でもあるので、保護膜13の材料として、Ruを用いる場合、RuZr等の他の元素との合金を用いることが好ましい。また、保護膜13は、単層の場合だけでなく、2層以上積層した態様であってもよい。 In order to satisfy the above characteristics, the protective film 13 preferably contains at least one element selected from the group consisting of Ru, Pd, Ir, Rh, Pt, zirconium (Zr), Nb, Ta, Ti, and Si. , Ru, Rh, and Si. However, since Ru is also a constituent material of the absorption film 14, when Ru is used as the material of the protective film 13, it is preferable to use an alloy with other elements such as RuZr. Furthermore, the protective film 13 may not only be a single layer but may also be a stack of two or more layers.
 保護膜13は、Rhを含有する場合、Rhのみを含有してもよいが、Rh化合物を有してもよい。Rh化合物は、Rhに加えて、Ru、Nb、Mo、Ta、Ir、Pd、Zr、Y、及びTiからなる群から選択される少なくとも1つの元素を含有してもよい。 When the protective film 13 contains Rh, it may contain only Rh, but it may also contain an Rh compound. In addition to Rh, the Rh compound may contain at least one element selected from the group consisting of Ru, Nb, Mo, Ta, Ir, Pd, Zr, Y, and Ti.
 Rhに対してRu、Nb、Mo、Zr、Y、又はTiを添加することで、屈折率の増大を抑制しつつ、消衰係数を小さくでき、EUV光に対する反射率を向上できる。また、Rhに対してRu、Ta、Ir、Pd、又はYを添加することで、エッチングガス及び硫酸過水に対する耐久性を向上できる。硫酸過水は、レジスト膜の除去又は反射型マスクの洗浄等に用いられる。 By adding Ru, Nb, Mo, Zr, Y, or Ti to Rh, the extinction coefficient can be reduced while suppressing an increase in the refractive index, and the reflectance for EUV light can be improved. Further, by adding Ru, Ta, Ir, Pd, or Y to Rh, durability against etching gas and sulfuric acid peroxide can be improved. Sulfuric acid peroxide is used for removing resist films, cleaning reflective masks, and the like.
 保護膜13は、さらに、O、N、及びBからなる群から選択される少なくとも1つの元素をさらに含んでもよい。すなわち、上記元素の酸化物、窒化物、酸窒化物、ホウ化物であってもよい。具体例としては、ZrO、SiOが挙げられる。 The protective film 13 may further include at least one element selected from the group consisting of O, N, and B. That is, oxides, nitrides, oxynitrides, and borides of the above elements may be used. Specific examples include ZrO 2 and SiO 2 .
 保護膜13が、2層以上積層した態様の場合、少なくとも、保護膜13を構成する少なくとも一層がRh又はRh化合物で形成されればよい。保護膜13は、Rhを含有しない層を有してもよい。 In the case of an embodiment in which the protective film 13 has two or more laminated layers, at least one layer constituting the protective film 13 may be formed of Rh or a Rh compound. The protective film 13 may have a layer that does not contain Rh.
 保護膜13の厚みは、好ましくは1.5nm以上4.0nm以下であり、より好ましくは2.0nm以上3.5nm以下である。保護膜13の厚みが1.5nm以上であれば、エッチング耐性が良い。また、保護膜13の厚みが4.0nm以下であれば、EUV光に対する反射率の低下を抑制できる。 The thickness of the protective film 13 is preferably 1.5 nm or more and 4.0 nm or less, more preferably 2.0 nm or more and 3.5 nm or less. If the thickness of the protective film 13 is 1.5 nm or more, the etching resistance is good. Moreover, if the thickness of the protective film 13 is 4.0 nm or less, a decrease in reflectance to EUV light can be suppressed.
 保護膜13の密度は、好ましくは10.0g/cm以上14.0g/cm以下である。保護膜13の密度が10.0g/cm以上であれば、エッチング耐性が良い。また、保護膜13の密度が14.0g/cm以下であれば、EUV光に対する反射率の低下を抑制できる。 The density of the protective film 13 is preferably 10.0 g/cm 3 or more and 14.0 g/cm 3 or less. If the density of the protective film 13 is 10.0 g/cm 3 or more, the etching resistance is good. Further, if the density of the protective film 13 is 14.0 g/cm 3 or less, a decrease in reflectance to EUV light can be suppressed.
 保護膜13の上面、すなわち保護膜13の吸収膜14が形成される表面は、二乗平均平方根粗さ(Rq)が、好ましくは0.300nm以下であり、より好ましくは0.150nm以下である。二乗平均平方根粗さ(Rq)が0.300nm以下であれば、保護膜13の上に吸収膜14などを平滑に形成できる。また、EUV光の散乱を抑制でき、EUV光に対する反射率を向上できる。保護膜13の上面、すなわち保護膜13の吸収膜14が形成される表面は、二乗平均平方根粗さ(Rq)が、好ましくは0.050nm以上である。 The root mean square roughness (Rq) of the upper surface of the protective film 13, that is, the surface on which the absorption film 14 of the protective film 13 is formed, is preferably 0.300 nm or less, more preferably 0.150 nm or less. If the root mean square roughness (Rq) is 0.300 nm or less, the absorbing film 14 and the like can be formed smoothly on the protective film 13. Further, scattering of EUV light can be suppressed, and reflectance for EUV light can be improved. The root mean square roughness (Rq) of the upper surface of the protective film 13, that is, the surface of the protective film 13 on which the absorption film 14 is formed, is preferably 0.050 nm or more.
 保護膜13は、マグネトロンスパッタリング法、イオンビームスパッタリング法等の周知の成膜方法を用いて成膜できる。例えば、DCスパッタリング法を用いて、RuZr膜を形成する場合、ターゲットとして、Ruターゲット及びZrターゲットを用い、スパッタガスとしてArガス(ガス圧1.0×10-2~1.0×10Pa)を使用して、Ruターゲット及びZrターゲットへの投入電力をそれぞれ100W以上600W以下、成膜速度0.020~1.000nm/secで厚さ2~3nmとなるように成膜するのが好ましい。 The protective film 13 can be formed using a well-known film forming method such as a magnetron sputtering method or an ion beam sputtering method. For example, when forming a RuZr film using the DC sputtering method, an Ru target and a Zr target are used as the targets, and Ar gas (gas pressure 1.0×10 −2 to 1.0×10 0 Pa) is used as the sputtering gas. ) to form a film with a thickness of 2 to 3 nm at a deposition rate of 0.020 to 1.000 nm/sec and a power input to the Ru target and Zr target of 100 W or more and 600 W or less, respectively. .
(吸収膜)
 吸収膜14としては、例えば、入射したEUV光を十分吸収するバイナリー膜、入射したEUV光の一部を所望の位相にシフトさせて反射する位相シフト膜、などが挙げられる。これらの中でも、転写パターンのコントラストを向上させる観点で、入射したEUV光の一部を所望の位相にシフトさせて反射する位相シフト膜が好ましい。
(absorption membrane)
Examples of the absorption film 14 include a binary film that sufficiently absorbs incident EUV light, and a phase shift film that shifts part of the incident EUV light to a desired phase and reflects it. Among these, from the viewpoint of improving the contrast of the transferred pattern, a phase shift film that shifts a part of the incident EUV light to a desired phase and reflects it is preferable.
 吸収膜14は、金属元素Xを主成分として含み、吸収膜14の結晶構造が、金属元素Xのバルク状態で、常圧(1気圧)、25℃において安定な結晶構造としての第1の結晶構造と、該第1の結晶構造と異なる第2の結晶構造とを有する。
 ここで、第1の結晶構造が、面心立方格子(fcc)構造及び六方最密充填(hcp)構造の一方であり、第2の結晶構造が面心立方格子(fcc)構造及び六方最密充填(hcp)構造の他方であることが好ましい。
 吸収膜14の結晶構造が、金属元素Xのバルク状態で、常圧(1気圧)、25℃において安定な結晶構造としての第1の結晶構造と、該第1の結晶構造と異なる第2の結晶構造とを有することで、バルク結晶で安定な第1の結晶構造とバルク結晶で安定でない準安定の第2の結晶構造とが混在することとなる。
The absorption film 14 contains the metal element X as a main component, and the crystal structure of the absorption film 14 is a first crystal structure that is stable at normal pressure (1 atm) and 25° C. in the bulk state of the metal element X. structure, and a second crystal structure different from the first crystal structure.
Here, the first crystal structure is one of a face-centered cubic lattice (fcc) structure and a hexagonal close-packed (hcp) structure, and the second crystal structure is a face-centered cubic (fcc) structure and a hexagonal close-packed structure. Preferably, the other is a packed (hcp) structure.
The crystal structure of the absorption film 14 includes a first crystal structure that is stable in the bulk state of the metal element X at normal pressure (1 atm) and 25° C., and a second crystal structure that is different from the first crystal structure. By having a crystal structure, a first crystal structure that is stable in a bulk crystal and a metastable second crystal structure that is not stable in a bulk crystal coexist.
 第2の結晶構造のピーク面積比としては、9%以上である限り、特に制限はないが、吸収膜14の結晶性低下の観点からは、より大きいことが好ましく、より好ましくは12%以上、さらに好ましくは16%以上、特に好ましくは20%以上である。
 なお、第2の結晶構造のピーク面積比は、線源としてCuKα線を用いたX線回折(XRD)法におけるピーク分離法により、30°≦2θ≦55°の範囲にピークトップを有するXRDピークを第1の結晶構造と第2の結晶構造とにピーク分離した際に算出されるものであり、第2の結晶構造のピーク面積を、第1の結晶構造のピーク面積と第2の結晶構造のピーク面積との合計で除することにより得られる。なお、上記ピーク分離法に基づくピーク分離は、具体的には、後述する実施例に示す方法により行われる。
 なお、金属元素Xの種類及び含有量、後述する元素Zの種類及び含有量、吸収膜の形成方法(形成方法の種類、雰囲気の種類、ターゲット面積当たりの投入電力密度、など)を適宜選択することにより、第2の結晶構造のピーク面積比を9%以上に制御乃至調整できる。
The peak area ratio of the second crystal structure is not particularly limited as long as it is 9% or more, but from the viewpoint of reducing the crystallinity of the absorption film 14, it is preferably larger, more preferably 12% or more, More preferably, it is 16% or more, particularly preferably 20% or more.
Note that the peak area ratio of the second crystal structure is determined by a peak separation method in an X-ray diffraction (XRD) method using CuKα rays as a radiation source. It is calculated when the peak is separated into the first crystal structure and the second crystal structure, and the peak area of the second crystal structure is calculated by dividing the peak area of the first crystal structure and the second crystal structure. It is obtained by dividing by the sum of the peak area of Note that peak separation based on the above peak separation method is specifically performed by a method shown in Examples described later.
In addition, the type and content of metal element By doing so, the peak area ratio of the second crystal structure can be controlled or adjusted to 9% or more.
 金属元素Xとしては、特に制限はないが、シャドーイング効果を抑制しつつ所望の位相差を確保するために屈折率nが小さい材料が好ましく、Ru、Rh、Pd、Ag、Re、Os、Ir、Pt、Auが好ましい。これらの中でも、吸収膜加工時の耐薬品性等の観点から、Ru、Rh、Ir、Ptがより好ましく、Ru、Ir、Ptが特に好ましい。また、吸収膜からの反射を抑制して転写の解像度を向上させる観点から消衰係数kの大きい材料が特に好ましく、Ir、Ptが特に好ましい。これらは、1種単独(単元素)で用いてもよく、2種以上を用いてもよい。ここで、金属元素を2種以上用いる場合は、該2種以上の金属元素が合金を形成してもよい。 There are no particular restrictions on the metal element , Pt, and Au are preferred. Among these, Ru, Rh, Ir, and Pt are more preferred, and Ru, Ir, and Pt are particularly preferred, from the viewpoint of chemical resistance during processing of the absorbent film. Further, from the viewpoint of suppressing reflection from the absorption film and improving the resolution of transfer, a material having a large extinction coefficient k is particularly preferable, and Ir and Pt are particularly preferable. These may be used alone (single element) or in combination of two or more. Here, when two or more types of metal elements are used, the two or more types of metal elements may form an alloy.
 2種以上の金属元素Xが合金を形成する場合、バルク状態で、常圧(1気圧)、25℃において安定な結晶構造としての第1の結晶構造は相図から判別され、相図から判別された第1の結晶構造とは異なるバルク状態で、常圧(1気圧)、25℃において安定でない準安定の結晶構造が第2の結晶構造となる。 When two or more metallic elements The second crystal structure is a metastable crystal structure that is not stable at normal pressure (1 atm) and 25° C. in a bulk state different from the first crystal structure.
 吸収膜14中の金属元素Xの含有量としては、特に制限はないが、所望の位相差を得るのに適した光学特性(屈折率n及び消衰係数k)を有するために、好ましくは50原子%以上、より好ましくは60原子%以上、さらに好ましくは70原子%以上である。 There is no particular limit to the content of the metal element The content is at least 60 at%, more preferably at least 60 at%, even more preferably at least 70 at%.
 金属元素XがRu、Re及びOsのいずれかである吸収膜14は、バルク状態で、常圧(1気圧)、25℃において安定な結晶構造としての第1の結晶構造が六方最密充填(hcp)構造であり、バルク状態で、常圧(1気圧)、25℃において安定でない準安定の第2の結晶構造が面心立方格子(fcc)構造である。一方、金属元素XがRh、Pd、Ag、Ir、Pt及びAuのいずれかである吸収膜14は、バルク状態で、常圧(1気圧)、25℃において安定な結晶構造としての第1の結晶構造が面心立方格子(fcc)構造であり、バルク状態で、常圧(1気圧)、25℃において安定でない準安定の第2の結晶構造が六方最密充填(hcp)構造である。 The absorption film 14 in which the metal element hcp) structure, and the second metastable crystal structure which is not stable in the bulk state at normal pressure (1 atm) and 25° C. is the face-centered cubic lattice (fcc) structure. On the other hand, the absorption film 14 in which the metal element The crystal structure is a face-centered cubic lattice (FCC) structure, and the metastable second crystal structure that is not stable in the bulk state at normal pressure (1 atm) and 25° C. is a hexagonal close-packed (HCP) structure.
 吸収膜14は、元素Zをさらに含むことが好ましい。
 元素Zとしては、特に制限はないが、結晶子サイズ低下の観点で、H、B、C、N、O、Cr、Nb、Mo、Hf、Ta、Wが好ましく、H、B、C、N、O、Cr、Hf、Ta、Wがより好ましく、H、B、C、N、O、Cr、Ta、Wがさらに好ましく、B、C、N、O、Cr、Ta、Wが特に好ましい。これらは、1種単独(単元素)で用いてもよく、2種以上を用いてもよい。
It is preferable that the absorption film 14 further contains element Z.
Element Z is not particularly limited, but from the viewpoint of reducing the crystallite size, H, B, C, N, O, Cr, Nb, Mo, Hf, Ta, and W are preferable, and H, B, C, N , O, Cr, Hf, Ta, and W are more preferred, H, B, C, N, O, Cr, Ta, and W are even more preferred, and B, C, N, O, Cr, Ta, and W are particularly preferred. These may be used alone (single element) or in combination of two or more.
 吸収膜14中の元素Zの含有量としては、特に制限はないが、所望の位相差を得るのに適した光学特性(屈折率n及び消衰係数k)を有するために、好ましくは50原子%以下、より好ましくは40原子%以下、さらに好ましくは30原子%以下である。 The content of element Z in the absorption film 14 is not particularly limited, but is preferably 50 atoms in order to have optical properties (refractive index n and extinction coefficient k) suitable for obtaining a desired phase difference. % or less, more preferably 40 atom % or less, still more preferably 30 atom % or less.
 金属元素XがRu、元素ZがTaの場合、Ta含有量(原子%)に対するRu含有量(原子%)の比(Ru/Ta)は、例えば30~80である。Ta含有量に対するRu含有量の比(Ru/Ta)が30以上であれば、吸収膜14の耐水素性を向上できる。Ta含有量に対するRu含有量の比(Ru/Ta)が80以下であれば、第1選択比が大きく、吸収膜14の加工性が良い。Ta含有量に対するRu含有量の比(Ru/Ta)は、好ましくは30~80であり、より好ましくは30~70であり、さらに好ましくは30~60である。 When the metal element X is Ru and the element Z is Ta, the ratio of the Ru content (atomic %) to the Ta content (atomic %) (Ru/Ta) is, for example, 30 to 80. If the ratio of Ru content to Ta content (Ru/Ta) is 30 or more, the hydrogen resistance of the absorption film 14 can be improved. If the ratio of Ru content to Ta content (Ru/Ta) is 80 or less, the first selectivity is large and the processability of the absorption film 14 is good. The ratio of Ru content to Ta content (Ru/Ta) is preferably 30 to 80, more preferably 30 to 70, and still more preferably 30 to 60.
 金属元素XがRu、元素ZがCrの場合、Cr含有量(原子%)に対するRu含有量(原子%)の比(Ru/Cr)は、例えば1~15である。Cr含有量に対するRu含有量の比(Ru/Cr)が1以上であれば、吸収膜14の耐水素性を向上できる。Cr含有量に対するRu含有量の比(Ru/Cr)が15以下であれば、第1選択比が大きく、吸収膜14の加工性が良い。Cr含有量に対するRu含有量の比(Ru/Cr)は、好ましくは1~15であり、より好ましくは2~12であり、さらに好ましくは3~10であり、特に好ましくは4~8である。 When the metal element X is Ru and the element Z is Cr, the ratio (Ru/Cr) of the Ru content (atomic %) to the Cr content (atomic %) is, for example, 1 to 15. If the ratio of Ru content to Cr content (Ru/Cr) is 1 or more, the hydrogen resistance of the absorption film 14 can be improved. If the ratio of Ru content to Cr content (Ru/Cr) is 15 or less, the first selectivity is large and the processability of the absorption film 14 is good. The ratio of Ru content to Cr content (Ru/Cr) is preferably 1 to 15, more preferably 2 to 12, even more preferably 3 to 10, particularly preferably 4 to 8. .
 金属元素XがIr、元素ZがTaの場合、Ta含有量(原子%)に対するIr含有量(原子%)の比(Ir/Ta)は、例えば1~35である。Ta含有量に対するIr含有量の比(Ir/Ta)が1以上であれば、吸収膜14の耐水素性を向上できる。Ta含有量に対するIr含有量の比(Ir/Ta)が35以下であれば、第1選択比が大きく、吸収膜14の加工性が良い。Ta含有量に対するIr含有量の比(Ir/Ta)は、好ましくは1~35であり、より好ましくは1~30であり、さらに好ましくは1~20であり、特に好ましくは1~15であり、最も好ましくは2~10である。 When the metal element X is Ir and the element Z is Ta, the ratio (Ir/Ta) of the Ir content (atomic %) to the Ta content (atomic %) is, for example, 1 to 35. If the ratio of Ir content to Ta content (Ir/Ta) is 1 or more, the hydrogen resistance of the absorption film 14 can be improved. If the ratio of Ir content to Ta content (Ir/Ta) is 35 or less, the first selectivity is large and the processability of the absorption film 14 is good. The ratio of Ir content to Ta content (Ir/Ta) is preferably 1 to 35, more preferably 1 to 30, still more preferably 1 to 20, particularly preferably 1 to 15. , most preferably from 2 to 10.
 吸収膜14の膜厚としては、特に制限はないが、シャドーイング効果(射影効果ということもある)を抑制する観点で、好ましくは60nm以下、より好ましくは55nm以下、さらに好ましくは50nm以下であり、また、所望の位相差を得る観点で、好ましくは10nm以上、より好ましくは15nm以上である。 The thickness of the absorption film 14 is not particularly limited, but from the viewpoint of suppressing shadowing effects (sometimes called projection effects), it is preferably 60 nm or less, more preferably 55 nm or less, and still more preferably 50 nm or less. Moreover, from the viewpoint of obtaining a desired retardation, it is preferably 10 nm or more, more preferably 15 nm or more.
 吸収膜14は、結晶性低下の観点で、Ruを主成分として含む場合には、線源としてCuKα線を用いたX線回折(XRD)法において、75°≦2θ≦90°の範囲のピークトップの回折角2θが、好ましくは84.5°以下、より好ましくは80.0~84.0°以下、さらに好ましくは81.0~84.0°以下である。 From the viewpoint of reducing crystallinity, when the absorbing film 14 contains Ru as a main component, the absorption film 14 has a peak in the range of 75°≦2θ≦90° in an X-ray diffraction (XRD) method using CuKα rays as a radiation source. The diffraction angle 2θ of the top is preferably 84.5° or less, more preferably 80.0 to 84.0°, and even more preferably 81.0 to 84.0°.
 吸収膜14と保護膜13の間にさらに吸収膜下層が設けられてもよい。吸収膜下層は、保護膜13の最上面に接触して形成された層である。吸収膜14と吸収膜下層の2層構造にすることで、入射したEUV光の一部を所望の位相に調整することができる。 An absorbent film lower layer may be further provided between the absorbent film 14 and the protective film 13. The absorbent film lower layer is a layer formed in contact with the uppermost surface of the protective film 13. By forming the two-layer structure of the absorption film 14 and the lower layer of the absorption film, it is possible to adjust a part of the incident EUV light to a desired phase.
 吸収膜14は、反応性スパッタリング法、マグネトロンスパッタリング法、イオンビームスパッタリング法等の周知の成膜方法を用いて以下の手順で形成できる。 The absorption film 14 can be formed using a well-known film forming method such as a reactive sputtering method, a magnetron sputtering method, or an ion beam sputtering method using the following procedure.
 反応性スパッタリング法を用いて、吸収膜14を形成する場合、例えば、アルゴン(Ar)ガスと、Oガスと、Nガスと、を含み、Oの体積比が0~30vol%、Nの体積比が0~50vol%の雰囲気中で、Ru又はIrを含有するターゲットを用いて反応性スパッタリング法を行えばよい。 When forming the absorption film 14 using a reactive sputtering method, for example, it contains argon (Ar) gas, O 2 gas, and N 2 gas, and the volume ratio of O 2 is 0 to 30 vol%, N The reactive sputtering method may be performed using a target containing Ru or Ir in an atmosphere where the volume ratio of 2 is 0 to 50 vol %.
 上記以外の反応性スパッタリング法の条件は以下の条件で実施すればよい。
ガス圧力:5×10-2~1.0Pa、好ましくは1×10-1~8×10-1Pa、より好ましくは2×10-1~4×10-1Pa。
ターゲット面積当たりの投入電力密度:1.0~15.0W/cm、好ましくは3.0~12.0W/cm、より好ましくは4.0~10.0W/cm
成膜速度:0.010~1.000nm/sec、好ましくは0.015~0.500nm/sec、より好ましくは0.050~0.400nm/sec。
Conditions for the reactive sputtering method other than those mentioned above may be carried out under the following conditions.
Gas pressure: 5×10 −2 to 1.0 Pa, preferably 1×10 −1 to 8×10 −1 Pa, more preferably 2×10 −1 to 4×10 −1 Pa.
Input power density per target area: 1.0 to 15.0 W/cm 2 , preferably 3.0 to 12.0 W/cm 2 , more preferably 4.0 to 10.0 W/cm 2 .
Film forming rate: 0.010 to 1.000 nm/sec, preferably 0.015 to 0.500 nm/sec, more preferably 0.050 to 0.400 nm/sec.
 本明細書では、吸収膜14表面の平滑性の指標として、原子間力顕微鏡(Atomic Force Microscope)を用いて測定される、吸収膜14表面の二乗平均平方根粗さRqを用いる。
 本発明の一実施形態のEUVリソグラフィ用反射型マスクブランク1aは、吸収膜14表面の二乗平均平方根粗さRqが、好ましくは0.50nm以下、より好ましくは0.45nm以下、さらに好ましくは0.40nm以下である。
In this specification, the root mean square roughness Rq of the surface of the absorption film 14 measured using an atomic force microscope is used as an index of the smoothness of the surface of the absorption film 14.
In the reflective mask blank 1a for EUV lithography according to an embodiment of the present invention, the root mean square roughness Rq of the surface of the absorption film 14 is preferably 0.50 nm or less, more preferably 0.45 nm or less, and still more preferably 0.50 nm or less. It is 40 nm or less.
 また、多層反射膜12からのEUV光の反射光と吸収膜14からのEUV光の反射光との位相差としては、好ましくは150~250度、より好ましくは180~250度、さらに好ましくは200~250度である。 Further, the phase difference between the reflected light of EUV light from the multilayer reflective film 12 and the reflected light of EUV light from the absorption film 14 is preferably 150 to 250 degrees, more preferably 180 to 250 degrees, and still more preferably 200 degrees. ~250 degrees.
 ハーフトーン型EUVリソグラフィ用反射型マスクの使用は、原理的にはEUVリソグラフィにおいて、解像性を向上させる、有効な手段である。しかし、ハーフトーン型EUVリソグラフィ用反射型マスクにおける最適な反射率は、露光条件や転写するパターンに依存し、一概に決めることは難しい。 The use of a reflective mask for halftone EUV lithography is in principle an effective means of improving resolution in EUV lithography. However, the optimal reflectance of a reflective mask for halftone EUV lithography depends on the exposure conditions and the pattern to be transferred, and is difficult to determine unconditionally.
(反射防止膜)
 吸収膜14上には、検査工程で波長190~260nmのDUV光(深紫外光)を使用する場合、反射を防止する反射防止膜(図示せず)が積層されていることが好ましい。
 EUVリソグラフィ用反射型マスクは、吸収膜14に形成されたマスクパターンに欠陥がないか検査される。このマスク検査は、主に検査光の反射光の光学データに基づいて、欠陥の有無等が判断されることから、マスクを透過する光は検査光として使用できず、DUV光が用いられる。このため、正確な検査のために、吸収膜14上には、検査光であるDUV光の反射を防止する反射防止膜を設けておくことが好ましい。
(Anti-reflection film)
An antireflection film (not shown) is preferably laminated on the absorption film 14 to prevent reflection when DUV light (deep ultraviolet light) with a wavelength of 190 to 260 nm is used in the inspection process.
The reflective mask for EUV lithography is inspected for defects in the mask pattern formed on the absorption film 14. In this mask inspection, the presence or absence of defects is determined mainly based on the optical data of the reflected light of the inspection light. Therefore, the light that passes through the mask cannot be used as the inspection light, and DUV light is used. Therefore, for accurate inspection, it is preferable to provide an antireflection film on the absorption film 14 to prevent reflection of DUV light, which is the inspection light.
 反射防止膜は、上述した役割を果たすため、吸収膜14よりもDUV光の屈折率が低い材料で形成されることが好ましい。反射防止膜の構成材料としては、例えば、Taを主成分とし、Ta以外に、Hf、Ge、Si、B、N、H及びOから選ばれる1種以上の成分を含む材料が挙げられる。具体例として、TaO、TaON、TaONH、TaHfO、TaHfON、TaBSiO、TaBSiON等が挙げられる。 In order to fulfill the above-mentioned role, the antireflection film is preferably formed of a material that has a lower refractive index for DUV light than the absorption film 14. Examples of the constituent material of the antireflection film include a material containing Ta as a main component and one or more components selected from Hf, Ge, Si, B, N, H, and O in addition to Ta. Specific examples include TaO, TaON, TaONH, TaHfO, TaHfON, TaBSiO, TaBSiON, and the like.
 反射防止膜は、例えば、マグネトロンスパッタ法、イオンビームスパッタ法等の公知の成膜方法を用いて、所望の厚さで成膜することにより形成できる。 The antireflection film can be formed by forming a film to a desired thickness using, for example, a known film forming method such as magnetron sputtering or ion beam sputtering.
(バッファー層)
 バッファー層の構成材料は、特に限定されるものではないが、例えば、SiO、Cr、Ta等を主成分とした材料等が挙げられる。
(buffer layer)
The material constituting the buffer layer is not particularly limited, and examples thereof include materials containing SiO 2 , Cr, Ta, etc. as main components.
(エッチングマスク膜)
 一般的に、吸収膜のエッチング条件に対して耐性を有する材料の層(エッチングマスク膜)を吸収膜上に設けることでレジスト膜を薄膜化できることが知られている。すなわち、エッチングマスク膜を形成して、吸収膜のエッチング条件における、吸収膜のエッチング速度を1とした場合の、エッチングマスク膜のエッチング速度の相対速度(エッチング選択比)を低くすることで、レジスト膜を薄膜化できる。
(Etching mask film)
It is generally known that a resist film can be made thinner by providing a layer (etching mask film) of a material that is resistant to the etching conditions of the absorbing film on the absorbing film. That is, by forming an etching mask film and lowering the relative speed (etching selectivity) of the etching mask film when the etching speed of the absorbing film is set to 1 under the etching conditions of the absorbing film, the resist The film can be made thinner.
 エッチングマスク膜15は、吸収膜14のエッチング条件におけるエッチング選択比が十分高いことが求められる。
 そのため、エッチングマスク膜15は、O、又はOとハロゲン系ガス(塩素系ガス、フッ素系ガス)との混合ガスをエッチングガスとするドライエッチングに対し、高いエッチング耐性を有することが求められる。
The etching mask film 15 is required to have a sufficiently high etching selectivity under the etching conditions for the absorption film 14.
Therefore, the etching mask film 15 is required to have high etching resistance against dry etching using O 2 or a mixed gas of O 2 and halogen gas (chlorine gas, fluorine gas) as the etching gas. .
 一方、エッチングマスク膜15は、EUVリソグラフィにおいて、レジスト膜の洗浄液として使用される、酸又は塩基を用いた洗浄液で除去可能であることが好ましい。 On the other hand, the etching mask film 15 is preferably removable with a cleaning solution using an acid or a base, which is used as a cleaning solution for a resist film in EUV lithography.
 上記の目的で使用される洗浄液の具体例としては、硫酸過水(SPM)、アンモニア過水、フッ酸が挙げられる。SPMは、硫酸と過酸化水素とを混合した溶液であり、硫酸と過酸化水素とを、体積比で、好ましくは4:1~1:3、より好ましくは3:1で混合できる。このとき、SPMの温度は、エッチング速度を向上させる点から、好ましくは100℃以上に制御される。 Specific examples of cleaning liquids used for the above purpose include sulfuric acid peroxide (SPM), ammonia peroxide, and hydrofluoric acid. SPM is a solution containing sulfuric acid and hydrogen peroxide, and the sulfuric acid and hydrogen peroxide can be mixed at a volume ratio of preferably 4:1 to 1:3, more preferably 3:1. At this time, the temperature of the SPM is preferably controlled to 100° C. or higher in order to improve the etching rate.
 アンモニア過水は、アンモニアと過酸化水素とを混合した溶液であり、NHOHと過酸化水素と水とを、体積比で、好ましくは1:1:5~3:1:5で混合できる。このとき、アンモニア過水の温度は好ましくは70~80℃で制御される。 Ammonia peroxide is a mixed solution of ammonia and hydrogen peroxide, and can mix NH 4 OH, hydrogen peroxide, and water in a volume ratio of preferably 1:1:5 to 3:1:5. . At this time, the temperature of ammonia peroxide is preferably controlled at 70 to 80°C.
 上記した要求を満たすため、エッチングマスク膜15は、Al、Hf、Y、Cr、Nb、Ti、Mo、Ta及びSiからなる群から選択される少なくとも1つの元素を含むことが好ましい。エッチングマスク膜15が、さらに、O、N、及びBからなる群から選択される少なくとも1つの元素をさらに含んでもよい。すなわち、上記の元素の酸化物、酸窒化物、窒化物、ホウ化物であってもよい。 In order to meet the above requirements, the etching mask film 15 preferably contains at least one element selected from the group consisting of Al, Hf, Y, Cr, Nb, Ti, Mo, Ta, and Si. Etching mask film 15 may further include at least one element selected from the group consisting of O, N, and B. That is, oxides, oxynitrides, nitrides, and borides of the above elements may be used.
 エッチングマスク膜15の構成材料の具体例としては、例えば、Al、AlО、AlN等のAl系材料;Hf、HfО等のHf系材料;Y、Y等のY系材料;Cr、Cr、CrN等のCr系材料;Nb、Nb、NbON等のNb系材料;Mo、MoO、MoON等のMo系材料;Ta、Ta5、TaON等のTa系材料;Si、SiO、Si等のSi系材料;などが挙げられる。
 Nb系材料、Mo系材料からなるエッチングマスク膜15は、塩素系ガスをエッチングガスとするドライエッチングにより、エッチング可能である。
 Si系材料からなるエッチングマスク膜15は、フッ素系ガスをエッチングガスとするドライエッチングにより、エッチング可能である。なお、Si系材料をエッチングマスク膜15として用いる場合は、洗浄液としてフッ酸を用いた除去が好ましい。
Specific examples of the constituent materials of the etching mask film 15 include Al-based materials such as Al, Al 2 O 3 and AlN; Hf-based materials such as Hf and HfO 2 ; Y-based materials such as Y and Y 2 O 3 ; ; Cr-based materials such as Cr, Cr 2 O 3 and CrN; Nb-based materials such as Nb, Nb 2 O 5 and NbON; Mo-based materials such as Mo, MoO 3 and MoON; Ta, Ta 2 O 5, TaON, etc. Ta-based materials; Si-based materials such as Si, SiO 2 and Si 3 N 4 ; and the like.
The etching mask film 15 made of Nb-based material or Mo-based material can be etched by dry etching using chlorine-based gas as an etching gas.
The etching mask film 15 made of a Si-based material can be etched by dry etching using a fluorine-based gas as an etching gas. Note that when a Si-based material is used as the etching mask film 15, removal using hydrofluoric acid as a cleaning solution is preferable.
 エッチングマスク膜15の膜厚は、20nm以下が洗浄液による除去性の点で好ましい。Nb系材料からなるエッチングマスク膜15は、膜厚が5~15nmがより好ましい。 The thickness of the etching mask film 15 is preferably 20 nm or less in terms of removability with a cleaning solution. The etching mask film 15 made of Nb-based material preferably has a film thickness of 5 to 15 nm.
 エッチングマスク膜15は公知の成膜方法、例えば、マグネトロンスパッタリング法、イオンビームスパッタリング法により形成できる。 The etching mask film 15 can be formed by a known film forming method, for example, a magnetron sputtering method or an ion beam sputtering method.
 例えば、スパッタリング法によって、NbN膜を形成する場合、He、Ar、Ne、Kr、Xeのうち少なくとも1種を含む不活性ガス(以下、単に不活性ガスと記載する。)と酸素を混合したガス雰囲気中で、Nbターゲットを用いた反応性スパッタリング法を実施すればよい。マグネトロンスパッタリング法を用いる場合、具体的には以下の成膜条件で実施すればよい。 For example, when forming a NbN film by a sputtering method, a gas containing an inert gas (hereinafter simply referred to as an inert gas) containing at least one of He, Ar, Ne, Kr, and Xe and oxygen is used. A reactive sputtering method using an Nb target may be performed in an atmosphere. When using the magnetron sputtering method, specifically, it may be performed under the following film forming conditions.
 スパッタガス:ArガスとNとの混合ガス(混合ガス中のNの体積比(N/(Ar+N))=15vol%以上)
ガス圧:5.0×10-2~1.0Pa、好ましくは1.0×10-1~8.0×10-1Pa、より好ましくは2.0×10-1~4.0×10-1Pa
ターゲット面積当たりの投入電力密度:1.0~15.0W/cm、好ましくは3.0~12.0W/cm、より好ましくは4.0~10.0W/cm
成膜速度:0.010~1.0nm/sec、好ましくは0.015~0.50nm/sec、より好ましくは0.020~0.30nm/sec
ターゲットと基板間距離:50~500mm、好ましくは100~400mm、より好ましくは150~300mm
Sputtering gas: mixed gas of Ar gas and N2 (volume ratio of N2 in mixed gas ( N2 /(Ar+ N2 ))=15 vol% or more)
Gas pressure: 5.0×10 −2 to 1.0 Pa, preferably 1.0×10 −1 to 8.0×10 −1 Pa, more preferably 2.0×10 −1 to 4.0×10 -1 Pa
Input power density per target area: 1.0 to 15.0 W/cm 2 , preferably 3.0 to 12.0 W/cm 2 , more preferably 4.0 to 10.0 W/cm 2
Film formation rate: 0.010 to 1.0 nm/sec, preferably 0.015 to 0.50 nm/sec, more preferably 0.020 to 0.30 nm/sec
Distance between target and substrate: 50 to 500 mm, preferably 100 to 400 mm, more preferably 150 to 300 mm
 なお、Ar以外の不活性ガスを使用する場合、その不活性ガスの濃度が上記したArガス濃度と同じ濃度範囲にすることが好ましい。また、複数種類の不活性ガスを使用する場合、不活性ガスの合計濃度を上記したArガス濃度と同じ濃度範囲にすることが好ましい。 Note that when an inert gas other than Ar is used, it is preferable that the concentration of the inert gas is in the same concentration range as the Ar gas concentration described above. Moreover, when using multiple types of inert gases, it is preferable that the total concentration of the inert gases is in the same concentration range as the above-mentioned Ar gas concentration.
(その他の構成)
 本実施形態のEUVリソグラフィ用反射型マスクブランク1a,1bは、上述した各膜及び層以外に、EUVリソグラフィ用反射型マスクブランクにおいて公知の機能膜を設けてもよい。
 例えば、EUVリソグラフィ用反射型マスクブランク10を静電チャックの載置部等に吸着固定させるために、基板11の多層反射膜12とは反対側の面(裏面)に、裏面導電膜が形成されていてもよい。
 裏面導電膜は、シート抵抗が100Ω/□以下であることが好ましく、公知の構成を適用できる。裏面導電膜の構成材料としては、例えば、Si、TiN、Mo、Cr、TaSi等が挙げられる。裏面導電膜の厚さは、例えば、10~1000nmとできる。
 裏面導電膜は、例えば、マグネトロンスパッタ法、イオンビームスパッタ法、化学気相成長法(CVD法)、真空蒸着法、電気メッキ法等の公知の成膜方法を用いて、所望の厚さで成膜することにより形成できる。
(Other configurations)
The reflective mask blanks 1a and 1b for EUV lithography of this embodiment may be provided with a known functional film in reflective mask blanks for EUV lithography in addition to the films and layers described above.
For example, in order to adsorb and fix the reflective mask blank 10 for EUV lithography on a mounting portion of an electrostatic chuck, etc., a back conductive film is formed on the surface (back surface) of the substrate 11 opposite to the multilayer reflective film 12. You can leave it there.
The back conductive film preferably has a sheet resistance of 100Ω/□ or less, and a known configuration can be applied. Examples of the constituent material of the back conductive film include Si, TiN, Mo, Cr, TaSi, and the like. The thickness of the back conductive film can be, for example, 10 to 1000 nm.
The back conductive film is formed to a desired thickness using a known film forming method such as magnetron sputtering, ion beam sputtering, chemical vapor deposition (CVD), vacuum evaporation, or electroplating. It can be formed by coating.
[EUVリソグラフィ用反射型マスクブランクの製造方法]
 本発明の一実施形態のEUVリソグラフィ用反射型マスクブランクの製造方法は、基板上にEUV光を反射する多層反射膜を形成し、形成された多層反射膜上にEUV光を吸収する吸収膜を形成するEUVリソグラフィ用反射型マスクブランクの製造方法であって、吸収膜は、金属元素Xを主成分として含み、吸収膜の結晶構造が、前記金属元素Xのバルク状態で、常圧(1気圧)、25℃において安定な結晶構造としての第1の結晶構造と、該第1の結晶構造と異なる第2の結晶構造とを有し、第2の結晶構造のピーク面積比が9%以上である。
 なお、多層反射膜の形成方法及び吸収膜の形成方法は、上述した通りである。
[Method for manufacturing reflective mask blank for EUV lithography]
A method for manufacturing a reflective mask blank for EUV lithography according to an embodiment of the present invention includes forming a multilayer reflective film that reflects EUV light on a substrate, and an absorbing film that absorbs EUV light on the formed multilayer reflective film. A method for manufacturing a reflective mask blank for EUV lithography, wherein the absorption film contains a metal element X as a main component, and the crystal structure of the absorption film is in the bulk state of the metal element ), has a first crystal structure as a stable crystal structure at 25 ° C. and a second crystal structure different from the first crystal structure, and the peak area ratio of the second crystal structure is 9% or more. be.
Note that the method for forming the multilayer reflective film and the method for forming the absorbing film are as described above.
[EUVリソグラフィ用反射型マスク]
 図3は、本発明のEUVリソグラフィ用反射型マスクの一実施形態を示す概略断面図である。
[Reflective mask for EUV lithography]
FIG. 3 is a schematic cross-sectional view showing an embodiment of a reflective mask for EUV lithography of the present invention.
 図3に示すEUVリソグラフィ用反射型マスク2は、図1に示すEUVリソグラフィ用反射型マスクブランク1aの吸収膜14にパターン(吸収膜パターン)140が形成されている。すなわち、基板11上にEUV光を反射する多層反射膜12と、多層反射膜12の保護膜13と、EUV光を吸収する吸収膜14とが、この順に形成されており、吸収膜14にパターン(吸収膜パターン)140が形成されている。 In the reflective mask 2 for EUV lithography shown in FIG. 3, a pattern (absorbing film pattern) 140 is formed on the absorbing film 14 of the reflective mask blank 1a for EUV lithography shown in FIG. That is, a multilayer reflective film 12 that reflects EUV light, a protective film 13 of the multilayer reflective film 12, and an absorption film 14 that absorbs EUV light are formed on the substrate 11 in this order, and a pattern is formed on the absorption film 14. (Absorbing film pattern) 140 is formed.
 EUVリソグラフィ用反射型マスク2の構成要素のうち、基板11、多層反射膜12、保護膜13、及び吸収膜14は、上記したEUVリソグラフィ用反射型マスクブランク1aと同様である。 Among the components of the reflective mask 2 for EUV lithography, the substrate 11, multilayer reflective film 12, protective film 13, and absorption film 14 are the same as those of the reflective mask blank 1a for EUV lithography described above.
[EUVリソグラフィ用反射型マスクの製造方法]
 本発明の一実施形態のEUVリソグラフィ用反射型マスクの製造方法では、本発明の一実施形態のEUVリソグラフィ用反射型マスクブランクの製造方法によって製造されたEUVリソグラフィ用反射型マスクブランク1bの吸収膜14をパターニングしてパターン(吸収膜パターン)140を形成する。
[Method for manufacturing reflective mask for EUV lithography]
In the method for manufacturing a reflective mask for EUV lithography according to an embodiment of the present invention, the absorption film of the reflective mask blank 1b for EUV lithography manufactured by the method for manufacturing a reflective mask blank for EUV lithography according to an embodiment of the present invention 14 is patterned to form a pattern (absorbing film pattern) 140.
 EUVリソグラフィ用反射型マスクブランク1bの吸収膜14にパターンを形成する手順を図面を参照して説明する。 The procedure for forming a pattern on the absorption film 14 of the reflective mask blank 1b for EUV lithography will be explained with reference to the drawings.
 図4に示すように、EUVリソグラフィ用反射型マスクブランク1bのエッチングマスク膜15上にレジスト膜30を形成する。次に、電子線描画機を用いて、図5に示すように、レジスト膜30にレジストパターン300を形成する。 As shown in FIG. 4, a resist film 30 is formed on the etching mask film 15 of the reflective mask blank 1b for EUV lithography. Next, as shown in FIG. 5, a resist pattern 300 is formed on the resist film 30 using an electron beam drawing machine.
 次に、レジストパターン300が形成されたレジスト膜30をマスクとして、図6に示すように、エッチングマスク膜15にエッチングマスク膜パターン150を形成する。 Next, using the resist film 30 on which the resist pattern 300 is formed as a mask, an etching mask film pattern 150 is formed on the etching mask film 15, as shown in FIG.
 次に、エッチングマスク膜パターン150が形成されたエッチングマスク膜15をマスクとして、図7に示すように、吸収膜14に吸収膜パターン140を形成する。 Next, using the etching mask film 15 on which the etching mask film pattern 150 is formed as a mask, an absorbing film pattern 140 is formed on the absorbing film 14, as shown in FIG.
 次に、酸又は塩基を用いた洗浄液により、レジスト膜30及びエッチングマスク膜15を除去することにより、吸収膜パターン140が露出したEUVリソグラフィ用反射型マスク2が得られる。なお、レジストパターン300、及びレジスト膜30の大半は、吸収膜パターン140を形成する過程で除去されるが、残存するレジストパターン300、レジスト膜30及びエッチングマスク膜15を除去する目的で酸又は塩基を用いた洗浄液による洗浄が実施される。 Next, by removing the resist film 30 and the etching mask film 15 with a cleaning solution using an acid or a base, the reflective mask 2 for EUV lithography in which the absorption film pattern 140 is exposed is obtained. Although most of the resist pattern 300 and the resist film 30 are removed during the process of forming the absorption film pattern 140, acid or base is used to remove the remaining resist pattern 300, resist film 30, and etching mask film 15. Cleaning is carried out using a cleaning solution.
 本発明のEUVリソグラフィ用反射型マスクは、本実施形態のEUVリソグラフィ用反射型マスクブランク1a,1bの吸収膜14にマスクパターンが形成されているものである。
 本発明のEUVリソグラフィ用反射型マスクの製造方法では、リソグラフィを適用することができ、エッチングプロセスでは、上述した図3~図7に示すようなエッチングプロセスを経ることが好ましい。すなわち、EUVリソグラフィ用反射型マスクブランク1a,1bへのマスクパターンの形成は、EUVリソグラフィ用反射型マスクブランク1a,1bの吸収膜14にスパッタエッチング処理を施した後、ケミカルドライエッチング処理を施すことが好ましい。
 本実施形態のEUVリソグラフィ用反射型マスクブランクを用いて、このようなエッチングプロセスを適用してEUVリソグラフィ用反射型マスクを製造することにより、EUVリソグラフィ用反射型マスクブランクへのマスクパターンの形成を効率的に精度よく行うことができる。
The reflective mask for EUV lithography of the present invention has a mask pattern formed on the absorption film 14 of the reflective mask blanks 1a and 1b for EUV lithography of this embodiment.
In the method of manufacturing a reflective mask for EUV lithography of the present invention, lithography can be applied, and the etching process is preferably performed as shown in FIGS. 3 to 7 described above. That is, to form a mask pattern on the reflective mask blanks 1a and 1b for EUV lithography, the absorbing film 14 of the reflective mask blanks 1a and 1b for EUV lithography is subjected to a sputter etching process, and then a chemical dry etching process is performed. is preferred.
By manufacturing a reflective mask for EUV lithography by applying such an etching process using the reflective mask blank for EUV lithography of this embodiment, it is possible to form a mask pattern on the reflective mask blank for EUV lithography. It can be done efficiently and accurately.
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。 Although various embodiments have been described above with reference to the drawings, it goes without saying that the present invention is not limited to such examples. It is clear that those skilled in the art can come up with various changes or modifications within the scope of the claims, and these naturally fall within the technical scope of the present invention. Understood. Further, each of the constituent elements in the above embodiments may be arbitrarily combined without departing from the spirit of the invention.
 以下、実施例に基づいて、本発明を具体的に説明するが、本発明は下記実施例により限定されるものではなく、本発明の要旨を逸脱しない範囲で、種々の変形が可能である。
 例1~例12のうち、例1~例8が実施例であり、例9~例12が比較例である。
Hereinafter, the present invention will be specifically explained based on Examples, but the present invention is not limited to the following Examples, and various modifications can be made without departing from the gist of the present invention.
Among Examples 1 to 12, Examples 1 to 8 are examples, and Examples 9 to 12 are comparative examples.
[例1~例12]
(EUVリソグラフィ用反射型マスクブランクの作製)
 基板と、多層反射膜と、保護膜と、吸収膜とをこの順番で含むEUVリソグラフィ用反射型マスクブランクを作製した。
[Example 1 to Example 12]
(Production of reflective mask blank for EUV lithography)
A reflective mask blank for EUV lithography including a substrate, a multilayer reflective film, a protective film, and an absorbing film in this order was produced.
 基板としては、SiO-TiO系のガラス基板(外形6インチ(152mm)角、厚さが6.3mm)を準備した。このガラス基板は、20℃における熱膨張係数が0.020×10-7/℃であり、ヤング率が67GPaであり、ポアソン比が0.17であり、比剛性が3.07×10/sであった。基板の第1主面の品質保証領域は、研磨によって0.150nm以下の二乗平均平方根粗さRqと、100nm以下の平坦度とを有していた。基板の第2主面には、マグネトロンスパッタリング法を用いて厚さ100nmのCr膜を成膜した。Cr膜のシート抵抗は100Ω/□であった。
 なお、基板の二乗平均平方根粗さRqは原子間力顕微鏡(Atomic Force Microscope)を用いてJISB0601:2013に準じて測定した。
As a substrate, a SiO 2 -TiO 2 -based glass substrate (outer size: 6 inches (152 mm) square, thickness: 6.3 mm) was prepared. This glass substrate has a thermal expansion coefficient of 0.020×10 −7 /°C at 20°C, a Young's modulus of 67 GPa, a Poisson's ratio of 0.17, and a specific stiffness of 3.07×10 7 m. 2 / s2 . The quality assurance area of the first main surface of the substrate had a root mean square roughness Rq of 0.150 nm or less and a flatness of 100 nm or less by polishing. A Cr film with a thickness of 100 nm was formed on the second main surface of the substrate using a magnetron sputtering method. The sheet resistance of the Cr film was 100Ω/□.
Note that the root mean square roughness Rq of the substrate was measured using an atomic force microscope according to JISB0601:2013.
 多層反射膜として、Mo/Si多層反射膜を形成した。Mo/Si多層反射膜は、イオンビームスパッタリング法を用いてSi膜(膜厚4.5nm)とMo膜(膜厚2.3nm)を成膜することを40回繰り返すことにより形成した。Mo/Si多層反射膜の合計膜厚は272nm((4.5nm+2.3nm)×40)であった。 A Mo/Si multilayer reflective film was formed as the multilayer reflective film. The Mo/Si multilayer reflective film was formed by repeating 40 times of forming a Si film (4.5 nm thick) and a Mo film (2.3 nm thick) using an ion beam sputtering method. The total film thickness of the Mo/Si multilayer reflective film was 272 nm ((4.5 nm+2.3 nm)×40).
 保護膜として、Rh膜(単層、膜厚2.5nm)をイオンビームスパッタリング法を用いて形成した。 As a protective film, a Rh film (single layer, film thickness 2.5 nm) was formed using an ion beam sputtering method.
 吸収膜として、下記「Ru系吸収膜」に示す方法(例1~4及び9~11)でRu系吸収膜を形成し、下記「Ir系吸収膜」に示す方法(例5~8及び12)でIr系吸収膜を形成した。 As the absorption film, a Ru-based absorption film was formed by the method shown in the following "Ru-based absorption film" (Examples 1 to 4 and 9 to 11), and a Ru-based absorption film was formed by the method shown in the following "Ir-based absorption film" (Examples 5 to 8 and 12). ) to form an Ir-based absorption film.
<Ru系吸収膜>
 Ruターゲット、Cターゲット、Taターゲット、Crターゲットを用い、反応性スパッタにより表1の吸収膜組成になるように、Ar、O、Nガス流量と各ターゲットへの投入電力を調整して、下記条件(1)~(6)で吸収膜を成膜した。各ターゲットはいずれもDC電源を用いた。
(1)投入電力:100~800W
(2)ガス圧力:0.3Pa
(3)Oガス体積比(O/(Ar+O+N)):0~30vol%
(4)Nガス体積比(N/(Ar+O+N)):0~50vol%
(5)成膜速度:0.050~0.400nm/sec
(6)膜厚:35nm
<Ru-based absorption film>
Using a Ru target, a C target, a Ta target, and a Cr3C2 target, adjust the Ar, O2 , and N2 gas flow rates and the power input to each target so that the absorption film composition shown in Table 1 is obtained by reactive sputtering. Then, absorbent films were formed under the following conditions (1) to (6). A DC power source was used for each target.
(1) Input power: 100-800W
(2) Gas pressure: 0.3Pa
(3) O 2 gas volume ratio (O 2 /(Ar+O 2 +N 2 )): 0 to 30 vol%
(4) N 2 gas volume ratio (N 2 /(Ar+O 2 +N 2 )): 0 to 50 vol%
(5) Film deposition rate: 0.050 to 0.400 nm/sec
(6) Film thickness: 35nm
<Ir系吸収膜>
 Irターゲット、Taターゲット、Ta6040ターゲット、Bターゲットを用いた反応性スパッタリングを行った。Irターゲット、Taターゲット、Ta6040ターゲットのスパッタリングにはDC電源を用い、BターゲットのスパッタリングにはRF電源を用いた。その他の条件はRu系吸収膜と同様にIr系吸収膜を成膜した。
<Ir-based absorption film>
Reactive sputtering was performed using an Ir target, a Ta target, a Ta 60 B 40 target, and a B target. A DC power source was used for sputtering the Ir target, Ta target, and Ta 60 B 40 target, and an RF power source was used for sputtering the B target. The Ir-based absorption film was formed under the same conditions as the Ru-based absorption film.
 例1~12の吸収膜の元素組成(原子%)は、X線光電子分光(XPS)法により測定した。なお、例3のRuとCの組成比は、XPSではピークが重なり測定が困難なため、エネルギー分散型X線分析(EDX)法により測定した。また、例5~7のB、並びに、例8のB及びOは、XPSでは検出下限外のため定量できなかったが、2次イオン質量分析(SIMS)法により膜中に含有することを確認した。測定された元素組成(原子%)を表1に示す。 The elemental compositions (atomic %) of the absorption films of Examples 1 to 12 were measured by X-ray photoelectron spectroscopy (XPS). Note that the composition ratio of Ru and C in Example 3 was measured by energy dispersive X-ray analysis (EDX) because the peaks overlap in XPS and measurement is difficult. In addition, B in Examples 5 to 7 and B and O in Example 8 could not be quantified by XPS because they were outside the detection limit, but it was confirmed that they were contained in the membrane by secondary ion mass spectrometry (SIMS). did. The measured elemental compositions (atomic %) are shown in Table 1.
 例1~12の吸収膜の膜厚35nmは、X線反射率(XRR)法により測定した。 The thickness of 35 nm for the absorption films of Examples 1 to 12 was measured by an X-ray reflectance (XRR) method.
(結晶子サイズの測定)
 吸収膜の結晶性は、リガク社製X線回折分析装置(MiniFlexII)を用いて測定した。2θが30°~55°の範囲において最も強度の高いピークの半値全幅に対し、シェラーの式(Scherrer’s equation)を用いて、結晶子サイズを算出した。測定された結晶子サイズを表1に示す。
(Measurement of crystallite size)
The crystallinity of the absorption film was measured using an X-ray diffraction analyzer (MiniFlex II) manufactured by Rigaku Corporation. Crystallite size was calculated using Scherrer's equation for the full width at half maximum of the peak with the highest intensity in the range of 2θ from 30° to 55°. The measured crystallite sizes are shown in Table 1.
(ピーク面積比の算出、XRDピーク位置の算出)
 吸収膜の各結晶相(第1の結晶構造、第2の結晶構造)のピーク面積を用いて、各結晶相の存在比率を評価した。ピーク分離した際に算出された第2の結晶構造のピーク面積比(%)を表1に示す。なお、ピーク分離法に基づくピーク分離にはBruker社製解析ソフトウェア「Diffrac.TOPAS」を用いた。プロファイル関数は装置パラメータを用いてFP法によって決定した。バックグラウンドは2次多項式を用い、2θ=30~75°の範囲でバックグラウンド関数を作成した。Bruker社製X線回折分析装置(D8DISCOVER)を用いたIn-Plane XRD測定から得られた回折パターンのうち、30~55°の範囲について、fcc構造2本((111)面及び(200)面)、並びに、hcp構造3本((100)面、(002)面及び(101)面)のピークを用いてピーク分離を行った。ピーク分離においては各結晶相の結晶子サイズが1.0nmを下回らないように束縛条件を設定した。
 ピーク分離に用いる吸収膜の各結晶相のXRDピーク位置は、後述するTEM像の解析から得られた格子定数に基づいて算出した。
(Calculation of peak area ratio, calculation of XRD peak position)
The abundance ratio of each crystal phase was evaluated using the peak area of each crystal phase (first crystal structure, second crystal structure) of the absorption film. Table 1 shows the peak area ratio (%) of the second crystal structure calculated upon peak separation. Note that analysis software "Diffrac.TOPAS" manufactured by Bruker was used for peak separation based on the peak separation method. The profile function was determined by the FP method using the device parameters. A background function was created using a second-order polynomial in the range of 2θ=30 to 75°. Among the diffraction patterns obtained from In-Plane XRD measurement using an X-ray diffraction analyzer (D8DISCOVER) manufactured by Bruker, two fcc structures ((111) plane and (200) plane ), and peaks of three hcp structures ((100) plane, (002) plane, and (101) plane) were used for peak separation. In peak separation, constraint conditions were set so that the crystallite size of each crystal phase did not fall below 1.0 nm.
The XRD peak position of each crystal phase of the absorption film used for peak separation was calculated based on the lattice constant obtained from the analysis of the TEM image described below.
 主成分がRuの場合、Bruker社製X線回折分析装置(D8DISCOVER)を用いたIn-Plane XRD測定における75°≦2θ≦90°の範囲のピークトップの回折角2θの値を、表1に示す。 When the main component is Ru, the values of the diffraction angle 2θ at the peak top in the range of 75°≦2θ≦90° in In-Plane XRD measurement using a Bruker X-ray diffraction analyzer (D8DISCOVER) are shown in Table 1. show.
(TEM像の測定)
 TEM像の測定には、吸収膜表面側と基板側の両方から収束イオンビーム法を用いて厚みが50nm程度になるまで研磨した例1の試料薄片を用いた。試料薄片を日本電子社製のNEOARMを用いてTEM観察し、試料の結晶格子像(TEM像)(図8)及び電子回折図形(図9)を取得した。図9には、結晶構造のモデルとして、Ruのhcp結晶構造(ICSD No.76155)及びRuのfcc結晶構造(ICSD No.235808)を用いた電子回折図形のシミュレーション結果を併せて示した。
 図8の明暗部がそれぞれ一つの結晶粒に相当すると考えられ、図8中の矢印で示した代表的な結晶粒の大きさは6nmであり、表1に示したシェラーの式から求めた結晶子サイズと概ね一致した。
 得られた結晶格子像(TEM像)(図8)や電子回折図形(図9)を、Gatan社製解析ソフト「Digital MicroGraph」を用いて解析することで試料の結晶構造(第1の結晶構造、第2の結晶構造)の存在及び格子定数を導出した。
 なお、図8における丸1,丸2,丸3、丸4は、それぞれ、図9の丸1,丸2,丸3、丸4に対応する。丸1及び丸2はRuのhcp結晶構造(第1の結晶構造)が多い部分を示し、丸3及び丸4はRuのfcc結晶構造(第2の結晶構造)が多い部分を示す。
(TEM image measurement)
For the measurement of the TEM image, the thin sample of Example 1 was used, which had been polished from both the absorption film surface side and the substrate side using a focused ion beam method to a thickness of about 50 nm. The sample thin section was observed by TEM using NEOARM manufactured by JEOL Ltd., and a crystal lattice image (TEM image) (FIG. 8) and an electron diffraction pattern (FIG. 9) of the sample were obtained. FIG. 9 also shows simulation results of electron diffraction patterns using the hcp crystal structure of Ru (ICSD No. 76155) and the fcc crystal structure of Ru (ICSD No. 235808) as crystal structure models.
It is thought that the bright and dark areas in Figure 8 each correspond to one crystal grain, and the size of the typical crystal grain indicated by the arrow in Figure 8 is 6 nm. It roughly matched the child size.
The crystal structure of the sample (the first crystal structure , second crystal structure) and their lattice constants were derived.
Note that circle 1, circle 2, circle 3, and circle 4 in FIG. 8 correspond to circle 1, circle 2, circle 3, and circle 4 in FIG. 9, respectively. Circles 1 and 2 indicate portions in which Ru's hcp crystal structure (first crystal structure) is abundant, and circles 3 and 4 indicate portions in which Ru's fcc crystal structure (second crystal structure) is abundant.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、例1~8では、第2の結晶構造のピーク面積比が12~90%であるので、吸収膜の結晶子サイズを小さくすることができ、もって吸収膜のパターン形成後のLERが良好な反射型マスクを作製可能であった。
 これに対して、例9~12では、第2の結晶構造のピーク面積比が0~8%であるので、吸収膜の結晶子サイズを小さくすることができず、もって吸収膜のパターン形成後のLERが良好な反射型マスクを作製することができなかった。
As shown in Table 1, in Examples 1 to 8, the peak area ratio of the second crystal structure is 12 to 90%, so the crystallite size of the absorbing film can be reduced, thereby forming a pattern of the absorbing film. It was possible to produce a reflective mask with good subsequent LER.
On the other hand, in Examples 9 to 12, since the peak area ratio of the second crystal structure is 0 to 8%, the crystallite size of the absorbing film cannot be reduced, so that after patterning the absorbing film, It was not possible to produce a reflective mask with good LER.
 本発明のEUVリソグラフィ用反射型マスクブランク及びその製造方法、並びに、EUVリソグラフィ用反射型マスクブランクを用いたEUVリソグラフィ用反射型マスク及びその製造方法は、半導体製造等におけるEUVリソグラフィに好適に用いられる。 The reflective mask blank for EUV lithography and the manufacturing method thereof of the present invention, and the reflective mask for EUV lithography using the reflective mask blank for EUV lithography and the manufacturing method thereof of the present invention are suitably used for EUV lithography in semiconductor manufacturing etc. .
1a、1b:EUVリソグラフィ用反射型マスクブランク
2    :EUVリソグラフィ用反射型マスク
11   :基板
12   :多層反射膜
13   :保護膜
14   :吸収膜
15   :エッチングマスク膜
30   :レジスト膜
140  :吸収膜パターン
150  :エッチングマスク膜パターン
300  :レジストパターン
1a, 1b: Reflective mask blank for EUV lithography 2: Reflective mask for EUV lithography 11: Substrate 12: Multilayer reflective film 13: Protective film 14: Absorbing film 15: Etching mask film 30: Resist film 140: Absorbing film pattern 150 : Etching mask film pattern 300 : Resist pattern

Claims (13)

  1.  基板上に、EUV光を反射する多層反射膜と、EUV光を吸収する吸収膜とが、この順に基板側から積層されたEUVリソグラフィ用反射型マスクブランクであって、
     前記吸収膜は、金属元素Xを主成分として含み、
     前記吸収膜の結晶構造が、前記金属元素Xのバルク状態で、常圧(1気圧)、25℃において安定な結晶構造としての第1の結晶構造と、該第1の結晶構造と異なる第2の結晶構造とを有し、
     線源としてCuKα線を用いたX線回折(XRD)法におけるピーク分離法により、30°≦2θ≦55°の範囲にピークトップを有するXRDピークを前記第1の結晶構造と前記第2の結晶構造とにピーク分離した際に算出される前記第2の結晶構造のピーク面積比(前記第2の結晶構造のピーク面積/(前記第1の結晶構造のピーク面積+前記第2の結晶構造のピーク面積))が9%以上である、EUVリソグラフィ用反射型マスクブランク。
    A reflective mask blank for EUV lithography, in which a multilayer reflective film that reflects EUV light and an absorption film that absorbs EUV light are laminated in this order from the substrate side on a substrate,
    The absorption film contains metal element X as a main component,
    The absorption film has a first crystal structure that is stable in the bulk state of the metal element X at normal pressure (1 atm) and 25° C., and a second crystal structure different from the first crystal structure. It has a crystal structure of
    By a peak separation method in an X-ray diffraction (XRD) method using CuKα radiation as a radiation source, an XRD peak having a peak top in the range of 30°≦2θ≦55° is separated into the first crystal structure and the second crystal structure. The peak area ratio of the second crystal structure calculated when the peaks are separated into the structure (peak area of the second crystal structure/(peak area of the first crystal structure + peak area of the second crystal structure) A reflective mask blank for EUV lithography, having a peak area)) of 9% or more.
  2.  前記金属元素Xが、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、銀(Ag)、レニウム(Re)、オスミウム(Os)、イリジウム(Ir)、白金(Pt)、及び金(Au)からなる群より選択される少なくとも1種である、請求項1に記載のEUVリソグラフィ用反射型マスクブランク。 The metal element The reflective mask blank for EUV lithography according to claim 1, which is at least one selected from the group consisting of:
  3.  前記吸収膜は、元素Zをさらに含み、
     前記元素Zは、水素(H)、ホウ素(B)、炭素(C)、窒素(N)、酸素(O)、クロム(Cr)、ニオブ(Nb)、モリブデン(Mo)、ハフニウム(Hf)、タンタル(Ta)、及びタングステン(W)からなる群より選択される少なくとも1種である、請求項1又は2に記載のEUVリソグラフィ用反射型マスクブランク。
    The absorption film further includes element Z,
    The element Z is hydrogen (H), boron (B), carbon (C), nitrogen (N), oxygen (O), chromium (Cr), niobium (Nb), molybdenum (Mo), hafnium (Hf), The reflective mask blank for EUV lithography according to claim 1 or 2, which is at least one member selected from the group consisting of tantalum (Ta) and tungsten (W).
  4.  前記吸収膜はRuを主成分として含み、
     線源としてCuKα線を用いたX線回折(XRD)法において、75°≦2θ≦90°の範囲のピークトップの回折角2θが84.5°以下である、請求項2に記載のEUVリソグラフィ用反射型マスクブランク。
    The absorption film contains Ru as a main component,
    The EUV lithography according to claim 2, wherein in an X-ray diffraction (XRD) method using CuKα radiation as a radiation source, the diffraction angle 2θ of the peak top in the range of 75°≦2θ≦90° is 84.5° or less. Reflective mask blank for use.
  5.  前記第1の結晶構造が、面心立方格子(fcc)構造及び六方最密充填(hcp)構造の一方であり、前記第2の結晶構造が面心立方格子(fcc)構造及び六方最密充填(hcp)構造の他方である、請求項1又は2に記載のEUVリソグラフィ用反射型マスクブランク。 The first crystal structure is one of a face-centered cubic (FCC) structure and a hexagonal close-packed (HCP) structure, and the second crystal structure is one of a face-centered cubic (FCC) structure and a hexagonal close-packed structure. The reflective mask blank for EUV lithography according to claim 1 or 2, which has the other (hcp) structure.
  6.  前記吸収膜中の前記金属元素Xの含有量が50原子%以上であり、
     前記吸収膜中の前記元素Zの含有量が50原子%以下である、請求項3に記載のEUVリソグラフィ用反射型マスクブランク。
    The content of the metal element X in the absorption film is 50 atomic % or more,
    The reflective mask blank for EUV lithography according to claim 3, wherein the content of the element Z in the absorption film is 50 atomic % or less.
  7.  前記吸収膜の膜厚が60nm以下である、請求項1又は2に記載のEUVリソグラフィ用反射型マスクブランク。 The reflective mask blank for EUV lithography according to claim 1 or 2, wherein the absorption film has a thickness of 60 nm or less.
  8.  前記多層反射膜の上に前記多層反射膜を保護する保護膜をさらに有し、
     前記保護膜は、Ru、Rh及びケイ素(Si)から選択される少なくとも1つの元素を含む、請求項1又は2に記載のEUVリソグラフィ用反射型マスクブランク。
    Further comprising a protective film for protecting the multilayer reflective film on the multilayer reflective film,
    The reflective mask blank for EUV lithography according to claim 1 or 2, wherein the protective film contains at least one element selected from Ru, Rh, and silicon (Si).
  9.  前記吸収膜の上にエッチングマスク膜をさらに有し、前記エッチングマスク膜は、アルミニウム(Al)、Hf、イットリウム(Y)、Cr、Nb、チタン(Ti)、Mo、Ta及びSiからなる群より選択される少なくとも1種を含む、請求項1又は2に記載のEUVリソグラフィ用反射型マスクブランク。 An etching mask film is further provided on the absorption film, and the etching mask film is selected from the group consisting of aluminum (Al), Hf, yttrium (Y), Cr, Nb, titanium (Ti), Mo, Ta, and Si. The reflective mask blank for EUV lithography according to claim 1 or 2, comprising at least one selected from the group consisting of at least one selected type.
  10.  前記エッチングマスク膜は、O、N及びBからなる群から選択される少なくとも1種をさらに含む、請求項9に記載のEUVリソグラフィ用反射型マスクブランク。 The reflective mask blank for EUV lithography according to claim 9, wherein the etching mask film further includes at least one selected from the group consisting of O, N, and B.
  11.  請求項1又は2に記載のEUVリソグラフィ用反射型マスクブランクの前記吸収膜に、開口パターンが形成されている、EUVリソグラフィ用反射型マスク。 A reflective mask for EUV lithography, wherein an opening pattern is formed in the absorption film of the reflective mask blank for EUV lithography according to claim 1 or 2.
  12.  基板上にEUV光を反射する多層反射膜を形成し、
     前記多層反射膜上にEUV光を吸収する吸収膜を形成するEUVリソグラフィ用反射型マスクブランクの製造方法であって、
     前記吸収膜は、金属元素Xを主成分として含み、
     前記吸収膜の結晶構造が、前記金属元素Xのバルク状態で、常圧(1気圧)、25℃において安定な結晶構造としての第1の結晶構造と、該第1の結晶構造と異なる第2の結晶構造とを有し、
     線源としてCuKα線を用いたX線回折(XRD)法におけるピーク分離法により、30°≦2θ≦55°の範囲にピークトップを有するXRDピークを前記第1の結晶構造と前記第2の結晶構造とにピーク分離した際に算出される前記第2の結晶構造のピーク面積比(前記第2の結晶構造のピーク面積/(前記第1の結晶構造のピーク面積+前記第2の結晶構造のピーク面積))が9%以上である、EUVリソグラフィ用反射型マスクブランクの製造方法。
    A multilayer reflective film that reflects EUV light is formed on the substrate,
    A method for producing a reflective mask blank for EUV lithography, comprising forming an absorbing film that absorbs EUV light on the multilayer reflective film,
    The absorption film contains metal element X as a main component,
    The absorption film has a first crystal structure that is stable in the bulk state of the metal element X at normal pressure (1 atm) and 25° C., and a second crystal structure different from the first crystal structure. It has a crystal structure of
    By a peak separation method in an X-ray diffraction (XRD) method using CuKα radiation as a radiation source, an XRD peak having a peak top in the range of 30°≦2θ≦55° is separated into the first crystal structure and the second crystal structure. The peak area ratio of the second crystal structure calculated when the peaks are separated into the structure (peak area of the second crystal structure/(peak area of the first crystal structure + peak area of the second crystal structure) A method for producing a reflective mask blank for EUV lithography, wherein the peak area)) is 9% or more.
  13.  請求項12に記載のEUVリソグラフィ用反射型マスクブランクの製造方法によって製造したEUVリソグラフィ用反射型マスクブランクにおける吸収膜をパターニングして、開口パターンを形成する、EUVリソグラフィ用反射型マスクの製造方法。 A method for manufacturing a reflective mask for EUV lithography, comprising patterning an absorbing film in a reflective mask blank for EUV lithography manufactured by the method for manufacturing a reflective mask blank for EUV lithography according to claim 12 to form an opening pattern.
PCT/JP2023/027892 2022-08-09 2023-07-31 Reflective mask blank for euv lithography, method for manufacturing same, reflective mask for euv lithography, and method for manufacturing same WO2024034439A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-126963 2022-08-09
JP2022126963 2022-08-09

Publications (1)

Publication Number Publication Date
WO2024034439A1 true WO2024034439A1 (en) 2024-02-15

Family

ID=89851553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027892 WO2024034439A1 (en) 2022-08-09 2023-07-31 Reflective mask blank for euv lithography, method for manufacturing same, reflective mask for euv lithography, and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2024034439A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09142996A (en) * 1995-11-28 1997-06-03 Nippon Pillar Packing Co Ltd Reflection type mask substrate
WO2006062099A1 (en) * 2004-12-10 2006-06-15 Toppan Printing Co., Ltd. Reflective photomask blank, reflective photomask, and method for manufacturing semiconductor device using same
JP2021056502A (en) * 2019-09-30 2021-04-08 Hoya株式会社 Substrate with multi-layered reflecting film, reflective mask blank, reflective mask and method for manufacturing the same, and method for manufacturing semiconductor device
JP2021167878A (en) * 2020-04-10 2021-10-21 信越化学工業株式会社 Reflective mask blank, method of manufacturing the same, and reflective mask
JP2022024617A (en) * 2020-07-28 2022-02-09 Agc株式会社 Reflective mask blank for euv lithography, reflective mask for euv lithography and their manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09142996A (en) * 1995-11-28 1997-06-03 Nippon Pillar Packing Co Ltd Reflection type mask substrate
WO2006062099A1 (en) * 2004-12-10 2006-06-15 Toppan Printing Co., Ltd. Reflective photomask blank, reflective photomask, and method for manufacturing semiconductor device using same
JP2021056502A (en) * 2019-09-30 2021-04-08 Hoya株式会社 Substrate with multi-layered reflecting film, reflective mask blank, reflective mask and method for manufacturing the same, and method for manufacturing semiconductor device
JP2021167878A (en) * 2020-04-10 2021-10-21 信越化学工業株式会社 Reflective mask blank, method of manufacturing the same, and reflective mask
JP2022024617A (en) * 2020-07-28 2022-02-09 Agc株式会社 Reflective mask blank for euv lithography, reflective mask for euv lithography and their manufacturing method

Similar Documents

Publication Publication Date Title
US11815806B2 (en) Reflective mask blank, reflective mask and manufacturing method thereof, and semiconductor device manufacturing method
EP2139026B1 (en) Reflective mask blank for euv lithography
US7833682B2 (en) Reflective mask blank for EUV lithography and substrate with functional film for the same
KR20190141083A (en) Reflective mask blank, reflective mask, and method of manufacturing reflective mask blank
JP4910856B2 (en) Reflective mask blank for EUV lithography, and functional film substrate for the mask blank
JP5971122B2 (en) Reflective mask blank for EUV lithography
JP7318607B2 (en) Reflective mask blank for EUV lithography, reflective mask for EUV lithography, and manufacturing method thereof
WO2011108470A1 (en) Reflection-type mask blank for euv lithography and method for producing the same
US20140356770A1 (en) Reflective mask blank for euv lithography
US20220075256A1 (en) Reflective mask blank for euv lithography
KR20220054280A (en) A substrate with a multilayer reflective film, a reflective mask blank and a reflective mask, and a method for manufacturing a semiconductor device
WO2019131506A1 (en) Substrate with conductive film, substrate with multilayer reflective film, reflective mask blank, reflective mask, and method for manufacturing semiconductor device
JP2022159362A (en) Substrate with multilayer reflective film, reflective type mask blank and reflective type mask, and method for manufacturing semiconductor device
WO2021200325A1 (en) Multilayer reflective film-equipped substrate, reflective mask blank, reflective mask, and method for producing semiconductor device
US20230051023A1 (en) Reflective mask blank, reflective mask, and method for manufacturing semiconductor device
JP2006283054A (en) Sputtering target, manufacturing method for substrate with multi-layered reflecting film, manufacturing method for reflection type mask blank, and manufacturing method for reflection type mask
JP2021148928A (en) Substrate with multilayer reflective film, reflective mask blank, reflective mask, and manufacturing method of semiconductor device
JP7485084B2 (en) REFLECTIVE MASK BLANK FOR EUV LITHOGRAPHY, REFLECTIVE MASK FOR EUV LITHOGRAPHY, AND METHOD FOR MANUFACTURING THE SAME
WO2024034439A1 (en) Reflective mask blank for euv lithography, method for manufacturing same, reflective mask for euv lithography, and method for manufacturing same
TW202122907A (en) Substrate with electroconductive film, reflective mask blank, reflective mask, and method for producing semiconductor device
WO2023171582A1 (en) Reflective mask blank, reflective mask, and manufacturing method therefor
WO2024029409A1 (en) Reflective mask blank and reflective mask
WO2024048387A1 (en) Reflection-type mask blank, reflection-type mask and method for manufacturing same, and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852412

Country of ref document: EP

Kind code of ref document: A1