WO2024034421A1 - Wireless communication device - Google Patents

Wireless communication device Download PDF

Info

Publication number
WO2024034421A1
WO2024034421A1 PCT/JP2023/027573 JP2023027573W WO2024034421A1 WO 2024034421 A1 WO2024034421 A1 WO 2024034421A1 JP 2023027573 W JP2023027573 W JP 2023027573W WO 2024034421 A1 WO2024034421 A1 WO 2024034421A1
Authority
WO
WIPO (PCT)
Prior art keywords
window glass
power
unit
antenna
communication device
Prior art date
Application number
PCT/JP2023/027573
Other languages
French (fr)
Japanese (ja)
Inventor
崚太 奥田
康太郎 榎本
康夫 森本
健一 岩上
翔 熊谷
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2024034421A1 publication Critical patent/WO2024034421A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations

Definitions

  • the present disclosure relates to a wireless communication device.
  • relay systems that enable the introduction of signals into buildings, and that include a first circuit and a second circuit.
  • the first circuit is located outside the building and receives the millimeter wave signal and converts it to a first format.
  • a second circuit is located inside the building and communicatively linked to the first circuit to receive the first type of millimeter wave signal and convert the second type of signal into a second type for transmission to a wireless device within the building. Convert. Further, the first circuit is provided on the outer surface of the building of the glass plate of the window glass, the second circuit is provided on the inner surface of the building of the glass plate of the window glass, and the first circuit is provided between the first circuit and the second circuit. describes that power is supplied using an optical dielectric or an optical power coupler (see, for example, Patent Document 1).
  • a wireless communication device includes an antenna element, a phase shifter connected to the antenna element, and an antenna disposed overlapping the dielectric plate of a window glass having a dielectric plate. , a relay unit disposed on the window glass that relays radio waves received by the antenna; a control unit disposed on the window glass that controls the amount of phase change of the radio waves in the phase shifter; a power receiving unit that is placed in a structure surrounding the window glass and supplies received power to the phase shifter, the relay unit, and the control unit; and a power receiving unit that is placed in a structure around the window glass and wirelessly supplies power to the power receiving unit. and a wireless power supply unit.
  • FIG. 2 is a diagram illustrating an example of a building in which a window in which a wireless communication device according to an embodiment is installed is installed.
  • 1 is a diagram illustrating an overview of a wireless communication device and an example of how it is attached to a building
  • FIG. 1 is a diagram illustrating an overview of a wireless communication device and an example of how it is attached to a building
  • FIG. 1 is a diagram illustrating an example of a configuration of a wireless communication device.
  • 1 is a diagram illustrating an example of a circuit configuration of a wireless communication device.
  • FIG. 3 is a diagram illustrating an example of a circuit configuration of a wireless communication device according to a first modification of the embodiment.
  • FIG. 7 is a diagram illustrating an example of a circuit configuration of a wireless communication device according to a second modification of the embodiment.
  • FIG. 7 is a diagram showing an example of a circuit configuration of a wireless communication device according to a third modification of the embodiment. It is a figure which shows the window of the 4th modification of embodiment. It is a figure which shows the window of the 5th modification of embodiment.
  • the XYZ coordinate system will be defined and explained.
  • the direction parallel to the X axis (X direction), the direction parallel to the Y axis (Y direction), and the direction parallel to the Z axis (Z direction) are orthogonal to each other.
  • the XYZ coordinate system is an example of a Cartesian coordinate system.
  • the length, thickness, thickness, etc. of each part may be exaggerated to make the configuration easier to understand.
  • words such as “parallel,” “perpendicular,” “horizontal,” “perpendicular,” and “up and down” may be deviated to the extent that the effects of the embodiments are not impaired.
  • radio wave is a type of electromagnetic wave, and generally, electromagnetic waves of 3 THz or less are called radio waves.
  • electromagnetic waves of 3 THz or less emitted from outdoor base stations or relay stations will be referred to as “radio waves,” and when referring to electromagnetic waves in general, they will be referred to as “electromagnetic waves.”
  • the radio waves relayed by the wireless communication device of the embodiment are preferably radio waves in a millimeter wave band such as a fifth generation mobile communication system (5G) or a frequency band of 1 GHz to 30 GHz including Sub-6.
  • the radio waves relayed by the wireless communication device of the embodiment may be LTE (Long Term Evolution), LTE-A (LTE-Advanced), UMB (Ultra Mobile Broadband), or CBRS (Citizens Broadband Radio Service). .
  • the radio waves relayed by the wireless communication device of the embodiment include IEEE802.11 (Wi-Fi (registered trademark)), IEEE802.16 (WiMAX (registered trademark)), IEEE802.20, UWB (Ultra-Wideband), Bluetooth (registered trademark) or LPWA (Low Power Wide Area).
  • IEEE802.11 Wi-Fi (registered trademark)
  • IEEE802.16 WiMAX (registered trademark)
  • IEEE802.20 UWB (Ultra-Wideband)
  • Bluetooth registered trademark
  • LPWA Low Power Wide Area
  • FIG. 1 is a diagram showing an example of a building 1 in which a window 10 in which a wireless communication device 100 according to an embodiment is installed is installed.
  • the building 1 may be a detached house, a building, a condominium, etc., or a commercial facility such as a shopping mall or a department store, an airport, a factory, an electric power facility, a government building, a station (station building), or a bus stop building. .
  • Windows 10 are used in these buildings 1.
  • the window 10 includes a window glass and a window frame (window frame on the building 1 side).
  • Wireless communication device 100 has a function as a relay device.
  • the wall 1A of the building 1 acts as a shield for radio waves in the millimeter wave band, and either does not transmit the radio waves or significantly attenuates them. Radio waves in the millimeter wave band are already attenuated when they reach Building 1, and are further attenuated by the window glass.
  • the window glass of the window 10 is an entry point for electromagnetic waves in the building 1.
  • the radio waves will pass through the glass of the window 10 and go straight, so the area other than the line of sight (LOS) will become a dead zone and will not receive the radio waves. Can not.
  • LOS line of sight
  • radio waves in the millimeter wave band are emitted from outdoor base stations to create a good communication environment indoors. Since this is difficult, the wireless communication device 100 is installed in the window 10 to improve the reception environment and expand the communication area. When relaying radio waves, the wireless communication device 100 receives the radio waves through the window glass of the window 10, amplifies and radiates the radio waves. In FIG. 1, the wireless communication device 100 is placed indoors, but it may be placed outdoors.
  • the wireless communication device 100 When relaying radio waves arriving from outside the window 10, the wireless communication device 100 amplifies the received radio waves and radiates the amplified radio waves at a predetermined radiation angle using an array antenna or the like.
  • the amplified radio waves are radiated over a wide range indoors, making it easier for indoor terminals to receive the radio waves.
  • the wireless communication device 100 may receive radio waves of multiple frequencies, amplify the radio waves, and radiate the radio waves. By relaying radio waves of multiple frequencies, the amplified radio waves can be radiated to a wider indoor area.
  • 2A and 2B are diagrams showing an overview of the wireless communication device 100 and an example of how it is attached to the building 1.
  • 2A and 2B show the window 10 as seen from the indoor side of the building 1.
  • the wireless communication device 100 is installed indoors, for example.
  • the X direction and the Z direction are directions included in the horizontal plane. That is, the XZ plane is parallel to the horizontal plane.
  • the Z direction is a direction that perpendicularly passes through the wall 1A and the window 10, the Y direction is a vertical direction, and the X direction is a direction to the left and right of the window 10. Therefore, the +X direction is the right direction toward the window 10, the -X direction is the left direction toward the window 10, the +Y direction is the vertically upward direction, and the -Y direction is the vertically downward direction.
  • the +Y direction side is assumed to be the upper side
  • the -Y direction side is assumed to be the lower side.
  • FIG. 2A shows a window 10 provided in the wall 1A of the building 1.
  • the window 10 is a double-sliding window that includes a window frame 11 attached to a wall 1A perpendicular to a horizontal plane and a window glass 12.
  • a window 10 as a double-sliding window has two panes 12. In FIG. 2A, the two panes 12 are completely closed. The positions of the two window glasses 12 in this state are an example of the first position.
  • the left window glass 12 when the left window glass 12 is moved to the right end as shown in FIG. 2B, the left half of the window 10 becomes open.
  • the position of the window glass 12 in the completely opened state is an example of the second position.
  • the window glass 12 located on the left side is offset in the -Z direction side (outdoor side) with respect to the window glass 12 located on the right side. are doing.
  • the window 10 is a sliding window including a window frame 11 and a window glass 12. good. Therefore, the window 10 may be a sliding window (for example, a horizontal sliding window or a vertical sliding window), a casement window, or the like.
  • the window frame 11 is a rectangular annular (frame-shaped) member, and is attached to an opening for the window 10 provided in the wall 1A.
  • the window frame 11 has a rail 11A that guides the window glass 12 in the X direction.
  • the window frame 11 is made of, for example, metal such as aluminum, resin, wood, or the like. Below, as an example, a configuration in which the window frame 11 is made of metal will be described.
  • the window glass 12 is attached to the window frame 11 so as to be movable in the ⁇ X direction (horizontal direction).
  • the window glass 12 has a glass plate 12A and a window frame 12B.
  • the glass plate 12A is an example of a dielectric plate, and is a transparent glass plate that is rectangular in XY plane view (planar view). "Transparent” means that the visible light transmittance is at least 40% or more, preferably 60% or more, more preferably 70% or more, and still more preferably 80% or more.
  • the window frame 12B is, for example, a rectangular annular (frame-shaped) member surrounding the outer edge of the glass plate 12A, and is movable in the ⁇ X direction (horizontal direction) along the rail 11A of the window frame 11 on the building 1 side. be.
  • the window glass 12 does not need to have the window frame 12B.
  • the window glass 12 will have only the glass plate 12A.
  • the glass plate 12A is not limited to a rectangular shape when viewed from the XY plane, and may have a shape with a curved outer edge, such as a circle or an ellipse.
  • the window frame 12B may be a frame-shaped member that surrounds the glass plate 12A having such a curved outer edge.
  • the glass plate 12A may be made of a transparent dielectric material, and more specifically, it may be made of commonly available glass, such as soda lime glass, alkali-free glass, Pyrex (registered trademark) glass, quartz glass, etc. be able to. Further, the glass plate 12A is not limited to a glass plate, and may be a face material made of resin such as polycarbonate. Both surfaces of the glass plate 12A are main surfaces of the glass plate 12A, and the surface of the glass plate 12A on the indoor side (+Z direction side) is an example of the first main surface on the indoor side.
  • the window frame 12B is a frame-shaped member surrounding the edge of the glass plate 12A, and is made of metal such as aluminum, resin, wood, or the like. Below, as an example, a configuration in which the window frame 12B is made of metal will be described.
  • the wireless communication device 100 includes a movable part 100A attached to the window glass 12 and a fixed part 100B attached to the wall 1A.
  • the movable part 100A is attached, for example, to the upper right end of the indoor side (+Z direction side) surface of the glass plate 12A of the right window glass 12.
  • the fixed part 100B is located on the indoor side surface of the wall 1A (+Z direction side) so as to be located to the right of the movable part 100A. ).
  • the movable portion 100A moves to the left as shown in FIG. 2B.
  • the distance between the movable part 100A and the fixed part 100B changes.
  • the movable part 100A charges its internal battery with power supplied from the fixed part 100B by wireless power supply.
  • the charging efficiency by wireless power supply changes depending on the distance, so the movable part 100A has the highest charging efficiency when it is closest to the fixed part 100B in the X direction, and the charging efficiency decreases as it moves away from the fixed part 100B. descend.
  • the charging efficiency by wireless power supply also changes depending on the angle of the movable part 100A with respect to the fixed part 100B.
  • the ease of charging depending on the distance and angle between the movable part 100A and the fixed part 100B varies depending on the wireless power supply method, but even if the distance changes, the movable part 100A receives power from the wireless power supply part of the fixed part 100B.
  • the movable part 100A and the fixed part 100B are arranged so that the direction of the power receiving part of the movable part 100A with respect to the wireless power feeding part of the fixed part 100B remains constant even if the distance changes. Note that details of the movable portion 100A and the fixed portion 100B will be described later.
  • the movable part 100A may be attached to the indoor side (+Z direction side) surface of the glass plate 12A of the left window glass 12, for example.
  • the fixed part 100B should be attached to the indoor surface (+Z direction side) of the wall 1A so as to be located to the left of the movable part 100A with the left window glass 12 completely closed. good.
  • FIG. 3 is a diagram illustrating an example of the configuration of the wireless communication device 100.
  • FIG. 3 shows the movable part 100A and the fixed part 100B in a state where the two window glasses 12 are completely closed (see FIG. 2A).
  • the wireless communication device 100 includes an antenna element 110, a phase shifter 120, a wireless device 130, a power receiving section 140, a solar cell 150, a power supply circuit 160, a bracket 170, and a wireless power feeding section 180.
  • Antenna element 110 and phase shifter 120 construct antenna 105.
  • the antenna element 110, phase shifter 120, wireless device 130, power receiving unit 140, solar cell 150, and power supply circuit 160 are arranged inside a transparent resin case 101A of the movable unit 100A, and are arranged inside a transparent resin case 101A of the movable unit 100A. It is glued to the inside (+Z direction side) surface. That is, the antenna element 110, the phase shifter 120, the wireless device 130, the power receiving unit 140, the solar cell 150, and the power circuit 160 are arranged on the window glass 12.
  • a transparent resin case 101A of the movable part 100A is adhered to the indoor surface of the glass plate 12A with transparent double-sided tape or the like. That is, the antenna element 110 is placed on the indoor side with respect to the glass plate 12A.
  • the case 101A is, for example, a thin plate-like case with a thin thickness in the Z direction, and includes an antenna element 110, a phase shifter 120, a wireless device 130, a power receiving unit 140, a solar cell 150, and a power supply circuit 160 inside. It is located.
  • power receiving section 140 is arranged on the left side in case 101A so as to be close to wireless power feeding section 180 of fixed section 100B.
  • transparent means that the visible light transmittance is at least 40% or more, preferably 60% or more, more preferably 70% or more, and still more preferably 80% or more.
  • acrylic resins such as polymethyl methacrylate, cycloolefin resins, polycarbonate resins, polyethylene terephthalate (PET), etc. can be used.
  • the case 101A may be a glass plate. Note that the meaning of "transparent” also applies to the double-sided tape or the like that adheres the case 101A to the indoor surface of the glass plate 12A.
  • the antenna element 110 when attaching the wireless communication device 100 to the window 10, it is preferable to provide the antenna element 110 in a portion overlapping with the glass plate 12A in order for the antenna element 110 to efficiently receive the radio waves that pass through the glass plate 12A.
  • the phase shifter 120, the wireless device 130, the power receiving unit 140, and the power supply circuit 160 are not transparent and do not need to be provided in a portion that overlaps with the glass plate 12A. good.
  • the wireless power supply section 180 is arranged inside a resin case 101B of the fixed section 100B, and the case 101B is fixed to the wall 1A with a bracket 170. That is, the wireless power supply unit 180 is placed indoors in the building 1 on the wall 1A (structure) around the window glass 12.
  • the wall 1A around the window glass 12 is an example of a structure around the window glass 12.
  • the bracket 170 may be attached to both ends of the resin case 101B in the X direction with screws, and may be attached to the wall 1A with double-sided tape, screws, or the like.
  • the wireless communication device 100 when attaching the wireless communication device 100 to the window 10, it is easier to protect it from wind, rain, dust, etc. by placing it on the indoor side of the building 1 (see FIG. 1), and it can operate stably over a long period of time. Therefore, the wireless communication device 100 is placed indoors.
  • FIG. 4 is a diagram showing an example of a circuit configuration of the wireless communication device 100. Here, the configuration of each part of the wireless communication device 100 will be explained using FIG. 4 in addition to FIG. 3.
  • the antenna element 110 is connected to a wireless device 130 via a phase shifter 120. Details of the antenna element 110, phase shifter 120, and wireless device 130 will be described later, and the power receiving unit 140, solar cell 150, power supply circuit 160, and wireless power supply unit 180 will be described first.
  • the wireless power supply unit 180 includes a power transmission coil 181, a capacitor 182, and an AC power source 183. One end of the power transmission coil 181 is connected to one of two terminals of the AC power supply 183 via a capacitor 182, and the other end of the power transmission coil 181 is connected to the other of the two terminals of the AC power supply 183.
  • the wireless power supply unit 180 realizes wireless power supply by wirelessly transmitting AC power of a predetermined frequency output from the AC power supply 183 from the power transmission coil 181.
  • the power supply circuit 160 has a battery 161.
  • Battery 161 is an example of a power storage unit.
  • the battery 161 is a secondary battery that can be charged repeatedly, and is, for example, a lithium ion battery.
  • the power supply circuit 160 charges the battery 161 with the power received by the power receiving unit 140 or the power generated by the solar cell 150, and manages the charging state of the battery 161.
  • Power supply circuit 160 supplies power to phase shifter 120 and wireless device 130 through a power supply line indicated by a broken line.
  • the wireless communication device 100 Power is supplied from battery 161 to phase shifter 120 and wireless device 130 .
  • the wireless communication device 100 may have a configuration that does not include the power supply circuit 160.
  • the power received by the power receiving unit 140 from the wireless power supply unit 180 may be directly supplied to the phase shifter 120 and the wireless device 130.
  • the solar cell 150 is connected to a power supply circuit 160.
  • the solar cell 150 is arranged in the case 101A of the movable part 100A (see FIG. 3), facing the outdoor side (-Z direction side).
  • the power supply circuit 160 can be charged even in a state where the power receiving section 140 and the wireless power feeding section 180 are separated and the charging efficiency is low.
  • the wireless communication device 100 may have a configuration that does not include the solar cell 150. In this case, the power received by the power receiving unit 140 and stored in the power supply circuit 160 may be supplied to the phase shifter 120 and the wireless device 130.
  • the power receiving unit 140 includes a power receiving coil 141 and a resistor 142 that are connected in parallel to each other, and a power supply circuit 160 is connected between both ends of the power receiving coil 141 and the resistor 142.
  • the power receiving coil 141 of the power receiving unit 140 receives power wirelessly transmitted from the power transmitting coil 181 of the wireless power feeding unit 180.
  • power transmission from the power transmission coil 181 of the wireless power supply unit 180 to the power reception coil 141 of the power reception unit 140 may be performed using an electromagnetic induction method or a magnetic resonance method, for example.
  • electromagnetic induction coils may be used as the power transmitting coil 181 and the power receiving coil 141.
  • resonance coils for magnetic field resonance may be used as the power transmitting coil 181 and the power receiving coil 141.
  • the electromagnetic induction method has the advantage of having a simple circuit configuration, being compact and low-cost, and having high power reception efficiency. Short and susceptible to misalignment.
  • the magnetic field resonance method transmits power by generating magnetic field resonance between the power transmitting coil 181 and the power receiving coil 141, and therefore has the advantage that power can be transmitted over a long distance.
  • an electric field coupling method or a radio wave reception method can also be used, which will be described later using FIGS. 5A and 5B.
  • the wireless device 130 includes a wireless module 131, a switch 132, an LNA (Low Noise Amplifier) 133, a mixer 134, an ADC (Analog to Digital Converter) 135, a DAC (Digital to Analog Converter) 136, a mixer 137, and a PA (Power Amplifier). It has 138.
  • LNA Low Noise Amplifier
  • ADC Analog to Digital Converter
  • DAC Digital to Analog Converter
  • PA Power Amplifier
  • the wireless module 131 is configured by, for example, an MCU (Micro Controller Unit), and includes a control section 131A and a relay section 131B that performs relay processing.
  • the control unit 131A and the relay unit 131B are functional blocks representing functions executed by the MCU.
  • the control unit 131A When receiving radio waves with the antenna element 110, the control unit 131A switches the three-terminal switch 132 to connect the antenna element 110 and the LNA 133. Furthermore, when transmitting radio waves using the antenna element 110, the control unit 131A switches the three-terminal switch 132 to connect the antenna element 110 and the PA 138.
  • control unit 131A controls the amount of phase change given to the radio waves by the phase shifter 120 when receiving radio waves with the antenna element 110 and when transmitting radio waves with the antenna element 110, and controls the direction of the beam. do.
  • the relay unit 131B includes, for example, a Bluetooth (registered trademark) communication unit, and transmits the digital signal input from the ADC 135.
  • the relay unit 131B transmits a signal
  • the radio waves received by the antenna element 110 from the base station are relayed, and the radio waves are radiated into the inside of the building 1 where the wireless communication device 100 is placed.
  • the radio waves are radiated over a wide range indoors in the building 1, making it easier for terminals such as smartphones to receive the radio waves indoors.
  • the communication unit that emits the radio waves that the relay unit 131B relays to the indoor side is not limited to Bluetooth, and may be WiFi or the like.
  • the LNA 133 is provided between the switch 132 and the mixer 134, amplifies the radio wave received by the antenna element 110, and outputs it while preventing the signal-to-noise ratio from deteriorating.
  • the mixer 134 mixes the radio wave output from the LNA 133 with a local signal (Lo), demodulates it, and outputs an IF (Intermediate Frequency) signal.
  • a local signal Li
  • IF Intermediate Frequency
  • the ADC 135 digitally converts the IF signal output from the mixer 134 and outputs it to the wireless module 131.
  • the DAC 136 converts the signal output from the wireless module 131 into analog and outputs an IF signal to the mixer 137.
  • the mixer 137 mixes the IF signal with the local signal (Lo), modulates it, and outputs it to the PA 138.
  • the PA 138 amplifies the signal output from the mixer 137 and outputs it to the antenna element 110 via the switch 132.
  • the phase shifter 120 is a set of multiple phase shifters connected to each antenna element of the antenna element 110, which is a set of multiple antenna elements.
  • the amount of phase change that the phase shifter 120 gives to the radio waves is controlled by the control unit 131A.
  • the phase shifter 120 can be made of LC (Liquid Crystal), for example.
  • the antenna element 110 is a collection of multiple antenna elements and constitutes an array antenna.
  • the antenna element faces outdoors (-Z direction side) and receives radio waves radiated from an outdoor base station.
  • the antenna element 110 is formed on the surface of the substrate on the -Z direction side.
  • the substrate is preferably transparent like the case 101A.
  • Antenna element 110 is formed of a conductor. Since the antenna element 110 is placed overlapping the window 10, it is made of transparent conductive films such as zinc oxide (ZnO), tin oxide (SnO 2 ), tin-doped indium oxide (ITO), indium oxide/tin oxide (IZO), titanium nitride, etc. It is preferable to use a metal nitride such as (TiN) or chromium nitride (CrN), or a low-e film for low-e (low emissivity) glass. However, the antenna element 110 may also be formed of a metal thin film such as copper, nickel, or gold. In the case of a metal thin film, it is preferable to form it into a mesh shape from the viewpoint of visibility.
  • a metal thin film it is preferable to form it into a mesh shape from the viewpoint of visibility.
  • the antenna element 110 has a plurality of antenna elements arranged two-dimensionally in an XY plane view in order to perform beam forming.
  • a phase shifter 120 that adjusts the phase of radio waves is connected to each antenna element.
  • a matching layer may be provided on the -Z direction side of the antenna element 110.
  • the matching layer is provided to adjust the electrical length of radio waves incident on the antenna element 110 and match the impedance.
  • the matching layer can be made of polycarbonate, acrylic, COP (cycloolefin polymer), PET (polyethylene terephthalate), polystyrene, glass, or the like.
  • the wireless communication device 100 includes the antenna 105, the relay section 131B, the control section 131A, the power receiving section 140, and the wireless power feeding section 180.
  • the antenna 105 has an antenna element 110 and a phase shifter 120 connected to the antenna element 110, and is arranged to overlap the glass plate 12A of the window glass 12 having the glass plate 12A. receive radio waves.
  • the relay unit 131B is arranged on the window glass 12 and relays the radio waves received by the antenna 105.
  • the control unit 131A is disposed on the window glass 12 and controls the amount of phase change of the radio waves arriving from the outside of the window glass 12 in the phase shifter 120.
  • the power receiving unit 140 is disposed on the window glass 12 and supplies the received power to the phase shifter 120, the relay unit 131B, and the control unit 131A.
  • the wireless power supply unit 180 is disposed in a structure around the window glass 12, and wirelessly supplies power to the power reception unit 140. Therefore, even if the window glass 12 moves relative to the structures around the window glass 12, power can be wirelessly transmitted from the wireless power supply unit 180 to the power reception unit 140.
  • a wireless communication device 100 that can be attached to the openable/closable window glass 12 and can relay radio waves.
  • the window glass 12 is movable in a direction included in the main surface of the glass plate 12A, and even if the distance between the wireless power supply section 180 and the power reception section 140 changes due to the movement of the window glass 12,
  • the orientation of power receiving unit 140 with respect to wireless power feeding unit 180 is constant. Therefore, even if the distance between the wireless power supply unit 180 and the power receiving unit 140 becomes long, the decrease in charging efficiency can be minimized, and the wireless communication device 100 can efficiently receive power from the wireless power supply unit 180. can be provided.
  • the window glass 12 is movable between the first position and the second position, and the power receiving unit 140 is closest to the wireless power supply unit 180 when the window glass 12 is in the first position. Therefore, it can be attached to the window glass 12 that can be opened and closed, and when the window glass 12 is in the first position, the wireless power supply unit 180 can most efficiently receive the power that is supplied wirelessly, and can relay radio waves.
  • a wireless communication device 100 can be provided.
  • the wireless communication device 100 also includes a battery 161 that is disposed on the window glass 12, stores power received by the power receiving section 140, and supplies the stored power to the phase shifter 120, the relay section 131B, and the control section 131A. . Therefore, it is possible to provide the wireless communication device 100 that can relay radio waves even when the window glass 12 moves and power is not wirelessly supplied from the wireless power supply unit 180. In this case, for example, when the power receiving unit 140 and the wireless power feeding unit 180 are separated by a predetermined distance or more, the setting may be such that power is supplied from the battery 161.
  • the power reception unit 140 and the wireless power supply unit 180 are separated by a predetermined distance or more, power is supplied from the battery 161 to the phase shifter 120, the relay unit 131B, and the control unit 131A. Therefore, even if the power receiving unit 140 cannot receive power from the wireless power supply unit 180, the phase shifter 120, the relay unit 131B, and the control unit 131A can be driven by the power of the battery 161, and radio waves can be relayed. It is.
  • the wireless communication device 100 also includes a solar cell 150 that generates power to be supplied to the phase shifter 120, the relay section 131B, and the control section 131A, and is disposed on the window glass 12. Therefore, electric power can be generated using the light incident through the window glass 12, and even in a state where electric power is not wirelessly supplied from the wireless power supply unit 180, radio waves can be relayed using the electric power generated by the solar cell 150. It is possible to provide a wireless communication device 100 that is possible.
  • phase shifter 120 since the phase shifter 120 is made of liquid crystal, it can reliably change the phase of the radio waves received or transmitted by the antenna element 110 with relatively little power consumption, and the phase shifter 120 can reliably change the phase of the radio waves received or transmitted by the antenna element 110. Efficiency can be improved.
  • the antenna element 110 can be protected from outdoor wind, rain, dust, etc., and can be stably operated over a long period of time.
  • the antenna element 110 may be fixed to the glass plate 12A or the window frame 12B with a space provided between the antenna element 110 and the indoor surface of the glass plate 12A. Also in this case, the antenna element 110 will be placed on the indoor side with respect to the glass plate 12A.
  • FIG. 5A is a diagram illustrating an example of a circuit configuration of a wireless communication device 100 according to a first modification of the embodiment.
  • the wireless communication device 100 of the first modification differs from the power receiving unit 140 and the wireless power feeding unit 180 shown in FIG. 4 in that the power receiving unit 140 and the wireless power feeding unit 180 are of an electric field coupling type. Other components are the same.
  • the power receiving unit 140 of the first modification has two capacitor electrodes 141A, and a resistor 142 is connected between the two electrodes 141A.
  • Power supply circuit 160 is connected between two electrodes (between both ends of resistor 142).
  • the wireless power supply unit 180 of the first modification has two capacitor electrodes 181A, one electrode 181A is connected to an AC power source 183 via a coil 182A, and the other electrode 181A is connected to an AC power source 183. 183 directly connected.
  • the two electrodes 141A of the power receiving section 140 and the two electrodes 181A of the wireless power feeding section 180 are arranged facing each other as shown in FIG. 5A, and constitute two capacitors. Since the power receiving section 140 and the wireless power feeding section 180 are electrically coupled by the two capacitors constituted by the two electrodes 141A and the two electrodes 181A, a high frequency current is caused to flow through the wireless power feeding section 180. Since current flows to the power receiving unit 140 side, power can be transmitted wirelessly.
  • the electric field coupling method has the advantage that it is less susceptible to the misalignment between the electrode 141A and the electrode 181A, and that the wireless power supply unit 180 generates less heat.
  • the wireless communication device 100 of the first modification that can be attached to the openable/closable window glass 12 and can relay radio waves.
  • FIG. 5B is a diagram illustrating an example of a circuit configuration of a wireless communication device 100 according to a second modification of the embodiment.
  • the wireless communication device 100 of the second modification differs from the power receiving unit 140 and the wireless power feeding unit 180 shown in FIG. 4 in that the power receiving unit 140 and the wireless power feeding unit 180 are of a radio wave reception type. Other components are the same.
  • the power receiving unit 140 of the second modification has an antenna 141B, and the antenna 141B is connected to the power supply circuit 160 via a rectifier circuit (not shown) that converts AC power to DC power. ing.
  • the wireless power supply unit 180 of the second modification includes an antenna 181B, an amplifier 182B1, and an AC power supply 183.
  • Antenna 181B, amplifier 182B1, and AC power supply 183 are connected in series, and 24 GHz AC power output from AC power supply 183 is amplified by amplifier 182B1 and output from antenna 181B.
  • Power receiving unit 140 receives a signal through antenna 141B, and the power of the received signal is stored in battery 161 of power supply circuit 160.
  • the radio wave reception method has the advantage of long transmission distance.
  • the wireless communication device 100 of the second modification which can be attached to the openable/closable window glass 12 and can relay radio waves.
  • FIG. 5C is a diagram illustrating an example of a circuit configuration of a wireless communication device 100M according to a third modification of the embodiment.
  • the wireless communication device 100M of the third modification has a configuration in which the wireless device 130 of the wireless communication device 100 shown in FIG. 4 is moved to the fixed part 100B side.
  • the wireless communication device 100M of the third modification includes a movable section 100MA and a fixed section 100MB.
  • the movable part 100MA is attached to the glass plate 12A of the window glass 12, similar to the movable part 100A shown in FIG.
  • Movable unit 100MA includes antenna element 110A, antenna 110B, phase shifter 120, switch 132A, switch 132B, LNA 133A, PA 138A, wireless power receiving unit 140M, solar cell 150, and power supply circuit 160A.
  • the power supply circuit 160A of the movable unit 100MA includes a control unit 162 and a communication unit 163 in addition to a battery 161.
  • Antenna 105 including antenna element 110A and phase shifter 120 is an example of a first antenna.
  • Antenna element 110A is an array antenna corresponding to antenna element 110 shown in FIG. 4.
  • Antenna 110B is an example of a second antenna.
  • antenna 110B is connected to the output side of LNA 133A and the input side of PA 138A via switch 132B.
  • the communication unit 163 is connected to the control unit 162 and can perform wireless communication with the communication unit 131C of the wireless module 131 of the fixed unit 100MB.
  • the communication unit 163 is simply shown as an antenna symbol, but the communication unit 163 only needs to be able to perform wireless communication, and may be infrared communication, wireless communication using light such as an LED (Light Emitting Diode), or , a communication unit that performs communication using Bluetooth (registered trademark), WLAN (Wireless Local Area Network), or the like.
  • the wireless power receiving unit 140M is connected to the power supply circuit 160A.
  • Power supply circuit 160A supplies power to phase shifter 120, LNA 133A, and PA 138A through a power supply line indicated by a broken line. Further, the solar cell 150 supplies power to the power supply circuit 160A through a power supply line indicated by a broken line.
  • the control unit 162 controls the phase shifter 120 and the switches 132A and 132B based on a control command that the communication unit 163 receives from the communication unit 131C.
  • the fixed unit 100MB includes an antenna 110C, a wireless device 130M, a power supply circuit 160B, a wireless power supply unit 180M, and an AC power supply 183.
  • Antenna 110C is an example of a third antenna.
  • the wireless device 130M like the wireless device 130 shown in FIG. 4, includes a wireless module 131, a switch 132C, a communication section 131C, an LNA 133, a mixer 134, an ADC 135, a DAC 136, a mixer 137, and a PA 138.
  • the connection relationship between the antenna 110C, the wireless device 130M, and the power supply circuit 160B in the fixed part 100MB is the same as the connection relationship between the antenna element 110, the wireless device 130, and the power supply circuit 160 shown in FIG.
  • the communication unit 131C only needs to be capable of wireless communication with the communication unit 163, and similarly to the communication unit 163, it may be capable of infrared communication, wireless communication using light such as an LED, or Bluetooth (registered trademark) or WLAN.
  • the communication unit 131C is simplified and shown as an antenna symbol.
  • the control unit 131A of the wireless module 131 transmits a control command to the control unit 162 of the power supply circuit 160A via the communication unit 131C.
  • the control command is received by the communication unit 163, and the control unit 162 controls the phase shifter 120 and the switches 132A and 132B based on the control command.
  • a wireless power supply unit 180M and an AC power supply 183 are connected to the power supply circuit 160B.
  • the power supply circuit 160B supplies power to the wireless module 131, LNA 133, ADC 135, DAC 136, and PA 138 of the wireless device 130M.
  • the wireless power reception unit 140M and the wireless power supply unit 180M may use any of the electromagnetic induction method or magnetic resonance method shown in FIG. 4, the electric field coupling method shown in FIG. 5A, or the radio wave reception method shown in FIG. 5B.
  • the wireless power reception unit 140M receives power wirelessly transmitted by the wireless power supply unit 180M.
  • the antenna element 110A when the antenna element 110A receives a radio wave, the received radio wave is transmitted from the antenna 110B via the switch 132A, the LNA 133A, and the switch 132B.
  • Antenna 110C receives the radio waves transmitted from antenna 110B, and inputs the radio waves to radio module 131 via LNA 133, mixer 134, and ADC 135 of radio device 130M.
  • the radio waves input to the wireless module 131 are relayed by the relay section 131B and radiated indoors of the building 1.
  • the relay unit 131B of the wireless module 131 receives radio waves from a terminal located indoors in the building 1, the radio waves are transmitted from the antenna 110C via the DAC 136, mixer 137, PA 138, and switch 132C.
  • Antenna 110B receives the radio waves transmitted from antenna 110C, and the received radio waves are transmitted from antenna element 110A to the base station via switch 132B, PA 138A, and switch 132A.
  • the wireless communication device 100M of the third modification includes the antenna 105, the antenna 110B, the wireless power receiving section 140M, the antenna 110C, the control section 131A, the relay section 131B, and the wireless power feeding section 180M.
  • the antenna 105 has an antenna element 110A and a phase shifter 120 connected to the antenna element 110A, and is arranged to overlap the glass plate 12A of the window glass 12 having the glass plate 12A. receive radio waves.
  • Antenna 110B is placed on window glass 12 and transmits radio waves received by antenna element 110A.
  • the wireless power receiving unit 140M is disposed on the window glass 12 and supplies the received power to the phase shifter 120.
  • Antenna 110C is placed on a structure around window glass 12, and receives radio waves transmitted by antenna 110B.
  • the relay unit 131B is arranged in a structure around the window glass 12, and relays the radio waves received by the antenna 110C.
  • the control unit 131A is arranged on the window glass 12 or a structure around the window glass 12, and controls the amount of phase change of the radio waves arriving from the outside of the window glass 12 in the phase shifter 120.
  • the wireless power supply unit 180M is arranged in a structure around the window glass 12, and wirelessly supplies power to the wireless power reception unit 140M.
  • the wireless communication device 100M Power is supplied from the phase shifter 120, LNA 133A, and PA 138A. Therefore, even if wireless power reception unit 140M cannot receive power from wireless power supply unit 180M, phase shifter 120, LNA 133A, and PA 138A can be driven with the power of battery 161, and radio waves can be relayed.
  • the fixed unit 100MB including the antenna 110C and the relay unit 131B 110C may receive radio waves from the base station, relay them, and radiate the radio waves inside the building 1. Even if the antennas 110B and 110C are unable to communicate, the antenna 110C receives and relays radio waves arriving from the base station (an example of radio waves arriving from the outside of the window glass 12), and the radio waves can be radiated into the inside of the building 1.
  • FIG. 6A is a diagram showing a window 10M1 of a fourth modification of the embodiment.
  • the window 10M1 is a double-hung window, and the two window glasses 12 are pivotally supported at the left and right ends, and are configured to open outward.
  • the movable part 100A When attaching the wireless communication device 100 to such a window 10M1, as an example, as shown in FIG. 6A, the movable part 100A is attached to the left end of the indoor surface of the glass plate 12A of the left window glass 12,
  • the fixed part 100B may be attached to the indoor surface of the wall 1A so as to be located to the left of the movable part 100A when the window glass 12 is closed. Note that in FIG. 6A, only the power receiving section 140 is shown for the movable section 100A, and only the wireless power feeding section 180 is shown for the fixed section 100B.
  • the wireless power supply section 180 (see FIG. 3) of the fixed section 100B and the power receiving section of the movable section 100A are connected.
  • the distance between the power receiving unit 140 (see FIG. 3) and the power receiving unit 140 (see FIG. 3) does not change significantly, the orientation of the power receiving unit 140 with respect to the wireless power feeding unit 180 changes.
  • the range of charging angles differs depending on the wireless power supply method. For this reason, power may be transmitted using an electric field coupling method, a radio wave reception method, or a magnetic field resonance method, which are relatively resistant to angular changes.
  • the movable part 100A is attached to the right end of the indoor surface of the glass plate 12A of the right window glass 12, and the fixed part 100B is attached so that it is located to the right of the movable part 100A when the window glass 12 is closed.
  • the window 10M1 may be a single-hinged window with one windowpane 12.
  • the window 10M1 may have two window glasses 12, and only one of them may be a casement window that can be opened and closed.
  • FIG. 6B is a diagram showing a window 10M2 of a fifth modification of the embodiment.
  • the window 10M2 is a casement window, and one window glass 12 is pivotally supported on the upper end side, and the lower part is configured to open outward.
  • FIG. 6B is a diagram showing the window 10M2 from the outdoor side of the building 1.
  • the movable part 100A When attaching the wireless communication device 100 to such a window 10M2, as an example, as shown in FIG. 6B, the movable part 100A is attached to the upper end of the indoor surface of the glass plate 12A of the window glass 12, The fixed part 100B may be attached to the indoor surface of the wall 1A so as to be located above the movable part 100A when the fixed part 100B is closed. Note that in FIG. 6B, only the power receiving section 140 is shown for the movable section 100A, and only the wireless power feeding section 180 is shown for the fixed section 100B.
  • the wireless power supply section 180 (see FIG. 3) of the fixed section 100B and the power receiving section 140 (see FIG. 3) of the movable section 100A are connected.
  • the distance between the wireless power supply unit 180 and the wireless power supply unit 180 does not change significantly, the orientation of the power reception unit 140 with respect to the wireless power supply unit 180 changes.
  • the range of charging angles differs depending on the wireless power supply method. For this reason, power may be transmitted using an electric field coupling method, a radio wave reception method, or a magnetic field resonance method, which are relatively resistant to angular changes.
  • the main surface of the window glass 12 when the window glass 12 is completely closed is set so that the amount of change in the orientation of the power receiving unit 140 with respect to the wireless power supply unit 180 when the window glass 12 is opened is reduced.
  • the positions of the wireless power feeding unit 180 and the power receiving unit 140 in the normal direction may be shifted from each other.

Abstract

Provided is a wireless communication device that is capable of relaying radio waves and is attachable to window glass which can be opened and closed. The wireless communication device comprises: an antenna that has an antenna element and a phase shifter connected to the antenna element, and is disposed overlapping a dielectric plate of window glass having the dielectric plate; a relay part that is arranged on the window glass and relays radio waves received by the antenna; a control unit that is arranged on the window glass and controls an amount of phase change of the radio waves in the phase shifter; a power-receiving unit that is arranged on the window glass and supplies received power to the phase shifter, the relay part, and the control unit; and a wireless power-feeding unit that is arranged to a structure surrounding the window glass and wirelessly supplies power to the power-receiving unit.

Description

無線通信装置wireless communication device
 本開示は、無線通信装置に関する。 The present disclosure relates to a wireless communication device.
 従来より、建物内への信号の導入を可能にするための中継システムであって、第1回路と第2回路を含む中継システムがある。第1回路は、建物の外側に位置し、ミリ波信号を受信して第1形式に変換する。第2回路は、建物の内側に位置し、かつ、第1回路と通信可能にリンクされ、第1形式のミリ波信号を受信して、建物内の無線装置に伝送するための第2形式に変換する。また、第1回路が窓ガラスのガラス板の建物の外側の表面に設けられ、第2回路が窓ガラスのガラス板の建物の内側の表面に設けられ、第1回路と第2回路との間において光誘導体又は光パワー結合器を用いて電力供給を行うことが記載されている(例えば、特許文献1参照)。 Conventionally, there are relay systems that enable the introduction of signals into buildings, and that include a first circuit and a second circuit. The first circuit is located outside the building and receives the millimeter wave signal and converts it to a first format. A second circuit is located inside the building and communicatively linked to the first circuit to receive the first type of millimeter wave signal and convert the second type of signal into a second type for transmission to a wireless device within the building. Convert. Further, the first circuit is provided on the outer surface of the building of the glass plate of the window glass, the second circuit is provided on the inner surface of the building of the glass plate of the window glass, and the first circuit is provided between the first circuit and the second circuit. describes that power is supplied using an optical dielectric or an optical power coupler (see, for example, Patent Document 1).
特開2019-518355号公報JP2019-518355A
 ところで、従来の中継システムは、1枚のガラス板の両面に固定した第1回路と第2回路との間でガラス板を介して電力の供給を行うものであり、例えば引き違い窓や滑り出し窓のように窓ガラスが開閉する構成に対応することは難しく、具体的な開示もない。 By the way, conventional relay systems supply power via a glass plate between a first circuit and a second circuit that are fixed on both sides of a single glass plate. It is difficult to accommodate a configuration in which the window glass opens and closes like this, and there is no specific disclosure.
 そこで、開閉可能な窓ガラスに取り付け可能で、電波を中継可能な無線通信装置を提供することを目的とする。 Therefore, it is an object of the present invention to provide a wireless communication device that can be attached to a window glass that can be opened and closed and can relay radio waves.
 本開示の実施形態の無線通信装置は、アンテナ素子と、前記アンテナ素子に接続される移相器とを有し、誘電体板を有する窓ガラスの前記誘電体板に重ねて配置されるアンテナと、前記窓ガラスに配置され、前記アンテナによって受信された電波を中継する中継部と、前記窓ガラスに配置され、前記移相器における前記電波の位相変更量を制御する制御部と、前記窓ガラスに配置され、受電した電力を前記移相器、前記中継部、及び前記制御部に供給する受電部と、前記窓ガラスの周囲の構造物に配置され、前記受電部に無線で電力を供給する無線給電部とを含む。 A wireless communication device according to an embodiment of the present disclosure includes an antenna element, a phase shifter connected to the antenna element, and an antenna disposed overlapping the dielectric plate of a window glass having a dielectric plate. , a relay unit disposed on the window glass that relays radio waves received by the antenna; a control unit disposed on the window glass that controls the amount of phase change of the radio waves in the phase shifter; a power receiving unit that is placed in a structure surrounding the window glass and supplies received power to the phase shifter, the relay unit, and the control unit; and a power receiving unit that is placed in a structure around the window glass and wirelessly supplies power to the power receiving unit. and a wireless power supply unit.
 開閉可能な窓ガラスに取り付け可能で、電波を中継可能な無線通信装置を提供できる。 It is possible to provide a wireless communication device that can be attached to window glass that can be opened and closed and can relay radio waves.
実施形態の無線通信装置が設けられた窓を設置した建物の一例を示す図である。FIG. 2 is a diagram illustrating an example of a building in which a window in which a wireless communication device according to an embodiment is installed is installed. 無線通信装置の概要と建物への取り付け態様の一例を示す図である。1 is a diagram illustrating an overview of a wireless communication device and an example of how it is attached to a building; FIG. 無線通信装置の概要と建物への取り付け態様の一例を示す図である。1 is a diagram illustrating an overview of a wireless communication device and an example of how it is attached to a building; FIG. 無線通信装置の構成の一例を示す図である。1 is a diagram illustrating an example of a configuration of a wireless communication device. 無線通信装置の回路構成の一例を示す図である。1 is a diagram illustrating an example of a circuit configuration of a wireless communication device. 実施形態の第1変形例の無線通信装置の回路構成の一例を示す図である。FIG. 3 is a diagram illustrating an example of a circuit configuration of a wireless communication device according to a first modification of the embodiment. 実施形態の第2変形例の無線通信装置の回路構成の一例を示す図である。FIG. 7 is a diagram illustrating an example of a circuit configuration of a wireless communication device according to a second modification of the embodiment. 実施形態の第3変形例の無線通信装置の回路構成の一例を示す図である。FIG. 7 is a diagram showing an example of a circuit configuration of a wireless communication device according to a third modification of the embodiment. 実施形態の第4変形例の窓を示す図である。It is a figure which shows the window of the 4th modification of embodiment. 実施形態の第5変形例の窓を示す図である。It is a figure which shows the window of the 5th modification of embodiment.
 以下、本開示の無線通信装置を適用した実施形態について説明する。以下では、同一の要素に同一の号を付して、重複する説明を省略する場合がある。 Hereinafter, embodiments to which the wireless communication device of the present disclosure is applied will be described. Hereinafter, the same elements may be denoted by the same numbers, and redundant explanations may be omitted.
 以下では、XYZ座標系を定義して説明する。X軸に平行な方向(X方向)、Y軸に平行な方向(Y方向)、Z軸に平行な方向(Z方向)は、互いに直交する。XYZ座標系は、直交座標系の一例である。また、以下では構成が分かりやすくなるように各部の長さ、太さ、厚さ等を誇張して示す場合がある。また、平行、直角、直交、水平、垂直、上下等の文言は、実施形態の効果を損なわない程度のずれを許容するものとする。 Below, the XYZ coordinate system will be defined and explained. The direction parallel to the X axis (X direction), the direction parallel to the Y axis (Y direction), and the direction parallel to the Z axis (Z direction) are orthogonal to each other. The XYZ coordinate system is an example of a Cartesian coordinate system. Further, in the following, the length, thickness, thickness, etc. of each part may be exaggerated to make the configuration easier to understand. In addition, words such as "parallel," "perpendicular," "horizontal," "perpendicular," and "up and down" may be deviated to the extent that the effects of the embodiments are not impaired.
 また、以下の説明で、「電波」とは電磁波の一種であり、一般的に、3THz以下の電磁波は電波と呼ばれている。以下では、屋外の基地局又は中継局から放射された3THz以下の電磁波を「電波」と呼び、電磁波一般について言及するときは「電磁波」と呼ぶ。 Furthermore, in the following explanation, "radio wave" is a type of electromagnetic wave, and generally, electromagnetic waves of 3 THz or less are called radio waves. Hereinafter, electromagnetic waves of 3 THz or less emitted from outdoor base stations or relay stations will be referred to as "radio waves," and when referring to electromagnetic waves in general, they will be referred to as "electromagnetic waves."
 実施形態の無線通信装置が中継する電波は、第五世代移動通信システム(5G)等のミリ波帯や、Sub-6を含む1GHz~30GHzの周波数帯域の電波であると好適である。また、実施形態の無線通信装置が中継する電波は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、UMB(Ultra Mobile Broadband)、又はCBRS(Citizens Broadband Radio Service)であってもよい。また、実施形態の無線通信装置が中継する電波は、IEEE802.11(Wi-Fi(登録商標))、IEEE802.16(WiMAX(登録商標))、IEEE802.20、UWB(Ultra-Wideband)、Bluetooth(登録商標)、又はLPWA(Low Power Wide Area)等であってもよい。電波の周波数が高くなるにつれて、反射や回折による伝搬損失が大きくなり、不感地帯が発生しやすくなる。このため、実施形態の無線通信装置は、比較的高い周波数を扱う通信に、より好適である。 The radio waves relayed by the wireless communication device of the embodiment are preferably radio waves in a millimeter wave band such as a fifth generation mobile communication system (5G) or a frequency band of 1 GHz to 30 GHz including Sub-6. Furthermore, the radio waves relayed by the wireless communication device of the embodiment may be LTE (Long Term Evolution), LTE-A (LTE-Advanced), UMB (Ultra Mobile Broadband), or CBRS (Citizens Broadband Radio Service). . Furthermore, the radio waves relayed by the wireless communication device of the embodiment include IEEE802.11 (Wi-Fi (registered trademark)), IEEE802.16 (WiMAX (registered trademark)), IEEE802.20, UWB (Ultra-Wideband), Bluetooth (registered trademark) or LPWA (Low Power Wide Area). As the frequency of radio waves increases, propagation loss due to reflection and diffraction increases, and dead zones are more likely to occur. Therefore, the wireless communication device of the embodiment is more suitable for communication using relatively high frequencies.
 <実施形態>
 図1は、実施形態の無線通信装置100が設けられた窓10を設置した建物1の一例を示す図である。建物1は、戸建住宅、ビル、又はマンション等の他に、ショッピングモールやデパート等の商業施設、空港、工場、電力施設、庁舎、駅(駅舎)、又はバス停の建屋等であってもよい。窓10は、これらの建物1に用いられる。窓10は、窓ガラスと窓枠(建物1側の窓枠)とを含む。無線通信装置100は、中継機としての機能を有する。
<Embodiment>
FIG. 1 is a diagram showing an example of a building 1 in which a window 10 in which a wireless communication device 100 according to an embodiment is installed is installed. The building 1 may be a detached house, a building, a condominium, etc., or a commercial facility such as a shopping mall or a department store, an airport, a factory, an electric power facility, a government building, a station (station building), or a bus stop building. . Windows 10 are used in these buildings 1. The window 10 includes a window glass and a window frame (window frame on the building 1 side). Wireless communication device 100 has a function as a relay device.
 屋外の基地局から放射される電波は、建物1の窓10の窓ガラスを通って屋内に入る。建物1の壁1Aはミリ波帯の電波にとって遮蔽物となり、電波を通さないか、あるいは大きく減衰させる。ミリ波帯の電波は建物1に届く時点ですでに減衰しており、窓ガラスでさらに減衰する。窓10の窓ガラスは、建物1における電磁波の侵入口である。 The radio waves emitted from the outdoor base station enter the building through the window glass of the window 10 of the building 1. The wall 1A of the building 1 acts as a shield for radio waves in the millimeter wave band, and either does not transmit the radio waves or significantly attenuates them. Radio waves in the millimeter wave band are already attenuated when they reach Building 1, and are further attenuated by the window glass. The window glass of the window 10 is an entry point for electromagnetic waves in the building 1.
 ここで、無線通信装置100を設置しないと、電波は窓10の窓ガラスを透過して直進するため、直線見通し内(LOS:Line of Sight)を除くエリアは不感地帯となって、電波を受信できない。 Here, if the wireless communication device 100 is not installed, the radio waves will pass through the glass of the window 10 and go straight, so the area other than the line of sight (LOS) will become a dead zone and will not receive the radio waves. Can not.
 ミリ波帯の電波は、3G(Third Generation)、4G(Fourth Generation)等の従来の移動体通信システムと異なり、屋外の基地局からの電波の放射で、屋内での良好な通信環境を整えることが難しいため、窓10に無線通信装置100を設けて受信環境を改善し、通信エリアを拡張する。無線通信装置100は、電波を中継する際に、窓10の窓ガラスを通じて電波を受信し、増幅して放射する。図1では、無線通信装置100は屋内に配置されているが、屋外に配置されていてもよい。 Unlike conventional mobile communication systems such as 3G (Third Generation) and 4G (Fourth Generation), radio waves in the millimeter wave band are emitted from outdoor base stations to create a good communication environment indoors. Since this is difficult, the wireless communication device 100 is installed in the window 10 to improve the reception environment and expand the communication area. When relaying radio waves, the wireless communication device 100 receives the radio waves through the window glass of the window 10, amplifies and radiates the radio waves. In FIG. 1, the wireless communication device 100 is placed indoors, but it may be placed outdoors.
 無線通信装置100は、窓10の外から到来する電波を中継する際に、受信した電波を増幅し、増幅した電波をアレイアンテナ等で所定の放射角で放射する。増幅された電波は、屋内の広い範囲に放射されるので、屋内の端末での電波の受信が容易になる。 When relaying radio waves arriving from outside the window 10, the wireless communication device 100 amplifies the received radio waves and radiates the amplified radio waves at a predetermined radiation angle using an array antenna or the like. The amplified radio waves are radiated over a wide range indoors, making it easier for indoor terminals to receive the radio waves.
 一例として、無線通信装置100は、電波を中継する際に、複数の周波数の電波を受信し、増幅して放射してもよい。複数の周波数の電波を中継することにより、増幅された電波を屋内のさらに広い範囲に放射することができる。 As an example, when relaying radio waves, the wireless communication device 100 may receive radio waves of multiple frequencies, amplify the radio waves, and radiate the radio waves. By relaying radio waves of multiple frequencies, the amplified radio waves can be radiated to a wider indoor area.
 <無線通信装置100の概要と建物1への取り付け態様>
 図2A及び図2Bは、無線通信装置100の概要と建物1への取り付け態様の一例を示す図である。図2A及び図2Bには、建物1の屋内側で見た窓10を示す。無線通信装置100は、一例として屋内に設置される。
<Overview of wireless communication device 100 and manner of installation in building 1>
2A and 2B are diagrams showing an overview of the wireless communication device 100 and an example of how it is attached to the building 1. 2A and 2B show the window 10 as seen from the indoor side of the building 1. The wireless communication device 100 is installed indoors, for example.
 以下では、X方向及びZ方向は、水平面に含まれる方向である。すなわち、XZ平面は水平面に平行である。Z方向は、壁1A及び窓10を垂直に貫く方向であり、Y方向は鉛直方向であり、X方向は窓10の左右の方向である。このため、+X方向は窓10に向かって右方向であり、-X方向は窓10に向かって左方向であり、+Y方向は鉛直上方向であり、-Y方向は鉛直下方向である。また、以下では、屋内で窓10を見た状態における左右方向を用いて説明する。また、+Y方向側を上側、-Y方向側を下側として説明する。 In the following, the X direction and the Z direction are directions included in the horizontal plane. That is, the XZ plane is parallel to the horizontal plane. The Z direction is a direction that perpendicularly passes through the wall 1A and the window 10, the Y direction is a vertical direction, and the X direction is a direction to the left and right of the window 10. Therefore, the +X direction is the right direction toward the window 10, the -X direction is the left direction toward the window 10, the +Y direction is the vertically upward direction, and the -Y direction is the vertically downward direction. Furthermore, the following description will be made using the left and right directions when looking at the window 10 indoors. In addition, the +Y direction side is assumed to be the upper side, and the -Y direction side is assumed to be the lower side.
 図2Aには、建物1の壁1Aに設けられた窓10を示す。窓10は、水平面に対して垂直な壁1Aに取り付けられる窓枠11と、窓ガラス12とを含む引き違い窓である。引き違い窓としての窓10は、2枚の窓ガラス12を有する。図2Aでは、2枚の窓ガラス12は完全に閉じられている。この状態における2枚の窓ガラス12の位置は、第1位置の一例である。 FIG. 2A shows a window 10 provided in the wall 1A of the building 1. The window 10 is a double-sliding window that includes a window frame 11 attached to a wall 1A perpendicular to a horizontal plane and a window glass 12. A window 10 as a double-sliding window has two panes 12. In FIG. 2A, the two panes 12 are completely closed. The positions of the two window glasses 12 in this state are an example of the first position.
 また、例えば、左側の窓ガラス12を図2Bに示すように右端まで移動させると、窓10の左半分は開口された状態になる。このように完全に開けた状態における窓ガラス12の位置は、第2位置の一例である。なお、図2Aに示すように2枚の窓ガラス12を完全に閉じた状態において左側に位置する窓ガラス12は、右側に位置する窓ガラス12に対して-Z方向側(屋外側)にオフセットしている。 Furthermore, for example, when the left window glass 12 is moved to the right end as shown in FIG. 2B, the left half of the window 10 becomes open. The position of the window glass 12 in the completely opened state is an example of the second position. In addition, as shown in FIG. 2A, when the two window glasses 12 are completely closed, the window glass 12 located on the left side is offset in the -Z direction side (outdoor side) with respect to the window glass 12 located on the right side. are doing.
 以下では、特に断らない限り、窓10が窓枠11及び窓ガラス12を含む引き違い窓である形態について説明するが、窓10は、窓枠11に対して窓ガラス12が開閉可能であればよい。このため、窓10は、滑り出し窓(例えば、横滑り出し窓、又は、縦滑り出し窓)、又は開き窓等であってもよい。 In the following, unless otherwise specified, a case will be described in which the window 10 is a sliding window including a window frame 11 and a window glass 12. good. Therefore, the window 10 may be a sliding window (for example, a horizontal sliding window or a vertical sliding window), a casement window, or the like.
 窓枠11は、矩形環状(額状)の部材であり、壁1Aに設けられた窓10用の開口部に取り付けられる。窓枠11は、窓ガラス12をX方向に案内するレール11Aを有する。窓枠11は、一例として、アルミニウム等の金属、樹脂、又は木材等で作製される。以下では、一例として窓枠11が金属製である形態について説明する。 The window frame 11 is a rectangular annular (frame-shaped) member, and is attached to an opening for the window 10 provided in the wall 1A. The window frame 11 has a rail 11A that guides the window glass 12 in the X direction. The window frame 11 is made of, for example, metal such as aluminum, resin, wood, or the like. Below, as an example, a configuration in which the window frame 11 is made of metal will be described.
 窓ガラス12は、窓枠11に対して、±X方向(水平方向)に移動可能に取り付けられている。窓ガラス12は、ガラス板12Aと窓枠12Bとを有する。ガラス板12Aは、誘電体板の一例であり、一例としてXY面視(平面視)で矩形状の透明なガラス板である。「透明」とは、可視光透過率が少なくとも40%以上、好ましくは60%以上、より好ましくは70%以上、さらに好ましくは80%以上であることをいう。窓枠12Bは、一例として、ガラス板12Aの外縁を囲む矩形環状(額状)の部材であり、建物1側の窓枠11のレール11Aに沿って±X方向(水平方向)に移動可能である。なお、窓ガラス12は、窓枠12Bを有していなくてもよい。この場合には、窓ガラス12は、ガラス板12Aのみを有することになる。また、ガラス板12Aは、XY面視で矩形状に限らず、例えば円形又は楕円形等のように、外縁が湾曲している形状であってもよい。この場合に、窓枠12Bは、このような湾曲した外縁を有するガラス板12Aを囲む枠状の部材であればよい。 The window glass 12 is attached to the window frame 11 so as to be movable in the ±X direction (horizontal direction). The window glass 12 has a glass plate 12A and a window frame 12B. The glass plate 12A is an example of a dielectric plate, and is a transparent glass plate that is rectangular in XY plane view (planar view). "Transparent" means that the visible light transmittance is at least 40% or more, preferably 60% or more, more preferably 70% or more, and still more preferably 80% or more. The window frame 12B is, for example, a rectangular annular (frame-shaped) member surrounding the outer edge of the glass plate 12A, and is movable in the ±X direction (horizontal direction) along the rail 11A of the window frame 11 on the building 1 side. be. Note that the window glass 12 does not need to have the window frame 12B. In this case, the window glass 12 will have only the glass plate 12A. Further, the glass plate 12A is not limited to a rectangular shape when viewed from the XY plane, and may have a shape with a curved outer edge, such as a circle or an ellipse. In this case, the window frame 12B may be a frame-shaped member that surrounds the glass plate 12A having such a curved outer edge.
 ガラス板12Aは、透明な誘電体製であればよく、より具体的には一般的に入手可能なガラスでよく、ソーダ石灰ガラス、無アルカリガラス、パイレックス(登録商標)ガラス、石英ガラス等を用いることができる。また、ガラス板12Aは、ガラス板に限定されずポリカーボネート等の樹脂製の面材等であってもよい。ガラス板12Aの両面は、ともにガラス板12Aの主面であり、ガラス板12Aの屋内側(+Z方向側)の表面は、屋内側の第1の主面の一例である。 The glass plate 12A may be made of a transparent dielectric material, and more specifically, it may be made of commonly available glass, such as soda lime glass, alkali-free glass, Pyrex (registered trademark) glass, quartz glass, etc. be able to. Further, the glass plate 12A is not limited to a glass plate, and may be a face material made of resin such as polycarbonate. Both surfaces of the glass plate 12A are main surfaces of the glass plate 12A, and the surface of the glass plate 12A on the indoor side (+Z direction side) is an example of the first main surface on the indoor side.
 窓枠12Bは、ガラス板12Aの縁を囲む額縁状の部材であり、アルミニウム等の金属、樹脂、又は木材等で作製される。以下では、一例として窓枠12Bが金属製である形態について説明する。 The window frame 12B is a frame-shaped member surrounding the edge of the glass plate 12A, and is made of metal such as aluminum, resin, wood, or the like. Below, as an example, a configuration in which the window frame 12B is made of metal will be described.
 無線通信装置100は、窓ガラス12に取り付けられる移動可能部100Aと、壁1Aに取り付けられる固定部100Bとを含む。移動可能部100Aは、一例として、右側の窓ガラス12のガラス板12Aの屋内側(+Z方向側)の表面の上側の右端に取り付けられている。また、固定部100Bは、図2Aに示すように右側の窓ガラス12を完全に閉じた状態で、移動可能部100Aの右隣に位置するように、壁1Aの屋内側の表面(+Z方向側)に取り付けられる。 The wireless communication device 100 includes a movable part 100A attached to the window glass 12 and a fixed part 100B attached to the wall 1A. The movable part 100A is attached, for example, to the upper right end of the indoor side (+Z direction side) surface of the glass plate 12A of the right window glass 12. Furthermore, as shown in FIG. 2A, when the right window glass 12 is completely closed, the fixed part 100B is located on the indoor side surface of the wall 1A (+Z direction side) so as to be located to the right of the movable part 100A. ).
 2枚の窓ガラス12を図2Aに示すように完全に閉じた状態から右側の窓ガラス12を左に移動させると、図2Bに示すように、移動可能部100Aは、左に移動する。図2Aに示す右側の窓ガラス12の左側への移動によって、移動可能部100Aと固定部100Bとの間の距離が変化する。 When the right window glass 12 is moved to the left from the completely closed state of the two window glasses 12 as shown in FIG. 2A, the movable portion 100A moves to the left as shown in FIG. 2B. By moving the right window glass 12 to the left as shown in FIG. 2A, the distance between the movable part 100A and the fixed part 100B changes.
 移動可能部100Aは、ワイヤレス給電によって固定部100Bから供給される電力で内部のバッテリを充電する。一般的に、ワイヤレス給電による充電効率は、距離に応じて変化するため、移動可能部100Aは、固定部100BとX方向における位置が最も近いときに最も充電効率が高く、離れるにしたがって充電効率が低下する。また、ワイヤレス給電による充電効率は、固定部100Bに対する移動可能部100Aの角度によっても変化する。 The movable part 100A charges its internal battery with power supplied from the fixed part 100B by wireless power supply. Generally, the charging efficiency by wireless power supply changes depending on the distance, so the movable part 100A has the highest charging efficiency when it is closest to the fixed part 100B in the X direction, and the charging efficiency decreases as it moves away from the fixed part 100B. descend. Furthermore, the charging efficiency by wireless power supply also changes depending on the angle of the movable part 100A with respect to the fixed part 100B.
 移動可能部100A及び固定部100Bの間の距離及び角度による充電のしやすさは、ワイヤレス給電の方式によって異なるが、距離が変わっても、固定部100Bの無線給電部に対する移動可能部100Aの受電部の向きを一定にすることによって、充電効率を向上させることができる。このような理由から、移動可能部100A及び固定部100Bは、距離が変わっても、固定部100Bの無線給電部に対する移動可能部100Aの受電部の向きが一定になるように配置されている。なお、このような移動可能部100A及び固定部100Bの詳細については後述する。 The ease of charging depending on the distance and angle between the movable part 100A and the fixed part 100B varies depending on the wireless power supply method, but even if the distance changes, the movable part 100A receives power from the wireless power supply part of the fixed part 100B. By keeping the orientation of the parts constant, charging efficiency can be improved. For this reason, the movable part 100A and the fixed part 100B are arranged so that the direction of the power receiving part of the movable part 100A with respect to the wireless power feeding part of the fixed part 100B remains constant even if the distance changes. Note that details of the movable portion 100A and the fixed portion 100B will be described later.
 また、移動可能部100Aは、一例として、左側の窓ガラス12のガラス板12Aの屋内側(+Z方向側)の表面に取り付けられていてもよい。この場合に、固定部100Bは、左側の窓ガラス12を完全に閉じた状態で、移動可能部100Aの左隣に位置するように、壁1Aの屋内側の表面(+Z方向側)に取り付ければよい。移動可能部100Aを左側の窓ガラス12のガラス板12Aの屋内側(+Z方向側)の表面に取り付ける場合には、右側又は左側の窓ガラス12を開けたときに、移動可能部100Aと右側の窓ガラス12とが干渉しないようにするために、移動可能部100AのZ方向の厚さを薄くすればよい。 Moreover, the movable part 100A may be attached to the indoor side (+Z direction side) surface of the glass plate 12A of the left window glass 12, for example. In this case, the fixed part 100B should be attached to the indoor surface (+Z direction side) of the wall 1A so as to be located to the left of the movable part 100A with the left window glass 12 completely closed. good. When attaching the movable part 100A to the indoor side (+Z direction side) surface of the glass plate 12A of the left window glass 12, when the right or left window glass 12 is opened, the movable part 100A and the right In order to prevent interference with the window glass 12, the thickness of the movable portion 100A in the Z direction may be reduced.
 <無線通信装置100の構成>
 図3は、無線通信装置100の構成の一例を示す図である。図3には、2枚の窓ガラス12を完全に閉じた状態(図2A参照)における移動可能部100A及び固定部100Bを示す。
<Configuration of wireless communication device 100>
FIG. 3 is a diagram illustrating an example of the configuration of the wireless communication device 100. FIG. 3 shows the movable part 100A and the fixed part 100B in a state where the two window glasses 12 are completely closed (see FIG. 2A).
 無線通信装置100は、アンテナ素子110、移相器120、無線装置130、受電部140、太陽電池150、電源回路160、ブラケット170、及び無線給電部180を含む。アンテナ素子110及び移相器120は、アンテナ105を構築する。 The wireless communication device 100 includes an antenna element 110, a phase shifter 120, a wireless device 130, a power receiving section 140, a solar cell 150, a power supply circuit 160, a bracket 170, and a wireless power feeding section 180. Antenna element 110 and phase shifter 120 construct antenna 105.
 アンテナ素子110、移相器120、無線装置130、受電部140、太陽電池150、及び電源回路160は、移動可能部100Aの透明な樹脂製のケース101Aの内部に配置され、ガラス板12Aの屋内側(+Z方向側)の表面に接着される。すなわち、アンテナ素子110、移相器120、無線装置130、受電部140、太陽電池150、及び電源回路160は、窓ガラス12に配置される。 The antenna element 110, phase shifter 120, wireless device 130, power receiving unit 140, solar cell 150, and power supply circuit 160 are arranged inside a transparent resin case 101A of the movable unit 100A, and are arranged inside a transparent resin case 101A of the movable unit 100A. It is glued to the inside (+Z direction side) surface. That is, the antenna element 110, the phase shifter 120, the wireless device 130, the power receiving unit 140, the solar cell 150, and the power circuit 160 are arranged on the window glass 12.
 移動可能部100Aの透明な樹脂製のケース101Aは、透明な両面テープ等によって、ガラス板12Aの屋内側の表面に接着される。すなわち、アンテナ素子110は、ガラス板12Aに対する屋内側に配置される。ケース101Aは、一例としてZ方向の厚さが薄い薄板状のケースであり、内部には、アンテナ素子110、移相器120、無線装置130、受電部140、太陽電池150、及び電源回路160が配置されている。これらのうち、受電部140は、固定部100Bの無線給電部180に近くなるように、ケース101A内の左側に配置される。 A transparent resin case 101A of the movable part 100A is adhered to the indoor surface of the glass plate 12A with transparent double-sided tape or the like. That is, the antenna element 110 is placed on the indoor side with respect to the glass plate 12A. The case 101A is, for example, a thin plate-like case with a thin thickness in the Z direction, and includes an antenna element 110, a phase shifter 120, a wireless device 130, a power receiving unit 140, a solar cell 150, and a power supply circuit 160 inside. It is located. Among these, power receiving section 140 is arranged on the left side in case 101A so as to be close to wireless power feeding section 180 of fixed section 100B.
 ケース101Aについて「透明」とは、可視光透過率が少なくとも40%以上、好ましくは60%以上、より好ましくは70%以上、さらに好ましくは80%以上であることをいう。この条件を満たす樹脂材料として、ポリメチルメタクリレート等のアクリル系樹脂、シクロオレフィン系樹脂、ポリカーボネート系樹脂、ポリエチレンテレフタラート(PET)等を用いることができる。また、ケース101Aは、ガラス板であってもよい。なお、「透明」であることの意味は、ケース101Aをガラス板12Aの屋内側の表面に接着する両面テープ等についても同様である。 Regarding the case 101A, "transparent" means that the visible light transmittance is at least 40% or more, preferably 60% or more, more preferably 70% or more, and still more preferably 80% or more. As the resin material satisfying this condition, acrylic resins such as polymethyl methacrylate, cycloolefin resins, polycarbonate resins, polyethylene terephthalate (PET), etc. can be used. Moreover, the case 101A may be a glass plate. Note that the meaning of "transparent" also applies to the double-sided tape or the like that adheres the case 101A to the indoor surface of the glass plate 12A.
 また、無線通信装置100を窓10に取り付ける場合に、ガラス板12Aを透過する電波をアンテナ素子110で効率的に受信するために、アンテナ素子110をガラス板12Aと重なる部分に設けることが好ましい。移相器120、無線装置130、受電部140、及び電源回路160は、透明ではなく、ガラス板12Aと重なる部分に設けなくてもよいため、例えば、窓ガラス12の窓枠12Bに取り付けてもよい。 Furthermore, when attaching the wireless communication device 100 to the window 10, it is preferable to provide the antenna element 110 in a portion overlapping with the glass plate 12A in order for the antenna element 110 to efficiently receive the radio waves that pass through the glass plate 12A. The phase shifter 120, the wireless device 130, the power receiving unit 140, and the power supply circuit 160 are not transparent and do not need to be provided in a portion that overlaps with the glass plate 12A. good.
 無線給電部180は、固定部100Bの樹脂製のケース101Bの内部に配置されており、ケース101Bはブラケット170によって壁1Aに固定されている。すなわち、無線給電部180は、建物1の屋内において、窓ガラス12の周囲の壁1A(構造物)に配置される。窓ガラス12の周囲の壁1Aは、窓ガラス12の周囲の構造物の一例である。一例として、ブラケット170は、樹脂製のケース101BのX方向の両端にネジで取り付けられ、壁1Aに両面テープ又はネジ等で取り付ければよい。 The wireless power supply section 180 is arranged inside a resin case 101B of the fixed section 100B, and the case 101B is fixed to the wall 1A with a bracket 170. That is, the wireless power supply unit 180 is placed indoors in the building 1 on the wall 1A (structure) around the window glass 12. The wall 1A around the window glass 12 is an example of a structure around the window glass 12. As an example, the bracket 170 may be attached to both ends of the resin case 101B in the X direction with screws, and may be attached to the wall 1A with double-sided tape, screws, or the like.
 このように配置される移動可能部100Aと固定部100Bについて、図2Aに示す左側の窓ガラス12が右側に移動して移動可能部100Aと固定部100Bとの間の距離が変化すると、受電部140と無線給電部180と間の距離が変化する。 Regarding the movable part 100A and the fixed part 100B arranged in this way, when the left window glass 12 shown in FIG. 2A moves to the right and the distance between the movable part 100A and the fixed part 100B changes, the power receiving part The distance between 140 and wireless power supply unit 180 changes.
 なお、無線通信装置100を窓10に取り付ける場合に、建物1(図1参照)の屋内側に配置した方が、風雨や塵埃等から保護しやすく、長期にわたって安定的に稼働させることができる。このため、無線通信装置100を屋内に配置する。 Note that when attaching the wireless communication device 100 to the window 10, it is easier to protect it from wind, rain, dust, etc. by placing it on the indoor side of the building 1 (see FIG. 1), and it can operate stably over a long period of time. Therefore, the wireless communication device 100 is placed indoors.
 図4は、無線通信装置100の回路構成の一例を示す図である。ここでは、図3に加えて図4を用いて、無線通信装置100の各部の構成について説明する。 FIG. 4 is a diagram showing an example of a circuit configuration of the wireless communication device 100. Here, the configuration of each part of the wireless communication device 100 will be explained using FIG. 4 in addition to FIG. 3.
 アンテナ素子110は、移相器120を介して無線装置130に接続されている。アンテナ素子110、移相器120、及び無線装置130の詳細については後述することとし、先に、受電部140、太陽電池150、電源回路160、及び無線給電部180について説明する。 The antenna element 110 is connected to a wireless device 130 via a phase shifter 120. Details of the antenna element 110, phase shifter 120, and wireless device 130 will be described later, and the power receiving unit 140, solar cell 150, power supply circuit 160, and wireless power supply unit 180 will be described first.
 無線給電部180は、送電コイル181、コンデンサ182、及び交流電源183を有する。送電コイル181の一端は、コンデンサ182を介して交流電源183の2つの端子の一方に接続され、送電コイル181の他端は、交流電源183の2つの端子の他方に接続されている。無線給電部180は、交流電源183が出力する所定の周波数の交流電力を送電コイル181から無線で送電することにより、ワイヤレス給電を実現する。 The wireless power supply unit 180 includes a power transmission coil 181, a capacitor 182, and an AC power source 183. One end of the power transmission coil 181 is connected to one of two terminals of the AC power supply 183 via a capacitor 182, and the other end of the power transmission coil 181 is connected to the other of the two terminals of the AC power supply 183. The wireless power supply unit 180 realizes wireless power supply by wirelessly transmitting AC power of a predetermined frequency output from the AC power supply 183 from the power transmission coil 181.
 電源回路160は、バッテリ161を有する。バッテリ161は、蓄電部の一例である。バッテリ161は、繰り返し充電が可能な二次電池であり、一例としてリチウムイオンバッテリである。電源回路160は、受電部140が受電する電力、又は、太陽電池150が生成する電力をバッテリ161に充電し、バッテリ161の充電状態を管理する。電源回路160は、破線で示す電力供給線路で、移相器120及び無線装置130に電力を供給する。より具体的には、窓ガラス12が開けられて受電部140及び無線給電部180が所定の距離以上離れることで、受電部140が無線給電部180から受電できなくなると、無線通信装置100は、バッテリ161から移相器120及び無線装置130に電力を供給する。なお、無線通信装置100は、電源回路160を含まない構成であってもよい。例えば、無線給電部180から受電部140が受電する電力を直接的に移相器120及び無線装置130に供給してもよい。 The power supply circuit 160 has a battery 161. Battery 161 is an example of a power storage unit. The battery 161 is a secondary battery that can be charged repeatedly, and is, for example, a lithium ion battery. The power supply circuit 160 charges the battery 161 with the power received by the power receiving unit 140 or the power generated by the solar cell 150, and manages the charging state of the battery 161. Power supply circuit 160 supplies power to phase shifter 120 and wireless device 130 through a power supply line indicated by a broken line. More specifically, when the power receiving unit 140 and the wireless power feeding unit 180 are separated by a predetermined distance or more due to the window glass 12 being opened and the power receiving unit 140 is no longer able to receive power from the wireless power feeding unit 180, the wireless communication device 100 Power is supplied from battery 161 to phase shifter 120 and wireless device 130 . Note that the wireless communication device 100 may have a configuration that does not include the power supply circuit 160. For example, the power received by the power receiving unit 140 from the wireless power supply unit 180 may be directly supplied to the phase shifter 120 and the wireless device 130.
 太陽電池150は、電源回路160に接続されている。太陽電池150は、移動可能部100Aのケース101A内(図3参照)において、屋外側(-Z方向側)を向けて配置されている。太陽電池150を設けることにより、受電部140及び無線給電部180が離れて充電効率が低いような状態でも、電源回路160を充電することができる。なお、無線通信装置100は、太陽電池150を含まない構成であってもよい。この場合は、受電部140が受電して電源回路160に蓄えられる電力を移相器120及び無線装置130に供給すればよい。 The solar cell 150 is connected to a power supply circuit 160. The solar cell 150 is arranged in the case 101A of the movable part 100A (see FIG. 3), facing the outdoor side (-Z direction side). By providing the solar cell 150, the power supply circuit 160 can be charged even in a state where the power receiving section 140 and the wireless power feeding section 180 are separated and the charging efficiency is low. Note that the wireless communication device 100 may have a configuration that does not include the solar cell 150. In this case, the power received by the power receiving unit 140 and stored in the power supply circuit 160 may be supplied to the phase shifter 120 and the wireless device 130.
 受電部140は、互いに並列に接続される受電コイル141及び抵抗器142を有し、受電コイル141及び抵抗器142の両端間には、電源回路160が接続されている。受電部140の受電コイル141は、無線給電部180の送電コイル181から無線で送電される電力を受電する。 The power receiving unit 140 includes a power receiving coil 141 and a resistor 142 that are connected in parallel to each other, and a power supply circuit 160 is connected between both ends of the power receiving coil 141 and the resistor 142. The power receiving coil 141 of the power receiving unit 140 receives power wirelessly transmitted from the power transmitting coil 181 of the wireless power feeding unit 180.
 なお、無線給電部180の送電コイル181から受電部140の受電コイル141への送電は、一例として、電磁誘導方式、又は、磁界共鳴方式で行えばよい。電磁誘導方式の場合には、送電コイル181及び受電コイル141として、電磁誘導用のコイルを用いればよい。また、磁界共鳴方式の場合には、送電コイル181及び受電コイル141として、磁界共鳴用の共振コイルを用いればよい。電磁誘導方式は、回路構成が簡易で、小型かつ低コストで実現可能であり、また受電効率が高いことが利点であるが、送電コイル181及び受電コイル141の間で送電する際の送電距離が短く、位置ずれの影響を受けやすい。また、磁界共鳴方式は、送電コイル181及び受電コイル141の間で磁界共鳴を生じさせて送電を行うため、送電距離が長いという利点がある。 Note that power transmission from the power transmission coil 181 of the wireless power supply unit 180 to the power reception coil 141 of the power reception unit 140 may be performed using an electromagnetic induction method or a magnetic resonance method, for example. In the case of the electromagnetic induction method, electromagnetic induction coils may be used as the power transmitting coil 181 and the power receiving coil 141. Furthermore, in the case of the magnetic field resonance method, resonance coils for magnetic field resonance may be used as the power transmitting coil 181 and the power receiving coil 141. The electromagnetic induction method has the advantage of having a simple circuit configuration, being compact and low-cost, and having high power reception efficiency. Short and susceptible to misalignment. In addition, the magnetic field resonance method transmits power by generating magnetic field resonance between the power transmitting coil 181 and the power receiving coil 141, and therefore has the advantage that power can be transmitted over a long distance.
 また、電界結合方式や電波受信方式も利用可能であるが、図5A及び図5Bを用いて後述する。 Additionally, an electric field coupling method or a radio wave reception method can also be used, which will be described later using FIGS. 5A and 5B.
 無線装置130は、無線モジュール131、スイッチ132、LNA(Low Noise Amplifier)133、ミキサ134、ADC(Analog to Digital Converter)135、DAC(Digital to Analog Converter)136、ミキサ137、及びPA(Power Amplifier)138を有する。 The wireless device 130 includes a wireless module 131, a switch 132, an LNA (Low Noise Amplifier) 133, a mixer 134, an ADC (Analog to Digital Converter) 135, a DAC (Digital to Analog Converter) 136, a mixer 137, and a PA (Power Amplifier). It has 138.
 無線モジュール131は、一例としてMCU(Micro Controller Unit)で構成され、制御部131Aと、中継処理を行う中継部131Bとを有する。制御部131A及び中継部131Bは、MCUが実行する機能を表した機能ブロックである。 The wireless module 131 is configured by, for example, an MCU (Micro Controller Unit), and includes a control section 131A and a relay section 131B that performs relay processing. The control unit 131A and the relay unit 131B are functional blocks representing functions executed by the MCU.
 制御部131Aは、アンテナ素子110で電波を受信する際には、3端子型のスイッチ132を切り換えて、アンテナ素子110とLNA133とを接続する。また、制御部131Aは、アンテナ素子110で電波を送信する際には、3端子型のスイッチ132を切り換えて、アンテナ素子110とPA138を接続する。 When receiving radio waves with the antenna element 110, the control unit 131A switches the three-terminal switch 132 to connect the antenna element 110 and the LNA 133. Furthermore, when transmitting radio waves using the antenna element 110, the control unit 131A switches the three-terminal switch 132 to connect the antenna element 110 and the PA 138.
 また、制御部131Aは、アンテナ素子110で電波を受信する際、及び、アンテナ素子110で電波を送信する際に、移相器120が電波に与える位相変化量を制御し、ビームの方向を制御する。 Further, the control unit 131A controls the amount of phase change given to the radio waves by the phase shifter 120 when receiving radio waves with the antenna element 110 and when transmitting radio waves with the antenna element 110, and controls the direction of the beam. do.
 中継部131Bは、一例としてBluetooth(登録商標)の通信部を含み、ADC135から入力されるデジタル信号を送信する。中継部131Bが信号を送信することにより、アンテナ素子110が基地局から受信した電波が中継され、無線通信装置100が配置されている建物1の内部に電波が放射される。これにより、建物1の屋内の広い範囲に電波が放射され、屋内にあるスマートフォン等の端末で電波を受信しやすくなる。なお、中継部131Bが屋内側に中継する電波を放射する通信部は、Bluetoothに限らず、WiFi等であってもよい。 The relay unit 131B includes, for example, a Bluetooth (registered trademark) communication unit, and transmits the digital signal input from the ADC 135. When the relay unit 131B transmits a signal, the radio waves received by the antenna element 110 from the base station are relayed, and the radio waves are radiated into the inside of the building 1 where the wireless communication device 100 is placed. As a result, the radio waves are radiated over a wide range indoors in the building 1, making it easier for terminals such as smartphones to receive the radio waves indoors. Note that the communication unit that emits the radio waves that the relay unit 131B relays to the indoor side is not limited to Bluetooth, and may be WiFi or the like.
 LNA133は、スイッチ132とミキサ134との間に設けられ、アンテナ素子110で受信した電波を増幅し、信号とノイズの比の劣化を防ぎながら出力する。 The LNA 133 is provided between the switch 132 and the mixer 134, amplifies the radio wave received by the antenna element 110, and outputs it while preventing the signal-to-noise ratio from deteriorating.
 ミキサ134は、LNA133から出力される電波をローカル信号(Lo)と混合して復調し、IF(Intermediate Frequency)信号を出力する。IF信号に変換することで、ADC135でデジタル変換を容易に行うことができる。 The mixer 134 mixes the radio wave output from the LNA 133 with a local signal (Lo), demodulates it, and outputs an IF (Intermediate Frequency) signal. By converting to an IF signal, the ADC 135 can easily perform digital conversion.
 ADC135は、ミキサ134から出力されるIF信号をデジタル変換して無線モジュール131に出力する。 The ADC 135 digitally converts the IF signal output from the mixer 134 and outputs it to the wireless module 131.
 DAC136は、無線通信装置100がアンテナ素子110から信号を送信する際に、無線モジュール131が出力する信号をアナログ変換してIF信号をミキサ137に出力する。 When the wireless communication device 100 transmits a signal from the antenna element 110, the DAC 136 converts the signal output from the wireless module 131 into analog and outputs an IF signal to the mixer 137.
 ミキサ137は、IF信号をローカル信号(Lo)と混合して変調し、PA138に出力する。 The mixer 137 mixes the IF signal with the local signal (Lo), modulates it, and outputs it to the PA 138.
 PA138は、ミキサ137から出力される信号を増幅して、スイッチ132を介してアンテナ素子110に出力する。 The PA 138 amplifies the signal output from the mixer 137 and outputs it to the antenna element 110 via the switch 132.
 移相器120は、複数のアンテナ素子の集合であるアンテナ素子110の各アンテナ素子に接続される複数の移相器の集合である。移相器120が電波に与える位相変化量は、制御部131Aによって制御される。移相器120は、一例として、LC(Liquid Crystal)で作製可能である。 The phase shifter 120 is a set of multiple phase shifters connected to each antenna element of the antenna element 110, which is a set of multiple antenna elements. The amount of phase change that the phase shifter 120 gives to the radio waves is controlled by the control unit 131A. The phase shifter 120 can be made of LC (Liquid Crystal), for example.
 アンテナ素子110は、複数のアンテナ素子の集合であり、アレイアンテナを構成する。アンテナ素子は、屋外側(-Z方向側)を向いており、屋外の基地局から放射される電波を受信する。アンテナ素子110は、一例として、基板の-Z方向側の表面に形成されている。基板は、ケース101Aと同様に透明であることが好ましい。 The antenna element 110 is a collection of multiple antenna elements and constitutes an array antenna. The antenna element faces outdoors (-Z direction side) and receives radio waves radiated from an outdoor base station. For example, the antenna element 110 is formed on the surface of the substrate on the -Z direction side. The substrate is preferably transparent like the case 101A.
 アンテナ素子110は、導体で形成される。アンテナ素子110は窓10と重ねて配置されるため、酸化亜鉛(ZnO)、酸化スズ(SnO)、スズドープ酸化インジウム(ITO)、酸化インジウム・酸化スズ(IZO)等の透明導電膜、窒化チタン(TiN)や窒化クロム(CrN)等の金属窒化物、又はLow-e(low emissivity)ガラス用のLow-e膜で形成されるのが望ましい。しかしながら、アンテナ素子110は、銅、ニッケル、又は金等の金属薄膜で形成されていてもよい。金属薄膜の場合は、メッシュ状にしておくことが視認性の観点から好ましい。 Antenna element 110 is formed of a conductor. Since the antenna element 110 is placed overlapping the window 10, it is made of transparent conductive films such as zinc oxide (ZnO), tin oxide (SnO 2 ), tin-doped indium oxide (ITO), indium oxide/tin oxide (IZO), titanium nitride, etc. It is preferable to use a metal nitride such as (TiN) or chromium nitride (CrN), or a low-e film for low-e (low emissivity) glass. However, the antenna element 110 may also be formed of a metal thin film such as copper, nickel, or gold. In the case of a metal thin film, it is preferable to form it into a mesh shape from the viewpoint of visibility.
 アンテナ素子110は、ビームフォーミングを行うため、XY面視で二次元的に配置される複数のアンテナ素子を有する。各アンテナ素子には、電波の位相を調整する移相器120が接続される。なお、アンテナ素子110の-Z方向側に整合層が設けられていてもよい。整合層は、アンテナ素子110に入射する電波の電気長を調整して、インピーダンスを整合させるために設けられている。整合層は、ポリカーボネート、アクリル、COP(シクロオレフィンポリマー)、PET(ポリエチレンテレフタレート)、ポリスチレン、又はガラス等で作製可能である。 The antenna element 110 has a plurality of antenna elements arranged two-dimensionally in an XY plane view in order to perform beam forming. A phase shifter 120 that adjusts the phase of radio waves is connected to each antenna element. Note that a matching layer may be provided on the -Z direction side of the antenna element 110. The matching layer is provided to adjust the electrical length of radio waves incident on the antenna element 110 and match the impedance. The matching layer can be made of polycarbonate, acrylic, COP (cycloolefin polymer), PET (polyethylene terephthalate), polystyrene, glass, or the like.
 <効果>
 以上のように、無線通信装置100は、アンテナ105と、中継部131Bと、制御部131Aと、受電部140と、無線給電部180とを含む。アンテナ105は、アンテナ素子110と、アンテナ素子110に接続される移相器120とを有し、ガラス板12Aを有する窓ガラス12のガラス板12Aに重ねて配置され、窓ガラス12の外側から到来する電波を受信する。中継部131Bは、窓ガラス12に配置され、アンテナ105によって受信された電波を中継する。制御部131Aは、窓ガラス12に配置され、移相器120における窓ガラス12の外側から到来した電波の位相変更量を制御する。受電部140は、窓ガラス12に配置され、受電した電力を移相器120、中継部131B、及び制御部131Aに供給する。無線給電部180は、窓ガラス12の周囲の構造物に配置され、受電部140に無線で電力を供給する。このため、窓ガラス12が窓ガラス12の周囲の構造物に対して移動しても、無線給電部180から受電部140に無線で送電可能である。
<Effect>
As described above, the wireless communication device 100 includes the antenna 105, the relay section 131B, the control section 131A, the power receiving section 140, and the wireless power feeding section 180. The antenna 105 has an antenna element 110 and a phase shifter 120 connected to the antenna element 110, and is arranged to overlap the glass plate 12A of the window glass 12 having the glass plate 12A. receive radio waves. The relay unit 131B is arranged on the window glass 12 and relays the radio waves received by the antenna 105. The control unit 131A is disposed on the window glass 12 and controls the amount of phase change of the radio waves arriving from the outside of the window glass 12 in the phase shifter 120. The power receiving unit 140 is disposed on the window glass 12 and supplies the received power to the phase shifter 120, the relay unit 131B, and the control unit 131A. The wireless power supply unit 180 is disposed in a structure around the window glass 12, and wirelessly supplies power to the power reception unit 140. Therefore, even if the window glass 12 moves relative to the structures around the window glass 12, power can be wirelessly transmitted from the wireless power supply unit 180 to the power reception unit 140.
 したがって、開閉可能な窓ガラス12に取り付け可能で、電波を中継可能な無線通信装置100を提供できる。 Therefore, it is possible to provide a wireless communication device 100 that can be attached to the openable/closable window glass 12 and can relay radio waves.
 また、窓ガラス12は、ガラス板12Aの主面に含まれる方向に移動可能であって、窓ガラス12の移動によって、無線給電部180と受電部140との間の距離が変化しても、無線給電部180に対する受電部140の向きは一定である。このため、無線給電部180と受電部140との間の距離が長くなっても、充電効率の低下を最小限に抑えることができ、無線給電部180から効率的に受電可能な無線通信装置100を提供できる。 Further, the window glass 12 is movable in a direction included in the main surface of the glass plate 12A, and even if the distance between the wireless power supply section 180 and the power reception section 140 changes due to the movement of the window glass 12, The orientation of power receiving unit 140 with respect to wireless power feeding unit 180 is constant. Therefore, even if the distance between the wireless power supply unit 180 and the power receiving unit 140 becomes long, the decrease in charging efficiency can be minimized, and the wireless communication device 100 can efficiently receive power from the wireless power supply unit 180. can be provided.
 また、窓ガラス12は、第1位置と第2位置との間で移動可能であり、受電部140は、窓ガラス12が第1位置にあるときに、無線給電部180に対して最も近づく。このため、開閉可能な窓ガラス12に取り付け可能で、窓ガラス12が第1位置にあるときに無線給電部180が無線で電力を供給する電力を最も効率的に受電可能で、電波を中継可能な無線通信装置100を提供できる。 Further, the window glass 12 is movable between the first position and the second position, and the power receiving unit 140 is closest to the wireless power supply unit 180 when the window glass 12 is in the first position. Therefore, it can be attached to the window glass 12 that can be opened and closed, and when the window glass 12 is in the first position, the wireless power supply unit 180 can most efficiently receive the power that is supplied wirelessly, and can relay radio waves. A wireless communication device 100 can be provided.
 また、無線通信装置100は、窓ガラス12に配置され、受電部140によって受電された電力を蓄え、蓄えた電力を移相器120、中継部131B、及び制御部131Aに供給するバッテリ161を含む。このため、窓ガラス12が移動して、無線給電部180から無線で電力が供給されない状態においても、電波を中継可能な無線通信装置100を提供できる。この場合、例えば受電部140と無線給電部180が所定の距離以上に離れたときに、電力をバッテリ161から供給するように設定しても良い。 The wireless communication device 100 also includes a battery 161 that is disposed on the window glass 12, stores power received by the power receiving section 140, and supplies the stored power to the phase shifter 120, the relay section 131B, and the control section 131A. . Therefore, it is possible to provide the wireless communication device 100 that can relay radio waves even when the window glass 12 moves and power is not wirelessly supplied from the wireless power supply unit 180. In this case, for example, when the power receiving unit 140 and the wireless power feeding unit 180 are separated by a predetermined distance or more, the setting may be such that power is supplied from the battery 161.
 また、受電部140及び無線給電部180が所定の距離以上離れると、バッテリ161から移相器120、中継部131B、及び制御部131Aに電力を供給する。このため、受電部140が無線給電部180から電力の供給を受けられなくなっても、バッテリ161の電力で移相器120、中継部131B、及び制御部131Aを駆動可能であり、電波を中継可能である。 Furthermore, when the power reception unit 140 and the wireless power supply unit 180 are separated by a predetermined distance or more, power is supplied from the battery 161 to the phase shifter 120, the relay unit 131B, and the control unit 131A. Therefore, even if the power receiving unit 140 cannot receive power from the wireless power supply unit 180, the phase shifter 120, the relay unit 131B, and the control unit 131A can be driven by the power of the battery 161, and radio waves can be relayed. It is.
 また、無線通信装置100は、移相器120、中継部131B、及び制御部131Aに供給する電力を生成し、窓ガラス12に配置される太陽電池150を含む。このため、窓ガラス12を通じて入射する光を利用して電力を生成可能であり、無線給電部180から無線で電力が供給されない状態においても、太陽電池150が生成する電力を利用して電波を中継可能な無線通信装置100を提供できる。 The wireless communication device 100 also includes a solar cell 150 that generates power to be supplied to the phase shifter 120, the relay section 131B, and the control section 131A, and is disposed on the window glass 12. Therefore, electric power can be generated using the light incident through the window glass 12, and even in a state where electric power is not wirelessly supplied from the wireless power supply unit 180, radio waves can be relayed using the electric power generated by the solar cell 150. It is possible to provide a wireless communication device 100 that is possible.
 また、移相器120は、液晶で構成されるので、アンテナ素子110が受信又は送信する電波の位相を比較的少ない消費電力で確実に変化させることができ、アンテナ素子110での電波の送受信の効率を向上させることができる。 In addition, since the phase shifter 120 is made of liquid crystal, it can reliably change the phase of the radio waves received or transmitted by the antenna element 110 with relatively little power consumption, and the phase shifter 120 can reliably change the phase of the radio waves received or transmitted by the antenna element 110. Efficiency can be improved.
 また、アンテナ105は、ガラス板12Aの屋内側の表面に取り付けられるので、アンテナ素子110を屋外の風雨や塵埃等から保護することができ、長期にわたって安定的に稼働させることができる。なお、アンテナ素子110は、ガラス板12Aの屋内側の表面との間に間隔を設けた状態で、ガラス板12A又は窓枠12Bに固定されていてもよい。この場合にも、アンテナ素子110は、ガラス板12Aに対する屋内側に配置されることになる。 Furthermore, since the antenna 105 is attached to the indoor surface of the glass plate 12A, the antenna element 110 can be protected from outdoor wind, rain, dust, etc., and can be stably operated over a long period of time. Note that the antenna element 110 may be fixed to the glass plate 12A or the window frame 12B with a space provided between the antenna element 110 and the indoor surface of the glass plate 12A. Also in this case, the antenna element 110 will be placed on the indoor side with respect to the glass plate 12A.
 <第1変形例>
 図5Aは、実施形態の第1変形例の無線通信装置100の回路構成の一例を示す図である。第1変形例の無線通信装置100は、受電部140及び無線給電部180が電界結合方式である点が、図4に示す受電部140及び無線給電部180と異なる。その他の構成要素は同様である。
<First modification example>
FIG. 5A is a diagram illustrating an example of a circuit configuration of a wireless communication device 100 according to a first modification of the embodiment. The wireless communication device 100 of the first modification differs from the power receiving unit 140 and the wireless power feeding unit 180 shown in FIG. 4 in that the power receiving unit 140 and the wireless power feeding unit 180 are of an electric field coupling type. Other components are the same.
 図5Aに示すように、第1変形例の受電部140は、コンデンサ用の一方の電極141Aを2つ有し、2つの電極141Aの間には抵抗器142が接続されている。電源回路160は、2つの電極の間(抵抗器142の両端間)に接続されている。 As shown in FIG. 5A, the power receiving unit 140 of the first modification has two capacitor electrodes 141A, and a resistor 142 is connected between the two electrodes 141A. Power supply circuit 160 is connected between two electrodes (between both ends of resistor 142).
 第1変形例の無線給電部180は、コンデンサ用の一方の電極181Aを2つ有し、一方の電極181Aは、コイル182Aを介して交流電源183に接続され、他方の電極181Aは、交流電源183に直接接続されている。 The wireless power supply unit 180 of the first modification has two capacitor electrodes 181A, one electrode 181A is connected to an AC power source 183 via a coil 182A, and the other electrode 181A is connected to an AC power source 183. 183 directly connected.
 受電部140の2つの電極141Aと、無線給電部180の2つの電極181Aとは、図5Aに示すように対向して配置されて、2つのコンデンサを構成する。このような2つの電極141Aと、2つの電極181Aとによって構成される2つのコンデンサによって、受電部140と無線給電部180の間は電界結合されているため、無線給電部180に高周波電流を流すと、受電部140側に電流が流れるため、無線で電力を送電可能になっている。電界結合方式は、電極141Aと電極181Aとの位置ずれの影響を受けにくく、無線給電部180の発熱が少ないという利点がある。 The two electrodes 141A of the power receiving section 140 and the two electrodes 181A of the wireless power feeding section 180 are arranged facing each other as shown in FIG. 5A, and constitute two capacitors. Since the power receiving section 140 and the wireless power feeding section 180 are electrically coupled by the two capacitors constituted by the two electrodes 141A and the two electrodes 181A, a high frequency current is caused to flow through the wireless power feeding section 180. Since current flows to the power receiving unit 140 side, power can be transmitted wirelessly. The electric field coupling method has the advantage that it is less susceptible to the misalignment between the electrode 141A and the electrode 181A, and that the wireless power supply unit 180 generates less heat.
 したがって、開閉可能な窓ガラス12に取り付け可能で、電波を中継可能な第1変形例の無線通信装置100を提供できる。 Therefore, it is possible to provide the wireless communication device 100 of the first modification that can be attached to the openable/closable window glass 12 and can relay radio waves.
 <第2変形例>
 図5Bは、実施形態の第2変形例の無線通信装置100の回路構成の一例を示す図である。第2変形例の無線通信装置100は、受電部140及び無線給電部180が電波受信方式である点が、図4に示す受電部140及び無線給電部180と異なる。その他の構成要素は同様である。
<Second modification example>
FIG. 5B is a diagram illustrating an example of a circuit configuration of a wireless communication device 100 according to a second modification of the embodiment. The wireless communication device 100 of the second modification differs from the power receiving unit 140 and the wireless power feeding unit 180 shown in FIG. 4 in that the power receiving unit 140 and the wireless power feeding unit 180 are of a radio wave reception type. Other components are the same.
 図5Bに示すように、第2変形例の受電部140は、アンテナ141Bを有し、アンテナ141Bは、交流電力を直流電力に変換する整流回路(不図示)を介して電源回路160に接続されている。 As shown in FIG. 5B, the power receiving unit 140 of the second modification has an antenna 141B, and the antenna 141B is connected to the power supply circuit 160 via a rectifier circuit (not shown) that converts AC power to DC power. ing.
 第2変形例の無線給電部180は、アンテナ181B、増幅器182B1、及び交流電源183を有する。アンテナ181B、増幅器182B1、、及び交流電源183は、直列に接続されており、交流電源183から出力される24GHzの交流電力は、増幅器182B1で増幅されてアンテナ181Bから出力される。受電部140は、アンテナ141Bで信号を受信し、受信された信号の電力は電源回路160のバッテリ161に蓄えられる。電波受信方式は、送電距離が長いという利点がある。 The wireless power supply unit 180 of the second modification includes an antenna 181B, an amplifier 182B1, and an AC power supply 183. Antenna 181B, amplifier 182B1, and AC power supply 183 are connected in series, and 24 GHz AC power output from AC power supply 183 is amplified by amplifier 182B1 and output from antenna 181B. Power receiving unit 140 receives a signal through antenna 141B, and the power of the received signal is stored in battery 161 of power supply circuit 160. The radio wave reception method has the advantage of long transmission distance.
 したがって、開閉可能な窓ガラス12に取り付け可能で、電波を中継可能な第2変形例の無線通信装置100を提供できる。 Therefore, it is possible to provide the wireless communication device 100 of the second modification, which can be attached to the openable/closable window glass 12 and can relay radio waves.
 <第3変形例>
 図5Cは、実施形態の第3変形例の無線通信装置100Mの回路構成の一例を示す図である。第3変形例の無線通信装置100Mは、図4に示す無線通信装置100の無線装置130を固定部100B側に移動させた構成を有する。
<Third modification example>
FIG. 5C is a diagram illustrating an example of a circuit configuration of a wireless communication device 100M according to a third modification of the embodiment. The wireless communication device 100M of the third modification has a configuration in which the wireless device 130 of the wireless communication device 100 shown in FIG. 4 is moved to the fixed part 100B side.
 第3変形例の無線通信装置100Mは、移動可能部100MAと固定部100MBとを含む。 The wireless communication device 100M of the third modification includes a movable section 100MA and a fixed section 100MB.
 移動可能部100MAは、図3に示す移動可能部100Aと同様に、窓ガラス12のガラス板12Aに取り付けられる。移動可能部100MAは、アンテナ素子110A、アンテナ110B、移相器120、スイッチ132A、スイッチ132B、LNA133A、PA138A、ワイヤレス受電部140M、太陽電池150、及び電源回路160Aを含む。移動可能部100MAの電源回路160Aは、バッテリ161に加えて制御部162及び通信部163を有する。アンテナ素子110A及び移相器120を含むアンテナ105は第1アンテナの一例である。アンテナ素子110Aは、図4に示すアンテナ素子110に相当するアレイアンテナである。アンテナ110Bは、第2アンテナの一例である。移動可能部100MAでは、LNA133Aの出力側と、PA138Aの入力側とに、スイッチ132Bを介してアンテナ110Bが接続されている。通信部163は、制御部162に接続されており、固定部100MBの無線モジュール131の通信部131Cと無線通信を行うことが可能である。図5Cでは簡略化して通信部163をアンテナのシンボルで示すが、通信部163は、無線通信を行うことができればよく、赤外線通信、LED(Light Emitting Diode)等の光を用いた無線通信、又は、Bluetooth(登録商標)やWLAN(Wireless Local Area Network)等での通信を行う通信部であってもよい。 The movable part 100MA is attached to the glass plate 12A of the window glass 12, similar to the movable part 100A shown in FIG. Movable unit 100MA includes antenna element 110A, antenna 110B, phase shifter 120, switch 132A, switch 132B, LNA 133A, PA 138A, wireless power receiving unit 140M, solar cell 150, and power supply circuit 160A. The power supply circuit 160A of the movable unit 100MA includes a control unit 162 and a communication unit 163 in addition to a battery 161. Antenna 105 including antenna element 110A and phase shifter 120 is an example of a first antenna. Antenna element 110A is an array antenna corresponding to antenna element 110 shown in FIG. 4. Antenna 110B is an example of a second antenna. In movable unit 100MA, antenna 110B is connected to the output side of LNA 133A and the input side of PA 138A via switch 132B. The communication unit 163 is connected to the control unit 162 and can perform wireless communication with the communication unit 131C of the wireless module 131 of the fixed unit 100MB. In FIG. 5C, the communication unit 163 is simply shown as an antenna symbol, but the communication unit 163 only needs to be able to perform wireless communication, and may be infrared communication, wireless communication using light such as an LED (Light Emitting Diode), or , a communication unit that performs communication using Bluetooth (registered trademark), WLAN (Wireless Local Area Network), or the like.
 ワイヤレス受電部140Mは、電源回路160Aに接続される。電源回路160Aは、破線で示す電力供給線路で、移相器120、LNA133A、及びPA138Aに電力を供給する。また、太陽電池150は、破線で示す電力供給線路で、電源回路160Aに電力を供給する。制御部162は、通信部163が通信部131Cから受信する制御指令に基づいて、移相器120とスイッチ132A及び132Bを制御する。 The wireless power receiving unit 140M is connected to the power supply circuit 160A. Power supply circuit 160A supplies power to phase shifter 120, LNA 133A, and PA 138A through a power supply line indicated by a broken line. Further, the solar cell 150 supplies power to the power supply circuit 160A through a power supply line indicated by a broken line. The control unit 162 controls the phase shifter 120 and the switches 132A and 132B based on a control command that the communication unit 163 receives from the communication unit 131C.
 固定部100MBは、アンテナ110C、無線装置130M、電源回路160B、ワイヤレス給電部180M、及び交流電源183を含む。アンテナ110Cは、第3アンテナの一例である。 The fixed unit 100MB includes an antenna 110C, a wireless device 130M, a power supply circuit 160B, a wireless power supply unit 180M, and an AC power supply 183. Antenna 110C is an example of a third antenna.
 無線装置130Mは、図4に示す無線装置130と同様に、無線モジュール131、スイッチ132C、通信部131C、LNA133、ミキサ134、ADC135、DAC136、ミキサ137、及びPA138を有する。固定部100MBにおける、アンテナ110C、無線装置130M、及び電源回路160Bの接続関係は、図4に示すアンテナ素子110、無線装置130、及び電源回路160の接続関係と同様である。通信部131Cは、通信部163と無線通信を行うことが可能であればよく、通信部163と同様に、赤外線通信、LED等の光を用いた無線通信、又は、Bluetooth(登録商標)やWLAN等での通信を行う通信部であってもよい。図5Cでは、通信部131Cを簡略化してアンテナのシンボルで示す。無線モジュール131の制御部131Aは、通信部131Cを介して制御指令を電源回路160Aの制御部162に送信する。制御指令は、通信部163によって受信され、制御部162は、制御指令に基づいて、移相器120とスイッチ132A及び132Bを制御する。 The wireless device 130M, like the wireless device 130 shown in FIG. 4, includes a wireless module 131, a switch 132C, a communication section 131C, an LNA 133, a mixer 134, an ADC 135, a DAC 136, a mixer 137, and a PA 138. The connection relationship between the antenna 110C, the wireless device 130M, and the power supply circuit 160B in the fixed part 100MB is the same as the connection relationship between the antenna element 110, the wireless device 130, and the power supply circuit 160 shown in FIG. The communication unit 131C only needs to be capable of wireless communication with the communication unit 163, and similarly to the communication unit 163, it may be capable of infrared communication, wireless communication using light such as an LED, or Bluetooth (registered trademark) or WLAN. It may also be a communication unit that performs communication using, etc. In FIG. 5C, the communication unit 131C is simplified and shown as an antenna symbol. The control unit 131A of the wireless module 131 transmits a control command to the control unit 162 of the power supply circuit 160A via the communication unit 131C. The control command is received by the communication unit 163, and the control unit 162 controls the phase shifter 120 and the switches 132A and 132B based on the control command.
 電源回路160Bには、ワイヤレス給電部180Mと、交流電源183が接続されている。電源回路160Bは、無線装置130Mの無線モジュール131、LNA133、ADC135、DAC136、及びPA138に電力を供給する。 A wireless power supply unit 180M and an AC power supply 183 are connected to the power supply circuit 160B. The power supply circuit 160B supplies power to the wireless module 131, LNA 133, ADC 135, DAC 136, and PA 138 of the wireless device 130M.
 ワイヤレス受電部140M及びワイヤレス給電部180Mは、図4に示す電磁誘導方式又は磁界共鳴方式、図5Aに示す電界結合方式、又は、図5Bに示す電波受信方式のうちのいずれであってもよい。ワイヤレス受電部140Mは、ワイヤレス給電部180Mが無線で送信する電力を受電する。 The wireless power reception unit 140M and the wireless power supply unit 180M may use any of the electromagnetic induction method or magnetic resonance method shown in FIG. 4, the electric field coupling method shown in FIG. 5A, or the radio wave reception method shown in FIG. 5B. The wireless power reception unit 140M receives power wirelessly transmitted by the wireless power supply unit 180M.
 このような第3変形例の無線通信装置100Mにおいて、アンテナ素子110Aが電波を受信すると、受信された電波は、スイッチ132A、LNA133A、及びスイッチ132Bを経てアンテナ110Bから送信される。アンテナ110Cは、アンテナ110Bから送信された電波を受信し、無線装置130MのLNA133、ミキサ134、及びADC135を経て無線モジュール131に入力される。無線モジュール131に入力された電波は、中継部131Bによって中継され、建物1の屋内に放射される。 In such a wireless communication device 100M of the third modification, when the antenna element 110A receives a radio wave, the received radio wave is transmitted from the antenna 110B via the switch 132A, the LNA 133A, and the switch 132B. Antenna 110C receives the radio waves transmitted from antenna 110B, and inputs the radio waves to radio module 131 via LNA 133, mixer 134, and ADC 135 of radio device 130M. The radio waves input to the wireless module 131 are relayed by the relay section 131B and radiated indoors of the building 1.
 また、無線モジュール131の中継部131Bが建物1の屋内にある端末から電波を受信すると、DAC136、ミキサ137、PA138、及びスイッチ132Cを経てアンテナ110Cから送信される。アンテナ110Bは、アンテナ110Cから送信された電波を受信し、受信された電波は、スイッチ132B、PA138A、及びスイッチ132Aを介してアンテナ素子110Aから基地局に向けて送信される。 Furthermore, when the relay unit 131B of the wireless module 131 receives radio waves from a terminal located indoors in the building 1, the radio waves are transmitted from the antenna 110C via the DAC 136, mixer 137, PA 138, and switch 132C. Antenna 110B receives the radio waves transmitted from antenna 110C, and the received radio waves are transmitted from antenna element 110A to the base station via switch 132B, PA 138A, and switch 132A.
 このように、第3変形例の無線通信装置100Mは、アンテナ105、アンテナ110B、ワイヤレス受電部140M、アンテナ110C、制御部131A、中継部131B、及びワイヤレス給電部180Mを含む。アンテナ105は、アンテナ素子110Aと、アンテナ素子110Aに接続される移相器120とを有し、ガラス板12Aを有する窓ガラス12のガラス板12Aに重ねて配置され、窓ガラス12の外側から到来する電波を受信する。アンテナ110Bは、窓ガラス12に配置され、アンテナ素子110Aで受信された電波を送信する。ワイヤレス受電部140Mは、窓ガラス12に配置され、受電した電力を移相器120に供給する。アンテナ110Cは、窓ガラス12の周囲の構造物に配置され、アンテナ110Bによって送信された電波を受信する。中継部131Bは、窓ガラス12の周囲の構造物に配置され、アンテナ110Cによって受信された電波を中継する。制御部131Aは、窓ガラス12、又は、窓ガラス12の周囲の構造物に配置され、移相器120における窓ガラス12の外側から到来した電波の位相変更量を制御する。ワイヤレス給電部180Mは、窓ガラス12の周囲の構造物に配置され、ワイヤレス受電部140Mに無線で電力を供給する。 As described above, the wireless communication device 100M of the third modification includes the antenna 105, the antenna 110B, the wireless power receiving section 140M, the antenna 110C, the control section 131A, the relay section 131B, and the wireless power feeding section 180M. The antenna 105 has an antenna element 110A and a phase shifter 120 connected to the antenna element 110A, and is arranged to overlap the glass plate 12A of the window glass 12 having the glass plate 12A. receive radio waves. Antenna 110B is placed on window glass 12 and transmits radio waves received by antenna element 110A. The wireless power receiving unit 140M is disposed on the window glass 12 and supplies the received power to the phase shifter 120. Antenna 110C is placed on a structure around window glass 12, and receives radio waves transmitted by antenna 110B. The relay unit 131B is arranged in a structure around the window glass 12, and relays the radio waves received by the antenna 110C. The control unit 131A is arranged on the window glass 12 or a structure around the window glass 12, and controls the amount of phase change of the radio waves arriving from the outside of the window glass 12 in the phase shifter 120. The wireless power supply unit 180M is arranged in a structure around the window glass 12, and wirelessly supplies power to the wireless power reception unit 140M.
 このため、窓ガラス12が周囲の構造物に対して移動しても、ワイヤレス給電部180Mからワイヤレス受電部140Mに無線で送電可能である。 Therefore, even if the window glass 12 moves relative to surrounding structures, power can be wirelessly transmitted from the wireless power supply unit 180M to the wireless power reception unit 140M.
 したがって、開閉可能な窓ガラス12に取り付け可能で、電波を中継可能な無線通信装置100Mを提供できる。 Therefore, it is possible to provide a wireless communication device 100M that can be attached to the openable window glass 12 and can relay radio waves.
 なお、窓ガラス12が開けられてワイヤレス受電部140M及びワイヤレス給電部180Mが所定の距離以上離れることで、ワイヤレス受電部140Mがワイヤレス給電部180Mから受電できなくなると、無線通信装置100Mは、バッテリ161から移相器120、LNA133A、及びPA138Aに電力を供給する。このため、ワイヤレス受電部140Mがワイヤレス給電部180Mから電力の供給を受けられなくなっても、バッテリ161の電力で移相器120、LNA133A、及びPA138Aを駆動可能であり、電波を中継可能である。 Note that when the wireless power receiving unit 140M and the wireless power feeding unit 180M are separated by a predetermined distance or more due to the window glass 12 being opened, and the wireless power receiving unit 140M is no longer able to receive power from the wireless power feeding unit 180M, the wireless communication device 100M Power is supplied from the phase shifter 120, LNA 133A, and PA 138A. Therefore, even if wireless power reception unit 140M cannot receive power from wireless power supply unit 180M, phase shifter 120, LNA 133A, and PA 138A can be driven with the power of battery 161, and radio waves can be relayed.
 また、窓ガラス12がさらに開けられて、ワイヤレス受電部140Mがワイヤレス給電部180Mから受電できない状態で、アンテナ110B及び110Cが通信できなくなると、アンテナ110C及び中継部131Bを有する固定部100MBが、アンテナ110Cで基地局から電波を受信して中継して、建物1の内部に電波を放射してもよい。アンテナ110B及び110Cが通信できなくなっても、基地局から到来する電波(窓ガラス12の外側から到来する電波の一例)をアンテナ110Cで受信して中継し、建物1の内部に電波を放射できる。 Further, when the window glass 12 is further opened and the antennas 110B and 110C are unable to communicate in a state where the wireless power receiving unit 140M cannot receive power from the wireless power feeding unit 180M, the fixed unit 100MB including the antenna 110C and the relay unit 131B 110C may receive radio waves from the base station, relay them, and radiate the radio waves inside the building 1. Even if the antennas 110B and 110C are unable to communicate, the antenna 110C receives and relays radio waves arriving from the base station (an example of radio waves arriving from the outside of the window glass 12), and the radio waves can be radiated into the inside of the building 1.
 <第4変形例>
 図6Aは、実施形態の第4変形例の窓10M1を示す図である。窓10M1は、両開き窓であり、2枚の窓ガラス12が左右の端で軸支されており、外側に向かって開くように構成されている。
<Fourth variation>
FIG. 6A is a diagram showing a window 10M1 of a fourth modification of the embodiment. The window 10M1 is a double-hung window, and the two window glasses 12 are pivotally supported at the left and right ends, and are configured to open outward.
 このような窓10M1に無線通信装置100を取り付ける場合には、一例として、図6Aに示すように、左側の窓ガラス12のガラス板12Aの屋内側の表面の左端に移動可能部100Aを取り付け、窓ガラス12を閉じた状態で移動可能部100Aの左隣に位置するように、固定部100Bを壁1Aの屋内側の表面に取り付ければよい。なお、図6Aでは、移動可能部100Aについては受電部140のみを示し、固定部100Bについては無線給電部180のみを示す。 When attaching the wireless communication device 100 to such a window 10M1, as an example, as shown in FIG. 6A, the movable part 100A is attached to the left end of the indoor surface of the glass plate 12A of the left window glass 12, The fixed part 100B may be attached to the indoor surface of the wall 1A so as to be located to the left of the movable part 100A when the window glass 12 is closed. Note that in FIG. 6A, only the power receiving section 140 is shown for the movable section 100A, and only the wireless power feeding section 180 is shown for the fixed section 100B.
 開き窓の場合には、窓ガラス12を完全に閉じた状態と、図6Aに示すように開けた状態とで、固定部100Bの無線給電部180(図3参照)と移動可能部100Aの受電部140(図3参照)との間の距離は大きく変わらないが、無線給電部180に対する受電部140の向きが変わる。また、ワイヤレス給電の方式によって、充電可能な角度の範囲は異なる。このため、比較的角度変化に強い、電界結合方式、電波受信方式、又は、磁界共鳴方式で送電すればよい。 In the case of a casement window, when the window glass 12 is completely closed and when it is opened as shown in FIG. 6A, the wireless power supply section 180 (see FIG. 3) of the fixed section 100B and the power receiving section of the movable section 100A are connected. Although the distance between the power receiving unit 140 (see FIG. 3) and the power receiving unit 140 (see FIG. 3) does not change significantly, the orientation of the power receiving unit 140 with respect to the wireless power feeding unit 180 changes. Also, the range of charging angles differs depending on the wireless power supply method. For this reason, power may be transmitted using an electric field coupling method, a radio wave reception method, or a magnetic field resonance method, which are relatively resistant to angular changes.
 なお、右側の窓ガラス12のガラス板12Aの屋内側の表面の右端に移動可能部100Aを取り付け、窓ガラス12を閉じた状態で移動可能部100Aの右隣に位置するように、固定部100Bを壁1Aの屋内側の表面に取り付けれてもよい。また、窓10M1は、窓ガラス12が1枚の片開き窓であってもよい。また、窓10M1は、2枚の窓ガラス12を有し、そのうちの1枚のみが開閉可能な開き窓であってもよい。 In addition, the movable part 100A is attached to the right end of the indoor surface of the glass plate 12A of the right window glass 12, and the fixed part 100B is attached so that it is located to the right of the movable part 100A when the window glass 12 is closed. may be attached to the indoor surface of the wall 1A. Further, the window 10M1 may be a single-hinged window with one windowpane 12. Further, the window 10M1 may have two window glasses 12, and only one of them may be a casement window that can be opened and closed.
 <第5変形例>
 図6Bは、実施形態の第5変形例の窓10M2を示す図である。窓10M2は、開き窓であり、1枚の窓ガラス12が上端側で軸支されており、下部が外側に向かって開くように構成されている。なお、図6Bは、建物1の屋外側から窓10M2を示す図である。
<Fifth modification example>
FIG. 6B is a diagram showing a window 10M2 of a fifth modification of the embodiment. The window 10M2 is a casement window, and one window glass 12 is pivotally supported on the upper end side, and the lower part is configured to open outward. Note that FIG. 6B is a diagram showing the window 10M2 from the outdoor side of the building 1.
 このような窓10M2に無線通信装置100を取り付ける場合には、一例として、図6Bに示すように、窓ガラス12のガラス板12Aの屋内側の表面の上端に移動可能部100Aを取り付け、窓ガラス12を閉じた状態で移動可能部100Aの上隣に位置するように、固定部100Bを壁1Aの屋内側の表面に取り付ければよい。なお、図6Bでは、移動可能部100Aについては受電部140のみを示し、固定部100Bについては無線給電部180のみを示す。 When attaching the wireless communication device 100 to such a window 10M2, as an example, as shown in FIG. 6B, the movable part 100A is attached to the upper end of the indoor surface of the glass plate 12A of the window glass 12, The fixed part 100B may be attached to the indoor surface of the wall 1A so as to be located above the movable part 100A when the fixed part 100B is closed. Note that in FIG. 6B, only the power receiving section 140 is shown for the movable section 100A, and only the wireless power feeding section 180 is shown for the fixed section 100B.
 窓ガラス12を完全に閉じた状態と、図6Bに示すように開けた状態とで、固定部100Bの無線給電部180(図3参照)と移動可能部100Aの受電部140(図3参照)との間の距離は大きく変わらないが、無線給電部180に対する受電部140の向きが変わる。また、ワイヤレス給電の方式によって、充電可能な角度の範囲は異なる。このため、比較的角度変化に強い、電界結合方式、電波受信方式、又は、磁界共鳴方式で送電すればよい。また、この場合に、窓ガラス12を開けたときに無線給電部180に対する受電部140の向きの変化量が少なくなるように、窓ガラス12を完全に閉じた状態での窓ガラス12の主面の法線方向における無線給電部180及び受電部140の位置をずらして配置してもよい。 When the window glass 12 is completely closed and when it is opened as shown in FIG. 6B, the wireless power supply section 180 (see FIG. 3) of the fixed section 100B and the power receiving section 140 (see FIG. 3) of the movable section 100A are connected. Although the distance between the wireless power supply unit 180 and the wireless power supply unit 180 does not change significantly, the orientation of the power reception unit 140 with respect to the wireless power supply unit 180 changes. Also, the range of charging angles differs depending on the wireless power supply method. For this reason, power may be transmitted using an electric field coupling method, a radio wave reception method, or a magnetic field resonance method, which are relatively resistant to angular changes. In this case, the main surface of the window glass 12 when the window glass 12 is completely closed is set so that the amount of change in the orientation of the power receiving unit 140 with respect to the wireless power supply unit 180 when the window glass 12 is opened is reduced. The positions of the wireless power feeding unit 180 and the power receiving unit 140 in the normal direction may be shifted from each other.
 以上、本開示の例示的な無線通信装置について説明したが、本開示は、具体的に開示された実施形態に限定されるものではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。 Although the exemplary wireless communication device of the present disclosure has been described above, the present disclosure is not limited to the specifically disclosed embodiments, and various modifications and variations may be made without departing from the scope of the claims. Changes are possible.
 なお、本国際出願は、2022年8月10日に出願した日本国特許出願2022-127700に基づく優先権を主張するものであり、その全内容は本国際出願にここでの参照により援用されるものとする。 This international application claims priority based on Japanese Patent Application No. 2022-127700 filed on August 10, 2022, the entire contents of which are incorporated into this international application by reference herein. shall be taken as a thing.
 1 建物
 1A 壁(窓ガラスの周囲の構造物の一例)
 10、10M1、10M2 窓
 11 窓枠
 11A レール
 12 窓ガラス
 12A ガラス板(誘電体板の一例)
 12B 窓枠
 100 無線通信装置
 100A 移動可能部
 100B 固定部
 105 アンテナ(第1アンテナの一例)
 110、110A アンテナ素子
 110B アンテナ(第2アンテナの一例)
 110C アンテナ(第3アンテナの一例)
 120 移相器
 130 無線装置
 131 無線モジュール
 131A 制御部
 131B 中継部
 140 受電部
 140M ワイヤレス受電部
 141 受電コイル
 150 太陽電池
 160 電源回路
 161 バッテリ(蓄電部の一例)
 180 無線給電部
 180M ワイヤレス給電部
 181 送電コイル
1 Building 1A Wall (an example of a structure around window glass)
10, 10M1, 10M2 Window 11 Window frame 11A Rail 12 Window glass 12A Glass plate (an example of dielectric plate)
12B Window frame 100 Wireless communication device 100A Movable part 100B Fixed part 105 Antenna (an example of the first antenna)
110, 110A antenna element 110B antenna (an example of second antenna)
110C antenna (an example of the third antenna)
120 phase shifter 130 wireless device 131 wireless module 131A control unit 131B relay unit 140 power receiving unit 140M wireless power receiving unit 141 power receiving coil 150 solar cell 160 power supply circuit 161 battery (an example of power storage unit)
180 Wireless power supply unit 180M Wireless power supply unit 181 Power transmission coil

Claims (11)

  1.  アンテナ素子と、前記アンテナ素子に接続される移相器とを有し、誘電体板を有する窓ガラスの前記誘電体板に重ねて配置され、前記窓ガラスの外側から到来する電波を受信するアンテナと、
     前記窓ガラスに配置され、前記アンテナによって受信された前記電波を中継する中継部と、
     前記窓ガラスに配置され、前記移相器における前記窓ガラスの外側から到来した電波の位相変更量を制御する制御部と、
     前記窓ガラスに配置され、受電した電力を前記移相器、前記中継部、及び前記制御部に供給する受電部と、
     前記窓ガラスの周囲の構造物に配置され、前記受電部に無線で電力を供給する無線給電部と
     を含む、無線通信装置。
    An antenna that includes an antenna element and a phase shifter connected to the antenna element, is placed over the dielectric plate of a window glass having a dielectric plate, and receives radio waves arriving from outside the window glass. and,
    a relay unit disposed on the window glass and relaying the radio waves received by the antenna;
    a control unit that is disposed on the window glass and controls a phase change amount of radio waves arriving from outside the window glass in the phase shifter;
    a power receiving unit disposed on the window glass and supplying the received power to the phase shifter, the relay unit, and the control unit;
    A wireless communication device, comprising: a wireless power supply unit that is disposed in a structure around the window glass and wirelessly supplies power to the power reception unit.
  2.  前記窓ガラスは、前記誘電体板の主面に含まれる方向に移動可能であって、
     前記窓ガラスの移動によって、前記無線給電部と前記受電部との間の距離が変化しても、前記無線給電部に対する前記受電部の向きは一定である、請求項1に記載の無線通信装置。
    The window glass is movable in a direction included in the main surface of the dielectric plate,
    The wireless communication device according to claim 1, wherein the orientation of the power receiving unit with respect to the wireless power feeding unit remains constant even if the distance between the wireless power feeding unit and the power receiving unit changes due to movement of the window glass. .
  3.  前記窓ガラスは、第1位置と第2位置との間で移動可能であり、
     前記受電部は、前記窓ガラスが前記第1位置にあるときに、前記無線給電部に対して最も近づく、請求項2に記載の無線通信装置。
    the window glass is movable between a first position and a second position;
    The wireless communication device according to claim 2, wherein the power receiving unit is closest to the wireless power feeding unit when the window glass is in the first position.
  4.  前記窓ガラスに配置され、前記受電部によって受電された電力を蓄え、前記蓄えた電力を前記移相器、前記中継部、及び前記制御部に供給する蓄電部をさらに含む、請求項1乃至3のいずれか1項に記載の無線通信装置。 Claims 1 to 3 further comprising a power storage unit disposed on the window glass, storing power received by the power receiving unit, and supplying the stored power to the phase shifter, the relay unit, and the control unit. The wireless communication device according to any one of the above.
  5.  前記受電部及び前記無線給電部が所定の距離以上離れると、前記蓄電部から前記移相器、前記中継部、及び前記制御部に電力を供給する、請求項4に記載の無線通信装置。 The wireless communication device according to claim 4, wherein when the power reception unit and the wireless power supply unit are separated by a predetermined distance or more, power is supplied from the power storage unit to the phase shifter, the relay unit, and the control unit.
  6.  前記移相器、前記中継部、及び前記制御部に供給する電力を生成し、前記窓ガラスに配置される太陽電池をさらに含む、請求項1乃至5のいずれか1項に記載の無線通信装置。 The wireless communication device according to any one of claims 1 to 5, further comprising a solar cell that generates power to be supplied to the phase shifter, the relay unit, and the control unit and is disposed on the window glass. .
  7.  前記移相器は、液晶で構成される、請求項1乃至6のいずれか1項に記載の無線通信装置。 The wireless communication device according to any one of claims 1 to 6, wherein the phase shifter is made of liquid crystal.
  8.  前記アンテナは、前記誘電体板の屋内側の第1の主面に取り付けられる、請求項1乃至7のいずれか1項に記載の無線通信装置。 The wireless communication device according to any one of claims 1 to 7, wherein the antenna is attached to a first main surface of the dielectric plate on the indoor side.
  9.  アンテナ素子と、前記アンテナ素子に接続される移相器とを有し、誘電体板を有する窓ガラスの前記誘電体板に重ねて配置され、前記窓ガラスの外側から到来する電波を受信する第1アンテナと、
     前記窓ガラスに配置され、前記第1アンテナで受信された前記電波を送信する第2アンテナと、
     前記窓ガラスに配置され、受電した電力を前記移相器に供給する受電部と、
     前記窓ガラスの周囲の構造物に配置され、前記第2アンテナによって送信された電波を受信する第3アンテナと、
     前記窓ガラスの周囲の構造物に配置され、前記第3アンテナによって受信された電波を中継する中継部と、
     前記窓ガラス、又は、前記窓ガラスの周囲の構造物に配置され、前記移相器における前記窓ガラスの外側から到来した電波の位相変更量を制御する制御部と、
     前記窓ガラスの周囲の構造物に配置され、前記受電部に無線で電力を供給する無線給電部と
     を含む、無線通信装置。
    A phase shifter comprising an antenna element and a phase shifter connected to the antenna element, which is disposed overlapping the dielectric plate of a window glass having a dielectric plate, and receives radio waves arriving from outside the window glass. 1 antenna and
    a second antenna disposed on the window glass and transmitting the radio waves received by the first antenna;
    a power receiving unit disposed on the window glass and supplying the received power to the phase shifter;
    a third antenna that is placed on a structure around the window glass and receives the radio waves transmitted by the second antenna;
    a relay unit that is placed in a structure around the window glass and that relays radio waves received by the third antenna;
    a control unit that is disposed on the window glass or a structure around the window glass and controls a phase change amount of radio waves arriving from outside the window glass in the phase shifter;
    A wireless communication device, comprising: a wireless power supply unit that is disposed in a structure around the window glass and wirelessly supplies power to the power reception unit.
  10.  前記窓ガラスに配置され、前記受電部によって受電された電力を蓄える蓄電部をさらに含み、
     前記受電部及び前記無線給電部が所定の距離以上離れると、前記蓄電部から前記移相器に電力を供給する、請求項9に記載の無線通信装置。
    further including a power storage unit disposed on the window glass and storing power received by the power receiving unit,
    The wireless communication device according to claim 9, wherein when the power reception unit and the wireless power supply unit are separated by a predetermined distance or more, power is supplied from the power storage unit to the phase shifter.
  11.  前記受電部及び前記無線給電部が所定の距離以上離れ、かつ、前記第3アンテナが前記第2アンテナによって送信された電波を受信できなくなると、前記第3アンテナが前記窓ガラスの外側から到来する電波を受信する、請求項9又は10に記載の無線通信装置。 When the power receiving unit and the wireless power feeding unit are separated by a predetermined distance or more and the third antenna is unable to receive radio waves transmitted by the second antenna, the third antenna arrives from outside the window glass. The wireless communication device according to claim 9 or 10, which receives radio waves.
PCT/JP2023/027573 2022-08-10 2023-07-27 Wireless communication device WO2024034421A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022127700 2022-08-10
JP2022-127700 2022-08-10

Publications (1)

Publication Number Publication Date
WO2024034421A1 true WO2024034421A1 (en) 2024-02-15

Family

ID=89851592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027573 WO2024034421A1 (en) 2022-08-10 2023-07-27 Wireless communication device

Country Status (1)

Country Link
WO (1) WO2024034421A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11103201A (en) * 1997-09-29 1999-04-13 Mitsui Chem Inc Phase shifter, phase shifter array and phased array antenna system
JP2010245751A (en) * 2009-04-03 2010-10-28 Hitachi Kokusai Electric Inc Digital radio communication system
JP2013017336A (en) * 2011-07-05 2013-01-24 Sony Corp Detection device, power reception device, non-contact power transmission system, and detection method
JP2014150636A (en) * 2013-01-31 2014-08-21 Canon Inc Power supply apparatus, image forming apparatus, power supply system, power supply method, and program
JP2015209737A (en) * 2014-04-30 2015-11-24 トヨタホーム株式会社 Locking and unlocking notification system
JP2019530387A (en) * 2016-09-22 2019-10-17 華為技術有限公司Huawei Technologies Co.,Ltd. Liquid crystal adjustable metasurface for beam steering antenna
JP2020028015A (en) * 2018-08-10 2020-02-20 ソフトバンク株式会社 Communication device, program and communication system
JP2021517406A (en) * 2018-03-19 2021-07-15 ピヴォタル コムウェア インコーポレイテッド Communication of wireless signals through physical barriers

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11103201A (en) * 1997-09-29 1999-04-13 Mitsui Chem Inc Phase shifter, phase shifter array and phased array antenna system
JP2010245751A (en) * 2009-04-03 2010-10-28 Hitachi Kokusai Electric Inc Digital radio communication system
JP2013017336A (en) * 2011-07-05 2013-01-24 Sony Corp Detection device, power reception device, non-contact power transmission system, and detection method
JP2014150636A (en) * 2013-01-31 2014-08-21 Canon Inc Power supply apparatus, image forming apparatus, power supply system, power supply method, and program
JP2015209737A (en) * 2014-04-30 2015-11-24 トヨタホーム株式会社 Locking and unlocking notification system
JP2019530387A (en) * 2016-09-22 2019-10-17 華為技術有限公司Huawei Technologies Co.,Ltd. Liquid crystal adjustable metasurface for beam steering antenna
JP2021517406A (en) * 2018-03-19 2021-07-15 ピヴォタル コムウェア インコーポレイテッド Communication of wireless signals through physical barriers
JP2020028015A (en) * 2018-08-10 2020-02-20 ソフトバンク株式会社 Communication device, program and communication system

Similar Documents

Publication Publication Date Title
CN109844631B (en) Wireless receiving and power supply electrochromic window
US20220285987A1 (en) Wireless powered electrochromic windows
US11342791B2 (en) Wirelessly powered and powering electrochromic windows
US20230120342A1 (en) Multi-Amplifier Repeater System for Wireless Communication
US20220255351A1 (en) Wirelessly powered and powering electrochromic windows
US20210040789A1 (en) Wirelessly powered and powering electrochromic windows
US9728861B2 (en) Reflector device, communication system using the same and communication method using the same
CN112055927A (en) Electrochromic window wirelessly powered and wirelessly powered
WO2024034421A1 (en) Wireless communication device
US11336345B2 (en) Signal transmission device
WO2023157689A1 (en) Wireless communication device
JP2012099995A (en) Antenna function-equipped window glass
JPH11191752A (en) Radio base station and radio communication area forming method
JP2022185714A (en) Reuse system for wireless power supply
KR20020022482A (en) The plane shaped film antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852395

Country of ref document: EP

Kind code of ref document: A1