WO2024034284A1 - Sensor system and movable body system - Google Patents

Sensor system and movable body system Download PDF

Info

Publication number
WO2024034284A1
WO2024034284A1 PCT/JP2023/024174 JP2023024174W WO2024034284A1 WO 2024034284 A1 WO2024034284 A1 WO 2024034284A1 JP 2023024174 W JP2023024174 W JP 2023024174W WO 2024034284 A1 WO2024034284 A1 WO 2024034284A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
rotating body
control unit
moving body
rotating
Prior art date
Application number
PCT/JP2023/024174
Other languages
French (fr)
Japanese (ja)
Inventor
幹太 佐藤
達治 芦谷
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2024034284A1 publication Critical patent/WO2024034284A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/02Arrangements for holding or mounting articles, not otherwise provided for for radio sets, television sets, telephones, or the like; Arrangement of controls thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/695Control of camera direction for changing a field of view, e.g. pan, tilt or based on tracking of objects

Definitions

  • the present disclosure relates to a sensor system and a mobile system.
  • Autonomous mobile objects such as AGVs (Automatic Guided Vehicles) or AMRs (Autonomous Mobile Robots) may have imaging sensors such as ToF (Time of Fight) sensors to obtain surrounding environmental information.
  • imaging sensors such as ToF (Time of Fight) sensors to obtain surrounding environmental information.
  • the position where the image sensor is placed on the moving body is limited, and the imaging range of the image sensor is limited. Furthermore, in order to widen the imaging range, it was necessary to mount a plurality of imaging sensors on the moving object. In this case, there are concerns about an increase in cost and an increase in the amount of image data.
  • a sensor system includes a rotating body that is rotatable about a first axis, a rotating body control unit that controls the rotating body, a sensor that is arranged on the rotating body and acquires surrounding information, and a rotating body control unit that controls the rotating body.
  • the sensor includes a sensor control section that controls the sensor based on control timing of the sensor, and a signal processing section that processes surrounding information acquired by the sensor.
  • the sensor control unit stops acquiring surrounding information of the sensor, and when the rotating body control unit stops rotating the rotating body, the sensor control unit stops acquiring the surrounding information of the sensor. Start acquiring surrounding information.
  • the signal processing unit transmits a permission signal that enables rotation of the rotating body to the rotating body control unit.
  • the signal processing unit acquires an image or distance of an object in front of the sensor using surrounding information, and the rotating body control unit rotates the rotating body based on the image or distance of the object.
  • the signal processing unit detects the turning direction of the moving body based on the movement of the entire surrounding information, and the rotating body control unit rotates the rotating body in a direction opposite to the turning direction.
  • the signal processing unit calculates the rotation angle of the rotating body based on the movement of the entire surrounding information, and the rotating body control unit rotates the rotating body by the rotation angle in a direction opposite to the rotation direction.
  • the sensor includes CIS or ToF.
  • a mobile system includes: a rotating body that is rotatable about a first axis; a rotating body control unit that controls the rotating body; and a sensor that is disposed on the rotating body and acquires surrounding information.
  • a mobile body equipped with a sensor system including a sensor control unit that controls the sensor based on control timing of the rotating body control unit, and a signal processing unit that processes the surrounding information acquired by the sensor;
  • a mobile body control section that controls the mobile body is provided.
  • the rotating body control unit rotates the rotating body in the turning direction of the moving body before turning the moving body, and the sensor rotates the rotating body in the turning direction.
  • the signal processing unit outputs a permission signal that enables the mobile body to turn based on the surrounding information to the mobile body control unit, and the mobile body control unit causes the mobile body to turn.
  • the rotating body control section rotates the rotating body by the first angle
  • the rotating body control section rotates the rotating body by the first angle in the turning direction of the moving body.
  • the rotating body control unit rotates the rotating body in a direction opposite to the turning direction of the moving body almost simultaneously with the turning of the moving body.
  • the rotating body control section rotates the rotating body by the first angle in a direction opposite to the turning direction of the moving body.
  • the sensor includes a CIS, ToF or stereo camera.
  • FIG. 1 is a schematic side view showing a configuration example of a mobile system according to a first embodiment.
  • FIG. 1 is a schematic plan view showing a configuration example of a mobile system according to a first embodiment.
  • a conceptual diagram showing the operation of the sensor system The figure which shows the example of a structure of a sensor system.
  • FIG. 2 is a block diagram showing a configuration example of a sensor system.
  • FIG. 3 is a flow diagram showing an example of the operation of the sensor system according to the first embodiment.
  • FIG. 7 is a conceptual diagram showing an example of the operation of the sensor system according to the second embodiment.
  • FIG. 2 is a block diagram showing a configuration example of a sensor system according to a second embodiment.
  • FIG. 7 is a flow diagram showing an example of the operation of the second embodiment.
  • FIG. 1 is a schematic side view showing a configuration example of a mobile system according to a first embodiment.
  • FIG. 1 is a schematic plan view showing a configuration example of a mobile system according to
  • FIG. 7 is a conceptual diagram showing an example of the operation of the sensor system according to the third embodiment.
  • FIG. 7 is a conceptual diagram showing an example of the operation of the sensor system according to the third embodiment.
  • FIG. 7 is a block diagram showing a configuration example of a sensor system according to a third embodiment.
  • FIG. 7 is a flowchart showing an example of the operation of the third embodiment.
  • FIG. 7 is a conceptual diagram showing an example of the operation of the mobile system according to the fourth embodiment.
  • FIG. 7 is a conceptual diagram showing an example of the operation of the mobile system according to the fourth embodiment.
  • FIG. 7 is a block diagram showing a configuration example of a mobile system according to a fourth embodiment.
  • FIG. 7 is a flowchart showing an example of the operation of the fourth embodiment.
  • FIG. 7 is a flowchart showing an example of the operation of the fifth embodiment.
  • FIG. 1 is a block diagram showing a schematic configuration example of a vehicle control system. The figure which shows the example of the installation
  • FIG. 1 is a schematic side view showing a configuration example of a mobile system 1 according to the first embodiment.
  • FIG. 2 is a schematic plan view showing a configuration example of the mobile system 1 according to the first embodiment.
  • the mobile system 1 is, for example, an autonomous mobile such as an AGV or an AMR, and is capable of autonomously traveling in a distribution warehouse, factory, or the like. Furthermore, the mobile system 1 is also applicable to automobiles, airplanes, drones, and the like.
  • the mobile system 1 includes a sensor system 2 and a mobile body 3.
  • the moving body 3 is configured to be movable on the floor, the ground, space, etc., and is equipped with the sensor system 2.
  • the moving body 3 has a box-shaped main body, and can be loaded with luggage and the like and moved.
  • the mobile object 3 can autonomously travel based on surrounding information detected by the sensor system 2. Note that the moving body 3 may be a moving body that does not operate autonomously.
  • the sensor system 2 may be a 3D sensing device, such as an image sensor such as CIS (CMOS (Complementary Metal Oxide Semiconductor) Image Sensor), a distance measurement sensor such as ToF (Time of Fright), a stereo camera, Lider, etc. , or a combination of these.
  • CIS Complementary Metal Oxide Semiconductor
  • ToF Time of Fright
  • stereo camera Lider, etc.
  • the sensor system 2 is placed at the end of the main body of the moving body 3 so as not to interfere with luggage or the like.
  • FIG. 3 is a conceptual diagram showing the operation of the sensor system 2.
  • the sensor system 2 is attached to the moving body 3 so as to be rotatable about the Z axis as a first axis.
  • the sensor system 2 detects the moving direction (X direction) of the moving object 3, and when the moving object 3 turns in the ⁇ Y direction with respect to the moving direction, the sensor system 2 rotates by an angle ⁇ in the ⁇ Y direction. to detect surrounding information.
  • the surrounding information may be, for example, image information or distance measurement information around the mobile system 1.
  • FIG. 4 is a diagram showing a configuration example of the sensor system 2.
  • the sensor system 2 includes a sensor section 20 and a rotating section 30.
  • the rotating section 30 includes a base body 34 and a rotating body 35.
  • the base body 34 is fixed to the movable body 3 and rotates a rotating body 35 around the Z axis.
  • the rotating body 35 extends from the base body 34 in the Z direction, and is configured to be rotatable about the Z axis with respect to the base body 34 .
  • the sensor section 20 is disposed on the rotating body 35 and is rotatable about the Z-axis together with the rotating body 35.
  • the sensor unit 20 can acquire surrounding information.
  • FIG. 5 is a block diagram showing a configuration example of the sensor system 2.
  • the sensor section 20 includes a sensor 21, a sensor control section 22, and a signal processing section 23.
  • the rotating unit 30 includes a rotating body control unit 31, a rotating body motor 32, and a rotating body 35. Note that illustration of the base body 34 is omitted in FIG. 5.
  • the sensor control unit 22 transmits an imaging control signal to the sensor 21 while being synchronized with the rotating body control unit 31 of the rotating unit 30 using a synchronization signal. That is, the sensor control section 22 controls the sensor 21 based on the control timing of the rotating body control section 31.
  • the sensor 21 acquires surrounding information according to an imaging control signal from the sensor control unit 22.
  • the sensor 21 may be, for example, a CIS chip or a ToF chip.
  • the signal processing section 23 includes an image generation section 24 and a timing control section 25.
  • the image generation unit 24 processes imaging data as surrounding information acquired by the sensor 21 and generates an image of the surroundings of the moving body 3.
  • the timing control unit 25 When the timing control unit 25 finishes acquiring the imaging data, it transmits a synchronization signal indicating the end of imaging to the rotating body control unit 31 of the rotating unit 30.
  • the sensor section 20 can start or stop imaging at the timing of the rotation of the rotating body 35 (that is, the rotation of the sensor section 20) in synchronization with the rotating section 30.
  • the rotating unit 30 can start or stop the rotation of the rotating body 35 (that is, the rotation of the sensor unit 20) at the timing of imaging in synchronization with the sensor unit 20.
  • the sensor 21, the sensor control section 22, and the signal processing section 23 of the sensor section 20 may be composed of one semiconductor chip or may be composed of a plurality of semiconductor chips. When configured with a plurality of semiconductor chips, the plurality of semiconductor chips may be stacked and the wirings may be bonded to each other (Cu--Cu bonding).
  • the rotating body control unit 31 transmits a rotating body control signal and an angle signal to the rotating body motor 32, and controls the rotating body motor 32 and the rotating body 35.
  • the rotating body motor 32 is controlled by a rotating body control signal from the rotating body control section 31, and rotates the rotating body 35 to an angle based on the angle signal.
  • the rotating body control signal indicates, for example, the rotation direction, rotation speed, rotation start timing, etc. of the rotating body 35.
  • the angle signal indicates the rotation angle of the rotating body 35, and indicates, for example, the angle ⁇ in FIG.
  • the rotating body control unit 31 synchronizes with the sensor control unit 22 and the signal processing unit 23, for example, when the sensor control unit 22 stops imaging in the sensor 21 and the signal processing unit 23 finishes generating an image. Then, the rotation of the rotating body 35 can be started.
  • the sensor system 2 will be described below as an imaging system that captures images of the surroundings.
  • the sensor system 2 may also be a ranging system that measures distances of surrounding objects.
  • FIG. 6 is a flow diagram showing an example of the operation of the sensor system 2 according to the first embodiment.
  • the sensor section 20 images the surroundings thereof.
  • the rotating body control unit 31 enables the rotating body 35 to rotate.
  • the sensor system 2 according to this embodiment obtains surrounding information by repeating such rotation of the rotating body 35 and imaging by the sensor unit 20.
  • the rotating body control unit 31 transmits a rotating body control signal and an angle signal to the rotating body motor 32, and controls the rotating body motor 32. Thereby, the rotating body 35 and the sensor section 20 are rotated by a desired angle ⁇ from the reference position (S10). At this time, the rotary body control section 31 transmits a signal indicating the rotation of the rotary body 35 together with a synchronization signal to the sensor control section 22 of the sensor section 20 to synchronize with the sensor control section 22 . Thereby, the sensor control unit 22 can prohibit imaging of the sensor 21 during the rotation period of the rotating body 35 (S20). That is, when the rotating body control unit 31 rotates the rotating body 35, the sensor control unit 22 stops acquiring images of the sensor 21.
  • the rotating body control unit 31 transmits a rotating body control signal to the rotating body motor 32 to control the rotating body motor 32.
  • the rotating body control section 31 transmits a signal indicating the stop of the rotating body 35 together with a synchronization signal to the sensor control section 22 of the sensor section 20 to synchronize with the sensor control section 22 .
  • the sensor control unit 22 prohibits imaging of the sensor 21 during the rotation period of the rotating body 35, and allows imaging of the sensor 21 after the rotation of the rotating body 35 (S30). That is, when the rotating body control unit 31 stops rotating the rotating body 35, the sensor control unit 22 can start acquiring images of the sensor 21.
  • the sensor control unit 22 transmits an imaging control signal to the sensor 21, and the sensor 21 starts imaging the surroundings (S40).
  • imaging data is transmitted from the sensor 21 to the signal processing section 23.
  • the sensor control section 22 transmits a signal indicating the start of imaging to the rotating body control section 31 together with a synchronization signal, and synchronizes with the rotating body control section 31 .
  • the rotating body control unit 31 prohibits driving of the rotating body motor 32 and prohibits rotation of the rotating body 35 and the sensor unit 20 during the imaging period of the sensor 21 (S50).
  • the signal processing unit 23 acquires imaging data from the sensor 21 and generates an image of the surroundings (S60). This surrounding image is stored in a memory (not shown) or the like as surrounding information of the mobile system 1, or is transmitted to the outside. The mobile system 1 can autonomously travel using this surrounding information.
  • the timing control unit 25 of the signal processing unit 23 transmits a signal indicating that an image is being generated to the rotating body control unit 31 of the rotating unit 30 along with a synchronization signal, and synchronizes with the rotating body control unit 31.
  • the rotating body control unit 31 prohibits driving of the rotating body motor 32 during image generation, and prohibits rotation of the rotating body 35 and the sensor unit 20 (S70).
  • the sensor control unit 22 transmits an imaging control signal to the sensor 21, and stops imaging by the sensor 21 (S80). At this time, the sensor control section 22 transmits a signal indicating the stop of imaging to the rotating body control section 31 together with a synchronization signal, and synchronizes with the rotating body control section 31 . Furthermore, when the acquisition of image data from the sensor 21 is completed in the signal processing unit 23, the timing control unit 25 transmits a signal indicating the end of image generation together with a synchronization signal to the rotating body control unit 31 of the rotating unit 30, and It is synchronized with the body control section 31.
  • the rotary body control unit 31 allows the rotary body motor 32 to be driven after image generation is completed based on the signals from the sensor control unit 22 and the timing control unit 25, and controls the rotation of the rotary body 35 and the sensor unit 20.
  • Permission is granted (S90). That is, when the sensor 21 stops capturing images, the signal processing unit 23 transmits a permission signal to the rotating body control unit 31 to enable the rotating body 35 to rotate.
  • the sensor system 2 returns to step S10 and repeats steps S10 to S90. Thereby, the sensor system 2 can obtain an image of the surroundings at a position where the sensor unit 20 is further rotated by an angle ⁇ . Steps S10 to S90 are repeated until the termination condition is reached (NO in S100).
  • the termination condition may be any arbitrary condition, such as repeating N times (N is a natural number) or N ⁇ reaching 360 degrees. If the end condition is reached (YES in S100), the series of operations of the sensor system 2 ends.
  • the sensor unit 20 stops (prohibits) imaging during the rotation period of the rotation body 35 in synchronization with the operation of the rotation body 35, and during the stop period of the rotation body 35, Imaging can be executed (permitted).
  • the rotating unit 30 stops (prohibits) the rotating operation of the rotating body 35 during the period when the sensor 21 is capturing an image and the signal processing unit 23 is processing the captured data. do. Further, the rotating unit 30 starts (permits) the rotating operation of the rotating body 35 during a period in which the sensor 21 finishes capturing an image and the signal processing unit 23 finishes processing the captured image data.
  • the sensor system 2 can image the entire surrounding situation with only one sensor section 20 while alternately performing image capturing of the sensor section 20 and rotation of the rotating section 30. That is, the sensor system 2 can acquire a wide-angle surrounding image using a small number of sensor units 20.
  • FIG. 7 is a conceptual diagram showing an example of the operation of the sensor system 2 according to the second embodiment.
  • the sensor system 2 according to the second embodiment detects the moving direction (X direction) of the moving body 3, and when an obstacle W exists in the moving direction of the moving body 3, the sensor system 2 moves the sensor unit 20 in the ⁇ Y direction. Detect surrounding information by rotating by an angle ⁇ . Thereby, the sensor system 2 can acquire surrounding information about the moving object 3 and the obstacle W.
  • the rotation of the sensor unit 20 may be repeated, for example, N times, and may be further repeated until N ⁇ reaches 360 degrees.
  • FIG. 8 is a block diagram showing a configuration example of the sensor system 2 according to the second embodiment.
  • a recognition unit 26 that recognizes an obstacle W from image information or distance information is provided in the signal processing unit 23.
  • the recognition unit 26 identifies the obstacle W in the image using software.
  • the recognition unit 26 recognizes as an obstacle W when there is an object approaching the moving body 3 and the size of the object is larger than a predetermined value through image processing.
  • the obstacle W may be, for example, a wall of a building.
  • the signal processing unit 23 transmits the recognition information of the obstacle W to the rotating body control unit 31 of the rotating unit 30.
  • the rotating body control unit 31 determines whether to rotate the rotating body 35 and the sensor unit 20 based on the recognition information.
  • the other configurations of the second embodiment may be the same as the corresponding configurations of the first embodiment.
  • FIG. 9 is a flow diagram showing an example of the operation of the second embodiment.
  • the moving body 3 starts moving (S11).
  • the moving direction of the moving body 3 is assumed to be the X direction.
  • the sensor control unit 22 transmits an imaging control signal to the sensor 21, and the sensor 21 starts imaging the surroundings (S21).
  • the sensor system 2 acquires imaging data while moving together with the mobile object 3.
  • Imaging data is transmitted from the sensor 21 to the signal processing section 23.
  • the sensor control section 22 transmits a signal indicating the start of imaging to the rotating body control section 31 together with a synchronization signal, and synchronizes with the rotating body control section 31 .
  • the rotating body control unit 31 may prohibit or allow rotation of the rotating body 35 and the sensor unit 20 during the imaging period of the sensor 21.
  • the sensor 21 images the moving direction of the moving body 3, and when there is an object in the moving direction, images the object.
  • the signal processing unit 23 acquires imaging data from the sensor 21 and generates an image of the surroundings (S31). This surrounding image is stored in a memory (not shown) or the like as surrounding information of the mobile system 1, or is transmitted to the outside.
  • the signal processing unit 23 acquires imaging data from the sensor 21, and when there is an object in the traveling direction of the moving body 3, acquires an image of the object obtained from the imaging data.
  • the timing control unit 25 of the signal processing unit 23 transmits a signal indicating that an image is being generated to the rotating body control unit 31 of the rotating unit 30 along with a synchronization signal, and synchronizes with the rotating body control unit 31.
  • the rotating body control unit 31 may prohibit or allow rotation of the rotating body 35 and the sensor unit 20 during image generation.
  • the recognition unit 26 determines whether the obstacle W is recognized (S41). As described above, the recognition unit 26 recognizes the obstacle W as the obstacle W, for example, when the distance between the moving body 3 and the obstacle W is short and the obstacle W has a size equal to or larger than a predetermined value.
  • steps S11 to S31 are repeated, the moving body 3 continues to move, and the sensor 21 continues to capture images.
  • the recognition unit 26 determines whether the distance from the sensor 21 to the obstacle W is less than a predetermined value (S51).
  • the distance from the sensor 21 to the obstacle W may be determined using image processing software or the like. Alternatively, if the sensor 21 is ToF, the results of distance measurement by ToF may be used.
  • steps S11 to S31 are repeated, the moving body 3 continues to move, and the sensor 21 continues to capture images.
  • the rotating body control unit 31 transmits a rotating body control signal and an angle signal to the rotating body motor 32, and Then, the sensor unit 20 is rotated by a desired angle ⁇ from the current position (S61). At this time, the rotary body control section 31 transmits a signal indicating the rotation of the rotary body 35 together with a synchronization signal to the sensor control section 22 of the sensor section 20 to synchronize with the rotary body sensor control section 22 . Thereby, the sensor control unit 22 may prohibit or permit imaging of the sensor 21 during the rotation period of the rotating body 35.
  • the moving body 3 may temporarily stop.
  • the rotating body control unit 31 transmits a rotating body control signal to the rotating body motor 32, and stops the rotation of the rotating body 35 and the sensor unit 20. let At this time, the rotating body control section 31 transmits a signal indicating the stop of the rotating body 35 together with a synchronization signal to the sensor control section 22 of the sensor section 20 to synchronize with the sensor control section 22 . Thereby, the sensor control unit 22 can permit the sensor 21 to take an image after the rotating body 35 has rotated.
  • the sensor control unit 22 transmits an imaging control signal to the sensor 21, and the sensor 21 executes imaging of the surroundings (S71). As a result, imaging data is transmitted from the sensor 21 to the signal processing section 23. At this time, the sensor control section 22 transmits a signal indicating the start of imaging to the rotating body control section 31 together with a synchronization signal, and synchronizes with the rotating body control section 31 . At this time, the rotating body control section 31 may prohibit rotation of the rotating body 35 and the sensor section 20 during the imaging period of the sensor 21.
  • the signal processing unit 23 acquires imaging data from the sensor 21 and generates an image of the surroundings (S81). This surrounding image is stored in a memory (not shown) or the like as surrounding information of the mobile system 1, or is transmitted to the outside. As a result, an image in a direction different from the traveling direction (the direction in which the obstacle W exists) is acquired, and the recognition unit 26 can determine whether or not there is an obstacle in that direction.
  • the timing control unit 25 of the signal processing unit 23 transmits a signal indicating that an image is being generated to the rotating body control unit 31 of the rotating unit 30 along with a synchronization signal, and synchronizes with the rotating body control unit 31.
  • the rotating body control unit 31 may prohibit rotation of the rotating body 35 and the sensor unit 20 during image generation.
  • the signal processing unit 23 acquires the image or distance of the object in front of the sensor 21 from the surrounding image. Then, when an obstacle W is recognized in the traveling direction of the moving body 3 and the distance from the moving body 3 to the obstacle W becomes less than a predetermined value, the rotating body control unit 31 controls the rotating body 35 and the sensor unit 20 to a desired position. Rotate by angle ⁇ . That is, the rotating body control unit 31 rotates the rotating body 35 based on the image or distance of the obstacle W. Thereby, the sensor 21 can acquire surrounding information in a direction rotated by an angle ⁇ from the traveling direction of the moving body 3 in which the obstacle W exists. This surrounding information can be used to execute the next operation of the moving body 3, such as stopping the moving body 3 or changing the direction of movement of the moving body 3.
  • FIG. 10 and 11 are conceptual diagrams showing an example of the operation of the sensor system 2 according to the third embodiment.
  • the sensor system 2 according to the third embodiment detects the traveling direction (X direction) of the moving body 3, and when the moving body 3 changes the traveling direction, the signal processing unit 23 detects the movement of the entire surrounding image.
  • the turning direction of the moving body 3 is detected.
  • the rotating body control unit 31 rotates the rotating body 35 in a direction opposite to the turning direction of the moving body 3. Thereby, the sensor system 2 can suppress image shift (blur) caused by the turning of the moving body 3.
  • the moving body 3 is initially moving in the X direction, and the sensor 21 is capturing an image in the moving direction (X direction) of the moving body 3.
  • the signal processing unit 23 detects that the moving body 3 turns due to the movement of the entire image and detects the turning angle ⁇ 1.
  • the rotating body control unit 31 rotates the rotating body 35 and the sensor unit 20 by an angle ⁇ 2 in a direction opposite to the turning direction of the moving body 3.
  • the imaging direction of the sensor 21 does not deviate much from the initial traveling direction (X direction) of the moving body 3.
  • the rotation angle ⁇ 2 of the rotating body 35 is substantially the same as the turning angle ⁇ 1 of the moving body 3, the imaging direction of the sensor 21 hardly deviates from the initial traveling direction (X direction) of the moving body 3.
  • the rotation angle ⁇ 2 of the rotating body 35 does not necessarily have to be the same as the turning angle ⁇ 1 of the moving body 3. Even in this case, the effect of suppressing image blur due to the rotation of the moving body 3 can be obtained.
  • FIG. 12 is a block diagram showing a configuration example of the sensor system 2 according to the third embodiment.
  • the signal processing section 23 includes a correction calculation section 27 that calculates the turning direction and turning angle of the moving body 3 from the deviation of the entire image.
  • the correction calculation unit 27 detects the turning of the moving body 3 based on the deviation of the entire image, and calculates the turning direction and turning angle of the moving body 3 from the deviation direction and deviation width of the entire image.
  • the signal processing unit 23 detects the turning of the moving body 3, it transmits the calculation results of the turning direction (for example, ⁇ Y direction) and the turning angle ⁇ 1 of the moving body 3 to the rotating body control unit 31 of the rotating unit 30.
  • the rotating body control unit 31 determines whether or not to rotate the rotating body 35 based on the calculation results of the turning direction and turning angle of the moving body 3 from the signal processing unit 23, and when rotating the rotating body 35, the rotating body 35 is rotated. 35 and the sensor section 20 are rotated in a direction opposite to the turning direction (eg, +Y direction).
  • the rotation angle ⁇ 2 of the rotating body 35 and the sensor unit 20 is preferably the same as the turning angle ⁇ 1, but may be different.
  • the other configurations of the second embodiment may be the same as the corresponding configurations of the first embodiment.
  • FIG. 13 is a flow diagram showing an example of the operation of the third embodiment.
  • steps S11 to S31 are executed.
  • the moving body 3 moves, and the sensor system 2 captures an image in the moving direction (X direction) of the moving body 3.
  • the sensor control section 22 transmits a signal indicating the start of imaging to the rotating body control section 31 together with a synchronization signal, and synchronizes with the rotating body control section 31 .
  • the rotating body control unit 31 may prohibit or allow rotation of the rotating body 35 and the sensor unit 20 during the imaging period of the sensor 21.
  • the correction calculation unit 27 detects the turning of the moving body 3 when the entire image shifts in one direction (S42). If the image is partially moving or if the entire image is not moving in one direction, the correction calculation unit 27 does not determine that the moving body 3 is turning (NO in S42) and skips steps S11 to S31. May be repeated.
  • the correction calculation unit 27 detects that the moving body 3 has turned (YES in S42). For example, if the entire image shifts in either of the ⁇ Y directions, the correction calculation unit 27 determines that the moving body 3 has turned in either the left or right direction.
  • the correction calculation unit 27 calculates the turning direction and turning angle of the moving body 3 from the deviation direction and deviation width of the entire image (S52). For example, if the image is entirely shifted in the +Y direction, the correction calculation unit 27 determines that the moving body 3 has turned in the -Y direction. If the image is entirely shifted in the -Y direction, the correction calculation unit 27 determines that the moving body 3 has turned in the +Y direction. Further, the image shift width corresponds to the turning angle ⁇ 1 of the moving body 3. Therefore, for example, the correction calculation unit 27 uses the distance between the imaged arbitrary object and the sensor 21 and the image shift width (the movement width of the object in the image) to determine the turning angle of the moving body 3. Calculate ⁇ 1.
  • the signal processing unit 23 transmits the signal indicating the turning of the moving body 3, the turning direction of the moving body 3 (for example, ⁇ Y direction), and the calculation result of the turning angle ⁇ 1 to the rotating body of the rotating unit 30, together with a synchronization signal.
  • the information is transmitted to the control unit 31 (S62).
  • the rotating body control unit 31 determines whether or not to rotate the rotating body 35 and the sensor unit 20 based on the calculation result of the turning direction or turning angle of the moving body 3 from the signal processing unit 23 (S72 ). For example, when the magnitude of the rotation angle is equal to or greater than the threshold value, the rotating body control unit 31 may determine that the rotating body 35 and the sensor unit 20 are to be rotated. Conversely, when the magnitude of the rotation angle is less than the threshold value, the rotating body control unit 31 may determine not to rotate the rotating body 35 and the sensor unit 20.
  • the rotating body control unit 31 based on the calculation results of the turning direction and turning angle of the moving body 3 from the signal processing unit 23,
  • the rotating body 35 and the sensor section 20 are rotated in a direction opposite to the turning direction (for example, in the +Y direction) (S82).
  • the rotation angle ⁇ 2 of the rotating body 35 and the sensor unit 20 is preferably the same as the turning angle ⁇ 1, but may be different. Note that the sensor 21 continues to capture images in steps S42 to S82.
  • Steps S11 to S82 are repeated until the movement of the moving body 3 is completed or until the imaging by the sensor 21 is completed (NO in S92).
  • the movement of the mobile body 3 ends or the imaging by the sensor 21 ends ends (YES in S92), the operation of the mobile system 1 ends.
  • the correction calculation unit 27 detects the turning of the moving object 3 based on the deviation of the entire image, and calculates the turning direction and turning angle of the moving object 3 from the deviation direction and deviation width of the entire image, respectively. .
  • the rotating body control unit 31 rotates the rotating body 35 and the sensor unit 20 in a direction opposite to the rotating direction based on the calculation results of the rotating direction and the rotating angle of the moving body 3. Thereby, even if the moving body 3 turns, the imaging direction of the sensor 21 does not deviate much from the initial traveling direction of the moving body 3.
  • the rotation angle ⁇ 2 of the rotating body 35 is made equal to the turning angle ⁇ 1 of the moving body 3, the imaging direction of the sensor 21 will hardly deviate from the original traveling direction (X direction) of the moving body 3. As a result, blurring of the image of the sensor 21 is further suppressed.
  • (Fourth embodiment) 14 and 15 are conceptual diagrams showing an example of the operation of the mobile system 1 according to the fourth embodiment.
  • the sensor system 2 according to the fourth embodiment directly acquires motion information indicating the traveling direction or turning direction of the movable body 3 from the movable body 3, and rotates the rotating body 35 and the sensor unit 20 based on the motion information of the movable body 3.
  • the rotating body 35 and the sensor unit 20 are rotated to obtain an image in the turning direction of the moving body 3 before the movement of the moving body 3 starts. can be obtained in advance. Thereby, even when the moving body 3 turns, the mobile system 1 can turn after confirming the surrounding information in the turning direction.
  • the moving body 3 is initially moving in the X direction, and the sensor 21 is capturing an image in the moving direction (X direction) of the moving body 3.
  • the signal processing unit 23 acquires from the moving body 3 information that the moving body 3 is turning, the turning direction, and the turning angle ⁇ 1.
  • the rotating body control section 31 rotates the rotating body 35 and the sensor section 20 by an angle ⁇ 2 in the turning direction of the moving body 3.
  • the rotation angle ⁇ 2 of the rotating body 35 may or may not necessarily be the same as the turning angle ⁇ 1 of the moving body 3.
  • FIG. 16 is a block diagram showing a configuration example of the mobile system 1 according to the fourth embodiment.
  • the movable body 3 includes a movable body control section 41 and a movable body motor 42.
  • the mobile body control unit 41 transmits a mobile body control signal to the mobile body motor 42.
  • the moving object control signal is a signal indicating the operation of the moving object 3, and includes control signals such as a traveling speed, a turning direction, and a turning angle.
  • the moving body motor 42 drives the wheels of the moving body 3 based on the moving system signal. This allows the moving body 3 to move or turn.
  • the moving body control unit 41 transmits a moving body control signal to the rotating body control unit 31 while synchronizing with the rotating body control unit 31 of the rotating unit 30 using a synchronization signal.
  • the rotating body control unit 31 can know operation information of the moving body 3 such as the turning direction and turning angle of the moving body 3 from the moving body control signal. It is preferable that the rotating body control unit 31 acquires the moving body control signal before the moving body motor 42. Thereby, before the moving body 3 starts turning, the sensor 21 can image the situation in the turning direction.
  • the signal processing unit 23 may generate an image from the imaging data from the sensor 21, and use the image to determine whether or not the moving body 3 can turn.
  • the sensor 21 can image the situation in the turning direction before the moving object 3 starts turning.
  • the signal processing unit 23 may transmit a signal indicating that the mobile body 3 is prohibited from turning to the mobile body control unit 41 of the mobile body 3 together with a synchronization signal.
  • the movable body control section 41 can prevent the movable body 3 from turning without transmitting the movable body control signal to the movable body motor 42.
  • FIG. 17 is a flow diagram showing an example of the operation of the fourth embodiment.
  • steps S11 to S31 are executed.
  • the moving body 3 moves, and the sensor system 2 captures an image in the moving direction (X direction) of the moving body 3.
  • the sensor control section 22 transmits a signal indicating the start of imaging to the rotating body control section 31 together with a synchronization signal, and synchronizes with the rotating body control section 31 .
  • the rotating body control unit 31 may prohibit or allow rotation of the rotating body 35 and the sensor unit 20 during the imaging period of the sensor 21.
  • the moving body control unit 41 is synchronized with the rotating body control unit 31 and transmits a moving body control signal to the rotating body control unit 31 (S43).
  • the moving body control signal includes information such as the turning direction and turning angle of the moving body 3. Therefore, the rotating body control unit 31 can know the turning direction and turning angle of the moving body 3 in advance.
  • steps S11 to S31 and S43 are repeated. At this time, the rotating body control section 31 does not need to rotate the rotating body 35.
  • the rotating body control unit 31 rotates the rotating body 35 and the sensor unit 20 in the turning direction of the moving body 3 before the moving body 3 starts turning.
  • the rotation angle ⁇ 2 of the rotating body 35 is preferably the same as the turning angle ⁇ 1 of the moving body 3, but does not necessarily have to be the same.
  • the sensor system 2 images the turning direction of the moving body 3 (S73).
  • the rotating body 35 and the sensor section 20 are rotated by an angle ⁇ 2 from the traveling direction (for example, the X direction) of the moving body 3 to the turning direction (for example, the +Y direction).
  • the sensor 21 can image the surroundings while rotating in the turning direction of the moving body 3.
  • the signal processing unit 23 determines whether the moving body 3 can turn based on the image generated from the image data from the sensor 21 (S83).
  • the signal processing unit 23 determines the presence or absence of an obstacle W from the image in the turning direction of the moving body 3, and determines whether the moving body 3 can turn (S83).
  • the recognition unit 26 may determine from the image whether or not the moving body 3 can turn.
  • the signal processing unit 23 transmits a signal indicating that it can turn to the moving body control unit 41 and the rotating body control unit 31 together with a synchronization signal, and 3 is permitted to turn (S93).
  • the mobile body control unit 41 transmits a mobile body control signal for controlling the turning operation of the mobile body 3 to the mobile body motor 42 . As a result, the moving body 3 starts turning.
  • the rotating body control unit 31 can know the turning operation of the moving body 3 in advance based on a signal from the signal processing unit 23 instead of recognizing the turning of the moving body 3 based on the image from the sensor 21. Therefore, the rotating body control section 31 can rotate the rotating body 35 and the sensor section 20 before the moving body 3 starts turning.
  • the rotating body control unit 31 may rotate the rotating body 35 and the sensor unit 20 back to their original positions according to the turning operation of the moving body 3.
  • the rotating body 35 and the sensor unit 20 may be rotated by an angle ⁇ 2 in the direction opposite to the turning direction of the moving body 3, and the sensor 21 may be directed again in the direction in which the moving body 3 moves after the turning operation.
  • the sensor 21 can continuously image the moving direction of the moving body 3.
  • the signal processing unit 23 transmits a signal indicating that turning is not possible together with a synchronization signal to the moving body control unit 41 and the rotating body control unit 31, and 3 turning is prohibited (S103).
  • the moving object control unit 41 prohibits the turning operation of the moving object 3 and does not transmit a moving object control signal to the moving object motor 42. As a result, the moving body 3 does not turn.
  • the rotating body control unit 31 can know from the signal from the signal processing unit 23 that the moving body 3 will not turn. Therefore, the rotating body control unit 31 can return the orientation of the rotating body 35 and the sensor unit 20 to the traveling direction of the moving body 3 (X direction). For example, the rotating body 35 and the sensor unit 20 may be rotated by an angle ⁇ 2 in the direction opposite to the turning direction of the moving body 3, and returned to the traveling direction (X direction) of the moving body 3.
  • Steps S11 to S103 are repeated until the movement of the moving body 3 is completed or until the imaging by the sensor 21 is completed (NO in S113).
  • the movement of the mobile body 3 ends or the imaging by the sensor 21 ends ends (YES in S113), the operation of the mobile system 1 ends.
  • the rotating body control unit 31 can know the operation information of the moving body 3 such as the turning direction and the turning angle of the moving body 3 from the moving body control signal before the moving body 3 turns.
  • the sensor 21 can take an image of the situation in the turning direction in advance.
  • the signal processing unit 23 generates an image using the imaging data from the sensor 21, and can determine whether or not the moving body 3 can turn based on the image.
  • the moving body 3 can start turning based on the determination by the signal processing unit 23 as to whether or not it can turn, or can proceed straight without turning.
  • FIG. 18 is a flow diagram showing an example of the operation of the fifth embodiment.
  • the configuration of the mobile system 1 according to the fifth embodiment may be the same as that of the fourth embodiment.
  • the sensor system 2 directly acquires motion information indicating the traveling direction or turning direction of the movable body 3 from the movable body 3, and controls the rotating body 35 and the sensor unit 20 based on the motion information of the movable body 3. It is similar to the fourth embodiment in that it is rotated. However, in the fifth embodiment, the rotating body 35 and the sensor unit 20 are rotated in the opposite direction to the turning direction of the moving body 3 in order to suppress image blur due to the turning of the moving body 3.
  • steps S11 to S53 are executed.
  • the moving body 3 moves, and the sensor system 2 captures an image in the moving direction (X direction) of the moving body 3.
  • the moving body control unit 41 is synchronized with the rotating body control unit 31 and transmits a moving body control signal to the rotating body control unit 31 (S43).
  • the moving body control signal includes information such as the turning direction and turning angle of the moving body 3. Therefore, the rotating body control unit 31 can know the turning direction and turning angle of the moving body 3 in advance.
  • steps S11 to S31 and S43 are repeated. At this time, the rotating body control section 31 does not need to rotate the rotating body 35.
  • the rotating body control unit 31 controls the rotating body 35 and the sensor in a direction opposite to the turning direction of the moving body 3.
  • the section 20 is rotated (S64).
  • the imaging direction of the sensor 21 does not deviate much from the initial traveling direction (X direction) of the moving body 3.
  • the rotation angle ⁇ 2 of the rotating body 35 is substantially the same as the turning angle ⁇ 1 of the moving body 3
  • the imaging direction of the sensor 21 hardly deviates from the initial traveling direction (X direction) of the moving body 3.
  • the rotation angle ⁇ 2 of the rotating body 35 does not necessarily have to be the same as the turning angle ⁇ 1 of the moving body 3. Even in this case, the effect of suppressing image blur due to the rotation of the moving body 3 can be obtained.
  • steps S11 to S64 are repeated until the movement of the moving body 3 is completed or until the imaging of the sensor 21 is completed (NO in S113).
  • steps S11 to S64 are repeated until the movement of the moving body 3 is completed or until the imaging of the sensor 21 is completed (NO in S113).
  • the fifth embodiment can obtain the same effects as the third embodiment.
  • the rotating body control unit 31 directly obtains the moving body control signal from the moving body 3, and determines the turning direction, turning angle, etc. of the moving body 3 from the moving body control signal. Operation information can be known before the moving body 3 turns. Thereby, the sensor system 2 can rotate the rotating body 35 almost simultaneously with the turning of the moving body 3 without any delay.
  • the mobile system 1 can acquire a wide range of surrounding information using images or by rotating the sensor 21 in synchronization with the control signal of the mobile body 3. Thereby, the mobile system 1 can acquire a wide range of surrounding information at low cost.
  • the technology according to the present disclosure (this technology) can be applied to various products.
  • the technology according to the present disclosure may be realized as a device mounted on any type of moving body such as a car, electric vehicle, hybrid electric vehicle, motorcycle, bicycle, personal mobility, airplane, drone, ship, robot, etc. It's okay.
  • FIG. 19 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile object control system to which the technology according to the present disclosure can be applied.
  • the vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside vehicle information detection unit 12030, an inside vehicle information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio/image output section 12052, and an in-vehicle network I/F (Interface) 12053 are illustrated as the functional configuration of the integrated control unit 12050.
  • the drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs.
  • the drive system control unit 12010 includes a drive force generation device such as an internal combustion engine or a drive motor that generates drive force for the vehicle, a drive force transmission mechanism that transmits the drive force to wheels, and a drive force transmission mechanism that controls the steering angle of the vehicle. It functions as a control device for a steering mechanism to adjust and a braking device to generate braking force for the vehicle.
  • the body system control unit 12020 controls the operations of various devices installed in the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as a headlamp, a back lamp, a brake lamp, a turn signal, or a fog lamp.
  • radio waves transmitted from a portable device that replaces a key or signals from various switches may be input to the body control unit 12020.
  • the body system control unit 12020 receives input of these radio waves or signals, and controls the door lock device, power window device, lamp, etc. of the vehicle.
  • the external information detection unit 12030 detects information external to the vehicle in which the vehicle control system 12000 is mounted.
  • an imaging section 12031 is connected to the outside-vehicle information detection unit 12030.
  • the vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image of the exterior of the vehicle, and receives the captured image.
  • the external information detection unit 12030 may perform object detection processing such as a person, car, obstacle, sign, or text on the road surface or distance detection processing based on the received image.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal according to the amount of received light.
  • the imaging unit 12031 can output the electrical signal as an image or as distance measurement information.
  • the light received by the imaging unit 12031 may be visible light or non-visible light such as infrared rays.
  • the in-vehicle information detection unit 12040 detects in-vehicle information.
  • a driver condition detection section 12041 that detects the condition of the driver is connected to the in-vehicle information detection unit 12040.
  • the driver condition detection unit 12041 includes, for example, a camera that images the driver, and the in-vehicle information detection unit 12040 detects the degree of fatigue or concentration of the driver based on the detection information input from the driver condition detection unit 12041. It may be calculated, or it may be determined whether the driver is falling asleep.
  • the microcomputer 12051 calculates control target values for the driving force generation device, steering mechanism, or braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, Control commands can be output to 12010.
  • the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions, including vehicle collision avoidance or impact mitigation, following distance based on vehicle distance, vehicle speed maintenance, vehicle collision warning, vehicle lane departure warning, etc. It is possible to perform cooperative control for the purpose of ADAS (Advanced Driver Assistance System) functions, including vehicle collision avoidance or impact mitigation, following distance based on vehicle distance, vehicle speed maintenance, vehicle collision warning, vehicle lane departure warning, etc. It is possible to perform cooperative control for the purpose of
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 controls the driving force generating device, steering mechanism, braking device, etc. based on information about the surroundings of the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040. It is possible to perform cooperative control for the purpose of autonomous driving, etc., which does not rely on operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12030 based on the information outside the vehicle acquired by the outside information detection unit 12030.
  • the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or oncoming vehicle detected by the vehicle exterior information detection unit 12030, and performs cooperative control for the purpose of preventing glare, such as switching from high beam to low beam. It can be carried out.
  • the audio and image output unit 12052 transmits an output signal of at least one of audio and images to an output device that can visually or audibly notify information to the occupants of the vehicle or to the outside of the vehicle.
  • an audio speaker 12061, a display section 12062, and an instrument panel 12063 are illustrated as output devices.
  • the display unit 12062 may include, for example, at least one of an on-board display and a head-up display.
  • FIG. 20 is a diagram showing an example of the installation position of the imaging section 12031.
  • the imaging unit 12031 includes imaging units 12101, 12102, 12103, 12104, and 12105.
  • the imaging units 12101, 12102, 12103, 12104, and 12105 are provided at, for example, the front nose of the vehicle 12100, the side mirrors, the rear bumper, the back door, and the upper part of the windshield inside the vehicle.
  • An imaging unit 12101 provided in the front nose and an imaging unit 12105 provided above the windshield inside the vehicle mainly acquire images in front of the vehicle 12100.
  • Imaging units 12102 and 12103 provided in the side mirrors mainly capture images of the sides of the vehicle 12100.
  • An imaging unit 12104 provided in the rear bumper or back door mainly captures images of the rear of the vehicle 12100.
  • the imaging unit 12105 provided above the windshield inside the vehicle is mainly used to detect preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, and the like.
  • FIG. 20 shows an example of the imaging range of the imaging units 12101 to 12104.
  • An imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose
  • imaging ranges 12112 and 12113 indicate imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors, respectively
  • an imaging range 12114 shows the imaging range of the imaging unit 12101 provided on the front nose.
  • the imaging range of the imaging unit 12104 provided in the rear bumper or back door is shown. For example, by overlapping the image data captured by the imaging units 12101 to 12104, an overhead image of the vehicle 12100 viewed from above can be obtained.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the imaging units 12101 to 12104 may be a stereo camera including a plurality of image sensors, or may be an image sensor having pixels for phase difference detection.
  • the microcomputer 12051 determines the distance to each three-dimensional object within the imaging ranges 12111 to 12114 and the temporal change in this distance (relative speed with respect to the vehicle 12100) based on the distance information obtained from the imaging units 12101 to 12104. By determining the following, it is possible to extract, in particular, the closest three-dimensional object on the path of vehicle 12100, which is traveling at a predetermined speed (for example, 0 km/h or more) in approximately the same direction as vehicle 12100, as the preceding vehicle. can. Furthermore, the microcomputer 12051 can set an inter-vehicle distance to be secured in advance in front of the preceding vehicle, and perform automatic brake control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform cooperative control for the purpose of autonomous driving, etc., in which the vehicle travels autonomously without depending on the driver's operation.
  • automatic brake control including follow-up stop control
  • automatic acceleration control including follow-up start control
  • the microcomputer 12051 transfers three-dimensional object data to other three-dimensional objects such as two-wheeled vehicles, regular vehicles, large vehicles, pedestrians, and utility poles based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic obstacle avoidance. For example, the microcomputer 12051 identifies obstacles around the vehicle 12100 into obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines a collision risk indicating the degree of risk of collision with each obstacle, and when the collision risk exceeds a set value and there is a possibility of a collision, the microcomputer 12051 transmits information via the audio speaker 12061 and the display unit 12062. By outputting a warning to the driver via the vehicle control unit 12010 and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be provided.
  • the microcomputer 12051 determines a collision risk indicating the degree of risk of collision with each obstacle, and when the collision risk exceed
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether the pedestrian is present in the images captured by the imaging units 12101 to 12104.
  • pedestrian recognition involves, for example, a procedure for extracting feature points in images captured by the imaging units 12101 to 12104 as infrared cameras, and a pattern matching process is performed on a series of feature points indicating the outline of an object to determine whether it is a pedestrian or not.
  • the audio image output unit 12052 creates a rectangular outline for emphasis on the recognized pedestrian.
  • the display unit 12062 is controlled to display the .
  • the audio image output unit 12052 may control the display unit 12062 to display an icon or the like indicating a pedestrian at a desired position.
  • the present technology can have the following configuration. (1) a rotating body rotatable around a first axis; a rotating body control section that controls the rotating body; a sensor disposed on the rotating body to acquire surrounding information; a sensor control unit that controls the sensor based on control timing of the rotating body control unit; A sensor system comprising: a signal processing unit that processes the surrounding information acquired by the sensor. (2) When the rotating body control unit rotates the rotating body, the sensor control unit stops acquiring the surrounding information of the sensor, The sensor system according to (1), wherein when the rotating body control unit stops rotation of the rotating body, the sensor control unit starts acquiring the surrounding information of the sensor.
  • the signal processing unit transmits a permission signal that enables rotation of the rotating body to the rotating body control unit. sensor system.
  • the signal processing unit acquires an image or a distance of an object in front of the sensor using the surrounding information, The sensor system according to (1) or (2), wherein the rotating body control unit rotates the rotating body based on an image or distance of the object.
  • the signal processing unit detects a turning direction of the mobile body based on movement of the entire surrounding information, The sensor system according to (1) or (2), wherein the rotating body control unit rotates the rotating body in a direction opposite to the turning direction.
  • the signal processing unit calculates a turning angle of the rotating body based on the movement of the entire surrounding information,
  • a rotating body rotatable about a first axis, a rotating body control section that controls the rotating body, a sensor arranged on the rotating body that acquires surrounding information, and a control timing of the rotating body control section.
  • a mobile body equipped with a sensor system including a sensor control unit that controls the sensor, and a signal processing unit that processes the surrounding information acquired by the sensor, and A mobile body system comprising a mobile body control unit that controls the mobile body.
  • the rotating body control unit rotates the rotating body in the turning direction of the moving body before turning the moving body
  • the sensor acquires the surrounding information while the rotating body is rotated in the turning direction
  • the signal processing unit outputs a permission signal that enables the mobile body to turn based on the surrounding information to the mobile body control unit,
  • the mobile system according to (8), wherein the mobile body control unit turns the mobile body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Studio Devices (AREA)
  • Traffic Control Systems (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)

Abstract

[Problem] To provide an imaging device and a movable body system that enable vicinity information for a wide range to be acquired at a low cost. [Solution] A sensor system according to the present embodiment comprises: a rotating body that is capable of rotating about a first axis; a rotating-body control unit that controls the rotating body; a sensor that is disposed on the rotating body and acquires vicinity information; a sensor control unit that controls the sensor on the basis of the control timing of the rotating-body control unit; and a signal processing unit that processes the vicinity information acquired by the sensor.

Description

センサシステムおよび移動体システムSensor systems and mobile systems
 本開示は、センサシステムおよび移動体システムに関する。 The present disclosure relates to a sensor system and a mobile system.
 AGV(Automatic Guided Vehicle)またはAMR(Autonomous Mobile Robot)等の自律移動体は、周囲の環境情報の取得のためにToF(Time of Fight)センサ等の撮像センサを有する場合がある。 Autonomous mobile objects such as AGVs (Automatic Guided Vehicles) or AMRs (Autonomous Mobile Robots) may have imaging sensors such as ToF (Time of Fight) sensors to obtain surrounding environmental information.
 しかし、移動体に撮像センサを配置する位置は限定されており、撮像センサの撮像範囲は限定的であった。また、撮像範囲を広範囲にするためには、複数の撮像センサを移動体に搭載する必要があった。この場合、コストの増加や画像データのデータ量の増加が懸念される。 However, the position where the image sensor is placed on the moving body is limited, and the imaging range of the image sensor is limited. Furthermore, in order to widen the imaging range, it was necessary to mount a plurality of imaging sensors on the moving object. In this case, there are concerns about an increase in cost and an increase in the amount of image data.
特開2021-148746号公報Japanese Patent Application Publication No. 2021-148746 特開2021-105611号公報JP2021-105611A
 低コストで広範囲の周囲情報の取得を可能にする撮像装置および移動体システムを提供する。 To provide an imaging device and a mobile system that enable acquisition of a wide range of surrounding information at low cost.
 本開示の一側面のセンサシステムは、第1軸を中心として回転可能な回転体と、回転体を制御する回転体制御部と、回転体に配置され周囲情報を取得するセンサと、回転体制御部の制御タイミングに基づいてセンサを制御するセンサ制御部と、センサで取得された周囲情報を処理する信号処理部とを備える。 A sensor system according to an aspect of the present disclosure includes a rotating body that is rotatable about a first axis, a rotating body control unit that controls the rotating body, a sensor that is arranged on the rotating body and acquires surrounding information, and a rotating body control unit that controls the rotating body. The sensor includes a sensor control section that controls the sensor based on control timing of the sensor, and a signal processing section that processes surrounding information acquired by the sensor.
 回転体制御部が回転体を回転させるときに、センサ制御部は、センサの周囲情報の取得を停止し、回転体制御部が回転体の回転を停止したときに、センサ制御部は、センサの周囲情報の取得を開始させる。 When the rotating body control unit rotates the rotating body, the sensor control unit stops acquiring surrounding information of the sensor, and when the rotating body control unit stops rotating the rotating body, the sensor control unit stops acquiring the surrounding information of the sensor. Start acquiring surrounding information.
 センサが周囲情報の取得を停止したときに、信号処理部は、回転体の回転を可能にする許可信号を回転体制御部に送信する。 When the sensor stops acquiring surrounding information, the signal processing unit transmits a permission signal that enables rotation of the rotating body to the rotating body control unit.
 信号処理部は、周囲情報でセンサの前にある物体の画像または距離を取得し、回転体制御部は、物体の画像または距離に基づいて、回転体を回転させる。 The signal processing unit acquires an image or distance of an object in front of the sensor using surrounding information, and the rotating body control unit rotates the rotating body based on the image or distance of the object.
 信号処理部は、周囲情報全体の移動によって移動体の旋回方向を検出し、回転体制御部は、旋回方向とは逆方向へ回転体を回転させる。 The signal processing unit detects the turning direction of the moving body based on the movement of the entire surrounding information, and the rotating body control unit rotates the rotating body in a direction opposite to the turning direction.
 信号処理部は、周囲情報全体の移動に基づいて回転体の旋回角度を演算し、回転体制御部は、旋回方向とは逆方向へ旋回角度だけ回転体を回転させる。 The signal processing unit calculates the rotation angle of the rotating body based on the movement of the entire surrounding information, and the rotating body control unit rotates the rotating body by the rotation angle in a direction opposite to the rotation direction.
 センサは、CISまたはToFを含む。 The sensor includes CIS or ToF.
 本開示の一側面の移動体システムは、第1軸を中心として回転可能な回転体と、前記回転体を制御する回転体制御部と、前記回転体に配置され周囲情報を取得するセンサと、前記回転体制御部の制御タイミングに基づいて前記センサを制御するセンサ制御部と、前記センサで取得された前記周囲情報を処理する信号処理部とを備えるセンサシステムを搭載する移動体、および、前記移動体を制御する移動体制御部を備える。 A mobile system according to one aspect of the present disclosure includes: a rotating body that is rotatable about a first axis; a rotating body control unit that controls the rotating body; and a sensor that is disposed on the rotating body and acquires surrounding information. A mobile body equipped with a sensor system including a sensor control unit that controls the sensor based on control timing of the rotating body control unit, and a signal processing unit that processes the surrounding information acquired by the sensor; A mobile body control section that controls the mobile body is provided.
 移動体制御部が移動体を旋回させるときに、回転体制御部は、該移動体の旋回前に、回転体を移動体の旋回方向へ回転させ、センサは、回転体を旋回方向へ回転させた状態で周囲情報を取得し、信号処理部は、周囲情報に基づいて移動体の旋回を可能にする許可信号を移動体制御部へ出力し、移動体制御部は、移動体を旋回させる。 When the moving body control unit turns the moving body, the rotating body control unit rotates the rotating body in the turning direction of the moving body before turning the moving body, and the sensor rotates the rotating body in the turning direction. The signal processing unit outputs a permission signal that enables the mobile body to turn based on the surrounding information to the mobile body control unit, and the mobile body control unit causes the mobile body to turn.
 移動体制御部が移動体を第1角度だけ旋回させるときに、回転体制御部は、移動体の旋回方向へ第1角度だけ回転体を回転させる。 When the moving body control section rotates the moving body by the first angle, the rotating body control section rotates the rotating body by the first angle in the turning direction of the moving body.
 移動体制御部が移動体を旋回させるときに、回転体制御部は、該移動体の旋回とほぼ同時に、回転体を移動体の旋回方向とは逆方向へ回転させる。 When the moving body control unit turns the moving body, the rotating body control unit rotates the rotating body in a direction opposite to the turning direction of the moving body almost simultaneously with the turning of the moving body.
 移動体制御部が移動体を第1角度だけ旋回させるときに、回転体制御部は、移動体の旋回方向とは逆方向へ第1角度だけ回転体を回転させる。 When the moving body control section rotates the moving body by the first angle, the rotating body control section rotates the rotating body by the first angle in a direction opposite to the turning direction of the moving body.
 センサは、CIS、ToFまたはステレオカメラを含む。 The sensor includes a CIS, ToF or stereo camera.
第1実施形態による移動体システムの構成例を示す概略側面図。FIG. 1 is a schematic side view showing a configuration example of a mobile system according to a first embodiment. 第1実施形態による移動体システムの構成例を示す概略平面図。FIG. 1 is a schematic plan view showing a configuration example of a mobile system according to a first embodiment. センサシステムの動作を示す概念図。A conceptual diagram showing the operation of the sensor system. センサシステムの構成例を示す図。The figure which shows the example of a structure of a sensor system. センサシステムの構成例を示すブロック図。FIG. 2 is a block diagram showing a configuration example of a sensor system. 第1実施形態によるセンサシステムの動作例を示すフロー図。FIG. 3 is a flow diagram showing an example of the operation of the sensor system according to the first embodiment. 第2実施形態によるセンサシステムの動作例を示す概念図。FIG. 7 is a conceptual diagram showing an example of the operation of the sensor system according to the second embodiment. 第2実施形態によるセンサシステムの構成例を示すブロック図。FIG. 2 is a block diagram showing a configuration example of a sensor system according to a second embodiment. 第2実施形態の動作例を示すフロー図。FIG. 7 is a flow diagram showing an example of the operation of the second embodiment. 第3実施形態によるセンサシステムの動作例を示す概念図。FIG. 7 is a conceptual diagram showing an example of the operation of the sensor system according to the third embodiment. 第3実施形態によるセンサシステムの動作例を示す概念図。FIG. 7 is a conceptual diagram showing an example of the operation of the sensor system according to the third embodiment. 第3実施形態によるセンサシステムの構成例を示すブロック図。FIG. 7 is a block diagram showing a configuration example of a sensor system according to a third embodiment. 第3実施形態の動作例を示すフロー図。FIG. 7 is a flowchart showing an example of the operation of the third embodiment. 第4実施形態による移動体システムの動作例を示す概念図。FIG. 7 is a conceptual diagram showing an example of the operation of the mobile system according to the fourth embodiment. 第4実施形態による移動体システムの動作例を示す概念図。FIG. 7 is a conceptual diagram showing an example of the operation of the mobile system according to the fourth embodiment. 第4実施形態による移動体システムの構成例を示すブロック図。FIG. 7 is a block diagram showing a configuration example of a mobile system according to a fourth embodiment. 第4実施形態の動作例を示すフロー図。FIG. 7 is a flowchart showing an example of the operation of the fourth embodiment. 第5実施形態の動作例を示すフロー図。FIG. 7 is a flowchart showing an example of the operation of the fifth embodiment. 車両制御システムの概略的な構成例を示すブロック図。FIG. 1 is a block diagram showing a schematic configuration example of a vehicle control system. 撮像部の設置位置の例を示す図。The figure which shows the example of the installation position of an imaging part.
 以下、本技術を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。図面は模式的または概念的なものであり、各部分の比率などは、必ずしも現実のものと同一とは限らない。明細書と図面において、既出の図面に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。 Hereinafter, specific embodiments to which the present technology is applied will be described in detail with reference to the drawings. The drawings are schematic or conceptual, and the proportions of each part are not necessarily the same as in reality. In the specification and drawings, the same elements as those described above with respect to the existing drawings are denoted by the same reference numerals, and detailed description thereof will be omitted as appropriate.
(第1実施形態)
 図1は、第1実施形態による移動体システム1の構成例を示す概略側面図である。図2は、第1実施形態による移動体システム1の構成例を示す概略平面図である。
(First embodiment)
FIG. 1 is a schematic side view showing a configuration example of a mobile system 1 according to the first embodiment. FIG. 2 is a schematic plan view showing a configuration example of the mobile system 1 according to the first embodiment.
 移動体システム1は、例えば、AGVまたはAMR等の自律移動体であり、物流倉庫や工場等で自律的に走行可能である。また、移動体システム1は、自動車、飛行機、ドローン等にも適用可能である。移動体システム1は、センサシステム2および移動体3を備えている。移動体3は、床面、地面、空間等を移動可能に構成されており、センサシステム2を搭載している。移動体3は、箱状の本体を有し、荷物等を搭載して移動することができる。移動体3は、センサシステム2で検出した周囲情報に基づいて自律的に走行することができる。尚、移動体3は、自律動作しない移動体であってもよい。 The mobile system 1 is, for example, an autonomous mobile such as an AGV or an AMR, and is capable of autonomously traveling in a distribution warehouse, factory, or the like. Furthermore, the mobile system 1 is also applicable to automobiles, airplanes, drones, and the like. The mobile system 1 includes a sensor system 2 and a mobile body 3. The moving body 3 is configured to be movable on the floor, the ground, space, etc., and is equipped with the sensor system 2. The moving body 3 has a box-shaped main body, and can be loaded with luggage and the like and moved. The mobile object 3 can autonomously travel based on surrounding information detected by the sensor system 2. Note that the moving body 3 may be a moving body that does not operate autonomously.
 センサシステム2は、3Dセンシングデバイスでよく、例えば、CIS(CMOS(Complementary Metal Oxide Semiconductor) Image Sensor)等の画像センサ、ToF(Time of Fright)等の測距センサ、ステレオカメラ、Lider等のいずれか、あるいは、これらの組み合わせでよい。センサシステム2は、荷物等に干渉しないように移動体3の本体の端部に配置されている。 The sensor system 2 may be a 3D sensing device, such as an image sensor such as CIS (CMOS (Complementary Metal Oxide Semiconductor) Image Sensor), a distance measurement sensor such as ToF (Time of Fright), a stereo camera, Lider, etc. , or a combination of these. The sensor system 2 is placed at the end of the main body of the moving body 3 so as not to interfere with luggage or the like.
 図3は、センサシステム2の動作を示す概念図である。センサシステム2は、移動体3において第1軸としてのZ軸を中心として回転可能に取り付けられている。例えば、センサシステム2は、移動体3の進行方向(X方向)を検出しており、移動体3が進行方向に対して±Y方向に旋回する場合に、±Y方向に角度θだけ回転して周囲情報を検出する。周囲情報は、例えば、移動体システム1の周囲の画像情報または測距情報でよい。 FIG. 3 is a conceptual diagram showing the operation of the sensor system 2. The sensor system 2 is attached to the moving body 3 so as to be rotatable about the Z axis as a first axis. For example, the sensor system 2 detects the moving direction (X direction) of the moving object 3, and when the moving object 3 turns in the ±Y direction with respect to the moving direction, the sensor system 2 rotates by an angle θ in the ±Y direction. to detect surrounding information. The surrounding information may be, for example, image information or distance measurement information around the mobile system 1.
 図4は、センサシステム2の構成例を示す図である。センサシステム2は、センサ部20と、回転部30とを備えている。回転部30は、基体34と、回転体35とを備えている。基体34は、移動体3に対して固定されており、Z軸を中心として回転体35を回転させる。回転体35は、基体34からZ方向に延伸しており、基体34に対してZ軸を中心に回転可能に構成されている。センサ部20は、回転体35に配置されており、回転体35とともにZ軸を中心に回転可能となっている。センサ部20は、周囲情報を取得することができる。 FIG. 4 is a diagram showing a configuration example of the sensor system 2. The sensor system 2 includes a sensor section 20 and a rotating section 30. The rotating section 30 includes a base body 34 and a rotating body 35. The base body 34 is fixed to the movable body 3 and rotates a rotating body 35 around the Z axis. The rotating body 35 extends from the base body 34 in the Z direction, and is configured to be rotatable about the Z axis with respect to the base body 34 . The sensor section 20 is disposed on the rotating body 35 and is rotatable about the Z-axis together with the rotating body 35. The sensor unit 20 can acquire surrounding information.
 図5は、センサシステム2の構成例を示すブロック図である。センサ部20は、センサ21と、センサ制御部22と、信号処理部23とを備えている。回転部30は、回転体制御部31と、回転体モータ32と、回転体35とを備えている。尚、基体34の図示は、図5では省略している。 FIG. 5 is a block diagram showing a configuration example of the sensor system 2. The sensor section 20 includes a sensor 21, a sensor control section 22, and a signal processing section 23. The rotating unit 30 includes a rotating body control unit 31, a rotating body motor 32, and a rotating body 35. Note that illustration of the base body 34 is omitted in FIG. 5.
 センサ制御部22は、回転部30の回転体制御部31と同期信号で同期をとりながら、撮像制御信号をセンサ21へ送信する。即ち、センサ制御部22は、回転体制御部31の制御タイミングに基づいてセンサ21を制御する。センサ21は、センサ制御部22からの撮像制御信号に従って周囲情報を取得する。センサ21は、例えば、CISチップまたはToFチップでよい。信号処理部23は、画像生成部24と、タイミング制御部25とを備える。画像生成部24は、センサ21で取得された周囲情報としての撮像データを処理し、移動体3の周囲の画像を生成する。タイミング制御部25は、撮像データの取得を終了すると、撮像終了を示す同期信号を回転部30の回転体制御部31へ送信する。これにより、センサ部20は、回転部30と同期して回転体35の回転(即ち、センサ部20の回転)のタイミングで撮像を開始したり、停止したりすることができる。また、回転部30は、センサ部20と同期して、撮像のタイミングで回転体35の回転(即ち、センサ部20の回転)を開始したり、停止したりすることができる。尚、センサ部20のセンサ21、センサ制御部22、信号処理部23は、1つの半導体チップで構成されていてもよく、複数の半導体チップで構成されていてもよい。複数の半導体チップで構成する場合、複数の半導体チップは、積層させて配線同士を接合(Cu-Cu接合)してもよい。 The sensor control unit 22 transmits an imaging control signal to the sensor 21 while being synchronized with the rotating body control unit 31 of the rotating unit 30 using a synchronization signal. That is, the sensor control section 22 controls the sensor 21 based on the control timing of the rotating body control section 31. The sensor 21 acquires surrounding information according to an imaging control signal from the sensor control unit 22. The sensor 21 may be, for example, a CIS chip or a ToF chip. The signal processing section 23 includes an image generation section 24 and a timing control section 25. The image generation unit 24 processes imaging data as surrounding information acquired by the sensor 21 and generates an image of the surroundings of the moving body 3. When the timing control unit 25 finishes acquiring the imaging data, it transmits a synchronization signal indicating the end of imaging to the rotating body control unit 31 of the rotating unit 30. Thereby, the sensor section 20 can start or stop imaging at the timing of the rotation of the rotating body 35 (that is, the rotation of the sensor section 20) in synchronization with the rotating section 30. Further, the rotating unit 30 can start or stop the rotation of the rotating body 35 (that is, the rotation of the sensor unit 20) at the timing of imaging in synchronization with the sensor unit 20. Note that the sensor 21, the sensor control section 22, and the signal processing section 23 of the sensor section 20 may be composed of one semiconductor chip or may be composed of a plurality of semiconductor chips. When configured with a plurality of semiconductor chips, the plurality of semiconductor chips may be stacked and the wirings may be bonded to each other (Cu--Cu bonding).
 回転体制御部31は、回転体制御信号および角度信号を回転体モータ32へ送信し、回転体モータ32および回転体35を制御する。回転体モータ32は、回転体制御部31からの回転体制御信号で制御され、角度信号に基づいた角度まで回転体35を回転させる。回転体制御信号は、例えば、回転体35の回転方向、回転速度、回転開始タイミング等を示す。角度信号は、回転体35の回転角度を示し、例えば、図3の角度θを示す。回転体制御部31は、センサ制御部22および信号処理部23と同期して、例えば、センサ制御部22がセンサ21において撮像を停止し、かつ、信号処理部23において画像の生成が終了したときに、回転体35の回転を開始可能にする。 The rotating body control unit 31 transmits a rotating body control signal and an angle signal to the rotating body motor 32, and controls the rotating body motor 32 and the rotating body 35. The rotating body motor 32 is controlled by a rotating body control signal from the rotating body control section 31, and rotates the rotating body 35 to an angle based on the angle signal. The rotating body control signal indicates, for example, the rotation direction, rotation speed, rotation start timing, etc. of the rotating body 35. The angle signal indicates the rotation angle of the rotating body 35, and indicates, for example, the angle θ in FIG. The rotating body control unit 31 synchronizes with the sensor control unit 22 and the signal processing unit 23, for example, when the sensor control unit 22 stops imaging in the sensor 21 and the signal processing unit 23 finishes generating an image. Then, the rotation of the rotating body 35 can be started.
 次に、本実施形態によるセンサシステム2の動作を説明する。尚、以下、センサシステム2は、周囲の画像を撮像する撮像システムとして説明する。しかし、センサシステム2は、周囲の物体の距離を測定する測距システムであってもよい。 Next, the operation of the sensor system 2 according to this embodiment will be explained. Note that the sensor system 2 will be described below as an imaging system that captures images of the surroundings. However, the sensor system 2 may also be a ranging system that measures distances of surrounding objects.
 図6は、第1実施形態によるセンサシステム2の動作例を示すフロー図である。本実施形態では、回転体35が回転して停止した後、センサ部20がその周囲を撮像する。センサ部20が撮像した後、回転体制御部31は回転体35の回転を可能にする。本実施形態によるセンサシステム2は、このような回転体35の回転とセンサ部20による撮像とを繰り返すことによって周囲情報を得る。 FIG. 6 is a flow diagram showing an example of the operation of the sensor system 2 according to the first embodiment. In this embodiment, after the rotating body 35 rotates and stops, the sensor section 20 images the surroundings thereof. After the sensor unit 20 captures the image, the rotating body control unit 31 enables the rotating body 35 to rotate. The sensor system 2 according to this embodiment obtains surrounding information by repeating such rotation of the rotating body 35 and imaging by the sensor unit 20.
 例えば、まず、回転体制御部31が回転体制御信号および角度信号を回転体モータ32へ送信し、回転体モータ32を制御する。これにより、回転体35およびセンサ部20を基準の位置から所望の角度θだけ回転させる(S10)。このとき、回転体制御部31は、回転体体35の回転を示す信号を同期信号とともにセンサ部20のセンサ制御部22へ送信し、センサ制御部22と同期する。これにより、センサ制御部22は、回転体35の回転期間中、センサ21の撮像を禁止することができる(S20)。即ち、回転体制御部31が回転体35を回転させるときに、センサ制御部22は、センサ21の画像の取得を停止している。 For example, first, the rotating body control unit 31 transmits a rotating body control signal and an angle signal to the rotating body motor 32, and controls the rotating body motor 32. Thereby, the rotating body 35 and the sensor section 20 are rotated by a desired angle θ from the reference position (S10). At this time, the rotary body control section 31 transmits a signal indicating the rotation of the rotary body 35 together with a synchronization signal to the sensor control section 22 of the sensor section 20 to synchronize with the sensor control section 22 . Thereby, the sensor control unit 22 can prohibit imaging of the sensor 21 during the rotation period of the rotating body 35 (S20). That is, when the rotating body control unit 31 rotates the rotating body 35, the sensor control unit 22 stops acquiring images of the sensor 21.
 次に、回転体35およびセンサ部20が角度θだけ回転したときに、回転体制御部31は、回転体制御信号を回転体モータ32へ送信し、回転体モータ32を制御する。これにより、回転体35およびセンサ部20の回転を停止させる(S30)。このとき、回転体制御部31は、回転体35の停止を示す信号を同期信号とともにセンサ部20のセンサ制御部22へ送信し、センサ制御部22と同期する。これにより、センサ制御部22は、回転体35の回転期間中においては、センサ21の撮像を禁止し、回転体35の回転後にセンサ21の撮像を許可する(S30)。即ち、回転体制御部31が回転体35の回転を停止したときに、センサ制御部22は、センサ21の画像の取得を開始させることができる。 Next, when the rotating body 35 and the sensor unit 20 rotate by the angle θ, the rotating body control unit 31 transmits a rotating body control signal to the rotating body motor 32 to control the rotating body motor 32. As a result, the rotation of the rotating body 35 and the sensor section 20 is stopped (S30). At this time, the rotating body control section 31 transmits a signal indicating the stop of the rotating body 35 together with a synchronization signal to the sensor control section 22 of the sensor section 20 to synchronize with the sensor control section 22 . Thereby, the sensor control unit 22 prohibits imaging of the sensor 21 during the rotation period of the rotating body 35, and allows imaging of the sensor 21 after the rotation of the rotating body 35 (S30). That is, when the rotating body control unit 31 stops rotating the rotating body 35, the sensor control unit 22 can start acquiring images of the sensor 21.
 次に、センサ制御部22が撮像制御信号をセンサ21へ送信し、センサ21による周囲の撮像を開始する(S40)。これにより、撮像データがセンサ21から信号処理部23へ送信される。このとき、センサ制御部22は、撮像開始を示す信号を同期信号とともに回転体制御部31へ送信し、回転体制御部31と同期する。回転体制御部31は、センサ21の撮像期間中においては、回転体モータ32の駆動を禁止し、回転体35およびセンサ部20の回転を禁止する(S50)。 Next, the sensor control unit 22 transmits an imaging control signal to the sensor 21, and the sensor 21 starts imaging the surroundings (S40). As a result, imaging data is transmitted from the sensor 21 to the signal processing section 23. At this time, the sensor control section 22 transmits a signal indicating the start of imaging to the rotating body control section 31 together with a synchronization signal, and synchronizes with the rotating body control section 31 . The rotating body control unit 31 prohibits driving of the rotating body motor 32 and prohibits rotation of the rotating body 35 and the sensor unit 20 during the imaging period of the sensor 21 (S50).
 信号処理部23は、センサ21から撮像データを取得し、周囲の画像を生成する(S60)。この周囲の画像は、移動体システム1の周囲情報として図示しないメモリ等へ格納され、あるいは、外部へ送信される。移動体システム1は、この周囲情報を用いて自律走行することができる。 The signal processing unit 23 acquires imaging data from the sensor 21 and generates an image of the surroundings (S60). This surrounding image is stored in a memory (not shown) or the like as surrounding information of the mobile system 1, or is transmitted to the outside. The mobile system 1 can autonomously travel using this surrounding information.
 また、信号処理部23のタイミング制御部25は、画像を生成していることを示す信号を同期信号とともに回転部30の回転体制御部31へ送信し、回転体制御部31と同期する。これにより、回転体制御部31は、画像生成中において回転体モータ32の駆動を禁止し、回転体35およびセンサ部20の回転を禁止する(S70)。 Further, the timing control unit 25 of the signal processing unit 23 transmits a signal indicating that an image is being generated to the rotating body control unit 31 of the rotating unit 30 along with a synchronization signal, and synchronizes with the rotating body control unit 31. As a result, the rotating body control unit 31 prohibits driving of the rotating body motor 32 during image generation, and prohibits rotation of the rotating body 35 and the sensor unit 20 (S70).
 次に、センサ制御部22が撮像制御信号をセンサ21へ送信し、センサ21による撮像を停止する(S80)。このとき、センサ制御部22は、撮像停止を示す信号を同期信号とともに回転体制御部31へ送信し、回転体制御部31と同期する。また、信号処理部23においてセンサ21からの撮像データの取得が終了すると、タイミング制御部25が、画像生成の終了を示す信号を同期信号とともに回転部30の回転体制御部31へ送信し、回転体制御部31と同期する。これにより、回転体制御部31は、センサ制御部22およびタイミング制御部25からの信号により、画像生成の終了後、回転体モータ32の駆動を許可し、回転体35およびセンサ部20の回転を許可する(S90)。即ち、センサ21が撮像を停止したときに、信号処理部23は、回転体35の回転を可能にする許可信号を回転体制御部31に送信する。 Next, the sensor control unit 22 transmits an imaging control signal to the sensor 21, and stops imaging by the sensor 21 (S80). At this time, the sensor control section 22 transmits a signal indicating the stop of imaging to the rotating body control section 31 together with a synchronization signal, and synchronizes with the rotating body control section 31 . Furthermore, when the acquisition of image data from the sensor 21 is completed in the signal processing unit 23, the timing control unit 25 transmits a signal indicating the end of image generation together with a synchronization signal to the rotating body control unit 31 of the rotating unit 30, and It is synchronized with the body control section 31. As a result, the rotary body control unit 31 allows the rotary body motor 32 to be driven after image generation is completed based on the signals from the sensor control unit 22 and the timing control unit 25, and controls the rotation of the rotary body 35 and the sensor unit 20. Permission is granted (S90). That is, when the sensor 21 stops capturing images, the signal processing unit 23 transmits a permission signal to the rotating body control unit 31 to enable the rotating body 35 to rotate.
 さらに、センサシステム2は、ステップS10に戻り、ステップS10~S90を繰り返す。これにより、センサシステム2は、センサ部20をさらに角度θだけ回転させた位置で周囲の画像を得ることができる。ステップS10~S90は、終了条件に達するまで繰り返される(S100のNO)。終了条件は、例えば、N回(Nは自然数)繰り返すこと、あるいは、N×θが360度に達したこと等、任意条件でよい。終了条件に達した場合(S100のYES)、センサシステム2の一連の動作が終了する。 Further, the sensor system 2 returns to step S10 and repeats steps S10 to S90. Thereby, the sensor system 2 can obtain an image of the surroundings at a position where the sensor unit 20 is further rotated by an angle θ. Steps S10 to S90 are repeated until the termination condition is reached (NO in S100). The termination condition may be any arbitrary condition, such as repeating N times (N is a natural number) or N×θ reaching 360 degrees. If the end condition is reached (YES in S100), the series of operations of the sensor system 2 ends.
 このように、本実施形態によれば、センサ部20は、回転体35の動作と同期して、回転体35の回転期間中において撮像を停止(禁止)し、回転体35の停止期間中において撮像を実行(許可)することができる。一方、回転部30は、センサ部20の動作と同期して、センサ21が撮像しかつ信号処理部23が撮像データを処理している期間中において、回転体35の回転動作を停止(禁止)する。また、回転部30は、センサ21が撮像を終了しかつ信号処理部23が撮像データの処理を終了した期間中において、回転体35の回転動作を開始(許可)する。これにより、センサシステム2は、1つのセンサ部20だけで、センサ部20の撮像と回転部30の回転とを交互に実行しながら周囲全体の状況を撮像することができる。即ち、センサシステム2は、少数のセンサ部20を用いて広角の周囲画像を取得することができる。 As described above, according to the present embodiment, the sensor unit 20 stops (prohibits) imaging during the rotation period of the rotation body 35 in synchronization with the operation of the rotation body 35, and during the stop period of the rotation body 35, Imaging can be executed (permitted). On the other hand, in synchronization with the operation of the sensor unit 20, the rotating unit 30 stops (prohibits) the rotating operation of the rotating body 35 during the period when the sensor 21 is capturing an image and the signal processing unit 23 is processing the captured data. do. Further, the rotating unit 30 starts (permits) the rotating operation of the rotating body 35 during a period in which the sensor 21 finishes capturing an image and the signal processing unit 23 finishes processing the captured image data. Thereby, the sensor system 2 can image the entire surrounding situation with only one sensor section 20 while alternately performing image capturing of the sensor section 20 and rotation of the rotating section 30. That is, the sensor system 2 can acquire a wide-angle surrounding image using a small number of sensor units 20.
(第2実施形態)
 図7は、第2実施形態によるセンサシステム2の動作例を示す概念図である。第2実施形態によるセンサシステム2は、移動体3の進行方向(X方向)を検出しており、移動体3の進行方向に障害物Wが存在する場合に、センサ部20を±Y方向に角度θだけ回転させて周囲情報を検出する。これにより、センサシステム2は、移動体3および障害物Wの周囲情報を取得することができる。
(Second embodiment)
FIG. 7 is a conceptual diagram showing an example of the operation of the sensor system 2 according to the second embodiment. The sensor system 2 according to the second embodiment detects the moving direction (X direction) of the moving body 3, and when an obstacle W exists in the moving direction of the moving body 3, the sensor system 2 moves the sensor unit 20 in the ±Y direction. Detect surrounding information by rotating by an angle θ. Thereby, the sensor system 2 can acquire surrounding information about the moving object 3 and the obstacle W.
 尚、センサ部20の回転は、第1実施形態と同様に、例えば、N回繰り返してもよく、さらにN×θが360度に達するまで繰り返してもよい。 Note that, similarly to the first embodiment, the rotation of the sensor unit 20 may be repeated, for example, N times, and may be further repeated until N×θ reaches 360 degrees.
 図8は、第2実施形態によるセンサシステム2の構成例を示すブロック図である。第2実施形態では、画像情報または距離情報から障害物Wを認識する認識部26が信号処理部23に設けられている。認識部26は、ソフトウェアを用いて画像内の障害物Wを識別する。例えば、認識部26は、画像処理によって移動体3に接近してくる物体があり、その物体が所定値以上の大きさを有する場合に、障害物Wとして認識する。障害物Wは、例えば、建物の壁等でよい。障害物Wが認識されると、信号処理部23は、障害物Wの認識情報を回転部30の回転体制御部31へ送信する。回転体制御部31は、認識情報に基づいて、回転体35およびセンサ部20を回転させるか否かを決定する。第2実施形態のその他の構成は、第1実施形態の対応する構成と同様でよい。 FIG. 8 is a block diagram showing a configuration example of the sensor system 2 according to the second embodiment. In the second embodiment, a recognition unit 26 that recognizes an obstacle W from image information or distance information is provided in the signal processing unit 23. The recognition unit 26 identifies the obstacle W in the image using software. For example, the recognition unit 26 recognizes as an obstacle W when there is an object approaching the moving body 3 and the size of the object is larger than a predetermined value through image processing. The obstacle W may be, for example, a wall of a building. When the obstacle W is recognized, the signal processing unit 23 transmits the recognition information of the obstacle W to the rotating body control unit 31 of the rotating unit 30. The rotating body control unit 31 determines whether to rotate the rotating body 35 and the sensor unit 20 based on the recognition information. The other configurations of the second embodiment may be the same as the corresponding configurations of the first embodiment.
 次に、第2実施形態の動作について説明する。 Next, the operation of the second embodiment will be explained.
 図9は、第2実施形態の動作例を示すフロー図である。まず、移動体3が移動を開始する(S11)。移動体3の移動方向はX方向とする。また、センサ制御部22が撮像制御信号をセンサ21へ送信し、センサ21による周囲の撮像を開始する(S21)。これにより、センサシステム2は、移動体3とともに移動しながら、撮像データを取得する。撮像データはセンサ21から信号処理部23へ送信される。このとき、センサ制御部22は、撮像開始を示す信号を同期信号とともに回転体制御部31へ送信し、回転体制御部31と同期する。回転体制御部31は、センサ21の撮像期間中において、回転体35およびセンサ部20の回転を禁止してもよいし、許可してもよい。 FIG. 9 is a flow diagram showing an example of the operation of the second embodiment. First, the moving body 3 starts moving (S11). The moving direction of the moving body 3 is assumed to be the X direction. Further, the sensor control unit 22 transmits an imaging control signal to the sensor 21, and the sensor 21 starts imaging the surroundings (S21). Thereby, the sensor system 2 acquires imaging data while moving together with the mobile object 3. Imaging data is transmitted from the sensor 21 to the signal processing section 23. At this time, the sensor control section 22 transmits a signal indicating the start of imaging to the rotating body control section 31 together with a synchronization signal, and synchronizes with the rotating body control section 31 . The rotating body control unit 31 may prohibit or allow rotation of the rotating body 35 and the sensor unit 20 during the imaging period of the sensor 21.
 センサ21は、移動体3の進行方向を撮像しており、該進行方向に物体がある場合に、その物体を撮像する。 The sensor 21 images the moving direction of the moving body 3, and when there is an object in the moving direction, images the object.
 信号処理部23は、センサ21から撮像データを取得し、周囲の画像を生成する(S31)。この周囲の画像は、移動体システム1の周囲情報として図示しないメモリ等へ格納され、あるいは、外部へ送信される。信号処理部23は、センサ21から撮像データを取得し、移動体3の進行方向に物体がある場合に、撮像データによって得られた物体の画像を取得する。 The signal processing unit 23 acquires imaging data from the sensor 21 and generates an image of the surroundings (S31). This surrounding image is stored in a memory (not shown) or the like as surrounding information of the mobile system 1, or is transmitted to the outside. The signal processing unit 23 acquires imaging data from the sensor 21, and when there is an object in the traveling direction of the moving body 3, acquires an image of the object obtained from the imaging data.
 また、信号処理部23のタイミング制御部25は、画像を生成していることを示す信号を同期信号とともに回転部30の回転体制御部31へ送信し、回転体制御部31と同期する。これにより、回転体制御部31は、画像生成中において回転体35およびセンサ部20の回転を禁止してもよいし、許可してもよい。 Further, the timing control unit 25 of the signal processing unit 23 transmits a signal indicating that an image is being generated to the rotating body control unit 31 of the rotating unit 30 along with a synchronization signal, and synchronizes with the rotating body control unit 31. Thereby, the rotating body control unit 31 may prohibit or allow rotation of the rotating body 35 and the sensor unit 20 during image generation.
 次に、認識部26が、障害物Wを認識したか判定する(S41)。認識部26は、上記のように、例えば、移動体3と障害物Wとの距離が短くなっており、障害物Wが所定値以上の大きさを有する場合に障害物Wと認識する。 Next, the recognition unit 26 determines whether the obstacle W is recognized (S41). As described above, the recognition unit 26 recognizes the obstacle W as the obstacle W, for example, when the distance between the moving body 3 and the obstacle W is short and the obstacle W has a size equal to or larger than a predetermined value.
 認識部26が障害物Wを認識していない場合(S41のNO)、ステップS11~S31を繰り返し、移動体3は移動を継続し、センサ21は撮像を継続する。 If the recognition unit 26 does not recognize the obstacle W (NO in S41), steps S11 to S31 are repeated, the moving body 3 continues to move, and the sensor 21 continues to capture images.
 一方、認識部26が障害物Wを認識した場合(S41のYES)、認識部26は、センサ21から障害物Wまでの距離が所定値未満かを判定する(S51)。センサ21から障害物Wまでに距離は、画像処理のソフトウェア等を用いればよい。あるいは、センサ21がToFである場合には、ToFによる測距の結果を用いればよい。 On the other hand, when the recognition unit 26 recognizes the obstacle W (YES in S41), the recognition unit 26 determines whether the distance from the sensor 21 to the obstacle W is less than a predetermined value (S51). The distance from the sensor 21 to the obstacle W may be determined using image processing software or the like. Alternatively, if the sensor 21 is ToF, the results of distance measurement by ToF may be used.
 センサ21から障害物Wまでの距離が所定値以上である場合(S51のNO)、ステップS11~S31を繰り返し、移動体3は移動を継続し、センサ21は撮像を継続する。 If the distance from the sensor 21 to the obstacle W is equal to or greater than the predetermined value (NO in S51), steps S11 to S31 are repeated, the moving body 3 continues to move, and the sensor 21 continues to capture images.
 一方、センサ21から障害物Wまでの距離が所定値未満である場合(S51のYES)、回転体制御部31は、回転体制御信号および角度信号を回転体モータ32へ送信し、回転体35およびセンサ部20を現在の位置から所望の角度θだけ回転させる(S61)。このとき、回転体制御部31は、回転体35の回転を示す信号を同期信号とともにセンサ部20のセンサ制御部22へ送信し、回転体センサ制御部22と同期する。これにより、センサ制御部22は、回転体35の回転期間中、センサ21の撮像を禁止してもよいし、許可してもよい。尚、図示しないが、センサ21から障害物Wまでの距離が所定値未満の場合には、移動体3は一旦停止してもよい。 On the other hand, if the distance from the sensor 21 to the obstacle W is less than the predetermined value (YES in S51), the rotating body control unit 31 transmits a rotating body control signal and an angle signal to the rotating body motor 32, and Then, the sensor unit 20 is rotated by a desired angle θ from the current position (S61). At this time, the rotary body control section 31 transmits a signal indicating the rotation of the rotary body 35 together with a synchronization signal to the sensor control section 22 of the sensor section 20 to synchronize with the rotary body sensor control section 22 . Thereby, the sensor control unit 22 may prohibit or permit imaging of the sensor 21 during the rotation period of the rotating body 35. Although not shown, if the distance from the sensor 21 to the obstacle W is less than a predetermined value, the moving body 3 may temporarily stop.
 次に、回転体35およびセンサ部20が角度θだけ回転したときに、回転体制御部31は、回転体制御信号を回転体モータ32へ送信し、回転体35およびセンサ部20の回転を停止させる。このとき、回転体制御部31は、回転体35の停止を示す信号を同期信号とともにセンサ部20のセンサ制御部22へ送信し、センサ制御部22と同期する。これにより、センサ制御部22は、回転体35の回転後にセンサ21の撮像を許可することができる。 Next, when the rotating body 35 and the sensor unit 20 rotate by the angle θ, the rotating body control unit 31 transmits a rotating body control signal to the rotating body motor 32, and stops the rotation of the rotating body 35 and the sensor unit 20. let At this time, the rotating body control section 31 transmits a signal indicating the stop of the rotating body 35 together with a synchronization signal to the sensor control section 22 of the sensor section 20 to synchronize with the sensor control section 22 . Thereby, the sensor control unit 22 can permit the sensor 21 to take an image after the rotating body 35 has rotated.
 次に、センサ制御部22が撮像制御信号をセンサ21へ送信し、センサ21による周囲の撮像を実行する(S71)。これにより、撮像データがセンサ21から信号処理部23へ送信される。このとき、センサ制御部22は、撮像開始を示す信号を同期信号とともに回転体制御部31へ送信し、回転体制御部31と同期する。このとき、回転体制御部31は、センサ21の撮像期間中においては、回転体35およびセンサ部20の回転を禁止してもよい。 Next, the sensor control unit 22 transmits an imaging control signal to the sensor 21, and the sensor 21 executes imaging of the surroundings (S71). As a result, imaging data is transmitted from the sensor 21 to the signal processing section 23. At this time, the sensor control section 22 transmits a signal indicating the start of imaging to the rotating body control section 31 together with a synchronization signal, and synchronizes with the rotating body control section 31 . At this time, the rotating body control section 31 may prohibit rotation of the rotating body 35 and the sensor section 20 during the imaging period of the sensor 21.
 信号処理部23は、センサ21から撮像データを取得し、周囲の画像を生成する(S81)。この周囲の画像は、移動体システム1の周囲情報として図示しないメモリ等へ格納され、あるいは、外部へ送信される。これにより、進行方向(障害物Wの存在する方向)とは異なる方向の画像が取得され、認識部26は、その方向に障害物があるか否かを判定することができる。 The signal processing unit 23 acquires imaging data from the sensor 21 and generates an image of the surroundings (S81). This surrounding image is stored in a memory (not shown) or the like as surrounding information of the mobile system 1, or is transmitted to the outside. As a result, an image in a direction different from the traveling direction (the direction in which the obstacle W exists) is acquired, and the recognition unit 26 can determine whether or not there is an obstacle in that direction.
 また、信号処理部23のタイミング制御部25は、画像を生成していることを示す信号を同期信号とともに回転部30の回転体制御部31へ送信し、回転体制御部31と同期する。これにより、回転体制御部31は、画像生成中において回転体35およびセンサ部20の回転を禁止してもよい。 Further, the timing control unit 25 of the signal processing unit 23 transmits a signal indicating that an image is being generated to the rotating body control unit 31 of the rotating unit 30 along with a synchronization signal, and synchronizes with the rotating body control unit 31. Thereby, the rotating body control unit 31 may prohibit rotation of the rotating body 35 and the sensor unit 20 during image generation.
 第2実施形態によれば、信号処理部23は、周囲の画像でセンサ21の前にある物体の画像または距離を取得する。そして、移動体3の進行方向に障害物Wが認識され、移動体3から障害物Wまでの距離が所定値未満になると、回転体制御部31が、回転体35およびセンサ部20を所望の角度θだけ回転させる。即ち、回転体制御部31は、障害物Wの画像または距離に基づいて、回転体35を回転させる。これにより、センサ21は、障害物Wが存在する移動体3の進行方向から角度θだけ回転させた方向の周囲情報を取得することができる。この周囲情報は、移動体3の停止または進行方向の変更等、移動体3の次の動作を実行するために用いることができる。 According to the second embodiment, the signal processing unit 23 acquires the image or distance of the object in front of the sensor 21 from the surrounding image. Then, when an obstacle W is recognized in the traveling direction of the moving body 3 and the distance from the moving body 3 to the obstacle W becomes less than a predetermined value, the rotating body control unit 31 controls the rotating body 35 and the sensor unit 20 to a desired position. Rotate by angle θ. That is, the rotating body control unit 31 rotates the rotating body 35 based on the image or distance of the obstacle W. Thereby, the sensor 21 can acquire surrounding information in a direction rotated by an angle θ from the traveling direction of the moving body 3 in which the obstacle W exists. This surrounding information can be used to execute the next operation of the moving body 3, such as stopping the moving body 3 or changing the direction of movement of the moving body 3.
(第3実施形態)
 図10および図11は、第3実施形態によるセンサシステム2の動作例を示す概念図である。第3実施形態によるセンサシステム2は、移動体3の進行方向(X方向)を検出しており、移動体3が進行方向を変更した場合に、信号処理部23は、周囲の画像全体の移動によって移動体3の旋回方向を検出する。回転体制御部31は、移動体3の旋回方向と逆方向へ回転体35を回転させる。これにより、センサシステム2は、移動体3の旋回によって生じる画像のずれ(ブラー)を抑制することができる。
(Third embodiment)
10 and 11 are conceptual diagrams showing an example of the operation of the sensor system 2 according to the third embodiment. The sensor system 2 according to the third embodiment detects the traveling direction (X direction) of the moving body 3, and when the moving body 3 changes the traveling direction, the signal processing unit 23 detects the movement of the entire surrounding image. The turning direction of the moving body 3 is detected. The rotating body control unit 31 rotates the rotating body 35 in a direction opposite to the turning direction of the moving body 3. Thereby, the sensor system 2 can suppress image shift (blur) caused by the turning of the moving body 3.
 例えば、図10に示すように、当初、移動体3はX方向へ進行しており、センサ21は移動体3の進行方向(X方向)を撮像している。図11に示すように、移動体3が角度θ1だけ旋回した場合、信号処理部23は、画像全体の移動によって移動体3が旋回したこと、および、その旋回角度θ1を検出する。そして、回転体制御部31は、移動体3の旋回方向とは逆方向へ角度θ2だけ回転体35およびセンサ部20を回転させる。これにより、移動体3が旋回しても、センサ21の撮像方向は、移動体3の当初の進行方向(X方向)からあまりずれない。回転体35の回転角度θ2が移動体3の旋回角度θ1と略同じである場合、センサ21の撮像方向は、移動体3の当初の進行方向(X方向)からほとんどずれない。尚、回転体35の回転角度θ2は、移動体3の旋回角度θ1と必ずしも同じでなくてもよい。この場合でも、移動体3の旋回による画像のぶれの抑制効果は得られる。 For example, as shown in FIG. 10, the moving body 3 is initially moving in the X direction, and the sensor 21 is capturing an image in the moving direction (X direction) of the moving body 3. As shown in FIG. 11, when the moving body 3 turns by an angle θ1, the signal processing unit 23 detects that the moving body 3 turns due to the movement of the entire image and detects the turning angle θ1. Then, the rotating body control unit 31 rotates the rotating body 35 and the sensor unit 20 by an angle θ2 in a direction opposite to the turning direction of the moving body 3. As a result, even if the moving body 3 turns, the imaging direction of the sensor 21 does not deviate much from the initial traveling direction (X direction) of the moving body 3. When the rotation angle θ2 of the rotating body 35 is substantially the same as the turning angle θ1 of the moving body 3, the imaging direction of the sensor 21 hardly deviates from the initial traveling direction (X direction) of the moving body 3. Note that the rotation angle θ2 of the rotating body 35 does not necessarily have to be the same as the turning angle θ1 of the moving body 3. Even in this case, the effect of suppressing image blur due to the rotation of the moving body 3 can be obtained.
 図12は、第3実施形態によるセンサシステム2の構成例を示すブロック図である。第3実施形態によれば、信号処理部23は、画像全体のずれから移動体3の旋回方向および旋回角度を演算する補正演算部27を備える。補正演算部27は、画像全体のずれによって移動体3の旋回を検出し、画像全体のずれ方向およびずれ幅から移動体3の旋回方向および旋回角度をそれぞれ演算する。信号処理部23は、移動体3の旋回を検出すると、移動体3の旋回方向(例えば、-Y方向)および旋回角度θ1の演算結果を回転部30の回転体制御部31へ送信する。回転体制御部31は、信号処理部23からの移動体3の旋回方向および旋回角度の演算結果に基づいて、回転体35を回転させるか否かを判断し、回転させる場合には、回転体35およびセンサ部20を旋回方向とは逆方向(例えば、+Y方向)へ回転させる。回転体35およびセンサ部20の回転角度θ2は、旋回角度θ1と同じであることが好ましいが、異なっていてもよい。第2実施形態のその他の構成は、第1実施形態の対応する構成と同様でよい。 FIG. 12 is a block diagram showing a configuration example of the sensor system 2 according to the third embodiment. According to the third embodiment, the signal processing section 23 includes a correction calculation section 27 that calculates the turning direction and turning angle of the moving body 3 from the deviation of the entire image. The correction calculation unit 27 detects the turning of the moving body 3 based on the deviation of the entire image, and calculates the turning direction and turning angle of the moving body 3 from the deviation direction and deviation width of the entire image. When the signal processing unit 23 detects the turning of the moving body 3, it transmits the calculation results of the turning direction (for example, −Y direction) and the turning angle θ1 of the moving body 3 to the rotating body control unit 31 of the rotating unit 30. The rotating body control unit 31 determines whether or not to rotate the rotating body 35 based on the calculation results of the turning direction and turning angle of the moving body 3 from the signal processing unit 23, and when rotating the rotating body 35, the rotating body 35 is rotated. 35 and the sensor section 20 are rotated in a direction opposite to the turning direction (eg, +Y direction). The rotation angle θ2 of the rotating body 35 and the sensor unit 20 is preferably the same as the turning angle θ1, but may be different. The other configurations of the second embodiment may be the same as the corresponding configurations of the first embodiment.
 次に、第3実施形態の動作について説明する。 Next, the operation of the third embodiment will be explained.
 図13は、第3実施形態の動作例を示すフロー図である。まず、第2実施形態と同様に、ステップS11~S31を実行する。これにより、移動体3が移動し、センサシステム2が移動体3の移動方向(X方向)を撮像する。このとき、センサ制御部22は、撮像開始を示す信号を同期信号とともに回転体制御部31へ送信し、回転体制御部31と同期する。回転体制御部31は、センサ21の撮像期間中において、回転体35およびセンサ部20の回転を禁止してもよいし、許可してもよい。 FIG. 13 is a flow diagram showing an example of the operation of the third embodiment. First, similarly to the second embodiment, steps S11 to S31 are executed. As a result, the moving body 3 moves, and the sensor system 2 captures an image in the moving direction (X direction) of the moving body 3. At this time, the sensor control section 22 transmits a signal indicating the start of imaging to the rotating body control section 31 together with a synchronization signal, and synchronizes with the rotating body control section 31 . The rotating body control unit 31 may prohibit or allow rotation of the rotating body 35 and the sensor unit 20 during the imaging period of the sensor 21.
 次に、補正演算部27は、画像全体が一方向へずれるによって移動体3の旋回を検出する(S42)。画像が部分的に動いていたり、画像全体の動きが一方向でない場合には、補正演算部27は、移動体3が旋回していると判断せず(S42のNO)、ステップS11~S31を繰り返してよい。 Next, the correction calculation unit 27 detects the turning of the moving body 3 when the entire image shifts in one direction (S42). If the image is partially moving or if the entire image is not moving in one direction, the correction calculation unit 27 does not determine that the moving body 3 is turning (NO in S42) and skips steps S11 to S31. May be repeated.
 画像全体が一方向へずれた(動いた)場合、補正演算部27は、移動体3が旋回したと検出する(S42のYES)。例えば、画像全体が±Y方向のいずれかへずれた場合、補正演算部27は、移動体3が左右いずれかの方向に旋回したと判断する。 If the entire image shifts (moves) in one direction, the correction calculation unit 27 detects that the moving body 3 has turned (YES in S42). For example, if the entire image shifts in either of the ±Y directions, the correction calculation unit 27 determines that the moving body 3 has turned in either the left or right direction.
 次に、補正演算部27は、画像全体のずれ方向およびずれ幅から移動体3の旋回方向および旋回角度をそれぞれ演算する(S52)。例えば、画像が+Y方向へ全体的にずれた場合、補正演算部27は、移動体3が-Y方向へ旋回したと判断する。画像が-Y方向へ全体的にずれた場合、補正演算部27は、移動体3が+Y方向へ旋回したと判断する。また、画像のずれ幅は、移動体3の旋回角度θ1と対応する。従って、例えば、補正演算部27は、撮像された任意の物体とセンサ21との間の距離、および、画像のずれ幅(画像におけるその物体の動き幅)を用いて、移動体3の旋回角度θ1を演算する。 Next, the correction calculation unit 27 calculates the turning direction and turning angle of the moving body 3 from the deviation direction and deviation width of the entire image (S52). For example, if the image is entirely shifted in the +Y direction, the correction calculation unit 27 determines that the moving body 3 has turned in the -Y direction. If the image is entirely shifted in the -Y direction, the correction calculation unit 27 determines that the moving body 3 has turned in the +Y direction. Further, the image shift width corresponds to the turning angle θ1 of the moving body 3. Therefore, for example, the correction calculation unit 27 uses the distance between the imaged arbitrary object and the sensor 21 and the image shift width (the movement width of the object in the image) to determine the turning angle of the moving body 3. Calculate θ1.
 次に、信号処理部23は、移動体3の旋回を示す信号、移動体3の旋回方向(例えば、-Y方向)、並びに、旋回角度θ1の演算結果を同期信号とともに回転部30の回転体制御部31へ送信する(S62)。 Next, the signal processing unit 23 transmits the signal indicating the turning of the moving body 3, the turning direction of the moving body 3 (for example, −Y direction), and the calculation result of the turning angle θ1 to the rotating body of the rotating unit 30, together with a synchronization signal. The information is transmitted to the control unit 31 (S62).
 次に、回転体制御部31は、信号処理部23からの移動体3の旋回方向または旋回角度の演算結果に基づいて、回転体35およびセンサ部20を回転させるか否かを判断する(S72)。例えば、回転角度の大きさが閾値以上である場合に、回転体制御部31は、回転体35およびセンサ部20を回転させると判断すればよい。逆に、回転角度の大きさが閾値未満である場合に、回転体制御部31は、回転体35およびセンサ部20を回転させないと判断してよい。 Next, the rotating body control unit 31 determines whether or not to rotate the rotating body 35 and the sensor unit 20 based on the calculation result of the turning direction or turning angle of the moving body 3 from the signal processing unit 23 (S72 ). For example, when the magnitude of the rotation angle is equal to or greater than the threshold value, the rotating body control unit 31 may determine that the rotating body 35 and the sensor unit 20 are to be rotated. Conversely, when the magnitude of the rotation angle is less than the threshold value, the rotating body control unit 31 may determine not to rotate the rotating body 35 and the sensor unit 20.
 回転体35およびセンサ部20を回転させない場合には(S72のNO)、ステップS11へ戻る。 If the rotating body 35 and the sensor unit 20 are not to be rotated (NO in S72), the process returns to step S11.
 一方、回転体35およびセンサ部20を回転させる場合には(S72のYES)、回転体制御部31は、信号処理部23からの移動体3の旋回方向および旋回角度の演算結果に基づいて、回転体35およびセンサ部20を旋回方向とは逆方向(例えば、+Y方向)へ回転させる(S82)。回転体35およびセンサ部20の回転角度θ2は、旋回角度θ1と同じであることが好ましいが、異なっていてもよい。尚、センサ21は、ステップS42~82において、撮像を継続している。 On the other hand, when rotating the rotating body 35 and the sensor unit 20 (YES in S72), the rotating body control unit 31, based on the calculation results of the turning direction and turning angle of the moving body 3 from the signal processing unit 23, The rotating body 35 and the sensor section 20 are rotated in a direction opposite to the turning direction (for example, in the +Y direction) (S82). The rotation angle θ2 of the rotating body 35 and the sensor unit 20 is preferably the same as the turning angle θ1, but may be different. Note that the sensor 21 continues to capture images in steps S42 to S82.
 ステップS11~S82は、移動体3の移動が終了するまで、あるいは、センサ21の撮像が終了するまで繰り返される(S92のNO)。移動体3の移動が終了し、あるいは、センサ21の撮像が終了すると(S92のYES)、移動体システム1の動作が終了する。 Steps S11 to S82 are repeated until the movement of the moving body 3 is completed or until the imaging by the sensor 21 is completed (NO in S92). When the movement of the mobile body 3 ends or the imaging by the sensor 21 ends (YES in S92), the operation of the mobile system 1 ends.
 第3実施形態によれば、補正演算部27は、画像全体のずれによって移動体3の旋回を検出し、画像全体のずれ方向およびずれ幅から移動体3の旋回方向および旋回角度をそれぞれ演算する。回転体制御部31は、移動体3の旋回方向および旋回角度の演算結果に基づいて、回転体35およびセンサ部20を旋回方向とは逆方向へ回転させる。これにより、移動体3が旋回しても、センサ21の撮像方向は、移動体3の当初の進行方向からあまりずれない。回転体35の回転角度θ2を移動体3の旋回角度θ1に等しくすれば、センサ21の撮像方向は、移動体3の当初の進行方向(X方向)からほとんどずれない。その結果、センサ21の画像のぶれがさらに抑制される。 According to the third embodiment, the correction calculation unit 27 detects the turning of the moving object 3 based on the deviation of the entire image, and calculates the turning direction and turning angle of the moving object 3 from the deviation direction and deviation width of the entire image, respectively. . The rotating body control unit 31 rotates the rotating body 35 and the sensor unit 20 in a direction opposite to the rotating direction based on the calculation results of the rotating direction and the rotating angle of the moving body 3. Thereby, even if the moving body 3 turns, the imaging direction of the sensor 21 does not deviate much from the initial traveling direction of the moving body 3. If the rotation angle θ2 of the rotating body 35 is made equal to the turning angle θ1 of the moving body 3, the imaging direction of the sensor 21 will hardly deviate from the original traveling direction (X direction) of the moving body 3. As a result, blurring of the image of the sensor 21 is further suppressed.
(第4実施形態)
 図14および図15は、第4実施形態による移動体システム1の動作例を示す概念図である。第4実施形態によるセンサシステム2は、移動体3の進行方向または旋回方向を示す動作情報を移動体3から直接取得し、移動体3の動作情報に基づいて回転体35およびセンサ部20を回転させる。また、センサシステム2は、移動体3の動作情報を移動体3から直接取得するので、移動体3の動作開始前に回転体35およびセンサ部20を回転させて移動体3の旋回方向の画像を予め取得することができる。これにより、移動体システム1は、移動体3が旋回する場合でも、その旋回方向の周囲情報を確認した後に旋回することができる。
(Fourth embodiment)
14 and 15 are conceptual diagrams showing an example of the operation of the mobile system 1 according to the fourth embodiment. The sensor system 2 according to the fourth embodiment directly acquires motion information indicating the traveling direction or turning direction of the movable body 3 from the movable body 3, and rotates the rotating body 35 and the sensor unit 20 based on the motion information of the movable body 3. let Furthermore, since the sensor system 2 directly acquires the motion information of the moving body 3 from the moving body 3, the rotating body 35 and the sensor unit 20 are rotated to obtain an image in the turning direction of the moving body 3 before the movement of the moving body 3 starts. can be obtained in advance. Thereby, even when the moving body 3 turns, the mobile system 1 can turn after confirming the surrounding information in the turning direction.
 例えば、図14に示すように、当初、移動体3はX方向へ進行しており、センサ21は移動体3の進行方向(X方向)を撮像している。移動体3が角度θ1だけ旋回しようとした場合、信号処理部23は、移動体3が旋回すること、その旋回方向および旋回角度θ1の情報を移動体3から取得する。そして、回転体制御部31は、移動体3の旋回方向へ角度θ2だけ回転体35およびセンサ部20を回転させる。これにより、移動体3が旋回する前に、移動体3の旋回方向の画像を取得し、移動体3の旋回方向を予め確認することができる。尚、回転体35の回転角度θ2は、移動体3の旋回角度θ1と同じにしてもよいし、必ずしも同じでなくてもよい。 For example, as shown in FIG. 14, the moving body 3 is initially moving in the X direction, and the sensor 21 is capturing an image in the moving direction (X direction) of the moving body 3. When the moving body 3 attempts to turn by an angle θ1, the signal processing unit 23 acquires from the moving body 3 information that the moving body 3 is turning, the turning direction, and the turning angle θ1. Then, the rotating body control section 31 rotates the rotating body 35 and the sensor section 20 by an angle θ2 in the turning direction of the moving body 3. Thereby, before the moving body 3 turns, an image of the turning direction of the moving body 3 can be acquired and the turning direction of the moving body 3 can be confirmed in advance. Note that the rotation angle θ2 of the rotating body 35 may or may not necessarily be the same as the turning angle θ1 of the moving body 3.
 図16は、第4実施形態による移動体システム1の構成例を示すブロック図である。第4実施形態によれば、移動体3は、移動体制御部41と、移動体モータ42とを備える。移動体制御部41は、移動体制御信号を移動体モータ42へ送信する。移動体制御信号は、移動体3の動作を示す信号であり、例えば、進行速度、旋回方向、旋回角度等の制御信号を含む。移動体モータ42は、移動体制信号に基づいて移動体3の車輪等を駆動する。これにより、移動体3は移動し、あるいは、旋回することができる。 FIG. 16 is a block diagram showing a configuration example of the mobile system 1 according to the fourth embodiment. According to the fourth embodiment, the movable body 3 includes a movable body control section 41 and a movable body motor 42. The mobile body control unit 41 transmits a mobile body control signal to the mobile body motor 42. The moving object control signal is a signal indicating the operation of the moving object 3, and includes control signals such as a traveling speed, a turning direction, and a turning angle. The moving body motor 42 drives the wheels of the moving body 3 based on the moving system signal. This allows the moving body 3 to move or turn.
 また、移動体制御部41は、回転部30の回転体制御部31と同期信号で同期をとりながら、移動体制御信号を回転体制御部31へ送信する。回転体制御部31は、移動体制御信号から移動体3の旋回方向、旋回角度等の移動体3の動作情報を知ることができる。回転体制御部31は、移動体制御信号を移動体モータ42よりも前に取得することが好ましい。これにより、移動体3が旋回を開始する前に、センサ21は、その旋回方向の状況を撮像することができる。信号処理部23は、センサ21からの撮像データから画像を生成し、その画像によって移動体3が旋回可能か否かを判断してもよい。例えば、移動体3の旋回方向に障害物W等があると判断した場合、移動体3が旋回を開始する前に、センサ21は、その旋回方向の状況を撮像することができる。信号処理部23は、移動体3の旋回禁止を示す信号を同期信号とともに移動体3の移動体制御部41へ送信してもよい。この場合、移動体制御部41は、上記移動体制御信号を移動体モータ42へ送信することなく、移動体3を旋回させないことができる。 Further, the moving body control unit 41 transmits a moving body control signal to the rotating body control unit 31 while synchronizing with the rotating body control unit 31 of the rotating unit 30 using a synchronization signal. The rotating body control unit 31 can know operation information of the moving body 3 such as the turning direction and turning angle of the moving body 3 from the moving body control signal. It is preferable that the rotating body control unit 31 acquires the moving body control signal before the moving body motor 42. Thereby, before the moving body 3 starts turning, the sensor 21 can image the situation in the turning direction. The signal processing unit 23 may generate an image from the imaging data from the sensor 21, and use the image to determine whether or not the moving body 3 can turn. For example, if it is determined that there is an obstacle W or the like in the turning direction of the moving object 3, the sensor 21 can image the situation in the turning direction before the moving object 3 starts turning. The signal processing unit 23 may transmit a signal indicating that the mobile body 3 is prohibited from turning to the mobile body control unit 41 of the mobile body 3 together with a synchronization signal. In this case, the movable body control section 41 can prevent the movable body 3 from turning without transmitting the movable body control signal to the movable body motor 42.
 次に、第4実施形態の動作について説明する。 Next, the operation of the fourth embodiment will be explained.
 図17は、第4実施形態の動作例を示すフロー図である。まず、第2実施形態と同様に、ステップS11~S31を実行する。これにより、移動体3が移動し、センサシステム2が移動体3の移動方向(X方向)を撮像する。このとき、センサ制御部22は、撮像開始を示す信号を同期信号とともに回転体制御部31へ送信し、回転体制御部31と同期する。回転体制御部31は、センサ21の撮像期間中において、回転体35およびセンサ部20の回転を禁止してもよいし、許可してもよい。 FIG. 17 is a flow diagram showing an example of the operation of the fourth embodiment. First, similarly to the second embodiment, steps S11 to S31 are executed. As a result, the moving body 3 moves, and the sensor system 2 captures an image in the moving direction (X direction) of the moving body 3. At this time, the sensor control section 22 transmits a signal indicating the start of imaging to the rotating body control section 31 together with a synchronization signal, and synchronizes with the rotating body control section 31 . The rotating body control unit 31 may prohibit or allow rotation of the rotating body 35 and the sensor unit 20 during the imaging period of the sensor 21.
 移動体制御部41は、回転体制御部31と同期しており、移動体制御信号を回転体制御部31へ送信する(S43)。移動体3が旋回しようとする場合、移動体制御信号は、移動体3の旋回方向および旋回角度等の情報を含む。よって、回転体制御部31は、移動体3の旋回方向および旋回角度を予め知ることができる。 The moving body control unit 41 is synchronized with the rotating body control unit 31 and transmits a moving body control signal to the rotating body control unit 31 (S43). When the moving body 3 is about to turn, the moving body control signal includes information such as the turning direction and turning angle of the moving body 3. Therefore, the rotating body control unit 31 can know the turning direction and turning angle of the moving body 3 in advance.
 移動体3が旋回しない場合(S53のNO)、ステップS11~S31、S43を繰り返す。このとき、回転体制御部31は、回転体35を回転させなくてよい。 If the moving body 3 does not turn (NO in S53), steps S11 to S31 and S43 are repeated. At this time, the rotating body control section 31 does not need to rotate the rotating body 35.
 一方、移動体3が旋回しようとする場合(S53のYES)、移動体3の旋回開始前に、回転体制御部31は、移動体3の旋回方向へ回転体35およびセンサ部20を回転させる(S63)。回転体35の回転角度θ2は、移動体3の旋回角度θ1と同じであることが好ましいが、必ずしも同じでなくてもよい。 On the other hand, when the moving body 3 is about to turn (YES in S53), the rotating body control unit 31 rotates the rotating body 35 and the sensor unit 20 in the turning direction of the moving body 3 before the moving body 3 starts turning. (S63). The rotation angle θ2 of the rotating body 35 is preferably the same as the turning angle θ1 of the moving body 3, but does not necessarily have to be the same.
 次に、センサシステム2は移動体3の旋回方向を撮像する(S73)。このとき、回転体35およびセンサ部20は、角度θ2だけ移動体3の進行方向(例えば、X方向)から旋回方向(例えば、+Y方向)へ回転している。これにより、センサ21は、移動体3の旋回方向へ回転した状態で周囲を撮像することができる。 Next, the sensor system 2 images the turning direction of the moving body 3 (S73). At this time, the rotating body 35 and the sensor section 20 are rotated by an angle θ2 from the traveling direction (for example, the X direction) of the moving body 3 to the turning direction (for example, the +Y direction). Thereby, the sensor 21 can image the surroundings while rotating in the turning direction of the moving body 3.
 次に、信号処理部23がセンサ21からの撮像データから生成した画像に基づいて移動体3が旋回可能か否かを判断する(S83)。信号処理部23は、移動体3の旋回方向の画像から障害物Wの有無等を判断し、移動体3が旋回可能か否かを判断する(S83)。図16には、図示しないが、認識部26が画像から移動体3の旋回可能か否かを判断してよい。 Next, the signal processing unit 23 determines whether the moving body 3 can turn based on the image generated from the image data from the sensor 21 (S83). The signal processing unit 23 determines the presence or absence of an obstacle W from the image in the turning direction of the moving body 3, and determines whether the moving body 3 can turn (S83). Although not shown in FIG. 16, the recognition unit 26 may determine from the image whether or not the moving body 3 can turn.
 移動体3が旋回可能である場合(S83のYES)、信号処理部23は、旋回可能であることを示す信号を同期信号とともに移動体制御部41および回転体制御部31へ送信し、移動体3の旋回を許可する(S93)。移動体制御部41は、移動体3の旋回動作を制御する移動体制御信号を移動体モータ42へ送信する。これにより、移動体3が旋回を開始する。 If the moving body 3 can turn (YES in S83), the signal processing unit 23 transmits a signal indicating that it can turn to the moving body control unit 41 and the rotating body control unit 31 together with a synchronization signal, and 3 is permitted to turn (S93). The mobile body control unit 41 transmits a mobile body control signal for controlling the turning operation of the mobile body 3 to the mobile body motor 42 . As a result, the moving body 3 starts turning.
 また、回転体制御部31は、センサ21からの画像によって移動体3の旋回を認識するのではなく、信号処理部23からの信号によって移動体3の旋回動作を予め知ることができる。従って、回転体制御部31は移動体3の旋回開始前に回転体35およびセンサ部20を回転させることができる。 Further, the rotating body control unit 31 can know the turning operation of the moving body 3 in advance based on a signal from the signal processing unit 23 instead of recognizing the turning of the moving body 3 based on the image from the sensor 21. Therefore, the rotating body control section 31 can rotate the rotating body 35 and the sensor section 20 before the moving body 3 starts turning.
 その後、回転体制御部31は、移動体3の旋回動作に従って、回転体35およびセンサ部20を元に戻すように回転させてもよい。例えば、回転体35およびセンサ部20は、移動体3の旋回方向とは反対側に角度θ2だけ回転し、旋回動作後に移動体3が進行する方向へセンサ21を再度向かせてもよい。これにより、センサ21は、移動体3の進行方向を継続して撮像することができる。 Thereafter, the rotating body control unit 31 may rotate the rotating body 35 and the sensor unit 20 back to their original positions according to the turning operation of the moving body 3. For example, the rotating body 35 and the sensor unit 20 may be rotated by an angle θ2 in the direction opposite to the turning direction of the moving body 3, and the sensor 21 may be directed again in the direction in which the moving body 3 moves after the turning operation. Thereby, the sensor 21 can continuously image the moving direction of the moving body 3.
 一方、移動体3が旋回できない場合(S83のNO)、信号処理部23は、旋回不可であることを示す信号を同期信号とともに移動体制御部41および回転体制御部31へ送信し、移動体3の旋回を禁止する(S103)。移動体制御部41は、移動体3の旋回動作を禁止し、移動体制御信号を移動体モータ42へ送信しない。これにより、移動体3は旋回しない。 On the other hand, if the moving body 3 cannot turn (NO in S83), the signal processing unit 23 transmits a signal indicating that turning is not possible together with a synchronization signal to the moving body control unit 41 and the rotating body control unit 31, and 3 turning is prohibited (S103). The moving object control unit 41 prohibits the turning operation of the moving object 3 and does not transmit a moving object control signal to the moving object motor 42. As a result, the moving body 3 does not turn.
 また、回転体制御部31は、信号処理部23からの信号によって、移動体3が旋回しないことを知ることができる。よって、回転体制御部31は、移動体3の進行方向(X方向)へ、回転体35およびセンサ部20の向きを戻すことができる。例えば、回転体35およびセンサ部20は、移動体3の旋回方向とは反対側に角度θ2だけ回転し、移動体3の進行方向(X方向)へ戻してよい。 Further, the rotating body control unit 31 can know from the signal from the signal processing unit 23 that the moving body 3 will not turn. Therefore, the rotating body control unit 31 can return the orientation of the rotating body 35 and the sensor unit 20 to the traveling direction of the moving body 3 (X direction). For example, the rotating body 35 and the sensor unit 20 may be rotated by an angle θ2 in the direction opposite to the turning direction of the moving body 3, and returned to the traveling direction (X direction) of the moving body 3.
 ステップS11~S103は、移動体3の移動が終了するまで、あるいは、センサ21の撮像が終了するまで繰り返される(S113のNO)。移動体3の移動が終了し、あるいは、センサ21の撮像が終了すると(S113のYES)、移動体システム1の動作が終了する。 Steps S11 to S103 are repeated until the movement of the moving body 3 is completed or until the imaging by the sensor 21 is completed (NO in S113). When the movement of the mobile body 3 ends or the imaging by the sensor 21 ends (YES in S113), the operation of the mobile system 1 ends.
 第4実施形態によれば、回転体制御部31は、移動体制御信号から移動体3の旋回方向、旋回角度等の移動体3の動作情報を移動体3の旋回前に知ることができる。これにより、移動体3が旋回を開始する前に、センサ21は、その旋回方向の状況を予め撮像することができる。信号処理部23は、センサ21からの撮像データを用いて画像を生成し、その画像によって移動体3が旋回可能か否かを判断することができる。移動体3は、信号処理部23による旋回可能か否かの判断に基づいて旋回を開始、または、旋回せずに直進することができる。 According to the fourth embodiment, the rotating body control unit 31 can know the operation information of the moving body 3 such as the turning direction and the turning angle of the moving body 3 from the moving body control signal before the moving body 3 turns. Thereby, before the moving body 3 starts turning, the sensor 21 can take an image of the situation in the turning direction in advance. The signal processing unit 23 generates an image using the imaging data from the sensor 21, and can determine whether or not the moving body 3 can turn based on the image. The moving body 3 can start turning based on the determination by the signal processing unit 23 as to whether or not it can turn, or can proceed straight without turning.
(第5実施形態)
 図18は、第5実施形態の動作例を示すフロー図である。第5実施形態による移動体システム1の構成は、第4実施形態のそれと同じでよい。第5実施形態は、センサシステム2は、移動体3の進行方向または旋回方向を示す動作情報を移動体3から直接取得し、移動体3の動作情報に基づいて回転体35およびセンサ部20を回転させる点で第4実施形態と同様である。しかし、第5実施形態は、移動体3の旋回による画像のぶれの抑制のために、移動体3の旋回方向とは逆方向へ回転体35およびセンサ部20を回転させる。
(Fifth embodiment)
FIG. 18 is a flow diagram showing an example of the operation of the fifth embodiment. The configuration of the mobile system 1 according to the fifth embodiment may be the same as that of the fourth embodiment. In the fifth embodiment, the sensor system 2 directly acquires motion information indicating the traveling direction or turning direction of the movable body 3 from the movable body 3, and controls the rotating body 35 and the sensor unit 20 based on the motion information of the movable body 3. It is similar to the fourth embodiment in that it is rotated. However, in the fifth embodiment, the rotating body 35 and the sensor unit 20 are rotated in the opposite direction to the turning direction of the moving body 3 in order to suppress image blur due to the turning of the moving body 3.
 まず、第4実施形態と同様に、ステップS11~S53を実行する。これにより、移動体3が移動し、センサシステム2が移動体3の移動方向(X方向)を撮像する。 First, similarly to the fourth embodiment, steps S11 to S53 are executed. As a result, the moving body 3 moves, and the sensor system 2 captures an image in the moving direction (X direction) of the moving body 3.
 移動体制御部41は、回転体制御部31と同期しており、移動体制御信号を回転体制御部31へ送信する(S43)。移動体3が旋回しようとする場合、移動体制御信号は、移動体3の旋回方向および旋回角度等の情報を含む。よって、回転体制御部31は、移動体3の旋回方向および旋回角度を予め知ることができる。 The moving body control unit 41 is synchronized with the rotating body control unit 31 and transmits a moving body control signal to the rotating body control unit 31 (S43). When the moving body 3 is about to turn, the moving body control signal includes information such as the turning direction and turning angle of the moving body 3. Therefore, the rotating body control unit 31 can know the turning direction and turning angle of the moving body 3 in advance.
 移動体3が旋回しない場合(S53のNO)、ステップS11~S31、S43を繰り返す。このとき、回転体制御部31は、回転体35を回転させなくてよい。 If the moving body 3 does not turn (NO in S53), steps S11 to S31 and S43 are repeated. At this time, the rotating body control section 31 does not need to rotate the rotating body 35.
 一方、移動体3が旋回しようとする場合(S53のYES)、移動体3の旋回開始とほぼ同時に、回転体制御部31は、移動体3の旋回方向とは逆方向へ回転体35およびセンサ部20を回転させる(S64)。これにより、移動体3が旋回しても、センサ21の撮像方向は、移動体3の当初の進行方向(X方向)からあまりずれない。回転体35の回転角度θ2が移動体3の旋回角度θ1と略同じである場合、センサ21の撮像方向は、移動体3の当初の進行方向(X方向)からほとんどずれない。尚、回転体35の回転角度θ2は、移動体3の旋回角度θ1と必ずしも同じでなくてもよい。この場合でも、移動体3の旋回による画像のぶれの抑制効果は得られる。 On the other hand, when the moving body 3 is about to turn (YES in S53), almost simultaneously with the start of the turning of the moving body 3, the rotating body control unit 31 controls the rotating body 35 and the sensor in a direction opposite to the turning direction of the moving body 3. The section 20 is rotated (S64). As a result, even if the moving body 3 turns, the imaging direction of the sensor 21 does not deviate much from the initial traveling direction (X direction) of the moving body 3. When the rotation angle θ2 of the rotating body 35 is substantially the same as the turning angle θ1 of the moving body 3, the imaging direction of the sensor 21 hardly deviates from the initial traveling direction (X direction) of the moving body 3. Note that the rotation angle θ2 of the rotating body 35 does not necessarily have to be the same as the turning angle θ1 of the moving body 3. Even in this case, the effect of suppressing image blur due to the rotation of the moving body 3 can be obtained.
 その後、ステップS11~S64は、移動体3の移動が終了するまで、あるいは、センサ21の撮像が終了するまで繰り返される(S113のNO)。移動体3の移動が終了し、あるいは、センサ21の撮像が終了すると(S113のYES)、移動体システム1の動作が終了する。 Thereafter, steps S11 to S64 are repeated until the movement of the moving body 3 is completed or until the imaging of the sensor 21 is completed (NO in S113). When the movement of the mobile body 3 ends or the imaging by the sensor 21 ends (YES in S113), the operation of the mobile system 1 ends.
 このように、第5実施形態によれば、移動体3が旋回しても、センサ21の撮像方向は、移動体3の当初の進行方向からあまりずれない。従って、第5実施形態は、第3実施形態と同様の効果を得ることができる。 As described above, according to the fifth embodiment, even when the moving body 3 turns, the imaging direction of the sensor 21 does not deviate much from the initial traveling direction of the moving body 3. Therefore, the fifth embodiment can obtain the same effects as the third embodiment.
 また、第5実施形態によれば、回転体制御部31は、移動体制御信号を移動体3から直接得て、移動体制御信号から移動体3の旋回方向、旋回角度等の移動体3の動作情報を移動体3の旋回前に知ることができる。これにより、移動体3の旋回とほぼ同時に遅延なく、センサシステム2は、回転体35の回転動作することができる。 Further, according to the fifth embodiment, the rotating body control unit 31 directly obtains the moving body control signal from the moving body 3, and determines the turning direction, turning angle, etc. of the moving body 3 from the moving body control signal. Operation information can be known before the moving body 3 turns. Thereby, the sensor system 2 can rotate the rotating body 35 almost simultaneously with the turning of the moving body 3 without any delay.
 以上の実施形態による移動体システム1は、画像を用いて、または、移動体3の制御信号と同期してセンサ21を回転させ、広範囲の周囲情報を取得することができる。これにより、移動体システム1は、低コストで広範囲の周囲情報を取得することができる。 The mobile system 1 according to the embodiments described above can acquire a wide range of surrounding information using images or by rotating the sensor 21 in synchronization with the control signal of the mobile body 3. Thereby, the mobile system 1 can acquire a wide range of surrounding information at low cost.
 <移動体への応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
<Example of application to mobile objects>
The technology according to the present disclosure (this technology) can be applied to various products. For example, the technology according to the present disclosure may be realized as a device mounted on any type of moving body such as a car, electric vehicle, hybrid electric vehicle, motorcycle, bicycle, personal mobility, airplane, drone, ship, robot, etc. It's okay.
 図19は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。 FIG. 19 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile object control system to which the technology according to the present disclosure can be applied.
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図19に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(Interface)12053が図示されている。 The vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001. In the example shown in FIG. 19, the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside vehicle information detection unit 12030, an inside vehicle information detection unit 12040, and an integrated control unit 12050. Further, as the functional configuration of the integrated control unit 12050, a microcomputer 12051, an audio/image output section 12052, and an in-vehicle network I/F (Interface) 12053 are illustrated.
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。 The drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs. For example, the drive system control unit 12010 includes a drive force generation device such as an internal combustion engine or a drive motor that generates drive force for the vehicle, a drive force transmission mechanism that transmits the drive force to wheels, and a drive force transmission mechanism that controls the steering angle of the vehicle. It functions as a control device for a steering mechanism to adjust and a braking device to generate braking force for the vehicle.
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。 The body system control unit 12020 controls the operations of various devices installed in the vehicle body according to various programs. For example, the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as a headlamp, a back lamp, a brake lamp, a turn signal, or a fog lamp. In this case, radio waves transmitted from a portable device that replaces a key or signals from various switches may be input to the body control unit 12020. The body system control unit 12020 receives input of these radio waves or signals, and controls the door lock device, power window device, lamp, etc. of the vehicle.
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。 The external information detection unit 12030 detects information external to the vehicle in which the vehicle control system 12000 is mounted. For example, an imaging section 12031 is connected to the outside-vehicle information detection unit 12030. The vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image of the exterior of the vehicle, and receives the captured image. The external information detection unit 12030 may perform object detection processing such as a person, car, obstacle, sign, or text on the road surface or distance detection processing based on the received image.
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。 The imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal according to the amount of received light. The imaging unit 12031 can output the electrical signal as an image or as distance measurement information. Further, the light received by the imaging unit 12031 may be visible light or non-visible light such as infrared rays.
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。 The in-vehicle information detection unit 12040 detects in-vehicle information. For example, a driver condition detection section 12041 that detects the condition of the driver is connected to the in-vehicle information detection unit 12040. The driver condition detection unit 12041 includes, for example, a camera that images the driver, and the in-vehicle information detection unit 12040 detects the degree of fatigue or concentration of the driver based on the detection information input from the driver condition detection unit 12041. It may be calculated, or it may be determined whether the driver is falling asleep.
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。 The microcomputer 12051 calculates control target values for the driving force generation device, steering mechanism, or braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, Control commands can be output to 12010. For example, the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions, including vehicle collision avoidance or impact mitigation, following distance based on vehicle distance, vehicle speed maintenance, vehicle collision warning, vehicle lane departure warning, etc. It is possible to perform cooperative control for the purpose of
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 In addition, the microcomputer 12051 controls the driving force generating device, steering mechanism, braking device, etc. based on information about the surroundings of the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040. It is possible to perform cooperative control for the purpose of autonomous driving, etc., which does not rely on operation.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12030に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。 Furthermore, the microcomputer 12051 can output a control command to the body system control unit 12030 based on the information outside the vehicle acquired by the outside information detection unit 12030. For example, the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or oncoming vehicle detected by the vehicle exterior information detection unit 12030, and performs cooperative control for the purpose of preventing glare, such as switching from high beam to low beam. It can be carried out.
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図19の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。 The audio and image output unit 12052 transmits an output signal of at least one of audio and images to an output device that can visually or audibly notify information to the occupants of the vehicle or to the outside of the vehicle. In the example of FIG. 19, an audio speaker 12061, a display section 12062, and an instrument panel 12063 are illustrated as output devices. The display unit 12062 may include, for example, at least one of an on-board display and a head-up display.
 図20は、撮像部12031の設置位置の例を示す図である。 FIG. 20 is a diagram showing an example of the installation position of the imaging section 12031.
 図20では、撮像部12031として、撮像部12101、12102、12103、12104、12105を有する。 In FIG. 20, the imaging unit 12031 includes imaging units 12101, 12102, 12103, 12104, and 12105.
 撮像部12101、12102、12103、12104、12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102、12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部12105は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。 The imaging units 12101, 12102, 12103, 12104, and 12105 are provided at, for example, the front nose of the vehicle 12100, the side mirrors, the rear bumper, the back door, and the upper part of the windshield inside the vehicle. An imaging unit 12101 provided in the front nose and an imaging unit 12105 provided above the windshield inside the vehicle mainly acquire images in front of the vehicle 12100. Imaging units 12102 and 12103 provided in the side mirrors mainly capture images of the sides of the vehicle 12100. An imaging unit 12104 provided in the rear bumper or back door mainly captures images of the rear of the vehicle 12100. The imaging unit 12105 provided above the windshield inside the vehicle is mainly used to detect preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, and the like.
 なお、図20には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。 Note that FIG. 20 shows an example of the imaging range of the imaging units 12101 to 12104. An imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose, imaging ranges 12112 and 12113 indicate imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors, respectively, and an imaging range 12114 shows the imaging range of the imaging unit 12101 provided on the front nose. The imaging range of the imaging unit 12104 provided in the rear bumper or back door is shown. For example, by overlapping the image data captured by the imaging units 12101 to 12104, an overhead image of the vehicle 12100 viewed from above can be obtained.
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。 At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information. For example, at least one of the imaging units 12101 to 12104 may be a stereo camera including a plurality of image sensors, or may be an image sensor having pixels for phase difference detection.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 For example, the microcomputer 12051 determines the distance to each three-dimensional object within the imaging ranges 12111 to 12114 and the temporal change in this distance (relative speed with respect to the vehicle 12100) based on the distance information obtained from the imaging units 12101 to 12104. By determining the following, it is possible to extract, in particular, the closest three-dimensional object on the path of vehicle 12100, which is traveling at a predetermined speed (for example, 0 km/h or more) in approximately the same direction as vehicle 12100, as the preceding vehicle. can. Furthermore, the microcomputer 12051 can set an inter-vehicle distance to be secured in advance in front of the preceding vehicle, and perform automatic brake control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform cooperative control for the purpose of autonomous driving, etc., in which the vehicle travels autonomously without depending on the driver's operation.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。 For example, the microcomputer 12051 transfers three-dimensional object data to other three-dimensional objects such as two-wheeled vehicles, regular vehicles, large vehicles, pedestrians, and utility poles based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic obstacle avoidance. For example, the microcomputer 12051 identifies obstacles around the vehicle 12100 into obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines a collision risk indicating the degree of risk of collision with each obstacle, and when the collision risk exceeds a set value and there is a possibility of a collision, the microcomputer 12051 transmits information via the audio speaker 12061 and the display unit 12062. By outputting a warning to the driver via the vehicle control unit 12010 and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be provided.
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。 At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays. For example, the microcomputer 12051 can recognize a pedestrian by determining whether the pedestrian is present in the images captured by the imaging units 12101 to 12104. Such pedestrian recognition involves, for example, a procedure for extracting feature points in images captured by the imaging units 12101 to 12104 as infrared cameras, and a pattern matching process is performed on a series of feature points indicating the outline of an object to determine whether it is a pedestrian or not. This is done through a procedure that determines the When the microcomputer 12051 determines that a pedestrian is present in the images captured by the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 creates a rectangular outline for emphasis on the recognized pedestrian. The display unit 12062 is controlled to display the . Furthermore, the audio image output unit 12052 may control the display unit 12062 to display an icon or the like indicating a pedestrian at a desired position.
 以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、撮像部12031に適用され得る。 An example of a vehicle control system to which the technology according to the present disclosure can be applied has been described above. The technology according to the present disclosure can be applied to, for example, the imaging unit 12031 among the configurations described above.
 なお、本技術は、以下のような構成をとることができる。
(1)
 第1軸を中心として回転可能な回転体と、
 前記回転体を制御する回転体制御部と、
 前記回転体に配置され周囲情報を取得するセンサと、
 前記回転体制御部の制御タイミングに基づいて前記センサを制御するセンサ制御部と、
 前記センサで取得された前記周囲情報を処理する信号処理部とを備える、センサシステム。
(2)
 前記回転体制御部が前記回転体を回転させるときに、前記センサ制御部は、前記センサの前記周囲情報の取得を停止し、
 前記回転体制御部が前記回転体の回転を停止したときに、前記センサ制御部は、前記センサの前記周囲情報の取得を開始させる、(1)に記載のセンサシステム。
(3)
 前記センサが前記周囲情報の取得を停止したときに、前記信号処理部は、前記回転体の回転を可能にする許可信号を前記回転体制御部に送信する、(1)または(2)に記載のセンサシステム。
(4)
 前記信号処理部は、前記周囲情報で前記センサの前にある物体の画像または距離を取得し、
 前記回転体制御部は、前記物体の画像または距離に基づいて、前記回転体を回転させる、(1)または(2)に記載のセンサシステム。
(5)
 前記信号処理部は、前記周囲情報全体の移動によって前記移動体の旋回方向を検出し、
 前記回転体制御部は、前記旋回方向とは逆方向へ前記回転体を回転させる、(1)または(2)に記載のセンサシステム。
(6)
 前記信号処理部は、前記周囲情報全体の移動に基づいて前記回転体の旋回角度を演算し、
 前記回転体制御部は、前記旋回方向とは逆方向へ前記旋回角度だけ前記回転体を回転させる、(5)に記載のセンサシステム。
(7)
 前記センサは、CISまたはToFを含む、(1)から(5)のいずれか一項に記載のセンサシステム。
(8)
 第1軸を中心として回転可能な回転体と、前記回転体を制御する回転体制御部と、前記回転体に配置され周囲情報を取得するセンサと、前記回転体制御部の制御タイミングに基づいて前記センサを制御するセンサ制御部と、前記センサで取得された前記周囲情報を処理する信号処理部とを備えるセンサシステムを搭載する移動体、および、
 前記移動体を制御する移動体制御部を備える、移動体システム。
(9)
 前記移動体制御部が前記移動体を旋回させるときに、前記回転体制御部は、該移動体の旋回前に、前記回転体を前記移動体の旋回方向へ回転させ、
 前記センサは、前記回転体を前記旋回方向へ回転させた状態で前記周囲情報を取得し、
 前記信号処理部は、前記周囲情報に基づいて前記移動体の旋回を可能にする許可信号を前記移動体制御部へ出力し、
 前記移動体制御部は、前記移動体を旋回させる、(8)に記載の移動体システム。
(10)
 前記移動体制御部が前記移動体を第1角度だけ旋回させるときに、前記回転体制御部は、前記移動体の旋回方向へ前記第1角度だけ前記回転体を回転させる、(9)に記載の移動体システム。
(11)
 前記移動体制御部が前記移動体を旋回させるときに、前記回転体制御部は、該移動体の旋回とほぼ同時に、前記回転体を前記移動体の旋回方向とは逆方向へ回転させる、(8)に記載の移動体システム。
(12)
 前記移動体制御部が前記移動体を第1角度だけ旋回させるときに、前記回転体制御部は、前記移動体の旋回方向とは逆方向へ前記第1角度だけ前記回転体を回転させる、(11)に記載の移動体システム。
(13)
 前記センサは、CIS、ToFまたはステレオカメラを含む、(8)から(12)のいずれか一項に記載の移動体システム。
Note that the present technology can have the following configuration.
(1)
a rotating body rotatable around a first axis;
a rotating body control section that controls the rotating body;
a sensor disposed on the rotating body to acquire surrounding information;
a sensor control unit that controls the sensor based on control timing of the rotating body control unit;
A sensor system comprising: a signal processing unit that processes the surrounding information acquired by the sensor.
(2)
When the rotating body control unit rotates the rotating body, the sensor control unit stops acquiring the surrounding information of the sensor,
The sensor system according to (1), wherein when the rotating body control unit stops rotation of the rotating body, the sensor control unit starts acquiring the surrounding information of the sensor.
(3)
According to (1) or (2), when the sensor stops acquiring the surrounding information, the signal processing unit transmits a permission signal that enables rotation of the rotating body to the rotating body control unit. sensor system.
(4)
The signal processing unit acquires an image or a distance of an object in front of the sensor using the surrounding information,
The sensor system according to (1) or (2), wherein the rotating body control unit rotates the rotating body based on an image or distance of the object.
(5)
The signal processing unit detects a turning direction of the mobile body based on movement of the entire surrounding information,
The sensor system according to (1) or (2), wherein the rotating body control unit rotates the rotating body in a direction opposite to the turning direction.
(6)
The signal processing unit calculates a turning angle of the rotating body based on the movement of the entire surrounding information,
The sensor system according to (5), wherein the rotating body control unit rotates the rotating body by the rotating angle in a direction opposite to the rotating direction.
(7)
The sensor system according to any one of (1) to (5), wherein the sensor includes CIS or ToF.
(8)
A rotating body rotatable about a first axis, a rotating body control section that controls the rotating body, a sensor arranged on the rotating body that acquires surrounding information, and a control timing of the rotating body control section. A mobile body equipped with a sensor system including a sensor control unit that controls the sensor, and a signal processing unit that processes the surrounding information acquired by the sensor, and
A mobile body system comprising a mobile body control unit that controls the mobile body.
(9)
When the moving body control unit turns the moving body, the rotating body control unit rotates the rotating body in the turning direction of the moving body before turning the moving body,
The sensor acquires the surrounding information while the rotating body is rotated in the turning direction,
The signal processing unit outputs a permission signal that enables the mobile body to turn based on the surrounding information to the mobile body control unit,
The mobile system according to (8), wherein the mobile body control unit turns the mobile body.
(10)
According to (9), when the moving body control unit rotates the moving body by a first angle, the rotating body control unit rotates the rotating body by the first angle in the turning direction of the moving body. mobile system.
(11)
When the moving body control unit turns the moving body, the rotating body control unit rotates the rotating body in a direction opposite to the turning direction of the moving body almost simultaneously with the turning of the moving body. 8) The mobile system according to item 8).
(12)
When the moving body control section rotates the moving body by a first angle, the rotating body control section rotates the rotating body by the first angle in a direction opposite to the turning direction of the moving body. 11) The mobile system according to item 11).
(13)
The mobile system according to any one of (8) to (12), wherein the sensor includes a CIS, ToF, or stereo camera.
 尚、本開示は、上述した実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。また、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、他の効果があってもよい。 Note that the present disclosure is not limited to the embodiments described above, and various changes can be made without departing from the gist of the present disclosure. Furthermore, the effects described in this specification are merely examples and are not limited, and other effects may also be present.

Claims (13)

  1.  第1軸を中心として回転可能な回転体と、
     前記回転体を制御する回転体制御部と、
     前記回転体に配置され周囲情報を取得するセンサと、
     前記回転体制御部の制御タイミングに基づいて前記センサを制御するセンサ制御部と、
     前記センサで取得された前記周囲情報を処理する信号処理部とを備える、センサシステム。
    a rotating body rotatable around a first axis;
    a rotating body control section that controls the rotating body;
    a sensor disposed on the rotating body to acquire surrounding information;
    a sensor control unit that controls the sensor based on control timing of the rotating body control unit;
    A sensor system comprising: a signal processing unit that processes the surrounding information acquired by the sensor.
  2.  前記回転体制御部が前記回転体を回転させるときに、前記センサ制御部は、前記センサの前記周囲情報の取得を停止し、
     前記回転体制御部が前記回転体の回転を停止したときに、前記センサ制御部は、前記センサの前記周囲情報の取得を開始させる、請求項1に記載のセンサシステム。
    When the rotating body control unit rotates the rotating body, the sensor control unit stops acquiring the surrounding information of the sensor,
    The sensor system according to claim 1, wherein when the rotating body control unit stops rotation of the rotating body, the sensor control unit starts acquiring the surrounding information of the sensor.
  3.  前記センサが前記周囲情報の取得を停止したときに、前記信号処理部は、前記回転体の回転を可能にする許可信号を前記回転体制御部に送信する、請求項1に記載のセンサシステム。 The sensor system according to claim 1, wherein when the sensor stops acquiring the surrounding information, the signal processing unit transmits a permission signal that enables rotation of the rotating body to the rotating body control unit.
  4.  前記信号処理部は、前記周囲情報で前記センサの前にある物体の画像または距離を取得し、
     前記回転体制御部は、前記物体の画像または距離に基づいて、前記回転体を回転させる、請求項1に記載のセンサシステム。
    The signal processing unit acquires an image or a distance of an object in front of the sensor using the surrounding information,
    The sensor system according to claim 1, wherein the rotating body control unit rotates the rotating body based on an image or a distance of the object.
  5.  前記信号処理部は、前記周囲情報全体の移動によって前記移動体の旋回方向を検出し、
     前記回転体制御部は、前記旋回方向とは逆方向へ前記回転体を回転させる、請求項1に記載のセンサシステム。
    The signal processing unit detects a turning direction of the mobile body based on movement of the entire surrounding information,
    The sensor system according to claim 1, wherein the rotating body control unit rotates the rotating body in a direction opposite to the turning direction.
  6.  前記信号処理部は、前記周囲情報全体の移動に基づいて前記回転体の旋回角度を演算し、
     前記回転体制御部は、前記旋回方向とは逆方向へ前記旋回角度だけ前記回転体を回転させる、請求項5に記載のセンサシステム。
    The signal processing unit calculates a turning angle of the rotating body based on the movement of the entire surrounding information,
    The sensor system according to claim 5, wherein the rotating body control unit rotates the rotating body by the rotating angle in a direction opposite to the rotating direction.
  7.  前記センサは、CIS(CMOS(Complementary Metal Oxide Semiconductor) Image Sensor)またはToF(Time of Fright)を含む、請求項1に記載のセンサシステム。 The sensor system according to claim 1, wherein the sensor includes CIS (CMOS (Complementary Metal Oxide Semiconductor) Image Sensor) or ToF (Time of Fright).
  8.  第1軸を中心として回転可能な回転体と、前記回転体を制御する回転体制御部と、前記回転体に配置され周囲情報を取得するセンサと、前記回転体制御部の制御タイミングに基づいて前記センサを制御するセンサ制御部と、前記センサで取得された前記周囲情報を処理する信号処理部とを備えるセンサシステムを搭載する移動体、および、
     前記移動体を制御する移動体制御部を備える、移動体システム。
    A rotating body rotatable about a first axis, a rotating body control section that controls the rotating body, a sensor arranged on the rotating body that acquires surrounding information, and a control timing of the rotating body control section. A mobile body equipped with a sensor system including a sensor control unit that controls the sensor, and a signal processing unit that processes the surrounding information acquired by the sensor, and
    A mobile body system comprising a mobile body control unit that controls the mobile body.
  9.  前記移動体制御部が前記移動体を旋回させるときに、前記回転体制御部は、該移動体の旋回前に、前記回転体を前記移動体の旋回方向へ回転させ、
     前記センサは、前記回転体を前記旋回方向へ回転させた状態で前記周囲情報を取得し、
     前記信号処理部は、前記周囲情報に基づいて前記移動体の旋回を可能にする許可信号を前記移動体制御部へ出力し、
     前記移動体制御部は、前記移動体を旋回させる、請求項8に記載の移動体システム。
    When the moving body control unit turns the moving body, the rotating body control unit rotates the rotating body in the turning direction of the moving body before turning the moving body,
    The sensor acquires the surrounding information while the rotating body is rotated in the turning direction,
    The signal processing unit outputs a permission signal that enables the mobile body to turn based on the surrounding information to the mobile body control unit,
    The moving body system according to claim 8, wherein the moving body control unit turns the moving body.
  10.  前記移動体制御部が前記移動体を第1角度だけ旋回させるときに、前記回転体制御部は、前記移動体の旋回方向へ前記第1角度だけ前記回転体を回転させる、請求項9に記載の移動体システム。 According to claim 9, when the moving body control unit rotates the moving body by a first angle, the rotating body control unit rotates the rotating body by the first angle in a turning direction of the moving body. mobile system.
  11.  前記移動体制御部が前記移動体を旋回させるときに、前記回転体制御部は、該移動体の旋回とほぼ同時に、前記回転体を前記移動体の旋回方向とは逆方向へ回転させる、請求項8に記載の移動体システム。 When the moving body control unit turns the moving body, the rotating body control unit rotates the rotating body in a direction opposite to the turning direction of the moving body almost simultaneously with the turning of the moving body. The mobile system according to item 8.
  12.  前記移動体制御部が前記移動体を第1角度だけ旋回させるときに、前記回転体制御部は、前記移動体の旋回方向とは逆方向へ前記第1角度だけ前記回転体を回転させる、請求項11に記載の移動体システム。 When the moving body control unit rotates the moving body by a first angle, the rotating body control unit rotates the rotating body by the first angle in a direction opposite to a turning direction of the moving body. 12. The mobile system according to item 11.
  13.  前記センサは、CIS、ToFまたはステレオカメラを含む、請求項8に記載の移動体システム。 The mobile system according to claim 8, wherein the sensor includes a CIS, ToF, or stereo camera.
PCT/JP2023/024174 2022-08-10 2023-06-29 Sensor system and movable body system WO2024034284A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-128516 2022-08-10
JP2022128516A JP2024025238A (en) 2022-08-10 2022-08-10 Sensor system and moving body system

Publications (1)

Publication Number Publication Date
WO2024034284A1 true WO2024034284A1 (en) 2024-02-15

Family

ID=89851390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/024174 WO2024034284A1 (en) 2022-08-10 2023-06-29 Sensor system and movable body system

Country Status (2)

Country Link
JP (1) JP2024025238A (en)
WO (1) WO2024034284A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014062931A (en) * 2012-09-19 2014-04-10 Sharp Corp Photographing device, control method, control program, and recording medium
JP2018146594A (en) * 2018-06-14 2018-09-20 株式会社小松製作所 Shape measurement system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014062931A (en) * 2012-09-19 2014-04-10 Sharp Corp Photographing device, control method, control program, and recording medium
JP2018146594A (en) * 2018-06-14 2018-09-20 株式会社小松製作所 Shape measurement system

Also Published As

Publication number Publication date
JP2024025238A (en) 2024-02-26

Similar Documents

Publication Publication Date Title
US10514703B2 (en) Vehicle control system, vehicle control method, and vehicle control program
CN109693665B (en) Automatic parking device and control method thereof
CN110281941B (en) Vehicle control device, vehicle control method, and storage medium
US11086335B2 (en) Driving assistance system and vehicle comprising the same
JP6801787B2 (en) Parking support method and parking support device
WO2018216194A1 (en) Vehicle control system and vehicle control method
CN111133489B (en) Vehicle control device, vehicle control method, and storage medium
CN111201170B (en) Vehicle control device and vehicle control method
EP3646129A1 (en) Sensor configuration for an autonomous semi-truck
KR20210050925A (en) Vehicle collision avoidance apparatus and method
US20200241549A1 (en) Information processing apparatus, moving apparatus, and method, and program
WO2019181284A1 (en) Information processing device, movement device, method, and program
WO2020116195A1 (en) Information processing device, information processing method, program, mobile body control device, and mobile body
RU2745936C1 (en) Stop line positioning device and vehicle control system
WO2020116206A1 (en) Information processing device, information processing method, and program
WO2020116194A1 (en) Information processing device, information processing method, program, mobile body control device, and mobile body
CN111273651A (en) Vehicle control device, vehicle control method, and storage medium
CN111762174A (en) Vehicle control device, vehicle control method, and storage medium
CN110281925B (en) Travel control device, vehicle, and travel control method
WO2024034284A1 (en) Sensor system and movable body system
KR102188269B1 (en) A method for controlling a camera zoom magnification
JP7059525B2 (en) Parking support method and parking support device
US20220309625A1 (en) Control device and control method for mobile object, storage medium, and vehicle
JP7159267B2 (en) VEHICLE CONTROL DEVICE, VEHICLE CONTROL METHOD, AND PROGRAM
JP2022142976A (en) Movable body control device, movable body control method and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852267

Country of ref document: EP

Kind code of ref document: A1