WO2024034181A1 - Inductor component manufacturing method and inductor component - Google Patents

Inductor component manufacturing method and inductor component Download PDF

Info

Publication number
WO2024034181A1
WO2024034181A1 PCT/JP2023/014575 JP2023014575W WO2024034181A1 WO 2024034181 A1 WO2024034181 A1 WO 2024034181A1 JP 2023014575 W JP2023014575 W JP 2023014575W WO 2024034181 A1 WO2024034181 A1 WO 2024034181A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
metal terminal
magnetic material
inductor component
recess
Prior art date
Application number
PCT/JP2023/014575
Other languages
French (fr)
Japanese (ja)
Inventor
暁海 大場
俊 友廣
功 井田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2024034181A1 publication Critical patent/WO2024034181A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils

Definitions

  • the present disclosure relates to a method for manufacturing an inductor component and an inductor component.
  • Patent Document 1 discloses an embedded inductor structure including a coil having two ends and a magnetic body in which the coil is embedded, further including two terminals connected to each end, and the terminals are An embedded inductor structure is disclosed that is exposed to the outside of the magnetic material.
  • the inventor of the present application noticed that there were problems to be overcome with the conventional embedded inductor structure, and found it necessary to take measures to solve the problem. Specifically, the inventor of the present application has found that there are the following problems.
  • a magnetic body is manufactured by mixing magnetic metal powder (for example, iron powder or iron-based alloy) with a thermosetting resin.
  • magnetic metal powder for example, iron powder or iron-based alloy
  • thermosetting resin for example, acrylic resin
  • the magnetic metal powder and the resin material are sealed in a mold and the magnetic body is molded by pressing the magnetic metal powder and the resin material in the mold.
  • the magnetic material 20j' containing magnetic metal powder and resin material leaks from the mold 100' through the metal terminal 30' due to the pressure during molding (see FIG. 12), and the product dimensions of the magnetic material or the magnetic material This results in variations in magnetic properties. Furthermore, since it is necessary to remove leaked magnetic metal powder and resin material, the manufacturing process becomes complicated and productivity deteriorates.
  • the present disclosure has been made in view of such problems. That is, the main objective of the present disclosure is to provide a method for manufacturing an inductor component and an inductor component that can improve variations in product dimensions or magnetic properties.
  • the inventor of the present application attempted to solve the above problem by tackling the problem in a new direction rather than by extending the conventional technology. As a result, the disclosure has been made in which the above main objective has been achieved.
  • a method for manufacturing an inductor component includes: a connecting step of electrically connecting the end of the coil conductor and the metal terminal to each other; a recess forming step of sandwiching the metal terminal between a first mold and a second mold, and forming a recess in the metal terminal using a convex portion provided in the first mold; A magnetic body in which the coil conductor is covered with a magnetic material in a space formed by the first mold and the second mold, the magnetic material is hardened, and a part of the metal terminal is drawn out from the outer surface. a molding process to form a Equipped with.
  • the inductor component includes: a coil conductor; a magnetic body containing at least the coil conductor and containing a magnetic material; a metal terminal that is electrically connected to an end of the coil conductor within the magnetic body and partially exposed from the magnetic body; The metal terminal is provided with a recess, An end of the recess on the magnetic body side is located outside the magnetic body and at a distance of 0.1 mm or more and 0.1 mm or less from a side surface of the magnetic body.
  • the method for manufacturing an inductor component according to the present disclosure includes a recess forming step of forming a recess in a metal terminal, leakage of magnetic material from a mold is reduced, and variations in product dimensions or magnetic properties of the inductor component are achieved. can be improved.
  • FIG. 1 is a perspective view of an inductor component according to the present disclosure.
  • FIG. 2 is a front perspective view of an inductor component according to the present disclosure.
  • FIG. 3 is a plan view of an inductor component according to the present disclosure.
  • FIG. 4 is a plan view of a modification of the inductor component according to the present disclosure.
  • FIG. 5 is a plan view of another modification of the inductor component according to the present disclosure.
  • FIG. 6 is a process schematic diagram illustrating a manufacturing process of an inductor component according to the present disclosure.
  • FIG. 7 is a process schematic diagram illustrating a manufacturing process of an inductor component according to the present disclosure.
  • FIG. 8 is a process schematic diagram illustrating a manufacturing process of an inductor component according to the present disclosure.
  • FIG. 9 is an enlarged view of the broken line area in FIG. 8.
  • FIG. 10 is a process schematic diagram illustrating a manufacturing process of an inductor component according to the present disclosure.
  • FIG. 11 is a SEM photograph of an inductor component according to the present disclosure.
  • FIG. 12 is an enlarged view of a conventional inductor component.
  • the inductor component 1 of the present disclosure includes a coil conductor 10, a magnetic body 20 that accommodates at least the coil conductor 10 and contains a magnetic material, and an end 11 of the coil conductor 10 that is electrically connected within the magnetic body 20. , and a pair of metal terminals 30 whose portions are exposed from the magnetic body 20 (see FIGS. 1 and 2).
  • the metal terminal 30 is provided with a recess 30g. Although the recess may be provided on one metal terminal, it is preferable that the recess is provided on both metal terminals 30.
  • the term "recessed portion" refers to a portion having a recessed area so that the thickness of the metal terminal 30 is reduced.
  • the recess 30g formed in the metal terminal 30 will be described in detail in the explanation of the method of manufacturing an inductor component of the present disclosure, but the metal terminal 30 is sandwiched between the mold 100 (see FIG. 6, etc.) having the projection 111. It is formed by Therefore, since the convex portion 111 of the mold 100 can reduce the leakage of magnetic material from the mold 100, when the concave portion is formed in the metal terminal 30, variations in product dimensions or magnetic properties of the inductor component 1 can be improved. Can be done.
  • the recess 30g is buried in the solder H etc. (see FIG. 2), thereby increasing the adhesion strength between the inductor component 1 and the substrate S. You can also do that.
  • the coil conductor 10 may be configured by winding a metal wire (for example, a copper wire).
  • the winding may be ⁇ winding, edgewise winding, non-aligned winding, aligned winding, or the like. In other words, it is preferable to provide a space in the center in which the magnetic body 20 is arranged.
  • the coil conductor 10 may be covered with an insulating material, and in this case, together with the resin contained in the magnetic body 20 described above, the coil conductor 10 is firmly fixed within the magnetic body 20. be able to. Note that since the ends of the coil conductor 10 are electrically connected to the metal terminals 30, the insulating material around the coil conductor 10 may be removed.
  • the end 11 of the coil conductor 10 may extend toward one side of the magnetic body 20 as shown in FIG. 3 or 4. Moreover, as shown in FIG. 5, the magnetic body 20 may be extended toward two orthogonal sides. Furthermore, although not shown, they may be extended toward two opposing sides of the magnetic body 20, respectively.
  • the magnetic body 20 may be a hardened magnetic material.
  • the magnetic material may include at least magnetic raw material particles, a resin, and a solvent. Note that the solvent may evaporate during curing of the magnetic material.
  • the magnetic body may have a substantially hexahedral shape.
  • substantially hexahedron refers to a three-dimensional shape surrounded by six planes, and is a concept that includes those in which each of the six planes is approximately quadrilateral, and those in which the sides or corners of the quadrilateral are rounded. be.
  • the surfaces facing each other in the direction of the winding axis of the coil conductor correspond to the "top surface” and the “bottom surface”
  • the four surfaces parallel to the winding axis correspond to the "side surfaces”.
  • parallel as used herein includes not only complete parallelism but also substantial parallelism within a certain error range.
  • orthogonality as used herein includes not only complete orthogonality but also substantially orthogonality within a certain error range.
  • Magnetic raw material particles As the magnetic raw material particles, conventionally used Fe-based metal magnetic particles may be used, and for example, Fe (pure iron) or Fe alloy may be used.
  • Fe alloys include alloys containing Fe and Ni, alloys containing Fe and Co, alloys containing Fe and Si, alloys containing Fe, Si and Cr, alloys containing Fe, Si and Al, Fe, Si, B and alloys containing Cr and alloys containing Fe, P, Cr, Si, B, Nb, and C.
  • the surface of the magnetic raw material particles may be subjected to insulation treatment.
  • the magnetic raw material particles may have an insulating coating on their surfaces.
  • the insulating coating may be, for example, one or more insulating coatings selected from the group consisting of an inorganic glass coating, an organic-inorganic hybrid coating, and an inorganic insulating coating formed by a sol-gel reaction of metal alkoxide.
  • the magnetic raw material particles may contain 93% by weight or more and 98% by weight or less based on the entire magnetic material.
  • the resin may contain functional groups that contribute to the curing reaction. In other words, it may be cured by a resin curing reaction to enable production of a magnetic body. More specifically, the resin before manufacturing the magnetic material is uncured.
  • the term "uncured” as used herein refers to a state prior to a substantially completely cured state, and includes a semi-cured state.
  • An example of the resin may be at least one selected from the group consisting of epoxy resin, phenol resin, polyester resin, polyimide resin, polyolefin resin, and silicone resin. Among these, when an epoxy resin is used as the resin, a magnetic material with high electrical insulation and/or mechanical strength can be obtained.
  • thermoplastic resins such as polyamideimide, polyphenylene sulfide and/or liquid crystal polymers may be used.
  • the curing reaction is preferably carried out by heat. That is, the resin is preferably a thermosetting resin.
  • An example is a thermosetting epoxy resin. If such a resin is used, a curing reaction can be caused by a simple method.
  • the resin may be contained in an amount of 2.0% by weight or more and 5.6% by weight or less based on the entire magnetic material.
  • the solvent is used to mix the magnetic raw material particles and the resin, and is preferably an organic solvent.
  • aromatic hydrocarbons such as toluene or xylene
  • ketones such as acetone, methyl ethyl ketone, or methyl isobutyl ketone
  • alcohols such as methanol, ethanol, or isopropyl alcohol
  • propylene glycol monomethyl ether or propylene glycol It may include any of the glycol ethers such as monomethyl ether acetate.
  • a coil conductor 10 is housed inside the magnetic body 20 based on the above magnetic material (see FIG. 2). Thereby, the magnetic body 20 is magnetized and desired inductance characteristics can be obtained.
  • the magnetic body 20 may be provided with a housing portion 21 (see FIG. 2) for housing the bent metal terminal 30 on the substrate mounting surface side. Specifically, the corners may be cut out to accommodate the metal terminals 30. According to such a configuration, the height of the inductor component can be reduced according to the amount of the notch, and the product can be made smaller.
  • the metal terminal 30 may have an inner part 31 contained inside the magnetic body 20 and an outer part 32 exposed outside the magnetic body 20 (see FIGS. 1 and 2).
  • the metal terminal 30 may be electrically connected to the coil conductor 10. That is, the electrical connection position between the metal terminal 30 and the coil conductor 10 may be contained within the magnetic body 20. Therefore, compared to the case where the electrical connection position is outside the magnetic body 20, separation of the electrical connection between the metal terminal 30 and the coil conductor 10 due to external force or the like may be less likely to occur.
  • the outer edge of the inner part 31 of the metal terminal 30 may be curved to correspond to the curvature of the coil conductor 10 (see FIG. 1). Therefore, the distance between the inner portion 31 and the coil conductor 10 may be kept constant. By keeping the distance constant, withstand voltage can be improved.
  • the outer portion 32 of the metal terminal 30 may be exposed outside the magnetic body 20.
  • the magnetic body 20 may be bent along the side and bottom surfaces of the magnetic body 20 .
  • the outer portion 32 of the metal terminal 30 may be provided over the side surface and bottom surface of the magnetic body 20.
  • the metal terminal 30 may be exposed from two opposing sides of the magnetic body 20 (see FIG. 3). According to such an arrangement, the metal terminals 30 can be spaced apart from each other as much as possible, so that short circuits can be prevented.
  • the arrangement of the metal terminals 30 is not limited to the example shown in FIG. 3. Various arrangements may be adopted depending on the substrate S on which the inductor component 1 is mounted. For example, a pair of metal terminals 30 may be exposed from one side of the magnetic body 20 as shown in FIG. Alternatively, as shown in FIG. 5, the magnetic material 20 may be exposed from two orthogonal sides.
  • the outer part 32 may be mounted on the substrate S or the like on the lower surface side of the magnetic body 20 (see FIG. 2).
  • the mounting may be performed, for example, with solder H or conductive adhesive.
  • the metal terminal 30 since the metal terminal 30 is used for mounting on the substrate S, even if an external force is applied to the substrate S and deflection occurs, the metal terminal 30 will not bend following the deflection. becomes. In other words, the influence on the deflection of the substrate S can be reduced.
  • the metal terminal 30 is provided with a recess 30g.
  • the recess 30g is formed by sandwiching the metal terminal 30 between a mold 100 (see FIG. 6, etc.) having a projection 111. Thereby, when the inductor component 1 is mounted on the substrate S, the recess 30g is buried in the solder H (see FIG. 2), so that the adhesion strength between the inductor component 1 and the substrate S can be increased.
  • the recessed portion 30g is located outside the magnetic body 20. In other words, it may be provided on the outer part 32 of the metal terminal 30. By exposing the recess 30g in this manner, the recess can be used when the inductor component 1 and the substrate S are mounted.
  • the recessed portion 30g is located outside the magnetic body 20 and near the side surface of the magnetic body 20. More specifically, the end of the recess 30g on the magnetic body 20 side may be located near the side surface.
  • the term "near the side surface” as used herein refers to a position that is 0.01 mm or more and 0.10 mm or less away from the side surface of the magnetic body 20 from which the metal terminal 30 is drawn out. This numerical range depends on the position of the convex portion 111 provided on the mold 100. In other words, the closer the position of the convex part 111 of the mold 100 is to the magnetic body 20, the more the burr 20B (see FIG. 9) caused by the magnetic material can be reduced, so it is preferable to set the value within the above numerical range.
  • the recess which is half or more of the total area of the recess 30g, may be provided parallel to the side surface of the magnetic body 20 from which the metal terminal 30 is drawn out. With such a configuration of the recessed portion 30g, a solder fillet is formed and the recessed portion 30g can be appropriately buried in the solder H.
  • the recessed portion 30g may be formed in the entire area in a direction perpendicular to the extending direction of the metal terminal 30 and parallel to the side surface from which the metal terminal 30 is pulled out.
  • the extending direction of the metal terminal 30 is intended to be the ⁇ Y direction shown in FIG.
  • the direction orthogonal to the extending direction of the metal terminal 30 is intended to be the ⁇ X direction shown in FIG.
  • the width direction of the metal terminal 30 is intended.
  • the concave portion 30g is formed by the convex portion 111 of the mold 100 pressing the metal terminal 30 over the entire width direction. Therefore, since the gap between the convex portion 111 and the metal terminal 30 can be reduced during pressing, leakage of the magnetic material from the mold 100 can be further reduced.
  • the length in the extending direction of the metal terminal 30 in the recessed portion 30g may be 0.5 mm or more and 3.0 mm or less. This numerical range depends on the size of the convex portion 111 provided in the mold 100. If the protrusions 111 are small, the protrusions 111 will become sharp and the durability of the mold will be reduced, while if the protrusions 111 are large, the equipment will need to be larger in order to achieve uniform pressing. That is, it is preferable to set it as the said numerical range from a viewpoint of equipment.
  • the depth of the recessed portion 30g may be 3% or more and 10% or less of the average plate thickness of the metal terminal 30. This numerical range depends on the degree of protrusion of the convex portion 111 provided in the mold 100. Having the convex portions 111 can reduce the leakage of magnetic material from the mold 100, but if the concave portions 30g can be formed by 3% or more with respect to the average plate thickness of the metal terminals 30, the magnetic material can be effectively reduced. Material leakage can be reduced. Moreover, if the recessed portion 30g can be formed to have a thickness of 10% or less with respect to the average plate thickness of the metal terminal 30, terminal strength can be ensured. Note that the recessed portion 30g may be formed to have a thickness of 10% or more with respect to the average plate thickness of the metal terminal 30.
  • the characteristics of the recessed portion 30g described above are based on an inductor component having a volume of 45 mm 3 or more and 350 mm 3 or less.
  • a method for manufacturing an inductor component according to the present disclosure includes the following steps. - A connection step of electrically connecting the end portion 11 of the coil conductor 10 and the metal terminal 30 to each other. - A recess forming step in which the metal terminal 30 is sandwiched between a first mold and/or a second mold (mold 100) having a convex portion 111 protruding toward the metal terminal 30, and a recess 30g is formed in the metal terminal 30.
  • the coil conductor 10 is prepared.
  • an air-core coil conductor 10 is formed by winding a metal wire (for example, a copper wire) whose surface is coated with an insulating film.
  • the insulating film of the end portion 11 of the coil conductor 10 has been removed by laser irradiation or the like. Then, the end portion 11 of the coil conductor 10 from which the insulation coating has been removed is pressed to flatten it.
  • the plate-shaped metal terminal 30 is prepared. This metal terminal 30 is electrically connected to the end portion 11 of the coil conductor 10. The electrical connection is made by laser welding with the metal terminal 30 in contact with the coil conductor 10. Note that the bonding method is not limited to this example, and for example, a conductive adhesive or the like may be used for bonding. As described above, the end portion 11 of the coil conductor 10 and the metal terminal 30 are electrically connected to each other.
  • the mold 100 may include an upper mold 110 and a lower mold 120, as shown in FIG. By operating the upper mold 110 and the lower mold 120 so that they approach each other relatively, the molds are clamped.
  • the mold 100 may include an accommodating portion 100a that accommodates a magnetic material 20j for forming the magnetic body 20, and a convex portion 111 that forms a concave portion 30g by pressing the metal terminal 30.
  • FIG. 6 shows an example in which the upper mold 110 is provided with the protrusion 111, the protrusion 111 may be provided on the lower mold. Further, the convex portion 111 may be provided on both the upper mold 110 and the lower mold 120.
  • the mold 100 may include a magnetic material supply section 121 that supplies magnetic material toward the coil conductor 10 (see FIG. 6).
  • the magnetic material supply unit 121 has a structure that is movable so as to supply the magnetic material accommodated in the mold 100. That is, by operating the magnetic material supply section 121 toward the coil conductor 10, the coil conductor 10 can be wrapped in the magnetic material.
  • FIG. 6 illustrates an example in which the lower mold 120 is equipped with a magnetic material supply section 121 and the upper mold 110 is not equipped with a magnetic material supply section 121.
  • the magnetic material supply section may be different from FIG. 6 in that the upper mold is provided with the magnetic material supply section and the lower mold is not provided with the magnetic material supply section. Further, both the upper mold and the lower mold may be provided with a magnetic material supply section.
  • the upper mold 110 and the lower mold 120 are clamped. At this time, the metal terminal 30 is sandwiched between the upper mold 110 and the lower mold 120. Further, by pressing the metal terminal 30 with the convex portion 111, a concave portion is formed in the metal terminal 30.
  • the magnetic material supply section 121 is operated toward the coil conductor 10, and the coil conductor 10 is wrapped in the magnetic material 20j.
  • the coil conductor 10 is wrapped in the magnetic material 20j by the magnetic material supply unit 121 operating toward the upper mold 110. Note that the operation of the magnetic material supply section 121 may be performed before the recess forming step, or may be performed simultaneously with the recess forming step.
  • the convex portion 111 is in close contact with the metal terminal 30 by pressing. That is, the upper mold 110 is in close contact with the metal terminal 30. Furthermore, the lower mold 120 is also in close contact with the metal terminal 30 due to the pressure exerted by the convex portion 111 . Therefore, leakage of the magnetic material 20j to the outside from the mold 100 is reduced. More specifically, flowing outward from the convex portions 111 of the mold 100 is reduced. Therefore, leakage of the magnetic material 20j from the mold 100 can be reduced, and variations in product dimensions or magnetic properties of the inductor component 1 can be improved.
  • the mold With the coil conductor 10 shown in FIG. 8 wrapped in magnetic material, the mold is heated to harden the magnetic material. Note that this curing may be performed by semi-curing in a mold having convex portions to the extent that the material does not lose its shape, and may be completely cured in another step.
  • FIG. 9 which is a partial enlargement of FIG. It can be easily removed, and because it is so small, it does not need to be removed.
  • the mold 100 is opened and the molded product is taken out (see FIG. 10). Then, the shape of the molded product is adjusted by cutting off the excess portion of the metal terminal.
  • the method for manufacturing an inductor component may include, after the molding step, a bending step in which the metal terminal 30 is bent based on the recess 30g. Thereby, the recessed portion 30g is provided corresponding to the side surface of the magnetic body 20 (see FIG. 2).
  • the inductor component of the present disclosure can be manufactured.
  • the upper mold 110 uses a magnetic material 20j with a high density
  • the lower mold 120 uses a magnetic material 20j with a low density.
  • the magnetic materials 20j having different densities may be temporarily formed by compacting the magnetic materials 20j when preparing the magnetic materials 20j in advance. Specifically, by making the force for compacting the magnetic material 20j relatively strong, the density of the magnetic material 20j can be increased, and the magnetic material 20j becomes a relatively hard material. On the other hand, by making the force for compacting the magnetic material 20j relatively weak, the density of the magnetic material 20j can be lowered, resulting in a relatively soft material.
  • the magnetic material accommodated in the upper mold 110 and the magnetic material accommodated in the lower mold 120 may be different materials. Further, as another preferred embodiment of the method for manufacturing the inductor component described above, a manufacturing method such as transfer molding using a molten magnetic material may be used.
  • the above-mentioned molding process is performed using magnetic materials having different densities. That is, as a forming process, the magnetic material supply section 121 is operated toward the coil conductor 10. In this case, since the relatively hard magnetic material 20j is accommodated in the upper mold 110, even if the magnetic material 20j is supplied from the lower mold 120, displacement of the coil conductor 10 can be reduced. Specifically, exposure of the coil conductor 10 from the resin material of the upper mold 110 can be reduced.
  • the magnetic material 20j accommodated in the upper mold 110 is relatively hard, the magnetic material 20j supplied from the lower mold 120 can also be efficiently pressed by the magnetic material supply section 121.
  • FIG. 11 shows an observed image of the inductor component shown in FIG. 1 after polishing to the center in the X direction and observing the cross section.
  • the measurement method is as follows. (1) The cross-sectional area of the metal terminal in area A (see FIG. 11) up to 0.5 mm from the end of the metal terminal on the mounting surface side is calculated by image analysis. (2) Calculate the thickness of the metal terminal on the mounting surface side by dividing the cross-sectional area of region A by the length of region A (set to 0.5 mm this time). The thickness corresponds to the average thickness of the metal terminal at a position where no recess is formed. (3) Calculate the cross-sectional area of the metal terminal in region B (see FIG. 11) where the recess is formed by image analysis.
  • the thickness of the metal terminal by dividing the cross-sectional area of region B by the length of region B.
  • the thickness corresponds to the average thickness of the metal terminal at the position where the recess is formed.
  • the thickness ratio is calculated by calculating (average thickness of the metal terminal at the position where the recess is formed)/(average thickness of the metal terminal at the position where the recess is not formed).
  • the image analysis software used was Winroof manufactured by Mitani Shoji Corporation, and the observation photographs were taken using a microscope manufactured by Keyence Corporation (model number VHX-6000).
  • the depth of the recess in the inductor component of the example was 3% or more and 10% or less of the average plate thickness of the metal terminal.
  • the inductor component was able to improve variations in product dimensions or variations in magnetic properties of the inductor component.
  • a method for manufacturing an inductor component and aspects of the inductor component of the present disclosure are as follows. ⁇ 1> A connecting step of electrically connecting the end of the coil conductor and the metal terminal to each other, a recess forming step of sandwiching the metal terminal between a first mold and a second mold, and forming a recess in the metal terminal using a convex portion provided in the first mold; A magnetic body in which the coil conductor is covered with a magnetic material in a space formed by the first mold and the second mold, the magnetic material is hardened, and a part of the metal terminal is drawn out from the outer surface.
  • a manufacturing method for inductor parts which includes: ⁇ 2> The inductor component according to ⁇ 1>, wherein either the first mold or the second mold further includes a magnetic material supply section that supplies the magnetic material toward the coil conductor. manufacturing method.
  • One of the first mold and the second mold is a mold that supplies the magnetic material toward the coil conductor and is equipped with an independently movable magnetic material supply section, and the other is an independently movable mold.
  • the mold is not equipped with a magnetic material supply section that moves with the magnetic material supply section, and the density of the magnetic material before hardening accommodated in the mold equipped with the magnetic material supply section is lower than that of the mold without the magnetic material supply section.
  • Coil conductor ; a magnetic body containing at least the coil conductor and containing a magnetic material; a metal terminal that is electrically connected to an end of the coil conductor within the magnetic body and partially exposed from the magnetic body;
  • the metal terminal is provided with a recess,
  • An inductor component wherein an end of the recess on the magnetic body side is located outside the magnetic body and at a distance of 0.01 mm or more and 0.10 mm or less from a side surface of the magnetic body.
  • ⁇ 7> The inductor component according to ⁇ 5> or ⁇ 6>, wherein the depth of the recess is 3% or more and 10% or less with respect to the average plate thickness of the metal terminal.
  • ⁇ 8> The inductor component according to any one of ⁇ 5> to ⁇ 7>, wherein the magnetic body has a substantially hexahedral shape.
  • ⁇ 9> The inductor component according to any one of ⁇ 5> to ⁇ 8>, wherein the pair of metal terminals are exposed from two opposing sides of the magnetic body.
  • ⁇ 10> The inductor component according to any one of ⁇ 5> to ⁇ 8>, wherein the pair of metal terminals are exposed from two orthogonal sides of the magnetic body.
  • ⁇ 11> The inductor component according to any one of ⁇ 5> to ⁇ 8>, wherein the pair of metal terminals are exposed from one side of the magnetic body.
  • ⁇ 12> The recessed portion having half or more of the total area of the recessed portion is provided in parallel to the side surface of the magnetic body from which the metal terminal is drawn out, according to any one of ⁇ 5> to ⁇ 11>. inductor parts.
  • ⁇ 13> The inductor component according to any one of ⁇ 5> to ⁇ 12>, wherein the recess is formed over the entire width of the metal terminal.
  • the inductor component of the present disclosure can be suitably used as an electronic component that can improve variations in product dimensions or magnetic properties.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

Provided are an inductor component manufacturing method and an inductor component product that can improve variations in product dimensions or magnetic characteristics. An inductor component manufacturing method of the present disclosure comprises: a connecting step for electrically connecting an end portion 11 of a coil conductor 10 and a metal terminal 30 to each other; a recess forming step for pinching the metal terminal 30 between a first mold and a second mold (mold 100) to form a recess 30g in the metal terminal 30 by means of a protrusion 111 provided on the first mold; and a molding step for coating the coil conductor 10 with a magnetic material in a space formed by the first mold and the second mold, and curing the magnetic material to form a magnetic body 20 having an outer surface through which a part of the metal terminal 30 is drawn out.

Description

インダクタ部品の製造方法およびインダクタ部品Manufacturing method of inductor parts and inductor parts
 本開示は、インダクタ部品の製造方法およびインダクタ部品に関する。 The present disclosure relates to a method for manufacturing an inductor component and an inductor component.
 特許文献1には、二つの端部を有するコイルと、コイルが埋め込まれる磁性体と、を含んだ埋め込み式インダクタ構造であって、端部にそれぞれ連結される二つの端子をさらに含み、端子は磁性体から外に露出する、埋め込み式インダクタ構造が開示されている。 Patent Document 1 discloses an embedded inductor structure including a coil having two ends and a magnetic body in which the coil is embedded, further including two terminals connected to each end, and the terminals are An embedded inductor structure is disclosed that is exposed to the outside of the magnetic material.
特開2007-189205号公報Japanese Patent Application Publication No. 2007-189205
 本願発明者は、従前の埋め込み式インダクタ構造では克服すべき課題があることに気付き、そのための対策を取る必要性を見出した。具体的には以下の課題があることを本願発明者は見出した。 The inventor of the present application noticed that there were problems to be overcome with the conventional embedded inductor structure, and found it necessary to take measures to solve the problem. Specifically, the inventor of the present application has found that there are the following problems.
 特許文献1に記載の埋め込み式インダクタ構造は、磁性金属粉末(例えば鉄粉或いは鉄系合金)を熱硬化性樹脂と混合して磁性体が製造される。ここで、磁性体を形成する際、磁性金属粉末と樹脂材とを金型内に封入し、金型内の磁性金属粉末および樹脂材を押圧することにより磁性体を成形することが考えられる。 In the embedded inductor structure described in Patent Document 1, a magnetic body is manufactured by mixing magnetic metal powder (for example, iron powder or iron-based alloy) with a thermosetting resin. Here, when forming the magnetic body, it is considered that the magnetic metal powder and the resin material are sealed in a mold and the magnetic body is molded by pressing the magnetic metal powder and the resin material in the mold.
 この場合、成形時の押圧によって磁性金属粉末および樹脂材を含む磁性材料20j’が金属端子30’を伝って金型100’より漏洩し(図12参照)、磁性体の製品寸法または磁性体の磁気特性のばらつきが生じることとなる。また、漏洩した磁性金属粉末および樹脂材を取り除くことを必要とするため、製造工程が煩雑となり、生産性が悪化する。 In this case, the magnetic material 20j' containing magnetic metal powder and resin material leaks from the mold 100' through the metal terminal 30' due to the pressure during molding (see FIG. 12), and the product dimensions of the magnetic material or the magnetic material This results in variations in magnetic properties. Furthermore, since it is necessary to remove leaked magnetic metal powder and resin material, the manufacturing process becomes complicated and productivity deteriorates.
 本開示は、かかる課題に鑑みて為されたものである。即ち、本開示の主たる目的は、製品寸法または磁気特性のばらつきを改善することができるインダクタ部品の製造方法およびインダクタ部品を提供することである。 The present disclosure has been made in view of such problems. That is, the main objective of the present disclosure is to provide a method for manufacturing an inductor component and an inductor component that can improve variations in product dimensions or magnetic properties.
 本願発明者は、従来技術の延長線上で対応するのではなく、新たな方向で対処することによって上記課題の解決を試みた。その結果、上記主たる目的が達成された開示に至った。 The inventor of the present application attempted to solve the above problem by tackling the problem in a new direction rather than by extending the conventional technology. As a result, the disclosure has been made in which the above main objective has been achieved.
 本開示に係るインダクタ部品の製造方法は、
 コイル導体の端部と金属端子を互いに電気的に接続する接続工程と、
 第1金型および第2金型によって前記金属端子を挟み込み、前記第1金型に設けられた凸部によって前記金属端子に凹部を形成する凹部形成工程と、
 前記第1金型と前記第2金型で形成される空間内の磁性材料によって前記コイル導体を被覆し、かつ前記磁性材料を硬化し、前記金属端子の一部が外面から引き出された磁性体を形成する成形工程と、
 を備える。
A method for manufacturing an inductor component according to the present disclosure includes:
a connecting step of electrically connecting the end of the coil conductor and the metal terminal to each other;
a recess forming step of sandwiching the metal terminal between a first mold and a second mold, and forming a recess in the metal terminal using a convex portion provided in the first mold;
A magnetic body in which the coil conductor is covered with a magnetic material in a space formed by the first mold and the second mold, the magnetic material is hardened, and a part of the metal terminal is drawn out from the outer surface. a molding process to form a
Equipped with.
 本開示に係るインダクタ部品は、
 コイル導体と、
 少なくとも前記コイル導体を収容し磁性材料を含有する磁性体と、
 前記コイル導体の端部と前記磁性体内で電気的に接続されており、一部が前記磁性体より露出する金属端子と、を備えており、 
 前記金属端子には、凹部が設けられており、
 前記磁性体側の凹部の端部は、前記磁性体より外側であって、前記磁性体の側面から0.1mm以上0.1mm以下に位置している。
The inductor component according to the present disclosure includes:
a coil conductor;
a magnetic body containing at least the coil conductor and containing a magnetic material;
a metal terminal that is electrically connected to an end of the coil conductor within the magnetic body and partially exposed from the magnetic body;
The metal terminal is provided with a recess,
An end of the recess on the magnetic body side is located outside the magnetic body and at a distance of 0.1 mm or more and 0.1 mm or less from a side surface of the magnetic body.
 本開示に係るインダクタ部品の製造方法は、金属端子に凹部を形成する凹部形成工程を備えているため、磁性材料が金型から漏洩することを低減し、インダクタ部品の製品寸法または磁気特性のばらつきを改善することができる。 Since the method for manufacturing an inductor component according to the present disclosure includes a recess forming step of forming a recess in a metal terminal, leakage of magnetic material from a mold is reduced, and variations in product dimensions or magnetic properties of the inductor component are achieved. can be improved.
図1は、本開示に係るインダクタ部品の斜視図である。FIG. 1 is a perspective view of an inductor component according to the present disclosure. 図2は、本開示に係るインダクタ部品の正面透視図ある。FIG. 2 is a front perspective view of an inductor component according to the present disclosure. 図3は、本開示に係るインダクタ部品の平面図である。FIG. 3 is a plan view of an inductor component according to the present disclosure. 図4は、本開示に係るインダクタ部品の変形例の平面図である。FIG. 4 is a plan view of a modification of the inductor component according to the present disclosure. 図5は、本開示に係るインダクタ部品の他の変形例の平面図である。FIG. 5 is a plan view of another modification of the inductor component according to the present disclosure. 図6は、本開示に係るインダクタ部品の製造工程を説明する工程模式図である。FIG. 6 is a process schematic diagram illustrating a manufacturing process of an inductor component according to the present disclosure. 図7は、本開示に係るインダクタ部品の製造工程を説明する工程模式図である。FIG. 7 is a process schematic diagram illustrating a manufacturing process of an inductor component according to the present disclosure. 図8は、本開示に係るインダクタ部品の製造工程を説明する工程模式図である。FIG. 8 is a process schematic diagram illustrating a manufacturing process of an inductor component according to the present disclosure. 図9は、図8の破線領域の拡大図である。FIG. 9 is an enlarged view of the broken line area in FIG. 8. 図10は、本開示に係るインダクタ部品の製造工程を説明する工程模式図である。FIG. 10 is a process schematic diagram illustrating a manufacturing process of an inductor component according to the present disclosure. 図11は、本開示に係るインダクタ部品のSEM写真である。FIG. 11 is a SEM photograph of an inductor component according to the present disclosure. 図12は、従来のインダクタ部品の拡大図である。FIG. 12 is an enlarged view of a conventional inductor component.
 以下、本開示のインダクタ部品を詳細に説明する。必要に応じて図面を参照して説明を行うものの、図示する内容は、本開示の理解のために模式的かつ例示的に示したにすぎず、外観や寸法比などは実物と異なり得る。なお、ここで説明されるインダクタ部品の構成は、あくまでも発明の理解のための例示にすぎず、発明を限定するものではない。 Hereinafter, the inductor component of the present disclosure will be described in detail. Although explanations will be made with reference to drawings as necessary, the contents shown in the drawings are merely shown schematically and exemplarily for understanding the present disclosure, and the appearance, dimensional ratio, etc. may differ from the real thing. Note that the configuration of the inductor component described here is merely an example for understanding the invention, and does not limit the invention.
 本明細書で言及する各種の数値範囲は、「未満」や「より多い/より大きい」などの特段の用語が付されない限り、下限および上限の数値そのものも含むことを意図している。つまり、例えば1~10といった数値範囲を例にとれば、下限値の“1”を含むと共に、上限値の“10”も含むものとして解釈され得る。また“約”および“程度”といった用語は、数パーセント、例えば±10%の変動を含み得ることを意味する。 The various numerical ranges mentioned herein are intended to include the lower and upper numerical limits themselves, unless specific terms such as "less than" or "more than/greater than" are used. In other words, if we take a numerical range from 1 to 10 as an example, it can be interpreted as including the lower limit of "1" and also the upper limit of "10". Also, the terms "about" and "extent" are meant to include variations of several percentage points, such as ±10%.
 本開示のインダクタ部品1は、コイル導体10と、少なくともコイル導体10を収容し磁性材料を含有する磁性体20と、コイル導体10の端部11と磁性体20内で電気的に接続されており、一部が磁性体20より露出する一対の金属端子30と、を備えている(図1および図2参照)。そして、金属端子30には、凹部30gが設けられている。凹部は片側の金属端子に設けられていてもよいが、両側の金属端子30に設けられているのが好ましい。本明細書でいう「凹部」とは、金属端子30の厚みが薄くなるように窪んでいる領域を有する部分を意図している。 The inductor component 1 of the present disclosure includes a coil conductor 10, a magnetic body 20 that accommodates at least the coil conductor 10 and contains a magnetic material, and an end 11 of the coil conductor 10 that is electrically connected within the magnetic body 20. , and a pair of metal terminals 30 whose portions are exposed from the magnetic body 20 (see FIGS. 1 and 2). The metal terminal 30 is provided with a recess 30g. Although the recess may be provided on one metal terminal, it is preferable that the recess is provided on both metal terminals 30. As used herein, the term "recessed portion" refers to a portion having a recessed area so that the thickness of the metal terminal 30 is reduced.
 ここで、金属端子30に形成される凹部30gは、本開示のインダクタ部品の製造方法の説明で詳述するが、凸部111を有する金型100(図6等参照)によって金属端子30を挟み込むことで形成される。したがって、金型100の凸部111により磁性材料が金型100から漏洩することを低減できるため、金属端子30に凹部が形成されるとインダクタ部品1の製品寸法または磁気特性のばらつきを改善することができる。 Here, the recess 30g formed in the metal terminal 30 will be described in detail in the explanation of the method of manufacturing an inductor component of the present disclosure, but the metal terminal 30 is sandwiched between the mold 100 (see FIG. 6, etc.) having the projection 111. It is formed by Therefore, since the convex portion 111 of the mold 100 can reduce the leakage of magnetic material from the mold 100, when the concave portion is formed in the metal terminal 30, variations in product dimensions or magnetic properties of the inductor component 1 can be improved. Can be done.
 さらに、付加的な効果として、本開示のインダクタ部品1を基板Sに実装する際に、凹部30gが半田H等に埋もれるため(図2参照)、インダクタ部品1と基板Sとの固着強度を高めることもできる。 Furthermore, as an additional effect, when the inductor component 1 of the present disclosure is mounted on the substrate S, the recess 30g is buried in the solder H etc. (see FIG. 2), thereby increasing the adhesion strength between the inductor component 1 and the substrate S. You can also do that.
 以下、本開示のインダクタ部品の構成を詳細に説明する。 Hereinafter, the configuration of the inductor component of the present disclosure will be described in detail.
[コイル導体]
 コイル導体10は、金属線(例えば、銅線)を巻回して構成されてよい。巻回しは、α巻き、エッジワイズ巻、非整列巻、整列巻等のいずれであってもよい。言い換えると、中央部に磁性体20が配置される空間を備えていることが好ましい。
[Coil conductor]
The coil conductor 10 may be configured by winding a metal wire (for example, a copper wire). The winding may be α winding, edgewise winding, non-aligned winding, aligned winding, or the like. In other words, it is preferable to provide a space in the center in which the magnetic body 20 is arranged.
 コイル導体10は、周囲が絶縁材料によって被覆されていてもよく、この場合は、上述した磁性体20内に含有された樹脂と相俟ってコイル導体10を磁性体20内に強固に固定することができる。なお、コイル導体10の端部は、金属端子30と互いに電気的に接続するため、コイル導体10周囲の絶縁材料が除去されてよい。 The coil conductor 10 may be covered with an insulating material, and in this case, together with the resin contained in the magnetic body 20 described above, the coil conductor 10 is firmly fixed within the magnetic body 20. be able to. Note that since the ends of the coil conductor 10 are electrically connected to the metal terminals 30, the insulating material around the coil conductor 10 may be removed.
 コイル導体10の端部11は、図3または図4に示すように磁性体20の一方の側面に向かうように延設されていてよい。また、図5に示すように磁性体20の直交する二側面に向かうように延設されてもよい。さらに、図示していないが、磁性体20の対向する二側面にそれぞれ向かうように延設されてもよい。 The end 11 of the coil conductor 10 may extend toward one side of the magnetic body 20 as shown in FIG. 3 or 4. Moreover, as shown in FIG. 5, the magnetic body 20 may be extended toward two orthogonal sides. Furthermore, although not shown, they may be extended toward two opposing sides of the magnetic body 20, respectively.
[磁性体]
 磁性体20は、磁性材料を硬化させた構成としてよい。磁性材料は、少なくとも磁性原料粒子と、樹脂と、溶剤を含んでよい。なお、溶剤は、磁性材料の硬化の際に蒸発してよい。磁性体は、略六面体としてよい。本明細書でいう「略六面体」とは、6つの平面に囲まれた立体形状を指し、6つの平面それぞれが略四角形のもの、および四角形の辺又は角が丸められたものを包含する概念である。また、「略六面体」において、コイル導体の巻回軸方向において互いに対向する面が「上面」および「下面」に相当し、巻回軸と平行な4面が「側面」に相当する。なお、本明細書でいう「平行」とは、完全な平行だけでなく、一定の誤差範囲内の実質的な平行も含む。また、本明細書でいう「直交」とは、完全な直交だけでなく、一定の誤差範囲内の実質的な直交も含む。
[Magnetic material]
The magnetic body 20 may be a hardened magnetic material. The magnetic material may include at least magnetic raw material particles, a resin, and a solvent. Note that the solvent may evaporate during curing of the magnetic material. The magnetic body may have a substantially hexahedral shape. The term "substantially hexahedron" as used herein refers to a three-dimensional shape surrounded by six planes, and is a concept that includes those in which each of the six planes is approximately quadrilateral, and those in which the sides or corners of the quadrilateral are rounded. be. Furthermore, in the "substantially hexahedron", the surfaces facing each other in the direction of the winding axis of the coil conductor correspond to the "top surface" and the "bottom surface", and the four surfaces parallel to the winding axis correspond to the "side surfaces". Note that "parallel" as used herein includes not only complete parallelism but also substantial parallelism within a certain error range. Furthermore, the term "orthogonal" as used herein includes not only complete orthogonality but also substantially orthogonality within a certain error range.
-磁性原料粒子-
 磁性原料粒子としては、従来から用いられているFe系の金属磁性粒子を用いてよく、例えば、Fe(純鉄)またはFe合金としてよい。Fe合金の一例として、FeおよびNiを含む合金、FeおよびCoを含む合金、FeおよびSiを含む合金、Fe、SiおよびCrを含む合金、Fe、SiおよびAlを含む合金、Fe、Si、BおよびCrを含む合金ならびにFe、P、Cr、Si、B、NbおよびCを含む合金からなる群から選択される1以上の金属磁性材料の粒子であってよい。さらに、磁性原料粒子は、その表面が絶縁処理済みのものであってよい。例えば、磁性原料粒子は、その表面に絶縁性被膜を有してよい。絶縁性被膜は、例えば、無機ガラス被膜、有機-無機ハイブリッド被膜、および金属アルコキシドのゾルゲル反応により形成された無機系絶縁性被膜から成る群から選択される1以上の絶縁性被膜であってよい。磁性原料粒子は、磁性材料全体基準で93重量%以上98重量%以下含んでよい。
-Magnetic raw material particles-
As the magnetic raw material particles, conventionally used Fe-based metal magnetic particles may be used, and for example, Fe (pure iron) or Fe alloy may be used. Examples of Fe alloys include alloys containing Fe and Ni, alloys containing Fe and Co, alloys containing Fe and Si, alloys containing Fe, Si and Cr, alloys containing Fe, Si and Al, Fe, Si, B and alloys containing Cr and alloys containing Fe, P, Cr, Si, B, Nb, and C. Furthermore, the surface of the magnetic raw material particles may be subjected to insulation treatment. For example, the magnetic raw material particles may have an insulating coating on their surfaces. The insulating coating may be, for example, one or more insulating coatings selected from the group consisting of an inorganic glass coating, an organic-inorganic hybrid coating, and an inorganic insulating coating formed by a sol-gel reaction of metal alkoxide. The magnetic raw material particles may contain 93% by weight or more and 98% by weight or less based on the entire magnetic material.
-樹脂-
 樹脂は、硬化反応に寄与する官能基を含有してよい。つまり、樹脂の硬化反応によって硬化されて磁性体の製造を可能としてよい。より具体的には、磁性体を製造する前段階の樹脂は、未硬化のものである。本明細書でいう「未硬化」とは、ほぼ完全に硬化された状態の前段階のものをいい、半硬化状態のものを包含する。樹脂の一例として、エポキシ樹脂、フェノール樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリオレフィン樹脂およびシリコーン樹脂からなる群から選択される少なくとも1つであってよい。なかでも、樹脂としてエポキシ樹脂を用いた場合、電気絶縁性および/または機械的強度の高い磁性体を得ることができる。別法として、ポリアミドイミド、ポリフェニレンスルファイドおよび/または液晶ポリマー等の熱可塑性樹脂を用いてもよい。硬化反応は、熱によるものが好ましい。つまり、樹脂は熱硬化性樹脂であることが好ましい。一例として熱硬化性エポキシ樹脂が挙げられる。このような樹脂を用いれば、簡易な方法によって硬化反応を生じさせることができる。樹脂は、磁性材料全体基準で2.0重量%以上5.6重量%以下含んでよい。
-resin-
The resin may contain functional groups that contribute to the curing reaction. In other words, it may be cured by a resin curing reaction to enable production of a magnetic body. More specifically, the resin before manufacturing the magnetic material is uncured. The term "uncured" as used herein refers to a state prior to a substantially completely cured state, and includes a semi-cured state. An example of the resin may be at least one selected from the group consisting of epoxy resin, phenol resin, polyester resin, polyimide resin, polyolefin resin, and silicone resin. Among these, when an epoxy resin is used as the resin, a magnetic material with high electrical insulation and/or mechanical strength can be obtained. Alternatively, thermoplastic resins such as polyamideimide, polyphenylene sulfide and/or liquid crystal polymers may be used. The curing reaction is preferably carried out by heat. That is, the resin is preferably a thermosetting resin. An example is a thermosetting epoxy resin. If such a resin is used, a curing reaction can be caused by a simple method. The resin may be contained in an amount of 2.0% by weight or more and 5.6% by weight or less based on the entire magnetic material.
-溶剤-
 溶剤は、上記磁性原料粒子および樹脂を混合するために用いられ、有機溶剤であることが好ましい。例えば、トルエンまたはキシレン等の芳香族炭化水素類;アセトン、メチルエチルケトン、または、メチルイソブチルケトン、等のケトン類;メタノール、エタノール、または、イソプロピルアルコール等のアルコール類;プロピレングリコールモノメチルエーテル、または、プロピレングリコールモノメチルエーテルアセテート等のグリコールエーテル類のいずれかを含んでよい。
-solvent-
The solvent is used to mix the magnetic raw material particles and the resin, and is preferably an organic solvent. For example, aromatic hydrocarbons such as toluene or xylene; ketones such as acetone, methyl ethyl ketone, or methyl isobutyl ketone; alcohols such as methanol, ethanol, or isopropyl alcohol; propylene glycol monomethyl ether or propylene glycol It may include any of the glycol ethers such as monomethyl ether acetate.
 上記磁性材料に基づく磁性体20の内部には、コイル導体10が収容されている(図2参照)。これによって、磁性体20が磁化されて所望のインダクタンス特性を得ることができる。 A coil conductor 10 is housed inside the magnetic body 20 based on the above magnetic material (see FIG. 2). Thereby, the magnetic body 20 is magnetized and desired inductance characteristics can be obtained.
 好ましい磁性体20の態様として、磁性体20における基板実装面側に折り曲げられた金属端子30を収納する収納部21(図2参照)を備えていてよい。具体的には、金属端子30を収納するように角部が切り欠けられていてよい。このような構成によれば、切り欠き量に応じてインダクタ部品を低背化することができ、製品を小型化することができる。 As a preferable embodiment of the magnetic body 20, the magnetic body 20 may be provided with a housing portion 21 (see FIG. 2) for housing the bent metal terminal 30 on the substrate mounting surface side. Specifically, the corners may be cut out to accommodate the metal terminals 30. According to such a configuration, the height of the inductor component can be reduced according to the amount of the notch, and the product can be made smaller.
[金属端子]
 金属端子30は、磁性体20の内部に内包されている内側部31と、磁性体20の外部で露出している外側部32と、を有してよい(図1および2参照)。
[Metal terminal]
The metal terminal 30 may have an inner part 31 contained inside the magnetic body 20 and an outer part 32 exposed outside the magnetic body 20 (see FIGS. 1 and 2).
 金属端子30の内側部31において、金属端子30は、コイル導体10と互いに電気的に接続されてよい。つまり、金属端子30とコイル導体10との電気的接続位置は、磁性体20内に内包されてよい。したがって、電気的接続位置が磁性体20外の場合と比較し、外力等による金属端子30とコイル導体10との電気的接続の剥離が起きにくくなっていてよい。 In the inner part 31 of the metal terminal 30, the metal terminal 30 may be electrically connected to the coil conductor 10. That is, the electrical connection position between the metal terminal 30 and the coil conductor 10 may be contained within the magnetic body 20. Therefore, compared to the case where the electrical connection position is outside the magnetic body 20, separation of the electrical connection between the metal terminal 30 and the coil conductor 10 due to external force or the like may be less likely to occur.
 金属端子30の内側部31は、コイル導体10の湾曲に対応して、外縁が湾曲形状とされてよい(図1参照)。したがって、内側部31とコイル導体10との離間距離が一定に保たれてよい。離間距離を一定とすることにより、耐電圧を向上させることができる。 The outer edge of the inner part 31 of the metal terminal 30 may be curved to correspond to the curvature of the coil conductor 10 (see FIG. 1). Therefore, the distance between the inner portion 31 and the coil conductor 10 may be kept constant. By keeping the distance constant, withstand voltage can be improved.
 金属端子30の外側部32は、磁性体20の外部で露出していてよい。そして、磁性体20の側面および下面に沿うように屈曲されて構成されていてよい。言い換えると、金属端子30の外側部32は、磁性体20の側面及び下面に亘って設けられていてよい。 The outer portion 32 of the metal terminal 30 may be exposed outside the magnetic body 20. The magnetic body 20 may be bent along the side and bottom surfaces of the magnetic body 20 . In other words, the outer portion 32 of the metal terminal 30 may be provided over the side surface and bottom surface of the magnetic body 20.
 一例として、金属端子30は、磁性体20の対向する二側面より露出してよい(図3参照)。このような配置によれば、金属端子30同士を可能な限り離間させることができるため、短絡を防止することができる。 As an example, the metal terminal 30 may be exposed from two opposing sides of the magnetic body 20 (see FIG. 3). According to such an arrangement, the metal terminals 30 can be spaced apart from each other as much as possible, so that short circuits can be prevented.
 なお、金属端子30の配置は、図3の例に限定されるものではない。インダクタ部品1を実装する基板Sに対応させて種々の配置を採用してよい。例えば、図4のように磁性体20の1つの側面から一対の金属端子30を露出させてもよい。また、図5のように磁性体20の直交する二側面より露出させてもよい。 Note that the arrangement of the metal terminals 30 is not limited to the example shown in FIG. 3. Various arrangements may be adopted depending on the substrate S on which the inductor component 1 is mounted. For example, a pair of metal terminals 30 may be exposed from one side of the magnetic body 20 as shown in FIG. Alternatively, as shown in FIG. 5, the magnetic material 20 may be exposed from two orthogonal sides.
 外側部32は、磁性体20の下面側で基板S等に実装されてよい(図2参照)。当該実装は、例えば、半田Hまたは導電性接着剤で行われてよい。本開示のインダクタ部品1は、基板Sへの実装に金属端子30が用いられているため、基板Sに外力が加わって撓みが生じても、当該撓みに追随して金属端子30が撓むこととなる。つまり、基板Sの撓みに対する影響を低減することができる。 The outer part 32 may be mounted on the substrate S or the like on the lower surface side of the magnetic body 20 (see FIG. 2). The mounting may be performed, for example, with solder H or conductive adhesive. In the inductor component 1 of the present disclosure, since the metal terminal 30 is used for mounting on the substrate S, even if an external force is applied to the substrate S and deflection occurs, the metal terminal 30 will not bend following the deflection. becomes. In other words, the influence on the deflection of the substrate S can be reduced.
 金属端子30には、凹部30gが設けられている。当該凹部30gは、凸部111を有する金型100(図6等参照)によって金属端子30を挟み込むことで形成される。これにより、インダクタ部品1を基板Sに実装する際、当該凹部30gが半田H(図2参照)に埋もれるため、インダクタ部品1と基板Sとの固着強度を高めることができる。 The metal terminal 30 is provided with a recess 30g. The recess 30g is formed by sandwiching the metal terminal 30 between a mold 100 (see FIG. 6, etc.) having a projection 111. Thereby, when the inductor component 1 is mounted on the substrate S, the recess 30g is buried in the solder H (see FIG. 2), so that the adhesion strength between the inductor component 1 and the substrate S can be increased.
 凹部30gは、磁性体20より外側に位置している。言い換えると、金属端子30の外側部32に設けられてよい。このように凹部30gを露出させることにより、当該凹部をインダクタ部品1と基板Sとの実装時に利用することができる。 The recessed portion 30g is located outside the magnetic body 20. In other words, it may be provided on the outer part 32 of the metal terminal 30. By exposing the recess 30g in this manner, the recess can be used when the inductor component 1 and the substrate S are mounted.
 凹部30gは、磁性体20より外側であって、磁性体20の側面近傍に位置している。より具体的には、凹部30gの磁性体20側の端部が、側面近傍に位置してよい。本明細書でいう「側面近傍」とは、磁性体20の金属端子30が引き出されている側面から0.01mm以上0.10mm以下離れた位置を意図している。この数値範囲は、金型100に設けられる凸部111の位置に依拠している。つまり、金型100の凸部111の位置が磁性体20に近い位置にあるほど磁性材料に起因するバリ20B(図9参照)を低減することができるため、上記数値範囲とすることが好ましい。 The recessed portion 30g is located outside the magnetic body 20 and near the side surface of the magnetic body 20. More specifically, the end of the recess 30g on the magnetic body 20 side may be located near the side surface. The term "near the side surface" as used herein refers to a position that is 0.01 mm or more and 0.10 mm or less away from the side surface of the magnetic body 20 from which the metal terminal 30 is drawn out. This numerical range depends on the position of the convex portion 111 provided on the mold 100. In other words, the closer the position of the convex part 111 of the mold 100 is to the magnetic body 20, the more the burr 20B (see FIG. 9) caused by the magnetic material can be reduced, so it is preferable to set the value within the above numerical range.
 凹部30gの総面積の半分以上の凹部は、金属端子30が引き出されている磁性体20の側面と平行に設けられてよい。このような凹部30gの態様であれば、半田フィレットが形成されて適切に凹部30gを半田Hに埋もらせることができる。 The recess, which is half or more of the total area of the recess 30g, may be provided parallel to the side surface of the magnetic body 20 from which the metal terminal 30 is drawn out. With such a configuration of the recessed portion 30g, a solder fillet is formed and the recessed portion 30g can be appropriately buried in the solder H.
 凹部30gは、金属端子30の延在方向と直交し、かつ、金属端子30が引き出される側面と平行な方向の全域に形成されてよい。具体的に、「金属端子30の延在方向」とは、図1に示す±Y方向を意図している。また、「金属端子30の延在方向と直交する方向」とは、図1に示す±X方向を意図している。言い換えると、金属端子30の幅方向を意図している。当該凹部30gは、金型100の凸部111が幅方向全域で金属端子30を押圧することにより形成される。したがって、押圧時に凸部111と金属端子30との間の間隙を低減できるため、金型100からの磁性材料の漏洩をより低減することができる。 The recessed portion 30g may be formed in the entire area in a direction perpendicular to the extending direction of the metal terminal 30 and parallel to the side surface from which the metal terminal 30 is pulled out. Specifically, "the extending direction of the metal terminal 30" is intended to be the ±Y direction shown in FIG. Moreover, "the direction orthogonal to the extending direction of the metal terminal 30" is intended to be the ±X direction shown in FIG. In other words, the width direction of the metal terminal 30 is intended. The concave portion 30g is formed by the convex portion 111 of the mold 100 pressing the metal terminal 30 over the entire width direction. Therefore, since the gap between the convex portion 111 and the metal terminal 30 can be reduced during pressing, leakage of the magnetic material from the mold 100 can be further reduced.
 凹部30gにおける金属端子30の延在方向の長さは、0.5mm以上3.0mm以下でよい。この数値範囲は、金型100に設けられる凸部111の大きさに依拠している。凸部111が小さい場合は、凸部111が鋭くなって金型の耐久性が低くなる一方、凸部111が大きい場合は、均一な押圧を実現するために設備が大型化する必要がある。つまり、設備上の観点から上記数値範囲とすることが好ましい。 The length in the extending direction of the metal terminal 30 in the recessed portion 30g may be 0.5 mm or more and 3.0 mm or less. This numerical range depends on the size of the convex portion 111 provided in the mold 100. If the protrusions 111 are small, the protrusions 111 will become sharp and the durability of the mold will be reduced, while if the protrusions 111 are large, the equipment will need to be larger in order to achieve uniform pressing. That is, it is preferable to set it as the said numerical range from a viewpoint of equipment.
 凹部30gの深さは、金属端子30の平均板厚に対して3%以上10%以下でよい。この数値範囲は、金型100に設けられる凸部111の突出度合いに依拠している。凸部111を有していれば金型100からの磁性材料の漏洩を低減できるが、金属端子30の平均板厚に対して3%以上の凹部30gを形成することができれば、効果的に磁性材料の漏洩を低減することができる。また、金属端子30の平均板厚に対して10%以下の凹部30gを形成できれば、端子強度を確保することができる。なお、金属端子30の平均板厚に対して10%以上の凹部30g形成してもよい。 The depth of the recessed portion 30g may be 3% or more and 10% or less of the average plate thickness of the metal terminal 30. This numerical range depends on the degree of protrusion of the convex portion 111 provided in the mold 100. Having the convex portions 111 can reduce the leakage of magnetic material from the mold 100, but if the concave portions 30g can be formed by 3% or more with respect to the average plate thickness of the metal terminals 30, the magnetic material can be effectively reduced. Material leakage can be reduced. Moreover, if the recessed portion 30g can be formed to have a thickness of 10% or less with respect to the average plate thickness of the metal terminal 30, terminal strength can be ensured. Note that the recessed portion 30g may be formed to have a thickness of 10% or more with respect to the average plate thickness of the metal terminal 30.
 なお、上述した凹部30gの特徴は、体積として45mm以上350mm以下のインダクタ部品を基準としている。 Note that the characteristics of the recessed portion 30g described above are based on an inductor component having a volume of 45 mm 3 or more and 350 mm 3 or less.
 次に、本開示のインダクタ部品の製造方法について説明する。本開示のインダクタ部品の製造方法は、以下の工程を備えている。
 ・コイル導体10の端部11と金属端子30を互いに電気的に接続する接続工程。
 ・金属端子30に向けて突出する凸部111を有する第1金型および/または第2金型(金型100)によって金属端子30を挟み込み、金属端子30に凹部30gを形成する凹部形成工程。
 ・金型100内のコイル導体10を磁性材料で被覆した後に磁性材料を硬化し、金属端子30の一部が外面から引き出された磁性体20を形成する成形工程。
 以下、各工程について詳述する。
Next, a method for manufacturing an inductor component according to the present disclosure will be described. A method for manufacturing an inductor component according to the present disclosure includes the following steps.
- A connection step of electrically connecting the end portion 11 of the coil conductor 10 and the metal terminal 30 to each other.
- A recess forming step in which the metal terminal 30 is sandwiched between a first mold and/or a second mold (mold 100) having a convex portion 111 protruding toward the metal terminal 30, and a recess 30g is formed in the metal terminal 30.
- A molding process in which the coil conductor 10 in the mold 100 is coated with a magnetic material and then the magnetic material is hardened to form the magnetic body 20 in which a part of the metal terminal 30 is drawn out from the outer surface.
Each step will be explained in detail below.
[接続工程]
 まず、コイル導体10を準備する。一例として、表面に絶縁皮膜が形成された金属線(例えば、銅線)を巻回し、空芯のコイル導体10を形成する。ここでコイル導体10の端部11は、レーザー照射等によって絶縁皮膜が除去されている。そして、絶縁被膜が除去されたコイル導体10の端部11に対しプレス加工を行って平坦化する。
[Connection process]
First, the coil conductor 10 is prepared. As an example, an air-core coil conductor 10 is formed by winding a metal wire (for example, a copper wire) whose surface is coated with an insulating film. Here, the insulating film of the end portion 11 of the coil conductor 10 has been removed by laser irradiation or the like. Then, the end portion 11 of the coil conductor 10 from which the insulation coating has been removed is pressed to flatten it.
 コイル導体10を準備した後に、板状の金属端子30を準備する。この金属端子30をコイル導体10の端部11と電気的に接続する。当該電気的な接続は、金属端子30をコイル導体10に接触させた状態でレーザー溶接により接合する。なお、接合手法はこの例に限定されず、例えば導電性接着剤等を用いて接合してもよい。以上により、コイル導体10の端部11と金属端子30とが互いに電気的に接続される。 After preparing the coil conductor 10, the plate-shaped metal terminal 30 is prepared. This metal terminal 30 is electrically connected to the end portion 11 of the coil conductor 10. The electrical connection is made by laser welding with the metal terminal 30 in contact with the coil conductor 10. Note that the bonding method is not limited to this example, and for example, a conductive adhesive or the like may be used for bonding. As described above, the end portion 11 of the coil conductor 10 and the metal terminal 30 are electrically connected to each other.
[凹部形成工程]
 次に凹部形成工程に移る。まず、凹部形成工程で用いられる金型100について説明する。
[Concave formation process]
Next, the process moves to a recess forming step. First, the mold 100 used in the recess forming process will be described.
-金型の説明-
 金型100は、図6に示すように上金型110と下金型120とを備えてよい。上金型110と下金型120が相対的に近づくように動作させることによって、型締めされる。
-Explanation of mold-
The mold 100 may include an upper mold 110 and a lower mold 120, as shown in FIG. By operating the upper mold 110 and the lower mold 120 so that they approach each other relatively, the molds are clamped.
 金型100は、磁性体20を形成するための磁性材料20jを収容する収容部100aと、金属端子30を押圧することによって凹部30gを形成する凸部111と、を備えてよい。図6では、上金型110に凸部111を設けている形態を例示しているが、下金型に凸部111を設けてもよい。また、上金型110および下金型120の両方に凸部111を設けてもよい。 The mold 100 may include an accommodating portion 100a that accommodates a magnetic material 20j for forming the magnetic body 20, and a convex portion 111 that forms a concave portion 30g by pressing the metal terminal 30. Although FIG. 6 shows an example in which the upper mold 110 is provided with the protrusion 111, the protrusion 111 may be provided on the lower mold. Further, the convex portion 111 may be provided on both the upper mold 110 and the lower mold 120.
 金型100は、コイル導体10に向けて磁性材料を供給する磁性材料供給部121を備えていてよい(図6参照)。磁性材料供給部121は、金型100に収容された磁性材料を供給するように可動する構造を有している。つまり、磁性材料供給部121をコイル導体10に向けて動作させることによって、コイル導体10を磁性材料で包み込むことができる。 The mold 100 may include a magnetic material supply section 121 that supplies magnetic material toward the coil conductor 10 (see FIG. 6). The magnetic material supply unit 121 has a structure that is movable so as to supply the magnetic material accommodated in the mold 100. That is, by operating the magnetic material supply section 121 toward the coil conductor 10, the coil conductor 10 can be wrapped in the magnetic material.
 図6では、下金型120に磁性材料供給部121が備えられており、上金型110に磁性材料供給部121が備えられていない形態を例示している。なお、磁性材料供給部について、図6とは異なり、上金型に磁性材料供給部が備えられ、下金型に磁性材料供給部が備えられていない形態としてもよい。また、上金型および下金型の両方に磁性材料供給部が備えられていてもよい。 FIG. 6 illustrates an example in which the lower mold 120 is equipped with a magnetic material supply section 121 and the upper mold 110 is not equipped with a magnetic material supply section 121. Note that the magnetic material supply section may be different from FIG. 6 in that the upper mold is provided with the magnetic material supply section and the lower mold is not provided with the magnetic material supply section. Further, both the upper mold and the lower mold may be provided with a magnetic material supply section.
-凹部形成工程の説明-
 上述の金型100を用いて、金属端子30に凹部を形成する工程を説明する。上金型110および下金型120に磁性材料20jを収容する。そして、上金型110と下金型120との間に金属端子30が接続されたコイル導体10を配置する。
-Explanation of the recess formation process-
A process of forming a recess in the metal terminal 30 using the mold 100 described above will be described. The magnetic material 20j is contained in the upper mold 110 and the lower mold 120. Then, the coil conductor 10 to which the metal terminal 30 is connected is placed between the upper mold 110 and the lower mold 120.
 そして、上金型110および下金型120を型締めする。このとき、金属端子30は上金型110と下金型120によって挟み込まれる。さらに、金属端子30が凸部111によって押圧されることにより、金属端子30に凹部が形成される。 Then, the upper mold 110 and the lower mold 120 are clamped. At this time, the metal terminal 30 is sandwiched between the upper mold 110 and the lower mold 120. Further, by pressing the metal terminal 30 with the convex portion 111, a concave portion is formed in the metal terminal 30.
[成形工程]
 次に成形工程に移る。金属端子30に凹部が形成された状態で、磁性材料供給部121をコイル導体10に向けて動作させ、コイル導体10を磁性材料20jで包み込む。図8では、磁性材料供給部121が上金型110に向けて動作することによって、コイル導体10が磁性材料20jに包み込まれる。なお、磁性材料供給部121の動作は、凹部形成工程より先に行ってもよいし、凹部形成工程と同時であってもよい。
[Molding process]
Next, move on to the molding process. With the recess formed in the metal terminal 30, the magnetic material supply section 121 is operated toward the coil conductor 10, and the coil conductor 10 is wrapped in the magnetic material 20j. In FIG. 8, the coil conductor 10 is wrapped in the magnetic material 20j by the magnetic material supply unit 121 operating toward the upper mold 110. Note that the operation of the magnetic material supply section 121 may be performed before the recess forming step, or may be performed simultaneously with the recess forming step.
 この場合、凸部111は押圧によって金属端子30と密着している。つまり、上金型110は、金属端子30と密着している。また、下金型120も凸部111による押圧により金属端子30と密着している。そのため、磁性材料20jは、金型100から外に漏洩することが低減されている。より具体的には、金型100の凸部111よりも外側に流動することが低減されている。したがって、磁性材料20jが金型100から漏洩することを低減し、インダクタ部品1の製品寸法または磁気特性のばらつきを改善することができる。 In this case, the convex portion 111 is in close contact with the metal terminal 30 by pressing. That is, the upper mold 110 is in close contact with the metal terminal 30. Furthermore, the lower mold 120 is also in close contact with the metal terminal 30 due to the pressure exerted by the convex portion 111 . Therefore, leakage of the magnetic material 20j to the outside from the mold 100 is reduced. More specifically, flowing outward from the convex portions 111 of the mold 100 is reduced. Therefore, leakage of the magnetic material 20j from the mold 100 can be reduced, and variations in product dimensions or magnetic properties of the inductor component 1 can be improved.
 図8に示すコイル導体10が磁性材料で包み込まれた状態で、金型を加熱し磁性材料を硬化させる。なお、この硬化は凸部を有する金型内で型崩れがしない程度に半硬化させ、他の工程で完全に硬化させてもよい。ここで、図8の一部分を拡大する図9に示すように、上金型110の内側に磁性材料が入り込んで、当該磁性材料の硬化により微小なバリ20Bが発生するが、当該バリ20Bは、容易に除去可能でありまた、微小ゆえ除去されなくてもよい。 With the coil conductor 10 shown in FIG. 8 wrapped in magnetic material, the mold is heated to harden the magnetic material. Note that this curing may be performed by semi-curing in a mold having convex portions to the extent that the material does not lose its shape, and may be completely cured in another step. Here, as shown in FIG. 9, which is a partial enlargement of FIG. It can be easily removed, and because it is so small, it does not need to be removed.
 最後に金型100を型開きし、成形品を取り出す(図10参照)。そして、金属端子の余分箇所を切断する等して成形品の形状を整える。 Finally, the mold 100 is opened and the molded product is taken out (see FIG. 10). Then, the shape of the molded product is adjusted by cutting off the excess portion of the metal terminal.
[折り曲げ工程]
 インダクタ部品の製造方法において、成形工程後に、金属端子30が凹部30gに基づいて折り曲げられる折り曲げ工程を備えてよい。これにより、凹部30gが磁性体20の側面に対応して設けられる(図2参照)。
[Bending process]
The method for manufacturing an inductor component may include, after the molding step, a bending step in which the metal terminal 30 is bent based on the recess 30g. Thereby, the recessed portion 30g is provided corresponding to the side surface of the magnetic body 20 (see FIG. 2).
 以上により、本開示のインダクタ部品を製造することができる。 Through the above steps, the inductor component of the present disclosure can be manufactured.
 なお、上記インダクタ部品の製造方法における好ましい態様として、凹部形成工程において、上金型110には、磁性材料20jの密度が高いものを用い、下金型120には、磁性材料20jの密度が低いものを用いてよい。当該磁性材料20jの密度が異なる材料は、予め磁性材料20jを準備する際、それを押し固めることによって仮形成されてよい。具体的には、磁性材料20jの押し固める力を比較的強くすることによって磁性材料20jの密度を高くすることができ比較的硬い材料となる。一方で、磁性材料20jの押し固める力を比較的弱くすることによって磁性材料20jの密度を低くすることができ比較的柔らかい材料となる。また、上金型110に収容する磁性材料と下金型120に収容する磁性材料は別の材料を使用してもよい。また、上記インダクタ部品の製造方法における他の好ましい態様として、溶融させた磁性材料を使用したトランスファーモールド成形等の製造方法であってもよい。 In addition, as a preferable aspect of the above method for manufacturing an inductor component, in the recess forming step, the upper mold 110 uses a magnetic material 20j with a high density, and the lower mold 120 uses a magnetic material 20j with a low density. You can use anything. The magnetic materials 20j having different densities may be temporarily formed by compacting the magnetic materials 20j when preparing the magnetic materials 20j in advance. Specifically, by making the force for compacting the magnetic material 20j relatively strong, the density of the magnetic material 20j can be increased, and the magnetic material 20j becomes a relatively hard material. On the other hand, by making the force for compacting the magnetic material 20j relatively weak, the density of the magnetic material 20j can be lowered, resulting in a relatively soft material. Further, the magnetic material accommodated in the upper mold 110 and the magnetic material accommodated in the lower mold 120 may be different materials. Further, as another preferred embodiment of the method for manufacturing the inductor component described above, a manufacturing method such as transfer molding using a molten magnetic material may be used.
 上記磁性材料の密度が異なる材料を用いて上述の成形工程を行う。つまり、成形工程として磁性材料供給部121をコイル導体10に向けて動作させる。この場合、上金型110には比較的硬い磁性材料20jが収容されているため、下金型120から磁性材料20jが供給されてもコイル導体10の位置ずれを低減することができる。具体的に、コイル導体10が上金型110の樹脂材料から露出することが低減することができる。 The above-mentioned molding process is performed using magnetic materials having different densities. That is, as a forming process, the magnetic material supply section 121 is operated toward the coil conductor 10. In this case, since the relatively hard magnetic material 20j is accommodated in the upper mold 110, even if the magnetic material 20j is supplied from the lower mold 120, displacement of the coil conductor 10 can be reduced. Specifically, exposure of the coil conductor 10 from the resin material of the upper mold 110 can be reduced.
 さらに、上金型110に収容される磁性材料20jが比較的に硬いため、下金型120から供給される磁性材料20jを磁性材料供給部121によって効率的に押圧することもできる。 Furthermore, since the magnetic material 20j accommodated in the upper mold 110 is relatively hard, the magnetic material 20j supplied from the lower mold 120 can also be efficiently pressed by the magnetic material supply section 121.
 次に、本開示に関連する実施例を説明する。なお、以下で挙げる実施例はあくまで例示であり、本発明の範囲を限定するものでない。具体的に、図1のインダクタ部品において、X方向の中央部まで研磨して断面観察を行った観察像を図11に示す。 Next, examples related to the present disclosure will be described. Note that the examples listed below are merely illustrative and do not limit the scope of the present invention. Specifically, FIG. 11 shows an observed image of the inductor component shown in FIG. 1 after polishing to the center in the X direction and observing the cross section.
 断面SEM写真を取得した後、画像解析を行って凹部の深さを測定した。測定方法は、以下のとおりである。
(1)実装面側の金属端子の端部から0.5mmまでの領域A(図11参照)の金属端子の断面積を画像解析にて算出する。
(2)領域Aの断面積に対し、領域Aの長さ(今回は、0.5mmに設定)で除することにより、実装面側の金属端子の厚みを算出する。当該厚みは、凹部が形成されていない位置の金属端子の平均厚みに相当する。
(3)凹部が形成されている領域B(図11参照)の金属端子の断面積を画像解析にて算出する。
(4)領域Bの断面積に対し、領域Bの長さで除することにより金属端子の厚みを算出する。当該厚みは、凹部が形成されている位置の金属端子の平均厚みに相当する。
(5)(凹部が形成されている位置の金属端子の平均厚み)/(凹部が形成されていない位置の金属端子の平均厚み)を算出することにより、厚みの割合を算出する。
 なお、本実施例において、画像解析ソフトは、三谷商事製Winroofを使用し、観察写真は、キーエンス製マイクロスコープ(型番VHX-6000)を使用して撮像した。
After obtaining a cross-sectional SEM photograph, image analysis was performed to measure the depth of the recess. The measurement method is as follows.
(1) The cross-sectional area of the metal terminal in area A (see FIG. 11) up to 0.5 mm from the end of the metal terminal on the mounting surface side is calculated by image analysis.
(2) Calculate the thickness of the metal terminal on the mounting surface side by dividing the cross-sectional area of region A by the length of region A (set to 0.5 mm this time). The thickness corresponds to the average thickness of the metal terminal at a position where no recess is formed.
(3) Calculate the cross-sectional area of the metal terminal in region B (see FIG. 11) where the recess is formed by image analysis.
(4) Calculate the thickness of the metal terminal by dividing the cross-sectional area of region B by the length of region B. The thickness corresponds to the average thickness of the metal terminal at the position where the recess is formed.
(5) The thickness ratio is calculated by calculating (average thickness of the metal terminal at the position where the recess is formed)/(average thickness of the metal terminal at the position where the recess is not formed).
In this example, the image analysis software used was Winroof manufactured by Mitani Shoji Corporation, and the observation photographs were taken using a microscope manufactured by Keyence Corporation (model number VHX-6000).
 断面観察を行った結果、実施例のインダクタ部品の凹部の深さは、金属端子の平均板厚に対して3%以上10%以下であることを確認することができた。そして、当該インダクタ部品は、製品寸法のばらつきまたは当該インダクタ部品の磁気特性のばらつきを改善することができた。 As a result of cross-sectional observation, it was confirmed that the depth of the recess in the inductor component of the example was 3% or more and 10% or less of the average plate thickness of the metal terminal. In addition, the inductor component was able to improve variations in product dimensions or variations in magnetic properties of the inductor component.
 本開示のインダクタ部品の製造方法およびインダクタ部品の態様は、以下のとおりである。
<1>コイル導体の端部と金属端子を互いに電気的に接続する接続工程と、
 第1金型および第2金型によって前記金属端子を挟み込み、前記第1金型に設けられた凸部によって前記金属端子に凹部を形成する凹部形成工程と、
 前記第1金型と前記第2金型で形成される空間内の磁性材料によって前記コイル導体を被覆し、かつ前記磁性材料を硬化し、前記金属端子の一部が外面から引き出された磁性体を形成する成形工程と、
 を備えている、インダクタ部品の製造方法。
<2>前記第1金型および第2金型のいずれか一方は、前記コイル導体に向けて前記磁性材料を供給する磁性材料供給部をさらに、備えている、<1>に記載のインダクタ部品の製造方法。
<3>前記第1金型および第2金型の一方は、前記コイル導体に向けて前記磁性材料を供給し、独立して可動する磁性材料供給部を備える金型であり、他方は独立して可動する磁性材料供給部を備えていない金型であり、前記磁性材料供給部を備える金型が収容する前記磁性材料の硬化前の密度は、前記磁性材料供給部を備えない金型が収容する前記磁性材料の硬化前の密度よりも低い、<1>または<2>に記載のインダクタ部品の製造方法。
<4>前記成形工程後に、前記金属端子が前記凹部に基づいて折り曲げられる折り曲げ工程を備えている、<1>から<3>のいずれか1つに記載のインダクタ部品の製造方法。
<5>コイル導体と、
 少なくとも前記コイル導体を収容し磁性材料を含有する磁性体と、
 前記コイル導体の端部と前記磁性体内で電気的に接続されており、一部が前記磁性体より露出する金属端子と、を備えており、 
 前記金属端子には、凹部が設けられており、
 前記磁性体側の凹部の端部は、前記磁性体より外側であって、前記磁性体の側面から0.01mm以上0.10mm以下に位置している、インダクタ部品。
<6>前記凹部における前記金属端子の延在方向の長さは、0.5mm以上3.0mm以下である、<5>に記載のインダクタ部品。
<7>前記凹部の深さは、前記金属端子の平均板厚に対して3%以上10%以下である、<5>または<6>に記載のインダクタ部品。
<8>前記磁性体は略六面体である、<5>~<7>のいずれか1つに記載のインダクタ部品。
<9>一対の前記金属端子は、前記磁性体の対向する二側面より露出している、<5>~<8>のいずれか1つに記載のインダクタ部品。
<10>一対の前記金属端子は、前記磁性体の直交する二側面より露出している、<5>~<8>のいずれか1つに記載のインダクタ部品。
<11>一対の前記金属端子が、前記磁性体の一側面より露出している、<5>~<8>のいずれか1つに記載のインダクタ部品。
<12>前記凹部の総面積の半分以上の凹部は、前記金属端子が引き出されている前記磁性体の側面と平行に設けられている、<5>~<11>のいずれか1つに記載のインダクタ部品。
<13>前記凹部は、前記金属端子の幅方向の全域に形成されている、<5>から<12>のいずれか1つに記載のインダクタ部品。
A method for manufacturing an inductor component and aspects of the inductor component of the present disclosure are as follows.
<1> A connecting step of electrically connecting the end of the coil conductor and the metal terminal to each other,
a recess forming step of sandwiching the metal terminal between a first mold and a second mold, and forming a recess in the metal terminal using a convex portion provided in the first mold;
A magnetic body in which the coil conductor is covered with a magnetic material in a space formed by the first mold and the second mold, the magnetic material is hardened, and a part of the metal terminal is drawn out from the outer surface. a molding process to form a
A manufacturing method for inductor parts, which includes:
<2> The inductor component according to <1>, wherein either the first mold or the second mold further includes a magnetic material supply section that supplies the magnetic material toward the coil conductor. manufacturing method.
<3> One of the first mold and the second mold is a mold that supplies the magnetic material toward the coil conductor and is equipped with an independently movable magnetic material supply section, and the other is an independently movable mold. The mold is not equipped with a magnetic material supply section that moves with the magnetic material supply section, and the density of the magnetic material before hardening accommodated in the mold equipped with the magnetic material supply section is lower than that of the mold without the magnetic material supply section. The method for manufacturing an inductor component according to <1> or <2>, wherein the density of the magnetic material is lower than that before curing.
<4> The method for manufacturing an inductor component according to any one of <1> to <3>, further comprising a bending step in which the metal terminal is bent based on the recess after the molding step.
<5> Coil conductor;
a magnetic body containing at least the coil conductor and containing a magnetic material;
a metal terminal that is electrically connected to an end of the coil conductor within the magnetic body and partially exposed from the magnetic body;
The metal terminal is provided with a recess,
An inductor component, wherein an end of the recess on the magnetic body side is located outside the magnetic body and at a distance of 0.01 mm or more and 0.10 mm or less from a side surface of the magnetic body.
<6> The inductor component according to <5>, wherein the length in the extending direction of the metal terminal in the recess is 0.5 mm or more and 3.0 mm or less.
<7> The inductor component according to <5> or <6>, wherein the depth of the recess is 3% or more and 10% or less with respect to the average plate thickness of the metal terminal.
<8> The inductor component according to any one of <5> to <7>, wherein the magnetic body has a substantially hexahedral shape.
<9> The inductor component according to any one of <5> to <8>, wherein the pair of metal terminals are exposed from two opposing sides of the magnetic body.
<10> The inductor component according to any one of <5> to <8>, wherein the pair of metal terminals are exposed from two orthogonal sides of the magnetic body.
<11> The inductor component according to any one of <5> to <8>, wherein the pair of metal terminals are exposed from one side of the magnetic body.
<12> The recessed portion having half or more of the total area of the recessed portion is provided in parallel to the side surface of the magnetic body from which the metal terminal is drawn out, according to any one of <5> to <11>. inductor parts.
<13> The inductor component according to any one of <5> to <12>, wherein the recess is formed over the entire width of the metal terminal.
 なお、今回開示した実施態様は、すべての点で例示であって、限定的な解釈の根拠となるものではない。したがって、本発明の技術的範囲は、上記した実施態様のみによって解釈されるものではなく、特許請求の範囲の記載に基づいて画定される。また、本発明の技術的範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。 Note that the embodiments disclosed herein are illustrative in all respects, and are not the basis for a limited interpretation. Therefore, the technical scope of the present invention should not be interpreted only by the above-described embodiments, but should be defined based on the claims. Further, the technical scope of the present invention includes all changes within the meaning and scope equivalent to the scope of the claims.
 本開示にインダクタ部品は、製品寸法または磁気特性のばらつきを改善できる電子部品として好適に用いることができる。 The inductor component of the present disclosure can be suitably used as an electronic component that can improve variations in product dimensions or magnetic properties.
1 インダクタ部品
10 コイル導体
11 端部
20 磁性体
20B バリ
20j,20j’ 磁性材料
21 収納部
30,30’ 金属端子
30g 凹部
31 内側部
32 外側部
100,100’ 金型
100a 収容部
110 上金型
111 凸部
120 下金型
121 磁性材料供給部
A 領域
B 領域
S 基板
H 半田
1 Inductor component 10 Coil conductor 11 End portion 20 Magnetic material 20B Burr 20j, 20j' Magnetic material 21 Storage portion 30, 30' Metal terminal 30g Recessed portion 31 Inner portion 32 Outside portion 100, 100' Mold 100a Accommodation portion 110 Upper mold 111 Convex portion 120 Lower mold 121 Magnetic material supply section A Region B Region S Substrate H Solder

Claims (13)

  1.  コイル導体の端部と金属端子を互いに電気的に接続する接続工程と、
     第1金型および第2金型によって前記金属端子を挟み込み、前記第1金型に設けられた凸部によって前記金属端子に凹部を形成する凹部形成工程と、
     前記第1金型と前記第2金型で形成される空間内の磁性材料によって前記コイル導体を被覆し、かつ前記磁性材料を硬化し、前記金属端子の一部が表面から引き出された磁性体を形成する成形工程と、
     を備えている、インダクタ部品の製造方法。
    a connecting step of electrically connecting the end of the coil conductor and the metal terminal to each other;
    a recess forming step of sandwiching the metal terminal between a first mold and a second mold, and forming a recess in the metal terminal using a convex portion provided in the first mold;
    A magnetic material in which the coil conductor is covered with a magnetic material in a space formed by the first mold and the second mold, the magnetic material is hardened, and a part of the metal terminal is pulled out from the surface. a molding process to form a
    A manufacturing method for inductor parts, which includes:
  2.  前記第1金型および第2金型のいずれか一方は、前記コイル導体に向けて前記磁性材料を供給する磁性材料供給部をさらに、備えている、請求項1に記載のインダクタ部品の製造方法。 The method for manufacturing an inductor component according to claim 1, wherein either the first mold or the second mold further includes a magnetic material supply section that supplies the magnetic material toward the coil conductor. .
  3.  前記第1金型および第2金型の一方は、前記コイル導体に向けて前記磁性材料を供給し、独立して可動する磁性材料供給部を備える金型であり、他方は独立して可動する前記磁性材料供給部を備えていない金型であり、
     前記磁性材料供給部を備える金型が収容する前記磁性材料の硬化前の密度は、前記磁性材料供給部を備えない金型が収容する前記磁性材料の硬化前の密度よりも低い、請求項1または2に記載のインダクタ部品の製造方法。
    One of the first mold and the second mold is a mold equipped with a magnetic material supply section that supplies the magnetic material toward the coil conductor and is movable independently, and the other mold is movable independently. The mold is not equipped with the magnetic material supply section,
    1 . The density of the magnetic material before hardening accommodated in the mold including the magnetic material supply section is lower than the density before hardening of the magnetic material accommodated in the mold without the magnetic material supply section. Or the method for manufacturing an inductor component according to 2.
  4.  前記成形工程後に、前記金属端子が前記凹部に基づいて折り曲げられる折り曲げ工程を備えている、請求項1~3のいずれか1項に記載のインダクタ部品の製造方法。 The method for manufacturing an inductor component according to any one of claims 1 to 3, further comprising a bending step in which the metal terminal is bent based on the recess after the molding step.
  5.  コイル導体と、
     少なくとも前記コイル導体を収容し磁性材料を含有する磁性体と、
     前記コイル導体の端部と前記磁性体内で電気的に接続されており、一部が前記磁性体より露出する金属端子と、を備えており、 
     前記金属端子には、凹部が設けられており、
     前記磁性体側の凹部の端部は、前記磁性体より外側であって、前記磁性体の側面から0.01mm以上0.10mm以下に位置している、インダクタ部品。
    a coil conductor;
    a magnetic body containing at least the coil conductor and containing a magnetic material;
    a metal terminal that is electrically connected to an end of the coil conductor within the magnetic body and partially exposed from the magnetic body;
    The metal terminal is provided with a recess,
    An inductor component, wherein an end of the recess on the magnetic body side is located outside the magnetic body and at a distance of 0.01 mm or more and 0.10 mm or less from a side surface of the magnetic body.
  6.  前記凹部における前記金属端子の延在方向の長さは、0.5mm以上3.0mm以下である、請求項5に記載のインダクタ部品。 The inductor component according to claim 5, wherein the length in the extending direction of the metal terminal in the recess is 0.5 mm or more and 3.0 mm or less.
  7.  前記凹部の深さは、前記金属端子の平均板厚に対して3%以上10%以下である、請求項5または6に記載のインダクタ部品。 The inductor component according to claim 5 or 6, wherein the depth of the recess is 3% or more and 10% or less with respect to the average plate thickness of the metal terminal.
  8.  前記磁性体は略六面体である、請求項5~7のいずれか1項に記載のインダクタ部品。 The inductor component according to any one of claims 5 to 7, wherein the magnetic body has a substantially hexahedral shape.
  9.  一対の前記金属端子は、前記磁性体の対向する二側面より露出している、請求項5~8のいずれか1項に記載のインダクタ部品。 The inductor component according to any one of claims 5 to 8, wherein the pair of metal terminals are exposed from two opposing sides of the magnetic body.
  10.  一対の前記金属端子は、前記磁性体の直交する二側面より露出している、請求項5~8のいずれか1項に記載のインダクタ部品。 The inductor component according to any one of claims 5 to 8, wherein the pair of metal terminals are exposed from two orthogonal sides of the magnetic body.
  11.  一対の前記金属端子が、前記磁性体の一側面より露出している、請求項5~8のいずれか1項に記載のインダクタ部品。 The inductor component according to any one of claims 5 to 8, wherein the pair of metal terminals are exposed from one side of the magnetic body.
  12.  前記凹部の総面積の半分以上の凹部は、前記金属端子が引き出されている前記磁性体の側面と平行に設けられている、請求項5~11のいずれか1項に記載のインダクタ部品。 The inductor component according to any one of claims 5 to 11, wherein the recess, which is more than half of the total area of the recess, is provided parallel to a side surface of the magnetic body from which the metal terminal is drawn out.
  13.  前記凹部は、前記金属端子の幅方向の全域に形成されている、請求項5~12のいずれか1項に記載のインダクタ部品。 13. The inductor component according to claim 5, wherein the recess is formed over the entire width of the metal terminal.
PCT/JP2023/014575 2022-08-08 2023-04-10 Inductor component manufacturing method and inductor component WO2024034181A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-126637 2022-08-08
JP2022126637 2022-08-08

Publications (1)

Publication Number Publication Date
WO2024034181A1 true WO2024034181A1 (en) 2024-02-15

Family

ID=89851376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014575 WO2024034181A1 (en) 2022-08-08 2023-04-10 Inductor component manufacturing method and inductor component

Country Status (1)

Country Link
WO (1) WO2024034181A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004221458A (en) * 2003-01-17 2004-08-05 Matsushita Electric Ind Co Ltd Choke coil and electronic equipment using it
JP2009123927A (en) * 2007-11-15 2009-06-04 Taiyo Yuden Co Ltd Inductor and production process therefor
JP2012043872A (en) * 2010-08-17 2012-03-01 Panasonic Corp Electronic component and method for manufacturing the same
WO2013183183A1 (en) * 2012-06-04 2013-12-12 アイトリックス株式会社 Compressed powder molded inductor member production device, production method for compressed powder molded inductor member, and compressed powder molded inductor member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004221458A (en) * 2003-01-17 2004-08-05 Matsushita Electric Ind Co Ltd Choke coil and electronic equipment using it
JP2009123927A (en) * 2007-11-15 2009-06-04 Taiyo Yuden Co Ltd Inductor and production process therefor
JP2012043872A (en) * 2010-08-17 2012-03-01 Panasonic Corp Electronic component and method for manufacturing the same
WO2013183183A1 (en) * 2012-06-04 2013-12-12 アイトリックス株式会社 Compressed powder molded inductor member production device, production method for compressed powder molded inductor member, and compressed powder molded inductor member

Similar Documents

Publication Publication Date Title
TW577093B (en) Coil-embedded dust core production process
TWI362047B (en) Inductor and manufacture method thereof
TW202018740A (en) Magnetic base body containing metal magnetic particles and electronic component including the same
WO2011118507A1 (en) Reactor and method of manufacture for same
US8922323B2 (en) Outer core manufacturing method, outer core, and reactor
JP6165115B2 (en) Soft magnetic composite material and magnetic core, reactor and reactor manufacturing method using the same
US11069474B2 (en) Inductor
US11107623B2 (en) Inductor
US9984810B2 (en) Reactor
US11069473B2 (en) Inductor
JP7485505B2 (en) Inductors
US20210193362A1 (en) Magnetic base body containing metal magnetic particles and electronic component including the same
JP2008042051A (en) Reactor
JP6532198B2 (en) Method of manufacturing magnetic core using soft magnetic composite material, method of manufacturing reactor
KR102098623B1 (en) Molded Inductor and manufacturing method thereof
WO2024034181A1 (en) Inductor component manufacturing method and inductor component
JP2011129593A (en) Reactor
WO2019235368A1 (en) Reactor
US11942249B2 (en) Composite magnetic particle including metal magnetic particle
JP6456729B2 (en) Inductor element and manufacturing method thereof
JP2020167304A (en) Method of manufacturing coil component
CN115148469A (en) Inductor and method for manufacturing inductor
CN112582156A (en) Coil component, circuit board, and electronic apparatus
WO2022024535A1 (en) Reactor and reactor manufacturing method
JP2024048205A (en) Coil component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852167

Country of ref document: EP

Kind code of ref document: A1