WO2024034153A1 - Piezoelectric vibration device - Google Patents

Piezoelectric vibration device Download PDF

Info

Publication number
WO2024034153A1
WO2024034153A1 PCT/JP2022/048501 JP2022048501W WO2024034153A1 WO 2024034153 A1 WO2024034153 A1 WO 2024034153A1 JP 2022048501 W JP2022048501 W JP 2022048501W WO 2024034153 A1 WO2024034153 A1 WO 2024034153A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric element
diaphragm
piezoelectric
layer
vibrating device
Prior art date
Application number
PCT/JP2022/048501
Other languages
French (fr)
Japanese (ja)
Inventor
高志 小椋
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024034153A1 publication Critical patent/WO2024034153A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • H04R7/06Plane diaphragms comprising a plurality of sections or layers
    • H04R7/10Plane diaphragms comprising a plurality of sections or layers comprising superposed layers in contact

Definitions

  • the present invention relates to a piezoelectric vibrating device including a piezoelectric element and a diaphragm.
  • a thin piezoelectric vibrating device 400 in which a piezoelectric element 420 is bonded to one surface of a diaphragm 410 has been developed (see Patent Document 1).
  • the diaphragm 410 has a three-layer structure in which a resin layer 411 is vertically sandwiched between metal layers 412 and 413 for the purpose of weight reduction.
  • the piezoelectric element 420 is bonded to a metal layer 412, and this metal layer 412 is used to apply an alternating voltage to the piezoelectric element 420.
  • the other metal layer 413 is provided to position the center of rigidity of the diaphragm 410 at the center of the diaphragm 410 in the thickness direction.
  • the piezoelectric vibration device 400 is configured as a piezoelectric speaker. Specifically, the piezoelectric vibrating device 400 can reproduce sound by vibrating the diaphragm 410 on the piezoelectric element 420 side and on the opposite side as shown in FIG. Note that in FIG. 11, the shape of the diaphragm 410 when the diaphragm 410 is displaced to the maximum extent toward the piezoelectric element 420 is shown by a solid line. The shape of the diaphragm 410 when the diaphragm 410 is maximally displaced to the side opposite to the piezoelectric element 420 is shown by a dashed line.
  • the surrounding part 416 surrounds the diaphragm 410 in the circumferential direction. It is set up like this. Further, in order to fix the piezoelectric vibrating device 400 to another device (for example, a home appliance such as a washing machine when the piezoelectric vibrating device 400 is used as a buzzer), the fixing portion 417 extends around the peripheral portion 416 in the circumferential direction. It is set up to surround.
  • the surrounding portion 416 is made of the same material as the resin layer 411 of the diaphragm 410 and is formed integrally with this resin layer 411.
  • the fixing part 417 has a central layer 418 made of the same material as the resin layer 411, and the central layer 418 is formed integrally with the peripheral part 416. Further, the fixing portion 417 includes metal layers 431 and 432 that sandwich the center layer 418 above and below in order to obtain the necessary rigidity for fixing to another device. That is, the fixed part 417 has a three-layer structure similar to the diaphragm 410.
  • the surrounding part 416 has a single layer structure and is more easily deformed than the diaphragm 410 and the fixed part 417.
  • an AC voltage having a frequency that causes the diaphragm 410 to resonate is applied to the piezoelectric element 420.
  • the piezoelectric element 420 expands and contracts in the direction along the diaphragm 410, and the diaphragm 410 resonates with the expansion and contraction of the piezoelectric element 420, vibrating toward the piezoelectric element 420 side and the opposite side.
  • the diaphragm 410 is subjected to air resistance while vibrating.
  • the greater the air resistance the more difficult it becomes for the diaphragm 410 to move. Therefore, under the condition that the piezoelectric element 420 expands and contracts at a constant frequency, the greater the air resistance, the longer the vibration period of the diaphragm 410 becomes, and the piezoelectric vibrator 400 is unable to reproduce low-pitched sounds. Can be done.
  • Air resistance increases as the diaphragm 410 becomes larger, so by making the diaphragm 410 larger, the reproduction range of the piezoelectric vibrating device 400 is expanded to the bass side. Therefore, in Patent Document 1, the diaphragm 410 includes not only the first portion 414 to which the piezoelectric element 420 is bonded, but also the second portion 415 surrounding the first portion 414 in the circumferential direction.
  • the piezoelectric vibration device 400 is used as a piezoelectric speaker, but the piezoelectric vibration device 400 can also be used as a piezoelectric vibration sensor that detects vibrations of a detection target. That is, if the diaphragm 410 is arranged so as to receive the vibration of the object to be detected, the diaphragm 410 will vibrate in accordance with the vibration of the object to be detected.
  • the piezoelectric element 420 expands and contracts in response to the vibration of the diaphragm 410, and a voltage corresponding to the amount of expansion and contraction of the piezoelectric element 420 is output from the piezoelectric element 420. Therefore, the piezoelectric vibrating device 400 can detect the vibration of the object to be detected. It can function as a detecting sensor (piezoelectric vibration sensor). That is, by monitoring the voltage output from the piezoelectric element 420, the vibration of the object to be detected can be detected and analyzed.
  • a piezoelectric element 420 is laminated on the first portion 414 of the diaphragm 410, and the first portion 414 and the piezoelectric element 420 constitute a laminated body 419.
  • the piezoelectric element 420 is not stacked on the second portion 415 . Therefore, there is a difference in bending rigidity between the second portion 415 and the laminate 419. Due to this difference in bending rigidity, the second portion 415 bends relative to the laminate 419. This bending of the diaphragm 410 may cause the following problems.
  • the width corresponds to the amount of air moved by one period of vibration of the diaphragm 410. If the diaphragm 410 is not bent, air corresponding to the second area surrounded by the dotted line in FIG. 11 will be moved by one period of vibration of the diaphragm 410.
  • the second region is wider than the first region, and the bending of the diaphragm 410 causes the air moved by one period of vibration of the diaphragm 410 to be equal to the difference in area between the second region and the first region. It can be seen that the amount of The air resistance that the diaphragm 410 receives while the diaphragm 410 is vibrating becomes smaller by the amount of this decrease in air amount. Therefore, under the condition that the piezoelectric element 420 expands and contracts at a constant frequency, the vibration period of the diaphragm 410 becomes shorter due to the decrease in air resistance that the diaphragm 410 receives, and the piezoelectric vibrating device 400 produces a low sound. It becomes difficult to play.
  • acoustic impedance is expressed as the product of the density of a medium through which sound propagates and the speed of sound.
  • the speed of sound increases as the modulus of elasticity of the medium increases. If the modulus of elasticity of the medium is large, the bending rigidity of the medium and, as a result, the speed of sound will be high. On the other hand, if the modulus of elasticity of the medium is small, the bending rigidity of the medium and, by extension, the speed of sound will be low.
  • noise waves unnecessary vibration components that propagate along the diaphragm 410 occur in the laminate 419
  • most of these noise waves are caused by the difference in acoustic impedance described above. It may be reflected at the boundary with the second portion 415. That is, while the number of noise waves propagating to the second portion 415 decreases, the number of noise waves continuing to propagate within the first portion 414 increases. In this case, the influence of the noise waves on the expansion and contraction of the piezoelectric element 420 becomes greater, and the signal output from the piezoelectric element 420 may contain more noise. Further, when the piezoelectric vibrating device 400 is used as a piezoelectric speaker, the sound reproduced by the piezoelectric vibrating device 400 may include a lot of noise.
  • the present disclosure provides a piezoelectric vibration device that has a wide reproduction band on the bass side and can reduce noise included in reproduced sound, or can output a signal representing the vibration of a detection target with little noise.
  • the purpose is to
  • the piezoelectric vibration device in the present disclosure is configured to function as a piezoelectric speaker that reproduces sound or a piezoelectric vibration sensor that detects vibration.
  • the piezoelectric vibrating device includes a piezoelectric element, a diaphragm having a first part to which the piezoelectric element is bonded, and a second part around the first part.
  • the piezoelectric element expands and contracts under the application of an alternating current voltage to cause the diaphragm to vibrate between the side to which the piezoelectric element is bonded and the opposite side, thereby generating sound from the diaphragm.
  • the diaphragm is bonded to one surface of the first portion of the diaphragm so that it expands and contracts in accordance with the vibrations of the diaphragm and generates a voltage signal when the diaphragm is vibrating on both sides of the diaphragm.
  • the piezoelectric vibrating device further includes a rigid layer laminated on one surface of the second portion of the diaphragm and bonded to the circumferential surface of the piezoelectric element.
  • the piezoelectric vibration device described above has a wide reproduction band on the bass side and can reduce the noise contained in the reproduced sound, and can also output a signal representing the vibration of the detection target with less noise.
  • FIG. 1 is a schematic plan view of a portion of a piezoelectric vibrating device 100 that functions as a piezoelectric speaker.
  • FIG. 2 is a schematic cross-sectional view of the piezoelectric vibrating device 100 (a cross-sectional view taken along line II-II in FIG. 1). The structure of the piezoelectric vibrating device 100 will be explained with reference to FIGS. 1 and 2.
  • the piezoelectric vibrating device 100 includes a substantially square-shaped diaphragm 110, a disc-shaped piezoelectric element 120 joined to the diaphragm 110, and a rectangular frame-shaped peripheral portion 113 surrounding the diaphragm 110 in the circumferential direction.
  • a rectangular frame-shaped fixing part 140 surrounding the peripheral part 113 in the circumferential direction is provided.
  • the piezoelectric element 120 has a thickness of about 30 ⁇ m to 100 ⁇ m, and one surface of the piezoelectric element 120 is bonded to the center of the diaphragm 110. Piezoelectric element 120 may be bonded to diaphragm 110 using, for example, an acrylic adhesive.
  • the piezoelectric element 120 has a characteristic of expanding and contracting in the radial direction when an AC voltage is applied to both sides of the piezoelectric element 120. Furthermore, the piezoelectric element 120 has a characteristic that the larger the voltage applied to both sides of the piezoelectric element 120, the more the piezoelectric element 120 expands and contracts.
  • the piezoelectric element 120 when a positive voltage is applied to one surface (the upper surface in FIG. 2) of the piezoelectric element 120 and a negative voltage is applied to the other surface, the piezoelectric element 120 expands in the radial direction. It has characteristics. Furthermore, when the voltage poles are reversed, the piezoelectric element 120 has a characteristic of contracting in the radial direction.
  • a piezoelectric element 120 can be formed using a piezoelectric material such as PZT (lead zirconate titanate), for example.
  • the piezoelectric element 120 if it is inverted vertically and bonded to the diaphragm 110 (that is, if it is electrically bonded in opposite phases), it has an elastic characteristic opposite to the above-mentioned elastic characteristic. That is, with a negative voltage applied to one surface (the upper surface in FIG. 2) of the piezoelectric element 120 and a positive voltage applied to the other surface, the piezoelectric element 120 expands in the radial direction. It has the following characteristics. In this case, the piezoelectric element 120 has a characteristic of contracting in the radial direction due to the polarity reversal of the applied voltage.
  • the diaphragm 110 is a thin plate-like member (for example, a member with a thickness of about 40 ⁇ m) that vibrates on the side to which the piezoelectric element 120 is bonded and the opposite side as the piezoelectric element 120 expands and contracts.
  • the diaphragm 110 is larger than the piezoelectric element 120 in a plan view, and as shown in FIG. It has two parts 116.
  • first laminate 117 The bending rigidity of the laminate of the first part 115 and the piezoelectric element 120 (hereinafter referred to as "first laminate 117") is greater than the bending rigidity of the second part 116 by the bending rigidity of the piezoelectric element 120. ing. These differences in bending rigidity cause the diaphragm 110 to bend and the acoustic impedance within the diaphragm 110 to change rapidly. In order to suppress these adverse effects, a rigid layer 118 is laminated with a substantially constant thickness on the surface of the second portion 116 on the piezoelectric element 120 side, as shown in FIG. (not shown in Figure 1).
  • the rigid layer 118 covers the entire diaphragm 110 except for the first portion 115 to which the piezoelectric element 120 is bonded, and has a substantially square outer shape in plan view. This rigid layer 118 is adhered to the circumferential surface of the piezoelectric element 120.
  • the thickness and material of the rigid layer 118 are such that the bending rigidity of the first laminate 117 and the flexural rigidity of the laminate of the second portion 116 and the rigid layer 118 (hereinafter referred to as "second laminate 119") are approximately equal. It is set to be.
  • the rigid layer 118 can be formed, for example, by photopolymerizing and curing a liquid resin material (for example, a urethane acrylate resin, an epoxy acrylate resin, or a polyester acrylate resin) on the second portion 116 using ultraviolet rays.
  • a liquid resin material for example, a urethane acrylate resin, an epoxy acrylate resin, or a polyester acrylate resin
  • the diaphragm 110 itself may have multiple material layers or may have a single layer structure.
  • the diaphragm 110 has a two-layer structure and includes a base layer 111 and a conductive layer 112 bonded to the base layer 111 on the piezoelectric element 120 side.
  • a piezoelectric element 120 is bonded to the conductive layer 112. Further, around the piezoelectric element 120, the above-described rigid layer 118 is laminated on the conductive layer 112.
  • the base layer 111 is made of a material with a lower density than the conductive layer 112.
  • the base layer 111 may be a resin film layer or an aluminum layer.
  • the base layer 111 is made of resin, polyethylene terephthalate, polyethylene, polypropylene, polyurethane, polyamide, or polyimide may be used.
  • the base layer 111 may be made of styrene-butadiene-based rubber, butadiene-based rubber, butyl-based rubber, or ethylene-propylene-based rubber. These resin materials may have acoustically high internal loss, and this internal loss may contribute to reducing noise contained in reproduced sound.
  • the material layer constituting the base layer 111 also constitutes the peripheral portion 113.
  • This material layer is a portion that curves and deforms in a convex direction toward the piezoelectric element 120 and in a convex direction in the opposite direction as the piezoelectric element 120 expands and contracts.
  • the thickness of the material layer is set so that a sufficiently large restoring force can be obtained against this curved deformation. For example, this thickness may be 30 ⁇ m.
  • the conductive layer 112 is thinner than the base layer 111 in order to reduce the weight of the diaphragm 110.
  • the thickness of the conductive layer 112 may be about 10 ⁇ m. Since the conductive layer 112 is thinner than the base layer 111, it does not affect the internal loss of the entire diaphragm 110 as much as the base layer 111 does. Therefore, the internal loss of the conductive layer 112 may be greater than the internal loss of the base layer 111.
  • the conductive layer 112 is a part used to supply power to the piezoelectric element 120, and is made of a conductive material.
  • the conductive layer 112 may be a layer of 42 alloy (42Ni-Fe) or a layer of copper (Cu).
  • the conductive layer 112 is bonded to the base layer 111 by van der Waals force.
  • the conductive layer 112 and the base layer 111 may be joined by an adhesive.
  • the conductive layer 112 has an overall rectangular shape in plan view, but a portion is cut out. A portion of the base layer 111 is exposed in this cutout portion. This notch is used for arranging the electrode 132 for applying voltage to the piezoelectric element 120.
  • the peripheral portion 113 is made of the material layer that makes up the base layer 111, as described above.
  • the peripheral portion 113 is made of the same material as the base layer 111, and is formed integrally with the base layer 111 so as to circumferentially surround the base layer 111. If the amount of curved deformation of the peripheral part 113 is large, the diaphragm 110 can vibrate with a large amplitude. Therefore, in order to maintain the ease of deformation of the peripheral part 113, the above-mentioned rigid layer 118 is laminated in the peripheral part 113. It has not been.
  • the fixing part 140 is a part for fixing the piezoelectric vibrating device 100 to another device 300 (for example, a washing machine).
  • An opening 310 is formed to allow the The fixing part 140 is arranged so as to overlap the device 300 around the opening 310. Note that, at this time, the diaphragm 110 and the surrounding portion 113 are overlapped on the opening 310.
  • the fixing part 140 includes a fixing layer 141 and a reinforcing layer 142 laminated on the fixing layer 141 to reinforce the fixing layer 141.
  • the fixed layer 141 is made of the same material as the base layer 111 and the peripheral part 113, and is formed integrally with the peripheral part 113 so as to circumferentially surround the peripheral part 113.
  • the reinforcing layer 142 is approximately C-shaped in plan view.
  • the reinforcing layer 142 is laminated on the surface of the resin layer or aluminum layer that constitutes the peripheral portion 113 and the base layer 111, on which the conductive layer 112 is provided.
  • the reinforcing layer 142 has an opening in the same direction as the cutout portion of the conductive layer 112, and this opening portion is used for arranging the electrodes 131 and 132 for applying a voltage to the piezoelectric element 120.
  • the material of the reinforcing layer 142 may be the same as that of the conductive layer 112. Further, the reinforcing layer 142 may have the same thickness as the conductive layer 112, as long as sufficient rigidity is obtained for attachment to the device 300. Note that the reinforcing layer 142 may be thicker than the conductive layer 112 in order to improve the rigidity of the attachment portion to the device 300.
  • the inner edge of the reinforcing layer 142 is spaced from the outer edge of the conductive layer 112 by a substantially constant distance over its entire length. A portion between the inner edge of the reinforcing layer 142 and the outer edge of the conductive layer 112 is a peripheral portion 113.
  • the electrodes 131 and 132 are arranged using the opening of the fixing part 140 and the cutout of the conductive layer 112.
  • the electrode 131 is formed integrally with the conductive layer 112 and is laminated on the peripheral portion 113 and the fixed portion 140.
  • the electrode 131 is electrically conductive like the conductive layer 112.
  • the electrode 132 is laminated not only on the peripheral portion 113 and the fixing portion 140 but also on the base layer 111 in the cutout region of the conductive layer 112.
  • the electrode 132 is bonded to the surface of the piezoelectric element 120 opposite to the side to which the conductive layer 112 is bonded using a bonding material that is conductive and stretchable. Since the bonding material has a certain degree of elasticity, the connecting portion between the piezoelectric element 120 and the electrode 132 is less likely to break even under deformation of the piezoelectric element 120.
  • a silver paste in which a resin material is blended with silver may be used, or a paste material in which a conductor such as copper, gold, nickel, and carbon is further blended as a filler in this silver paste may be used. It's okay.
  • a resin binder having a nitrile group for example, acryl nitrile rubber
  • a resin binder containing an epoxy resin for example, acryl nitrile rubber
  • a resin binder containing a urethane resin may be used. good.
  • a thermoplastic polyester-based resin binder may be used. If such a resin binder is used, a flexible bonding material can be obtained.
  • the piezoelectric vibrating device 100 can have a wider reproduction band on the bass side as the air resistance that the diaphragm 110 receives increases.
  • the frequency of the AC voltage applied to the electrodes 131 and 132 is set to a value that causes the diaphragm 110 and the surrounding section 113 to resonate. That is, if the voltage pole is switched at the timing when the diaphragm 110 and the surrounding area 113 are about to recover from the state in which the diaphragm 110 has been displaced toward the piezoelectric element 120, the diaphragm 110 will be moved to the side opposite to the piezoelectric element 120. Can move quickly.
  • the diaphragm 110 is displaced to the side opposite to the piezoelectric element 120. can move vigorously.
  • the surrounding part 113 Since the bending rigidity of the surrounding part 113 is the smallest in the piezoelectric vibrating device 100, the surrounding part 113 is on the piezoelectric element 120 side with respect to the fixed part 140 when the resonance state shown in FIG. 3 is obtained. and the opposite side can undergo significant bending deformation. Furthermore, since there is a large difference in bending rigidity between the peripheral part 113 and the second laminate 119 adjacent to the peripheral part 113, bending may occur at the boundary between the peripheral part 113 and the second laminate 119. may occur. On the other hand, a rigid layer 118 is laminated on the second portion 116 of the diaphragm 110 so that the difference in bending rigidity between the second laminate 119 and the first laminate 117 is reduced.
  • the rigid layer 118 of the second laminate 119 is adhered to the outer peripheral surface of the piezoelectric element 120. Therefore, bending is less likely to occur at the boundary between the second laminate 119 and the first laminate 117.
  • the diaphragm 110 and the surrounding portion 113 will have a shape as shown by the dotted line in FIG. 3. In this case, the bending at the boundary between the first laminate 117 and the second portion 116 becomes large. As a result, the volume of air moved by the vibrations of the diaphragm 110 and the surrounding portion 113 is reduced by the area surrounded by the dotted line and the solid or chain line in FIG. By this volume reduction, the resistance that the diaphragm 110 receives from the air during vibration is reduced.
  • the diaphragm 110 vibrates with a shorter vibration period than the vibration period of the diaphragm 110 provided with the rigid layer 118.
  • the diaphragm 110 can vibrate at a lower frequency, and the piezoelectric vibrating device 100 can have a wide reproduction band on the bass side.
  • Piezoelectric vibration device 100 can also function as a piezoelectric vibration sensor.
  • the piezoelectric element 120 expands and contracts in the radial direction.
  • a potential difference occurs between the electrodes 131 and 132, and the piezoelectric element 120 can output a voltage signal representing this potential difference.
  • the electrodes 131 and 132 are connected to a data collection device such as a computer, time series data regarding the potential difference can be obtained. By analyzing this time-series data, information regarding the vibration intensity and frequency of the device 300 can be obtained.
  • the influence of noise waves on the piezoelectric element 120 can be alleviated by laminating the rigid layer 118 on the second portion 116 of the diaphragm 110. That is, if the rigid layer 118 were not provided, there would be a large difference in bending rigidity between the first laminate 117 and the second portion 116. This difference in bending rigidity directly results in a sudden change in acoustic impedance at the boundary between the first laminate 117 and the second portion 116. Therefore, the noise waves propagating along the diaphragm 110 in the first stacked body 117 are reflected at the boundary between the first stacked body 117 and the second portion 116, and can continue to propagate within the first stacked body 117.
  • the difference in bending rigidity is large between the second laminate 119 and the surrounding portion 113, and the acoustic impedance changes rapidly at the boundary between them. Therefore, the noise waves propagating through the second stacked body 119 may be reflected at the boundary between the second stacked body 119 and the peripheral portion 113 and return to the first stacked body 117.
  • This noise wave can be attenuated while propagating through the second laminate 119 by forming the base layer 111 with a material having high internal loss. Therefore, when the noise waves reflected at the boundary between the second stacked body 119 and the peripheral portion 113 return to the first stacked body 117, they can be sufficiently attenuated.
  • Such a noise wave attenuation effect is also useful when the piezoelectric vibrating device 100 is used as a piezoelectric speaker. That is, when the piezoelectric vibrating device 100 is used as a piezoelectric speaker, by laminating the rigid layer 118 on the second portion 116, the noise component included in the sound reproduced by the piezoelectric vibrating device 100 can be reduced.
  • the thickness of the rigid layer 118 is gradually reduced from the circumferential surface of the piezoelectric element 120 toward the peripheral part 113 as shown in FIG. changes can be suppressed.
  • the difference in bending rigidity at the boundary between the peripheral portion 113 and the second laminate 119 is only the bending rigidity of the conductive layer 112. Therefore, changes in acoustic impedance at the boundary between the peripheral part 113 and the second laminate 119 are suppressed, and fewer noise waves are reflected at the boundary between the peripheral part 113 and the second laminate 119. In other words, more noise waves propagate to the surrounding area 113 across the boundary between the surrounding area 113 and the second stacked body 119.
  • the diaphragm 110 may have a single-layer structure, as shown in FIG.
  • the diaphragm 110 shown in FIG. 5 is made of a conductive material (for example, 42 alloy (42Ni-Fe)) and has a thickness that allows it to vibrate on the piezoelectric element 120 side and on the opposite side.
  • the rigid layer 118 shown in FIG. 5 is the same as that shown in FIG. 4.
  • the rigid layer 118 may have a first material layer 121 to a third material layer 123, as shown in FIG.
  • the first material layer 121 is adjacent to the piezoelectric element 120
  • the second material layer 122 is formed at a distance from the first material layer 121 and adjacent to the peripheral portion 113 .
  • the third material layer 123 is disposed between the first material layer 121 and the second material layer 122 and is adjacent to the first material layer 121 and the second material layer 122.
  • the first material layer 121 is made of the hardest material among the materials making up the first material layer 121 to the third material layer 123
  • the second material layer 122 is made of the hardest material among these materials. Made from the softest material.
  • changes in acoustic impedance may occur at the boundary between the first material layer 121 and the third material layer 123 and the boundary between the second material layer 122 and the third material layer 123. , these changes are not very large. Additionally, a certain amount of change in acoustic impedance may occur at the boundary between the second material layer 122 and the surrounding section 113, but this change is due to the change in acoustic impedance at the boundary between the second laminate 119 and the surrounding section 113 shown in FIG. It's not as big as the change.
  • a piezoelectric element 120 is laminated on one surface of a diaphragm 110.
  • a second piezoelectric element 124 may be laminated on the opposite surface.
  • a stacked structure that is vertically symmetrical to the stacked structure composed of the conductive layer 112, piezoelectric element 120, and rigid layer 118 in FIG. Ru. That is, the second piezoelectric element 124 and the piezoelectric element 120 are stacked on the first portion 115 so that the diaphragm 110 is sandwiched therebetween.
  • the rigid layer 126 is laminated on the second portion 116 on the second piezoelectric element 124 side and is bonded to the circumferential surface of the second piezoelectric element 124.
  • Rigid layer 126 is the same as rigid layer 118 in shape and material.
  • the second conductive layer 125 is the same in shape and material as the conductive layer 112.
  • the second piezoelectric element 124 is connected to the vibration plate 110 in an opposite phase to the piezoelectric element 120. Therefore, when an alternating current voltage is applied to the piezoelectric element 120 and the second piezoelectric element 124, their expansion and contraction operations become opposite to each other. That is, when the piezoelectric element 120 is expanding in the radial direction, the second piezoelectric element 124 contracts in the radial direction. Conversely, when the piezoelectric element 120 is contracting in the radial direction, the second piezoelectric element 124 expands in the radial direction. If the piezoelectric element 120 and the second piezoelectric element 124 behave in this manner, the vibration amplitude of the diaphragm 110 becomes large, and the sound pressure sensitivity of the piezoelectric vibrating device 100 can be improved.
  • the first laminate 117 is composed of the first portion 115 of the diaphragm 110, the piezoelectric element 120, and the second piezoelectric element 124.
  • a second laminate 119 is constituted by the second portion 116 of the diaphragm 110 and rigid layers 118 and 126. Since the rigid layer 126 having a bending rigidity approximately equal to that of the second piezoelectric element 124 is added, the difference in bending rigidity between the first laminate 117 and the second laminate 119 becomes small. . As a result, folding at the boundary between the first laminate 117 and the second laminate 119 is less likely to occur.
  • the piezoelectric vibrating device 100 shown in FIG. 7 has a structure that is vertically symmetrical about the central portion of the diaphragm 110 in the thickness direction. Therefore, the center of rigidity of the piezoelectric vibrating device 100 is located at the center of the diaphragm 110 in the thickness direction, and the bending rigidity of the piezoelectric vibrating device 100 is symmetrical about the center of the piezoelectric vibrating device 100 in the thickness direction. Become. As a result, the behavior of the piezoelectric vibrating device 100 becomes more symmetrical when the diaphragm 110 is displaced toward the piezoelectric element 120 and when it is displaced toward the opposite side.
  • the piezoelectric vibrating device 100 is used as a piezoelectric vibration sensor, the signal output characteristics when the diaphragm 110 is displaced toward the piezoelectric element 120 side and the signal output characteristics when the diaphragm 110 is displaced to the opposite side. Increased symmetry. Therefore, when performing a vibration analysis of the device 300, the process of correcting the asymmetry of the signal output characteristics can be omitted.
  • the second piezoelectric element 124 and the rigid layer 126 may be omitted from the piezoelectric vibrating device 100 shown in FIG. 7.
  • the center of rigidity of the piezoelectric vibrating device 100 itself is shifted upward from the center in the thickness direction of the piezoelectric vibrating device 100, but the center of rigidity of the diaphragm 110 is located at the center of the diaphragm 110 in the thickness direction. obtain. Therefore, the symmetry of the behavior of the diaphragm 110 when the diaphragm 110 is displaced toward the piezoelectric element 120 side and when it is displaced toward the opposite side can be improved compared to the piezoelectric vibrating device 100 shown in FIG. 1.
  • the piezoelectric vibrating device 100 shown in FIGS. 1 to 7 if the material forming the rigid layers 118 and 126 does not excessively inhibit the expansion and contraction of the piezoelectric element 120 and the second piezoelectric element 124, the material may cause the piezoelectric element 120 to And the second piezoelectric element 124 may be covered.
  • the piezoelectric vibrating device 100 shown in FIG. 2 can be improved as shown in FIG. 8.
  • the piezoelectric element 120 of the piezoelectric vibrating device 100 shown in FIG. 8 is covered with a protective layer 151 made of the same material as the rigid layer 118. Thereby, the piezoelectric element 120 can be protected by the rigid layer 118 and the protective layer 151 from environmental degrading factors, such as moisture.
  • the piezoelectric vibrating device 100 shown in FIG. 7 can be improved as shown in FIG.
  • the piezoelectric element 120 and the second piezoelectric element 124 can be protected from environmental deterioration factors such as moisture by the rigid layers 118, 126 and the protective layers 151, 152.
  • both sides of the second portion 116 are covered with rigid layers 118, 126, the second portion 116 can also be protected from environmental degrading factors by these rigid layers 118, 126.
  • the piezoelectric vibrating device 100 has the following features and provides the following effects.
  • the piezoelectric vibration device is configured to function as a piezoelectric speaker that reproduces sound or a piezoelectric vibration sensor that detects vibration.
  • the piezoelectric vibrating device includes a piezoelectric element, a diaphragm having a first part to which the piezoelectric element is bonded, and a second part around the first part.
  • the piezoelectric element expands and contracts under the application of an alternating current voltage to cause the diaphragm to vibrate between the side to which the piezoelectric element is bonded and the opposite side, thereby generating sound from the diaphragm.
  • the diaphragm is bonded to one surface of the first portion of the diaphragm so that it expands and contracts in accordance with the vibrations of the diaphragm and generates a voltage signal when the diaphragm is vibrating on both sides of the diaphragm.
  • the piezoelectric vibrating device further includes a rigid layer laminated on one surface of the second portion of the diaphragm and bonded to the circumferential surface of the piezoelectric element.
  • the rigid layer is laminated on the second part around the first part to which the piezoelectric element is bonded, the bending rigidity of the laminate of the second part and the rigid layer and the first part and the piezoelectric The difference in bending rigidity of the element stack can be reduced. Therefore, bending of the diaphragm due to the difference in bending rigidity between these laminates is suppressed. Furthermore, since the rigid layer is bonded to the circumferential surface of the piezoelectric element, the bonded portion makes it more difficult for the diaphragm to bend. Therefore, the reproduction range on the bass side is less likely to be reduced due to the bending of the diaphragm, and the piezoelectric vibrating device can have a wide reproduction band on the bass side.
  • the difference in bending rigidity between the above-mentioned laminates is reduced, the difference in acoustic impedance between these laminates is also reduced. Therefore, even if there is an unnecessary vibration component (hereinafter referred to as a "noise wave") propagating from the first part to the second part, the noise wave reflected at the boundary between the first part and the second part can be reduced and the number of noise waves propagating from the first part to the second part can be increased.
  • the noise waves in the first portion to which the piezoelectric element is joined can be reduced, and when the piezoelectric vibration device is used as a piezoelectric vibration sensor, the noise included in the signal emitted from the piezoelectric element is reduced. Further, when the piezoelectric vibrating device is used as a piezoelectric speaker, noise included in reproduced sound can be reduced.
  • the diaphragm includes a conductive layer forming one surface and capable of supplying power to the piezoelectric element, a base layer having laminated conductive layers and having a lower density than the conductive layer, It may have.
  • the conductive layer can be used to supply power to the piezoelectric element.
  • the weight of the diaphragm can be reduced by configuring the diaphragm by laminating a conductive layer and a base layer with a lower density than the conductive layer, instead of constructing the entire diaphragm only from conductive materials. can.
  • the piezoelectric vibrating device circumferentially surrounds the diaphragm and further includes a surrounding portion that bends and deforms between the side to which the piezoelectric element is bonded and the opposite side as the piezoelectric element expands and contracts. It's okay.
  • the rigid layer may not be laminated on the peripheral portion, and may be formed such that the bending rigidity of the rigid layer decreases toward the peripheral portion.
  • the peripheral portion surrounding the diaphragm in the circumferential direction bends and deforms in response to the expansion and contraction of the piezoelectric element between the side to which the piezoelectric element is bonded and the opposite side. can vibrate between the joined side and the opposite side.
  • the rigid layer is not laminated on the peripheral part, it does not prevent bending deformation of the peripheral part.
  • the diaphragm may include a conductive layer forming one surface and capable of supplying power to the piezoelectric element, and a base layer on which the conductive layer is laminated.
  • the base layer may have greater internal loss than the conductive layer.
  • the base layer has a relatively large internal loss, so it easily attenuates noise waves propagating along the diaphragm. That is, the piezoelectric vibration device can function as a piezoelectric vibration sensor that achieves a high S/N ratio. Further, when the piezoelectric vibrating device is used as a piezoelectric speaker, the peak and/or dip of the sound pressure may be reduced due to the large internal loss of the base layer.
  • the piezoelectric vibrating device circumferentially surrounds the diaphragm and further includes a surrounding portion that bends and deforms between the side to which the piezoelectric element is bonded and the opposite side as the piezoelectric element expands and contracts. It's okay.
  • the peripheral portion may be formed integrally with the base layer using the same material as the base layer.
  • the rigid layer may not be laminated on the peripheral portion, and may be formed such that the bending rigidity of the rigid layer decreases toward the peripheral portion.
  • the bending rigidity of the rigid layer decreases toward the peripheral portion, so that a sudden change in acoustic impedance is less likely to occur between the peripheral portion and the second portion. Therefore, noise waves attempting to propagate from the second portion to the peripheral portion are less likely to be reflected between the peripheral portion and the second portion, and the number of noise waves propagating through the peripheral portion increases. Since the surrounding part is the same material as the base layer, which has a relatively high internal loss, it is possible to promote the attenuation of noise waves propagated to the surrounding part.
  • the piezoelectric vibrating device may further include a protective layer that covers the piezoelectric element so as to protect the piezoelectric element.
  • the piezoelectric element is covered with the protective layer, so it can be protected from environmental deterioration factors such as moisture.
  • the piezoelectric vibrating device includes a first piezoelectric element, which is a piezoelectric element, and a second piezoelectric element joined to the first part so as to sandwich the diaphragm in electrically opposite phase to the first piezoelectric element; It may further include another rigid layer laminated on the second portion on the second piezoelectric element side and bonded to the circumferential surface of the second piezoelectric element.
  • the second piezoelectric element is joined to the first part in electrically opposite phase to the first piezoelectric element so as to sandwich the diaphragm between the first piezoelectric element and the first piezoelectric element. It contracts when the first piezoelectric element expands, and expands when the first piezoelectric element contracts. As a result, the amplitude of the diaphragm becomes larger than when only the first piezoelectric element is bonded to the diaphragm. Therefore, when the piezoelectric vibration device is used as a piezoelectric speaker, higher sound pressure sensitivity can be obtained.
  • another rigid layer is adhered to the circumferential surface of the second piezoelectric element and is laminated on the second portion on the second piezoelectric element side.
  • the difference in bending rigidity between the first laminate formed at a position corresponding to the first portion of the diaphragm and the laminate formed at a position corresponding to the second portion of the diaphragm is reduced. can be done. Therefore, even if the second piezoelectric element is provided, the diaphragm is less likely to break due to the difference in bending rigidity between the first laminate and the second laminate.
  • the piezoelectric vibrating device may further include a protective layer that covers the piezoelectric element so as to protect the first piezoelectric element and the second piezoelectric element.
  • the first piezoelectric element and the second piezoelectric element are covered with the protective layer, they can be protected from environmental deterioration factors such as moisture. Moreover, since both sides of the second part are also covered with a rigid layer, the second part can also be protected from environmental degrading factors.
  • the present disclosure is suitably used in technical fields that require sound generation and technical fields that require vibration detection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)

Abstract

A piezoelectric vibration device 100 according to the present disclosure comprises a piezoelectric element 120 and a diaphragm 110 that has a first part 115 to which the piezoelectric element 120 is joined and a second part 116 in the periphery thereof. The piezoelectric element 120 is joined to one surface of the diaphragm 110 in the first part 115 so as to expand and contract under the application of an AC voltage to vibrate the diaphragm 110 and thereby cause sound to be emitted from the diaphragm 110 or so as to expand and contract following the vibration of the diaphragm 110 in a state in which the diaphragm 110 is vibrating to thereby cause a voltage signal to be generated. The piezoelectric vibration device 100 further comprises a rigid layer 118 laminated on one surface of the diaphragm 110 in the second part 116 and bonded to the peripheral surface of the piezoelectric element 120.

Description

圧電振動装置piezoelectric vibrator
 本発明は、圧電素子及び振動板を備えている圧電振動装置に関する。 The present invention relates to a piezoelectric vibrating device including a piezoelectric element and a diaphragm.
 図10に示すように、振動板410の一方の面上に圧電素子420を接合した薄型の圧電振動装置400が開発されている(特許文献1を参照)。振動板410は、軽量化を目的として、樹脂層411を金属層412,413で上下に挟んだ3層構造を有している。圧電素子420は、金属層412に接合されており、この金属層412は、圧電素子420への交流電圧の印加に利用される。他方の金属層413は、振動板410の剛性中心を振動板410の厚さ方向における中央に位置させるために設けられている。 As shown in FIG. 10, a thin piezoelectric vibrating device 400 in which a piezoelectric element 420 is bonded to one surface of a diaphragm 410 has been developed (see Patent Document 1). The diaphragm 410 has a three-layer structure in which a resin layer 411 is vertically sandwiched between metal layers 412 and 413 for the purpose of weight reduction. The piezoelectric element 420 is bonded to a metal layer 412, and this metal layer 412 is used to apply an alternating voltage to the piezoelectric element 420. The other metal layer 413 is provided to position the center of rigidity of the diaphragm 410 at the center of the diaphragm 410 in the thickness direction.
 特許文献1では、圧電振動装置400は、圧電スピーカとして構成されている。詳細には、圧電振動装置400は、振動板410が図11に示すように圧電素子420側とその反対側とで振動することにより、音を再生することができる。なお、図11において、圧電素子420側に振動板410が最大限変位したときの振動板410の形状は、実線で示されている。圧電素子420とは反対側に振動板410が最大限変位したときの振動板410の形状は、一点鎖線で示されている。 In Patent Document 1, the piezoelectric vibration device 400 is configured as a piezoelectric speaker. Specifically, the piezoelectric vibrating device 400 can reproduce sound by vibrating the diaphragm 410 on the piezoelectric element 420 side and on the opposite side as shown in FIG. Note that in FIG. 11, the shape of the diaphragm 410 when the diaphragm 410 is displaced to the maximum extent toward the piezoelectric element 420 is shown by a solid line. The shape of the diaphragm 410 when the diaphragm 410 is maximally displaced to the side opposite to the piezoelectric element 420 is shown by a dashed line.
 振動板410の振動振幅が大きければ、圧電振動装置400は、大きな音を再生することができるので、振動板410の振動振幅を大きくするために、周囲部416が振動板410を周方向に囲むように設けられている。また、圧電振動装置400を他の装置(たとえば、圧電振動装置400がブザーとして利用される場合には、洗濯機といった家電機器)に固定するために、固定部417が周囲部416を周方向に囲むように設けられている。 If the vibration amplitude of the diaphragm 410 is large, the piezoelectric vibrating device 400 can reproduce a loud sound. Therefore, in order to increase the vibration amplitude of the diaphragm 410, the surrounding part 416 surrounds the diaphragm 410 in the circumferential direction. It is set up like this. Further, in order to fix the piezoelectric vibrating device 400 to another device (for example, a home appliance such as a washing machine when the piezoelectric vibrating device 400 is used as a buzzer), the fixing portion 417 extends around the peripheral portion 416 in the circumferential direction. It is set up to surround.
 周囲部416は、振動板410の樹脂層411と同じ材質であり、この樹脂層411と一体的に形成されている。固定部417は、樹脂層411と同じ材質の中央層418を有しており、この中央層418は、周囲部416と一体的に形成されている。また、固定部417は、他の装置に固定するために必要な剛性を得るために、中央層418を上下に挟む金属層431,432を有している。すなわち、固定部417は、振動板410と同様の3層構造を有している。一方、周囲部416は、振動板410及び固定部417とは異なり、単層構造を有しており、振動板410及び固定部417よりは変形しやすくなっている。 The surrounding portion 416 is made of the same material as the resin layer 411 of the diaphragm 410 and is formed integrally with this resin layer 411. The fixing part 417 has a central layer 418 made of the same material as the resin layer 411, and the central layer 418 is formed integrally with the peripheral part 416. Further, the fixing portion 417 includes metal layers 431 and 432 that sandwich the center layer 418 above and below in order to obtain the necessary rigidity for fixing to another device. That is, the fixed part 417 has a three-layer structure similar to the diaphragm 410. On the other hand, unlike the diaphragm 410 and the fixed part 417, the surrounding part 416 has a single layer structure and is more easily deformed than the diaphragm 410 and the fixed part 417.
 圧電振動装置400を用いて音を再生するときには、振動板410を共振させる周波数の交流電圧が圧電素子420に印加される。交流電圧の印加により、圧電素子420は、振動板410に沿う方向に伸縮し、振動板410は、圧電素子420の伸縮に共振して、圧電素子420側とその反対側とに振動する。 When reproducing sound using the piezoelectric vibrating device 400, an AC voltage having a frequency that causes the diaphragm 410 to resonate is applied to the piezoelectric element 420. By applying the AC voltage, the piezoelectric element 420 expands and contracts in the direction along the diaphragm 410, and the diaphragm 410 resonates with the expansion and contraction of the piezoelectric element 420, vibrating toward the piezoelectric element 420 side and the opposite side.
 振動板410は、振動している間、空気の抵抗を受ける。この空気抵抗が大きければ大きいほど、振動板410は、動きにくい状態になる。このため、圧電素子420が一定の周波数で伸縮している条件の下では、空気抵抗が大きくなればなるほど、振動板410の振動周期は長くなり、圧電振動装置400は、低い音を再生することができる。空気抵抗は、振動板410が大きくなればなるほど大きくなるので、振動板410を大きくすることにより、圧電振動装置400の再生音域は、低音側に拡大される。このため、特許文献1では、振動板410は、圧電素子420が接合された第1部分414だけでなく、第1部分414を周方向に囲む第2部分415をも含んでいる。 The diaphragm 410 is subjected to air resistance while vibrating. The greater the air resistance, the more difficult it becomes for the diaphragm 410 to move. Therefore, under the condition that the piezoelectric element 420 expands and contracts at a constant frequency, the greater the air resistance, the longer the vibration period of the diaphragm 410 becomes, and the piezoelectric vibrator 400 is unable to reproduce low-pitched sounds. Can be done. Air resistance increases as the diaphragm 410 becomes larger, so by making the diaphragm 410 larger, the reproduction range of the piezoelectric vibrating device 400 is expanded to the bass side. Therefore, in Patent Document 1, the diaphragm 410 includes not only the first portion 414 to which the piezoelectric element 420 is bonded, but also the second portion 415 surrounding the first portion 414 in the circumferential direction.
 特許文献1では、圧電振動装置400は、圧電スピーカとして利用されているが、この圧電振動装置400は、検出対象物の振動を検出する圧電振動センサとしても利用可能である。すなわち、振動板410が検出対象物の振動を受けるように配置されれば、振動板410は、検出対象物の振動に応じて振動する。振動板410の振動に応じて圧電素子420が伸縮し、圧電素子420の伸縮量に応じた大きさの電圧が圧電素子420から出力されるので、圧電振動装置400は、検出対象物の振動を検出するセンサ(圧電振動センサ)として機能し得る。すなわち、圧電素子420から出力された電圧をモニタすることにより、検出対象物の振動が検出及び解析され得る。 In Patent Document 1, the piezoelectric vibration device 400 is used as a piezoelectric speaker, but the piezoelectric vibration device 400 can also be used as a piezoelectric vibration sensor that detects vibrations of a detection target. That is, if the diaphragm 410 is arranged so as to receive the vibration of the object to be detected, the diaphragm 410 will vibrate in accordance with the vibration of the object to be detected. The piezoelectric element 420 expands and contracts in response to the vibration of the diaphragm 410, and a voltage corresponding to the amount of expansion and contraction of the piezoelectric element 420 is output from the piezoelectric element 420. Therefore, the piezoelectric vibrating device 400 can detect the vibration of the object to be detected. It can function as a detecting sensor (piezoelectric vibration sensor). That is, by monitoring the voltage output from the piezoelectric element 420, the vibration of the object to be detected can be detected and analyzed.
 振動板410の第1部分414上には、圧電素子420が積層されており、第1部分414及び圧電素子420は、積層体419を構成している。一方、第2部分415には、圧電素子420は積層されていない。このため、第2部分415と積層体419との間で曲げ剛性に差が生じている。この曲げ剛性の差に起因して、第2部分415は、積層体419に対して折れ曲がる。この振動板410の折れは、以下のような問題を引き起こし得る。 A piezoelectric element 420 is laminated on the first portion 414 of the diaphragm 410, and the first portion 414 and the piezoelectric element 420 constitute a laminated body 419. On the other hand, the piezoelectric element 420 is not stacked on the second portion 415 . Therefore, there is a difference in bending rigidity between the second portion 415 and the laminate 419. Due to this difference in bending rigidity, the second portion 415 bends relative to the laminate 419. This bending of the diaphragm 410 may cause the following problems.
 図11において、圧電素子420側に振動板410が最大限変位したときの振動板410と、その反対側に振動板410が最大限変位したときの振動板410と、によって囲まれた第1領域の広さは、1周期分の振動板410の振動により動かされる空気の量に相当する。仮に、振動板410に折れが生じていない場合には、図11において、点線で囲まれた第2領域に相当する分の空気が、1周期分の振動板410の振動により動かされる。第2領域の方が第1領域よりも広くなっており、第2領域と第1領域との面積差の分だけ、振動板410の折れが1周期分の振動板410の振動により動かされる空気の量を低減させていることが分かる。この空気量の減少分だけ、振動板410が振動している間において振動板410が受ける空気抵抗は小さくなる。このため、圧電素子420が一定の周波数で伸縮している条件の下では、振動板410が受ける空気抵抗の減少により、振動板410の振動周期は短くなり、圧電振動装置400は、低い音を再生しにくくなる。 In FIG. 11, a first area surrounded by the diaphragm 410 when the diaphragm 410 is displaced to the maximum extent toward the piezoelectric element 420 side, and the diaphragm 410 when the diaphragm 410 is displaced to the maximum extent to the opposite side. The width corresponds to the amount of air moved by one period of vibration of the diaphragm 410. If the diaphragm 410 is not bent, air corresponding to the second area surrounded by the dotted line in FIG. 11 will be moved by one period of vibration of the diaphragm 410. The second region is wider than the first region, and the bending of the diaphragm 410 causes the air moved by one period of vibration of the diaphragm 410 to be equal to the difference in area between the second region and the first region. It can be seen that the amount of The air resistance that the diaphragm 410 receives while the diaphragm 410 is vibrating becomes smaller by the amount of this decrease in air amount. Therefore, under the condition that the piezoelectric element 420 expands and contracts at a constant frequency, the vibration period of the diaphragm 410 becomes shorter due to the decrease in air resistance that the diaphragm 410 receives, and the piezoelectric vibrating device 400 produces a low sound. It becomes difficult to play.
 また、上述の曲げ剛性の差は、そのまま、積層体419と第2部分415との間での音響インピーダンスの差に帰結する。すなわち、音響インピーダンスは、音が伝播する媒質の密度と音速との積で表される。音速は、媒質の弾性率が大きければ大きいほど高くなる。媒質の弾性率が大きければ、媒質の曲げ剛性、ひいては、音速が高くなる。一方、媒質の弾性率が小さければ、媒質の曲げ剛性、ひいては、音速が低くなる。このため、大きな曲げ剛性を有している積層体419における音速、ひいては、音響インピーダンスは、大きくなり、小さな曲げ剛性を有している第2部分415における音速、ひいては、音響インピーダンスは、小さくなる。これらの音響インピーダンスの差は、特に、圧電振動装置400が圧電振動センサとして利用される場合に、以下の問題を引き起こし得る。 Further, the above-mentioned difference in bending rigidity directly results in a difference in acoustic impedance between the laminate 419 and the second portion 415. That is, acoustic impedance is expressed as the product of the density of a medium through which sound propagates and the speed of sound. The speed of sound increases as the modulus of elasticity of the medium increases. If the modulus of elasticity of the medium is large, the bending rigidity of the medium and, as a result, the speed of sound will be high. On the other hand, if the modulus of elasticity of the medium is small, the bending rigidity of the medium and, by extension, the speed of sound will be low. Therefore, the speed of sound in the laminate 419, which has a large bending stiffness, and thus the acoustic impedance becomes large, and the speed of sound, and thus the acoustic impedance, in the second portion 415, which has a small bending stiffness, becomes small. These differences in acoustic impedance may cause the following problems, particularly when piezoelectric vibration device 400 is used as a piezoelectric vibration sensor.
 振動板410に沿って伝播する不要振動成分(以下、「ノイズ波」と称する)が積層体419中に生じた場合、このノイズ波の多くは、上述の音響インピーダンスの差によって、積層体419と第2部分415との境界で反射し得る。すなわち、第2部分415へ伝播するノイズ波が減る一方で、第1部分414内で伝播し続けるノイズ波が増える。この場合、ノイズ波が圧電素子420の伸縮に与える影響が大きくなり、圧電素子420から出力される信号にノイズが多くなり得る。また、圧電振動装置400が圧電スピーカとして利用される場合には、圧電振動装置400が再生する音に含まれるノイズが多くなり得る。 When unnecessary vibration components (hereinafter referred to as "noise waves") that propagate along the diaphragm 410 occur in the laminate 419, most of these noise waves are caused by the difference in acoustic impedance described above. It may be reflected at the boundary with the second portion 415. That is, while the number of noise waves propagating to the second portion 415 decreases, the number of noise waves continuing to propagate within the first portion 414 increases. In this case, the influence of the noise waves on the expansion and contraction of the piezoelectric element 420 becomes greater, and the signal output from the piezoelectric element 420 may contain more noise. Further, when the piezoelectric vibrating device 400 is used as a piezoelectric speaker, the sound reproduced by the piezoelectric vibrating device 400 may include a lot of noise.
特開2003-230193号公報Japanese Patent Application Publication No. 2003-230193
 本開示は、低音側に広い再生帯域を有するとともに再生音に含まれるノイズを低減することができる、又は、検出対象物の振動を表す信号をノイズの少ない状態で出力可能な圧電振動装置を提供することを目的とする。 The present disclosure provides a piezoelectric vibration device that has a wide reproduction band on the bass side and can reduce noise included in reproduced sound, or can output a signal representing the vibration of a detection target with little noise. The purpose is to
 本開示における圧電振動装置は、音を再生する圧電スピーカ又は振動を検出する圧電振動センサとして機能するように構成されている。圧電振動装置は、圧電素子と、圧電素子が接合された第1部分と、第1部分の周囲の第2部分と、を有している振動板と、を備えている。圧電素子は、交流電圧の印加の下で伸縮して振動板を圧電素子が接合された側とその反対側とに振動させることによって振動板から音を発生させるように、又は、圧電素子が接合された側とその反対側とに振動板が振動している状態において振動板の振動に追随して伸縮して電圧信号を発生させるように、振動板の第1部分における一方の面に接合されている。圧電振動装置は、振動板の第2部分における一方の面に積層されているとともに圧電素子の周面に接着された剛性層を更に有している。 The piezoelectric vibration device in the present disclosure is configured to function as a piezoelectric speaker that reproduces sound or a piezoelectric vibration sensor that detects vibration. The piezoelectric vibrating device includes a piezoelectric element, a diaphragm having a first part to which the piezoelectric element is bonded, and a second part around the first part. The piezoelectric element expands and contracts under the application of an alternating current voltage to cause the diaphragm to vibrate between the side to which the piezoelectric element is bonded and the opposite side, thereby generating sound from the diaphragm. The diaphragm is bonded to one surface of the first portion of the diaphragm so that it expands and contracts in accordance with the vibrations of the diaphragm and generates a voltage signal when the diaphragm is vibrating on both sides of the diaphragm. ing. The piezoelectric vibrating device further includes a rigid layer laminated on one surface of the second portion of the diaphragm and bonded to the circumferential surface of the piezoelectric element.
 上述の圧電振動装置は、低音側に広い再生帯域を有するとともに再生音に含まれるノイズを低減することができるし、検出対象物の振動を表す信号をノイズの少ない状態で出力することもできる。 The piezoelectric vibration device described above has a wide reproduction band on the bass side and can reduce the noise contained in the reproduced sound, and can also output a signal representing the vibration of the detection target with less noise.
 本開示の目的、特徴及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objects, features, and advantages of the present disclosure will become more apparent from the following detailed description and accompanying drawings.
圧電スピーカとして機能する圧電振動装置の一部の平面図Plan view of part of a piezoelectric vibrating device that functions as a piezoelectric speaker 図1のII-II線に沿う圧電振動装置の概略的な断面図A schematic cross-sectional view of the piezoelectric vibrating device along line II-II in FIG. 圧電振動装置の振動時における形状の模式図Schematic diagram of the shape of the piezoelectric vibration device during vibration 他の圧電振動装置の概略的な断面図Schematic cross-sectional view of other piezoelectric vibrating devices 他の圧電振動装置の概略的な断面図Schematic cross-sectional view of other piezoelectric vibrating devices 他の圧電振動装置の概略的な断面図Schematic cross-sectional view of other piezoelectric vibrating devices 他の圧電振動装置の概略的な断面図Schematic cross-sectional view of other piezoelectric vibrating devices 他の圧電振動装置の概略的な断面図Schematic cross-sectional view of other piezoelectric vibrating devices 他の圧電振動装置の概略的な断面図Schematic cross-sectional view of other piezoelectric vibrating devices 従来の圧電スピーカの概略的な断面図Schematic cross-section of a conventional piezoelectric speaker 従来の圧電スピーカの振動時における形状の模式図Schematic diagram of the shape of a conventional piezoelectric speaker during vibration
 以下、図面を参照しながら、圧電振動装置の実施形態を詳細に説明する。但し、必要以上に詳細な説明は、省略する場合がある。たとえば、既によく知られた事項の詳細説明、又は、実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が必要以上に冗長になるのを避け、当業者の理解を容易にするためである。なお、添付図面及び以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することを意図していない。 Hereinafter, embodiments of the piezoelectric vibrating device will be described in detail with reference to the drawings. However, more detailed explanation than necessary may be omitted. For example, detailed explanations of well-known matters or redundant explanations of substantially the same configurations may be omitted. This is to avoid making the following description unnecessarily redundant and to facilitate understanding by those skilled in the art. The accompanying drawings and the following description are provided to enable those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter recited in the claims.
 図1は、圧電スピーカとして機能する圧電振動装置100の一部の概略的な平面図である。図2は、圧電振動装置100の概略的な断面図である(図1のII-II線に沿う断面図)。図1及び図2を参照して、圧電振動装置100の構造を説明する。 FIG. 1 is a schematic plan view of a portion of a piezoelectric vibrating device 100 that functions as a piezoelectric speaker. FIG. 2 is a schematic cross-sectional view of the piezoelectric vibrating device 100 (a cross-sectional view taken along line II-II in FIG. 1). The structure of the piezoelectric vibrating device 100 will be explained with reference to FIGS. 1 and 2.
 (圧電振動装置の構造)
 圧電振動装置100は、略正方形状の振動板110と、振動板110に接合された円板状の圧電素子120と、振動板110を周方向に囲んでいる矩形枠状の周囲部113と、周囲部113を周方向に囲んでいる矩形枠状の固定部140と、を備えている。
(Structure of piezoelectric vibrator)
The piezoelectric vibrating device 100 includes a substantially square-shaped diaphragm 110, a disc-shaped piezoelectric element 120 joined to the diaphragm 110, and a rectangular frame-shaped peripheral portion 113 surrounding the diaphragm 110 in the circumferential direction. A rectangular frame-shaped fixing part 140 surrounding the peripheral part 113 in the circumferential direction is provided.
 圧電素子120は、30μm~100μm程度の厚さを有しており、圧電素子120の一方の面が振動板110の中央に接合されている。圧電素子120は、たとえば、アクリル系接着剤を用いて振動板110に接着されていてもよい。 The piezoelectric element 120 has a thickness of about 30 μm to 100 μm, and one surface of the piezoelectric element 120 is bonded to the center of the diaphragm 110. Piezoelectric element 120 may be bonded to diaphragm 110 using, for example, an acrylic adhesive.
 圧電素子120は、圧電素子120の両面に交流電圧が印加されると、径方向において伸びたり縮んだりする特性を有している。また、圧電素子120は、圧電素子120の両面に印加される電圧が大きくなればなるほど、大きく伸縮する特性を有している。 The piezoelectric element 120 has a characteristic of expanding and contracting in the radial direction when an AC voltage is applied to both sides of the piezoelectric element 120. Furthermore, the piezoelectric element 120 has a characteristic that the larger the voltage applied to both sides of the piezoelectric element 120, the more the piezoelectric element 120 expands and contracts.
 本実施形態では、圧電素子120の一方の面(図2における上面)にプラス極の電圧が印加され、且つ、他方の面にマイナス極の電圧が印加されると、径方向において伸長するような特性を有している。また、電圧の極が逆転すると、圧電素子120は、径方向に収縮するような特性を有している。このような圧電素子120は、たとえば、PZT(チタン酸ジルコン酸鉛)といった圧電素材を用いて形成可能である。 In this embodiment, when a positive voltage is applied to one surface (the upper surface in FIG. 2) of the piezoelectric element 120 and a negative voltage is applied to the other surface, the piezoelectric element 120 expands in the radial direction. It has characteristics. Furthermore, when the voltage poles are reversed, the piezoelectric element 120 has a characteristic of contracting in the radial direction. Such a piezoelectric element 120 can be formed using a piezoelectric material such as PZT (lead zirconate titanate), for example.
 なお、圧電素子120を上下に反転して振動板110に接合すれば(すなわち、電気的に逆相に接合すると)、上述の伸縮特性とは逆の伸縮特性を有する。すなわち、圧電素子120の一方の面(図2における上面)にマイナス極の電圧が印加され、他方の面にプラス極の電圧が印加された状態で、圧電素子120は、径方向に伸長するような特性を有する。この場合には、印加電圧の極の逆転によって、圧電素子120は、径方向に収縮するような特性を有する。 Note that if the piezoelectric element 120 is inverted vertically and bonded to the diaphragm 110 (that is, if it is electrically bonded in opposite phases), it has an elastic characteristic opposite to the above-mentioned elastic characteristic. That is, with a negative voltage applied to one surface (the upper surface in FIG. 2) of the piezoelectric element 120 and a positive voltage applied to the other surface, the piezoelectric element 120 expands in the radial direction. It has the following characteristics. In this case, the piezoelectric element 120 has a characteristic of contracting in the radial direction due to the polarity reversal of the applied voltage.
 振動板110は、圧電素子120の伸縮に伴って、圧電素子120が接合された側とその反対側とに振動する薄板状の部材(たとえば、40μm程度の厚さの部材)である。振動板110は、平面視において、圧電素子120よりも大きく、図2に示すように、圧電素子120が接合された第1部分115と、第1部分115の周囲の領域を形成している第2部分116と、を有している。 The diaphragm 110 is a thin plate-like member (for example, a member with a thickness of about 40 μm) that vibrates on the side to which the piezoelectric element 120 is bonded and the opposite side as the piezoelectric element 120 expands and contracts. The diaphragm 110 is larger than the piezoelectric element 120 in a plan view, and as shown in FIG. It has two parts 116.
 第1部分115及び圧電素子120の積層体(以下、「第1積層体117」と称する)の曲げ剛性は、圧電素子120の曲げ剛性の分だけ、第2部分116の曲げ剛性よりも大きくなっている。これらの曲げ剛性の差は、振動板110の折れ及び振動板110内における音響インピーダンスの急激な変化の原因になる。これらの悪影響を抑制するために、第2部分116において圧電素子120側の面には、図2に示すように、剛性層118が略一定の厚さで積層されている(なお、剛性層118は、図1には示されていない)。剛性層118は、圧電素子120が接合された第1部分115を除いた振動板110全体を被覆しており、平面視において略正方形状の外形を有している。この剛性層118は、圧電素子120の周面に接着した状態になっている。 The bending rigidity of the laminate of the first part 115 and the piezoelectric element 120 (hereinafter referred to as "first laminate 117") is greater than the bending rigidity of the second part 116 by the bending rigidity of the piezoelectric element 120. ing. These differences in bending rigidity cause the diaphragm 110 to bend and the acoustic impedance within the diaphragm 110 to change rapidly. In order to suppress these adverse effects, a rigid layer 118 is laminated with a substantially constant thickness on the surface of the second portion 116 on the piezoelectric element 120 side, as shown in FIG. (not shown in Figure 1). The rigid layer 118 covers the entire diaphragm 110 except for the first portion 115 to which the piezoelectric element 120 is bonded, and has a substantially square outer shape in plan view. This rigid layer 118 is adhered to the circumferential surface of the piezoelectric element 120.
 剛性層118の厚さ及び材質は、第1積層体117の曲げ剛性と第2部分116及び剛性層118の積層体(以下、「第2積層体119」と称する)の曲げ剛性とが略等しくなるように設定されている。剛性層118は、たとえば、液状の樹脂材料(たとえば、ウレタンアクリレート系樹脂、エポキシアクリレート系樹脂又はポリエステルアクリレート系樹脂)を第2部分116上で紫外線により光重合し硬化することにより形成され得る。 The thickness and material of the rigid layer 118 are such that the bending rigidity of the first laminate 117 and the flexural rigidity of the laminate of the second portion 116 and the rigid layer 118 (hereinafter referred to as "second laminate 119") are approximately equal. It is set to be. The rigid layer 118 can be formed, for example, by photopolymerizing and curing a liquid resin material (for example, a urethane acrylate resin, an epoxy acrylate resin, or a polyester acrylate resin) on the second portion 116 using ultraviolet rays.
 振動板110自体は、複数の材料層を有していてもよいし、単層構造を有していてもよい。本実施形態では、振動板110は、2層構造を有しており、ベース層111と、圧電素子120側においてベース層111上に接合された導電層112と、により構成されている。導電層112には、圧電素子120が接合されている。また、圧電素子120の周囲において、上述の剛性層118が導電層112に積層されている。 The diaphragm 110 itself may have multiple material layers or may have a single layer structure. In this embodiment, the diaphragm 110 has a two-layer structure and includes a base layer 111 and a conductive layer 112 bonded to the base layer 111 on the piezoelectric element 120 side. A piezoelectric element 120 is bonded to the conductive layer 112. Further, around the piezoelectric element 120, the above-described rigid layer 118 is laminated on the conductive layer 112.
 ベース層111は、導電層112よりも低密度の材料から形成されている。たとえば、ベース層111は、樹脂フィルム層であってもよいし、アルミニウム層であってもよい。ベース層111が樹脂により構成される場合には、ポリエチレンテレフタレート、ポリエチレン、ポリプロピレン、ポリウレタン、ポリアミド又はポリイミドが用いられてもよい。あるいは、ベース層111は、スチレンブタジエン系ゴム、ブタジエン系ゴム、ブチル系ゴム又はエチレンプロピレン系ゴムにより構成されてもよい。これらの樹脂材料は、音響学的に高い内部損失を有し得、この内部損失により再生音に含まれるノイズの減少に寄与し得る。 The base layer 111 is made of a material with a lower density than the conductive layer 112. For example, the base layer 111 may be a resin film layer or an aluminum layer. When the base layer 111 is made of resin, polyethylene terephthalate, polyethylene, polypropylene, polyurethane, polyamide, or polyimide may be used. Alternatively, the base layer 111 may be made of styrene-butadiene-based rubber, butadiene-based rubber, butyl-based rubber, or ethylene-propylene-based rubber. These resin materials may have acoustically high internal loss, and this internal loss may contribute to reducing noise contained in reproduced sound.
 ベース層111を構成している材料層は、周囲部113も構成している。この材料層は、圧電素子120の伸縮変形に伴って、圧電素子120側に凸になる方向とその反対方向に凸となる方向とに湾曲変形する部分である。この湾曲変形に対して十分に大きな復元力が得られるように、材料層の厚さが設定されている。たとえば、この厚さは、30μmであってもよい。 The material layer constituting the base layer 111 also constitutes the peripheral portion 113. This material layer is a portion that curves and deforms in a convex direction toward the piezoelectric element 120 and in a convex direction in the opposite direction as the piezoelectric element 120 expands and contracts. The thickness of the material layer is set so that a sufficiently large restoring force can be obtained against this curved deformation. For example, this thickness may be 30 μm.
 一方、導電層112は、振動板110の軽量化のために、ベース層111よりも薄くなっている。たとえば、導電層112の厚さは、10μm程度であってもよい。導電層112は、ベース層111よりも薄いので、ベース層111ほどには振動板110全体の内部損失に影響しない。このため、導電層112の内部損失は、ベース層111の内部損失よりも大きくてもよい。 On the other hand, the conductive layer 112 is thinner than the base layer 111 in order to reduce the weight of the diaphragm 110. For example, the thickness of the conductive layer 112 may be about 10 μm. Since the conductive layer 112 is thinner than the base layer 111, it does not affect the internal loss of the entire diaphragm 110 as much as the base layer 111 does. Therefore, the internal loss of the conductive layer 112 may be greater than the internal loss of the base layer 111.
 導電層112は、圧電素子120への電力供給に利用される部分であり、導電性の材料から形成されている。たとえば、導電層112は、42アロイ(42Ni-Fe)の層であってもよいし、銅(Cu)の層であってもよい。導電層112は、ベース層111に対してファンデルワールス力によって接合されている。代替的に、導電層112及びベース層111は、接着剤によって接合されていてもよい。 The conductive layer 112 is a part used to supply power to the piezoelectric element 120, and is made of a conductive material. For example, the conductive layer 112 may be a layer of 42 alloy (42Ni-Fe) or a layer of copper (Cu). The conductive layer 112 is bonded to the base layer 111 by van der Waals force. Alternatively, the conductive layer 112 and the base layer 111 may be joined by an adhesive.
 導電層112は、平面視において、全体的に矩形状になっているが、一部が切り欠かれている。この切欠部分において、ベース層111の一部が露出している。この切欠部分は、圧電素子120に電圧を印加するための電極132の配置に利用される。 The conductive layer 112 has an overall rectangular shape in plan view, but a portion is cut out. A portion of the base layer 111 is exposed in this cutout portion. This notch is used for arranging the electrode 132 for applying voltage to the piezoelectric element 120.
 周囲部113は、上述の如く、ベース層111を構成している材料層で構成されている。言い換えると、周囲部113は、ベース層111と同じ材質であり、且つ、ベース層111を周方向に囲むようにベース層111と一体的に形成されている。周囲部113の湾曲変形量が大きければ、振動板110が大きな振幅で振動し得るので、周囲部113の変形しやすさを保つために、周囲部113には、上述の剛性層118は、積層されていない。 The peripheral portion 113 is made of the material layer that makes up the base layer 111, as described above. In other words, the peripheral portion 113 is made of the same material as the base layer 111, and is formed integrally with the base layer 111 so as to circumferentially surround the base layer 111. If the amount of curved deformation of the peripheral part 113 is large, the diaphragm 110 can vibrate with a large amplitude. Therefore, in order to maintain the ease of deformation of the peripheral part 113, the above-mentioned rigid layer 118 is laminated in the peripheral part 113. It has not been.
 固定部140は、圧電振動装置100を他の装置300(たとえば、洗濯機)に固定するための部分であり、この装置300には、振動板110が圧電素子120側とその反対側とに振動することを許容する開口310が形成されている。固定部140は、開口310の周囲部分において装置300と重なるように配置される。なお、このとき、振動板110及び周囲部113は、開口310上に重ねられている。 The fixing part 140 is a part for fixing the piezoelectric vibrating device 100 to another device 300 (for example, a washing machine). An opening 310 is formed to allow the The fixing part 140 is arranged so as to overlap the device 300 around the opening 310. Note that, at this time, the diaphragm 110 and the surrounding portion 113 are overlapped on the opening 310.
 固定部140は、固定層141と、固定層141を補強するために固定層141に積層された補強層142と、を有している。固定層141は、ベース層111及び周囲部113と同じ材質であり、且つ、周囲部113を周方向に囲むように周囲部113と一体的に形成されている。 The fixing part 140 includes a fixing layer 141 and a reinforcing layer 142 laminated on the fixing layer 141 to reinforce the fixing layer 141. The fixed layer 141 is made of the same material as the base layer 111 and the peripheral part 113, and is formed integrally with the peripheral part 113 so as to circumferentially surround the peripheral part 113.
 補強層142は、図1に示すように、平面視において略C型である。本実施形態では、補強層142は、周囲部113及びベース層111を構成している樹脂層又はアルミニウム層において導電層112が設けられた面に積層されている。補強層142は、導電層112の切欠部分と同方向に開口しており、この開口部分は、圧電素子120に電圧を印加するための電極131,132の配置に利用される。 As shown in FIG. 1, the reinforcing layer 142 is approximately C-shaped in plan view. In this embodiment, the reinforcing layer 142 is laminated on the surface of the resin layer or aluminum layer that constitutes the peripheral portion 113 and the base layer 111, on which the conductive layer 112 is provided. The reinforcing layer 142 has an opening in the same direction as the cutout portion of the conductive layer 112, and this opening portion is used for arranging the electrodes 131 and 132 for applying a voltage to the piezoelectric element 120.
 補強層142の材質は、導電層112と同じ材質であってもよい。また、装置300に対する取付に十分な剛性が得られれば、補強層142は、導電層112と同じ厚さを有していてもよい。なお、装置300に対する取り付け部分の剛性を向上させるために、補強層142は、導電層112よりも厚くてもよい。 The material of the reinforcing layer 142 may be the same as that of the conductive layer 112. Further, the reinforcing layer 142 may have the same thickness as the conductive layer 112, as long as sufficient rigidity is obtained for attachment to the device 300. Note that the reinforcing layer 142 may be thicker than the conductive layer 112 in order to improve the rigidity of the attachment portion to the device 300.
 補強層142の内縁は、全長に亘って、導電層112の外縁から略一定の距離だけ離間している。補強層142の内縁と導電層112の外縁との間の部分が、周囲部113になっている。 The inner edge of the reinforcing layer 142 is spaced from the outer edge of the conductive layer 112 by a substantially constant distance over its entire length. A portion between the inner edge of the reinforcing layer 142 and the outer edge of the conductive layer 112 is a peripheral portion 113.
 上述の如く、固定部140の開口部分及び導電層112の切欠部分を利用して、電極131,132が配置されている。電極131は、導電層112と一体的に形成されており、周囲部113及び固定部140上に積層されている。電極131は、導電層112と同じく導電性である。 As described above, the electrodes 131 and 132 are arranged using the opening of the fixing part 140 and the cutout of the conductive layer 112. The electrode 131 is formed integrally with the conductive layer 112 and is laminated on the peripheral portion 113 and the fixed portion 140. The electrode 131 is electrically conductive like the conductive layer 112.
 一方、電極132は、周囲部113及び固定部140だけでなく、導電層112の切欠領域においてベース層111上においても積層されている。電極132は、導電性及び伸縮性を有する接合材料により、導電層112が接合された側とは反対側の圧電素子120の面に接合されている。接合材料がある程度の伸縮性を有していることにより、圧電素子120の変形の下でも、圧電素子120及び電極132の接続部分の破断が生じにくくなる。接合材料としては、たとえば、銀に樹脂材料が配合された銀ペーストが利用されてもよいし、この銀ペーストに銅、金、ニッケル及びカーボンといった導体がフィラーとして更に配合されたペースト材料が用いられてもよい。また、接合材料の樹脂材料として、ニトリル基を有する樹脂バインダ(たとえば、アクリルニトリルゴム)、エポキシ樹脂を含有している樹脂バインダ及び/又はウレタン系樹脂を含有している樹脂バインダが用いられてもよい。他の樹脂材料として、熱可塑性のポリエステル系を有している樹脂バインダが用いられてもよい。このような樹脂バインダが用いられれば、柔軟性を有する接合材料を得ることができる。 On the other hand, the electrode 132 is laminated not only on the peripheral portion 113 and the fixing portion 140 but also on the base layer 111 in the cutout region of the conductive layer 112. The electrode 132 is bonded to the surface of the piezoelectric element 120 opposite to the side to which the conductive layer 112 is bonded using a bonding material that is conductive and stretchable. Since the bonding material has a certain degree of elasticity, the connecting portion between the piezoelectric element 120 and the electrode 132 is less likely to break even under deformation of the piezoelectric element 120. As the bonding material, for example, a silver paste in which a resin material is blended with silver may be used, or a paste material in which a conductor such as copper, gold, nickel, and carbon is further blended as a filler in this silver paste may be used. It's okay. Furthermore, as the resin material of the bonding material, a resin binder having a nitrile group (for example, acryl nitrile rubber), a resin binder containing an epoxy resin, and/or a resin binder containing a urethane resin may be used. good. As another resin material, a thermoplastic polyester-based resin binder may be used. If such a resin binder is used, a flexible bonding material can be obtained.
 (動作の説明)
 電極131,132に交流電圧が印加されると、圧電素子120及び振動板110は、図3に示すように圧電素子120側とその反対側とに振動する。なお、図3において、振動板110が圧電素子120側に変位したときの振動板110及び周囲部113の形状を模式的に実線で示している。また、振動板110が反対側に変位したときの振動板110及び周囲部113の形状を模式的に鎖線で示している。実線と鎖線とで囲まれた領域は、振動板110及び周囲部113の振動によって動かされる空気の体積に相当する。この領域が広ければ広いほど、振動板110が振動時において空気から受ける抵抗が大きくなる。空気から受ける抵抗が大きくなっている場合、圧電素子120が一定の周波数で伸縮している条件の下では、振動板110は、空気から受ける抵抗が小さい場合よりもゆっくりと変位しやすくなる。言い換えると、振動板110が低い周波数で振動しやすくなる。このため、圧電振動装置100は、振動板110が受ける空気抵抗が大きければ大きいほど低音側に広い再生帯域を有することができる。
(Explanation of operation)
When an AC voltage is applied to the electrodes 131 and 132, the piezoelectric element 120 and the diaphragm 110 vibrate toward the piezoelectric element 120 and the opposite side, as shown in FIG. Note that in FIG. 3, the shapes of the diaphragm 110 and the surrounding portion 113 when the diaphragm 110 is displaced toward the piezoelectric element 120 are schematically shown by solid lines. Furthermore, the shapes of the diaphragm 110 and the surrounding portion 113 when the diaphragm 110 is displaced to the opposite side are schematically shown with chain lines. The area surrounded by the solid line and the chain line corresponds to the volume of air moved by the vibrations of the diaphragm 110 and the surrounding section 113. The wider this region is, the greater the resistance that the diaphragm 110 receives from the air during vibration. When the resistance from the air is large and the piezoelectric element 120 expands and contracts at a constant frequency, the diaphragm 110 tends to be displaced more slowly than when the resistance from the air is small. In other words, the diaphragm 110 easily vibrates at a low frequency. Therefore, the piezoelectric vibrating device 100 can have a wider reproduction band on the bass side as the air resistance that the diaphragm 110 receives increases.
 電極131,132に印加される交流電圧の周波数は、振動板110及び周囲部113が共振するような値に設定されている。すなわち、振動板110が圧電素子120側に変位した状態から振動板110及び周囲部113が復元しようとするタイミングで電圧の極が切り替えられれば、振動板110は、圧電素子120とは反対側に勢いよく移動し得る。逆に、振動板110が圧電素子120とは反対側に変位した状態から振動板110及び周囲部113が復元しようとするタイミングで電圧の極が切り替えられれば、振動板110は、圧電素子120側に勢いよく移動し得る。 The frequency of the AC voltage applied to the electrodes 131 and 132 is set to a value that causes the diaphragm 110 and the surrounding section 113 to resonate. That is, if the voltage pole is switched at the timing when the diaphragm 110 and the surrounding area 113 are about to recover from the state in which the diaphragm 110 has been displaced toward the piezoelectric element 120, the diaphragm 110 will be moved to the side opposite to the piezoelectric element 120. Can move quickly. Conversely, if the voltage pole is switched at the timing when the diaphragm 110 and the surrounding area 113 are about to recover from the state in which the diaphragm 110 is displaced to the side opposite to the piezoelectric element 120, the diaphragm 110 is displaced to the side opposite to the piezoelectric element 120. can move vigorously.
 周囲部113の曲げ剛性は、圧電振動装置100の中で最も小さくなっているので、周囲部113は、図3に示す共振状態が得られているとき、固定部140に対して圧電素子120側とその反対側とで大きく曲げ変形し得る。また、周囲部113と周囲部113に隣接している第2積層体119との間では曲げ剛性に大きな差が生じているので、周囲部113と第2積層体119との境界部分では、折れが生じ得る。一方、第2積層体119と第1積層体117との間での曲げ剛性の差が小さくなるように、振動板110の第2部分116に剛性層118が積層されており、第2積層体119と第1積層体117との境界部分での折れは生じにくくなっている。しかも、第2積層体119の剛性層118は、圧電素子120の外周面に接着した状態になっている。このため、第2積層体119と第1積層体117との境界部分では、折れがより生じにくくなっている。 Since the bending rigidity of the surrounding part 113 is the smallest in the piezoelectric vibrating device 100, the surrounding part 113 is on the piezoelectric element 120 side with respect to the fixed part 140 when the resonance state shown in FIG. 3 is obtained. and the opposite side can undergo significant bending deformation. Furthermore, since there is a large difference in bending rigidity between the peripheral part 113 and the second laminate 119 adjacent to the peripheral part 113, bending may occur at the boundary between the peripheral part 113 and the second laminate 119. may occur. On the other hand, a rigid layer 118 is laminated on the second portion 116 of the diaphragm 110 so that the difference in bending rigidity between the second laminate 119 and the first laminate 117 is reduced. 119 and the first laminate 117 are less likely to break. Furthermore, the rigid layer 118 of the second laminate 119 is adhered to the outer peripheral surface of the piezoelectric element 120. Therefore, bending is less likely to occur at the boundary between the second laminate 119 and the first laminate 117.
 仮に、剛性層118が設けられていない場合、振動板110及び周囲部113は、図3において点線で示すような形状になる。この場合、第1積層体117と第2部分116との境界部分での折れが大きくなる。この結果、図3において点線と実線又は鎖線とで囲まれた領域の分だけ、振動板110及び周囲部113の振動によって動かされる空気の体積が減る。この体積の減少分だけ、振動板110が振動時において空気から受ける抵抗が減る。この場合には、圧電素子120が一定の周波数で伸縮している条件の下では、剛性層118が設けられた振動板110の振動周期よりも短い振動周期で、振動板110が振動する。言い換えると、剛性層118を設けることによって、振動板110は、より低い周波数で振動することができ、圧電振動装置100は、低音側に広い再生帯域を有することができる。 If the rigid layer 118 is not provided, the diaphragm 110 and the surrounding portion 113 will have a shape as shown by the dotted line in FIG. 3. In this case, the bending at the boundary between the first laminate 117 and the second portion 116 becomes large. As a result, the volume of air moved by the vibrations of the diaphragm 110 and the surrounding portion 113 is reduced by the area surrounded by the dotted line and the solid or chain line in FIG. By this volume reduction, the resistance that the diaphragm 110 receives from the air during vibration is reduced. In this case, under the condition that the piezoelectric element 120 expands and contracts at a constant frequency, the diaphragm 110 vibrates with a shorter vibration period than the vibration period of the diaphragm 110 provided with the rigid layer 118. In other words, by providing the rigid layer 118, the diaphragm 110 can vibrate at a lower frequency, and the piezoelectric vibrating device 100 can have a wide reproduction band on the bass side.
 (圧電振動センサとしての使用態様)
 圧電振動装置100は、圧電振動センサとしても機能し得る。たとえば、図2に示す装置300が上下方向に振動すれば、振動板110及び周囲部113は、図3に示すように振動し得る。この場合、圧電素子120は、径方向に伸縮する。圧電素子120の伸縮に伴って、電極131,132間に電位差が生じ、圧電素子120は、この電位差を表す電圧信号を出力することができる。電極131,132が、コンピュータなどのデータ収集装置に接続されていれば、電位差に関する時系列データが得られる。この時系列データを解析することにより、装置300の振動の強さ及び周波数に関する情報が得られる。
(How to use it as a piezoelectric vibration sensor)
Piezoelectric vibration device 100 can also function as a piezoelectric vibration sensor. For example, if the device 300 shown in FIG. 2 vibrates in the vertical direction, the diaphragm 110 and the surrounding portion 113 may vibrate as shown in FIG. 3. In this case, the piezoelectric element 120 expands and contracts in the radial direction. As the piezoelectric element 120 expands and contracts, a potential difference occurs between the electrodes 131 and 132, and the piezoelectric element 120 can output a voltage signal representing this potential difference. If the electrodes 131 and 132 are connected to a data collection device such as a computer, time series data regarding the potential difference can be obtained. By analyzing this time-series data, information regarding the vibration intensity and frequency of the device 300 can be obtained.
 圧電振動装置100が圧電振動センサとして用いられる場合には、特に、第1積層体117において、振動板110に沿う方向に伝播する不要振動成分(以下、「ノイズ波」と称する)が問題となり得る。このノイズ波が第1積層体117内で伝播し続ければ、第1積層体117を構成している圧電素子120がノイズ波の影響を受け、電極131,132から出力される電位差のデータには、ノイズ成分が多く含まれ得る。 When the piezoelectric vibration device 100 is used as a piezoelectric vibration sensor, unnecessary vibration components (hereinafter referred to as "noise waves") propagating in the direction along the diaphragm 110 may become a problem, especially in the first laminate 117. . If this noise wave continues to propagate within the first laminate 117, the piezoelectric element 120 forming the first laminate 117 will be affected by the noise wave, and the potential difference data output from the electrodes 131 and 132 will be , may contain many noise components.
 圧電素子120へのノイズ波の影響は、振動板110の第2部分116に剛性層118を積層することによって緩和され得る。すなわち、仮に、剛性層118がない場合には、第1積層体117と第2部分116との間で曲げ剛性に大きな差が生ずる。この曲げ剛性の差は、そのまま、第1積層体117と第2部分116との境界における音響インピーダンスの急激な変化になる。このため、第1積層体117において振動板110に沿って伝播するノイズ波は、第1積層体117と第2部分116との境界で反射され、第1積層体117内で伝播し続け得る。 The influence of noise waves on the piezoelectric element 120 can be alleviated by laminating the rigid layer 118 on the second portion 116 of the diaphragm 110. That is, if the rigid layer 118 were not provided, there would be a large difference in bending rigidity between the first laminate 117 and the second portion 116. This difference in bending rigidity directly results in a sudden change in acoustic impedance at the boundary between the first laminate 117 and the second portion 116. Therefore, the noise waves propagating along the diaphragm 110 in the first stacked body 117 are reflected at the boundary between the first stacked body 117 and the second portion 116, and can continue to propagate within the first stacked body 117.
 これに対し、剛性層118が第2部分116に積層されて第2積層体119が形成された構成では、第1積層体117と第2積層体119との間の曲げ剛性の差が低減される。この曲げ剛性の差は、そのまま、第1積層体117と第2積層体119との間の音響インピーダンスの差になるので、第1積層体117と第2積層体119との境界における音響インピーダンスの変化は小さくなる。この場合、第1積層体117において振動板110に沿って伝播するノイズ波は、第1積層体117と第2積層体119との境界で反射されることなく、第2積層体119に伝播し得る。 On the other hand, in the configuration in which the second laminate 119 is formed by laminating the rigid layer 118 on the second portion 116, the difference in bending rigidity between the first laminate 117 and the second laminate 119 is reduced. Ru. This difference in bending rigidity directly becomes the difference in acoustic impedance between the first laminate 117 and the second laminate 119, so the acoustic impedance at the boundary between the first laminate 117 and the second laminate 119 is Changes will be smaller. In this case, the noise waves propagating along the diaphragm 110 in the first laminate 117 propagate to the second laminate 119 without being reflected at the boundary between the first laminate 117 and the second laminate 119. obtain.
 第2積層体119と周囲部113との間では、曲げ剛性の差は大きくなっており、これらの境界において、音響インピーダンスは、急激に変化する。このため、第2積層体119を伝播しているノイズ波は、第2積層体119と周囲部113との境界で反射して、第1積層体117に戻り得る。 The difference in bending rigidity is large between the second laminate 119 and the surrounding portion 113, and the acoustic impedance changes rapidly at the boundary between them. Therefore, the noise waves propagating through the second stacked body 119 may be reflected at the boundary between the second stacked body 119 and the peripheral portion 113 and return to the first stacked body 117.
 このノイズ波は、ベース層111を高い内部損失を有している材料で構成することにより、第2積層体119を伝播している間に減衰され得る。このため、第2積層体119と周囲部113との境界で反射したノイズ波は、第1積層体117に戻ったときには、十分に減衰された状態になり得る。 This noise wave can be attenuated while propagating through the second laminate 119 by forming the base layer 111 with a material having high internal loss. Therefore, when the noise waves reflected at the boundary between the second stacked body 119 and the peripheral portion 113 return to the first stacked body 117, they can be sufficiently attenuated.
 このようなノイズ波の減衰効果は、圧電振動装置100が圧電スピーカとして用いられるときにも有用である。すなわち、圧電振動装置100が圧電スピーカとして用いられるときにおいて、剛性層118を第2部分116に積層すれば、圧電振動装置100の再生音に含まれるノイズ成分が低減され得る。 Such a noise wave attenuation effect is also useful when the piezoelectric vibrating device 100 is used as a piezoelectric speaker. That is, when the piezoelectric vibrating device 100 is used as a piezoelectric speaker, by laminating the rigid layer 118 on the second portion 116, the noise component included in the sound reproduced by the piezoelectric vibrating device 100 can be reduced.
 剛性層118の厚さが、図4に示すように、圧電素子120の周面から周囲部113に向けて徐々に低減されれば、周囲部113と第2積層体119との境界における音響インピーダンスの変化が抑制され得る。図4に示す圧電振動装置100では、周囲部113と第2積層体119との境界における曲げ剛性の差は、導電層112の曲げ剛性の分だけである。このため、周囲部113と第2積層体119との境界における音響インピーダンスの変化が抑制されており、周囲部113と第2積層体119との境界で反射されるノイズ波は少なくなる。言い換えると、周囲部113と第2積層体119との境界を越えて周囲部113へ伝播するノイズ波が多くなる。 If the thickness of the rigid layer 118 is gradually reduced from the circumferential surface of the piezoelectric element 120 toward the peripheral part 113 as shown in FIG. changes can be suppressed. In the piezoelectric vibrating device 100 shown in FIG. 4, the difference in bending rigidity at the boundary between the peripheral portion 113 and the second laminate 119 is only the bending rigidity of the conductive layer 112. Therefore, changes in acoustic impedance at the boundary between the peripheral part 113 and the second laminate 119 are suppressed, and fewer noise waves are reflected at the boundary between the peripheral part 113 and the second laminate 119. In other words, more noise waves propagate to the surrounding area 113 across the boundary between the surrounding area 113 and the second stacked body 119.
 周囲部113と第2積層体119との境界における音響インピーダンスの変化を更に抑制するために、振動板110は、図5に示すように、単層構造を有していてもよい。図5に示す振動板110は、導電性の材料(たとえば、42アロイ(42Ni-Fe))から形成されており、圧電素子120側とその反対側とに振動し得る厚さを有している。なお、図5に示す剛性層118は、図4に示すものと同じである。 In order to further suppress changes in acoustic impedance at the boundary between the peripheral portion 113 and the second laminate 119, the diaphragm 110 may have a single-layer structure, as shown in FIG. The diaphragm 110 shown in FIG. 5 is made of a conductive material (for example, 42 alloy (42Ni-Fe)) and has a thickness that allows it to vibrate on the piezoelectric element 120 side and on the opposite side. . Note that the rigid layer 118 shown in FIG. 5 is the same as that shown in FIG. 4.
 図5に示す圧電振動装置100では、周囲部113と第2積層体119との境界における曲げ剛性の差はほとんどない。このため、周囲部113と第2積層体119との境界における音響インピーダンスの変化も生じておらず、ノイズ波は、周囲部113と第2積層体119との境界で反射されることなく、周囲部113へ伝播し得る。 In the piezoelectric vibrating device 100 shown in FIG. 5, there is almost no difference in bending rigidity at the boundary between the peripheral portion 113 and the second laminate 119. Therefore, there is no change in acoustic impedance at the boundary between the peripheral part 113 and the second laminated body 119, and the noise waves are not reflected at the boundary between the peripheral part 113 and the second laminated body 119, and the noise waves are 113.
 図4及び図5に示す圧電振動装置100では、剛性層118の厚さを周囲部113に向けて低減することにより、第2積層体119と周囲部113との境界での音響インピーダンスの変化が低減されている。代替的に、剛性層118を複数種の材料で形成することにより、音響インピーダンスの変化を抑制することも可能である。 In the piezoelectric vibrating device 100 shown in FIGS. 4 and 5, by reducing the thickness of the rigid layer 118 toward the peripheral portion 113, changes in acoustic impedance at the boundary between the second laminate 119 and the peripheral portion 113 are reduced. has been reduced. Alternatively, it is also possible to suppress changes in acoustic impedance by forming the rigid layer 118 from multiple types of materials.
 たとえば、剛性層118は、図6に示すように、第1材料層121~第3材料層123を有していてもよい。第1材料層121は、圧電素子120に隣接しており、第2材料層122は、第1材料層121から離れた位置に形成されているとともに周囲部113に隣接している。第3材料層123は、第1材料層121と第2材料層122との間に配置されているとともに第1材料層121と第2材料層122に隣接している。第1材料層121は、第1材料層121~第3材料層123を構成している材料の中で最も硬質の材料から形成されており、第2材料層122は、これらの材料の中で最も軟質の材料から形成されている。 For example, the rigid layer 118 may have a first material layer 121 to a third material layer 123, as shown in FIG. The first material layer 121 is adjacent to the piezoelectric element 120 , and the second material layer 122 is formed at a distance from the first material layer 121 and adjacent to the peripheral portion 113 . The third material layer 123 is disposed between the first material layer 121 and the second material layer 122 and is adjacent to the first material layer 121 and the second material layer 122. The first material layer 121 is made of the hardest material among the materials making up the first material layer 121 to the third material layer 123, and the second material layer 122 is made of the hardest material among these materials. Made from the softest material.
 図6に示す第2積層体119内では、第1材料層121と第3材料層123との境界及び第2材料層122と第3材料層123との境界で音響インピーダンスの変化が生じ得るが、これらの変化はあまり大きくならない。また、第2材料層122と周囲部113との境界でもある程度の音響インピーダンスの変化が生じ得るが、この変化は、図2に示す第2積層体119と周囲部113との境界における音響インピーダンスの変化ほどは大きくならない。 In the second laminate 119 shown in FIG. 6, changes in acoustic impedance may occur at the boundary between the first material layer 121 and the third material layer 123 and the boundary between the second material layer 122 and the third material layer 123. , these changes are not very large. Additionally, a certain amount of change in acoustic impedance may occur at the boundary between the second material layer 122 and the surrounding section 113, but this change is due to the change in acoustic impedance at the boundary between the second laminate 119 and the surrounding section 113 shown in FIG. It's not as big as the change.
 図1乃至図6に示す圧電振動装置100では、振動板110の一方の面に圧電素子120が積層されている。この圧電素子120に加えて、図7に示すように、第2圧電素子124が反対側の面に積層されていてもよい。この場合、図2における導電層112、圧電素子120及び剛性層118によって構成された積層構造とは上下対称の積層構造が、第2導電層125、第2圧電素子124及び剛性層126によって構成される。すなわち、第2圧電素子124及び圧電素子120は、振動板110を挟むように第1部分115に積層されている。また、剛性層126は、第2圧電素子124側において第2部分116に積層されているとともに第2圧電素子124の周面に接着されている。剛性層126は、形状及び材質において、剛性層118と同じである。また、第2導電層125は、形状及び材質において、導電層112と同じである。 In the piezoelectric vibrating device 100 shown in FIGS. 1 to 6, a piezoelectric element 120 is laminated on one surface of a diaphragm 110. In addition to this piezoelectric element 120, as shown in FIG. 7, a second piezoelectric element 124 may be laminated on the opposite surface. In this case, a stacked structure that is vertically symmetrical to the stacked structure composed of the conductive layer 112, piezoelectric element 120, and rigid layer 118 in FIG. Ru. That is, the second piezoelectric element 124 and the piezoelectric element 120 are stacked on the first portion 115 so that the diaphragm 110 is sandwiched therebetween. Further, the rigid layer 126 is laminated on the second portion 116 on the second piezoelectric element 124 side and is bonded to the circumferential surface of the second piezoelectric element 124. Rigid layer 126 is the same as rigid layer 118 in shape and material. Further, the second conductive layer 125 is the same in shape and material as the conductive layer 112.
 第2圧電素子124は、振動板110に対して圧電素子120とは逆相で接続されている。このため、圧電素子120及び第2圧電素子124に交流電圧が印加されると、これらの伸縮動作が互いに逆向きになる。すなわち、圧電素子120が径方向に伸長しているときには、第2圧電素子124は、径方向に収縮する。逆に、圧電素子120が径方向に収縮しているときには、第2圧電素子124は、径方向に伸長する。圧電素子120及び第2圧電素子124がこのように挙動すれば、振動板110の振動振幅は大きくなり、圧電振動装置100の音圧感度が向上し得る。 The second piezoelectric element 124 is connected to the vibration plate 110 in an opposite phase to the piezoelectric element 120. Therefore, when an alternating current voltage is applied to the piezoelectric element 120 and the second piezoelectric element 124, their expansion and contraction operations become opposite to each other. That is, when the piezoelectric element 120 is expanding in the radial direction, the second piezoelectric element 124 contracts in the radial direction. Conversely, when the piezoelectric element 120 is contracting in the radial direction, the second piezoelectric element 124 expands in the radial direction. If the piezoelectric element 120 and the second piezoelectric element 124 behave in this manner, the vibration amplitude of the diaphragm 110 becomes large, and the sound pressure sensitivity of the piezoelectric vibrating device 100 can be improved.
 図7に示す圧電振動装置100では、第1積層体117が、振動板110の第1部分115、圧電素子120及び第2圧電素子124により構成されている。また、第2積層体119が、振動板110の第2部分116、剛性層118,126によって構成されている。第2圧電素子124の曲げ剛性と略等しい曲げ剛性を有している剛性層126が追加されているので、第1積層体117と第2積層体119との間の曲げ剛性の差は小さくなる。この結果、第1積層体117と第2積層体119との境界における折れは生じにくくなる。 In the piezoelectric vibrating device 100 shown in FIG. 7, the first laminate 117 is composed of the first portion 115 of the diaphragm 110, the piezoelectric element 120, and the second piezoelectric element 124. Further, a second laminate 119 is constituted by the second portion 116 of the diaphragm 110 and rigid layers 118 and 126. Since the rigid layer 126 having a bending rigidity approximately equal to that of the second piezoelectric element 124 is added, the difference in bending rigidity between the first laminate 117 and the second laminate 119 becomes small. . As a result, folding at the boundary between the first laminate 117 and the second laminate 119 is less likely to occur.
 図7に示す圧電振動装置100は、振動板110の厚さ方向における中央部について上下対称の構造を有している。このため、圧電振動装置100の剛性中心は、振動板110の厚さ方向における中央に位置しており、圧電振動装置100の曲げ剛性は、圧電振動装置100の厚さ方向における中央について対称的になる。この結果、振動板110が圧電素子120側に変位したときとその反対側に変位したときとにおける圧電振動装置100の挙動の対称性が高まる。このような対称的な挙動が得られれば、圧電振動装置100が圧電スピーカとして用いられる場合には、圧電振動装置100が再生する音の歪が抑制され得る。また、圧電振動装置100が圧電振動センサとして用いられる場合には、振動板110が圧電素子120側に変位したときの信号出力特性及びその反対側に振動板110が変位したときの信号出力特性の対称性が高まる。したがって、装置300の振動解析をするときにおいて、信号出力特性の非対称性を補正する処理は省略され得る。 The piezoelectric vibrating device 100 shown in FIG. 7 has a structure that is vertically symmetrical about the central portion of the diaphragm 110 in the thickness direction. Therefore, the center of rigidity of the piezoelectric vibrating device 100 is located at the center of the diaphragm 110 in the thickness direction, and the bending rigidity of the piezoelectric vibrating device 100 is symmetrical about the center of the piezoelectric vibrating device 100 in the thickness direction. Become. As a result, the behavior of the piezoelectric vibrating device 100 becomes more symmetrical when the diaphragm 110 is displaced toward the piezoelectric element 120 and when it is displaced toward the opposite side. If such symmetrical behavior is obtained, distortion of the sound reproduced by the piezoelectric vibration device 100 can be suppressed when the piezoelectric vibration device 100 is used as a piezoelectric speaker. Furthermore, when the piezoelectric vibrating device 100 is used as a piezoelectric vibration sensor, the signal output characteristics when the diaphragm 110 is displaced toward the piezoelectric element 120 side and the signal output characteristics when the diaphragm 110 is displaced to the opposite side. Increased symmetry. Therefore, when performing a vibration analysis of the device 300, the process of correcting the asymmetry of the signal output characteristics can be omitted.
 なお、図7に示す圧電振動装置100から第2圧電素子124及び剛性層126が省略されてもよい。この場合、圧電振動装置100自体の剛性中心は、圧電振動装置100の厚さ方向における中央よりも上側にずれるが、振動板110の剛性中心は、振動板110の厚さ方向における中央に位置し得る。このため、振動板110が圧電素子120側に変位したときとその反対側に変位したときとにおける振動板110の挙動の対称性は、図1に示す圧電振動装置100と比べて改善され得る。 Note that the second piezoelectric element 124 and the rigid layer 126 may be omitted from the piezoelectric vibrating device 100 shown in FIG. 7. In this case, the center of rigidity of the piezoelectric vibrating device 100 itself is shifted upward from the center in the thickness direction of the piezoelectric vibrating device 100, but the center of rigidity of the diaphragm 110 is located at the center of the diaphragm 110 in the thickness direction. obtain. Therefore, the symmetry of the behavior of the diaphragm 110 when the diaphragm 110 is displaced toward the piezoelectric element 120 side and when it is displaced toward the opposite side can be improved compared to the piezoelectric vibrating device 100 shown in FIG. 1.
 図1乃至図7に示す圧電振動装置100において、剛性層118,126を形成している材料が圧電素子120及び第2圧電素子124の伸縮を過度に阻害しなければ、当該材料により圧電素子120及び第2圧電素子124を被覆してもよい。たとえば、図2に示す圧電振動装置100は、図8に示すように改良され得る。図8に示す圧電振動装置100の圧電素子120は、剛性層118と同一の材料で形成された保護層151で被覆されている。これにより、圧電素子120は、剛性層118及び保護層151によって、例えば、湿気といった環境的な劣化因子から保護され得る。また、図7に示す圧電振動装置100は、図9に示すように改良され得る。図9に示す圧電振動装置100の圧電素子120及び第2圧電素子124は、剛性層118と同一の材料で形成された保護層151と、剛性層126と同一の材料で形成された保護層152と、によって被覆されている。これにより、圧電素子120及び第2圧電素子124は、剛性層118,126及び保護層151,152によって、例えば、湿気といった環境的な劣化因子から保護され得る。また、第2部分116の両面は、剛性層118,126によって被覆されているので、第2部分116も、これらの剛性層118,126によって環境的な劣化因子から保護され得る。 In the piezoelectric vibrating device 100 shown in FIGS. 1 to 7, if the material forming the rigid layers 118 and 126 does not excessively inhibit the expansion and contraction of the piezoelectric element 120 and the second piezoelectric element 124, the material may cause the piezoelectric element 120 to And the second piezoelectric element 124 may be covered. For example, the piezoelectric vibrating device 100 shown in FIG. 2 can be improved as shown in FIG. 8. The piezoelectric element 120 of the piezoelectric vibrating device 100 shown in FIG. 8 is covered with a protective layer 151 made of the same material as the rigid layer 118. Thereby, the piezoelectric element 120 can be protected by the rigid layer 118 and the protective layer 151 from environmental degrading factors, such as moisture. Moreover, the piezoelectric vibrating device 100 shown in FIG. 7 can be improved as shown in FIG. The piezoelectric element 120 and the second piezoelectric element 124 of the piezoelectric vibrating device 100 shown in FIG. and is covered by. Thereby, the piezoelectric element 120 and the second piezoelectric element 124 can be protected from environmental deterioration factors such as moisture by the rigid layers 118, 126 and the protective layers 151, 152. Additionally, since both sides of the second portion 116 are covered with rigid layers 118, 126, the second portion 116 can also be protected from environmental degrading factors by these rigid layers 118, 126.
 (効果等)
 上述の実施形態に係る圧電振動装置100は、以下の特徴を有しているとともに、以下の効果を奏する。
(Effects, etc.)
The piezoelectric vibrating device 100 according to the embodiment described above has the following features and provides the following effects.
 上述の実施形態に係る一の局面に係る圧電振動装置は、音を再生する圧電スピーカ又は振動を検出する圧電振動センサとして機能するように構成されている。圧電振動装置は、圧電素子と、圧電素子が接合された第1部分と、第1部分の周囲の第2部分と、を有している振動板と、を備えている。圧電素子は、交流電圧の印加の下で伸縮して振動板を圧電素子が接合された側とその反対側とに振動させることによって振動板から音を発生させるように、又は、圧電素子が接合された側とその反対側とに振動板が振動している状態において振動板の振動に追随して伸縮して電圧信号を発生させるように、振動板の第1部分における一方の面に接合されている。圧電振動装置は、振動板の第2部分における一方の面に積層されているとともに圧電素子の周面に接着された剛性層を更に有している。 The piezoelectric vibration device according to one aspect of the embodiment described above is configured to function as a piezoelectric speaker that reproduces sound or a piezoelectric vibration sensor that detects vibration. The piezoelectric vibrating device includes a piezoelectric element, a diaphragm having a first part to which the piezoelectric element is bonded, and a second part around the first part. The piezoelectric element expands and contracts under the application of an alternating current voltage to cause the diaphragm to vibrate between the side to which the piezoelectric element is bonded and the opposite side, thereby generating sound from the diaphragm. The diaphragm is bonded to one surface of the first portion of the diaphragm so that it expands and contracts in accordance with the vibrations of the diaphragm and generates a voltage signal when the diaphragm is vibrating on both sides of the diaphragm. ing. The piezoelectric vibrating device further includes a rigid layer laminated on one surface of the second portion of the diaphragm and bonded to the circumferential surface of the piezoelectric element.
 上述の構成によれば、圧電素子が接合された第1部分の周囲の第2部分に剛性層が積層されているので、第2部分及び剛性層の積層体の曲げ剛性と第1部分及び圧電素子の積層体の曲げ剛性との差を小さくすることができる。このため、これらの積層体間の曲げ剛性の差に起因する振動板の折れが抑制される。さらに、剛性層は、圧電素子の周面に接着されているので、この接着部分により振動板の折れが、より生じにくくなっている。このため、振動板の折れに起因する低音側での再生音域の減少は生じにくくなっており、圧電振動装置は、低音側に広い再生帯域を有することができる。 According to the above configuration, since the rigid layer is laminated on the second part around the first part to which the piezoelectric element is bonded, the bending rigidity of the laminate of the second part and the rigid layer and the first part and the piezoelectric The difference in bending rigidity of the element stack can be reduced. Therefore, bending of the diaphragm due to the difference in bending rigidity between these laminates is suppressed. Furthermore, since the rigid layer is bonded to the circumferential surface of the piezoelectric element, the bonded portion makes it more difficult for the diaphragm to bend. Therefore, the reproduction range on the bass side is less likely to be reduced due to the bending of the diaphragm, and the piezoelectric vibrating device can have a wide reproduction band on the bass side.
 また、上述の積層体間の曲げ剛性の差が小さくなれば、これらの積層体間における音響インピーダンスの差も低減される。このため、仮に、第1部分から第2部分へ伝播する不要振動成分(以下、「ノイズ波」と称する)があったとしても、第1部分と第2部分との境界で反射されるノイズ波を低減し、第1部分から第2部分へ伝播するノイズ波を増やすことができる。この場合、圧電素子が接合された第1部分におけるノイズ波が少なくなり得、圧電振動装置が圧電振動センサとして用いられる場合には、圧電素子から発せられる信号に含まれるノイズが低減される。また、圧電振動装置が圧電スピーカとして用いられる場合には、再生音に含まれるノイズを少なくすることができる。 Moreover, if the difference in bending rigidity between the above-mentioned laminates is reduced, the difference in acoustic impedance between these laminates is also reduced. Therefore, even if there is an unnecessary vibration component (hereinafter referred to as a "noise wave") propagating from the first part to the second part, the noise wave reflected at the boundary between the first part and the second part can be reduced and the number of noise waves propagating from the first part to the second part can be increased. In this case, the noise waves in the first portion to which the piezoelectric element is joined can be reduced, and when the piezoelectric vibration device is used as a piezoelectric vibration sensor, the noise included in the signal emitted from the piezoelectric element is reduced. Further, when the piezoelectric vibrating device is used as a piezoelectric speaker, noise included in reproduced sound can be reduced.
 上述の構成において、振動板は、一方の面を形成するとともに圧電素子に電力を供給可能に形成された導電層と、導電層が積層されているとともに導電層よりも低密度のベース層と、を有していてもよい。 In the above configuration, the diaphragm includes a conductive layer forming one surface and capable of supplying power to the piezoelectric element, a base layer having laminated conductive layers and having a lower density than the conductive layer, It may have.
 上述の構成によれば、導電層で振動板の一方の面が形成されれば、この面に圧電素子を接合することにより、導電層を圧電素子への電力供給に利用可能になる。また、振動板全体を導電性の材料のみで構成せずに、導電層と導電層よりも低密度のベース層とを積層して振動板を構成することにより、振動板を軽量化することができる。 According to the above configuration, if one surface of the diaphragm is formed of a conductive layer, by bonding the piezoelectric element to this surface, the conductive layer can be used to supply power to the piezoelectric element. In addition, the weight of the diaphragm can be reduced by configuring the diaphragm by laminating a conductive layer and a base layer with a lower density than the conductive layer, instead of constructing the entire diaphragm only from conductive materials. can.
 上述の構成において、圧電振動装置は、振動板を周方向に囲んでいるとともに、圧電素子の伸縮に応じて圧電素子が接合された側とその反対側とに曲げ変形する周囲部を更に備えていてもよい。剛性層は、周囲部には積層されておらず、且つ、剛性層の曲げ剛性が周囲部に向けて小さくなるように形成されていてもよい。 In the above configuration, the piezoelectric vibrating device circumferentially surrounds the diaphragm and further includes a surrounding portion that bends and deforms between the side to which the piezoelectric element is bonded and the opposite side as the piezoelectric element expands and contracts. It's okay. The rigid layer may not be laminated on the peripheral portion, and may be formed such that the bending rigidity of the rigid layer decreases toward the peripheral portion.
 上述の構成によれば、振動板を周方向に囲んでいる周囲部が圧電素子の伸縮に応じて圧電素子が接合された側とその反対側とに曲げ変形するので、振動板は、圧電素子が接合された側とその反対側とに振動することができる。このとき、剛性層は、周囲部に積層されていないので、周囲部の曲げ変形を妨げない。 According to the above configuration, the peripheral portion surrounding the diaphragm in the circumferential direction bends and deforms in response to the expansion and contraction of the piezoelectric element between the side to which the piezoelectric element is bonded and the opposite side. can vibrate between the joined side and the opposite side. At this time, since the rigid layer is not laminated on the peripheral part, it does not prevent bending deformation of the peripheral part.
 また、剛性層の曲げ剛性が周囲部に向けて小さくなっていくので、第2部分と周囲部との境界での曲げ剛性の急激な変化、ひいては、音響インピーダンスの急激な変化は生じにくくなっている。このため、第2部分から周囲部へ伝播しようとするノイズ波は、周囲部と第2部分との境界で反射しにくくなっている。 In addition, since the bending stiffness of the rigid layer decreases toward the periphery, a sudden change in bending stiffness at the boundary between the second part and the periphery, and by extension, a sudden change in acoustic impedance, becomes less likely to occur. There is. For this reason, noise waves attempting to propagate from the second portion to the peripheral portion are less likely to be reflected at the boundary between the peripheral portion and the second portion.
 上述の構成において、振動板は、一方の面を形成するとともに圧電素子に電力を供給可能に形成された導電層と、導電層が積層されたベース層と、を有していてもよい。ベース層は、導電層よりも大きな内部損失を有していてもよい。 In the above configuration, the diaphragm may include a conductive layer forming one surface and capable of supplying power to the piezoelectric element, and a base layer on which the conductive layer is laminated. The base layer may have greater internal loss than the conductive layer.
 上述の構成によれば、ベース層は、比較的大きな内部損失を有しているので、振動板に沿って伝播するノイズ波を減衰しやすくなっている。すなわち、圧電振動装置は、高いS/N比を達成する圧電振動センサとして機能し得る。また、圧電振動装置が圧電スピーカとして用いられる場合には、ベース層の大きな内部損失により、音圧のピーク及び/又はディップが小さくなり得る。 According to the above configuration, the base layer has a relatively large internal loss, so it easily attenuates noise waves propagating along the diaphragm. That is, the piezoelectric vibration device can function as a piezoelectric vibration sensor that achieves a high S/N ratio. Further, when the piezoelectric vibrating device is used as a piezoelectric speaker, the peak and/or dip of the sound pressure may be reduced due to the large internal loss of the base layer.
 上述の構成において、圧電振動装置は、振動板を周方向に囲んでいるとともに、圧電素子の伸縮に応じて圧電素子が接合された側とその反対側とに曲げ変形する周囲部を更に備えていてもよい。周囲部は、ベース層と同じ材料でベース層と一体的に形成されていてもよい。剛性層は、周囲部には積層されておらず、且つ、剛性層の曲げ剛性が周囲部に向けて小さくなるように形成されていてもよい。 In the above configuration, the piezoelectric vibrating device circumferentially surrounds the diaphragm and further includes a surrounding portion that bends and deforms between the side to which the piezoelectric element is bonded and the opposite side as the piezoelectric element expands and contracts. It's okay. The peripheral portion may be formed integrally with the base layer using the same material as the base layer. The rigid layer may not be laminated on the peripheral portion, and may be formed such that the bending rigidity of the rigid layer decreases toward the peripheral portion.
 上述の構成によれば、剛性層の曲げ剛性が周囲部に向けて小さくなっていくので、周囲部と第2部分との間で音響インピーダンスの急激な変化は生じにくくなっている。このため、第2部分から周囲部へ伝播しようとするノイズ波は、周囲部と第2部分との間で反射しにくくなり、周囲部を伝播するノイズ波が増える。周囲部は、比較的高い内部損失を有しているベース層と同じ材料であるので、周囲部へ伝播したノイズ波の減衰を促進することができる。 According to the above configuration, the bending rigidity of the rigid layer decreases toward the peripheral portion, so that a sudden change in acoustic impedance is less likely to occur between the peripheral portion and the second portion. Therefore, noise waves attempting to propagate from the second portion to the peripheral portion are less likely to be reflected between the peripheral portion and the second portion, and the number of noise waves propagating through the peripheral portion increases. Since the surrounding part is the same material as the base layer, which has a relatively high internal loss, it is possible to promote the attenuation of noise waves propagated to the surrounding part.
 上述の構成において、圧電振動装置は、圧電素子を保護するように圧電素子を被覆する保護層を更に備えていてもよい。 In the above configuration, the piezoelectric vibrating device may further include a protective layer that covers the piezoelectric element so as to protect the piezoelectric element.
 上述の構成によれば、圧電素子は、保護層によって被覆されているので、湿気などの環境的な劣化因子から保護され得る。 According to the above configuration, the piezoelectric element is covered with the protective layer, so it can be protected from environmental deterioration factors such as moisture.
 上述の構成において、圧電振動装置は、圧電素子である第1圧電素子と振動板を挟むように第1部分に第1圧電素子とは電気的に逆相で接合された第2圧電素子と、第2圧電素子側において第2部分に積層されているとともに第2圧電素子の周面に接着された他の剛性層を更に備えていてもよい。 In the above configuration, the piezoelectric vibrating device includes a first piezoelectric element, which is a piezoelectric element, and a second piezoelectric element joined to the first part so as to sandwich the diaphragm in electrically opposite phase to the first piezoelectric element; It may further include another rigid layer laminated on the second portion on the second piezoelectric element side and bonded to the circumferential surface of the second piezoelectric element.
 上述の構成によれば、第2圧電素子は、第1圧電素子と振動板を挟むように第1部分に第1圧電素子とは電気的に逆相で接合されているので、第1圧電素子の伸長時に収縮し、第1圧電素子の収縮時に伸長する。この結果、振動板に第1圧電素子のみが接合されている場合と比べて、振動板の振幅は大きくなる。このため、圧電振動装置が圧電スピーカとして用いられる場合には、より高い音圧感度が得られる。 According to the above configuration, the second piezoelectric element is joined to the first part in electrically opposite phase to the first piezoelectric element so as to sandwich the diaphragm between the first piezoelectric element and the first piezoelectric element. It contracts when the first piezoelectric element expands, and expands when the first piezoelectric element contracts. As a result, the amplitude of the diaphragm becomes larger than when only the first piezoelectric element is bonded to the diaphragm. Therefore, when the piezoelectric vibration device is used as a piezoelectric speaker, higher sound pressure sensitivity can be obtained.
 また、他の剛性層が、第2圧電素子の周面に接着されているとともに第2圧電素子側において第2部分に積層されている。この場合、振動板の第1部分に対応する位置で形成された第1積層体と、振動板の第2部分に対応する位置で形成された積層体と、の間の曲げ剛性の差が低減され得る。したがって、第2圧電素子が設けられても、第1積層体と第2積層体との間の曲げ剛性の差に起因する振動板の折れは生じにくくなっている。 Further, another rigid layer is adhered to the circumferential surface of the second piezoelectric element and is laminated on the second portion on the second piezoelectric element side. In this case, the difference in bending rigidity between the first laminate formed at a position corresponding to the first portion of the diaphragm and the laminate formed at a position corresponding to the second portion of the diaphragm is reduced. can be done. Therefore, even if the second piezoelectric element is provided, the diaphragm is less likely to break due to the difference in bending rigidity between the first laminate and the second laminate.
 上述の構成において、圧電振動装置は、第1圧電素子及び第2圧電素子を保護するように圧電素子を被覆する保護層を更に備えていてもよい。 In the above configuration, the piezoelectric vibrating device may further include a protective layer that covers the piezoelectric element so as to protect the first piezoelectric element and the second piezoelectric element.
 上述の構成によれば、第1圧電素子及び第2圧電素子は、保護層によって被覆されているので、湿気などの環境的な劣化因子から保護され得る。また、第2部分の両面も剛性層によって被覆されているので、第2部分も環境的な劣化因子から保護され得る。 According to the above configuration, since the first piezoelectric element and the second piezoelectric element are covered with the protective layer, they can be protected from environmental deterioration factors such as moisture. Moreover, since both sides of the second part are also covered with a rigid layer, the second part can also be protected from environmental degrading factors.
 本開示における技術は、上述の実施形態に限定されず、変更、置き換え、付加、省略などを行った実施形態にも適用できる。また、上述の実施形態で説明した各構成要素を組み合わせて、新たな実施形態とすることも可能である。 The technology in the present disclosure is not limited to the above-described embodiments, but can also be applied to embodiments in which changes, replacements, additions, omissions, etc. are made. Furthermore, it is also possible to create a new embodiment by combining the components described in the above embodiments.
 本開示は、音の生成が必要な技術分野及び振動の検出が必要な技術分野に好適に利用される。 The present disclosure is suitably used in technical fields that require sound generation and technical fields that require vibration detection.

Claims (8)

  1.  音を再生する圧電スピーカ又は振動を検出する圧電振動センサとして機能するように構成された圧電振動装置であって、
     圧電素子と、
     前記圧電素子が接合された第1部分と、前記第1部分の周囲の第2部分と、を有している振動板と、を備え、
     前記圧電素子は、交流電圧の印加の下で伸縮して前記振動板を前記圧電素子が接合された側とその反対側とに振動させることによって前記振動板から音を発生させるように、又は、前記圧電素子が接合された側とその反対側とに前記振動板が振動している状態において前記振動板の振動に追随して伸縮して電圧信号を発生させるように、前記振動板の前記第1部分における一方の面に接合されており、
     前記圧電振動装置は、前記振動板の前記第2部分における前記一方の面に積層されているとともに前記圧電素子の周面に接着された剛性層を更に有している、圧電振動装置。
    A piezoelectric vibration device configured to function as a piezoelectric speaker for reproducing sound or a piezoelectric vibration sensor for detecting vibration, the piezoelectric vibration device comprising:
    a piezoelectric element;
    a diaphragm having a first portion to which the piezoelectric element is bonded, and a second portion surrounding the first portion;
    The piezoelectric element expands and contracts under application of an alternating current voltage to cause the diaphragm to vibrate between a side to which the piezoelectric element is bonded and a side opposite thereto, thereby generating sound from the diaphragm, or The first part of the diaphragm is arranged such that when the diaphragm vibrates on the side to which the piezoelectric element is bonded and the opposite side, the diaphragm expands and contracts to generate a voltage signal following the vibration of the diaphragm. It is joined to one side of one part,
    The piezoelectric vibrating device further includes a rigid layer laminated on the one surface of the second portion of the diaphragm and bonded to the circumferential surface of the piezoelectric element.
  2.  前記振動板は、前記一方の面を形成するとともに前記圧電素子に電力を供給可能に形成された導電層と、前記導電層が積層されているとともに前記導電層よりも低密度のベース層と、を有している、請求項1に記載の圧電振動装置。 The diaphragm includes a conductive layer forming the one surface and capable of supplying power to the piezoelectric element, and a base layer on which the conductive layer is laminated and having a lower density than the conductive layer. The piezoelectric vibrating device according to claim 1, comprising:
  3.  前記振動板を周方向に囲んでいるとともに、前記圧電素子の伸縮に応じて前記圧電素子が接合された側とその反対側とに曲げ変形する周囲部を更に備え、
     前記剛性層は、前記周囲部には積層されておらず、且つ、前記剛性層の曲げ剛性が前記周囲部に向けて小さくなるように形成されている、請求項1又は2に記載の圧電振動装置。
    further comprising a peripheral portion that circumferentially surrounds the diaphragm and bends and deforms in response to expansion and contraction of the piezoelectric element between a side to which the piezoelectric element is bonded and a side opposite thereto;
    The piezoelectric vibration according to claim 1 or 2, wherein the rigid layer is not laminated on the peripheral part and is formed such that the bending rigidity of the rigid layer decreases toward the peripheral part. Device.
  4.  前記振動板は、前記一方の面を形成するとともに前記圧電素子に電力を供給可能に形成された導電層と、前記導電層が積層されたベース層と、を有し、
     前記ベース層は、前記導電層よりも大きな内部損失を有している、請求項1に記載の圧電振動装置。
    The diaphragm includes a conductive layer forming the one surface and capable of supplying power to the piezoelectric element, and a base layer on which the conductive layer is laminated,
    The piezoelectric vibrating device according to claim 1, wherein the base layer has a larger internal loss than the conductive layer.
  5.  前記振動板を周方向に囲んでいるとともに、前記圧電素子の伸縮に応じて前記圧電素子が接合された側とその反対側とに曲げ変形する周囲部を更に備え、
     前記周囲部は、前記ベース層と同じ材料で前記ベース層と一体的に形成されており、
     前記剛性層は、前記周囲部には積層されておらず、且つ、前記剛性層の曲げ剛性が前記周囲部に向けて小さくなるように形成されている、請求項4に記載の圧電振動装置。
    further comprising a peripheral portion that circumferentially surrounds the diaphragm and bends and deforms in response to expansion and contraction of the piezoelectric element between a side to which the piezoelectric element is bonded and a side opposite thereto;
    The peripheral portion is formed integrally with the base layer using the same material as the base layer,
    The piezoelectric vibrating device according to claim 4, wherein the rigid layer is not laminated on the peripheral portion and is formed such that the bending rigidity of the rigid layer decreases toward the peripheral portion.
  6.  前記圧電素子を保護するように前記圧電素子を被覆する保護層を更に備えている、請求項1又は2に記載の圧電振動装置。 The piezoelectric vibrating device according to claim 1 or 2, further comprising a protective layer that covers the piezoelectric element so as to protect the piezoelectric element.
  7.  前記圧電素子である第1圧電素子と前記振動板を挟むように前記第1部分に前記第1圧電素子とは電気的に逆相で接合された第2圧電素子と、
     前記第2圧電素子側において前記第2部分に積層されているとともに前記第2圧電素子の周面に接着された他の剛性層を更に備えている、請求項1又は2に記載の圧電振動装置。
    a second piezoelectric element joined to the first portion so as to sandwich the first piezoelectric element and the diaphragm in electrically opposite phase to the first piezoelectric element;
    The piezoelectric vibrating device according to claim 1 or 2, further comprising another rigid layer laminated on the second portion on the second piezoelectric element side and bonded to the peripheral surface of the second piezoelectric element. .
  8.  前記第1圧電素子及び前記第2圧電素子を保護するように前記圧電素子を被覆する保護層を更に備えている、請求項7に記載の圧電振動装置。
     
    The piezoelectric vibrating device according to claim 7, further comprising a protective layer that covers the piezoelectric element so as to protect the first piezoelectric element and the second piezoelectric element.
PCT/JP2022/048501 2022-08-09 2022-12-28 Piezoelectric vibration device WO2024034153A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022127192 2022-08-09
JP2022-127192 2022-08-09

Publications (1)

Publication Number Publication Date
WO2024034153A1 true WO2024034153A1 (en) 2024-02-15

Family

ID=89851302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048501 WO2024034153A1 (en) 2022-08-09 2022-12-28 Piezoelectric vibration device

Country Status (2)

Country Link
JP (1) JP2024024613A (en)
WO (1) WO2024034153A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162002A1 (en) * 2010-06-25 2011-12-29 京セラ株式会社 Acoustic generator
JP2016100760A (en) * 2014-11-21 2016-05-30 京セラ株式会社 Piezoelectric element, piezoelectric vibration device, acoustic generator, acoustic generation device, and electronic apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162002A1 (en) * 2010-06-25 2011-12-29 京セラ株式会社 Acoustic generator
JP2016100760A (en) * 2014-11-21 2016-05-30 京セラ株式会社 Piezoelectric element, piezoelectric vibration device, acoustic generator, acoustic generation device, and electronic apparatus

Also Published As

Publication number Publication date
JP2024024613A (en) 2024-02-22

Similar Documents

Publication Publication Date Title
JP4766052B2 (en) Electroacoustic transducer
US20020089262A1 (en) Cylindrical transducer apparatus
US6349141B1 (en) Dual bi-laminate polymer audio transducer
US5856956A (en) Piezoelectric acoustic transducer
JP5620616B2 (en) SOUND GENERATOR, SOUND GENERATOR, AND ELECTRONIC DEVICE
WO2012086180A1 (en) Oscillator device and electronic instrument
US9473856B2 (en) Piezoelectric electroacoustic transducer
WO2024034153A1 (en) Piezoelectric vibration device
JP2000201399A (en) Piezoelectric speaker
JP2004266643A (en) Piezoelectric sounding element and its manufacturing method
JP5977473B1 (en) Vibration transmission structure and piezoelectric speaker
JP2004221903A (en) Piezoelectric sounding element and its manufacturing method
WO2023047097A1 (en) Multilayered electrostatic transducer
JP7467970B2 (en) Percussion Instrument and Percussion Detector
WO2019059101A1 (en) Vibration unit
BE1011085A4 (en) ELEMENT FOR PLAYING AND / OR RECORDING SOUND.
JP5927944B2 (en) Piezoelectric sounding device
JP2023124384A (en) piezoelectric vibration device
JP5958463B2 (en) Oscillator
JP2666730B2 (en) Low frequency underwater transmitter
JPH0332958B2 (en)
JPH0323757Y2 (en)
JP2005295339A (en) Piezoelectric speaker
JP2016109988A (en) Pickup for musical instrument and musical instrument
JP2012134597A (en) Oscillation device and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955066

Country of ref document: EP

Kind code of ref document: A1