WO2024034082A1 - Failure prediction device, failure prediction method, and failure prediction program - Google Patents

Failure prediction device, failure prediction method, and failure prediction program Download PDF

Info

Publication number
WO2024034082A1
WO2024034082A1 PCT/JP2022/030636 JP2022030636W WO2024034082A1 WO 2024034082 A1 WO2024034082 A1 WO 2024034082A1 JP 2022030636 W JP2022030636 W JP 2022030636W WO 2024034082 A1 WO2024034082 A1 WO 2024034082A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
failure
prediction
measured
value
Prior art date
Application number
PCT/JP2022/030636
Other languages
French (fr)
Japanese (ja)
Inventor
貴志 久保
拓紀 伊達
紘平 渡邉
大作 島崎
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/030636 priority Critical patent/WO2024034082A1/en
Publication of WO2024034082A1 publication Critical patent/WO2024034082A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems

Definitions

  • the present invention relates to a failure prediction device, a failure prediction method, and a failure prediction program.
  • Patent Document 1 discloses a method of narrowing down the range of suspected failure points based on upper layer packet loss information and the accommodation relationship of optical-channel data unit (ODU) paths.
  • ODU optical-channel data unit
  • Patent Document 2 describes how to determine the range of a suspected location based on the optical signal characteristics at the receiving end of an optical path such as an optical multiplex section (OMS) and the accommodation relationship of optical transport unit (OTU) paths.
  • OMS optical multiplex section
  • OFT optical transport unit
  • Patent Documents 1 and 2 do not use parameter measurement values for each relay section of the optical path, and are insufficient in narrowing down the failure detection range and in its detection accuracy. Therefore, we will consider detecting suspected failure points from parameter measurements for each relay section of the optical path.
  • the main objective of the present invention is to narrow down the failure detection range in an optical transmission system with high accuracy.
  • the failure prediction device of the present invention has the following features.
  • the present invention provides a failure prediction device including a storage unit and a control unit,
  • the storage unit stores the correlation between the quality value of the optical signal measured at the receiving end point of the optical path in the optical transmission system and the degree of abnormality for each type of optical physical property parameter measured at the passing point of the optical path. data is stored,
  • the control section When a predetermined optical path in which the quality value of the optical signal measured at the first time is less than the first threshold value is detected, the optical physical characteristic parameter measured at the passing point of the predetermined optical path at the first time is detected.
  • the parameter measurement value Determining the degree of abnormality at the first time from the parameter measurement value, When the correlation between the quality value of the optical signal at the first time and the degree of abnormality at the first time matches the correlation data stored in the storage unit, the parameter measurement value
  • the present invention is characterized in that it is predicted that a failure sign will occur at a time later than the first time at the sign detection site determined from the measurement point.
  • the detection range of failures in the optical transmission system can be narrowed down with high precision.
  • FIG. 1 is a configuration diagram of an optical transmission system and a prediction server according to the present embodiment.
  • FIG. 2 is a hardware configuration diagram of the prediction server of FIG. 1 according to the present embodiment.
  • FIG. 2 is a configuration diagram of the transponder and relay transmission device of FIG. 1 according to the present embodiment.
  • 3 is a table showing the results of evaluating the presence or absence of fluctuations in parameter measurement values of the optical transmission system according to the present embodiment.
  • 12 is a table showing the results of evaluating the deviation from the correlation line for the parameter measurement values of the optical transmission system according to the present embodiment.
  • 2 is a flowchart illustrating an example of a procedure for operating the optical transmission system of FIG. 1 according to the present embodiment.
  • FIG. 1 is a configuration diagram of an optical transmission system NW and a prediction server (failure prediction device) SV.
  • the optical transmission system NW includes transponders TS1, TS2, TR1, TR2, TR3, and TR4, and relay transmission devices WA, WB, WC, WD, WE, and WF.
  • a transponder is a logical transmission path through which optical signals pass, and is an optical path constructed as an optical-channel data unit (ODU) path and an optical transport unit (OTU) path (in Figure 1, an optical This is a device located at the start point or end point of path P1).
  • ODU optical-channel data unit
  • OFTU optical transport unit
  • the optical path can also be constructed as one ODU path by combining a plurality of OTU paths using a 3R transponder, but in this case as well, fault isolation is performed for each minimum unit OTU path.
  • transponders TS1 and TS2 are the starting points of the optical path
  • transponders TR1, TR2, TR3, and TR4 are the end points of the optical path. exemplify.
  • the relay transmission device is an optical cross connect (OXC) that relays optical signals along an optical path.
  • OXC optical cross connect
  • six relay transmission devices WA, WB, WC, WD, WE, and WF are connected to other adjacent relay transmission devices by links L1 to L6.
  • the optical path P1 includes, in order from the transmitting side, transponder TS2 ⁇ relay transmission device WA ⁇ link L1 ⁇ relay transmission device WB ⁇ link L4 ⁇ relay transmission device WC ⁇ link L6 ⁇ relay transmission device WD ⁇ transponder TR4 (receiving side) are connected by the route.
  • the prediction server SV predicts the optical transmission system NW by combining information indicating the impact on the communication service at the receiving end point and information indicating changes in the parts that are predictive of failure (predictive detection parts) through the following procedure. Identify signs of potential failures.
  • a failure that may occur in the optical path P1 is predicted based on the quality information at the time of signal reception notified from the transponder TR4, which is the receiving end point of the optical path P1.
  • the quality information at the time of signal reception is information that indicates the impact on the communication service at the receiving end point.
  • the quality factor unit: [dB] indicates the optical signal quality of the optical path, and the The lower the value, the higher the quality, and the lower the value, the lower the quality.
  • the sign detection site is identified from the parameter measurement values for each relay section of each relay transmission device WA, WB, WC, and WD through which the optical path P1 predicted in (Procedure 1) passes.
  • the parameter measurement value is a measurement value measured for each measurement point and for each type of parameter of photophysical characteristics (hereinafter referred to as "parameter type").
  • the parameter measurement value is information indicating a change in the sign detection site.
  • the prediction server SV has a storage unit and a control unit, and the storage unit stores the quality value of the optical signal measured at the receiving end point of the optical path in the optical transmission system NW, and the Correlation data (hereinafter referred to as a correlation line) between the degree of abnormality of each type of photophysical property parameter measured at a point is stored. Then, when the prediction server SV detects a predetermined optical path in which the quality value of the optical signal measured at the first time is less than the first threshold value, the prediction server SV detects the quality value of the optical signal measured at the passing point of the predetermined optical path at the first time. The degree of abnormality at the first time is determined from the parameter measurement value of the photophysical property parameter.
  • the prediction server SV It is predicted that a failure sign will occur at a time after the first time at the sign detection site determined from the measurement point of the parameter measurement value.
  • FIG. 2 is a hardware configuration diagram of the prediction server SV of FIG. 1.
  • the prediction server SV is a computer 900 having a CPU (control unit) 901, a RAM 902, a ROM 903, an HDD (storage unit) 904, a communication I/F 905, an input/output I/F 906, and a media I/F 907. configured.
  • Communication I/F 905 is connected to external communication device 915.
  • the input/output I/F 906 is connected to the input/output device 916.
  • the media I/F 907 reads and writes data from the recording medium 917.
  • the CPU 901 controls each unit by executing a program (also referred to as an application) read into the RAM 902 . This program can also be distributed via a communication line or recorded on a recording medium 917 such as a CD-ROM.
  • FIG. 3 is a configuration diagram of the transponder TS2 and the relay transmission device WC of FIG. 1.
  • the transponder TS2 has a package 10 that accommodates an OTN (Optical Transport Network) framer 11, a DSP (Digital Signal Processor) 12, and an optical device 13.
  • the OTN framer 11 is an LSI (Large Scale Integration) that converts a data signal to be transmitted into a signal frame format of OTN, which is an optical transmission network.
  • the DSP 12 is an LSI that performs digital signal processing for signal conversion and correction for long-distance, large-capacity transmission, and monitors various analog information data used for conversion and correction processing at the receiving end point.
  • the optical device 13 transmits and receives optical signals.
  • the relay transmission device WC includes three packages WC1, WC2, and WC3, and an optical physical property monitor 21 connected to a port of each package.
  • Each package WC1, WC2, and WC3 includes an AMP (Amplifier) 22 and a WSS (Wavelength Selective Switch) 23, respectively.
  • the optical physical characteristic monitor 21 measures time-series data of analog information regarding the optical physical characteristics in the relay section of the optical signal as a parameter measurement value.
  • the optical physical property monitor 21 is configured to, for example, provide optical spectrum information that represents an optical signal as light intensity with respect to wavelength or frequency, waveform symmetry of the optical signal that can be confirmed from the optical spectrum information, and the ratio of each optical signal to noise. Measures signal quality such as OSNR (Optical Signal to Noise Ratio).
  • AMP22 is an optical amplifier.
  • WSS23 is a wavelength selective switch.
  • FIG. 4 is a table showing the results of evaluating the presence or absence of fluctuations in the measured parameter values of the optical transmission system NW.
  • the row elements of this table indicate each parameter (full wave power, etc.), and the column elements indicate the relay transmission device (relay transmission device WA, etc.) at the measurement point.
  • the measurement point may be a device unit called a relay transmission device, or a component unit (for example, a package part) inside the relay transmission device.
  • the relay transmission device WC in FIG. 3 accommodates three packages WC1 to WC3, and the points of contact between each package and the outside (circles in FIG. 3) are the measurement points.
  • the sign detection portion may be a device unit called a relay transmission device, or may be a component unit inside the relay transmission device.
  • FIG. 5 is a table showing the results of evaluating the deviation from the correlation line for the parameter measurement values of the optical transmission system NW.
  • the correlation line is a graph line (see FIG. 8 for details) that shows the correlation between the Q value of the optical path and the degree of abnormality (hereinafter referred to as "degree of abnormality") of the measured parameter value.
  • degree of abnormality is an indicator that the larger the value, the more the area where the parameter measurement value is measured deviates from the normal state, and the larger the deviation from the normal value of the parameter measurement value, the higher the degree of abnormality. value.
  • the degree of abnormality may be calculated not only from the deviation of each parameter from its normal value, but also from the frequency with which each parameter deviates from its normal value in a certain unit time.
  • an abnormality evaluation function that outputs the abnormality degree is prepared in advance for each parameter type, and the prediction server SV calculates the abnormality evaluation function to calculate the abnormality degree for each parameter measurement value. Evaluate the degree of abnormality.
  • the row elements and column elements of the table of FIG. 5 are the same as those of the table of FIG. 4.
  • the values in the table for each combination of row elements and column elements are ⁇ presence or absence of variation in parameter measurement values'', but in Figure 5, ⁇ parameter measurement values do not correspond to the correlation line determined in advance.''"Are they divergent or consistent?"
  • the value in the table indicates "match” only for the parameter type "OSNR (Optical Signal to Noise Ratio)" measured by the relay transmission device WB.
  • OSNR Optical Signal to Noise Ratio
  • the prediction server SV creates a correlation line in advance based on the relationship between the Q value of the optical path and the parameter type.
  • the process of creating the correlation line is executed by the prediction server SV based on, for example, data acquisition using a failure simulation system or a QoT simulator (such as Gnpy) in advance.
  • Acquiring data in a failure simulation system means, for example, acquiring data of parameter measurement values obtained by simulating a failure simulation pattern exemplified below.
  • FIG. 6 is a flowchart illustrating an example of a procedure for operating the optical transmission system NW of FIG. 1.
  • the communication carrier prepares a core/metro network system to which an optical cross-connect (OXC) configuration is applied as the optical transmission system NW shown in FIG. 1 (S101).
  • the optical transmission system NW detects an optical path with degraded signal quality and notifies the prediction server SV of the detection result (S102).
  • S102 is a process in which the transponder TR4 detects the deterioration of the Q value of the optical path P1, for example, as described in (procedure 1) of FIG. 1. As explained in (Step 1) and (Step 2) in FIG.
  • the prediction server SV predicts a failure in the optical transmission system NW from the optical path detected in S102 (S103, details in FIG. 7).
  • the prediction server SV notifies a maintenance terminal operated by a maintenance worker of the communication carrier of the failure prediction result obtained in S103 (portion where the sign is detected and failure occurrence time) (S104).
  • the maintenance staff After receiving the notification in S104, the maintenance staff performs preventive maintenance against the failure by switching routes and replacing the failed section (S105).
  • FIG. 7 is a flowchart showing details of the failure prediction process (S103) of the prediction server SV.
  • This flowchart starts from a normal state in which no failure has occurred in the optical transmission system NW.
  • the prediction server SV determines whether the Q value of the optical path notified in S102 is less than the sign detection threshold (FIG. 8) (S11, details are shown in FIGS. 8 and 9). If Yes in S11, proceed to S12. If No in S11, the Q value of the optical path is good, so the process returns to the determination in S11 again.
  • the prediction server SV checks whether the parameter measurement value measured at the measurement point through which the optical path has passed and the correlation line of the parameter type match by brute force as shown in the table of FIG.
  • the prediction server SV specifies the sign detection location based on the one with the highest accuracy from the multiple locations and parameters.
  • the upstream startsing point side
  • the upstream has the highest accuracy; for example, in the order in which the optical path P1 passes, relay transmission device WA “deviation” ⁇ relay transmission device WB "deviation” ⁇ relay transmission device WC ""match” ⁇ relay transmission device WD
  • the prediction server SV sets the most upstream (starting point side) position (relay transmission device WC) of the matching locations (relay transmission devices WC, WD) as the sign detection location. do.
  • the prediction server SV evaluated the predictive detection site that may be a cause of failure based on the distribution of coincidence or deviation between the measured parameter value and the correlation line.
  • the prediction server SV identifies the light path with the minimum margin that passes through the sign detection site among the light paths detected by Yes in S11 (S21).
  • the "margin” is the difference between the measured Q value of the optical path and an error occurrence boundary (FEC (Forward Error Correction) Limit) that is smaller than the Q value.
  • FEC Forward Error Correction
  • the prediction server SV selects the Q-value of the optical path with the minimum margin that is considered to generate an error first. Pay attention. Note that since the optical path changes over time due to additions or subtractions, it is desirable to execute the process (S21) for identifying the optical path with the minimum margin each time the optical path changes.
  • the prediction server SV acquires the Q value for the optical path with the minimum margin in S21 and the parameter measurement value at the omen detection site extracted in S12 as a measurement pair every measurement period (t seconds) (S22). .
  • the prediction server SV predicts the failure occurrence time by predicting the tendency of deterioration over time as an error prediction line from the measurement pair acquired in S22 (S23, details are shown in FIG. 10).
  • the prediction server SV obtains measurement pairs for the optical path with the minimum margin (S31). The prediction server SV determines whether the influence of the failure indicated by the measurement pair acquired in S31 matches the error prediction line (S32, details in FIG. 11). If Yes in S32, the process advances to S33, and if No in S32, the notification in S34 is canceled as a false error and the process returns to the determination in S11. A false error is an event in which a failure was initially predicted, but the failure was subsequently recovered from the predicted condition. Thereby, the prediction server SV can prevent erroneous detection due to the coincidence determination with the error prediction line (S32).
  • the prediction server SV notifies the maintenance terminal of the maintenance worker of the failure prediction result at the sign detection site (S34).
  • the prediction server SV calculates the correlation line used in S12 and the error prediction line used in S32 based on the feedback (correctness) of the prediction result from the maintenance terminal of the maintenance worker who has notified the failure prediction result. It may be updated (S35). That is, the prediction server SV notifies the maintenance terminal of the maintenance worker of the prediction of a failure at the sign detection site and the prediction of the failure occurrence time before the failure occurrence time.
  • the prediction server SV obtains the correctness of the prediction based on the feedback information responded from the maintenance terminal of the maintenance worker after the failure occurrence time, and based on the obtained correctness of the prediction, the prediction server SV calculates the correlation stored in the storage unit. Update relationship data.
  • the prediction server SV updates the error prediction data from information on the time-series change relationship of the measured and accumulated Q value and abnormality degree, which is stored in the storage unit together with the correlation data. Thereby, the precision of the correlation line and the precision of the error prediction line can be improved.
  • FIG. 8 is a graph showing a correlation line between the degree of abnormality of the parameter x and the Q value.
  • the following measurement pairs are obtained by two measurements.
  • Q1 is the normal average value.
  • Q2 is the sign detection threshold of S11.
  • the prediction server SV determines in S12 that the parameter measurement value matches the correlation line at this stage.
  • the threshold may be adjusted to a neighborhood range that allows deviation from the correlation line that is determined to be a match.
  • FIG. 9 is a graph showing a correlation line between the degree of abnormality of the parameter y and the Q value.
  • the following measurement pairs are obtained by two measurements.
  • Q3 is the normal average value.
  • Q4 is the sign detection threshold of S11.
  • the prediction server SV detects that the parameter measurement value deviates from the correlation line at this stage. It is determined in S12. Note that the threshold may be adjusted to a neighborhood range that allows deviation from the correlation line that is determined to be a match.
  • FIG. 10 is a time series graph showing an error prediction line when an error occurs.
  • the vertical axis of the upper graph is the Q value (same as the vertical axis of Figures 8 and 9), and the lower graph is the degree of abnormality by parameter (same as the horizontal axis of Figures 8 and 9).
  • the upper and lower graphs are associated with the same time axis.
  • times t1, t2, t3, and t4 are times in the past when measurement pairs (indicated by triangle icons) have already been measured
  • time t5 is a time in the future when no measurement pairs have been measured yet. be.
  • the prediction server SV acquires measurement pairs multiple times (four times in total in FIG.
  • the error occurrence boundary (error boundary threshold) is calculated by predicting the deterioration, and the time at which the error occurrence boundary is reached. The processing of the prediction server SV that predicts the failure occurrence time will be explained.
  • the prediction server SV for example, extends the solid line of the graph with the same slope based on the trend of the measured Q value (the solid line connecting the triangular icons in FIG. 10). By doing so, an error prediction line Ef1 is created.
  • the prediction server SV then predicts the timing of error occurrence according to the degree of quality deterioration of the optical path with the minimum margin that passes through the sign detection site. Specifically, the prediction server SV predicts the time t5 at which the error prediction line Ef1 falls below the threshold of the Q value at which the error occurs (error boundary threshold Q9) as the failure occurrence time.
  • the prediction server SV measures the quality value of the optical signal at the reception end point of a predetermined optical path multiple times in a period after the first time t2 (times t3 to t4).
  • the prediction server SV determines a second time at which the quality value of the optical signal is predicted to be less than the second threshold (error boundary threshold Q9) based on the time-series change relationship of the measured quality value of the optical signal over time.
  • the time t5 is predicted as the failure occurrence time at the sign detection part. In this way, a time-series change relationship exists between the change in the Q value and the change in time.
  • the time at which the failure occurs can be predicted based on the time t5 at which the quality (Q value) of the received signal of the optical path reaches its limit.
  • the time-series change relationship can be predicted by drawing an approximate line from the measured values up to t4.
  • it can also be predicted from the time-series change relationship of Q values of the same configuration that have been measured and accumulated in the past.
  • statistical methods or machine learning may be used. In this embodiment, a case is described in which it is predicted to be linear, but the time-series change relationship does not have to be linear.
  • the prediction server SV uses, for example, the solid line of the graph to change the slope as it is, based on the trend of the measured abnormality degree (in FIG. 10, the solid line connecting the triangular icons).
  • an error prediction line Ef2 is created.
  • the prediction server SV predicts the time of error occurrence according to the degree of progress of the degree of abnormality of the sign detection site. Specifically, the prediction server SV may predict the time t6 at which the error prediction line Ef1 exceeds the abnormality degree threshold (error boundary threshold E9) at which the error borders, as the failure occurrence time.
  • E1 normal average value of the degree of abnormality
  • E2 predictive detection threshold of the degree of abnormality.
  • the prediction server SV measures the parameter measurement value at the omen detection site multiple times in a period after the first time t2 (times t3 to t4).
  • the prediction server SV sets the degree of abnormality at the sign detection site to a third threshold (error boundary threshold E9) based on the time-series change relationship over time of the degree of abnormality obtained from the measured parameter values at the measured sign detection site. ) is predicted as the failure occurrence time t6 at the sign detection site.
  • the time-series change relationship can be predicted by drawing an approximate line from the measured values up to t4.
  • prediction can be made from the time-series change relationship of abnormalities of the same parameters and the same configuration that have been measured and accumulated in the past.
  • the Q value deteriorates along the predicted time-series change relationship
  • the degree of abnormality does not deteriorate along the time-series change relationship.
  • the part extracted from the initially matched correlation may have deviated and another part may match the correlation, so check the correlation of each parameter measurement value on the optical path again. It is possible to switch to failure prediction for the following parts.
  • FIG. 11 is a graph showing an error prediction line when a false error occurs.
  • a false error is one in which the failure time was predicted, but the failure did not actually occur.
  • the axes of the two upper and lower graphs and the measurement pairs up to time t4 are common.
  • the Q value of the measurement pair increases (the actual measurement line Ef1a of the Q value slopes upward to the right), and the degree of abnormality of the measurement pair decreases ( The actual measurement line Ef2a of the degree of abnormality slopes downward to the right).
  • the actual measurement line Ef1a of the Q value indicates the relationship between the change in the Q value and the change in time.
  • the actual measurement line Ef2a of the degree of abnormality shows the relationship between the change in the degree of abnormality and the change in time.
  • One example of the cause of instantaneous improvement in the measurement pair is that a maintenance worker temporarily comes into contact with the optical fiber (fiber touch).
  • examples of failures occurring without improvement in the Q value include failures such as noise deterioration of the AMP 22, filter failure of the WSS 23, and output control failure of the optical device 13.
  • the prediction server SV predicts the sign of failure (failure sign) predicted at time t4 according to the deviation between the actual Q value measured line Ef1a and the Q value error prediction line Ef1 after time t4. (time of occurrence) and determines that no failure has occurred. That is, after predicting the failure occurrence time, the prediction server SV subsequently measures the quality value of the optical signal at the receiving end point of the predetermined optical path. The prediction server SV detects that the time-series change relationship (actual measurement line Ef1a) of the quality value of the measured optical signal over time deviates from the time-series change relationship (error prediction line Ef1) at the time when the failure occurrence time is predicted.
  • the deviation occurs (for example, if the difference in slope between the two lines is 60 degrees or more), or if the quality value of the measured optical signal recovers to the first threshold value (Q2) or higher, a failure occurs at the predictive detection part. and the prediction of the failure occurrence time at the second time t5 are canceled.
  • the prediction server SV detects a sign of failure (failure (occurrence time) and determine that no failure has occurred. That is, after predicting the failure occurrence time, the prediction server SV continues to measure the parameter measurement value at the sign detection site. The prediction server SV determines whether the time-series change relationship (actual measurement line Ef2a) of the degree of abnormality over time obtained from the measured parameter measurement values is based on the time-series change relationship (error prediction line Ef2) at the time when the failure occurrence time is predicted.
  • time-series change relationship actual measurement line Ef2a
  • the prediction of the failure at the sign detection site and the prediction of the failure occurrence time at the third time t6 are canceled.
  • the failure observation period until the failure occurrence time prediction is canceled is, for example, from time t2 when the Q value becomes less than the sign detection threshold in FIG. This is the period until the maintenance terminal is notified. This can reduce the influence of false errors.
  • the prediction server SV has a storage unit and a control unit
  • the storage unit stores the correlation between the quality value of the optical signal measured at the receiving end point of the optical path in the optical transmission system NW and the degree of abnormality for each type of optical physical property parameter measured at the passing point of the optical path.
  • the data (correlation line) is stored
  • the control unit is Parameter measurement of optical physical property parameters measured at a passing point of a predetermined optical path at a first time when a predetermined optical path whose quality value of the optical signal measured at the first time is less than a first threshold is detected.
  • the present invention is characterized in that it is predicted that a failure sign will occur at a time after the first time in the determined sign detection site.
  • the present invention provides a control unit that measures the quality value of an optical signal at a receiving end point of a predetermined optical path multiple times in a period after a first time, and determines when the quality value of the measured optical signal changes over time.
  • the present invention is characterized in that a second time at which the quality value of the optical signal is predicted to be less than a second threshold is predicted as the failure occurrence time at the sign detection site based on the sequence change relationship.
  • the time at which the quality value (Q value) of the optical signal reaches its limit can be predicted as the failure occurrence time.
  • the control unit after predicting the failure occurrence time, continues to measure the quality value of the optical signal at the receiving end point of a predetermined optical path, and the time-series change in the quality value of the measured optical signal over time. If the relationship deviates from the time-series change relationship at the time when the failure occurrence time was predicted, or if the quality value of the measured optical signal recovers to the first threshold or higher, the failure prediction and The feature is that the prediction of the failure occurrence time at the second time is canceled.
  • the accuracy of failure prediction can be improved by appropriately excluding false errors such as fiber touch from failure prediction.
  • the control unit measures the parameter measurement value at the sign detection site multiple times in a period after the first time, and the degree of abnormality over time is determined from the parameter measurement value at the measured sign detection site.
  • the present invention is characterized in that a third time at which the degree of abnormality at the precursor detection site is predicted to be less than a third threshold is predicted as the failure occurrence time at the precursor detection site based on the time-series change relationship.
  • the control unit after the control unit predicts the failure occurrence time, the control unit subsequently measures the parameter measurement value at the sign detection site, and the time-series change relationship of the abnormality degree obtained from the measured parameter measurement value over time is If the failure occurrence time deviates from the time-series change relationship at the predicted time, the prediction of the failure at the sign detection site and the prediction of the failure occurrence time at the third time are canceled.
  • the accuracy of failure prediction can be improved by appropriately excluding false errors such as fiber touch from failure prediction.
  • the control unit predicts a failure at a sign detection site and reports the prediction of the failure occurrence time to a maintenance worker's maintenance terminal before the failure occurrence time, and reports the prediction of the failure occurrence time to the maintenance worker's maintenance terminal after the failure occurrence time.
  • the correctness of the prediction is obtained based on the feedback information responded from the maintenance terminal, and based on the obtained correctness of the prediction, the correlation data stored in the storage unit and the time-series change in the quality value of the optical signal over time are calculated. It is characterized by updating the relationship and the time-series change relationship over time of the degree of abnormality obtained from the parameter measurement values at the sign detection site.
  • correlation line correlation line
  • optical signal quality value optical signal quality value
  • time-series change prediction error prediction line

Abstract

In the present invention, upon detection of a predetermined optical path in which a quality value of an optical signal measured at a first time is less than a first threshold, the prediction server (SV) determines an abnormality level at the first time from a parameter measurement value of a photophysical property parameter that is measured at a point of passage of the predetermined optical path at the first time, and, when a correlation between the quality value of the optical signal obtained at the first time and the abnormality level obtained at the first time matches correlation data stored in a storage unit, the prediction server (SV) predicts that a sign of failure will occur in a sign detection part obtained from a point of measurement of the parameter measurement value at a time later than the first time.

Description

故障予測装置、故障予測方法、および、故障予測プログラムFailure prediction device, failure prediction method, and failure prediction program
 本発明は、故障予測装置、故障予測方法、および、故障予測プログラムに関する。 The present invention relates to a failure prediction device, a failure prediction method, and a failure prediction program.
 光伝送システムの保守運用において、早期に故障を検知し、かつ、その検知箇所を高精度で特定することが要求されている。そこで、光伝送システムにおける故障の検知およびその検知箇所の特定を自動的に行う方法が開発されている。
 特許文献1には、上位レイヤのパケットロス情報と光チャネルデータユニット(Optical-channel Data Unit:ODU)パスの収容関係により故障の被疑箇所の範囲を絞り込む方法が開示されている。
In the maintenance and operation of optical transmission systems, it is required to detect failures early and to identify the detected locations with high accuracy. Therefore, methods have been developed to automatically detect failures in optical transmission systems and identify the locations where they are detected.
Patent Document 1 discloses a method of narrowing down the range of suspected failure points based on upper layer packet loss information and the accommodation relationship of optical-channel data unit (ODU) paths.
 特許文献2には、光多重セクション(Optical Multiplex Section:OMS)等の光パスの受信端の光信号特性と、光伝送ユニット(Optical Transport Unit:OTU)パスの収容関係とにより被疑箇所の範囲を光パス単位で絞り込み、さらに光信号特性によりこの光パスにおける被疑箇所を特定する方法が開示されている。 Patent Document 2 describes how to determine the range of a suspected location based on the optical signal characteristics at the receiving end of an optical path such as an optical multiplex section (OMS) and the accommodation relationship of optical transport unit (OTU) paths. A method has been disclosed in which the search is narrowed down in units of optical paths and furthermore, a suspect location in this optical path is identified based on optical signal characteristics.
特開2018-64160号公報JP2018-64160A 特開2020-88628号公報JP2020-88628A
 特許文献1,2のような従来の技術では、光パスの中継区間ごとのパラメータ測定値を用いておらず、故障の検知範囲の絞り込みおよびその検知精度が不充分である。そこで、光パスの中継区間ごとのパラメータ測定値から、故障の被疑箇所を検出することを検討する。 Conventional techniques such as Patent Documents 1 and 2 do not use parameter measurement values for each relay section of the optical path, and are insufficient in narrowing down the failure detection range and in its detection accuracy. Therefore, we will consider detecting suspected failure points from parameter measurements for each relay section of the optical path.
 例えば、定常の変動幅以上の変動が発生したパラメータ測定値を変動ありと判定する場合、変動ありが検出された中継区間が多数存在することもある(例えば中継区間の9割が変動あり)。その場合には、それらの中継区間から故障箇所の特定は困難である。
 なお、故障が発生していなくても、定常の変動幅以上の変動が発生することもある。例えば、保守員が一時的にファイバに触れてしまうと、その接触箇所には外乱が発生し、パラメータ測定値が瞬時に変動するが、すぐに回復する。このような偽故障を故障箇所として誤検出してしまうと、無用な警告により保守員の保守作業を阻害してしまう。
For example, when determining that a parameter measurement value that has fluctuated more than the normal fluctuation width is determined to have a fluctuation, there may be many relay sections in which fluctuation is detected (for example, 90% of the relay sections have fluctuations). In that case, it is difficult to identify the failure location from those relay sections.
Note that even if no failure has occurred, fluctuations greater than the steady fluctuation range may occur. For example, when a maintenance worker temporarily touches a fiber, a disturbance occurs at the contact point, causing the measured parameter value to fluctuate instantaneously, but then recovers quickly. If such a false failure is erroneously detected as a failure location, unnecessary warnings will impede the maintenance work of maintenance personnel.
 そこで、本発明は、光伝送システムにおける故障の検知範囲を高精度に絞り込むことを主な課題とする。 Therefore, the main objective of the present invention is to narrow down the failure detection range in an optical transmission system with high accuracy.
 前記課題を解決するために、本発明の故障予測装置は、以下の特徴を有する。
 本発明は、故障予測装置が、記憶部と制御部とを有しており、
 前記記憶部には、光伝送システム内の光パスの受信端点で測定された光信号の品質値と、光パスの通過地点で測定された光物理特性パラメータの種別ごとの異常度との相関関係データが記憶されており、
 前記制御部が、
 第1時刻で測定した光信号の品質値が第1閾値未満である所定の光パスを検出したときに、前記第1時刻において所定の光パスの通過地点で測定された前記光物理特性パラメータのパラメータ測定値から前記第1時刻での異常度を求め、
 前記第1時刻での光信号の品質値と、前記第1時刻での異常度との相関関係が、前記記憶部に記憶されている前記相関関係データと一致している場合に、パラメータ測定値の測定地点から求めた予兆検知部位において、前記第1時刻よりも後の時刻に故障の予兆が発生すると予測することを特徴とする。
In order to solve the above problems, the failure prediction device of the present invention has the following features.
The present invention provides a failure prediction device including a storage unit and a control unit,
The storage unit stores the correlation between the quality value of the optical signal measured at the receiving end point of the optical path in the optical transmission system and the degree of abnormality for each type of optical physical property parameter measured at the passing point of the optical path. data is stored,
The control section,
When a predetermined optical path in which the quality value of the optical signal measured at the first time is less than the first threshold value is detected, the optical physical characteristic parameter measured at the passing point of the predetermined optical path at the first time is detected. Determining the degree of abnormality at the first time from the parameter measurement value,
When the correlation between the quality value of the optical signal at the first time and the degree of abnormality at the first time matches the correlation data stored in the storage unit, the parameter measurement value The present invention is characterized in that it is predicted that a failure sign will occur at a time later than the first time at the sign detection site determined from the measurement point.
 本発明によれば、光伝送システムにおける故障の検知範囲を高精度に絞り込むことができる。 According to the present invention, the detection range of failures in the optical transmission system can be narrowed down with high precision.
本実施形態に関する光伝送システムおよび予測サーバの構成図である。FIG. 1 is a configuration diagram of an optical transmission system and a prediction server according to the present embodiment. 本実施形態に関する図1の予測サーバのハードウェア構成図である。FIG. 2 is a hardware configuration diagram of the prediction server of FIG. 1 according to the present embodiment. 本実施形態に関する図1のトランスポンダおよび中継伝送装置の構成図である。FIG. 2 is a configuration diagram of the transponder and relay transmission device of FIG. 1 according to the present embodiment. 本実施形態に関する光伝送システムのパラメータ測定値について、変動の有無を評価した結果を示すテーブルである。3 is a table showing the results of evaluating the presence or absence of fluctuations in parameter measurement values of the optical transmission system according to the present embodiment. 本実施形態に関する光伝送システムのパラメータ測定値について、相関関係線との乖離を評価した結果を示すテーブルである。12 is a table showing the results of evaluating the deviation from the correlation line for the parameter measurement values of the optical transmission system according to the present embodiment. 本実施形態に関する図1の光伝送システムを運用する手順の一例を示すフローチャートである。2 is a flowchart illustrating an example of a procedure for operating the optical transmission system of FIG. 1 according to the present embodiment. 本実施形態に関する予測サーバの故障予測処理の詳細を示すフローチャートである。It is a flowchart which shows the details of the failure prediction process of the prediction server regarding this embodiment. 本実施形態に関するパラメータxの異常度とQ値との相関関係線を示すグラフである。It is a graph which shows the correlation line between the degree of abnormality of parameter x and Q value regarding this embodiment. 本実施形態に関するパラメータyの異常度とQ値との相関関係線を示すグラフである。It is a graph which shows the correlation line between the degree of abnormality of parameter y and Q value regarding this embodiment. 本実施形態に関するエラー発生時のエラー予測線を示す時系列グラフである。It is a time series graph showing an error prediction line when an error occurs according to the present embodiment. 本実施形態に関する偽エラー発生時のエラー予測線を示すグラフである。7 is a graph showing an error prediction line when a false error occurs according to the present embodiment.
 以下、本発明の各実施例について、図面を参照して詳細に説明する。 Hereinafter, each embodiment of the present invention will be described in detail with reference to the drawings.
 図1は、光伝送システムNWおよび予測サーバ(故障予測装置)SVの構成図である。
 光伝送システムNWは、各トランスポンダ(Transponder)TS1、TS2、TR1、TR2、TR3、TR4と、各中継伝送装置WA、WB、WC、WD、WE、WFとを有する。
 トランスポンダとは、光信号が通過する論理的な伝送路であり、光チャネルデータユニット(Optical-channel Data Unit:ODU)パスおよびOTU(Optical Transport Unit)パスとして構築される光パス(図1では光パスP1)の始点または終点に位置する装置である。なお、光パスは複数のOTUパスを3Rトランスポンダで結合した1つのODUパスとしても構築されるが、この場合もその最小単位のOTUパスごとに故障切り分けが実施される。本実施形態では、光パスの始点となるトランスポンダTS1、TS2(符号の2文字目がS)と、光パスの終点となるトランスポンダTR1、TR2、TR3、TR4(符号の2文字目がR)とを例示する。
FIG. 1 is a configuration diagram of an optical transmission system NW and a prediction server (failure prediction device) SV.
The optical transmission system NW includes transponders TS1, TS2, TR1, TR2, TR3, and TR4, and relay transmission devices WA, WB, WC, WD, WE, and WF.
A transponder is a logical transmission path through which optical signals pass, and is an optical path constructed as an optical-channel data unit (ODU) path and an optical transport unit (OTU) path (in Figure 1, an optical This is a device located at the start point or end point of path P1). Note that the optical path can also be constructed as one ODU path by combining a plurality of OTU paths using a 3R transponder, but in this case as well, fault isolation is performed for each minimum unit OTU path. In this embodiment, transponders TS1 and TS2 (the second character of the code is S) are the starting points of the optical path, and transponders TR1, TR2, TR3, and TR4 (the second character of the code is R) are the end points of the optical path. exemplify.
 中継伝送装置とは、光パスに従って光信号を中継する光クロスコネクト(Optical Cross Connect:OXC)である。本実施形態では、6台の中継伝送装置WA、WB、WC、WD、WE、WFが、隣接する他の中継伝送装置との間にリンクL1~L6で接続されている。例えば、光パスP1は、送信側から順に、トランスポンダTS2→中継伝送装置WA→リンクL1→中継伝送装置WB→リンクL4→中継伝送装置WC→リンクL6→中継伝送装置WD→トランスポンダTR4(受信側)の経路で接続される。 The relay transmission device is an optical cross connect (OXC) that relays optical signals along an optical path. In this embodiment, six relay transmission devices WA, WB, WC, WD, WE, and WF are connected to other adjacent relay transmission devices by links L1 to L6. For example, the optical path P1 includes, in order from the transmitting side, transponder TS2 → relay transmission device WA → link L1 → relay transmission device WB → link L4 → relay transmission device WC → link L6 → relay transmission device WD → transponder TR4 (receiving side) are connected by the route.
 予測サーバSVは、以下の手順により、受信端点での通信サービスに与える影響を示す情報と、故障の予兆となる部位(予兆検知部位)の変動を示す情報とを組み合わせることで、光伝送システムNWで発生しうる故障の予兆を特定する。
 (手順1) 光パスP1の受信端点であるトランスポンダTR4から通知される信号受信時の品質情報をもとに、光パスP1で発生しうる故障を予測する。なお、信号受信時の品質情報は、受信端点の通信サービスに与える影響を示す情報であり、例えば、光パスの光信号品質を示すQ値(Quality factor、単位は[dB]で、値が大きいほど品質が良く、値が小さいほど品質が悪い)が用いられる。
 (手順2) (手順1)で予測した光パスP1が通過する各中継伝送装置WA、WB、WC、WDについての中継区間ごとのパラメータ測定値から、予兆検知部位を特定する。なお、パラメータ測定値は、測定地点ごとに、かつ、光物理特性のパラメータの種別(以下、「パラメータ種別」とする)ごとに測定される測定値である。パラメータ測定値は、予兆検知部位の変動を示す情報である。
The prediction server SV predicts the optical transmission system NW by combining information indicating the impact on the communication service at the receiving end point and information indicating changes in the parts that are predictive of failure (predictive detection parts) through the following procedure. Identify signs of potential failures.
(Procedure 1) A failure that may occur in the optical path P1 is predicted based on the quality information at the time of signal reception notified from the transponder TR4, which is the receiving end point of the optical path P1. The quality information at the time of signal reception is information that indicates the impact on the communication service at the receiving end point.For example, the quality factor (unit: [dB]) indicates the optical signal quality of the optical path, and the The lower the value, the higher the quality, and the lower the value, the lower the quality.
(Procedure 2) The sign detection site is identified from the parameter measurement values for each relay section of each relay transmission device WA, WB, WC, and WD through which the optical path P1 predicted in (Procedure 1) passes. Note that the parameter measurement value is a measurement value measured for each measurement point and for each type of parameter of photophysical characteristics (hereinafter referred to as "parameter type"). The parameter measurement value is information indicating a change in the sign detection site.
 そのため、予測サーバSVは、記憶部と制御部とを有しており、記憶部には、光伝送システムNW内の光パスの受信端点で測定された光信号の品質値と、光パスの通過地点で測定された光物理特性パラメータの種別ごとの異常度との相関関係データ(以下、相関関係線)が記憶されている。
 そして、予測サーバSVは、第1時刻で測定した光信号の品質値が第1閾値未満である所定の光パスを検出したときに、第1時刻において所定の光パスの通過地点で測定された光物理特性パラメータのパラメータ測定値から第1時刻での異常度を求める。
 さらに、予測サーバSVは、第1時刻での光信号の品質値と、第1時刻での異常度との相関関係が、記憶部に記憶されている相関関係データと一致している場合に、パラメータ測定値の測定地点から求めた予兆検知部位において、第1時刻よりも後の時刻に故障の予兆が発生すると予測する。
Therefore, the prediction server SV has a storage unit and a control unit, and the storage unit stores the quality value of the optical signal measured at the receiving end point of the optical path in the optical transmission system NW, and the Correlation data (hereinafter referred to as a correlation line) between the degree of abnormality of each type of photophysical property parameter measured at a point is stored.
Then, when the prediction server SV detects a predetermined optical path in which the quality value of the optical signal measured at the first time is less than the first threshold value, the prediction server SV detects the quality value of the optical signal measured at the passing point of the predetermined optical path at the first time. The degree of abnormality at the first time is determined from the parameter measurement value of the photophysical property parameter.
Furthermore, when the correlation between the quality value of the optical signal at the first time and the degree of abnormality at the first time matches the correlation data stored in the storage unit, the prediction server SV It is predicted that a failure sign will occur at a time after the first time at the sign detection site determined from the measurement point of the parameter measurement value.
 図2は、図1の予測サーバSVのハードウェア構成図である。
 予測サーバSVは、CPU(制御部)901と、RAM902と、ROM903と、HDD(記憶部)904と、通信I/F905と、入出力I/F906と、メディアI/F907とを有するコンピュータ900として構成される。
 通信I/F905は、外部の通信装置915と接続される。入出力I/F906は、入出力装置916と接続される。メディアI/F907は、記録媒体917からデータを読み書きする。さらに、CPU901は、RAM902に読み込んだプログラム(アプリケーション、その略のアプリとも呼ばれる)を実行することにより、各部を制御する。そして、このプログラムは、通信回線を介して配布したり、CD-ROM等の記録媒体917に記録して配布したりすることも可能である。
FIG. 2 is a hardware configuration diagram of the prediction server SV of FIG. 1.
The prediction server SV is a computer 900 having a CPU (control unit) 901, a RAM 902, a ROM 903, an HDD (storage unit) 904, a communication I/F 905, an input/output I/F 906, and a media I/F 907. configured.
Communication I/F 905 is connected to external communication device 915. The input/output I/F 906 is connected to the input/output device 916. The media I/F 907 reads and writes data from the recording medium 917. Further, the CPU 901 controls each unit by executing a program (also referred to as an application) read into the RAM 902 . This program can also be distributed via a communication line or recorded on a recording medium 917 such as a CD-ROM.
 図3は、図1のトランスポンダTS2および中継伝送装置WCの構成図である。
 トランスポンダTS2は、OTN(Optical Transport Network)フレーマ11と、DSP(Digital Signal Processor)12と、光デバイス13とを収容するパッケージ10を有する。
 OTNフレーマ11は、伝送するデータ信号を、光伝送ネットワークであるOTNの信号フレーム形式に変換するLSI(Large Scale Integration)である。
 DSP12は、長距離大容量伝送のために信号の変換および補正のデジタル信号処理を行うLSIであり、受信端点では変換および補正処理に用いる様々なアナログ情報データをモニタしている。
 光デバイス13は、光信号の送信、受信を行う。
FIG. 3 is a configuration diagram of the transponder TS2 and the relay transmission device WC of FIG. 1.
The transponder TS2 has a package 10 that accommodates an OTN (Optical Transport Network) framer 11, a DSP (Digital Signal Processor) 12, and an optical device 13.
The OTN framer 11 is an LSI (Large Scale Integration) that converts a data signal to be transmitted into a signal frame format of OTN, which is an optical transmission network.
The DSP 12 is an LSI that performs digital signal processing for signal conversion and correction for long-distance, large-capacity transmission, and monitors various analog information data used for conversion and correction processing at the receiving end point.
The optical device 13 transmits and receives optical signals.
 中継伝送装置WCは、3つのパッケージWC1、WC2、WC3と、各パッケージのポートに接続される光物理特性モニタ21とを有する。
 各パッケージWC1、WC2、WC3は、それぞれAMP(Amplifier)22とWSS(Wavelength Selective Switch)23とを有する。
 光物理特性モニタ21は、光信号の中継区間における光物理特性に関するアナログ情報の時系列データを、パラメータ測定値として測定する。光物理特性モニタ21は、例えば、光信号を波長または周波数に対する光の強度で表す光スペクトル情報や、光スペクトル情報から確認できる光信号の波形対称性、各光信号とノイズの比率で表される信号品質のOSNR(Optical Signal to Noise Ratio)などを測定する。
 AMP22は、光増幅器である。WSS23は、波長選択スイッチである。
The relay transmission device WC includes three packages WC1, WC2, and WC3, and an optical physical property monitor 21 connected to a port of each package.
Each package WC1, WC2, and WC3 includes an AMP (Amplifier) 22 and a WSS (Wavelength Selective Switch) 23, respectively.
The optical physical characteristic monitor 21 measures time-series data of analog information regarding the optical physical characteristics in the relay section of the optical signal as a parameter measurement value. The optical physical property monitor 21 is configured to, for example, provide optical spectrum information that represents an optical signal as light intensity with respect to wavelength or frequency, waveform symmetry of the optical signal that can be confirmed from the optical spectrum information, and the ratio of each optical signal to noise. Measures signal quality such as OSNR (Optical Signal to Noise Ratio).
AMP22 is an optical amplifier. WSS23 is a wavelength selective switch.
 以下、図4および図5を参照して、予測サーバSVの故障を予測する処理の概要を説明する。
 図4は、光伝送システムNWのパラメータ測定値について、変動の有無を評価した結果を示すテーブルである。このテーブルの行要素は各パラメータ(全波パワーなど)を示し、列要素は測定地点の中継伝送装置(中継伝送装置WAなど)を示す。
 ここで、図4では(測定地点4通り)×(パラメータ種別4通り)=16通りのパラメータ測定値の全てが、定常の変動幅以上の変動が発生した状態(図では変動「有」)となってしまった。この場合、パラメータ測定値で変化があった場所を予兆検知部位と特定する手法では、予測サーバSVは故障箇所の特定が困難である。
An overview of the process of predicting failure of the prediction server SV will be described below with reference to FIGS. 4 and 5.
FIG. 4 is a table showing the results of evaluating the presence or absence of fluctuations in the measured parameter values of the optical transmission system NW. The row elements of this table indicate each parameter (full wave power, etc.), and the column elements indicate the relay transmission device (relay transmission device WA, etc.) at the measurement point.
Here, in Figure 4, all of the (4 measurement points) x (4 parameter types) = 16 parameter measurement values are in a state where fluctuations greater than the steady fluctuation range have occurred (variation is "present" in the figure). It is had. In this case, it is difficult for the prediction server SV to identify the failure location using the method of identifying the location where the parameter measurement value has changed as the sign detection location.
 なお、測定地点は、中継伝送装置という装置単位でもよいし、中継伝送装置内部の部品単位(例えばパッケージ部位)でもよい。例えば、図3の中継伝送装置WCは、3つのパッケージWC1~WC3を収容し、各パッケージと外部との接点(図3の丸印)を測定地点とする。これにより、1台の中継伝送装置WC内部で9か所の測定地点を設ける。
 また、予兆検知部位も、中継伝送装置という装置単位でもよいし、中継伝送装置内部の部品単位でもよい。
Note that the measurement point may be a device unit called a relay transmission device, or a component unit (for example, a package part) inside the relay transmission device. For example, the relay transmission device WC in FIG. 3 accommodates three packages WC1 to WC3, and the points of contact between each package and the outside (circles in FIG. 3) are the measurement points. As a result, nine measurement points are provided within one relay transmission device WC.
Further, the sign detection portion may be a device unit called a relay transmission device, or may be a component unit inside the relay transmission device.
 図5は、光伝送システムNWのパラメータ測定値について、相関関係線との乖離を評価した結果を示すテーブルである。
 相関関係線とは、光パスのQ値と、パラメータ測定値の異常度(以下「異常度」)との相関関係を示すグラフ線(詳細は図8)である。例えば、図4では(測定地点4通り)×(パラメータ種別4通り)=16通りの相関関係線が事前に用意される。
 また、異常度とは、数値が大きいほど、パラメータ測定値の測定地点である部位が正常状態から乖離している指標であり、パラメータ測定値の正常値からのずれが大きいほど、異常度も高い値となる。異常度は、各パラメータの正常値からのずれだけでなく、ある単位時間における各パラメータが正常値からずれた頻度から算出しても良い。
 なお、パラメータ測定値を入力すると、その異常度が出力される異常度評価関数がパラメータ種別ごとにあらかじめ用意されており、予測サーバSVは異常度評価関数を計算することで、パラメータ測定値ごとの異常度を評価する。
FIG. 5 is a table showing the results of evaluating the deviation from the correlation line for the parameter measurement values of the optical transmission system NW.
The correlation line is a graph line (see FIG. 8 for details) that shows the correlation between the Q value of the optical path and the degree of abnormality (hereinafter referred to as "degree of abnormality") of the measured parameter value. For example, in FIG. 4, (4 types of measurement points) x (4 types of parameter types) = 16 types of correlation lines are prepared in advance.
In addition, the degree of abnormality is an indicator that the larger the value, the more the area where the parameter measurement value is measured deviates from the normal state, and the larger the deviation from the normal value of the parameter measurement value, the higher the degree of abnormality. value. The degree of abnormality may be calculated not only from the deviation of each parameter from its normal value, but also from the frequency with which each parameter deviates from its normal value in a certain unit time.
In addition, when a parameter measurement value is input, an abnormality evaluation function that outputs the abnormality degree is prepared in advance for each parameter type, and the prediction server SV calculates the abnormality evaluation function to calculate the abnormality degree for each parameter measurement value. Evaluate the degree of abnormality.
 まず、図5のテーブルの行要素および列要素は、図4のテーブルのものと同じである。しかし、行要素および列要素の組み合わせごとのテーブル内の値は、図4では「パラメータ測定値の変動の有無」であったが、図5では「パラメータ測定値が事前に求めた相関関係線と乖離しているか一致しているか」に置き換わる。
 例えば、図5のテーブルでは、中継伝送装置WBで測定したパラメータ種別「OSNR(Optical Signal to Noise Ratio)」についてのみテーブル内の値が「一致」を示している。これにより、予測サーバSVは、相関関係線により、予兆検知部位=中継伝送装置WBでOSNRに関連した故障の要因(故障の予兆)を評価する。
First, the row elements and column elements of the table of FIG. 5 are the same as those of the table of FIG. 4. However, in Figure 4, the values in the table for each combination of row elements and column elements are ``presence or absence of variation in parameter measurement values'', but in Figure 5, ``parameter measurement values do not correspond to the correlation line determined in advance.''"Are they divergent or consistent?"
For example, in the table of FIG. 5, the value in the table indicates "match" only for the parameter type "OSNR (Optical Signal to Noise Ratio)" measured by the relay transmission device WB. Thereby, the prediction server SV evaluates the cause of failure (failure sign) related to the OSNR at the sign detection part=relay transmission device WB using the correlation line.
 そのため、予測サーバSVは光パスのQ値とパラメータ種別との関係性を元に、事前に相関関係線を作成する。相関関係線の作成処理は、例えば、事前に故障模擬系でのデータ取得や、QoTシミュレータ(Gnpyなど)を元に予測サーバSVが実行する。故障模擬系でのデータ取得とは、例えば、以下に例示する故障模擬のパターンをシミュレーションすることで得られるパラメータ測定値のデータを取得することである。
 ・AMP22またはWSS23の出力減(1波パワーまたは全波長パワーの減少)
 ・AMP22またはWSS23の出力増(1波パワーまたは全波長パワーの増加)
 ・WSS23のフィルタ異常(波形対称性の乱れ)
 ・AMP22のノイズ異常(OSNRの減少)
Therefore, the prediction server SV creates a correlation line in advance based on the relationship between the Q value of the optical path and the parameter type. The process of creating the correlation line is executed by the prediction server SV based on, for example, data acquisition using a failure simulation system or a QoT simulator (such as Gnpy) in advance. Acquiring data in a failure simulation system means, for example, acquiring data of parameter measurement values obtained by simulating a failure simulation pattern exemplified below.
・Decrease in output of AMP22 or WSS23 (decrease in single wave power or total wavelength power)
・Increase the output of AMP22 or WSS23 (increase in 1 wave power or all wavelength power)
・WSS23 filter abnormality (disturbance of waveform symmetry)
・AMP22 noise abnormality (OSNR decrease)
 図6は、図1の光伝送システムNWを運用する手順の一例を示すフローチャートである。
 通信事業者は、図1の光伝送システムNWとして、光クロスコネクト(OXC)の構成が適用されたコア・メトロネットワークシステムなどを用意する(S101)。
 光伝送システムNWは、信号品質が劣化した光パスを検出し、その検出結果を予測サーバSVに通知する(S102)。S102は、例えば、図1の(手順1)で説明した通り、トランスポンダTR4が光パスP1のQ値の劣化を検出する処理である。
 予測サーバSVは、図1の(手順1)および(手順2)で説明した通り、S102で検出された光パスから、光伝送システムNW内の故障を予測する(S103、詳細は図7)。
 予測サーバSVは、S103で得た故障予測結果(予兆検知部位および故障の発生時刻)を、通信事業者の保守員が操作する保守端末に通知する(S104)。
 保守員は、S104の通知を受け、故障区間の経路切り替えや交換対応を行うことで、故障の予防保全を行う(S105)。
FIG. 6 is a flowchart illustrating an example of a procedure for operating the optical transmission system NW of FIG. 1.
The communication carrier prepares a core/metro network system to which an optical cross-connect (OXC) configuration is applied as the optical transmission system NW shown in FIG. 1 (S101).
The optical transmission system NW detects an optical path with degraded signal quality and notifies the prediction server SV of the detection result (S102). S102 is a process in which the transponder TR4 detects the deterioration of the Q value of the optical path P1, for example, as described in (procedure 1) of FIG. 1.
As explained in (Step 1) and (Step 2) in FIG. 1, the prediction server SV predicts a failure in the optical transmission system NW from the optical path detected in S102 (S103, details in FIG. 7).
The prediction server SV notifies a maintenance terminal operated by a maintenance worker of the communication carrier of the failure prediction result obtained in S103 (portion where the sign is detected and failure occurrence time) (S104).
After receiving the notification in S104, the maintenance staff performs preventive maintenance against the failure by switching routes and replacing the failed section (S105).
 図7は、予測サーバSVの故障予測処理(S103)の詳細を示すフローチャートである。このフローチャートは、光伝送システムNWに故障が発生していない正常状態から開始する。
 予測サーバSVは、S102で通知された光パスのQ値が、予兆検出閾値(図8)未満か否かを判定する(S11、詳細は図8、図9)。S11でYesなら、S12に進む。S11でNoなら、光パスのQ値が良好なので、再度S11の判定に戻る。
 予測サーバSVは、光パスが通過した測定地点で測定されるパラメータ測定値と、そのパラメータ種別の相関関係線とが一致するか否かを、図5のテーブルのように総当たりで確認し、一致した箇所のパラメータ測定値をもとに予兆検知部位を抽出する(S12)。例えば、図5では、中継伝送装置WBだけが「一致」なので、予兆検知部位=中継伝送装置WBである。
FIG. 7 is a flowchart showing details of the failure prediction process (S103) of the prediction server SV. This flowchart starts from a normal state in which no failure has occurred in the optical transmission system NW.
The prediction server SV determines whether the Q value of the optical path notified in S102 is less than the sign detection threshold (FIG. 8) (S11, details are shown in FIGS. 8 and 9). If Yes in S11, proceed to S12. If No in S11, the Q value of the optical path is good, so the process returns to the determination in S11 again.
The prediction server SV checks whether the parameter measurement value measured at the measurement point through which the optical path has passed and the correlation line of the parameter type match by brute force as shown in the table of FIG. The sign detection area is extracted based on the parameter measurement values of the matched area (S12). For example, in FIG. 5, only the relay transmission device WB is “matched”, so the sign detection part=the relay transmission device WB.
 一方、予測サーバSVは、S12で一致する箇所が複数存在するときには、複数の箇所およびパラメータから最も確度の高いものを基に予兆検知部位を特定する。S12で一致する複数の箇所では上流(始点側)が最も確度が高く、例えば、光パスP1が通過する順に、中継伝送装置WA「乖離」→中継伝送装置WB「乖離」→中継伝送装置WC「一致」→中継伝送装置WD「一致」なら、予測サーバSVは、一致する箇所のうち(中継伝送装置WC、WD)の最も上流(始点側)の位置(中継伝送装置WC)を予兆検知部位とする。
 またパラメータの変化には因果関係があるものあり、パラメータ変化の原因と結果のうちの原因となる側のパラメータが変化した部位の確度が高い。例えば、全波パワーまたは一波パワーが変動すると、後段のOSNRが変動するため、両パラメータが一致した場合には、全波パワーまたは一波パワーの変動個所を予兆検知部位とする。
 これにより、予測サーバSVは、パラメータ測定値と相関関係線との一致または乖離の分布により、故障要因となる予兆検知部位を評価した。
On the other hand, when there are a plurality of matching locations in S12, the prediction server SV specifies the sign detection location based on the one with the highest accuracy from the multiple locations and parameters. Among the multiple locations that match in S12, the upstream (starting point side) has the highest accuracy; for example, in the order in which the optical path P1 passes, relay transmission device WA "deviation" → relay transmission device WB "deviation" → relay transmission device WC ""match" → relay transmission device WD If "match", the prediction server SV sets the most upstream (starting point side) position (relay transmission device WC) of the matching locations (relay transmission devices WC, WD) as the sign detection location. do.
In addition, there is a causal relationship between parameter changes, and the location where the parameter that causes the change in the cause and effect of the parameter change is highly accurate. For example, if the full-wave power or single-wave power fluctuates, the OSNR of the subsequent stage will fluctuate, so if both parameters match, the location where the full-wave power or single-wave power fluctuates is determined to be the sign detection location.
As a result, the prediction server SV evaluated the predictive detection site that may be a cause of failure based on the distribution of coincidence or deviation between the measured parameter value and the correlation line.
 予測サーバSVは、S11でYesにより検出された光パスの中で、予兆検知部位を通過する最小マージンの光パスを特定する(S21)。「マージン」とは、測定された光パスのQ値と、そのQ値よりも小さいエラー発生境界(FEC(Forward Error Correction) Limit)との差分である。
 つまり、予測サーバSVは、同一経路上または一部経路を共有するQ値劣化が検出された光パスが複数存在する場合は、最初にエラーを発出すると考えられる最小マージンの光パスのQ値に着目する。なお、光パスは増設や減設により時間経過で変化するので、最小マージンの光パスを特定する処理(S21)は、光パスの変化のたびに実行することが望ましい。
The prediction server SV identifies the light path with the minimum margin that passes through the sign detection site among the light paths detected by Yes in S11 (S21). The "margin" is the difference between the measured Q value of the optical path and an error occurrence boundary (FEC (Forward Error Correction) Limit) that is smaller than the Q value.
In other words, if there are multiple optical paths on the same path or sharing part of the path in which Q-factor degradation has been detected, the prediction server SV selects the Q-value of the optical path with the minimum margin that is considered to generate an error first. Pay attention. Note that since the optical path changes over time due to additions or subtractions, it is desirable to execute the process (S21) for identifying the optical path with the minimum margin each time the optical path changes.
 予測サーバSVは、測定期間(t秒)ごとに、S21の最小マージンの光パスについてのQ値と、S12で抽出した予兆検知部位でのパラメータ測定値とを、測定ペアとして取得する(S22)。予測サーバSVは、S22で取得した測定ペアから、時間経過による劣化の傾向をエラー予測線として予測することで、故障の発生時刻を予測する(S23、詳細は図10)。 The prediction server SV acquires the Q value for the optical path with the minimum margin in S21 and the parameter measurement value at the omen detection site extracted in S12 as a measurement pair every measurement period (t seconds) (S22). . The prediction server SV predicts the failure occurrence time by predicting the tendency of deterioration over time as an error prediction line from the measurement pair acquired in S22 (S23, details are shown in FIG. 10).
 予測サーバSVは、S22と同様に、最小マージンの光パスについて測定ペアを取得する(S31)。予測サーバSVは、S31で取得した測定ペアが示す故障の影響が、エラー予測線と一致するか否かを判定する(S32、詳細は図11)。S32でYesならS33に進み、S32でNoなら偽エラーとしてS34の通知をキャンセルしてS11の判定に戻る。偽エラーとは、当初は故障が予測されたが、その後に故障が予測される状態から回復した事象である。これにより、予測サーバSVは、エラー予測線との一致判定(S32)による誤検出を防止できる。 Similar to S22, the prediction server SV obtains measurement pairs for the optical path with the minimum margin (S31). The prediction server SV determines whether the influence of the failure indicated by the measurement pair acquired in S31 matches the error prediction line (S32, details in FIG. 11). If Yes in S32, the process advances to S33, and if No in S32, the notification in S34 is canceled as a false error and the process returns to the determination in S11. A false error is an event in which a failure was initially predicted, but the failure was subsequently recovered from the predicted condition. Thereby, the prediction server SV can prevent erroneous detection due to the coincidence determination with the error prediction line (S32).
 予測サーバSVは、現在がエラー発生時期のz日前(z=通知閾値)になったか否かを判定する(S33)。S33でYesならS34に進み、S33でNoならS31に戻る。予測サーバSVは、予兆検知部位での故障予測結果を保守員の保守端末に通知する(S34)。
 また、予測サーバSVは、故障予測結果を通知した保守員の保守端末から、その予測結果のフィードバック(正誤)を元に、S12で使用される相関関係線およびS32で使用されるエラー予測線を更新してもよい(S35)。つまり、予測サーバSVは、予兆検知部位での故障の予測および、その故障発生時刻の予測を故障発生時刻よりも前に保守員の保守端末に通知する。そして、予測サーバSVは、故障発生時刻よりも後に保守員の保守端末から応答されたフィードバック情報により予測の正誤を取得し、取得した予測の正誤をもとに、記憶部に記憶されている相関関係データを更新する。予測サーバSVは、相関関係データと合わせて記憶部に記憶されている、測定し蓄積されたQ値および異常度の時系列変化関係の情報からエラー予測データを更新する。
 これにより、相関関係線の精度およびエラー予測線の精度を向上できる。
The prediction server SV determines whether the current time is z days before the error occurrence time (z=notification threshold) (S33). If Yes in S33, proceed to S34; if No in S33, return to S31. The prediction server SV notifies the maintenance terminal of the maintenance worker of the failure prediction result at the sign detection site (S34).
In addition, the prediction server SV calculates the correlation line used in S12 and the error prediction line used in S32 based on the feedback (correctness) of the prediction result from the maintenance terminal of the maintenance worker who has notified the failure prediction result. It may be updated (S35). That is, the prediction server SV notifies the maintenance terminal of the maintenance worker of the prediction of a failure at the sign detection site and the prediction of the failure occurrence time before the failure occurrence time. Then, the prediction server SV obtains the correctness of the prediction based on the feedback information responded from the maintenance terminal of the maintenance worker after the failure occurrence time, and based on the obtained correctness of the prediction, the prediction server SV calculates the correlation stored in the storage unit. Update relationship data. The prediction server SV updates the error prediction data from information on the time-series change relationship of the measured and accumulated Q value and abnormality degree, which is stored in the storage unit together with the correlation data.
Thereby, the precision of the correlation line and the precision of the error prediction line can be improved.
 図8は、パラメータxの異常度とQ値との相関関係線を示すグラフである。
 予測サーバSVは、パラメータ種別=x(例えば全波パワー)の異常度(E)と、光パスのQ値(Q)との組み合わせ<E,Q>を、同時刻に測定した測定ペアとする。図8では、2回の測定により、以下の測定ペアを得たとする。
 ・1回目の測定ペアp1<E1,Q1>。ただし、Q1=正常時平均値である。
 ・2回目の測定ペアp2<E2,Q2>。ただし、Q2=S11の予兆検出閾値である。
 予測サーバSVは、2つの測定ペアp1、p2ともに、相関関係線Qf1の線上またはその近傍に位置しているので、この段階ではパラメータ測定値が相関関係線と一致するとS12で判定される。なお、一致と判定する相関関係線からのずれを許容する近傍範囲を閾値として調整しても良い。
FIG. 8 is a graph showing a correlation line between the degree of abnormality of the parameter x and the Q value.
The prediction server SV regards the combination <E, Q> of the degree of abnormality (E) of parameter type = x (for example, full wave power) and the Q value (Q) of the optical path as a measurement pair measured at the same time. . In FIG. 8, it is assumed that the following measurement pairs are obtained by two measurements.
- First measurement pair p1<E1,Q1>. However, Q1 is the normal average value.
- Second measurement pair p2<E2, Q2>. However, Q2 is the sign detection threshold of S11.
Since both of the two measurement pairs p1 and p2 are located on or near the correlation line Qf1, the prediction server SV determines in S12 that the parameter measurement value matches the correlation line at this stage. Note that the threshold may be adjusted to a neighborhood range that allows deviation from the correlation line that is determined to be a match.
 図9は、パラメータyの異常度とQ値との相関関係線を示すグラフである。
 予測サーバSVは、図8と同様に、パラメータ種別=y(例えば1波パワー)の異常度と、光パスのQ値との組み合わせ<E,Q>を、同時刻に測定した測定ペアとする。図9では、2回の測定により、以下の測定ペアを得たとする。
 ・1回目の測定ペアp3<E3,Q3>。ただし、Q3=正常時平均値である。
 ・2回目の測定ペアp4<E4,Q4>。ただし、Q4=S11の予兆検出閾値である。
 予測サーバSVは、測定ペアp4<E4,Q4>は、相関関係線Qf2の線上点<E5,Q4>またはその近傍に位置していないので、この段階ではパラメータ測定値が相関関係線と乖離するとS12で判定される。なお、一致と判定する相関関係線からのずれを許容する近傍範囲を閾値として調整しても良い。
FIG. 9 is a graph showing a correlation line between the degree of abnormality of the parameter y and the Q value.
As in FIG. 8, the prediction server SV regards the combination <E, Q> of the abnormality degree of parameter type = y (for example, 1-wave power) and the Q value of the optical path as a measurement pair measured at the same time. . In FIG. 9, it is assumed that the following measurement pairs are obtained by two measurements.
- First measurement pair p3<E3, Q3>. However, Q3 is the normal average value.
- Second measurement pair p4<E4,Q4>. However, Q4 is the sign detection threshold of S11.
Since the measurement pair p4<E4, Q4> is not located at or near the point <E5, Q4> on the correlation line Qf2, the prediction server SV detects that the parameter measurement value deviates from the correlation line at this stage. It is determined in S12. Note that the threshold may be adjusted to a neighborhood range that allows deviation from the correlation line that is determined to be a match.
 図10は、エラー発生時のエラー予測線を示す時系列グラフである。
 図10では、上側のグラフを縦軸がQ値(図8、図9の縦軸と同じ)とし、下側のグラフをパラメータ別の異常度(図8、図9の横軸と同じ)とし、上下のグラフを同じ時間軸で対応付けた。また、時間軸では、時刻t1,t2,t3,t4ではすでに測定ペア(三角のアイコンで図示)が測定された過去の時刻であり、時刻t5ではまだ測定ペアが測定されていない未来の時刻である。予測サーバSVは、図8のように相関関係線と一致したパラメータ測定値について、3回目以降も測定ペアを複数回(図10では合計4回)取得する。
 以下、2通りの方法(図10上側のグラフを用いる方法、下側のグラフを用いる方法)において、劣化予測をすることでエラー発生境界(エラー境界閾値)を求め、エラー発生境界に到達する時刻を故障の発生時刻として予測する予測サーバSVの処理を説明する。
FIG. 10 is a time series graph showing an error prediction line when an error occurs.
In Figure 10, the vertical axis of the upper graph is the Q value (same as the vertical axis of Figures 8 and 9), and the lower graph is the degree of abnormality by parameter (same as the horizontal axis of Figures 8 and 9). , the upper and lower graphs are associated with the same time axis. Also, on the time axis, times t1, t2, t3, and t4 are times in the past when measurement pairs (indicated by triangle icons) have already been measured, and time t5 is a time in the future when no measurement pairs have been measured yet. be. The prediction server SV acquires measurement pairs multiple times (four times in total in FIG. 10) for the parameter measurement values that match the correlation line as shown in FIG. 8, even after the third time.
Below, in two methods (method using the upper graph in Figure 10 and method using the lower graph), the error occurrence boundary (error boundary threshold) is calculated by predicting the deterioration, and the time at which the error occurrence boundary is reached. The processing of the prediction server SV that predicts the failure occurrence time will be explained.
 図10上側のグラフにおいて、予測サーバSVは、測定済のQ値の傾向(図10では実線で三角のアイコン間を接続する実線)をもとに、例えば、グラフの実線をそのままの傾きで延長することで、エラー予測線Ef1を作成する。そして、予測サーバSVは、予兆検知部位を通過する最小マージンの光パスの品質劣化度合いに応じて、エラー発生時期を予測する。具体的には、予測サーバSVは、エラーが境界するQ値の閾値(エラー境界閾値Q9)をエラー予測線Ef1が下回る時刻t5を、故障の発生時刻として予測する。 In the upper graph of FIG. 10, the prediction server SV, for example, extends the solid line of the graph with the same slope based on the trend of the measured Q value (the solid line connecting the triangular icons in FIG. 10). By doing so, an error prediction line Ef1 is created. The prediction server SV then predicts the timing of error occurrence according to the degree of quality deterioration of the optical path with the minimum margin that passes through the sign detection site. Specifically, the prediction server SV predicts the time t5 at which the error prediction line Ef1 falls below the threshold of the Q value at which the error occurs (error boundary threshold Q9) as the failure occurrence time.
 つまり、予測サーバSVは、第1時刻t2よりも後の期間(時刻t3~t4)で所定の光パスの受信端点での光信号の品質値を複数回測定する。予測サーバSVは、その測定した光信号の品質値の時間経過による時系列変化関係をもとに、光信号の品質値が第2閾値(エラー境界閾値Q9)未満となると予測される第2時刻t5を、予兆検知部位での故障発生時刻として予測する。
 このように、Q値の変化と時刻の変化との間には、時系列変化関係が存在する。よって、光パスの受信信号の品質(Q値)が限界に達する時刻t5をもとに、故障の発生時刻を予測できる。例えば、t4までの測定値から近似線を引くことで時系列変化関係を予測することができる。または過去に測定され蓄積された同一構成のQ値の時系列変化関係から予測することもできる。過去の測定データからの予測には統計的手法を用いても機械学習を用いても良い。本実施例では線形であると予測された場合を記述するが、時系列変化関係は線形でなくとも良い。
That is, the prediction server SV measures the quality value of the optical signal at the reception end point of a predetermined optical path multiple times in a period after the first time t2 (times t3 to t4). The prediction server SV determines a second time at which the quality value of the optical signal is predicted to be less than the second threshold (error boundary threshold Q9) based on the time-series change relationship of the measured quality value of the optical signal over time. The time t5 is predicted as the failure occurrence time at the sign detection part.
In this way, a time-series change relationship exists between the change in the Q value and the change in time. Therefore, the time at which the failure occurs can be predicted based on the time t5 at which the quality (Q value) of the received signal of the optical path reaches its limit. For example, the time-series change relationship can be predicted by drawing an approximate line from the measured values up to t4. Alternatively, it can also be predicted from the time-series change relationship of Q values of the same configuration that have been measured and accumulated in the past. For prediction from past measurement data, statistical methods or machine learning may be used. In this embodiment, a case is described in which it is predicted to be linear, but the time-series change relationship does not have to be linear.
 図10下側のグラフにおいて、予測サーバSVは、測定済の異常度の傾向(図10では実線で三角のアイコン間を接続する実線)をもとに、例えば、グラフの実線をそのままの傾きで延長することで、エラー予測線Ef2を作成する。そして、予測サーバSVは、予兆検知部位の異常度の進行度合いに応じて、エラー発生時期を予測する。具体的には、予測サーバSVは、エラーが境界する異常度の閾値(エラー境界閾値E9)をエラー予測線Ef1が上回る時刻t6を、故障の発生時刻として予測してもよい。なお、E1=異常度の正常時平均値であり、E2=異常度の予兆検出閾値である。 In the lower graph of FIG. 10, the prediction server SV uses, for example, the solid line of the graph to change the slope as it is, based on the trend of the measured abnormality degree (in FIG. 10, the solid line connecting the triangular icons). By extending, an error prediction line Ef2 is created. Then, the prediction server SV predicts the time of error occurrence according to the degree of progress of the degree of abnormality of the sign detection site. Specifically, the prediction server SV may predict the time t6 at which the error prediction line Ef1 exceeds the abnormality degree threshold (error boundary threshold E9) at which the error borders, as the failure occurrence time. Note that E1=normal average value of the degree of abnormality, and E2=predictive detection threshold of the degree of abnormality.
 つまり、予測サーバSVは、第1時刻t2よりも後の期間(時刻t3~t4)で予兆検知部位でのパラメータ測定値を複数回測定する。予測サーバSVは、その測定した予兆検知部位でのパラメータ測定値から求めた異常度の時間経過による時系列変化関係をもとに、予兆検知部位での異常度が第3閾値(エラー境界閾値E9)未満となると予測される第3時刻t6を、予兆検知部位での故障発生時刻t6として予測する。例えば、t4までの測定値から近似線を引くことで時系列変化関係を予測することができる。または過去に測定され蓄積された同一パラメータ同一構成の異常度の時系列変化関係から予測することもできる。過去の測定データからの予測には統計的手法を用いても機械学習を用いても良い。本実施例では線形であると予測された場合を記述するが、時系列変化関係は線形でなくとも良い。
 このように、異常度の変化と時刻の変化との間には、時系列変化関係が存在する。よって、図8のように相関関係線と一致する予兆検知部位で測定される異常度が限界に達する時刻t6をもとに、故障の発生時刻を予測できる。また、異常度は発生した故障に直接紐づく要素であるため、Q値だけの予測と比較して精度を上げることができる。また、Q値が予測した時系列変化関係に沿って劣化していくが、異常度が時系列変化関係に沿って劣化していかない可能性もある。この場合、当初、相関関係の一致から抽出した部位が乖離し、別の部位が相関関係に一致していることが考えられるため再度、光パス上の各パラメータ測定値の相関関係の確認から別の部位の故障予測に切り替えることができる。
That is, the prediction server SV measures the parameter measurement value at the omen detection site multiple times in a period after the first time t2 (times t3 to t4). The prediction server SV sets the degree of abnormality at the sign detection site to a third threshold (error boundary threshold E9) based on the time-series change relationship over time of the degree of abnormality obtained from the measured parameter values at the measured sign detection site. ) is predicted as the failure occurrence time t6 at the sign detection site. For example, the time-series change relationship can be predicted by drawing an approximate line from the measured values up to t4. Alternatively, prediction can be made from the time-series change relationship of abnormalities of the same parameters and the same configuration that have been measured and accumulated in the past. For prediction from past measurement data, statistical methods or machine learning may be used. In this embodiment, a case is described in which it is predicted to be linear, but the time-series change relationship does not have to be linear.
In this way, a time-series change relationship exists between the change in the degree of abnormality and the change in time. Therefore, as shown in FIG. 8, the time at which a failure occurs can be predicted based on the time t6 at which the degree of abnormality measured at the sign detection site that coincides with the correlation line reaches its limit. Furthermore, since the degree of abnormality is an element directly linked to the failure that has occurred, it is possible to improve accuracy compared to prediction based only on the Q value. Further, although the Q value deteriorates along the predicted time-series change relationship, there is a possibility that the degree of abnormality does not deteriorate along the time-series change relationship. In this case, it is possible that the part extracted from the initially matched correlation may have deviated and another part may match the correlation, so check the correlation of each parameter measurement value on the optical path again. It is possible to switch to failure prediction for the following parts.
 図11は、偽エラー発生時のエラー予測線を示すグラフである。偽エラーとは、故障の発生時刻を予測したものの、実際には故障が発生しなかったことである。
 図10および図11では、上下2つのグラフの軸と、時刻t4までの測定ペアとは共通する。一方、図11では時刻t4よりも後では測定ペアの状況が改善し、測定ペアのQ値は上昇し(Q値の実測線Ef1aが右上がりになり)、測定ペアの異常度は下降する(異常度の実測線Ef2aが右下がりになる)。なお、Q値の実測線Ef1aは、Q値の変化と時刻の変化との間の関係を示す。また、異常度の実測線Ef2aは、異常度の変化と時刻の変化との間の関係を示す。
 このように測定ペアが瞬時に改善する原因の一例は、保守員が一時的に光ファイバに接触する(ファイバタッチ)ことが挙げられる。一方、Q値が改善せずに故障となる一例は、AMP22のノイズ劣化、WSS23のフィルタ故障、光デバイス13の出力制御故障などの故障が挙げられる。
FIG. 11 is a graph showing an error prediction line when a false error occurs. A false error is one in which the failure time was predicted, but the failure did not actually occur.
In FIGS. 10 and 11, the axes of the two upper and lower graphs and the measurement pairs up to time t4 are common. On the other hand, in FIG. 11, after time t4, the situation of the measurement pair improves, the Q value of the measurement pair increases (the actual measurement line Ef1a of the Q value slopes upward to the right), and the degree of abnormality of the measurement pair decreases ( The actual measurement line Ef2a of the degree of abnormality slopes downward to the right). Note that the actual measurement line Ef1a of the Q value indicates the relationship between the change in the Q value and the change in time. Furthermore, the actual measurement line Ef2a of the degree of abnormality shows the relationship between the change in the degree of abnormality and the change in time.
One example of the cause of instantaneous improvement in the measurement pair is that a maintenance worker temporarily comes into contact with the optical fiber (fiber touch). On the other hand, examples of failures occurring without improvement in the Q value include failures such as noise deterioration of the AMP 22, filter failure of the WSS 23, and output control failure of the optical device 13.
 図11上側のグラフでは、予測サーバSVは、時刻t4よりも後のQ値の実測線Ef1aとQ値のエラー予測線Ef1との乖離に応じて、時刻t4で予測した故障の予兆(故障の発生時刻)を取り下げて、故障が発生しないと判定する。
 つまり、予測サーバSVは、故障発生時刻を予測した後に、引き続き所定の光パスの受信端点での光信号の品質値を測定する。予測サーバSVは、その測定した光信号の品質値の時間経過による時系列変化関係(実測線Ef1a)が、故障発生時刻を予測した時点の時系列変化関係(エラー予測線Ef1)から乖離してずれた場合(例えば双方の線の傾きの差が60度以上の場合)、または、測定した光信号の品質値が第1閾値(Q2)以上に回復した場合には、予兆検知部位での故障の予測および第2時刻t5での故障発生時刻の予測をキャンセルする。
In the graph in the upper part of FIG. 11, the prediction server SV predicts the sign of failure (failure sign) predicted at time t4 according to the deviation between the actual Q value measured line Ef1a and the Q value error prediction line Ef1 after time t4. (time of occurrence) and determines that no failure has occurred.
That is, after predicting the failure occurrence time, the prediction server SV subsequently measures the quality value of the optical signal at the receiving end point of the predetermined optical path. The prediction server SV detects that the time-series change relationship (actual measurement line Ef1a) of the quality value of the measured optical signal over time deviates from the time-series change relationship (error prediction line Ef1) at the time when the failure occurrence time is predicted. If the deviation occurs (for example, if the difference in slope between the two lines is 60 degrees or more), or if the quality value of the measured optical signal recovers to the first threshold value (Q2) or higher, a failure occurs at the predictive detection part. and the prediction of the failure occurrence time at the second time t5 are canceled.
 図11下側のグラフでは、予測サーバSVは、時刻t4よりも後の異常度の実測線Ef2aと異常度のエラー予測線Ef2との乖離に応じて、時刻t4で予測した故障の予兆(故障の発生時刻)を取り下げて、故障が発生しないと判定する。
 つまり、予測サーバSVは、故障発生時刻を予測した後に、引き続き予兆検知部位でのパラメータ測定値を測定する。予測サーバSVは、その測定したパラメータ測定値から求めた異常度の時間経過による時系列変化関係(実測線Ef2a)が、故障発生時刻を予測した時点の時系列変化関係(エラー予測線Ef2)から乖離してずれた場合(例えば双方の線の傾きの差が60度以上の場合)には、予兆検知部位での故障の予測および第3時刻t6での故障発生時刻の予測をキャンセルする。
 なお、故障発生時刻の予測をキャンセルするまでの故障の観察期間は、例えば、図10でQ値が予兆検出閾値未満となった時点の時刻t2から、その故障の発生時刻t5またはt6を保守員の保守端末に通知するまでの期間である。これにより、偽エラーの影響を低減できる。
In the graph on the lower side of FIG. 11, the prediction server SV detects a sign of failure (failure (occurrence time) and determine that no failure has occurred.
That is, after predicting the failure occurrence time, the prediction server SV continues to measure the parameter measurement value at the sign detection site. The prediction server SV determines whether the time-series change relationship (actual measurement line Ef2a) of the degree of abnormality over time obtained from the measured parameter measurement values is based on the time-series change relationship (error prediction line Ef2) at the time when the failure occurrence time is predicted. If the two lines deviate from each other (for example, if the difference in slope between the two lines is 60 degrees or more), the prediction of the failure at the sign detection site and the prediction of the failure occurrence time at the third time t6 are canceled.
Note that the failure observation period until the failure occurrence time prediction is canceled is, for example, from time t2 when the Q value becomes less than the sign detection threshold in FIG. This is the period until the maintenance terminal is notified. This can reduce the influence of false errors.
[効果]
 本発明は、予測サーバSVが、記憶部と制御部とを有しており、
 記憶部には、光伝送システムNW内の光パスの受信端点で測定された光信号の品質値と、光パスの通過地点で測定された光物理特性パラメータの種別ごとの異常度との相関関係データ(相関関係線)が記憶されており、
 制御部が、
 第1時刻で測定した光信号の品質値が第1閾値未満である所定の光パスを検出したときに、第1時刻において所定の光パスの通過地点で測定された光物理特性パラメータのパラメータ測定値から第1時刻での異常度を求め、
 第1時刻での光信号の品質値と、第1時刻での異常度との相関関係が、記憶部に記憶されている相関関係データと一致している場合に、パラメータ測定値の測定地点から求めた予兆検知部位において、第1時刻よりも後の時刻に故障の予兆が発生すると予測することを特徴とする。
[effect]
In the present invention, the prediction server SV has a storage unit and a control unit,
The storage unit stores the correlation between the quality value of the optical signal measured at the receiving end point of the optical path in the optical transmission system NW and the degree of abnormality for each type of optical physical property parameter measured at the passing point of the optical path. The data (correlation line) is stored,
The control unit is
Parameter measurement of optical physical property parameters measured at a passing point of a predetermined optical path at a first time when a predetermined optical path whose quality value of the optical signal measured at the first time is less than a first threshold is detected. Find the degree of abnormality at the first time from the value,
If the correlation between the quality value of the optical signal at the first time and the degree of abnormality at the first time matches the correlation data stored in the storage unit, from the measurement point of the parameter measurement value The present invention is characterized in that it is predicted that a failure sign will occur at a time after the first time in the determined sign detection site.
 これにより、光信号の品質値の変化とパラメータ測定値の変化との相関関係が考慮される。よって、パラメータ測定値の変化だけを観察する方式に比べ、光伝送システムにおける故障の検知範囲を、予兆検知部位として高精度に絞り込むことができる。 This takes into account the correlation between changes in the quality value of the optical signal and changes in the measured parameter values. Therefore, compared to a method in which only changes in parameter measurement values are observed, the detection range of failures in the optical transmission system can be narrowed down to the predictive detection parts with high precision.
 本発明は、制御部が、第1時刻よりも後の期間で所定の光パスの受信端点での光信号の品質値を複数回測定し、その測定した光信号の品質値の時間経過による時系列変化関係をもとに、光信号の品質値が第2閾値未満となると予測される第2時刻を、予兆検知部位での故障発生時刻として予測することを特徴とする。 The present invention provides a control unit that measures the quality value of an optical signal at a receiving end point of a predetermined optical path multiple times in a period after a first time, and determines when the quality value of the measured optical signal changes over time. The present invention is characterized in that a second time at which the quality value of the optical signal is predicted to be less than a second threshold is predicted as the failure occurrence time at the sign detection site based on the sequence change relationship.
 これにより、光信号の品質値(Q値)が限界となるポイントの時刻を、故障発生時刻として予測できる。 As a result, the time at which the quality value (Q value) of the optical signal reaches its limit can be predicted as the failure occurrence time.
 本発明は、制御部が、故障発生時刻を予測した後に、引き続き所定の光パスの受信端点での光信号の品質値を測定し、その測定した光信号の品質値の時間経過による時系列変化関係が、故障発生時刻を予測した時点の時系列変化関係からずれた場合、または、測定した光信号の品質値が第1閾値以上に回復した場合には、予兆検知部位での故障の予測および第2時刻での故障発生時刻の予測をキャンセルすることを特徴とする。 In the present invention, after predicting the failure occurrence time, the control unit continues to measure the quality value of the optical signal at the receiving end point of a predetermined optical path, and the time-series change in the quality value of the measured optical signal over time. If the relationship deviates from the time-series change relationship at the time when the failure occurrence time was predicted, or if the quality value of the measured optical signal recovers to the first threshold or higher, the failure prediction and The feature is that the prediction of the failure occurrence time at the second time is canceled.
 これにより、ファイバタッチなどの偽エラーを、故障予測から適切に除外することで、故障予測の精度を向上できる。 As a result, the accuracy of failure prediction can be improved by appropriately excluding false errors such as fiber touch from failure prediction.
 本発明は、制御部が、第1時刻よりも後の期間で予兆検知部位でのパラメータ測定値を複数回測定し、その測定した予兆検知部位でのパラメータ測定値から求めた異常度の時間経過による時系列変化関係をもとに、予兆検知部位での異常度が第3閾値未満となると予測される第3時刻を、予兆検知部位での故障発生時刻として予測することを特徴とする。 In the present invention, the control unit measures the parameter measurement value at the sign detection site multiple times in a period after the first time, and the degree of abnormality over time is determined from the parameter measurement value at the measured sign detection site. The present invention is characterized in that a third time at which the degree of abnormality at the precursor detection site is predicted to be less than a third threshold is predicted as the failure occurrence time at the precursor detection site based on the time-series change relationship.
 これにより、予兆検知部位での異常度が限界となるポイントの時刻を、故障発生時刻として予測できる。 With this, it is possible to predict the time at which the degree of abnormality at the sign detection site reaches its limit as the failure occurrence time.
 本発明は、制御部が、故障発生時刻を予測した後に、引き続き予兆検知部位でのパラメータ測定値を測定し、その測定したパラメータ測定値から求めた異常度の時間経過による時系列変化関係が、故障発生時刻を予測した時点の時系列変化関係からずれた場合には、予兆検知部位での故障の予測および第3時刻での故障発生時刻の予測をキャンセルすることを特徴とする。 In the present invention, after the control unit predicts the failure occurrence time, the control unit subsequently measures the parameter measurement value at the sign detection site, and the time-series change relationship of the abnormality degree obtained from the measured parameter measurement value over time is If the failure occurrence time deviates from the time-series change relationship at the predicted time, the prediction of the failure at the sign detection site and the prediction of the failure occurrence time at the third time are canceled.
 これにより、ファイバタッチなどの偽エラーを、故障予測から適切に除外することで、故障予測の精度を向上できる。 As a result, the accuracy of failure prediction can be improved by appropriately excluding false errors such as fiber touch from failure prediction.
 本発明は、制御部が、予兆検知部位での故障の予測および、その故障発生時刻の予測を故障発生時刻よりも前に保守員の保守端末に通知し、故障発生時刻よりも後に保守員の保守端末から応答されたフィードバック情報により予測の正誤を取得し、取得した予測の正誤をもとに、記憶部に記憶されている相関関係データと、光信号の品質値の時間経過による時系列変化関係と、予兆検知部位でのパラメータ測定値から求めた異常度の時間経過による時系列変化関係とを更新することを特徴とする。 In the present invention, the control unit predicts a failure at a sign detection site and reports the prediction of the failure occurrence time to a maintenance worker's maintenance terminal before the failure occurrence time, and reports the prediction of the failure occurrence time to the maintenance worker's maintenance terminal after the failure occurrence time. The correctness of the prediction is obtained based on the feedback information responded from the maintenance terminal, and based on the obtained correctness of the prediction, the correlation data stored in the storage unit and the time-series change in the quality value of the optical signal over time are calculated. It is characterized by updating the relationship and the time-series change relationship over time of the degree of abnormality obtained from the parameter measurement values at the sign detection site.
 これにより、相関関係データ(相関関係線)、光信号の品質値および異常度の時系列変化予測(エラー予測線)の精度を向上できる。 This makes it possible to improve the accuracy of correlation data (correlation line), optical signal quality value, and time-series change prediction (error prediction line) of the degree of abnormality.
 10  パッケージ
 11  OTNフレーマ
 12  DSP
 13  光デバイス
 21  光物理特性モニタ
 22  AMP
 23  WSS
 L1~L6 リンク
 NW  光伝送システム
 SV  予測サーバ(故障予測装置)
 TS1,TS1,TR1,TR2,TR3,TR4 トランスポンダ
 WA,WB,WC,WD,WE,WF 中継伝送装置
10 Package 11 OTN Framer 12 DSP
13 Optical device 21 Optical physical property monitor 22 AMP
23 WSS
L1 to L6 Link NW Optical transmission system SV Prediction server (failure prediction device)
TS1, TS1, TR1, TR2, TR3, TR4 Transponder WA, WB, WC, WD, WE, WF Relay transmission equipment

Claims (8)

  1.  故障予測装置は、記憶部と制御部とを有しており、
     前記記憶部には、光伝送システム内の光パスの受信端点で測定された光信号の品質値と、光パスの通過地点で測定された光物理特性パラメータの種別ごとの異常度との相関関係データが記憶されており、
     前記制御部は、
     第1時刻で測定した光信号の品質値が第1閾値未満である所定の光パスを検出したときに、前記第1時刻において所定の光パスの通過地点で測定された前記光物理特性パラメータのパラメータ測定値から前記第1時刻での異常度を求め、
     前記第1時刻での光信号の品質値と、前記第1時刻での異常度との相関関係が、前記記憶部に記憶されている前記相関関係データと一致している場合に、パラメータ測定値の測定地点から求めた予兆検知部位において、前記第1時刻よりも後の時刻に故障の予兆が発生すると予測することを特徴とする
     故障予測装置。
    The failure prediction device has a storage unit and a control unit,
    The storage unit stores the correlation between the quality value of the optical signal measured at the receiving end point of the optical path in the optical transmission system and the degree of abnormality for each type of optical physical property parameter measured at the passing point of the optical path. data is stored,
    The control unit includes:
    When a predetermined optical path in which the quality value of the optical signal measured at the first time is less than the first threshold value is detected, the optical physical characteristic parameter measured at the passing point of the predetermined optical path at the first time is detected. Determining the degree of abnormality at the first time from the parameter measurement value,
    When the correlation between the quality value of the optical signal at the first time and the degree of abnormality at the first time matches the correlation data stored in the storage unit, the parameter measurement value A failure prediction device, characterized in that it is predicted that a failure sign will occur at a time later than the first time in a sign detection part determined from a measurement point.
  2.  前記制御部は、前記第1時刻よりも後の期間で所定の光パスの受信端点での光信号の品質値を複数回測定し、その測定した光信号の品質値の時間経過による時系列変化関係をもとに、光信号の品質値が第2閾値未満となると予測される第2時刻を、前記予兆検知部位での故障発生時刻として予測することを特徴とする
     請求項1に記載の故障予測装置。
    The control unit measures a quality value of an optical signal at a reception end point of a predetermined optical path multiple times in a period after the first time, and detects a time-series change in the quality value of the measured optical signal over time. The failure according to claim 1, characterized in that, based on the relationship, a second time at which the quality value of the optical signal is predicted to be less than a second threshold is predicted as the failure occurrence time at the sign detection part. Prediction device.
  3.  前記制御部は、故障発生時刻を予測した後に、引き続き所定の光パスの受信端点での光信号の品質値を測定し、その測定した光信号の品質値の時間経過による時系列変化関係が、故障発生時刻を予測した時点の時系列変化関係からずれた場合、または、測定した光信号の品質値が前記第1閾値以上に回復した場合には、前記予兆検知部位での故障の予測および前記第2時刻での故障発生時刻の予測をキャンセルすることを特徴とする
     請求項2に記載の故障予測装置。
    After predicting the failure occurrence time, the control unit subsequently measures the quality value of the optical signal at the receiving end point of the predetermined optical path, and determines the time-series change relationship of the measured quality value of the optical signal over time. If the failure occurrence time deviates from the time-series change relationship at the predicted time, or if the quality value of the measured optical signal recovers to the first threshold or more, the prediction of the failure at the sign detection part and the The failure prediction device according to claim 2, characterized in that the prediction of the failure occurrence time at the second time is canceled.
  4.  前記制御部は、前記第1時刻よりも後の期間で前記予兆検知部位でのパラメータ測定値を複数回測定し、その測定した前記予兆検知部位でのパラメータ測定値から求めた異常度の時間経過による時系列変化関係をもとに、前記予兆検知部位での異常度が第3閾値未満となると予測される第3時刻を、前記予兆検知部位での故障発生時刻として予測することを特徴とする
     請求項1に記載の故障予測装置。
    The control unit measures the parameter measurement value at the sign detection site multiple times in a period after the first time, and determines the degree of abnormality over time determined from the measured parameter measurement value at the sign detection site. A third time at which the degree of abnormality at the sign detection part is predicted to be less than a third threshold is predicted as the failure occurrence time at the sign detection part based on the time series change relationship according to The failure prediction device according to claim 1.
  5.  前記制御部は、故障発生時刻を予測した後に、引き続き前記予兆検知部位でのパラメータ測定値を測定し、その測定したパラメータ測定値から求めた異常度の時間経過による時系列変化関係が、故障発生時刻を予測した時点の時系列変化関係からずれた場合には、前記予兆検知部位での故障の予測および前記第3時刻での故障発生時刻の予測をキャンセルすることを特徴とする
     請求項4に記載の故障予測装置。
    After predicting the failure occurrence time, the control unit continues to measure the parameter measurement values at the sign detection site, and determines that the time-series change relationship of the degree of abnormality over time determined from the measured parameter measurement values indicates the failure occurrence time. According to claim 4, when the time deviates from the time-series change relationship at the predicted time, the prediction of the failure at the sign detection part and the prediction of the failure occurrence time at the third time are canceled. The failure prediction device described.
  6.  前記制御部は、前記予兆検知部位での故障の予測および、その故障発生時刻の予測を故障発生時刻よりも前に保守端末に通知し、故障発生時刻よりも後に保守端末から応答されたフィードバック情報により予測の正誤を取得し、取得した予測の正誤をもとに、前記記憶部に記憶されている前記相関関係データと、前記光信号の品質値の時間経過による時系列変化関係と、前記予兆検知部位でのパラメータ測定値から求めた異常度の時間経過による時系列変化関係とを更新することを特徴とする
     請求項2に記載の故障予測装置。
    The control unit notifies a maintenance terminal of a prediction of a failure at the sign detection part and a prediction of the time of failure occurrence before the failure occurrence time, and receives feedback information responded from the maintenance terminal after the failure occurrence time. The correctness of the prediction is obtained, and based on the obtained correctness of the prediction, the correlation data stored in the storage unit, the time-series change relationship over time of the quality value of the optical signal, and the predictive sign are determined. The failure prediction device according to claim 2, wherein the failure prediction device updates a time-series change relationship over time of the degree of abnormality determined from parameter measurements at the detection site.
  7.  故障予測装置は、記憶部と制御部とを有しており、
     前記記憶部には、光伝送システム内の光パスの受信端点で測定された光信号の品質値と、光パスの通過地点で測定された光物理特性パラメータの種別ごとの異常度との相関関係データが記憶されており、
     前記制御部は、
     第1時刻で測定した光信号の品質値が第1閾値未満である所定の光パスを検出したときに、前記第1時刻において所定の光パスの通過地点で測定された前記光物理特性パラメータのパラメータ測定値から前記第1時刻での異常度を求め、
     前記第1時刻での光信号の品質値と、前記第1時刻での異常度との相関関係が、前記記憶部に記憶されている前記相関関係データと一致している場合に、パラメータ測定値の測定地点から求めた予兆検知部位において、前記第1時刻よりも後の時刻に故障の予兆が発生すると予測することを特徴とする
     故障予測方法。
    The failure prediction device has a storage unit and a control unit,
    The storage unit stores the correlation between the quality value of the optical signal measured at the receiving end point of the optical path in the optical transmission system and the degree of abnormality for each type of optical physical property parameter measured at the passing point of the optical path. data is stored,
    The control unit includes:
    When a predetermined optical path in which the quality value of the optical signal measured at the first time is less than the first threshold value is detected, the optical physical characteristic parameter measured at the passing point of the predetermined optical path at the first time is detected. Determining the degree of abnormality at the first time from the parameter measurement value,
    When the correlation between the quality value of the optical signal at the first time and the degree of abnormality at the first time matches the correlation data stored in the storage unit, the parameter measurement value A failure prediction method, comprising predicting that a failure sign will occur at a time later than the first time at a sign detection site determined from a measurement point.
  8.  コンピュータを、請求項1ないし請求項6のいずれか1項に記載の故障予測装置として機能させるための故障予測プログラム。 A failure prediction program for causing a computer to function as the failure prediction device according to any one of claims 1 to 6.
PCT/JP2022/030636 2022-08-10 2022-08-10 Failure prediction device, failure prediction method, and failure prediction program WO2024034082A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/030636 WO2024034082A1 (en) 2022-08-10 2022-08-10 Failure prediction device, failure prediction method, and failure prediction program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/030636 WO2024034082A1 (en) 2022-08-10 2022-08-10 Failure prediction device, failure prediction method, and failure prediction program

Publications (1)

Publication Number Publication Date
WO2024034082A1 true WO2024034082A1 (en) 2024-02-15

Family

ID=89851166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030636 WO2024034082A1 (en) 2022-08-10 2022-08-10 Failure prediction device, failure prediction method, and failure prediction program

Country Status (1)

Country Link
WO (1) WO2024034082A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017085355A (en) * 2015-10-28 2017-05-18 日本電信電話株式会社 Transmission line fault detection method and optical communication system
JP2018007058A (en) * 2016-07-04 2018-01-11 富士通株式会社 Network control device, optical transmission system and fault determination method
JP2021082873A (en) * 2019-11-14 2021-05-27 Necプラットフォームズ株式会社 Predictor monitoring device, predictor monitoring method, and program
WO2021192316A1 (en) * 2020-03-27 2021-09-30 日本電気株式会社 Optical communication system, failure probability estimating device, failure analyzing device, and optical communication system failure analyzing method
JP2022114070A (en) * 2021-01-26 2022-08-05 沖電気工業株式会社 Optical receiver and optical reception level determination method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017085355A (en) * 2015-10-28 2017-05-18 日本電信電話株式会社 Transmission line fault detection method and optical communication system
JP2018007058A (en) * 2016-07-04 2018-01-11 富士通株式会社 Network control device, optical transmission system and fault determination method
JP2021082873A (en) * 2019-11-14 2021-05-27 Necプラットフォームズ株式会社 Predictor monitoring device, predictor monitoring method, and program
WO2021192316A1 (en) * 2020-03-27 2021-09-30 日本電気株式会社 Optical communication system, failure probability estimating device, failure analyzing device, and optical communication system failure analyzing method
JP2022114070A (en) * 2021-01-26 2022-08-05 沖電気工業株式会社 Optical receiver and optical reception level determination method

Similar Documents

Publication Publication Date Title
EP2807767B1 (en) Apparatus and method for optimizing the reconfiguration of an optical network
EP3447966B1 (en) System and method for proactive traffic restoration in a network
JP2010526352A (en) Performance fault management system and method using statistical analysis
US11489715B2 (en) Method and system for assessing network resource failures using passive shared risk resource groups
JP6328765B2 (en) Lifecycle management of failures that occur on optical fibers
JP5994589B2 (en) Optical transmission system and node device
US20220294529A1 (en) Analyzing performance of fibers and fiber connections using long-term historical data
US20090269057A1 (en) Wavelength route selection system and wavelength route selection method
JP2017085355A (en) Transmission line fault detection method and optical communication system
WO2024034082A1 (en) Failure prediction device, failure prediction method, and failure prediction program
CN101771594A (en) Data storage system and data storage method
JP2018007058A (en) Network control device, optical transmission system and fault determination method
CN1972221A (en) A detection method of service reliability and apparatus and circuit planning method
KR102054394B1 (en) Method and system detecting line fault, and network control system
CN107210930A (en) Method and system for from the object assignment performance indicator to network
Tornatore et al. Capacity versus availability trade-offs for availability-based routing
US10784979B2 (en) System and method of providing dark section free transport networks
JP7347678B2 (en) Fault location identification device, fault location identification method, and fault location identification program
US6937821B1 (en) Optical power transient monitor
Delezoide et al. Streamlined Failure Localization Method and Application to Network Health Monitoring
JP2010288084A (en) System and device for supplying clock, network synchronization clock management device, and computer program
JP2012014222A (en) Sensor state determination device
CN101945011B (en) Method and system for evaluating protective performance of multiplexing section
Mezhoudi et al. Integrating optical transport quality, availability, and cost through reliability-based optical network design
WO2023242904A1 (en) Anomalous section inference method, anomalous section inference system, and anomalous section inference device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954998

Country of ref document: EP

Kind code of ref document: A1