WO2024034051A1 - Access point, wireless terminal device, and communication system - Google Patents

Access point, wireless terminal device, and communication system Download PDF

Info

Publication number
WO2024034051A1
WO2024034051A1 PCT/JP2022/030557 JP2022030557W WO2024034051A1 WO 2024034051 A1 WO2024034051 A1 WO 2024034051A1 JP 2022030557 W JP2022030557 W JP 2022030557W WO 2024034051 A1 WO2024034051 A1 WO 2024034051A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
access point
rtwt
terminal device
frame
Prior art date
Application number
PCT/JP2022/030557
Other languages
French (fr)
Japanese (ja)
Inventor
朗 岸田
健悟 永田
裕介 淺井
泰司 鷹取
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/030557 priority Critical patent/WO2024034051A1/en
Publication of WO2024034051A1 publication Critical patent/WO2024034051A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • Embodiments relate to an access point, a wireless terminal device, and a communication system.
  • a wireless LAN Local Area Network
  • a wireless terminal device can access a network via an access point within a communication area.
  • the challenge is to suppress delays in traffic transmitted wirelessly.
  • the access point of the embodiment includes a first wireless signal processing unit and a first management unit.
  • the first management unit uses a first wireless signal processing unit to establish a first link with the first wireless terminal device and a second link with the second wireless terminal device, and Set the service period at the cycle of.
  • the first management unit provides the first wireless terminal device with an opportunity to transmit data within the service period, and suppresses or prohibits the second wireless terminal device from transmitting data, and outside the service period, A transmission suppression period for suppressing or prohibiting data transmission by the first wireless terminal device is set.
  • the access point of the embodiment can suppress delays in traffic transmitted wirelessly.
  • FIG. 1 is a block diagram showing an example of the configuration of a communication system according to the first embodiment.
  • FIG. 2 is a table showing an example of link management information of an access point included in the communication system according to the first embodiment.
  • FIG. 3 is a time chart showing an overview of the rTWT function of the communication system according to the first embodiment.
  • FIG. 4 is a block diagram illustrating an example of the hardware configuration of an access point included in the communication system according to the first embodiment.
  • FIG. 5 is a block diagram illustrating an example of the hardware configuration of a wireless terminal device included in the communication system according to the first embodiment.
  • FIG. 6 is a block diagram illustrating an example of a functional configuration of an access point included in the communication system according to the first embodiment.
  • FIG. 1 is a block diagram showing an example of the configuration of a communication system according to the first embodiment.
  • FIG. 2 is a table showing an example of link management information of an access point included in the communication system according to the first embodiment.
  • FIG. 3 is
  • FIG. 7 is a block diagram illustrating an example of a functional configuration of a wireless terminal device included in the communication system according to the first embodiment.
  • FIG. 8 is a block diagram illustrating an example of a configuration of a channel access function of an access point included in the communication system according to the first embodiment.
  • FIG. 9 is a flowchart illustrating an example of a method for setting up the rTWT function of the communication system according to the first embodiment.
  • FIG. 10 is a schematic diagram showing an example of the format of a beacon frame transmitted by an access point included in the communication system according to the first embodiment.
  • FIG. 11 is a flowchart illustrating an example of a frame exchange method using the rTWT function of the communication system according to the first embodiment.
  • FIG. 12 is a time chart showing a specific example of a frame exchange method using the rTWT function of the communication system according to the first embodiment.
  • FIG. 13 is a schematic diagram showing an example of parameters used to set a transmission suppression period by an access point included in the communication system according to the first embodiment.
  • FIG. 14 is a block diagram illustrating an example of the functional configuration of an access point included in the communication system according to the second embodiment.
  • FIG. 15 is a schematic diagram illustrating an example of the format of a transmission prohibited frame transmitted by an access point included in the communication system according to the second embodiment.
  • FIG. 16 is a flowchart illustrating an example of a frame exchange method using the rTWT function of the communication system according to the second embodiment.
  • FIG. 17 is a time chart showing a specific example of a frame exchange method using the rTWT function of the communication system according to the second embodiment.
  • FIG. 18 is a block diagram illustrating an example of the functional configuration of an access point included in the communication system according to the third embodiment.
  • FIG. 19 is a flowchart illustrating an example of a frame exchange method of the communication system included in the communication system according to the third embodiment.
  • FIG. 20 is a time chart showing a specific example of a frame exchange method using the rTWT function of the communication system according to the third embodiment.
  • FIG. 21 is a block diagram illustrating an example of the functional configuration of an access point included in the communication system according to the fourth embodiment.
  • FIG. 22 is a block diagram illustrating an example of the functional configuration of a wireless terminal device included in the communication system according to the fourth embodiment.
  • FIG. 23 is a flowchart illustrating an example of a frame exchange method using the rTWT function of the communication system according to the fourth embodiment.
  • FIG. 24 is a time chart showing a specific example of a frame exchange method using the rTWT function of the communication system according to the fourth embodiment.
  • FIG. 25 is a block diagram illustrating an example of the functional configuration of a wireless terminal device included in the communication system according to the fifth embodiment.
  • FIG. 26 is a flowchart illustrating an example of a frame exchange method of the communication system according to the fifth embodiment.
  • FIG. 27 is a time chart showing a specific example of the frame exchange method of the communication system according to the fifth embodiment.
  • the communication system 1 according to the first embodiment provides a wireless terminal device that has been assigned a service period in which traffic requiring low delay can be exchanged preferentially. A period is provided outside the period in which traffic transmission is suppressed. Details of the communication system 1 according to the first embodiment will be described below.
  • FIG. 1 is a block diagram showing an example of the configuration of communication system 1 according to the first embodiment.
  • the communication system 1 includes an access point AP and a wireless terminal device WTA.
  • the access point AP is a wireless LAN base station.
  • the access point AP is configured to be able to communicate wirelessly with the wireless terminal device WTA, and is configured to be able to communicate with a server (not shown) on the network NW.
  • the access point AP supports rTWT (restricted-Target Wake Time) function.
  • the rTWT function is a function that allocates a service period in which traffic requiring low delay can be exchanged preferentially to a predetermined wireless terminal device WTA.
  • rTWT service period SP traffic that requires low delay will be referred to as "low delay traffic”.
  • the wireless terminal device WTA is a wireless terminal such as a smartphone or a PC (Personal Computer).
  • the wireless terminal device WTA is configured to be able to communicate with a server on the network NW via the access point AP.
  • the wireless terminal device WTA that supports the rTWT function is referred to as the "EHT (Extremely High Throughput) terminal STA1", and the wireless terminal device WTA that does not support the rTWT function is referred to as the "legacy terminal STA2". call.
  • the IEEE 802.11 standard has a wireless communication function based on the OSI (Open Systems Interconnection) reference model.
  • OSI Open Systems Interconnection
  • wireless communication functions are divided into seven layers (1st layer: physical layer, 2nd layer: data link layer, 3rd layer: network layer, 4th layer: transport layer, 5th layer: session layer, Layer 6: Presentation layer; Layer 7: Application layer).
  • the data link layer includes an LLC (Logical Link Control) sublayer and a MAC (Media Access Control) sublayer.
  • the access point AP manages a plurality of wirelessly connected wireless terminal devices WTA using link management information.
  • FIG. 2 is a table showing an example of link management information of the access point AP according to the first embodiment.
  • the link management information includes, for example, information regarding "link ID”, "link”, “channel ID”, and "rTWT function".
  • the "Link ID” item indicates the identifier of the link associated with the STA function of the access point AP and the wireless terminal device WTA.
  • the link management information records information on the EHT terminal STA1 and the legacy terminal STA2.
  • the "Link” item indicates whether a link has been established with the associated link ID. This example shows that the access point AP has established links with each of the EHT terminal STA1 and the legacy terminal STA2 (FIG. 2: Yes).
  • the "Channel ID” item indicates the identifier of the channel used for the link.
  • a common channel CH1 is assigned to each of the EHT terminal STA1 and the legacy terminal STA2.
  • the "rTWT function" item indicates whether or not the rTWT function is enabled.
  • the rTWT function of the EHT terminal STA1 is enabled (FIG. 2: enabled).
  • the rTWT function of the legacy terminal STA2 is disabled (FIG. 2: disabled).
  • the channel CH1 is shared by the EHT terminal STA1 and the legacy terminal STA2, and the access point AP uses the rTWT function to communicate wirelessly with each of the EHT terminal STA1 and the legacy terminal STA2. The case of communication will be explained.
  • FIG. 3 is a time chart showing an overview of the rTWT function of the communication system 1 according to the first embodiment.
  • the access point AP using the rTWT function sets a constant cycle (hereinafter referred to as a "TWT cycle").
  • FIG. 3 shows consecutive TWT intervals TI ⁇ 1> and TI ⁇ 2> among the TWT periods.
  • Each TWT interval TI corresponds to one TWT period.
  • Each TWT interval TI includes an rTWT service period SP and a period OSP.
  • the period OSP corresponds to a period that does not overlap with the rTWT service period SP, that is, outside the rTWT service period SP (outside the rTWT service period).
  • the start time of the rTWT service period SP will be referred to as "rTWT start time TS.”
  • the rTWT service period SP is determined by the rTWT start time TS and the rTWT duration period TD.
  • the rTWT duration period TD indicates the length of the rTWT service period SP starting from the rTWT start time TS.
  • the wireless terminal device WTA can recognize the time based on the rTWT start time TS and the TWT cycle (TWT interval TI) as the rTWT start time of the next rTWT service period SP. That is, the TWT interval TI corresponds to the interval between rTWT start times TS of adjacent rTWT service periods SP.
  • the access point AP gives a frame exchange opportunity preferentially to the EHT terminal STA1, and sets a transmission suppression period QI to the legacy terminal STA2.
  • a frame exchange opportunity corresponds to an opportunity for traffic (data) to be transmitted by frame exchange.
  • the transmission suppression period QI corresponds to a period in which traffic transmission by the legacy terminal STA2 is suppressed.
  • the transmission suppression period QI overlaps with the rTWT service period SP. Further, the transmission suppression period QI is set to be the same length as the rTWT service period SP or shorter than that.
  • the access point AP can set the rTWT start time TS and rTWT duration TD for each link.
  • the EHT terminal STA1 transmits low-latency traffic based on reception of a trigger frame within the rTWT service period SP.
  • the access point AP may transmit a trigger frame to the EHT terminal STA1 at the rTWT start time TS.
  • the EHT terminal STA1 can preferentially transmit low-latency traffic, and can improve the latency of low-latency traffic.
  • each of the EHT terminal STA1 and the legacy terminal STA2 can obtain a frame exchange opportunity.
  • the rTWT function in the first embodiment further sets a period outside the rTWT service period in which frame exchange by the EHT terminal STA1 is suppressed. Details of this operation will be described later.
  • the TWT period is preferably set in accordance with the transmission period of low-delay traffic of the wireless terminal device WTA.
  • Initial settings for rTWT functionality may be determined in various ways.
  • the initial settings of the rTWT function may use traffic attributes such as traffic occurrence interval and data amount notified from an application that generates low-latency traffic.
  • the access point AP acquires the attributes of the corresponding traffic by notifying the server on the network NW of the type of traffic. Then, the access point AP determines the initial settings of the rTWT function based on the acquired traffic attributes.
  • FIG. 4 is a block diagram showing an example of the hardware configuration of the access point AP included in the communication system 1 according to the first embodiment.
  • the access point AP includes, for example, a CPU (Central Processing Unit) 11, a ROM (Read Only Memory) 12, a RAM (Random Access Memory) 13, a wireless communication module 14, and a wired communication module 15. .
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the CPU 11 is an integrated circuit that can execute various programs, and controls the overall operation of the access point AP.
  • the ROM 12 is a nonvolatile semiconductor memory, and stores programs, control data, etc. for controlling the access point AP.
  • the RAM 13 is, for example, a volatile semiconductor memory, and is used as a work area for the CPU 11.
  • the wireless communication module 14 is a circuit used for transmitting and receiving data using wireless signals, and is configured to be connectable to an antenna.
  • the wired communication module 15 is a circuit used for transmitting and receiving data using wired signals, and is configured to be connectable to the network NW.
  • the access point AP may have other hardware configurations. For example, when the access point AP is wirelessly connected to the network NW, the wired communication module 15 may be omitted from the access point AP.
  • FIG. 5 is a block diagram showing an example of the hardware configuration of the wireless terminal device WTA included in the communication system 1 according to the first embodiment.
  • the wireless terminal device WTA includes, for example, a CPU 21, a ROM 22, a RAM 23, a wireless communication module 24, a display 25, and a storage 26.
  • the CPU 21 is an integrated circuit capable of executing various programs, and controls the overall operation of the wireless terminal device WTA.
  • the ROM 22 is a nonvolatile semiconductor memory, and stores programs, control data, etc. for controlling the wireless terminal device WTA.
  • the RAM 23 is, for example, a volatile semiconductor memory, and is used as a work area for the CPU 21.
  • the wireless communication module 24 is a circuit used for transmitting and receiving data using wireless signals, and is configured to be connectable to an antenna.
  • the display 25 displays, for example, a GUI (Graphical User Interface) corresponding to application software.
  • the display 25 may have a function as an input interface for the wireless terminal device WTA.
  • the storage 26 is a nonvolatile storage device, and stores, for example, system software of the wireless terminal device WTA. Note that the wireless terminal device WTA may have other hardware configurations. For example, when the wireless terminal device WTA is an IoT (Internet of Things) terminal or the like, the display 25 may be omitted from the wireless terminal device
  • FIG. 6 is a block diagram showing an example of the functional configuration of the access point AP included in the communication system 1 according to the first embodiment.
  • the access point AP functions as a computer including, for example, an LLC processing section 110, a data processing section 120, a management section 130, a MAC frame processing section 140, and a wireless signal processing section 150.
  • the LLC processing unit 110 is a functional block that executes processing corresponding to the LLC sublayer of the second layer and the third to seventh layers.
  • the data processing unit 120, the management unit 130, and the MAC frame processing unit 140 are functional blocks that execute processing corresponding to the MAC sublayer of the second layer.
  • the wireless signal processing unit 150 is a functional block that executes processing corresponding to the MAC sublayer of the second layer and the first layer.
  • the LLC processing unit 110 generates an LLC packet by adding, for example, a DSAP (Destination Service Access Point) header, a SSAP (Source Service Access Point) header, etc. to the data received from the network NW.
  • the LLC processing unit 110 then inputs the generated LLC packet to the data processing unit 120. Further, the LLC processing unit 110 extracts data from the LLC packet input from the data processing unit 120. The LLC processing unit 110 then transmits the extracted data to the network NW.
  • DSAP Disposination Service Access Point
  • SSAP Source Service Access Point
  • the data processing unit 120 adds a MAC header to the LLC packet input from the LLC processing unit 110 to generate a MAC frame.
  • the data processing unit 120 then inputs the generated MAC frame to the MAC frame processing unit 140.
  • the data processing unit 120 extracts LLC packets from the MAC frame input from the MAC frame processing unit 140.
  • the data processing unit 120 then inputs the extracted LLC packet to the LLC processing unit 110.
  • a MAC frame containing data is also called a "data frame.”
  • the management unit 130 manages the state of the link between the access point AP and the wireless terminal device WTA. Between the management unit 130 and the MAC frame processing unit 140, MAC frames containing management information regarding links, rTWT functions, etc. are input and output. A MAC frame containing management information is also called a "management frame.”
  • the management unit 130 includes, for example, link management information 131, a link control unit 132, a beacon management unit 133, and a transmission period management unit 134.
  • the link management information 131 includes information regarding the link between the access point AP and the wireless terminal device WTA that is wirelessly connected.
  • the link management information 131 includes, for example, the information shown in FIG. 2. Further, the link management information 131 may include information regarding the settings of the rTWT function, such as the rTWT start time TS and the rTWT duration TD.
  • the link control unit 132 controls the establishment of a link between the access point AP and the wireless terminal device WTA. For example, the link control unit 132 executes an association process and a subsequent authentication process in response to a connection request from the wireless terminal device WTA. The link control unit 132 can control the state of the link established with the wireless terminal device WTA.
  • the beacon management unit 133 manages information transmitted by the access point AP as a beacon. Specifically, the beacon management unit 133 periodically generates a management frame including management information regarding the rTWT function, for example. The beacon management unit 133 then inputs the generated management frame to the MAC frame processing unit 140. That is, the beacon management unit 133 notifies the wireless terminal device WTA of the rTWT start time TS and the rTWT duration TD.
  • the management frame generated by the beacon management unit 133 is also called a "beacon frame.”
  • the transmission period management unit 134 manages the transmission suppression period RP.
  • the transmission suppression period RP corresponds to a period during which frame exchange by the EHT terminal STA1 is suppressed when using the rTWT function.
  • the transmission period management unit 134 sets a transmission suppression period RP after the rTWT service period SP of each TWT interval TI.
  • the MAC frame processing unit 140 inputs the MAC frame input from the data processing unit 120 or the management unit 130 to the radio signal processing unit 150 corresponding to the link associated with the MAC frame. Further, the MAC frame processing section 140 inputs the MAC frame input from the radio signal processing section 150 to the data processing section 120 or the management section 130 depending on the type of the MAC frame. Specifically, the MAC frame processing unit 140 inputs the MAC frame to the data processing unit 120 when the MAC frame is a data frame. The MAC frame processing unit 140 inputs the MAC frame to the management unit 130 when the MAC frame is a management frame.
  • the radio signal processing unit 150 executes carrier sense.
  • Carrier sense is a process for checking channel status. If the channel is busy, the radio signal processing unit 150 continues carrier sensing. When the channel is in an idle state, the radio signal processing unit 150 adds a preamble and the like to the MAC frame input from the MAC frame processing unit 140 to generate a radio frame. Then, the wireless signal processing unit 150 converts the generated wireless frame into a wireless signal (wireless medium), and radiates (transmits) the converted wireless signal via the antenna.
  • the conversion process from a radio frame to a radio signal includes, for example, one of convolutional encoding processing, interleaving processing, subcarrier modulation processing, inverse fast Fourier transform processing, OFDM (Orthogonal Frequency Division Multiplexing) modulation processing, and frequency conversion processing. include.
  • the radio signal processing unit 150 converts a radio signal received via an antenna into a radio frame.
  • the conversion process from a radio signal to a radio frame includes, for example, any one of frequency conversion process, OFDM demodulation process, fast Fourier transform process, subcarrier demodulation process, deinterleaving process, and Viterbi decoding process.
  • the radio signal processing unit 150 extracts a MAC frame from the converted radio frame, and inputs the extracted MAC frame to the MAC frame processing unit 140.
  • the wireless signal processing unit 150 may be referred to as an "STA function".
  • the access point AP may include a plurality of radio signal processing units 150 each handling a different channel CH.
  • FIG. 7 is a block diagram showing an example of the functional configuration of the wireless terminal device WTA included in the communication system 1 according to the first embodiment.
  • the wireless terminal device WTA is a computer including, for example, an application execution unit 200, an LLC processing unit 210, a data processing unit 220, a management unit 230, a MAC frame processing unit 240, and a wireless signal processing unit 250.
  • the application execution unit 200 is a functional block that executes processing corresponding to the seventh layer.
  • the LLC processing unit 210 is a functional block that executes processing corresponding to the LLC sublayer of the second layer and the third to sixth layers.
  • the data processing section 220, the management section 230, and the MAC frame processing section 240 are functional blocks that execute processing corresponding to the MAC sublayer of the second layer.
  • the wireless signal processing unit 250 is a functional block that executes processing corresponding to the MAC sublayer of the second layer and the first layer.
  • the application execution unit 200 executes an application based on data input from the LLC processing unit 210. Further, the application execution unit 200 inputs data to the LLC processing unit 210. For example, the application execution unit 200 can display application information on the display 25. Further, the application execution unit 200 can operate based on the operation of the input interface.
  • the LLC processing unit 210 adds a DSAP header, an SSAP header, etc. to the data input from the application execution unit 200, and generates an LLC packet.
  • the LLC processing unit 210 then inputs the generated LLC packet to the data processing unit 220. Further, the LLC processing unit 210 extracts data from the LLC packet input from the data processing unit 120. The LLC processing unit 210 then inputs the extracted data to the application execution unit 200.
  • the data processing unit 220 adds a MAC header to the LLC packet input from the LLC processing unit 210 to generate a MAC frame.
  • the data processing unit 220 then inputs the generated MAC frame to the MAC frame processing unit 240.
  • the data processing unit 220 extracts LLC packets from the MAC frame input from the MAC frame processing unit 240.
  • the data processing unit 220 then inputs the extracted LLC packet to the LLC processing unit 210.
  • the management unit 230 manages the state of the link between the access point AP and the wireless terminal device WTA. Between the management unit 230 and the MAC frame processing unit 240, MAC frames containing management information regarding links, rTWT functions, etc. are input and output.
  • the management unit 230 includes, for example, link management information 231, a link control unit 232, and a beacon processing unit 233.
  • the link management information 231 includes information regarding the link between the wireless terminal device WTA and the wirelessly connected access point AP.
  • the link management information 231 may also include information regarding the settings of the rTWT function (rTWT start time TS, rTWT duration TD, etc.).
  • the link control unit 232 controls the establishment of a link between the access point AP and the wireless terminal device WTA. For example, the link control unit 232 executes an association process and a subsequent authentication process when transmitting a connection request to the access point AP. The link control unit 232 can control the state of the link established with the access point AP.
  • the beacon processing unit 233 processes information included in the beacon received from the access point AP. Specifically, the beacon processing unit 233 extracts management information regarding the rTWT function from the beacon frame input from the MAC frame processing unit 240. Then, the beacon processing unit 233 associates the rTWT start time TS and the rTWT duration TD among the extracted management information regarding the rTWT function with the link to which the rTWT function is applied, and adds the rTWT function to the link management information 231, for example. Record. In other words, the beacon processing unit 233 extracts the period during which low-latency traffic is transmitted (rTWT service period SP) from the received beacon, and reflects it in the link management information 231. The beacon processing unit 233 may notify the data processing unit 220 of management information regarding the rTWT function.
  • rTWT service period SP the period during which low-latency traffic is transmitted
  • the MAC frame processing unit 240 inputs the MAC frame input from the data processing unit 220 or the management unit 230 to the radio signal processing unit 250 corresponding to the link associated with the MAC frame. Furthermore, the MAC frame processing section 240 inputs the MAC frame input from the radio signal processing section 250 to the data processing section 220, the management section 230, or the radio signal processing section 250, depending on the type of the MAC frame. Specifically, the MAC frame processing unit 240 inputs the MAC frame to the data processing unit 220 when the MAC frame is a data frame. The MAC frame processing unit 240 inputs the MAC frame to the management unit 230 when the MAC frame is a management frame.
  • the MAC frame processing unit 240 inputs the beacon frame to the beacon processing unit 233.
  • the MAC frame processing section 240 outputs corresponding data to the radio signal processing section 250 when the MAC frame is a trigger frame.
  • the trigger frame is a frame used when the access point AP requests the wireless terminal device WTA to transmit traffic.
  • the radio signal processing unit 250 executes carrier sense processing. If the channel is busy, the radio signal processing unit 250 continues carrier sense processing. When the channel is in an idle state, the radio signal processing unit 250 adds a preamble and the like to the MAC frame input from the MAC frame processing unit 240 to generate a radio frame. Then, the wireless signal processing unit 250 converts the generated wireless frame into a wireless signal (wireless medium), and radiates (transmits) the converted wireless signal via the antenna.
  • the conversion process from a radio frame to a radio signal includes, for example, any one of convolutional encoding processing, interleaving processing, subcarrier modulation processing, inverse fast Fourier transform processing, OFDM modulation processing, and frequency conversion processing.
  • the radio signal processing unit 250 converts a radio signal received via an antenna into a radio frame.
  • the conversion process from a radio signal to a radio frame includes, for example, any one of frequency conversion process, OFDM demodulation process, fast Fourier transform process, subcarrier demodulation process, deinterleaving process, and Viterbi decoding process.
  • the radio signal processing unit 250 extracts a MAC frame from the converted radio frame, and inputs the extracted MAC frame to the MAC frame processing unit 240.
  • the wireless signal processing unit 250 may be referred to as "STA function".
  • the wireless terminal device WTA may include a plurality of wireless signal processing units 250 each handling a different channel CH.
  • FIG. 8 is a block diagram illustrating an example of a configuration of a channel access function of the access point AP according to the first embodiment.
  • the wireless signal processing unit 150 of the access point AP includes, for example, a classification unit 151, queues 152A, 152B, 152C, and 152D, carrier sense execution units 153A, 153B, 153C, and 153D, and an internal collision management unit. 154 included.
  • the classification unit 151 classifies the data frame into a plurality of access categories based on the traffic type (TID) included in the MAC header. Examples of the traffic types include “VO (Voice),” “VI (Video),” “BE (Best Effort),” “BK (Background),” and “LL (Low Latency).” Then, the classification unit 151 inputs the data frame to the corresponding queue 152 among the plurality of queues 152A, 152B, 152C, and 152D.
  • TID traffic type
  • the classification unit 151 inputs data frames corresponding to access categories VO, VI, BE, and BK to queues 152A, 152B, 152C, and 152D, respectively. Furthermore, when the MAC frame input from the MAC frame processing unit 140 is a high priority frame such as a trigger frame, the classification unit 151 inputs the high priority frame to the internal collision management unit 154 without going through the queue 152, for example. .
  • Each of the plurality of queues 152A, 152B, 152C, and 152D buffers input data frames.
  • multiple queues 152A, 152B, 152C, and 152D buffer data frames corresponding to access categories VO, VI, BE, and BK, respectively.
  • Each of the plurality of carrier sense execution units 153A, 153B, 153C, and 153D is associated with the plurality of queues 152A, 152B, 152C, and 152D, respectively.
  • Each of the plurality of carrier sense execution units 153A, 153B, 153C, and 153D executes carrier sense based on CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) according to preset access parameters. Access parameters are set for each access category, and are set, for example, so that wireless signal transmission is prioritized in the order of "VO", “VI”, “BE”, and "BK".
  • CSMA/CA Carrier Sense Multiple Access with Collision Avoidance
  • each of the plurality of carrier sense execution units 153A, 153B, 153C, and 153D acquires the right to transmit a data frame and ends carrier sense.
  • each of the plurality of carrier sense execution units 153A, 153B, 153C, and 153D stops acquiring the transmission right and ends carrier sense.
  • the carrier sense execution unit 153 that has acquired the transmission right extracts the data frame from the associated queue 152 and outputs the extracted data frame to the internal collision management unit 154.
  • the internal collision management unit 154 prevents transmission collisions when a plurality of carrier sense execution units 153 acquire transmission rights at the same time. Specifically, when a plurality of data frames are input at the same time, the internal collision management unit 154 outputs a data frame of an access category with a high priority priority. The data frame output from the internal collision management unit 154 is converted into a radio frame and transmitted via an antenna.
  • the radio signal processing unit 150 When a high-priority frame such as a trigger frame is input, the radio signal processing unit 150 performs carrier sensing and transmits a radio signal including the high-priority frame via an antenna. Since carrier sensing is performed on high-priority frames without going through the queue 152, they can be processed with lower delay than other traffic. The radio signal processing unit 150 may temporarily stop carrier sensing of other queues 152 when transmitting a high priority frame. Furthermore, the radio signal processing unit 150 may generate a trigger frame based on the rTWT start time TS notified from the management unit 130.
  • CW Contention Window
  • CWmax Contention Window
  • AIFS Aribitration Inter Frame Space
  • TXOP Transmission Opportunity Limit
  • the contention window is a parameter used to determine the transmission waiting time for collision avoidance.
  • CWmin and CWmax indicate the minimum and maximum values of the contention window, respectively.
  • AIFS Aribitration Inter Frame Space
  • TXOP corresponds to the channel occupancy time.
  • TXOPLimit indicates the upper limit value of TXOP. The shorter the CWmin and CWmax, the easier it is for the queue 152 to obtain the transmission right. The priority of the queue 152 becomes higher as the AIFS becomes smaller.
  • the amount of data transmitted with one transmission right increases as the value of TXOPLimit increases.
  • the configuration regarding the channel access function of the wireless terminal device WTA is equivalent to the configuration regarding the channel access function of the access point AP.
  • this specification exemplifies a case where the channel access function is implemented in the radio signal processing unit 150, the channel access function may also be implemented in the MAC frame processing unit 140.
  • the access parameters may be called EDCA (Enhanced Distributed Channel Access) parameters.
  • FIG. 9 is a flowchart showing an example of a method for setting up the rTWT function of the communication system 1 according to the first embodiment. A method for setting up the rTWT function will be described below with reference to FIG.
  • the setup of the rTWT function is executed, for example, by transmitting and receiving management frames between the management unit 130 of the access point AP and the management unit 230 of the wireless terminal device WTA.
  • the EHT terminal STA1 notifies the access point AP of low-latency traffic transmission (S1). At this time, the EHT terminal STA1 also transmits, for example, information regarding the low-delay traffic generation cycle to the access point AP.
  • the access point AP When the access point AP is notified of the transmission of low-latency traffic from the EHT terminal STA1, it sets up the rTWT function (S2). In setting up the rTWT function, the management unit 130 sets the rTWT start time TS, rTWT duration TD, and TWT cycle in accordance with the generation cycle of low-latency traffic, for example.
  • the access point AP may obtain the low-latency traffic generation cycle using any method. For example, the access point AP may obtain information such as a data generation cycle set for an application that generates low-latency traffic from the wireless terminal device WTA, and use the information to set up the rTWT function.
  • the access point AP updates the link management information 131 based on the established rTWT function setting (S3).
  • the access point AP When the update of the link management information 131 is completed, the access point AP notifies the wireless terminal device WTA that the setup of the rTWT function is completed (S4). At this time, the access point AP also transmits the rTWT function settings (for example, rTWT service period SP, etc.) to the wireless terminal device WTA.
  • the rTWT function settings for example, rTWT service period SP, etc.
  • the wireless terminal device WTA When the wireless terminal device WTA receives a notification that the setup of the rTWT function is completed from the access point AP, it updates the link management information 231 based on the notified setting of the rTWT function (S5). As a result, the link management information is updated in both the access point AP and the wireless terminal device WTA, and the setup of the rTWT function is completed. Thereafter, the access point AP and the wireless terminal device WTA can perform data communication using the rTWT function.
  • the setup of the rTWT function may be performed at the time of link establishment.
  • the change in the settings of the rTWT function may be executed by the access point AP or by the wireless terminal device WTA.
  • the timing at which the access point AP acquires information on the wireless terminal device WTA (low-latency traffic generation cycle, etc.) used for setting the rTWT function is not particularly limited.
  • the access point AP may notify the completion of setup of the rTWT function using a beacon. That is, the access point AP may notify the wireless terminal device WTA of the rTWT function setting using a beacon.
  • FIG. 10 is a schematic diagram showing an example of the format of a beacon frame transmitted by the access point AP included in the communication system 1 according to the first embodiment.
  • the beacon frame includes, for example, an rTWT start time TS, an rTWT duration TD, and a transmission suppression period QI as management information used in the rTWT function.
  • the beacon processing unit 233 of each wireless terminal device WTA Upon receiving the beacon, the beacon processing unit 233 of each wireless terminal device WTA acquires the rTWT start time TS, rTWT duration TD, and transmission suppression period QI, and notifies the wireless signal processing unit 250 of the information. Thereby, the access point AP can voluntarily suppress the transmission of uplink data within the rTWT service period SP to the legacy terminal STA2 included in the plurality of wireless terminal devices WTA that are wirelessly connected.
  • the wireless terminal device WTA to which communication is not assigned within the configured rTWT service period SP that is, the EHT terminal STA1 that is not a member of the rTWT service period SP concerned
  • the beacon It is possible to suppress spontaneous transmission within the rTWT service period SP.
  • the information indicating the transmission suppression period QI included in the beacon frame may be omitted when the rTWT continuation period TD and the transmission suppression period QI are the same length.
  • the wireless terminal device WTA sets the period indicated by the input rTWT start time TS and rTWT duration TD as the transmission suppression period QI. That is, the radio signal processing unit 250 of the wireless terminal device WTA may suppress the transmission of traffic during the rTWT service period SP based on the rTWT start time TS and the rTWT duration period TD.
  • the beacon frame may store management information used in the rTWT function for each identifier AID of the wireless terminal device WTA.
  • the wireless terminal device WTA can refer to the AID and determine whether the management information is for its own station.
  • the access point AP may manage management information used in the rTWT function for each group of wireless terminal devices WTA. In this case, the access point AP transmits a beacon that includes information on a set of an identifier of a group of wireless terminal devices WTA that share management information and an rTWT setting associated with the group.
  • FIG. 11 is a flowchart showing an example of a frame exchange method using the rTWT function of the communication system 1 according to the first embodiment. Below, with reference to FIG. 11, a frame exchange method using the rTWT function of the communication system 1 according to the first embodiment will be described, focusing on one TWT interval TI.
  • the access point AP can record the transmission period (uplink/downlink/bidirectional) used by the EHT terminal STA1 during the rTWT service period SP.
  • the access point AP calculates the period ⁇ (S12).
  • the period ⁇ is calculated, for example, based on the information on the transmission period recorded in S11. A detailed example of the method for calculating the period ⁇ will be described later.
  • a transmission suppression period RP starts, suppressing frame exchange between the access point AP and the EHT terminal STA1 for a period ⁇ , and preventing frame exchange between the access point AP and the legacy terminal STA2. It is executed (S13).
  • the period OSP starts. Then, each of the EHT terminal STA1 and the legacy terminal STA2 executes frame exchange with the access point AP under the same conditions (S14). When the period OSP ends (end), the access point AP completes the series of processes shown in FIG. 11 and starts processing the next rTWT service period SP.
  • FIG. 12 is a time chart showing a specific example of a frame exchange method using the rTWT function of the communication system 1 according to the first embodiment.
  • FIG. 12 shows the respective operations of the access point AP, the EHT terminal STA1, and the legacy terminal STA2 in one TWT interval TI.
  • the rTWT service period SP for example, the rTWT service period SP, the transmission suppression period RP, and the period OSP are arranged in this order.
  • the rTWT service period SP frame exchange is performed between the EHT terminal STA1 and the access point AP. That is, in the rTWT service period SP, the EHT terminal STA1 can transmit low-latency traffic to the access point AP. Further, the transmission suppression period QI is set to overlap with the entire rTWT service period SP. As a result, during the rTWT service period SP, frame exchange between the legacy terminal STA2 and the access point AP is suppressed or prohibited, and frame exchange between the EHT terminal STA1 and the access point AP is prioritized.
  • the length of the transmission suppression period RP corresponds to the period ⁇ calculated by the access point AP.
  • frame exchange between the EHT terminal STA1 and the access point AP is suppressed or prohibited.
  • frame exchange between the legacy terminal STA2 and the access point AP is possible during the transmission suppression period RP.
  • frame exchange between the legacy terminal STA2 and the access point AP is prioritized during the transmission suppression period RP.
  • frame exchanges between the EHT terminal STA1 and the access point AP and frame exchanges between the legacy terminal STA2 and the access point AP are performed in accordance with the transmission right acquisition order according to predetermined access parameters. Ru.
  • frame exchange is executed in the order of legacy terminal STA2 and EHT terminal STA1. It may be changed based on the traffic amount of the device WTA, etc.
  • the transmission suppression period RP may be arranged to divide the period OSP.
  • the period OSP may be associated with a period outside the rTWT service period SP and outside the transmission suppression period RP.
  • FIG. 13 is a schematic diagram showing an example of parameters used to set the transmission suppression period RP by the access point AP included in the communication system 1 according to the first embodiment.
  • Each of (1) to (4) in FIG. 13 corresponds to the conditions used to calculate the period ⁇ , and shows the respective operations of the access point AP and the EHT terminal STA1 during the rTWT service period SP.
  • the access point AP uses any of the first to fourth conditions explained below to determine the length of the rTWT service period SP or the frame exchange with the EHT terminal STA1 performed within the rTWT service period SP.
  • the length of the transmission suppression period RP (period ⁇ ) is set based on the length of the period.
  • the first condition will be explained with reference to (1) in FIG.
  • the first condition does not depend on the length of the period or the number of times frame exchange is performed in the rTWT service period SP.
  • the access point AP calculates a value obtained by multiplying the total time required for frame exchange between the access point AP and the EHT terminal STA1 by a predetermined coefficient ⁇ during the rTWT service period SP using CSMA/CA. is calculated as period ⁇ .
  • the time required for frame exchange between the access point AP and the EHT terminal STA1 using CSMA/CA is the time required for the frame exchange between the access point AP and the EHT terminal STA1. This corresponds to the time t2 from the time to when the EHT terminal STA1 receives a confirmation frame ACK indicating successful reception of the MSDU by the access point AP.
  • MSDU is a unit of data handled by the LLC layer.
  • the third condition will be explained with reference to (3) in FIG.
  • the access point AP exchanges frames between the access point AP and the EHT terminal STA1 using CSMA/CA using RTS (Request To Send) and CTS (Clear To Send) during the rTWT service period SP.
  • the period ⁇ is calculated by multiplying the total time required by a predetermined coefficient ⁇ .
  • the time required for frame exchange between the access point AP and the EHT terminal STA1 using CSMA/CA using RTS and CTS is as follows: corresponds to the time t3 until the end of the transmission of the confirmation frame ACK indicating successful reception of the MSDU associated with the RTS.
  • the access point AP calculates a value obtained by multiplying the total time required for frame exchange between the access point AP and the EHT terminal STA1 by a predetermined coefficient ⁇ during the rTWT service period SP using the trigger frame TF. is calculated as period ⁇ .
  • the time required for frame exchange between the access point AP and the EHT terminal STA1 using the trigger frame TF is as follows. corresponds to the time t4 until the transmission of the confirmation frame ACK indicating successful reception of the MSDU associated with the MSDU is completed.
  • the rTWT function is known as a function that preferentially secures transmission opportunities for low-latency traffic.
  • the access point AP that uses the rTWT function has an rTWT service period SP that allows the EHT terminal STA1 to transmit low-latency traffic, and a transmission suppression that prohibits the transmission of traffic (data) by the legacy terminal STA2 that does not support the rTWT function.
  • the schedule is made so as to overlap with the period QI. If the transmission suppression period QI matches the length of the rTWT service period SP, the legacy terminal STA2 cannot transmit data during the rTWT service period SP even if it holds data in the transmission queue. Furthermore, outside the rTWT service period SP, the EHT terminal STA1 and the legacy terminal STA2 equally perform contention operations for acquiring the channel transmission right, which may cause unfair opportunities to acquire the transmission right.
  • the communication system 1 sets a transmission suppression period RP for suppressing frame transmission for a certain period for the EHT terminal STA1.
  • a transmission opportunity is secured for the legacy terminal STA2 that does not support the rTWT function.
  • the access point AP sets the length of the transmission suppression period RP (period ⁇ ) based on the transmission period (uplink/downlink/bidirectional) used by the subordinate EHT terminal STA1 during the rTWT service period SP. obtain.
  • the legacy terminal STA2 which was unable to communicate during the rTWT service period SP, avoids competition for channel access rights with the EHT terminal STA1, which communicated with priority during the rTWT service period SP. can do.
  • the communication system 1 according to the first embodiment maintains fairness in transmission opportunities between the wireless terminal device WTA that uses the rTWT function and the wireless terminal device WTA that does not use the rTWT function, and reduces traffic by the legacy terminal STA2. It is possible to secure transmission opportunities. Therefore, the communication system 1 according to the first embodiment can suppress delays in traffic transmitted wirelessly in each of the EHT terminal STA1 and the legacy terminal STA2.
  • the transmission suppression period RP in the TWT interval TI may be omitted.
  • the access point AP uses, for example, any of the second to fourth conditions explained using FIG. 13 to calculate the period ⁇ .
  • the access point AP sets a transmission suppression period RPa by transmitting a radio frame instructing prohibition of transmission to the STA1 of the low delay group. Details of the communication system 1 according to the second embodiment will be described below.
  • the hardware configuration of the communication system 1 according to the second embodiment is the same as that of the communication system 1 according to the first embodiment.
  • the communication system 1 according to the second embodiment differs from the communication system 1 according to the first embodiment in the functional configuration of the access point AP.
  • FIG. 14 is a block diagram illustrating an example of a functional configuration of an access point APa included in the communication system 1 according to the second embodiment.
  • the access point APa functions as a computer including, for example, an LLC processing section 110, a data processing section 120, a management section 130a, a MAC frame processing section 140, and a wireless signal processing section 150.
  • the management section 130a includes link management information 131, a link control section 132, a beacon management section 133, a transmission period management section 134, and a transmission prohibited frame generation section 135.
  • the transmission prohibited frame generation unit 135 generates a transmission prohibited frame.
  • the transmission prohibited frame is a high priority frame, for example, a trigger frame.
  • the transmission prohibition frame instructs the wireless terminal device WTA (EHT terminal STA1) that communicated during the rTWT service period SP to prohibit frame exchange for a certain period of time outside the rTWT service period SP. This fixed period is based on, for example, the period ⁇ calculated by the transmission period management unit 134.
  • the transmission prohibited frame generation unit 135 transmits the generated transmission prohibited frame to the EHT terminal STA1 via the MAC frame processing unit 140 and the wireless signal processing unit 150.
  • the transmission period management unit 134 may perform timer management after the transmission prohibited frame is transmitted by the transmission prohibited frame generation unit 135.
  • the other functional configurations of the communication system 1 according to the second embodiment are the same as those of the communication system 1 according to the first embodiment.
  • FIG. 15 is a schematic diagram illustrating an example of the format of a transmission prohibited frame transmitted by the access point APa included in the communication system 1 according to the second embodiment.
  • FIG. 15 illustrates a case where the transmission prohibited frame is a trigger frame.
  • the plurality of fields included in the transmission prohibited frame are, for example, a frame control field, a duration field, an address field (RA and TA), a common information field, a user information list field, a padding field, and an FCS ( Frame Check Sequence) field.
  • the frame control field stores various control information.
  • the frame control field includes information indicating the frame type of the wireless frame.
  • the duration field indicates the scheduled period of time during which the wireless line will be used.
  • the address field indicates the BSSID, source address, destination address, sender terminal address, receiver terminal address, etc.
  • the common information field includes information indicating the trigger frame type and the like.
  • the user information list field includes, for example, "AID” and "RU (Resource Unit) Allocation.”
  • the wireless terminal device WTA recognizes from the AID that the assignment is for its own station. Furthermore, the wireless terminal device WTA recognizes the allocated resources based on the RU allocation. Padding is an area for adjusting the data length of a radio frame.
  • the FCS field stores an error detection code for the MAC header and frame body field, and is used to determine whether or not there is an error in the data frame.
  • the allocation of communication resources (frequency, transmission timing, period) to the specific wireless terminal device WTA is set to "0".
  • communication of the specific wireless terminal device WTA (EHT terminal STA1) is prohibited for a certain period (transmission suppression period RPa).
  • the transmission prohibited frame may be a frame (for example, an EHT action frame or a uniquely defined frame) that can be referenced by the wireless terminal devices WTA of the group that share the rTWT service period SP.
  • FIG. 16 is a flowchart showing an example of a frame exchange method using the rTWT function of the communication system 1 according to the second embodiment. Below, with reference to FIG. 16, a frame exchange method using the rTWT function of the communication system 1 according to the second embodiment will be described, focusing on one TWT interval TI.
  • the access point APa calculates the period ⁇ similarly to the access point AP of the first embodiment (S12).
  • NAV Network Allocation Vector
  • the period OSP starts. Then, similarly to the first embodiment, each of the EHT terminal STA1 and the legacy terminal STA2 executes frame exchange with the access point APa under the same conditions (S14). When the period OSP ends (ends), the access point APa completes the series of processes shown in FIG. 16 and starts the process of the next rTWT service period SP.
  • the transmission timing of the transmission prohibited frame in the process of S21 is, for example, the end time of the rTWT service period SP.
  • the access point APa may have the radio signal processing unit 150 transmit the transmission prohibited frame using the access category with the highest priority.
  • the access point APa may transmit the transmission prohibited frame using a preferential transmission means different from the access category.
  • FIG. 17 is a time chart showing a specific example of a frame exchange method using the rTWT function of the communication system 1 according to the second embodiment.
  • FIG. 17 extracts and displays the rTWT service period SP and transmission suppression period RPa included in one TWT interval TI, and shows the respective operations of the access point APa, the EHT terminal STA1, and the legacy terminal STA2.
  • frame exchange may be performed between the EHT terminal STA1 and the access point APa, similarly to the first embodiment. Furthermore, during the transmission suppression period QI set in the rTWT service period SP, the legacy terminal STA2 defers frame transmission, that is, is on standby.
  • the access point APa transmits a transmission prohibition frame to the EHT terminal STA1. Then, the NAV is set in the EHT terminal STA1 that received the transmission prohibited frame. The period during which the NAV is set for the EHT terminal STA1 corresponds to the transmission suppression period RPa. Then, during the transmission suppression period RPa, the legacy terminal STA2 may exchange frames with the access point APa. Thereby, during the transmission suppression period RPa, priority is given to frame exchange between the legacy terminal STA2 and the access point APa.
  • Other operations of the communication system 1 according to the second embodiment are the same as those of the communication system 1 according to the first embodiment.
  • the communication system 1 according to the second embodiment has a transmission suppression period RPa in which frame exchange by the EHT terminal STA1 is suppressed based on the transmission prohibited frame. Set.
  • the communication system 1 according to the second embodiment can maintain fairness in transmission opportunities between the wireless terminal device WTA that uses the rTWT function and the wireless terminal device WTA that does not use the rTWT function. Therefore, similarly to the first embodiment, the communication system 1 according to the second embodiment can suppress delays in traffic transmitted wirelessly in each of the EHT terminal STA1 and the legacy terminal STA2.
  • the EHT terminal STA1 uses the RTS (Request To Send)/CTS (Clear To Send) procedure, and the access point AP responds to the RTS of the EHT terminal STA1.
  • the transmission suppression period RPb is set by providing a period during which the response is omitted.
  • the hardware configuration of the communication system 1 according to the third embodiment is the same as the communication system 1 according to the first embodiment.
  • the communication system 1 according to the third embodiment differs from the communication system 1 according to the first embodiment in the functional configuration of the access point AP.
  • FIG. 18 is a block diagram showing an example of the functional configuration of the access point APb included in the communication system 1 according to the third embodiment.
  • the access point APb functions as a computer including, for example, an LLC processing section 110, a data processing section 120, a management section 130b, a MAC frame processing section 140, and a wireless signal processing section 150.
  • the management section 130b includes link management information 131, a link control section 132, a beacon management section 133, a transmission period management section 134, and a transmission prohibited terminal determination section 136.
  • the transmission prohibited terminal determination unit 136 checks the type of the wireless terminal device WTA that transmitted the RTS received by the access point APb during the transmission suppression period RPb notified by the transmission period management unit 134. Then, when the transmission prohibited terminal determination unit 136 receives the RTS transmitted by the EHT terminal STA1, it omits the CTS response to the EHT terminal STA1. On the other hand, when receiving the RTS transmitted by the legacy terminal STA2, the transmission-prohibited terminal determination unit 136 causes the CTS for the legacy terminal STA2 to be transmitted via the MAC frame processing unit 140 and the radio signal processing unit 150.
  • the management unit 130b uses RTS/CTS to transmit uplink data during the transmission suppression period RPb following the rTWT service period SP to the wireless terminal device WTA (EHT terminal STA1) that communicated during the rTWT service period SP. may be required to be used.
  • the transmission prohibited terminal determining unit 136 may return a CTS to the RTS of the EHT terminal STA1 and permit the EHT terminal STA1 to communicate if there is sufficient communication resources during the transmission suppression period RPb.
  • the RTS/CTS procedure is used only for the wireless terminal device WTA (EHT terminal STA1) that communicated in the rTWT service period SP, and the legacy terminal STA2 uses the RTS/CTS procedure. It is also possible to communicate with the access point APb without using any means.
  • the other functional configurations of the communication system 1 according to the third embodiment are the same as those of the communication system 1 according to the first embodiment.
  • FIG. 19 is a flowchart showing an example of a frame exchange method using the rTWT function of the communication system 1 according to the third embodiment. Below, with reference to FIG. 19, a frame exchange method using the rTWT function of the communication system 1 according to the first embodiment will be described, focusing on one TWT interval TI.
  • the access point APb calculates the period ⁇ similarly to the access point AP of the first embodiment (S12).
  • a transmission suppression period RPb starts. Then, during the period ⁇ , the EHT terminal STA1 uses the RTS/CTS procedure, and the access point APb executes frame exchange with the legacy terminal STA2 with a setting that does not return CTS in response to the RTS of the EHT terminal STA1 (S31 ).
  • the period OSP starts. Then, similarly to the access point AP of the first embodiment, each of the EHT terminal STA1 and the legacy terminal STA2 executes frame exchange with the access point APb under the same conditions (S14).
  • the access point APb completes the series of processes shown in FIG. 19 and starts the process of the next rTWT service period SP.
  • FIG. 20 is a time chart showing a specific example of a frame exchange method using the rTWT function of the communication system 1 according to the third embodiment.
  • FIG. 20 extracts and displays the rTWT service period SP and transmission suppression period RPb included in one TWT interval TI, and shows the respective operations of the access point APb, the EHT terminal STA1, and the legacy terminal STA2.
  • frame exchange may be performed between the EHT terminal STA1 and the access point APb, similar to the first embodiment. Furthermore, during the transmission suppression period QI set in the rTWT service period SP, the legacy terminal STA2 defers frame transmission, that is, is on standby.
  • the access point APb sets a transmission suppression period RPb.
  • the EHT terminal STA1 may transmit RTS to the access point APb according to predetermined access parameters.
  • the access point APb ignores the RTS from the EHT terminal STA1 and omits the transmission of the CTS to the EHT terminal STA1 during the transmission suppression period RPb.
  • the access point APb transmits a CTS in response to the RTS from the legacy terminal STA2 during the transmission suppression period RPb. Then, the legacy terminal STA2 that received the CTS transmits data (MSDU) to the access point APb.
  • MSDU data
  • the legacy terminal STA2 can exchange frames with the access point APb. Therefore, during the transmission suppression period RPb, priority is given to frame exchange between the legacy terminal STA2 and the access point APb.
  • the legacy terminal STA2 may communicate with the access point APb using means other than the RTS/CTS procedure during the transmission suppression period RPb.
  • the legacy terminal STA2 may use the method described using FIGS. 12 and 17 to exchange frames with the access point APb during the transmission suppression period RPb.
  • Other operations of the communication system 1 according to the third embodiment are the same as those of the communication system 1 according to the first embodiment.
  • the access point APb determines the wireless terminal device WTA with which the frame is to be exchanged, so that the EHT terminal A transmission suppression period RPb is set to suppress frame exchange by STA1.
  • the communication system 1 according to the third embodiment can maintain fairness in transmission opportunities with the wireless terminal device WTA that does not use the rTWT function. Therefore, similarly to the first embodiment, the communication system 1 according to the third embodiment can suppress delays in traffic transmitted wirelessly in each of the EHT terminal STA1 and the legacy terminal STA2.
  • a CTS reply to the RTS transmitted from the EHT terminal STA1 that executed frame exchange during the rTWT service period SP may be permitted.
  • the response frequency of CTS to RTS during the transmission suppression period RPb may be set lower in the EHT terminal STA1 than in the legacy terminal STA2.
  • the EHT terminal STA1 transmits uplink data by using access parameters with a low priority for transmitting uplink data during the period notified from the access point AP.
  • Set a suppression period RPc Details of the communication system 1 according to the fourth embodiment will be described below.
  • the hardware configuration of the communication system 1 according to the fourth embodiment is the same as the communication system 1 according to the first embodiment.
  • the communication system 1 according to the fourth embodiment is different from the communication system 1 according to the first embodiment in the functional configurations of the access point AP and the wireless terminal device WTA.
  • FIG. 21 is a block diagram showing an example of the functional configuration of the access point APc included in the communication system 1 according to the fourth embodiment.
  • the access point APc functions as a computer including, for example, an LLC processing section 110, a data processing section 120, a management section 130c, a MAC frame processing section 140, and a wireless signal processing section 150.
  • the management section 130c includes link management information 131, a link control section 132, a beacon management section 133, a transmission period management section 134, and an rTWT setting notification section 137.
  • the rTWT setting notification unit 137 manages parameters to be set in the EHT terminal STA1 during the transmission suppression period RPc. Then, the rTWT setting notification unit 137 notifies the EHT terminal STA1 of the parameters using a predetermined method. This predetermined method may be to generate a control frame including parameters and transmit it to the EHT terminal STA1, or may cause the beacon management unit 133 to transmit a beacon including the parameters.
  • This parameter is a parameter arbitrarily determined by the access point APc, and is, for example, an access parameter such as AIFS or CW for determining a backoff value.
  • the access parameters applied to the EHT terminal STA1 are, for example, conditions that are more disadvantageous than the wireless terminal device WTA with which it is not communicating during the rTWT service period SP, and the access parameters applied to the EHT terminal STA1 are The access parameters are set to have lower priority than the access parameters set in .
  • FIG. 22 is a block diagram showing an example of the functional configuration of the wireless terminal device WTAa included in the communication system 1 according to the fourth embodiment.
  • the wireless terminal device WTAa is a computer including, for example, an application execution unit 200, an LLC processing unit 210, a data processing unit 220, a management unit 230a, a MAC frame processing unit 240, and a wireless signal processing unit 250.
  • the management unit 230a includes, for example, link management information 231, a link control unit 232a, a beacon processing unit 233, and a transmission period management unit 234.
  • the transmission period management unit 234 manages information on the transmission suppression period RPc notified from the access point APc and the access parameters of the EHT terminal STA1 applied during the transmission suppression period RPc.
  • the transmission period management unit 234 instructs the link control unit 232a to change the access parameters during the transmission suppression period RPc based on the management information of the rTWT function recorded in the link management information 231.
  • the link control unit 232a changes the access parameters during the transmission suppression period RPc based on instructions from the transmission period management unit 234.
  • the transmission period management section 234 causes the link control section 232a to change the parameters for acquiring the channel transmission right, based on the information on the transmission suppression period RPc notified from the access point APc.
  • the other functional configurations of the communication system 1 according to the fourth embodiment are the same as those of the communication system 1 according to the first embodiment.
  • FIG. 23 is a flowchart showing an example of a frame exchange method using the rTWT function of the communication system according to the fourth embodiment. Below, with reference to FIG. 23, a frame exchange method using the rTWT function of the communication system 1 according to the fourth embodiment will be described, focusing on one TWT interval TI.
  • the access point APc calculates the period ⁇ similarly to the access point AP of the first embodiment (S12).
  • a transmission suppression period RPc starts. Then, during the period ⁇ , frames are exchanged with each of the EHT terminal STA1 and the legacy terminal STA2 with the access parameter of the EHT terminal STA1 set to have lower priority than that of the legacy terminal STA2 (S41). That is, during the transmission suppression period RPc, access parameters that are more advantageous to the legacy terminal STA2 that has not performed frame exchange are applied to the EHT terminal STA1 that has performed frame exchange during the rTWT service period SP. Therefore, during the transmission suppression period RPc, the legacy terminal STA2 becomes easier to acquire the channel transmission right than the EHT terminal STA1 with which it communicated during the rTWT service period SP. Note that in the process of S41, the access point APc may set the access parameters of the EHT terminal STA1 that did not perform frame exchange in the immediately preceding rTWT service period SP to the same priority level as the legacy terminal STA2.
  • the period OSP starts. Then, similarly to the access point AP of the first embodiment, each of the EHT terminal STA1 and the legacy terminal STA2 executes frame exchange with the access point APc under the same conditions (S14).
  • the access point APc completes the series of processes shown in FIG. 23 and starts the process of the next rTWT service period SP.
  • the access point APc may notify the EHT terminal STA1 of the access parameters temporarily applied during the transmission suppression period RPc by sequentially transmitting control frames.
  • the access parameters temporarily applied during the transmission suppression period RPc may be notified to the EHT terminal STA1 at the time of setting up the rTWT function (for example, the process of S7 in FIG. 9). That is, the access point APc may transmit a frame including access parameters temporarily applied during the transmission suppression period RPc to the EHT terminal STA1 before the start of the transmission suppression period RPc.
  • the EHT terminal STA1 in the fourth embodiment receives the first information including the information of the periodic rTWT service period SP from the access point APc, and can transmit data in the rTWT service period SP. . Then, the EHT terminal STA1 receives second information including information on the transmission suppression period RPc outside the rTWT service period SP from the access point APc, and can suppress or prohibit data transmission during the transmission suppression period RPc.
  • FIG. 24 is a time chart showing a specific example of a frame exchange method using the rTWT function of the communication system according to the fourth embodiment.
  • FIG. 24 extracts and displays the rTWT service period SP and transmission suppression period RPc included in one TWT interval TI, and shows the respective operations of the access point APc, the EHT terminal STA1, and the legacy terminal STA2.
  • frame exchange may be performed between the EHT terminal STA1 and the access point APc, similar to the access point AP of the first embodiment. Furthermore, during the transmission suppression period QI set in the rTWT service period SP, the legacy terminal STA2 defers frame transmission.
  • a transmission suppression period RPc that has been set in advance between the access point APc and the EHT terminal STA1 starts.
  • the EHT terminal STA1 attempts to acquire the transmission right according to an access parameter that has lower priority than the legacy terminal STA2.
  • the legacy terminal STA2 attempts to acquire the transmission right according to the access parameter with higher priority than the EHT terminal STA1. Therefore, during the transmission suppression period RPc, it becomes easier for the legacy terminal STA2 to acquire the transmission right than the EHT terminal STA1.
  • the legacy terminal STA2 obtains the transmission right first and transmits the MSDU to the access point APc.
  • EHT terminal STA1 is set to NAV while legacy terminal STA2 is performing frame exchange with access point APc.
  • the DIFS + leftover backoff count (C) of the EHT terminal STA1 and the DIFS + backoff count (D) of the legacy terminal STA2 start. .
  • the legacy terminal STA2 since the leftover backoff value of the EHT terminal STA1 is larger than the backoff value of the legacy terminal STA2, the legacy terminal STA2 obtains the transmission right again and transmits the MSDU to the access point APc.
  • EHT terminal STA1 is set to NAV while legacy terminal STA2 is performing frame exchange with access point APc.
  • the DIFS + leftover backoff count (E) of the EHT terminal STA1 and the DIFS + backoff count (F) of the legacy terminal STA2 start. .
  • the EHT terminal STA1 obtains the transmission right and transmits the MSDU to the access point APc.
  • Legacy terminal STA2 is set to NAV while EHT terminal STA1 is performing a frame exchange with access point APc.
  • the frequency of frame exchange between the legacy terminal STA2 and the access point APc is higher than the frequency of frame exchange between the EHT terminal STA1 and the access point APc. That is, during the transmission suppression period RPc, frame exchange of the legacy terminal STA2 is executed with priority. Note that the low priority setting of the access parameter may be realized not by the magnitude of the backoff value but by other parameters.
  • Other operations of the communication system 1 according to the fourth embodiment are the same as those of the communication system 1 according to the first embodiment.
  • the EHT terminal STA1 lowers the priority of the access parameter after the rTWT service period SP, A transmission suppression period RPc is set to suppress frame exchange by the EHT terminal STA1.
  • the communication system 1 according to the fourth embodiment can maintain fairness in transmission opportunities with the wireless terminal device WTA that does not use the rTWT function. Therefore, similarly to the first embodiment, the communication system 1 according to the fourth embodiment can suppress delays in traffic transmitted wirelessly in each of the EHT terminal STA1 and the legacy terminal STA2.
  • the access parameters (EDCA parameters) are set to low priority in order to reduce the transmission frequency of the EHT terminal STA1 during the transmission suppression period RPc, but the present invention is not limited to this.
  • the access parameters parameters arbitrarily determined by the access point APc may be used.
  • the EHT terminal STA1 can communicate with a lower priority setting than the legacy terminal STA2 based on parameters arbitrarily determined by the access point APc during the transmission suppression period RPc.
  • the communication system 1 according to the fifth embodiment sets a transmission suppression period RPd by prohibiting the EHT terminal STA1 from exchanging frames during the period notified from the access point AP. Details of the communication system 1 according to the fifth embodiment will be described below.
  • the hardware configuration of the communication system 1 according to the fifth embodiment is the same as the communication system 1 according to the fourth embodiment.
  • the communication system 1 according to the fifth embodiment differs from the communication system 1 according to the fourth embodiment in the functional configuration of the wireless terminal device WTA.
  • FIG. 25 is a block diagram illustrating an example of the functional configuration of the wireless terminal device WTAb included in the communication system 1 according to the fifth embodiment.
  • the wireless terminal device WTAb is a computer including, for example, an application execution unit 200, an LLC processing unit 210, a data processing unit 220, a management unit 230b, a MAC frame processing unit 240, and a wireless signal processing unit 250.
  • the management unit 230b includes, for example, link management information 231, a link control unit 232b, a beacon processing unit 233, and a transmission period management unit 234a.
  • the transmission period management unit 234a manages information on the transmission suppression period RPd notified from the access point APc.
  • the transmission period management section 234a notifies the link control section 232b of the transmission suppression period RPd based on the management information of the rTWT function recorded in the link management information 231.
  • the link control unit 232b suppresses (prohibits) frame exchange during the transmission suppression period RPd of the EHT terminal STA1 based on instructions from the transmission period management unit 234a.
  • the transmission period management section 234a may perform timer management of the operation of the transmission suppression period RPd by the link control section 232b.
  • the other functional configurations of the communication system 1 according to the fifth embodiment are the same as those of the communication system 1 according to the fourth embodiment.
  • FIG. 26 is a flowchart showing an example of a frame exchange method using the rTWT function of the communication system 1 according to the fifth embodiment. Below, with reference to FIG. 26, a frame exchange method using the rTWT function of the communication system 1 according to the fifth embodiment will be described, focusing on one TWT interval TI.
  • the access point APc calculates the period ⁇ similarly to the access point AP of the first embodiment (S12).
  • a transmission suppression period RPd starts. Then, during the period ⁇ , the access point APc executes frame exchange with the legacy terminal STA2 while the EHT terminal STA1 suppresses frame exchange based on the information of the transmission suppression period RPd notified from the access point APc. (S51). Note that the access point APc can notify the EHT terminal STA1 of the period ⁇ applied to the transmission suppression period RPd by sequentially transmitting control frames. However, the period ⁇ may be set based on statistical values and notified to the EHT terminal STA1 at the time of setting up the rTWT function.
  • the period OSP starts. Then, similarly to the first embodiment, each of the EHT terminal STA1 and the legacy terminal STA2 executes frame exchange with the access point APc under the same conditions (S14). When the period OSP ends (ends), the access point APc completes the series of processes shown in FIG. 26 and starts the process of the next rTWT service period SP.
  • FIG. 27 is a time chart showing a specific example of a frame exchange method using the rTWT function of the communication system 1 according to the fifth embodiment.
  • FIG. 27 extracts and displays the rTWT service period SP and transmission suppression period RPd included in one TWT interval TI, and shows the respective operations of the access point APc, the EHT terminal STA1, and the legacy terminal STA2.
  • frame exchange may be performed between the EHT terminal STA1 and the access point APc, similar to the first embodiment. Furthermore, during the transmission suppression period QI set in the rTWT service period SP, the legacy terminal STA2 defers frame transmission, that is, is on standby.
  • the EHT terminal STA1 spontaneously enters a transmission suppression state (for example, NAV) based on the transmission suppression period RPd notified in advance from the access point APc.
  • the legacy terminal STA2 may perform frame exchange with the access point APc during the transmission suppression period RPd. Therefore, during the transmission suppression period RPd, priority is given to frame exchange between the legacy terminal STA2 and the access point APc.
  • Other operations of the communication system 1 according to the fifth embodiment are the same as those of the communication system 1 according to the fourth embodiment.
  • the EHT terminal STA1 voluntarily suppresses frame exchange after the rTWT service period SP. , sets the transmission suppression period RPd.
  • the communication system 1 according to the fifth embodiment can maintain fairness in transmission opportunities between the wireless terminal device WTA that uses the rTWT function and the wireless terminal device WTA that does not use the rTWT function. Therefore, similarly to the first embodiment, the communication system 1 according to the fifth embodiment can suppress delays in traffic transmitted wirelessly in each of the EHT terminal STA1 and the legacy terminal STA2.
  • the access point AP calculates the period ⁇ of the transmission suppression period RP based on the communication performance within the rTWT service period SP in one period of the TWT period (TWT interval TI). However, it is not limited to this.
  • the access point AP may calculate the period ⁇ based on statistical values of communication results of a plurality of rTWT service periods SP.
  • the case where the transmission suppression period RP is set immediately after the rTWT service period SP is illustrated, but the rTWT service period SP and the transmission suppression period RP may be separated.
  • the transmission suppression period RP is set after the rTWT service period SP.
  • the access point AP may establish multi-links with the wireless terminal device WTA using multiple channels.
  • Each of the access point AP and the wireless terminal device WTA may include a plurality of wireless signal processing units (STA functions) each corresponding to a plurality of channels.
  • STA functions wireless signal processing units
  • a multi-link association request and a multi-link association process are executed using one of the multiple STA functions instead of the processes of S3 and S4 shown in FIG. 9, respectively.
  • authentication and association processing of other links making up the multi-link may be performed using one link that is first established with the access point AP.
  • the communication system 1 can dynamically determine on which link frame exchange will be performed every rTWT service period SP.
  • one or more STA functions can be assigned to one traffic type.
  • the association between traffic and STA functions is set, for example, so that the amount of traffic (amount of data) is equalized among a plurality of links forming a multilink.
  • the present invention is not limited to this, and traffic of similar types (priority/non-priority, etc.) may be collected on a specific link forming a multi-link.
  • the CPU 11 included in the access point AP and the CPU 21 included in the wireless terminal device WTA may be other circuits.
  • each of the access point AP and the wireless terminal device WTA may include an MPU (Micro Processing Unit) instead of the CPU.
  • MPU Micro Processing Unit
  • Each of the processes described in the embodiments may be implemented by dedicated hardware.
  • the respective processes of the access point AP and the wireless terminal device WTA may include a mixture of processes executed by software and processes executed by hardware, or may include only one of them.
  • the set of data processing unit 120, management unit 130, and MAC frame processing unit 140 included in the access point AP may be called a “link management unit”.
  • the set of data processing unit 220, management unit 230, and MAC frame processing unit 240 included in the wireless terminal device WTA may be referred to as a “link management unit”.
  • the flowchart used to explain the operation is just an example.
  • the order of processing may be changed to the extent possible, or other processing may be added.
  • the link setup method described in the first embodiment is just an example.
  • the format of the radio frame described in the first embodiment is just an example. In the information communication system 1, other formats may be used as long as they can perform the operations described in the embodiments.
  • a wireless communication standard different from the IEEE802.11 standard may be used for wireless communication between the access point AP and the wireless terminal device WTA.
  • the present invention is not limited to the above-described embodiments, and can be variously modified at the implementation stage without departing from the gist thereof.
  • each embodiment may be implemented in combination as appropriate, and in that case, the combined effect can be obtained.
  • the embodiments described above include various inventions, and various inventions can be extracted by combinations selected from the plurality of disclosed constituent features. For example, if a problem can be solved and an effect can be obtained even if some constituent features are deleted from all the constituent features shown in the embodiment, the configuration from which these constituent features are deleted can be extracted as an invention.

Abstract

An access point according to an embodiment of the present invention comprises a first wireless signal processing unit and a first management unit. The first management unit uses the first wireless signal processing unit to establish a first link to the first wireless terminal device and a second link to the second wireless terminal device and sets a service period at a first cycle. The first management unit sets a transmission suppression period for providing a data transmission opportunity to the first wireless terminal device and suppressing or prohibiting data transmission by the second wireless terminal device in the service period and suppressing or prohibiting data transmission by the first wireless terminal device outside of the service period.

Description

アクセスポイント、無線端末装置、及び通信システムAccess points, wireless terminal devices, and communication systems
 実施形態は、アクセスポイント、無線端末装置、及び通信システムに関する。 Embodiments relate to an access point, a wireless terminal device, and a communication system.
 基地局と無線端末装置との間を無線で接続する通信システムとして、無線LAN(Local Area Network)が知られている。無線端末装置は、無線LANを用いることによって、通信領域内のアクセスポイントを介してネットワークにアクセスすることができる。 A wireless LAN (Local Area Network) is known as a communication system that wirelessly connects a base station and a wireless terminal device. By using a wireless LAN, a wireless terminal device can access a network via an access point within a communication area.
 課題は、無線で送信されるトラヒックの遅延を抑制すること。 The challenge is to suppress delays in traffic transmitted wirelessly.
 実施形態のアクセスポイントは、第1の無線信号処理部と、第1のマネジメント部とを含む。第1のマネジメント部は、第1の無線信号処理部を用いて第1の無線端末装置との第1のリンクと前記第2の無線端末装置との第2のリンクとを確立し、第1の周期でサービス期間を設定する。第1のマネジメント部は、サービス期間内に、第1の無線端末装置にデータの送信機会を提供し、且つ第2の無線端末装置によるデータの送信を抑制又は禁止し、サービス期間外に、前記第1の無線端末装置によるデータの送信を抑制又は禁止する送信抑制期間を設定する。 The access point of the embodiment includes a first wireless signal processing unit and a first management unit. The first management unit uses a first wireless signal processing unit to establish a first link with the first wireless terminal device and a second link with the second wireless terminal device, and Set the service period at the cycle of. The first management unit provides the first wireless terminal device with an opportunity to transmit data within the service period, and suppresses or prohibits the second wireless terminal device from transmitting data, and outside the service period, A transmission suppression period for suppressing or prohibiting data transmission by the first wireless terminal device is set.
 実施形態のアクセスポイントは、無線で送信されるトラヒックの遅延を抑制することができる。 The access point of the embodiment can suppress delays in traffic transmitted wirelessly.
図1は、第1実施形態に係る通信システムの構成の一例を示すブロック図である。FIG. 1 is a block diagram showing an example of the configuration of a communication system according to the first embodiment. 図2は、第1実施形態に係る通信システムが備えるアクセスポイントのリンク管理情報の一例を示すテーブルである。FIG. 2 is a table showing an example of link management information of an access point included in the communication system according to the first embodiment. 図3は、第1実施形態に係る通信システムのrTWT機能の概要を示すタイムチャートである。FIG. 3 is a time chart showing an overview of the rTWT function of the communication system according to the first embodiment. 図4は、第1実施形態に係る通信システムが備えるアクセスポイントのハードウェア構成の一例を示すブロック図である。FIG. 4 is a block diagram illustrating an example of the hardware configuration of an access point included in the communication system according to the first embodiment. 図5は、第1実施形態に係る通信システムが備える無線端末装置のハードウェア構成の一例を示すブロック図である。FIG. 5 is a block diagram illustrating an example of the hardware configuration of a wireless terminal device included in the communication system according to the first embodiment. 図6は、第1実施形態に係る通信システムが備えるアクセスポイントの機能構成の一例を示すブロック図である。FIG. 6 is a block diagram illustrating an example of a functional configuration of an access point included in the communication system according to the first embodiment. 図7は、第1実施形態に係る通信システムが備える無線端末装置の機能構成の一例を示すブロック図である。FIG. 7 is a block diagram illustrating an example of a functional configuration of a wireless terminal device included in the communication system according to the first embodiment. 図8は、第1実施形態に係る通信システムが備えるアクセスポイントのチャネルアクセス機能の構成の一例を示すブロック図である。FIG. 8 is a block diagram illustrating an example of a configuration of a channel access function of an access point included in the communication system according to the first embodiment. 図9は、第1実施形態に係る通信システムのrTWT機能のセットアップ方法の一例を示すフローチャートである。FIG. 9 is a flowchart illustrating an example of a method for setting up the rTWT function of the communication system according to the first embodiment. 図10は、第1実施形態に係る通信システムが備えるアクセスポイントが送信するビーコンフレームのフォーマットの一例を示す概略図である。FIG. 10 is a schematic diagram showing an example of the format of a beacon frame transmitted by an access point included in the communication system according to the first embodiment. 図11は、第1実施形態に係る通信システムのrTWT機能を用いたフレーム交換方法の一例を示すフローチャートである。FIG. 11 is a flowchart illustrating an example of a frame exchange method using the rTWT function of the communication system according to the first embodiment. 図12は、第1実施形態に係る通信システムのrTWT機能を用いたフレーム交換方法の具体例を示すタイムチャートである。FIG. 12 is a time chart showing a specific example of a frame exchange method using the rTWT function of the communication system according to the first embodiment. 図13は、第1実施形態に係る通信システムが備えるアクセスポイントによる送信抑制期間の設定に使用されるパラメータの一例を示す概略図である。FIG. 13 is a schematic diagram showing an example of parameters used to set a transmission suppression period by an access point included in the communication system according to the first embodiment. 図14は、第2実施形態に係る通信システムが備えるアクセスポイントの機能構成の一例を示すブロック図である。FIG. 14 is a block diagram illustrating an example of the functional configuration of an access point included in the communication system according to the second embodiment. 図15は、第2実施形態に係る通信システムが備えるアクセスポイントが送信する送信禁止フレームのフォーマットの一例を示す概略図である。FIG. 15 is a schematic diagram illustrating an example of the format of a transmission prohibited frame transmitted by an access point included in the communication system according to the second embodiment. 図16は、第2実施形態に係る通信システムのrTWT機能を用いたフレーム交換方法の一例を示すフローチャートである。FIG. 16 is a flowchart illustrating an example of a frame exchange method using the rTWT function of the communication system according to the second embodiment. 図17は、第2実施形態に係る通信システムのrTWT機能を用いたフレーム交換方法の具体例を示すタイムチャートである。FIG. 17 is a time chart showing a specific example of a frame exchange method using the rTWT function of the communication system according to the second embodiment. 図18は、第3実施形態に係る通信システムが備えるアクセスポイントの機能構成の一例を示すブロック図である。FIG. 18 is a block diagram illustrating an example of the functional configuration of an access point included in the communication system according to the third embodiment. 図19は、第3実施形態に係る通信システムが備える通信システムのフレーム交換方法の一例を示すフローチャートである。FIG. 19 is a flowchart illustrating an example of a frame exchange method of the communication system included in the communication system according to the third embodiment. 図20は、第3実施形態に係る通信システムのrTWT機能を用いたフレーム交換方法の具体例を示すタイムチャートである。FIG. 20 is a time chart showing a specific example of a frame exchange method using the rTWT function of the communication system according to the third embodiment. 図21は、第4実施形態に係る通信システムが備えるアクセスポイントの機能構成の一例を示すブロック図である。FIG. 21 is a block diagram illustrating an example of the functional configuration of an access point included in the communication system according to the fourth embodiment. 図22は、第4実施形態に係る通信システムが備える無線端末装置の機能構成の一例を示すブロック図である。FIG. 22 is a block diagram illustrating an example of the functional configuration of a wireless terminal device included in the communication system according to the fourth embodiment. 図23は、第4実施形態に係る通信システムのrTWT機能を用いたフレーム交換方法の一例を示すフローチャートである。FIG. 23 is a flowchart illustrating an example of a frame exchange method using the rTWT function of the communication system according to the fourth embodiment. 図24は、第4実施形態に係る通信システムのrTWT機能を用いたフレーム交換方法の具体例を示すタイムチャートである。FIG. 24 is a time chart showing a specific example of a frame exchange method using the rTWT function of the communication system according to the fourth embodiment. 図25は、第5実施形態に係る通信システムが備える無線端末装置の機能構成の一例を示すブロック図である。FIG. 25 is a block diagram illustrating an example of the functional configuration of a wireless terminal device included in the communication system according to the fifth embodiment. 図26は、第5実施形態に係る通信システムのフレーム交換方法の一例を示すフローチャートである。FIG. 26 is a flowchart illustrating an example of a frame exchange method of the communication system according to the fifth embodiment. 図27は、第5実施形態に係る通信システムのフレーム交換方法の具体例を示すタイムチャートである。FIG. 27 is a time chart showing a specific example of the frame exchange method of the communication system according to the fifth embodiment.
 以下に、図面を参照して各実施形態について説明する。各実施形態は、発明の技術的思想を具体化するための装置や方法を例示している。図面は、模式的又は概念的なものである。以下の説明において、同一の機能及び構成を有する構成要素については、共通の参照符号が付加されている。 Each embodiment will be described below with reference to the drawings. Each embodiment exemplifies an apparatus or method for embodying the technical idea of the invention. The drawings may be schematic or conceptual. In the following description, common reference numerals are added to components having the same function and configuration.
 <1>第1実施形態
 第1実施形態に係る通信システム1は、低遅延が要求されたトラヒックを優先的に交換することが可能なサービス期間が割り当てられた無線端末装置に対して、当該サービス期間の期間外にトラヒックの送信を抑制する期間を設ける。以下に、第1実施形態に係る通信システム1の詳細について説明する。
<1> First Embodiment The communication system 1 according to the first embodiment provides a wireless terminal device that has been assigned a service period in which traffic requiring low delay can be exchanged preferentially. A period is provided outside the period in which traffic transmission is suppressed. Details of the communication system 1 according to the first embodiment will be described below.
 <1-1>構成
 <1-1-1>通信システム1の全体構成
 図1は、第1実施形態に係る通信システム1の構成の一例を示すブロック図である。図1に示すように、通信システム1は、アクセスポイントAP及び無線端末装置WTAを備える。
<1-1> Configuration <1-1-1> Overall configuration of communication system 1 FIG. 1 is a block diagram showing an example of the configuration of communication system 1 according to the first embodiment. As shown in FIG. 1, the communication system 1 includes an access point AP and a wireless terminal device WTA.
 アクセスポイントAPは、無線LANの基地局である。アクセスポイントAPは、無線端末装置WTAと無線で通信可能に構成され、且つ、ネットワークNW上のサーバー(図示せず)と通信可能に構成される。アクセスポイントAPは、rTWT(restricted-Target Wake Time)機能をサポートしている。rTWT機能は、所定の無線端末装置WTAに対して、低遅延が要求されているトラヒックを優先的に交換することが可能なサービス期間を割り当てる機能である。以下では、このようなサービス期間のことを“rTWTサービス期間SP”と呼び、低遅延が要求されているトラヒックのことを“低遅延トラヒック”と呼ぶ。 The access point AP is a wireless LAN base station. The access point AP is configured to be able to communicate wirelessly with the wireless terminal device WTA, and is configured to be able to communicate with a server (not shown) on the network NW. The access point AP supports rTWT (restricted-Target Wake Time) function. The rTWT function is a function that allocates a service period in which traffic requiring low delay can be exchanged preferentially to a predetermined wireless terminal device WTA. Hereinafter, such a service period will be referred to as "rTWT service period SP", and traffic that requires low delay will be referred to as "low delay traffic".
 無線端末装置WTAは、スマートフォンやPC(Personal Computer)などの無線端末である。無線端末装置WTAは、アクセスポイントAPを介して、ネットワークNW上のサーバーと通信可能に構成される。以下では、rTWT機能をサポートしている無線端末装置WTAのことを“EHT(Extremely High Throughput)端末STA1”と呼び、rTWT機能をサポートしていない無線端末装置WTAのことを“レガシー端末STA2”と呼ぶ。 The wireless terminal device WTA is a wireless terminal such as a smartphone or a PC (Personal Computer). The wireless terminal device WTA is configured to be able to communicate with a server on the network NW via the access point AP. Below, the wireless terminal device WTA that supports the rTWT function is referred to as the "EHT (Extremely High Throughput) terminal STA1", and the wireless terminal device WTA that does not support the rTWT function is referred to as the "legacy terminal STA2". call.
 アクセスポイントAPと無線端末装置WTAとの間の通信は、例えば、IEEE802.11規格に準拠する。IEEE802.11規格は、OSI(Open Systems Interconnection)参照モデルに基づく無線通信機能を有する。OSI参照モデルでは、無線通信機能が、7階層(第1層:物理層、第2層:データリンク層、第3層:ネットワーク層、第4層:トランスポート層、第5層:セッション層、第6層:プレゼンテーション層、第7層:アプリケーション層)に分割される。データリンク層は、LLC(Logical Link Control)副層と、MAC(Media Access Control)副層とを含む。 Communication between the access point AP and the wireless terminal device WTA is based on, for example, the IEEE802.11 standard. The IEEE 802.11 standard has a wireless communication function based on the OSI (Open Systems Interconnection) reference model. In the OSI reference model, wireless communication functions are divided into seven layers (1st layer: physical layer, 2nd layer: data link layer, 3rd layer: network layer, 4th layer: transport layer, 5th layer: session layer, Layer 6: Presentation layer; Layer 7: Application layer). The data link layer includes an LLC (Logical Link Control) sublayer and a MAC (Media Access Control) sublayer.
 アクセスポイントAPは、無線接続された複数の無線端末装置WTAを、リンク管理情報を用いて管理する。図2は、第1実施形態に係るアクセスポイントAPのリンク管理情報の一例を示すテーブルである。図2に示すように、リンク管理情報は、例えば、“リンクID”、“リンク”、“チャネルID”、及び“rTWT機能”に関する情報を含む。 The access point AP manages a plurality of wirelessly connected wireless terminal devices WTA using link management information. FIG. 2 is a table showing an example of link management information of the access point AP according to the first embodiment. As shown in FIG. 2, the link management information includes, for example, information regarding "link ID", "link", "channel ID", and "rTWT function".
 “リンクID”の項目は、アクセスポイントAP及び無線端末装置WTAのそれぞれのSTA機能に関連付けられたリンクの識別子を示している。本例では、リンク管理情報が、EHT端末STA1及びレガシー端末STA2の情報を記録している。 The "Link ID" item indicates the identifier of the link associated with the STA function of the access point AP and the wireless terminal device WTA. In this example, the link management information records information on the EHT terminal STA1 and the legacy terminal STA2.
 “リンク”の項目は、関連付けられたリンクIDにおいてリンクが確立されているか否かを示している。本例では、アクセスポイントAPがEHT端末STA1及びレガシー端末STA2のそれぞれとリンクを確立している状態であることを示している(図2:あり)。 The "Link" item indicates whether a link has been established with the associated link ID. This example shows that the access point AP has established links with each of the EHT terminal STA1 and the legacy terminal STA2 (FIG. 2: Yes).
 “チャネルID”の項目は、リンクに使用されているチャネルの識別子を示している。本例では、EHT端末STA1とレガシー端末STA2とのそれぞれに共通のチャネルCH1が割り当てられている。 The "Channel ID" item indicates the identifier of the channel used for the link. In this example, a common channel CH1 is assigned to each of the EHT terminal STA1 and the legacy terminal STA2.
 “rTWT機能”の項目は、rTWT機能が有効であるか否かを示している。本例では、EHT端末STA1のrTWT機能は、有効となっている(図2:有効)。一方で、レガシー端末STA2のrTWT機能は、無効となっている(図2:無効)。 The "rTWT function" item indicates whether or not the rTWT function is enabled. In this example, the rTWT function of the EHT terminal STA1 is enabled (FIG. 2: enabled). On the other hand, the rTWT function of the legacy terminal STA2 is disabled (FIG. 2: disabled).
 本明細書では、以上で説明されたように、EHT端末STA1とレガシー端末STA2とによってチャネルCH1が共有され、アクセスポイントAPがrTWT機能を用いてEHT端末STA1とレガシー端末STA2とのそれぞれとの無線通信を行う場合について説明する。 In this specification, as explained above, the channel CH1 is shared by the EHT terminal STA1 and the legacy terminal STA2, and the access point AP uses the rTWT function to communicate wirelessly with each of the EHT terminal STA1 and the legacy terminal STA2. The case of communication will be explained.
 (rTWT機能の概要)
 図3は、第1実施形態に係る通信システム1のrTWT機能の概要を示すタイムチャートである。図3に示すように、rTWT機能を使用するアクセスポイントAPは、一定の周期(以下では、“TWT周期”と呼ぶ)を設定する。図3は、TWT周期のうち、連続したTWT間隔TI<1>及びTI<2>を表示している。
(Overview of rTWT function)
FIG. 3 is a time chart showing an overview of the rTWT function of the communication system 1 according to the first embodiment. As shown in FIG. 3, the access point AP using the rTWT function sets a constant cycle (hereinafter referred to as a "TWT cycle"). FIG. 3 shows consecutive TWT intervals TI<1> and TI<2> among the TWT periods.
 各TWT間隔TIは、TWT周期の1周期に対応する。各TWT間隔TIは、rTWTサービス期間SP、及び期間OSPを含む。期間OSPは、rTWTサービス期間SPとオーバーラップしない期間、すなわちrTWTサービス期間SPの期間外(rTWTサービス期間外)に対応する。以下では、rTWTサービス期間SPの開始時刻のことを、“rTWT開始時刻TS”と呼ぶ。rTWTサービス期間SPは、rTWT開始時刻TSと、rTWT継続期間TDとによって決定される。rTWT継続期間TDは、rTWT開始時刻TSを起点としたrTWTサービス期間SPの長さを示している。無線端末装置WTAは、rTWT開始時刻TSとTWT周期(TWT間隔TI)とに基づいた時刻を、次のrTWTサービス期間SPのrTWT開始時刻として認識し得る。すなわち、TWT間隔TIは、隣り合うrTWTサービス期間SPのそれぞれのrTWT開始時刻TSの間隔に対応する。 Each TWT interval TI corresponds to one TWT period. Each TWT interval TI includes an rTWT service period SP and a period OSP. The period OSP corresponds to a period that does not overlap with the rTWT service period SP, that is, outside the rTWT service period SP (outside the rTWT service period). Hereinafter, the start time of the rTWT service period SP will be referred to as "rTWT start time TS." The rTWT service period SP is determined by the rTWT start time TS and the rTWT duration period TD. The rTWT duration period TD indicates the length of the rTWT service period SP starting from the rTWT start time TS. The wireless terminal device WTA can recognize the time based on the rTWT start time TS and the TWT cycle (TWT interval TI) as the rTWT start time of the next rTWT service period SP. That is, the TWT interval TI corresponds to the interval between rTWT start times TS of adjacent rTWT service periods SP.
 rTWTサービス期間SPにおいて、アクセスポイントAPは、EHT端末STA1に優先的にフレーム交換機会を与え、レガシー端末STA2に送信抑制期間QIを設定する。フレーム交換機会は、フレーム交換によりトラヒック(データ)が送信される機会に対応する。送信抑制期間QIは、レガシー端末STA2によるトラヒックの送信が抑制される期間に対応する。送信抑制期間QIは、rTWTサービス期間SPとオーバーラップしている。また、送信抑制期間QIは、rTWTサービス期間SPと同じ長さか、それよりも短い期間に設定される。アクセスポイントAPは、rTWT開始時刻TS及びrTWT継続期間TDは、リンク毎に設定することができる。 In the rTWT service period SP, the access point AP gives a frame exchange opportunity preferentially to the EHT terminal STA1, and sets a transmission suppression period QI to the legacy terminal STA2. A frame exchange opportunity corresponds to an opportunity for traffic (data) to be transmitted by frame exchange. The transmission suppression period QI corresponds to a period in which traffic transmission by the legacy terminal STA2 is suppressed. The transmission suppression period QI overlaps with the rTWT service period SP. Further, the transmission suppression period QI is set to be the same length as the rTWT service period SP or shorter than that. The access point AP can set the rTWT start time TS and rTWT duration TD for each link.
 EHT端末STA1は、例えば、rTWTサービス期間SP内のトリガーフレームの受信に基づいて低遅延トラヒックを送信する。アクセスポイントAPは、rTWT開始時刻TSに、トリガーフレームをEHT端末STA1に送信してもよい。rTWTサービス期間SPにおいて、EHT端末STA1は、低遅延トラヒックを優先的に送信することができ、低遅延トラヒックのレイテンシを改善し得る。一方で、期間OSPでは、EHT端末STA1とレガシー端末STA2とのそれぞれが、フレーム交換機会を得ることができる。そして、第1実施形態におけるrTWT機能は、rTWTサービス期間外に、EHT端末STA1によるフレーム交換を抑制する期間をさらに設定する。本動作の詳細については後述する。 For example, the EHT terminal STA1 transmits low-latency traffic based on reception of a trigger frame within the rTWT service period SP. The access point AP may transmit a trigger frame to the EHT terminal STA1 at the rTWT start time TS. In the rTWT service period SP, the EHT terminal STA1 can preferentially transmit low-latency traffic, and can improve the latency of low-latency traffic. On the other hand, in the period OSP, each of the EHT terminal STA1 and the legacy terminal STA2 can obtain a frame exchange opportunity. The rTWT function in the first embodiment further sets a period outside the rTWT service period in which frame exchange by the EHT terminal STA1 is suppressed. Details of this operation will be described later.
 なお、TWT周期は、無線端末装置WTAの低遅延トラヒックの送信周期に合わせて設定されることが好ましい。rTWT機能の初期設定は、様々な方法で決定され得る。例えば、rTWT機能の初期設定には、低遅延トラヒックを生成するアプリケーションから通知されたトラヒックの生起間隔やデータ量などのトラヒックの属性が使用されてもよい。この場合、アクセスポイントAPは、ネットワークNW上のサーバーに対してトラヒックの種別を通知することにより、対応するトラヒックの属性を取得する。そして、アクセスポイントAPは、取得したトラヒックの属性に基づいてrTWT機能の初期設定を決定する。 Note that the TWT period is preferably set in accordance with the transmission period of low-delay traffic of the wireless terminal device WTA. Initial settings for rTWT functionality may be determined in various ways. For example, the initial settings of the rTWT function may use traffic attributes such as traffic occurrence interval and data amount notified from an application that generates low-latency traffic. In this case, the access point AP acquires the attributes of the corresponding traffic by notifying the server on the network NW of the type of traffic. Then, the access point AP determines the initial settings of the rTWT function based on the acquired traffic attributes.
 <1-1-2>通信システム1のハードウェア構成
 (アクセスポイントAPのハードウェア構成)
 図4は、第1実施形態に係る通信システム1が備えるアクセスポイントAPのハードウェア構成の一例を示すブロック図である。図4に示すように、アクセスポイントAPは、例えば、CPU(Central Processing Unit)11、ROM(Read Only Memory)12、RAM(Random Access Memory)13、無線通信モジュール14、及び有線通信モジュール15を備える。
<1-1-2> Hardware configuration of communication system 1 (Hardware configuration of access point AP)
FIG. 4 is a block diagram showing an example of the hardware configuration of the access point AP included in the communication system 1 according to the first embodiment. As shown in FIG. 4, the access point AP includes, for example, a CPU (Central Processing Unit) 11, a ROM (Read Only Memory) 12, a RAM (Random Access Memory) 13, a wireless communication module 14, and a wired communication module 15. .
 CPU11は、様々なプログラムを実行することが可能な集積回路であり、アクセスポイントAPの全体の動作を制御する。ROM12は、不揮発性の半導体メモリであり、アクセスポイントAPを制御するためのプログラムや制御データ等を記憶する。RAM13は、例えば揮発性の半導体メモリであり、CPU11の作業領域として使用される。無線通信モジュール14は、無線信号によるデータの送受信に使用される回路であり、アンテナと接続可能に構成される。有線通信モジュール15は、有線信号によるデータの送受信に使用される回路であり、ネットワークNWに接続可能に構成される。なお、アクセスポイントAPは、その他のハードウェア構成であってもよい。例えば、アクセスポイントAPがネットワークNWと無線接続される場合に、有線通信モジュール15がアクセスポイントAPから省略されてもよい。 The CPU 11 is an integrated circuit that can execute various programs, and controls the overall operation of the access point AP. The ROM 12 is a nonvolatile semiconductor memory, and stores programs, control data, etc. for controlling the access point AP. The RAM 13 is, for example, a volatile semiconductor memory, and is used as a work area for the CPU 11. The wireless communication module 14 is a circuit used for transmitting and receiving data using wireless signals, and is configured to be connectable to an antenna. The wired communication module 15 is a circuit used for transmitting and receiving data using wired signals, and is configured to be connectable to the network NW. Note that the access point AP may have other hardware configurations. For example, when the access point AP is wirelessly connected to the network NW, the wired communication module 15 may be omitted from the access point AP.
 (無線端末装置WTAのハードウェア構成)
 図5は、第1実施形態に係る通信システム1が備える無線端末装置WTAのハードウェア構成の一例を示すブロック図である。図5に示すように、無線端末装置WTAは、例えば、CPU21、ROM22、RAM23、無線通信モジュール24、ディスプレイ25、及びストレージ26を備える。
(Hardware configuration of wireless terminal device WTA)
FIG. 5 is a block diagram showing an example of the hardware configuration of the wireless terminal device WTA included in the communication system 1 according to the first embodiment. As shown in FIG. 5, the wireless terminal device WTA includes, for example, a CPU 21, a ROM 22, a RAM 23, a wireless communication module 24, a display 25, and a storage 26.
 CPU21は、様々なプログラムを実行することが可能な集積回路であり、無線端末装置WTAの全体の動作を制御する。ROM22は、不揮発性の半導体メモリであり、無線端末装置WTAを制御するためのプログラムや制御データ等を記憶している。RAM23は、例えば揮発性の半導体メモリであり、CPU21の作業領域として使用される。無線通信モジュール24は、無線信号によるデータの送受信に使用される回路であり、アンテナと接続可能に構成される。ディスプレイ25は、例えばアプリケーションソフトに対応するGUI(Graphical User Interface)等を表示する。ディスプレイ25は、無線端末装置WTAの入力インタフェースとしての機能を有していてもよい。ストレージ26は、不揮発性の記憶装置であり、例えば無線端末装置WTAのシステムソフトウェア等を記憶する。なお、無線端末装置WTAは、その他のハードウェア構成であってもよい。例えば、無線端末装置WTAがIoT(Internet of Things)端末等である場合に、ディスプレイ25が無線端末装置WTAから省略されてもよい。 The CPU 21 is an integrated circuit capable of executing various programs, and controls the overall operation of the wireless terminal device WTA. The ROM 22 is a nonvolatile semiconductor memory, and stores programs, control data, etc. for controlling the wireless terminal device WTA. The RAM 23 is, for example, a volatile semiconductor memory, and is used as a work area for the CPU 21. The wireless communication module 24 is a circuit used for transmitting and receiving data using wireless signals, and is configured to be connectable to an antenna. The display 25 displays, for example, a GUI (Graphical User Interface) corresponding to application software. The display 25 may have a function as an input interface for the wireless terminal device WTA. The storage 26 is a nonvolatile storage device, and stores, for example, system software of the wireless terminal device WTA. Note that the wireless terminal device WTA may have other hardware configurations. For example, when the wireless terminal device WTA is an IoT (Internet of Things) terminal or the like, the display 25 may be omitted from the wireless terminal device WTA.
 <1-1-3>通信システム1の機能構成
 (アクセスポイントAPの機能構成)
 図6は、第1実施形態に係る通信システム1が備えるアクセスポイントAPの機能構成の一例を示すブロック図である。図6に示すように、アクセスポイントAPは、例えば、LLC処理部110、データ処理部120、マネジメント部130、MACフレーム処理部140、及び無線信号処理部150を備えるコンピュータとして機能する。LLC処理部110は、第2層のLLC副層及び第3層から第7層に対応する処理を実行する機能ブロックである。データ処理部120、マネジメント部130、及びMACフレーム処理部140は、第2層のMAC副層に対応する処理を実行する機能ブロックである。無線信号処理部150は、第2層のMAC副層及び第1層に対応する処理を実行する機能ブロックである。
<1-1-3> Functional configuration of communication system 1 (Functional configuration of access point AP)
FIG. 6 is a block diagram showing an example of the functional configuration of the access point AP included in the communication system 1 according to the first embodiment. As shown in FIG. 6, the access point AP functions as a computer including, for example, an LLC processing section 110, a data processing section 120, a management section 130, a MAC frame processing section 140, and a wireless signal processing section 150. The LLC processing unit 110 is a functional block that executes processing corresponding to the LLC sublayer of the second layer and the third to seventh layers. The data processing unit 120, the management unit 130, and the MAC frame processing unit 140 are functional blocks that execute processing corresponding to the MAC sublayer of the second layer. The wireless signal processing unit 150 is a functional block that executes processing corresponding to the MAC sublayer of the second layer and the first layer.
 LLC処理部110は、例えば、ネットワークNWから受信したデータにDSAP(Destination Service Access Point)ヘッダやSSAP(Source Service Access Point)ヘッダなどを付加して、LLCパケットを生成する。そして、LLC処理部110は、生成されたLLCパケットを、データ処理部120に入力する。また、LLC処理部110は、データ処理部120から入力されたLLCパケットからデータを抽出する。そして、LLC処理部110は、抽出されたデータを、ネットワークNWに送信する。 The LLC processing unit 110 generates an LLC packet by adding, for example, a DSAP (Destination Service Access Point) header, a SSAP (Source Service Access Point) header, etc. to the data received from the network NW. The LLC processing unit 110 then inputs the generated LLC packet to the data processing unit 120. Further, the LLC processing unit 110 extracts data from the LLC packet input from the data processing unit 120. The LLC processing unit 110 then transmits the extracted data to the network NW.
 データ処理部120は、LLC処理部110から入力されたLLCパケットにMACヘッダを付加して、MACフレームを生成する。そして、データ処理部120は、生成されたMACフレームを、MACフレーム処理部140に入力する。また、データ処理部120は、MACフレーム処理部140から入力されたMACフレームからLLCパケットを抽出する。そして、データ処理部120は、抽出されたLLCパケットをLLC処理部110に入力する。データを含むMACフレームは、“データフレーム”とも呼ばれる。 The data processing unit 120 adds a MAC header to the LLC packet input from the LLC processing unit 110 to generate a MAC frame. The data processing unit 120 then inputs the generated MAC frame to the MAC frame processing unit 140. Furthermore, the data processing unit 120 extracts LLC packets from the MAC frame input from the MAC frame processing unit 140. The data processing unit 120 then inputs the extracted LLC packet to the LLC processing unit 110. A MAC frame containing data is also called a "data frame."
 マネジメント部130は、アクセスポイントAPと無線端末装置WTAとの間のリンクの状態を管理する。マネジメント部130とMACフレーム処理部140との間では、リンクやrTWT機能などに関する管理情報を含むMACフレームが入出力される。管理情報を含むMACフレームは、“マネジメントフレーム”とも呼ばれる。マネジメント部130は、例えば、リンク管理情報131、リンク制御部132、ビーコン管理部133、及び送信期間管理部134を含む。 The management unit 130 manages the state of the link between the access point AP and the wireless terminal device WTA. Between the management unit 130 and the MAC frame processing unit 140, MAC frames containing management information regarding links, rTWT functions, etc. are input and output. A MAC frame containing management information is also called a "management frame." The management unit 130 includes, for example, link management information 131, a link control unit 132, a beacon management unit 133, and a transmission period management unit 134.
 リンク管理情報131は、アクセスポイントAPと無線接続された無線端末装置WTAとのリンクに関する情報を含む。リンク管理情報131は、例えば、図2に示される情報を含む。また、リンク管理情報131は、rTWT開始時刻TSや、rTWT継続期間TDなどのrTWT機能の設定に関する情報を含み得る。 The link management information 131 includes information regarding the link between the access point AP and the wireless terminal device WTA that is wirelessly connected. The link management information 131 includes, for example, the information shown in FIG. 2. Further, the link management information 131 may include information regarding the settings of the rTWT function, such as the rTWT start time TS and the rTWT duration TD.
 リンク制御部132は、アクセスポイントAPと無線端末装置WTAとの間のリンクの確立を制御する。例えば、リンク制御部132は、無線端末装置WTAからの接続要求に応じて、アソシエーション処理と、後続する認証処理とを実行する。リンク制御部132は、無線端末装置WTAとの間で確立されたリンクの状態を制御し得る。 The link control unit 132 controls the establishment of a link between the access point AP and the wireless terminal device WTA. For example, the link control unit 132 executes an association process and a subsequent authentication process in response to a connection request from the wireless terminal device WTA. The link control unit 132 can control the state of the link established with the wireless terminal device WTA.
 ビーコン管理部133は、アクセスポイントAPがビーコンとして発信する情報を管理する。具体的には、ビーコン管理部133は、例えば、rTWT機能に関する管理情報を含むマネジメントフレームを定期的に生成する。そして、ビーコン管理部133は、生成されたマネジメントフレームをMACフレーム処理部140に入力する。すなわち、ビーコン管理部133は、rTWT開始時刻TS及びrTWT継続期間TDを無線端末装置WTAに通知する。ビーコン管理部133によって生成されるマネジメントフレームは、“ビーコンフレーム”とも呼ばれる。 The beacon management unit 133 manages information transmitted by the access point AP as a beacon. Specifically, the beacon management unit 133 periodically generates a management frame including management information regarding the rTWT function, for example. The beacon management unit 133 then inputs the generated management frame to the MAC frame processing unit 140. That is, the beacon management unit 133 notifies the wireless terminal device WTA of the rTWT start time TS and the rTWT duration TD. The management frame generated by the beacon management unit 133 is also called a "beacon frame."
 送信期間管理部134は、送信抑制期間RPを管理する。送信抑制期間RPは、rTWT機能の使用時に、EHT端末STA1によるフレーム交換を抑制する期間に対応する。送信期間管理部134は、例えば、各TWT間隔TIのrTWTサービス期間SPの後に送信抑制期間RPを設定する。 The transmission period management unit 134 manages the transmission suppression period RP. The transmission suppression period RP corresponds to a period during which frame exchange by the EHT terminal STA1 is suppressed when using the rTWT function. For example, the transmission period management unit 134 sets a transmission suppression period RP after the rTWT service period SP of each TWT interval TI.
 MACフレーム処理部140は、データ処理部120又はマネジメント部130から入力されたMACフレームを、当該MACフレームに関連付けられたリンクに対応する無線信号処理部150に入力する。また、MACフレーム処理部140は、無線信号処理部150から入力されたMACフレームを、MACフレームの種別に応じて、データ処理部120又はマネジメント部130に入力する。具体的には、MACフレーム処理部140は、MACフレームがデータフレームである場合に、MACフレームをデータ処理部120に入力する。MACフレーム処理部140は、MACフレームがマネジメントフレームである場合に、MACフレームをマネジメント部130に入力する。 The MAC frame processing unit 140 inputs the MAC frame input from the data processing unit 120 or the management unit 130 to the radio signal processing unit 150 corresponding to the link associated with the MAC frame. Further, the MAC frame processing section 140 inputs the MAC frame input from the radio signal processing section 150 to the data processing section 120 or the management section 130 depending on the type of the MAC frame. Specifically, the MAC frame processing unit 140 inputs the MAC frame to the data processing unit 120 when the MAC frame is a data frame. The MAC frame processing unit 140 inputs the MAC frame to the management unit 130 when the MAC frame is a management frame.
 無線信号処理部150は、キャリアセンスを実行する。キャリアセンスは、チャネルの状況を確認する処理である。チャネルがビジー状態である場合、無線信号処理部150は、キャリアセンスを継続する。チャネルがアイドル状態である場合、無線信号処理部150は、MACフレーム処理部140から入力されたMACフレームにプリアンブルなどを付加して、無線フレームを生成する。そして、無線信号処理部150は、生成された無線フレームを無線信号(無線媒体)に変換し、変換された無線信号をアンテナを介して放射(送信)する。無線フレームから無線信号への変換処理は、例えば、畳み込み符号化処理、インタリーブ処理、サブキャリア変調処理、逆高速フーリエ変換処理、OFDM(Orthogonal Frequency Division Multiplexing)変調処理、及び周波数変換処理のいずれかを含む。また、無線信号処理部150は、アンテナを介して受信した無線信号を無線フレームに変換する。無線信号から無線フレームへの変換処理は、例えば、周波数変換処理、OFDM復調処理、高速フーリエ変換処理、サブキャリア復調処理、デインタリーブ処理、及びビタビ復号処理のいずれかを含む。そして、無線信号処理部150は、変換された無線フレームからMACフレームを抽出し、抽出されたMACフレームをMACフレーム処理部140に入力する。無線信号処理部150は、“STA機能”と呼ばれてもよい。アクセスポイントAPは、各々が異なるチャネルCHを扱う複数の無線信号処理部150を備えてもよい。 The radio signal processing unit 150 executes carrier sense. Carrier sense is a process for checking channel status. If the channel is busy, the radio signal processing unit 150 continues carrier sensing. When the channel is in an idle state, the radio signal processing unit 150 adds a preamble and the like to the MAC frame input from the MAC frame processing unit 140 to generate a radio frame. Then, the wireless signal processing unit 150 converts the generated wireless frame into a wireless signal (wireless medium), and radiates (transmits) the converted wireless signal via the antenna. The conversion process from a radio frame to a radio signal includes, for example, one of convolutional encoding processing, interleaving processing, subcarrier modulation processing, inverse fast Fourier transform processing, OFDM (Orthogonal Frequency Division Multiplexing) modulation processing, and frequency conversion processing. include. Furthermore, the radio signal processing unit 150 converts a radio signal received via an antenna into a radio frame. The conversion process from a radio signal to a radio frame includes, for example, any one of frequency conversion process, OFDM demodulation process, fast Fourier transform process, subcarrier demodulation process, deinterleaving process, and Viterbi decoding process. Then, the radio signal processing unit 150 extracts a MAC frame from the converted radio frame, and inputs the extracted MAC frame to the MAC frame processing unit 140. The wireless signal processing unit 150 may be referred to as an "STA function". The access point AP may include a plurality of radio signal processing units 150 each handling a different channel CH.
 (無線端末装置WTAの機能構成)
 図7は、第1実施形態に係る通信システム1が備える無線端末装置WTAの機能構成の一例を示すブロック図である。図7に示すように、無線端末装置WTAは、例えば、アプリケーション実行部200、LLC処理部210、データ処理部220、マネジメント部230、MACフレーム処理部240、及び無線信号処理部250を備えるコンピュータとして機能する。アプリケーション実行部200は、第7層に対応する処理を実行する機能ブロックである。LLC処理部210は、第2層のLLC副層及び第3層から第6層に対応する処理を実行する機能ブロックである。データ処理部220、マネジメント部230、及びMACフレーム処理部240は、第2層のMAC副層に対応する処理を実行する機能ブロックである。無線信号処理部250は、第2層のMAC副層及び第1層に対応する処理を実行する機能ブロックである。
(Functional configuration of wireless terminal device WTA)
FIG. 7 is a block diagram showing an example of the functional configuration of the wireless terminal device WTA included in the communication system 1 according to the first embodiment. As shown in FIG. 7, the wireless terminal device WTA is a computer including, for example, an application execution unit 200, an LLC processing unit 210, a data processing unit 220, a management unit 230, a MAC frame processing unit 240, and a wireless signal processing unit 250. Function. The application execution unit 200 is a functional block that executes processing corresponding to the seventh layer. The LLC processing unit 210 is a functional block that executes processing corresponding to the LLC sublayer of the second layer and the third to sixth layers. The data processing section 220, the management section 230, and the MAC frame processing section 240 are functional blocks that execute processing corresponding to the MAC sublayer of the second layer. The wireless signal processing unit 250 is a functional block that executes processing corresponding to the MAC sublayer of the second layer and the first layer.
 アプリケーション実行部200は、LLC処理部210から入力されたデータに基づき、アプリケーションを実行する。また、アプリケーション実行部200は、LLC処理部210にデータを入力する。例えば、アプリケーション実行部200は、アプリケーションの情報をディスプレイ25に表示することができる。また、アプリケーション実行部200は、入力インタフェースの操作に基づいて動作し得る。 The application execution unit 200 executes an application based on data input from the LLC processing unit 210. Further, the application execution unit 200 inputs data to the LLC processing unit 210. For example, the application execution unit 200 can display application information on the display 25. Further, the application execution unit 200 can operate based on the operation of the input interface.
 LLC処理部210は、アプリケーション実行部200から入力されたデータにDSAPヘッダやSSAPヘッダなどを付加して、LLCパケットを生成する。そして、LLC処理部210は、生成されたLLCパケットを、データ処理部220に入力する。また、LLC処理部210は、データ処理部120から入力されたLLCパケットからデータを抽出する。そして、LLC処理部210は、抽出されたデータを、アプリケーション実行部200に入力する。 The LLC processing unit 210 adds a DSAP header, an SSAP header, etc. to the data input from the application execution unit 200, and generates an LLC packet. The LLC processing unit 210 then inputs the generated LLC packet to the data processing unit 220. Further, the LLC processing unit 210 extracts data from the LLC packet input from the data processing unit 120. The LLC processing unit 210 then inputs the extracted data to the application execution unit 200.
 データ処理部220は、LLC処理部210から入力されたLLCパケットにMACヘッダを付加して、MACフレームを生成する。そして、データ処理部220は、生成されたMACフレームを、MACフレーム処理部240に入力する。また、データ処理部220は、MACフレーム処理部240から入力されたMACフレームからLLCパケットを抽出する。そして、データ処理部220は、抽出されたLLCパケットをLLC処理部210に入力する。 The data processing unit 220 adds a MAC header to the LLC packet input from the LLC processing unit 210 to generate a MAC frame. The data processing unit 220 then inputs the generated MAC frame to the MAC frame processing unit 240. Furthermore, the data processing unit 220 extracts LLC packets from the MAC frame input from the MAC frame processing unit 240. The data processing unit 220 then inputs the extracted LLC packet to the LLC processing unit 210.
 マネジメント部230は、アクセスポイントAPと無線端末装置WTAとの間のリンクの状態を管理する。マネジメント部230とMACフレーム処理部240との間では、リンクやrTWT機能などに関する管理情報を含むMACフレームが入出力される。マネジメント部230は、例えば、リンク管理情報231、リンク制御部232、及びビーコン処理部233を含む。 The management unit 230 manages the state of the link between the access point AP and the wireless terminal device WTA. Between the management unit 230 and the MAC frame processing unit 240, MAC frames containing management information regarding links, rTWT functions, etc. are input and output. The management unit 230 includes, for example, link management information 231, a link control unit 232, and a beacon processing unit 233.
 リンク管理情報231は、無線端末装置WTAと無線接続されたアクセスポイントAPとのリンクに関する情報を含む。リンク管理情報231は、rTWT機能の設定に関する情報(rTWT開始時刻TS及びrTWT継続期間TDなど)も含み得る。 The link management information 231 includes information regarding the link between the wireless terminal device WTA and the wirelessly connected access point AP. The link management information 231 may also include information regarding the settings of the rTWT function (rTWT start time TS, rTWT duration TD, etc.).
 リンク制御部232は、アクセスポイントAPと無線端末装置WTAとの間のリンクの確立を制御する。例えば、リンク制御部232は、アクセスポイントAPに接続要求を送信する際に、アソシエーション処理と、後続する認証処理とを実行する。リンク制御部232は、アクセスポイントAPとの間で確立されたリンクの状態を制御し得る。 The link control unit 232 controls the establishment of a link between the access point AP and the wireless terminal device WTA. For example, the link control unit 232 executes an association process and a subsequent authentication process when transmitting a connection request to the access point AP. The link control unit 232 can control the state of the link established with the access point AP.
 ビーコン処理部233は、アクセスポイントAPから受信したビーコンに含まれる情報を処理する。具体的には、ビーコン処理部233は、MACフレーム処理部240から入力されたビーコンフレームからrTWT機能に関する管理情報を抽出する。そして、ビーコン処理部233は、例えば、抽出されたrTWT機能に関する管理情報のうちrTWT開始時刻TSとrTWT継続期間TDとを、rTWT機能が適用されたリンクに関連付けて、例えば、リンク管理情報231に記録する。言い換えると、ビーコン処理部233は、受信したビーコンから、低遅延トラヒックの送信を行う期間(rTWTサービス期間SP)を抽出して、リンク管理情報231に反映させる。ビーコン処理部233は、rTWT機能に関する管理情報を、データ処理部220に通知してもよい。 The beacon processing unit 233 processes information included in the beacon received from the access point AP. Specifically, the beacon processing unit 233 extracts management information regarding the rTWT function from the beacon frame input from the MAC frame processing unit 240. Then, the beacon processing unit 233 associates the rTWT start time TS and the rTWT duration TD among the extracted management information regarding the rTWT function with the link to which the rTWT function is applied, and adds the rTWT function to the link management information 231, for example. Record. In other words, the beacon processing unit 233 extracts the period during which low-latency traffic is transmitted (rTWT service period SP) from the received beacon, and reflects it in the link management information 231. The beacon processing unit 233 may notify the data processing unit 220 of management information regarding the rTWT function.
 MACフレーム処理部240は、データ処理部220又はマネジメント部230から入力されたMACフレームを、当該MACフレームに関連付けられたリンクに対応する無線信号処理部250に入力する。また、MACフレーム処理部240は、無線信号処理部250から入力されたMACフレームを、MACフレームの種別に応じて、データ処理部220、マネジメント部230、又は無線信号処理部250に入力する。具体的には、MACフレーム処理部240は、MACフレームがデータフレームである場合に、MACフレームをデータ処理部220に入力する。MACフレーム処理部240は、MACフレームがマネジメントフレームである場合に、MACフレームをマネジメント部230に入力する。例えば、MACフレーム処理部240は、MACフレームがビーコンフレームである場合に、ビーコンフレームをビーコン処理部233に入力する。MACフレーム処理部240は、MACフレームがトリガーフレームであった場合に、対応するデータを無線信号処理部250に出力する。トリガーフレームは、アクセスポイントAPが無線端末装置WTAに対してトラヒックの送信を要求する場合に使用されるフレームである。 The MAC frame processing unit 240 inputs the MAC frame input from the data processing unit 220 or the management unit 230 to the radio signal processing unit 250 corresponding to the link associated with the MAC frame. Furthermore, the MAC frame processing section 240 inputs the MAC frame input from the radio signal processing section 250 to the data processing section 220, the management section 230, or the radio signal processing section 250, depending on the type of the MAC frame. Specifically, the MAC frame processing unit 240 inputs the MAC frame to the data processing unit 220 when the MAC frame is a data frame. The MAC frame processing unit 240 inputs the MAC frame to the management unit 230 when the MAC frame is a management frame. For example, when the MAC frame is a beacon frame, the MAC frame processing unit 240 inputs the beacon frame to the beacon processing unit 233. The MAC frame processing section 240 outputs corresponding data to the radio signal processing section 250 when the MAC frame is a trigger frame. The trigger frame is a frame used when the access point AP requests the wireless terminal device WTA to transmit traffic.
 無線信号処理部250は、キャリアセンス処理を実行する。チャネルがビジー状態である場合、無線信号処理部250は、キャリアセンス処理を継続する。チャネルがアイドル状態である場合、無線信号処理部250は、MACフレーム処理部240から入力されたMACフレームにプリアンブルなどを付加して、無線フレームを生成する。そして、無線信号処理部250は、生成された無線フレームを無線信号(無線媒体)に変換し、変換された無線信号をアンテナを介して放射(送信)する。無線フレームから無線信号への変換処理は、例えば、畳み込み符号化処理、インタリーブ処理、サブキャリア変調処理、逆高速フーリエ変換処理、OFDM変調処理、及び周波数変換処理のいずれかを含む。また、無線信号処理部250は、アンテナを介して受信した無線信号を無線フレームに変換する。無線信号から無線フレームへの変換処理は、例えば、周波数変換処理、OFDM復調処理、高速フーリエ変換処理、サブキャリア復調処理、デインタリーブ処理、及びビタビ復号処理のいずれかを含む。そして、無線信号処理部250は、変換された無線フレームからMACフレームを抽出し、抽出されたMACフレームをMACフレーム処理部240に入力する。無線信号処理部250は、“STA機能”と呼ばれてもよい。無線端末装置WTAは、各々が異なるチャネルCHを扱う複数の無線信号処理部250を備えてもよい。 The radio signal processing unit 250 executes carrier sense processing. If the channel is busy, the radio signal processing unit 250 continues carrier sense processing. When the channel is in an idle state, the radio signal processing unit 250 adds a preamble and the like to the MAC frame input from the MAC frame processing unit 240 to generate a radio frame. Then, the wireless signal processing unit 250 converts the generated wireless frame into a wireless signal (wireless medium), and radiates (transmits) the converted wireless signal via the antenna. The conversion process from a radio frame to a radio signal includes, for example, any one of convolutional encoding processing, interleaving processing, subcarrier modulation processing, inverse fast Fourier transform processing, OFDM modulation processing, and frequency conversion processing. Furthermore, the radio signal processing unit 250 converts a radio signal received via an antenna into a radio frame. The conversion process from a radio signal to a radio frame includes, for example, any one of frequency conversion process, OFDM demodulation process, fast Fourier transform process, subcarrier demodulation process, deinterleaving process, and Viterbi decoding process. Then, the radio signal processing unit 250 extracts a MAC frame from the converted radio frame, and inputs the extracted MAC frame to the MAC frame processing unit 240. The wireless signal processing unit 250 may be referred to as "STA function". The wireless terminal device WTA may include a plurality of wireless signal processing units 250 each handling a different channel CH.
 (アクセスポイントAPのチャネルアクセス機能の構成)
 図8は、第1実施形態に係るアクセスポイントAPのチャネルアクセス機能の構成の一例を示すブロック図である。図6に示すように、アクセスポイントAPの無線信号処理部150は、例えば、分類部151、キュー152A、152B、152C及び152D、キャリアセンス実行部153A、153B、153C及び153D、及び内部衝突管理部154を含む。
(Configuration of channel access function of access point AP)
FIG. 8 is a block diagram illustrating an example of a configuration of a channel access function of the access point AP according to the first embodiment. As shown in FIG. 6, the wireless signal processing unit 150 of the access point AP includes, for example, a classification unit 151, queues 152A, 152B, 152C, and 152D, carrier sense execution units 153A, 153B, 153C, and 153D, and an internal collision management unit. 154 included.
 分類部151は、MACフレーム処理部240から入力されたMACフレームがデータフレームである場合に、当該データフレームをMACヘッダに含まれたトラヒック種別(TID)に基づいて複数のアクセスカテゴリに分類する。トラヒック種別としては、例えば、“VO(Voice)”、“VI(Video)”、“BE(Best Effort)”、“BK(Background)”、“LL(Low Latency)”が挙げられる。そして、分類部151は、データフレームを、複数のキュー152A、152B、152C、及び152Dのうち対応するキュー152に入力する。本例において、分類部151は、アクセスカテゴリVO、VI、BE、及びBKに対応するデータフレームを、それぞれキュー152A、152B、152C、及び152Dに入力する。また、分類部151は、MACフレーム処理部140から入力されたMACフレームがトリガーフレームなどの高優先フレームである場合に、例えばキュー152を介さずに高優先フレームを内部衝突管理部154に入力する。 When the MAC frame input from the MAC frame processing unit 240 is a data frame, the classification unit 151 classifies the data frame into a plurality of access categories based on the traffic type (TID) included in the MAC header. Examples of the traffic types include "VO (Voice)," "VI (Video)," "BE (Best Effort)," "BK (Background)," and "LL (Low Latency)." Then, the classification unit 151 inputs the data frame to the corresponding queue 152 among the plurality of queues 152A, 152B, 152C, and 152D. In this example, the classification unit 151 inputs data frames corresponding to access categories VO, VI, BE, and BK to queues 152A, 152B, 152C, and 152D, respectively. Furthermore, when the MAC frame input from the MAC frame processing unit 140 is a high priority frame such as a trigger frame, the classification unit 151 inputs the high priority frame to the internal collision management unit 154 without going through the queue 152, for example. .
 複数のキュー152A、152B、152C、及び152Dのそれぞれは、入力されたデータフレームをバッファする。本例では、複数のキュー152A、152B、152C、及び152Dは、それぞれアクセスカテゴリVO、VI、BE、及びBKに対応するデータフレームをバッファする。 Each of the plurality of queues 152A, 152B, 152C, and 152D buffers input data frames. In this example, multiple queues 152A, 152B, 152C, and 152D buffer data frames corresponding to access categories VO, VI, BE, and BK, respectively.
 複数のキャリアセンス実行部153A、153B、153C、及び153Dのそれぞれは、それぞれ複数のキュー152A、152B、152C、及び152Dに関連付けられている。複数のキャリアセンス実行部153A、153B、153C、及び153Dの各々は、あらかじめ設定されたアクセスパラメータに従って、CSMA/CA(Carrier Sense Multiple Access with Collision Avoidance)に基づくキャリアセンスを実行する。アクセスパラメータは、アクセスカテゴリごとに設定され、例えば、無線信号の送信が“VO”、“VI”、“BE”、“BK”の順に優先されるように設定される。複数のキャリアセンス実行部153A、153B、153C、及び153Dの各々は、チャネルが所定の時間アイドル状態であると判定された場合、データフレームの送信権を獲得してキャリアセンスを終了する。複数のキャリアセンス実行部153A、153B、153C、及び153Dの各々は、チャネルがビジー状態であると判定された場合、送信権の獲得を中止してキャリアセンスを終了する。送信権を獲得したキャリアセンス実行部153は、関連付けられたキュー152からデータフレームを取り出して、取り出したデータフレームを内部衝突管理部154に出力する。 Each of the plurality of carrier sense execution units 153A, 153B, 153C, and 153D is associated with the plurality of queues 152A, 152B, 152C, and 152D, respectively. Each of the plurality of carrier sense execution units 153A, 153B, 153C, and 153D executes carrier sense based on CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) according to preset access parameters. Access parameters are set for each access category, and are set, for example, so that wireless signal transmission is prioritized in the order of "VO", "VI", "BE", and "BK". If it is determined that the channel is in an idle state for a predetermined period of time, each of the plurality of carrier sense execution units 153A, 153B, 153C, and 153D acquires the right to transmit a data frame and ends carrier sense. When it is determined that the channel is busy, each of the plurality of carrier sense execution units 153A, 153B, 153C, and 153D stops acquiring the transmission right and ends carrier sense. The carrier sense execution unit 153 that has acquired the transmission right extracts the data frame from the associated queue 152 and outputs the extracted data frame to the internal collision management unit 154.
 内部衝突管理部154は、複数のキャリアセンス実行部153が同時に送信権を獲得した場合に、送信の衝突を防止する。具体的には、内部衝突管理部154は、複数のデータフレームが同時に入力された場合に、優先度の高いアクセスカテゴリのデータフレームを優先して出力する。内部衝突管理部154から出力されたデータフレームは、無線フレームに変換され、アンテナを介して送信される。 The internal collision management unit 154 prevents transmission collisions when a plurality of carrier sense execution units 153 acquire transmission rights at the same time. Specifically, when a plurality of data frames are input at the same time, the internal collision management unit 154 outputs a data frame of an access category with a high priority priority. The data frame output from the internal collision management unit 154 is converted into a radio frame and transmitted via an antenna.
 無線信号処理部150は、トリガーフレームなどの高優先フレームが入力されると、キャリアセンスを行った上で、アンテナを介して当該高優先フレームを含む無線信号を送信する。高優先フレームは、キュー152を介さずにキャリアセンスが実行されるため、他のトラヒックよりも低遅延で処理され得る。無線信号処理部150は、高優先フレームを送信する場合に、他のキュー152のキャリアセンスを一時的に停止させてもよい。また、無線信号処理部150は、マネジメント部130から通知されたrTWT開始時刻TSに基づいて、トリガーフレームを生成してもよい。 When a high-priority frame such as a trigger frame is input, the radio signal processing unit 150 performs carrier sensing and transmits a radio signal including the high-priority frame via an antenna. Since carrier sensing is performed on high-priority frames without going through the queue 152, they can be processed with lower delay than other traffic. The radio signal processing unit 150 may temporarily stop carrier sensing of other queues 152 when transmitting a high priority frame. Furthermore, the radio signal processing unit 150 may generate a trigger frame based on the rTWT start time TS notified from the management unit 130.
 キャリアセンスで使用されるアクセスパラメータとしては、例えば、CW(Contention Window)min、CWmax、AIFS(Arbitration Inter Frame Space)、TXOP(Transmission Opportunity)Limitが使用される。コンテンションウインドウは、衝突回避のための送信待ちの時間の決定に用いるパラメータである。CWmin及びCWmaxは、コンテンションウインドウの最小値及び最大値をそれぞれ示している。AIFS(Arbitration Inter Frame Space)は、優先制御機能を備える衝突回避制御のためにアクセスカテゴリごとに設定された固定の送信待ちの時間を示している。TXOPは、チャネルの占有時間に対応する。TXOPLimitは、TXOPの上限値を示している。キュー152は、CWmin及びCWmaxが短いほど、送信権を得やすくなる。キュー152の優先度は、AIFSが小さいほど高くなる。一度の送信権で送信されるデータの量は、TXOPLimitの値が大きいほど多くなる。 As access parameters used in carrier sense, for example, CW (Contention Window) min, CWmax, AIFS (Arbitration Inter Frame Space), and TXOP (Transmission Opportunity) Limit are used. The contention window is a parameter used to determine the transmission waiting time for collision avoidance. CWmin and CWmax indicate the minimum and maximum values of the contention window, respectively. AIFS (Arbitration Inter Frame Space) indicates a fixed transmission waiting time set for each access category for collision avoidance control with a priority control function. TXOP corresponds to the channel occupancy time. TXOPLimit indicates the upper limit value of TXOP. The shorter the CWmin and CWmax, the easier it is for the queue 152 to obtain the transmission right. The priority of the queue 152 becomes higher as the AIFS becomes smaller. The amount of data transmitted with one transmission right increases as the value of TXOPLimit increases.
 なお、無線端末装置WTAのチャネルアクセス機能に関する構成は、アクセスポイントAPのチャネルアクセス機能に関する構成と同等である。本明細書では、チャネルアクセス機能が無線信号処理部150に実装される場合について例示するが、チャネルアクセス機能はMACフレーム処理部140に実装されてもよい。アクセスパラメータは、EDCA(Enhanced Distributed Channel Access)パラメータと呼ばれてもよい。 Note that the configuration regarding the channel access function of the wireless terminal device WTA is equivalent to the configuration regarding the channel access function of the access point AP. Although this specification exemplifies a case where the channel access function is implemented in the radio signal processing unit 150, the channel access function may also be implemented in the MAC frame processing unit 140. The access parameters may be called EDCA (Enhanced Distributed Channel Access) parameters.
 <1-2>動作
 <1-2-1>rTWT機能のセットアップ方法
 図9は、第1実施形態に係る通信システム1のrTWT機能のセットアップ方法の一例を示すフローチャートである。以下に、図9を参照して、rTWT機能のセットアップ方法について説明する。rTWT機能のセットアップは、例えば、アクセスポイントAPのマネジメント部130と無線端末装置WTAのマネジメント部230との間で、マネジメントフレームが送受信されることによって実行される。
<1-2> Operation <1-2-1> Method for setting up the rTWT function FIG. 9 is a flowchart showing an example of a method for setting up the rTWT function of the communication system 1 according to the first embodiment. A method for setting up the rTWT function will be described below with reference to FIG. The setup of the rTWT function is executed, for example, by transmitting and receiving management frames between the management unit 130 of the access point AP and the management unit 230 of the wireless terminal device WTA.
 まず、EHT端末STA1は、低遅延トラヒックの送信をアクセスポイントAPに通知する(S1)。このとき、EHT端末STA1は、アクセスポイントAPに対して、例えば、低遅延トラヒックの生成周期に関する情報も送信する。 First, the EHT terminal STA1 notifies the access point AP of low-latency traffic transmission (S1). At this time, the EHT terminal STA1 also transmits, for example, information regarding the low-delay traffic generation cycle to the access point AP.
 アクセスポイントAPは、EHT端末STA1から低遅延トラヒックの送信が通知されると、rTWT機能をセットアップする(S2)。rTWT機能のセットアップにおいて、マネジメント部130は、例えば、低遅延トラヒックの生成周期に合わせて、rTWT開始時刻TS、rTWT継続期間TD、及びTWT周期を設定する。アクセスポイントAPは、低遅延トラヒックの生成周期を、どのような手法で取得してもよい。例えば、アクセスポイントAPは、無線端末装置WTAから低遅延トラヒックを生成するアプリケーションに設定されたデータ生成周期の情報などを取得して、rTWT機能のセットアップに使用してもよい。 When the access point AP is notified of the transmission of low-latency traffic from the EHT terminal STA1, it sets up the rTWT function (S2). In setting up the rTWT function, the management unit 130 sets the rTWT start time TS, rTWT duration TD, and TWT cycle in accordance with the generation cycle of low-latency traffic, for example. The access point AP may obtain the low-latency traffic generation cycle using any method. For example, the access point AP may obtain information such as a data generation cycle set for an application that generates low-latency traffic from the wireless terminal device WTA, and use the information to set up the rTWT function.
 rTWT機能のセットアップが完了すると、アクセスポイントAPは、確立されたrTWT機能の設定に基づいて、リンク管理情報131を更新する(S3)。 When the setup of the rTWT function is completed, the access point AP updates the link management information 131 based on the established rTWT function setting (S3).
 リンク管理情報131の更新が完了すると、アクセスポイントAPは、無線端末装置WTAにrTWT機能のセットアップ完了を通知する(S4)。このとき、アクセスポイントAPは、rTWT機能の設定(例えば、rTWTサービス期間SPなど)も無線端末装置WTAに送信する。 When the update of the link management information 131 is completed, the access point AP notifies the wireless terminal device WTA that the setup of the rTWT function is completed (S4). At this time, the access point AP also transmits the rTWT function settings (for example, rTWT service period SP, etc.) to the wireless terminal device WTA.
 無線端末装置WTAは、アクセスポイントAPからrTWT機能のセットアップが完了したことの通知などを受信すると、通知されたrTWT機能の設定に基づいて、リンク管理情報231を更新する(S5)。これにより、アクセスポイントAPと無線端末装置WTAとの双方でリンク管理情報が更新され、rTWT機能のセットアップが完了する。以後、アクセスポイントAP及び無線端末装置WTAは、rTWT機能を利用したデータ通信を実行し得る。 When the wireless terminal device WTA receives a notification that the setup of the rTWT function is completed from the access point AP, it updates the link management information 231 based on the notified setting of the rTWT function (S5). As a result, the link management information is updated in both the access point AP and the wireless terminal device WTA, and the setup of the rTWT function is completed. Thereafter, the access point AP and the wireless terminal device WTA can perform data communication using the rTWT function.
 なお、rTWT機能のセットアップは、リンクの確立時に実行されてもよい。rTWT機能の設定の変更は、アクセスポイントAPを主導に実行されてもよいし、無線端末装置WTAを主導に実行されてもよい。アクセスポイントAPがrTWT機能の設定に利用する無線端末装置WTAの情報(低遅延トラヒックの生成周期など)を取得するタイミングは、特に限定されない。アクセスポイントAPは、rTWT機能のセットアップ完了を、ビーコンにより通知しても良い。すなわち、アクセスポイントAPは、ビーコンを用いて、rTWT機能の設定を無線端末装置WTAに通知し得る。 Note that the setup of the rTWT function may be performed at the time of link establishment. The change in the settings of the rTWT function may be executed by the access point AP or by the wireless terminal device WTA. The timing at which the access point AP acquires information on the wireless terminal device WTA (low-latency traffic generation cycle, etc.) used for setting the rTWT function is not particularly limited. The access point AP may notify the completion of setup of the rTWT function using a beacon. That is, the access point AP may notify the wireless terminal device WTA of the rTWT function setting using a beacon.
 (ビーコンフレームのフォーマット)
 図10は、第1実施形態に係る通信システム1が備えるアクセスポイントAPが送信するビーコンフレームのフォーマットの一例を示す概略図である。図10に示すように、ビーコンフレームは、例えば、rTWT機能で使用される管理情報として、rTWT開始時刻TS、rTWT継続期間TD、及び送信抑制期間QIを含む。
(Beacon frame format)
FIG. 10 is a schematic diagram showing an example of the format of a beacon frame transmitted by the access point AP included in the communication system 1 according to the first embodiment. As shown in FIG. 10, the beacon frame includes, for example, an rTWT start time TS, an rTWT duration TD, and a transmission suppression period QI as management information used in the rTWT function.
 各無線端末装置WTAのビーコン処理部233は、ビーコンを受信すると、rTWT開始時刻TS、rTWT継続期間TD、及び送信抑制期間QIを取得し、無線信号処理部250に通知する。これにより、アクセスポイントAPは、無線接続された複数の無線端末装置WTAに含まれたレガシー端末STA2に対して、rTWTサービス期間SP内のアップリンクデータの送信を自発的に抑制させることができる。一方で、設定されたrTWTサービス期間SP内に通信が割当られていない無線端末装置WTA(つまり、当該rTWTサービス期間SPのメンバー外であるEHT端末STA1)は、ビーコンを受信することによって、設定されたrTWTサービス期間SP内での自発的な送信を抑制可能である。 Upon receiving the beacon, the beacon processing unit 233 of each wireless terminal device WTA acquires the rTWT start time TS, rTWT duration TD, and transmission suppression period QI, and notifies the wireless signal processing unit 250 of the information. Thereby, the access point AP can voluntarily suppress the transmission of uplink data within the rTWT service period SP to the legacy terminal STA2 included in the plurality of wireless terminal devices WTA that are wirelessly connected. On the other hand, the wireless terminal device WTA to which communication is not assigned within the configured rTWT service period SP (that is, the EHT terminal STA1 that is not a member of the rTWT service period SP concerned) is configured by receiving the beacon. It is possible to suppress spontaneous transmission within the rTWT service period SP.
 なお、ビーコンフレームに含まれた送信抑制期間QIを示す情報は、rTWT継続期間TDと送信抑制期間QIとが同じ長さである場合に、省略されてもよい。この場合、無線端末装置WTAは、入力されたrTWT開始時刻TS及びrTWT継続期間TDにより示された期間を送信抑制期間QIとして設定する。すなわち、無線端末装置WTAの無線信号処理部250は、rTWT開始時刻TSとrTWT継続期間TDとに基づいて、rTWTサービス期間SPにおけるトラヒックの送信を抑制してもよい。 Note that the information indicating the transmission suppression period QI included in the beacon frame may be omitted when the rTWT continuation period TD and the transmission suppression period QI are the same length. In this case, the wireless terminal device WTA sets the period indicated by the input rTWT start time TS and rTWT duration TD as the transmission suppression period QI. That is, the radio signal processing unit 250 of the wireless terminal device WTA may suppress the transmission of traffic during the rTWT service period SP based on the rTWT start time TS and the rTWT duration period TD.
 また、ビーコンフレームは、無線端末装置WTAの識別子AID毎に、rTWT機能で使用される管理情報を格納してもよい。無線端末装置WTAは、AIDを参照して、自局向けの管理情報であるか否かを判別し得る。また、アクセスポイントAPは、rTWT機能で使用される管理情報を、無線端末装置WTAのグループ毎に管理してもよい。この場合、アクセスポイントAPは、管理情報を共有する無線端末装置WTAのグループの識別子と、当該グループに対応付けられたrTWT設定との組の情報を含むビーコンを送信する。 Additionally, the beacon frame may store management information used in the rTWT function for each identifier AID of the wireless terminal device WTA. The wireless terminal device WTA can refer to the AID and determine whether the management information is for its own station. Furthermore, the access point AP may manage management information used in the rTWT function for each group of wireless terminal devices WTA. In this case, the access point AP transmits a beacon that includes information on a set of an identifier of a group of wireless terminal devices WTA that share management information and an rTWT setting associated with the group.
 <1-2-2>フレーム交換方法
 図11は、第1実施形態に係る通信システム1のrTWT機能を用いたフレーム交換方法の一例を示すフローチャートである。以下に、図11を参照して、第1実施形態に係る通信システム1のrTWT機能を利用したフレーム交換方法について、1つのTWT間隔TIに注目して説明する。
<1-2-2> Frame Exchange Method FIG. 11 is a flowchart showing an example of a frame exchange method using the rTWT function of the communication system 1 according to the first embodiment. Below, with reference to FIG. 11, a frame exchange method using the rTWT function of the communication system 1 according to the first embodiment will be described, focusing on one TWT interval TI.
 rTWTサービス期間SPが開始すると(開始)、アクセスポイントAPとEHT端末STA1との間で、優先的にフレーム交換が実行される(S11)。rTWTサービス期間SPにおいて、レガシー端末STA2のトラヒックの送信は、送信抑制期間QIが設定されているため、抑制又は禁止される。また、アクセスポイントAPは、rTWTサービス期間SP中に、EHT端末STA1が利用する送信期間(上り/下り/双方向)を記録し得る。 When the rTWT service period SP starts (start), frame exchange is performed preferentially between the access point AP and the EHT terminal STA1 (S11). During the rTWT service period SP, the traffic transmission of the legacy terminal STA2 is suppressed or prohibited because the transmission suppression period QI is set. Furthermore, the access point AP can record the transmission period (uplink/downlink/bidirectional) used by the EHT terminal STA1 during the rTWT service period SP.
 rTWTサービス期間SPにおけるフレーム交換が完了すると、アクセスポイントAPは、期間αを算出する(S12)。期間αは、例えば、S11で記録された送信期間の情報に基づいて算出される。期間αの詳細な算出方法の具体例については後述する。 When the frame exchange in the rTWT service period SP is completed, the access point AP calculates the period α (S12). The period α is calculated, for example, based on the information on the transmission period recorded in S11. A detailed example of the method for calculating the period α will be described later.
 rTWTサービス期間SPが終了すると、送信抑制期間RPが開始し、アクセスポイントAP及びEHT端末STA1間のフレーム交換を期間αの間抑制して、アクセスポイントAPとレガシー端末STA2との間でフレーム交換が実行される(S13)。 When the rTWT service period SP ends, a transmission suppression period RP starts, suppressing frame exchange between the access point AP and the EHT terminal STA1 for a period α, and preventing frame exchange between the access point AP and the legacy terminal STA2. It is executed (S13).
 送信抑制期間RPが終了すると、期間OSPが開始する。すると、EHT端末STA1及びレガシー端末STA2のそれぞれが、同様の条件でアクセスポイントAPとフレーム交換を実行する(S14)。期間OSPが終了すると(終了)、アクセスポイントAPは、図11に示された一連の処理を完了し、次のrTWTサービス期間SPの処理を開始する。 When the transmission suppression period RP ends, the period OSP starts. Then, each of the EHT terminal STA1 and the legacy terminal STA2 executes frame exchange with the access point AP under the same conditions (S14). When the period OSP ends (end), the access point AP completes the series of processes shown in FIG. 11 and starts processing the next rTWT service period SP.
 (フレーム交換方法の具体例)
 図12は、第1実施形態に係る通信システム1のrTWT機能を用いたフレーム交換方法の具体例を示すタイムチャートである。図12は、1つのTWT間隔TIにおけるアクセスポイントAP、EHT端末STA1、及びレガシー端末STA2のそれぞれの動作を示している。図12に示すように、TWT間隔TIでは、例えば、rTWTサービス期間SP、送信抑制期間RP、及び期間OSPが、この順番に並んでいる。
(Specific example of frame replacement method)
FIG. 12 is a time chart showing a specific example of a frame exchange method using the rTWT function of the communication system 1 according to the first embodiment. FIG. 12 shows the respective operations of the access point AP, the EHT terminal STA1, and the legacy terminal STA2 in one TWT interval TI. As shown in FIG. 12, in the TWT interval TI, for example, the rTWT service period SP, the transmission suppression period RP, and the period OSP are arranged in this order.
 rTWTサービス期間SPでは、EHT端末STA1とアクセスポイントAPとの間でフレーム交換が実行される。すなわち、rTWTサービス期間SPにおいてEHT端末STA1は、アクセスポイントAPに低遅延トラヒックを送信し得る。また、送信抑制期間QIは、rTWTサービス期間SPの全体にオーバーラップするように設定されている。これにより、rTWTサービス期間SPでは、レガシー端末STA2とアクセスポイントAPとの間のフレーム交換が抑制又は禁止され、EHT端末STA1とアクセスポイントAPとの間のフレーム交換が優先される。 In the rTWT service period SP, frame exchange is performed between the EHT terminal STA1 and the access point AP. That is, in the rTWT service period SP, the EHT terminal STA1 can transmit low-latency traffic to the access point AP. Further, the transmission suppression period QI is set to overlap with the entire rTWT service period SP. As a result, during the rTWT service period SP, frame exchange between the legacy terminal STA2 and the access point AP is suppressed or prohibited, and frame exchange between the EHT terminal STA1 and the access point AP is prioritized.
 送信抑制期間RPの長さは、アクセスポイントAPによって算出された期間αに対応する。送信抑制期間RPでは、EHT端末STA1とアクセスポイントAPとの間のフレーム交換が抑制又は禁止される。一方で、送信抑制期間RPにおいて、レガシー端末STA2とアクセスポイントAPとの間のフレーム交換は可能である。これにより、送信抑制期間RPでは、レガシー端末STA2とアクセスポイントAPとの間のフレーム交換が優先される。 The length of the transmission suppression period RP corresponds to the period α calculated by the access point AP. During the transmission suppression period RP, frame exchange between the EHT terminal STA1 and the access point AP is suppressed or prohibited. On the other hand, frame exchange between the legacy terminal STA2 and the access point AP is possible during the transmission suppression period RP. As a result, frame exchange between the legacy terminal STA2 and the access point AP is prioritized during the transmission suppression period RP.
 期間OSPでは、EHT端末STA1とアクセスポイントAPとの間のフレーム交換と、レガシー端末STA2とアクセスポイントAPとの間のフレーム交換とが、所定のアクセスパラメータに従った送信権の獲得順位に従って実行される。本例の期間OSPでは、レガシー端末STA2及びEHT端末STA1の順にフレーム交換が実行されているが、EHT端末STA1及びレガシー端末STA2のそれぞれのフレーム交換の順番は、送信権の獲得順位や各無線端末装置WTAのトラヒック量などに基づいて変更され得る。 In the period OSP, frame exchanges between the EHT terminal STA1 and the access point AP and frame exchanges between the legacy terminal STA2 and the access point AP are performed in accordance with the transmission right acquisition order according to predetermined access parameters. Ru. In the period OSP of this example, frame exchange is executed in the order of legacy terminal STA2 and EHT terminal STA1. It may be changed based on the traffic amount of the device WTA, etc.
 なお、送信抑制期間RPは、期間OSPを分割するように配置されてもよい。期間OSPは、rTWTサービス期間SP外、且つ送信抑制期間RP外の期間に対応付けられてもよい。 Note that the transmission suppression period RP may be arranged to divide the period OSP. The period OSP may be associated with a period outside the rTWT service period SP and outside the transmission suppression period RP.
 (送信抑制期間の設定方法)
 図13は、第1実施形態に係る通信システム1が備えるアクセスポイントAPによる送信抑制期間RPの設定に使用されるパラメータの一例を示す概略図である。図13の(1)~(4)のそれぞれは、期間αの算出に使用される条件に対応し、rTWTサービス期間SPにおけるアクセスポイントAP及びEHT端末STA1のそれぞれの動作を示している。アクセスポイントAPは、以下で説明される第1条件~第4条件の何れかを利用し、rTWTサービス期間SPの長さ、若しくはrTWTサービス期間SP内に実行されたEHT端末STA1とのフレーム交換の期間の長さに基づいて、送信抑制期間RPの長さ(期間α)を設定する。
(How to set the transmission suppression period)
FIG. 13 is a schematic diagram showing an example of parameters used to set the transmission suppression period RP by the access point AP included in the communication system 1 according to the first embodiment. Each of (1) to (4) in FIG. 13 corresponds to the conditions used to calculate the period α, and shows the respective operations of the access point AP and the EHT terminal STA1 during the rTWT service period SP. The access point AP uses any of the first to fourth conditions explained below to determine the length of the rTWT service period SP or the frame exchange with the EHT terminal STA1 performed within the rTWT service period SP. The length of the transmission suppression period RP (period α) is set based on the length of the period.
 図13の(1)を参照して、第1条件について説明する。アクセスポイントAPは、第1条件を利用する場合、rTWTサービス期間SPの長さt1に所定の係数を掛けた値を期間αとして算出する。すなわち、第1条件を利用したアクセスポイントAPは、S12の処理において、“α=t1×β”を計算する。第1条件は、rTWTサービス期間SPにおいてフレーム交換が実行された期間の長さや、回数に依らない。 The first condition will be explained with reference to (1) in FIG. When using the first condition, the access point AP calculates a value obtained by multiplying the length t1 of the rTWT service period SP by a predetermined coefficient as the period α. That is, the access point AP using the first condition calculates "α=t1×β" in the process of S12. The first condition does not depend on the length of the period or the number of times frame exchange is performed in the rTWT service period SP.
 図13の(2)を参照して、第2条件について説明する。アクセスポイントAPは、第2条件を利用する場合、rTWTサービス期間SPにおいて、CSMA/CAによりアクセスポイントAP及びEHT端末STA1間でフレーム交換に要した時間の総計に、所定の係数γを乗算した値を期間αとして算出する。例えば、CSMA/CAによりアクセスポイントAP及びEHT端末STA1間でフレーム交換に要した時間は、EHT端末STA1がアップリンクデータを含むMSDU(MAC Service Data Unit)のアクセスポイントAPへの送信を開始してから、アクセスポイントAPによる当該MSDUの受信成功を示す確認フレームACKをEHT端末STA1が受信するまでの時間t2に対応する。MSDUは、LLC層で取り扱われるデータの単位である。rTWTサービス期間SPにおいて2回のフレーム交換が実行された場合、第2条件を利用したアクセスポイントAPは、S12の処理において、“α=(t2a+t2b)×γ”を計算する。すなわち、第2条件は、MSDUの送信開始時刻と、確認フレームACKの受信完了時刻との間隔に基づいている。 The second condition will be explained with reference to (2) in FIG. When using the second condition, the access point AP calculates a value obtained by multiplying the total time required for frame exchange between the access point AP and the EHT terminal STA1 by a predetermined coefficient γ during the rTWT service period SP using CSMA/CA. is calculated as period α. For example, the time required for frame exchange between the access point AP and the EHT terminal STA1 using CSMA/CA is the time required for the frame exchange between the access point AP and the EHT terminal STA1. This corresponds to the time t2 from the time to when the EHT terminal STA1 receives a confirmation frame ACK indicating successful reception of the MSDU by the access point AP. MSDU is a unit of data handled by the LLC layer. When frame exchange is performed twice in the rTWT service period SP, the access point AP using the second condition calculates "α=(t2a+t2b)×γ" in the process of S12. That is, the second condition is based on the interval between the MSDU transmission start time and the confirmation frame ACK reception completion time.
 図13の(3)を参照して、第3条件について説明する。アクセスポイントAPは、第3条件を利用する場合、rTWTサービス期間SPにおいて、RTS(Request To Send)及びCTS(Clear To Send)を用いたCSMA/CAによりアクセスポイントAP及びEHT端末STA1間でフレーム交換に要した時間の総計に、所定の係数δを乗算した値を期間αとして算出する。例えば、RTS及びCTSを用いたCSMA/CAによりアクセスポイントAP及びEHT端末STA1間でフレーム交換に要した時間は、EHT端末STA1がアクセスポイントAPへのRTSの送信を開始してから、アクセスポイントAPが当該RTSに関連付けられたMSDUの受信成功を示す確認フレームACKの送信を完了するまでの時間t3に対応する。rTWTサービス期間SPにおいて2回のフレーム交換が実行された場合、第3条件を利用したアクセスポイントAPは、S12の処理において、“α=(t3a+t3b)×δ”を計算する。すなわち、第3条件は、RTSの送信開始時刻と、確認フレームACKの受信完了時刻との間隔に基づいている。 The third condition will be explained with reference to (3) in FIG. When using the third condition, the access point AP exchanges frames between the access point AP and the EHT terminal STA1 using CSMA/CA using RTS (Request To Send) and CTS (Clear To Send) during the rTWT service period SP. The period α is calculated by multiplying the total time required by a predetermined coefficient δ. For example, the time required for frame exchange between the access point AP and the EHT terminal STA1 using CSMA/CA using RTS and CTS is as follows: corresponds to the time t3 until the end of the transmission of the confirmation frame ACK indicating successful reception of the MSDU associated with the RTS. When frame exchange is performed twice in the rTWT service period SP, the access point AP using the third condition calculates “α=(t3a+t3b)×δ” in the process of S12. That is, the third condition is based on the interval between the RTS transmission start time and the confirmation frame ACK reception completion time.
 図13の(4)を参照して、第4条件について説明する。アクセスポイントAPは、第4条件を利用する場合、rTWTサービス期間SPにおいて、トリガーフレームTFによりアクセスポイントAP及びEHT端末STA1間でフレーム交換に要した時間の総計に、所定の係数εを乗算した値を期間αとして算出する。例えば、トリガーフレームTFによりアクセスポイントAP及びEHT端末STA1間でフレーム交換に要した時間は、アクセスポイントAPがEHT端末STA1へのトリガーフレームTFの送信を開始してから、アクセスポイントAPが当該トリガーフレームに関連付けられたMSDUの受信成功を示す確認フレームACKの送信を完了するまでの時間t4に対応する。rTWTサービス期間SPにおいて2回のフレーム交換が実行された場合、第4条件を利用したアクセスポイントAPは、S12の処理において、“α=(t4a+t4b)×ε”を計算する。すなわち、第4条件は、トリガーフレームTFの送信開始時刻と、確認フレームACKの受信完了時刻との間隔に基づいている。 The fourth condition will be explained with reference to (4) in FIG. When using the fourth condition, the access point AP calculates a value obtained by multiplying the total time required for frame exchange between the access point AP and the EHT terminal STA1 by a predetermined coefficient ε during the rTWT service period SP using the trigger frame TF. is calculated as period α. For example, the time required for frame exchange between the access point AP and the EHT terminal STA1 using the trigger frame TF is as follows. corresponds to the time t4 until the transmission of the confirmation frame ACK indicating successful reception of the MSDU associated with the MSDU is completed. When frame exchange is performed twice in the rTWT service period SP, the access point AP using the fourth condition calculates "α=(t4a+t4b)×ε" in the process of S12. That is, the fourth condition is based on the interval between the transmission start time of the trigger frame TF and the reception completion time of the confirmation frame ACK.
 <1-3>第1実施形態の効果
 第1実施形態に係る通信システム1に依れば、無線で送信されるトラヒックの遅延を抑制することができる。以下に第1実施形態の効果の詳細について説明する。
<1-3> Effects of the first embodiment According to the communication system 1 according to the first embodiment, delays in traffic transmitted wirelessly can be suppressed. Details of the effects of the first embodiment will be described below.
 無線通信システムにおいて、低遅延トラヒックの送信機会を優先的に確保する機能として、rTWT機能が知られている。rTWT機能を利用するアクセスポイントAPは、EHT端末STA1に低遅延トラヒックを送信させるためのrTWTサービス期間SPと、rTWT機能に対応していないレガシー端末STA2によるトラヒック(データ)の送信を禁止する送信抑制期間QIとをオーバーラップするようにスケジュールする。送信抑制期間QIがrTWTサービス期間SPの長さと一致する場合、レガシー端末STA2は、送信キューにデータを保持していたとしても、rTWTサービス期間SPにおいてデータを送信できなくなる。また、rTWTサービス期間SPの期間外では、EHT端末STA1とレガシー端末STA2とでチャネル送信権獲得のためのコンテンション動作が等しく実行されるため、送信権の獲得機会に不公平が生じ得る。 In wireless communication systems, the rTWT function is known as a function that preferentially secures transmission opportunities for low-latency traffic. The access point AP that uses the rTWT function has an rTWT service period SP that allows the EHT terminal STA1 to transmit low-latency traffic, and a transmission suppression that prohibits the transmission of traffic (data) by the legacy terminal STA2 that does not support the rTWT function. The schedule is made so as to overlap with the period QI. If the transmission suppression period QI matches the length of the rTWT service period SP, the legacy terminal STA2 cannot transmit data during the rTWT service period SP even if it holds data in the transmission queue. Furthermore, outside the rTWT service period SP, the EHT terminal STA1 and the legacy terminal STA2 equally perform contention operations for acquiring the channel transmission right, which may cause unfair opportunities to acquire the transmission right.
 そこで、第1実施形態に係る通信システム1は、rTWTサービス期間SPの終了後に、EHT端末STA1に対して、一定期間のフレーム送信を抑制させる送信抑制期間RPを設定する。送信抑制期間RPが設定されることによって、rTWT機能に対応していないレガシー端末STA2に対する送信機会が確保される。例えば、アクセスポイントAPは、rTWTサービス期間SP中に配下のEHT端末STA1により利用された送信期間(上り/下り/双方向)に基づいて、送信抑制期間RPの長さ(期間α)を設定し得る。 Therefore, after the rTWT service period SP ends, the communication system 1 according to the first embodiment sets a transmission suppression period RP for suppressing frame transmission for a certain period for the EHT terminal STA1. By setting the transmission suppression period RP, a transmission opportunity is secured for the legacy terminal STA2 that does not support the rTWT function. For example, the access point AP sets the length of the transmission suppression period RP (period α) based on the transmission period (uplink/downlink/bidirectional) used by the subordinate EHT terminal STA1 during the rTWT service period SP. obtain.
 その結果、送信抑制期間RPにおいて、rTWTサービス期間SPに通信を行えなかったレガシー端末STA2は、rTWTサービス期間SPにおいて優先して通信したEHT端末STA1とのチャネルアクセス権を獲得するための競争を回避することができる。言い換えると、第1実施形態に係る通信システム1は、rTWT機能を利用する無線端末装置WTAと、rTWT機能を利用しない無線端末装置WTAとの送信機会の公平性を保ち、レガシー端末STA2によるトラヒックの送信機会を確保することができる。従って、第1実施形態に係る通信システム1は、EHT端末STA1とレガシー端末STA2とのそれぞれにおいて、無線で送信されるトラヒックの遅延を抑制することができる。 As a result, during the transmission suppression period RP, the legacy terminal STA2, which was unable to communicate during the rTWT service period SP, avoids competition for channel access rights with the EHT terminal STA1, which communicated with priority during the rTWT service period SP. can do. In other words, the communication system 1 according to the first embodiment maintains fairness in transmission opportunities between the wireless terminal device WTA that uses the rTWT function and the wireless terminal device WTA that does not use the rTWT function, and reduces traffic by the legacy terminal STA2. It is possible to secure transmission opportunities. Therefore, the communication system 1 according to the first embodiment can suppress delays in traffic transmitted wirelessly in each of the EHT terminal STA1 and the legacy terminal STA2.
 なお、rTWTサービス期間SPにおいてEHT端末STA1がフレーム交換を実行しなかった場合、当該TWT間隔TIにおける送信抑制期間RPが省略され得る。この場合、アクセスポイントAPは、例えば、期間αの算出に、図13を用いて説明された第2条件~第4条件のいずれかを使用する。 Note that if the EHT terminal STA1 does not perform frame exchange during the rTWT service period SP, the transmission suppression period RP in the TWT interval TI may be omitted. In this case, the access point AP uses, for example, any of the second to fourth conditions explained using FIG. 13 to calculate the period α.
 <2>第2実施形態
 第2実施形態に係る通信システム1は、アクセスポイントAPが送信の禁止を指示する無線フレームを低遅延グループのSTA1に送信することによって、送信抑制期間RPaを設定する。以下に、第2実施形態に係る通信システム1の詳細について説明する。
<2> Second Embodiment In the communication system 1 according to the second embodiment, the access point AP sets a transmission suppression period RPa by transmitting a radio frame instructing prohibition of transmission to the STA1 of the low delay group. Details of the communication system 1 according to the second embodiment will be described below.
 <2-1>構成
 第2実施形態に係る通信システム1のハードウェア構成は、第1実施形態に係る通信システム1と同様である。第2実施形態に係る通信システム1は、第1実施形態に係る通信システム1に対して、アクセスポイントAPの機能構成が異なる。
<2-1> Configuration The hardware configuration of the communication system 1 according to the second embodiment is the same as that of the communication system 1 according to the first embodiment. The communication system 1 according to the second embodiment differs from the communication system 1 according to the first embodiment in the functional configuration of the access point AP.
 (アクセスポイントAPaの機能構成)
 図14は、第2実施形態に係る通信システム1が備えるアクセスポイントAPaの機能構成の一例を示すブロック図である。図14に示すように、アクセスポイントAPaは、例えば、LLC処理部110、データ処理部120、マネジメント部130a、MACフレーム処理部140、及び無線信号処理部150を備えるコンピュータとして機能する。マネジメント部130aは、リンク管理情報131、リンク制御部132、ビーコン管理部133、送信期間管理部134、及び送信禁止フレーム生成部135を含む。
(Functional configuration of access point APa)
FIG. 14 is a block diagram illustrating an example of a functional configuration of an access point APa included in the communication system 1 according to the second embodiment. As shown in FIG. 14, the access point APa functions as a computer including, for example, an LLC processing section 110, a data processing section 120, a management section 130a, a MAC frame processing section 140, and a wireless signal processing section 150. The management section 130a includes link management information 131, a link control section 132, a beacon management section 133, a transmission period management section 134, and a transmission prohibited frame generation section 135.
 送信禁止フレーム生成部135は、送信禁止フレームを生成する。送信禁止フレームは、高優先フレームであり、例えば、トリガーフレームである。送信禁止フレームは、rTWTサービス期間SP中に通信した無線端末装置WTA(EHT端末STA1)に対して、rTWTサービス期間SP外でのフレーム交換の一定期間の禁止を指示する。この一定期間は、例えば、送信期間管理部134によって算出された期間αに基づいている。そして、送信禁止フレーム生成部135は、生成した送信禁止フレームを、MACフレーム処理部140及び無線信号処理部150を介してEHT端末STA1に送信する。 The transmission prohibited frame generation unit 135 generates a transmission prohibited frame. The transmission prohibited frame is a high priority frame, for example, a trigger frame. The transmission prohibition frame instructs the wireless terminal device WTA (EHT terminal STA1) that communicated during the rTWT service period SP to prohibit frame exchange for a certain period of time outside the rTWT service period SP. This fixed period is based on, for example, the period α calculated by the transmission period management unit 134. Then, the transmission prohibited frame generation unit 135 transmits the generated transmission prohibited frame to the EHT terminal STA1 via the MAC frame processing unit 140 and the wireless signal processing unit 150.
 なお、第2実施形態において送信期間管理部134は、送信禁止フレーム生成部135による送信禁止フレームの送信後のタイマ管理を行ってもよい。第2実施形態に係る通信システム1のその他の機能構成は、第1実施形態に係る通信システム1と同様である。 Note that in the second embodiment, the transmission period management unit 134 may perform timer management after the transmission prohibited frame is transmitted by the transmission prohibited frame generation unit 135. The other functional configurations of the communication system 1 according to the second embodiment are the same as those of the communication system 1 according to the first embodiment.
 (送信禁止フレームのフォーマット)
 図15は、第2実施形態に係る通信システム1が備えるアクセスポイントAPaが送信する送信禁止フレームのフォーマットの一例を示す概略図である。図15は、送信禁止フレームがトリガーフレームである場合を例示している。図15に示すように、送信禁止フレームに含まれる複数のフィールドは、例えば、フレームコントロールフィールド、デュレーションフィールド、アドレスフィールド(RA及びTA)、共通情報フィールド、ユーザー情報リストフィールド、パディングフィールド、及びFCS(Frame Check Sequence)フィールドを含む。
(Format of transmission prohibited frame)
FIG. 15 is a schematic diagram illustrating an example of the format of a transmission prohibited frame transmitted by the access point APa included in the communication system 1 according to the second embodiment. FIG. 15 illustrates a case where the transmission prohibited frame is a trigger frame. As shown in FIG. 15, the plurality of fields included in the transmission prohibited frame are, for example, a frame control field, a duration field, an address field (RA and TA), a common information field, a user information list field, a padding field, and an FCS ( Frame Check Sequence) field.
 フレームコントロールフィールドは、様々な制御情報を格納する。例えば、フレームコントロールフィールドは、当該無線フレームのフレームタイプを示す情報を含む。デュレーションフィールドは、無線回線を使用する予定期間を示す。アドレスフィールドは、BSSID、送信元アドレス、あて先アドレス、送信者端末のアドレス、受信者端末のアドレスなどを示す。共通情報フィールドは、トリガーフレームのタイプなどを示す情報を含む。ユーザー情報リストフィールドは、例えば、“AID”と、“RU(Resource Unit)割り当て(RU Allocation)”とを含む。無線端末装置WTAは、AIDにより、自局向けの割り当てであることを認識する。また、無線端末装置WTAは、RU割り当てにより、割り当てられたリソースを認識する。パディングは、無線フレームのデータ長を調整する領域である。FCSフィールドは、MACヘッダとフレーム本体フィールドとの組の誤り検出符号を格納し、当該データフレームにおけるエラーの有無の判定に使用される。 The frame control field stores various control information. For example, the frame control field includes information indicating the frame type of the wireless frame. The duration field indicates the scheduled period of time during which the wireless line will be used. The address field indicates the BSSID, source address, destination address, sender terminal address, receiver terminal address, etc. The common information field includes information indicating the trigger frame type and the like. The user information list field includes, for example, "AID" and "RU (Resource Unit) Allocation." The wireless terminal device WTA recognizes from the AID that the assignment is for its own station. Furthermore, the wireless terminal device WTA recognizes the allocated resources based on the RU allocation. Padding is an area for adjusting the data length of a radio frame. The FCS field stores an error detection code for the MAC header and frame body field, and is used to determine whether or not there is an error in the data frame.
 トリガーフレームが送信禁止フレームとして使用される場合、特定の無線端末装置WTAに対する通信リソース(周波数、送信タイミング、期間)の割り当てが“0”に設定される。これにより、当該特定の無線端末装置WTA(EHT端末STA1)の通信が、一定期間(送信抑制期間RPa)において禁止される。なお、送信禁止フレームは、rTWTサービス期間SPを共有するグループの無線端末装置WTAにおいて参照可能なフレーム(例えば、EHTアクションフレームや、独自定義フレーム)であってもよい。 When the trigger frame is used as a transmission prohibited frame, the allocation of communication resources (frequency, transmission timing, period) to the specific wireless terminal device WTA is set to "0". As a result, communication of the specific wireless terminal device WTA (EHT terminal STA1) is prohibited for a certain period (transmission suppression period RPa). Note that the transmission prohibited frame may be a frame (for example, an EHT action frame or a uniquely defined frame) that can be referenced by the wireless terminal devices WTA of the group that share the rTWT service period SP.
 <2-2>フレーム交換方法
 図16は、第2実施形態に係る通信システム1のrTWT機能を用いたフレーム交換方法の一例を示すフローチャートである。以下に、図16を参照して、第2実施形態に係る通信システム1のrTWT機能を利用したフレーム交換方法について、1つのTWT間隔TIに注目して説明する。
<2-2> Frame Exchange Method FIG. 16 is a flowchart showing an example of a frame exchange method using the rTWT function of the communication system 1 according to the second embodiment. Below, with reference to FIG. 16, a frame exchange method using the rTWT function of the communication system 1 according to the second embodiment will be described, focusing on one TWT interval TI.
 rTWTサービス期間SPが開始すると(開始)、第1実施形態のアクセスポイントAPと同様に、アクセスポイントAPaとEHT端末STA1との間で、優先的にフレーム交換が実行される(S11)。 When the rTWT service period SP starts (start), frame exchange is performed preferentially between the access point APa and the EHT terminal STA1, similarly to the access point AP of the first embodiment (S11).
 rTWTサービス期間SPにおけるフレーム交換が完了すると、アクセスポイントAPaは、第1実施形態のアクセスポイントAPと同様に、期間αを算出する(S12)。 When the frame exchange in the rTWT service period SP is completed, the access point APa calculates the period α similarly to the access point AP of the first embodiment (S12).
 rTWTサービス期間SPが終了すると、送信抑制期間RPaが開始する。そして、アクセスポイントAPaは、EHT端末STA1にデュレーション(送信抑制期間RPaの継続期間)=αとした送信禁止フレームをEHT端末STA1に送信する(S21)。具体的には、送信期間管理部134が、EHT端末STA1にフレーム交換を禁止させる期間αを送信禁止フレーム生成部135に通知する。そして、送信禁止フレーム生成部135は、送信期間管理部134に通知された情報に基づいて、デュレーション=αとした送信禁止フレームを生成する。そして、送信禁止フレーム生成部135は、生成した送信禁止フレームをMACフレーム処理部140及び無線信号処理部150を介してEHT端末STA1に送信する。言い換えると、送信禁止フレームを受信したEHT端末STA1は、デュレーション値に示された期間αの間、NAV(Network Allocation Vector:送信禁止期間)を設定して、送信を抑制(禁止)する。 When the rTWT service period SP ends, the transmission suppression period RPa starts. Then, the access point APa transmits to the EHT terminal STA1 a transmission prohibition frame with a duration (duration of the transmission suppression period RPa)=α (S21). Specifically, the transmission period management unit 134 notifies the transmission prohibited frame generation unit 135 of the period α during which the EHT terminal STA1 is prohibited from exchanging frames. Then, the transmission prohibited frame generation unit 135 generates a transmission prohibited frame with duration=α based on the information notified to the transmission period management unit 134. Then, the transmission prohibited frame generation unit 135 transmits the generated transmission prohibited frame to the EHT terminal STA1 via the MAC frame processing unit 140 and the wireless signal processing unit 150. In other words, the EHT terminal STA1 that has received the transmission prohibited frame sets a NAV (Network Allocation Vector: transmission prohibited period) and suppresses (prohibits) transmission during the period α indicated by the duration value.
 これにより、送信抑制期間RPaでは、アクセスポイントAPa及びEHT端末STA1間のフレーム交換が期間αの間禁止されて、アクセスポイントAPaとレガシー端末STA2との間でフレーム交換が実行される(S22)。 As a result, during the transmission suppression period RPa, frame exchange between the access point APa and the EHT terminal STA1 is prohibited for the period α, and frame exchange is executed between the access point APa and the legacy terminal STA2 (S22).
 送信抑制期間RPaが終了すると、期間OSPが開始する。すると、第1実施形態と同様に、EHT端末STA1及びレガシー端末STA2のそれぞれが同様の条件でアクセスポイントAPaとフレーム交換を実行する(S14)。期間OSPが終了すると(終了)、アクセスポイントAPaは、図16に示された一連の処理を完了し、次のrTWTサービス期間SPの処理を開始する。 When the transmission suppression period RPa ends, the period OSP starts. Then, similarly to the first embodiment, each of the EHT terminal STA1 and the legacy terminal STA2 executes frame exchange with the access point APa under the same conditions (S14). When the period OSP ends (ends), the access point APa completes the series of processes shown in FIG. 16 and starts the process of the next rTWT service period SP.
 なお、S21の処理における送信禁止フレームの送信タイミングは、例えば、rTWTサービス期間SPの終了時刻である。アクセスポイントAPaは、rTWTサービス期間SPの終了時刻に送信禁止フレームを送信するために、無線信号処理部150に、最も優先度の高いアクセスカテゴリを用いて送信禁止フレームを送信させてもよい。または、アクセスポイントAPaは、アクセスカテゴリとは異なる優先的な送信手段によって、送信禁止フレームを送信してもよい。 Note that the transmission timing of the transmission prohibited frame in the process of S21 is, for example, the end time of the rTWT service period SP. In order to transmit the transmission prohibited frame at the end time of the rTWT service period SP, the access point APa may have the radio signal processing unit 150 transmit the transmission prohibited frame using the access category with the highest priority. Alternatively, the access point APa may transmit the transmission prohibited frame using a preferential transmission means different from the access category.
 (フレーム交換方法の具体例)
 図17は、第2実施形態に係る通信システム1のrTWT機能を用いたフレーム交換方法の具体例を示すタイムチャートである。図17は、1つのTWT間隔TIに含まれたrTWTサービス期間SP及び送信抑制期間RPaを抽出して表示し、アクセスポイントAPa、EHT端末STA1、及びレガシー端末STA2のそれぞれの動作を示している。
(Specific example of frame replacement method)
FIG. 17 is a time chart showing a specific example of a frame exchange method using the rTWT function of the communication system 1 according to the second embodiment. FIG. 17 extracts and displays the rTWT service period SP and transmission suppression period RPa included in one TWT interval TI, and shows the respective operations of the access point APa, the EHT terminal STA1, and the legacy terminal STA2.
 図17に示すように、rTWTサービス期間SPでは、第1実施形態と同様に、EHT端末STA1とアクセスポイントAPaとの間でフレーム交換が実行され得る。また、rTWTサービス期間SPに設定された送信抑制期間QIにおいて、レガシー端末STA2は、フレームの送信を延期(defer)、すなわち待機(quiet)している。 As shown in FIG. 17, during the rTWT service period SP, frame exchange may be performed between the EHT terminal STA1 and the access point APa, similarly to the first embodiment. Furthermore, during the transmission suppression period QI set in the rTWT service period SP, the legacy terminal STA2 defers frame transmission, that is, is on standby.
 rTWTサービス期間SPが終了すると、アクセスポイントAPaがEHT端末STA1に送信禁止フレームを送信する。すると、送信禁止フレームを受信したEHT端末STA1に、NAVが設定される。EHT端末STA1にNAVが設定されている期間が、送信抑制期間RPaに対応する。そして、送信抑制期間RPaにおいて、レガシー端末STA2は、アクセスポイントAPaとの間でフレーム交換を実行し得る。これにより、送信抑制期間RPaでは、レガシー端末STA2とアクセスポイントAPaとの間のフレーム交換が優先される。第2実施形態に係る通信システム1のその他の動作は、第1実施形態に係る通信システム1と同様である。 When the rTWT service period SP ends, the access point APa transmits a transmission prohibition frame to the EHT terminal STA1. Then, the NAV is set in the EHT terminal STA1 that received the transmission prohibited frame. The period during which the NAV is set for the EHT terminal STA1 corresponds to the transmission suppression period RPa. Then, during the transmission suppression period RPa, the legacy terminal STA2 may exchange frames with the access point APa. Thereby, during the transmission suppression period RPa, priority is given to frame exchange between the legacy terminal STA2 and the access point APa. Other operations of the communication system 1 according to the second embodiment are the same as those of the communication system 1 according to the first embodiment.
 <2-3>第2実施形態の効果
 以上で説明されたように、第2実施形態に係る通信システム1は、送信禁止フレームに基づいて、EHT端末STA1によるフレーム交換を抑制する送信抑制期間RPaを設定する。その結果、第2実施形態に係る通信システム1は、rTWT機能を利用する無線端末装置WTAと、rTWT機能を利用しない無線端末装置WTAとの送信機会の公平性を保つことができる。従って、第2実施形態に係る通信システム1は、第1実施形態と同様に、EHT端末STA1とレガシー端末STA2とのそれぞれにおいて、無線で送信されるトラヒックの遅延を抑制することができる。
<2-3> Effects of the second embodiment As explained above, the communication system 1 according to the second embodiment has a transmission suppression period RPa in which frame exchange by the EHT terminal STA1 is suppressed based on the transmission prohibited frame. Set. As a result, the communication system 1 according to the second embodiment can maintain fairness in transmission opportunities between the wireless terminal device WTA that uses the rTWT function and the wireless terminal device WTA that does not use the rTWT function. Therefore, similarly to the first embodiment, the communication system 1 according to the second embodiment can suppress delays in traffic transmitted wirelessly in each of the EHT terminal STA1 and the legacy terminal STA2.
 <3>第3実施形態
 第3実施形態に係る通信システム1は、EHT端末STA1がRTS(Request To Send)/CTS(Clear To Send)手順を利用し、アクセスポイントAPがEHT端末STA1のRTSに対する応答を省略する期間を設けることによって、送信抑制期間RPbを設定する。以下に、第3実施形態に係る通信システム1の詳細について説明する。
<3> Third Embodiment In the communication system 1 according to the third embodiment, the EHT terminal STA1 uses the RTS (Request To Send)/CTS (Clear To Send) procedure, and the access point AP responds to the RTS of the EHT terminal STA1. The transmission suppression period RPb is set by providing a period during which the response is omitted. Below, details of the communication system 1 according to the third embodiment will be explained.
 <3-1>構成
 第3実施形態に係る通信システム1のハードウェア構成は、第1実施形態に係る通信システム1と同様である。第3実施形態に係る通信システム1は、第1実施形態に係る通信システム1に対して、アクセスポイントAPの機能構成が異なる。
<3-1> Configuration The hardware configuration of the communication system 1 according to the third embodiment is the same as the communication system 1 according to the first embodiment. The communication system 1 according to the third embodiment differs from the communication system 1 according to the first embodiment in the functional configuration of the access point AP.
 (アクセスポイントAPbの機能構成)
 図18は、第3実施形態に係る通信システム1が備えるアクセスポイントAPbの機能構成の一例を示すブロック図である。図18に示すように、アクセスポイントAPbは、例えば、LLC処理部110、データ処理部120、マネジメント部130b、MACフレーム処理部140、及び無線信号処理部150を備えるコンピュータとして機能する。マネジメント部130bは、リンク管理情報131、リンク制御部132、ビーコン管理部133、送信期間管理部134、及び送信禁止端末判定部136を含む。
(Functional configuration of access point APb)
FIG. 18 is a block diagram showing an example of the functional configuration of the access point APb included in the communication system 1 according to the third embodiment. As shown in FIG. 18, the access point APb functions as a computer including, for example, an LLC processing section 110, a data processing section 120, a management section 130b, a MAC frame processing section 140, and a wireless signal processing section 150. The management section 130b includes link management information 131, a link control section 132, a beacon management section 133, a transmission period management section 134, and a transmission prohibited terminal determination section 136.
 送信禁止端末判定部136は、送信期間管理部134によって通知された送信抑制期間RPbにおいて、アクセスポイントAPbが受信したRTSを送信した無線端末装置WTAの種別を確認する。そして、送信禁止端末判定部136は、EHT端末STA1によって送信されたRTSを受信した場合に、EHT端末STA1に対するCTSの返答を省略する。一方で、送信禁止端末判定部136は、レガシー端末STA2によって送信されたRTSを受信した場合に、レガシー端末STA2に対するCTSをMACフレーム処理部140及び無線信号処理部150を介して送信させる。 The transmission prohibited terminal determination unit 136 checks the type of the wireless terminal device WTA that transmitted the RTS received by the access point APb during the transmission suppression period RPb notified by the transmission period management unit 134. Then, when the transmission prohibited terminal determination unit 136 receives the RTS transmitted by the EHT terminal STA1, it omits the CTS response to the EHT terminal STA1. On the other hand, when receiving the RTS transmitted by the legacy terminal STA2, the transmission-prohibited terminal determination unit 136 causes the CTS for the legacy terminal STA2 to be transmitted via the MAC frame processing unit 140 and the radio signal processing unit 150.
 なお、マネジメント部130bは、rTWTサービス期間SPで通信を行った無線端末装置WTA(EHT端末STA1)に対して、当該rTWTサービス期間SPに続く送信抑制期間RPbにおけるアップリンクデータの送信にRTS/CTSを使用することを要求してもよい。送信禁止端末判定部136は、送信抑制期間RPbにおける通信リソースに余裕がある場合に、EHT端末STA1のRTSに対してCTSを返信し、EHT端末STA1に通信を許可してもよい。rTWTサービス期間SPに続く送信抑制期間RPbでは、rTWTサービス期間SPで通信を行った無線端末装置WTA(EHT端末STA1)に対してのみRTS/CTS手順が利用され、レガシー端末STA2は、RTS/CTS手段を利用せずにアクセスポイントAPbと通信してもよい。第3実施形態に係る通信システム1のその他の機能構成は、第1実施形態に係る通信システム1と同様である。 Note that the management unit 130b uses RTS/CTS to transmit uplink data during the transmission suppression period RPb following the rTWT service period SP to the wireless terminal device WTA (EHT terminal STA1) that communicated during the rTWT service period SP. may be required to be used. The transmission prohibited terminal determining unit 136 may return a CTS to the RTS of the EHT terminal STA1 and permit the EHT terminal STA1 to communicate if there is sufficient communication resources during the transmission suppression period RPb. In the transmission suppression period RPb following the rTWT service period SP, the RTS/CTS procedure is used only for the wireless terminal device WTA (EHT terminal STA1) that communicated in the rTWT service period SP, and the legacy terminal STA2 uses the RTS/CTS procedure. It is also possible to communicate with the access point APb without using any means. The other functional configurations of the communication system 1 according to the third embodiment are the same as those of the communication system 1 according to the first embodiment.
 <3-2>フレーム交換方法
 図19は、第3実施形態に係る通信システム1のrTWT機能を用いたフレーム交換方法の一例を示すフローチャートである。以下に、図19を参照して、第1実施形態に係る通信システム1のrTWT機能を利用したフレーム交換方法について、1つのTWT間隔TIに注目して説明する。
<3-2> Frame Exchange Method FIG. 19 is a flowchart showing an example of a frame exchange method using the rTWT function of the communication system 1 according to the third embodiment. Below, with reference to FIG. 19, a frame exchange method using the rTWT function of the communication system 1 according to the first embodiment will be described, focusing on one TWT interval TI.
 rTWTサービス期間SPが開始すると(開始)、第1実施形態のアクセスポイントAPと同様に、アクセスポイントAPbとEHT端末STA1との間で、優先的にフレーム交換が実行される(S11)。 When the rTWT service period SP starts (start), frames are exchanged preferentially between the access point APb and the EHT terminal STA1, similarly to the access point AP of the first embodiment (S11).
 rTWTサービス期間SPにおけるフレーム交換が完了すると、アクセスポイントAPbは、第1実施形態のアクセスポイントAPと同様に、期間αを算出する(S12)。 When the frame exchange in the rTWT service period SP is completed, the access point APb calculates the period α similarly to the access point AP of the first embodiment (S12).
 rTWTサービス期間SPが終了すると、送信抑制期間RPbが開始する。そして、期間αの間、EHT端末STA1がRTS/CTS手順を利用し、アクセスポイントAPbは、EHT端末STA1のRTSに対してCTSを返送しない設定でレガシー端末STA2とのフレーム交換を実行する(S31)。 When the rTWT service period SP ends, a transmission suppression period RPb starts. Then, during the period α, the EHT terminal STA1 uses the RTS/CTS procedure, and the access point APb executes frame exchange with the legacy terminal STA2 with a setting that does not return CTS in response to the RTS of the EHT terminal STA1 (S31 ).
 送信抑制期間RPbが終了すると、期間OSPが開始する。すると、第1実施形態のアクセスポイントAPと同様に、EHT端末STA1及びレガシー端末STA2のそれぞれが同様の条件でアクセスポイントAPbとフレーム交換を実行する(S14)。期間OSPが終了すると(終了)、アクセスポイントAPbは、図19に示された一連の処理を完了し、次のrTWTサービス期間SPの処理を開始する。 When the transmission suppression period RPb ends, the period OSP starts. Then, similarly to the access point AP of the first embodiment, each of the EHT terminal STA1 and the legacy terminal STA2 executes frame exchange with the access point APb under the same conditions (S14). When the period OSP ends (end), the access point APb completes the series of processes shown in FIG. 19 and starts the process of the next rTWT service period SP.
 (フレーム交換方法の具体例)
 図20は、第3実施形態に係る通信システム1のrTWT機能を用いたフレーム交換方法の具体例を示すタイムチャートである。図20は、1つのTWT間隔TIに含まれたrTWTサービス期間SP及び送信抑制期間RPbを抽出して表示し、アクセスポイントAPb、EHT端末STA1、及びレガシー端末STA2のそれぞれの動作を示している。
(Specific example of frame replacement method)
FIG. 20 is a time chart showing a specific example of a frame exchange method using the rTWT function of the communication system 1 according to the third embodiment. FIG. 20 extracts and displays the rTWT service period SP and transmission suppression period RPb included in one TWT interval TI, and shows the respective operations of the access point APb, the EHT terminal STA1, and the legacy terminal STA2.
 図20に示すように、rTWTサービス期間SPでは、第1実施形態と同様に、EHT端末STA1とアクセスポイントAPbとの間でフレーム交換が実行され得る。また、rTWTサービス期間SPに設定された送信抑制期間QIにおいて、レガシー端末STA2は、フレームの送信を延期(defer)、すなわち待機(quiet)している。 As shown in FIG. 20, during the rTWT service period SP, frame exchange may be performed between the EHT terminal STA1 and the access point APb, similar to the first embodiment. Furthermore, during the transmission suppression period QI set in the rTWT service period SP, the legacy terminal STA2 defers frame transmission, that is, is on standby.
 rTWTサービス期間SPが終了すると、アクセスポイントAPbは、送信抑制期間RPbを設定する。送信抑制期間RPbにおいて、EHT端末STA1は、所定のアクセスパラメータに応じてRTSをアクセスポイントAPbに送信し得る。しかしながら、アクセスポイントAPbは、送信抑制期間RPbにおいて、EHT端末STA1からのRTSを無視して、EHT端末STA1に対するCTSの送信を省略する。一方で、アクセスポイントAPbは、送信抑制期間RPbにおいて、レガシー端末STA2からのRTSに対してCTSを送信する。すると、CTSを受信したレガシー端末STA2は、データ(MSDU)をアクセスポイントAPbに送信する。 When the rTWT service period SP ends, the access point APb sets a transmission suppression period RPb. During the transmission suppression period RPb, the EHT terminal STA1 may transmit RTS to the access point APb according to predetermined access parameters. However, the access point APb ignores the RTS from the EHT terminal STA1 and omits the transmission of the CTS to the EHT terminal STA1 during the transmission suppression period RPb. On the other hand, the access point APb transmits a CTS in response to the RTS from the legacy terminal STA2 during the transmission suppression period RPb. Then, the legacy terminal STA2 that received the CTS transmits data (MSDU) to the access point APb.
 このように、送信抑制期間RPbにおいて、レガシー端末STA2は、アクセスポイントAPbとの間でフレーム交換を実行し得る。従って、送信抑制期間RPbでは、レガシー端末STA2とアクセスポイントAPbとの間のフレーム交換が優先される。 In this way, during the transmission suppression period RPb, the legacy terminal STA2 can exchange frames with the access point APb. Therefore, during the transmission suppression period RPb, priority is given to frame exchange between the legacy terminal STA2 and the access point APb.
 なお、レガシー端末STA2は、送信抑制期間RPbにおいて、RTS/CTS手順以外の手段を用いてアクセスポイントAPbと通信してもよい。例えば、レガシー端末STA2は、送信抑制期間RPbにおいて、図12、図17を用いて説明された方法を用いて、アクセスポイントAPbとのフレーム交換を実行してもよい。第3実施形態に係る通信システム1のその他の動作は、第1実施形態に係る通信システム1と同様である。 Note that the legacy terminal STA2 may communicate with the access point APb using means other than the RTS/CTS procedure during the transmission suppression period RPb. For example, the legacy terminal STA2 may use the method described using FIGS. 12 and 17 to exchange frames with the access point APb during the transmission suppression period RPb. Other operations of the communication system 1 according to the third embodiment are the same as those of the communication system 1 according to the first embodiment.
 <3-3>第3実施形態の効果
 以上で説明されたように、第3実施形態に係る通信システム1は、アクセスポイントAPbがフレーム交換対象の無線端末装置WTAを判定することによって、EHT端末STA1によるフレーム交換を抑制する送信抑制期間RPbを設定する。その結果、第3実施形態に係る通信システム1は、rTWT機能を利用しない無線端末装置WTAとの送信機会の公平性を保つことができる。従って、第3実施形態に係る通信システム1は、第1実施形態と同様に、EHT端末STA1とレガシー端末STA2とのそれぞれにおいて、無線で送信されるトラヒックの遅延を抑制することができる。
<3-3> Effects of the third embodiment As explained above, in the communication system 1 according to the third embodiment, the access point APb determines the wireless terminal device WTA with which the frame is to be exchanged, so that the EHT terminal A transmission suppression period RPb is set to suppress frame exchange by STA1. As a result, the communication system 1 according to the third embodiment can maintain fairness in transmission opportunities with the wireless terminal device WTA that does not use the rTWT function. Therefore, similarly to the first embodiment, the communication system 1 according to the third embodiment can suppress delays in traffic transmitted wirelessly in each of the EHT terminal STA1 and the legacy terminal STA2.
 なお、送信抑制期間RPbにおいて、rTWTサービス期間SP中にフレーム交換を実行したEHT端末STA1から送信されるRTS対するCTSの返答が許可されてもよい。この場合、送信抑制期間RPbにおけるRTSに対するCTSの返答頻度が、EHT端末STA1の方が、レガシー端末STA2よりも低く設定されていればよい。 Note that during the transmission suppression period RPb, a CTS reply to the RTS transmitted from the EHT terminal STA1 that executed frame exchange during the rTWT service period SP may be permitted. In this case, the response frequency of CTS to RTS during the transmission suppression period RPb may be set lower in the EHT terminal STA1 than in the legacy terminal STA2.
 <4>第4実施形態
 第4実施形態に係る通信システム1は、EHT端末STA1がアクセスポイントAPから通知された期間におけるアップリンクデータの送信に低い優先度のアクセスパラメータを利用することによって、送信抑制期間RPcを設定する。以下に、第4実施形態に係る通信システム1の詳細について説明する。
<4> Fourth Embodiment In the communication system 1 according to the fourth embodiment, the EHT terminal STA1 transmits uplink data by using access parameters with a low priority for transmitting uplink data during the period notified from the access point AP. Set a suppression period RPc. Details of the communication system 1 according to the fourth embodiment will be described below.
 <4-1>構成
 第4実施形態に係る通信システム1のハードウェア構成は、第1実施形態に係る通信システム1と同様である。第4実施形態に係る通信システム1は、第1実施形態に係る通信システム1に対して、アクセスポイントAP及び無線端末装置WTAのそれぞれの機能構成が異なる。
<4-1> Configuration The hardware configuration of the communication system 1 according to the fourth embodiment is the same as the communication system 1 according to the first embodiment. The communication system 1 according to the fourth embodiment is different from the communication system 1 according to the first embodiment in the functional configurations of the access point AP and the wireless terminal device WTA.
 (アクセスポイントAPcの機能構成)
 図21は、第4実施形態に係る通信システム1が備えるアクセスポイントAPcの機能構成の一例を示すブロック図である。図21に示すように、アクセスポイントAPcは、例えば、LLC処理部110、データ処理部120、マネジメント部130c、MACフレーム処理部140、及び無線信号処理部150を備えるコンピュータとして機能する。マネジメント部130cは、リンク管理情報131、リンク制御部132、ビーコン管理部133、送信期間管理部134、及びrTWT設定通知部137を含む。
(Functional configuration of access point APc)
FIG. 21 is a block diagram showing an example of the functional configuration of the access point APc included in the communication system 1 according to the fourth embodiment. As shown in FIG. 21, the access point APc functions as a computer including, for example, an LLC processing section 110, a data processing section 120, a management section 130c, a MAC frame processing section 140, and a wireless signal processing section 150. The management section 130c includes link management information 131, a link control section 132, a beacon management section 133, a transmission period management section 134, and an rTWT setting notification section 137.
 rTWT設定通知部137は、送信抑制期間RPcにおいてEHT端末STA1に設定するパラメータを管理する。そして、rTWT設定通知部137は、当該パラメータを、所定の方法によってEHT端末STA1に通知する。この所定の方法は、パラメータを含む制御フレームを生成してEHT端末STA1に送信することであってもよいし、ビーコン管理部133にパラメータを含むビーコンを送信させてもよい。このパラメータは、アクセスポイントAPcが任意に決定するパラメータであり、例えば、AIFSやバックオフ値を決定するためのCWなどのアクセスパラメータである。送信抑制期間RPcにおいて、EHT端末STA1に適用されるアクセスパラメータは、例えば、rTWTサービス期間SP中に通信していない無線端末装置WTAよりも不利な条件であり、且つ期間OSPにおいて当該無線端末装置WTAに設定されたアクセスパラメータよりも低優先に設定される。 The rTWT setting notification unit 137 manages parameters to be set in the EHT terminal STA1 during the transmission suppression period RPc. Then, the rTWT setting notification unit 137 notifies the EHT terminal STA1 of the parameters using a predetermined method. This predetermined method may be to generate a control frame including parameters and transmit it to the EHT terminal STA1, or may cause the beacon management unit 133 to transmit a beacon including the parameters. This parameter is a parameter arbitrarily determined by the access point APc, and is, for example, an access parameter such as AIFS or CW for determining a backoff value. During the transmission suppression period RPc, the access parameters applied to the EHT terminal STA1 are, for example, conditions that are more disadvantageous than the wireless terminal device WTA with which it is not communicating during the rTWT service period SP, and the access parameters applied to the EHT terminal STA1 are The access parameters are set to have lower priority than the access parameters set in .
 (無線端末装置WTAaの機能構成)
 図22は、第4実施形態に係る通信システム1が備える無線端末装置WTAaの機能構成の一例を示すブロック図である。図22に示すように、無線端末装置WTAaは、例えば、アプリケーション実行部200、LLC処理部210、データ処理部220、マネジメント部230a、MACフレーム処理部240、及び無線信号処理部250を備えるコンピュータとして機能する。マネジメント部230aは、例えば、リンク管理情報231、リンク制御部232a、ビーコン処理部233、及び送信期間管理部234を含む。
(Functional configuration of wireless terminal device WTAa)
FIG. 22 is a block diagram showing an example of the functional configuration of the wireless terminal device WTAa included in the communication system 1 according to the fourth embodiment. As shown in FIG. 22, the wireless terminal device WTAa is a computer including, for example, an application execution unit 200, an LLC processing unit 210, a data processing unit 220, a management unit 230a, a MAC frame processing unit 240, and a wireless signal processing unit 250. Function. The management unit 230a includes, for example, link management information 231, a link control unit 232a, a beacon processing unit 233, and a transmission period management unit 234.
 送信期間管理部234は、アクセスポイントAPcから通知された送信抑制期間RPcの情報と、送信抑制期間RPc中に適用するEHT端末STA1のアクセスパラメータとを管理する。送信期間管理部234は、リンク管理情報231に記録されたrTWT機能の管理情報に基づいて、送信抑制期間RPcにおけるリンク制御部232aのアクセスパラメータの変更を指示する。リンク制御部232aは、送信期間管理部234の指示に基づいて、送信抑制期間RPcにおけるアクセスパラメータを変更する。言い換えると、送信期間管理部234は、アクセスポイントAPcから通知される送信抑制期間RPcの情報に基づいて、リンク制御部232aに、チャネル送信権を獲得するためのパラメータを変更させる。第4実施形態に係る通信システム1のその他の機能構成は、第1実施形態に係る通信システム1と同様である。 The transmission period management unit 234 manages information on the transmission suppression period RPc notified from the access point APc and the access parameters of the EHT terminal STA1 applied during the transmission suppression period RPc. The transmission period management unit 234 instructs the link control unit 232a to change the access parameters during the transmission suppression period RPc based on the management information of the rTWT function recorded in the link management information 231. The link control unit 232a changes the access parameters during the transmission suppression period RPc based on instructions from the transmission period management unit 234. In other words, the transmission period management section 234 causes the link control section 232a to change the parameters for acquiring the channel transmission right, based on the information on the transmission suppression period RPc notified from the access point APc. The other functional configurations of the communication system 1 according to the fourth embodiment are the same as those of the communication system 1 according to the first embodiment.
 <4-2>フレーム交換方法
 図23は、第4実施形態に係る通信システムのrTWT機能を用いたフレーム交換方法の一例を示すフローチャートである。以下に、図23を参照して、第4実施形態に係る通信システム1のrTWT機能を利用したフレーム交換方法について、1つのTWT間隔TIに注目して説明する。
<4-2> Frame Exchange Method FIG. 23 is a flowchart showing an example of a frame exchange method using the rTWT function of the communication system according to the fourth embodiment. Below, with reference to FIG. 23, a frame exchange method using the rTWT function of the communication system 1 according to the fourth embodiment will be described, focusing on one TWT interval TI.
 rTWTサービス期間SPが開始すると(開始)、第1実施形態のアクセスポイントAPと同様に、アクセスポイントAPcとEHT端末STA1との間で、優先的にフレーム交換が実行される(S11)。 When the rTWT service period SP starts (start), frame exchange is performed preferentially between the access point APc and the EHT terminal STA1, similarly to the access point AP of the first embodiment (S11).
 rTWTサービス期間SPにおけるフレーム交換が完了すると、アクセスポイントAPcは、第1実施形態のアクセスポイントAPと同様に、期間αを算出する(S12)。 When the frame exchange in the rTWT service period SP is completed, the access point APc calculates the period α similarly to the access point AP of the first embodiment (S12).
 rTWTサービス期間SPが終了すると、送信抑制期間RPcが開始する。そして、期間αの間、EHT端末STA1のアクセスパラメータがレガシー端末STA2よりも低優先に設定された状態で、EHT端末STA1及びレガシー端末STA2のそれぞれとのフレーム交換が実行される(S41)。すなわち、送信抑制期間RPcでは、rTWTサービス期間SPにフレーム交換を実行したEHT端末STA1よりも、フレーム交換を実行していないレガシー端末STA2の方が有利なアクセスパラメータが適用される。このため、送信抑制期間RPcにおいて、レガシー端末STA2は、rTWTサービス期間SP中に通信を行ったEHT端末STA1よりも、チャネル送信権を獲得し易くなる。なお、S41の処理において、アクセスポイントAPcは、直前のrTWTサービス期間SPにおいてフレーム交換を実行しなかったEHT端末STA1のアクセスパラメータを、レガシー端末STA2と同様の優先度に設定してもよい。 When the rTWT service period SP ends, a transmission suppression period RPc starts. Then, during the period α, frames are exchanged with each of the EHT terminal STA1 and the legacy terminal STA2 with the access parameter of the EHT terminal STA1 set to have lower priority than that of the legacy terminal STA2 (S41). That is, during the transmission suppression period RPc, access parameters that are more advantageous to the legacy terminal STA2 that has not performed frame exchange are applied to the EHT terminal STA1 that has performed frame exchange during the rTWT service period SP. Therefore, during the transmission suppression period RPc, the legacy terminal STA2 becomes easier to acquire the channel transmission right than the EHT terminal STA1 with which it communicated during the rTWT service period SP. Note that in the process of S41, the access point APc may set the access parameters of the EHT terminal STA1 that did not perform frame exchange in the immediately preceding rTWT service period SP to the same priority level as the legacy terminal STA2.
 送信抑制期間RPcが終了すると、期間OSPが開始する。すると、第1実施形態のアクセスポイントAPと同様に、EHT端末STA1及びレガシー端末STA2のそれぞれが同様の条件でアクセスポイントAPcとフレーム交換を実行する(S14)。期間OSPが終了すると(終了)、アクセスポイントAPcは、図23に示された一連の処理を完了し、次のrTWTサービス期間SPの処理を開始する。 When the transmission suppression period RPc ends, the period OSP starts. Then, similarly to the access point AP of the first embodiment, each of the EHT terminal STA1 and the legacy terminal STA2 executes frame exchange with the access point APc under the same conditions (S14). When the period OSP ends (end), the access point APc completes the series of processes shown in FIG. 23 and starts the process of the next rTWT service period SP.
 なお、アクセスポイントAPcは、送信抑制期間RPcにおいて一時的に適用するアクセスパラメータを、逐次送信する制御フレームによりEHT端末STA1端末に通知し得る。これに限定されず、送信抑制期間RPcで一時的に適用されるアクセスパラメータは、rTWT機能のセットアップ時にEHT端末STA1に通知されてもよい(例えば、図9のS7の処理)。すなわち、アクセスポイントAPcは、送信抑制期間RPcで一時的に適用されるアクセスパラメータを含むフレームを、送信抑制期間RPcの開始前にEHT端末STA1に送信してもよい。 Note that the access point APc may notify the EHT terminal STA1 of the access parameters temporarily applied during the transmission suppression period RPc by sequentially transmitting control frames. However, the access parameters temporarily applied during the transmission suppression period RPc may be notified to the EHT terminal STA1 at the time of setting up the rTWT function (for example, the process of S7 in FIG. 9). That is, the access point APc may transmit a frame including access parameters temporarily applied during the transmission suppression period RPc to the EHT terminal STA1 before the start of the transmission suppression period RPc.
 以上で説明されたように第4実施形態におけるEHT端末STA1は、アクセスポイントAPcから周期的なrTWTサービス期間SPの情報を含む第1の情報を受信し、rTWTサービス期間SPにおいてデータを送信し得る。そして、EHT端末STA1は、アクセスポイントAPcからrTWTサービス期間SP外の送信抑制期間RPcの情報を含む第2の情報を受信し、送信抑制期間RPcにおいてデータの送信を抑制又は禁止し得る。 As explained above, the EHT terminal STA1 in the fourth embodiment receives the first information including the information of the periodic rTWT service period SP from the access point APc, and can transmit data in the rTWT service period SP. . Then, the EHT terminal STA1 receives second information including information on the transmission suppression period RPc outside the rTWT service period SP from the access point APc, and can suppress or prohibit data transmission during the transmission suppression period RPc.
 (フレーム交換方法の具体例)
 図24は、第4実施形態に係る通信システムのrTWT機能を用いたフレーム交換方法の具体例を示すタイムチャートである。図24は、1つのTWT間隔TIに含まれたrTWTサービス期間SP及び送信抑制期間RPcを抽出して表示し、アクセスポイントAPc、EHT端末STA1、及びレガシー端末STA2のそれぞれの動作を示している。
(Specific example of frame replacement method)
FIG. 24 is a time chart showing a specific example of a frame exchange method using the rTWT function of the communication system according to the fourth embodiment. FIG. 24 extracts and displays the rTWT service period SP and transmission suppression period RPc included in one TWT interval TI, and shows the respective operations of the access point APc, the EHT terminal STA1, and the legacy terminal STA2.
 図24に示すように、rTWTサービス期間SPでは、第1実施形態のアクセスポイントAPと同様に、EHT端末STA1とアクセスポイントAPcとの間でフレーム交換が実行され得る。また、rTWTサービス期間SPに設定された送信抑制期間QIにおいて、レガシー端末STA2は、フレームの送信を延期(defer)している。 As shown in FIG. 24, during the rTWT service period SP, frame exchange may be performed between the EHT terminal STA1 and the access point APc, similar to the access point AP of the first embodiment. Furthermore, during the transmission suppression period QI set in the rTWT service period SP, the legacy terminal STA2 defers frame transmission.
 rTWTサービス期間SPが終了すると、予めアクセスポイントAPc及びEHT端末STA1間で設定されていた送信抑制期間RPcが開始する。送信抑制期間RPcにおいて、EHT端末STA1は、レガシー端末STA2よりも低優先なアクセスパラメータに応じて送信権の獲得に試みる。一方で、レガシー端末STA2は、EHT端末STA1よりも高優先なアクセスパラメータに応じて送信権の獲得に試みる。このため、送信抑制期間RPcでは、レガシー端末STA2の方が、EHT端末STA1よりも送信権を獲得し易くなる。 When the rTWT service period SP ends, a transmission suppression period RPc that has been set in advance between the access point APc and the EHT terminal STA1 starts. During the transmission suppression period RPc, the EHT terminal STA1 attempts to acquire the transmission right according to an access parameter that has lower priority than the legacy terminal STA2. On the other hand, the legacy terminal STA2 attempts to acquire the transmission right according to the access parameter with higher priority than the EHT terminal STA1. Therefore, during the transmission suppression period RPc, it becomes easier for the legacy terminal STA2 to acquire the transmission right than the EHT terminal STA1.
 具体的には、本例では、送信抑制期間RPcが開始すると、EHT端末STA1のDIFS+バックオフのカウント(A)と、レガシー端末STA2のDIFS+バックオフのカウント(B)とのそれぞれが開始する。すると、EHT端末STA1のバックオフの数値がレガシー端末STA2のバックオフの数値よりも大きく設定されていることから、先にレガシー端末STA2が送信権を得て、MSDUをアクセスポイントAPcに送信する。EHT端末STA1は、レガシー端末STA2がアクセスポイントAPcとのフレーム交換を実行している間、NAVに設定される。 Specifically, in this example, when the transmission suppression period RPc starts, the DIFS+backoff count (A) of the EHT terminal STA1 and the DIFS+backoff count (B) of the legacy terminal STA2 start. Then, since the backoff value of the EHT terminal STA1 is set larger than the backoff value of the legacy terminal STA2, the legacy terminal STA2 obtains the transmission right first and transmits the MSDU to the access point APc. EHT terminal STA1 is set to NAV while legacy terminal STA2 is performing frame exchange with access point APc.
 当該MSDUの送信完了に基づく確認フレームACKが送信されると、EHT端末STA1のDIFS+レフトオーバーバックオフのカウント(C)と、レガシー端末STA2のDIFS+バックオフのカウント(D)とのそれぞれが開始する。本例では、EHT端末STA1のレフトオーバーバックオフの数値がレガシー端末STA2のバックオフの数値よりも大きいため、再びレガシー端末STA2が送信権を得て、MSDUをアクセスポイントAPcに送信する。EHT端末STA1は、レガシー端末STA2がアクセスポイントAPcとのフレーム交換を実行している間、NAVに設定される。 When the confirmation frame ACK based on the completion of transmission of the MSDU is transmitted, the DIFS + leftover backoff count (C) of the EHT terminal STA1 and the DIFS + backoff count (D) of the legacy terminal STA2 start. . In this example, since the leftover backoff value of the EHT terminal STA1 is larger than the backoff value of the legacy terminal STA2, the legacy terminal STA2 obtains the transmission right again and transmits the MSDU to the access point APc. EHT terminal STA1 is set to NAV while legacy terminal STA2 is performing frame exchange with access point APc.
 当該MSDUの送信完了に基づく確認フレームACKが送信されると、EHT端末STA1のDIFS+レフトオーバーバックオフのカウント(E)と、レガシー端末STA2のDIFS+バックオフのカウント(F)とのそれぞれが開始する。本例では、ここでEHT端末STA1のレフトオーバーバックオフの数値がレガシー端末STA2のバックオフの数値よりも小さくなるため、EHT端末STA1が送信権を得て、MSDUをアクセスポイントAPcに送信する。レガシー端末STA2は、EHT端末STA1がアクセスポイントAPcとのフレーム交換を実行している間、NAVに設定される。 When the confirmation frame ACK based on the completion of transmission of the MSDU is transmitted, the DIFS + leftover backoff count (E) of the EHT terminal STA1 and the DIFS + backoff count (F) of the legacy terminal STA2 start. . In this example, since the leftover backoff value of the EHT terminal STA1 is now smaller than the backoff value of the legacy terminal STA2, the EHT terminal STA1 obtains the transmission right and transmits the MSDU to the access point APc. Legacy terminal STA2 is set to NAV while EHT terminal STA1 is performing a frame exchange with access point APc.
 以上で説明されたように、送信抑制期間RPcでは、EHT端末STA1とアクセスポイントAPcとの間のフレーム交換よりも、レガシー端末STA2とアクセスポイントAPcとの間のフレーム交換の頻度が高くなる。すなわち、送信抑制期間RPcでは、レガシー端末STA2のフレーム交換が優先されて実行される。なお、アクセスパラメータの低優先な設定は、バックオフ値の大小でなく、その他のパラメータによって実現されてもよい。第4実施形態に係る通信システム1のその他の動作は、第1実施形態に係る通信システム1と同様である。 As explained above, during the transmission suppression period RPc, the frequency of frame exchange between the legacy terminal STA2 and the access point APc is higher than the frequency of frame exchange between the EHT terminal STA1 and the access point APc. That is, during the transmission suppression period RPc, frame exchange of the legacy terminal STA2 is executed with priority. Note that the low priority setting of the access parameter may be realized not by the magnitude of the backoff value but by other parameters. Other operations of the communication system 1 according to the fourth embodiment are the same as those of the communication system 1 according to the first embodiment.
 <4-3>第4実施形態の効果
 以上で説明されたように、第4実施形態に係る通信システム1は、EHT端末STA1がrTWTサービス期間SPの後にアクセスパラメータの優先度を下げることによって、EHT端末STA1によるフレーム交換を抑制する送信抑制期間RPcを設定する。その結果、第4実施形態に係る通信システム1は、rTWT機能を利用しない無線端末装置WTAとの送信機会の公平性を保つことができる。従って、第4実施形態に係る通信システム1は、第1実施形態と同様に、EHT端末STA1とレガシー端末STA2とのそれぞれにおいて、無線で送信されるトラヒックの遅延を抑制することができる。
<4-3> Effects of the fourth embodiment As explained above, in the communication system 1 according to the fourth embodiment, the EHT terminal STA1 lowers the priority of the access parameter after the rTWT service period SP, A transmission suppression period RPc is set to suppress frame exchange by the EHT terminal STA1. As a result, the communication system 1 according to the fourth embodiment can maintain fairness in transmission opportunities with the wireless terminal device WTA that does not use the rTWT function. Therefore, similarly to the first embodiment, the communication system 1 according to the fourth embodiment can suppress delays in traffic transmitted wirelessly in each of the EHT terminal STA1 and the legacy terminal STA2.
 なお、第4実施形態では、送信抑制期間RPcにおいてEHT端末STA1の送信頻度を下げるためにアクセスパラメータ(EDCAパラメータ)を低優先の設定にする場合について説明したが、これに限定されない。アクセスパラメータの代わりに、アクセスポイントAPcが任意に決定するパラメータが利用されてもよい。第4実施形態では、EHT端末STA1が、送信抑制期間RPcにおいて、アクセスポイントAPcが任意に決定するパラメータに基づいて、レガシー端末STA2よりも低優先な設定で通信可能であればよい。 Note that in the fourth embodiment, a case has been described in which the access parameters (EDCA parameters) are set to low priority in order to reduce the transmission frequency of the EHT terminal STA1 during the transmission suppression period RPc, but the present invention is not limited to this. Instead of the access parameters, parameters arbitrarily determined by the access point APc may be used. In the fourth embodiment, it is sufficient that the EHT terminal STA1 can communicate with a lower priority setting than the legacy terminal STA2 based on parameters arbitrarily determined by the access point APc during the transmission suppression period RPc.
 <5>第5実施形態
 第5実施形態に係る通信システム1は、EHT端末STA1がアクセスポイントAPから通知された期間におけるフレーム交換を禁止することによって、送信抑制期間RPdを設定する。以下に、第5実施形態に係る通信システム1の詳細について説明する。
<5> Fifth Embodiment The communication system 1 according to the fifth embodiment sets a transmission suppression period RPd by prohibiting the EHT terminal STA1 from exchanging frames during the period notified from the access point AP. Details of the communication system 1 according to the fifth embodiment will be described below.
 <5-1>構成
 第5実施形態に係る通信システム1のハードウェア構成は、第4実施形態に係る通信システム1と同様である。第5実施形態に係る通信システム1は、第4実施形態に係る通信システム1に対して、無線端末装置WTAの機能構成が異なる。
<5-1> Configuration The hardware configuration of the communication system 1 according to the fifth embodiment is the same as the communication system 1 according to the fourth embodiment. The communication system 1 according to the fifth embodiment differs from the communication system 1 according to the fourth embodiment in the functional configuration of the wireless terminal device WTA.
 (無線端末装置WTAbの機能構成)
 図25は、第5実施形態に係る通信システム1が備える無線端末装置WTAbの機能構成の一例を示すブロック図である。図22に示すように、無線端末装置WTAbは、例えば、アプリケーション実行部200、LLC処理部210、データ処理部220、マネジメント部230b、MACフレーム処理部240、及び無線信号処理部250を備えるコンピュータとして機能する。マネジメント部230bは、例えば、リンク管理情報231、リンク制御部232b、ビーコン処理部233、及び送信期間管理部234aを含む。
(Functional configuration of wireless terminal device WTAb)
FIG. 25 is a block diagram illustrating an example of the functional configuration of the wireless terminal device WTAb included in the communication system 1 according to the fifth embodiment. As shown in FIG. 22, the wireless terminal device WTAb is a computer including, for example, an application execution unit 200, an LLC processing unit 210, a data processing unit 220, a management unit 230b, a MAC frame processing unit 240, and a wireless signal processing unit 250. Function. The management unit 230b includes, for example, link management information 231, a link control unit 232b, a beacon processing unit 233, and a transmission period management unit 234a.
 送信期間管理部234aは、アクセスポイントAPcから通知される送信抑制期間RPdの情報を管理する。送信期間管理部234aは、リンク管理情報231に記録されたrTWT機能の管理情報に基づいて、送信抑制期間RPdをリンク制御部232bに通知する。リンク制御部232bは、送信期間管理部234aの指示に基づいて、EHT端末STA1の送信抑制期間RPdにおけるフレーム交換を抑制(禁止)する。送信期間管理部234aは、リンク制御部232bによる送信抑制期間RPdの動作のタイマ管理を行ってもよい。第5実施形態に係る通信システム1のその他の機能構成は、第4実施形態に係る通信システム1と同様である。 The transmission period management unit 234a manages information on the transmission suppression period RPd notified from the access point APc. The transmission period management section 234a notifies the link control section 232b of the transmission suppression period RPd based on the management information of the rTWT function recorded in the link management information 231. The link control unit 232b suppresses (prohibits) frame exchange during the transmission suppression period RPd of the EHT terminal STA1 based on instructions from the transmission period management unit 234a. The transmission period management section 234a may perform timer management of the operation of the transmission suppression period RPd by the link control section 232b. The other functional configurations of the communication system 1 according to the fifth embodiment are the same as those of the communication system 1 according to the fourth embodiment.
 <5-2>フレーム交換方法
 図26は、第5実施形態に係る通信システム1のrTWT機能を用いたフレーム交換方法の一例を示すフローチャートである。以下に、図26を参照して、第5実施形態に係る通信システム1のrTWT機能を利用したフレーム交換方法について、1つのTWT間隔TIに注目して説明する。
<5-2> Frame Exchange Method FIG. 26 is a flowchart showing an example of a frame exchange method using the rTWT function of the communication system 1 according to the fifth embodiment. Below, with reference to FIG. 26, a frame exchange method using the rTWT function of the communication system 1 according to the fifth embodiment will be described, focusing on one TWT interval TI.
 rTWTサービス期間SPが開始すると(開始)、第1実施形態のアクセスポイントAPと同様に、アクセスポイントAPcとEHT端末STA1との間で、優先的にフレーム交換が実行される(S11)。 When the rTWT service period SP starts (start), frame exchange is performed preferentially between the access point APc and the EHT terminal STA1, similarly to the access point AP of the first embodiment (S11).
 rTWTサービス期間SPにおけるフレーム交換が完了すると、アクセスポイントAPcは、第1実施形態のアクセスポイントAPと同様に、期間αを算出する(S12)。 When the frame exchange in the rTWT service period SP is completed, the access point APc calculates the period α similarly to the access point AP of the first embodiment (S12).
 rTWTサービス期間SPが終了すると、送信抑制期間RPdが開始する。そして、期間αの間、EHT端末STA1がアクセスポイントAPcから通知された送信抑制期間RPdの情報に基づいてフレーム交換を抑制した状態で、アクセスポイントAPcは、レガシー端末STA2とのフレーム交換を実行する(S51)。なお、アクセスポイントAPcは、送信抑制期間RPdに適用する期間αを、逐次送信する制御フレームによりEHT端末STA1端末に通知し得る。これに限定されず、期間αは、統計値に基づいて設定され、rTWT機能のセットアップ時にEHT端末STA1に通知されてもよい。 When the rTWT service period SP ends, a transmission suppression period RPd starts. Then, during the period α, the access point APc executes frame exchange with the legacy terminal STA2 while the EHT terminal STA1 suppresses frame exchange based on the information of the transmission suppression period RPd notified from the access point APc. (S51). Note that the access point APc can notify the EHT terminal STA1 of the period α applied to the transmission suppression period RPd by sequentially transmitting control frames. However, the period α may be set based on statistical values and notified to the EHT terminal STA1 at the time of setting up the rTWT function.
 送信抑制期間RPdが終了すると、期間OSPが開始する。すると、第1実施形態と同様に、EHT端末STA1及びレガシー端末STA2のそれぞれが同様の条件でアクセスポイントAPcとフレーム交換を実行する(S14)。期間OSPが終了すると(終了)、アクセスポイントAPcは、図26に示された一連の処理を完了し、次のrTWTサービス期間SPの処理を開始する。 When the transmission suppression period RPd ends, the period OSP starts. Then, similarly to the first embodiment, each of the EHT terminal STA1 and the legacy terminal STA2 executes frame exchange with the access point APc under the same conditions (S14). When the period OSP ends (ends), the access point APc completes the series of processes shown in FIG. 26 and starts the process of the next rTWT service period SP.
 (フレーム交換方法の具体例)
 図27は、第5実施形態に係る通信システム1のrTWT機能を用いたフレーム交換方法の具体例を示すタイムチャートである。図27は、1つのTWT間隔TIに含まれたrTWTサービス期間SP及び送信抑制期間RPdを抽出して表示し、アクセスポイントAPc、EHT端末STA1、及びレガシー端末STA2のそれぞれの動作を示している。
(Specific example of frame replacement method)
FIG. 27 is a time chart showing a specific example of a frame exchange method using the rTWT function of the communication system 1 according to the fifth embodiment. FIG. 27 extracts and displays the rTWT service period SP and transmission suppression period RPd included in one TWT interval TI, and shows the respective operations of the access point APc, the EHT terminal STA1, and the legacy terminal STA2.
 図27に示すように、rTWTサービス期間SPでは、第1実施形態と同様に、EHT端末STA1とアクセスポイントAPcとの間でフレーム交換が実行され得る。また、rTWTサービス期間SPに設定された送信抑制期間QIにおいて、レガシー端末STA2は、フレームの送信を延期(defer)、すなわち待機(quiet)している。 As shown in FIG. 27, during the rTWT service period SP, frame exchange may be performed between the EHT terminal STA1 and the access point APc, similar to the first embodiment. Furthermore, during the transmission suppression period QI set in the rTWT service period SP, the legacy terminal STA2 defers frame transmission, that is, is on standby.
 rTWTサービス期間SPが終了すると、EHT端末STA1は、予めアクセスポイントAPcから通知された送信抑制期間RPdに基づいて、自発的に送信抑制状態(例えば、NAV)になる。一方で、レガシー端末STA2は、送信抑制期間RPdにおいて、アクセスポイントAPcとのフレーム交換を実行し得る。従って、送信抑制期間RPdでは、レガシー端末STA2とアクセスポイントAPcとの間のフレーム交換が優先される。第5実施形態に係る通信システム1のその他の動作は、第4実施形態に係る通信システム1と同様である。 When the rTWT service period SP ends, the EHT terminal STA1 spontaneously enters a transmission suppression state (for example, NAV) based on the transmission suppression period RPd notified in advance from the access point APc. On the other hand, the legacy terminal STA2 may perform frame exchange with the access point APc during the transmission suppression period RPd. Therefore, during the transmission suppression period RPd, priority is given to frame exchange between the legacy terminal STA2 and the access point APc. Other operations of the communication system 1 according to the fifth embodiment are the same as those of the communication system 1 according to the fourth embodiment.
 <5-3>第5実施形態の効果
 以上で説明されたように、第5実施形態に係る通信システム1は、rTWTサービス期間SPの後にEHT端末STA1が自発的にフレーム交換を抑制することによって、送信抑制期間RPdを設定する。その結果、第5実施形態に係る通信システム1は、rTWT機能を利用する無線端末装置WTAと、rTWT機能を利用しない無線端末装置WTAとの送信機会の公平性を保つことができる。従って、第5実施形態に係る通信システム1は、第1実施形態と同様に、EHT端末STA1とレガシー端末STA2とのそれぞれにおいて、無線で送信されるトラヒックの遅延を抑制することができる。
<5-3> Effects of the fifth embodiment As explained above, in the communication system 1 according to the fifth embodiment, the EHT terminal STA1 voluntarily suppresses frame exchange after the rTWT service period SP. , sets the transmission suppression period RPd. As a result, the communication system 1 according to the fifth embodiment can maintain fairness in transmission opportunities between the wireless terminal device WTA that uses the rTWT function and the wireless terminal device WTA that does not use the rTWT function. Therefore, similarly to the first embodiment, the communication system 1 according to the fifth embodiment can suppress delays in traffic transmitted wirelessly in each of the EHT terminal STA1 and the legacy terminal STA2.
 <6>その他
 上記実施形態では、アクセスポイントAPが、TWT周期の1周期(TWT間隔TI)におけるrTWTサービス期間SP内の通信実績に基づいて送信抑制期間RPの期間αを算出する場合について例示したが、これに限定されない。アクセスポイントAPは、複数のrTWTサービス期間SPの通信実績の統計値に基づいて期間αを算出してもよい。上記実施形態では、rTWTサービス期間SPの直後に送信抑制期間RPが設定される場合について例示したが、rTWTサービス期間SPと送信抑制期間RPとは離れていてもよい。送信抑制期間RPが直近のrTWTサービス期間SPの通信実績に基づいて設定される場合、送信抑制期間RPは、rTWTサービス期間SPの後に設定される。
<6> Others In the above embodiment, the access point AP calculates the period α of the transmission suppression period RP based on the communication performance within the rTWT service period SP in one period of the TWT period (TWT interval TI). However, it is not limited to this. The access point AP may calculate the period α based on statistical values of communication results of a plurality of rTWT service periods SP. In the above embodiment, the case where the transmission suppression period RP is set immediately after the rTWT service period SP is illustrated, but the rTWT service period SP and the transmission suppression period RP may be separated. When the transmission suppression period RP is set based on the communication performance of the most recent rTWT service period SP, the transmission suppression period RP is set after the rTWT service period SP.
 アクセスポイントAPは、複数のチャネルを用いて無線端末装置WTAとのマルチリンクを確立してもよい。アクセスポイントAP及び無線端末装置WTAのそれぞれは、複数のチャネルにそれぞれ対応する複数の無線信号処理部(STA機能)を含み得る。マルチリンクが確立される場合、複数のSTA機能の何れかを用いて、図9に示されたS3及びS4の処理の替わりに、それぞれマルチリンクアソシエーションリクエストと、マルチリンクアソシエーション処理とが実行される。なお、マルチリンクを確立する際には、最初にアクセスポイントAPとのリンクが確立された1つのリンクを用いて、マルチリンクを構成するその他のリンクの認証及びアソシエーション処理が実行されてもよい。通信システム1は、マルチリンクを利用する場合、rTWTサービス期間SPの度に、どのリンクでフレーム交換が実行されるかを動的に決定し得る。マルチリンクでは、1つのトラヒック種別に対して一つ又は複数のSTA機能が割り当てられ得る。トラヒックとSTA機能との関連付けは、例えば、マルチリンクを構成する複数のリンクの間でトラヒック量(データ量)が均等になるように設定される。これに限定されず、互いに類似する種類(優先/非優先等)のトラヒックが、マルチリンクを構成する特定のリンクに集められてもよい。 The access point AP may establish multi-links with the wireless terminal device WTA using multiple channels. Each of the access point AP and the wireless terminal device WTA may include a plurality of wireless signal processing units (STA functions) each corresponding to a plurality of channels. When a multi-link is established, a multi-link association request and a multi-link association process are executed using one of the multiple STA functions instead of the processes of S3 and S4 shown in FIG. 9, respectively. . Note that when establishing a multi-link, authentication and association processing of other links making up the multi-link may be performed using one link that is first established with the access point AP. When using multi-links, the communication system 1 can dynamically determine on which link frame exchange will be performed every rTWT service period SP. In multilink, one or more STA functions can be assigned to one traffic type. The association between traffic and STA functions is set, for example, so that the amount of traffic (amount of data) is equalized among a plurality of links forming a multilink. The present invention is not limited to this, and traffic of similar types (priority/non-priority, etc.) may be collected on a specific link forming a multi-link.
 情報通信システム1において、アクセスポイントAPが備えるCPU11と無線端末装置WTAが備えるCPU21とのそれぞれは、その他の回路であってもよい。例えば、アクセスポイントAP及び無線端末装置WTAのそれぞれは、CPUの替わりに、MPU(Micro Processing Unit)などを備えていてもよい。実施形態において説明された処理のそれぞれは、専用のハードウェアによって実現されてもよい。アクセスポイントAP及び無線端末装置WTAのそれぞれの処理は、ソフトウェアにより実行される処理と、ハードウェアによって実行される処理とが混在していてもよいし、どちらか一方のみであってもよい。アクセスポイントAPが備えるデータ処理部120、マネジメント部130、及びMACフレーム処理部140の組は、“リンクマネジメント部”と呼ばれてもよい。同様に、無線端末装置WTAが備えるデータ処理部220、マネジメント部230、及びMACフレーム処理部240の組は、“リンクマネジメント部”と呼ばれてもよい。 In the information communication system 1, the CPU 11 included in the access point AP and the CPU 21 included in the wireless terminal device WTA may be other circuits. For example, each of the access point AP and the wireless terminal device WTA may include an MPU (Micro Processing Unit) instead of the CPU. Each of the processes described in the embodiments may be implemented by dedicated hardware. The respective processes of the access point AP and the wireless terminal device WTA may include a mixture of processes executed by software and processes executed by hardware, or may include only one of them. The set of data processing unit 120, management unit 130, and MAC frame processing unit 140 included in the access point AP may be called a “link management unit”. Similarly, the set of data processing unit 220, management unit 230, and MAC frame processing unit 240 included in the wireless terminal device WTA may be referred to as a “link management unit”.
 上記実施形態において、動作の説明に用いたフローチャートは、あくまで一例である。実施形態で説明された各動作は、処理の順番が可能な範囲で入れ替えられてもよいし、その他の処理が追加されてもよい。例えば、第1実施形態で説明されたリンクのセットアップ方法は、あくまで一例である。また、第1実施形態で説明された無線フレームのフォーマットは、あくまで一例である。情報通信システム1では、実施形態で説明された動作を実行することが可能であれば、その他のフォーマットが使用されてもよい。アクセスポイントAPと無線端末装置WTAとの間の無線通信としては、IEEE802.11規格とは異なる無線通信規格が使用されてもよい。 In the above embodiment, the flowchart used to explain the operation is just an example. For each operation described in the embodiment, the order of processing may be changed to the extent possible, or other processing may be added. For example, the link setup method described in the first embodiment is just an example. Furthermore, the format of the radio frame described in the first embodiment is just an example. In the information communication system 1, other formats may be used as long as they can perform the operations described in the embodiments. A wireless communication standard different from the IEEE802.11 standard may be used for wireless communication between the access point AP and the wireless terminal device WTA.
 なお、本発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は、適宜組み合わせて実施してもよく、その場合組み合わせた効果が得られる。さらに、上記実施形態には種々の発明が含まれており、開示される複数の構成要件から選択された組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件からいくつかの構成要件が削除されても、課題が解決でき、効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。 Note that the present invention is not limited to the above-described embodiments, and can be variously modified at the implementation stage without departing from the gist thereof. Moreover, each embodiment may be implemented in combination as appropriate, and in that case, the combined effect can be obtained. Furthermore, the embodiments described above include various inventions, and various inventions can be extracted by combinations selected from the plurality of disclosed constituent features. For example, if a problem can be solved and an effect can be obtained even if some constituent features are deleted from all the constituent features shown in the embodiment, the configuration from which these constituent features are deleted can be extracted as an invention.
1…通信システム
AP…アクセスポイント
11…CPU
12…ROM
13…RAM
14…無線通信モジュール
15…有線通信モジュール
110…LLC処理部
120…データ処理部
130…マネジメント部
131…リンク管理情報
132…リンク制御部
133…ビーコン管理部
134…送信期間管理部
135…送信禁止フレーム生成部
136…送信禁止端末判定部
137…rTWT設定通知部
140…MACフレーム処理部
150…無線信号処理部
151…分類部
152…キュー
153…キャリアセンス実行部
154…内部衝突管理部
WTA…無線端末装置
21…CPU
22…ROM
23…RAM
24…無線通信モジュール
25…ディスプレイ
26…ストレージ
200…アプリケーション実行部
210…LLC処理部
220…データ処理部
230…マネジメント部
231…リンク管理情報
232…リンク制御部
233…ビーコン処理部
234…送信期間管理部
240…MACフレーム処理部
250…無線信号処理部
STA1…EHT端末
STA2…レガシー端末
1...Communication system AP...Access point 11...CPU
12...ROM
13...RAM
14... Wireless communication module 15... Wired communication module 110... LLC processing unit 120... Data processing unit 130... Management unit 131... Link management information 132... Link control unit 133... Beacon management unit 134... Transmission period management unit 135... Transmission prohibited frame Generation unit 136... Transmission prohibited terminal determination unit 137... rTWT setting notification unit 140... MAC frame processing unit 150... Radio signal processing unit 151... Classification unit 152... Queue 153... Carrier sense execution unit 154... Internal collision management unit WTA... Wireless terminal Device 21...CPU
22...ROM
23...RAM
24...Wireless communication module 25...Display 26...Storage 200...Application execution unit 210...LLC processing unit 220...Data processing unit 230...Management unit 231...Link management information 232...Link control unit 233...Beacon processing unit 234...Transmission period management Unit 240...MAC frame processing unit 250...Radio signal processing unit STA1...EHT terminal STA2...Legacy terminal

Claims (10)

  1.  第1の無線信号処理部と、
     前記第1の無線信号処理部を用いて、第1の無線端末装置との第1のリンクと、第2の無線端末装置との第2のリンクとを確立し、第1の周期でサービス期間を設定する第1のマネジメント部と、を備え、
     前記第1のマネジメント部は、前記サービス期間内に、前記第1の無線端末装置にデータの送信機会を提供し、且つ前記第2の無線端末装置によるデータの送信を抑制又は禁止し、前記サービス期間外に、前記第1の無線端末装置によるデータの送信を抑制又は禁止する送信抑制期間を設定する、
     アクセスポイント。
    a first wireless signal processing unit;
    A first link with the first wireless terminal device and a second link with the second wireless terminal device are established using the first wireless signal processing unit, and a service period is established in a first cycle. a first management department that sets up the
    The first management unit provides an opportunity to transmit data to the first wireless terminal device and suppresses or prohibits data transmission by the second wireless terminal device within the service period, and setting a transmission suppression period for suppressing or prohibiting data transmission by the first wireless terminal device outside the period;
    access point.
  2.  前記第1のマネジメント部は、前記送信抑制期間の開始時に、前記無線信号処理部を用いて、前記送信抑制期間におけるデータの送信の禁止を指示する第1のフレームを前記第1の無線端末装置に送信する、
     請求項1に記載のアクセスポイント。
    The first management unit uses the wireless signal processing unit to transmit a first frame instructing prohibition of data transmission during the transmission suppression period to the first wireless terminal device at the start of the transmission suppression period. send to,
    The access point according to claim 1.
  3.  前記第1のマネジメント部は、前記送信抑制期間において、前記第1の無線端末装置から受信したRTS(Request To Send)に対するCTS(Clear To Send)を送信しないように構成される、
     請求項1に記載のアクセスポイント。
    The first management unit is configured not to transmit a CTS (Clear To Send) in response to an RTS (Request To Send) received from the first wireless terminal device during the transmission suppression period.
    The access point according to claim 1.
  4.  前記第1のマネジメント部は、前記サービス期間の長さ、若しくは前記サービス期間内に実行された前記第1の無線端末装置とのフレーム交換の期間の長さに基づいて、前記送信抑制期間の長さを設定する、
     請求項1に記載のアクセスポイント。
    The first management unit determines the length of the transmission suppression period based on the length of the service period or the length of a frame exchange period with the first wireless terminal device executed within the service period. setting the
    The access point according to claim 1.
  5.  前記第1のマネジメント部は、前記送信抑制期間の開始前に、前記第1の無線信号処理部を用いて、前記送信抑制期間の情報を含む第2のフレームを前記第1の無線端末装置に送信する、
     請求項1に記載のアクセスポイント。
    The first management unit transmits a second frame including information about the transmission suppression period to the first wireless terminal device using the first radio signal processing unit before the start of the transmission suppression period. Send,
    The access point according to claim 1.
  6.  請求項5に記載のアクセスポイントと、
     前記第1の無線端末装置と、を備え、
     前記第1の無線端末装置は、第2の無線信号処理部と、前記第2の無線信号処理部を用いて前記第1のリンクを確立し、且つ前記第1のリンクの状態を管理する第2のマネジメント部と、を備え、
     前記第2のマネジメント部は、前記第1の無線端末装置が受信した前記第2のフレームに含まれた前記情報に基づいて、前記送信抑制期間における前記第1のリンクのアクセスパラメータを、前記サービス期間外且つ前記送信抑制期間外における前記第1のリンクのアクセスパラメータよりも低優先に設定する、
     通信システム。
    The access point according to claim 5,
    The first wireless terminal device,
    The first wireless terminal device includes a second wireless signal processing unit and a second wireless signal processing unit that uses the second wireless signal processing unit to establish the first link and manages a state of the first link. 2 management departments,
    The second management unit determines the access parameters of the first link during the transmission suppression period based on the information included in the second frame received by the first wireless terminal device. setting lower priority than the access parameter of the first link outside the period and outside the transmission suppression period;
    Communications system.
  7.  請求項5に記載のアクセスポイントと、
     前記第1の無線端末装置と、を備え、
     前記第1の無線端末装置は、第2の無線信号処理部と、前記第2の無線信号処理部を用いて前記第1のリンクを確立し、且つ前記第1のリンクの状態を管理する第2のマネジメント部と、を備え、
     前記第2のマネジメント部は、前記第1の無線端末装置が受信した前記第2のフレームに含まれた前記情報に基づいて、前記送信抑制期間における前記第1のリンクを用いたデータの送信を禁止する、
     通信システム。
    The access point according to claim 5,
    The first wireless terminal device,
    The first wireless terminal device includes a second wireless signal processing unit and a second wireless signal processing unit that uses the second wireless signal processing unit to establish the first link and manages a state of the first link. 2 management departments,
    The second management unit controls the transmission of data using the first link during the transmission suppression period based on the information included in the second frame received by the first wireless terminal device. prohibit,
    Communications system.
  8.  無線信号処理部と、
     前記無線信号処理部を用いてアクセスポイントとのリンクを確立し、且つ前記リンクの状態を管理するマネジメント部と、を備え、
     前記マネジメント部は、
      前記アクセスポイントから周期的なサービス期間の情報を含む第1の情報を受信し、前記サービス期間において前記リンクを用いてデータを送信し、
      前記アクセスポイントから前記サービス期間外の送信抑制期間の情報を含む第2の情報を受信し、前記送信抑制期間において前記リンクを用いたデータの送信を抑制又は禁止する、
     無線端末装置。
    a wireless signal processing unit;
    a management unit that establishes a link with an access point using the wireless signal processing unit and manages the state of the link,
    The management department is
    receiving first information including periodic service period information from the access point, and transmitting data using the link during the service period;
    receiving second information including information on a transmission suppression period outside the service period from the access point, and suppressing or prohibiting data transmission using the link during the transmission suppression period;
    Wireless terminal equipment.
  9.  前記マネジメント部は、前記第2の情報に基づいて、前記送信抑制期間における前記リンクのアクセスパラメータを、前記サービス期間外且つ前記送信抑制期間外における前記リンクのアクセスパラメータよりも低優先に設定する、
     請求項8に記載の無線端末装置。
    The management unit sets an access parameter of the link during the transmission suppression period to a lower priority than an access parameter of the link outside the service period and outside the transmission suppression period, based on the second information.
    The wireless terminal device according to claim 8.
  10.  前記マネジメント部は、前記第2の情報に基づいて、前記送信抑制期間における前記リンクを用いたデータの送信を禁止する、
     請求項8に記載の無線端末装置。
    The management unit prohibits data transmission using the link during the transmission suppression period based on the second information.
    The wireless terminal device according to claim 8.
PCT/JP2022/030557 2022-08-10 2022-08-10 Access point, wireless terminal device, and communication system WO2024034051A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/030557 WO2024034051A1 (en) 2022-08-10 2022-08-10 Access point, wireless terminal device, and communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/030557 WO2024034051A1 (en) 2022-08-10 2022-08-10 Access point, wireless terminal device, and communication system

Publications (1)

Publication Number Publication Date
WO2024034051A1 true WO2024034051A1 (en) 2024-02-15

Family

ID=89851277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030557 WO2024034051A1 (en) 2022-08-10 2022-08-10 Access point, wireless terminal device, and communication system

Country Status (1)

Country Link
WO (1) WO2024034051A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210212045A1 (en) * 2020-01-07 2021-07-08 Qualcomm Incorporated Cross-link network allocation vector (nav) setting for multi-link operation (mlo)
US20210297948A1 (en) * 2020-03-20 2021-09-23 Cypress Semiconductor Corporation Apparatus, systems, and methods for battery life based wireless communication scheduling
US20220141770A1 (en) * 2017-12-21 2022-05-05 Wilus Institute Of Standards And Technology Inc. Wireless communication method and wireless communication terminal using wake-up radio

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220141770A1 (en) * 2017-12-21 2022-05-05 Wilus Institute Of Standards And Technology Inc. Wireless communication method and wireless communication terminal using wake-up radio
US20210212045A1 (en) * 2020-01-07 2021-07-08 Qualcomm Incorporated Cross-link network allocation vector (nav) setting for multi-link operation (mlo)
US20210297948A1 (en) * 2020-03-20 2021-09-23 Cypress Semiconductor Corporation Apparatus, systems, and methods for battery life based wireless communication scheduling

Similar Documents

Publication Publication Date Title
KR101904335B1 (en) Station contention behavior in uplink multiple user protocols
KR101365435B1 (en) Method and apparatus for media access in contention-based networks
JP5182964B2 (en) Device for media access in contention network
US7873049B2 (en) Multi-user MAC protocol for a local area network
US7801104B2 (en) System and method for reducing packet collisions in wireless local area networks
US20230155953A1 (en) QoS MANAGEMENT FOR MULTI-USER AND SINGLE USER EDCA TRANSMISSION MODE IN WIRELESS NETWORKS
US20120314694A1 (en) Method of Back-off Procedure Setup in a Wireless Communication System
JP2016116240A (en) Packet scheduling in wireless lan
US20050025131A1 (en) Medium access control in wireless local area network
JPWO2012120772A1 (en) Wireless LAN communication device, wireless LAN communication method and program
US8223790B1 (en) Method and apparatus performing no back-off forwarding
JP4335219B2 (en) Wireless LAN traffic priority control method and apparatus
EP3316631B1 (en) Method and device for competitive transmission
JP5376673B2 (en) Device for media access in contention network
US20190110315A1 (en) Method for transmitting uplink frame in wireless lan system, and wireless terminal using same
KR101544819B1 (en) Data transmission method and apparatus for avoiding collision in ad-hoc network
WO2024034051A1 (en) Access point, wireless terminal device, and communication system
WO2022143176A1 (en) Service transmission method, apparatus and system
US9775172B2 (en) Method and apparatus for wireless communication
GB2575555A (en) Enhanced management of ACs in multi-user EDCA transmission mode in wireless networks
WO2023248375A1 (en) Transmitter station, transmission method, and transmission program
WO2024009398A1 (en) Access point, data reception method, and data reception program
WO2023248376A1 (en) Transmission station, transmission method, and transmission program
WO2024034050A1 (en) Access point
KR102648538B1 (en) Method for scheduling orthogonal frequency division multiple access based on quality of service in wireless local area network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954969

Country of ref document: EP

Kind code of ref document: A1