WO2024033595A1 - Pump - Google Patents

Pump Download PDF

Info

Publication number
WO2024033595A1
WO2024033595A1 PCT/FR2023/051259 FR2023051259W WO2024033595A1 WO 2024033595 A1 WO2024033595 A1 WO 2024033595A1 FR 2023051259 W FR2023051259 W FR 2023051259W WO 2024033595 A1 WO2024033595 A1 WO 2024033595A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
depression
volume state
actuating rod
vacuum chamber
Prior art date
Application number
PCT/FR2023/051259
Other languages
French (fr)
Inventor
David Fabien
Fabrizio Camplone
Marco Zavarella
Original Assignee
Aptar France Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aptar France Sas filed Critical Aptar France Sas
Publication of WO2024033595A1 publication Critical patent/WO2024033595A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B11/00Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use
    • B05B11/01Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use characterised by the means producing the flow
    • B05B11/10Pump arrangements for transferring the contents from the container to a pump chamber by a sucking effect and forcing the contents out through the dispensing nozzle
    • B05B11/1042Components or details
    • B05B11/1073Springs
    • B05B11/1078Vacuum chambers acting like springs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/006Sprayers or atomisers specially adapted for therapeutic purposes operated by applying mechanical pressure to the liquid to be sprayed or atomised
    • A61M11/007Syringe-type or piston-type sprayers or atomisers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/08Inhaling devices inserted into the nose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B11/00Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use
    • B05B11/0005Components or details
    • B05B11/0062Outlet valves actuated by the pressure of the fluid to be sprayed
    • B05B11/007Outlet valves actuated by the pressure of the fluid to be sprayed being opened by deformation of a sealing element made of resiliently deformable material, e.g. flaps, skirts, duck-bill valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B11/00Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use
    • B05B11/01Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use characterised by the means producing the flow
    • B05B11/10Pump arrangements for transferring the contents from the container to a pump chamber by a sucking effect and forcing the contents out through the dispensing nozzle
    • B05B11/1042Components or details
    • B05B11/1059Means for locking a pump or its actuation means in a fixed position
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0065Inhalators with dosage or measuring devices
    • A61M15/0068Indicating or counting the number of dispensed doses or of remaining doses
    • A61M15/0081Locking means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B11/00Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use
    • B05B11/01Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use characterised by the means producing the flow
    • B05B11/10Pump arrangements for transferring the contents from the container to a pump chamber by a sucking effect and forcing the contents out through the dispensing nozzle
    • B05B11/1042Components or details
    • B05B11/1043Sealing or attachment arrangements between pump and container
    • B05B11/1046Sealing or attachment arrangements between pump and container the pump chamber being arranged substantially coaxially to the neck of the container
    • B05B11/1047Sealing or attachment arrangements between pump and container the pump chamber being arranged substantially coaxially to the neck of the container the pump being preassembled as an independent unit before being mounted on the container

Definitions

  • the present invention relates to a pump comprising a fluid chamber of variable volume, as well as an actuating rod movable axially between a rest position and a depressed position, so as to vary the volume of the chamber respectively between a maximum volume state and a minimum volume state.
  • the pump includes return means for returning the actuating rod to the rest position, corresponding to the maximum volume state of the fluid chamber.
  • the actuating rod is provided with a pusher operable by a user.
  • the preferred fields of application of the invention are those of pharmacy, cosmetics and perfumery, without excluding others.
  • the return means is in the form of a spring which is generally made of metal. The problem with these metal springs is that they prevent or complicate the recycling of the pump, especially since they are placed in the pump body.
  • the present invention seeks to remedy the drawbacks of these springs of the prior art by proposing another type of elastic return means, which presents no recycling or stiffness problem.
  • the return means comprise a vacuum chamber, the volume of which varies between a state of minimum volume and a state of maximum volume by movement of the actuating rod, the state of minimum volume of the vacuum chamber being reached in the rest position of the actuating rod and the maximum volume state of the vacuum chamber being reached in the depressed position of the actuating rod, the maximum volume state of the chamber of depression corresponding to a maximum depression and the minimum volume state of the vacuum chamber corresponding to a minimum depression, the rod actuation being urged towards its rest position by the depression prevailing in the depression chamber.
  • the vacuum chamber thus generates a vacuum from a point where the pressure of the vacuum chamber is close to or equal to atmospheric pressure.
  • the pressure in the vacuum chamber is therefore always less than or equal to atmospheric pressure.
  • the vacuum increases as the actuating rod is moved from its rest position to its depressed position. It's kind of like an air pump in reverse.
  • the pump further comprises mechanical means, independent of the depression in the depression chamber, actuable by the user to return and maintain the depression chamber in its minimum volume state.
  • the vacuum chamber will decrease in volume as soon as the user releases pressure on the pusher. This reduction in volume under the action of the depression continues until the mechanical means are engaged.
  • the user can activate these mechanical means to further reduce the volume of the vacuum chamber to finally reach its minimum volume state.
  • the vacuum in the minimum volume state need not be present during the entire actuation sequence of the mechanical means. It is enough for the depression to activate the mechanical means.
  • the mechanical means are controlled by the pusher via the actuating rod.
  • the user grasps the pusher and moves it, which has the effect of activating the mechanical means.
  • the movement of the pusher can be rotary, axial or both at the same time.
  • the mechanical means comprise a threaded socket, which makes it possible to move the pusher and the actuating rod both axially and in rotation.
  • the threaded socket can define an axial stroke, which is delimited on one side by a high stop corresponding to the minimum volume state of the vacuum chamber and on the other side by a threaded socket release allowing variation subsequent volume of the vacuum chamber towards its volume state maximum.
  • the user will grasp the pusher to rotate it through a determined angle, for example a quarter turn or a half turn, to selectively bring it into the locked or unlocked position.
  • This locking/unlocking system by rotating the pusher is classic.
  • the actuation of the locking/unlocking system also and simultaneously generates the actuation of the mechanical means, and this, without the user even perceiving it.
  • the vacuum chamber always returns to the same starting point of minimum volume.
  • the vacuum chamber communicates with the outside in its minimal volume state. So even if the vacuum chamber leaks and lets air in, that air will be exhausted to the outside, so the vacuum chamber still leaves the same pressure, which is close to atmospheric pressure.
  • This initial or final leak can be implemented independently of mechanical means, but the depression in the vacuum chamber must then be sufficient to return the vacuum chamber to or near its minimum volume state. This is possible, but difficult to achieve in practice and especially in a repeatable manner. This is why this initial or final leak finds particular advantage in combination with mechanical means, which ensure that the vacuum chamber always returns to its minimum volume state.
  • the actuating rod comprises a vacuum chamber piston which slides axially in a sealed manner in a vacuum chamber barrel, so as to define between them the vacuum chamber, the rod actuation forming a ventilation groove, which communicates the depression chamber with the outside in the rest state of the actuating rod, which corresponds to the minimum volume state of the vacuum chamber.
  • the groove, groove or passage establishes air communication between the vacuum chamber and the outside when the pump is at rest, this communication being cut off so as to isolate the vacuum chamber, as soon as the actuating rod leaves its resting state or shortly after leaving its resting state.
  • the actuating rod may comprise a piston member and a valve, the piston member forming the vacuum chamber piston sliding in the vacuum chamber barrel, the piston member also forming a fluid chamber piston sliding in a fluid chamber barrel, the piston member advantageously forming a movable outlet valve member for the fluid chamber and the valve advantageously forming an outlet valve seat for the fluid chamber.
  • the piston member is movable axially relative to the valve under the effect of the pressure prevailing in the fluid product chamber, but is rotated by the valve.
  • the threaded socket is located between the piston member and the vacuum chamber barrel.
  • the piston member can be described as a differential piston, in that it moves under the effect of the pressure prevailing in the fluid product chamber.
  • an actuating rod can be provided provided with a fixed vacuum chamber piston and a fluid product chamber piston which slides on the actuating rod under the effect of the pressure prevailing in the fluid product chamber.
  • the vacuum chamber defines a maximum axial stroke between its state of minimum volume and its state of maximum volume, this maximum axial stroke being broken down into: - a major stroke from the the state of maximum volume, which is induced by the depression prevailing in the vacuum chamber, and - a minor stroke up to the maximum volume state, which is induced by rotational and/or axial drive of the pusher, which ends with an axial locking position of the pusher.
  • the user who picks up a distributor on which the pump of the invention is mounted, will quickly understand that the pusher is in the locked position by pressing it or by reading an instruction visible on the pusher. It will therefore cause the pusher to rotate at a determined angle to unlock it.
  • the mechanical means which brought the depression chamber from its state of minimum volume in which it communicates with the outside into an intermediate state in which it is isolated from the outside.
  • the mechanical means implement a threaded grip
  • the intermediate position corresponds to the end of the threaded grip, in which the actuating rod is released from this threaded grip.
  • the user presses axially on the pusher, which has the simultaneous effects of distributing fluid product and generating an increasing depression in the depression chamber. Once the distribution of fluid product is complete, the user releases his axial pressure on the pusher, so that the depression in the vacuum chamber has the effect of returning the actuating rod and its pusher to the rest position.
  • the return stroke of the rod is stopped in the intermediate position, which corresponds to the engagement of the mechanical means.
  • the mechanical means implement a threaded engagement
  • the depression rises the actuating rod until the threads engage.
  • the user just needs to turn the pusher to lock it, which simultaneously has the effect of returning the actuating rod to the rest position and the vacuum chamber to its minimum volume state in which it communicates with outside through the vent groove of the actuating rod.
  • the locked position corresponds to a stop of the threaded socket.
  • the spirit of the invention lies in the threaded socket which allows the air spring to return to its starting point. On the other hand, in order to mitigate the risk of leakage, it is fanned at its starting point.
  • Figure 1 is a vertical cross-sectional view through a fluid product distributor integrating a pump according to the invention at rest locked
  • Figure 2a is an enlarged view of Figure 1 with the pump at rest locked
  • Figure 2b is a view similar to Figure 2a with the pump unlocked
  • Figure 3a is a greatly enlarged view of part of Figure 2a
  • Figure 3b is a highly enlarged view of part of Figure 2b
  • Figures 4a, 4b and 4c represent the valve of the pump according to the invention
  • Figures 5a, 5b, 5c and 5d represent the piston member of the pump according to the invention
  • Figures 6a, 6b, 6c and 6d represent the body of the pump according to the invention.
  • FIG. 1 shows the pump of the invention mounted on a reservoir of fluid product R, which is not critical for the present invention. Indeed, this reservoir R can be of any nature, of any shape, and made of any suitable material. It suffices for it to form an opening, for example in the form of a neck, on which the pump of the invention can be mounted in a fixed and waterproof manner.
  • the pump of the invention firstly comprises a pump body 3 which receives fixed elements 4, 5 and 6 as well as a movable element, namely an actuating rod T.
  • the pump body 3 forms a ring 35 intended to cooperate with the neck of the tank R for fixing the pump on the tank.
  • the pump body 3 forms an assembly sleeve 36, in which are fixedly mounted a bottom part 6 provided with a dip tube 61, a barrel part 5 provided with a valve inlet 51 and a sleeve 4 which serves for the watertight guidance of the actuating rod T.
  • the barrel part 5 is held between the bottom part 6 and the sleeve 4.
  • the bottom part 6 can be permanently snapped into place in openings formed by the socket 36 of the pump body 3.
  • the design of these fixed parts 4, 5 and 6 is not critical for the present invention, so that other architectures can be considered without departing from the scope of the invention.
  • the actuating rod T is slidably mounted inside the pump body 3 along a longitudinal axis a pusher P, on which the user can press to axially move the actuating rod T back and forth inside the pump body 3.
  • the pusher P is a nasal type pusher , but any pusher can be mounted on the actuating rod T.
  • the pusher P is not critical for the present invention.
  • the actuating rod T is here of a particular type, since it comprises a valve 1 in the upper part and a piston member 2 in the lower part. These two parts are connected to each other with freedom of axial movement along the axis rotation of the piston member 2.
  • the valve 1 comprises a tube 11 which extends upwards from a base 13.
  • the valve 1 is more visible in Figures 4a, 4b and 4c.
  • the tube 11 forms a free end on which the pusher P is fixedly mounted both axially and in rotation.
  • the tube 11 forms a ventilation groove 12, the largest dimension of which is axial.
  • This ventilation groove 12 is located near the base 13. Its function will be given below.
  • the base 13 has an increased diameter compared to that of the tube 11.
  • the base 13 firstly comprises two longitudinal axial ribs 14 which project radially outwards.
  • the two ribs 14 are arranged diametrically opposite. It can even be noted that the ventilation groove 12 is located axially just above one of the ribs 14. Below the ribs 14, the base 13 forms an annular groove 15, which is used to receive a seal O-ring G15, visible in Figure 1. Internally, the base 13 forms a housing 16 for another O-ring G16, also visible in Figure 1.
  • the valve 1 is crossed internally by a through conduit 10 which extends from the housing 16 to the free upper end of the tube 11 on which the pusher P is mounted.
  • the piston member 2 comprises a head 21 and a tube 25. The piston member 2 is more visible in Figures 5a, 5b , 5c and 5d.
  • the head 21 externally forms a helical groove 22, the function of which will be given below. Below this helical groove 22, the head 21 forms a groove 23 for receiving an O-ring G23, visible in Figure 1.
  • the head 21 defines a receiving housing 20, which forms two longitudinal axial recesses 24 , intended to receive the two ribs 14 of the valve 1, so as to block the two parts in rotation relative to each other.
  • the recesses 24 have dimensions very slightly larger than those of the ribs 14 so as to be able to receive them without play or excessive friction, so that the two parts can still move axially by sliding.
  • the tubing 25 internally forms a movable valve member 26, which will cooperate with the O-ring G16 of the valve 1, so as to together form an outlet valve of the pump.
  • the receiving housing 20 communicates with the interior of the tubing 25 by passages formed around the movable valve member 26, which is connected to the tubing 25 by material bridges .
  • the pump body 3 is more visible in Figures 6a, 6b and 6d.
  • the pump body 3 internally defines a sliding barrel 31, which has the particularity of forming at its upper end a helical thread 32. Above this helical thread 32, the pump body forms an axial stop 33 internally defining a housing 34 for an O-ring G34, visible in Figure 1.
  • the body 3 forms the fixing ring 35, already described, as well as the assembly sleeve 36.
  • the base 13 of the valve 1 is engaged axially inside the receiving housing 20 of the piston member 2, with the ribs 14 engaged by sliding inside the recesses 24 of the receiving housing 20.
  • Maximum engagement of the base 13 inside the receiving housing 20 results in tight contact between the O-ring G23 and the wall of the receiving housing 20, as well as tight contact between the O-ring G16 and the movable valve member 26.
  • This actuating rod T constituted by the assembly of the valve 1 with the piston member 2, is integrated into the pump body 3 in the following manner.
  • the head 21 of the piston member 2 is in threaded engagement with the barrel 31. More precisely, the helical thread 32 of the body 3 is in engagement with the helical groove 22 of the head 21 of the piston member 2.
  • the O-ring G34 surrounds the tube 11: however, in this locked rest position, we can notice in Figure 3a that the tight contact between the O-ring G34 and the tube 11 is broken by the vent groove 12, which is located axially at the level of the O-ring G34. From this locked rest position, shown in Figures 1, 2a and 3a, the user can grasp the pusher P and rotate it, which has the effect of rotating the piston member 2 to the inside the pump body 1 via the valve 1.
  • the space thus formed between the head 21 and the stop 33 constitutes a depression chamber Cd, which arises with the rotation of the pusher P and which increases even further by axial support on the pusher P.
  • the depression chamber Cd is isolated from the outside, so that an increasing depression occurs as the head 21 moves away from the stop 33.
  • the O-ring G27 slides along the barrel 52, thus reducing the volume of the pump chamber Cp and increasing the pressure on the fluid product.
  • a slight axial movement is created between the piston member 2 and the valve 1, so as to separate the O-ring G16 from the movable valve member 26, thus creating an outlet passage for the fluid product through the valve 1 and the pusher P.
  • this differential piston will not be described in greater detail here, given that it is known from the prior art.
  • the stroke of the head 21, which can be compared to a vacuum chamber piston, with its O-ring G23 acting as a piston lip, can be broken down into two parts, namely a major stroke corresponding to sealed sliding without rotating component and a minor stroke corresponding to the threaded engagement of the thread 32 in the groove 22.
  • the major stroke is generated by the depression prevailing in the depression chamber Cd, while the minor stroke is generated by the manual rotation of the pusher P.
  • the major stroke is solely pneumatic, while the minor stroke is essentially mechanical. We can thus qualify the threaded connection between the thread 32 and the groove 22 as mechanical means as opposed to the pneumatic means of the major stroke.
  • the mechanical means, formed by the thread 32 and the groove 22, make it possible to return the actuating rod T to the locked rest position, in which the depression chamber Cd, reduced to its minimum volume state, communicates with the exterior via the ventilation groove 12. It is easily understood by referring to Figure 3a, that this communication with the exterior is very quickly broken as soon as the ventilation groove 12 is no longer located axially at the G34 O-ring. A stroke of a few tenths of a millimeter is enough to break this communication and isolate the depression chamber Cd from the outside. Venting the vacuum chamber Cd allows the pressure to be reset each time the pump is actuated.
  • the pump described here integrates a piston member 2 which can be described as a differential piston, since it moves not only by pressing on the pusher but also in response to a threshold pressure inside the fluid product chamber Cp.
  • a piston member 2 which can be described as a differential piston, since it moves not only by pressing on the pusher but also in response to a threshold pressure inside the fluid product chamber Cp.
  • several ventilation grooves 12 and one or more ribs 14 can be provided.
  • the O-rings used on different parts can be replaced by one-piece lips.
  • the invention it is possible to replace the metal or plastic spring of the prior art with a pneumatic spring, part of the stroke of which results from the actuation of the pusher, which is preferably rotary.
  • a pneumatic spring part of the stroke of which results from the actuation of the pusher, which is preferably rotary.

Abstract

The invention relates to a pump comprising a fluid product chamber (Cp), an actuating rod (T) and a return means (Cd) for returning the actuating rod (T) to an idle position, wherein the actuating rod (T) is provided with a push member (P) that can be actuated by a user, characterised in that the return means comprises a depression chamber (Cd) having a volume that can be varied between a minimum volume state and a maximum volume state by moving the actuating rod (T), the minimum volume state being obtained when the actuating rod (T) is in the idle position and the maximum volume state being obtained when the actuating rod (T) is in the depressed position, wherein the maximum volume state corresponds to a maximum depression and the minimum volume state corresponds to a minimum depression and the actuating rod (T) is biased towards its idle position by the depression prevailing in the depression chamber (Cd).

Description

Pompe La présente invention concerne une pompe comprenant une chambre de produit fluide de volume variable, ainsi qu’une tige d’actionnement déplaçable axialement entre une position de repos et une position enfoncée, de manière à faire varier le volume de la chambre respectivement entre un état de volume maximal et un état de volume minimal. La pompe comprend un moyen de rappel pour ramener la tige d’actionnement en position de repos, correspondant à l’état de volume maximal de la chambre de produit fluide. La tige d’actionnement est pourvue d’un poussoir actionnable par un utilisateur. Les domaines d’application privilégiés de l’invention sont ceux de la pharmacie, de la cosmétique et de la parfumerie, sans exclure d’autres. De manière classique, le moyen de rappel se présente sous la forme d’un ressort qui est généralement réalisé en métal. Le problème de ces ressorts en métal est qu’ils empêchent ou compliquent le recyclage de la pompe, et ceci d’autant plus qu’ils sont disposés dans le corps de pompe. Il existe aussi des ressorts en matière plastique, qui sont plus facilement recyclables, mais ils ont tendance à perdre leur raideur avec le temps. La présente invention cherche à remédier les inconvénients des ces ressorts de l’art antérieur en proposant un autre type de moyen de rappel élastique, qui ne présente aucun problème de recyclage ou de raideur. Pour ce faire, la présente invention propose que le moyen de rappel comprenne une chambre de dépression, dont le volume varie entre un état de volume minimal et un état de volume maximal par déplacement de la tige d’actionnement, l’état de volume minimal de la chambre de dépression étant atteint en position de repos de la tige d’actionnement et l’état de volume maximal de la chambre de dépression étant atteint en position enfoncée de la tige d’actionnement, l’état de volume maximal de la chambre de dépression correspondant à une dépression maximale et l’état de volume minimal de la chambre de dépression correspondant à une dépression minimale, la tige d’actionnement étant sollicitée vers sa position de repos par la dépression régnant dans la chambre de dépression. La chambre de dépression génère ainsi une dépression à partir d’un point où la pression de la chambre de dépression est proche ou égale à la pression atmosphérique. La pression dans la chambre de dépression est donc toujours inférieure ou égale à la pression atmosphérique. La dépression s’accroit à mesure que l’on déplace la tige d’actionnement de sa position de repos vers sa position enfoncée. C’est une sorte de pompe à air à l’envers. Selon l’invention, la pompe comprend en outre des moyens mécaniques, indépendants de la dépression dans la chambre de dépression, actionnables par l’utilisateur pour ramener et maintenir la chambre de dépression dans son état de volume minimal. Ainsi, en partant de l’état de volume maximal (dépression maximale), la chambre de dépression va diminuer de volume, dès que l’utilisateur relâche la pression sur le poussoir. Cette diminution de volume sous l’action de la dépression se poursuit jusqu’à ce que les moyens mécaniques soient en prise. Dès lors, l’utilisateur peut actionner ces moyens mécaniques pour diminuer encore davantage le volume de la chambre de dépression pour parvenir finalement dans son état de volume minimal. La dépression dans la l’état de volume minimal n’a pas besoin d’être présente durant la totalité de la séquence d’actionnement des moyens mécaniques. Il suffit que la dépression enclenche les moyens mécaniques. Avantageusement, les moyens mécaniques sont commandés par le poussoir par l’intermédiaire de la tige d’actionnement. En d’autres termes, l’utilisateur saisit le poussoir et le déplace, ce qui a pour effet d’actionner les moyens mécaniques. Le déplacement du poussoir peut être rotatif, axial ou les deux à la fois. Selon l’invention, les moyens mécaniques comprennent une prise filetée, qui permet de déplacer le poussoir et la tige d’actionnement à la fois axialement et en rotation. Avantageusement, la prise filetée peut définir une course axiale, qui est délimitée d’un côté par une butée haute correspondant à l’état de volume minimal de la chambre de dépression et de l’autre côté par une libération de prise filetée permettant une variation ultérieure du volume de la chambre de dépression vers son état de volume maximal. D’un point de vue ergonomique et gestuel, l’utilisateur va saisir le poussoir pour le faire tourner sur un angle déterminé, par exemple un quart de tour ou un demi-tour, pour l’amener sélectivement en position verrouillée ou déverrouillée. Ce système de verrouillage/déverrouillage par rotation du poussoir est classique. Dans le cadre de l’invention, l’actionnement du système de verrouillage/déverrouillage engendre également et simultanément l’actionnement des moyens mécaniques, et ceci, sans même que l’utilisateur ne le perçoive. Grâce aux moyens mécaniques, la chambre de dépression revient toujours au même point de départ de volume minimal. Selon une autre caractéristique intéressante de l’invention, qui est avantageusement combinable aux moyens mécaniques, la chambre de dépression communique avec l’extérieur dans son état de volume minimal. Ainsi, même si la chambre de dépression fuit et laisse entrer de l’air, cet air sera évacué vers l’extérieur, de sorte que la chambre de dépression part toujours la même pression, qui est proche de la pression atmosphérique. Cette fuite initiale ou finale peut être mise en œuvre indépendamment des moyens mécaniques, mais il faut alors que la dépression dans la chambre de dépression soit suffisante pour ramener la chambre de dépression dans ou à proximité de son état de volume minimal. Cela est possible, mais difficile à réaliser en pratique et surtout de manière répétable. C’est pourquoi cette fuite initiale ou finale trouve un avantage particulier en combinaison avec les moyens mécaniques, qui garantissent que la chambre de dépression revient toujours dans son état de volume minimal. On peut lors dire que les moyens mécaniques suppléent ou complètent la dépression pour assurer que la chambre de dépression est réinitialisée à chaque cycle d’actionnement en la reliant avec l’extérieur. Selon un mode de réalisation de l’invention, la tige d’actionnement comprend un piston de chambre de dépression qui coulisse axialement de manière étanche dans un fût de chambre de dépression, de manière à définir entre eux la chambre de dépression, la tige d’actionnement formant une rainure d’éventation, qui fait communiquer la chambre de dépression avec l’extérieur dans l’état de repos de la tige d’actionnement, qui correspond à l’état de volume minimal de la chambre de dépression. La rainure, gorge ou passage établit une communication d’air entre la chambre de dépression et l’extérieur lorsque la pompe est au repos, cette communication étant coupée de manière à isoler la chambre de dépression, dès que la tige d’actionnement quitte son état de repos ou peu après avoir quitté son état de repos. Une course de quelques dixièmes de millimètres est suffisante pour isoler la chambre de dépression. Selon un autre aspect de l’invention, la tige d’actionnement peut comprendre un organe de piston et une soupape, l’organe de piston formant le piston de chambre de dépression coulissant dans le fût de chambre de dépression, l’organe de piston formant également un piston de chambre de produit fluide coulissant dans un fût de chambre de produit fluide, l’organe de piston formant avantageusement un organe mobile de clapet de sortie pour la chambre de produit fluide et la soupape formant avantageusement un siège de clapet de sortie pour la chambre de produit fluide. Avantageusement, l’organe de piston est mobile axialement par rapport à la soupape sous l’effet de la pression régnant dans la chambre de produit fluide, mais est entrainé en rotation par la soupape. Avantageusement, la prise filetée est située entre l’organe de piston et le fût de chambre de dépression. L’organe de piston peut être qualifié de piston différentiel, en ce qu’il se déplace sous l’effet de la pression régnant dans la chambre de produit fluide. A la place de cet organe de piston, on peut prévoir une tige d’actionnement pourvu d’un piston de chambre de dépression fixe et d’un piston de chambre de produit fluide qui coulisse sur la tige d’actionnement sous l’effet de la pression régnant dans la chambre de produit fluide. Selon une autre approche de l’invention on peut dire que la chambre de dépression définit une course axiale maximale entre son état de volume minimal et son état de volume maximal, cette course axiale maximale se décomposant en : - une course majeure à partir de l’état de volume maximal, qui est induite par la dépression régnant dans chambre de dépression, et - une course mineure jusqu’à l’état de volume maximal, qui est induite par un entrainement en rotation et/ou axial du poussoir, qui s’achève par une position de verrouillage axial du poussoir. L’utilisateur, qui se saisit un distributeur sur lequel la pompe de l’invention est montée, va vite comprendre que le poussoir est en position verrouillée en appuyant dessus ou en relevant une instruction visible sur le poussoir. Il va donc entrainer le poussoir en rotation sur angle déterminé pour le déverrouiller. Ce faisant mais imperceptiblement, il a actionné les moyens mécaniques, qui ont amené la chambre de dépression de son état de volume minimal dans lequel elle communique avec l’extérieur dans un état intermédiaire dans lequel elle est isolée de l’extérieur. Dans le cas où les moyens mécaniques mettent en œuvre une prise filetée, la position intermédiaire correspond à la fin de la prise filetée, dans laquelle la tige d’actionnement est libérée de cette prise filetée. L’utilisateur appuie alors axialement sur le poussoir, ce qui a pour effets simultanés de distribuer du produit fluide et de générer une dépression croissante dans la chambre de dépression. Une fois la distribution de produit fluide terminée, l’utilisateur relâche sa pression axiale sur le poussoir, de sorte que la dépression dans la chambre de dépression a pour effet de renvoyer la tige d’actionnement et son poussoir vers la position de repos. Cependant, la course de retour de la tige est stoppée en position intermédiaire, qui correspond à l’enclenchement des moyens mécaniques. Dans le cas où les moyens mécaniques mettent en œuvre une prise filetée, la dépression remonte la tige d’actionnement jusqu’à ce que les filets viennent en prise. Dès lors, il suffit à l’utilisateur de tourner le poussoir pour le verrouiller, ce qui a simultanément pour effet de ramener la tige d’actionnement en position de repos et la chambre de dépression dans son état de volume minimal dans lequel elle communique avec l’extérieur à travers la rainure d’éventation de la tige d’actionnement. La position verrouillée correspond à une butée de la prise filetée. L’esprit de l’invention réside dans la prise filetée qui permet au ressort pneumatique de revenir à son point de départ. D’autre part, afin de palier un risque de fuite, on l’évente à son point départ. La prise filetée combinée à la fuite au point de départ procure un effet synergique, en rendant son fonctionnement parfaitement répétable, et donc fiable. Le ressort pneumatique est ainsi réinitialisé après chaque actionnement. L’invention sera maintenant plus amplement décrite en référence aux dessins joints, donnant à titre d’exemple non limitatif, un mode de réalisation de l’invention. Sur les figures : La figure 1 est une vue en coupe transversale verticale à travers un distributeur de produit fluide intégrant une pompe selon l’invention au repos verrouillée, La figure 2a est une vue agrandie de la figure 1 avec la pompe au repos verrouillée, La figure 2b est une vue similaire à la figure 2a avec la pompe déverrouillée, La figure 3a est une vue fortement agrandie d’une partie de la figure 2a, La figure 3b est une vue fortement agrandie d’une partie de la figure 2b, Les figures 4a, 4b et 4c représentent la soupape de la pompe selon l’invention, Les figures 5a, 5b, 5c et 5d représentent l’organe de piston de la pompe selon l’invention, et Les figures 6a, 6b, 6c et 6d représentent le corps de la pompe selon l’invention La figure 1 montre la pompe de l’invention montée sur un réservoir de produit fluide R, qui n’est pas critique pour la présente invention. En effet, ce réservoir R peut être de toute nature, de toute forme, et réalisé en un matériau approprié quelconque. Il suffit qu’il forme une ouverture, par exemple sous la forme d’un col, sur lequel la pompe de l’invention peut être montée de manière fixe et étanche. La pompe de l’invention comprend tout d’abord un corps de pompe 3 qui reçoit des éléments fixes 4, 5 et 6 ainsi qu’un élément mobile, à savoir une tige d’actionnement T. Le corps de pompe 3 forme une bague 35 destinée à coopérer avec le col du réservoir R pour la fixation de la pompe sur le réservoir. En dessous de cette bague de fixation 35, le corps de pompe 3 forme une douille d’assemblage 36, dans laquelle sont montés fixement une pièce de fond 6 dotée d’un tube plongeur 61, une pièce de fût 5 pourvue d’un clapet d’entrée 51 et un manchon 4 qui sert au guidage étanche de la tige d’actionnement T. La pièce de fût 5 est maintenue entre la pièce de fond 6 et le manchon 4. La pièce de fond 6 peut être encliquetée de manière définitive dans des ouvertures formées par la douille 36 du corps de pompe 3. La conception de ces pièces fixes 4, 5 et 6 n’est pas critique pour la présente invention, de sorte que d’autres architectures peuvent être envisagées sans sortir du cadre de l’invention. La tige d’actionnement T est montée de manière coulissante à l’intérieur du corps de pompe 3 selon un axe longitudinal X. Une partie de la tige d’actionnement T émerge hors du corps de pompe 3 vers le haut : cette partie émergeante reçoit un poussoir P, sur lequel l’utilisateur peut appuyer pour déplacer axialement la tige d’actionnement T en va-et-vient à l’intérieur du corps de pompe 3. Sur la figure 1, le poussoir P est un poussoir de type nasal, mais n’importe quel poussoir peut être monté sur la tige d’actionnement T. Le poussoir P n’est pas critique pour la présente invention. La tige d’actionnement T est ici d’un type particulier, puisqu’elle comprend une soupape 1 en partie haute et un organe de piston 2 en partie basse. Ces deux pièces sont reliées l’une à l’autre avec une liberté de déplacement axial selon l’axe X. Cependant, elles sont reliées fixement l’une à l’autre en rotation de sorte que la rotation de la soupape 1 entraîne la rotation de l’organe de piston 2. Et comme le poussoir P est monté fixement sur la soupape 1, la rotation du poussoir P entraîne la rotation de la tige d’actionnement T dans son ensemble. Plus précisément, la soupape 1 comprend un tube 11 qui s’étend vers le haut à partir d’une embase 13. La soupape 1 est plus visible sur les figures 4a, 4b et 4c. Le tube 11 forme une extrémité libre sur laquelle le poussoir P est monté fixement à la fois axialement et en rotation. On peut remarquer que le tube 11 forme une rainure d’éventation 12, dont la plus grande dimension est axiale. Cette rainure d’éventation 12 est située à proximité de l’embase 13. Sa fonction sera donnée ci-après. L’embase 13 présente un diamètre accru par rapport à celui du tube 11. L’embase 13 comprend tout d’abord deux nervures axiales longitudinales 14 qui font saillie radialement vers l’extérieur. Les deux nervures 14 sont disposées de manière diamétralement opposée. On peut même remarquer que la rainure d’éventation 12 est située axialement juste au-dessus d’une des nervures 14. En dessous des nervures 14, l’embase 13 forme dune gorge annulaire 15, qui sert à la réception d’un joint torique G15, visible sur la figure 1. Intérieurement, l’embase 13 forme un logement 16 pour un autre joint torique G16, également visible sur la figure 1. La soupape 1 est traversée intérieurement par un conduit traversant 10 qui s’étend du logement 16 jusqu’à l’extrémité supérieure libre du tube 11 sur laquelle est monté le poussoir P. L’organe de piston 2 comprend une tête 21 et une tubulure 25. L’organe de piston 2 est plus visible sur les figures 5a, 5b, 5c et 5d. La tête 21 forme extérieurement un sillon hélicoïdal 22, dont la fonction sera donnée ci-après. En dessous de ce sillon hélicoïdal 22, la tête 21 forme une gorge 23 pour la réception d’un joint torique G23, visible sur la figure 1. Intérieurement, la tête 21 définit un logement de réception 20, qui forme deux évidements axiaux longitudinaux 24, destinés à la réception des deux nervures 14 de la soupape 1, de manière à bloquer les deux pièces en rotation l’une par rapport à l’autre. Les évidements 24 présentent des dimensions très légèrement supérieures à celles des nervures 14 de manière à pouvoir les recevoir sans jeu, ni frottement excessif, de manière à ce que les deux pièces puissent quand même se déplacer axialement par coulissement. La tubulure 25, à son extrémité inférieure, forme avec un logement interne 27 pour un joint torique G27. A son extrémité supérieure, la tubulure 25 forme intérieurement un organe de clapet mobile 26, qui va coopérer avec le joint torique G16 de la soupape 1, de manière à former ensemble un clapet de sortie de la pompe. Comme on peut le voir sur la figure 5d, le logement de réception 20 communique avec l’intérieur de la tubulure 25 par des passages formés autour de l’organe de clapet mobile 26, qui est relié à la tubulure 25 par des ponts de matière. Le corps de pompe 3 est plus visible sur les figures 6a, 6b et 6d. Le corps de pompe 3 définit intérieurement un fût de coulissement 31, qui a la particularité de former à son extrémité supérieure un filet hélicoïdal 32. Au- dessus de ce filet hélicoïdal 32, le corps de pompe forme une butée axiale 33 définissant intérieurement un logement 34 pour un joint torique G34, visible sur la figure 1. En dessous du fût de coulissement 31, le corps 3 forme la bague de fixation 35, déjà décrite, ainsi que la douille d’assemblage 36. On se référera maintenant à nouveau à la figure 1, ainsi qu’aux figures 2a et 3a pour expliquer la coopération de ces différentes pièces au sein de la pompe de l’invention. Comme déjà mentionné, l’embase 13 de la soupape 1 est engagée axialement à l’intérieur du logement de réception 20 de l’organe de piston 2, avec les nervures 14 engagées par coulissement à l’intérieur des évidements 24 du logement de réception 20. L’engagement maximal de l’embase 13 à l’intérieur du logement de réception 20 entraîne un contact étanche entre le joint torique G23 et la paroi du logement de réception 20, ainsi qu’un contact étanche entre le joint torique G16 et l’organe de clapet mobile 26. Un léger déplacement axial de ces deux pièces à partir de cette position d’engagement maximale conduit à décoller le joint G16 de l’organe de clapet mobile 26, alors que le joint torique G23 reste en contact étanche avec la paroi interne du logement de réception 20. En d’autres termes, le joint de col G16 se décolle, alors que le joint torique G23 coulisse de manière étanche. Ainsi, une étanchéité est toujours maintenue entre ces deux pièces. Cette tige d’actionnement T, constituée par l’assemblage de la soupape 1 avec l’organe de piston 2, est intégrée dans le corps de pompe 3 de la manière suivante. Dans l’état de repos verrouillé de la pompe, la tête 21 de l’organe de piston 2 est en prise filetée avec le fût 31. Plus précisément, le filet hélicoïdal 32 du corps 3 est en prise avec le sillon hélicoïdal 22 de la tête 21 de l’organe de piston 2. Dans cet état de repos verrouillé, on peut remarquer que la tête 21 est en contact avec la butée 33. Cependant, le joint torique G23 reste toujours en contact de coulissement étanche à l’intérieur du fût 31. La tubulure 25 de l’organe de piston 2 est engagée à l’intérieur du manchon 4 et coulisse de manière étanche grâce au joint torique G4. D’autre part, la tubulure 25 est également engagée autour du fût 52 de la pièce de fût 5 avec un contact étanche coulissant assuré par le joint torique G27. Ainsi, une chambre de produit fluide Cp est créée entre le clapet d’entrée 51 et le clapet de sortie formé par le joint torique G16 et l’organe de clapet mobile 26. On peut dire que le piston de la chambre de produit fluide Cp est formé par le joint torique G27 supporté par la tubulure 25. La soupape 1, dont l’embase 13 est engagée dans la tête 21 de l’organe de piston 2, fait saillie avec son tube 11 à travers la butée 33. On peut remarquer que l’embase 13 peut également venir en contact avec la butée 33. Le joint torique G34 entoure le tube 11 : toutefois, dans cette position de repos verrouillée, on peut remarquer sur la figure 3a que le contact étanche entre le joint torique G34 et le tube 11 est rompu par la rainure d’éventation 12, qui est située axialement au niveau du joint torique G34. A partir de cette position de repos verrouillée, représentée sur les figures 1, 2a et 3a, l’utilisateur peut saisir le poussoir P et l’entraîner en rotation, ce qui a pour effet de faire tourner l’organe de piston 2 à l’intérieur du corps de pompe 1 par l’intermédiaire de la soupape 1. En effet, le couple appliqué au poussoir P est transmis par la soupape 1 à l’organe de piston 2, du fait du blocage en rotation réalisé par l’engagement des nervures 14 dans les évidements 24. Cette rotation appliquée au poussoir P engendre un actionnement de la prise filetée créée entre le sillon hélicoïdal 22 et le filet hélicoïdal 32. Il en résulte que le poussoir P et la tige d’actionnement T se déplacent axialement vers le bas. Ceci est représenté sur les figures 2b et 3b. Le filet hélicoïdal 32 est complétement désengagé du sillon hélicoïdal 22 et la tête 21 avec son joint torique G23 peut dès lors coulisser axialement de manière étanche dans le fût 31 du corps de pompe 3 par appui axial sur le poussoir P. L’espace ainsi formé entre la tête 21 et la butée 33 constitue une chambre de dépression Cd, qui naît avec la rotation du poussoir P et qui croît encore davantage par appui axial sur le poussoir P. Grâce aux joints toriques G23 et G34, la chambre de dépression Cd est isolée de l’extérieur, de sorte qu’une dépression croissante se produit, à mesure que la tête 21 s’éloigne de la butée 33. Simultanément, le joint torique G27 coulisse le long du fût 52, réduisant ainsi le volume de la chambre de pompe Cp et augmentant la pression sur le produit fluide. En réaction à cette augmentation de pression, un léger déplacement axial se crée entre l’organe de piston 2 et la soupape 1, de manière à décoller le joint torique G16 de l’organe de clapet mobile 26, créant ainsi un passage de sortie pour le produit fluide à travers la soupape 1 et le poussoir P. Le fonctionnement de ce piston différentiel ne sera pas plus amplement décrit ici, étant donné qu’il est connu de l’art antérieur. Une fois le poussoir P complètement enfoncé, la distribution de produit fluide est terminée et l’utilisateur relâche alors la pression exercée sur le poussoir P. La dépression créée à l’intérieur de la chambre de dépression Cd a pour effet de ramener la tige de soupape T vers la position de repos. En d’autres termes, la dépression créée dans la chambre de dépression Cd sollicite la tête 21 de l’organe de piston 2 en direction de la butée 33. Le joint torique G23 se déplace donc de manière coulissante et étanche à l’intérieur du fût 31 jusqu’à ce que la tête 21 vienne en butée sur le début du filet hélicoïdal 32. L’utilisateur sait alors qu’il faut à nouveau verrouiller la pompe en entraînant le poussoir en rotation, ce qui a pour effet d’imbriquer le filet hélicoïdal 32 dans le sillon hélicoïdal 22. La fin de la rotation, correspondant à la position de repos verrouillée, est atteinte lorsque la tête 21 vient à nouveau en contact contre la butée 33. On se retrouve alors dans la configuration représentée sur les figures 1, 2a et 3a, dans laquelle la chambre de dépression Cd, réduite à un état de volume minimal, peut communiquer avec l’extérieur grâce au défaut d’étanchéité généré par la rainure d’éventation 12. Ainsi, la course de la tige d’actionnement P permet de faire varier le volume de la chambre de dépression Cd entre un état de volume minimal, voire nul, et un état de volume maximal. La course de la tête 21, qui peut être assimilée à un piston de chambre de dépression, avec son joint torique G23 faisant office de lèvre de piston, peut être décomposée en deux parties, à savoir une course majeure correspondant au coulissement étanche sans composante rotative et une course mineure correspondant à la prise filetée du filet 32 dans le sillon 22. La course majeure est générée par la dépression régnant dans la chambre de dépression Cd, alors que la course mineure est générée par l’entrainement manuel en rotation du poussoir P. En d’autres termes, la course majeure est uniquement pneumatique, alors que la course mineure est essentiellement mécanique. On peut ainsi qualifier la prise filetée entre le filet 32 et le sillon 22 de moyens mécaniques par opposition aux moyens pneumatiques de la course majeure. Les moyens mécaniques, formés par le filet 32 et le sillon 22, permettent de ramener assurément la tige d’actionnement T en position de repos verrouillée, dans laquelle la chambre de dépression Cd, réduite à son état de volume minimal, communique avec l’extérieur par l’intermédiaire de la rainure d’éventation 12. On comprend aisément en se référant à la figure 3a, que cette communication avec l’extérieur est très rapidement rompue dès lors que la rainure d’éventation 12 n’est plus située axialement au niveau du joint torique G34. Une course de quelques dixièmes de millimètres suffit à rompre cette communication et à isoler la chambre de dépression Cd de l’extérieur. L’éventation de la chambre de dépression Cd permet de réinitialiser la pression à chaque actionnement de la pompe. Ainsi, même dans le cas où la chambre de dépression Cd serait fuyante, et laisserait ainsi rentrer de l’air à l’intérieur, cet air serait évacué en fin d’actionnement, grâce à la mise à l’air libre de la chambre Cd à travers la rainure d’éventation 12. En l’absence de moyens mécaniques, constitués par le filet 32 et le sillon 22, le fonctionnement de la pompe est possible, mais il faudrait dans ce cas que la dépression à l’intérieur de la chambre de dépression Cd soit suffisante pour ramener la tête 21 en contact de la butée 33, de manière à rétablir la communication avec l’extérieur à travers la rainure 12. A l’inverse, la pompe peut fonctionner sans rainure d’éventation 12, mais il faut alors dans ce cas qu’il n’y ait pas de fuite au niveau de la chambre de dépression Cd. Bien entendu, la mise en œuvre cumulative des moyens mécaniques et de la mise à l’air libre est particulièrement avantageuse et constitue le mode de réalisation préféré. La pompe ici décrite intègre un organe de piston 2 que l’on peut qualifier de piston différentiel, puisqu’il se déplace non seulement par appui sur le poussoir mais également en réponse à une pression seuil à l’intérieur de la chambre de produit fluide Cp. Sans sortir du cadre de l’invention, il est possible de mettre en œuvre la chambre de dépression Cd de l’invention dans une pompe plus classique, dans laquelle le piston de la chambre de dépression est monté de manière fixe sur la tige d’actionnement, alors que le piston de la chambre de produit fluide Cp est monté coulissant sur la tige d’actionnement. Sans sortir du cadre de l’invention, on peut prévoir plusieurs rainures d’éventation 12 et une seule ou plus de deux nervures 14. Les joints toriques mis en œuvre sur différentes pièces peuvent être remplacés par des lèvres monobloc. Grâce à l’invention, on peut remplacer le ressort métallique ou plastique de l’art antérieur par un ressort pneumatique dont une partie de la course résulte de l’actionnement du poussoir, qui est de préférence rotatif. Toutefois, on peut également envisager de déplacer le poussoir uniquement dans la direction axiale. Quant à l’éventation de la chambre de dépression Cd, elle permet une remise à zéro à chaque actionnement. Pump The present invention relates to a pump comprising a fluid chamber of variable volume, as well as an actuating rod movable axially between a rest position and a depressed position, so as to vary the volume of the chamber respectively between a maximum volume state and a minimum volume state. The pump includes return means for returning the actuating rod to the rest position, corresponding to the maximum volume state of the fluid chamber. The actuating rod is provided with a pusher operable by a user. The preferred fields of application of the invention are those of pharmacy, cosmetics and perfumery, without excluding others. Conventionally, the return means is in the form of a spring which is generally made of metal. The problem with these metal springs is that they prevent or complicate the recycling of the pump, especially since they are placed in the pump body. There are also plastic springs, which are more easily recyclable, but they tend to lose their stiffness over time. The present invention seeks to remedy the drawbacks of these springs of the prior art by proposing another type of elastic return means, which presents no recycling or stiffness problem. To do this, the present invention proposes that the return means comprise a vacuum chamber, the volume of which varies between a state of minimum volume and a state of maximum volume by movement of the actuating rod, the state of minimum volume of the vacuum chamber being reached in the rest position of the actuating rod and the maximum volume state of the vacuum chamber being reached in the depressed position of the actuating rod, the maximum volume state of the chamber of depression corresponding to a maximum depression and the minimum volume state of the vacuum chamber corresponding to a minimum depression, the rod actuation being urged towards its rest position by the depression prevailing in the depression chamber. The vacuum chamber thus generates a vacuum from a point where the pressure of the vacuum chamber is close to or equal to atmospheric pressure. The pressure in the vacuum chamber is therefore always less than or equal to atmospheric pressure. The vacuum increases as the actuating rod is moved from its rest position to its depressed position. It's kind of like an air pump in reverse. According to the invention, the pump further comprises mechanical means, independent of the depression in the depression chamber, actuable by the user to return and maintain the depression chamber in its minimum volume state. Thus, starting from the maximum volume state (maximum depression), the vacuum chamber will decrease in volume as soon as the user releases pressure on the pusher. This reduction in volume under the action of the depression continues until the mechanical means are engaged. From then on, the user can activate these mechanical means to further reduce the volume of the vacuum chamber to finally reach its minimum volume state. The vacuum in the minimum volume state need not be present during the entire actuation sequence of the mechanical means. It is enough for the depression to activate the mechanical means. Advantageously, the mechanical means are controlled by the pusher via the actuating rod. In other words, the user grasps the pusher and moves it, which has the effect of activating the mechanical means. The movement of the pusher can be rotary, axial or both at the same time. According to the invention, the mechanical means comprise a threaded socket, which makes it possible to move the pusher and the actuating rod both axially and in rotation. Advantageously, the threaded socket can define an axial stroke, which is delimited on one side by a high stop corresponding to the minimum volume state of the vacuum chamber and on the other side by a threaded socket release allowing variation subsequent volume of the vacuum chamber towards its volume state maximum. From an ergonomic and gestural point of view, the user will grasp the pusher to rotate it through a determined angle, for example a quarter turn or a half turn, to selectively bring it into the locked or unlocked position. This locking/unlocking system by rotating the pusher is classic. In the context of the invention, the actuation of the locking/unlocking system also and simultaneously generates the actuation of the mechanical means, and this, without the user even perceiving it. Thanks to mechanical means, the vacuum chamber always returns to the same starting point of minimum volume. According to another interesting characteristic of the invention, which can advantageously be combined with mechanical means, the vacuum chamber communicates with the outside in its minimal volume state. So even if the vacuum chamber leaks and lets air in, that air will be exhausted to the outside, so the vacuum chamber still leaves the same pressure, which is close to atmospheric pressure. This initial or final leak can be implemented independently of mechanical means, but the depression in the vacuum chamber must then be sufficient to return the vacuum chamber to or near its minimum volume state. This is possible, but difficult to achieve in practice and especially in a repeatable manner. This is why this initial or final leak finds particular advantage in combination with mechanical means, which ensure that the vacuum chamber always returns to its minimum volume state. We can then say that the mechanical means supplement or supplement the depression to ensure that the depression chamber is reset at each actuation cycle by connecting it with the outside. According to one embodiment of the invention, the actuating rod comprises a vacuum chamber piston which slides axially in a sealed manner in a vacuum chamber barrel, so as to define between them the vacuum chamber, the rod actuation forming a ventilation groove, which communicates the depression chamber with the outside in the rest state of the actuating rod, which corresponds to the minimum volume state of the vacuum chamber. The groove, groove or passage establishes air communication between the vacuum chamber and the outside when the pump is at rest, this communication being cut off so as to isolate the vacuum chamber, as soon as the actuating rod leaves its resting state or shortly after leaving its resting state. A stroke of a few tenths of a millimeter is sufficient to isolate the vacuum chamber. According to another aspect of the invention, the actuating rod may comprise a piston member and a valve, the piston member forming the vacuum chamber piston sliding in the vacuum chamber barrel, the piston member also forming a fluid chamber piston sliding in a fluid chamber barrel, the piston member advantageously forming a movable outlet valve member for the fluid chamber and the valve advantageously forming an outlet valve seat for the fluid chamber. Advantageously, the piston member is movable axially relative to the valve under the effect of the pressure prevailing in the fluid product chamber, but is rotated by the valve. Advantageously, the threaded socket is located between the piston member and the vacuum chamber barrel. The piston member can be described as a differential piston, in that it moves under the effect of the pressure prevailing in the fluid product chamber. In place of this piston member, an actuating rod can be provided provided with a fixed vacuum chamber piston and a fluid product chamber piston which slides on the actuating rod under the effect of the pressure prevailing in the fluid product chamber. According to another approach to the invention, it can be said that the vacuum chamber defines a maximum axial stroke between its state of minimum volume and its state of maximum volume, this maximum axial stroke being broken down into: - a major stroke from the the state of maximum volume, which is induced by the depression prevailing in the vacuum chamber, and - a minor stroke up to the maximum volume state, which is induced by rotational and/or axial drive of the pusher, which ends with an axial locking position of the pusher. The user, who picks up a distributor on which the pump of the invention is mounted, will quickly understand that the pusher is in the locked position by pressing it or by reading an instruction visible on the pusher. It will therefore cause the pusher to rotate at a determined angle to unlock it. In doing so but imperceptibly, he activated the mechanical means, which brought the depression chamber from its state of minimum volume in which it communicates with the outside into an intermediate state in which it is isolated from the outside. In the case where the mechanical means implement a threaded grip, the intermediate position corresponds to the end of the threaded grip, in which the actuating rod is released from this threaded grip. The user then presses axially on the pusher, which has the simultaneous effects of distributing fluid product and generating an increasing depression in the depression chamber. Once the distribution of fluid product is complete, the user releases his axial pressure on the pusher, so that the depression in the vacuum chamber has the effect of returning the actuating rod and its pusher to the rest position. However, the return stroke of the rod is stopped in the intermediate position, which corresponds to the engagement of the mechanical means. In the case where the mechanical means implement a threaded engagement, the depression rises the actuating rod until the threads engage. From then on, the user just needs to turn the pusher to lock it, which simultaneously has the effect of returning the actuating rod to the rest position and the vacuum chamber to its minimum volume state in which it communicates with outside through the vent groove of the actuating rod. The locked position corresponds to a stop of the threaded socket. The spirit of the invention lies in the threaded socket which allows the air spring to return to its starting point. On the other hand, in order to mitigate the risk of leakage, it is fanned at its starting point. The threaded socket combined with the leak at the starting point provides a synergistic effect, making its operation perfectly repeatable, and therefore reliable. The air spring is thus reset after each actuation. The invention will now be described in more detail with reference to the accompanying drawings, giving by way of non-limiting example, an embodiment of the invention. In the figures: Figure 1 is a vertical cross-sectional view through a fluid product distributor integrating a pump according to the invention at rest locked, Figure 2a is an enlarged view of Figure 1 with the pump at rest locked, Figure 2b is a view similar to Figure 2a with the pump unlocked, Figure 3a is a greatly enlarged view of part of Figure 2a, Figure 3b is a highly enlarged view of part of Figure 2b, Figures 4a, 4b and 4c represent the valve of the pump according to the invention, Figures 5a, 5b, 5c and 5d represent the piston member of the pump according to the invention, and Figures 6a, 6b, 6c and 6d represent the body of the pump according to the invention. Figure 1 shows the pump of the invention mounted on a reservoir of fluid product R, which is not critical for the present invention. Indeed, this reservoir R can be of any nature, of any shape, and made of any suitable material. It suffices for it to form an opening, for example in the form of a neck, on which the pump of the invention can be mounted in a fixed and waterproof manner. The pump of the invention firstly comprises a pump body 3 which receives fixed elements 4, 5 and 6 as well as a movable element, namely an actuating rod T. The pump body 3 forms a ring 35 intended to cooperate with the neck of the tank R for fixing the pump on the tank. Below this fixing ring 35, the pump body 3 forms an assembly sleeve 36, in which are fixedly mounted a bottom part 6 provided with a dip tube 61, a barrel part 5 provided with a valve inlet 51 and a sleeve 4 which serves for the watertight guidance of the actuating rod T. The barrel part 5 is held between the bottom part 6 and the sleeve 4. The bottom part 6 can be permanently snapped into place in openings formed by the socket 36 of the pump body 3. The design of these fixed parts 4, 5 and 6 is not critical for the present invention, so that other architectures can be considered without departing from the scope of the invention. The actuating rod T is slidably mounted inside the pump body 3 along a longitudinal axis a pusher P, on which the user can press to axially move the actuating rod T back and forth inside the pump body 3. In Figure 1, the pusher P is a nasal type pusher , but any pusher can be mounted on the actuating rod T. The pusher P is not critical for the present invention. The actuating rod T is here of a particular type, since it comprises a valve 1 in the upper part and a piston member 2 in the lower part. These two parts are connected to each other with freedom of axial movement along the axis rotation of the piston member 2. And as the pusher P is fixedly mounted on the valve 1, the rotation of the pusher P causes the rotation of the actuating rod T as a whole. More precisely, the valve 1 comprises a tube 11 which extends upwards from a base 13. The valve 1 is more visible in Figures 4a, 4b and 4c. The tube 11 forms a free end on which the pusher P is fixedly mounted both axially and in rotation. It can be noted that the tube 11 forms a ventilation groove 12, the largest dimension of which is axial. This ventilation groove 12 is located near the base 13. Its function will be given below. The base 13 has an increased diameter compared to that of the tube 11. The base 13 firstly comprises two longitudinal axial ribs 14 which project radially outwards. The two ribs 14 are arranged diametrically opposite. It can even be noted that the ventilation groove 12 is located axially just above one of the ribs 14. Below the ribs 14, the base 13 forms an annular groove 15, which is used to receive a seal O-ring G15, visible in Figure 1. Internally, the base 13 forms a housing 16 for another O-ring G16, also visible in Figure 1. The valve 1 is crossed internally by a through conduit 10 which extends from the housing 16 to the free upper end of the tube 11 on which the pusher P is mounted. The piston member 2 comprises a head 21 and a tube 25. The piston member 2 is more visible in Figures 5a, 5b , 5c and 5d. The head 21 externally forms a helical groove 22, the function of which will be given below. Below this helical groove 22, the head 21 forms a groove 23 for receiving an O-ring G23, visible in Figure 1. Internally, the head 21 defines a receiving housing 20, which forms two longitudinal axial recesses 24 , intended to receive the two ribs 14 of the valve 1, so as to block the two parts in rotation relative to each other. The recesses 24 have dimensions very slightly larger than those of the ribs 14 so as to be able to receive them without play or excessive friction, so that the two parts can still move axially by sliding. The tube 25, at its lower end, forms with an internal housing 27 for a G27 O-ring. At its upper end, the tubing 25 internally forms a movable valve member 26, which will cooperate with the O-ring G16 of the valve 1, so as to together form an outlet valve of the pump. As can be seen in Figure 5d, the receiving housing 20 communicates with the interior of the tubing 25 by passages formed around the movable valve member 26, which is connected to the tubing 25 by material bridges . The pump body 3 is more visible in Figures 6a, 6b and 6d. The pump body 3 internally defines a sliding barrel 31, which has the particularity of forming at its upper end a helical thread 32. Above this helical thread 32, the pump body forms an axial stop 33 internally defining a housing 34 for an O-ring G34, visible in Figure 1. Below the sliding barrel 31, the body 3 forms the fixing ring 35, already described, as well as the assembly sleeve 36. We will now refer again to Figure 1, as well as Figures 2a and 3a to explain the cooperation of these different parts within the pump of the invention. As already mentioned, the base 13 of the valve 1 is engaged axially inside the receiving housing 20 of the piston member 2, with the ribs 14 engaged by sliding inside the recesses 24 of the receiving housing 20. Maximum engagement of the base 13 inside the receiving housing 20 results in tight contact between the O-ring G23 and the wall of the receiving housing 20, as well as tight contact between the O-ring G16 and the movable valve member 26. A slight axial movement of these two parts from this maximum engagement position leads to the seal G16 detaching from the movable valve member 26, while the O-ring G23 remains in tight contact with the internal wall of the receiving housing 20. In other words, the neck seal G16 comes off, while the O-ring G23 slides in a watertight manner. Thus, a seal is always maintained between these two parts. This actuating rod T, constituted by the assembly of the valve 1 with the piston member 2, is integrated into the pump body 3 in the following manner. In the locked rest state of the pump, the head 21 of the piston member 2 is in threaded engagement with the barrel 31. More precisely, the helical thread 32 of the body 3 is in engagement with the helical groove 22 of the head 21 of the piston member 2. In this locked rest state, it can be noted that the head 21 is in contact with the stop 33. However, the O-ring G23 always remains in sealed sliding contact inside the barrel 31. The tubing 25 of the piston member 2 is engaged inside the sleeve 4 and slides in a sealed manner thanks to the O-ring G4. On the other hand, the tubing 25 is also engaged around the barrel 52 of the barrel part 5 with a sliding waterproof contact ensured by the O-ring G27. Thus, a fluid chamber Cp is created between the inlet valve 51 and the outlet valve formed by the O-ring G16 and the movable valve member 26. We can say that the piston of the fluid chamber Cp is formed by the O-ring G27 supported by the tube 25. The valve 1, the base 13 of which is engaged in the head 21 of the piston member 2, projects with its tube 11 through the stop 33. We can note that the base 13 can also come into contact with the stop 33. The O-ring G34 surrounds the tube 11: however, in this locked rest position, we can notice in Figure 3a that the tight contact between the O-ring G34 and the tube 11 is broken by the vent groove 12, which is located axially at the level of the O-ring G34. From this locked rest position, shown in Figures 1, 2a and 3a, the user can grasp the pusher P and rotate it, which has the effect of rotating the piston member 2 to the inside the pump body 1 via the valve 1. In fact, the torque applied to the pusher P is transmitted by the valve 1 to the piston member 2, due to the blocking in rotation produced by the engagement ribs 14 in the recesses 24. This rotation applied to the pusher P generates actuation of the threaded socket created between the helical groove 22 and the helical thread 32. This results in the pusher P and the actuating rod T moving axially down. This is shown in Figures 2b and 3b. The helical thread 32 is completely disengaged from the helical groove 22 and the head 21 with its O-ring G23 can therefore slide axially in a sealed manner in the barrel 31 of the pump body 3 by axial support on the pusher P. The space thus formed between the head 21 and the stop 33 constitutes a depression chamber Cd, which arises with the rotation of the pusher P and which increases even further by axial support on the pusher P. Thanks to the O-rings G23 and G34, the depression chamber Cd is isolated from the outside, so that an increasing depression occurs as the head 21 moves away from the stop 33. Simultaneously, the O-ring G27 slides along the barrel 52, thus reducing the volume of the pump chamber Cp and increasing the pressure on the fluid product. In reaction to this increase in pressure, a slight axial movement is created between the piston member 2 and the valve 1, so as to separate the O-ring G16 from the movable valve member 26, thus creating an outlet passage for the fluid product through the valve 1 and the pusher P. The operation of this differential piston will not be described in greater detail here, given that it is known from the prior art. Once the pusher P is completely depressed, the distribution of fluid product is completed and the user then releases the pressure exerted on the pusher P. The depression created inside the depression chamber Cd has the effect of bringing the rod back valve T towards the rest position. In other words, the depression created in the depression chamber Cd urges the head 21 of the piston member 2 in the direction of the stop 33. The O-ring G23 therefore moves in a sliding and sealed manner inside the barrel 31 until the head 21 comes into abutment on the start of the helical thread 32. The user then knows that it is necessary to lock the pump again by rotating the pusher, which has the effect of nesting the helical thread 32 in the helical groove 22. The end of the rotation, corresponding to the locked rest position, is reached when the head 21 comes into contact again against the stop 33. We then find ourselves in the configuration shown on the Figures 1, 2a and 3a, in which the depression chamber Cd, reduced to a state of minimal volume, can communicate with the outside thanks to the sealing defect generated by the vent groove 12. Thus, the stroke of the actuating rod P makes it possible to vary the volume of the depression chamber Cd between a state of minimal volume, or even zero, and a state of maximum volume. The stroke of the head 21, which can be compared to a vacuum chamber piston, with its O-ring G23 acting as a piston lip, can be broken down into two parts, namely a major stroke corresponding to sealed sliding without rotating component and a minor stroke corresponding to the threaded engagement of the thread 32 in the groove 22. The major stroke is generated by the depression prevailing in the depression chamber Cd, while the minor stroke is generated by the manual rotation of the pusher P. In other words, the major stroke is solely pneumatic, while the minor stroke is essentially mechanical. We can thus qualify the threaded connection between the thread 32 and the groove 22 as mechanical means as opposed to the pneumatic means of the major stroke. The mechanical means, formed by the thread 32 and the groove 22, make it possible to return the actuating rod T to the locked rest position, in which the depression chamber Cd, reduced to its minimum volume state, communicates with the exterior via the ventilation groove 12. It is easily understood by referring to Figure 3a, that this communication with the exterior is very quickly broken as soon as the ventilation groove 12 is no longer located axially at the G34 O-ring. A stroke of a few tenths of a millimeter is enough to break this communication and isolate the depression chamber Cd from the outside. Venting the vacuum chamber Cd allows the pressure to be reset each time the pump is actuated. Thus, even in the case where the depression chamber Cd is leaking, and thus allows air to enter inside, this air would be evacuated at the end of actuation, thanks to the opening of the chamber to the open air. Cd through the venting groove 12. In the absence of mechanical means, constituted by the thread 32 and the groove 22, the operation of the pump is possible, but in this case it would be necessary that the depression inside the vacuum chamber Cd is sufficient to bring the head 21 back into contact with the stop 33, so as to re-establish communication with the outside through the groove 12. Conversely, the pump can operate without a vent groove 12 , but in this case there must be no leak at the level of the depression chamber Cd. Of course, the cumulative implementation of mechanical means and venting is particularly advantageous and constitutes the preferred embodiment. The pump described here integrates a piston member 2 which can be described as a differential piston, since it moves not only by pressing on the pusher but also in response to a threshold pressure inside the fluid product chamber Cp. Without departing from the scope of the invention, it is possible to implement the depression chamber Cd of the invention in a more conventional pump, in which the piston of the depression chamber is fixedly mounted on the rod. actuation, while the piston of the fluid chamber Cp is slidably mounted on the actuation rod. Without departing from the scope of the invention, several ventilation grooves 12 and one or more ribs 14 can be provided. The O-rings used on different parts can be replaced by one-piece lips. Thanks to the invention, it is possible to replace the metal or plastic spring of the prior art with a pneumatic spring, part of the stroke of which results from the actuation of the pusher, which is preferably rotary. However, we can also consider moving the pusher only in the axial direction. As for the venting of the vacuum chamber Cd, it allows a reset to zero each time it is actuated.

Claims

Revendications 1. Pompe comprenant une chambre de produit fluide (Cp) de volume variable, ainsi qu’une tige d’actionnement (T) déplaçable axialement entre une position de repos et une position enfoncée, de manière à faire varier le volume de la chambre de produit fluide (Cp), respectivement entre un état de volume maximal et un état de volume minimal, la pompe comprenant un moyen de rappel (Cd) pour ramener la tige d’actionnement (T) en position de repos, correspondant à l’état de volume maximal pour la chambre de produit fluide (Cp), la tige d’actionnement (T) étant pourvue d’un poussoir (P) actionnable par un utilisateur, dans laquelle le moyen de rappel comprend une chambre de dépression (Cd) de volume variable entre un état de volume minimal et un état de volume maximal par déplacement de la tige d’actionnement (T), l’état de volume minimal de la chambre de dépression (Cd) étant atteint en position de repos de la tige d’actionnement (T) et l’état de volume maximal de la chambre de dépression (Cd) étant atteint en position enfoncée de la tige d’actionnement (T), l’état de volume maximal de la chambre de dépression (Cd) correspondant à une dépression maximale et l’état de volume minimal de la chambre de dépression (Cd) correspondant à une dépression minimale, la tige d’actionnement (T) étant sollicitée vers sa position de repos par la dépression régnant dans la chambre de dépression (Cd), dans laquelle des moyens mécaniques (22, 32), indépendants de la dépression dans la chambre de dépression (Cd), sont actionnables par l’utilisateur pour ramener et maintenir la chambre de dépression (Cd) dans son état de volume minimal, caractérisée en ce que  les moyens mécaniques comprennent une prise filetée (22, 32), qui permet de déplacer la tige d’actionnement (T) et son poussoir (P) à la fois axialement et en rotation. 2. Pompe selon la revendication 1, dans laquelle les moyens mécaniques (22, 32) sont commandés par le poussoir (P) par l’intermédiaire de la tige d’actionnement (T). 3. Pompe selon la revendication 1 ou 2, dans laquelle la prise filetée (22, 32) définit une course axiale, qui est délimitée d’un côté par une butée haute (33) correspondant à l’état de volume minimal de la chambre de dépression (Cd) et de l’autre côté par une libération de prise filetée permettant une variation ultérieure du volume de la chambre de dépression (Cd) vers son état de volume maximal. 4. Pompe selon l'une quelconque des revendications précédentes, dans laquelle la chambre de dépression (Cd) communique avec l’extérieur dans son état de volume minimal. 5. Pompe selon l'une quelconque des revendications précédentes, dans laquelle la tige d’actionnement (T) comprend un piston de chambre de dépression (G23) qui coulisse axialement de manière étanche dans un fût de chambre de dépression (31), de manière à définir entre eux la chambre de dépression (Cd), la tige d’actionnement (T) formant une rainure d’éventation (12), qui fait communiquer la chambre de dépression (Cd) avec l’extérieur dans l’état de repos de la tige d’actionnement (T). 6. Pompe selon l'une quelconque des revendications précédentes, dans laquelle la tige d’actionnement (T) comprend une soupape (1) et un organe de piston (2), l’organe de piston (2) formant le piston de chambre de dépression (G23) coulissant dans le fût de chambre de dépression (31), l’organe de piston (2) formant également un piston de chambre de produit fluide (G27) coulissant dans un fût de chambre de produit fluide (4), l’organe de piston (2) formant avantageusement un organe mobile de clapet de sortie (26) pour la chambre de produit fluide (Cp) et la soupape 1() formant avantageusement un siège de clapet de sortie (G16) pour la chambre de produit fluide (Cp). 7. Pompe selon la revendication 6, dans laquelle l’organe de piston (2) est mobile axialement par rapport à la soupape (1) sous l’effet de la pression régnant dans la chambre de produit fluide (Cp), mais est entrainé en rotation par la soupape (1). 8. Pompe selon la revendication 6 ou 7, dans laquelle la prise filetée (22, 32) est située entre l’organe de piston (2) et le fût de chambre de dépression (31). 9. Pompe selon l'une quelconque des revendications précédentes, dans laquelle la chambre de dépression (Cd) définit une course axiale maximale entre son état de volume minimal et son état de volume maximal, cette course axiale maximale se décomposant en : - une course majeure à partir de l’état de volume maximal, qui est induite par la dépression régnant dans chambre de dépression (Cd), et - une course mineure jusqu’à l’état de volume maximal, qui est induite par un entrainement en rotation et/ou axial du poussoir (P), qui s’achève par une position de verrouillage axial du poussoir (P). * * * Claims 1. Pump comprising a fluid chamber (Cp) of variable volume, as well as an actuating rod (T) movable axially between a rest position and a depressed position, so as to vary the volume of the chamber of fluid product (Cp), respectively between a maximum volume state and a minimum volume state, the pump comprising a return means (Cd) for returning the actuating rod (T) to the rest position, corresponding to the maximum volume state for the fluid chamber (Cp), the actuation rod (T) being provided with a pusher (P) operable by a user, in which the return means comprises a depression chamber (Cd) of variable volume between a minimum volume state and a maximum volume state by movement of the actuating rod (T), the minimum volume state of the vacuum chamber (Cd) being reached in the rest position of the rod actuation (T) and the maximum volume state of the vacuum chamber (Cd) being reached in the depressed position of the actuation rod (T), the maximum volume state of the vacuum chamber (Cd) corresponding to a maximum depression and the minimum volume state of the depression chamber (Cd) corresponding to a minimum depression, the actuating rod (T) being biased towards its rest position by the depression prevailing in the depression chamber (Cd), in which mechanical means (22, 32), independent of the depression in the depression chamber (Cd), are operable by the user to return and maintain the depression chamber (Cd) in its volume state minimal, characterized in that the mechanical means comprise a threaded socket (22, 32), which makes it possible to move the actuating rod (T) and its pusher (P) both axially and in rotation. 2. Pump according to claim 1, in which the mechanical means (22, 32) are controlled by the pusher (P) via the actuating rod (T). 3. Pump according to claim 1 or 2, in which the threaded socket (22, 32) defines an axial stroke, which is delimited on one side by an upper stop (33) corresponding to the minimum volume state of the chamber vacuum (Cd) and on the other side by a threaded socket release allowing a subsequent variation of the volume of the vacuum chamber (Cd) towards its maximum volume state. 4. Pump according to any one of the preceding claims, in which the vacuum chamber (Cd) communicates with the outside in its minimum volume state. 5. Pump according to any one of the preceding claims, in which the actuating rod (T) comprises a vacuum chamber piston (G23) which slides axially in a sealed manner in a vacuum chamber barrel (31), of so as to define between them the depression chamber (Cd), the actuating rod (T) forming a venting groove (12), which communicates the depression chamber (Cd) with the outside in the state of rest of the actuating rod (T). 6. Pump according to any one of the preceding claims, in which the actuating rod (T) comprises a valve (1) and a piston member (2), the piston member (2) forming the chamber piston vacuum (G23) sliding in the vacuum chamber barrel (31), the piston member (2) also forming a fluid chamber piston (G27) sliding in a fluid chamber barrel (4), the piston member (2) advantageously forming a movable outlet valve member (26) for the fluid chamber (Cp) and the valve 1() advantageously forming an outlet valve seat (G16) for the fluid chamber (Cp). 7. Pump according to claim 6, in which the piston member (2) is movable axially relative to the valve (1) under the effect of the pressure prevailing in the fluid chamber (Cp), but is driven in rotation by the valve (1). 8. Pump according to claim 6 or 7, in which the threaded socket (22, 32) is located between the piston member (2) and the vacuum chamber barrel (31). 9. Pump according to any one of the preceding claims, in which the vacuum chamber (Cd) defines a maximum axial stroke between its minimum volume state and its maximum volume state, this maximum axial stroke being broken down into: - a stroke major from the maximum volume state, which is induced by the depression prevailing in the depression chamber (Cd), and - a minor stroke up to the maximum volume state, which is induced by rotational drive and /or axial of the pusher (P), which ends in an axial locking position of the pusher (P). * * *
PCT/FR2023/051259 2022-08-12 2023-08-09 Pump WO2024033595A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2208276 2022-08-12
FR2208276A FR3138834A1 (en) 2022-08-12 2022-08-12 Pump

Publications (1)

Publication Number Publication Date
WO2024033595A1 true WO2024033595A1 (en) 2024-02-15

Family

ID=83690208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2023/051259 WO2024033595A1 (en) 2022-08-12 2023-08-09 Pump

Country Status (2)

Country Link
FR (1) FR3138834A1 (en)
WO (1) WO2024033595A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1083002A2 (en) * 1995-09-07 2001-03-14 Kao Corporation Pump mechanism
JP3839600B2 (en) * 1998-10-29 2006-11-01 株式会社吉野工業所 Liquid jet pump
JP2014214724A (en) * 2013-04-30 2014-11-17 株式会社吉野工業所 Adapter for suction pipe connection of dispenser
EP3275554A1 (en) * 2007-02-06 2018-01-31 Alternative Packaging Solutions, LLC One turn actuated duration spray pump mechanism
EP3682973A1 (en) * 2019-01-15 2020-07-22 Nubiz Plastic (Nantong) Co., Ltd Pump assembly and container with contents discharge function
EP3753638A1 (en) * 2019-06-18 2020-12-23 Nubiz Plastic (Nantong) Co., Ltd Pump assembly and container with contents discharge function

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1083002A2 (en) * 1995-09-07 2001-03-14 Kao Corporation Pump mechanism
JP3839600B2 (en) * 1998-10-29 2006-11-01 株式会社吉野工業所 Liquid jet pump
EP3275554A1 (en) * 2007-02-06 2018-01-31 Alternative Packaging Solutions, LLC One turn actuated duration spray pump mechanism
JP2014214724A (en) * 2013-04-30 2014-11-17 株式会社吉野工業所 Adapter for suction pipe connection of dispenser
EP3682973A1 (en) * 2019-01-15 2020-07-22 Nubiz Plastic (Nantong) Co., Ltd Pump assembly and container with contents discharge function
EP3753638A1 (en) * 2019-06-18 2020-12-23 Nubiz Plastic (Nantong) Co., Ltd Pump assembly and container with contents discharge function

Also Published As

Publication number Publication date
FR3138834A1 (en) 2024-02-16

Similar Documents

Publication Publication Date Title
EP2439440B1 (en) Coupling device with locking by threaded clamps and coupling including such a device
FR2786849A1 (en) QUICK SAFETY CONNECTOR FOR REMOVABLE JOINING OF PIPES
EP2004521B1 (en) Device for dispensing a fluid product
WO2008050037A2 (en) Cap-less writing instrument
EP1171367B1 (en) Fixing element for dispensing a liquid product and dispenser comprising said element
EP1463674B1 (en) Fluid product dispensing valve and fluid product dispensing device comprising same
EP1299193B1 (en) Fluid product dispensing pump
WO2014096722A1 (en) Refillable fluid product dispenser
WO2022208014A1 (en) Device for nasal delivery of powder
EP2977110B1 (en) Refillable fluid product dispenser
EP3553363B1 (en) Coupling element and coupling device comprising this coupling element
EP2988880A2 (en) Fluid product dispenser
FR3038518A1 (en) SYRINGE AND METHOD OF ASSEMBLING
EP3416748B1 (en) Dispensing member and dispenser comprising such a member
WO2024033595A1 (en) Pump
EP0374493B1 (en) Gas bottle valve
WO2002014705A1 (en) Device for coupling a lever to a shift cylinder piston
EP2707148B1 (en) Pump for metering and dispensing a liquid or viscous product
WO2018189466A1 (en) Refillable fluid product dispenser
WO2004103859A2 (en) Distribution element for a liquid product
FR3112131A1 (en) Refillable fluid dispenser
WO2022018365A1 (en) Liquid extraction machine and associated liquid extraction method
FR3096090A1 (en) High pressure precompression pump
FR3095968A1 (en) Fluid dispenser device
FR2834017A1 (en) Jet pump comprises body housing jet and suction orifice, auxiliary chamber upstream of jet outlet associated with sealed element able to break when pre-specified pressure is exceeded by injected fluid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23765287

Country of ref document: EP

Kind code of ref document: A1