WO2024033553A1 - System for dissociating molecules of a liquid medium by means of electrolysis - Google Patents

System for dissociating molecules of a liquid medium by means of electrolysis Download PDF

Info

Publication number
WO2024033553A1
WO2024033553A1 PCT/ES2023/070493 ES2023070493W WO2024033553A1 WO 2024033553 A1 WO2024033553 A1 WO 2024033553A1 ES 2023070493 W ES2023070493 W ES 2023070493W WO 2024033553 A1 WO2024033553 A1 WO 2024033553A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
liquid medium
molecules
electric field
insulating
Prior art date
Application number
PCT/ES2023/070493
Other languages
Spanish (es)
French (fr)
Inventor
José María BENLLOCH BAVIERA
Original Assignee
Universitat Politècnica De València
Consejo Superior De Investigaciones Científicas (Csic)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Politècnica De València, Consejo Superior De Investigaciones Científicas (Csic) filed Critical Universitat Politècnica De València
Publication of WO2024033553A1 publication Critical patent/WO2024033553A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/02Diaphragms; Spacing elements characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/04Regulation of the inter-electrode distance
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • C25B3/26Reduction of carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms

Definitions

  • the present invention belongs to the field of systems for dissociating molecules from a liquid medium.
  • the invention is applicable to the production of hydrogen through electrolysis, dissociating water or other liquid with hydrogen atoms, at ambient temperature and pressure or under other temperature and pressure conditions. It is also related to electrolyzers.
  • the hydrogen atoms present in the molecules of a liquid medium are separated, usually alkaline water (for example, distilled water to which potassium hydroxide has been added) by applying a external electric field.
  • alkaline water for example, distilled water to which potassium hydroxide has been added
  • electrodes formed by conductive wires or meshes of conductive wires are normally used, both for the positive electrode, generally the anode, and for the negative electrode or generally, the cathode. Between the cathode and the anode is the electrolyte. By establishing a potential difference between both electrodes, an electric field is produced between them. Near the electrodes the electric field increases exponentially with a maximum on the surface of said electrodes.
  • the electric field in the vicinity of the electrodes can be sufficiently high (eV vapors in the case of water) which favors the separation of the liquid molecules into dissociated components (hydrogen and oxygen in the case of water).
  • Alkaline Water Electrolysis Alkaline Water Electrolysis
  • an object of the present invention relates, mainly, to a system for dissociating molecules of a liquid medium into components using electrolysis.
  • the applications are diverse, although the production of hydrogen for energy generation can be highlighted. However, there may be other applications that benefit from the advantages of the present invention. Among them, it is worth mentioning the deposition of atoms in layers or the chemical synthesis of molecules, both for the chemical industry. Also in the electrochemical reduction of CO2 into methanol.
  • the proposed system manages to minimize the energy required to obtain dissociated molecules (eg hydrogen) by concentrating the electric field in the vicinity of the electrodes, reducing the voltage that must be applied between them.
  • the system for dissociating molecules by electrolysis includes two conductive structures that act as electrodes, each with a region exposed to the liquid medium (electrolyte).
  • the conductive structures define two chambers (for anode and cathode). If a voltage difference is applied between the conductive structures, an electric field is generated and the system minimizes the value necessary to cause the dissociation of the liquid medium. It is achieved thanks to a concentrating structure associated with the conductive structures that allows the formation of regions that extraordinarily concentrate the electric field to produce dissociation.
  • the concentrator structure itself is used to perform various additional functions.
  • One which acts as a separating structure and separates both electrically and physically the conductive structures (electrodes) from each other.
  • Two it prevents bubbles of dissociated gaseous molecules, produced in the liquid medium by one of the conductive structures, from passing towards the other conductive structure.
  • Three it allows the passage of the liquid medium from one side to the other of the concentrator structure.
  • the concentrator structure On each side the concentrator structure is attached to a conductive structure.
  • the assembly has small enough holes to prevent (or at least minimize) the exchange of bubbles from one side to the other of the concentrator structure (between the anode chamber and the cathode chamber) and, at the same time, allow some liquid exchange .
  • the holes themselves also help to concentrate the electric field and produce an increase in a marginal region of the conductive structure exposed to the liquid medium. This increase is greater when a portion of the concentrating structure narrows part of the orifice. This marginal region includes the edge of the hole in the conductive structure where a high value for the electric field is reached.
  • Various geometries can be defined (single wedge, double wedge, etc.) for the portion of the hole profile in the section corresponding to the concentrator structure. Also for the contour of the hole.
  • the electrodes that constitute the conductive structures can be made as a mesh of wires. At the nodes of the mesh there may be a larger connecting element. They may also be extremely thin sheets, for example between 10 nanometers and 100 microns, preferably between 10 nanometers and 10 microns, more preferably between 10 nanometers and 1 micron. The advantage of sheets over meshes is their greater robustness. In both cases, the electrodes are extremely close to each other.
  • the separating structure and the concentrating structure are differentiated.
  • the electrodes are further apart in this case.
  • the concentrator structure is composed of two electrically insulating substructures, immersed in the liquid medium. Each substructure integrates its corresponding conductive structure (electrode). Substructures include portions of material that form a series of cavities or valleys inside which a conductive element is housed. The valleys are separated from each other by ridges.
  • This conductive element is part of the conductive structure that functions as an electrode (for example, a grid of conductive wires).
  • the conductive element may be partially exposed to the liquid medium and partially embedded in the substructure for greater robustness. With this design, the field lines are also concentrated in the region of the cavity where said conductive element is located.
  • valleys and crests can be designed with geometric shapes that help better concentrate the electric field in the vicinity of the conducting element. For example, modifying the profile for the channel for the field.
  • Each channel is bounded by a valley separated by adjacent ridges and can have different shapes. For example, single wedge, double wedge or simply rectangular.
  • FIG. 1A schematically shows an electrode formed by a conductive wire with its associated electric field lines.
  • FIG. 1B shows a graph of the electric field intensity as a function of the distance to the center of the electrode.
  • FIG. 2 is a comparative graph of the current density per unit area for an embodiment according to the state of the art and according to the present invention.
  • FIG. 3A schematically shows a front view of a first embodiment of the present invention.
  • FIG. 3B schematically shows a side section of a first embodiment of the present invention.
  • FIG. 4 schematically shows a side section of a second embodiment of the present invention.
  • FIG. 5A schematically shows a side section of a third embodiment of the present invention.
  • FIG. 5B schematically shows a variation of the third embodiment with an insulating structure with an inner conductive sheet at an intermediate voltage.
  • FIG. 6A schematically shows a front view of a fourth embodiment of the present invention.
  • FIG. 6B shows a rear perspective view.
  • FIG. 7A schematically shows a section of a fifth embodiment of the present invention.
  • FIG. 7B shows an enlargement of a part of the fifth embodiment.
  • FIG. 1A shows a section of an electrode 10 formed by a conductive wire, and the associated electric field lines 1, to which a potential difference has been applied with another electrode (not shown). It can be seen that the density of electric field lines 1 is greater when approaching the electrode 10. The maximum occurs on the exposed surface 10a.
  • FIG. 1B is a graph of the electric field intensity as a function of the distance to the center of the electrode for the previous case.
  • the distance to the electrode surface is represented on the x-axis.
  • an insulating structure suitably arranged in the vicinity of regions of a conductive structure, makes it possible to create a region for each electrode that favors dissociation. A further increase in the concentration of the electric field occurs. This region functions as a channel to route and concentrate the electric field.
  • FIG. 2 is a comparative graph of the current density per unit area for an electro-hydrolysis process according to the state of the art in dotted line and according to an embodiment of the present invention in solid line.
  • the measured voltage is represented in Volts (V).
  • the electric current density per unit area or surface current density is represented, measured in Amperes per square centimeter (A/cm 2 ).
  • the units shown are not precise and only serve to illustrate favorable behavior. It is clear from the comparison between curves that the proposed system manages to produce hydrogen by dissociating the water molecule through the application of lower value voltages. This result can be extended to other chemical electrolysis reactions, changing water for another liquid composed of other molecules, and choosing the appropriate electrolyte for said reaction. From these liquid molecules, the atomic elements that compose them or simpler molecules would be obtained.
  • FIG. 3A and FIG. 3B are both a schematic representation of a front view and a side section of one embodiment of the system.
  • the system includes an insulating sheet 13 that is externally joined on one side with a first conductive sheet 11 and on the other opposite side with a second conductive sheet 12.
  • This three-layer structure has multiple holes 8.
  • One of such holes is shown in the side section of FIG. 3B (hidden in the front view of FIG. 3A).
  • the conductive sheets 11, 12 form the electrodes (anodes on one side and cathodes on the opposite side).
  • the holes 8 are through and communicate one side (anode chamber) with the other (cathode chamber) allowing the passage of molecules to be dissociated in a liquid state, but preventing the passage of gas bubbles with molecules produced in the dissociation.
  • the electric field lines 1 are concentrated around the holes 8 as shown in FIG. 3B. Due to the narrowing of the passage channel, an increase in the concentration of the electric field occurs in the center of the hole 8 and, therefore, near the edge 11a of the conductive sheet 11, 12 which is exposed to the liquid medium and in its vicinity. .
  • FIG. 3B it can be seen that a channel is formed that passes through said hole 8 and that concentrates, as it passes through the interior, the electric field.
  • this channel is modified and made additionally narrower with a portion 13a (in the form of a projection) of the insulating sheet 13 extending in a direction transverse to the direction of the electric field, it is possible to additionally concentrate the electric field that must pass through the hole 8 and with it, on the edges 11a of each hole 8 of the conductive sheet 11. In this way, the electrolysis reaction is favored.
  • the profile shown by FIG. 3B is called double wedge. That is, the diameter of the hole 8 progressively decreases from the faces of the insulating sheet 13 (each face next to one of the conductive sheets 11, 12) to an interior plane. For example, up to a plane that divides the insulating sheet 13 into two halves of equal thickness. That is to say, It would be spindle shaped. However, other shapes would be possible for the inner channel portion of hole 8 (surrounded by insulator) as will be shown below. Some shapes have advantages in particular configurations.
  • FIG. 4 illustrates another geometry, called simple wedge, for a portion 13a of the channel formed internally by the hole 8, which would have a conical shape.
  • the system has a conductive sheet 11, 12 that is joined with a different face of the insulating sheet 13.
  • the simple portion 13a With the simple portion 13a the diameter of the hole 8 progressively decreases from one of the faces of the insulating sheet 13. to the other opposite side.
  • FIG. 5A illustrates another geometry, called cylindrical, where the interior channel defined by hole 8 is cylindrical.
  • a rectangular portion of the insulating sheet 13 is observed that extends in the interior channel in the section through which the insulating sheet 13 crosses. It is observed that it narrows with respect to the conductive sheets 11,12 located on the outside. The portion of the insulating sheet 13 reduces the free space for the passage of the electric field through the hole 8 and thereby increases the electric field at the edge 11a of the hole 8 in the conductive sheet 11, and similarly at the edge 12a of the hole 8 in the conductive sheet 12.
  • FIG. 5B illustrates the same geometry as FIG. 5A but using a different insulating structure.
  • a sandwich structure is used, where an inner conductive sheet 131 is covered with a layer 132 of insulating material on each side, which prevents the inner conductive sheet 131 from being in contact with the conductive sheets 11, 12.
  • each element 11, 12, 131 can be at a different voltage.
  • the voltage V1 is applied to the first conductive sheet 11
  • the voltage V2 is applied to the second conductive sheet 12
  • the voltage V3 is applied to the inner conductive sheet 131. It is true that V1>V2>V3.
  • FIGS. 6A and FIG. 6B illustrates a schematic representation of another embodiment quite similar to that shown in FIG. 3A.
  • a mesh 21 instead of a conductive sheet, a mesh 21 with multiple annular conductors 7 and threads 9 between them is used.
  • the meshes 21,22 cover much less surface area of the insulating sheet 13 than a sheet.
  • there is an inner portion (not shown) of the insulating sheet 13 that narrows the passage through the hole 8 and concentrates the electric field on the edge 21a of the hole 8 of the annular conductor 7 of the conductive mesh 21.
  • FIG. 6B shows the other side, corresponding to the hidden face of FIG. 6A, with the other conductive mesh 22.
  • Each hole 8 is surrounded on both sides of the insulating sheet 13 by an annular conductor 7, one corresponding to the conductive mesh 21, another with the conductive mesh 22 on the other side. There is also an edge 22a defined by the hole 8 that coincides with the inner diameter of the annular conductors 7 present in the conductive mesh 22.
  • a double wedge has the advantage of concentrating the field lines even more and is easier to manufacture by chemical attack techniques.
  • a simple wedge close to the electrode that produces the dissociated molecule of interest e.g., hydrogen
  • has the advantage that it makes it less likely that recombination of the dissociated molecule will occur in the molecule to be dissociated e.g., water.
  • any additional portion of insulator allowing the electric field to be concentrated in the vicinity of the electrodes with the holes would be applicable.
  • Other geometries could be used to reduce the passage channel to a different degree (e.g. 25%, 35%, 50%, 75%, 90%, etc. with respect to the contour of the hole in the conductor).
  • recombination involves a mixture of oxygen and hydrogen gas bubbles.
  • the oxygen and hydrogen gas bubbles are separated by the design of the concentrating structure of the field lines.
  • the concentrator structure is also a separator and allows the passage of bubbles to be reduced; the holes are small in size and limit or prevent the passage of bubbles.
  • it is important to establish an adequate size of the holes so that the exchange of molecules of the liquid medium (water, in the case of electro-hydrolysis) is allowed but the exchange of dissociated gas molecules (molecular hydrogen, H2) is prevented.
  • One of the advantages of using conductive sheets is that the energy required to produce electrolysis is lower since, on the one hand, there is a concentration of the field lines near the hole, and, on the other hand, the distance between The electrodes can be much smaller because they are more robust. In this way, the field can be higher than for conductive meshes.
  • the manufacturing process of the insulating sheet can be very varied. For example, starting from an insulating sheet, such as mylar or kapton, a thin layer of copper or another low-cost conductor is deposited, in which a perforation is subsequently made by chemical attack to make the holes. To obtain a regular mesh of holes, for example, a template with holes would be used through which the substance that carries out the chemical attack for the drilling would pass, but which is not affected by said substance.
  • FIG. 7A schematically represents a horizontal section of a different embodiment where the concentrator structure is divided into two insulating substructures 33.
  • Each insulating substructure 33 incorporates its corresponding electrode.
  • the vertical direction (perpendicular to the plane of the figure) coincides with the direction of the Earth's gravity.
  • This embodiment allows the use of a separator structure 14 that may be conventional.
  • the separator structure 14 prevents bubbles of dissociated gaseous molecules from passing through it and allows the exchange of liquid.
  • Each insulating substructure 33 forms valleys 33a and ridges 33b to concentrate the electric field lines near the electrodes.
  • the electrodes are formed with a conductive structure 31, 32 (dotted boxes) composed of a thread 9 (although it can also be a ribbon, the thread can form a three-dimensional grid) that connects a series of larger integrated conductive elements 5 in the insulating substructure 33.
  • Each valley 33a forms a cavity where the conductive element 5 is housed, partially surrounded by insulating material.
  • lines 1 of the electric field are concentrated towards the conductive element 5.
  • a greater increase in the electric field is achieved, which favors molecular dissociation.
  • a conductive material subjected to a lower potential than the electrodes could be used instead of using electrical insulating material for the entire concentrator structure.
  • the electrode should be separated from the conductive material that concentrates the field lines by means of an insulator (eg completely covered by an insulating layer, eg similar to FIG. 5B) or by a distance.
  • the electrodes can be deposited in the valley part by different methods, for example, chemical vapor deposition, sputtering, etc.
  • the insulating material can be any insulating material, which can be arranged in thin but robust sheets, such as kapton, mylar or even a very thin sheet of aluminum, operating at very low voltages, for example, between 0.5 V and 1V, or between 1V and 2 V.
  • the material of the electrodes can also be very diverse, such as copper or any low-cost but robust conductive compound.
  • the shape of the holes and valleys is preferably circular but could also be hexagonal or any other polygonal shape.
  • the thickness of the insulating sheet is generally between 1 micron and 100 microns. It can also be up to tens of nanometers, for example 90, 50 or 30 nanometers.
  • the entrance or exit diameter of the holes can be between 1 micron and 50 microns.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

The invention relates to a system for dissociating molecules of a liquid medium by means of electrolysis, which includes a first conductive structure (11) and a second conductive structure (12) that act as electrodes (10). In operation, a voltage difference is applied between the first conductive structure (11) and the second conductive structure (12), generating an electric field. A third concentrating structure (13) defines a channel for the electric field to or from an exterior surface (10a) of each electrode (10), and comprises portions (13a, 33a) exposed to the liquid medium and which are associated with edges (11a, 12a, 5a) of the conductive structures (11, 12) that increase the concentration of the electric field, such that the voltage difference threshold needed to dissociate the molecules of the liquid medium into less complex gas molecules is lowered. A fourth separating structure (14) is also included.

Description

DESCRIPCIÓN DESCRIPTION
SISTEMA PARA DISOCIAR MOLÉCULAS DE UN MEDIO LÍQUIDO POR ELECTRÓLISIS SYSTEM TO DISSOCIATE MOLECULES FROM A LIQUID MEDIUM BY ELECTROLYSIS
CAMPO DE LA INVENCIÓN FIELD OF THE INVENTION
La presente invención pertenece al campo de los sistemas de disociación de moléculas de un medio líquido. En particular, la invención es de aplicación para la producción de hidrógeno mediante la electrólisis, disociando agua u otro líquido con átomos de hidrógeno, a temperatura y presión ambientales o en otras condiciones de temperatura y presión. También se relaciona con los electrolizadores. The present invention belongs to the field of systems for dissociating molecules from a liquid medium. In particular, the invention is applicable to the production of hydrogen through electrolysis, dissociating water or other liquid with hydrogen atoms, at ambient temperature and pressure or under other temperature and pressure conditions. It is also related to electrolyzers.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
Mediante la disociación, las moléculas de un medio son separadas en componentes químicos más sencillos, como moléculas menores o átomos. Cuando la disociación se realiza mediante electricidad, se habla de electrólisis. Through dissociation, the molecules of a medium are separated into simpler chemical components, such as smaller molecules or atoms. When the dissociation is carried out using electricity, it is called electrolysis.
En particular, si las moléculas a disociar son de agua, se habla de electro-hidrólisis. Concretamente, la electro-hidrólisis para producir hidrógeno verde resulta de gran interés puesto que constituye una fuente de energía limpia. El hidrógeno obtenido puede emplearse como combustible sin emisión de CO2. In particular, if the molecules to be dissociated are water, we speak of electro-hydrolysis. Specifically, electro-hydrolysis to produce green hydrogen is of great interest since it constitutes a source of clean energy. The hydrogen obtained can be used as fuel without CO2 emissions.
En la electro-hidrólisis se produce una separación de los átomos de hidrógeno presentes en las moléculas de un medio líquido (electrolito), normalmente agua alcalina (por ejemplo, agua destilada a la que se ha añadido hidróxido de potasio) mediante la aplicación de un campo eléctrico externo. In electro-hydrolysis, the hydrogen atoms present in the molecules of a liquid medium (electrolyte) are separated, usually alkaline water (for example, distilled water to which potassium hydroxide has been added) by applying a external electric field.
Para llevar a cabo la electro-hidrólisis, se utilizan normalmente electrodos formados por hilos conductores o por mallas de hilos conductores, tanto para el electrodo positivo, generalmente el ánodo, como para el electrodo negativo o generalmente, el cátodo. Entre el cátodo y el ánodo se encuentra el electrolito. Al establecer una diferencia de potencial entre ambos electrodos, se produce un campo eléctrico entre los mismos. Cerca de los electrodos el campo eléctrico aumenta de forma exponencial con un máximo en la superficie de dichos electrodos. El campo eléctrico en las proximidades de los electrodos puede ser suficientemente elevado (vahos eV en el caso del agua) lo que favorece la separación de las moléculas del líquido en componentes disociados (hidrógeno y oxígeno en el caso del agua). Cuando se utiliza agua alcalina, este método se denomina Alkaline Water Electrolysis (AWE). To carry out electro-hydrolysis, electrodes formed by conductive wires or meshes of conductive wires are normally used, both for the positive electrode, generally the anode, and for the negative electrode or generally, the cathode. Between the cathode and the anode is the electrolyte. By establishing a potential difference between both electrodes, an electric field is produced between them. Near the electrodes the electric field increases exponentially with a maximum on the surface of said electrodes. The electric field in the vicinity of the electrodes can be sufficiently high (eV vapors in the case of water) which favors the separation of the liquid molecules into dissociated components (hydrogen and oxygen in the case of water). When alkaline water is used, this method is called Alkaline Water Electrolysis (AWE).
Es deseable hacer más sostenible el proceso de electrólisis. Una manera considera emplear fuentes de energía con bajas emisiones de CO2, por ejemplo, renovables. Otra manera se dirige a reducir la energía necesaria, lo que implica disminuir la diferencia de potencial entre los electrodos. It is desirable to make the electrolysis process more sustainable. One way considers using energy sources with low CO2 emissions, for example, renewables. Another way is to reduce the necessary energy, which involves reducing the potential difference between the electrodes.
Cuanto más pequeño es el diámetro de un hilo conductor mayor es el campo eléctrico en sus proximidades. Por tanto, una manera de requerir menos energía es emplear un electrodo de menor tamaño, ya que aumenta la capacidad para disociar las moléculas. Sin embargo, existe un inconveniente en este enfoque. Un tamaño muy reducido para los electrodos implica generalmente una menor robustez mecánica. En la práctica, redunda en que unos electrodos miniatuhzados no puedan soportar un campo eléctrico elevado. The smaller the diameter of a conducting wire, the greater the electric field in its vicinity. Therefore, one way to require less energy is to use a smaller electrode, since it increases the ability to dissociate molecules. However, there is a drawback to this approach. A very small size for the electrodes generally implies less mechanical robustness. In practice, this means that miniaturized electrodes cannot withstand a high electric field.
DESCRIPCIÓN BREVE DE LA INVENCIÓN BRIEF DESCRIPTION OF THE INVENTION
A la luz de los problemas del estado de la técnica expuestos en la sección anterior, un objeto de la presente invención se refiere, principalmente, a un sistema para disociar moléculas de un medio líquido en componentes empleando electrólisis. Las aplicaciones son diversas, aunque se pueden destacar la producción de hidrógeno para la generación de energía. No obstante, puede haber otras aplicaciones que se beneficien de las ventajas de la presente invención. Entre ellas, cabe mencionar la deposición de átomos en capas o la síntesis química de moléculas, ambas para la industria química. También en la reducción electroquímica de CO2 en metanol. In light of the problems of the state of the art set forth in the previous section, an object of the present invention relates, mainly, to a system for dissociating molecules of a liquid medium into components using electrolysis. The applications are diverse, although the production of hydrogen for energy generation can be highlighted. However, there may be other applications that benefit from the advantages of the present invention. Among them, it is worth mentioning the deposition of atoms in layers or the chemical synthesis of molecules, both for the chemical industry. Also in the electrochemical reduction of CO2 into methanol.
El sistema propuesto logra minimizar la energía requerida para la obtención de moléculas disociadas (e.g. hidrógeno) mediante la concentración del campo eléctrico en las proximidades de los electrodos, disminuyendo el voltaje que es necesario aplicar entre ellos. Para ello, el sistema para disociar moléculas por electrólisis incluye dos estructuras conductoras que actúan como electrodos, cada una de ellas con una región expuesta al medio líquido (electrolito). Las estructuras conductoras definen sendas cámaras (para ánodo y cátodo). Si se aplica una diferencia de voltaje entre las estructuras conductoras se genera un campo eléctrico y el sistema minimiza el valor necesario para provocar la disociación del medio líquido. Se consigue gracias a una estructura concentradora asociada con las estructuras conductoras que permite la formación de unas regiones que concentran extraordinariamente el campo eléctrico para producir la disociación. The proposed system manages to minimize the energy required to obtain dissociated molecules (eg hydrogen) by concentrating the electric field in the vicinity of the electrodes, reducing the voltage that must be applied between them. To do this, the system for dissociating molecules by electrolysis includes two conductive structures that act as electrodes, each with a region exposed to the liquid medium (electrolyte). The conductive structures define two chambers (for anode and cathode). If a voltage difference is applied between the conductive structures, an electric field is generated and the system minimizes the value necessary to cause the dissociation of the liquid medium. It is achieved thanks to a concentrating structure associated with the conductive structures that allows the formation of regions that extraordinarily concentrate the electric field to produce dissociation.
En una familia de realizaciones, se aprovecha la propia estructura concentradora para que realice vahas funciones adicionales. Una, que haga de estructura separadora y separe tanto eléctrica como físicamente las estructuras conductoras (electrodos) entre sí. Dos, que impida que burbujas de moléculas disociadas gaseosas, producidas en el medio líquido por una de las estructuras conductoras, pasen hacia la otra estructura conductora. Tres, que permita el paso del medio líquido de un lado a otro de la estructura concentradora. En cada lado la estructura concentradora se une a una estructura conductora. El conjunto tiene unos orificios suficientemente pequeños para impedir (o al menos minimizar) el intercambio de burbujas de un lado a otro de la estructura concentradora (entre la cámara para el ánodo y la del cátodo) y, a la vez, permitir cierto intercambio líquido. Los propios orificios ayudan a concentrar también el campo eléctrico y producen un incremento en una región marginal de la estructura conductora expuesta al medio líquido. Ese incremento es mayor cuando una porción de la estructura concentradora estrecha parte del orificio. Esta región marginal incluye el borde del orificio en la estructura conductora donde se alcanza un alto valor para el campo eléctrico. Se pueden definir diversas geometrías (cuña simple, doble, etc.) para la porción para el perfil del orificio en el tramo correspondiente a la estructura concentradora. También para el contorno del orificio. In one family of embodiments, the concentrator structure itself is used to perform various additional functions. One, which acts as a separating structure and separates both electrically and physically the conductive structures (electrodes) from each other. Two, it prevents bubbles of dissociated gaseous molecules, produced in the liquid medium by one of the conductive structures, from passing towards the other conductive structure. Three, it allows the passage of the liquid medium from one side to the other of the concentrator structure. On each side the concentrator structure is attached to a conductive structure. The assembly has small enough holes to prevent (or at least minimize) the exchange of bubbles from one side to the other of the concentrator structure (between the anode chamber and the cathode chamber) and, at the same time, allow some liquid exchange . The holes themselves also help to concentrate the electric field and produce an increase in a marginal region of the conductive structure exposed to the liquid medium. This increase is greater when a portion of the concentrating structure narrows part of the orifice. This marginal region includes the edge of the hole in the conductive structure where a high value for the electric field is reached. Various geometries can be defined (single wedge, double wedge, etc.) for the portion of the hole profile in the section corresponding to the concentrator structure. Also for the contour of the hole.
En esta familia de realizaciones, los electrodos que constituyen las estructuras conductoras pueden realizarse como una malla de hilos. En los nodos de la malla puede haber un elemento conector de mayor tamaño. También pueden ser láminas extremadamente delgadas, por ejemplo, entre 10 nanómetros y 100 mieras, preferentemente, entre 10 nanómetros y 10 mieras, más preferentemente, entre 10 nanómetros y 1 miera. La ventaja de las láminas frente a las mallas es su mayor robustez. En ambos casos, se consigue que los electrodos estén extremadamente próximos entre sí. In this family of embodiments, the electrodes that constitute the conductive structures can be made as a mesh of wires. At the nodes of the mesh there may be a larger connecting element. They may also be extremely thin sheets, for example between 10 nanometers and 100 microns, preferably between 10 nanometers and 10 microns, more preferably between 10 nanometers and 1 micron. The advantage of sheets over meshes is their greater robustness. In both cases, the electrodes are extremely close to each other.
En otra familia de realizaciones del sistema propuesto están diferenciadas la estructura separadora y la estructura concentradora. Los electrodos se encuentran más distanciados en este caso. La estructura concentradora se compone de dos subestructuras eléctricamente aislantes, inmersas en el medio líquido. Cada subestructura integra su correspondiente estructura conductora (electrodo). Las subestructuras incluyen porciones de material que forman una serie de cavidades o valles en cuyo interior se aloja un elemento conductor. Los valles se encuentran separados entre sí por unas crestas. Este elemento conductor es parte de la estructura conductora que funciona de electrodo (por ejemplo, una retícula de hilos conductores). El elemento conductor puede estar parcialmente expuesto al medio líquido y parcialmente embebido en la subestructura para mayor robustez. Con este diseño también se concentran las líneas de campo en la región de la cavidad donde está dicho elemento conductor. In another family of embodiments of the proposed system, the separating structure and the concentrating structure are differentiated. The electrodes are further apart in this case. The concentrator structure is composed of two electrically insulating substructures, immersed in the liquid medium. Each substructure integrates its corresponding conductive structure (electrode). Substructures include portions of material that form a series of cavities or valleys inside which a conductive element is housed. The valleys are separated from each other by ridges. This conductive element is part of the conductive structure that functions as an electrode (for example, a grid of conductive wires). The conductive element may be partially exposed to the liquid medium and partially embedded in the substructure for greater robustness. With this design, the field lines are also concentrated in the region of the cavity where said conductive element is located.
Aspectos de ambas familias se pueden combinar. Por ejemplo, se pueden diseñar valles y crestas con formas geométricas que ayuden a concentrar mejor el campo eléctrico en las proximidades del elemento conductor. Por ejemplo, modificando el perfil para el canal para el campo. Cada canal está delimitado por un valle separado por crestas adyacentes y puede tener diferentes formas. Por ejemplo, de cuña simple, de cuña doble o simplemente rectangular. Aspects of both families can be combined. For example, valleys and crests can be designed with geometric shapes that help better concentrate the electric field in the vicinity of the conducting element. For example, modifying the profile for the channel for the field. Each channel is bounded by a valley separated by adjacent ridges and can have different shapes. For example, single wedge, double wedge or simply rectangular.
DESCRIPCIÓN DE LOS DIBUJOS DESCRIPTION OF THE DRAWINGS
Las características y ventajas se comprenderán plenamente a partir de la descripción detallada de la invención, así como de los ejemplos de realización referidos a las figuras adjuntas, que se describen en los párrafos siguientes. The characteristics and advantages will be fully understood from the detailed description of the invention, as well as from the embodiment examples referred to the attached figures, which are described in the following paragraphs.
FIG. 1A muestra esquemáticamente un electrodo formado por un hilo conductor con sus líneas de campo eléctrico asociadas. FIG. 1B muestra una gráfica de la intensidad del campo eléctrico en función de la distancia al centro del electrodo. FIG. 1A schematically shows an electrode formed by a conductive wire with its associated electric field lines. FIG. 1B shows a graph of the electric field intensity as a function of the distance to the center of the electrode.
FIG. 2 es una gráfica comparativa de la densidad de corriente por unidad de superficie para una realización según el estado de la técnica y según la presente invención. FIG. 2 is a comparative graph of the current density per unit area for an embodiment according to the state of the art and according to the present invention.
FIG. 3A muestra esquemáticamente una vista frontal de una primera realización de la presente invención. FIG. 3B muestra esquemáticamente un corte lateral de una primera realización de la presente invención. FIG. 3A schematically shows a front view of a first embodiment of the present invention. FIG. 3B schematically shows a side section of a first embodiment of the present invention.
FIG. 4 muestra esquemáticamente un corte lateral de una segunda realización de la presente invención. FIG. 4 schematically shows a side section of a second embodiment of the present invention.
FIG. 5A muestra esquemáticamente un corte lateral de una tercera realización de la presente invención. FIG. 5B muestra esquemáticamente una variación de la tercera realización con una estructura aislante con una lámina conductora interior a un voltaje intermedio. FIG. 5A schematically shows a side section of a third embodiment of the present invention. FIG. 5B schematically shows a variation of the third embodiment with an insulating structure with an inner conductive sheet at an intermediate voltage.
FIG. 6A muestra esquemáticamente una vista frontal de una cuarta realización de la presente invención. FIG. 6B muestra una vista posterior en perspectiva. FIG. 7A muestra esquemáticamente un corte de una quinta realización de la presente invención. FIG. 7B muestra una ampliación de una parte de la quinta realización. FIG. 6A schematically shows a front view of a fourth embodiment of the present invention. FIG. 6B shows a rear perspective view. FIG. 7A schematically shows a section of a fifth embodiment of the present invention. FIG. 7B shows an enlargement of a part of the fifth embodiment.
Referencias numéricas utilizadas en los dibujos: Numerical references used in the drawings:
I Línea de campo eléctrico. I Electric field line.
5 Elemento conductor. 5 Conductive element.
5a Borde del elemento conductor. 5a Edge of the conductive element.
8 Orificio. 8 Hole.
10 Electrodo. 10 Electrode.
10a Superficie expuesta del electrodo (al medio líquido). 10a Exposed surface of the electrode (to the liquid medium).
I I Primera lámina conductora. I I First conductive sheet.
11a Borde del orificio de la primera lámina conductora. 11a Edge of the hole of the first conductive sheet.
12 Segunda lámina conductora. 12 Second conductive sheet.
12a Borde del orificio de la segunda lámina conductora. 12a Edge of the hole of the second conductive sheet.
13 Lámina aislante. 13 Insulating sheet.
13a Porción. 13th Portion.
131 Lámina conductora interior (de la estructura concentradora). 131 Inner conductive sheet (of the concentrator structure).
132 Capa de material aislante (de la estructura concentradora). 132 Layer of insulating material (of the concentrator structure).
14 Cuarta estructura separadora. 14 Fourth separating structure.
21 Primera malla conductora. 21 First conductive mesh.
21a Borde de la primera malla conductora. 21a Edge of the first conductive mesh.
22 Segunda malla conductora. 22 Second conductive mesh.
2a Borde de la segunda malla conductora. 2nd Edge of the second conductive mesh.
33 Subestructura aislante. 33 Insulating substructure.
33a Valles. 33rd Valleys.
33b Crestas. DESCRIPCIÓN DETALLADA DE LA INVENCIÓN 33b Crests. DETAILED DESCRIPTION OF THE INVENTION
Se expone, a continuación, una descripción detallada de la invención referida a diferentes realizaciones preferentes o ventajosas basadas en las figuras 1 a 7. Dicha descripción detallada se aporta con fines ilustrativos y no limitativos respecto del alcance de la invención reivindicada. Below is a detailed description of the invention referring to different preferred or advantageous embodiments based on Figures 1 to 7. Said detailed description is provided for illustrative and non-limiting purposes with respect to the scope of the claimed invention.
Se presentan vahos diseños de estructuras que concentran las líneas del campo eléctrico en las proximidades de los electrodos en una región expuesta al medio líquido que se desea disociar. Various designs of structures are presented that concentrate the electric field lines in the vicinity of the electrodes in a region exposed to the liquid medium that is to be dissociated.
En la FIG. 1A se muestra una sección de un electrodo 10 formado por un hilo conductor, y las líneas de campo eléctrico 1 asociadas, al que se ha aplicado una diferencia de potencial con otro electrodo (no mostrado). Se puede apreciar que la densidad de líneas de campo eléctrico 1 es mayor al acercarse al electrodo 10. El máximo ocurre en la superficie expuesta 10a. In FIG. 1A shows a section of an electrode 10 formed by a conductive wire, and the associated electric field lines 1, to which a potential difference has been applied with another electrode (not shown). It can be seen that the density of electric field lines 1 is greater when approaching the electrode 10. The maximum occurs on the exposed surface 10a.
La FIG. 1B es una gráfica de la intensidad del campo eléctrico en función de la distancia al centro del electrodo para el caso anterior. En el eje de abscisas, x, se representa la distancia a la superficie del electrodo. En el eje de ordenadas, y, se representa la intensidad del campo eléctrico. Se aprecia claramente cómo el valor para la intensidad del campo eléctrico se incrementa exponencialmente en las proximidades de la superficie del electrodo x=a. FIG. 1B is a graph of the electric field intensity as a function of the distance to the center of the electrode for the previous case. The distance to the electrode surface is represented on the x-axis. The intensity of the electric field is represented on the y-axis. It is clearly seen how the value for the intensity of the electric field increases exponentially in the vicinity of the electrode surface x=a.
Como se apreciará en los ejemplos de realización siguientes, una estructura aislante, dispuesta adecuadamente en las proximidades de regiones de una estructura conductora, permite crear una región para cada electrodo que favorece la disociación. Se produce un incremento adicional en la concentración del campo eléctrico. Esta región funciona a modo de canal para encaminar y concentrar el campo eléctrico. As will be seen in the following embodiments, an insulating structure, suitably arranged in the vicinity of regions of a conductive structure, makes it possible to create a region for each electrode that favors dissociation. A further increase in the concentration of the electric field occurs. This region functions as a channel to route and concentrate the electric field.
La FIG. 2 es una gráfica comparativa de la densidad de corriente por unidad de superficie para un proceso de electro-hidrólisis según el estado de la técnica en línea punteada y según una realización de la presente invención en línea continua. En el eje de abscisas, x, se representa el voltaje medido en Voltios (V). En el eje de ordenadas, y, se representa la densidad de corriente eléctrica por unidad de superficie o densidad superficial de corriente, medida en Amperios por centímetro cuadrado (A/cm2). Las unidades mostradas no son precisas y tan sólo sirven para ¡lustrar el comportamiento favorable. Se desprende, de la comparación entre curvas, que el sistema propuesto consigue producir hidrógeno disociando la molécula de agua mediante la aplicación de voltajes de menor valor. Este resultado es extensible a otras reacciones químicas de electrólisis, cambiando el agua por otro líquido compuesto por otras moléculas, y eligiendo el electrolito adecuado para dicha reacción. A partir de estas moléculas de líquido, se obtendrían los elementos atómicos que las componen o moléculas más sencillas. FIG. 2 is a comparative graph of the current density per unit area for an electro-hydrolysis process according to the state of the art in dotted line and according to an embodiment of the present invention in solid line. On the x-axis, the measured voltage is represented in Volts (V). On the y-axis, the electric current density per unit area or surface current density is represented, measured in Amperes per square centimeter (A/cm 2 ). The units shown are not precise and only serve to illustrate favorable behavior. It is clear from the comparison between curves that the proposed system manages to produce hydrogen by dissociating the water molecule through the application of lower value voltages. This result can be extended to other chemical electrolysis reactions, changing water for another liquid composed of other molecules, and choosing the appropriate electrolyte for said reaction. From these liquid molecules, the atomic elements that compose them or simpler molecules would be obtained.
La FIG. 3A y la FIG. 3B son ambas una representación esquemática de una vista frontal y de un corte lateral de una realización del sistema. Por claridad, no se muestra el medio líquido con las moléculas a disociar. El sistema incluye una lámina aislante 13 que está exteriormente unida por una cara con una primera lámina conductora 11 y por la otra cara opuesta con una segunda lámina conductora 12. Esta estructura de tres capas presenta múltiples orificios 8. Uno de tales orificios se muestra en el corte lateral de la FIG. 3B (oculta en la vista frontal de FIG. 3A). Las láminas conductoras 11, 12 forman los electrodos (ánodos en una cara y cátodos en la cara opuesta). Los orificios 8 son pasantes y comunican un lado (cámara del ánodo) con el otro (cámara del cátodo) permitiendo el paso de moléculas a disociar en estado líquido, pero impidiendo el paso de burbujas gaseosas con moléculas producidas en la disociación. FIG. 3A and FIG. 3B are both a schematic representation of a front view and a side section of one embodiment of the system. For clarity, the liquid medium with the molecules to be dissociated is not shown. The system includes an insulating sheet 13 that is externally joined on one side with a first conductive sheet 11 and on the other opposite side with a second conductive sheet 12. This three-layer structure has multiple holes 8. One of such holes is shown in the side section of FIG. 3B (hidden in the front view of FIG. 3A). The conductive sheets 11, 12 form the electrodes (anodes on one side and cathodes on the opposite side). The holes 8 are through and communicate one side (anode chamber) with the other (cathode chamber) allowing the passage of molecules to be dissociated in a liquid state, but preventing the passage of gas bubbles with molecules produced in the dissociation.
Al aplicar una diferencia de potencial entre los dos electrodos (primera lámina conductora 11, y segunda lámina conductora 12), las líneas de campo eléctrico 1 se concentran alrededor de los orificios 8 como muestra la FIG. 3B. Debido al estrechamiento del canal de paso, se produce un incremento en la concentración del campo eléctrico en el centro del orificio 8 y, por tanto, cerca del borde 11a de la lámina conductora 11 , 12 que está expuesto al medio líquido y en sus proximidades. By applying a potential difference between the two electrodes (first conductive sheet 11, and second conductive sheet 12), the electric field lines 1 are concentrated around the holes 8 as shown in FIG. 3B. Due to the narrowing of the passage channel, an increase in the concentration of the electric field occurs in the center of the hole 8 and, therefore, near the edge 11a of the conductive sheet 11, 12 which is exposed to the liquid medium and in its vicinity. .
En la FIG. 3B se aprecia que se forma un canal que atraviesa dicho orificio 8 y que concentra, a su paso por el interior, el campo eléctrico. Cuando este canal es modificado y se hace adicionalmente más estrecho con una porción 13a (en forma de saliente) de la lámina aislante 13 que se extiende en dirección transversal a la dirección del campo eléctrico, se logra concentrar adicionalmente el campo eléctrico que debe atravesar el orificio 8 y con ello, en los bordes 11a de cada orificio 8 de la lámina conductora 11. De esta manera, se favorece la reacción de electrólisis. In FIG. 3B it can be seen that a channel is formed that passes through said hole 8 and that concentrates, as it passes through the interior, the electric field. When this channel is modified and made additionally narrower with a portion 13a (in the form of a projection) of the insulating sheet 13 extending in a direction transverse to the direction of the electric field, it is possible to additionally concentrate the electric field that must pass through the hole 8 and with it, on the edges 11a of each hole 8 of the conductive sheet 11. In this way, the electrolysis reaction is favored.
El perfil mostrado por la FIG. 3B es denominado de doble cuña. Esto es, el diámetro del orificio 8 disminuye progresivamente desde las caras de la lámina aislante 13 (cada cara próxima a una de las láminas conductoras 11 ,12) hasta un plano interior. Por ejemplo, hasta un plano que divida la lámina aislante 13 en dos mitades de igual grosor. Es decir, tendría forma de huso. No obstante, otras formas serían posibles para la parte del canal interior del orificio 8 (rodeado por aislante) como se mostrará a continuación. Algunas formas tienen ventajas en configuraciones concretas. The profile shown by FIG. 3B is called double wedge. That is, the diameter of the hole 8 progressively decreases from the faces of the insulating sheet 13 (each face next to one of the conductive sheets 11, 12) to an interior plane. For example, up to a plane that divides the insulating sheet 13 into two halves of equal thickness. That is to say, It would be spindle shaped. However, other shapes would be possible for the inner channel portion of hole 8 (surrounded by insulator) as will be shown below. Some shapes have advantages in particular configurations.
En la FIG. 4 se ¡lustra otra geometría, denominada de cuña simple, para una porción 13a del canal formado interiormente por el orificio 8 que tendría forma cónica. Como en la realización anterior, el sistema tiene una lámina conductora 11, 12 que se une con una cara diferente de la lámina aislante 13. Con la porción 13a simple el diámetro del orificio 8 disminuye progresivamente desde una de las caras de la lámina aislante 13 hasta la otra cara opuesta. In FIG. 4 illustrates another geometry, called simple wedge, for a portion 13a of the channel formed internally by the hole 8, which would have a conical shape. As in the previous embodiment, the system has a conductive sheet 11, 12 that is joined with a different face of the insulating sheet 13. With the simple portion 13a the diameter of the hole 8 progressively decreases from one of the faces of the insulating sheet 13. to the other opposite side.
En la FIG. 5A se ¡lustra otra geometría, denominada cilindrica donde el canal interior definido por el orificio 8 es cilindrico. Se observa una porción rectangular de la lámina aislante 13 que se extiende en el canal interior en el tramo de que atraviesa la lámina aislante 13. Se observa que se estrecha respecto de las láminas conductoras 11,12 situadas en la parte exterior. La porción de la lámina aislante 13 reduce el espacio libre para el paso del campo eléctrico a través del orificio 8 y con ello, aumenta el campo eléctrico en el borde 11a del orificio 8 en la lámina conductora 11 , y análogamente en el borde 12a del orificio 8 en la lámina conductora 12. In FIG. 5A illustrates another geometry, called cylindrical, where the interior channel defined by hole 8 is cylindrical. A rectangular portion of the insulating sheet 13 is observed that extends in the interior channel in the section through which the insulating sheet 13 crosses. It is observed that it narrows with respect to the conductive sheets 11,12 located on the outside. The portion of the insulating sheet 13 reduces the free space for the passage of the electric field through the hole 8 and thereby increases the electric field at the edge 11a of the hole 8 in the conductive sheet 11, and similarly at the edge 12a of the hole 8 in the conductive sheet 12.
En la FIG. 5B se ¡lustra la misma geometría que la FIG. 5A pero empleando una estructura aislante diferente. En lugar de una lámina aislante uniforme se emplea una estructura en sándwich, donde una lámina conductora interior 131 está revestida de una capa 132 de material aislante a cada lado, que evite que la lámina conductora interior 131 esté en contacto con las láminas conductoras 11, 12. Así cada elemento 11, 12, 131 puede estar a un voltaje diferente. En particular se muestra que el voltaje V1 está aplicado a la primera lámina conductora 11, el voltaje V2 está aplicado a la segunda lámina conductora 12 y el voltaje V3 está aplicado a la lámina conductora interior 131. Se cumple que V1>V2>V3. In FIG. 5B illustrates the same geometry as FIG. 5A but using a different insulating structure. Instead of a uniform insulating sheet, a sandwich structure is used, where an inner conductive sheet 131 is covered with a layer 132 of insulating material on each side, which prevents the inner conductive sheet 131 from being in contact with the conductive sheets 11, 12. Thus each element 11, 12, 131 can be at a different voltage. In particular, it is shown that the voltage V1 is applied to the first conductive sheet 11, the voltage V2 is applied to the second conductive sheet 12 and the voltage V3 is applied to the inner conductive sheet 131. It is true that V1>V2>V3.
En las FIG. 6A y FIG. 6B se ¡lustra una representación esquemática de otra realización bastante similar a la mostrada en la FIG. 3A. En esta realización, en lugar de una lámina conductora, se usa una malla 21 con múltiples conductores anulares 7 e hilos 9 entre ellos. Como se puede apreciar, las mallas 21,22 cubren mucha menos superficie de la lámina aislante 13 que una lámina. Análogamente a la realización anterior, hay una porción interior (no mostrada) de la lámina aislante 13 que estrecha el paso a través del orificio 8 y concentra el campo eléctrico en el borde 21a del orificio 8 del conductor anular 7 de la malla conductora 21. En la FIG. 6B se aprecia el otro lado, correspondiente a la cara oculta de la FIG. 6A, con la otra malla conductora 22. Cada orificio 8 está rodeado en ambas caras de la lámina aislante 13 por un conductor anular 7 uno corresponde con la malla conductora 21, otro con la malla conductora 22 del otro lado. Existe también un borde 22a definido por el orificio 8 que coincide con el diámetro interior de los conductores anulares 7 presentes en la malla conductora 22. In FIGS. 6A and FIG. 6B illustrates a schematic representation of another embodiment quite similar to that shown in FIG. 3A. In this embodiment, instead of a conductive sheet, a mesh 21 with multiple annular conductors 7 and threads 9 between them is used. As can be seen, the meshes 21,22 cover much less surface area of the insulating sheet 13 than a sheet. Analogously to the previous embodiment, there is an inner portion (not shown) of the insulating sheet 13 that narrows the passage through the hole 8 and concentrates the electric field on the edge 21a of the hole 8 of the annular conductor 7 of the conductive mesh 21. In FIG. 6B shows the other side, corresponding to the hidden face of FIG. 6A, with the other conductive mesh 22. Each hole 8 is surrounded on both sides of the insulating sheet 13 by an annular conductor 7, one corresponding to the conductive mesh 21, another with the conductive mesh 22 on the other side. There is also an edge 22a defined by the hole 8 that coincides with the inner diameter of the annular conductors 7 present in the conductive mesh 22.
Respecto de las geometrías antes mencionadas en las FIGs. 3A, 4 y 5 para la porción aislante encargada de reducir el canal y concentrar el campo eléctrico, indicar que son igualmente aplicables a esta realización con una malla en lugar de una lámina. A continuación, se mencionan algunas propiedades características de cada geometría. Regarding the geometries mentioned above in FIGS. 3A, 4 and 5 for the insulating portion responsible for reducing the channel and concentrating the electric field, indicate that they are equally applicable to this embodiment with a mesh instead of a sheet. Below are some characteristic properties of each geometry.
Una doble cuña tiene la ventaja de concentrar aún un poco más las líneas del campo y es más fácil de fabricar por técnicas de ataque químico. Una cuña simple próxima al electrodo que produce la molécula disociada de interés (e.g., hidrógeno) tiene la ventaja de que hace menos probable que se produzca una recombinación de la molécula disociada en la molécula a disociar (e.g., agua). A double wedge has the advantage of concentrating the field lines even more and is easier to manufacture by chemical attack techniques. A simple wedge close to the electrode that produces the dissociated molecule of interest (e.g., hydrogen) has the advantage that it makes it less likely that recombination of the dissociated molecule will occur in the molecule to be dissociated (e.g., water).
Cualquier porción adicional de aislante permita concentrar el campo eléctrico en las proximidades de los electrodos con los orificios sería aplicable. Se podrían emplear otras geometrías para reducir el canal de paso en diferente grado (p.e. 25%, 35%, 50%, 75%, 90%, etc. respecto del contorno del orificio en el conductor). Any additional portion of insulator allowing the electric field to be concentrated in the vicinity of the electrodes with the holes would be applicable. Other geometries could be used to reduce the passage channel to a different degree (e.g. 25%, 35%, 50%, 75%, 90%, etc. with respect to the contour of the hole in the conductor).
Una de las dificultades de los sistemas que llevan a cabo electrólisis es la recombinación. En particular, cuando se trata de hidrólisis, la recombinación implica una mezcla de burbujas de gas de oxígeno e hidrógeno. Mediante las realizaciones anteriores, las burbujas de gas de oxígeno e hidrógeno quedan separadas por el propio diseño de la estructura concentradora de las líneas de campo. Como función adicional, la estructura concentradora es también separadora y permite reducir el paso de burbujas, los orificios son de pequeño tamaño y limitan o impiden el paso de burbujas. Así, es importante establecer un tamaño adecuado de los orificios para que se permita el intercambio de moléculas del medio líquido (agua, en el caso de la electro-hidrólisis) pero se impida el intercambio de moléculas gaseosas disociadas (hidrógeno molecular, H2). One of the difficulties of systems that carry out electrolysis is recombination. In particular, when it comes to hydrolysis, recombination involves a mixture of oxygen and hydrogen gas bubbles. Through the previous embodiments, the oxygen and hydrogen gas bubbles are separated by the design of the concentrating structure of the field lines. As an additional function, the concentrator structure is also a separator and allows the passage of bubbles to be reduced; the holes are small in size and limit or prevent the passage of bubbles. Thus, it is important to establish an adequate size of the holes so that the exchange of molecules of the liquid medium (water, in the case of electro-hydrolysis) is allowed but the exchange of dissociated gas molecules (molecular hydrogen, H2) is prevented.
Una de las ventajas de la realización con láminas conductoras radica en que la energía precisada para producir la electrólisis es menor ya que, por un lado, se produce una concentración de las líneas de campo cerca del orificio, y, por otro lado, la distancia entre los electrodos puede ser mucho menor por ser más robusta. De esta forma, el campo puede ser más elevado que para mallas conductoras. One of the advantages of using conductive sheets is that the energy required to produce electrolysis is lower since, on the one hand, there is a concentration of the field lines near the hole, and, on the other hand, the distance between The electrodes can be much smaller because they are more robust. In this way, the field can be higher than for conductive meshes.
Mencionar que para fabricar las diferentes realizaciones se pueden emplear diferentes técnicas. En particular, el procedimiento de fabricación de la lámina aislante puede ser muy vanado. Por ejemplo, partiendo de una lámina aislante, como mylar o kapton, se deposita una fina capa de cobre u otro conductor de bajo coste, en la que posteriormente se realiza una perforación por ataque químico para realizar los orificios. Para obtener una malla regular de agujeros se utilizaría, por ejemplo, una plantilla con agujeros por donde pasaría la sustancia que realiza el ataque químico para la perforación, pero que no es afectada por dicha sustancia. Mention that different techniques can be used to manufacture the different embodiments. In particular, the manufacturing process of the insulating sheet can be very varied. For example, starting from an insulating sheet, such as mylar or kapton, a thin layer of copper or another low-cost conductor is deposited, in which a perforation is subsequently made by chemical attack to make the holes. To obtain a regular mesh of holes, for example, a template with holes would be used through which the substance that carries out the chemical attack for the drilling would pass, but which is not affected by said substance.
En la FIG. 7A se representa esquemáticamente un corte horizontal de una realización diferente donde la estructura concentradora se divide en dos subestructuras aislantes 33. Cada subestructura aislante 33 incorpora su electrodo correspondiente. Por claridad, no se muestra el medio líquido cuyas moléculas se desea disociar. La dirección vertical (perpendicular al plano de la figura) coincide con la dirección de la gravedad terrestre. Esta realización permite emplear una estructura separadora 14 que puede ser convencional. La estructura separadora 14 evita que burbujas de moléculas disociadas gaseosas la atraviesen y permite el intercambio de líquido. In FIG. 7A schematically represents a horizontal section of a different embodiment where the concentrator structure is divided into two insulating substructures 33. Each insulating substructure 33 incorporates its corresponding electrode. For clarity, the liquid medium whose molecules are to be dissociated is not shown. The vertical direction (perpendicular to the plane of the figure) coincides with the direction of the Earth's gravity. This embodiment allows the use of a separator structure 14 that may be conventional. The separator structure 14 prevents bubbles of dissociated gaseous molecules from passing through it and allows the exchange of liquid.
Cada subestructura aislante 33 forma valles 33a y crestas 33b para concentrar las líneas de campo eléctrico cerca de los electrodos. Los electrodos se forman con una estructura conductora 31, 32 (recuadros punteados) compuesta por un hilo 9 (aunque puede ser una cinta también, el hilo puede formar una retícula en tres dimensiones) que conecta una serie de elementos conductores 5 de mayor tamaño integrados en la subestructura aislante 33. Each insulating substructure 33 forms valleys 33a and ridges 33b to concentrate the electric field lines near the electrodes. The electrodes are formed with a conductive structure 31, 32 (dotted boxes) composed of a thread 9 (although it can also be a ribbon, the thread can form a three-dimensional grid) that connects a series of larger integrated conductive elements 5 in the insulating substructure 33.
Cada valle 33a forma una cavidad donde se aloja el elemento conductor 5 parcialmente bordeado de material aislante. En el valle 33a se concentran las líneas 1 del campo eléctrico hacia el elemento conductor 5. En el borde 5a de dicho elemento conductor 5 expuesto al medio líquido y, se alcanza un mayor incremento del campo eléctrico que favorece la disociación molecular. Each valley 33a forms a cavity where the conductive element 5 is housed, partially surrounded by insulating material. In the valley 33a, lines 1 of the electric field are concentrated towards the conductive element 5. At the edge 5a of said conductive element 5 exposed to the liquid medium y, a greater increase in the electric field is achieved, which favors molecular dissociation.
En una realización análoga, en lugar de utilizar material aislante eléctrico para toda la estructura concentradora, se podría utilizar un material conductor sometido a menor potencial que los electrodos. En este caso, el electrodo debería de estar separado del material conductor que concentra las líneas de campo mediante un aislante (p.e. revestido totalmente por una capa aislante, p.e. de forma similar a la FIG. 5B) o por una distancia. In an analogous embodiment, instead of using electrical insulating material for the entire concentrator structure, a conductive material subjected to a lower potential than the electrodes could be used. In this case, the electrode should be separated from the conductive material that concentrates the field lines by means of an insulator (eg completely covered by an insulating layer, eg similar to FIG. 5B) or by a distance.
Los electrodos se pueden depositar en la parte del valle mediante distintos métodos, por ejemplo, deposición mediante vapor químico, pulverización (sputtering), etc. The electrodes can be deposited in the valley part by different methods, for example, chemical vapor deposition, sputtering, etc.
En todas las realizaciones, el material aislante puede ser cualquier material aislante, que se pueda disponer en láminas finas pero robustas, como kapton, mylar o incluso una lámina muy fina de aluminio, funcionando a voltajes muy bajos, por ejemplo, entre 0.5 V y 1V, o entre 1V y 2 V. El material de los electrodos también puede ser muy diverso como cobre o cualquier compuesto conductor de bajo coste, pero robusto. La forma de los orificios y los valles es preferiblemente circular pero también podría ser hexagonal o cualquier otra forma poligonal. In all embodiments, the insulating material can be any insulating material, which can be arranged in thin but robust sheets, such as kapton, mylar or even a very thin sheet of aluminum, operating at very low voltages, for example, between 0.5 V and 1V, or between 1V and 2 V. The material of the electrodes can also be very diverse, such as copper or any low-cost but robust conductive compound. The shape of the holes and valleys is preferably circular but could also be hexagonal or any other polygonal shape.
A modo ilustrativo se ofrecen algunas medidas y rangos para varios elementos aquí descritos. For illustrative purposes, some measurements and ranges are offered for various elements described here.
El grosor de la lámina aislante está generalmente entre 1 miera y 100 mieras. También puede ser de vahas decenas de nanómetros, por ejemplo 90, 50 o 30 nanómetros. The thickness of the insulating sheet is generally between 1 micron and 100 microns. It can also be up to tens of nanometers, for example 90, 50 or 30 nanometers.
El diámetro de entrada o salida de los orificios puede estar entre 1 miera y 50 mieras. The entrance or exit diameter of the holes can be between 1 micron and 50 microns.
Lo rangos de voltaje para diferentes reacciones de electrólisis se indican a continuación: The voltage ranges for different electrolysis reactions are indicated below:
Agua (hidrólisis): Entre 1 ,23 V y 1 ,8 V Water (hydrolysis): Between 1.23 V and 1.8 V
Reducción electroquímica de CO2 en metanol: Entre 1 V y 1,5 V Electrochemical reduction of CO2 in methanol: Between 1 V and 1.5 V

Claims

REIVINDICACIONES
1. Sistema para disociar moléculas de un medio líquido por electrólisis que comprende: 1. System for dissociating molecules from a liquid medium by electrolysis that comprises:
- una primera estructura conductora (11 ,21 ,31) con una pluralidad de bordes (11a, 12a, 5a) expuestos al medio líquido por una primera cara; - a first conductive structure (11,21,31) with a plurality of edges (11a, 12a, 5a) exposed to the liquid medium on a first face;
- una segunda estructura conductora (12,22,32) con una pluralidad de bordes (11a, 12a, 5a) expuestos al medio líquido por una primera cara; donde, en operación, ambas estructuras conductoras (11 ,12) actúan como electrodos y existe una diferencia de voltaje entre la primera estructura conductora (11 ,21) y la segunda estructura conductora (12,22) que genera un campo eléctrico; caracterizado por que comprende: - a second conductive structure (12,22,32) with a plurality of edges (11a, 12a, 5a) exposed to the liquid medium on a first face; where, in operation, both conductive structures (11,12) act as electrodes and there is a voltage difference between the first conductive structure (11,21) and the second conductive structure (12,22) that generates an electric field; characterized by comprising:
- una tercera estructura concentradora (13,33) configurada para concentrar el campo eléctrico, donde la tercera estructura concentradora (13,33) está acoplada con ambas estructuras conductoras (11 ,12) por una segunda cara opuesta a la primera cara, donde la tercera estructura concentradora (13,33) comprende una pluralidad de porciones (13a, 33a) expuestas al medio líquido y asociadas con la pluralidad de bordes (11 a, 12a, 5a) de las estructuras conductoras (11 ,12) donde las porciones (13a, 33a, 33b) causan un incremento de concentración del campo eléctrico en los bordes (11 a, 12a, 5a), de manera que se reduce el umbral de diferencia de voltaje necesario para disociar las moléculas del medio líquido en moléculas disociadas gaseosas de menor complejidad; - a third concentrating structure (13,33) configured to concentrate the electric field, where the third concentrating structure (13,33) is coupled with both conductive structures (11,12) by a second face opposite the first face, where the third concentrating structure (13,33) comprises a plurality of portions (13a, 33a) exposed to the liquid medium and associated with the plurality of edges (11 a, 12a, 5a) of the conductive structures (11, 12) where the portions ( 13a, 33a, 33b) cause an increase in the concentration of the electric field at the edges (11 a, 12a, 5a), so that the voltage difference threshold necessary to dissociate the molecules of the liquid medium into dissociated gaseous molecules of less complexity;
- una cuarta estructura separadora (14) configurada para separar la primera estructura conductora (11 ,21) de la segunda estructura conductora (12,22), para permitir el intercambio de moléculas del medio líquido, y para limitar una mezcla de moléculas disociadas gaseosas producidas en cada estructura conductora (11 ,12,21 ,22). - a fourth separator structure (14) configured to separate the first conductive structure (11,21) from the second conductive structure (12,22), to allow the exchange of molecules of the liquid medium, and to limit a mixture of gaseous dissociated molecules produced in each conductive structure (11,12,21,22).
2. Sistema para disociar moléculas de un medio líquido por electrólisis según la reivindicación 1 , donde la tercera estructura concentradora (13,33) es de material aislante. 2. System for dissociating molecules from a liquid medium by electrolysis according to claim 1, where the third concentrator structure (13,33) is made of insulating material.
3. Sistema para disociar moléculas de un medio líquido por electrólisis según la reivindicación 1 , donde la tercera estructura concentradora (13,33) es de material conductor (131) revestida parcialmente de una capa de material aislante (132), donde, en operación, se aplica, al material conductor de la tercera estructura concentradora (13,33), un voltaje intermedio entre el valor de voltaje de la primera estructura conductora (11) y de la segunda estructura conductora (12). 3. System for dissociating molecules from a liquid medium by electrolysis according to claim 1, where the third concentrator structure (13,33) is made of material conductor (131) partially covered with a layer of insulating material (132), where, in operation, a voltage intermediate between the voltage value of the first structure is applied to the conductive material of the third concentrating structure (13,33). conductive structure (11) and the second conductive structure (12).
4. Sistema para disociar moléculas de un medio líquido por electrólisis según una cualquiera de las reivindicaciones 1 a 3, 4. System for dissociating molecules from a liquid medium by electrolysis according to any one of claims 1 to 3,
- donde la primera estructura es una primera lámina conductora (11), la segunda estructura es una segunda lámina conductora (12), donde la tercera estructura concentradora (13) es además la cuarta estructura separadora; donde las tres estructuras (11 ,12,13) están unidas y comprenden, cada una, una pluralidad de orificios (8) pasantes, donde cada orificio (8) tiene asociado un borde (11 a, 12a) en cada lámina conductora (11 ,12). - where the first structure is a first conductive sheet (11), the second structure is a second conductive sheet (12), where the third concentrating structure (13) is also the fourth separating structure; where the three structures (11,12,13) are joined and each comprise a plurality of through holes (8), where each hole (8) has an associated edge (11 a, 12a) in each conductive sheet (11 ,12).
5. Sistema para disociar moléculas de un medio líquido por electrólisis según una cualquiera de las reivindicaciones 1 a 3, 5. System for dissociating molecules from a liquid medium by electrolysis according to any one of claims 1 to 3,
- donde la primera estructura conductora es una primera una malla conductora (21), donde la segunda estructura conductora es una segunda malla conductora (22), donde cada malla conductora (21 ,22) comprende una pluralidad de conductores anulares (7) e hilos conductores (9); - where the first conductive structure is a first conductive mesh (21), where the second conductive structure is a second conductive mesh (22), where each conductive mesh (21, 22) comprises a plurality of annular conductors (7) and threads drivers (9);
- donde la tercera estructura concentradora (13) es además la cuarta estructura separadora (14) y donde la tercera estructura concentradora es aislante y está unida a ambas mallas conductoras (21 ,22); donde la primera malla conductora (21), la segunda malla conductora (22) y la tercera lámina aislante (13) comprenden una pluralidad de orificios (8) pasantes por los conductores anulares (7), donde cada orificio (8) tiene asociado un borde (11a, 12a) en cada conductor anular (7) de cada lámina conductora (11,12). - where the third concentrator structure (13) is also the fourth separator structure (14) and where the third concentrator structure is insulating and is linked to both conductive meshes (21,22); where the first conductive mesh (21), the second conductive mesh (22) and the third insulating sheet (13) comprise a plurality of holes (8) passing through the annular conductors (7), where each hole (8) has an associated edge (11a, 12a) on each annular conductor (7) of each conductive sheet (11,12).
6. Sistema para disociar moléculas de un medio líquido por electrólisis según la reivindicación 4 o 5, donde un canal definido por el orificio (8) en la lámina aislante (13) tiene un perfil que se estrecha mediante una porción (13a) saliente. 6. System for dissociating molecules from a liquid medium by electrolysis according to claim 4 or 5, wherein a channel defined by the hole (8) in the insulating sheet (13) has a profile that is narrowed by a protruding portion (13a).
7. Sistema para disociar moléculas de un medio líquido por electrólisis según la reivindicación 6, donde el perfil del canal definido por el orificio (8) tiene forma de cuña simple, de cuña doble o rectangular. 7. System for dissociating molecules from a liquid medium by electrolysis according to claim 6, wherein the profile of the channel defined by the hole (8) has the shape of a simple wedge, double wedge or rectangular.
8. Sistema para disociar moléculas de un medio líquido por electrólisis según una cualquiera de las reivindicaciones 1 a 3, donde cada estructura conductora (31,32) comprende una pluralidad de elementos conductores (5) e hilos conductores (9); donde la tercera estructura concentradora (13) comprende dos subestructuras aislantes (33), cada una asociada a un electrodo diferente, donde las porciones (33a, 33b) están en cada subestructura aislante (33) forman un valle (33a) y una cresta (33b), donde el valle (33a) aloja un elemento conductor (5) al menos parejamente expuesto al medio líquido por un borde (5a). 8. System for dissociating molecules from a liquid medium by electrolysis according to any one of claims 1 to 3, wherein each conductive structure (31,32) comprises a plurality of conductive elements (5) and conductive wires (9); where the third concentrator structure (13) comprises two insulating substructures (33), each associated with a different electrode, where the portions (33a, 33b) are in each insulating substructure (33) forming a valley (33a) and a ridge ( 33b), where the valley (33a) houses a conductive element (5) at least evenly exposed to the liquid medium by an edge (5a).
9. Sistema para disociar moléculas de un medio líquido por electrólisis según la reivindicación 8, donde el perfil para un canal definido por el valle (33a) separado por dos crestas (33b) tiene forma de cuña simple, de cuña doble o rectangular. 9. System for dissociating molecules from a liquid medium by electrolysis according to claim 8, wherein the profile for a channel defined by the valley (33a) separated by two ridges (33b) has the shape of a simple wedge, double wedge or rectangular.
10. Sistema para disociar moléculas de un medio líquido por electrólisis según una cualquiera de las reivindicaciones 1 a 9, donde el medio líquido para disociar es agua. 10. System for dissociating molecules from a liquid medium by electrolysis according to any one of claims 1 to 9, wherein the liquid medium to dissociate is water.
11. Sistema para disociar moléculas de un medio líquido por electrólisis según una cualquiera de las reivindicaciones 1 a 9, donde el medio líquido para disociar es metanol. 11. System for dissociating molecules from a liquid medium by electrolysis according to any one of claims 1 to 9, wherein the liquid medium for dissociation is methanol.
PCT/ES2023/070493 2022-08-11 2023-07-31 System for dissociating molecules of a liquid medium by means of electrolysis WO2024033553A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES202230743A ES2961789A1 (en) 2022-08-11 2022-08-11 SYSTEM TO DISSOCIATE MOLECULES FROM A LIQUID MEDIUM BY ELECTROLYSIS (Machine-translation by Google Translate, not legally binding)
ESP202230743 2022-08-11

Publications (1)

Publication Number Publication Date
WO2024033553A1 true WO2024033553A1 (en) 2024-02-15

Family

ID=89851055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2023/070493 WO2024033553A1 (en) 2022-08-11 2023-07-31 System for dissociating molecules of a liquid medium by means of electrolysis

Country Status (2)

Country Link
ES (1) ES2961789A1 (en)
WO (1) WO2024033553A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016068842A1 (en) * 2014-10-27 2016-05-06 Advanced Hydrogen Products, LLC Water electrolysis systems and methods
US20160281243A1 (en) * 2014-07-16 2016-09-29 Rodolfo Antonio M. Gomez A diaphragm type electrolytic cell and a process for the production of hydrogen from unipolar electrolysis of water
US20160289850A1 (en) * 2015-03-30 2016-10-06 De Nora Tech Inc. Diaphragm-electrode assembly for use in alkaline water electrolysers
US20170342577A1 (en) * 2016-05-25 2017-11-30 University Of Southern California Nanoelectrodes for water splitting
EP3575439A1 (en) * 2017-01-26 2019-12-04 Asahi Kasei Kabushiki Kaisha Electrolytic bath, electrolysis device, electrolysis method, and method for producing hydrogen
WO2022106874A1 (en) * 2020-11-23 2022-05-27 Ecole Polytechnique Federale De Lausanne (Epfl) Membrane-less electrolyzer with porous walls for high throughput and pure hydrogen production

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160281243A1 (en) * 2014-07-16 2016-09-29 Rodolfo Antonio M. Gomez A diaphragm type electrolytic cell and a process for the production of hydrogen from unipolar electrolysis of water
WO2016068842A1 (en) * 2014-10-27 2016-05-06 Advanced Hydrogen Products, LLC Water electrolysis systems and methods
US20160289850A1 (en) * 2015-03-30 2016-10-06 De Nora Tech Inc. Diaphragm-electrode assembly for use in alkaline water electrolysers
US20170342577A1 (en) * 2016-05-25 2017-11-30 University Of Southern California Nanoelectrodes for water splitting
EP3575439A1 (en) * 2017-01-26 2019-12-04 Asahi Kasei Kabushiki Kaisha Electrolytic bath, electrolysis device, electrolysis method, and method for producing hydrogen
WO2022106874A1 (en) * 2020-11-23 2022-05-27 Ecole Polytechnique Federale De Lausanne (Epfl) Membrane-less electrolyzer with porous walls for high throughput and pure hydrogen production

Also Published As

Publication number Publication date
ES2961789A1 (en) 2024-03-13

Similar Documents

Publication Publication Date Title
CN105164840B (en) Monocell monitor connector
US5273838A (en) Double interconnection fuel cell array
JP2006190592A5 (en)
BRPI0708345A2 (en) integrated micro fuel cell apparatus
KR20120085717A (en) System for converting energy with an enhanced electric field
WO2024033553A1 (en) System for dissociating molecules of a liquid medium by means of electrolysis
JP2006520998A (en) Planar fuel cell and method of manufacturing the fuel cell
ES2307720T3 (en) MANUFACTURING PROCEDURE FOR LIGHT BIPOLAR PLATES FOR FUEL BATTERIES.
JP2013098543A (en) Solar cell and manufacturing method for solar cell
EP1472754B1 (en) High temperature fuel cell module with size-reduced interconnectors
KR101349340B1 (en) Tube for capturing hydrogen and device for splitting water including thereof
JP2009110739A (en) Fuel battery cell stack and fuel battery
CN111032919B (en) Electrolytic cell and electrode plate for electrolytic cell
KR100725927B1 (en) Plate elements for fuel cell stacks
JP5457951B2 (en) Electrolytic cell
US8142949B2 (en) Method of manufacturing fuel cell based power generator
US11299809B2 (en) Electrolytic electrolysis device
CN113948748A (en) Connecting plate and solid oxide fuel cell/electrolytic cell stack
US20230080341A1 (en) Metal porous body sheet and water electrolysis device
US5366606A (en) Electrolytic gas generator
US8272397B2 (en) Valve for fuel cell based power generator
ES2446465A1 (en) Solid oxide electrolyte membrane supported on doped silicon ribs for uses in micro solid-oxide fuel cells
EP2157648B1 (en) Fuel cell based power generator
JPH07501852A (en) electrolytic cell
US20220140380A1 (en) Cell stack device, module, and module housing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852056

Country of ref document: EP

Kind code of ref document: A1