WO2024032624A1 - 磁控胶囊系统的控制方法和装置 - Google Patents

磁控胶囊系统的控制方法和装置 Download PDF

Info

Publication number
WO2024032624A1
WO2024032624A1 PCT/CN2023/111788 CN2023111788W WO2024032624A1 WO 2024032624 A1 WO2024032624 A1 WO 2024032624A1 CN 2023111788 W CN2023111788 W CN 2023111788W WO 2024032624 A1 WO2024032624 A1 WO 2024032624A1
Authority
WO
WIPO (PCT)
Prior art keywords
capsule endoscope
control
control magnet
capsule
magnet
Prior art date
Application number
PCT/CN2023/111788
Other languages
English (en)
French (fr)
Inventor
黄志威
张行
张皓
Original Assignee
安翰科技(武汉)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安翰科技(武汉)股份有限公司 filed Critical 安翰科技(武汉)股份有限公司
Publication of WO2024032624A1 publication Critical patent/WO2024032624A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/045Control thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/273Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the upper alimentary canal, e.g. oesophagoscopes, gastroscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/273Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the upper alimentary canal, e.g. oesophagoscopes, gastroscopes
    • A61B1/2736Gastroscopes

Definitions

  • the present invention relates to the technical field of medical equipment, and in particular to a control method and device for a magnetically controlled capsule system.
  • In vivo device positioning technology such as wireless capsule endoscopes, invasive medical devices and other in vivo positioning technologies, has received more and more attention.
  • the magnetically controlled capsule system drives the capsule endoscope to move within the digestive tract through magnetic force.
  • Capsule endoscopy sometimes needs to take pictures of the upper area of the digestive tract, and sometimes needs to take pictures of the lower area of the digestive tract. This means that the capsule endoscope needs to frequently switch positions and adjust different shooting directions. The movement trajectory puts forward higher requirements.
  • the object of the present invention is to provide a control method and device for a magnetically controlled capsule system that can efficiently control the movement of a capsule endoscope.
  • one embodiment of the present invention provides a control method for a magnetically controlled capsule system.
  • the magnetically controlled capsule system includes a capsule endoscope and a control magnet.
  • the capsule endoscope is located in a detection area.
  • the detection area has an upper wall and a lower wall, and the control method includes the following steps:
  • the calculation method of the critical height distance is:
  • is the density of the liquid in which the capsule endoscope is located
  • V is the volume of the capsule endoscope
  • g is the gravitational acceleration constant
  • m c is the mass of the capsule endoscope
  • M and m are respectively The magnetic moment of the control magnet and the capsule magnet in the capsule endoscope
  • r is the center distance between the control magnet and the capsule magnet
  • ⁇ 0 is the vacuum magnetic permeability.
  • the method for obtaining the critical height distance includes the steps:
  • the height difference between the capsule endoscope and the control magnet is recorded.
  • the height difference is the critical height distance.
  • the step jump one also includes:
  • the second step jump also includes:
  • the shooting direction of the capsule endoscope needs to be adjusted to rotate in the vertical direction. 180°, the control magnet rotates 180° in the vertical direction, and the N pole and S pole of the control magnet are reversed up and down.
  • an embodiment of the present invention provides a control method for a magnetically controlled capsule system.
  • the capsule endoscope is located on the lower wall, the following jump three can be performed:
  • one embodiment of the present invention provides a control method for a magnetically controlled capsule system.
  • the capsule endoscope is located on the upper wall, the following jump four can be performed:
  • one embodiment of the present invention provides a control device for a magnetically controlled capsule system.
  • the magnetically controlled capsule system includes a capsule endoscope and a control magnet.
  • the capsule endoscope is located in the detection area.
  • the detection area has an upper wall and a lower wall, and the control device includes:
  • Acquisition module used to acquire the coordinates [C x , C y , C z ], critical height distance Z 0 and preset redundancy distance ⁇ of the capsule endoscope, where the critical height distance is the control magnet The maximum distance between the control magnet and the capsule endoscope when the capsule endoscope can be sucked up;
  • a control module configured to perform the following jump one when the capsule endoscope is located on the lower wall:
  • jump 2 Used when the capsule endoscope is located on the upper wall, the following jump 2 can be performed:
  • an electronic device including:
  • the processing module can realize the steps in the above control method of the magnetically controlled capsule system when executing the computer program.
  • an embodiment of the present invention provides a readable storage medium that stores a computer program. It is characterized in that when the computer program is executed by the processing module, it can realize the control of the above-mentioned magnetically controlled capsule system. steps in the method.
  • this control method can efficiently and accurately control the movement of the capsule endoscope in the digestive tract, control the capsule endoscope to cross the obstacle area in the digestive tract, and realize capsule endoscopy.
  • Quantitative position transfer and attitude adjustment of the endoscope, as well as rapid switching of the positions of the capsule endoscope on the upper wall and lower wall, and taking photos of the target area achieving control action effects that are currently difficult to achieve through manual control, and reducing unnecessary work by the examinee.
  • Posture adjustment improves comfort during the examination. It significantly improves the automation level and execution efficiency of control, expands the quantitative control methods and control functions of capsule endoscopes, and is conducive to expanding the application scenarios of magnetically controlled capsule systems.
  • Figure 1 is a flow chart of a control method according to an embodiment of the present invention.
  • Figure 2 is a schematic structural diagram of a capsule endoscope sinking to the bottom according to an embodiment of the present invention
  • Figure 3 is a schematic structural diagram of the capsule endoscope when it is ceiling-mounted according to an embodiment of the present invention
  • Figure 4 is a flow chart for controlling a capsule endoscope to perform a basic jump according to an embodiment of the present invention
  • Figure 5 is a diagram showing the change process of the capsule endoscope when it changes from bottom-sinking to ceiling-suctioning according to an embodiment of the present invention
  • Figure 6 is a diagram showing the change process of the capsule endoscope when it changes from ceiling to bottom sinking according to an embodiment of the present invention
  • Figure 7 is a flow chart for controlling a capsule endoscope to perform mirror jump according to an embodiment of the present invention.
  • Figure 8 is a diagram of the change process of the capsule endoscope from bottom sinking to ceiling suction and flipping over according to one embodiment of the present invention
  • Figure 9 is a diagram of the change process of the capsule endoscope from ceiling to bottom sinking and flipping over according to one embodiment of the present invention.
  • Figure 10 is a flowchart of controlling a capsule endoscope to perform a jump according to an embodiment of the present invention
  • Figure 11 is a diagram showing the change process of the capsule endoscope overcoming obstacles when sinking to the bottom according to an embodiment of the present invention
  • Figure 12 is a process diagram of the capsule endoscope overcoming obstacles when sinking to the bottom according to an embodiment of the present invention
  • Figure 13 is a diagram showing the change process of overcoming obstacles when the capsule endoscope is ceiling-mounted according to an embodiment of the present invention
  • Figure 14 is a process diagram of the capsule endoscope overcoming obstacles when ceiling-mounted according to an embodiment of the present invention.
  • Figure 15 is a module schematic diagram of a magnetically controlled capsule system according to an embodiment of the present invention.
  • 1000 magnetic control capsule system
  • 100 magnetic control system
  • 200 capsule endoscope
  • 10, control device 11, control magnet
  • 20, signal transmission module 30, storage module
  • 40 processing module
  • 50 Capsule magnet
  • 60 Camera module
  • 70 Signal transmission module
  • 80 Communication bus
  • 300 Digestive tract
  • 301 Upper wall
  • One embodiment of the present invention provides a control method and device for a magnetically controlled capsule system that efficiently controls the movement of a capsule endoscope.
  • the magnetically controlled capsule system is a device used in the human body. It can control the capsule endoscope in the digestive tract through an external magnetically controlled device. internal movement.
  • the magnetically controlled capsule system 1000 of this embodiment includes a magnetically controlled system 100 and a capsule endoscope 200 .
  • the magnetic control capsule system 1000 can position the capsule endoscope 200 and control the movement of the capsule endoscope 200 through the magnetic control system 100 .
  • the magnetic control system 100 includes a control magnet 11 for generating a magnetic field, and a control device 10 for controlling the movement of the control magnet 11 .
  • the capsule endoscope 200 is equipped with a sensor module (not shown), a capsule magnet 50 and a camera module 60 inside.
  • the sensor module includes a magnetic sensor for detecting a magnetic field, an acceleration sensor for detecting acceleration, and the like.
  • the magnetic sensor may be a Hall sensor, anisotropic magnetoresistance (AMR) sensor, giant magnetoresistance (GMR) sensor, tunnel magnetoresistance (TMR) sensor, etc.
  • AMR anisotropic magnetoresistance
  • GMR giant magnetoresistance
  • TMR tunnel magnetoresistance
  • the data detected by the sensor module can be used to position the capsule endoscope 200.
  • the magnetic control system 100 can position the capsule endoscope 200. Control of position and attitude.
  • the capsule endoscope 200 is located in a detection area, which has an upper wall 301 and a lower wall 302.
  • the detection area can be a human digestive tract model simulated in a laboratory, or it can be a real In the body cavity of the subject.
  • the detection area is the digestive tract 300 as an example for explanation.
  • the capsule endoscope 200 is used in the digestive tract
  • the stable state of 300 is mainly manifested as the bottom-sinking state (the capsule is against the lower wall of the detection area), or the ceiling-suction state (the capsule is against the upper wall of the detection area).
  • the bottom-sinking state is shown in Figure 2.
  • the ceiling-suction state As shown in Figure 3.
  • the upper wall 301 and lower wall 302 of the detection area that is, the upper wall 301 and lower wall 302 of the digestive tract 300, have a liquid 31 interface relatively close to the upper wall 301.
  • the capsule endoscope 200 is located inside the human body, and the human body lies flat on the bed.
  • a magnetic control system 100 is provided outside the human body. By controlling the magnetic field emitted by the magnet 11 to interact with the capsule magnet 50, the capsule endoscope in the human body is controlled. Movement of the Looking Glass 200.
  • the human body lies above the bed, and the opposite direction is below.
  • the control magnet 11 is located on the human body. above the human body, the control magnet 11 can move in various directions above the human body.
  • the direction of the buoyancy force received by the capsule endoscope 200 is upward, and the direction of gravity is downward.
  • the horizontal plane in this embodiment may be a horizontal plane perpendicular to the up-down direction, and the left-right direction is the left-right direction in the drawings.
  • the capsule endoscope 200 moves from left to right.
  • the capsule endoscope 200 When the capsule endoscope 200 is in the ceiling-suction state, the capsule endoscope 200 is against the upper wall 301. At this time, the control magnet 11 is relatively close to the capsule endoscope 200, and the control magnet 11 emits magnetic force to attract the capsule magnet in the capsule endoscope 200. 50; When the capsule endoscope 200 is in the bottom-sinking state, the capsule endoscope 200 is against the lower wall 302. In addition, when the suction force of the external control magnet 11 is removed, the capsule endoscope 200 is in a bottomed state.
  • the capsule endoscope 200 in both the ceiling-suction state and the bottom-sink state, the capsule endoscope 200 is in a force-balanced state.
  • the capsule endoscope 200 In the bottom-sinking and ceiling-suction state, the capsule endoscope 200 relies on the support force and friction of the digestive tract 300 to achieve an adaptive balance of controlling the magnetic force of the magnet 11, the gravity of the capsule endoscope 200, and the buoyancy of the liquid 31.
  • the capsule endoscope 200 Without the support of the upper wall 301 and the lower wall 302 of the digestive tract 300, since there is very little gas in the stomach, the capsule endoscope 200 is mainly in gastric juice, so it is difficult for the capsule endoscope 200 to maintain balance at any position in the vertical direction. , so when the capsule endoscope 200 moves, the control magnet 11 stops moving Finally, when the capsule endoscope 200 stops, it will remain in the ceiling-suction state or the bottom-sink state.
  • the critical height distance is the distance between the control magnet 11 and the capsule endoscope 200 when the control magnet 11 can suck up the capsule endoscope 200.
  • the maximum distance and critical height distance can be obtained in the following two embodiments.
  • the critical height distance is calculated, and the calculation method is:
  • the attraction force of the control magnet 11 to the capsule endoscope 200 can be expressed as:
  • M, m are the magnetic moments of the control magnet 11 and the capsule magnet 50 respectively, r is the center distance between the control magnet 11 and the capsule magnet 50, and ⁇ 0 is the vacuum magnetic permeability.
  • is the density of the liquid 31 in which the capsule endoscope 200 is placed
  • V is the volume of the capsule endoscope 200
  • g is the gravitational acceleration constant
  • m c is the mass of the capsule endoscope 200 .
  • the critical height distance can be calculated through Equation 3.
  • the critical height distance can also be determined through experimental measurements. Considering that in the actual environment, the control magnet 11 and capsule magnet 50 are affected by magnetization, resulting in changes in magnetic moment size, and the quality and volume of the capsule endoscope 200 are affected by changes in the model, the process is carried out based on the actual control system and type of capsule endoscope 200 Taking multiple experimental measurements and then taking the arithmetic average can significantly reduce the error in measurement results and make the results more reliable.
  • the method for obtaining the critical height distance includes the steps:
  • the height difference between the capsule endoscope 200 and the control magnet 11 is recorded.
  • the height difference is the critical height distance.
  • the capsule endoscope 200 can be obtained The coordinates [C x , C y , C z , Ch h , C v , C s ], and the coordinates [M x , M y , M z , M h , M v ] of the control magnet 11 , the capsule endoscope 200
  • the coordinates of and the coordinates of the control magnet 11 are both in the same world coordinate system.
  • [C x , C y , C z ] represents the position coordinates of the capsule endoscope 200 in the XYZ three-axis direction of the world coordinate system.
  • the orientation angle of the capsule endoscope 200 is the state parameter in the form of spherical coordinates [C h , C v ] description, C v is the vertical tilt angle of the capsule, and Ch h is the horizontal azimuth angle of the capsule.
  • [C h , C v ] represents the orientation angle of the head of the capsule endoscope 200 .
  • the horizontal azimuth angle C h of the capsule is the angle between the projection vector of the head orientation of the capsule endoscope 200 on the XY plane and the positive direction of the Y axis.
  • the capsule vertical tilt angle C v (value range [0, +180] degrees) is the angle between the head direction of the capsule endoscope 200 and the positive direction of the Z axis.
  • the head direction of the capsule endoscope 200 refers to the direction of the end of the capsule endoscope 200 where the lens is provided.
  • [M x , M y , M z ] represents the position coordinates of the control magnet 11 in the XYZ three-axis direction of the world coordinate system
  • [M h , M v ] represents the orientation angle and horizontal orientation of the N pole of the magnetic field direction of the control magnet 11
  • the angle M h is the angle between the projection vector of the magnetization direction vector of the control magnet 11 on the XY plane and the positive direction of the Y axis.
  • the vertical tilt angle M v (value range [0, +180] degrees) is the angle between the magnetization direction vector of the control magnet 11 and Z The angle between the positive directions of the axis.
  • the control magnet 11 gradually approaches the capsule endoscope 200.
  • the capsule endoscope 200 begins to leave the lower wall 302, that is, when the capsule endoscope 200 is just sucked away from the lower wall 302, the center of the control magnet 11 at this time
  • multiple critical height distances of the capsule endoscope 200 in gastric juice and air can be measured and obtained respectively. Repeat the above steps and take the arithmetic mean of multiple measurement results.
  • a parameter table of critical height distances can be established according to the hardware combination type to facilitate direct query and use.
  • Figure 1 is a control method of a magnetically controlled capsule system 1000 according to an embodiment of the present application.
  • Figures 4-14 are specific jumping method steps and jump diagrams. The following is a description of the control method provided by an embodiment of the present application in conjunction with the accompanying drawings. .
  • this application provides method operation steps as shown in the following embodiments or flow charts, there are steps in the method that do not logically have a necessary causal relationship based on routine or no creative effort, and the order of execution of these steps is not the same. It is limited to the execution sequence provided in the embodiment of this application.
  • the specific control method of the magnetically controlled capsule system 1000 includes the following steps:
  • the control instructions are controlled according to the position of the capsule endoscope 200 in the digestive tract 300 and the operation requirements.
  • Control the control instructions can include: basic jump, mirror jump and leap jump. These jumps are respectively suitable for different functional application scenarios of inspection by the capsule endoscope 200.
  • the capsule endoscope 200 is controlled to jump in different modes.
  • Scenario 1 When the capsule endoscope 200 is located on the lower wall 302, the capsule endoscope 200 performs jump one or three.
  • Scenario 2 When the capsule endoscope 200 is located on the upper wall 301, the capsule endoscope 200 performs jump two or four.
  • the first jump refers to the capsule endoscope 200 jumping upward from the lower wall 302 of the detection area.
  • the second jump refers to the capsule endoscope 200 jumping downward from the upper wall 301 of the detection area.
  • the third jump means that the lower wall 302 of the detection area has an obstacle area, and the capsule endoscope 200 crosses the obstacle area from the lower wall 302 of the detection area to reach the target position.
  • the fourth jump means that the upper wall 301 of the detection area has an obstacle area, and the capsule endoscope 200 crosses the obstacle area from the upper wall 301 of the detection area to reach the target position.
  • Basic jumping actions include jumping up and jumping down, controlling the capsule endoscope 200 to rise from the lower wall 302 of the cavity of the digestive tract 300 to reach the upper wall 301, or the upper wall 301 to descend to the lower wall 302, to realize the position migration of the capsule.
  • the endoscope 200 rapidly and quantitatively switches the positions of the upper wall 301 and the lower wall 302 in the vertical direction within the digestive tract 300, and quickly approaches the target position on the wall of the digestive tract 300.
  • the specific application scenarios of this basic jump include that the capsule endoscope 200 needs to be pressed against the upper wall 301 or the lower wall 302 of the digestive tract 300 to take pictures, and the capsule endoscope 200 needs to switch to contact the upper wall 301 or the lower wall 302. Then you can perform subsequent operations such as rolling and dragging on the other wall.
  • the steps of the basic jump operation method are shown in the flow chart of Figure 4.
  • the control instruction is a basic jump
  • the capsule endoscope 200 is located on the lower wall 302 (i.e. Scene 1), perform jump 1
  • the capsule endoscope is located on the upper wall 301 (ie, scene 2), perform jump 2.
  • FIG. 5 For the movement process of the capsule endoscope 200 in scene one, see FIG. 5
  • FIG. 6 For the movement process of the capsule endoscope 200 in scene two, see FIG. 6 .
  • the steps include:
  • the vertical coordinate of the control magnet 11 is M Z1 at the beginning, located at position a in Figure 5.
  • the vertical coordinate is M Z2 , located at position b in Figure 5.
  • the control magnet 11 moves downward.
  • the upper wall 301 of the channel 300 stops, achieving the control action effect of the capsule endoscope 200 basically jumping upward.
  • the vertical coordinate of the control magnet 11 is M Z1 , which is located at position a in Figure 6.
  • the vertical coordinate is M Z2 , which is located at position b in Figure 6.
  • the control magnet 11 moves upward.
  • the lower wall 302 stops, achieving the control action effect of the capsule endoscope 200 basically jumping downward.
  • the orientation angle of the control magnet 11 remains unchanged, and the orientation of the magnetic pole does not change, so the capsule endoscope 200 only performs a jumping action from the lower wall 302 to the upper wall 301 without changing the orientation. .
  • the scope 200 provides maximum suction while preventing unexpected lateral deflection of the capsule endoscope 200 .
  • the mirror jumping action includes jumping up and down, controlling the capsule endoscope 200 to rise from the lower wall 302 of the digestive tract 300 to reach the upper wall 301, or the upper wall 301 to descend to the lower wall 302, and move the capsule endoscope 200 at the same time.
  • the lens of the mirror 200 is rotated at a certain angle to achieve rapid quantitative conversion from photographing the upper wall 301 and lower wall 302 areas of the digestive tract 300 .
  • the capsule endoscope 200 it is preferable to control the capsule endoscope 200 to rotate 180° in the vertical direction. As shown in Figure 8, the capsule endoscope 200 originally shoots upwards on the lower wall 302, but rotates to shoot downwards on the upper wall 301. Or the opposite situation as shown in Figure 9.
  • the magnet 11 is controlled to rotate 180° in the vertical direction, and the N pole and S pole of the magnet 11 are controlled to be reversed up and down.
  • Mirror jump can include various angle adjustments. Based on actual use requirements, it is more likely to rotate 180° up and down. The 180° adjustment is similar to a mirror jump. This jump mode is named mirror jump.
  • the specific application scenario of this mirror jump corresponds to what is described in the background art.
  • the capsule endoscope 200 needs to take pictures of the upper area of the digestive tract 300, and sometimes it needs to take pictures of the lower area of the digestive tract 300. That is to say, the capsule endoscope 200 needs to take pictures of the upper area of the digestive tract 300.
  • the mirror 200 needs to frequently switch positions and adjust different shooting directions.
  • the mirror jump control mode is used to accurately control the movement trajectory of the capsule endoscope 200 .
  • the steps include:
  • the capsule endoscope 200 is in a position where it cannot be sucked up. It is in a safe state and suffers less lateral friction, which facilitates the subsequent return of the capsule endoscope 200 to the lateral center position when it rolls.
  • the capsule endoscope 200 is in a position where it cannot be dropped. It is in a safe state and suffers less lateral friction, which facilitates the subsequent return of the capsule endoscope 200 to the lateral center position when it rolls.
  • the control magnet 11 is rotated vertically, causing the capsule to follow the roll.
  • the camera direction is adjusted to the target direction, and the lateral position is kept approximately unchanged; finally, the control magnet 11 and the capsule endoscope are adjusted
  • the capsule endoscope 200 is less affected by the friction force, and the lateral component of the attraction force of the control magnet 11 has the characteristic of making the capsule endoscope 200 tend to the center directly below the control magnet 11, so
  • the angle at which the magnet 11 is controlled is roughly the same as the angle at which the capsule endoscope 200 rotates. For example, if the magnet 11 is controlled to rotate 180°, the capsule endoscope 200 can also be stably rotated 180°. In addition, when the rotation angle is less than 180°, the rotation angle of the control magnet 11 is the same as the rotation angle of the capsule endoscope 200 but in opposite directions.
  • the jumping action is to control the capsule endoscope 200 to rise from the lower wall 302 of the cavity of the digestive tract 300 to reach the upper wall 301, or to move from the upper wall 301 to the lower wall 302, while simultaneously causing a quantitative shift in the horizontal direction; and then control The capsule endoscope 200 descends from the upper wall 301 of the cavity of the digestive tract 300 to the lower wall 302, or the lower wall 302 rises and reaches the position of the upper wall 301. At the same time, a quantitative shift occurs in the horizontal direction, so that the capsule endoscope 200 can cross Obstacles and steep slope functions.
  • the specific application scenario of this leap corresponds to the obstacle area described in the background art: the inside of the digestive tract has an irregularly shaped cavity structure with undulating deformation, and some anatomical parts (such as the fundus of the stomach, the antrum, and the angle of the stomach) etc.) there are obstacle areas such as deep concave shapes or steep slopes, and the surface of the digestive tract 300 that is not fully inflated or filled with water may show deep wrinkles. Jumping across allows the capsule endoscope 200 to cross these obstacle areas.
  • the capsule endoscope 200 During the span jump, when the capsule endoscope 200 moves from the current position C to the target position T, there is a certain amount of lateral offset in the XY plane.
  • the lateral component of the suction force of the control magnet 11 on the capsule endoscope 200 always has the characteristic of making the capsule endoscope 200 tend to the center directly below the control magnet 11, so that the capsule endoscope 200 Always approach directly below the control magnet 11. Therefore, by making the capsule endoscope 200 fly in the air by jumping in the Z direction, the capsule endoscope 200 loses the obstruction of the frictional force of the wall of the digestive tract 300 and can easily achieve the lateral crossing effect in the digestive tract 300 .
  • the distance that the capsule endoscope 200 can jump each time is limited.
  • the straight-line distance between the current position C and the target position T is large, it needs to go through multiple consecutive jumps to gradually approach the target position T.
  • the Euclidean distance ie, straight line distance
  • C new,x and C new,y are the x-axis coordinate and y-axis coordinate of the C new position coordinate respectively.
  • dist th is the distance threshold, generally a value of 5-10mm can achieve better control effects.
  • jump three is executed correspondingly.
  • the capsule endoscope 200 is located in the lower wall 302 area of the digestive tract 300, and the capsule endoscope 200 jumps upward from position C to position T. From the coordinate [Cx,Cy]) moves to the new coordinates [Tx,Ty].
  • the steps include:
  • the control magnet 11 is controlled to move upward to a new position.
  • the capsule endoscope 200 it is always attracted by the magnetic force of the right control magnet 11 and generates lateral force, so it moves to position c in Figure 11.
  • the capsule endoscope 200 it is always attracted by the magnetic force of the right control magnet 11 and generates a lateral force, so it moves to position d in Figure 11.
  • the capsule endoscope 200 realizes the transition from the current position C to the target position T in the XY plane by jumping in the Z direction.
  • the movement process of the capsule endoscope 200 in the entire process is also shown in Figure 12 from position a to b and then to c.
  • the capsule endoscope 200 it is always attracted by the magnetic force of the right control magnet 11 and generates lateral force, so it moves to position d in Figure 13.
  • the capsule endoscope 200 realizes the transition from the current position C to the target position T in the XY plane by jumping in the Z direction.
  • the movement process of the capsule endoscope 200 during the entire process is also shown in Figure 14 from position a to b and then to c.
  • the corresponding target position T can be set according to the control needs of the inspection process, and is generally determined by a relative offset based on the position C, so that the capsule endoscope 200 can achieve a relative offset. leap across.
  • first distance and the second distance can be set relatively small, the distance across the jump is short, and the jump to the target position is completed in multiple times. And slowing down the moving speed of the control magnet 11 in the Z direction helps to increase the span flight time of the capsule endoscope 200, thereby increasing the span jump distance of the capsule endoscope 200 in the XY direction, which is beneficial to reducing the required continuous span. Number of jumps.
  • control magnet 11 can be set as a permanent magnet.
  • the above-mentioned basic jump, mirror jump and spanning jump are completed under the traction of the permanent magnet.
  • automated quantitative jump control method of the capsule endoscope 200 based on permanent magnet control Realize quantitatively controllable spatial position and attitude conversion of the capsule endoscope 200 in the cavity of the digestive tract 300 .
  • this embodiment has the following beneficial effects:
  • the movement of the capsule endoscope 200 in the digestive tract 300 can be efficiently and accurately controlled, the capsule endoscope 200 can be controlled to cross the obstacle area in the digestive tract 300, and the quantitative position transfer and posture of the capsule endoscope 200 can be realized.
  • Adjust the posture quickly switch the positions of the capsule endoscope 200 on the upper wall 301 and the lower wall 302, and take pictures of the target area, achieving control action effects that are currently difficult to achieve through manual control, and reducing unnecessary posture adjustments of the examinee.
  • Improve the comfort of the inspection process It significantly improves the degree of automation and execution efficiency of control, expands the quantitative control means and control functions of the capsule endoscope 200, and is conducive to expanding the application scenarios of the magnetically controlled capsule system 1000.
  • a control device 10 of a magnetically controlled capsule system 1000 is provided.
  • the magnetic control device 10 may include modules and the specific functions of each module are as follows:
  • An acquisition module used to acquire the coordinates [C x , Cy , C z ], the critical height distance Z 0 and the preset redundancy distance ⁇ of the capsule endoscope 200 , where the critical height distance is the control When the magnet 11 can suck up the capsule endoscope 200, the maximum distance between the control magnet 11 and the capsule endoscope 200;
  • a control module configured to perform the following jump one when the capsule endoscope 200 is located on the lower wall 302:
  • control module can also be used to perform the following jump three when the capsule endoscope is located on the lower wall:
  • control module can also be used to perform the following jump four when the capsule endoscope is located on the upper wall:
  • the control magnet is controlled to move downward to a new position.
  • the magnetically controlled capsule system 1000 of this embodiment may include a magnetically controlled system 100 and a capsule endoscope 200.
  • the capsule endoscope 200 also has It includes a signal transmission module 70 that is communicatively connected to the camera module 60.
  • the signal transmission module 70 transmits information to an external processing module 40 or a server.
  • the camera module 60 takes photos of the digestive tract 300 and transmits them to the outside world through the signal transmission module 70 to complete the internal photography.
  • the magnetic control system 100 also includes a signal transmission module 20, a communication bus 80, a storage module 30 and a processing module 40.
  • the signal transmission module 70 and the signal transmission module 20 can be connected wirelessly. Transmit data, such as Bluetooth, wifi, zigbee, etc.
  • the communication bus 80 is used to establish a connection between the control device 10, the signal transmission module 20, the processing module 40 and the storage module 30.
  • the communication bus 80 may include a channel. transmit information to and from the storage module 30.
  • the magnetically controlled capsule system 1000 may also include computing devices such as computers, notebooks, handheld computers, and cloud servers, as well as including but not limited to a processing module 40, a storage module 30, and software stored in the storage module 30 and capable of running on the processing module 40.
  • Computer program such as the above-mentioned control method program.
  • the processing module 40 executes the computer program, it implements the steps in each of the above control method embodiments, such as the steps shown in FIG. 1 .
  • the present invention also proposes an electronic device, which includes a storage module 30 and a processing module 40.
  • the processing module 40 executes the computer program, it can implement the steps in the above-mentioned control method of the magnetically controlled capsule system 1000, that is to say , to implement the steps in any one of the technical solutions in the control method of the magnetically controlled capsule system 1000 described above.
  • the electronic device may be part of the control device 10 integrated in the magnetically controlled capsule system 1000, or may be a local terminal device, or may be part of a cloud server.
  • the processing module 40 can be a central processing unit (Central Processing Unit, CPU), or other general-purpose processor, digital signal processor (Digital Signal Processor, DSP), application specific integrated circuit (Application Specific Integrated Circuit, ASIC), off-the-shelf Programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor can be a microprocessor or any conventional processor.
  • the processing module 40 is the control center of the control device 10 of the magnetic capsule system 1000, and uses various interfaces and lines to connect various parts of the control device 10 of the entire magnetic capsule system 1000.
  • the storage module 30 can be used to store the computer programs and/or modules.
  • the processing module 40 implements magnetic control by running or executing the computer programs and/or modules stored in the storage module 30 and calling the data stored in the storage module 30.
  • the capsule system 1000 controls various functions of the device 10 .
  • the storage module 30 may mainly include a program storage area and a data storage area, where the program storage area may store an operating system, at least one application program required for a function, and the like.
  • the storage module 30 may include high-speed random access memory, and may also include non-volatile memory, such as hard disk, memory, plug-in hard disk, smart memory card (Smart Media Card, SMC), secure digital (Secure Digital, SD). ) card, Flash Card, at least one disk storage device, flash memory device, or other volatile solid-state storage device.
  • the computer program can be divided into one or more modules/units, and the one or more modules
  • the blocks/units are stored in the storage module 30 and executed by the processing module 40 to complete the invention.
  • the one or more modules/units may be a series of computer program instruction segments capable of completing specific functions.
  • the instruction segments are used to describe the execution process of the computer program in the control device 10 of the magnetically controlled capsule system 1000.
  • an embodiment of the present invention provides a readable storage medium that stores a computer program.
  • the steps in the control method of the magnetically controlled capsule system 1000 can be implemented, that is, Say, implement the steps in any one of the technical solutions in the above control method of the magnetically controlled capsule system 1000.
  • modules integrated with the control method of the magnetically controlled capsule system 1000 are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the present invention can implement all or part of the processes in the methods of the above embodiments, and can also be completed by instructing relevant hardware through a computer program.
  • the computer program can be stored in a computer-readable storage medium, and the computer program can be stored in a computer-readable storage medium.
  • the computer program includes computer program code, which may be in the form of source code, object code, executable file or some intermediate form.
  • the computer-readable medium may include: any entity or device capable of carrying the computer program code, a recording medium, a disk, a mobile hard disk, a magnetic disk, an optical disk, a computer memory, and a read-only memory (ROM, Read-Only Memory) , Random Access Memory (RAM, Random Access Memory), electrical carrier signals, telecommunications signals, and software distribution media, etc.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • electrical carrier signals telecommunications signals
  • software distribution media etc.
  • the content contained in the computer-readable medium can be appropriately added or deleted according to the requirements of legislation and patent practice in the jurisdiction.
  • the computer-readable medium Excludes electrical carrier signals and telecommunications signals.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Signal Processing (AREA)
  • Endoscopes (AREA)

Abstract

一种磁控胶囊系统的控制方法和装置,控制方法包括:当胶囊内窥镜位于下壁,将控制磁体移动至胶囊内窥镜的正上方,当胶囊内窥镜位于上壁时,将控制磁体移动至胶囊内窥镜的正上方,然后控制控制磁体竖直方向运动至指定位置。控制方法可以高效且精确地控制胶囊内窥镜在消化道内的运动,实现胶囊内窥镜的定量位置转移及姿态调整拍照。

Description

磁控胶囊系统的控制方法和装置
本申请要求了申请日为2022年08月08日,申请号为202210942736.5,发明名称为“磁控胶囊系统的控制方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及医疗设备技术领域,尤其涉及一种磁控胶囊系统的控制方法和装置。
背景技术
体内设备定位技术,如无线胶囊内窥镜、侵入式医疗器械等体内定位技术,受到越来越多的关注,磁控胶囊系统通过磁力驱动胶囊内窥镜在消化道内运动。
在实现本发明过程中,发明人发现现有技术中至少存在如下问题:
(1)由于消化道内部具有形状不规则的、存在起伏形变的空腔结构,部分解剖学部位(例如胃底、胃窦、胃角等区域)存在较深的凹形或陡坡等障碍区域。另外,未被充分充气或注水而撑开的消化道表面可能呈现较深褶皱形态。上述部位形成胶囊内窥镜在消化道运动时的障碍区域,胶囊内窥镜在上述位置及临近区域难以被精准控制。
(2)胶囊内窥镜有时需要对消化道的上方区域拍照,有时需要对消化道的下方区域拍照,也就是说胶囊内窥镜需要时常切换位置,调整不同的拍摄方向,对胶囊内窥镜的运动轨迹提出了更高的要求。
(3)驱动胶囊内窥镜在这些区域运动和拍照时,或者需要借助被检查者多次变换体位姿态,例如平躺、侧躺等位置的变换,实现胶囊内窥镜的位姿的变化,但这一方面给被检查者带来一定程度的不适,另一方面可能出现扫描遗漏或者重复拍摄的问题,影响了检查质量和效率。或者需要通过经验丰富的医师完成,医师通过内置镜头拍摄消化道内壁的检查图像,确定胶囊内窥镜的位置和姿态朝向,再凭借经验通过外部控制磁体驱动胶囊内窥镜继续运动到下一位置,无法精准定量控制胶囊内窥镜运动、拍照、以及跨越上述的障碍区域。
发明内容
为解决上述的现有技术问题中的至少其一,本发明的目的在于提供一种高效地控制胶囊内窥镜运动的磁控胶囊系统的控制方法和装置。
为实现上述发明目的,本发明一实施方式提供一种磁控胶囊系统的控制方法,所述磁控胶囊系统包括胶囊内窥镜和控制磁体,所述胶囊内窥镜位于检测区域,所述检测区域具有上壁和下壁,所述控制方法包括如下步骤:
获取所述胶囊内窥镜的坐标[Cx,Cy,Cz]、临界高度距离Z0和预设冗余距离δ,其中,所述临界高度距离是所述控制磁体能吸起所述胶囊内窥镜时,所述控制磁体与所述胶囊内窥镜之间的最大距离;
当所述胶囊内窥镜位于所述下壁时,可执行如下跳跃一:
将所述控制磁体移动至所述胶囊内窥镜的正上方;
控制所述控制磁体的竖直方向坐标为MZ=Z0-δ+Cz,直至所述胶囊内窥镜运动至所述上壁;
或者,
当所述胶囊内窥镜位于所述上壁时,可执行如下跳跃二:
将所述控制磁体移动至所述胶囊内窥镜的正上方;
控制所述控制磁体的竖直方向坐标为MZ=Z0+δ+Cz,直至所述胶囊内窥镜运动至所述下壁。
作为本发明的进一步改进,所述临界高度距离的计算方法为:
其中,ρ为所述胶囊内窥镜所处液体的密度,V为所述胶囊内窥镜的体积,g为重力加速度常量,mc为所述胶囊内窥镜的质量,M,m分别为所述控制磁体、所述胶囊内窥镜内的胶囊磁体的磁矩,r为所述控制磁体与所述胶囊磁体的中心距离,μ0为真空磁导率。
作为本发明的进一步改进,所述临界高度距离的获取方法包括步骤:
将所述控制磁体移动至所述胶囊内窥镜的正上方,且所述控制磁体相对远离所述胶囊内窥镜以使所述胶囊内窥镜不被吸起;
将所述控制磁体转至竖直状态;
将所述控制磁体竖直向所述胶囊内窥镜方向运动;
当所述胶囊内窥镜开始离开所述下壁时,记录此时所述胶囊内窥镜与所述控制磁体的高度差,所述高度差为所述临界高度距离。
作为本发明的进一步改进,所述步骤跳跃一还包括:
将所述控制磁体移动至所述胶囊内窥镜的正上方;
控制所述控制磁体的竖直方向坐标为MZ=Z0+δ+Cz
旋转所述控制磁体,以使所述胶囊内窥镜的拍摄方向调整至目标方向;
控制所述控制磁体的竖直方向坐标为MZ=Z0-δ+Cz,直至所述胶囊内窥镜运动至所述上壁。
作为本发明的进一步改进,所述步骤跳跃二还包括:
将所述控制磁体移动至所述胶囊内窥镜的正上方;
控制所述控制磁体的竖直方向坐标为MZ=Z0-δ+Cz
旋转所述控制磁体,以使所述胶囊内窥镜的拍摄方向调整至目标方向;
控制所述控制磁体的竖直方向坐标为MZ=Z0+δ+Cz,直至所述胶囊内窥镜运动至所述下壁。
作为本发明的进一步改进,需要调整所述胶囊内窥镜的拍摄方向为竖直方向旋转 180°,所述控制磁体在竖直方向旋转180°,所述控制磁体的N极和S极上下对调。
为实现上述发明目的之一,本发明一实施例提供了一种磁控胶囊系统的控制方法,当所述胶囊内窥镜位于所述下壁时,可执行如下跳跃三:
将所述控制磁体移动至第一位置,所述第一位置与所述胶囊内窥镜在水平面的投影上存在第一距离,且所述第一位置的竖直方向坐标MZ=Z0+δ+Cz
控制所述控制磁体向下运动至新的位置,所述新的位置的竖直方向坐标为MZ=Z0-δ+Cz,直至所述胶囊内窥镜运动至所述上壁且停止运动;
控制所述控制磁体向上运动至新的位置,所述新的位置的竖直方向坐标为MZ=Z0+δ+Cz,使得所述胶囊内窥镜被掉落,到达所述下壁停止。
为实现上述发明目的之一,本发明一实施例提供了一种磁控胶囊系统的控制方法,当所述胶囊内窥镜位于所述上壁时,可执行如下跳跃四:
将所述控制磁体移动至第二位置,所述第二位置与所述胶囊内窥镜在水平面的投影上存在第二距离,且所述第二位置的竖直方向坐标MZ=Z0-δ+Cz
控制所述控制磁体向上运动至新的位置,所述新的位置的竖直方向坐标为MZ=Z0+δ+Cz,直至所述胶囊内窥镜运动至所述下壁且停止运动;
控制所述控制磁体向下运动至新的位置,所述新的位置的竖直方向坐标为MZ=Z0-δ+Cz,使得所述胶囊内窥镜被吸起,到达所述上壁停止。
为实现上述发明目的之一,本发明一实施例提供了一种磁控胶囊系统的控制装置,所述磁控胶囊系统包括胶囊内窥镜和控制磁体,所述胶囊内窥镜位于检测区域,所述检测区域具有上壁和下壁,所述控制装置包括:
获取模块,用于获取所述胶囊内窥镜的坐标[Cx,Cy,Cz]、临界高度距离Z0和预设冗余距离δ,其中,所述临界高度距离是所述控制磁体能吸起所述胶囊内窥镜时,所述控制磁体与所述胶囊内窥镜之间的最大距离;
控制模块,用于当所述胶囊内窥镜位于所述下壁时,可执行如下跳跃一:
将所述控制磁体移动至所述胶囊内窥镜的正上方;
控制所述控制磁体的竖直方向坐标为MZ=Z0-δ+Cz,直至所述胶囊内窥镜运动至所述上壁;
或者,
用于当所述胶囊内窥镜位于所述上壁时,可执行如下跳跃二:
将所述控制磁体移动至所述胶囊内窥镜的正上方;
控制所述控制磁体的竖直方向坐标为MZ=Z0+δ+Cz,直至所述胶囊内窥镜运动至所述下壁。
为实现上述发明目的之一,本发明一实施例提供了一种电子设备,包括:
存储模块,存储计算机程序;
处理模块,执行所述计算机程序时可实现上述的磁控胶囊系统的控制方法中的步骤。
为实现上述发明目的之一,本发明一实施例提供了一种可读存储介质,其存储有计算机程序,其特征在于,该计算机程序被处理模块执行时可实现上述的磁控胶囊系统的控制方法中的步骤。
与现有技术相比,本发明具有以下有益效果:通过该控制方法可以高效且精确地控制胶囊内窥镜在消化道内的运动,控制胶囊内窥镜越过消化道内的障碍区域,实现胶囊内窥镜的定量位置转移及姿态调整,以及快速地切换胶囊内窥镜在上壁和下壁的位置,对目标区域拍照,实现目前难以通过人工控制达到的控制动作效果,减少被检查者不必要的体位调整,提升检查过程的舒适度。显著提升控制的自动化程度和执行效率,扩展了胶囊内窥镜的定量控制手段和控制功能,有利于拓展磁控胶囊系统的应用场景。
附图说明
图1是本发明一实施例的控制方法的流程图;
图2是本发明一实施例的胶囊内窥镜沉底时的结构示意图;
图3是本发明一实施例的胶囊内窥镜吸顶时的结构示意图;
图4是本发明一实施例的控制胶囊内窥镜做基础跳跃的流程图;
图5是本发明一实施例的胶囊内窥镜从沉底转为吸顶时的变化过程图;
图6是本发明一实施例的胶囊内窥镜从吸顶转为沉底时的变化过程图;
图7是本发明一实施例的控制胶囊内窥镜做镜像跳跃的流程图;
图8是本发明一实施例的胶囊内窥镜从沉底转为吸顶并翻转的变化过程图;
图9是本发明一实施例的胶囊内窥镜从吸顶转为沉底并翻转的变化过程图;
图10是本发明一实施例的控制胶囊内窥镜做跨越跳跃的流程图;
图11是本发明一实施例的胶囊内窥镜沉底时跨越障碍的变化过程图;
图12是本发明一实施例的胶囊内窥镜沉底时跨越障碍的过程图;
图13是本发明一实施例的胶囊内窥镜吸顶时跨越障碍的变化过程图;
图14是本发明一实施例的胶囊内窥镜吸顶时跨越障碍的过程图;
图15是本发明一实施例的磁控胶囊系统的模块示意图;
其中,1000、磁控胶囊系统;100、磁控系统;200、胶囊内窥镜;10、控制装置;11、控制磁体;20、信号传输模块;30、存储模块;40、处理模块;50、胶囊磁体;60、摄像模块;70、信号输送模块;80、通信总线;300、消化道;301、上壁;302、下壁;31、液体。
具体实施方式
以下将结合附图所示的具体实施方式对本发明进行详细描述。但这些实施方式并不限制本发明,本领域的普通技术人员根据这些实施方式所做出的结构、方法、或功能上的变换均包含在本发明的保护范围内。
本发明一实施例提供一种高效地控制胶囊内窥镜运动的磁控胶囊系统的控制方法和装置。磁控胶囊系统是应用于人体的设备,可以通过外部磁控装置控制胶囊内窥镜在消化道 内运动。
磁控胶囊系统
如图15所示,本实施例的磁控胶囊系统1000,包括磁控系统100和胶囊内窥镜200。磁控胶囊系统1000可以对胶囊内窥镜200进行定位、以及通过磁控系统100控制胶囊内窥镜200运动。磁控系统100包括用于产生磁场的控制磁体11、用于控制控制磁体11运动的控制装置10。胶囊内窥镜200内部装有传感器模块(未图示)、胶囊磁体50和摄像模块60,传感器模块包括用于检测磁场的磁传感器(magnetic sensor),和用于检测加速度的加速度传感器等和。所述磁传感器可以为:霍尔传感器、各向异性磁阻(AMR)传感器、巨磁阻(GMR)传感器、隧道磁阻(TMR)传感器等。通过传感器模块检测的数据可以对胶囊内窥镜200定位,通过控制磁体11对胶囊磁体50产生作用力,结合对胶囊内窥镜200的定位数据,实现磁控系统100对胶囊内窥镜200的位置和姿态的控制。
如图2和图3所示,胶囊内窥镜200位于检测区域,所述检测区域具有上壁301和下壁302,检测区域可以是在实验室中模拟的人体消化道模型,也可以真实地在被检查者的体内腔体。本实施例中,以检测区域是消化道300为例进行说明。
更具体地,以消化道300的胃部为例,消化道300内的气体相对液体31较少,仅在胃窦和胃底部分有少量气体,所以一般地,胶囊内窥镜200在消化道300的稳定状态,主要表现为沉底状态(胶囊抵着检测区域的下壁),或者是吸顶状态(胶囊抵着检测区域的上壁),沉底状态如图2所示,吸顶状态如图3所示。所述检测区域的上壁301和下壁302,即所述消化道300的上壁301和下壁302,液体31界面相对靠近上壁301。在检查时,胶囊内窥镜200位于人体内部,人体平躺于床面上,人体外部设有磁控系统100,通过控制磁体11发出的磁场与胶囊磁体50相互作用,控制人体内的胶囊内窥镜200的运动。
这里,为清楚地表达本实施例中所描述的位置与方向,在本实施例中,定义人体躺在床面的上方,反方向为下方,以图2和3为例,控制磁体11位于人体的上方,控制磁体11可以在人体上方的各个方向运动。另外胶囊内窥镜200受到的浮力的方向向上,重力的方向向下。本实施例的水平面,可以是垂直于上下方向的水平面,左右方向则为附图中的左右方向,在图11-14中,胶囊内窥镜200从左向右运动。
胶囊内窥镜200处于吸顶状态时,胶囊内窥镜200抵着上壁301,此时控制磁体11相对靠近胶囊内窥镜200,控制磁体11发出磁力吸引胶囊内窥镜200中的胶囊磁体50;胶囊内窥镜200处于沉底状态时,胶囊内窥镜200抵着下壁302。另外,在撤去外部控制磁体11的吸力时,胶囊内窥镜200处于沉底状态。
另外在吸顶状态和沉底状态,胶囊内窥镜200都处于受力平衡状态。沉底、吸顶状态下,胶囊内窥镜200依赖消化道300的支持力、摩擦力,实现控制磁体11的磁力、胶囊内窥镜200的重力以及液体31浮力的自适应平衡。若离开消化道300的上壁301和下壁302的支撑,由于胃部内气体很少,胶囊内窥镜200主要在胃液中,所以胶囊内窥镜200很难在竖直方向任意位置保持平衡,所以当胶囊内窥镜200运动时,在控制磁体11停止运动 后,胶囊内窥镜200停止时会保持在吸顶状态或沉底状态。
临界高度距离
在运行磁控胶囊系统1000的控制方法之前,可以先获取临界高度距离,所述临界高度距离是控制磁体11能吸起胶囊内窥镜200时,控制磁体11与胶囊内窥镜200之间的最大距离,临界高度距离可以通过如下两个实施例中的方式获取。
在其一实施例中,临界高度距离通过计算得出,计算方法为:
控制磁体11对胶囊内窥镜200的吸力可以表示为:
其中,M,m分别为控制磁体11、胶囊磁体50的磁矩,r为所述控制磁体11与所述胶囊磁体50的中心距离,μ0为真空磁导率。
控制磁体11对胶囊内窥镜200的吸力与胶囊内窥镜200的重力和所受浮力在临界高度距离Z0处平衡时,受力平衡公式为:
Fm(Z0)+ρVg=mcg,(公式2)
其中ρ为胶囊内窥镜200所处液体31的密度,V为胶囊内窥镜200的体积,g为重力加速度常量,mc为胶囊内窥镜200的质量。
结合上述公式1和公式2,得到临界高度距离Z0的计算公式3:
通过公式3可以计算出临界高度距离。
在另一实施例中,临界高度距离也可以通过实验测量确定。考虑到实际环境中,控制磁体11、胶囊磁体50受充磁影响导致磁矩大小变化,胶囊内窥镜200质量及体积受型号的变化影响,根据实际的控制系统和胶囊内窥镜200类型进行多次实验测量,然后取算数平均值,可以显著减小测量结果误差,结果更为可靠。
具体地,所述临界高度距离的获取方法包括步骤:
将所述控制磁体11移动至所述胶囊内窥镜200的正上方,且所述控制磁体11相对远离所述胶囊内窥镜200以使所述胶囊内窥镜200不被吸起;
将所述控制磁体11转至竖直状态;
将所述控制磁体11竖直向所述胶囊内窥镜200方向运动;
当所述胶囊内窥镜200开始离开所述下壁302时,记录此时所述胶囊内窥镜200与所述控制磁体11的高度差,所述高度差为所述临界高度距离。
由于磁控胶囊系统1000可以对胶囊内窥镜200定位,所以可以获取到胶囊内窥镜200 的坐标[Cx,Cy,Cz,Ch,Cv,Cs],以及控制磁体11的坐标[Mx,My,Mz,Mh,Mv],胶囊内窥镜200的坐标和控制磁体11的坐标都在同一世界坐标系中。
[Cx,Cy,Cz]表示胶囊内窥镜200在世界坐标系的XYZ三轴方向上的位置坐标,胶囊内窥镜200朝向姿态角通过球坐标形式的状态参数[Ch,Cv]描述,Cv为胶囊垂直倾斜角,Ch为胶囊水平方位角。[Ch,Cv]表示胶囊内窥镜200头部的朝向角度,胶囊水平方位角Ch为胶囊内窥镜200头部朝向在XY平面投影矢量与Y轴正向的夹角,并按照顺时针方向增加;胶囊垂直倾斜角Cv(取值范围[0,+180]度)为胶囊内窥镜200头部朝向与Z轴正向的夹角。其中,胶囊内窥镜200的头部朝向是指胶囊内窥镜200设有镜头一端的端部朝向。
[Mx,My,Mz]表示控制磁体11在世界坐标系的XYZ三轴方向上的位置坐标,[Mh,Mv]表示控制磁体11的磁场方向N极的朝向角度,水平方位角Mh为控制磁体11磁化方向矢量在XY平面投影矢量与Y轴正向的夹角,垂直倾斜角Mv(取值范围[0,+180]度)为控制磁体11磁化方向矢量与Z轴正向的夹角。
当控制磁体11位于胶囊内窥镜200的正上方时,此时Mx=Cx,My=Cy,控制磁体11与胶囊内窥镜200在垂直于所述世界坐标系的XY平面的同一条直线上。
当控制磁体11转至竖直状态时,垂直倾斜角Mv=0,此时胶囊内窥镜200也受控地调整至竖直状态,也就是胶囊垂直倾斜角Cv=0。
控制磁体11逐渐靠近胶囊内窥镜200,当所述胶囊内窥镜200开始离开所述下壁302时,即胶囊内窥镜200恰好被吸离下壁302时,此时的控制磁体11中心与胶囊内窥镜200的高度差Dz≡Mz-Cz=Z0为临界高度距离。
按照上述步骤,可以分别测量获得胶囊内窥镜200位于胃液中、空气中的多个临界高度距离。重复上述步骤,取多次测量结果的算术平均值。
对于不同的磁控系统100、不同的胶囊内窥镜200型号,可以按照硬件组合类型,建立临界高度距离的参数表格,便于直接查询使用。
磁控胶囊系统1000的控制方法
图1为本申请一个实施方式的一种磁控胶囊系统1000的控制方法,图4-14为具体跳跃的方法步骤和跳跃图示,下面结合附图,说明本申请一实施例提供的控制方法。虽然本申请提供了如下述实施方式或流程图所示的方法操作步骤,但是基于常规或者无需创造性的劳动,所述方法在逻辑性上不存在必要因果关系的步骤中,这些步骤的执行顺序不限于本申请实施方式中所提供的执行顺序。
具体的磁控胶囊系统1000的控制方法,包括如下步骤:
获取所述胶囊内窥镜200的坐标[Cx,Cy,Cz]、临界高度距离Z0和预设冗余距离δ,其中,预设冗余距离δ取值约3cm,用于消除定位误差、消化道300蠕动引起的噪声干扰,确保控制动作执行的高成功率,使得胶囊内窥镜200实现预期的状态迁移。
获取控制指令。
控制指令根据胶囊内窥镜200在消化道300中的所处位置、以及操作的需求进行控 制,控制指令可包括:基本跳跃、镜像跳跃和跨越跳跃。这些跳跃分别适用于胶囊内窥镜200检查的不同功能应用场景,根据不同的控制指令,控制胶囊内窥镜200进行不同模式的跳跃。
另外,基本跳跃、镜像跳跃和跨越跳跃三种跳跃中,都包含两种场景:
场景一:在胶囊内窥镜200位于下壁302时,胶囊内窥镜200执行跳跃一或三。
场景二:在胶囊内窥镜200位于上壁301时,胶囊内窥镜200执行跳跃二或四。
需要说明的是,所述跳跃一,是指胶囊内窥镜200从检测区域的下壁302向上跳跃。所述跳跃二,是指胶囊内窥镜200从检测区域的上壁301向下跳跃。所述跳跃三,是指检测区域的下壁302具有障碍区域,胶囊内窥200从检测区域的下壁302跨越障碍区域到达目标位置。所述跳跃四,是指检测区域的上壁301具有障碍区域,胶囊内窥镜200从检测区域的上壁301跨越障碍区域到达目标位置。
下面对三种跳跃模式,以及每个跳跃模式中的场景一和场景二做具体说明:
基本跳跃
基本跳跃动作包括向上跳跃和向下跳跃,控制胶囊内窥镜200由消化道300腔体下壁302升起到达上壁301、或者上壁301降落到达下壁302的位置迁移,用于实现胶囊内窥镜200在消化道300内竖直方向的上壁301、下壁302位置的快速定量转换,以及快速趋近消化道300壁的目标位置。
该基本跳跃的具体的应用场景,包括胶囊内窥镜200需要抵住消化道300的上壁301或者下壁302拍摄、胶囊内窥镜200需要切换与上壁301或下壁302的抵接,然后才可以进行后续的在另一壁上的翻滚、拖拽等操作。
基本跳跃的运行方法步骤如图4的流程图所示,当控制指令为基础跳跃,判断胶囊内窥镜200位于下壁302还是上壁301,当胶囊内窥镜200位于下壁302时(即场景一),执行跳跃一,当胶囊内窥镜位于上壁301时(即场景二),执行跳跃二。对于场景一的胶囊内窥镜200的运动过程,参图5所示,对于场景二的胶囊内窥镜200的运动过程,参图6所示。
在场景一中,对应执行跳跃一,步骤包括:
将所述控制磁体11移动至所述胶囊内窥镜200的正上方;
控制所述控制磁体11的竖直方向坐标为MZ=Z0-δ+Cz,直至所述胶囊内窥镜200运动至所述上壁301;
刚开始控制磁体11的竖直方向坐标为MZ1,位于图5中的a位置,运动到目标位置时的竖直方向坐标为MZ2,位于图5中的b位置,控制磁体11向下运动,运动的距离为dz=(Z0-δ)-(Mz1-Cz),然后到达MZ2=Z0-δ+Cz,使得胶囊内窥镜200被吸起向上运动,到达消化道300的上壁301停止,达到胶囊内窥镜200做向上基本跳跃的控制动作效果。
在场景二中,对应执行跳跃二,步骤包括:
将所述控制磁体11移动至所述胶囊内窥镜200的正上方;
控制所述控制磁体11的竖直方向坐标为MZ=Z0+δ+Cz,直至所述胶囊内窥镜200运动至所述下壁302。
刚开始控制磁体11的竖直方向坐标为MZ1,位于图6中的a位置,运动到目标位置时的竖直方向坐标为MZ2,位于图6中的b位置,控制磁体11向上运动,运动的距离为dz=(Z0+δ)-(Mz1-Cz),然后到达MZ2=Z0+δ+Cz,使得胶囊内窥镜200降落向下运动,到达消化道300的下壁302停止,达到胶囊内窥镜200做向下基本跳跃的控制动作效果。
在场景一和场景二中,控制磁体11的朝向角度保持不变,且磁极的朝向不发生改变,所以胶囊内窥镜200仅做从下壁302到上壁301的跳跃动作,朝向不发生变化。
为了达到较好的操控效果和操控成功率,场景一和场景二中均可以使控制磁体11转动到磁场方向(N极)接近竖直方向,即Mv=0或180),以便对胶囊内窥镜200提供最大的吸引力,同时避免胶囊内窥镜200发生非预期的横向偏移。
镜像跳跃
镜像跳跃动作包括向上跳跃和向下跳跃,控制胶囊内窥镜200由消化道300的下壁302升起到达上壁301、或者上壁301降落到达下壁302的位置迁移,同时将胶囊内窥镜200镜头朝向旋转一定角度,实现由拍摄消化道300上壁301、下壁302区域的快速定量转换。
本实施例中,优选地是控制胶囊内窥镜200在竖直方向旋转180°,如图8所示,原本胶囊内窥镜200在下壁302向上拍摄,旋转为在上壁301向下拍摄,或者图9所示的相反情况。另外控制磁体11在竖直方向旋转180°,控制磁体11的N极和S极上下对调。
镜像跳跃可以包括各种角度的调整,结合实际使用需求更多的是旋转180°的上下对调,该180°的调整的方式的类似于镜像地跳跃,将该跳跃模式命名为镜像跳跃。
该镜像跳跃的具体的应用场景,对应背景技术中所述的,胶囊内窥镜200有时需要对消化道300的上方区域拍照,有时需要对消化道300的下方区域拍照,也就是说胶囊内窥镜200需要时常切换位置,调整不同的拍摄方向,运用该镜像跳跃控制模式对胶囊内窥镜200的运动轨迹进行精准地控制。
镜像跳跃的运行方法步骤如图7的流程图所示,当控制指令为镜像跳跃,判断胶囊内窥镜200位于下壁302还是上壁301,当胶囊内窥镜200位于下壁302时(即场景一),执行跳跃一,当胶囊内窥镜位于上壁301时(即场景二),执行跳跃二。对于场景一的胶囊内窥镜200的运动过程,参图8所示,对于场景二的胶囊内窥镜200的运动过程,参图9所示。
在场景一中,对应执行跳跃一,步骤包括:
将所述控制磁体11移动至所述胶囊内窥镜200的正上方;
控制所述控制磁体11的竖直方向坐标为MZ=Z0+δ+Cz
旋转所述控制磁体11,以使所述胶囊内窥镜200的拍摄方向调整至目标方向;优选地,竖直旋转所述控制磁体180°;
控制所述控制磁体11向下运动至新的位置,所述新的位置的竖直方向坐标为MZ=Z0-δ+Cz,直至胶囊内窥镜200运动至上壁301。
如图8中的a位置所示,在控制磁体11移动至所述胶囊内窥镜200的正上方后,随后调整控制磁体11与胶囊内窥镜200的距离大于临界高度距离,使得Mz-Cz=Z0+δ,即控制磁体11的竖直方向坐标为MZ=Z0+δ+Cz,如图8中的b位置所示,胶囊内窥镜200处于无法被吸起的安全状态,并且所受横向摩擦力较小,便于后续胶囊内窥镜200翻滚时回到横向中心位置。在理想情况下,Mz-Cz=Z0后到达临界高度距离,叠加预设冗余距离δ后,即可保障新的控制磁体11与胶囊内窥镜200的距离大于临界高度距离,胶囊内窥镜200维持在下壁302。
然后如图8中的c和d位置所示,将控制磁体11垂直旋转,使得胶囊内窥镜200跟随翻滚,摄像方向调整至目标方向,并且保持横向位置近似不变;最后调整控制磁体11与胶囊内窥镜200距离小于临界高度距离,使得Mz-Cz=Z0-δ,如图8中的e位置所示,胶囊内窥镜200被吸起到达上壁301。胶囊内窥镜200在图8中的a位置时,即初始位置,其摄像方向向上,拍摄消化道300的上壁301区域;胶囊内窥镜200运动至图8中的e位置时,相较于a位置,胶囊内窥镜200竖直旋转180°,其摄像方向朝下,拍摄对侧消化道300下壁302区域。同上文所述,减去预设冗余距离δ后,即可保障新的控制磁体11与胶囊内窥镜200的距离小于临界高度距离,不会掉落。达到胶囊内窥镜200做向上镜像跳跃的控制动作效果。
在场景二中,对应执行跳跃二,步骤包括:
将所述控制磁体11移动至所述胶囊内窥镜200的正上方;
控制所述控制磁体11的竖直方向坐标为MZ=Z0-δ+Cz
旋转所述控制磁体11,以使所述胶囊内窥镜200的拍摄方向调整至目标方向;优选地,竖直旋转所述控制磁体180°;
控制所述控制磁体11向下运动至新的位置,所述新的位置的竖直方向坐标为MZ=Z0+δ+Cz,直至胶囊内窥镜200运动至下壁302。
如图9中的a位置所示,在控制磁体11移动至所述胶囊内窥镜200的正上方后,随后调整控制磁体11与胶囊内窥镜200的距离小于临界高度距离,使得Mz-Cz=Z0-δ,即控制磁体11的竖直方向坐标为MZ=Z0-δ+Cz,如图9中的b位置所示,胶囊内窥镜200处于无法被掉落的安全状态,并且所受横向摩擦力较小,便于后续胶囊内窥镜200翻滚时回到横向中心位置。在理想情况下,Mz-Cz=Z0后到达临界高度距离,减去预设冗余距离δ后,即可保障新的控制磁体11与胶囊内窥镜200的距离小于临界高度距离,不会掉落。
然后如图9中的c和d位置所示,将控制磁体11垂直旋转,使得胶囊跟随翻滚,摄像方向调整至目标方向,并且保持横向位置近似不变;最后调整控制磁体11与胶囊内窥镜200距离大于临界高度距离,使得Mz-Cz=Z0+δ,如图9中的e位置所示,胶囊内窥镜200掉落到达下壁302。胶囊内窥镜200在图9中的a位置时,即初始位置,其摄像方向向 下,拍摄消化道300的下壁302区域;胶囊内窥镜200运动至图9中的e位置时,相较于a位置,胶囊内窥镜200竖直旋转180°,其摄像方向朝上,拍摄对侧消化道300上壁301区域。同上文所述,叠加预设冗余距离δ后,即可保障新的控制磁体11与胶囊内窥镜200的距离大于临界高度距离,胶囊内窥镜200掉落到下壁302。达到胶囊内窥镜200做向上镜像跳跃的控制动作效果。
另外,在临界高度距离附近,胶囊内窥镜200所受摩擦力的影响较小,控制磁体11的吸引力的横向分力具有使胶囊内窥镜200趋向控制磁体11正下方中心的特点,所以控制磁体11旋转的角度,与胶囊内窥镜200旋转的角度大致相同,例如控制磁体11旋转180°,能够带动胶囊内窥镜200也稳定地旋转180°。另外当旋转角度不足180°时,控制磁体11旋转角度与胶囊内窥镜200的旋转角度大小相同,方向相反。
跨越跳跃
跨越跳跃动作是控制胶囊内窥镜200由消化道300腔体下壁302升起到达上壁301、或者上壁301降落到达下壁302的位置迁移,同时在水平方向发生定量偏移;然后控制胶囊内窥镜200由消化道300腔体上壁301降落到达下壁302,或者下壁302升起到达上壁301的位置迁移,同时在水平方向发生定量偏移,实现胶囊内窥镜200跨越障碍、陡坡的功能。
该跨越跳跃的具体的应用场景,对应背景技术中所述的障碍区域:消化道内部具有形状不规则的、存在起伏形变的空腔结构,部分解剖学部位(例如胃底、胃窦、胃角等区域)存在较深的凹形或陡坡等障碍区域,以及未被充分充气或注水而撑开的消化道300表面可能呈现较深褶皱形态。跨越跳跃可以使胶囊内窥镜200越过这些障碍区域。
在跨越跳跃中,以胶囊内窥镜200从当前位置C运动至目标位置T,在XY平面存在一定幅度的横向偏移量。胶囊内窥镜200跳起腾空时,控制磁体11对胶囊内窥镜200的吸力的横向分力,始终具有使胶囊内窥镜200趋向控制磁体11正下方中心的特点,使得胶囊内窥镜200总是往控制磁体11正下方靠近。因此,通过Z方向跳跃使胶囊内窥镜200腾空飞行,胶囊内窥镜200失去消化道300壁摩擦力的阻碍,可以很容易地实现在消化道300内的横向跨越效果。
另外由于消化道300腔体的高度有限,胶囊内窥镜200每次跨越跳跃的距离有限。当当前位置C与目标位置T的直线距离较大时,需要经过多次连续的跨越跳跃,逐步趋近目标位置T。通过计算更新后的胶囊内窥镜200落点位置Cnew和目标位置T在XY平面的欧氏距离(即直线距离),判别胶囊内窥镜200是否到达目标位置T附近。欧式距离的计算方法为:
其中,Cnew,x和Cnew,y分别为Cnew位置坐标的x轴坐标和y轴坐标。distth为距离阈值,一般取值5-10mm可达到较好的控制效果。
跨越跳跃的运行方法步骤如图10的流程图所示,当控制指令为跨越跳跃,判断胶囊内窥镜200位于下壁302还是上壁301,当胶囊内窥镜200位于下壁302时(即场景一),执行跳跃三,当胶囊内窥镜位于上壁301时(即场景二),执行跳跃四。对于场景一的胶囊内窥镜200的运动过程,参图11和12所示,对于场景二的胶囊内窥镜200的运动过程,参图13和14所示。
在场景一中,对应执行跳跃三,如图11所示,胶囊内窥镜200位于消化道300的下壁302区域,实现胶囊内窥镜200由位置C的向上跨越跳跃到位置T,从坐标[Cx,Cy])运动至新的坐标[Tx,Ty],步骤包括:
将所述控制磁体11移动至所述胶囊内窥镜200的正上方;
控制所述控制磁体11的竖直方向坐标为MZ=Z0+δ+Cz
控制所述控制磁体11在水平面移动第一距离,控制磁体11新的位置为第一位置,也就是说,第一位置与胶囊内窥镜200在水平面的投影上存在第一距离;
控制所述控制磁体11向下运动至新的位置,所述新的位置的竖直方向坐标为MZ=Z0-δ+Cz,直至所述胶囊内窥镜200运动至所述上壁301且停止运动;
控制所述控制磁体11向上运动至新的位置,所述新的位置的竖直方向坐标为MZ=Z0+δ+Cz,使得胶囊内窥镜200被掉落,到达下壁302停止。
如图11中的a位置所示,在之前的控制中,控制磁体11已经运动至胶囊内窥镜200的正上方,或者为了确定当前位置C和目标位置T的位置,先将控制磁体11运动至胶囊内窥镜200的正上方。然后将控制磁体11运动到达胶囊内窥镜200目标位置T的正上方,控制所述控制磁体11的竖直方向坐标为MZ=Z0+δ+Cz,以及控制所述控制磁体11在水平面移动第一距离,以保障在控制磁体11运动到图11中的b位置时,胶囊内窥镜200不受影响。然后控制磁体11由当前高度Mz在Z方向向下相对移动dz=(Z0-δ)-(Mz-Cz)趋近胶囊内窥镜200,到达末态高度MZ=Z0-δ+Cz,使得胶囊内窥镜200被吸起,到达消化道300的上壁301停止。在胶囊内窥镜200向上运动的过程中,由于始终受到右方控制磁体11的磁力的吸引,产生横向力,所以运动到如图11中的c位置。最后控制磁体11由当前高度在Z方向向上相对移动dz=(Z0+δ)-(Mz-Cz),远离胶囊内窥镜200到达末态高度MZ=Z0+δ+Cz,使得胶囊内窥镜200被掉落,到达下壁302停止。在胶囊内窥镜200向下运动的过程中,由于始终受到右方控制磁体11的磁力的吸引,产生横向力,所以运动到如图11中的d位置。
通过上述步骤,胶囊内窥镜200借助在Z方向的跳跃,实现在XY平面内由当前位置C到目标位置T的跨越迁移。整个过程胶囊内窥镜200的运动过程也如图12中的从a到b再到c位置所示。
在场景二中,对应执行跳跃四,步骤包括:
将所述控制磁体11移动至所述胶囊内窥镜200的正上方;
控制所述控制磁体11的竖直方向坐标为MZ=Z0-δ+Cz
控制所述控制磁体11在水平面移动第二距离,控制磁体11新的位置为第二位置,也就是说,第二位置与胶囊内窥镜200在水平面的投影上存在第二距离;
控制所述控制磁体11向上运动至新的位置,所述新的位置的竖直方向坐标为MZ=Z0+δ+Cz,直至所述胶囊内窥镜200运动至所述下壁302且停止运动;
控制所述控制磁体11向下运动至新的位置,所述新的位置的竖直方向坐标为MZ=Z0-δ+Cz,使得胶囊内窥镜200被吸起,到达上壁302停止。
如图13中的a位置所示,在之前的控制中,控制磁体11已经运动至胶囊内窥镜200的正上方,或者为了确定当前位置C和目标位置T的位置,先将控制磁体11运动至胶囊内窥镜200的正上方。然后将控制磁体11运动到达胶囊内窥镜200目标位置T的正上方,控制所述控制磁体11的竖直方向坐标为MZ=Z0-δ+Cz,以及控制所述控制磁体11在水平面移动第二距离,以保障在控制磁体11运动到图13中的b位置时,胶囊内窥镜200不受影响,始终被吸在上壁301上。然后控制磁体11由当前高度Mz在Z方向向上相对移动dz=(Z0+δ)-(Mz-Cz)远离胶囊内窥镜200,到达末态高度MZ=Z0+δ+Cz,使得胶囊内窥镜200向下掉落,到达消化道300的下壁302停止,由于在掉落的过程中,由于始终受到右方控制磁体11的磁力的吸引,产生横向力,所以运动到如图13中的c位置。最后控制磁体11由当前高度在Z方向向下相对移动dz=(Z0-δ)-(Mz-Cz),靠近胶囊内窥镜200到达末态高度MZ=Z0-δ+Cz,使得胶囊内窥镜200被吸引,到达上壁301停止。在胶囊内窥镜200向上运动的过程中,由于始终受到右方控制磁体11的磁力的吸引,产生横向力,所以运动到如图13中的d位置。
通过上述步骤,胶囊内窥镜200借助在Z方向的跳跃,实现在XY平面内由当前位置C到目标位置T的跨越迁移。整个过程胶囊内窥镜200的运动过程也如图14中的从a到b再到c位置所示。
上述的第一距离和第二距离,对应的目标位置T可以根据检查过程的控制需要设定,一般通过位置C基础上的一个相对偏移量确定,使得胶囊内窥镜200实现相对偏移量的跨越跳跃。
另外,第一距离和第二距离可以设置得相对较小,跨越跳跃的距离较短,到目标位置的跳跃分多次完成。以及减慢控制磁体11在Z方向的移动速度,有助于增加胶囊内窥镜200跨越飞行时间,从而增大胶囊内窥镜200在XY方向的跨越跳跃距离,有利于降低所需的连续跨越跳跃次数。
以及,控制磁体11可以设置为永磁体,上述的基本跳跃、镜像跳跃和跨越跳跃在永磁体的牵引下完成,通过上述基于永磁控制的胶囊内窥镜200自动化的定量跳跃控制方法,即可实现胶囊内窥镜200在消化道300腔体内的可定量控制的空间位置和姿态转换。
与现有技术相比,本实施例具有以下有益效果:
通过该控制方法可以高效且精确地控制胶囊内窥镜200在消化道300内的运动,控制胶囊内窥镜200越过消化道300内的障碍区域,实现胶囊内窥镜200的定量位置转移及姿 态调整,以及快速地切换胶囊内窥镜200在上壁301和下壁302的位置,对目标区域拍照,实现目前难以通过人工控制达到的控制动作效果,减少被检查者不必要的体位调整,提升检查过程的舒适度。显著提升控制的自动化程度和执行效率,扩展了胶囊内窥镜200的定量控制手段和控制功能,有利于拓展磁控胶囊系统1000的应用场景。
在一个实施例中,提供了一种磁控胶囊系统1000的控制装置10,该磁控制装置10可以包括的模块、以及各模块具体功能如下:
获取模块,用于获取所述胶囊内窥镜200的坐标[Cx,Cy,Cz]、临界高度距离Z0和预设冗余距离δ,其中,所述临界高度距离是所述控制磁体11能吸起所述胶囊内窥镜200时,所述控制磁体11与所述胶囊内窥镜200之间的最大距离;
控制模块,用于当所述胶囊内窥镜200位于所述下壁302时,可执行如下跳跃一:
将所述控制磁体11移动至所述胶囊内窥镜200的正上方;
控制所述控制磁体11的竖直方向坐标为MZ=Z0-δ+Cz,直至所述胶囊内窥镜200运动至所述上壁301;
或者,
用于当所述胶囊内窥镜200位于所述上壁301时,可执行如下跳跃二:
将所述控制磁体11移动至所述胶囊内窥镜200的正上方;
控制所述控制磁体11的竖直方向坐标为MZ=Z0+δ+Cz,直至所述胶囊内窥镜200运动至所述下壁302。
另外,控制模块,还可以用于当所述胶囊内窥镜位于所述下壁时,可执行如下跳跃三:
将所述控制磁体移动至第一位置,所述第一位置与所述胶囊内窥镜在水平面上存在第一距离,且所述第一位置的竖直方向坐标MZ=Z0+δ+Cz
控制所述控制磁体向下运动至新的位置,所述新的位置的竖直方向坐标为MZ=Z0-δ+Cz,直至所述胶囊内窥镜运动至所述上壁且停止运动;
控制所述控制磁体向上运动至新的位置,所述新的位置的竖直方向坐标为MZ=Z0+δ+Cz,使得胶囊内窥镜200被掉落,到达下壁302停止。
以及,控制模块还可以用于当所述胶囊内窥镜位于所述上壁时,可执行如下跳跃四:
将所述控制磁体移动至第二位置,所述第二位置与所述胶囊内窥镜在水平面上存在第二距离,且所述第二位置的竖直方向坐标MZ=Z0-δ+Cz
控制所述控制磁体向上运动至新的位置,所述新的位置的竖直方向坐标为MZ=Z0+δ+Cz,直至所述胶囊内窥镜运动至所述下壁且停止运动;
控制所述控制磁体向下运动至新的位置,所述新的位置的竖直方向坐标为MZ=Z0-δ+Cz,使得胶囊内窥镜200被吸起,到达上壁302停止。
需要说明的是,本发明实施例的控制装置10中未披露的细节,请参照本发明实施例的控制方法中所披露的细节。
本实施例的磁控胶囊系统1000如图15所示,可以包括磁控系统100和胶囊内窥镜200,胶囊内窥镜200内除了具有上述的摄像模块60、胶囊磁体50、传感器模块,还包括与摄像模块60通信连接的信号输送模块70,信号输送模块70将信息传输至外界的处理模块40或服务器中。外界驱动胶囊内窥镜200运动到指定位置后,摄像模块60拍摄消化道300内的照片通过信号输送模块70传输至外界,完成对体内的拍摄。
磁控系统100除了包括上述的控制磁体11、控制装置10,还包括信号传输模块20、通信总线80、存储模块30和处理模块40,信号输送模块70和信号传输模块20可以通过无线连接的形式传输数据,如蓝牙、wifi、zigbee等。通信总线80用于将控制装置10、信号传输模块20、处理模块40与存储模块30之间建立连接,通信总线80可包括一通路,在上述的控制装置10、信号传输模块20、处理模块40与存储模块30之间传送信息。
磁控胶囊系统1000还可以包括计算机、笔记本、掌上电脑及云端服务器等计算设备,以及包括但不限于处理模块40、存储模块30、以及存储在存储模块30中并可在处理模块40上运行的计算机程序,例如上述的控制方法程序。所述处理模块40执行所述计算机程序时实现上述各个控制方法实施例中的步骤,例如图1所示的步骤。
另外,本发明还提出了一种电子设备,其包括存储模块30和处理模块40,处理模块40执行所述计算机程序时可实现上述的磁控胶囊系统1000的控制方法中的步骤,也就是说,实现上述磁控胶囊系统1000的控制方法中的任意一个技术方案中的步骤。
该电子设备可以是集成于磁控胶囊系统1000的控制装置10内的一部分、或者是本地的终端设备、还可以是云端服务器的一部分。
处理模块40可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器,也可以是任何常规的处理器。处理模块40是磁控胶囊系统1000的控制装置10的控制中心,利用各种接口和线路连接整个磁控胶囊系统1000的控制装置10的各个部分。
存储模块30可用于存储所述计算机程序和/或模块,处理模块40通过运行或执行存储在存储模块30内的计算机程序和/或模块,以及调用存储在存储模块30内的数据,实现磁控胶囊系统1000的控制装置10的各种功能。存储模块30可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序等。此外,存储模块30可以包括高速随机存取存储器,还可以包括非易失性存储器,例如硬盘、内存、插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)、至少—个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
示例性的,所述计算机程序可以被分割成一个或多个模块/单元,所述一个或者多个模 块/单元被存储在存储模块30中,并由处理模块40执行,以完成本发明。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序在磁控胶囊系统1000的控制装置10中的执行过程。
进一步地,本发明一实施例提供了一种可读存储介质,其存储有计算机程序,该计算机程序被处理模块40执行时可实现上述的磁控胶囊系统1000的控制方法中的步骤,也就是说,实现上述磁控胶囊系统1000的控制方法中的任意一个技术方案中的步骤。
所述磁控胶囊系统1000的控制方法集成的模块如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理模块40执行时,可实现上述各个方法实施例的步骤。
其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、∪盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。
应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (13)

  1. 一种磁控胶囊系统的控制方法,所述磁控胶囊系统包括胶囊内窥镜和控制磁体,所述胶囊内窥镜位于检测区域,所述检测区域具有上壁和下壁,其特征在于,所述控制方法包括如下步骤:
    获取所述胶囊内窥镜的坐标[Cx,Cy,Cz]、临界高度距离Z0和预设冗余距离δ,其中,所述临界高度距离是所述控制磁体能吸起所述胶囊内窥镜时,所述控制磁体与所述胶囊内窥镜之间的最大距离;
    当所述胶囊内窥镜位于所述下壁时,可执行如下跳跃一:
    将所述控制磁体移动至所述胶囊内窥镜的正上方;
    控制所述控制磁体的竖直方向坐标为MZ=Z0-δ+Cz,直至所述胶囊内窥镜运动至所述上壁;
    或者,
    当所述胶囊内窥镜位于所述上壁时,可执行如下跳跃二:
    将所述控制磁体移动至所述胶囊内窥镜的正上方;
    控制所述控制磁体的竖直方向坐标为MZ=Z0+δ+Cz,直至所述胶囊内窥镜运动至所述下壁。
  2. 根据权利要求1所述的控制方法,其特征在于,所述临界高度距离的计算方法为:
    其中,ρ为所述胶囊内窥镜所处液体的密度,V为所述胶囊内窥镜的体积,g为重力加速度常量,mc为所述胶囊内窥镜的质量,M,m分别为所述控制磁体、所述胶囊内窥镜内的胶囊磁体的磁矩,r为所述控制磁体与所述胶囊磁体的中心距离,μ0为真空磁导率。
  3. 根据权利要求1所述的控制方法,其特征在于,所述临界高度距离的获取方法包括步骤:
    将所述控制磁体移动至所述胶囊内窥镜的正上方,且所述控制磁体相对远离所述胶囊内窥镜以使所述胶囊内窥镜不被吸起;
    将所述控制磁体转至竖直状态;
    将所述控制磁体竖直向所述胶囊内窥镜方向运动;
    当所述胶囊内窥镜开始离开所述下壁时,记录此时所述胶囊内窥镜与所述控制磁体的高度差,所述高度差为所述临界高度距离。
  4. 根据权利要求1所述的控制方法,其特征在于,所述步骤跳跃一还包括:
    将所述控制磁体移动至所述胶囊内窥镜的正上方;
    控制所述控制磁体的竖直方向坐标为MZ=Z0+δ+Cz
    旋转所述控制磁体,以使所述胶囊内窥镜的拍摄方向调整至目标方向;
    控制所述控制磁体的竖直方向坐标为MZ=Z0-δ+Cz,直至所述胶囊内窥镜运动至所述上壁。
  5. 根据权利要求1所述的控制方法,其特征在于,所述步骤跳跃二还包括:
    将所述控制磁体移动至所述胶囊内窥镜的正上方;
    控制所述控制磁体的竖直方向坐标为MZ=Z0-δ+Cz
    旋转所述控制磁体,以使所述胶囊内窥镜的拍摄方向调整至目标方向;
    控制所述控制磁体的竖直方向坐标为MZ=Z0+δ+Cz,直至所述胶囊内窥镜运动至所述下壁。
  6. 根据权利要求4所述的控制方法,其特征在于,需要调整所述胶囊内窥镜的拍摄方向为竖直方向旋转180°,所述控制磁体在竖直方向旋转180°,所述控制磁体的N极和S极上下对调。
  7. 一种磁控胶囊系统的控制方法,所述磁控胶囊系统包括胶囊内窥镜和控制磁体,所述胶囊内窥镜位于检测区域,所述检测区域具有上壁和下壁,其特征在于,所述控制方法包括如下步骤:
    获取所述胶囊内窥镜的坐标[Cx,Cy,Cz]、临界高度距离Z0和预设冗余距离δ,其中,所述临界高度距离是所述控制磁体能吸起所述胶囊内窥镜时,所述控制磁体与所述胶囊内窥镜之间的最大距离;
    当所述胶囊内窥镜位于所述下壁时,可执行如下跳跃三:
    将所述控制磁体移动至第一位置,所述第一位置与所述胶囊内窥镜在水平面的投影上存在第一距离,且所述第一位置的竖直方向坐标MZ=Z0+δ+Cz
    控制所述控制磁体向下运动至新的位置,所述新的位置的竖直方向坐标为MZ=Z0-δ+Cz,直至所述胶囊内窥镜运动至所述上壁且停止运动;
    控制所述控制磁体向上运动至新的位置,所述新的位置的竖直方向坐标为MZ=Z0+δ+Cz,使得所述胶囊内窥镜被掉落,到达所述下壁停止。
  8. 一种磁控胶囊系统的控制方法,所述磁控胶囊系统包括胶囊内窥镜和控制磁体,所述胶囊内窥镜位于检测区域,所述检测区域具有上壁和下壁,其特征在于,所述控制方法包括如下步骤:
    获取所述胶囊内窥镜的坐标[Cx,Cy,Cz]、临界高度距离Z0和预设冗余距离δ,其中,所述临界高度距离是所述控制磁体能吸起所述胶囊内窥镜时,所述控制磁体与所述胶囊内窥镜之间的最大距离;
    当所述胶囊内窥镜位于所述上壁时,可执行如下跳跃四:
    将所述控制磁体移动至第二位置,所述第二位置与所述胶囊内窥镜在水平面的投影上存在第二距离,且所述第二位置的竖直方向坐标MZ=Z0-δ+Cz
    控制所述控制磁体向上运动至新的位置,所述新的位置的竖直方向坐标为MZ=Z0+δ+Cz,直至所述胶囊内窥镜运动至所述下壁且停止运动;
    控制所述控制磁体向下运动至新的位置,所述新的位置的竖直方向坐标为MZ=Z0-δ+Cz,使得所述胶囊内窥镜被吸起,到达所述上壁停止。
  9. 一种磁控胶囊系统的控制装置,所述磁控胶囊系统包括胶囊内窥镜和控制磁体,所述胶囊内窥镜位于检测区域,所述检测区域具有上壁和下壁,其特征在于,所述控制装置包括:
    获取模块,用于获取所述胶囊内窥镜的坐标[Cx,Cy,Cz]、临界高度距离Z0和预设冗余距离δ,其中,所述临界高度距离是所述控制磁体能吸起所述胶囊内窥镜时,所述控制磁体与所述胶囊内窥镜之间的最大距离;
    控制模块,用于当所述胶囊内窥镜位于所述下壁时,可执行如下跳跃一:
    将所述控制磁体移动至所述胶囊内窥镜的正上方;
    控制所述控制磁体的竖直方向坐标为MZ=Z0-δ+Cz,直至所述胶囊内窥镜运动至所述上壁;
    或者,
    用于当所述胶囊内窥镜位于所述上壁时,可执行如下跳跃二:
    将所述控制磁体移动至所述胶囊内窥镜的正上方;
    控制所述控制磁体的竖直方向坐标为MZ=Z0+δ+Cz,直至所述胶囊内窥镜运动至所述下壁。
  10. 一种磁控胶囊系统的控制装置,所述磁控胶囊系统包括胶囊内窥镜和控制磁体,所述胶囊内窥镜位于检测区域,所述检测区域具有上壁和下壁,其特征在于,所述控制装置包括:
    获取模块,用于获取所述胶囊内窥镜的坐标[Cx,Cy,Cz]、临界高度距离Z0和预设冗余距离δ,其中,所述临界高度距离是所述控制磁体能吸起所述胶囊内窥镜时,所述控制磁体与所述胶囊内窥镜之间的最大距离;
    控制模块,用于当所述胶囊内窥镜位于所述下壁时,可执行如下跳跃三:
    将所述控制磁体移动至第一位置,所述第一位置与所述胶囊内窥镜在水平面的投影上存在第一距离,且所述第一位置的竖直方向坐标MZ=Z0+δ+Cz
    控制所述控制磁体向下运动至新的位置,所述新的位置的竖直方向坐标为MZ=Z0-δ+Cz,直至所述胶囊内窥镜运动至所述上壁且停止运动;
    控制所述控制磁体向上运动至新的位置,所述新的位置的竖直方向坐标为MZ=Z0+δ+Cz,使得所述胶囊内窥镜被掉落,到达所述下壁停止。
  11. 一种磁控胶囊系统的控制装置,所述磁控胶囊系统包括胶囊内窥镜和控制磁体,所述胶囊内窥镜位于检测区域,所述检测区域具有上壁和下壁,其特征在于,所述控制装置包括:
    获取模块,用于获取所述胶囊内窥镜的坐标[Cx,Cy,Cz]、临界高度距离Z0和预设冗余距离δ,其中,所述临界高度距离是所述控制磁体能吸起所述胶囊内窥镜时,所述控制磁体 与所述胶囊内窥镜之间的最大距离;
    控制模块,用于当所述胶囊内窥镜位于所述上壁时,可执行如下跳跃四:
    将所述控制磁体移动至第二位置,所述第二位置与所述胶囊内窥镜在水平面的投影上存在第二距离,且所述第二位置的竖直方向坐标MZ=Z0-δ+Cz
    控制所述控制磁体向上运动至新的位置,所述新的位置的竖直方向坐标为MZ=Z0+δ+Cz,直至所述胶囊内窥镜运动至所述下壁且停止运动;
    控制所述控制磁体向下运动至新的位置,所述新的位置的竖直方向坐标为MZ=Z0-δ+Cz,使得所述胶囊内窥镜被吸起,到达所述上壁停止。
  12. 一种电子设备,其特征在于,包括:
    存储模块,存储计算机程序;
    处理模块,执行所述计算机程序时可实现权利要求1所述的磁控胶囊系统的控制方法中的步骤。
  13. 一种可读存储介质,其存储有计算机程序,其特征在于,该计算机程序被处理模块执行时可实现权利要求1所述的磁控胶囊系统的控制方法中的步骤。
PCT/CN2023/111788 2022-08-08 2023-08-08 磁控胶囊系统的控制方法和装置 WO2024032624A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210942736.5 2022-08-08
CN202210942736.5A CN117562486A (zh) 2022-08-08 2022-08-08 磁控胶囊系统的控制方法和装置

Publications (1)

Publication Number Publication Date
WO2024032624A1 true WO2024032624A1 (zh) 2024-02-15

Family

ID=89850927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/111788 WO2024032624A1 (zh) 2022-08-08 2023-08-08 磁控胶囊系统的控制方法和装置

Country Status (2)

Country Link
CN (1) CN117562486A (zh)
WO (1) WO2024032624A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011076498A1 (de) * 2009-12-23 2011-06-30 Siemens Aktiengesellschaft Spulensystem und verfahren zur berührungslosen magnetischen navigation eines magnetischen körpers in einem arbeitsraum
CN102573601A (zh) * 2009-11-19 2012-07-11 奥林巴斯医疗株式会社 胶囊型医疗装置用引导系统
CN103222842A (zh) * 2013-04-18 2013-07-31 安翰光电技术(武汉)有限公司 一种控制胶囊内窥镜在人体消化道运动的装置及方法
CN105411505A (zh) * 2014-09-15 2016-03-23 上海安翰医疗技术有限公司 一种控制胶囊内窥镜在人体消化道运动的装置及方法
CN105559738A (zh) * 2015-12-22 2016-05-11 苏州向东智造医疗科技有限公司 一种基于磁场空间分布变化的胶囊内镜运动控制方法
CN109044250A (zh) * 2018-08-28 2018-12-21 深圳市资福医疗技术有限公司 一种胶囊内窥镜运动控制方法、装置及终端设备
CN110575118A (zh) * 2019-09-11 2019-12-17 安翰科技(武汉)股份有限公司 胶囊内窥镜控制方法、系统,电子设备及可读存储介质
CN111184497A (zh) * 2020-04-08 2020-05-22 上海安翰医疗技术有限公司 胶囊内窥镜控制方法及系统
CN111956170A (zh) * 2020-07-31 2020-11-20 上海安翰医疗技术有限公司 胶囊内窥镜的运动控制系统及运动控制方法
CN113729594A (zh) * 2019-06-17 2021-12-03 深圳硅基智控科技有限公司 基于磁体对胶囊内窥镜进行定位的定位方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102573601A (zh) * 2009-11-19 2012-07-11 奥林巴斯医疗株式会社 胶囊型医疗装置用引导系统
WO2011076498A1 (de) * 2009-12-23 2011-06-30 Siemens Aktiengesellschaft Spulensystem und verfahren zur berührungslosen magnetischen navigation eines magnetischen körpers in einem arbeitsraum
CN103222842A (zh) * 2013-04-18 2013-07-31 安翰光电技术(武汉)有限公司 一种控制胶囊内窥镜在人体消化道运动的装置及方法
CN105411505A (zh) * 2014-09-15 2016-03-23 上海安翰医疗技术有限公司 一种控制胶囊内窥镜在人体消化道运动的装置及方法
CN105559738A (zh) * 2015-12-22 2016-05-11 苏州向东智造医疗科技有限公司 一种基于磁场空间分布变化的胶囊内镜运动控制方法
CN109044250A (zh) * 2018-08-28 2018-12-21 深圳市资福医疗技术有限公司 一种胶囊内窥镜运动控制方法、装置及终端设备
CN113729594A (zh) * 2019-06-17 2021-12-03 深圳硅基智控科技有限公司 基于磁体对胶囊内窥镜进行定位的定位方法
CN110575118A (zh) * 2019-09-11 2019-12-17 安翰科技(武汉)股份有限公司 胶囊内窥镜控制方法、系统,电子设备及可读存储介质
CN111184497A (zh) * 2020-04-08 2020-05-22 上海安翰医疗技术有限公司 胶囊内窥镜控制方法及系统
CN111956170A (zh) * 2020-07-31 2020-11-20 上海安翰医疗技术有限公司 胶囊内窥镜的运动控制系统及运动控制方法

Also Published As

Publication number Publication date
CN117562486A (zh) 2024-02-20

Similar Documents

Publication Publication Date Title
US9155450B2 (en) Guiding apparatus and capsule medical device guiding system
EP3420428B1 (en) Systems and methods for visual target tracking
JP5548318B2 (ja) カプセル型医療装置及び医療システム
de Croon et al. The appearance variation cue for obstacle avoidance
US10543414B2 (en) Image processing device and image processing system
CN103370001B (zh) 基于体内捕捉的图像流自动导航胶囊的系统和方法
US11967026B1 (en) Virtual reality detection and projection system for use with a head mounted display
WO2020252940A1 (zh) 胶囊内窥镜的磁控装置以及控制胶囊内窥镜在组织腔体内移动的方法
JPWO2016111160A1 (ja) 誘導装置及びカプセル型医療装置誘導システム
US10925469B2 (en) Guidance apparatus and capsule medical apparatus guidance system
US11826015B2 (en) System and method for controlling capsule endoscope
CN106061361B (zh) 引导装置以及胶囊型医疗装置引导系统
CN106691366A (zh) 一种可控胶囊内镜的控制方法
WO2024032624A1 (zh) 磁控胶囊系统的控制方法和装置
CN110811497A (zh) 一种胶囊内窥镜的控制方法及应用其的胶囊内窥镜
US20170156574A1 (en) Guidance device, capsule medical device guidance system, and method for guiding capsule medical device
CN107105981B (zh) 胶囊型医疗装置引导系统
Zhang et al. Towards Automatic Stomach Screening Using a Wireless Magnetically Actuated Capsule Endoscope
CN116803330A (zh) 磁控胶囊系统及其定量闭环控制方法
JP7173657B2 (ja) 制御装置、撮像装置、制御方法、及びプログラム
CN117378987A (zh) 胶囊内窥镜第一视角定量控制方法、系统及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851845

Country of ref document: EP

Kind code of ref document: A1