WO2024032399A1 - 数据调度方法及装置 - Google Patents

数据调度方法及装置 Download PDF

Info

Publication number
WO2024032399A1
WO2024032399A1 PCT/CN2023/110064 CN2023110064W WO2024032399A1 WO 2024032399 A1 WO2024032399 A1 WO 2024032399A1 CN 2023110064 W CN2023110064 W CN 2023110064W WO 2024032399 A1 WO2024032399 A1 WO 2024032399A1
Authority
WO
WIPO (PCT)
Prior art keywords
time slots
information
corresponding relationship
repeated transmissions
repeated
Prior art date
Application number
PCT/CN2023/110064
Other languages
English (en)
French (fr)
Inventor
赵斐然
陈莹
周悦
孔垂丽
杨若男
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024032399A1 publication Critical patent/WO2024032399A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of wireless communication technology, and in particular, to a data scheduling method and device.
  • Satellites, high-altitude platforms (HAPS) and other communication equipment participate in the non-terrestrial communication network (NTN) of network deployment technology and the fifth generation (5th generation, 5G) communication system is integrated to learn from each other and jointly Forming an integrated integrated communication network of sea, land, air and space with seamless global coverage to meet the diverse business needs of users everywhere, it is an important direction for future communication development.
  • NTN non-terrestrial communication network
  • 5th generation, 5G fifth generation
  • the round trip time (RTT) is far longer than that of the terrestrial cellular system, so there is a situation where the cell edge user link budget is poor.
  • the poor link budget becomes more obvious in the edge cells (or beams) of the satellite coverage area on the ground.
  • the mobile phone terminal is directly connected to the satellite, due to the small transmit power of the mobile phone terminal and the small number of antennas, there is a bottleneck in the decoding of various physical layer transmission channels in the NTN scenario.
  • the need for coverage enhancement needs to be solved urgently.
  • Embodiments of the present application provide a data scheduling method and device, which can improve the effect of coverage enhancement.
  • a data scheduling method includes: obtaining first information.
  • the first information is used to indicate the correspondence between the number of repeated transmissions M of the terminal device's uplink transmission and the number of aggregation time slots, where the aggregation time is The number of slots is the number of aggregated time slots for multi-slot transmission block processing TBoMS.
  • the corresponding relationship includes the first corresponding relationship between the number of repeated transmissions M and the number of T types of aggregated time slots; or the corresponding relationship includes a plurality of first repeated transmission times and A corresponding relationship between the number of aggregated time slots.
  • the sum of the number of multiple first repeated transmissions is M; M is an integer greater than or equal to 1, and T is an integer greater than or equal to 1 and less than or equal to M; based on the corresponding relationship Uplink transmission.
  • a data scheduling method includes: sending first information, the first information being used to indicate the correspondence between the number of repeated transmissions M of the terminal device's uplink transmission and the number of aggregation time slots, where the aggregation time
  • the number of slots is the number of aggregated time slots for multi-slot transmission block processing TBoMS.
  • the corresponding relationship includes the first corresponding relationship between the number of repeated transmissions M and the number of T types of aggregated time slots; or the corresponding relationship includes a plurality of first repeated transmission times and A corresponding relationship between the number of aggregated time slots.
  • the sum of the number of multiple first repeated transmissions is M; M is an integer greater than or equal to 1, and T is an integer greater than or equal to 1 and less than or equal to M; receiving uplink transmission data , the uplink transmission data is sent according to the corresponding relationship.
  • the sum of the number of times of multiple first repeated transmissions is M, so that TBoMS technology and repetition technology can be combined in a more flexible way, so that uplink transmission can make full use of transmission opportunities and improve the effect of coverage enhancement.
  • the method before obtaining the first information, further includes: receiving second information, in which a correspondence relationship between the number of repeated transmissions and the number set of aggregated time slots is configured;
  • the first information is used to indicate the first correspondence between the number of repeated transmissions M and the first aggregated time slot number set in the second information, and the number of elements in the first aggregated time slot number set is T; or the second information
  • the corresponding relationship between the number of repeated transmissions and the number of aggregated time slots is configured in Correspondence.
  • the method before obtaining the first information, further includes: sending the first information, the first information being used to indicate the number of repeated transmissions M and the multi-slot transmission block of the terminal device's uplink transmission.
  • the corresponding relationship is the first corresponding relationship between the number of repeated transmissions M and the number of T types of aggregated time slots; or the corresponding relationship is the first corresponding relationship between multiple first repeated transmission times and one type of aggregation
  • the corresponding relationship between the number of time slots in TBoMS the sum of the number of multiple first repeated transmissions is M; M is an integer greater than or equal to 1, T is an integer greater than or equal to 1 and less than or equal to M; receiving uplink transmission data, Uplink transmission data is sent according to the corresponding relationship.
  • the corresponding relationship between the number of repeated transmissions and the number of aggregated time slots is configured through the second information, and then the network device indicates When the terminal device performs M repeated transmissions, the corresponding relationship between the number of repeated transmissions M configured in the second information and the number of aggregated time slots is indicated through the first information. It can reduce the resource overhead of indication information and improve communication efficiency.
  • the duration occupied by the uplink transmission determined according to the correspondence relationship is determined according to the uplink data transmission interval.
  • the indicated correspondence meets this constraint, which can ensure that the uplink transmission can be completed within the uplink data transmission interval, and at the same time occupy as much transmission interval (transmission opportunity) as needed, which can improve coverage enhancement. Effect.
  • the uplink transmission occupancy duration determined according to the corresponding relationship is a first duration, and the first duration is greater than 16 milliseconds.
  • the first duration is 20 milliseconds.
  • the transmission time interval is 20 milliseconds.
  • the repetition technology indicated in the existing protocol when combined with the relevant parameters of the TBoMS technology, it can only occupy a maximum of 16 milliseconds of transmission opportunity ( When the number of aggregated time slots of TBoMS is 1, the effect of combining the two technologies is not achieved).
  • the first duration determined using the correspondence relationship in the embodiment of the present application is greater than 16 milliseconds, achieving better coverage increase effect.
  • the maximum number of occupied time slots for uplink transmission is the number of first time slots
  • the occupied time slots for uplink transmission determined according to the corresponding relationship are the second time slots.
  • the number of second time slots is less than or equal to the number of first time slots.
  • the corresponding relationship indicated by the first information should satisfy the constraint of the maximum number of occupied time slots for uplink transmission to avoid coding errors.
  • the number of first time slots is 32.
  • the value of the number of aggregate time slots belongs to the first set, and the first set includes 5.
  • the value of M belongs to the second set, and the second set includes 5 and/or 10.
  • T 1
  • the first duration is 20 milliseconds.
  • the transmission time interval is 20 milliseconds. That is to say, the occupied time of the uplink transmission determined according to the corresponding relationship is equal to the transmission time interval, and the uplink transmission is completely Occupying the transmission time interval can make full use of actual transmission for coverage enhancement and fully improve the effect of coverage enhancement.
  • the second information is radio resource control RRC signaling, or system information block SIB; and/or the first information is carried in downlink control information DCI or RRC signaling. Order.
  • the corresponding relationship between the number of repeated transmissions and the number of aggregated time slots of TBoMS is configured through RRC signaling or SIB, and then the corresponding relationship between the number of repeated transmissions M and the number of aggregated time slots is indicated through DCI.
  • the configuration information can be applied to the entire communication process through RRC signaling or SIB configuration.
  • the indication information can be updated through each DCI issuance to improve the flexibility of the indication correspondence. If the corresponding relationship is indicated through RRC signaling, changes to the DCI can be reduced and the complexity of blind detection by the terminal equipment can be reduced.
  • the first information is carried in RRC signaling, and the RRC signaling includes a first corresponding relationship between the number of repeated transmissions M and the number set of aggregation time slots, aggregation The number of non-repeating elements in the time slot number set is T; or the RRC signaling includes a correspondence between each of the plurality of first repeated transmission times and an aggregated time slot number.
  • RRC signaling is used to directly indicate the corresponding relationship between the number of repeated transmissions M and the number of aggregation time slots, thereby reducing the resource overhead that may be caused by the process of delivering a large amount of configuration information.
  • the correspondence includes a correspondence between a plurality of first repeated transmission times and an aggregate time slot number, in uplink transmission, each first repeated transmission Repeated transmissions corresponding to the number of transmissions are independently coded.
  • multiple first repeated transmission times are independently encoded for each first repeated transmission number, which can reduce the decoding complexity of the receiving end, improve the decoding efficiency, and thereby improve the data transmission efficiency.
  • T M
  • T types of aggregated time slot number cycles correspond to M repeated transmissions.
  • a third aspect provides a communication device, which includes modules or units for implementing the method of the first aspect and any possible design thereof.
  • the module or unit may be a hardware circuit or a software, or may be a hardware circuit combined with software.
  • the communication device may be a terminal device, a device in the terminal device (for example, a chip, a chip system, or a circuit), or a device that can be used in conjunction with the terminal device.
  • the device may include:
  • the transceiver module is used to obtain first information.
  • the first information is used to indicate the correspondence between the number of repeated transmissions M of the terminal device's uplink transmission and the number of aggregated time slots, where the number of aggregated time slots is the multi-slot transmission block processing TBoMS.
  • the number of aggregated time slots, the corresponding relationship includes the first corresponding relationship between the number of repeated transmissions M and the number of T types of aggregated time slots; or the corresponding relationship includes the corresponding relationship between multiple first repeated transmission times and the number of one type of aggregated time slots,
  • the sum of the number of times of multiple first repeated transmissions is M; M is an integer greater than or equal to 1, and T is an integer greater than or equal to 1 and less than or equal to M; uplink transmission is performed according to the corresponding relationship.
  • the transceiver module is further configured to: before obtaining the first information, receive second information, and the second information is configured with a corresponding relationship between the number of repeated transmissions and the number set of aggregated time slots. ;
  • the first information is used to indicate the first correspondence between the number of repeated transmissions M and the first aggregated time slot number set in the second information, and the number of elements in the first aggregated time slot number set is T; or the second The information is configured with a corresponding relationship between the number of repeated transmissions and the number of aggregated time slots; the first information is used to indicate in the second information, among the plurality of first repeated transmission times, each first repeated transmission number and the number of aggregated time slots corresponding relationship.
  • a fourth aspect provides a communication device, which includes modules or units for implementing the method of the second aspect and any possible design thereof.
  • the module or unit may be a hardware circuit or a software, or may be a hardware circuit combined with software.
  • the communication device may be a network device, a device in the network device (for example, a chip, a chip system, or a circuit), or a device that can be used in conjunction with the network device.
  • the device may include:
  • the transceiver module is configured to send first information.
  • the first information is used to indicate the correspondence between the number of repeated transmissions M of the terminal device's uplink transmission and the number of aggregated time slots, where the number of aggregated time slots is the multi-slot transmission block processing TBoMS.
  • the number of aggregated time slots, the corresponding relationship includes the first corresponding relationship between the number of repeated transmissions M and the number of T types of aggregated time slots; or the corresponding relationship includes the corresponding relationship between multiple first repeated transmission times and the number of one type of aggregated time slots,
  • M is an integer greater than or equal to 1
  • T is an integer greater than or equal to 1 and less than or equal to M
  • uplink transmission data is received, and the uplink transmission data is sent according to the corresponding relationship.
  • the transceiver module is also configured to: send second information, in which the correspondence between the number of repeated transmissions and the number of aggregated time slots is configured; the first information is used to indicate In the second information, there is a first corresponding relationship between the number of repeated transmissions M and the first aggregated time slot number set, and the number of elements in the first aggregated time slot number set is T; or the second information is configured with the number of repeated transmissions.
  • the corresponding relationship with the number of aggregated time slots; the first information is used to indicate in the second information the corresponding relationship between each of the plurality of first repeated transmission times and the number of aggregated time slots.
  • the duration occupied by the uplink transmission determined according to the correspondence relationship is determined according to the uplink data transmission interval.
  • the uplink transmission occupancy duration determined according to the corresponding relationship is a first duration, and the first duration is greater than 16 milliseconds.
  • the first duration is 20 milliseconds.
  • the maximum number of time slots that can be occupied by uplink transmission is the number of first time slots, and the number of occupied time slots determined according to the corresponding relationship is the number of second time slots, and the number of second time slots is less than Or equal to the number of first time slots.
  • the number of first time slots is 32.
  • the value of the number of aggregated time slots belongs to the first set, and the first set includes 5.
  • the value of M belongs to the second set, and the second set includes 5 and/or 10.
  • T 1 when 5 and/or 10 are included in the second set.
  • the second information is radio resource control RRC signaling, or system information block SIB; and/or the first information is carried in downlink control information DCI or RRC signaling.
  • the first information is carried in RRC signaling, which includes the number of repeated transmissions M and the number of aggregated time slots.
  • the first correspondence relationship between the number set, the number of non-repeating elements in the aggregate time slot number set is T; or the RRC signaling includes each of the multiple first repeated transmission times and an aggregation time The corresponding relationship between the number of gaps.
  • the repeated transmissions of each first repeated transmission number are independently coded. .
  • a communication device including a processor configured to execute the method described in the first aspect or any one of the first aspects and possible designs thereof by executing computer instructions or through logic circuits.
  • the communication device includes a memory for storing computer instructions.
  • the memory is integrated with the processor.
  • the communication device further includes a transceiver, which is used to receive and/or send signals, and the signals can carry signaling or data.
  • the communication device is a terminal device, or a device in the terminal device.
  • a communication device including a processor configured to execute the method described in the second aspect or any one of the second aspects and possible designs thereof by executing computer instructions or through logic circuits.
  • the communication device includes a memory for storing computer instructions.
  • the memory is integrated with the processor.
  • the communication device further includes a transceiver, which is used to receive and/or send signals, and the signals can carry signaling or data.
  • the communication device is a network device, or a device in a network device.
  • embodiments of the present application provide a chip system, including: a processor, the processor is coupled to a memory, and the memory is used to store programs or instructions. When the program or instructions are executed by the processor , so that the chip system implements the method of any one of the above first or second aspects.
  • the chip system further includes an interface circuit for communicating computer instructions to the processor.
  • processors in the chip system there may be one or more processors in the chip system, and the processor may be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor implemented by reading software code stored in memory.
  • the memory may be integrated with the processor or may be provided separately from the processor, which is not limited by this application.
  • the memory can be a non-transient processor, such as a read-only memory ROM, which can be integrated on the same chip as the processor, or can be separately provided on different chips.
  • This application describes the type of memory, and the relationship between the memory and the processor. There is no specific limitation on how the processor is configured.
  • embodiments of the present application provide a computer-readable storage medium on which a computer program or instructions are stored. When the computer program or instructions are executed, the computer is caused to execute any one of the above-mentioned first or second aspects. Methods.
  • embodiments of the present application provide a computer program product, which when a computer reads and executes the computer program product, causes the computer to execute the method in any possible implementation of the first aspect or the second aspect.
  • embodiments of the present application provide a communication system, which includes the devices of the third aspect and/or the fourth aspect.
  • Figure 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of a redundant version of RV provided by an embodiment of the present application.
  • Figure 3A is a schematic diagram of signaling indicating the number of repeated transmissions and the number of aggregated time slots provided by an embodiment of the present application;
  • Figure 3B is a schematic performance diagram of a combination of repetition technology and TBoMS technology provided by the embodiment of the present application;
  • Figure 4A is a schematic diagram of a data scheduling method according to an embodiment of the present application.
  • Figure 4B is a schematic diagram of a first correspondence relationship provided by an embodiment of the present application.
  • Figure 4C is a schematic diagram of the correspondence between the number of repeated transmissions and the number of aggregated time slots provided by an embodiment of the present application;
  • FIG. 4D is a schematic diagram of an RV application provided by an embodiment of the present application.
  • FIG. 4E is a schematic diagram of another RV application provided by an embodiment of the present application.
  • Figure 5A is a flow chart of a data scheduling method provided by an embodiment of the present application.
  • Figure 5B is a schematic diagram of the correspondence between the number of first repeated transmissions and the number of aggregated time slots provided by an embodiment of the present application;
  • Figure 5C is a schematic diagram of an independent encoding provided by an embodiment of the present application.
  • Figure 6 is a structural block diagram of a communication device provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram of the hardware structure of a communication device in an embodiment of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • “Plural” means two or more. "And/or” describes the relationship between related objects, indicating that there can be three relationships. For example, A and/or B can mean: A exists alone, A and B exist simultaneously, and B exists alone. The character “/” generally indicates that the related objects are in an "or” relationship.
  • NR new radio
  • eMBB enhanced mobile broadband
  • MMTC massive machine type communication
  • uRLLC ultra-reliable low latency -Latency communications
  • TN terrestrial communication network
  • NTN uses typical communication equipment such as satellites and HAPS to participate in network deployment technology to achieve true global network coverage. Its advantages and development strategic importance are self-evident.
  • the RTT is far greater than that of the terrestrial cellular system, so there is a situation where the cell edge user link budget is poor.
  • the poor link budget is more obvious.
  • the embodiment of this application proposes a solution for coverage enhancement technology in NTN scenarios.
  • Figure 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • a communication network integrating NR and NTN
  • ground mobile terminals access the network through 5G NR
  • 5G base stations are deployed in on the satellite and connected to the core network on the ground through wireless links.
  • wireless links between satellites to complete signaling interaction and user data transmission between base stations.
  • the various network elements and their interfaces in Figure 1 are described as follows:
  • Terminal A mobile device that supports 5G NR, which can specifically refer to user equipment (UE), access terminal, subscriber unit (subscriber unit), user station, mobile station, customer-premises equipment (customer-premises equipment) , CPE), remote station, remote terminal, mobile device, user terminal, wireless communication equipment, user agent or user device.
  • UE user equipment
  • access terminal subscriber unit (subscriber unit)
  • subscriber unit subscriber unit
  • user station mobile station
  • customer-premises equipment customer-premises equipment
  • CPE customer-premises equipment
  • remote station remote terminal
  • mobile device user terminal
  • wireless communication equipment user agent or user device.
  • the terminal device may also be a satellite phone, a cellular phone, a smartphone, a wireless data card, a wireless modem, a machine type communications device, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (wireless local loop (WLL) station, personal digital assistant (PDA), handheld device with wireless communication function, computing device or other processing device connected to a wireless modem, vehicle-mounted device, communication device carried on high-altitude aircraft, wearable Equipment, drones, robots, smart point of sale (POS) machines, terminals in device-to-device (D2D) communication, vehicle to everything, Terminals in V2X), virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, wireless terminals in industrial control (industrial control), wireless terminals in self-driving (self driving) , wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, smart home ) or terminal equipment in future communication networks, etc., are not limited by this application
  • the device used to implement the function of the terminal device may be a terminal device; it may also be a device that can support the terminal device to implement the function, such as a chip system.
  • the device can be installed in a terminal device or used in conjunction with the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • 5G base station refers to the radio access network (RAN) node (or device) in the 5G network that connects terminals to the wireless network. It can also be called access network equipment, network equipment, or nodes that continue to evolve.
  • B(gNB) It mainly provides wireless access services, dispatches wireless resources to access terminals, and provides reliable wireless transmission protocols and data encryption protocols.
  • the network device may be a node in the wireless access network, may also be called a base station, or may also be called a RAN node (or device).
  • the network equipment can be an evolved base station (evolved Node B, eNB or eNodeB) in LTE; or a next generation node B (next generation node B, gNB) in the 5G network or a future evolved public land mobile network (public land mobile network) , PLMN) base stations, broadband network service gateways (broadband network gateway, BNG), aggregation switches or non-3rd generation partnership project (3rd generation partnership project, 3GPP) access equipment, etc.
  • the network equipment in the embodiments of this application may include various forms of base stations, such as: macro base stations, micro base stations (also called small stations), relay stations, access points, and base stations implemented in communication systems evolved after 5G.
  • Functional equipment transmission point (transmitting and receiving point, TRP), transmitting point (TP), mobile switching center, and device-to-device (D2D), vehicle-to-everything , V2X), equipment that undertakes base station functions in machine-to-machine (M2M) communication, etc.
  • TRP transmitting and receiving point
  • TP transmitting point
  • D2D device-to-device
  • V2X vehicle-to-everything
  • V2X vehicle-to-everything
  • M2M vehicle-to-everything
  • 5G core network refers to the equipment in the core network (CN) that provides business support for terminal equipment in the 5G network. Used for user access control, mobility management, session management, user security authentication, accounting and other services. It consists of multiple functional units, which can be divided into control plane functional entities and data plane functional entities.
  • Authentication management function AMF is responsible for user access management, security authentication, and mobility management.
  • the user plane function UPF is responsible for managing user plane data transmission, traffic statistics and other functions.
  • Ground station responsible for forwarding signaling and business data between the satellite base station and the 5G core network.
  • 5G NR Wireless link between terminals and base stations.
  • Xn interface The interface between the 5G base station and the base station, mainly used for signaling interactions such as handover.
  • NG interface The interface between the 5G base station and the 5G core network. It mainly interacts with signaling such as the non-access stratum (NAS) of the core network, as well as user business data.
  • NAS non-access stratum
  • Physical layer coverage enhancement technology includes but is not limited to repetition, transport block processing over multiple slots (TBoMS), joint channel estimation, frequency hopping, and antenna selection technologies. Among them, repetition and TBoMS are two enhancement methods with outstanding gains and clear technical means. By reducing the transmission rate and code rate, the receiver can obtain energy gain and coding gain during combined decoding, which can effectively reduce the link decoding threshold. , to achieve the effect of enhanced coverage.
  • TBoMS transport block processing over multiple slots
  • Repeat technology is a physical layer transmission method widely used in ground coverage enhancement technology (applicable to various physical channels). By reducing the transmission rate (equivalent to reducing the code rate), the same transport block (TB) is ) is sent continuously, and the energy gain of combining multiple transmissions can be obtained at the receiving end.
  • the merging method depends on whether the redundancy version (RV) of the encoded information sent in each repetition is the same. At the receiving end, it can be divided into Chase combining (CC) and incremental redundancy (IR). Combine both. Compared with the energy gain brought by repeated transmissions obtained by CC combining at the receiving end, IR combining can also obtain additional coding gains brought by combining different RV versions, thereby reducing the decoding threshold.
  • TBoMS technology is a method proposed for PUSCH channel coverage enhancement in terrestrial coverage enhancement. It obtains coding by increasing the coding length, reducing coding header overhead, and transmitting at a relatively low code rate.
  • Gain coverage enhancement technology the main impact point of this technology is to increase the number of aggregate time slots N in the calculation of transport block size (TBS) process, as the TBS scaling factor. Compared with the traditional TBS calculation process, this change can change the coded bit version of a TBS in the standard from being transmitted in one time slot to being transmitted in N consecutive time slots.
  • RV divides the redundant bits generated by the encoder into several groups. Each RV defines a transmission start point. Different RVs are used for the first transmission and each hybrid automatic repeat request (HARQ). Realize the gradual accumulation of redundant bits, Complete incremental redundancy HARQ operation.
  • Figure 2 is a schematic diagram of a redundant version of RV provided by an embodiment of the present application. As shown in Figure 2, the channel-coded data of the TB includes basic data corresponding to the system bit (S) and redundant bits. (P) Corresponding redundant data, which is placed in the ring buffer. The four RV versions of RV0, RV1, RV2, and RV3 represent obtaining data from the ring buffer using different positions as starting points.
  • the lower left corner of Figure 2 shows the length of time domain resources occupied by each RV when repeated transmissions are performed four times according to the redundant version of (0,2,3,2).
  • the number of aggregated time slots corresponding to each repeated transmission is the same, so the time domain resource length occupied by each RV is also the same.
  • repetition technology and TBoMS technology can be used jointly.
  • CG configured grant
  • type 2 type 2 scheduling in the PUSCH scheduling scenario as an example: the number of aggregate slots N is configured in the radio resource control (RRC) signaling, specifically during PUSCH In the domain resource allocation (time domain resource allocation, TDRA) information element (IE) (in the same position as the traditional repetition number configuration of NR), that is to say, the number of aggregated time slots and the number of repetitions are in the same Configured in RRC signaling.
  • RRC radio resource control
  • IE domain resource allocation
  • the network side activates the configuration by sending downlink control information (DCI) to the UE.
  • DCI downlink control information
  • the UE indicates the row number in the PUSCH_TDRA IE in the RRC signaling through the TDRA field in the DCI signaling.
  • TBoMS technology also supports dynamic scheduling (dynamic grant, DG) for uplink transmission and CG Type 1 scheduling scenarios.
  • DG dynamic grant, DG
  • Type 1 scheduling the number of aggregated time slots N and the number of repetitions M are directly delivered to the UE through RRC signaling without DCI activation.
  • CB code block
  • VoIP voice over Internet protocol
  • Table 1 shows the link budget corresponding to the PUSCH, the subcarrier spacing (SCS) is 15KHz, and the number of physical resource blocks (Physical Resource Block, PRB) is 2.
  • the maximum composite noise ratio (CNR) is -5.163dB, and the minimum composite noise ratio is -23.577dB.
  • the decoding threshold of the VoIP service uplink data transmission channel in the NTN scenario is high (that is, the signal-to-noise ratio requirement for the transmission channel is high), and it is difficult to meet Table 1 Link budget shown.
  • the link coverage level can be improved through a combination of repetition technology and TBoMS.
  • the network side configures the number of repetitions M rep that the UE needs to use for uplink transmission and the number of aggregated time slots N tboms of TBoMS in the IE: PUSCH-TimeDomainResourceAllocation of the RRC parameter.
  • M rep ⁇ 1,2,3,4,7,8,12,16,20,24,28,32 ⁇
  • N tboms ⁇ 1,2,4, 8 ⁇ .
  • Figure 3A is a schematic diagram of a signaling diagram for indicating the number of repeated transmissions and the number of aggregation time slots provided by an embodiment of the present application.
  • “numberofRepetitionsEex-r17” is configured in the IE of the RRC parameter.
  • “The value of the parameter is the value of the number of repeated transmissions M rep .
  • the value of the "numberOfSlots-TBoMS-r17" parameter is configured, that is, the value of N tboms .
  • the existing standards only support the existing parameter values in the RRC parameters issued by the network side to the UE, and according to the constraint that the maximum number of consecutive transmissions shall not exceed 32 time slots, it can be seen that the network side needs to pair these two time domain resources.
  • the allocation parameters have the following constraints: M rep ⁇ N tboms ⁇ 32.
  • the maximum transmission time for VoIP business simulation is 16ms.
  • the decoding threshold under the line of sight (LOS) channel is -5.5dB, which only meets LEO600 SET1
  • the CNR corresponding to 30° is -5.5dB, which is not satisfied in other situations.
  • uplink data transmission has a transmission interval limit.
  • the voice packet transmission interval can be 20ms.
  • M rep There are five combination delivery methods as shown in Table 2:
  • Figure 3B is a performance schematic diagram of a combination of repetition technology and TBoMS technology provided by the embodiment of the present application.
  • the horizontal axis represents the signal-to-noise ratio
  • the vertical axis represents the block error rate (BLER). ).
  • N represents the number of aggregate time slots of TBoMS
  • M represents the number of repeated transmissions
  • MCS represents the modulation and coding scheme (modulation and coding scheme)
  • TBS represents the transport block size.
  • Figure 4A provides a schematic diagram of a data scheduling method for an embodiment of the present application. As shown in Figure 4A, the method includes the following processes:
  • the network device sends the first information.
  • the first information is used to indicate the first correspondence between the number of repeated transmissions M of the terminal device's uplink transmission and the number of T aggregate time slots; M is an integer greater than or equal to 1, and T is greater than Or an integer equal to 1 and less than or equal to M.
  • the network device sends indication information to the terminal device, which is used to instruct the terminal device on the first correspondence between the number of repetitions M of uplink transmission and the number of aggregated time slots of T types of TBoMS. Where 1 ⁇ T ⁇ M.
  • the number of aggregation time slots involved in the embodiments of this application refers to the number of aggregation time slots of TBoMS, which will not be described in detail below.
  • the duration occupied by the uplink transmission determined according to the corresponding relationship is a first duration, and the first duration is greater than 16 milliseconds.
  • the terminal device performs uplink transmission according to the first corresponding relationship indicated by the indication information, so that the uplink transmission takes longer than 16 ms.
  • the first duration may be 20 ms. That is to say, using the instruction information in the embodiment of the present application for uplink transmission can fully occupy the 20 ms transmission opportunity for the uplink transmission of the terminal device.
  • the second set includes 5 and/or 10
  • the value set (first set) of the number of aggregated time slots of TBoMS includes 5. That is to say, Figure 4A
  • the number of aggregation time slots N described before is any one of the original N sets ⁇ 1, 2, 4, 8 ⁇ .
  • N is any one of the first set
  • the first set ⁇ 1,2,4,5,8 ⁇ .
  • the parameter "numberofRepetitionsEex-r17" used to indicate the number of repeated transmissions in Figure 3A its value can be modified to ENUMERATED ⁇ n1,n2,n4,n5,n8,spare2,spare1 ⁇ .
  • M 4
  • SCS is other values, other first correspondences can also be determined.
  • the combination of the repeated transmission technology and the TBoMS technology can fully occupy the transmission opportunity and fully Utilize transmission opportunities to transmit uplink data to achieve better coverage enhancement effects.
  • FIG. 4B is a schematic diagram of a first correspondence relationship provided by an embodiment of the present application.
  • each repeated transmission Repi in the number of repeated transmissions M corresponds to an aggregated time slot number Ni.
  • i 1,2,3...M.
  • M Ni at least two Ni have different values.
  • the value set (second set) of the number of repeated transmissions M may also include 5 and/or 10
  • the value set (first set) of the aggregate time slot number N of TBoMS May also include 5.
  • the number of aggregate time slots with the first corresponding relationship is ⁇ 2, 4, 8, 4, 2 ⁇ .
  • the number of repeated transmissions M and the number of aggregated time slots for T types of TBoMS are indicated as follows:
  • the network device sends second information, and the second information is configured with a corresponding relationship between the number of repeated transmissions and the number of aggregated time slots; the first information is used to indicate that in the second information, the number of repeated transmissions M and The first correspondence relationship of the first aggregated time slot number set, the number of non-repeating elements in the first aggregated time slot number set is T.
  • Figure 4C is a schematic diagram of the correspondence between the number of repeated transmissions and the number of aggregation time slots provided by an embodiment of the present application.
  • each number of repeated transmissions corresponds to one or more aggregation time slots.
  • the number of gaps is a set, and the number of unique elements in the set is T.
  • the corresponding relationship between the number of repeated transmissions and the set of aggregated time slots is configured through the second information, and the first corresponding relationship between the number of repeated transmissions M and the first set of aggregated time slots is indicated through the first information.
  • the second information may be RRC signaling or system information block (SIB), that is, the configuration information is sent through RRC signaling or SIB.
  • the first information may be carried in DCI or RRC signaling. That is, the network device activates the first correspondence relationship by indicating the index number or sequence number of the first correspondence relationship in DCI or RRC signaling.
  • the first information is carried in RRC signaling.
  • the RRC signaling includes a first correspondence between the number of repeated transmissions M and the set of aggregated time slots.
  • the number of elements is T.
  • the first correspondence relationship may also be indicated directly through RRC signaling.
  • the RRC signaling can explicitly indicate all parameters in the first correspondence relationship, including M and the complete set of aggregation time slots ⁇ N1, N2,...,NM ⁇ corresponding to M, where the complete aggregation time slots
  • the number of elements in the slot number set M (the type T of the number of aggregate slots included in the set is a parameter that can be obtained based on the elements of the set of aggregate slot numbers, and may or may not be indicated).
  • the RRC signaling may explicitly indicate part of the parameters in the first correspondence relationship, and the other part of the parameters may be obtained based on the part of the parameters indicated by the display.
  • RRC signaling can also be used to directly indicate the corresponding relationship between M and a single N. I won’t go into details here.
  • the first correspondence relationship can also be indicated in the above two ways.
  • Other situations of other SCS will not be described in detail in the embodiments of this application.
  • the terminal device receives the first information and performs uplink transmission according to the first correspondence indicated in the first information.
  • the network device receives uplink transmission data, which is sent according to the first correspondence indicated by the first information.
  • the terminal device After receiving the indicated first correspondence in the first information, the terminal device determines the number of aggregation time slots corresponding to each repeated transmission according to the first correspondence, and then performs corresponding repeated transmissions according to the corresponding number of aggregation time slots.
  • the corresponding first duration , this obviously can obtain more possible first duration values than the case where only one M value and one corresponding N value are indicated. Therefore, the probability that the terminal device can occupy all transmission opportunities by using this correspondence relationship for uplink transmission is also higher. big.
  • the network device receives the uplink transmission data sent by the terminal device. Since the network device sends the first instruction information to the terminal device to instruct the terminal device how to perform uplink transmission corresponding to M repeated transmissions, the network device receives the encoding unit (such as data packet, data message, etc.) corresponding to the uplink transmission data. After that, you can determine how to decode and obtain the uplink transmission data.
  • the encoding unit such as data packet, data message, etc.
  • RV is introduced in the aforementioned related content.
  • different RV circulation methods can be selected for repeated transmission.
  • FIG. 4D is a schematic diagram of an RV application provided by an embodiment of the present application. As shown in (a) in Figure 4D, RV0, RV2, RV3, and RV1 cycles correspond to 7 repeated transmission times, and are Corresponds to the number of aggregated time slots for each repeated transmission (including the number of aggregated time slots 2 and 4).
  • RV0 corresponds to the first repeated transmission.
  • the number of aggregated time slots is 2 time slots, so RV0 is mapped to 2 consecutive time slots; and so on, RV2 is mapped to 4 consecutive time slots.
  • slots, RV3 is mapped to 2 consecutive time slots, and RV1 is mapped to 4 consecutive time slots.
  • M mod 4 1
  • M mod 4 2
  • M mod 4 3
  • M mod 4 0
  • FIG. 4E is a schematic diagram of another RV application provided by an embodiment of the present application. As shown in (a) in Figure 4E, RV0, RV3, RV0, and RV3 cycles correspond to 7 repeated transmission times, and Corresponds to the number of aggregated time slots for each repeated transmission (including the number of aggregated time slots 2 and 4).
  • the length of the time domain resource occupied by the RV is determined based on the number of aggregated time slots corresponding to the number of repeated transmissions.
  • RV0 corresponds to the first repeated transmission
  • the number of aggregated time slots is 2 time slots, so RV0 is mapped to 2 consecutive time slots.
  • the length of time domain resources occupied by each RV may be indicated in the first information or other information, which may be specifically determined based on the number of aggregated time slots corresponding to each repeated transmission. This allows the number of continuous time slots mapped by RV to be adaptively adjusted with the flexibly changing number of aggregated time slots, thereby improving the reliability of the communication process.
  • the transmission timing of VoIP is 20 ms for illustration.
  • the method of the embodiment of the present application can also be used to determine the first corresponding relationship between the number of repeated transmissions M and the number of aggregated time slots of T types of TBoMS.
  • the corresponding relationship can make the uplink transmission time close to or equal to other transmission opportunities.
  • the terminal equipment performs uplink transmission based on this first correspondence relationship, and can occupy as many transmission opportunities as possible of related communication services, thereby achieving better coverage enhancement effects. This description is also applicable to the following embodiments, and will not be described again in the following embodiments.
  • the number of repeated transmissions M corresponds to the number of aggregated time slots of at least two types of TBoMS, so that the number of aggregated time slots of different types is combined in the M repeated transmissions, occupying as much as possible Transmission opportunities so that more transmission opportunities are available It is used to transmit uplink data to achieve better coverage enhancement effect.
  • the corresponding number of aggregation time slots in the M repeated transmission processes is determined based on the correspondence between the number of times of repeated transmissions M and the number of TBoMS aggregation time slots.
  • Figure 5A is a flow chart of a data scheduling method provided by an embodiment of the present application. As shown in Figure 5A, the method includes the following steps:
  • the network device sends the first information.
  • the first information is used to indicate the correspondence between the plurality of first repeated transmission times of the terminal device's uplink transmission and the number of an aggregated time slot.
  • the sum of the plurality of first repeated transmission times is M.
  • M is an integer greater than 1.
  • the network device sends indication information to the terminal device, which is used to indicate the correspondence between multiple first repeated transmission times and the number of aggregated time slots of a TBoMS.
  • the sum value is M, that is to say, the segment indicates M repeated transmission times and the corresponding number of aggregated time slots.
  • the uplink transmission occupancy duration determined according to the corresponding relationship is a first duration, and the first duration is greater than 16 milliseconds.
  • the first duration may be 20 milliseconds.
  • Figure 5B is a schematic diagram of the corresponding relationship between the number of first repeated transmissions and the number of aggregated time slots provided by an embodiment of the present application.
  • M the number of repeated transmissions M is split into
  • the number of aggregated time slots corresponding to M1 repeated transmissions is N1
  • the number of aggregated time slots corresponding to M2 repeated transmissions is N2
  • the number of aggregated time slots corresponding to Mj repeated transmissions is Nj.
  • the network device sends second information, and the second information is configured with a corresponding relationship between the number of repeated transmissions and the number of aggregated time slots; the first information is used to indicate in the second information, multiple first repeated transmissions. Among the times, the corresponding relationship between the number of times of each first repeated transmission and the number of aggregated time slots.
  • the number of repeated transmissions can be any one of ⁇ 1, 2, 3, 4, 7, 8, 12, 16, 20, 24, 28, 32 ⁇ described above, and the number of aggregated time slots can be ⁇ 1, 2, Any one of 4,8 ⁇ . Then the corresponding relationship between the number of repeated transmissions and the number of aggregation slots can be found in Table 3:
  • Each number of repeated transmissions can correspond to the number of aggregated time slots 2, 4, or 8, and the corresponding relationship between each number of repeated transmissions and the number of aggregated time slots can be identified by a sequence number or an index number.
  • the content shown in Table 3 is configured in the second information.
  • the index number or sequence number in the configuration content of these correspondences can be indicated, for example, index numbers 07 and 05 are indicated.
  • the second set corresponding to the number of repeated transmissions may include 5 and/or 10 as described in the previous embodiment
  • the first set corresponding to the number of aggregated time slots may include 5 as described in the previous embodiment.
  • the second information may be RRC signaling or SIB
  • the first information may be carried in DCI or RRC signaling.
  • the first information is carried in RRC signaling, and the RRC signaling includes a correspondence between each of the plurality of first repeated transmission times and an aggregated time slot number.
  • the first information can also be used to indicate the execution order of multiple first repeated transmission times. For example, indicating that M1 is the number of repeated transmissions that are performed first, then among the 7 repeated transmissions corresponding to the uplink transmission, which one is performed first For the first 4 repeated transmissions, the corresponding number of aggregated time slots is 2.
  • the terminal device receives the first information and performs uplink transmission according to the corresponding relationship indicated in the first information.
  • the network device receives uplink transmission data, and the uplink transmission data is sent according to the corresponding relationship indicated by the first information.
  • the terminal device After receiving the first information, the terminal device determines, according to the corresponding relationship indicated in the first information, that among the M repeated transmissions, a corresponding number of repeated transmissions are performed according to the number of aggregated time slots corresponding to each first number of transmissions.
  • the corresponding first duration M1*N1+M2*N2+...+Mj*Nj. This obviously can obtain more possible first duration values than the case of only indicating an M value and its corresponding N value. Therefore, the probability that the terminal device can occupy all transmission opportunities by using this correspondence relationship for uplink transmission is also greater.
  • the terminal device receives the uplink transmission data sent by the network device. Since the network device sends the first instruction information to the terminal device to instruct the terminal device how to perform uplink transmission corresponding to M repeated transmissions, the network device receives the encoding unit (such as data packet, data message, etc.) corresponding to the uplink transmission data. After that, you can determine how to decode and obtain the uplink transmission data.
  • the encoding unit such as data packet, data message, etc.
  • the indication of the number of aggregated time slots corresponding to all M repeated transmission times can be completed by indicating the corresponding relationship between a plurality of first repeated transmission times and the number of aggregation time slots.
  • the corresponding relationship between the indicated number of repeated transmissions and the number of aggregated time slots is the same as that of the existing protocol. The only difference is that the number of indicated corresponding relationships is greater than one.
  • each repeated transmission of the first number of repeated transmissions is independently coded.
  • Figure 5C is a schematic diagram of an independent encoding provided by an embodiment of the present application.
  • the network device can decode the same encoding unit with a unified number of aggregated time slots after receiving the two encoding units sent by the terminal device. Reduce the complexity of decoding at the receiving end.
  • multiple first repeated transmission times are independently encoded for each first repeated transmission number, which can reduce the decoding complexity of the receiving end, improve the decoding efficiency, and thereby Improve data transmission efficiency.
  • the first information may indicate multiple first repeated transmission times at the same time, and each first repeated transmission number may correspond to one type of aggregation time slot number, or may correspond to multiple types of aggregation time slot numbers.
  • This indication method can also reduce the resource usage of the indication content. Assuming that the number of repetitions corresponding to M1 and the number of repetitions corresponding to M2 are independently encoded, it can also reduce the decoding complexity of the receiving end and improve the data transmission efficiency.
  • the embodiments described in FIGS. 4A to 4E and FIGS. 5A to 5C of this application are technologies that combine the repetition technology and the TBoMS technology in the coverage enhancement technology.
  • These technical methods can also be used in combination with other coverage enhancement technologies.
  • the window length of the joint channel estimation is set to be greater than or equal to or (k represents the k first number of repeated transmissions into which M repeated transmissions are divided), then joint channel estimation can be performed on the consecutive time slots corresponding to the M repeated transmissions.
  • these technical methods can also be used in combination with frequency modulation technology. Frequency modulation is not performed on the Ni time slots corresponding to the same repeated transmission, but frequency modulation can be performed on the time slots corresponding to different times of repeated transmissions. While ensuring communication quality, Obtain channel frequency selection gain.
  • the methods of combining with other technologies are similar and will not be listed here.
  • a communication device 300 is provided according to an embodiment of the present application.
  • the communication device includes modules for implementing the method embodiment shown in Figure 4A or Figure 5A and any possible design method thereof. or unit.
  • the module or unit can be a hardware circuit or a software It can also be implemented by hardware circuit combined with software.
  • the communication device may be a terminal device, a device (for example, a chip, a chip system, or a circuit) in the terminal device or network device, or a device that can be used in conjunction with the terminal device.
  • the device may include a transceiver module 301 and a processing module 302.
  • the transceiver module 301 is configured to receive first information.
  • the first information is used to indicate the first correspondence between the number of repeated transmissions M of the terminal device's uplink transmission and the number of T types of aggregate time slots; M is an integer greater than or equal to 1, and T is an integer greater than or equal to 1 and less than or equal to M; processing module 302: configured to perform uplink transmission in conjunction with the transceiver module 301 according to the first correspondence indicated in the first information.
  • the transceiver module 301 is configured to receive first information.
  • the first information is used to indicate the corresponding relationship between a plurality of first repeated transmission times of the terminal device's uplink transmission and the number of an aggregated time slot, and a plurality of first repeated transmission times and values. is M, and M is an integer greater than 1;
  • the processing module 302 is configured to perform uplink transmission in conjunction with the transceiver module 301 according to the first correspondence indicated in the first information.
  • the transceiver module 301 is configured to send first information.
  • the first information is used to indicate the first correspondence between the number of repeated transmissions M of the terminal device's uplink transmission and the number of T aggregate time slots; M is an integer greater than or equal to 1, and T is an integer greater than or equal to 1 and less than or equal to M; the transceiver module 301 is also used to receive uplink transmission data, which is sent according to the first correspondence indicated in the first information.
  • the transceiver module 301 is configured to send first information.
  • the first information is used to indicate the corresponding relationship between a plurality of first repeated transmission times of the terminal device's uplink transmission and the number of an aggregated time slot, and the multiple first repeated transmission times and values. is M, and M is an integer greater than 1; the transceiver module 301 is also used to receive uplink transmission data.
  • the uplink transmission data is sent according to the corresponding relationship indicated in the first information.
  • transceiver module 301 For a more detailed description of the above-mentioned transceiver module 301 and processing module 302, reference may be made to the relevant descriptions in the above-mentioned method embodiments, which will not be described again here.
  • FIG. 7 shows a schematic diagram of the hardware structure of a communication device in an embodiment of the present application.
  • the structure of the communication device in FIG. 6 may refer to the structure shown in FIG. 7 .
  • the communication device 900 includes: a processor 111 and a transceiver 112, and the processor 111 and the transceiver 112 are electrically coupled;
  • the processor 111 is configured to execute some or all of the computer program instructions in the memory. When the part or all of the computer program instructions are executed, the device performs the method described in any of the above embodiments.
  • the transceiver 112 is used to communicate with other devices; for example, receiving first information from a network device.
  • the first information is used to indicate the correspondence between a plurality of first repeated transmission times of the terminal device's uplink transmission and the number of aggregation time slots. relation.
  • a memory 113 is also included for storing computer program instructions.
  • the memory 113 (memory #1) is located in the device, and the memory 113 (memory #2) is integrated with the processor 111. together, or the memory 113 (memory #3) is located outside the device.
  • the communication device 900 shown in FIG. 7 may be a chip or a circuit.
  • it may be a chip or circuit provided in a terminal device or a communication device.
  • the above-mentioned transceiver 112 may also be a communication interface.
  • a transceiver includes a receiver and a transmitter.
  • the communication device 900 may also include a bus system.
  • the processor 111, the memory 113, and the transceiver 112 are connected through a bus system.
  • the processor 111 is used to execute instructions stored in the memory 113 to control the transceiver to receive signals and send signals to complete the first implementation method involved in this application. device or steps for a second device.
  • the memory 113 may be integrated in the processor 111 or may be provided separately from the processor 111 .
  • the function of the transceiver 112 may be implemented through a transceiver circuit or a dedicated transceiver chip.
  • the processor 111 may be implemented by a dedicated processing chip, a processing circuit, a processor or a general-purpose chip.
  • the processor can be a central processing unit (CPU), a network processor (NP), or a combination of CPU and NP.
  • the processor may further include a hardware chip or other general-purpose processor.
  • the above-mentioned hardware chip can be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above-mentioned PLD can be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL) and other programmable logic devices , discrete gate or transistor logic devices, discrete hardware components, etc. or any combination thereof.
  • CPLD complex programmable logic device
  • FPGA field-programmable gate array
  • GAL general array logic
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • non-volatile memory may be read-only memory (Read-Only Memory, ROM), programmable Read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synchlink DRAM, SLDRAM synchronous link dynamic random access memory
  • Direct Rambus RAM Direct Rambus RAM
  • Embodiments of the present application provide a computer storage medium that stores a computer program.
  • the computer program includes methods for executing the methods corresponding to network devices or terminal devices in the above embodiments.
  • Embodiments of the present application provide a computer program product containing instructions that, when run on a computer, cause the computer to execute the method corresponding to the network device or terminal device in the above embodiments.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • modules described as separate components may or may not be physically separated, and the components shown as modules may or may not be physical modules, that is, they may be located in one place, or they may be distributed to multiple network modules. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional module in each embodiment of the present application can be integrated into one processing module, or each module can exist physically alone, or two or more modules can be integrated into one module.
  • the functions are implemented in the form of software function modules and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种数据调度方法及装置,其中方法包括:网络设备发送第一信息,第一信息用于指示终端设备上行传输的重复传输次数M与聚合时隙个数的对应关系,其中,对应关系包括重复传输次数M与T种聚合时隙个数的第一对应关系;或者对应关系包括多个第一重复传输次数与一种聚合时隙个数的对应关系,多个第一重复传输次数和值为M;终端设备接收第一信息,根据第一信息指示的对应关系进行上行传输。本申请实施例通过更灵活的方式对多时隙传输块处理技术与重复技术联合,使得重复传输是能够更加充分利用传输时机,提升覆盖增强的效果。

Description

数据调度方法及装置
本申请要求于2022年08月10日提交中国国家知识产权局、申请号为202210957933.4、申请名称为“数据调度方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种数据调度方法及装置。
背景技术
卫星、高空平台(high-altitude platforms,HAPS)等通信设备参与布网技术的非地面通信网络(non-terrestrial network,NTN)与第五代(5th generation,5G)通信系统相融合,取长补短,共同构成全球无缝覆盖的海、陆、空、天一体化综合通信网,满足用户无处不在的多种业务需求,是未来通信发展的重要方向。
在NTN场景中,往返传输时间(round trip time,RTT)远远超过地面蜂窝系统,因此存在小区边缘用户链路预算较差的情况。随着轨道高度的增加,卫星在地面覆盖区域的边缘小区(或波束),链路预算差的情况更加明显。此外,手机终端直连卫星的场景,由于手机终端发射功率较小,天线数目较少,导致NTN场景中多种物理层传输信道解码存在瓶颈,尤其对于上行传输场景,覆盖增强的需求亟待解决。
发明内容
本申请实施例提供了一种数据调度方法及装置,可以提升覆盖增强的效果。
第一方面,提供了一种数据调度方法,该方法包括:获取第一信息,第一信息用于指示终端设备上行传输的重复传输次数M与聚合时隙个数的对应关系,其中,聚合时隙个数为多时隙传输块处理TBoMS的聚合时隙个数,对应关系包括重复传输次数M与T种聚合时隙个数的第一对应关系;或者对应关系包括多个第一重复传输次数与一种聚合时隙个数的对应关系,多个第一重复传输次数和值为M;M为大于或等于1的整数,T为大于或等于1且小于或等于M的整数;根据对应关系进行上行传输。
第二方面,提供了一种数据调度方法,该方法包括:发送第一信息,第一信息用于指示终端设备上行传输的重复传输次数M与聚合时隙个数的对应关系,其中,聚合时隙个数为多时隙传输块处理TBoMS的聚合时隙个数,对应关系包括重复传输次数M与T种聚合时隙个数的第一对应关系;或者对应关系包括多个第一重复传输次数与一种聚合时隙个数的对应关系,多个第一重复传输次数和值为M;M为大于或等于1的整数,T为大于或等于1且小于或等于M的整数;接收上行传输数据,上行传输数据为根据对应关系发送的。
可见,在本申请实施例中,通过指示重复传输次数M对应的多种聚合时隙个数,或者指示多种第一重复传输次数中每个第一重复传输次数对应的一种聚合时隙个数,多种第一重复传输次数的和值为M,使得TBoMS技术与重复技术可以以更灵活的方式进行联合,进而使得上行传输能够更加充分利用传输时机,提升覆盖增强的效果。
结合第一方面,在一种可能的设计中,在获取第一信息之前,该方法还包括:接收第二信息,第二信息中配置了重复传输次数与聚合时隙个数集合的对应关系;第一信息用于指示第二信息中,重复传输次数M与第一聚合时隙个数集合的第一对应关系,第一聚合时隙个数集合中的元素个数为T;或者第二信息中配置了重复传输次数与聚合时隙个数的对应关系;第一信息用于指示第二信息中,多个第一重复传输次数中,每个第一重复传输次数与聚合时隙个数的对应关系。
结合第二方面,在一种可能的设计中,在获取第一信息之前,该方法还包括:发送第一信息,第一信息用于指示终端设备上行传输的重复传输次数M与多时隙传输块处理TBoMS的聚合时隙个数的对应关系,其中,对应关系为重复传输次数M与T种聚合时隙个数的第一对应关系;或者对应关系为多个第一重复传输次数与一种聚合TBoMS的时隙个数的对应关系,多个第一重复传输次数和值为M;M为大于或等于1的整数,T为大于或等于1且小于或等于M的整数;接收上行传输数据,上行传输数据为根据对应关系发送的。
在本申请实施例中,通过第二信息配置重复传输次数与聚合时隙个数的对应关系,然后在网络设备指 示终端设备进行M次重复传输时,将第二信息中配置的重复传输次数M与聚合时隙个数的对应关系通过第一信息进行指示。可以减少指示信息的资源开销,同时提升通信效率。
结合第一方面或第二方面,在一种可能的设计中,根据对应关系确定的上行传输占用的时长根据上行数据传输间隔确定。
在本申请实施例中,指示的对应关系满足这种约束条件,可以保证上行传输能够在上行数据传输间隔内完成传输,同时根据需要占用尽可能多的传输间隔(传输时机),能够提升覆盖增强的效果。
结合第一方面或第二方面,在一种可能的设计中,根据对应关系确定的上行传输占用时长为第一时长,第一时长大于16毫秒。
结合第一方面或第二方面,在一种可能的设计中,第一时长为20毫秒。
在本申请实施例中,以VoIP业务场景为例,其传输时间间隔为20毫秒,但是现有协议中指示的重复技术与TBoMS技术的相关参数进行结合,最大只能占用16毫秒的传输时机(TBoMS的聚合时隙个数为1时,没有起到两种技术结合的效果),本采用本申请实施例的对应关系确定的第一时长大于16毫秒,达成了更好的覆盖增加的效果。
结合第一方面或第二方面,在一种可能的设计中,上行传输的最大可占用时隙个数为第一时隙个数,根据对应关系确定的上行传输占用时隙为第二时隙个数,第二时隙个数小于或等于第一时隙个数。
本申请实施例中,第一信息指示的对应关系应该满足上行传输的最大可占用时隙个数的约束条件,避免产生编码错误。
结合第一方面或第二方面,在一种可能的设计中,第一时隙个数为32。
结合第一方面或第二方面,在一种可能的设计中,聚合时隙个数的取值属于第一集合,第一集合中包括5。
结合第一方面或第二方面,在一种可能的设计中,M的取值属于第二集合,第二集合中包括5和/或10。
结合第一方面或第二方面,在一种可能的设计中,在第二集合中包括5和/或10的情况下,T=1。
本申请实施例中,第一时长为20毫秒,以VoIP业务场景为例,其传输时间间隔为20毫秒,即是说根据对应关系确定的上行传输的占用时长与传输时间间隔相等,上行传输完全占用传输时间间隔,能够充分利用传输实际进行覆盖增强,充分提升覆盖增强的效果。
结合第一方面或第二方面,在一种可能的设计中,在子载波间隔为15kHZ时,重复传输次数M为4与聚合时隙个数为5存在第一对应关系。
结合第一方面或第二方面,在一种可能的设计中,在子载波间隔为15kHZ时,重复传输次数M为10与聚合时隙个数为2存在第一对应关系;和/或重复传输次数M为5与聚合时隙个数为4存在第一对应关系。
本申请实施例中,上述设定的三种第一对应关系,都能满足第一时长为20毫秒的设定,并且不需要增加重复传输次数M对应的聚合时隙个数种类(T=1),而只需要增加重复传输次数M的取值集合,和/或TBoMS的聚合时隙个数的取值集合,就能够使得上行传输完全占用传输时间间隔,降低了第一信息对应关系的复杂度和信令开销,同时能够充分利用传输实际进行覆盖增强,充分提升覆盖增强的效果。
结合第一方面或第二方面,在一种可能的设计中,第二信息为无线资源控制RRC信令,或为系统信息块SIB;和/或第一信息承载在下行控制信息DCI或RRC信令中。
本申请实施例中,通过RRC信令或SIB进行重复传输次数与TBoMS的聚合时隙个数的对应关系的配置,再通过DCI对重复传输次数M与聚合时隙个数的对应关系进行指示,一方面可以通过RRC信令或SIB的配置使得配置信息能够适用于整个通信过程,另一方面又能够通过每次DCI的下发更新指示信息,提升指示对应关系的灵活性。若通过RRC信令进行对应关系的指示,能够减少对DCI的更改,减少终端设备盲检的复杂度。
结合第一方面或第二方面,在一种可能的设计中,第一信息承载在RRC信令中,RRC信令中包括重复传输次数M与聚合时隙个数集合的第一对应关系,聚合时隙个数集合中的不重复元素个数为T;或者RRC信令中包括多个第一重复传输次数中每个第一重复传输次数与一种聚合时隙个数的对应关系。
本申请实施例中,通过RRC信令直接指示重复传输次数M与聚合时隙个数的对应关系,减少了大量配置信息下发过程可能造成的资源开销。
结合第一方面或第二方面,在一种可能的设计中,若对应关系包括多个第一重复传输次数与一种聚合时隙个数的对应关系,在上行传输中,每个第一重复传输次数对应的重复传输是独立编码的。
在本申请实施例中,上行传输过程中针对多个第一重复传输次数,每个第一重复传输次数的重复传输进行独立编码,可以降低接收端解码的复杂度,提升解码效率,进而提升数据传输效率。
结合第一方面或第二方面,在一种可能的设计中,当T=M时,M次重复传输与T种聚合时隙个数为一一对应关系;和/或当1<T<M时,T种聚合时隙个数循环与M次重复传输对应。
第三方面,提供了一种通信装置,该通信装置包括用于实现第一方面及其任一项可能的设计的方法的模块或单元。该模块或单元可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。该通信装置可以是终端设备,也可以是终端设备中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和终端设备匹配使用的装置。该装置可以包括:
收发模块,用于获取第一信息,第一信息用于指示终端设备上行传输的重复传输次数M与聚合时隙个数的对应关系,其中,聚合时隙个数为多时隙传输块处理TBoMS的聚合时隙个数,对应关系包括重复传输次数M与T种聚合时隙个数的第一对应关系;或者对应关系包括多个第一重复传输次数与一种聚合时隙个数的对应关系,多个第一重复传输次数和值为M;M为大于或等于1的整数,T为大于或等于1且小于或等于M的整数;根据对应关系进行上行传输。
结合第三方面,在一种可能的设计中,收发模块还用于:在获取第一信息之前,接收第二信息,第二信息中配置了重复传输次数与聚合时隙个数集合的对应关系;第一信息用于指示第二信息中,重复传输次数M与第一聚合时隙个数集合的第一对应关系,第一聚合时隙个数集合中的元素个数为T;或者第二信息中配置了重复传输次数与聚合时隙个数的对应关系;第一信息用于指示第二信息中,多个第一重复传输次数中,每个第一重复传输次数与聚合时隙个数的对应关系。
第四方面,提供了一种通信装置,该通信装置包括用于实现第二方面及其任一项可能的设计的方法的模块或单元。该模块或单元可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。该通信装置可以是网络设备,也可以是网络设备中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和网络设备匹配使用的装置。该装置可以包括:
收发模块,用于发送第一信息,第一信息用于指示终端设备上行传输的重复传输次数M与聚合时隙个数的对应关系,其中,聚合时隙个数为多时隙传输块处理TBoMS的聚合时隙个数,对应关系包括重复传输次数M与T种聚合时隙个数的第一对应关系;或者对应关系包括多个第一重复传输次数与一种聚合时隙个数的对应关系,多个第一重复传输次数和值为M;M为大于或等于1的整数,T为大于或等于1且小于或等于M的整数;接收上行传输数据,上行传输数据为根据对应关系发送的。
结合第四方面,在一种可能的设计中,收发模块还用于:发送第二信息,第二信息中配置了重复传输次数与聚合时隙个数集合的对应关系;第一信息用于指示第二信息中,重复传输次数M与第一聚合时隙个数集合的第一对应关系,第一聚合时隙个数集合中的元素个数为T;或者第二信息中配置了重复传输次数与聚合时隙个数的对应关系;第一信息用于指示第二信息中,多个第一重复传输次数中每个第一重复传输次数与聚合时隙个数的对应关系。
结合第三方面或第四方面,可以有以下可能的设计:
在一种可能的设计中,根据对应关系确定的上行传输占用的时长根据上行数据传输间隔确定。
在一种可能的设计中,根据对应关系确定的上行传输占用时长为第一时长,第一时长大于16毫秒。
在一种可能的设计中,第一时长为20毫秒。
在一种可能的设计中,上行传输最大可占用时隙个数为第一时隙个数,根据对应关系确定的上行传输占用时隙为第二时隙个数,第二时隙个数小于或等于第一时隙个数。
在一种可能的设计中,第一时隙个数为32。
在一种可能的设计中,聚合时隙个数的取值属于第一集合,第一集合中包括5。
在一种可能的设计中,M的取值属于第二集合,第二集合中包括5和/或10。
在一种可能的设计中,当第二集合中包括5和/或10时,T=1。
在一种可能的设计中,在子载波间隔CSC为15kHZ下,重复传输次数M为4与聚合时隙个数为5存在第一对应关系。
在一种可能的设计中,在CSC为15kHZ下,重复传输次数M为10与聚合时隙个数为2存在第一对应关系;和/或重复传输次数M为5与聚合时隙个数为4存在第一对应关系。在一种可能的设计中,第二信息为无线资源控制RRC信令,或为系统信息块SIB;和/或第一信息承载在下行控制信息DCI或RRC信令中。
在一种可能的设计中,第一信息承载在RRC信令中,RRC信令中包括重复传输次数M与聚合时隙个 数集合的第一对应关系,聚合时隙个数集合中的不重复元素个数为T;或者RRC信令中包括多个第一重复传输次数中每个第一重复传输次数与一种聚合时隙个数的对应关系。
在一种可能的设计中,若对应关系为多个第一重复传输次数与一种聚合时隙个数的对应关系,在上行传输中,每个第一重复传输次数的重复传输是独立编码的。
在一种可能的设计中,当T=M时,M次重复传输与T种聚合时隙个数为一一对应关系;和/或当1<T<M时,T种聚合时隙个数循环与M次重复传输对应。
第五方面,提供了一种通信装置,包括处理器,该处理器用于通过执行计算机指令或通过逻辑电路执行第一方面或第一方面任一方面及其可能的设计所述的方法。
一种可能的设计中,该通信装置包括存储器用于存储计算机指令。可选的,该存储器与处理器集成在一起。
一种可能的设计中,该通信装置还包括收发器,该收发器用于接收和/或发送信号,该信号可以承载信令或数据。
该通信装置为终端设备,或终端设备中的装置。
第六方面,提供了一种通信装置,包括处理器,该处理器用于通过执行计算机指令或通过逻辑电路执行第二方面或第二方面任一方面及其可能的设计所述的方法。
一种可能的设计中,该通信装置包括存储器用于存储计算机指令。可选的,该存储器与处理器集成在一起。
一种可能的设计中,该通信装置还包括收发器,该收发器用于接收和/或发送信号,该信号可以承载信令或数据。
该通信装置为网络设备,或网络设备中的装置。
第七方面,本申请实施例提供一种芯片系统,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片系统实现上述第一方面或第二方面任一方面的方法。
可选地,该芯片系统还包括接口电路,该接口电路用于交互计算机指令至所述处理器。
可选地,该芯片系统中的处理器可以为一个或多个,该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置,本申请并不限定。示例性的,存储器可以是非瞬时性处理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型,以及存储器与处理器的设置方式不作具体限定。
第八方面,本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序或指令,当该计算机程序或指令被执行时,使得计算机执行上述第一方面或第二方面任一方面的方法。
第九方面,本申请实施例提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述第一方面或第二方面任一种可能的实现方式中的方法。
第十方面,本申请实施例提供一种通信系统,该通信系统包括上述的第三方面和/或第四方面的装置。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。
图1为本申请实施例提供的一种通信系统架构示意图;
图2为本申请实施例提供的一种冗余版本RV示意图;
图3A为本申请实施例提供的一种重复传输次数和聚合时隙个数指示信令示意图;
图3B为本申请实施例提供的一种重复技术和TBoMS技术联合的性能示意图;
图4A为本申请实施例提供一种数据调度方法示意图;
图4B为本申请实施例提供的一种第一对应关系示意图;
图4C为本申请实施例提供的一种重复传输次数与聚合时隙个数集合的对应关系示意图;
图4D为本申请实施例提供的一种RV应用的示意图;
图4E为本申请实施例提供的另一种RV应用的示意图;
图5A为本申请实施例提供的一种数据调度方法流程图;
图5B为本申请实施例提供的一种第一重复传输次数与聚合时隙个数的对应关系示意图;
图5C为本申请实施例提供的一种独立编码示意图;
图6为本申请实施例提供的一种通信装置结构框图;
图7为本申请实施例中的一种通信装置的硬件结构示意图。
具体实施方式
本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
随着5G新空口(new radio,NR)的发展与演进,增强移动带宽(enhanced mobile broadband,eMBB)、大规模机器类型通信(massive machine type communication,MMTC)、超可靠低延迟(ultra-reliable low-latency communications,uRLLC)等众多的应用场景需求逐渐渗透地面通信网络(terrestrial Network,TN)的各个层面。但万物互联的美好愿景仍受限制于一些特殊的通信场景,如沙漠、森林、海洋等地区,或飞机、高铁等高速移动交通工具中,因受成本或物理条件等的制约,无法采用传统的地面基站方式为其提供网络覆盖。因此,5G网络中的NTN技术应运而生。相比于传统的地面通信网络,NTN中采用典型的如卫星、HAPS等通信设备参与布网技术,以实现真正的全球范围网络覆盖,其优势与发展战略重要性不言而喻。卫星通信系统与5G相融合,取长补短,共同构成全球无缝覆盖的海、陆、空、天一体化综合通信网,满足用户无处不在的多种业务需求,是未来通信发展的重要方向。
针对NTN场景,覆盖增强技术是重要的讨论话题。在NTN场景中,RTT远远超过地面蜂窝系统,因此存在小区边缘用户链路预算较差的情况。尤其对于对地静止轨道(geostationary earth orbit,GEO),中地球轨道(medium earth orbit,MEO),低地球轨道(low earth orbit,LEO)-1200等轨道高度相对较高的场景,卫星在地面覆盖区域的边缘小区(或波束),链路预算差的情况更加明显。此外,考虑到手机终端直连卫星的场景,由于手机终端发射功率较小,天线数目较少,导致NTN场景中多种物理层传输信道解码存在瓶颈,尤其对于上行传输场景,比如物理上行共享信道(physical uplink shared channel,PUSCH)、物理上行控制信道(physical uplink controlchannel,PUCCH)消息(Msg)3,以及PUCCH、物理下行控制信道(physical uplink controlchannel,PDCCH)等控制信道等,覆盖增强的需求亟待解决。
本申请实施例即是针对NTN场景下的覆盖增强技术提出解决方案。
首先结合图示对本申请实施例涉及的系统架构和专业术语进行介绍。
请参阅图1,图1为本申请实施例提供的一种通信系统架构示意图,如图1所示,NR与NTN融合的通信网络中,地面移动终端通过5G NR接入网络,5G基站部署在卫星上,并通过无线链路与地面的核心网相连。同时,在卫星之间存在无线链路,完成基站与基站之间的信令交互和用户数据传输。图1中的各个网元以及他们的接口说明如下:
终端:支持5G NR的移动设备,具体可以指用户设备(user equipment,UE)、接入终端、用户单元(subscriber unit)、用户站、移动台(mobile station)、客户终端设备(customer-premises equipment,CPE)、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。终端设备还可以是卫星电话、蜂窝电话、智能手机、无线数据卡、无线调制解调器、机器类型通信设备、可以是无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、高空飞机上搭载的通信设备、可穿戴设备、无人机、机器人、智能销售点(point of sale,POS)机、设备到设备通信(device-to-device,D2D)中的终端、车到一切(vehicle to everything, V2X)中的终端、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端或者未来通信网络中的终端设备等,本申请不作限制。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片系统。该装置可以被安装在终端设备中或者和终端设备匹配使用。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
5G基站:是指5G网络中将终端接入到无线网络的无线接入网(radio access network,RAN)节点(或设备),又可以称为接入网设备,网络设备,或者继续演进的节点B(gNB)。主要是提供无线接入服务,调度无线资源给接入终端,提供可靠的无线传输协议和数据加密协议等。网络设备可以为无线接入网中的节点,又可以称为基站,还可以称为RAN节点(或设备)。网络设备可以是LTE中的演进型基站(evolved Node B,eNB或eNodeB);或者5G网络中的下一代节点B(next generation node B,gNB)或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的基站,宽带网络业务网关(broadband network gateway,BNG),汇聚交换机或者非第三代合作伙伴项目(3rd generation partnership project,3GPP)接入设备等。可选的,本申请实施例中的网络设备可以包括各种形式的基站,例如:宏基站、微基站(也称为小站)、中继站、接入点、5G之后演进的通信系统中实现基站功能的设备、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心以及设备到设备(Device-to-Device,D2D)、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备等,还可以包括云接入网(cloud radio access network,C-RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)、NTN通信系统中的网络设备,即可以部署于高空平台或者卫星。本申请实施例对此不作具体限定。
5G核心网:是指在5G网络中为终端设备提供业务支持的核心网(core network,CN)中的设备。用于进行用户接入控制,移动性管理,会话管理,用户安全认证,计费等业务。它有多个功能单元组成,可以分为控制面功能实体和数据面功能实体。认证管理功能(authentication management function,AMF),负责用户接入管理,安全认证,还有移动性管理。用户面功能(user plane function,UPF)负责管理用户面数据的传输,流量统计等功能。
地面站:负责转发卫星基站和5G核心网之间的信令和业务数据。
5G NR:终端和基站之间的无线链路。
Xn接口:5G基站和基站之间的接口,主要用于切换等信令交互。
NG接口:5G基站和5G核心网之间接口,主要交互核心网的非接入层(non-access-stratum,NAS)等信令,以及用户的业务数据。
覆盖增强技术:物理层覆盖增强技术包括且不限于重复(repetition)、多时隙传输块处理(transport block processing over multiple slots,TBoMS)、联合信道估计、跳频,以及天线选择等技术。其中,重复和TBoMS作为增益突出,技术手段明确的两种增强方法,以降低传输速率以及码率的方式使接收机在合并解码时获得能量增益以及编码增益,可以有效的降低链路译码门限,达到覆盖增强的效果。
重复技术:重复技术是地面覆盖增强技术中运用广泛(适用于各种物理信道)的物理层传输手段,通过降低传输速率(等效降低码率)的方式,对同一传输块(transport block,TB)连续发送,可以在接收端获得多段传输合并的能量增益。其合并方式根据每次重复中发送的编码信息的冗余版本(redundancy version,RV)是否相同,在接收端可以分为蔡司合并(chase combining,CC)以及增量冗余(incremental redundancy,IR)合并两种。相比于CC合并在接收端获得的重复发送带来的能量增益,IR合并还可以额外获得不同RV版本合并带来的编码增益,达到降低解码门限的作用。
多时隙传输块处理技术:TBoMS技术是地面覆盖增强中,针对PUSCH信道的覆盖增强提出的一种通过增加编码长度,降低编码头部(header)开销,以相对低的码率进行传输而获得编码增益的覆盖增强技术,该技术的主要影响点在计算传输块大小(transport block size,TBS)流程中增加聚合时隙个数N,作为TBS缩放系数。相比于传统的TBS计算流程,该改动可以使标准中一个TBS的编码比特版本在一个时隙中传输变为在连续的N个时隙中传输。
冗余版本:RV将编码器生成的冗余比特分成若干组,每个RV定义一个传输开始点,首次传送和各次混合自动重传(hybrid automatic repeat request,HARQ)分别使用不同的RV,以实现冗余比特的逐步积累, 完成增量冗余HARQ操作。具体可参阅图2,图2为本申请实施例提供的一种冗余版本RV示意图,如图2所示,TB经过信道编码的数据包括系统位(S)对应的基本数据,以及冗余位(P)对应的冗余数据,这些数据被放在环形缓冲区内。RV0,RV1,RV2,和RV3四个RV版本表示以不同的位置作为起点从环形缓冲区内获取数据。图2中左下角表示按照(0,2,3,2)的冗余版本进行4次重复传输时,每个RV占用的时域资源长度。当前的NR标准中,每次重复传输对应的聚合时隙个数相同,因此每个RV占用的时域资源长度也相同。
一种可能的实现中,重复技术和TBoMS技术可以联合使用。以PUSCH调度场景中的配置授权(configured grant,CG)类型2(type 2)调度为例:聚合时隙数N配置在无线资源控制(radio resource controller,RRC)信令中,具体可以在PUSCH时域资源分配(time domain resource allocation,TDRA)信息单元中(information element,IE)中(与NR传统的重复次数配置在同一位置),也即是说,聚合时隙个数和重复次数在同一个RRC信令中配置。此后,在上行数据调度中,网络侧通过向UE下发下行控制信息(downlink control information,DCI)激活该配置,UE通过DCI信令中TDRA字段指示到RRC信令中PUSCH_TDRA IE中的行号,获得后续上行PUSCH发送使用的TBoMS聚合时隙个数N以及重复次数M。除了CG Type 2调度场景,TBoMS技术同样支持上行传输的动态调度(dynamic grant,DG)以及CG Type1调度场景。在Type 1调度中,聚合时隙数N以及重复次数M通过RRC信令直接下发给UE,不需要DCI激活。
一种可能的实现中,同一个TBoMS中仅传输一个码块(code block,CB),即TBoMS中不支持传输块分段。此外,TBoMS传输使用一个RV版本,TBoMS在多次重复传输之间使用不同的RV版本。
基于互联网协议的语音传输(voice over Internet protocol,VoIP)场景中,VoIP PUSCH信道的链路预算具体如表1所示。
表1
表1中表示在PUSCH中,子载波间隔(subcarrier spacing,SCS)为15KHz,物理资源块(Physical Resource Block,PRB)数量为2对应的链路预算。其中最大复合噪声比(composite noise ratio,CNR)为-5.163dB,最小复合噪声比为-23.577dB。在3GPP TS38.821中卫星、终端能力的参数设置下,NTN场景VoIP业务上行数据传输信道的译码门限较高(即是说对传输信道的信噪比需求较高),很难满足表1所示的链路预算。
一种可能的实现中,可以通过重复技术和TBoMS结合的技术可以提升链路覆盖水平。例如在VoIP场景中,网络侧通过在RRC参数的IE:PUSCH-TimeDomainResourceAllocation中配置UE进行上行传输需要使用的重复次数Mrep,以及TBoMS的聚合时隙个数Ntboms。上述两个参数的取值范围为:Mrep={1,2,3,4,7,8,12,16,20,24,28,32},以及Ntboms={1,2,4,8}。具体可参阅图3A,图3A为本申请实施例提供的一种重复传输次数和聚合时隙个数指示信令示意图,如图3A所示,在RRC参数的IE中,配置了“numberofRepetitionsEex-r17”参数的取值,即重复传输次数Mrep的取值。配置了“numberOfSlots-TBoMS-r17”参数的取值,即Ntboms的取值。即,现有标准仅支持网络侧对UE下发RRC参数中已有的参数取值,并且根据关于连续最大传输次数不得超过32个时隙的约束,可知网络侧需要对这两个时域资源分配参数有以下约束:Mrep×Ntboms≤32。
当前,对于VoIP业务的仿真最高使用16ms的传输时间,重复技术和TBoMS结合的传输时长为16ms时,视距(line of sight,LOS)信道下的译码门限为-5.5dB,仅满足LEO600 SET1 30°对应的CNR-5.5dB,其他情况均不满足。
一些场景中,上行数据传输具有传输间隔的限制,VoIP场景中语音包传输间隔可以为20ms。在VoIP业务20ms传输一个语音packet的背景下,基于Mrep×Ntboms≤32的约束,当TBoMS技术与重复技术联合使用,且SCS=15KHz(1时隙=1ms)时,网络侧对UE指示的重复次数以及TBoMS聚合时隙个数共有如表2所示的五种组合下发方式:
表2
其中,从终端处理复杂度(译码,接收机处理等)角度考虑,用于调度PUSCH传输的简单的时域资源指示方式为表2中的首行,即仅将传输块重复发送20次,接收端采用CC或IR合并译码。然而仅采用传输块重复发送没有TBoMS带来的额外的编码增益。示例性的,可参阅图3B,图3B为本申请实施例提供的一种重复技术和TBoMS技术联合的性能示意图,其中横轴表示信噪比,纵轴表示误块率(block error rate,BLER)。N表示TBoMS的聚合时隙个数,M表示重复传输次数,MCS表示调制编码方案(modulation and coding scheme),TBS表示传输块大小(transport block size)。根据图3B所示的示例仿真结果可知,发端仅采用重复技术而不做TBoMS聚合(如N=1,M=16),在三个取值组合中,会有最差的译码性能。N值越大,译码性能越好。发端采用N>1的M、N组合进行传输,覆盖增强的效果更佳。
如表2中所示,当Nthoms>1时,所选择的Mrep与Nthoms的组合,实际上都无法将20ms传输时机完全用于重复技术结合TBoMS聚合以提升覆盖的需求。这将导致覆盖增强无法达到理想效果。
基于此,请参阅图4A,为本申请实施例提供一种数据调度方法示意图,如图4A所示,该方法包括如下流程:
101、网络设备发送第一信息,第一信息用于指示终端设备上行传输的重复传输次数M与T种聚合时隙个数的第一对应关系;M为大于或等于1的整数,T为大于或等于1且小于或等于M的整数。
在本申请实施例中,由网络设备向终端设备发送指示信息,用于指示终端设备上行传输的重复次数M与T种TBoMS的聚合时隙个数的第一对应关系。其中1≤T≤M。通过灵活的方式对TBoMS技术与重复技术联合,使得重复传输是能够更加充分利用传输时机,提升覆盖增强的效果。需要说明的是,本申请实施例中涉及的聚合时隙个数都是指TBoMS的聚合时隙个数,以下不再赘述。
一种可能的实现中,根据对应关系确定的上行传输占用的时长为第一时长,第一时长大于16毫秒。终端设备根据指示信息指示的第一对应关系进行上行传输,可以使得上行传输占用的时长大于16ms。该第一时长可以为20ms,也即是说,采用本申请实施例的指示信息进行上行传输,能够使得终端设备的上行传输充分占用20ms的传输时机。
具体地,本申请实施例可以包括两种实施方式,其中一种实施方式为T=1,另一种实施方式为T>1。
当T=1时,即是说重复传输次数M与一种聚合时隙个数存在第一对应关系。
一种可能的实现中,重复传输次数M的取值集合(第二集合)中可以包括5和/或10。也即是说,传输时间间隔20ms,SCS为15KHz时,图4A的方法之前描述的重复传输次数为原始M的集合{1,2,3,4,7,8,12,16,20,24,28,32}中的任意一个,而该可能的实现中,M为第二集合中的任意一个,第二集合={1,2,3,4,5,7,8,12,16,20,24,28,32}。对应到图3A中用于指示重复传输次数的“numberofRepetitionsEex-r17”的参数,其取值可以修改为ENUMERATED{n1,n2,n3,n4,n5,n7,n8,n12,n16,n20,n24,n28,n32,spare3,spare2,spare1}。或者第二集合={1,2,3,4,7,8,10,12,16,20,24,28,32},或者第二集合={1,2,3,4,5,7,8,10,12,16,20,24,28,32}。同样的,第二集合中新增的10可以以“n10”新增到图3A中所示的参数取值中。
第二集合中包括5和/或10的情况下,当M=5时,与其存在第一对应关系的聚合时隙个数N=4,那么第一时长为M*N=20ms。同样的,当M=10时,与其存在第一对应关系的聚合时隙个数N=2,第一时长为M*N=20ms。这两种第一对应关系都能够使得终端设备的上行传输占用时长(第一时长)刚好能够全部占用VoIP的20ms的传输时机,提升覆盖增强的效果。
又一种可能的实现中,TBoMS的聚合时隙个数的取值集合(第一集合)中包括5。也即是说,图4A 的方法之前描述的聚合时隙个数N为原始N的集合{1,2,4,8}中的任意一个,本申请实施例中,N为第一集合中的任意一个,第一集合={1,2,4,5,8}。对应到图3A中用于指示重复传输次数的“numberofRepetitionsEex-r17”的参数,其取值可以修改为ENUMERATED{n1,n2,n4,n5,n8,spare2,spare1}。当N=5时,与其存在第一对应关系的重复传输次数M=4,第一时长为M*N=20ms。
上述第一对应关系是以SCS=15kHZ为例确定的。当SCS为其他值时,也可以确定其他第一对应关系。例如SCS=30kHZ,M=5,聚合时隙个数N=8,这种情况下每个时隙时长为0.5ms,即第一时长为M*N*0.5=20ms。M=10,聚合时隙个数N=4,第一时长为M*N*0.5=20ms。即与M=5存在第一对应关系的为N=8,与M=10存在第一对应关系的为N=4。当N=5时,M=8,第一时长为M*N*0.5=20ms。这些第一对应关系也都能够使得终端设备的上行传输占用时长刚好全部占用VoIP的20ms的传输时机。达成覆盖增强的效果。其他子载波间隔的情况能够以同样的方式确定M=5和/或10,以及N=5的第一对应关系。在此不再赘述。
可见,在本申请实施例中,通过增加重复传输次数的取值,或者增加TBoMS的取值,或者同时增加两者的取值,使得重复传输技术与TBoMS技术联合,能够完全占用传输时机,充分利用传输时机进行上行数据的传输,达成更好的覆盖增强的效果。
当T>1时,重复传输次数M与多种TBoMS的聚合时隙个数存在第一对应关系。具体可参阅图4B,图4B为本申请实施例提供的一种第一对应关系示意图,如图4B所示,重复传输次数M中的每次重复传输Repi,都对应一个聚合时隙个数Ni,i=1,2,3…M。在M个Ni中,至少有两个Ni为不同的值。
在T>1的情况下,重复传输次数M的取值集合(第二集合)中也可以包括5和/或10,以及TBoMS的聚合时隙个数N的取值集合(第一集合)中也可以包括5。举例来说,当M=5时,与其存在第一对应关系的聚合时隙个数为{2,4,8,4,2}。同理也可以确定M=10的情况下的第一对应关系,以及确定T种聚合时隙个数中包括N=5的情况下的第一对应关系。
在本实施例中,重复传输次数M和T种TBoMS的聚合时隙个数的指示方式如下:
一种可能的实现中,网络设备发送第二信息,第二信息中配置了重复传输次数与聚合时隙个数集合的对应关系;第一信息用于指示第二信息中,重复传输次数M与第一聚合时隙个数集合的第一对应关系,第一聚合时隙个数集合中的不重复元素个数为T。
具体可参阅图4C,图4C为本申请实施例提供的一种重复传输次数与聚合时隙个数集合的对应关系示意图,如图4C所示,每个重复传输次数对应一个或多个聚合时隙个数集合,集合中的不重复元素个数为T。例如M=3时,对应三个聚合时隙个数集合(元素顺序不同为不同的集合),分别为集合{8,8,4}、集合{4,8,8}以及集合{8,4,8}。每个集合中包括2个不重复的元素,也即T=2。通过第二信息将这些重复传输次数与聚合时隙个数集合的对应关系进行配置,再通过第一信息指示重复传输次数M与第一聚合时隙个数集合的第一对应关系。例如指示第一对应关系的序列号或索引号05,表示重复次数M=4与聚合时隙个数集合{4,4,8,8}的第一对应关系。第二信息中也可以配置新增重复传输次数M=5和/或10,或者聚合时隙个数包括5的第一对应关系,例如索引号09~11指示的对应关系。
第二信息可以为RRC信令,或者系统信息块(system information block,SIB),即配置信息通过RRC信令或SIB发送。第一信息可以承载在DCI或RRC信令中。即网络设备通过在DCI或RRC信令中指示第一对应关系的索引号或序列号,激活第一对应关系。
又一种可能的实现中,第一信息承载在RRC信令中,RRC信令中包括重复传输次数M与聚合时隙个数集合的第一对应关系,聚合时隙个数集合中的不重复元素个数为T。
除了上述先配置后激活的方式指示第一对应关系,也可以直接由RRC信令指示第一对应关系。具体地,RRC信令可以显式地指示第一对应关系中的所有参数,包括M以及M对应的完整的聚合时隙个数集合{N1,N2,…,NM},其中,完整的聚合时隙个数集合中的元素个数=M(集合中包含的聚合时隙个数的种类T为可以根据聚合时隙个数集合元素获取的参数,可以进行指示,也可以不进行指示)。例如RRC信令中指示了M=3,与完整的聚合时隙个数集合{4,8,8},则终端设备可以直接确定存在第一对应关系的为M=3和集合{4,8,8}。
或者,RRC信令可以显式地指示第一对应关系中的部分参数,另一部分参数根据显示指示的部分参数获取。例如RRC信令中指示了M=7,并指示了聚合时隙个数集合{2,4},其中聚合时隙个数N=2对应第奇数次重复传输次数,N=4对应第偶数次重复传输次数。即{N1,N2}={2,4}两种聚合时隙个数循环与重复传输次数对应。这种情况下RRC并未指示完整的聚合时隙个数集合,但是根据RRC指示的信息,可以确定M=7对应的完整的聚合时隙个数集合为{2,4,2,4,2,4,2}。同理,RRC信令可以指示完整的聚合时隙个数集 合{N1,N2,…,Nm}={2,4,8,4,2},不指示M,终端设备根据该完整的聚合时隙个数集合可以确定M=5。
终端设备确定M以及M对应的完整的聚合时隙个数集合之后,可以确定上行传输占用时长(第一时长),例如M=5,完整的聚合时隙个数集合={2,4,8,4,2},第一时长=2+4+8+4+2=20ms。可以全部占用VoIP的20ms的传输时机。
针对T=1的情况,也可以通过RRC信令或SIB发送的第二信息进行配置,即图4C中的对应关系示意图可以包括M与单个N或者与单个N组成的集合的对应关系,然后由RRC信令或DCI发送第一信息对该对应关系进行指示或激活。也可以采用RRC信令直接指示M与单个N的对应关系。在此不再赘述。
上述示例是以SCS=15KHz进行说明的。同样地,当SCS为其他值时,也可以同过上述两种方式指示第一对应关系。例如SCS=30KHz时,第一信息可以指示M=4与其对应的完整的聚合时隙个数集合{16,16,4,4}。其他SCS的其他情况本申请实施例在此不做赘述。
102、终端设备接收第一信息,根据第一信息中指示的第一对应关系进行上行传输。相应地,网络设备接收上行传输数据,该上行传输数据为根据第一信息指示的第一对应关系发送的。
终端设备接收到第一信息中的指示的第一对应关系后,根据第一对应关系确定每次重复传输对应的聚合时隙个数,然后按照相应的聚合时隙个数进行对应的重复传输。对应的第一时长=,这显然比只指示一个M值以及与其对应的一个N值的情况更能获得更多第一时长可能值,因此终端设备采用这种对应关系进行上行传输能够占用全部的传输时机的概率也更大。
网络设备接收终端设备发送的上行传输数据。由于网络设备向终端设备发送了第一指示信息用于指示终端设备如何进行M次重复传输对应的上行传输,因此网络设备接收到上行传输数据对应的编码单元(例如数据包、数据报文等)之后,可以确定如何解码,并获得其中的上行传输数据。
进一步地,前述相关内容中介绍了RV。在重复技术与TBoMS技术联合使用的场景下,可以选择不同的RV循环方式进行重复传输。
(1)RV={0,2,3,1}的循环方式。可参阅图4D,图4D为本申请实施例提供的一种RV应用的示意图,如图4D中的(a)所示,RV0,RV2,RV3,RV1循环与7次重复传输次数对应,并且与每次重复传输的聚合时隙个数(包括2,4两种聚合时隙个数)对应。
另外,在本申请实施例中,由于不同次数的重复传输,对应的聚合时隙个数不同,因此4种RV对应占用的时域资源长度也有所不同。具体可参阅图4D中的(b),RV0对应第1次重复传输,聚合时隙个数为2时隙,则RV0映射到连续的2个时隙;依次类推,RV2映射到连续的4时隙,RV3映射到连续的2个时隙,RV1映射到连续的4个时隙。更广泛地,RV0,RV2,RV3,RV1映射到的连续时隙个数依次根据第M mod 4=1、M mod 4=2、M mod 4=3、M mod 4=0个重复传输次数对应的聚合时隙个数确定,其中M表示总的重复传输次数。
(2)RV={0,3,0,3}的循环方式。可参阅图4E,图4E为本申请实施例提供的另一种RV应用的示意图,如图4E中的(a)所示,RV0,RV3,RV0,RV3循环与7次重复传输次数对应,并且与每次重复传输的聚合时隙个数(包括2,4两种聚合时隙个数)对应。
同样地,RV占用的时域资源长度根据其对应的重复传输次数的聚合时隙个数确定。可参阅图4E中的(b),RV0对应第1次重复传输,聚合时隙个数为2时隙,则RV0映射到连续的2个时隙。类推可确定RV3映射到连续的4个时隙。更广泛地,RV0映射到的连续时隙个数根据第M mod 4=1、M mod 4=3个重复传输次数对应的聚合时隙个数确定,RV3映射到的连续时隙个数根据第M mod 4=2、M mod 4=0个重复传输次数对应的聚合时隙个数确定。因为该示例中未采用RV1和RV2,其占用的时域资源长度不在考虑范围。
可选情况下,可以在第一信息或其他信息中指示每个RV占用的时域资源长度,具体可以根据每次重复传输对应的聚合时隙个数确定。以便RV映射的连续时隙个数能够随着灵活变化的聚合时隙个数适应性调整,提升通信过程的可靠性。
另外需要说明的是,上述实施例是以VoIP的传输时机为20ms进行举例说明的。在其他通信业务场景下,对应其他传输时机时,也可以采用本申请实施例的方式确定具有第一对应关系的重复传输次数M和T种TBoMS的聚合时隙个数的第一对应关系,这些对应关系能够使得上行传输占用时长接近或等于其他传输时机。终端设备根据这种第一对应关系进行上行传输,能够尽可能多地占用相关通信业务的传输时机,达成更好的覆盖增强的效果。该说明同样适用于下述实施例,在下述实施例中不在赘述。
可见,在本申请实施例中,通过为重复传输次数M对应至少两种TBoMS的聚合时隙个数,使得不同种类的聚合时隙个数在M次重复传输中进行组合,尽可能多地占用传输时机,以便更多的传输时机能够用 于进行上行数据的传输,达成更好的覆盖增强的效果。
上述实施例都是通过一次性指示重复传输次数M与TBoMS聚合时隙个数的对应关系确定M次重复传输过程中对应的聚合时隙个数。实际上,也可以将M次重复传输进行拆分,并分开指示每部分重复传输对应的聚合时隙个数,进而确定M次重复传输对应的聚合时隙个数。具体地,请参阅图5A,为本申请实施例提供的一种数据调度方法流程图,如图5A所示,该方法包括如下步骤:
201、网络设备发送第一信息,第一信息用于指示终端设备上行传输的多个第一重复传输次数与一种聚合时隙个数的对应关系,多个第一重复传输次数和值为M,M为大于1的整数。在本申请实施例中,由网络设备向终端设备发送指示信息,用于指示多个第一次重复传输次数与一种TBoMS的聚合时隙个数的对应关系,多个第一重复传输次数的和值为M,也即是说分段指示M个重复传输次数,与其对应的聚合时隙个数。
一种可能的实现中,根据对应关系确定的上行传输占用时长为第一时长,第一时长大于16毫秒。该第一时长可以为20毫秒。
具体地,请参阅图5B,图5B为本申请实施例提供的一种第一重复传输次数与聚合时隙个数的对应关系示意图,如图5B所示,假设重复传输次数M被拆分成j个第一重复传输次数,分别为M1、M2…Mj,其中j大于或等于2,且M1+M2+…Mj=M。其中M1个重复传输对应的聚合时隙个数为N1,M2个重复传输对应的聚合时隙个数为N2,Mj个重复传输对应的聚合时隙个数为Nj。那么根据该对应关系确定的上行传输占用时长(第一时长)为M1*N1+M2*N2+…+Mj*Nj(在SCS=15KHz的情况下,在其他SCS的情况下,再在每个Mj*Nj的基础上乘以每个时隙的毫秒数即可获得该Mj次重复传输占用时长)。
在本实施例中,多种第一重复传输次数与聚合时隙个数的对应关系可通过以下方式指示:
一种可能的实现中,网络设备发送第二信息,第二信息中配置了重复传输次数与聚合时隙个数的对应关系;第一信息用于指示第二信息中,多个第一重复传输次数中,每个第一重复传输次数与聚合时隙个数的对应关系。
重复传输次数可以为前述描述的{1,2,3,4,7,8,12,16,20,24,28,32}中的任意一个,聚合时隙个数可以为{1,2,4,8}中的任意一个。那么重复传输次数和聚合时隙个数的对应关系可参阅表3:
表3
每种重复传输次数都可以与聚合时隙个数2,4,8对应,且每个重复传输次数与聚合时隙个数的对应关系可以用序列号或索引号进行标识。第二信息中配置了如表3中所示的内容。
然后通过第一信息指示多个第一重复传输次数中,每个第一重复传输次数与聚合时隙个数的对应关系,例如指示M1=4,N1=2,M2=3,N2=4。具体可以指示这些对应关系在配置内容中的索引号或序列号,例如指示索引号07以及05。
在一些情况下,重复传输次数对应的第二集合中可以包括如前述实施例描述的5和/或10,聚合时隙个数对应的第一集合中可以包括如前述实施例描述的5。例如表3中,配置了M=5时,分别与聚合时隙个数2,4,8存在对应关系。
一种可能的实现中,第二信息可以为RRC信令或SIB,第一信息可以承载在DCI或RRC信令。
又一种可能的实现中,第一信息承载在RRC信令中,RRC信令中包括多个第一重复传输次数中每个第一重复传输次数与一种聚合时隙个数的对应关系。
即每个第一重复传输次数与聚合时隙个数的对应关系可以由RRC信令直接指示,例如直接指示(M1=4,N1=2)以及(M2=3,N2=4)两组对应关系,无需额外的信令进行激活。
可选情况下,第一信息还可以用于指示多个第一重复传输次数的执行顺序,例如指示M1为先执行的重复传输次数,那么该上行传输对应的7次重复传输中,先执行的前4次重复传输,对应的聚合时隙个数为2。
202、终端设备接收第一信息,根据第一信息中指示的对应关系进行上行传输。相应的,网络设备接收上行传输数据,该上行传输数据为根据第一信息指示的对应关系发送的。
终端设备接收到第一信息后,根据第一信息中指示的对应关系,确定M次重复传输中,分别按照每个第一传输次数对应的聚合时隙个数进行相应次数的重复传输。在总共包括j个第一传输次数的情况下,对应的第一时长=M1*N1+M2*N2+…+Mj*Nj。这显然比只指示一个M值与其对应的一个N值的情况更能获得更多第一时长可能值,因此终端设备采用这种对应关系进行上行传输能够占用全部的传输时机的概率也更大。
终端设备接收网络设备发送的上行传输数据。由于网络设备向终端设备发送了第一指示信息用于指示终端设备如何进行M次重复传输对应的上行传输,因此网络设备接收到上行传输数据对应的编码单元(例如数据包、数据报文等)之后,可以确定如何解码,并获得其中的上行传输数据。
可见,在本申请实施例中,可以通过指示多个第一重复传输次数与一种聚合时隙个数的对应关系,完成全部M次重复传输次数对应聚合时隙个数的指示。该过程中,指示的重复传输次数与聚合时隙个数的对应关系与现有协议相同,区别仅在于指示的对应关系数量大于一种。使用该中方法进行指示,可以降低指示过程的复杂度和资源开销,同时能够达成尽量占用传输时机,达成提升覆盖增强效果的作用。
进一步地,一种可能的实现中,本方法的上行传输中,每个第一重复传输次数的重复传输是独立编码的。
具体可参阅图5C,图5C为本申请实施例提供的一种独立编码示意图,如图5C所示,假设网络设备指示了(M1=4,N1=2)以及(M2=3,N2=4)两组对应关系,则M1对应的前4次重复传输的聚合时隙个数都为2,而M2对应的后3次重复传输的聚合时隙个数都为4。假设将前4次重复传输和后3次重复传输进行独立编码,那么网络设备在接收到终端设备发送的两个编码单元之后,对同一个编码单元能够以统一的聚合时隙个数进行解码,降低接收端解码的复杂度。
可见,在本申请实施例中,上行传输过程中针对多个第一重复传输次数,每个第一重复传输次数的重复传输进行独立编码,可以降低接收端解码的复杂度,提升解码效率,进而提升数据传输效率。
需要说明的是,本申请实施例开与前述图4A~图4E的实施例结合使用。也即是说,第一信息可以同时指示多个第一重复传输次数,且每个第一重复传输次数可以与一种聚合时隙个数对应,也可以与多种聚合时隙个数对应。举例来说,M=7,M1=2,N1=2;M2=5,对应的聚合时隙个数集合为{4,2,4,2,4}。则M=7时,对应的聚合时隙个数集合为{2,2,4,2,4,2,4}。这种指示方式也能够降低指示内容的资源占用。假设将M1对应的重复次数和M2对应的重复次数进行独立编码,也能够起到降低接收端解码复杂度,提升数据传输效率的作用。
另外,本申请图4A~图4E,以及图5A~图5C描述的实施例为覆盖增强技术中的重复技术与TBoMS技术联合的技术,这些技术方法还可以与其他覆盖增强技术结合使用。例如与联合信道估计技术结合,将联合信道估计的窗口长度设置为大于或等于(k表示M次重复传输被分成的k个第一重复传输次数),那么在M次重复传输对应的连续时隙上,可以进行联合信道估计。或者这些技术方法还可以与调频技术结合使用,在同一次重复传输对应的Ni个时隙上不进行调频,而在不同次数的重复传输对应的时隙上可以进行调频,保证通信质量的同时,获得信道频选增益。与其他技术结合的方式同理,在此不再一一列举。
如图6所示,为本申请实施例提供的一种通信装置300,该通信装置包括用于实现上述图4A或图5A所示的方法实施例及其任一项可能的设计的方法的模块或单元。该模块或单元可以是硬件电路,也可是软 件,也可以是硬件电路结合软件实现。该通信装置可以是终端设备,也可以是终端设备或网络设备中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和终端设备匹配使用的装置。该装置可以包括收发模块301和处理模块302。
当通信装置300用于实现图4A所述方法实施例中终端设备的功能时:
收发模块301,用于接收第一信息,第一信息用于指示终端设备上行传输的重复传输次数M与T种聚合时隙个数的第一对应关系;M为大于或等于1的整数,T为大于或等于1且小于或等于M的整数;处理模块302:用于根据第一信息中指示的第一对应关系结合收发模块301进行上行传输。
当通信装置300用于实现图5A所述方法实施例中终端设备的功能时:
收发模块301,用于接收第一信息,第一信息用于指示终端设备上行传输的多个第一重复传输次数与一种聚合时隙个数的对应关系,多个第一重复传输次数和值为M,M为大于1的整数;处理模块302,用于根据第一信息中指示的第一对应关系结合收发模块301进行上行传输。
当通信装置300用于实现图4A所述方法实施例中网络设备的功能时:
收发模块301,用于发送第一信息,第一信息用于指示终端设备上行传输的重复传输次数M与T种聚合时隙个数的第一对应关系;M为大于或等于1的整数,T为大于或等于1且小于或等于M的整数;收发模块301,还用于接收上行传输数据,该上行传输数据为根据第一信息中指示的第一对应关系发送的。
当通信装置300用于实现图5A所述方法实施例中网络设备的功能时:
收发模块301,用于发送第一信息,第一信息用于指示终端设备上行传输的多个第一重复传输次数与一种聚合时隙个数的对应关系,多个第一重复传输次数和值为M,M为大于1的整数;收发模块301,还用于接收上行传输数据,该上行传输数据为根据第一信息中指示的对应关系发送的。
关于上述收发模块301和处理模块302更详细的描述,可参考上述方法实施例中的相关描述,在此不再说明。
如图7所示,图7示出了本申请实施例中的一种通信装置的硬件结构示意图。图6中的通信装置的结构可以参考图7所示的结构。通信装置900包括:处理器111和收发器112,所述处理器111和所述收发器112之间电偶合;
所述处理器111,用于执行所述存储器中的部分或者全部计算机程序指令,当所述部分或者全部计算机程序指令被执行时,使得所述装置执行上述任一实施例所述的方法。
收发器112,用于和其他设备进行通信;例如接收来自网络设备的第一信息,第一信息用于指示终端设备上行传输的多个第一重复传输次数与一种聚合时隙个数的对应关系。
可选的,还包括存储器113,用于存储计算机程序指令,可选的,所述存储器113(存储器#1)位于所述装置内,所述存储器113(存储器#2)与处理器111集成在一起,或者所述存储器113(存储器#3)位于所述装置之外。
应理解,图7所示的通信装置900可以是芯片或电路。例如可设置在终端装置或者通信装置内的芯片或电路。上述收发器112也可以是通信接口。收发器包括接收器和发送器。进一步地,该通信装置900还可以包括总线系统。
其中,处理器111、存储器113、收发器112通过总线系统相连,处理器111用于执行该存储器113存储的指令,以控制收发器接收信号和发送信号,完成本申请涉及的实现方法中第一设备或者第二设备的步骤。所述存储器113可以集成在所述处理器111中,也可以与所述处理器111分开设置。
作为一种实现方式,收发器112的功能可以考虑通过收发电路或者收发专用芯片实现。处理器111可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片或其他通用处理器。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)及其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等或其任意组合。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只 读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本申请描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例提供了一种计算机存储介质,存储有计算机程序,该计算机程序包括用于执行上述实施例中对应用于网络设备或终端设备的方法。
本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述实施例中对应用于网络设备或终端设备的方法。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。
所述功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (27)

  1. 一种数据调度方法,其特征在于,所述方法包括:
    获取第一信息,所述第一信息用于指示终端设备上行传输的重复传输次数M与聚合时隙个数的对应关系,其中,所述聚合时隙个数为多时隙传输块处理TBoMS的聚合时隙个数,所述对应关系包括重复传输次数M与T种聚合时隙个数的第一对应关系;或者所述对应关系包括多个第一重复传输次数与1种聚合时隙个数的对应关系,所述多个第一重复传输次数的和为M;M为大于或等于1的整数,T为大于或等于1且小于或等于M的整数;
    根据所述对应关系进行上行传输。
  2. 根据权利要求1所述的方法,其特征在于,在获取所述第一信息之前,所述方法还包括:
    接收第二信息,所述第二信息中配置了重复传输次数与聚合时隙个数集合的对应关系;所述第一信息用于指示所述第二信息中,所述重复传输次数M与第一聚合时隙个数集合的第一对应关系,所述第一聚合时隙个数集合中的元素个数为T;或者
    所述第二信息中配置了重复传输次数与聚合时隙个数的对应关系;所述第一信息用于指示所述第二信息中,所述多个第一重复传输次数中,每个第一重复传输次数与聚合时隙个数的对应关系。
  3. 一种数据调度方法,其特征在于,所述方法包括:
    发送第一信息,所述第一信息用于指示终端设备上行传输的重复传输次数M与聚合时隙个数的对应关系,其中,所述聚合时隙个数为多时隙传输块处理TBoMS的聚合时隙个数,所述对应关系包括重复传输次数M与T种聚合时隙个数的第一对应关系;或者所述对应关系包括多个第一重复传输次数与1种聚合时隙个数的对应关系,所述多个第一重复传输次数和值为M;M为大于或等于1的整数,T为大于或等于1且小于或等于M的整数;
    接收上行传输数据,所述上行传输数据为根据所述对应关系发送的。
  4. 根据权利要求3所述的方法,其特征在于,在发送所述第一信息之前,所述方法还包括:
    发送第二信息,所述第二信息中配置了重复传输次数与聚合时隙个数集合的对应关系;所述第一信息用于指示所述第二信息中,所述重复传输次数M与第一聚合时隙个数集合的第一对应关系,所述第一聚合时隙个数集合中的不重复元素个数为T;或者
    所述第二信息中配置了重复传输次数与一种聚合时隙个数的对应关系;所述第一信息用于指示所述第二信息中,所述多个第一重复传输次数中,每个第一重复传输次数与一种聚合时隙个数的对应关系。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,根据所述对应关系确定的上行传输占用的时长根据上行数据传输间隔确定。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,根据所述对应关系确定的上行传输占用时长为第一时长,所述第一时长大于16毫秒。
  7. 根据权利要求6任一项所述的方法,其特征在于,所述第一时长为20毫秒。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述上行传输的最大可占用时隙个数为第一时隙个数,根据所述对应关系确定的上行传输占用时隙为第二时隙个数,所述第二时隙个数小于或等于所述第一时隙个数。
  9. 根据权利要求8所述的方法,其特征在于,所述第一时隙个数为32。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述聚合时隙个数的取值属于第一集合,所述第一集合中包括5。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述M的取值属于第二集合,所述第二集合中包括5和/或10。
  12. 根据权利要求11所述的方法,其特征在于,在所述第二集合中包括5和/或10的情况下,T=1。
  13. 根据权利要求10所述的方法,其特征在于,在子载波间隔为15kHZ时,所述重复传输次数M为4与所述聚合时隙个数为5存在所述第一对应关系。
  14. 根据权利要求11或12所述的方法,其特征在于,在子载波间隔为15kHZ时,所述重复传输次数M为10与所述聚合时隙个数为2存在所述第一对应关系;和/或
    所述重复传输次数M为5与所述聚合时隙个数为4存在所述第一对应关系。
  15. 根据权利要求1-4任一项所述的方法,其特征在于,所述第二信息为无线资源控制RRC信令,或 为系统信息块SIB;和/或
    所述第一信息承载在下行控制信息DCI或RRC信令中。
  16. 根据权利要求1或3所述的方法,其特征在于,所述第一信息承载在RRC信令中,所述RRC信令中包括所述重复传输次数M与聚合时隙个数集合的第一对应关系,所述聚合时隙个数集合中的不重复元素个数为T;或者所述RRC信令中包括所述多个第一重复传输次数中每个第一重复传输次数与一种聚合时隙个数的对应关系。
  17. 根据权利要求1或3所述的方法,其特征在于,若所述对应关系包括多个第一重复传输次数与一种聚合时隙个数的对应关系,在所述上行传输中,每个第一重复传输次数对应的重复传输是独立编码的。
  18. 根据权利要求1或3所述的方法,其特征在于,当T=M时,M次重复传输与所述T种聚合时隙个数为一一对应关系;和/或
    当1<T<M时,所述T种聚合时隙个数循环与所述M次重复传输对应。
  19. 一种通信装置,其特征在于,包括用于执行如权利要求1-2,5-18任一项所述的方法的模块。
  20. 一种通信装置,其特征在于,包括用于执行如权利要求3-4,5-18中的任一项所述方法的模块。
  21. 一种通信装置,其特征在于,包括与存储器耦合的处理器,所述处理器用于执行所述存储器中存储的计算机程序指令,以使装置执行如权利要求1-2,5-18任一项所述的方法,或者执行如权利要求3-4,5-18任一项所述的方法。
  22. 一种通信装置,包括处理器,所述处理器用于通过执行计算机指令或通过逻辑电路实现如权利要求1-2,5-18任一项所述的方法,或者实现如权利要求3-4,5-18任一项所述的方法。
  23. 根据权利要求21所述的通信装置,其特征在于,还包括存储器,所述存储器用于存储所述计算机指令。
  24. 根据权利要求21或22所述的通信装置,其特征在于,还包括收发器,所述接收和/或发送信号。
  25. 一种可读存储介质,其特征在于,用于存储指令,当所述指令被执行时,使如权利要求1-2,5-18中任一项所述的方法被实现,或者使如权利要求3-4,5-18中任一项所述的方法被实现。
  26. 一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行如权利要求1-2,5-18或3-4,5-18中任一项所述的方法。
  27. 一种通信系统,其特征在于,包括权利要求19所述的通信装置以及权利要求20所述的通信装置。
PCT/CN2023/110064 2022-08-10 2023-07-29 数据调度方法及装置 WO2024032399A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210957933.4A CN117676618A (zh) 2022-08-10 2022-08-10 数据调度方法及装置
CN202210957933.4 2022-08-10

Publications (1)

Publication Number Publication Date
WO2024032399A1 true WO2024032399A1 (zh) 2024-02-15

Family

ID=89850841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110064 WO2024032399A1 (zh) 2022-08-10 2023-07-29 数据调度方法及装置

Country Status (2)

Country Link
CN (1) CN117676618A (zh)
WO (1) WO2024032399A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210352712A1 (en) * 2020-05-06 2021-11-11 Qualcomm Incorporated Dynamic slot aggregation indication for random access procedure
CN114614875A (zh) * 2020-12-07 2022-06-10 展讯半导体(南京)有限公司 重复传输次数确定方法与装置、终端和网络设备
US20220225388A1 (en) * 2021-01-14 2022-07-14 Lg Electronics Inc. Method of transmitting a transport block and apparatus using the same
CN114765485A (zh) * 2021-01-14 2022-07-19 英特尔公司 用在用户设备中的装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210352712A1 (en) * 2020-05-06 2021-11-11 Qualcomm Incorporated Dynamic slot aggregation indication for random access procedure
CN114614875A (zh) * 2020-12-07 2022-06-10 展讯半导体(南京)有限公司 重复传输次数确定方法与装置、终端和网络设备
US20220225388A1 (en) * 2021-01-14 2022-07-14 Lg Electronics Inc. Method of transmitting a transport block and apparatus using the same
CN114765485A (zh) * 2021-01-14 2022-07-19 英特尔公司 用在用户设备中的装置

Also Published As

Publication number Publication date
CN117676618A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
CN109392152B (zh) 通信方法和通信装置
US20210345360A1 (en) Method and apparatus for transmitting and receiving sidelink signal in wireless cellular communication system
RU2652418C1 (ru) Система и способ совместной передачи в лицензируемых и нелицензируемых диапазонах с использованием фонтанных кодов
CN113271180B (zh) 混合自动重传请求harq位图信息的反馈方法及相关设备
WO2017000143A1 (zh) 传输上行数据的方法和装置
WO2021027518A1 (zh) 处理数据的方法和通信装置
CN107196689B (zh) 一种上行mu-mimo的方法及系统
CN110621075B (zh) 一种传输数据的方法和装置
WO2021057805A1 (zh) 一种通信方法及装置
CN115211065A (zh) 通信系统中终端的软缓冲器管理方法和设备
US20230139754A1 (en) Coding method and apparatus
WO2022006914A1 (zh) 混合自动重传请求应答harq-ack的反馈方法和终端设备
WO2020259611A1 (zh) 一种通信方法、装置及存储介质
CN114556832A (zh) 基于服务的上行链路重传
WO2022152276A1 (zh) 适用于非陆地通信网络ntn的通信方法和装置
WO2018025493A1 (ja) 基地局、端末及び通信方法
JP7012292B2 (ja) チャネル符号化に用いるユーザー装置、基地局における方法及び装置
WO2021184266A1 (zh) 一种数据包重组方法、电子设备及存储介质
US20230199799A1 (en) Wireless communication method, terminal device and network device
KR20220079960A (ko) 하이브리드 자동 반복 요청 처리 방법 및 통신 장치
CN115580380B (zh) 无线通信的方法及装置
WO2024032399A1 (zh) 数据调度方法及装置
WO2021068224A1 (zh) 无线通信方法、终端设备和网络设备
WO2018024055A1 (zh) 上行数据传输方法及装置
WO2022151964A1 (zh) 一种数据传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851620

Country of ref document: EP

Kind code of ref document: A1