WO2024031998A1 - 光模块 - Google Patents

光模块 Download PDF

Info

Publication number
WO2024031998A1
WO2024031998A1 PCT/CN2023/083844 CN2023083844W WO2024031998A1 WO 2024031998 A1 WO2024031998 A1 WO 2024031998A1 CN 2023083844 W CN2023083844 W CN 2023083844W WO 2024031998 A1 WO2024031998 A1 WO 2024031998A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength
filter
cavity
optical
Prior art date
Application number
PCT/CN2023/083844
Other languages
English (en)
French (fr)
Inventor
刘学儒
张晓磊
曾威
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210952086.2A external-priority patent/CN117631158A/zh
Priority claimed from CN202210952089.6A external-priority patent/CN115201977B/zh
Priority claimed from CN202222092116.5U external-priority patent/CN218866165U/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2024031998A1 publication Critical patent/WO2024031998A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present disclosure relates to the field of optical communication technology, and in particular, to an optical module.
  • optical modules as one of the key components in optical communication equipment, can realize photoelectric signal conversion; in the development process of optical communication technology, the data transmission rate of optical modules is required to continue to increase.
  • An optical module provided according to some embodiments of the present disclosure includes a circuit board, a light emitting component, a first light receiving component, a second light receiving component, and a round square tube body; the light emitting component includes a boss, and a first light emitting component is formed on the surface of the boss.
  • the support surface and the second support surface, the first support surface is provided with a laser chip, and the second support member is provided with a first lens;
  • the light emitting component is configured to emit the first wavelength emitted light;
  • the first light receiving component is configured to Receive the reflected light of the first wavelength, which is the light of the emitted light of the first wavelength reflected back from the outside of the optical module;
  • the second light receiving component is configured to receive the received light of the second wavelength;
  • the side walls of the round and square tube bodies are respectively provided with There are a first nozzle, a second nozzle, a third nozzle, a fourth nozzle and a fifth nozzle.
  • the first nozzle is connected to the light emitting component
  • the second nozzle is connected to the first light receiving component
  • the third nozzle is connected to the light emitting component.
  • the tube mouth is connected to the second light-receiving component;
  • the round and square tube body is provided with optical components, which include a beam splitter, a light-absorbing sheet, a reflective sheet, a first filter, a second filter, a third filter and a second lens.
  • the beam splitter is configured to transmit the emitted light of the first wavelength to obtain the first split of the emitted light of the first wavelength; reflect the emitted light of the first wavelength to obtain the second split of the emitted light of the first wavelength; transmit the reflected light of the first wavelength to obtain the second split of the emitted light.
  • the first wavelength reflected light is a first split; and the first wavelength reflected light is reflected to obtain a first wavelength reflected light second split.
  • the light-absorbing sheet is connected to the fourth nozzle through the light-absorbing sheet holder.
  • the light-absorbing sheet and the spectroscopic sheet are arranged oppositely.
  • the light-absorbing sheet is configured to absorb the first wavelength of emitted light and the second split light;
  • the light-absorbing sheet holder includes a cover plate and a cylinder, and the cylinder is two
  • the end asymmetric cylinder has a mounting surface formed on the surface of the cylinder.
  • the mounting surface is configured to provide a light-absorbing sheet.
  • the mounting surface has a preset tilt angle relative to the cover plate so that the light-absorbing sheet is tilted.
  • the first filter is disposed on the transmission optical path of the second split light of the first wavelength reflected light, and the first filter is configured to transmit the second split light of the first wavelength reflected light and enter the first light receiving component.
  • the second filter is disposed on the transmission optical path of the first split of the first wavelength emitted light, and the second filter is configured to transmit the first split of the first wavelength emitted light and the first wavelength reflected light, and reflect the second wavelength received light.
  • the reflective sheet is disposed on an optical path in which the second wavelength received light is reflected by the second filter, and the reflective sheet is configured to receive and reflect the second wavelength received light reflected by the second filter.
  • the third filter is disposed opposite to the reflective sheet. The third filter is disposed on the optical path of the second wavelength received light reflected by the reflective sheet.
  • the third filter is configured to receive and transmit the second wavelength received light reflected by the reflective sheet. , to transmit the received light of the second wavelength reflected by the emitting sheet into the second light receiving component.
  • the second lens is disposed at the fifth tube opening. The second lens is configured to convert the emitted light of the first wavelength from parallel light to convergent light, and convert the reflected light of the first wavelength and the received light of the second wavelength from a divergent light state. Parallel light state.
  • Figure 1 is a partial architecture diagram of an optical communication system provided according to some embodiments of the present disclosure.
  • Figure 2 is a partial structural diagram of a host computer provided according to some embodiments of the present disclosure.
  • Figure 3 is an overall view of an optical module provided according to some embodiments of the present disclosure.
  • Figure 4 is an exploded view of an optical module provided according to some embodiments of the present disclosure.
  • Figure 5 is an assembly diagram of a light emitting component, a first light receiving component, a second light receiving component and a round and square tube body according to some embodiments of the present disclosure
  • Figure 6 is a structural diagram of a round square tube provided according to some embodiments of the present disclosure.
  • Figure 7 is a structural diagram 2 of a round square tube provided according to some embodiments of the present disclosure.
  • Figure 8 is a structural diagram 3 of a round square tube provided according to some embodiments of the present disclosure.
  • Figure 9 is a partially exploded view of an optical module according to some embodiments of the present disclosure.
  • Figure 10 is a partial cross-sectional view of an optical module provided according to some embodiments of the present disclosure.
  • Figure 11 is an optical path diagram 1 of an optical module provided according to some embodiments of the present disclosure.
  • Figure 12 is an optical path diagram 2 of an optical module provided according to some embodiments of the present disclosure.
  • Figure 13 is an optical path diagram 3 of an optical module provided according to some embodiments of the present disclosure.
  • Figure 14 is an exploded structural view of a light emitting component provided according to some embodiments of the present disclosure.
  • Figure 15 is a partial schematic diagram of a light emitting component provided according to some embodiments of the present disclosure.
  • Figure 16 is a structural diagram of a tube base provided according to some embodiments of the present disclosure.
  • Figure 17 is an internal cross-sectional view of a round square tube provided according to some embodiments of the present disclosure.
  • Figure 18 is a second internal cross-sectional view of a round square tube provided according to some embodiments of the present disclosure.
  • Figure 19 is a third internal cross-sectional view of a round square tube provided according to some embodiments of the present disclosure.
  • Figure 20 is an internal cross-sectional view 4 of a round square tube provided according to some embodiments of the present disclosure
  • Figure 21 is a schematic assembly diagram of a beam splitter provided according to some embodiments of the present disclosure.
  • Figure 22 is a schematic diagram 2 of the assembly of a beam splitter according to some embodiments of the present disclosure.
  • Figure 23 is a schematic structural diagram of a light-absorbing sheet holder provided according to some embodiments of the present disclosure.
  • Figure 24 is a schematic assembly diagram of a light-absorbing sheet bracket and a light-absorbing sheet provided according to some embodiments of the present disclosure
  • Figure 25 is a schematic diagram of the assembly of a light-absorbing sheet bracket and a round square tube body according to some embodiments of the present disclosure
  • Figure 26 is a schematic diagram of the assembly of a baffle and a first filter according to some embodiments of the present disclosure
  • Figure 27 is a second assembly diagram of a baffle and a first filter provided according to some embodiments of the present disclosure
  • Figure 28 is an assembly schematic diagram 1 of a second filter provided according to some embodiments of the present disclosure.
  • Figure 29 is a second assembly schematic diagram of a second filter provided according to some embodiments of the present disclosure.
  • Figure 30 is a schematic diagram of the assembly of a reflective sheet according to some embodiments of the present disclosure.
  • Figure 31 is a second assembly diagram of a reflective sheet provided according to some embodiments of the present disclosure.
  • Figure 32 is a schematic assembly diagram of a third filter provided according to some embodiments of the present disclosure.
  • Optical communication technology establishes information transmission between information processing devices. Optical communication technology loads information onto light and uses the propagation of light to realize the transmission of information. Light loaded with information is an optical signal. The propagation of optical signals in information transmission equipment can reduce the loss of optical power and achieve high-speed, long-distance, and low-cost information transmission. The information that information processing equipment can process exists in the form of electrical signals. Optical network terminals/gateways, routers, switches, mobile phones, computers, servers, tablets, and televisions are common information processing equipment. Optical fibers and optical waveguides are common information processing equipment. transmission device.
  • optical modules The mutual conversion of optical signals and electrical signals between information processing equipment and information transmission equipment is achieved through optical modules.
  • an optical fiber is connected to the optical signal input end and/or the optical signal output end of the optical module, and an optical network terminal is connected to the electrical signal input end and/or the electrical signal output end of the optical module; the first optical signal transmission from the optical fiber Entering the optical module, the optical module converts the first optical signal into a first electrical signal, and the optical module transmits the first electrical signal into the optical network terminal; the second electrical signal from the optical network terminal is transmitted into the optical module, and the optical module transmits the second electrical signal into the optical module.
  • the electrical signal is converted into a second optical signal, and the optical module transmits the second optical signal into the optical fiber. Since information processing equipment can be connected to each other through electrical signal networks, at least one type of information processing equipment needs to be directly connected to the optical module. It is not required that all types of information processing equipment are directly connected to the optical module. The information of the optical module is directly connected. The processing equipment is called the host computer of the optical module.
  • Figure 1 is a partial architecture diagram of an optical communication system according to some embodiments of the present disclosure. As shown in Figure 1, the optical communication system is partially represented by a remote information processing device 1000, a local information processing device 2000, a host computer 100, an optical module 200, an optical fiber 101 and a network cable 103.
  • One end of the optical fiber 101 extends toward the remote information processing device 1000, and the other end is connected to the optical interface of the optical module 200.
  • the optical signal can undergo total reflection in the optical fiber 101.
  • the propagation of the optical signal in the total reflection direction can almost maintain the original optical power.
  • the optical signal undergoes total reflection multiple times in the optical fiber 101 and will come from the direction of the remote information processing device 1000.
  • the optical signal is transmitted into the optical module 200, or the light from the optical module 200 is propagated toward the remote information processing device 1000 to realize long-distance information transmission with low power loss.
  • the number of optical fibers 101 may be one or multiple (two or more); the optical fibers 101 and the optical module 200 may be pluggable or fixedly connected.
  • the host computer 100 has an optical module interface 102, and the optical module interface 102 is configured to access the optical module 200, so that the host computer 100 and the optical module 200 establish a one-way/bi-directional electrical signal connection; the host computer 100 is configured to connect to the optical module 200.
  • 200 provides data signals, or receives data signals from the optical module 200, or monitors and controls the working status of the optical module 200.
  • the host computer 100 has an external electrical interface, such as a Universal Serial Bus interface (Universal Serial Bus, USB) and a network cable interface 104.
  • the external electrical interface can be connected to an electrical signal network.
  • the network cable interface 104 is configured to connect to the network cable 103 so that the host computer 100 and the network cable 103 establish a one-way/bi-directional electrical signal connection.
  • Optical Network Unit Optical Line Terminal
  • ONT Optical Network Equipment
  • data center servers are common host computers.
  • One end of the network cable 103 is connected to the local information processing device 2000, and the other end is connected to the host computer 100.
  • the network cable 103 establishes an electrical signal connection between the local information processing device 2000 and the host computer 100.
  • the third electrical signal sent by the local information processing device 2000 is transmitted to the host computer 100 through the network cable 103.
  • the host computer 100 generates a second electrical signal based on the third electrical signal, and the second electrical signal from the host computer 100 is transmitted into the optical module. 200.
  • the optical module 200 converts the second electrical signal into a second optical signal.
  • the optical module 200 transmits the second optical signal into the optical fiber 101.
  • the second optical signal is transmitted to the remote information processing device 1000 in the optical fiber 101.
  • the first optical signal from the direction of the remote information processing device 1000 is propagated through the optical fiber 101.
  • the first optical signal from the optical fiber 101 is transmitted into the optical module 200.
  • the optical module 200 converts the first optical signal into a first electrical signal.
  • the optical module 200 transmits the first electrical signal to the host computer 100.
  • the host computer 100 generates a fourth electrical signal based on the first electrical signal.
  • the host computer 100 transmits the fourth electrical signal to the local information processing device 2000.
  • the optical module is a tool that realizes the mutual conversion of optical signals and electrical signals. During the above-mentioned conversion process of optical signals and electrical signals, the information does not change, and the encoding and decoding method of the information can change.
  • FIG. 2 is a partial structural diagram of a host computer provided according to some embodiments of the present disclosure.
  • the host computer 100 also includes a PCB circuit board 105 provided in the housing, a cage 106 provided on the surface of the PCB circuit board 105, a radiator 107 provided on the cage 106, and a heat sink 107 provided inside the cage 106.
  • the heat sink 107 has a protruding structure that increases the heat dissipation area, and the fin-like structure is a common protruding structure.
  • the optical module 200 is inserted into the cage 106 of the host computer 100, and the optical module 200 is fixed by the cage 106.
  • the heat generated by the optical module 200 is conducted to the cage 106, and then diffused through the heat sink 107.
  • the electrical interface of the optical module 200 is connected to the electrical connector inside the cage 106.
  • FIG. 3 is an overall view of an optical module provided according to some embodiments of the present disclosure
  • FIG. 4 is an exploded view of an optical module provided according to some embodiments of the present disclosure.
  • the optical module 200 includes a shell, a circuit board 300 disposed in the shell, a light emitting component, and a light receiving component.
  • the housing includes an upper housing 201 and a lower housing 202.
  • the upper housing 201 is covered on the lower housing 202 to form the above-mentioned housing with two openings 204 and 205; the outer contour of the housing generally presents a square body.
  • the lower case 202 includes a bottom plate 2021 and two lower side plates 2022 located on both sides of the bottom plate 2021 and perpendicular to the bottom plate 2021; the upper case 201 includes a cover plate 2011, and the cover plate 2011 covers the lower case. on the two lower side plates 2022 of 202 to form the above-mentioned housing.
  • the lower case 202 includes a bottom plate 2021 and two lower side plates 2022 located on both sides of the bottom plate 2021 and perpendicular to the bottom plate 2021;
  • the upper case 201 includes a cover plate 2011, and two lower side plates 2022 located on both sides of the cover plate 2011.
  • the two upper side plates arranged perpendicularly to the cover plate 2011 are combined with the two lower side plates 2022 to realize that the upper housing 201 is covered on the lower housing 202 .
  • the direction of the connection between the two openings 204 and 205 may be consistent with the length direction of the optical module 200 , or may be inconsistent with the length direction of the optical module 200 .
  • the opening 204 is located at the end of the optical module 200 (the right end of FIG. 3 ), and the opening 205 is also located at the end of the optical module 200 (the left end of FIG. 3 ).
  • the opening 204 is located at an end of the optical module 200 and the opening 205 is located at a side of the optical module 200 .
  • the opening 204 is an electrical interface, and the golden finger of the circuit board 300 extends from the electrical interface and is inserted into the electrical connector of the host computer; the opening 205 is an optical port, configured to access the optical fiber 101, so that the optical fiber 101 is connected to the optical module 200 light emitting components and/or light receiving components.
  • the assembly method of combining the upper housing 201 and the lower housing 202 is used to facilitate the installation of the circuit board 300, light emitting components, light receiving components and other components into the above-mentioned housing.
  • the upper housing 201 and the lower housing 202 can install these components. Component shape encapsulation protection.
  • the upper housing 201 and the lower housing 202 are made of metal materials, which facilitates electromagnetic shielding and heat dissipation.
  • the light module 200 also includes an unlocking component 203 located outside its housing.
  • the unlocking component 203 is configured to realize a fixed connection between the optical module 200 and the host computer, or to release the fixed connection between the optical module 200 and the host computer.
  • the unlocking component 203 is located outside the two lower side plates 2022 of the lower housing 202 and includes an engaging component that matches the cage 106 of the host computer.
  • the optical module 200 is inserted into the cage 106, the optical module 200 is fixed in the cage 106 by the engaging parts of the unlocking part 203; when the unlocking part 203 is pulled, the engaging parts of the unlocking part 203 move accordingly, thereby changing the engaging parts.
  • the connection relationship with the host computer is to release the fixed connection between the optical module 200 and the host computer, so that the optical module 200 can be pulled out of the cage 106 .
  • the circuit board 300 includes circuit wiring, electronic components, chips, etc.
  • the electronic components and chips are connected together according to the circuit design through the circuit wiring to realize functions such as power supply, electrical signal transmission, and grounding.
  • Electronic components may include, for example, capacitors, resistors, transistors, and Metal-Oxide-Semiconductor Field-Effect Transistors.
  • MOSFET Metal Organic Field-Emitter-Oxide-Oxide-Oxide-Oxide-Oxide-Oxide-Oxide-Oxide-Oxide-Oxide-Oxide-Oxide-Oxide-Oxide-Oxide-Oxide-Oxide-Oxide-Oxide-Oxide-Oxide-Oxide-Oxide-Oxide-Oxide-Ox-Ox-Ox-Ox-Dimpedance amplifier
  • TIA Transimpedance Amplifier
  • LIA limiting amplifier
  • CDR clock data recovery chip
  • power management chip and digital signal processing Digital Signal Processing, DSP
  • the circuit board 300 is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also perform a load-bearing function. For example, the rigid circuit board can stably carry the above-mentioned electronic components and chips; the rigid circuit board can also be easily inserted into the host computer cage. in electrical connectors.
  • the circuit board 300 also includes gold fingers formed on its end surface, and the gold fingers are composed of a plurality of independent pins.
  • the circuit board 300 is inserted into the cage 106, and the golden finger is connected to the electrical connector in the cage 106.
  • the golden fingers can be provided only on one side of the circuit board 300 (for example, the upper surface shown in FIG. 4 ), or they can be provided on the upper and lower surfaces of the circuit board 300 to provide more pins.
  • the golden finger is configured to establish an electrical connection with the host computer to realize power supply, grounding, I2C signal transmission, data signal transmission, etc.
  • the light emitting component and/or the light receiving component are located on the side of the circuit board 300 away from the gold finger; in some embodiments, the light emitting component and the light receiving component are physically separated from the circuit board 300 and then passed through the corresponding flexible circuit board. Or the electrical connector is electrically connected to the circuit board 300; in some embodiments, the light emitting device and/or the light receiving device can be directly disposed on the circuit board 300, can be disposed on the surface of the circuit board, or can be disposed on the circuit board. side.
  • the light emitting component and the light receiving component are packaged in TO.
  • the light emitting component and the light receiving component can be electrically connected to the circuit board 300 through a flexible circuit board.
  • One end of the flexible circuit board is electrically connected to the light emitting component or the light receiving component. connection, and the other end is electrically connected to the circuit board 300.
  • optical modules are required to have multiple functions, such as the optical supervisory channel (OSC) function to transmit monitoring information through OSC; another example is the optical time domain reflectometer (OTDR).
  • OSC optical supervisory channel
  • OTDR optical time domain reflectometer
  • the OTDR instrument emits light pulses into the optical fiber.
  • the light pulses are transmitted in the optical fiber, due to the nature of the optical fiber itself, it is easy to cause connector interruption, optical fiber bending and other optical link abnormalities, resulting in scattered light signals and reflected light. Part of the scattered light signal and reflected light signal will be returned to the OTDR instrument.
  • the OTDR instrument determines whether an abnormality occurs in the optical link based on the time domain characteristics of the received scattered light signal and reflected light signal.
  • a pair of optical modules with OTDR detection function are provided, which are respectively called the first optical module and the second optical module.
  • the first optical module includes, for example, a first light emitting component and a first optical module.
  • the second optical module includes a second light emitting component and a second light receiving component.
  • the first light emitting component emits the first wavelength light, receives the first wavelength light that is reflected back due to the abnormality of the optical link, and receives the second wavelength light through the first light receiving component.
  • the second light emitting component emits the second wavelength light, receives the second wavelength light that is reflected back due to the abnormality of the optical link, and receives the first wavelength light through the second light receiving component.
  • Figure 5 is an assembly diagram of a light emitting component, a first light receiving component, a second light receiving component and a round and square tube body according to some embodiments of the present disclosure.
  • the optical module includes a rectangular tube body 400 , a light emitting component 500 , a first light receiving component 600 , a second light receiving component 700 and an optical fiber adapter 900 .
  • the light emitting component 500, the first light receiving component 600, the second light receiving component 700 and the optical fiber adapter 900 are respectively connected to the side walls of the round and square tube body 400.
  • the light emitting component 500 emits an optical signal of the first wavelength, which is called the first wavelength emitted light; when the first wavelength emitted light is transmitted, when an abnormality occurs in the optical link, part of the first wavelength emitted light The emitted light is reflected back into the round and square tube body 400, and part of the first wavelength emitted light is transmitted to the outside of the optical module along the optical fiber adapter 900; wherein, the optical signal reflected back to the round and square tube body is called the first wavelength reflected light.
  • the first light receiving component 600 receives the reflected light of the first wavelength, and then performs OTDR detection based on the reflected light of the first wavelength.
  • the second light receiving component 700 receives the second wavelength receiving light, the second wavelength receiving light carries data information, and the second wavelength receiving light comes from outside the optical module; by receiving the second wavelength receiving light through the second light receiving component 700, it can be realized OSC data transmission function.
  • the optical module can be equipped with OSC data transmission function and OTDR at the same time. detection function; and through the round and square tube body 400, the light emitting component 500, the first light receiving component 600 and the second light receiving component 700 are integrated to realize the integration of optical transceiver and receiver, which is conducive to the miniaturization development of the optical module.
  • Figure 6 is a structural diagram 1 of a round square tube provided according to some embodiments of the present disclosure
  • Figure 7 is a structural diagram 2 of a round square tube provided according to some embodiments of the present disclosure
  • Figure 8 is a structural diagram 1 according to some embodiments of the present disclosure.
  • Figure 3 shows the structure of a round square tube body provided in some embodiments. As shown in FIGS. 6 to 8 , a first pipe opening 410 is formed on the first side wall of the round tube body 400 , a second pipe opening 420 is formed on the second side wall, and a third pipe opening 420 is formed on the third side wall.
  • the nozzle 430 and the fourth nozzle 440, and the fifth nozzle 450 are formed on the fourth side wall; the first side wall and the fourth side wall are located in the length direction of the round tube body 400, and they are arranged oppositely; The two side walls and the third side wall are arranged opposite each other in the width direction of the round and square tube body 400, and they are arranged opposite each other.
  • Figure 9 is a partially exploded view of an optical module according to some embodiments of the present disclosure. As shown in FIG. 9 , the light emitting component 500 is connected to the round and square tube body 400 through the connecting sleeve 510 .
  • the end surface area of the connecting sleeve 510 is larger than the end surface area of the light emitting component 500, then the welding of the light emitting component 500 and the round square tube body 400 is facilitated through the connecting sleeve 510, and the size can be increased. The welding area between the light emitting component 500 and the round tube body 400 increases the welding firmness.
  • the light emitting component 500 is connected to the first nozzle 410 .
  • the light emitting component 500 is embedded into the connecting sleeve 510, and then the end surface of the connecting sleeve 510 and the end surface of the first nozzle 410 are welded; in some embodiments, mechanical flattening and mechanical connection are implemented. The connection between the connecting sleeve 510 and the first nozzle 410 .
  • the light emitted by the light emitting component 500 is parallel light, so the light emitting component 500 performs XY plane coupling; with the round square tube body 400 as the reference, the light emitting component 500 together with the connecting sleeve 510 performs XY plane coupling, coupling to the maximum light emission Power; for example, the light emitting component 500 is embedded into the connecting sleeve 510, and then XY plane coupling is performed.
  • the end surface of the connecting sleeve 510 and the end surface of the first nozzle 410 are welded. , to achieve mechanical flatness and mechanical connection.
  • the XY plane refers to the axis from the light emitting component 500 to the optical fiber adapter 900 in FIG. 9 , and the plane perpendicular to the axis is the XY plane.
  • the first pipe opening 410 protrudes relative to the round and square pipe body 400, which makes it easier to weld the connecting sleeve 510 and the round and square pipe body 400; in some embodiments, when the first pipe opening When 410 does not protrude relative to the round and square tube body 400, the connecting sleeve 510 and the side wall of the round and square tube body 400 can be welded together.
  • fiber optic adapter 900 is connected to fifth nozzle 450 .
  • the optical fiber adapter 900 is connected to the round and square tube body 400 through an adjusting sleeve 910.
  • the setting of the adjusting sleeve 910 can not only better connect the optical fiber adapter 900 and the round and square tube body 400, but also facilitate the operation of the optical fiber adapter 900.
  • Optical coupling especially the optical fiber adapter 900 performs Z-axis coupling; the optical fiber adapter 900 is embedded into the adjusting sleeve 910, and then the end face of the adjusting sleeve 910 is welded to the side wall where the fifth nozzle 450 is located, and is mechanically flattened and mechanically The connection realizes the connection between the adjusting sleeve 910 and the fifth nozzle 450 .
  • the light emitted from the fiber optic adapter 900 and the light entering the fiber optic adapter 900 are both condensed light, so the fiber optic adapter 900 performs XYZ coupling; using the round and square tube body 400 as a reference, the fiber optic adapter 900 performs XYZ direction coupling, coupling to the maximum light emission Power; for example, the optical fiber adapter 900 is embedded into the adjustment sleeve 910, and then the adjustment sleeve 910 performs XY plane coupling with the optical fiber adapter 900. At the same time, the optical fiber adapter 900 also performs Z-axis coupling, coupling to the maximum optical emission power.
  • the XYZ direction refers to: the connection from the light emitting component 500 to the optical fiber adapter 900 in Figure 9 is the axis, the extending direction of the axis is the Z-axis, and the plane perpendicular to the axis is the XY plane.
  • the first light-receiving component 600 is connected to the second nozzle 420; for example, the first light-receiving component 600 is embedded inside the second nozzle 420, thereby realizing the first light-receiving component 600 is connected to the second nozzle 420.
  • the second light receiving component 700 is connected to the third nozzle 430; for example, the second light receiving component 700 is embedded into the third nozzle 430, thereby realizing the second light receiving component 700 is connected to the third nozzle 430.
  • Figure 10 is a partial cross-sectional view of an optical module according to some embodiments of the present disclosure.
  • the round and square tube body 400 is provided with optical components inside.
  • the optical components include an optical isolator 810, a beam splitter 820, a light absorbing sheet 830, a first filter 850, a baffle 840, a second filter 860, Reflective sheet 870, third filter sheet 880, second lens 890.
  • the end surface of the second lens 890 facing the inside of the round and square tube body 400 has a converging effect
  • the end surface facing the outside of the round and square tube body 400 has a collimating effect.
  • the light emitting component 500 emits parallel light and performs long-distance transmission in the state of parallel light. ; Then when it enters the optical fiber adapter 900 through the second lens 890, the second lens 890 faces the end face inside the round tube 400 to convert the parallel light into condensed light, and the condensed light enters the fiber through the optical fiber adapter 900; when the external light enters the optical fiber When the adapter 900 is used, the external light is condensed light, and the second lens 890 faces the end surface outside the round tube body 400 to convert the condensed light into parallel light, and the parallel light enters the round tube body 400 .
  • optical isolator 810 and the beam splitter 820 are on the same horizontal line; the light absorption sheet 830 and the first filter 850 are respectively disposed on both sides of the beam splitter 820; the light absorption sheet 830 is disposed after the first wavelength emitted light passes through the beam splitter 820.
  • the first filter 850 is disposed in the reverse direction of the reflected light path after the first wavelength emitted light passes through the beam splitter 820; the second filter 860 and the optical axis of the beam splitter 820 are on the same horizontal line; the reflection sheet 870 The second filter 860 is disposed on the reflection light path of the second wavelength received light; the third filter 880 is disposed on the reflection plate 870 on the reflection light path of the second wavelength receive light.
  • the beam splitter 820 is semi-transparent and semi-reflective for the emitted light of the first wavelength or the reflected light of the first wavelength.
  • the translucent and semi-reflective here refers to the equal division of the optical power, and the wavelengths of the two beams of light after splitting are equal to
  • the wavelength of the light before splitting is the same, that is, the wavelength of the light before and after splitting does not change;
  • the second filter 860 transmits the first wavelength emitted light or the first wavelength reflected light, and reflects the second wavelength received light;
  • the reflective sheet 870 reflects the second wavelength received light ;
  • the first filter 850 only allows the transmission of the emitted light of the first wavelength or the reflected light of the first wavelength, and does not allow the transmission of other wavelengths;
  • the third filter 880 only allows the transmission of the receiving light of the second wavelength, and does not allow the transmission of other wavelengths.
  • the first wavelength can be achieved
  • the emission of the emitted light can also realize the reception of the reflected light of the first wavelength, and can also realize the reception of the received light of the second wavelength, thereby realizing that the OTDR and OSC dual channels are simultaneously located in the round and square tube body 400 .
  • the first wavelength emitted light passes through the optical isolator 810 and then passes through the beam splitter 820. Since the beam splitter 820 is semi-transparent and semi-reflective, the first wavelength emitted light is transmitted and reflected by the beam splitter 820 to obtain the first wavelength emission respectively. The light is first split and the first wavelength emitted light is second split; wherein, the first wavelength emitted light is transmitted through the second filter 860 and enters the second lens 890.
  • the second lens 890 is set as a condensing lens. After the two lenses 890 converge, the first split light of the first wavelength emitted light is emitted through the fiber optic adapter 900 in the form of condensed light.
  • a light-absorbing sheet 830 is provided on the optical path after the first wavelength emitted light is reflected by the beam splitter 820.
  • the light-absorbing sheet 830 can absorb the first wavelength emitted light and the second split spectrum. , thereby preventing the second split light of the first wavelength emitted light from causing crosstalk to the first light receiving component 600 .
  • the first wavelength reflected light is reflected back when the first wavelength emitted light encounters abnormal conditions during transmission in the optical fiber link; the first wavelength reflected light enters the round square tube body after passing through the optical fiber adapter 900 and the second lens 890 400, then is transmitted through the second filter 860, and reaches the beam splitter 820.
  • the first split of the first wavelength reflected light and the second split of the first wavelength reflected light are respectively obtained; the first wavelength reflection The second split light reaches the first filter 850 and then enters the first light receiving component 600; the first split light of the first wavelength reflected light reaches the optical isolator 810, and under the action of the optical isolator 810, the first wavelength reflected light is blocked.
  • a split light enters the light emitting component 500, thereby improving the emission performance of the light emitting component 500.
  • the optical isolator 810 can also prevent the first split light of the first wavelength emitted light from returning to the light emitting component 500 along the original path, thereby further improving the emission performance of the light emitting component 500 .
  • the received light of the second wavelength is transmitted through the optical fiber adapter 900, passes through the second lens 890, and enters the inside of the round and square tube body 400; then it is reflected by the second filter 860 to change the transmission direction; it reaches the reflection sheet 870, and is reflected by the reflection sheet 870 , and changes the transmission direction again to reach the third filter 880 , the third filter 880 transmits the received light of the second wavelength, so that the received light of the second wavelength reaches the second light receiving component 700 .
  • the second filter 860 is an 11° filter, that is, the angle between the incident light of the second filter 860 and the normal is 11°, and the angle between the outgoing light and the normal is 11°. is 11°, then the angle between the incident light and the outgoing light of the second filter 860 is 22°;
  • the reflective sheet 870 is a 34° reflective sheet, that is, the angle between the incident light and the normal of the reflective sheet 870 is 11°.
  • the angle is 34°
  • the angle between the outgoing light and the normal is 34°
  • the angle between the incident light and the outgoing light of the reflective sheet 870 is 68°
  • the transmission direction of the second wavelength received light is changed by 90 °
  • the received light of the second wavelength enters the second filter 860 horizontally
  • the received light of the second wavelength vertically enters the third filter 880
  • the third filter 880 transmits the received light of the second wavelength. passes, so that the second wavelength received light reaches the second light receiving component 700 .
  • the transmission direction of the received light of the second wavelength is adjusted from horizontal transmission along the optical axis of the optical fiber adapter 900 to along the direction perpendicular to the optical axis of the optical fiber adapter 900 .
  • Three filters are used for transmission in 880 directions.
  • the optical fiber adapter 900 includes an optical fiber ferrule 920; in some embodiments, when the optical fiber adapter 900 performs Z-axis coupling, the optical fiber adapter 900 adjusts along the adjustment sleeve 910 in the Z-axis direction, and the optical fiber ferrule 920 A small part of the end will enter the inside of the round tube body 400. Therefore, the end of the round tube body 400 is provided with a second cavity 407.
  • the second cavity 407 provides a space for the optical fiber to be inserted.
  • the core 920 provides a space for movement; when the optical fiber adapter 900 is coupled, the end of the optical fiber ferrule 920 will extend into the second cavity 407 to a greater or lesser extent.
  • the optical path in order to prevent light from returning along the original optical path, is designed so that light is non-perpendicularly incident on the end face of the optical fiber; in order to achieve non-perpendicular incident light on the end face of the optical fiber, the end face of the optical fiber is ground into a bevel; for example, the optical fiber is wrapped in ceramics An optical fiber ferrule 920 is formed in the optical fiber ferrule 920, and the end face of the optical fiber ferrule 920 is ground into a bevel, and the end face of the optical fiber in the optical fiber ferrule 920 becomes a bevel.
  • Figure 11 is an optical path diagram 1 of an optical module provided according to some embodiments of the present disclosure.
  • the first wavelength emitted light passes through the optical isolator 810, the beam splitter 820, the second filter 860, and the second lens 890 in sequence, reaches the fiber optic adapter 900, and then is emitted into the optical fiber through the fiber optic adapter 900; in some cases
  • the second wavelength emitted light is absorbed by the light-absorbing sheet 830, there is still a small part that is not absorbed by the light-absorbing sheet 830.
  • the light that is not absorbed by the light-absorbing sheet 830 exists in the round and square tube body.
  • a baffle 840 is provided in the opposite direction of the optical path of the first wavelength emitted light and the second split light
  • a first filter 850 is provided on the lower surface of the baffle 840 .
  • an absorbing layer is provided on the surface of the baffle 840.
  • the absorbing layer is a structural layer obtained by blackening the baffle 840. The absorbing layer can absorb part of the first wavelength emission that is not absorbed by the light-absorbing sheet 830.
  • the light is split second; in some embodiments, the edge of the baffle 840 is connected to the inside of the round tube body 400 through a black glue seal, which can block or intercept the crosstalk light and any miscellaneous light for the first light receiving component 600. Diffuse light. Therefore, the light absorbing sheet 830 can absorb most of the crosstalk light, and the baffle 840 can block or intercept the crosstalk light and stray light, thereby improving the receiving performance of the first light receiving component 600 and improving the OTDR detection accuracy.
  • the stray light may be that when the reflected light of the second wavelength enters the second filter 860, although most of the reflected light of the second wavelength can be reflected by the second filter 860, there is still a small part of the light that passes through the second filter 860. Transmission, this part of the light transmitted through the second filter 860 is stray light for the first light receiving component 600 .
  • Figure 12 is an optical path diagram 2 of an optical module provided according to some embodiments of the present disclosure. As shown in Figure 12, the reflected light of the first wavelength is transmitted to the beam splitter 820 through the optical fiber adapter 900, the second lens 890, and the second filter 860 in sequence. Part of the reflected light of the first wavelength is reflected by the beam splitter 820 and then enters the second beam splitter.
  • a filter 850 when it reaches the first light receiving component 600, part of the reflected light of the first wavelength is transmitted through the beam splitter 820 and is injected into the optical isolator 810; through the isolation function of the optical isolator 810, the first wavelength can be avoided
  • the first split of the reflected light enters the light emitting component 500, thereby improving the emission performance of the light emitting component 500.
  • Figure 13 is an optical path diagram 3 of an optical module provided according to some embodiments of the present disclosure.
  • the second wavelength received light is transmitted through the optical fiber adapter 900, condensed by the second lens 890, and enters the inside of the round tube 400, and is reflected by the second filter 860, changing the transmission direction of the light; to reflection
  • the sheet 870 is reflected by the reflective sheet 870 , changes the transmission direction of the light again, and reaches the third filter 880 .
  • the third filter 880 transmits the received light of the second wavelength, so that the received light of the second wavelength reaches the second light receiving component 700 .
  • FIG. 14 is an exploded structural view of a light emitting component provided according to some embodiments of the present disclosure
  • FIG. 15 is a partial schematic diagram of a light emitting component provided according to some embodiments of the present disclosure.
  • the light emitting component 500 includes a cap 520 and a stem 530; the cap 520 covers the surface of the stem 530; a cavity is formed between the cap 520 and the stem 530; the surface of the stem 530
  • a boss 542 is provided; a light window 541 is provided between the boss 542 and the top of the tube cap.
  • a first lens 543 and a laser chip 544 are respectively provided on the surface of the boss 542.
  • the light emitted by the laser chip 544 is emitted through the first lens 543 and the light window 541.
  • the light window 541 is tilted at a certain angle relative to the top surface of the tube cap, and the light window 541 and the top surface of the tube cap are tilted at an angle of 4° to 8° to prevent the optical signal from passing through the light window 541 It is sometimes reflected and returned to the laser chip 544 along the original path, thereby improving the light emission performance.
  • the boss 542 has a first support surface 5421 and a second support surface 5422; in some embodiments, the first support surface 5421 is more concave than the second support surface 5422, so the first support surface 5421 and the second support surface 5422 are Step setting, a step 5423 is provided between the first supporting surface 5421 and the second supporting surface 5422; the first supporting surface 5421 and the second supporting surface 5422 are used to set the first lens 543 and the laser chip 544 respectively; the first lens 543 When the laser chip 544 and the laser chip 544 are respectively pasted with glue, glue overflow may occur, so the steps 5423 are arranged at an angle.
  • the step 5423 is inclined toward the inside of the boss 542, so that the step 5423 has a glue guiding effect; when the first lens 543 is pasted, the overflow glue flows to the surface of the step 5423 to prevent glue creeping and affecting the coupling efficiency of the light emitting component 500.
  • the boss 542 and the tube base 530 are integrally arranged to ensure that the concentricity of the first lens 543 and the laser chip 544 carried on the surface of the boss 542 are fixed relative to the tube base 530, thereby increasing the light emission coupling efficiency.
  • the first lens 543 is set as a collimating lens, the laser chip 544 emits a divergent beam, and the first lens 543 converts the divergent beam into parallel light; then the parallel light is transmitted inside the round and square tube body 400 and passes through the optical isolator in turn. 810, the beam splitter 820, the second filter 860, and then enter the second lens 890.
  • the second lens 890 is a converging lens, and the second lens 890 converts the parallel light into condensed light, and the condensed light enters the fiber through the fiber optic adapter 900. .
  • the converging lens is disposed inside the light emitting component 500 or disposed near the light emitting component 500. Since there is a certain distance between the light emitting component 500 and the fiber optic adapter 900, the focal length of the condensing lens is longer. , and the optical coupling efficiency is low, and the condensed light from the condensing lens will pass through optical devices before entering the fiber, such as filters, reflectors, etc., resulting in losses such as insertion loss and return loss in the condensed light, reducing the optical coupling efficiency .
  • the second lens 890 is disposed between the end of the optical component and the fiber optic adapter 900. Therefore, the focal length angle of the second lens 890 is larger, thereby improving the optical coupling efficiency; at the same time, the condensed light output by the second lens 890 is not Affected by other optical components, the optical coupling efficiency is further improved.
  • the light emitting component 500 emits parallel light through the first lens 543, and then the parallel light is transmitted inside the round and square tube 400 until it is transmitted to the second lens 890. The parallel light is converted into condensed light through the second lens 890. Light enters the fiber directly through the fiber optic adapter 900.
  • the first lens 543 and the second lens 890 form a dual-lens system of the optical transceiver assembly; through the dual-lens system, it is possible to transmit the parallel light in a state of parallel light before entering the fiber, and convert the parallel light into condensed light when entering the fiber to converge. Light state enters the fiber.
  • the focal length of the second lens 890 can be reduced, and the loss of concentrated light energy can be reduced, thereby improving the optical coupling efficiency and light extraction efficiency, thereby improving the OTDR emission performance.
  • the surface of the tube base 530 is also provided with a pad 545, and the surface of the pad 545 is provided with a backlight detector 546; the backlight detector 546 is configured to detect the light output power of the laser chip 544 to ensure that the light output power of the laser chip 544 is maintained within a preset range. ; Since the backlight detector 546 has a photosensitive surface and has certain reflectivity, in some embodiments of the present disclosure, in order to prevent the light beam incident on the backlight detector 546 from returning to the laser chip 544 along the original path, the surface of the tube base 530 has The inclined support surface 534 has an inclined angle relative to the tube base.
  • the inclined support surface 534 is inclined upward toward the opposite surface of the top surface of the tube base 530; the pad 545 and the backlight detector 546 are arranged at an inclined angle. on the supporting surface 534 to prevent the light beam incident on the backlight detector 546 from returning to the laser chip 544 along its original path, thereby improving the emission performance of the laser chip 544.
  • the surface of the tube base 530 is also provided with a first pin 551, a second pin 552, a third pin 553, and a fourth pin 554; the first pin 551 is a grounding pin, and the laser chip is implemented through the first pin 551 544.
  • the grounding of the backlight detector 546; the second pin 552 is the positive signal pin of the laser chip, which transmits high-frequency signals through the second pin 552;
  • the third pin 553 is the negative signal pin of the laser chip, and is also the backlight detection The negative signal pin of the backlight detector transmits high-frequency signals through the third pin 553 to realize differential signal transmission;
  • the fourth pin 554 is the positive signal pin of the backlight detector, and transmits high-frequency signals through the fourth pin 554.
  • the anode of the laser chip 544 is electrically connected to the second pin 552 through a gold wire, and the cathode is electrically connected to the third pin 553 through a gold wire.
  • the positive electrode of the backlight detector 546 is electrically connected to the fourth pin 554 through a gold wire, and the negative electrode is electrically connected to the third pin 553 through a gold wire.
  • the second pin 552 and the fourth pin 554 are respectively provided with There are a first metal block 5521 and a second metal block 5541 to shorten the wiring length and increase the high-frequency performance of the signal.
  • Figure 16 is a structural diagram of a tube base provided according to some embodiments of the present disclosure.
  • the surface of the tube base 530 is respectively provided with a first pin through hole 531, a second pin through hole 532, and a third pin through hole 533; in some embodiments, through the third pin through hole 533 can be provided with a third pin 553; the third pin through hole 533 is continuously arranged with the inclined support surface 534; one end of the third pin through hole 533 is continuously arranged with the inclined support surface 534, and the other end is inclined toward the top surface of the tube base 530 , and then the third pin through hole 533 is inclined in two opposite directions, and the third pin through hole 533 is finally arranged in a heart shape.
  • Figure 17 is an internal cross-sectional view of a round square tube provided according to some embodiments of the present disclosure.
  • an optical isolator 810, a beam splitter 820, a light absorption sheet 830, a first filter 850, a baffle 840, a second filter 860, a reflection sheet 870, a third filter 880, a second lens 890, and Different postures are set in the inner cavity of the round and square tube. In order to set them up, various different cavities are formed inside the round and square tube.
  • the optical isolator 810, the beam splitter 820, the light absorbing sheet 830, the first filter 850, and the baffle 840 constitute the first wavelength splitting system
  • the second filter 860, the reflection sheet 870, and the third filter 880 constitute the second wavelength splitting system.
  • Figure 18 is the second internal cross-sectional view of a round square pipe body provided according to some embodiments of the present disclosure
  • Figure 19 is the third internal cross-sectional view of a round square pipe body provided according to some embodiments of the present disclosure
  • Figure 20 is a third internal cross-sectional view of a round square pipe body provided according to some embodiments of the present disclosure
  • the inner wall of the round and square tube body 400 is respectively formed with a first cavity 401, an isolator accommodation cavity 402, a beam splitter accommodation cavity 403, a second filter accommodation cavity 404, a reflection sheet accommodation cavity 405, The second lens accommodating cavity 406, the second cavity 407, the first filter accommodating cavity 408, and the third filter accommodating cavity 409.
  • the light emitting component 500 and the optical isolator 810 can be isolated through the first cavity 401 to avoid each other; the optical isolator 810 is provided through the isolator accommodation cavity 402; the beam splitter 820 is provided through the beam splitter accommodation cavity 403; The second filter plate 860 is arranged in the filter accommodation cavity 404; the reflection sheet 870 is arranged through the reflection sheet accommodation cavity 405; the second lens 890 is arranged through the second lens accommodation cavity 406; the second cavity 407 is used to provide a space for coupling of the fiber optic adapter 900 Adjustable space; the first filter plate 850 is arranged through the first filter plate accommodating cavity 408; the third filter plate 880 is arranged through the third filter plate accommodating cavity 409.
  • the first cavity 401 and the isolator accommodating cavity 402 are arranged adjacent to each other, and both are located in the first pipe opening 410; the first cavity 401 is concave toward the outer circumference of the round and square tube body 400 to a greater extent than the isolator accommodating cavity 402 is concave toward the round circumference.
  • the extent to which the outer circumference of the square tube body 400 is depressed; the setting of the first cavity 401 can prevent the connection sleeve 510 of the light-emitting component 500 and the optical isolator 810 from colliding and interfering with each other during welding.
  • the first cavity 401 can prevent the connection sleeve 510 from colliding with each other. Keep away from the optical isolator 810.
  • the beam splitter accommodation cavity 403 is used to place the beam splitter 820; a second light-transmitting hole 403a is formed on one side wall of the beam splitter accommodation cavity 403, and a third light-transmitting hole 403b is formed on the other side wall; the beam splitter accommodation cavity 403 The second light-transmitting hole 403a and the third light-transmitting hole 403b are connected; the first-wavelength emitted light emitted by the light-emitting component 500 is incident on the surface of the beam splitter 820 along the second light-transmitting hole 403a, and the first wavelength emitted light is incident along the second light-splitting edge.
  • the third light-transmitting hole 403b is incident on the light-absorbing sheet 830; when the reflected light of the first wavelength is transmitted to the beam splitter 820, the first split light of the first-wavelength reflected light is incident on the optical isolator 810 along the second light-transmitting hole 403a.
  • the second split of the reflected light enters the first filter 850 and then enters the first light receiving component 600 .
  • the second lens accommodating cavity 406 is arranged adjacent to the second cavity 407, and the degree of the second cavity 407 being concave toward the outer periphery of the round square tube body 400 is greater than the degree of the second cavity 407 being concave toward the outer periphery of the round square tube body 400;
  • the cavity 407 is configured to provide an adjustable space for the optical fiber adapter 900 to couple; in some embodiments, when the optical fiber adapter 900 performs Z-axis coupling, a small portion of the end of the optical fiber ferrule 920 will enter the round square tube body 400 Inside, therefore, a second cavity 407 is formed at the end of the round tube body 400.
  • the second cavity 407 provides space for the optical fiber ferrule 920 to move when the optical fiber adapter 900 is coupled along the Z-axis.
  • Figure 21 is a first assembly schematic view of a beam splitter provided according to some embodiments of the present disclosure
  • Figure 22 is a second assembly schematic diagram of a beam splitter provided according to some embodiments of the present disclosure.
  • the beam splitter 820 is provided in the beam splitter accommodation cavity 403; a second light transmission hole 403a is formed on one side wall of the beam splitter accommodation cavity 403, and a third light transmission hole 403a is formed on the other side wall.
  • the light hole 403b; the light splitter accommodation cavity 403, the second light transmission hole 403a, and the third light transmission hole 403b are connected; the first wavelength emitted light emitted by the light emitting component 500 is incident on the surface of the light splitter 820 along the second light transmission hole 403a, The first wavelength of the emitted light and the second split are incident along the third light-transmitting hole 403b to the light-absorbing sheet 830; when the first wavelength of the reflected light is transmitted to the beam splitter 820, the first wavelength of the first-wavelength reflected light is incident along the second light-transmitting hole 403a.
  • the second split light of the first wavelength reflected light enters the first filter 850 , and then enters the first light receiving component 600 .
  • a first inclined surface 403c is formed on the inner wall of the round and square tube body 400.
  • the beam splitter receiving cavity 403 is formed by the first inclined surface 403c being recessed from the bottom end of the inclined surface towards the second light-transmitting hole 403a. The space obtained by the recess is used to embed the beam splitter. 820.
  • the beam splitter accommodation cavity 403 includes a resisting surface 4031, a supporting surface 4032 and a sticking surface 4033; after the first inclined surface 403c is recessed, one side wall is the resisting surface 4031, one side wall is the supporting surface 4032, and one side wall is the sticking surface.
  • the resisting surface 4031, the supporting surface 4032 and the adhering surface 4033 are perpendicular to each other, and the resisting surface 4031, the supporting surface 4032 and the adhering surface 4033 form the body of the beam splitter containing cavity 403; the resisting surface 4031, the supporting surface
  • the two surfaces 4032 form a right-angle slot, which is called the first right-angle slot
  • the supporting surface 4032 and the adhering surface 4033 form another right-angle slot, which is called the second right-angle slot.
  • the adjacent two side walls of the beam splitter 820 are embedded in the first right-angle slot, and the other adjacent two side walls are embedded in the second right-angle slot.
  • the beam splitter 820 faces the second light-transmitting hole 403a and the third light-transmitting hole.
  • the side wall of 403b is connected with the supporting surface 4033; in this way, one side wall of the beam splitter is connected with the supporting surface 4031, one side wall is connected with the supporting surface 4032, and one side wall is connected with the supporting surface 4033.
  • the beam splitter 820 is in a parallel relationship with the first inclined surface 403c, and the first inclined surface 403c is set at a preset tilt angle to match the tilt angle of the beam splitter 820, for example, the tilt angle of the beam splitter 820 is 45°.
  • the corresponding wall surfaces of the beam splitter 820 are respectively connected to the resisting surface 4031, the supporting surface 4032, and the holding surface 4033 through glue.
  • glue When pasting, the glue will overflow and affect the light path, and may also cause the beam splitter 820 to warp or The pasting is not firm. Therefore, in the embodiment of the present disclosure, the middle position of the supporting surface 4032 is recessed to form a glue overflow groove 4034.
  • the glue that overflows during pasting can overflow into the glue overflow groove 4034, thereby avoiding the adverse effects caused by the overflowing glue and overflowing.
  • the existence of the glue tank 4034 can provide an operating space for tweezers to pick up the spectroscopic film 820 and then paste it, which facilitates the patching operation.
  • FIG. 23 is a schematic structural diagram of a light-absorbing sheet holder provided according to some embodiments of the present disclosure
  • FIG. 24 is a schematic assembly diagram of a light-absorbing sheet holder and a light-absorbing sheet provided according to some embodiments of the present disclosure.
  • the light-absorbing sheet holder 830a is used to carry the light-absorbing sheet 830; in some embodiments, the light-absorbing sheet 830 and the light-absorbing sheet holder 830a are connected to obtain a whole body, which is integrated with the round and square tube body 400. connect.
  • Figure 25 is a schematic diagram of the assembly of a light-absorbing sheet bracket and a round and square tube body according to some embodiments of the present disclosure.
  • a fourth nozzle 440 is formed on the side wall of the round tube body 400.
  • the fourth nozzle 440 is used to embed the light-absorbing sheet holder 830a; the light-absorbing sheet holder 830a is shaped like a hat, and the light-absorbing sheet holder 830a includes Cover plate 830a4 and column 830a5.
  • Cover plate 830a4 covers the surface of column 830a5.
  • Cover plate 830a4 protrudes relative to column 830a5.
  • Column 830a5 is an asymmetric column with two ends, and the length of one end is shorter than the length of the other end;
  • the cylinder 830a5 is provided with a mounting surface 830a1.
  • the mounting surface 830a1 is formed by a relatively long end of the cylinder 830a5 being recessed at an inclined angle toward the cover plate 830a4.
  • the mounting surface 830a1 has an inclined angle relative to the cover plate 830a4.
  • the mounting surface 830a1 is configured To set the light absorbing sheet 830.
  • the light-absorbing sheet 830 can absorb the second split of the emitted light of the first wavelength. However, since the light-absorbing sheet 830 has a certain specular reflection, the light-absorbing sheet 830 cannot absorb all the second split of the emitted light of the first wavelength. The unabsorbed first wavelength The second split of the emitted light will be reflected by the mirror; for this reason, in some embodiments, the mounting surface 830a1 is tilted, and the light-absorbing sheet 830 is tilted accordingly.
  • the unabsorbed crosstalk light can be prevented from being reflected along the original path to the beam splitter 820, thereby preventing it from being reflected by the beam splitter 820 and returning to the light emitting component 500, thus improving the light emission performance.
  • the mounting surface 830a1 is a U-shaped mounting surface.
  • the center of the mounting surface 830a1 is hollow and the two ends are solid surfaces.
  • the light-absorbing sheet 830 is pasted on the solid surfaces at both ends of the mounting surface 830a1.
  • the mounting surface 830a1 is hollow so that the light-absorbing sheet will not be attached.
  • the entire surface of 830 is in contact with the mounting surface 830a1. If the entire surface of the light-absorbing sheet 830 is in contact with the mounting surface 830a1, the crosstalk light that is not absorbed by the light-absorbing sheet 830 will be reflected along the mounting surface 830a1. Therefore, the hollow design installation Surface 830a1 can reduce the amount of crosstalk light reflection.
  • the hollow structure of the mounting surface 830a1 is the third cavity 830a2; the end of the solid surface of the mounting surface 830a1 is provided with a first groove 830a3; when the light-absorbing sheet 830 is pasted on the mounting surface 830a1 with glue, the glue will overflow under the action of gravity and overflow. The glue will cause the light-absorbing sheet 830 to warp or not be firmly adhered. Therefore, the overflowing glue can be collected by setting the first groove 830a3 to avoid adverse effects on the light-absorbing sheet 830; the setting of the first groove 830a3 can also avoid processing problems. The structure remains to ensure the placement accuracy of the light-absorbing sheet 830.
  • the light-absorbing sheet 830 Since the light-absorbing sheet 830 has a certain transmittance, it can also transmit a part of stray light.
  • the arrangement of the third cavity 830a2 can provide a diffuse reflection space for the transmitted crosstalk light, so that the transmitted crosstalk light can be diffused in the third cavity 830a2. Reflection weakens the energy of the crosstalk light and prevents it from being reflected again through the light-absorbing sheet 830.
  • One end of the light-absorbing sheet 830 is located at the first groove 830a3.
  • the arrangement of the first groove 830a3 can avoid structural residues during processing, and can make the light-absorbing sheet 830 and the light-absorbing sheet bracket 830a avoid each other to ensure the placement of the light-absorbing sheet 830. Accuracy.
  • the round and square tube body 400 is formed with a fourth nozzle 440, and the light-absorbing sheet bracket 830a carries the light-absorbing sheet 830 and is embedded in the fourth nozzle 440; the fourth nozzle 440 includes a cylinder receiving cavity 441 and a cover receiving cavity 442.
  • the cylinder The shape of the accommodation cavity 441 is adapted to the column 830a5 so as to be configured to provide the column 830a5; the shape of the cover accommodation cavity 442 is adapted to the cover plate 830a4 so as to be configured to provide the cover plate 830a4.
  • the cylinder accommodating cavity 441 and the cover accommodating cavity 442 are arranged in steps.
  • the inner diameter of the cylinder accommodating cavity 441 is larger than the inner diameter of the cover accommodating cavity 442.
  • the height of the cylinder accommodating cavity 441 is larger than that of the cover accommodating cavity 442; light absorption
  • the cover plate 830a4 and the column 830a5 of the tablet holder 830a are respectively embedded in the cover plate accommodating cavity 442 and the column accommodating cavity 441.
  • the cylinder containing cavity 441 is connected with the third light-transmitting hole 403b, so that the second split light of the first wavelength emitted light is transmitted along the third light-transmitting hole 403 to the cylinder containing cavity 441, and then transmitted to the light-absorbing sheet 830 to absorb light.
  • the sheet 830 can absorb most of the first wavelength emitted light and the second split light, and can also reflect and transmit a small part of the light.
  • the reflected light is called reflected light
  • the transmitted light is called transmitted light; by tilting the light-absorbing sheet 830 , causing the reflected light to diverge along other transmission directions to prevent the reflected light from returning to the beam splitter 820; providing a diffuse reflection space for the transmitted light through the third cavity 830a2, so that the transmitted crosstalk light is diffused in the third cavity 830a2 Reflection weakens the energy of the crosstalk light and prevents it from being reflected again through the light-absorbing sheet 830.
  • FIG. 26 is a first assembly schematic diagram of a baffle and a first filter provided according to some embodiments of the present disclosure
  • FIG. 27 is a second assembly schematic diagram of a baffle and a first filter provided according to some embodiments of the present disclosure.
  • the first filter 850 is disposed at the bottom end of the baffle 840 and is disposed in the second nozzle 420 of the round and square tube body 400 .
  • the first filter 850 and the baffle 840 are embedded in the second tube opening 420, and the first light receiving component 600 is also embedded in the second tube opening 420.
  • the baffle 840 includes a first light-transmitting hole 841 and a mounting groove 842; the first light-transmitting hole 841 and the mounting groove 842 are concentrically arranged; the upper surface of the baffle 840 is recessed downward to penetrate the baffle 840 to obtain the first light-transmitting hole.
  • the first light-transmitting hole 841 is a through hole; it is recessed upward along the lower surface of the baffle 840 to half the height of the baffle 840 to obtain the installation groove 842; the aperture of the first light-transmitting hole 841 is relatively smaller than the aperture of the installation groove 842, then
  • the mounting groove 842 extends further relative to the first light-transmitting hole 841, so that the mounting groove 842 has an upper surface, a part of which is located at one end of the first light-transmitting hole 841, and the other part is located at the other end of the first light-transmitting hole 841.
  • the two ends of the first filter 850 can be respectively disposed on the upper surface of the installation groove 842; the state after the first filter 850 and the baffle 840 are connected is: visible through the first light-transmitting hole 841 For the first filter 850, light can pass through the first light-transmitting hole 841 and reach the surface of the first filter 850. At the same time, the first filter 850 can be embedded in the installation groove 842 to realize that the baffle 840 carries the first filter 850. .
  • the reflected light of the first wavelength is transmitted through the optical fiber adapter 900, the second lens 890, and the second filter 860 in sequence, and reaches the beam splitter 820.
  • the reflected light of the first wavelength changes the transmission direction under the reflection of the beam splitter 820, and passes through the baffle 840.
  • the first light-transmitting hole 841 enters the first filter 850 and then enters the first light receiving component 600; for this purpose, the baffle 840 and the first filter 850 are provided on the beam splitter 820 to detect the reflected light of the first wavelength.
  • the arrangement of the plate 840 can prevent the diffusely reflected light from entering the first light receiving component 600 .
  • the baffle 840 is formed with a mounting groove 842 to install the first filter 850; the second nozzle 420 of the round and square tube body 400 includes a curved surface 421, a first mounting surface 422 and a second mounting surface 423; the shape of the baffle 840 Adapting to the shape of the curved surface 421, the baffle 840 is embedded in the circumference of the curved surface 421. In order to further increase the stability of the baffle 840, the two opposite ends of the upper surface of the baffle 840 are respectively connected to the first mounting surface 422.
  • the baffle 840 carries the first filter 850 and is embedded in the second tube opening 420.
  • the second split light of the first wavelength reflected light enters the first filter 850 through the first light-transmitting hole 841, and then enters the first light receiving component.
  • the first light-transmitting hole 841 is formed by the upper surface of the baffle 840 being recessed downward until the first filter is exposed, and the mounting groove 842 is formed by the lower surface of the baffle 840 being recessed upward until the first filter can be installed.
  • the mounting groove 842 is formed by taking the first light-transmitting hole 841 as the center, the lower surface of the baffle 840 being upwardly recessed, and the extension diameter extending toward the outer circumferential direction of the baffle 840 is larger than the inner diameter of the first light-transmitting hole 841, then The inner diameter of the first light-transmitting hole 841 is smaller than that of the mounting groove 842; the first light-transmitting hole 841 allows the first wavelength reflected light to be transmitted to the surface of the first filter 850 to be transmitted to the inside of the first light receiving component 600; the mounting groove 842 is used to Install the first filter 850; since the extension diameter of the installation groove 842 is larger than the inner diameter of the first light-transmitting hole 841, the first filter 850 can be disposed on the upper surface of the installation groove 842.
  • FIG. 28 is a first assembly diagram of a second filter provided according to some embodiments of the present disclosure
  • FIG. 29 is a second assembly diagram of a second filter provided according to some embodiments of the present disclosure.
  • the round and square tube body 400 has a second filter plate accommodating cavity 404, and the second filter plate accommodating cavity 404 is configured to dispose the second filter plate 860; the second filter plate accommodating cavity 404 includes a second filter plate accommodating cavity 404.
  • a third inclined surface 4042 is provided at the bottom end of the second inclined surface 4041, one surface of the second filter 860 is connected to the second inclined surface 4041, and the other surface is connected to the third inclined surface 4042, thereby connecting the third inclined surface 4042.
  • the second filter plate 860 is disposed in the second filter plate containing cavity 404; a second groove 4044 is provided between the second inclined surface 4041 and the third inclined surface 4042. If the second inclined surface 4041 and the third inclined surface 4042 are directly connection, metal burrs will appear during processing, reducing the placement accuracy of the second filter 860. Therefore, the existence of the second groove 4044 can avoid the existence of metal burrs between the second inclined surface 4041 and the third inclined surface 4042.
  • the second inclined surface 4041 is a U-shaped inclined surface, and has a fourth light-transmitting hole in the hollow 4043.
  • the fourth light-transmitting hole 4043 is configured to transmit the first split of the emitted light of the first wavelength when it reaches the second filter 860 and continue to transmit along the optical path of the first split of the emitted light of the first wavelength. It is also configured as The received light of the second wavelength is transmitted when it reaches the second filter 860, and the optical path of the received light of the second wavelength is continued for transmission.
  • the transmission direction of the second wavelength received light is adjusted from horizontal transmission along the optical axis of the optical fiber adapter 900 to along the optical axis of the fiber adapter 900.
  • the second inclined surface 4041 has a preset inclination angle relative to the horizontal axis of the round square tube body 400.
  • the transmission direction of the received light of the second wavelength is adjusted from horizontal transmission along the optical axis of the fiber adapter 900 to along the direction perpendicular to the second wavelength.
  • Three filters are used for transmission in 880 directions.
  • Figure 30 is a first assembly diagram of a reflective sheet provided according to some embodiments of the present disclosure
  • Figure 31 is a second assembly diagram of a reflective sheet provided according to some embodiments of the present disclosure.
  • a reflective sheet receiving cavity 405 is formed inside the round tube body 400 , and the reflective sheet receiving cavity 405 is used to place the reflective sheet 870 .
  • the reflective sheet receiving cavity 405 includes a fourth inclined surface 4051.
  • the fourth inclined surface 4051 is U-shaped, and a fourth cavity 4053 is provided in the hollow.
  • the reflective sheet 870 has a small transmittance, and the fourth cavity 4053 can provide diffuse reflection space for the transmitted light to prevent the transmitted light from being emitted through the reflective sheet 870 .
  • the fourth inclined surface 4051 has a preset tilt angle relative to the horizontal axis of the round square tube body 400, so as to realize the tilted arrangement of the reflective sheet 870, and then adjust the angle between the 11° and the 11° With the combination of the two filters 860, the transmission direction of the received light of the second wavelength is adjusted from horizontal transmission along the optical axis of the optical fiber adapter 900 to transmission in a direction perpendicular to the third filter 880.
  • the reflective sheet receiving cavity 405 also includes a fifth inclined surface 4052.
  • One surface of the reflective sheet 870 is connected to the fourth inclined surface 4051, and the other surface is connected to the fifth inclined surface 4052, so as to realize the placement of the reflective sheet 870.
  • a third groove 4054 is provided between the fourth inclined surface 4051 and the fifth inclined surface 4052. If the fourth inclined surface 4051 and the fifth inclined surface 4052 are directly connected, problems will occur during processing. The phenomenon of metal burrs reduces the placement accuracy of the reflective sheet 870.
  • the setting of the third groove 4054 can avoid the existence of metal burrs between the fourth inclined surface 4051 and the fifth inclined surface 4052, which affects the placement accuracy of the reflective sheet 870.
  • the arrangement of the three grooves 4054 can ensure the placement accuracy of the reflective sheet 870.
  • the reflective sheet receiving cavity 405 also includes a connecting surface 4055, which is connected to the fifth inclined surface 4052.
  • the connecting surface 4055, the fifth inclined surface 4052, and the third groove 4054 are connected in sequence, forming a U after connection. structure, that is, a hollow design; the existence of the connecting surface 4055 can provide a certain support and transition for the installation angle of the reflective sheet 870, thereby increasing the installation accuracy of the reflective sheet 870.
  • Figure 32 is a schematic assembly diagram of a third filter provided according to some embodiments of the present disclosure. As shown in Figure 32, the round and square tube body 400 has a third nozzle 430. A third filter accommodating cavity 409 is formed on the end surface of the third nozzle 430. The third filter accommodating cavity 409 is used to place the third filter.
  • the third filter containing cavity 409 includes a first platform 4091 and a second platform 4092; the first platform 4091 and the second platform 4092 are arranged oppositely; the third filter 880 is connected across the first platform 4091 and the second platform 4092 , one end of the third filter 880 is connected to the first platform 4091, and the other end is connected to the second platform 4092; the second light receiving component 700 is embedded in the third nozzle 430, and the third filter 880 allows the second wavelength to receive light. After entering the second light receiving component 700, other wavelengths other than the second wavelength are not allowed to enter the second light receiving component 700 to achieve data transmission.

Abstract

一种光模块,包括电路板(300)、光发射部件(500)、第一光接收部件(600)、第二光接收部件(700)以及圆方管体(400);光发射部件(500)包括激光芯片(544)和第一透镜(543);光发射部件(500)被配置为发射第一波长发射光;第一光接收部件(600)被配置为接收第一波长反射光,第一波长反射光为第一波长发射光被光模块外部反射回来的光;第二光接收部件(700)被配置为接收第二波长接收光;光发射部件(500)、第一光接收部件(600)以及第二光接收部件(700)分别与圆方管体(400)连接;圆方管体(400)内部设有光学组件,光学组件包括分光片(820)、吸光片(830)、反射片(870)、第一滤波片(850)、第二滤波片(860)、第三滤波片(880)以及第二透镜(890)。通过第一透镜(543)和第二透镜(890)构成双透镜系统,以提高光耦合效率;通过光学组件实现光模块一发两收功能。

Description

[根据细则91更正 20.06.2023]光模块
[根据细则91更正 20.06.2023]
本申请要求在2022年8月9日提交中国专利局、申请号为202210952086.2的优先权;在2022年8月9日提交中国专利局、申请号为202222092116.5的优先权;在2022年8月9日提交中国专利局、申请号为202210952089.6的优先权,其全部内容通过引用结合在本申请中。
技术领域
[根据细则91更正 20.06.2023]
本公开涉及光通信技术领域,尤其涉及一种光模块。
背景技术
[根据细则91更正 20.06.2023]
随着云计算、移动互联网、视频等新型业务和应用模式的发展,光通信技术的进步变的愈加重要。在光通信技术中,光模块作为光通信设备中的关键器件之一,可以实现光电信号转换;在光通信技术的发展过程中,要求光模块的数据传输速率不断提高。
[根据细则91更正 20.06.2023]
发明内容
[根据细则91更正 20.06.2023]
根据本公开一些实施例提供的光模块,包括电路板、光发射部件、第一光接收部件、第二光接收部件以及圆方管体;光发射部件包括凸台,凸台表面形成有第一支撑面和第二支撑面,第一支撑面表面设有激光芯片,第二支撑件表面设有第一透镜;光发射部件被配置为发射第一波长发射光;第一光接收部件被配置为接收第一波长反射光,第一波长反射光为第一波长发射光被光模块外部反射回来的光;第二光接收部件被配置为接收第二波长接收光;圆方管体侧壁分别设有第一管口、第二管口、第三管口、第四管口以及第五管口,第一管口与光发射部件连接,第二管口与第一光接收部件连接,第三管口与第二光接收部件连接;圆方管体内部设有光学组件,光学组件包括分光片、吸光片、反射片、第一滤波片、第二滤波片、第三滤波片以及第二透镜。分光片被配置为透射第一波长发射光,以得到第一波长发射光第一分光;反射第一波长发射光,以得到第一波长发射光第二分光;透射第一波长反射光,以得到第一波长反射光第一分光;以及反射第一波长反射光,以得到第一波长反射光第二分光。吸光片通过吸光片支架与第四管口连接,吸光片与分光片相对设置,吸光片被配置为吸收第一波长发射光第二分光;吸光片支架包括盖板和柱体,柱体为两端不对称柱体,柱体表面形成有安装面,安装面被配置为设置吸光片,安装面相对于盖板具有预设倾斜角度,以使吸光片倾斜设置。第一滤波片设于第一波长反射光第二分光的传输光路上,第一滤波片被配置为使第一波长反射光第二分光透过,并进入第一光接收部件内。第二滤波片设于第一波长发射光第一分光的传输光路上,第二滤波片被配置为透射第一波长发射光第一分光及第一波长反射光,并反射第二波长接收光。反射片设于第二波长接收光经第二滤波片反射后的光路上,反射片被配置为接收并反射经第二滤波片反射的第二波长接收光。第三滤波片与反射片相对设置,第三滤波片设于第二波长接收光经反射片反射后的光路上,第三滤波片被配置为接收并传输经反射片反射的第二波长接收光,以将经发射片反射的第二波长接收光传输至第二光接收部件内。第二透镜设于第五管口处,第二透镜被配置为将第一波长发射光从平行光转化为汇聚光,并将第一波长反射光与第二波长接收光从发散光状态转化为平行光状态。
附图说明
[根据细则91更正 20.06.2023]
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并不是对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
[根据细则91更正 20.06.2023]
图1为根据本公开一些实施例提供的一种光通信系统局部架构图;
[根据细则91更正 20.06.2023]
图2为根据本公开一些实施例提供的一种上位机的局部结构图;
[根据细则91更正 20.06.2023]
图3为根据本公开一些实施例提供的一种光模块的整体图;
[根据细则91更正 20.06.2023]
图4为根据本公开一些实施例提供的一种光模块的分解图;
[根据细则91更正 20.06.2023]
图5为根据本公开一些实施例提供的一种光发射部件、第一光接收部件、第二光接收部件及圆方管体的装配图;
[根据细则91更正 20.06.2023]
图6为根据本公开一些实施例提供的一种圆方管体的结构图一;
[根据细则91更正 20.06.2023]
图7为根据本公开一些实施例提供的一种圆方管体的结构图二;
[根据细则91更正 20.06.2023]
图8为根据本公开一些实施例提供的一种圆方管体的结构图三;
[根据细则91更正 20.06.2023]
图9为根据本公开一些实施例提供的一种光模块局部分解图;
[根据细则91更正 20.06.2023]
图10为根据本公开一些实施例提供的一种光模块局部剖面图;
[根据细则91更正 20.06.2023]
图11为根据本公开一些实施例提供的一种光模块的光路图一;
[根据细则91更正 20.06.2023]
图12为根据本公开一些实施例提供的一种光模块的光路图二;
[根据细则91更正 20.06.2023]
图13为根据本公开一些实施例提供的一种光模块的光路图三;
[根据细则91更正 20.06.2023]
图14为根据本公开一些实施例提供的一种光发射部件的分解结构图;
[根据细则91更正 20.06.2023]
图15为根据本公开一些实施例提供的一种光发射部件的局部示意图;
[根据细则91更正 20.06.2023]
图16为根据本公开一些实施例提供的一种管座的结构图;
[根据细则91更正 20.06.2023]
图17为根据本公开一些实施例提供的一种圆方管体的内部剖面图一;
[根据细则91更正 20.06.2023]
图18为根据本公开一些实施例提供的一种圆方管体的内部剖面图二;
[根据细则91更正 20.06.2023]
图19为根据本公开一些实施例提供的一种圆方管体的内部剖面图三;
[根据细则91更正 20.06.2023]
图20为根据本公开一些实施例提供的一种圆方管体的内部剖面图四;
[根据细则91更正 20.06.2023]
图21为根据本公开一些实施例提供的一种分光片的装配示意图一;
[根据细则91更正 20.06.2023]
图22为根据本公开一些实施例提供的一种分光片的装配示意图二;
[根据细则91更正 20.06.2023]
图23为根据本公开一些实施例提供的一种吸光片支架的结构示意图;
[根据细则91更正 20.06.2023]
图24为根据本公开一些实施例提供的一种吸光片支架与吸光片的装配示意图;
[根据细则91更正 20.06.2023]
图25为根据本公开一些实施例提供的一种吸光片支架与圆方管体的装配示意图;
[根据细则91更正 20.06.2023]
图26为根据本公开一些实施例提供的一种挡板与第一滤波片的装配示意图一;
[根据细则91更正 20.06.2023]
图27为根据本公开一些实施例提供的一种挡板与第一滤波片的装配示意图二;
[根据细则91更正 20.06.2023]
图28为根据本公开一些实施例提供的一种第二滤波片的装配示意图一;
[根据细则91更正 20.06.2023]
图29为根据本公开一些实施例提供的一种第二滤波片的装配示意图二;
[根据细则91更正 20.06.2023]
图30为根据本公开一些实施例提供的一种反射片的装配示意图一;
[根据细则91更正 20.06.2023]
图31为根据本公开一些实施例提供的一种反射片的装配示意图二;
[根据细则91更正 20.06.2023]
图32为根据本公开一些实施例提供的一种第三滤波片的装配示意图。
具体实施方式
[根据细则91更正 20.06.2023]
光通信技术在信息处理设备之间建立信息传递,光通信技术将信息加载到光上,利用光的传播实现信息的传递,加载有信息的光就是光信号。光信号在信息传输设备中传播,可以减少光功率的损耗,实现高速度、远距离、低成本的信息传递。信息处理设备能够处理的信息以电信号的形态存在,光网络终端/网关、路由器、交换机、手机、计算机、服务器、平板电脑、电视机是常见的信息处理设备,光纤及光波导是常见的信息传输设备。
[根据细则91更正 20.06.2023]
信息处理设备与信息传输设备之间的光信号、电信号相互转换,是通过光模块实现的。例如,在光模块的光信号输入端和/或光信号输出端连接有光纤,在光模块的电信号输入端和/或电信号输出端连接有光网络终端;来自光纤的第一光信号传输进光模块,光模块将第一光信号转换为第一电信号,光模块将第一电信号传输进光网络终端;来自光网络终端的第二电信号传输进光模块,光模块将第二电信号转换为第二光信号,光模块将第二光信号传输进光纤。由于信息处理设备之间可以通过电信号网络相互连接,所以至少需要一类信息处理设备直接与光模块连接,并不需要所有类型的信息处理设备均直接与光模块连接,直接连接光模块的信息处理设备被称为光模块的上位机。
[根据细则91更正 20.06.2023]
图1为根据本公开一些实施例提供的一种光通信系统局部架构图。如图1所示,光通信系统的局部呈现为远端信息处理设备1000、本地信息处理设备2000、上位机100、光模块200、光纤101以及网线103。
[根据细则91更正 20.06.2023]
光纤101的一端向远端信息处理设备1000方向延伸,另一端接入光模块200的光接口。光信号可以在光纤101中发生全反射,光信号在全反射方向上的传播几乎可以维持原有光功率,光信号在光纤101中发生多次的全反射,将来自远端信息处理设备1000方向的光信号传输进光模块200中,或将来自光模块200的光向远端信息处理设备1000方向传播,实现远距离、功率损耗低的信息传递。
[根据细则91更正 20.06.2023]
光纤101的数量可以是一根,也可以是多根(两根及以上);光纤101与光模块200采用可插拔式的活动连接,也可采用固定连接。
[根据细则91更正 20.06.2023]
上位机100具有光模块接口102,光模块接口102被配置为接入光模块200,从而使得上位机100与光模块200建立单向/双向的电信号连接;上位机100被配置为向光模块200提供数据信号,或从光模块200接收数据信号,或对光模块200的工作状态进行监测、控制。
[根据细则91更正 20.06.2023]
上位机100具有对外电接口,如通用串行总线接口(Universal Serial Bus,USB)、网线接口104,对外电接口可以接入电信号网络。示例地,网线接口104被配置为接入网线103,从而使得上位机100与网线103建立单向/双向的电信号连接。
[根据细则91更正 20.06.2023]
光网络终端(Optical Network Unit,ONU)、光线路终端(Optical Line Terminal,OLT)、光网络设备(Optical Network Terminal,ONT)及数据中心服务器为常见的上位机。
[根据细则91更正 20.06.2023]
网线103的一端连接本地信息处理设备2000,另一端连接上位机100,网线103在本地信息处理设备2000与上位机100之间建立电信号连接。
[根据细则91更正 20.06.2023]
示例地,本地信息处理设备2000发出的第三电信号通过网线103传入上位机100,上位机100基于第三电信号生成第二电信号,来自上位机100的第二电信号传输进光模块200,光模块200将第二电信号转换为第二光信号,光模块200将第二光信号传输进光纤101,第二光信号在光纤101中传向远端信息处理设备1000。
[根据细则91更正 20.06.2023]
示例地,来自远端信息处理设备1000方向的第一光信号通过光纤101传播,来自光纤101的第一光信号传输进光模块200,光模块200将第一光信号转换为第一电信号,光模块200将第一电信号传输进上位机100,上位机100基于第一电信号生成第四电信号,上位机100将第四电信号传入本地信息处理设备2000。
[根据细则91更正 20.06.2023]
光模块是实现光信号与电信号相互转换的工具,在上述光信号与电信号的转换过程中,信息并未发生变化,信息的编解码方式可以发生变化。
[根据细则91更正 20.06.2023]
图2为根据本公开一些实施例提供的一种上位机的局部结构图。为了清楚地显示光模块200与上位机100的连接关系,图2仅示出了上位机100与光模块200相关的结构。如图2所示,上位机100还包括设置于壳体内的PCB电路板105、设置在PCB电路板105的表面的笼子106、设置于笼子106上的散热器107、以及设置于笼子106内部的电连接器(图中未示出),散热器107具有增大散热面积的凸起结构,翅片状结构是常见的凸起结构。
[根据细则91更正 20.06.2023]
光模块200插入上位机100的笼子106中,由笼子106固定光模块200,光模块200产生的热量传导给笼子106,然后通过散热器107进行扩散。光模块200插入笼子106中后,光模块200的电接口与笼子106内部的电连接器连接。
[根据细则91更正 20.06.2023]
图3为根据本公开一些实施例提供的一种光模块的整体图;图4为根据本公开一些实施例提供的一种光模块的分解图。如图3和图4所示,光模块200包括壳体(shell)、设置于壳体内的电路板300、光发射部件及光接收部件。
[根据细则91更正 20.06.2023]
壳体包括上壳体201和下壳体202,上壳体201盖合在下壳体202上,以形成具有两个开口204和205的上述壳体;壳体的外轮廓一般呈现方形体。
[根据细则91更正 20.06.2023]
在一些实施例中,下壳体202包括底板2021以及位于底板2021两侧、与底板2021垂直设置的两个下侧板2022;上壳体201包括盖板2011,盖板2011盖合在下壳体202的两个下侧板2022上,以形成上述壳体。
[根据细则91更正 20.06.2023]
在一些实施例中,下壳体202包括底板2021以及位于底板2021两侧、与底板2021垂直设置的两个下侧板2022;上壳体201包括盖板2011,以及位于盖板2011两侧、与盖板2011垂直设置的两个上侧板,由两个上侧板与两个下侧板2022结合,以实现上壳体201盖合在下壳体202上。
[根据细则91更正 20.06.2023]
两个开口204和205的连线所在方向可以与光模块200的长度方向一致,也可以与光模块200的长度方向不一致。例如,开口204位于光模块200的端部(图3的右端),开口205也位于光模块200的端部(图3的左端)。或者,开口204位于光模块200的端部,而开口205则位于光模块200的侧部。开口204为电接口,电路板300的金手指从电接口伸出,插入上位机的电连接器中;开口205为光口,被配置为接入光纤101,以使光纤101连接光模块200中的光发射部件和/或光接收部件。
[根据细则91更正 20.06.2023]
采用上壳体201、下壳体202结合的装配方式,便于将电路板300、光发射部件、光接收部件等组件安装到上述壳体中,由上壳体201、下壳体202可以对这些组件形状封装保护。此外,在装配电路板300、光发射部件与光接收部件等部件时,便于这些器件的定位部件、散热部件以及电磁屏蔽部件的部署,有利于自动化地实施生产。
[根据细则91更正 20.06.2023]
在一些实施例中,上壳体201及下壳体202采用金属材料制成,利于实现电磁屏蔽以及散热。
[根据细则91更正 20.06.2023]
在一些实施例中,光模块200还包括位于其壳体外部的解锁部件203。解锁部件203被配置为实现光模块200与上位机之间的固定连接,或解除光模块200与上位机之间的固定连接。
[根据细则91更正 20.06.2023]
例如,解锁部件203位于下壳体202的两个下侧板2022的外侧,包括与上位机的笼子106匹配的卡合部件。当光模块200插入笼子106里时,由解锁部件203的卡合部件将光模块200固定在笼子106里;拉动解锁部件203时,解锁部件203的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块200与上位机的卡合固定连接,从而可以将光模块200从笼子106里抽出。
[根据细则91更正 20.06.2023]
电路板300包括电路走线、电子元件及芯片等,通过电路走线将电子元件和芯片按照电路设计连接在一起,以实现供电、电信号传输及接地等功能。电子元件例如可以包括电容、电阻、三极管以及金属氧化物半导体场效应管(Metal-Oxide-Semiconductor Field-Effect Transistor,
[根据细则91更正 20.06.2023]
MOSFET)。芯片例如可以包括微控制单元(Microcontroller Unit,MCU)、激光驱动芯片、跨阻放大器(Transimpedance Amplifier,TIA)、限幅放大器(Limiting Amplifier,LIA)、时钟数据恢复芯片(Clock and Data Recovery,CDR)、电源管理芯片以及数字信号处理(Digital Signal Processing,DSP)芯片。
[根据细则91更正 20.06.2023]
电路板300一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳的承载上述电子元件和芯片;硬性电路板还便于插入上位机笼子中的电连接器中。
[根据细则91更正 20.06.2023]
电路板300还包括形成在其端部表面的金手指,金手指由独立的多个引脚组成。电路板300插入笼子106中,由金手指与笼子106内的电连接器导通。金手指可以仅设置在电路板300一侧的表面(例如图4所示的上表面),也可以设置在电路板300上下两侧的表面,以提供更多的引脚。金手指被配置为与上位机建立电连接,以实现供电、接地、I2C信号传递、数据信号传递等。
[根据细则91更正 20.06.2023]
当然,部分光模块中也会使用柔性电路板,柔性电路板一般与硬性电路板配合使用,以作为硬性电路板的补充。
[根据细则91更正 20.06.2023]
光发射部件和/或光接收部件位于电路板300的远离金手指的一侧;在一些实施例中,光发射部件及光接收部件分别与电路板300物理分离,然后分别通过相应的柔性电路板或电连接件与电路板300电连接;在一些实施例中,光发射装置和/或光接收装置可以直接设置在电路板300上,可以设置在电路板的表面,也可以设置在电路板的侧边。
[根据细则91更正 20.06.2023]
本公开实施例中,光发射部件及光接收部件采用TO封装,光发射部件、光接收部件可以通过柔性电路板与电路板300实现电连接,柔性电路板一端与光发射部件或光接收部件电连接,另一端与电路板300电连接。
[根据细则91更正 20.06.2023]
随着光通信技术的发展,需光模块具备多项功能,例如,光监控信道(Optical supervisory channel,OSC)功能,通过OSC传输监控信息;又例如,光时域反射(Optical Time Domain Reflectometer,OTDR)功能,通过OTDR仪发射光脉冲到光纤内,当光脉冲在光纤内传输时,由于光纤本身的性质,容易导致连接器中断、光纤弯曲等光链路异常,而产生散射光信号和反射光信号,其中一部分散射光信号和反射光信号就会返回到OTDR仪中,OTDR仪根据接收的散射光信号和反射光信号的时域特性,从而判断光链路是否发生异常。
[根据细则91更正 20.06.2023]
在一些实施例中,为了实现OTDR检测功能,设置一对具备OTDR检测功能的光模块,分别称为第一光模块和第二光模块,第一光模块包括如第一光发射部件以及第一光接收部件,第二光模块包括第二光发射部件以及第二光接收部件。通过第一光发射部件发射第一波长光,接收由于光链路异常被反射回来的第一波长光;通过第一光接收部件接收第二波长光。通过第二光发射部件发射第二波长光,接收由于光链路异常被反射回来的第二波长光;通过第二光接收部件接收第一波长光。
[根据细则91更正 20.06.2023]
图5为根据本公开一些实施例提供的一种光发射部件、第一光接收部件、第二光接收部件及圆方管体的装配图。如图5所示,本公开实施例中,光模块包括圆方管体400、光发射部件500、第一光接收部件600、第二光接收部件700及光纤适配器900。光发射部件500、第一光接收部件600、第二光接收部件700及光纤适配器900分别与圆方管体400的侧壁连接。
[根据细则91更正 20.06.2023]
光发射部件500发出第一波长的光信号,该第一波长的光信号被称为第一波长发射光;第一波长发射光进行传输时,当光链路出现异常时,则部分第一波长发射光被反射回圆方管体400内,部分第一波长发射光沿光纤适配器900传输至光模块外部;其中,被反射回圆方管体的光信号被称为第一波长反射光。
[根据细则91更正 20.06.2023]
第一光接收部件600接收第一波长反射光,然后根据第一波长反射光进行OTDR检测。
[根据细则91更正 20.06.2023]
第二光接收部件700接收第二波长接收光,第二波长接收光携带数据信息,第二波长接收光来自于光模块的外部;通过第二光接收部件700接收第二波长接收光,可实现OSC数据传输功能。
[根据细则91更正 20.06.2023]
在本公开的一些实施例中,通过在圆方管体400的内部设置光发射部件500、第一光接收部件600以及第二光接收部件700,可同时使光模块具备OSC数据传输功能和OTDR检测功能;且通过圆方管体400,集成设有光发射部件500、第一光接收部件600以及第二光接收部件700,实现光收发一体,有利于实现光模块的小型化发展。
[根据细则91更正 20.06.2023]
图6为根据本公开一些实施例提供的一种圆方管体的结构图一;图7为根据本公开一些实施例提供的一种圆方管体的结构图二;图8为根据本公开一些实施例提供的一种圆方管体的结构图三。如图6-图8所示,圆方管体400的第一侧壁上形成有第一管口410,第二侧壁上形成有第二管口420,第三侧壁上形成有第三管口430以及第四管口440,第四侧壁上形成有第五管口450;第一侧壁与第四侧壁位于圆方管体400的长度方向上,且二者相对设置;第二侧壁和第三侧壁处于圆方管体400的宽度方向上相对设置,且二者相对设置。
[根据细则91更正 20.06.2023]
图9为根据本公开一些实施例提供的一种光模块局部分解图。如图9所示,光发射部件500通过连接套筒510与圆方管体400连接。
[根据细则91更正 20.06.2023]
在本公开的一些实施例中,连接套筒510的端面面积大于光发射部件500的端面面积,则通过连接套筒510便于实现光发射部件500与圆方管体400的焊接,并且可增大光发射部件500与圆方管体400之间的焊接面积,从而增加焊接牢固性。
[根据细则91更正 20.06.2023]
在本公开的一些实施例中,光发射部件500与第一管口410连接。在一些实施例中,光发射部件500嵌入至连接套筒510内,然后连接套筒510的端面与第一管口410的端面进行焊接;在一些实施例中,通过机械贴平及机械连接实现连接套筒510与第一管口410的连接。
[根据细则91更正 20.06.2023]
光发射部件500发出的光为平行光,则光发射部件500进行XY平面耦合;以圆方管体400为基准,光发射部件500连同连接套筒510一起进行XY平面耦合,耦合至最大光发射功率;示例性地,将光发射部件500嵌入至连接套筒510内,然后进行XY平面耦合,耦合至光发射功率最大时,将连接套筒510的端面与第一管口410的端面进行焊接,实现机械贴平及机械连接。其中,XY平面指的是附图9中从光发射部件500至光纤适配器900的连线为轴线,与该轴线相垂直的平面为XY平面。
[根据细则91更正 20.06.2023]
在一些实施例中,第一管口410相对于圆方管体400突出,则更便于进行连接套筒510与圆方管体400之间的焊接;在一些实施例中,当第一管口410相对于圆方管体400不突出时,可将连接套筒510与圆方管体400的侧壁焊接至一起。
[根据细则91更正 20.06.2023]
在本公开的一些实施例中,光纤适配器900与第五管口450连接。在一些实施例中,光纤适配器900通过调节套筒910与圆方管体400连接,调节套筒910的设置既可以更好地连接光纤适配器900与圆方管体400,又利于光纤适配器900进行光耦合,尤其是光纤适配器900进行Z轴耦合;光纤适配器900嵌入至调节套筒910内,然后调节套筒910的端面与第五管口450所在的侧壁进行焊接,通过机械贴平及机械连接实现调节套筒910与第五管口450之间的连接。
[根据细则91更正 20.06.2023]
从光纤适配器900中射出的光以及进入光纤适配器900的光均为汇聚光,因此光纤适配器900进行XYZ耦合;以圆方管体400为基准,光纤适配器900进行XYZ方向耦合,耦合至最大光发射功率;示例性地,将光纤适配器900嵌入至调节套筒910内,然后调节套筒910随光纤适配器900进行XY平面耦合,同时光纤适配器900也会进行Z轴耦合,耦合至光发射功率最大时,将调节套筒910的侧面与光纤适配器900侧壁进行穿透焊接,然后调节套筒910与第五管口450所在的侧壁进行机械贴平,然后再进行XY平面耦合,耦合至光发射功率最大时,将调节套筒910的端面与第五管口450所在的侧壁进行机械焊接;其中,XYZ方向指的是:以附图9中从光发射部件500至光纤适配器900的连线为轴线,该轴线延伸方向即Z轴,与该轴线相垂直的平面为XY平面。
[根据细则91更正 20.06.2023]
在本公开的一些实施例中,第一光接收部件600与第二管口420连接;示例性地,将第一光接收部件600镶嵌至第二管口420内部,从而实现第一光接收部件600与第二管口420的连接。
[根据细则91更正 20.06.2023]
在本公开的一些实施例中,第二光接收部件700与第三管口430连接;示例性地,将第二光接收部件700镶嵌至第三管口430内部,从而实现第二光接收部件700与第三管口430的连接。
[根据细则91更正 20.06.2023]
图10为根据本公开一些实施例提供的一种光模块局部剖面图。如图10所示,圆方管体400的内部设有光学组件,光学组件包括光隔离器810、分光片820、吸光片830、第一滤波片850、挡板840、第二滤波片860、反射片870、第三滤波片880、第二透镜890。其中,第二透镜890朝向圆方管体400内部的端面具有汇聚作用,朝向圆方管体400外部的端面具有准直作用,光发射部件500发出平行光,以平行光的状态进行长距离传输;然后经第二透镜890进入光纤适配器900时,则第二透镜890朝向圆方管体400内部的端面将平行光转化为汇聚光,汇聚光经光纤适配器900入纤;当外部的光进入光纤适配器900时,外部的光为汇聚光,则第二透镜890朝向圆方管体400外部的端面将汇聚光转化为平行光,以平行光进入圆方管体400内。
[根据细则91更正 20.06.2023]
光隔离器810与分光片820的光轴处于同一水平线上;吸光片830、第一滤波片850分别设于分光片820的两侧;吸光片830设于第一波长发射光经分光片820后的反射光路上;第一滤波片850设于第一波长发射光经分光片820后的反射光路的逆方向上;第二滤波片860与分光片820的光轴处于同一水平线上;反射片870设于第二滤波片860对第二波长接收光的反射光路上;第三滤波片880设于反射片870对第二波长接收光的反射光路上。
[根据细则91更正 20.06.2023]
分光片820对于第一波长发射光或第一波长反射光而言为半透半反,此处的半透半反指的是对光功率上的均分,而分光后两束光的波长与分光前光波长相同,即分光前后光波长并没有发生改变;第二滤波片860透射第一波长发射光或第一波长反射光,反射第二波长接收光;反射片870反射第二波长接收光;第一滤波片850只允许第一波长发射光或第一波长反射光透射,不允许其他波长透射;第三滤波片880只允许第二波长接收光透射,不允许其他波长透射。
[根据细则91更正 20.06.2023]
通过光隔离器810、分光片820、吸光片830、第一滤波片850、挡板840、第二滤波片860、反射片870、第三滤波片880、第二透镜890,可实现第一波长发射光的发射,还可以实现第一波长反射光的接收,同时还可以实现第二波长接收光的接收,进而实现OTDR、OSC双信道同时设于圆方管体400内。
[根据细则91更正 20.06.2023]
第一波长发射光从光隔离器810透过,然后经分光片820时,由于分光片820为半透半反,则第一波长发射光经分光片820透射及反射后分别得到第一波长发射光第一分光及第一波长发射光第二分光;其中,第一波长发射光第一分光经第二滤波片860透射,进入第二透镜890内,第二透镜890设为汇聚透镜,经第二透镜890的汇聚后,第一波长发射光第一分光以汇聚光的形式经光纤适配器900发射出去。由于第一波长发射光第二分光会在圆方管体400内发生漫反射,而进入第一光接收部件600中,对第一光接收部件600造成串扰,这种串扰会增大OTDR的衰减盲区,进而影响OTDR检测性能,因此,在一些实施例中,在第一波长发射光经分光片820反射后的光路上设置吸光片830,通过吸光片830可吸收第一波长发射光第二分光,从而避免第一波长发射光第二分光对第一光接收部件600造成串扰。
[根据细则91更正 20.06.2023]
第一波长反射光是由第一波长发射光在光纤链路中传输中遇到异常情况时被反射回来的;第一波长反射光经光纤适配器900、第二透镜890后,进入圆方管体400内部,然后经第二滤波片860透射,到达分光片820,经过分光片820的透射及反射后分别得到第一波长反射光第一分光和第一波长反射光第二分光;第一波长反射光第二分光到达第一滤波片850,从而进入第一光接收部件600内;第一波长反射光第一分光到达光隔离器810,在光隔离器810作用下,阻止第一波长反射光第一分光进入光发射部件500内,从而提高光发射部件500的发射性能。在一些实施例中,光隔离器810还可以阻止第一波长发射光第一分光沿原路返回至光发射部件500内,从而进一步提高光发射部件500的发射性能。
[根据细则91更正 20.06.2023]
第二波长接收光经光纤适配器900传输,通过第二透镜890后,进入圆方管体400内部;然后经第二滤波片860反射,而改变传输方向;至反射片870,经反射片870反射,而再次改变传输方向,到达第三滤波片880,第三滤波片880使第二波长接收光透过,从而第二波长接收光到达第二光接收部件700内。在一些实施例中,第二滤波片860为11°滤波片,也就是,第二滤波片860的入射光与法线之间的夹角为11°,出射光与法线之间的夹角为11°,则第二滤波片860的入射光与出射光之间的夹角为22°;反射片870为34°反射片,也就是,反射片870的入射光与法线之间的夹角为34°,出射光与法线之间的夹角为34°,则反射片870的入射光与出射光之间的夹角为68°;最终将第二波长接收光的传输方向改变90°,则第二波长接收光水平进入第二滤波片860内,然后经过反射片870后,第二波长接收光垂直进入第三滤波片880内,第三滤波片880使第二波长接收光透过,从而第二波长接收光到达第二光接收部件700内。因此在一些实施例中,通过11°的第二滤波片860与34°的反射片870,将第二波长接收光的传输方向由沿光纤适配器900光轴方向水平传输,调整为沿垂直于第三滤波片880方向进行传输。
[根据细则91更正 20.06.2023]
如图10所示,光纤适配器900包括光纤插芯920;在一些实施例中,光纤适配器900进行Z轴耦合时,光纤适配器900沿调节套筒910进行Z轴方向的调节,光纤插芯920的端部会有一小部分进入至圆方管体400内部,因此,圆方管体400的端部设有第二空腔407,第二空腔407在光纤适配器900沿Z轴耦合时,为光纤插芯920提供活动空间;光纤适配器900进行耦合时,光纤插芯920的端部会或多或少地伸入至第二空腔407内。
[根据细则91更正 20.06.2023]
在一些实施例中,为了防止光沿原光路返回,光路设计上使光非垂直入射光纤端面;为了实现光非垂直入射光纤端面,将光纤端面研磨成斜面;示例性地,将光纤包裹在陶瓷中形成光纤插芯920,将光纤插芯920的端面研磨成斜面,光纤插芯920中的光纤端面随之成斜面。
[根据细则91更正 20.06.2023]
图11为根据本公开一些实施例提供的一种光模块的光路图一。如图11所示,第一波长发射光依次经光隔离器810、分光片820、第二滤波片860、第二透镜890,到达光纤适配器900,然后经光纤适配器900发射至光纤中;在一些实施例中,虽然第一波长发射光第二分光大部分被吸光片830所吸收,但仍有一小部分未被吸光片830所吸收,未被吸光片830所吸收的光存在于圆方管体400内部而进行漫反射,未被吸光片830所吸收的光对于第一光接收部件600而言为串扰光;因此在第一波长发射光第二分光的光路逆方向上设置有挡板840,挡板840下表面设置第一滤波片850。在一些实施例中,挡板840表面设置有吸收层,该吸收层是对挡板840进行发黑处理得到的结构层,通过该吸收层可吸收部分未被吸光片830吸收的第一波长发射光第二分光;在一些实施例中,挡板840的边缘与圆方管体400的内部通过黑胶密封连接,则可以阻挡或拦截串扰光、任意对于第一光接收部件600而言属于杂散光的光。因此,通过吸光片830可吸收大部分串扰光,通过挡板840可阻挡或拦截串扰光、杂散光,进而提高第一光接收部件600的接收性能,以提高OTDR检测准确度。其中杂散光可能为,第二波长反射光在射入第二滤波片860时,虽然大部分第二波长反射光可经第二滤波片860反射,但仍有小部分光经第二滤波片860透射,经过第二滤波片860透射的这部分光对于第一光接收部件600而言属于杂散光。
[根据细则91更正 20.06.2023]
图12为根据本公开一些实施例提供的一种光模块的光路图二。如图12所示,第一波长反射光依次经光纤适配器900、第二透镜890、第二滤波片860,传输至分光片820,部分第一波长反射光经分光片820反射,而射入第一滤波片850中,到达第一光接收部件600内,部分第一波长反射光经分光片820透射,而射入光隔离器810内;通过光隔离器810的隔离作用,可避免第一波长反射光第一分光进入光发射部件500内,从而提高光发射部件500的发射性能。
[根据细则91更正 20.06.2023]
图13为根据本公开一些实施例提供的一种光模块的光路图三。如图13所示,第二波长接收光经光纤适配器900传输,通过第二透镜890的汇聚,而进入圆方管体400内部,经第二滤波片860反射,改变光的传输方向;至反射片870,经反射片870反射,再次改变光的传输方向,到达第三滤波片880,第三滤波片880透射第二波长接收光,从而第二波长接收光到达第二光接收部件700内。
[根据细则91更正 20.06.2023]
图14为根据本公开一些实施例提供的一种光发射部件的分解结构图;图15为根据本公开一些实施例提供的一种光发射部件的局部示意图。如图14和图15所示,光发射部件500包括管帽520和管座530;管帽520盖设于管座530表面;管帽520与管座530之间形成空腔;管座530表面设有凸台542;凸台542与管帽顶端之间设有光窗541。凸台542表面分别设有第一透镜543、激光芯片544。激光芯片544发出的光经第一透镜543、光窗541而发射出去,为了避免光在经过光窗541时反射而沿原路返回至激光芯片544内,影响光发射性能。在一些实施例中,光窗541相对于管帽的顶表面呈一定角度的倾斜,光窗541与管帽顶表面之间呈4°至8°的倾斜角,防止光信号在经过光窗541时反射而沿原路返回至激光芯片544内,从而提高光发射性能。
[根据细则91更正 20.06.2023]
凸台542具有第一支撑面5421、第二支撑面5422;在一些实施例中,第一支撑面5421相对于第二支撑面5422更凹陷,则第一支撑面5421与第二支撑面5422呈台阶设置,第一支撑面5421与第二支撑面5422之间设有台阶5423;第一支撑面5421、第二支撑面5422分别用来设置第一透镜543、激光芯片544;将第一透镜543、激光芯片544分别通过胶水进行粘贴时,可能会出现溢胶,因此台阶5423呈倾斜设置。台阶5423向凸台542的内侧倾斜,这样台阶5423具有导胶作用;在粘贴第一透镜543时,溢胶流至台阶5423表面,防止出现爬胶而影响光发射部件500的耦合效率。凸台542与管座530二者呈一体设置,进而保证凸台542表面上承载的第一透镜543、激光芯片544的同心度相对于管座530固定,进而增加光发射耦合效率。
[根据细则91更正 20.06.2023]
第一透镜543设为准直透镜,激光芯片544发出光束为发散光束,第一透镜543将发散光束转化为平行光;然后该平行光在圆方管体400内部进行传输,依次经过光隔离器810、分光片820、第二滤波片860,然后射入第二透镜890内,第二透镜890为汇聚透镜,则第二透镜890将平行光转换为汇聚光,汇聚光经光纤适配器900入纤。
[根据细则91更正 20.06.2023]
在一些实施例中,将汇聚透镜设于光发射部件500内部,或设于光发射部件500近处,由于光发射部件500与光纤适配器900之间具有一定距离,导致该汇聚透镜的焦距较长,进而光耦合效率较低,且从该汇聚透镜出来的汇聚光会经过光学器件后才入纤,如滤波片、反射片等,导致汇聚光存在插损、回损等损耗,降低光耦合效率。
[根据细则91更正 20.06.2023]
在一些实施例中,第二透镜890设于光学组件末端与光纤适配器900之间,因此第二透镜890的焦距角度较大,进而光耦合效率提高;同时,第二透镜890输出的汇聚光不受其他光学组件的影响,进一步提高光耦合效率。光发射部件500经第一透镜543发射平行光,然后该平行光在圆方管体400内部进行传输,直至传输至第二透镜890后,经第二透镜890将平行光转换为汇聚光,汇聚光直接经光纤适配器900入纤。
[根据细则91更正 20.06.2023]
第一透镜543与第二透镜890组成光收发组件的双透镜系统;通过双透镜系统,可实现在入纤前以平行光状态进行传输,在入纤时将平行光转化为汇聚光,以汇聚光状态入纤。通过双透镜系统,可减小第二透镜890的焦距,同时减少汇聚光能量损耗,进而提高光耦合效率及出光效率,进而提升OTDR发射性能。
[根据细则91更正 20.06.2023]
管座530表面还设有垫块545,垫块545表面设有背光探测器546;背光探测器546被配置为检测激光芯片544的出光功率,以保证激光芯片544出光功率维持在预设范围内;由于背光探测器546具有光敏面,具有一定反射性,因此,本公开一些实施例中,为了防止射入背光探测器546上的光束沿原路返回至激光芯片544内,管座530表面具有倾斜支撑面534,倾斜支撑面534相对于管座具有倾斜角度,示例性地,倾斜支撑面534朝向管座530顶表面的相对面而倾斜向上;将垫块545、背光探测器546设于倾斜支撑面534上,以防止射入背光探测器546上的光束沿原路返回至激光芯片544内,从而提高激光芯片544的发射性能。
[根据细则91更正 20.06.2023]
管座530表面还设有第一管脚551、第二管脚552、第三管脚553、第四管脚554;第一管脚551为接地管脚,通过第一管脚551实现激光芯片544、背光探测器546的接地;第二管脚552为激光芯片正极信号管脚,通过第二管脚552传输高频信号;第三管脚553为激光芯片负极信号管脚,同时也是背光探测器负极信号管脚,通过第三管脚553传输高频信号,实现差分信号传输;第四管脚554为背光探测器正极信号管脚,通过第四管脚554传输高频信号。
[根据细则91更正 20.06.2023]
在一些实施例中,激光芯片544的正极与第二管脚552通过金线电连接,负极与第三管脚553通过金线电连接。背光探测器546的正极与第四管脚554通过金线电连接,负极与第三管脚553通过金线电连接。为了缩短激光芯片544的正极与第二管脚552之间、背光探测器546的正极与第四管脚554之间的打线长度,在第二管脚552、第四管脚554表面分别设有第一金属块5521、第二金属块5541,以缩短打线长度,增加信号的高频性能。
[根据细则91更正 20.06.2023]
图16为根据本公开一些实施例提供的一种管座的结构图。如图16所示,管座530表面分别设有第一管脚通孔531、第二管脚通孔532、第三管脚通孔533;在一些实施例中,通过第三管脚通孔533可设置第三管脚553;第三管脚通孔533与倾斜支撑面534连续设置;第三管脚通孔533的一端与倾斜支撑面534连续设置,另一端朝管座530顶表面倾斜,进而第三管脚通孔533朝向两个相反的方向倾斜,第三管脚通孔533最终呈心形设置。
[根据细则91更正 20.06.2023]
图17为根据本公开一些实施例提供的一种圆方管体的内部剖面图一。如图17所示,光隔离器810、分光片820、吸光片830、第一滤波片850、挡板840、第二滤波片860、反射片870、第三滤波片880、第二透镜890以不同姿态设于圆方管体内腔中,为了设置它们,圆方管体内部形成有各种不同的腔体。光隔离器810、分光片820、吸光片830、第一滤波片850、挡板840构成第一波长分光系统,第二滤波片860、反射片870、第三滤波片880构成第二波长分光系统。
[根据细则91更正 20.06.2023]
图18为根据本公开一些实施例提供的一种圆方管体的内部剖面图二;图19为根据本公开一些实施例提供的一种圆方管体的内部剖面图三;图20为根据本公开一些实施例提供的一种圆方管体的内部剖面图四。如图18-图20所示,圆方管体400内壁分别形成有第一空腔401、隔离器容纳腔402、分光片容纳腔403、第二滤波片容纳腔404、反射片容纳腔405、第二透镜容纳腔406、第二空腔407、第一滤波片容纳腔408、第三滤波片容纳腔409。
[根据细则91更正 20.06.2023]
通过第一空腔401可将光发射部件500与光隔离器810隔离开,以相互避让;通过隔离器容纳腔402设置光隔离器810;通过分光片容纳腔403设置分光片820;通过第二滤波片容纳腔404设置第二滤波片860;通过反射片容纳腔405设置反射片870;通过第二透镜容纳腔406设置第二透镜890;第二空腔407用来为光纤适配器900耦合时提供可调节空间;通过第一滤波片容纳腔408设置第一滤波片850;通过第三滤波片容纳腔409设置第三滤波片880。
[根据细则91更正 20.06.2023]
第一空腔401与隔离器容纳腔402相邻设置,二者均设于第一管口410内;第一空腔401朝向圆方管体400外周凹陷的程度大于隔离器容纳腔402朝向圆方管体400外周凹陷的程度;第一空腔401的设置可以避免焊接时光发射部件500的连接套筒510与光隔离器810发生碰撞而相互干涉,第一空腔401可以使连接套筒510与光隔离器810相互避让。
[根据细则91更正 20.06.2023]
分光片容纳腔403用来设置分光片820;分光片容纳腔403的一侧壁上形成有第二透光孔403a,另一侧壁上形成有第三透光孔403b;分光片容纳腔403、第二透光孔403a、第三透光孔403b相通;光发射部件500发出的第一波长发射光沿第二透光孔403a入射至分光片820表面,第一波长发射光第二分光沿第三透光孔403b入射至吸光片830处;第一波长反射光传输至分光片820时,第一波长反射光第一分光沿第二透光孔403a入射光隔离器810处,第一波长反射光第二分光进入第一滤波片850处,进而射入第一光接收部件600内。
[根据细则91更正 20.06.2023]
第二透镜容纳腔406与第二空腔407相邻设置,第二空腔407朝向圆方管体400外周凹陷的程度大于第二空腔407朝向圆方管体400外周凹陷的程度;第二空腔407被配置为为光纤适配器900耦合时提供可调节空间;在一些实施例中,在光纤适配器900进行Z轴耦合时,光纤插芯920的端部会有一小部分进入至圆方管体400内部,因此,圆方管体400的端部形成有第二空腔407,第二空腔407在光纤适配器900沿Z轴耦合时,为光纤插芯920提供活动、移动空间。
[根据细则91更正 20.06.2023]
图21为根据本公开一些实施例提供的一种分光片的装配示意图一;图22为根据本公开一些实施例提供的一种分光片的装配示意图二。如图21和图22所示,分光片820设于分光片容纳腔403内;分光片容纳腔403的一侧壁上形成有第二透光孔403a,另一侧壁上形成有第三透光孔403b;分光片容纳腔403、第二透光孔403a、第三透光孔403b相通;光发射部件500发出的第一波长发射光沿第二透光孔403a入射至分光片820表面,第一波长发射光第二分光沿第三透光孔403b入射至吸光片830处;第一波长反射光传输至分光片820时,第一波长反射光第一分光沿第二透光孔403a入射光隔离器810处,第一波长反射光第二分光进入第一滤波片850处,进而射入第一光接收部件600内。
[根据细则91更正 20.06.2023]
圆方管体400内壁形成有第一倾斜面403c,分光片容纳腔403为第一倾斜面403c从该斜面底端朝向第二透光孔403a凹陷形成,凹陷得到的空间用来嵌设分光片820。
[根据细则91更正 20.06.2023]
分光片容纳腔403包括抵持面4031、支撑面4032及贴持面4033;第一倾斜面403c凹陷后一侧壁为抵持面4031,一侧壁为支撑面4032,一侧壁为贴持面4033;抵持面4031、支撑面4032及贴持面4033中两两相互垂直,抵持面4031、支撑面4032及贴持面4033组成分光片容纳腔403的本体;抵持面4031、支撑面4032二者构成一直角卡槽,称为第一直角卡槽,支撑面4032及贴持面4033二者构成另一直角卡槽,称为第二直角卡槽。
[根据细则91更正 20.06.2023]
分光片820相邻的两侧壁嵌入至第一直角卡槽内,相邻的另外两侧壁嵌入至第二直角卡槽内,分光片820朝向第二透光孔403a、第三透光孔403b的侧壁与贴持面4033贴合连接;这样分光片一侧壁与抵持面4031抵持连接,一侧壁与支撑面4032支持连接,一侧壁与贴持面4033贴持连接,以实现分光片820;分光片820与第一倾斜面403c呈平行关系,第一倾斜面403c以预设倾斜角度设置,以配合分光片820的倾斜角度,示例性地,分光片820的倾斜角度为45°。
[根据细则91更正 20.06.2023]
在一些实施例中分光片820的相应壁面分别与抵持面4031、支撑面4032及贴持面4033通过胶水粘贴连接,粘贴时会有胶水溢出而影响光路,还可能使分光片820翘曲或粘贴不牢固,为此本公开实施例中支撑面4032中间位置凹陷得到溢胶槽4034,粘贴时溢出的胶水可溢至溢胶槽4034内,避免溢出的胶水所带来的不良影响,且溢胶槽4034的存在可给镊取分光片820后进行粘贴提供操作空间,便于贴片操作。
[根据细则91更正 20.06.2023]
图23为根据本公开一些实施例提供的一种吸光片支架的结构示意图;图24为根据本公开一些实施例提供的一种吸光片支架与吸光片的装配示意图。如图23和图24所示,吸光片支架830a用来承载吸光片830;在一些实施例中,将吸光片830、吸光片支架830a连接后得到一整体,该整体与圆方管体400进行连接。
[根据细则91更正 20.06.2023]
图25为根据本公开一些实施例提供的一种吸光片支架与圆方管体的装配示意图。如图25所示,圆方管体400的侧壁形成有第四管口440,第四管口440用来嵌设吸光片支架830a;吸光片支架830a形状如帽子状,吸光片支架830a包括盖板830a4、柱体830a5,盖板830a4盖设于柱体830a5的表面,盖板830a4相对于柱体830a5突出;柱体830a5为两端不对称柱体,一端长度相对于另一端长度短;柱体830a5上设有安装面830a1,安装面830a1由柱体830a5相对较长的一端以倾斜角度朝向盖板830a4凹陷而形成,安装面830a1相对于盖板830a4具有倾斜角度,安装面830a1被配置为设置吸光片830。
[根据细则91更正 20.06.2023]
通过吸光片830可吸收第一波长发射光第二分光,但由于吸光片830具有一定的镜面反射,导致吸光片830无法吸收全部的第一波长发射光第二分光,未被吸收的第一波长发射光第二分光会被镜面反射;为此在一些实施例中,安装面830a1倾斜设置,则吸光片830随之倾斜设置。当吸光片830倾斜设置时,可避免未被吸收的串扰光沿原路反射至分光片820上,进而避免经分光片820反射而返回至光发射部件500内,进而提升光发射性能。
[根据细则91更正 20.06.2023]
安装面830a1为U型安装面,安装面830a1中心处为中空,两端处为实体表面,吸光片830粘贴于安装面830a1两端的实体表面上,粘贴时由于安装面830a1中空以不至于吸光片830的整个表面都与安装面830a1相接触,若吸光片830整个表面都与安装面830a1相接触,则未被吸光片830所吸收的串扰光会沿安装面830a1而反射,因此中空设计的安装面830a1可减少串扰光反射量。
[根据细则91更正 20.06.2023]
安装面830a1中空结构为第三空腔830a2;安装面830a1的实体表面端部设有第一凹槽830a3;吸光片830采用胶水粘贴于安装面830a1上时,胶水在重力作用下会溢出,溢出的胶水会导致吸光片830翘曲或粘贴不牢固,因此通过设置第一凹槽830a3可收集溢出的胶水,避免对吸光片830造成不良影响;第一凹槽830a3的设置还可以避免加工上的结构残余,保证吸光片830的贴装精度。
[根据细则91更正 20.06.2023]
由于吸光片830具有一定透射率,因此还可透射一部分杂散光,第三空腔830a2的设置可以为透射的串扰光提供漫反射空间,以使透射的串扰光在第三空腔830a2内进行漫反射,削弱串扰光的能量,避免其经吸光片830再次反射出去。
[根据细则91更正 20.06.2023]
吸光片830的一端设于第一凹槽830a3处,第一凹槽830a3的设置可避免加工上的结构残余,可使吸光片830与吸光片支架830a相互避让,以保证吸光片830的贴装精度。
[根据细则91更正 20.06.2023]
圆方管体400形成有第四管口440,吸光片支架830a承载着吸光片830嵌入第四管口440内;第四管口440包括柱体容纳腔441及盖板容纳腔442,柱体容纳腔441的形状与柱体830a5相适应,以被配置为设置柱体830a5;盖板容纳腔442的形状与盖板830a4相适应,以被配置为设置盖板830a4。柱体容纳腔441及盖板容纳腔442呈台阶设置,柱体容纳腔441内径相对于盖板容纳腔442内径较大,柱体容纳腔441高度上相对于盖板容纳腔442较大;吸光片支架830a的盖板830a4、柱体830a5分别嵌入盖板容纳腔442、柱体容纳腔441。柱体容纳腔441与第三透光孔403b相连通,以使第一波长发射光第二分光沿第三透光孔403传输至柱体容纳腔441内,进而传输至吸光片830内,吸光片830可吸收大部分第一波长发射光第二分光,也可以反射、透射一少部分光,反射的光被称为反射光,透射的光被称为透射光;通过将吸光片830倾斜设置,使反射光沿其他传输方向进行发散,避免反射光返回至分光片820内;通过第三空腔830a2为透射光提供漫反射空间,以使透射的串扰光在第三空腔830a2内进行漫反射,削弱串扰光的能量,避免其经吸光片830再次反射出去。
[根据细则91更正 20.06.2023]
图26为根据本公开一些实施例提供的一种挡板与第一滤波片的装配示意图一;图27为根据本公开一些实施例提供的一种挡板与第一滤波片的装配示意图二。如图26和图27所示,第一滤波片850设于挡板840的底端,并设于圆方管体400的第二管口420内。第一滤波片850、挡板840嵌设于第二管口420内,同时第一光接收部件600也嵌设于第二管口420内。
[根据细则91更正 20.06.2023]
挡板840包括第一透光孔841、安装槽842;第一透光孔841、安装槽842为同心设置;沿挡板840上表面向下凹陷至贯穿挡板840从而得到第一透光孔841,第一透光孔841为通孔;沿挡板840下表面向上凹陷至挡板840一半高度处从而得到安装槽842;第一透光孔841的孔径相对小于安装槽842的孔径,则安装槽842相对于第一透光孔841更延伸,这样安装槽842具有上表面,该上表面一部分位于第一透光孔841的一端,另一部分位于第一透光孔841的另一端,因此可将第一滤波片850的两端分别设于安装槽842的上表面处;第一滤波片850、挡板840二者连接后呈现的状态为:透过第一透光孔841可以看到第一滤波片850,光可以透过第一透光孔841到达第一滤波片850表面,同时第一滤波片850可以嵌设至安装槽842内,以实现挡板840承载第一滤波片850。
[根据细则91更正 20.06.2023]
第一波长反射光依次经光纤适配器900、第二透镜890、第二滤波片860透射,到达分光片820,第一波长反射光在分光片820的反射下改变传输方向,并透过挡板840上的第一透光孔841射入第一滤波片850,进而进入第一光接收部件600内;为此,挡板840、第一滤波片850设于分光片820对第一波长反射光的反射光路上;大部分第一波长发射光第二分光可以被吸光片830所吸收,但仍有一部分第一波长发射光第二分光未被吸收而在圆方管体400内进行漫反射,挡板840的设置可避免漫反射的这部分光进入第一光接收部件600内。
[根据细则91更正 20.06.2023]
挡板840形成有安装槽842以安装第一滤波片850;圆方管体400的第二管口420包括曲面421、第一贴装面422及第二贴装面423;挡板840的形状与曲面421的形状相适应,挡板840嵌设于曲面421围城的圆周内,为了进一步增加挡板840的稳定性,将挡板840上表面相对的两端部分别与第一贴装面422及第二贴装面423进行粘贴连接,在挡板840上表面相对的两端部表面涂抹胶水,然后分别与第一贴装面422及第二贴装面423进行粘贴连接,以增加挡板840设置的稳定性。挡板840承载着第一滤波片850嵌设于第二管口420内,第一波长反射光第二分光经第一透光孔841射入第一滤波片850,进而进入第一光接收部件600内,以实现OTDR检测。
[根据细则91更正 20.06.2023]
在一些实施例中,第一透光孔841由挡板840的上表面向下凹陷至第一滤波片暴露出来而得到,安装槽842由挡板840的下表面向上凹陷至可安装第一滤波片850而得到;安装槽842以第一透光孔841为中心,挡板840的下表面向上凹陷、且向挡板840外周方向延伸的延伸直径大于第一透光孔841内径而形成,则第一透光孔841内径小于安装槽842;第一透光孔841允许第一波长反射光透射至第一滤波片850的表面,以传输至第一光接收部件600内部;安装槽842用来安装第一滤波片850;由于安装槽842延伸直径大于第一透光孔841内径,则第一滤波片850可设于安装槽842的上表面处。
[根据细则91更正 20.06.2023]
图28为根据本公开一些实施例提供的一种第二滤波片的装配示意图一;图29为根据本公开一些实施例提供的一种第二滤波片的装配示意图二。如图28和图29所示,圆方管体400具有第二滤波片容纳腔404,第二滤波片容纳腔404被配置为设置第二滤波片860;第二滤波片容纳腔404包括第二倾斜面4041,第二倾斜面4041的底端处设有第三倾斜面4042,第二滤波片860一表面与第二倾斜面4041连接,另一表面与第三倾斜面4042连接,进而将第二滤波片860设于第二滤波片容纳腔404内;在第二倾斜面4041与第三倾斜面4042之间设有第二凹槽4044,若第二倾斜面4041与第三倾斜面4042直接连接,则在加工时会出现金属毛刺现象,降低第二滤波片860的贴装精度,因此第二凹槽4044的存在可避免第二倾斜面4041与第三倾斜面4042之间存在金属毛刺而影响第二滤波片860的贴装精度,第二凹槽4044的存在可以保证第二滤波片860的贴装精度;第二倾斜面4041为U型倾斜面,且中空设有第四透光孔4043,第四透光孔4043被配置为使第一波长发射光第一分光在到达第二滤波片860时透射过去,继续沿第一波长发射光第一分光的光路进行传输,还被配置为使第二波长接收光在到达第二滤波片860时透射过去,继续第二波长接收光的光路进行传输。在本公开的一些实施例中,在11°第二滤波片860与34°反射片870的组合下,将第二波长接收光的传输方向由沿光纤适配器900光轴方向水平传输,调整为沿垂直于第三滤波片880方向进行传输;为了适应第二滤波片860的光路,在本公开的一些实施例中,第二倾斜面4041相对于圆方管体400的水平轴线具有预设倾斜角度,以实现第二滤波片860的倾斜设置,进而在与34°反射片870的组合下,将第二波长接收光的传输方向由沿光纤适配器900光轴方向水平传输,调整为沿垂直于第三滤波片880方向进行传输。
[根据细则91更正 20.06.2023]
图30为根据本公开一些实施例提供的一种反射片的装配示意图一;图31为根据本公开一些实施例提供的一种反射片的装配示意图二。如图30和图31所示,圆方管体400内部形成有反射片容纳腔405,反射片容纳腔405用来设置反射片870。
[根据细则91更正 20.06.2023]
在一些实施例中,反射片容纳腔405包括第四倾斜面4051,第四倾斜面4051为U型,中空设有第四空腔4053,反射片870具有较小的透射率,第四空腔4053可以为透射光提供漫反射空间,以避免透射光经反射片870发射出去。
[根据细则91更正 20.06.2023]
为了适应反射片870的光路,在一些实施例中,第四倾斜面4051相对于圆方管体400的水平轴线具有预设倾斜角度,以实现反射片870的倾斜设置,进而在与11°第二滤波片860的组合下,将第二波长接收光的传输方向由沿光纤适配器900光轴方向水平传输,调整为沿垂直于第三滤波片880方向进行传输。
[根据细则91更正 20.06.2023]
在一些实施例中,反射片容纳腔405还包括第五倾斜面4052,反射片870一表面与第四倾斜面4051连接,另一表面与第五倾斜面4052连接,以实现将反射片870设于反射片容纳腔405内;第四倾斜面4051、第五倾斜面4052之间设有第三凹槽4054,若第四倾斜面4051、第五倾斜面4052直接连接,则在加工时会出现金属毛刺现象,降低反射片870的贴装精度,因此第三凹槽4054的设置可避免第四倾斜面4051、第五倾斜面4052之间存在金属毛刺而影响反射片870的贴装精度,第三凹槽4054的设置可以保证反射片870的贴装精度。
[根据细则91更正 20.06.2023]
在一些实施例中,反射片容纳腔405还包括连接面4055,连接面4055与第五倾斜面4052连接,连接面4055、第五倾斜面4052、第三凹槽4054依次连接,连接后形成U型结构,即中空设计;连接面4055的存在可为反射片870的安装角度起到一定支撑、过渡,进而可以增加反射片870的安装精度。
[根据细则91更正 20.06.2023]
图32为根据本公开一些实施例提供的一种第三滤波片的装配示意图。如图32所示,圆方管体400具有第三管口430,第三管口430的端面上形成有第三滤波片容纳腔409,第三滤波片容纳腔409用来设置第三滤波片880;第三滤波片容纳腔409包括第一平台4091和第二平台4092;第一平台4091和第二平台4092相对设置;第三滤波片880跨接于第一平台4091和第二平台4092上,第三滤波片880一端与第一平台4091连接,另一端与第二平台4092连接;第二光接收部件700嵌设于第三管口430内,第三滤波片880允许第二波长接收光进入第二光接收部件700内,不允许除第二波长以外的其他波长进入第二光接收部件700内,实现数据传输。
[根据细则91更正 20.06.2023]
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (21)

  1. 一种光模块,包括:
    电路板;
    光发射部件,包括:
    凸台,表面形成有第一支撑面和第二支撑面;
    激光芯片,设于所述第一支撑面的表面,所述激光芯片被配置为发射第一波长发射光;
    第一透镜,设于所述第二支撑面的表面,所述第一透镜被配置为将所述第一波长发射光从发散光状态转化为平行光状态;
    第一光接收部件,被配置为接收第一波长反射光,所述第一波长反射光为所述第一波长发射光经光模块外部反射回来的光;
    第二光接收部件,被配置为接收第二波长接收光;以及
    圆方管体,侧壁上分别设有第一管口、第二管口、第三管口、第四管口以及第五管口,所述第一管口与所述光发射部件连接,所述第二管口与所述第一光接收部件连接,所述第三管口与所述第二光接收部件连接;所述圆方管体内部设有光学组件,其中,所述光学组件包括:
    分光片,被配置为透射所述第一波长发射光,以得到第一波长发射光第一分光;反射所述第一波长发射光,以得到第一波长发射光第二分光;透射所述第一波长反射光,以得到第一波长反射光第一分光;以及反射所述第一波长反射光,以得到第一波长反射光第二分光;
    吸光片,通过吸光片支架与所述第四管口连接,所述吸光片与所述分光片相对设置,所述吸光片被配置为吸收所述第一波长发射光第二分光;其中,所述吸光片支架包括盖板和柱体,所述柱体为两端不对称柱体,所述柱体表面形成有安装面,所述安装面被配置为设置所述吸光片,所述安装面相对于所述盖板具有预设倾斜角度,以使所述吸光片倾斜设置;
    第一滤波片,设于所述第一波长反射光第二分光的传输光路上,所述第一滤波片被配置为使所述第一波长反射光第二分光透过,并进入所述第一光接收部件内;
    第二滤波片,设于所述第一波长发射光第一分光的传输光路上,所述第二滤波片被配置为透射所述第一波长发射光第一分光及所述第一波长反射光,并反射所述第二波长接收光;
    反射片,设于所述第二波长接收光经所述第二滤波片反射后的光路上,所述反射片被配置为接收并反射经所述第二滤波片反射的所述第二波长接收光;
    第三滤波片,与所述反射片相对设置,所述第三滤波片设于所述第二波长接收光经所述反射片反射后的光路上,所述第三滤波片被配置为接收并传输经所述反射片反射的所述第二波长接收光,以将经所述发射片反射的所述第二波长接收光传输至所述第二光接收部件内;以及
    第二透镜,设于所述第五管口处,所述第二透镜被配置为将所述第一波长发射光从平行光转化为汇聚光,并将所述第一波长反射光与所述第二波长接收光从发散光状态转化为平行光状态。
  2. 根据权利要求1所述的光模块,还包括光纤适配器,所述光纤适配器与所述第五管口连接;
    所述光纤适配器被配置为连接外部光纤,以传输经所述第二透镜汇聚后的所述第一波长发射光。
  3. 根据权利要求2所述的光模块,其中,所述圆方管体内壁形成有第一倾斜面,所述第一倾斜面具有第一表面和第二表面,所述第一表面朝向所述光发射部件,所述第二表面朝向所述光纤适配器;
    所述圆方管体内部还设有:
    分光片容纳腔,被配置为设置所述分光片;
    第二滤波片容纳腔,被配置为设置所述第二滤波片;
    反射片容纳腔,被配置为设置所述反射片;以及
    第三滤波片容纳腔,被配置为设置所述第三滤波片。
  4. 根据权利要求3所述的光模块,其中:
    所述分光片容纳腔,由所述第二表面贯穿至所述第一表面,所述分光片容纳腔包括抵持面、支撑面及贴持面;其中,所述抵持面与所述支撑面构成第一直角卡槽,所述支撑面与所述贴持面构成第二直角卡槽,所述第一直角卡槽和所述第二直角卡槽被配置为嵌设所述分光片;
    所述分光片容纳腔,一侧壁上形成有第二透光孔,另一侧壁上形成有第三透光孔,所述第二透光孔及所述第三透光孔均与所述分光片容纳腔相通;
    所述第二透光孔,被配置为为使所述激光芯片发出的所述第一波长发射光透过,并传输至所述分光片表面;
    所述第三透光孔,被配置为使所述第一波长发射光第二分光透过,并传输至所述吸光片表面。
  5. 根据权利要求3所述的光模块,其中,所述第二滤波片容纳腔包括:
    第二倾斜面,相对于所述圆方管体的水平轴线具有预设倾斜角度,所述第二倾斜面与所述第二滤波片的一表面连接;
    第三倾斜面,相对于所述圆方管体的水平轴线具有预设倾斜角度,所述第三倾斜面与所述第二滤波片的另一表面连接;
    第二凹槽,设于所述第二倾斜面与所述第三倾斜面之间,所述第二凹槽与所述第二滤波片之间无接触;以及
    第四透光孔,设于所述第二倾斜面的中间,所述第四透光孔被配置为使所述第一波长发射光在到达所述第二滤波片时穿过,并使所述第二波长接收光在到达所述第二滤波片时穿过。
  6. 根据权利要求5所述的光模块,其中,所述反射片容纳腔包括:
    第四倾斜面,相对于所述圆方管体的水平轴线具有预设倾斜角度,所述第四倾斜面与所述反射片一表面连接;
    第五倾斜面,相对于所述圆方管体的水平轴线具有预设倾斜角度,所述第五倾斜面与所述反射片另一表面连接;
    第三凹槽,设于所述第四倾斜面与所述第五倾斜面之间,所述第三凹槽与所述反射片之间无接触;
    第四空腔,设于所述第四倾斜面中间,所述第四空腔被配置为为透过所述反射片的光提供漫反射空间;以及
    连接面,与所述第五倾斜面连接,所述连接面、所述第五倾斜面及所述第三凹槽依次连接。
  7. 根据权利要求3所述的光模块,其中,所述第三滤波片容纳腔包括相对设置的第一平台和第二平台;
    所述第三滤波片跨接于所述第一平台和所述第二平台之间;
    所述第三滤波片的一端与所述第一平台连接,所述第三滤波片的另一端与所述第二平台连接。
  8. 根据权利要求1所述的光模块,其中,所述光学组件还包括光隔离器;
    所述光隔离器设于所述第一管口内,被配置为阻止所述第一波长反射光第一分光及所述第一波长发射光第二分光进入所述光发射部件内。
  9. 根据权利要求8所述的光模块,其中,所述圆方管体内腔还设有第一空腔以及光隔离器容纳腔;
    所述第一空腔与所述光隔离器容纳腔相邻设置,且所述第一空腔与所述光隔离器容纳腔均设于所述第一管口内;
    所述第一空腔朝向所述圆方管体外周凹陷程度大于所述光隔离器容纳腔朝向所述圆方管体外周凹陷程度;
    所述第一空腔被配置为将所述光发射部件与所述光隔离器相隔离开,以使所述光发射部件与所述光隔离器相互避让;
    所述光隔离器容纳腔被配置为设置所述光隔离器。
  10. 根据权利要求1所述的光模块,其中,所述吸光片相对于所述圆方管体的水平轴线倾斜设置,以避免未被所述吸收片吸收的所述第一波长发射光第二分光,进入所述光发射部件及所述第一光接收部件内。
  11. 根据权利要求1所述的光模块,其中,所述吸光片支架的所述安装面由所述柱体相对较长的一端以预设倾斜角度朝向所述盖板凹陷而形成;
    所述安装面中间形成有第三空腔,所述第三空腔被配置为供所述第一波长发射光第二分光进行漫反射,所述安装面的两端分别形成有第一凹槽,所述第一凹槽被配置为收集所述吸光片贴片时所溢出的胶水。
  12. 根据权利要求1所述的光模块,其中,所述第四管口内形成有吸光片支架容纳腔,所述吸光片支架容纳腔被配置为嵌设所述吸光片;
    所述吸光片支架容纳腔包括:
    柱体容纳腔,与所述柱体相适应,以设置所述柱体;
    所述盖板容纳腔,与所述柱体容纳腔呈台阶设置,所述盖板容纳腔与所述盖板相适应,以设置所述盖板。
  13. 根据权利要求12所述的光模块,其中,所述柱体容纳腔内径大于所述盖板容纳腔内径,所述柱体容纳腔高度大于所述盖板容纳腔高度。
  14. 根据权利要求1所述的光模块,其中,所述圆方管体内部还设有挡板,所述挡板与所述第一滤波片连接;所述挡板设于所述第二管口内;
    所述挡板的边缘与所述第二管口之间通过黑胶密封连接,以阻挡所述第一波长发射光第二分光进入所述第一光接收部件内;
    所述挡板的表面具有吸收层,以吸收未被所述吸光片吸收的所述第一波长发射光第二分光。
  15. 根据权利要求14所述的光模块,其中,所述挡板包括:
    安装槽,由所述挡板的下表面向上凹陷,并向所述挡板外周延伸而形成,以设置所述第一滤波片;
    第一透光孔,由所述挡板的上表面向下凹陷,且向所述挡板外周延伸而成,且所述第一透光孔向所述挡板外周延伸的直径小于所述安装槽向所述挡板外周延伸的直径,所述第一透光孔被配置为使所述第一滤波片暴露出来,并使所述第一波长发射光第二分光穿过并射入所述第一滤波片内。
  16. 根据权利要求2所述的光模块,其中,所述圆方管体内还形成有第二透镜容纳腔以及第二空腔;
    所述第二空腔朝向所述圆方管体外周凹陷程度大于所述第二空腔朝向所述圆方管体外周凹陷程度。
  17. 根据权利要求16所述的光模块,其中,所述光纤适配器包括光纤插芯;
    所述第二空腔被配置为在光纤适配器耦合时为所述光纤插芯提供移动空间;
    所述第二透镜容纳腔被配置为设置所述第二透镜。
  18. 根据权利要求6所述的光模块,其中,所述安装面表面端部设有第一凹槽;
    所述第二倾斜面与所述第三倾斜面之间设有第二凹槽;
    所述第四倾斜面与所述第五倾斜面之间设有第三凹槽。
  19. 根据权利要求1所述的光模块,其中,所述第一透镜为准直透镜,所述第二透镜为汇聚透镜。
  20. 根据权利要求2所述的光模块,其中,所述第二透镜与所述光纤适配器之间无光学元件。
  21. 根据权利要求1所述的光模块,其中:
    所述光发射部件包括管座和管帽,所述管座表面设有所述凸台;
    所述第一透镜与所述管帽顶表面之间设有光窗;
    所述光窗被配置为密封所述光发射部件,且所述光窗相对于所述管帽顶表面倾斜设置,以防止所述第一波长发射光沿原路返回至所述光发射部件内。
PCT/CN2023/083844 2022-08-09 2023-03-24 光模块 WO2024031998A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202210952086.2 2022-08-09
CN202210952089.6 2022-08-09
CN202210952086.2A CN117631158A (zh) 2022-08-09 2022-08-09 一种光模块
CN202222092116.5 2022-08-09
CN202210952089.6A CN115201977B (zh) 2022-08-09 2022-08-09 一种光模块
CN202222092116.5U CN218866165U (zh) 2022-08-09 2022-08-09 一种光模块

Publications (1)

Publication Number Publication Date
WO2024031998A1 true WO2024031998A1 (zh) 2024-02-15

Family

ID=89850575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/083844 WO2024031998A1 (zh) 2022-08-09 2023-03-24 光模块

Country Status (1)

Country Link
WO (1) WO2024031998A1 (zh)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007041388A (ja) * 2005-08-04 2007-02-15 Optohub:Kk 光モジュール
US20070071444A1 (en) * 2003-09-25 2007-03-29 Takeshi Okada Optical module, optical transceiver, and optical joint sleeve
JP2007121987A (ja) * 2005-09-28 2007-05-17 Kyocera Corp 光送受信モジュール
CN203519885U (zh) * 2013-09-24 2014-04-02 武汉华工正源光子技术有限公司 内置otdr功能的单光纤双向传输组件
CN203745688U (zh) * 2014-01-24 2014-07-30 武汉电信器件有限公司 一种otdr的olt器件
US20150381271A1 (en) * 2013-02-22 2015-12-31 Zte Corporation Optical Transceiving Device and Method
JP2017211419A (ja) * 2016-05-23 2017-11-30 オプト エレクトロニクス ソリューションズ 光モジュール
CN110133807A (zh) * 2018-02-09 2019-08-16 住友电气工业株式会社 光模块及光模块的制造方法
CN110531471A (zh) * 2019-09-02 2019-12-03 青岛海信宽带多媒体技术有限公司 一种光模块
CN110673278A (zh) * 2019-11-15 2020-01-10 深圳市亚派光电器件有限公司 光收发器件
CN110806623A (zh) * 2019-11-15 2020-02-18 深圳市亚派光电器件有限公司 光收发器件
CN111239923A (zh) * 2020-02-11 2020-06-05 青岛海信宽带多媒体技术有限公司 一种光模块
CN112698451A (zh) * 2019-10-22 2021-04-23 青岛海信宽带多媒体技术有限公司 一种光模块
CN114545571A (zh) * 2020-11-27 2022-05-27 青岛海信宽带多媒体技术有限公司 一种光模块
CN115201977A (zh) * 2022-08-09 2022-10-18 青岛海信宽带多媒体技术有限公司 一种光模块

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070071444A1 (en) * 2003-09-25 2007-03-29 Takeshi Okada Optical module, optical transceiver, and optical joint sleeve
JP2007041388A (ja) * 2005-08-04 2007-02-15 Optohub:Kk 光モジュール
JP2007121987A (ja) * 2005-09-28 2007-05-17 Kyocera Corp 光送受信モジュール
US20150381271A1 (en) * 2013-02-22 2015-12-31 Zte Corporation Optical Transceiving Device and Method
CN203519885U (zh) * 2013-09-24 2014-04-02 武汉华工正源光子技术有限公司 内置otdr功能的单光纤双向传输组件
CN203745688U (zh) * 2014-01-24 2014-07-30 武汉电信器件有限公司 一种otdr的olt器件
JP2017211419A (ja) * 2016-05-23 2017-11-30 オプト エレクトロニクス ソリューションズ 光モジュール
CN110133807A (zh) * 2018-02-09 2019-08-16 住友电气工业株式会社 光模块及光模块的制造方法
CN110531471A (zh) * 2019-09-02 2019-12-03 青岛海信宽带多媒体技术有限公司 一种光模块
CN112698451A (zh) * 2019-10-22 2021-04-23 青岛海信宽带多媒体技术有限公司 一种光模块
CN110673278A (zh) * 2019-11-15 2020-01-10 深圳市亚派光电器件有限公司 光收发器件
CN110806623A (zh) * 2019-11-15 2020-02-18 深圳市亚派光电器件有限公司 光收发器件
CN111239923A (zh) * 2020-02-11 2020-06-05 青岛海信宽带多媒体技术有限公司 一种光模块
CN114545571A (zh) * 2020-11-27 2022-05-27 青岛海信宽带多媒体技术有限公司 一种光模块
CN115201977A (zh) * 2022-08-09 2022-10-18 青岛海信宽带多媒体技术有限公司 一种光模块

Similar Documents

Publication Publication Date Title
TWI529438B (zh) 光收發器模組
CN214174689U (zh) 一种光模块
CN215895036U (zh) 一种光模块
CN215181032U (zh) 一种光模块
CN215813458U (zh) 一种光模块
CN113721331B (zh) 一种光模块
CN112838897A (zh) 一种光模块
CN215895035U (zh) 一种光模块
CN216013740U (zh) 一种光模块
CN114200596B (zh) 一种光模块
CN115201977B (zh) 一种光模块
CN112929092A (zh) 一种光模块
WO2023185220A1 (zh) 一种光模块
CN113625399A (zh) 一种光模块
CN217521402U (zh) 光模块
CN217606136U (zh) 光模块
WO2024031998A1 (zh) 光模块
CN214228255U (zh) 一种光模块
CN214228256U (zh) 一种光模块
CN115016074B (zh) 一种光模块
CN112904494B (zh) 一种光模块
CN218866165U (zh) 一种光模块
CN114200603A (zh) 一种光模块
CN114200600A (zh) 一种光模块
WO2023134293A1 (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851233

Country of ref document: EP

Kind code of ref document: A1