WO2024031644A1 - Method and apparatus for cbg-based harq-ack feedback for configured transmission - Google Patents

Method and apparatus for cbg-based harq-ack feedback for configured transmission Download PDF

Info

Publication number
WO2024031644A1
WO2024031644A1 PCT/CN2022/112142 CN2022112142W WO2024031644A1 WO 2024031644 A1 WO2024031644 A1 WO 2024031644A1 CN 2022112142 W CN2022112142 W CN 2022112142W WO 2024031644 A1 WO2024031644 A1 WO 2024031644A1
Authority
WO
WIPO (PCT)
Prior art keywords
harq
pdschs
ack
sps
codebook
Prior art date
Application number
PCT/CN2022/112142
Other languages
French (fr)
Inventor
Haipeng Lei
Original Assignee
Lenovo (Beijing) Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lenovo (Beijing) Limited filed Critical Lenovo (Beijing) Limited
Priority to PCT/CN2022/112142 priority Critical patent/WO2024031644A1/en
Publication of WO2024031644A1 publication Critical patent/WO2024031644A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • Embodiments of the present disclosure generally relate to wireless communication technology, and more particularly to code block group (CBG) based hybrid automatic repeat request acknowledgement (HARQ-ACK) feedback for a semi-persistent scheduling (SPS) PDSCH.
  • CBG code block group
  • HARQ-ACK hybrid automatic repeat request acknowledgement
  • SPS semi-persistent scheduling
  • Wireless communication systems are widely deployed to provide various telecommunication services, such as telephony, video, data, messaging, broadcasts, and so on.
  • Wireless communication systems may employ multiple access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., time, frequency, and power) .
  • Examples of wireless communication systems may include fourth generation (4G) systems, such as long-term evolution (LTE) systems, LTE-advanced (LTE-A) systems, or LTE-APro systems, and fifth generation (5G) systems, which may also be referred to as new radio (NR) systems.
  • 4G systems such as long-term evolution (LTE) systems, LTE-advanced (LTE-A) systems, or LTE-APro systems
  • 5G systems which may also be referred to as new radio (NR) systems.
  • a base station may transmit data signals to user equipment (UE) via a physical downlink shared channel (PDSCH) .
  • the PDSCH transmission to the UE may be a dynamic PDSCH or a semi-persistent scheduling (SPS) PDSCH.
  • SPS semi-persistent scheduling
  • a BS may transmit, to a UE, downlink control information (DCI) via a corresponding physical downlink control channel (PDCCH) .
  • DCI downlink control information
  • PDCCH physical downlink control channel
  • a PDSCH transmission may be configured to a UE by a BS through higher layer signaling, such as, for example, radio resource control (RRC) signaling.
  • RRC radio resource control
  • a UE may transmit HARQ-ACK feedback (e.g., included in a HARQ-ACK codebook) corresponding to PDSCH transmissions through a physical uplink shared channel (PUSCH) or physical uplink control channel (PUCCH) .
  • HARQ-ACK feedback e.g., included in a HARQ-ACK codebook
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • the UE may include a transceiver, and a processor coupled to the transceiver.
  • the processor may be configured to: receive a plurality of physical downlink shared channels (PDSCHs) on one or more serving cells of the UE, wherein hybrid automatic repeat request acknowledgement (HARQ-ACK) feedback for the plurality of PDSCHs is to be transmitted in one HARQ-ACK codebook; divide the plurality of PDSCHs into at least two sets of PDSCHs including a first set of PDSCHs and a second set of PDSCHs, wherein downlink assignment indicators (DAIs) associated with dynamically scheduled PDSCHs in the first set of PDSCHs are counted independently from those associated with dynamically scheduled PDSCHs in the second set of PDSCHs; generate a first HARQ-ACK sub-codebook comprising HARQ-ACK information bits for PDSCHs in the first set of PDSCHs according to a predefined rule for HARQ
  • DAIs downlink assignment indicators
  • each PDSCH of the first set of PDSCHs requires transport block (TB) based feedback and the same number of TB-based HARQ-ACK information bits are generated in the first HARQ-ACK sub-codebook for each PDSCH of the first set of PDSCHs.
  • Each PDSCH of the second set of PDSCHs requires code block group (CBG) based feedback and the same number of CBG-based HARQ-ACK information bits are generated in the second HARQ-ACK sub-codebook for each PDSCH of the second set of PDSCHs.
  • CBG code block group
  • the number of CBG-based HARQ-ACK information bits in the second HARQ-ACK sub-codebook for each PDSCH of the second set of PDSCHs is dependent on a maximum number among all maximum numbers of CBGs per TB for carriers of the UE configured with CBG-based transmission.
  • the first set of PDSCHs includes one or more of the following: a PDSCH scheduled by a fallback DCI format; a PDSCH scheduled by a non-fallback DCI format and transmitted on a carrier not configured with CBG-based transmission; or a semi-persistent scheduling (SPS) PDSCH transmitted on a carrier not configured with CBG-based transmission.
  • SPS semi-persistent scheduling
  • the second set of PDSCHs includes one or more of the following: a PDSCH scheduled by a non-fallback DCI format and transmitted on a carrier configured with CBG-based transmission; or a semi-persistent scheduling (SPS) PDSCH transmitted on a carrier configured with CBG-based transmission.
  • SPS semi-persistent scheduling
  • generating the first HARQ-ACK sub-codebook according to the predefined rule for HARQ-ACK information bit ordering may include: generating a first set of HARQ-ACK information bits for PDSCHs that are scheduled by DCI formats in the first set of PDSCHs, wherein the first set of HARQ-ACK information bits are ordered according to DAIs for the associated PDSCHs that are scheduled by DCI formats in the first set of PDSCHs; generating a second set of HARQ-ACK information bits for SPS PDSCHs in the first set of PDSCHs; and arranging the first set of HARQ-ACK information bits and the second set of HARQ-ACK information bits in the first HARQ-ACK sub-codebook according to a predefined order.
  • generating the second HARQ-ACK sub-codebook according to the predefined rule for HARQ-ACK information bit ordering may include: generating a first set of HARQ-ACK information bits for PDSCHs that are scheduled by DCI formats in the second set of PDSCHs, wherein the first set of HARQ-ACK information bits are ordered according to DAIs for the associated PDSCHs that are scheduled by DCI formats in the second set of PDSCHs; generating a second set of HARQ-ACK information bits for SPS PDSCHs in the second set of PDSCHs; and arranging the first set of HARQ-ACK information bits and the second set of HARQ-ACK information bits in the second HARQ-ACK sub-codebook according to a predefined order.
  • the second set of HARQ-ACK information bits for SPS PDSCHs in a respective set of PDSCHs are ordered firstly based on associated serving cell indices and then based on associated SPS configuration indices for SPS PDSCHs on the same serving cell. In some embodiments of the present disclosure, the second set of HARQ-ACK information bits for SPS PDSCHs in the respective set of PDSCHs are ordered firstly based on associated serving cell indices and then based on associated transmission occasions for SPS PDSCHs on the same serving cell.
  • each PDSCH in the first set of PDSCHs is a PDSCH scheduled by a first type DCI format and each PDSCH in the second set of PDSCHs is a PDSCH scheduled by a second type DCI format.
  • the first type DCI format requires a single HARQ-ACK information bit and the second type DCI format requires CBG-based HARQ-ACK feedback, wherein the same number of CBG-based HARQ-ACK information bits are generated in the second HARQ-ACK sub-codebook for each PDSCH of the second set of PDSCHs.
  • the number of CBG-based HARQ-ACK information bits in the second HARQ-ACK sub-codebook for each PDSCH of the second set of PDSCHs is dependent on a maximum number among all maximum numbers of CBGs per TB for carriers of the UE configured with CBG-based transmission.
  • the first type DCI format is from a group including one or more of the following: a fallback DCI format; a non-fallback DCI format scheduling a PDSCH transmitted on a carrier not configured with CBG-based transmission; or a non-fallback DCI format scheduling a PDSCH transmitted on a carrier configured with a maximum of two TBs per PDSCH and spatial bundling.
  • the second type DCI format is from a group including one or more of the following: a non-fallback DCI format scheduling a PDSCH transmitted on a carrier configured with CBG-based transmission; or a non-fallback DCI format scheduling a PDSCH transmitted on a carrier configured with a maximum of two TBs per PDSCH and without spatial bundling.
  • At least two sets of PDSCHs further include at least one of a third set of PDSCHs and a fourth set of PDSCHs.
  • the third set of PDSCHs includes all SPS PDSCHs transmitted on a carrier (s) configured without CBG-based transmission in the plurality of PDSCHs.
  • the fourth set of PDSCHs includes all SPS PDSCHs transmitted on a carrier (s) configured with CBG-based transmission in the plurality of PDSCHs.
  • the processor may be further configured to generate at least one of the following: a third set of HARQ-ACK information bits for PDSCHs in the third set of PDSCHs according to a HARQ-ACK information bit ordering rule for SPS PDSCHs; or a fourth set of HARQ-ACK information bits for PDSCHs in the fourth set of PDSCHs according to the HARQ-ACK information bit ordering rule for SPS PDSCHs.
  • the HARQ-ACK information bit ordering rule for SPS PDSCHs may include: the HARQ-ACK information bits for SPS PDSCHs in a respective set of PDSCHs are ordered firstly based on associated serving cell indices and then based on associated SPS configuration indices for SPS PDSCHs on the same serving cell; or the HARQ-ACK information bits for SPS PDSCHs in the respective set of PDSCHs are ordered firstly based on associated serving cell indices and then based on associated transmission occasions for SPS PDSCHs on the same serving cell.
  • each PDSCH in the third set of PDSCHs is responded with a single bit in the third set of HARQ-ACK information bits
  • each PDSCH in the fourth set of PDSCHs is responded with a number of consecutive bits in the fourth set of HARQ-ACK information bits.
  • the HARQ-ACK codebook further may include at least one of a third HARQ-ACK sub-codebook including the third set of HARQ-ACK information bits or a fourth HARQ-ACK sub-codebook including the fourth set of HARQ-ACK information bits, and the first HARQ-ACK sub-codebook, the second HARQ-ACK sub-codebook, and the at least one of the third HARQ-ACK sub-codebook or the fourth HARQ-ACK sub-codebook are arranged in the HARQ-ACK codebook according to a predefined order.
  • the first HARQ-ACK sub-codebook further may include the third set of HARQ-ACK information bits and the second HARQ-ACK sub-codebook further may include the fourth set of HARQ-ACK information bits, and the first HARQ-ACK sub-codebook and the second HARQ-ACK sub-codebook are arranged in the HARQ-ACK codebook according to a predefined order.
  • the HARQ-ACK codebook further may include a fifth HARQ-ACK sub-codebook including the third set of HARQ-ACK information bits and the fourth set of HARQ-ACK information bits, and the first HARQ-ACK sub-codebook, the second HARQ-ACK sub-codebook and the fifth HARQ-ACK sub-codebook are arranged in the HARQ-ACK codebook according to a predefined order.
  • the UE may include a transceiver, and a processor coupled to the transceiver.
  • the processor may be configured to: receive at least one transmission configuration, wherein the at least one transmission configuration comprises at least one semi-persistent scheduling (SPS) configuration for downlink transmission or at least one configured grant (CG) configuration for uplink transmission, wherein the at least one SPS configuration or the at least one CG configuration indicates a transmission type for associated transmission being either a transport block (TB) based transmission or a code block group (CBG) based transmission; and perform an uplink transmission or downlink reception according to the at least one transmission configuration.
  • SPS semi-persistent scheduling
  • CG configured grant
  • the at least one SPS configuration or the at least one CG configuration further indicates a number of CBGs per TB in the case that the transmission type is the CBG-based transmission.
  • performing the uplink transmission or downlink reception according to the at least one transmission configuration may include receiving an SPS PDSCH according to the at least one SPS configuration.
  • the processor may be further configured to generate HARQ-ACK feedback for the SPS PDSCH according to the transmission type indicated in the at least one SPS configuration and according to the number of CBGs per TB indicated in the at least one SPS configuration in the case that the transmission type is the CBG-based transmission.
  • performing the uplink transmission or downlink reception according to the at least one transmission configuration may include receiving a plurality of SPS physical downlink shared channels (PDSCHs) with HARQ-ACK feedback to be transmitted in the same slot according to the at least one SPS configuration.
  • the processor may be further configured to: generate a set of HARQ-ACK information bits for the plurality of SPS PDSCHs; and transmit the set of HARQ-ACK information bits.
  • the HARQ-ACK information bits in the set of HARQ-ACK information bits for the plurality of SPS PDSCHs are ordered firstly based on associated serving cell indices and then based on associated SPS configuration indices for SPS PDSCHs on the same serving cell. In some embodiments of the present disclosure, the HARQ-ACK information bits in the set of HARQ-ACK information bits for the plurality of SPS PDSCHs are ordered firstly based on associated serving cell indices and then based on associated transmission occasions for SPS PDSCHs on the same serving cell.
  • the processor may be further configured to receive a DCI format scheduling a retransmission of a first SPS PDSCH of the plurality of SPS PDSCHs.
  • the DCI format may include a field indicating CBG transmission information (CBGTI) associated with the first SPS PDSCH, and wherein the size of the field is dependent on a maximum number of CBGs per TB among the at least one SPS configuration.
  • CBGTI CBG transmission information
  • performing the uplink transmission or downlink reception according to the at least one transmission configuration may include transmitting a CG PUSCH according to the at least one CG configuration.
  • the processor may be further configured to: receive a DCI format scheduling a retransmission of the CG PUSCH, wherein the DCI format may include a field indicating CBGTI associated with the CG PUSCH, and wherein the size of the field is dependent on a maximum number of CBGs per TB among at least one CG configuration for the UE.
  • the BS may include a transceiver, and a processor coupled to the transceiver.
  • the processor may be configured to: transmit, to a user equipment (UE) , a plurality of physical downlink shared channels (PDSCHs) on one or more serving cells of the UE, wherein hybrid automatic repeat request acknowledgement (HARQ-ACK) feedback for the plurality of PDSCHs is to be transmitted in one HARQ-ACK codebook; divide the plurality of PDSCHs into at least two sets of PDSCHs including a first set of PDSCHs and a second set of PDSCHs, wherein downlink assignment indicators (DAIs) associated with dynamically scheduled PDSCHs in the first set of PDSCHs are counted independently from those associated with dynamically scheduled PDSCHs in the second set of PDSCHs; and receive a HARQ-ACK codebook comprising a first HARQ-ACK sub-codebook and a second HARQ-ACK sub-
  • DAIs downlink assignment indicators
  • each PDSCH of the first set of PDSCHs requires TB-based feedback and the same number of TB-based HARQ-ACK information bits are generated in the first HARQ-ACK sub-codebook for each PDSCH of the first set of PDSCHs
  • each PDSCH of the second set of PDSCHs requires CBG-based feedback and the same number of CBG-based HARQ-ACK information bits are generated in the second HARQ-ACK sub-codebook for each PDSCH of the second set of PDSCHs.
  • the number of CBG-based HARQ-ACK information bits in the second HARQ-ACK sub-codebook for each PDSCH of the second set of PDSCHs is dependent on a maximum number among all maximum numbers of CBGs per TB for carriers of the UE configured with CBG-based transmission.
  • the first set of PDSCHs includes one or more of the following: a PDSCH scheduled by a fallback DCI format; a PDSCH scheduled by a non-fallback DCI format and transmitted on a carrier not configured with CBG-based transmission; or an SPS PDSCH transmitted on a carrier not configured with CBG-based transmission.
  • the second set of PDSCHs includes one or more of the following: a PDSCH scheduled by a non-fallback DCI format and transmitted on a carrier configured with CBG-based transmission; or an SPS PDSCH transmitted on a carrier configured with CBG-based transmission.
  • the first HARQ-ACK sub-codebook may include a first set of HARQ-ACK information bits for PDSCHs that are scheduled by DCI formats in the first set of PDSCHs, and a second set of HARQ-ACK information bits for semi-persistent scheduling (SPS) PDSCHs in the first set of PDSCHs.
  • HARQ-ACK information bits in the first set of HARQ-ACK information bits are ordered according to DAIs for the associated PDSCHs that are scheduled by DCI formats in the first set of PDSCHs.
  • the first set of HARQ-ACK information bits and the second set of HARQ-ACK information bits are arranged in the first HARQ-ACK sub-codebook according to a predefined order.
  • the second HARQ-ACK sub-codebook may include a first set of HARQ-ACK information bits for PDSCHs that are scheduled by DCI formats in the second set of PDSCHs, and a second set of HARQ-ACK information bits for SPS PDSCHs in the second set of PDSCHs.
  • HARQ-ACK information bits in the first set of HARQ-ACK information bits are ordered according to DAIs for the associated PDSCHs that are scheduled by DCI formats in the second set of PDSCHs.
  • the first set of HARQ-ACK information bits and the second set of HARQ-ACK information bits are arranged in the second HARQ-ACK sub-codebook according to a predefined order.
  • the second set of HARQ-ACK information bits for SPS PDSCHs in a respective set of PDSCHs are ordered firstly based on associated serving cell indices and then based on associated SPS configuration indices for SPS PDSCHs on the same serving cell. In some embodiments of the present disclosure, the second set of HARQ-ACK information bits for SPS PDSCHs in the respective set of PDSCHs are ordered firstly based on associated serving cell indices and then based on associated transmission occasions for SPS PDSCHs on the same serving cell.
  • each PDSCH in the first set of PDSCHs is a PDSCH scheduled by a first type DCI format and each PDSCH in the second set of PDSCHs is a PDSCH scheduled by a second type DCI format.
  • the first type DCI format requires a single HARQ-ACK information bit and the second type DCI format requires CBG-based HARQ-ACK feedback, wherein the same number of CBG-based HARQ-ACK information bits are generated in the second HARQ-ACK sub-codebook for each PDSCH of the second set of PDSCHs.
  • the number of CBG-based HARQ-ACK information bits in the second HARQ-ACK sub-codebook for each PDSCH of the second set of PDSCHs is dependent on a maximum number among all maximum numbers of CBGs per TB for carriers of the UE configured with CBG-based transmission.
  • the first type DCI format is from a group including one or more of the following: a fallback DCI format; a non-fallback DCI format scheduling a PDSCH transmitted on a carrier not configured with a CBG-based transmission; or a non-fallback DCI format scheduling a PDSCH transmitted on a carrier configured with a maximum of two TBs per PDSCH and spatial bundling.
  • the second type DCI format is from a group including one or more of the following: a non-fallback DCI format scheduling a PDSCH transmitted on a carrier configured with CBG-based transmission; or a non-fallback DCI format scheduling a PDSCH transmitted on a carrier configured with a maximum of two TBs per PDSCH and without spatial bundling.
  • At least two sets of PDSCHs further include at least one of a third set of PDSCHs and a fourth set of PDSCHs.
  • the third set of PDSCHs includes all SPS PDSCHs transmitted on a carrier (s) configured without CBG-based transmission in the plurality of PDSCHs.
  • the fourth set of PDSCHs includes all SPS PDSCHs transmitted on a carrier (s) configured with CBG-based transmission in the plurality of PDSCHs.
  • the processor may be further configured to receive at least one of the following: a third set of HARQ-ACK information bits for PDSCHs in the third set of PDSCHs arranged according to a HARQ-ACK information bit ordering rule for SPS PDSCHs; or a fourth set of HARQ-ACK information bits for PDSCHs in the fourth set of PDSCHs arranged according to a HARQ-ACK information bit ordering rule for SPS PDSCHs.
  • the HARQ-ACK information bit ordering rule for SPS PDSCHs may include: the HARQ-ACK information bits for SPS PDSCHs in a respective set of PDSCHs are ordered firstly based on associated serving cell indices and then based on associated SPS configuration indices for SPS PDSCHs on the same serving cell.
  • the HARQ-ACK information bit ordering rule for SPS PDSCHs may include: the HARQ-ACK information bits for SPS PDSCHs in the respective set of PDSCHs are ordered firstly based on associated serving cell indices and then based on associated transmission occasions for SPS PDSCHs on the same serving cell.
  • each PDSCH in the third set of PDSCHs is responded with a single bit in the third set of HARQ-ACK information bits
  • each PDSCH in the fourth set of PDSCHs is responded with a number of consecutive bits in the fourth set of HARQ-ACK information bits.
  • the HARQ-ACK codebook further may include at least one of a third HARQ-ACK sub-codebook including the third set of HARQ-ACK information bits or a fourth HARQ-ACK sub-codebook including the fourth set of HARQ-ACK information bits, wherein the first HARQ-ACK sub-codebook, the second HARQ-ACK sub-codebook, and the at least one of the third HARQ-ACK sub-codebook or the fourth HARQ-ACK sub-codebook are arranged in the HARQ-ACK codebook according to a predefined order.
  • the first HARQ-ACK sub-codebook further may include the third set of HARQ-ACK information bits and the second HARQ-ACK sub-codebook further may include the fourth set of HARQ-ACK information bits, and the first HARQ-ACK sub-codebook and the second HARQ-ACK sub-codebook are arranged in the HARQ-ACK codebook according to a predefined order.
  • the HARQ-ACK codebook further may include a fifth HARQ-ACK sub-codebook including the third set of HARQ-ACK information bits and the fourth set of HARQ-ACK information bits, and the first HARQ-ACK sub-codebook, the second HARQ-ACK sub-codebook and the fifth HARQ-ACK sub-codebook are arranged in the HARQ-ACK codebook according to a predefined order.
  • the BS may include a transceiver, and a processor coupled to the transceiver.
  • the processor may be configured to: transmit, to a user equipment (UE) , at least one transmission configuration, wherein the at least one transmission configuration comprises at least one semi-persistent scheduling (SPS) configuration for downlink transmission or at least one configured grant (CG) configuration for uplink transmission, wherein the at least one SPS configuration or the at least one CG configuration indicates a transmission type for associated transmission being either a transport block (TB) based transmission or a code block group (CBG) based transmission; and perform an uplink reception or downlink transmission according to the at least one transmission configuration.
  • SPS semi-persistent scheduling
  • CG configured grant
  • the at least one SPS configuration or the at least one CG configuration further indicates a number of CBGs per TB in the case that the transmission type is the CBG-based transmission.
  • performing the uplink reception or downlink transmission according to the at least one transmission configuration may include transmitting an SPS PDSCH according to the at least one SPS configuration.
  • the processor may be further configured to receive HARQ-ACK feedback for the SPS PDSCH according to the transmission type indicated in the at least one SPS configuration and according to the number of CBGs per TB indicated in the at least one SPS configuration in the case that the transmission type is the CBG-based transmission.
  • performing the uplink reception or downlink transmission according to the at least one transmission configuration may include transmitting a plurality of SPS physical downlink shared channels (PDSCHs) with HARQ-ACK feedback to be transmitted in the same slot according to the at least one SPS configuration.
  • the processor may be further configured to receive a set of HARQ-ACK information bits for the plurality of SPS PDSCHs.
  • the HARQ-ACK information bits in the set of HARQ-ACK information bits for the plurality of SPS PDSCHs are ordered firstly based on associated serving cell indices and then based on associated SPS configuration indices for SPS PDSCHs on the same serving cell. In some embodiments of the present disclosure, the HARQ-ACK information bits in the set of HARQ-ACK information bits for the plurality of SPS PDSCHs are ordered firstly based on associated serving cell indices and then based on associated transmission occasions for SPS PDSCHs on the same serving cell.
  • the processor may be further configured to transmit a DCI format scheduling a retransmission of a first SPS PDSCH of the plurality of SPS PDSCHs, wherein the DCI format may include a field indicating CBGTI associated with the first SPS PDSCH, and wherein the size of the field is dependent on a maximum number of CBGs per TB among the at least one SPS configuration.
  • performing the uplink reception or downlink transmission according to the at least one transmission configuration may include receiving a CG PUSCH according to the at least one CG configuration.
  • the processor may be further configured to transmit a DCI format scheduling a retransmission of the CG PUSCH, wherein the DCI format may include a field indicating CBGTI associated with the CG PUSCH, and wherein the size of the field is dependent on a maximum number of CBGs per TB among the at least one CG configuration for the UE.
  • Some embodiments of the present disclosure provide a method for wireless communication performed by a UE.
  • the method may include: receiving a plurality of physical downlink shared channels (PDSCHs) on one or more serving cells of the UE, wherein hybrid automatic repeat request acknowledgement (HARQ-ACK) feedback for the plurality of PDSCHs is to be transmitted in one HARQ-ACK codebook; dividing the plurality of PDSCHs into at least two sets of PDSCHs including a first set of PDSCHs and a second set of PDSCHs, wherein downlink assignment indicators (DAIs) associated with dynamically scheduled PDSCHs in the first set of PDSCHs are counted independently from those associated with dynamically scheduled PDSCHs in the second set of PDSCHs; generating a first HARQ-ACK sub-codebook comprising HARQ-ACK information bits for PDSCHs in the first set of PDSCHs according to a predefined rule for HARQ-ACK information bit ordering; generating a second HARQ-ACK sub
  • Some embodiments of the present disclosure provide a method for wireless communication performed by a UE.
  • the method may include: receiving at least one transmission configuration, wherein the at least one transmission configuration comprises at least one semi-persistent scheduling (SPS) configuration for downlink transmission or at least one configured grant (CG) configuration for uplink transmission, wherein the at least one SPS configuration or the at least one CG configuration indicates a transmission type for associated transmission being either a transport block (TB) based transmission or a code block group (CBG) based transmission; and performing an uplink transmission or downlink reception according to the at least one transmission configuration.
  • SPS semi-persistent scheduling
  • CG configured grant
  • Some embodiments of the present disclosure provide a method for wireless communication performed by a BS.
  • the method may include: transmitting, to a user equipment (UE) , a plurality of physical downlink shared channels (PDSCHs) on one or more serving cells of the UE, wherein hybrid automatic repeat request acknowledgement (HARQ-ACK) feedback for the plurality of PDSCHs is to be transmitted in one HARQ-ACK codebook; dividing the plurality of PDSCHs into at least two sets of PDSCHs including a first set of PDSCHs and a second set of PDSCHs, wherein downlink assignment indicators (DAIs) associated with dynamically scheduled PDSCHs in the first set of PDSCHs are counted independently from those associated with dynamically scheduled PDSCHs in the second set of PDSCHs; and receiving a HARQ-ACK codebook comprising a first HARQ-ACK sub-codebook and a second HARQ-ACK sub-codebook, wherein the first HARQ-ACK sub-codebook comprises
  • Some embodiments of the present disclosure provide a method for wireless communication performed by a BS.
  • the method may include: transmitting, to a user equipment (UE) , at least one transmission configuration, wherein the at least one transmission configuration comprises at least one semi-persistent scheduling (SPS) configuration for downlink transmission or at least one configured grant (CG) configuration for uplink transmission, wherein the at least one SPS configuration or the at least one CG configuration indicates a transmission type for associated transmission being either a transport block (TB) based transmission or a code block group (CBG) based transmission; and performing an uplink reception or downlink transmission according to the at least one transmission configuration.
  • SPS semi-persistent scheduling
  • CG configured grant
  • the apparatus may include: at least one non-transitory computer-readable medium having stored thereon computer-executable instructions; at least one receiving circuitry; at least one transmitting circuitry; and at least one processor coupled to the at least one non-transitory computer-readable medium, the at least one receiving circuitry and the at least one transmitting circuitry, wherein the at least one non-transitory computer-readable medium and the computer executable instructions may be configured to, with the at least one processor, cause the apparatus to perform a method according to some embodiments of the present disclosure.
  • FIG. 1 illustrates a schematic diagram of a wireless communication system in accordance with some embodiments of the present disclosure
  • FIG. 2 illustrates a schematic diagram of PDSCH transmissions in accordance with some embodiments of the present disclosure
  • FIGS. 3-6 illustrate schematic diagrams of HARQ-ACK codebook determination in accordance with some embodiments of the present disclosure
  • FIGS. 7-10 illustrate flow charts of exemplary procedures of wireless communications in accordance with some embodiments of the present disclosure.
  • FIG. 11 illustrates a block diagram of an exemplary apparatus in accordance with some embodiments of the present disclosure.
  • FIG. 1 illustrates a schematic diagram of wireless communication system 100 in accordance with some embodiments of the present disclosure.
  • wireless communication system 100 may include some UEs 101 (e.g., UE 101a and UE 101b) and a base station (e.g., BS 102) . Although a specific number of UEs 101 and BS 102 is depicted in FIG. 1, it is contemplated that any number of UEs and BSs may be included in the wireless communication system 100.
  • the UE (s) 101 may include computing devices, such as desktop computers, laptop computers, personal digital assistants (PDAs) , tablet computers, smart televisions (e.g., televisions connected to the Internet) , set-top boxes, game consoles, security systems (including security cameras) , vehicle on-board computers, network devices (e.g., routers, switches, and modems) , or the like.
  • the UE (s) 101 may include a portable wireless communication device, a smart phone, a cellular telephone, a flip phone, a device having a subscriber identity module, a personal computer, a selective call receiver, or any other device that is capable of sending and receiving communication signals on a wireless network.
  • the UE (s) 101 includes wearable devices, such as smart watches, fitness bands, optical head-mounted displays, or the like. Moreover, the UE (s) 101 may be referred to as a subscriber unit, a mobile, a mobile station, a user, a terminal, a mobile terminal, a wireless terminal, a fixed terminal, a subscriber station, a user terminal, or a device, or described using other terminology used in the art.
  • the UE (s) 101 may communicate with the BS 102 via uplink (UL) communication signals.
  • UL uplink
  • the BS 102 may be distributed over a geographical region.
  • the BS 102 may also be referred to as an access point, an access terminal, a base, a base unit, a macro cell, a Node-B, an evolved Node B (eNB) , a gNB, a Home Node-B, a relay node, or a device, or described using other terminology used in the art.
  • the BS 102 is generally a part of a radio access network that may include one or more controllers communicably coupled to one or more corresponding BSs 102.
  • the BS 102 may communicate with UE(s) 101 via downlink (DL) communication signals.
  • DL downlink
  • the wireless communication system 100 may be compatible with any type of network that is capable of sending and receiving wireless communication signals.
  • the wireless communication system 100 is compatible with a wireless communication network, a cellular telephone network, a time division multiple access (TDMA) -based network, a code division multiple access (CDMA) -based network, an orthogonal frequency division multiple access (OFDMA) -based network, an LTE network, a 3GPP-based network, a 3GPP 5G network, a satellite communications network, a high-altitude platform network, and/or other communications networks.
  • TDMA time division multiple access
  • CDMA code division multiple access
  • OFDMA orthogonal frequency division multiple access
  • the wireless communication system 100 is compatible with 5G NR of the 3GPP protocol.
  • BS 102 may transmit data using an orthogonal frequency division multiple (OFDM) modulation scheme on the DL and the UE (s) 101 may transmit data on the UL using a discrete Fourier transform-spread-orthogonal frequency division multiplexing (DFT-S-OFDM) or cyclic prefix-OFDM (CP-OFDM) scheme.
  • DFT-S-OFDM discrete Fourier transform-spread-orthogonal frequency division multiplexing
  • CP-OFDM cyclic prefix-OFDM
  • the wireless communication system 100 may implement some other open or proprietary communication protocols, for example, WiMAX, among other protocols.
  • the BS 102 and UE (s) 101 may communicate using other communication protocols, such as the IEEE 802.11 family of wireless communication protocols. Further, in some embodiments of the present disclosure, the BS 102 and UE (s) 101 may communicate over licensed spectrums, whereas in some other embodiments, the BS 102 and UE (s) 101 may communicate over unlicensed spectrums.
  • the present disclosure is not intended to be limited to the implementation of any particular wireless communication system architecture or protocol.
  • a communication technology may support a wide range of spectrums in different frequency ranges.
  • NR may support a wide range of spectrums in different frequency ranges.
  • the availability of the spectrum will be increased, which is possibly due to re-farming the bands originally used for previous cellular generation networks.
  • FR1 frequency range 1
  • FR2 band of frequency range 2
  • FR1 frequency range 1
  • FR2 band of frequency range 2
  • FR1 band of frequency range 2
  • FR2 e.g., 24250 MHz -52600 MHz
  • the available spectrum may be wider such that an intra-band multi-carrier operation is necessary.
  • scheduling mechanisms may only allow scheduling a single PUSCH or PDSCH on a single cell per a scheduling DCI. As more scattered spectrum bands or spectrums with wider bandwidth become available, it is advisable to allow simultaneous scheduling of multiple cells. To reduce control overhead, it is beneficial to extend from single-cell scheduling to multi-cell PUSCH/PDSCH scheduling with a single scheduling DCI. Meanwhile, a tradeoff between signaling overhead reduction and scheduling restriction has to be taken into account.
  • a communication system e.g., NR
  • scheduling framework in a communication system may support TB-based (re) transmission, in which one HARQ-ACK feedback bit may correspond to one TB.
  • CB code block
  • NACK negative ACK
  • One way to improve retransmission efficiency is to set one HARQ-ACK feedback bit to correspond to one CB. In this way, a BS can know the decoding state of each transmitted CB and only retransmit the failed CB (s) . Although the retransmission efficiency may be improved, the HARQ-ACK feedback overhead may be huge.
  • the concept of code block group is introduced to balance the number of needed HARQ-ACK feedback bits and the retransmission efficiency.
  • the intention of employing the CBG is to group several code blocks into a code block group and generate HARQ-ACK feedback per CBG.
  • the HARQ-ACK feedback for the CBG can be set as “ACK” ; otherwise, it is set as “NACK” .
  • the CBG (s) with “NACK” shall be retransmitted by the transmitter.
  • RRC signaling may be used to configure the maximum number of CBGs per TB when CBG-based (re) transmission is employed.
  • the maximum number of CBGs per TB can be, for example, 2, 4, 6 and 8.
  • the number of HARQ-ACK bits for one TB may be equal to the configured maximum number of CBGs per TB, regardless of the variable TB size (TBS) of a given TB.
  • CBG-based (re) transmission is supported for a dynamically scheduled PDSCH (s) and a PUSCH (s) , and not for an SPS PDSCH (s) or CG PUSCH (s) . It would be advantageous if the CBG-based (re) transmission can be applied to an SPS PDSCH and a CG PUSCH. For example, with the increasing size of the data packet for an SPS PDSCH or CG-PUSCH, CBG-based (re) transmission is quite appropriate so that the BS or UE can only retransmit CBGs not incorrectly decoded, instead of all the code blocks of the whole TB.
  • Embodiments of the present disclosure provide solutions for applying CBG-based (re) transmission to an SPS PDSCH (s) and a CG PUSCH (s) .
  • a BS uses a DCI format for scheduling a retransmission of an SPS TB or a CG TB which was not successfully received in an initial transmission
  • the BS needs to indicate the CBG transmission information (CBGTI) for the TB in the DCI format. Since different SPS configurations may be configured with different maximum numbers of CBGs per TB, there may be different DCI payload sizes which would lead to a high effort for UE blind detection. Therefore, a single DCI payload size for scheduling CBG-based retransmission of SPS PDSCH or CG-PUSCH is desired.
  • CBGTI CBG transmission information
  • Embodiments of the present disclosure provide solutions that can solve at least the above issues.
  • embodiments of the present disclosure provide solutions for CBG-based HARQ-ACK feedback determination for an SPS PDSCH in the case of CA. More details on the embodiments of the present disclosure will be illustrated in the following text in combination with the appended drawings.
  • a UE may receive a plurality of PDSCHs on one or more serving cells of the UE with HARQ-ACK feedback to be transmitted in the same HARQ-ACK codebook (e.g., in the same slot or in the same PUCCH) .
  • the plurality of PDSCHs may be divided into at least two sets of PDSCHs. Based on the sets of PDSCHs, respective HARQ-ACK sub-codebooks are generated and HARQ-ACK information bits therein are ordered according to a certain rule (s) (e.g., a rule for HARQ-ACK information bit ordering) . Then, the HARQ-ACK sub-codebooks are concatenated into one HARQ-ACK codebook according to a predefined order.
  • s e.g., a rule for HARQ-ACK information bit ordering
  • various methods can be employed for dividing the plurality of PDSCHs, and various methods can be employed for ordering the HARQ-ACK information bits in a HARQ-ACK sub-codebook and ordering the HARQ-ACK sub-codebooks in a HARQ-ACK codebook. These methods can be employed in any combination that can be conceived by persons skilled in the art.
  • HARQ-ACK codebook construction may be dependent on the HARQ-ACK feedback type (e.g., TB-based HARQ-ACK feedback or CBG-based HARQ-ACK feedback) that is required by the plurality of PDSCHs.
  • HARQ-ACK feedback type e.g., TB-based HARQ-ACK feedback or CBG-based HARQ-ACK feedback
  • the plurality of PDSCHs may be divided into PDSCH set #1A and PDSCH set #1B.
  • Each PDSCH in PDSCH set #1A requires TB-based HARQ-ACK feedback and the same number of TB-based HARQ-ACK information bits.
  • each PDSCH in PDSCH set #1A may be responded with a single HARQ-ACK information bit per TB.
  • Each PDSCH in PDSCH set #1B requires CBG-based HARQ-ACK feedback and the same number of CBG-based HARQ-ACK information bits.
  • each PDSCH in PDSCH set #1B may be responded with M HARQ-ACK information bits per TB.
  • the value of M may be dependent on a maximum number among all maximum numbers of CBGs per TB for carriers of the UE configured with CBG-based transmission.
  • the value of M may be configured by RRC signaling, preconfigured, or predefined in a standard (s) .
  • carriers #1 and #2 may be configured with a CBG-based (re) transmission, and the maximum numbers of CBGs per TB for carriers #1 and #2 may be respectively configured as 4 and 6.
  • the value of M may be equal to 6.
  • a set of PDSCHs may include dynamically scheduled PDSCHs, SPS PDSCHs or both.
  • SPS PDSCH whether it is responded with TB-based HARQ-ACK feedback or CBG-based HARQ-ACK feedback is dependent on the carrier where the SPS PDSCH is transmitted.
  • the UE may transmit CBG-based HARQ-ACK feedback for the SPS PDSCH.
  • the UE may transmit TB-based HARQ-ACK feedback for the SPS PDSCH.
  • PDSCH set #1A may include one or more of the following PDSCHs:
  • a PDSCH scheduled by a fallback DCI format (e.g., DCI format 1_0 as defined in 3GPP specifications) .
  • Any PDSCH scheduled by a fallback DCI format is only included in PDSCH set #1A no matter the PDSCH is transmitted on a carrier configured with CBG-based transmission or not.
  • a PDSCH scheduled by a non-fallback DCI format (e.g., DCI format 1_1 or DCI format 1_2 as defined in 3GPP specifications) and transmitted on a carrier not configured with CBG-based transmission.
  • a non-fallback DCI format e.g., DCI format 1_1 or DCI format 1_2 as defined in 3GPP specifications
  • PDSCH set #1B may include one or more of the following PDSCHs:
  • a PDSCH scheduled by a non-fallback DCI format (e.g., DCI format 1_1 or DCI format 1_2 as defined in 3GPP specifications) and transmitted on a carrier configured with CBG-based transmission; or
  • DAIs associated with dynamically scheduled PDSCHs in PDSCH set #1A are counted independently (or separately) from those associated with dynamically scheduled PDSCHs in PDSCH set #1B. For example, in the case of CA, the number of transmitted DCIs for scheduling dynamic PDSCHs among PDSCH set #1A and the number of transmitted DCIs for scheduling dynamic PDSCHs among PDSCH set #1B are independently (or separately) determined based on the respective total DAIs. In the case of single carrier, the number of transmitted DCIs for scheduling dynamic PDSCHs among PDSCH set #1A and the number of transmitted DCIs for scheduling dynamic PDSCHs among PDSCH set #1B are independently (or separately) determined based on the respective counter DAIs. The number of PDSCHs in each PDSCH set may be determined based on the associated DAI (s) for dynamically scheduled PDSCHs and the corresponding SPS configurations for SPS PDSCHs.
  • the HARQ-ACK codebook may include a HARQ-ACK sub-codebook (denoted as sub-codebook #1A) including HARQ-ACK information bits for PDSCHs in PDSCH set #1A and a HARQ-ACK sub-codebook (denoted as sub-codebook #1B) including HARQ-ACK information bits for PDSCHs in PDSCH set #1B.
  • a HARQ-ACK sub-codebook (denoted as sub-codebook #1A) including HARQ-ACK information bits for PDSCHs in PDSCH set #1A
  • a HARQ-ACK sub-codebook (denoted as sub-codebook #1B) including HARQ-ACK information bits for PDSCHs in PDSCH set #1B.
  • Each PDSCH in PDSCH set #1A is responded with a single bit per TB in sub-codebook #1A.
  • Each PDSCH in PDSCH set #1B is responded with M consecutive bits in sub-codebook #1B. That is, every M consecutive bits
  • Sub-codebook #1A or sub-codebook #1B may be generated according to a HARQ-ACK information bit ordering rule.
  • the UE may generate a set of HARQ-ACK information bits (denoted as bit set #1A) for PDSCHs that are scheduled by DCI formats (e.g., dynamically scheduled PDSCHs) in the respective PDSCH set (e.g., PDSCH set #1A for sub-codebook #1A and PDSCH set #1B for sub-codebook #1B) .
  • DCI formats e.g., dynamically scheduled PDSCHs
  • bit set #1B For either sub-codebook #1A or sub-codebook #1B, the UE may generate a set of HARQ-ACK information bits (denoted as bit set #1B) for SPS PDSCHs in the respective PDSCH set (e.g., PDSCH set #1A for sub-codebook #1A and PDSCH set #1B for sub-codebook #1B) .
  • bit set #1A and bit set #1B may be arranged according to a predefined order. For example, bit set #1A may be placed firstly in the sub-codebook and then followed by bit set #1B. Alternatively, bit set #1B may be placed firstly in the sub-codebook and then followed by bit set #1A.
  • bit set #1A may be ordered according to DAIs for the associated PDSCHs that are scheduled by DCI formats in the respective PDSCH set.
  • bit set #1A includes HARQ-ACK information bits for dynamically scheduled PDSCHs in PDSCH set #1A.
  • HARQ-ACK information bits in bit set #1A of sub-codebook #1A are ordered according to the DAIs (e.g., counter DAIs) of the DCI formats that schedule these dynamically scheduled PDSCHs in PDSCH set #1A.
  • the order may include an ascending or descending order of the DAIs.
  • bit set #1B e.g., in either sub-codebook #1A or sub-codebook #1B.
  • bit set #1B may be ordered firstly based on associated serving cell indices and then based on associated SPS configuration indices for SPS PDSCHs on the same serving cell (also referred to as “frequency first SPS configuration index second manner” or “serving cell index first SPS configuration index second manner” ) .
  • bit set #1B may include HARQ-ACK information bits for a plurality of SPS PDSCHs transmitted on a plurality of serving cells of the UE.
  • the HARQ-ACK information bits for the plurality of SPS PDSCHs may be ordered firstly in a predefined order (e.g., an ascending or descending order) of the indices of the plurality of serving cells.
  • more than one SPS PDSCH of the plurality of SPS PDSCHs may be transmitted on the same serving cell with different SPS configurations corresponding to different SPS configuration indices.
  • the SPS configuration index of a certain SPS configuration may be indicated by sps-ConfigIndex as specified in 3GPP specifications and may have a value ranging from 0 to 7.
  • HARQ-ACK information bits for the more than one SPS PDSCH may be ordered according to the associated SPS configuration indices (e.g., according to an ascending or descending order of the associated SPS configuration indices) .
  • bit set #1B may be ordered firstly based on associated serving cell indices and then based on associated transmission occasions for SPS PDSCHs on the same serving cell (also referred to as “frequency first time second manner” or “serving cell index first time second manner” ) .
  • bit set #1B may include HARQ-ACK information bits for a plurality of SPS PDSCHs transmitted on a plurality of serving cells of the UE.
  • the HARQ-ACK information bits for the plurality of SPS PDSCHs may be ordered firstly in a predefined order (e.g., an ascending or descending order) of the indices of the plurality of serving cells.
  • more than one SPS PDSCH of the plurality of SPS PDSCHs may be transmitted on the same serving cell corresponding to different transmission occasions (e.g., transmitted in different times) .
  • HARQ-ACK information bits for the more than one SPS PDSCH may be ordered according to the associated transmission occasions (e.g., according to an ascending or descending order of the associated transmission occasions) .
  • FIG. 2 illustrates a schematic diagram of PDSCH transmissions in accordance with some embodiments of the present disclosure.
  • a plurality of CCs may be configured for a UE.
  • the sub-carrier spacings (SCSs) of the carriers configured for a UE may be the same or different.
  • Each of the plurality of CCs may correspond to a respective cell (e.g., serving cell) or carrier of the UE.
  • Each carrier (serving cell) may be associated with a (serving) cell index.
  • CCs 231 to 233 may be configured with CBG-based transmission, and CC 234 may not be configured with CBG-based transmission (e.g., using TB-based transmission) . It is assumed that the serving cell indices of CCs 231 to 233 are: CC 231 ⁇ CC 232 ⁇ CC 233 ⁇ CC 234.
  • DCI 211 schedules PDSCH 221 on CC 231
  • DCI 212 schedules PDSCH 222 on CC 232
  • DCI 213 schedules PDSCH 224 on CC 23
  • DCI 214 schedules PDSCH 225 on CC 231
  • DCI 215 schedules PDSCH 226 on CC 232
  • DCI 216 schedules PDSCH 2210 on CC 232
  • DCI 217 schedules PDSCH 2211 on CC 233
  • DCI 218 schedules PDSCH 2212 on CC 234.
  • DCI 211 and DCI 216 are fallback DCIs (e.g., DCI format 1_0) and DCI 212, DCIs 213 to 215 and DCIs 217 and 218 are non-fallback DCIs (e.g., DCI format 1_1) .
  • PDSCH 229 on CC 231 is an SPS PDSCH
  • both PDSCH 223 and PDSCH 227 on CC 233 are SPS PDSCHs
  • PDSCH 228 on CC 234 is an SPS PDSCH. It is assumed that HARQ-ACK feedback for PDSCH 221 to 2212 is to be transmitted in one HARQ-ACK codebook (e.g., in the same slot or on the same PUCCH) .
  • PDSCH 221 to 2212 can be divided into two sets of PDSCHs.
  • a first PDSCH set e.g., PDSCH set #1A
  • PDSCH 224 e.g., PDSCH 228, PDSCH 2210 and PDSCH 2212
  • a second PDSCH set e.g., PDSCH set #1B
  • Counter DAI and total DAI are separately counted within each PDSCH set for the dynamically scheduled PDSCHs.
  • the counter DAI and total DAI of DCIs 211 to 218 may respectively indicate ⁇ 1, 2 ⁇ , ⁇ 1, 1 ⁇ , ⁇ 2, 2 ⁇ , ⁇ 2, 3 ⁇ , ⁇ 3, 3 ⁇ , ⁇ 3, 4 ⁇ , ⁇ 4, 4 ⁇ and ⁇ 4, 4 ⁇ (e.g., denoted as ⁇ counter DAI, total DAI ⁇ ) .
  • each PDSCH in the second PDSCH set may correspond to 4 HARQ-ACK information bits.
  • the HARQ-ACK information bits for SPS PDSCHs may be ordered in the “serving cell index first SPS configuration index second manner” .
  • FIG. 3 shows an exemplary HARQ-ACK codebook construction according to these embodiments.
  • HARQ-ACK sub-codebook 351 for the first PDSCH set as described with respect to FIG. 2 may include ⁇ a1, a4, a10, a12, a8 ⁇ and HARQ-ACK sub-codebook 352 for the second PDSCH set as described with respect to FIG. 2 may include ⁇ b2, b5, b6, b11, b9, b7, b3 ⁇ .
  • ai represents a TB-based HARQ-ACK information bit for a corresponding PDSCH
  • bj represents CBG-based HARQ-ACK information bits (e.g., M bits) for a corresponding PDSCH.
  • a1, a4, a10, and a12 respectively represent TB-based HARQ-ACK information bits for PDSCHs 221, 224, 2210, and 2212 in FIG. 2
  • a8 represents a TB-based HARQ-ACK information bit for PDSCH 228 in FIG. 2.
  • b2 represents 4 CBG-level HARQ-ACK information bits for PDSCH 222 in FIG.
  • b5 represents 4 CBG-level HARQ-ACK information bits for PDSCH 225 in FIG. 2
  • b6 represents 4 CBG-level HARQ-ACK information bits for PDSCH 226 in FIG.
  • b11 represents 4 CBG-level HARQ-ACK information bits for PDSCH 2211 in FIG. 2
  • b9 represents 4 CBG-level HARQ-ACK information bits for PDSCH 229 in FIG.
  • b7 represents 4 CBG-level HARQ-ACK information bits for PDSCH 227 in FIG.
  • b3 represents 4 CBG-level HARQ-ACK information bits for PDSCH 223 in FIG. 2.
  • HARQ-ACK sub-codebook 351 and HARQ-ACK sub-codebook 352 are concatenated into one HARQ-ACK codebook, which is transmitted on PUCCH 361.
  • HARQ-ACK sub-codebook 351 may be placed firstly and then followed by HARQ-ACK sub-codebook 352 in the final HARQ-ACK codebook.
  • the HARQ-ACK information bits for SPS PDSCHs may be ordered in the “serving cell index first time second manner” .
  • FIG. 4 shows an exemplary HARQ-ACK codebook construction according to these embodiments.
  • HARQ-ACK sub-codebook 451 for the first PDSCH set as described with respect to FIG. 2 may include ⁇ a1, a4, a10, a12, a8 ⁇ and HARQ-ACK sub-codebook 452 for the second PDSCH set as described with respect to FIG. 2 may include ⁇ b2, b5, b6, b11, b9, b3, b7 ⁇ .
  • a1, a4, a10, and a12 respectively represent TB-based HARQ-ACK information bits for PDSCHs 221, 224, 2210, and 2212 in FIG. 2
  • a8 represents a TB-based HARQ-ACK information bit for PDSCH 228 in FIG. 2.
  • b2 represents 4 CBG-level HARQ-ACK information bits for PDSCH 222 in FIG. 2
  • b5 represents 4 CBG-level HARQ-ACK information bits for PDSCH 225 in FIG.
  • b6 represents 4 CBG-level HARQ-ACK information bits for PDSCH 226 in FIG.
  • b11 represents 4 CBG-level HARQ-ACK information bits for PDSCH 2211 in FIG. 2
  • b9 represents 4 CBG-level HARQ-ACK information bits for PDSCH 229 in FIG.
  • b3 represents 4 CBG-level HARQ-ACK information bits for PDSCH 223 in FIG. 2
  • b7 represents 4 CBG-level HARQ-ACK information bits for PDSCH 227 in FIG. 2.
  • HARQ-ACK sub-codebook 451 and HARQ-ACK sub-codebook 452 are concatenated into one HARQ-ACK codebook, which is transmitted on PUCCH 461.
  • HARQ-ACK sub-codebook 451 may be placed firstly and then followed by HARQ-ACK sub-codebook 452 in the final HARQ-ACK codebook.
  • the UE can perform the following operations to construct the HARQ-ACK codebook.
  • the HARQ-ACK information bits in sub-codebook #1A can be arranged according to the method as described above. For example, in sub-codebook #1A, the HARQ-ACK information bits for dynamically scheduled PDSCHs are placed firstly and then followed by HARQ-ACK information bits for SPS PDSCHs; or vice versa. In sub-codebook #1A, the HARQ-ACK information bits for the dynamically scheduled PDSCHs are ordered based on the associated DAIs. In sub-codebook #1A, HARQ-ACK information bits for SPS PDSCHs can be ordered in “serving cell index first SPS configuration index second manner” or the “serving cell index first time second manner” as described above.
  • the HARQ-ACK information bits in sub-codebook #1B can be arranged according to the method as described above. For example, in sub-codebook #1B, the HARQ-ACK information bits for dynamically scheduled PDSCHs are placed firstly and then followed by HARQ-ACK information bits for SPS PDSCHs; or vice versa. In sub-codebook #1B, the HARQ-ACK information bits for the dynamically scheduled PDSCHs are ordered based on the associated DAIs. In sub-codebook #1B, HARQ-ACK information bits for SPS PDSCHs can be ordered in “serving cell index first SPS configuration index second manner” or the “serving cell index first time second manner” as described above.
  • sub-codebook #1A is placed firstly in the HARQ-ACK codebook and followed by sub-codebook #1B.
  • sub-codebook #1B is placed firstly in the HARQ-ACK codebook and followed by sub-codebook #1A.
  • the BS may transmit, to the UE, a plurality of PDSCHs with HARQ-ACK feedback to be transmitted in the same HARQ-ACK codebook.
  • the plurality of PDSCHs can be divided into two sets, for example, PDSCH set #1A and PDSCH set #1B as described as above.
  • the BS may receive a HARQ-ACK codebook including HARQ-ACK feedback for the plurality of PDSCHs.
  • the HARQ-ACK codebook is constructed in the manner as described above.
  • the HARQ-ACK codebook may include sub-codebook #1A and sub-codebook #1B.
  • HARQ-ACK codebook construction may be dependent on the types of DCI formats.
  • the plurality of PDSCHs with HARQ-ACK feedback to be transmitted in the same HARQ-ACK codebook may be divided into at least two sets of PDSCHs (e.g., PDSCH set #2A and PDSCH set #2B) .
  • Each PDSCH in PDSCH set #2A is a PDSCH scheduled by a first type DCI format (denoted as DCI type #1) and each PDSCH in PDSCH set #2B is a PDSCH scheduled by a second type DCI format (denoted as DCI type #2) .
  • DCI type #1 requires a single HARQ-ACK information bit.
  • a single HARQ-ACK information bit may be generated for the PDSCH.
  • each PDSCH in PDSCH set #2A may be responded with a single HARQ-ACK information bit.
  • DCI type #2 requires a plurality of HARQ-ACK information bits.
  • DCI type #2 requires CBG-based HARQ-ACK feedback.
  • the same number of HARQ-ACK information bits (denoted as M’) may be generated for a PDSCH scheduled by DCI format of DCI type #2. Put another way, each PDSCH in PDSCH set #2B may be responded with M’ HARQ-ACK information bits.
  • the value of M’ may be dependent on a maximum number among all maximum numbers of CBGs per TB for carriers of the UE configured with CBG-based transmission.
  • the value of M’ may be configured by RRC signaling, preconfigured, or predefined in a standard (s) .
  • carriers #1 and #2 may be configured with a CBG-based (re) transmission, and the maximum numbers of CBGs per TB for carriers #1 and #2 may be respectively configured as 4 and 6.
  • the value of M may be equal to 6.
  • PDSCH set #2A and PDSCH set #2B may thus only include dynamically scheduled PDSCHs.
  • DCI type #1 may be from a group including one or more of the following:
  • a fallback DCI format (e.g., DCI format 1_0 as defined in 3GPP specifications) .
  • a fallback DCI format is only included in DCI type #1, no matter the fallback DCI format is transmitted on a carrier configured with CBG-based transmission or not, no matter the fallback DCI format is transmitted for SPS PDSCH release or SCell dormancy without scheduled PDSCH.
  • non-fallback DCI format (e.g., DCI format 1_1 or DCI format 1_2 as defined in 3GPP specifications) scheduling a PDSCH transmitted on a carrier not configured with CBG-based transmission; or
  • non-fallback DCI format (e.g., DCI format 1_1 or DCI format 1_2 as defined in 3GPP specifications) scheduling a PDSCH transmitted on a carrier configured with a maximum of two TBs per PDSCH and spatial bundling.
  • DCI type #2 may be from a group including one or more of the following:
  • non-fallback DCI format (e.g., DCI format 1_1 or DCI format 1_2 as defined in 3GPP specifications) scheduling a PDSCH transmitted on a carrier configured with CBG-based transmission; or
  • non-fallback DCI format (e.g., DCI format 1_1 or DCI format 1_2 as defined in 3GPP specifications) scheduling a PDSCH transmitted on a carrier configured with a maximum of two TBs per PDSCH and without spatial bundling.
  • DAIs associated with the PDSCHs in PDSCH set #2A are counted independently (or separately) from those associated with the PDSCHs in PDSCH set #2B.
  • DAIs of DCIs of different DCI types are counted independently.
  • the number of transmitted DCIs of DCI type #1 and the number of transmitted DCIs of DCI type #2 are independently (or separately) determined based on the respective total DAIs.
  • the number of transmitted DCIs of DCI type #1 and the number of transmitted DCIs of DCI type #2 are independently (or separately) determined based on the respective counter DAIs.
  • the at least two sets of PDSCHs may further include an additional set (s) of PDSCHs, for example, at least one of PDSCH set #2C and PDSCH set #2D.
  • PDSCH set #2C includes all SPS PDSCHs transmitted on a carrier (s) configured without CBG-based transmission in the plurality of PDSCHs.
  • PDSCH set #2D includes all SPS PDSCHs transmitted on a carrier (s) configured with CBG-based transmission in the plurality of PDSCHs.
  • the following embodiments takes the condition that the at least two sets of PDSCHs further include both PDSCH set #2C and PDSCH set #2D as an example. It should be noted that in some cases, PDSCH set #2C, PDSCH set #2D or both may not exist.
  • the HARQ-ACK codebook may include four HARQ-ACK sub-codebooks (denoted as sub-codebooks #2A-2D) .
  • Sub-codebook #2A may include HARQ-ACK information bits for PDSCHs in PDSCH set #2A, and each bit in sub-codebook #2A may correspond to one PDSCH scheduled by a DCI of DCI type #1.
  • Sub-codebook #2B may include HARQ-ACK information bits for PDSCHs in PDSCH set #2B, and every M’ consecutive bits in sub-codebook #2B may correspond to one PDSCH scheduled by a DCI of DCI type #2.
  • Sub-codebook #2C may include HARQ-ACK information bits for PDSCHs in PDSCH set #2C, and each bit in sub-codebook #2C may correspond to one SPS PDSCH transmitted on a carrier not configured with CBG-based transmission.
  • Sub-codebook #2D may include HARQ-ACK information bits for PDSCHs in PDSCH set #2D and every N consecutive bits in sub-codebook #2D may correspond to one SPS PDSCH transmitted on a carrier configured with CBG-based transmission.
  • the value of N can be based on the value of M’.
  • the UE may assume that the value of N is equal to M’.
  • the value of N can be separately configured.
  • the value of N can be configured per SPS configuration.
  • RRC signaling configures an SPS configuration, it also configured the value of N.
  • the value of N can be configured per carrier.
  • the SPS configurations on the same carrier may share the same value of N.
  • the value of N can be the same or different from the value of M’.
  • HARQ-ACK information bits may be ordered according to DAIs for the associated PDSCHs that are scheduled by DCI formats in the respective PDSCH set.
  • HARQ-ACK information bits in sub-codebook #2A may be ordered according to the DAIs (e.g., counter DAIs) of the DCI formats that schedule the PDSCHs in PDSCH set #2A.
  • the order may include an ascending or descending order of the DAIs.
  • Various methods may be employed for ordering the HARQ-ACK information bits in sub-codebook #2C or sub-codebook #2D. Put it another way, various methods may be employed for ordering the HARQ-ACK information bits for PDSCHs in PDSCH set #2C or PDSCH set #2D. For simplicity, denoting the HARQ-ACK information bits for PDSCHs in PDSCH set #2C or PDSCH set #2D as bit set #2B. That is, each of sub-codebook #2C and sub-codebook #2D may include a respective bit set #2B.
  • bit set #2B may be ordered in the “serving cell index first SPS configuration index second manner. ” For example, bit set #2B may be firstly based on associated serving cell indices and then based on associated SPS configuration indices for SPS PDSCHs on the same serving cell.
  • bit set #2B may include HARQ-ACK information bits for a plurality of SPS PDSCHs transmitted on a plurality of serving cells of the UE.
  • the HARQ-ACK information bits for the plurality of SPS PDSCHs may be ordered firstly in a predefined order (e.g., an ascending or descending order) of the indices of the plurality of serving cells.
  • more than one SPS PDSCH of the plurality of SPS PDSCHs may be transmitted on the same serving cell with different SPS configurations corresponding to different SPS configuration indices.
  • the SPS configuration index of a certain SPS configuration may be indicated by sps-ConfigIndex as specified in 3GPP specifications and may have a value ranging from 0 to 7.
  • HARQ-ACK information bits for the more than one SPS PDSCH may be ordered according to the associated SPS configuration indices (e.g., according to an ascending or descending order of the associated SPS configuration indices) .
  • bit set #2B may be ordered in the “serving cell index first time second manner” .
  • bit set #2B may be ordered firstly based on associated serving cell indices and then based on associated transmission occasions for SPS PDSCHs on the same serving cell.
  • bit set #2B may include HARQ-ACK information bits for a plurality of SPS PDSCHs transmitted on a plurality of serving cells of the UE.
  • the HARQ-ACK information bits for the plurality of SPS PDSCHs may be ordered firstly in a predefined order (e.g., an ascending or descending order) of the indices of the plurality of serving cells.
  • more than one SPS PDSCH of the plurality of SPS PDSCHs may be transmitted on the same serving cell corresponding to different transmission occasions (e.g., transmitted in different times) .
  • HARQ-ACK information bits for the more than one SPS PDSCH may be ordered according to the associated transmission occasions (e.g., according to an ascending or descending order of the associated transmission occasions) .
  • the four sub-codebooks may be concatenated into one HARQ-ACK codebook according to a predefined order.
  • sub-codebook #2A may be placed firstly in the HARQ-ACK codebook and followed by sub-codebook #2C, sub-codebook #2B and sub-codebook #2D.
  • sub-codebook #2A may be placed firstly in the HARQ-ACK codebook and followed by sub-codebook #2B, sub-codebook #2C and sub-codebook #2D.
  • the final HARQ-ACK codebook may include (1) sub-codebooks #2A and #2B, (2) sub-codebooks #2A, #2B and #2C, or (3) sub-codebooks #2A, #2B and #2D.
  • the sub-codebooks in the final HARQ-ACK codebook may be arranged according to a predefined order.
  • the HARQ-ACK codebook may include two HARQ-ACK sub-codebooks (denoted as sub-codebooks #3A and #3B) .
  • sub-codebook #3A may include HARQ-ACK information bits in sub-codebook #2A and HARQ-ACK information bits in sub-codebook #2C (if present)
  • sub-codebook #3B may include HARQ-ACK information bits in sub-codebook #2B and HARQ-ACK information bits in sub-codebook #2D (if present) .
  • HARQ-ACK information bits in sub-codebook #2A and HARQ-ACK information bits in sub-codebook #2C may be arranged in sub-codebook #3A according to a predefined order. For example, HARQ-ACK information bits in sub-codebook #2A may be placed firstly and followed by HARQ-ACK information bits in sub-codebook #2C; or vice versa.
  • HARQ-ACK information bits in sub-codebook #2B and HARQ-ACK information bits in sub-codebook #2D may be arranged in sub-codebook #3B according to a predefined order. For example, HARQ-ACK information bits in sub-codebook #2B may be placed firstly and followed by HARQ-ACK information bits in sub-codebook #2D; or vice versa.
  • the above method for HARQ-ACK codebook construction is described using the concept of sub-codebooks #2A to #2D, it does not necessarily mean that the UE has to generate sub-codebooks #2A to #2D.
  • the UE may only generate the associated HARQ-ACK information bits in these sub-codebooks according to the methods as described with respect to these sub-codebooks (e.g., applying the bit ordering rules) and include the generated HARQ-ACK information bits in sub-codebook #3A or sub-codebook #3B, without generating the actual sub-codebooks #2A to #2D.
  • Sub-codebooks #3A and #3B may be arranged in the HARQ-ACK codebook according to a predefined order. For example, sub-codebook #3A may be placed firstly in the HARQ-ACK codebook and followed by sub-codebook #3B; or vice versa.
  • the HARQ-ACK codebook may include at most three HARQ-ACK sub-codebooks (e.g., sub-codebook #2A, sub-codebook #2B and sub-codebook #4C) .
  • sub-codebook #4C may include HARQ-ACK information bits in sub-codebook #2C (if present) and HARQ-ACK information bits in sub-codebook #2D (if present) .
  • HARQ-ACK information bits in sub-codebook #2C and HARQ-ACK information bits in sub-codebook #2D may be arranged in sub-codebook #4C according to a predefined order. For example, HARQ-ACK information bits in sub-codebook #2C may be placed firstly and followed by HARQ-ACK information bits in sub-codebook #2D; or vice versa.
  • HARQ-ACK codebook construction is described using the concept of sub-codebooks #2C and #2D, it does not necessarily mean that the UE has to generate sub-codebooks #2C and #2D.
  • the UE may only generate the associated HARQ-ACK information bits in these sub-codebooks according to the methods as described with respect to these sub-codebooks (e.g., applying the bit ordering rules) and include the generated HARQ-ACK information bits in sub-codebook #4C, without generating the actual sub-codebooks #2C and #2D.
  • Sub-codebook #2A, sub-codebook #2B and sub-codebook #4C may be arranged in the HARQ-ACK codebook according to a predefined order. For example, sub-codebook #2A may be placed firstly in the HARQ-ACK codebook and followed by sub-codebook #2B and sub-codebook #4C.
  • the UE can perform the following operations to construct the HARQ-ACK codebook.
  • HARQ-ACK information bits in sub-codebook #2A can be ordered based on the associated DAIs.
  • HARQ-ACK sub-codebook #2B Generate a HARQ-ACK sub-codebook (e.g., sub-codebook #2B) including HARQ-ACK information bits for each PDSCH in PDSCH set #2B, the HARQ-ACK information bits in sub-codebook #2B can be ordered based on the associated DAIs.
  • HARQ-ACK information bits in sub-codebook #2C can be ordered in “serving cell index first SPS configuration index second manner” or the “serving cell index first time second manner” as described above.
  • HARQ-ACK information bits in sub-codebook #2D can be ordered in “serving cell index first SPS configuration index second manner” or the “serving cell index first time second manner” as described above.
  • Some or all of the plurality of PDSCHs may be dynamically scheduled PDSCHs and can be divided into two sets (e.g., PDSCH sets #2A and #2B) according to the types (e.g., DCI types #1 and #2) of scheduling DCIs.
  • the remaining PDSCHs can be divided into one or two sets (e.g., PDSCH sets #2C and #2D) .
  • the BS may transmit, to the UE, a plurality of PDSCHs with HARQ-ACK feedback to be transmitted in the same HARQ-ACK codebook.
  • the plurality of PDSCHs can be divided into at least two sets, for example, PDSCH sets #2A to #2D as described as above.
  • the BS may receive a HARQ-ACK codebook including HARQ-ACK feedback for the plurality of PDSCHs.
  • the HARQ-ACK codebook is constructed in the manner as described above.
  • the HARQ-ACK codebook may include sub-codebooks #2A to #2D.
  • DCIs 211-218 can be divided into two sets of DCIs according the DCI types.
  • a first set of DCIs include DCI 211, DCI 213, DCI 216 and DCI 218 as they are of DCI type #1.
  • the second set of DCIs include DCI 212, DCI 214, DCI 215 and DCI 217 as they are of DCI type #2.
  • a first PDSCH set (e.g., PDSCH set #2A) may include PDSCH 221, PDSCH 224, PDSCH 2210 and PDSCH 2212
  • a second PDSCH set (e.g., PDSCH set #2B) may include PDSCH 222, PDSCH 225, PDSCH 226, and PDSCH 2211.
  • Counter DAI and total DAI are separately counted within each of the two sets of DCIs or each of the two sets of PDSCHs.
  • the counter DAI and total DAI of DCIs 211 to 218 may respectively indicate ⁇ 1, 2 ⁇ , ⁇ 1, 1 ⁇ , ⁇ 2, 2 ⁇ , ⁇ 2, 3 ⁇ , ⁇ 3, 3 ⁇ , ⁇ 3, 4 ⁇ , ⁇ 4, 4 ⁇ and ⁇ 4, 4 ⁇ (e.g., denoted as ⁇ counter DAI, total DAI ⁇ ) .
  • each PDSCH in the second PDSCH set (e.g., PDSCH set #2B) may correspond to 4 HARQ-ACK information bits.
  • each DCI of DCI type #2 may have 4 associated HARQ-ACK information bits.
  • the remaining PDSCHs (e.g., SPS PDSCHs) of PDSCHs 221-2212 may be further divided into two PDSCH sets (e.g., PDSCH set #2C and PDSCH set #2D) .
  • a third PDSCH set e.g., PDSCH set #2C
  • a fourth PDSCH set e.g., PDSCH set #2D
  • Each PDSCH in the third PDSCH set (e.g., PDSCH set #2C) may correspond to a single information bit and each PDSCH in the fourth PDSCH set (e.g., PDSCH set #2D) may correspond to 4 HARQ-ACK information bits.
  • the HARQ-ACK information bits for SPS PDSCHs may be ordered in the “serving cell index first SPS configuration index second manner” .
  • FIG. 5 shows an exemplary HARQ-ACK codebook construction according to these embodiments.
  • HARQ-ACK sub-codebook 551 for the first PDSCH set may include ⁇ a1, a4, a10, a12 ⁇
  • HARQ-ACK sub-codebook 552 for the third PDSCH set may include ⁇ a8 ⁇
  • HARQ-ACK sub-codebook 553 for the second PDSCH set may include ⁇ b2, b5, b6, b11 ⁇
  • HARQ-ACK sub-codebook 554 for the fourth PDSCH set (e.g., PDSCH set #2D) may include ⁇ b9, b7, b3 ⁇ .
  • a1, a4, a10, and a12 respectively represent a single HARQ-ACK information bit (e.g., TB-based HARQ-ACK information bit) for PDSCHs 221, 224, 2210, and 2212 in FIG. 2
  • a8 represents a single HARQ-ACK information bit (e.g., TB-based HARQ-ACK information bit) for PDSCH 228 in FIG. 2.
  • b2 represents 4 CBG-level HARQ-ACK information bits for PDSCH 222 in FIG. 2
  • b5 represents 4 CBG-level HARQ-ACK information bits for PDSCH 225 in FIG.
  • b6 represents 4 CBG-level HARQ-ACK information bits for PDSCH 226 in FIG.
  • b11 represents 4 CBG-level HARQ-ACK information bits for PDSCH 2211 in FIG. 2
  • b9 represents 4 CBG-level HARQ-ACK information bits for PDSCH 229 in FIG.
  • b7 represents 4 CBG-level HARQ-ACK information bits for PDSCH 227 in FIG.
  • b3 represents 4 CBG-level HARQ-ACK information bits for PDSCH 223 in FIG. 2.
  • HARQ-ACK sub-codebooks 551-554 are concatenated into one HARQ-ACK codebook, which is transmitted on PUCCH 561.
  • HARQ-ACK sub-codebook 551 may be placed firstly and then followed by HARQ-ACK sub-codebooks 552-554 in the final HARQ-ACK codebook.
  • the HARQ-ACK information bits for SPS PDSCHs may be ordered in the “serving cell index first time second manner” .
  • FIG. 6 shows an exemplary HARQ-ACK codebook construction according to these embodiments.
  • HARQ-ACK sub-codebook 651 for the first PDSCH set may include ⁇ a1, a4, a10, a12 ⁇
  • HARQ-ACK sub-codebook 652 for the third PDSCH set may include ⁇ a8 ⁇
  • HARQ-ACK sub-codebook 653 for the second PDSCH set may include ⁇ b2, b5, b6, b11 ⁇
  • HARQ-ACK sub-codebook 654 for the fourth PDSCH set (e.g., PDSCH set #2D) may include ⁇ b9, b3, b7 ⁇ .
  • a1, a4, a10, and a12 respectively represent a single HARQ-ACK information bit (e.g., TB-based HARQ-ACK information bit) for PDSCHs 221, 224, 2210, and 2212 in FIG. 2
  • a8 represents a single HARQ-ACK information bit (e.g., TB-based HARQ-ACK information bit) for PDSCH 228 in FIG. 2.
  • b2 represents 4 CBG-level HARQ-ACK information bits for PDSCH 222 in FIG. 2
  • b5 represents 4 CBG-level HARQ-ACK information bits for PDSCH 225 in FIG.
  • b6 represents 4 CBG-level HARQ-ACK information bits for PDSCH 226 in FIG.
  • b11 represents 4 CBG-level HARQ-ACK information bits for PDSCH 2211 in FIG. 2
  • b9 represents 4 CBG-level HARQ-ACK information bits for PDSCH 229 in FIG.
  • b3 represents 4 CBG-level HARQ-ACK information bits for PDSCH 223 in FIG. 2
  • b7 represents 4 CBG-level HARQ-ACK information bits for PDSCH 227 in FIG. 2.
  • HARQ-ACK sub-codebooks 651-654 are concatenated into one HARQ-ACK codebook, which is transmitted on PUCCH 661.
  • HARQ-ACK sub-codebook 651 may be placed firstly and then followed by HARQ-ACK sub-codebooks 652-654 in the final HARQ-ACK codebook.
  • an SPS PDSCH its transmission type (e.g., a TB-based transmission or a CBG-based transmission) is dependent on the SPS configuration associated with the SPS PDSCH. For example, whether an SPS PDSCH is responded in TB-based HARQ-ACK feedback (corresponding to the TB-based transmission type) or CBG-based HARQ-ACK feedback (corresponding to the CBG-based transmission type) may be dependent on the SPS configuration.
  • the SPS configuration may indicate a transmission type for the associated transmission (s) being either a TB-based transmission or a CBG-based transmission.
  • the BS may configure one or more SPS configurations for a UE.
  • the SPS configuration may further indicate the number of CBGs per TB (denoted as Z) .
  • Different SPS configurations may indicate different or the same number of CBGs per TB.
  • the number of CBGs per SPS TB can be 2, 4, 6, or 8.
  • the “transmission type” as described above can be replaced with a “HARQ-ACK feedback type. ”
  • Table 1 below shows an example of an SPS configuration.
  • the transmission type is indicated via HARQ-ACK feedback type (i.e., “harq-FeedbackType” ) .
  • the corresponding SPS PDSCH may be responded with TB-based or CBG-based HARQ-ACK feedback.
  • the HARQ-ACK feedback type of an SPS configuration may be fully dependent on the SPS configuration no matter whether the SPS configuration is configured on a carrier configured with CBG-based transmission or not.
  • the UE may transmit TB-based HARQ-ACK feedback for the SPS PDSCH. For example, the UE may transmit a single HARQ-ACK information bit for each SPS PDSCH associated with the SPS configuration.
  • the UE may transmit CBG-based HARQ-ACK feedback with Z1 HARQ-ACK information bits for each SPS PDSCH associated with the SPS configuration.
  • the UE may transmit CBG-based HARQ-ACK feedback with Z2 HARQ-ACK information bits for each SPS PDSCH associated with the SPS configuration.
  • the UE may transmit TB-based HARQ-ACK feedback. For example, the UE may transmit a single HARQ-ACK information bit for each SPS PDSCH associated with the SPS configuration.
  • the number of CBGs per SPS TB can include more values.
  • the number of CBGs per SPS TB can be 1, 2, 3, 4, 5, 6, 7, or 8. This is because the TBS of an SPS configuration is pre-known to a UE. Different SPS configurations can be configured with different or the same number of CBGs per SPS TB according to the respective TBS.
  • the number of HARQ-ACK information bits for each SPS PDSCH associated with the SPS configuration may be based on the configured number of CBGs per SPS TB (e.g., Z) .
  • the number of HARQ-ACK information bits for each SPS PDSCH may be equal to Z.
  • a UE may receive an SPS PDSCH according to an SPS configuration.
  • the UE may generate HARQ-ACK feedback for the SPS PDSCH according to the transmission type indicated in the SPS configuration.
  • the transmission type is the CBG-based transmission
  • the UE may generate the HARQ-ACK feedback according to the number of CBGs per TB (e.g., Z) indicated in the SPS configuration.
  • a UE may receive a plurality of SPS PDSCHs with HARQ-ACK feedback to be transmitted in the same slot or the same PUCCH or PUSCH.
  • the plurality of SPS PDSCHs may be received at least one SPS configuration.
  • Various methods may be employed to arrange the HARQ-ACK information bits for the plurality of SPS PDSCHs.
  • the HARQ-ACK information bits for the plurality of SPS PDSCHs may be ordered in “serving cell index first SPS configuration index second manner. ”
  • the HARQ-ACK information bits may be ordered firstly based on associated serving cell indices and then based on associated SPS configuration indices for SPS PDSCHs on the same serving cell.
  • the plurality of SPS PDSCHs may be transmitted on a plurality of serving cells of the UE.
  • the HARQ-ACK information bits for the plurality of SPS PDSCHs may be ordered firstly in a predefined order (e.g., an ascending or descending order) of the indices of the plurality of serving cells.
  • more than one SPS PDSCH of the plurality of SPS PDSCHs may be transmitted on the same serving cell with different SPS configurations corresponding to different SPS configuration indices.
  • the SPS configuration index of a certain SPS configuration may be indicated by sps-ConfigIndex as specified in 3GPP specifications and may have a value ranging from 0 to 7.
  • HARQ-ACK information bits for the more than one SPS PDSCH may be ordered according to the associated SPS configuration indices (e.g., according to an ascending or descending order of the associated SPS configuration indices) .
  • the HARQ-ACK information bits for the plurality of SPS PDSCHs may be ordered in “serving cell index first time second manner. ”
  • the HARQ-ACK information bits may be ordered firstly based on associated serving cell indices and then based on associated transmission occasions for SPS PDSCHs on the same serving cell.
  • the plurality of SPS PDSCHs may be transmitted on a plurality of serving cells of the UE.
  • the HARQ-ACK information bits for the plurality of SPS PDSCHs may be ordered firstly in a predefined order (e.g., an ascending or descending order) of the indices of the plurality of serving cells.
  • more than one SPS PDSCH of the plurality of SPS PDSCHs may be transmitted on the same serving cell corresponding to different transmission occasions (e.g., transmitted in different times) .
  • HARQ-ACK information bits for the more than one SPS PDSCH may be ordered according to the associated transmission occasions (e.g., according to an ascending or descending order of the associated transmission occasions) .
  • the UE may receive a DCI format scheduling a retransmission of a specific SPS PDSCH of the plurality of SPS PDSCHs associated with the at least one SPS configuration. For example, when the UE reports a NACK for the SPS PDSCH, the BS may transmit a DCI format with cyclic redundancy check (CRC) scrambled by configured scheduling radio network temporary identifier (CS-RNTI) , which schedules the retransmission of the SPS PDSCH.
  • the DCI format may include a field indicating CBG transmission information (CBGTI) associated with the SPS PDSCH.
  • CBGTI CBG transmission information
  • the CBGTI may indicate which CBG (s) of the SPS PDSCH is to be retransmitted.
  • the number of bits for the CBGTI in a DCI format may vary, which would lead to different DCI payload sizes.
  • the size of the field indicating the CBGTI in the DCI format may be dependent on (e.g., equal to or greater than) a maximum number of CBGs per TB among the at least one SPS configuration.
  • the size of the field indicating the CBGTI in the DCI format may be dependent on the maximum number of CBGs per TB among all the SPS configurations on the same carrier or all carriers within the same PUCCH group, the HARQ-ACK feedback for the PDSCHs transmitted on which would be carried on the same carrier or same PUCCH or PUSCH.
  • the payload size of the DCI format is a single value for dynamically scheduling the retransmissions of the plurality of SPS TBs.
  • a CG PUSCH for a CG PUSCH, its transmission type (e.g., a TB-based transmission or a CBG-based transmission) is dependent on the CG configuration associated with the CG PUSCH. For example, whether a CG PUSCH is (re) transmitted in the TB-based transmission or CBG-based transmission may be dependent on the associated CG configuration.
  • the CG configuration may indicate a transmission type for the associated (re) transmission (s) being either a TB-based transmission or a CBG-based transmission.
  • the BS may configure one or more CG configurations for a UE.
  • the CG configuration may further indicate the number of CBGs per TB (denoted as Y) .
  • Different CG configurations may indicate different or the same number of CBGs per TB.
  • the number of CBGs per CG TB can be 2, 4, 6, or 8.
  • Table 2 below shows an example of a CG configuration.
  • the corresponding CG PUSCH may be transmitted with TB-based or CBG-based transmission according to the CBGTI in a DCI for scheduling the retransmission of the CG PUSCH.
  • the UE may assume TB-based transmission scheduled by a DCI scheduling the retransmission of the CG PUSCH and that no CBGTI is included in the DCI.
  • the UE may assume CBG-based transmission scheduled by the DCI scheduling the retransmission of the CG PUSCH and that the CBGTI is included in the DCI (e.g., in the form of a bitmap, where each bit in the CBGTI corresponding to one CBG of the CG TB carried on the CG PUSCH and indicating whether the CBG is retransmitted or not) .
  • the transmission type may be fully dependent on the CG configuration no matter whether the CG configuration is configured on a carrier configured with CBG-based transmission or not.
  • the UE may assume TB-based transmission scheduled by the DCI scheduling the retransmission of the CG PUSCH and no CBGTI included in the DCI.
  • the UE may assume CBG-based transmission scheduled by the DCI scheduling the retransmission of the CG PUSCH and a Y1-bit bitmap of CBGTI included in the DCI where each bit in the CBGTI corresponding to one CBG of the CG TB carried on the CG PUSCH and indicating whether the CBG is retransmitted or not.
  • the UE may assume CBG-based transmission scheduled by the DCI scheduling retransmission of the CG PUSCH and a Y2-bit bitmap of CBGTI included in the DCI where each bit in the CBGTI corresponding to one CBG of the CG TB carried on the CG PUSCH and indicating whether the CBG is retransmitted or not.
  • the UE may assume TB-based transmission scheduled by the DCI scheduling retransmission of the CG PUSCH and no CBGTI included in the DCI.
  • the number of CBGs per CG TB can include more values.
  • the number of CBGs per CG TB can be 1, 2, 3, 4, 5, 6, 7, or 8. This is because the TBS of an CG configuration is pre-known to a UE. Different CG configurations can be configured with different or the same number of CBGs per CG TB according to the respective TBS.
  • the number of bits of CBGTI in a DCI format for each CG PUSCH associated with the CG configuration may be based on the configured number of CBGs per CG TB indicated in the CG configuration.
  • the number of bits for the CBGTI in a DCI format may vary, which would lead to different DCI payload sizes.
  • the size of the field indicating the CBGTI in the DCI format may be dependent on (e.g., equal to or greater than) a maximum number of CBGs per TB among the CG configurations configured for the UE.
  • the size of the field indicating the CBGTI in the DCI format may be dependent on the maximum number of CBGs per TB among all the CG configurations on the same carrier or all carriers within the same PUCCH group or same cell group.
  • the payload size of the DCI format is a single value for dynamically scheduling the retransmissions of the plurality of CG TBs.
  • FIG. 7 illustrates a flow chart of an exemplary procedure 700 for wireless communications in accordance with some embodiments of the present disclosure. Details described in all of the foregoing embodiments of the present disclosure are applicable for the embodiments shown in FIG. 7.
  • the procedure may be performed by a UE, for example, UE 101 in FIG. 1.
  • a UE may receive a plurality of PDSCHs on one or more serving cells of the UE, wherein HARQ-ACK feedback for the plurality of PDSCHs is to be transmitted in one HARQ-ACK codebook.
  • a UE may divide the plurality of PDSCHs into at least two sets of PDSCHs including a first set of PDSCHs and a second set of PDSCHs, wherein DAIs associated with dynamically scheduled PDSCHs in the first set of PDSCHs are counted independently from those associated with dynamically scheduled PDSCHs in the second set of PDSCHs.
  • a UE may generate a first HARQ-ACK sub-codebook including HARQ-ACK information bits for PDSCHs in the first set of PDSCHs according to a predefined rule for HARQ-ACK information bit ordering.
  • a UE may generate a second HARQ-ACK sub-codebook including HARQ-ACK information bits for PDSCHs in the second set of PDSCHs according to the predefined rule for HARQ-ACK information bit ordering.
  • a UE may transmit the HARQ-ACK codebook including the first HARQ-ACK sub-codebook and the second HARQ-ACK sub-codebook.
  • each PDSCH of the first set of PDSCHs (e.g., PDSCH set #1A) requires TB-based feedback and the same number of TB-based HARQ-ACK information bits are generated in the first HARQ-ACK sub-codebook for each PDSCH of the first set of PDSCHs.
  • Each PDSCH of the second set of PDSCHs (e.g., PDSCH set #1B) requires CBG-based feedback and the same number of CBG-based HARQ-ACK information bits are generated in the second HARQ-ACK sub-codebook for each PDSCH of the second set of PDSCHs.
  • the number of CBG-based HARQ-ACK information bits in the second HARQ-ACK sub-codebook for each PDSCH of the second set of PDSCHs is dependent on a maximum number among all maximum numbers of CBGs per TB for carriers of the UE configured with CBG-based transmission.
  • the first set of PDSCHs includes one or more of the following: a PDSCH scheduled by a fallback DCI format; a PDSCH scheduled by a non-fallback DCI format and transmitted on a carrier not configured with CBG-based transmission; or an SPS PDSCH transmitted on a carrier not configured with CBG-based transmission.
  • the second set of PDSCHs includes one or more of the following: a PDSCH scheduled by a non-fallback DCI format and transmitted on a carrier configured with CBG-based transmission; or an SPS PDSCH transmitted on a carrier configured with CBG-based transmission.
  • generating the first HARQ-ACK sub-codebook (e.g., sub-codebook #1A) according to the predefined rule for HARQ-ACK information bit ordering may include: generating a first set of HARQ-ACK information bits for PDSCHs that are scheduled by DCI formats in the first set of PDSCHs, wherein the first set of HARQ-ACK information bits are ordered according to DAIs for the associated PDSCHs that are scheduled by DCI formats in the first set of PDSCHs; generating a second set of HARQ-ACK information bits for SPS PDSCHs in the first set of PDSCHs; and arranging the first set of HARQ-ACK information bits and the second set of HARQ-ACK information bits in the first HARQ-ACK sub-codebook according to a predefined order.
  • generating the second HARQ-ACK sub-codebook (e.g., sub-codebook #1B) according to the predefined rule for HARQ-ACK information bit ordering may include: generating a first set of HARQ-ACK information bits for PDSCHs that are scheduled by DCI formats in the second set of PDSCHs, wherein the first set of HARQ-ACK information bits are ordered according to DAIs for the associated PDSCHs that are scheduled by DCI formats in the second set of PDSCHs; generating a second set of HARQ-ACK information bits for SPS PDSCHs in the second set of PDSCHs; and arranging the first set of HARQ-ACK information bits and the second set of HARQ-ACK information bits in the second HARQ-ACK sub-codebook according to a predefined order.
  • the second set of HARQ-ACK information bits for SPS PDSCHs in a respective set of PDSCHs are ordered firstly based on associated serving cell indices and then based on associated SPS configuration indices for SPS PDSCHs on the same serving cell. In some embodiments of the present disclosure, the second set of HARQ-ACK information bits for SPS PDSCHs in the respective set of PDSCHs are ordered firstly based on associated serving cell indices and then based on associated transmission occasions for SPS PDSCHs on the same serving cell.
  • each PDSCH in the first set of PDSCHs is a PDSCH scheduled by a first type DCI format (e.g., DCI type #1) and each PDSCH in the second set of PDSCHs (e.g., PDSCH set #2B) is a PDSCH scheduled by a second type DCI format (e.g., DCI type #2) .
  • the first type DCI format requires a single HARQ-ACK information bit and the second type DCI format requires CBG-based HARQ-ACK feedback, wherein the same number of CBG-based HARQ-ACK information bits are generated in the second HARQ-ACK sub-codebook for each PDSCH of the second set of PDSCHs.
  • the number of CBG-based HARQ-ACK information bits in the second HARQ-ACK sub-codebook for each PDSCH of the second set of PDSCHs is dependent on a maximum number among all maximum numbers of CBGs per TB for carriers of the UE configured with CBG-based transmission.
  • the first type DCI format is from a group including one or more of the following: a fallback DCI format; a non-fallback DCI format scheduling a PDSCH transmitted on a carrier not configured with CBG-based transmission; or a non-fallback DCI format scheduling a PDSCH transmitted on a carrier configured with a maximum of two TBs per PDSCH and spatial bundling.
  • the second type DCI format is from a group including one or more of the following: a non-fallback DCI format scheduling a PDSCH transmitted on a carrier configured with CBG-based transmission; or a non-fallback DCI format scheduling a PDSCH transmitted on a carrier configured with a maximum of two TBs per PDSCH and without spatial bundling.
  • At least two sets of PDSCHs further include at least one of a third set of PDSCHs (e.g., PDSCH set #2C) and a fourth set of PDSCHs (e.g., PDSCH set #2D) .
  • the third set of PDSCHs includes all SPS PDSCHs transmitted on a carrier (s) configured without CBG-based transmission in the plurality of PDSCHs.
  • the fourth set of PDSCHs includes all SPS PDSCHs transmitted on a carrier (s) configured with CBG-based transmission in the plurality of PDSCHs.
  • the UE may generate at least one of the following: a third set of HARQ-ACK information bits for PDSCHs in the third set of PDSCHs according to a HARQ-ACK information bit ordering rule for SPS PDSCHs; or a fourth set of HARQ-ACK information bits for PDSCHs in the fourth set of PDSCHs according to the HARQ-ACK information bit ordering rule for SPS PDSCHs.
  • the HARQ-ACK information bit ordering rule for SPS PDSCHs may include: the HARQ-ACK information bits for SPS PDSCHs in a respective set of PDSCHs are ordered firstly based on associated serving cell indices and then based on associated SPS configuration indices for SPS PDSCHs on the same serving cell; or the HARQ-ACK information bits for SPS PDSCHs in the respective set of PDSCHs are ordered firstly based on associated serving cell indices and then based on associated transmission occasions for SPS PDSCHs on the same serving cell.
  • each PDSCH in the third set of PDSCHs is responded with a single bit in the third set of HARQ-ACK information bits
  • each PDSCH in the fourth set of PDSCHs is responded with a number of consecutive bits in the fourth set of HARQ-ACK information bits.
  • the HARQ-ACK codebook further may include at least one of a third HARQ-ACK sub-codebook (e.g., sub-codebook #2C) including the third set of HARQ-ACK information bits or a fourth HARQ-ACK sub-codebook (e.g., sub-codebook #2D) including the fourth set of HARQ-ACK information bits, and the first HARQ-ACK sub-codebook (e.g., sub-codebook #2A) , the second HARQ-ACK sub-codebook (e.g., sub-codebook #2B) , and the at least one of the third HARQ-ACK sub-codebook or the fourth HARQ-ACK sub-codebook are arranged in the HARQ-ACK codebook according to a predefined order.
  • a third HARQ-ACK sub-codebook e.g., sub-codebook #2C
  • a fourth HARQ-ACK sub-codebook e.g., sub-codebook #2D
  • the first HARQ-ACK sub-codebook (e.g., sub-codebook #3A) further may include the third set of HARQ-ACK information bits and the second HARQ-ACK sub-codebook (e.g., sub-codebook #3B) further may include the fourth set of HARQ-ACK information bits, and the first HARQ-ACK sub-codebook and the second HARQ-ACK sub-codebook are arranged in the HARQ-ACK codebook according to a predefined order.
  • the HARQ-ACK codebook further may include a fifth HARQ-ACK sub-codebook (e.g., sub-codebook #4C) including the third set of HARQ-ACK information bits and the fourth set of HARQ-ACK information bits, and the first HARQ-ACK sub-codebook (e.g., sub-codebook #2A) , the second HARQ-ACK sub-codebook (e.g., sub-codebook #2B) and the fifth HARQ-ACK sub-codebook are arranged in the HARQ-ACK codebook according to a predefined order.
  • a fifth HARQ-ACK sub-codebook e.g., sub-codebook #4C
  • the first HARQ-ACK sub-codebook e.g., sub-codebook #2A
  • the second HARQ-ACK sub-codebook e.g., sub-codebook #2B
  • the fifth HARQ-ACK sub-codebook are arranged in the HARQ-ACK codebook according to a predefined order.
  • FIG. 8 illustrates a flow chart of an exemplary procedure 800 for wireless communications in accordance with some embodiments of the present disclosure. Details described in all of the foregoing embodiments of the present disclosure are applicable for the embodiments shown in FIG. 8.
  • the procedure may be performed by a UE, for example, UE 101 in FIG. 1.
  • a UE may receive at least one transmission configuration, wherein the at least one transmission configuration may include at least one SPS configuration for downlink transmission or at least one CG configuration for uplink transmission, wherein the at least one SPS configuration or the at least one CG configuration indicates a transmission type for associated transmission being either a TB-based transmission or a CBG-based transmission.
  • a UE may perform an uplink transmission or downlink reception according to the at least one transmission configuration.
  • the at least one SPS configuration or the at least one CG configuration further indicates a number of CBGs per TB in the case that the transmission type is the CBG-based transmission.
  • performing the uplink transmission or downlink reception according to the at least one transmission configuration may include receiving an SPS PDSCH according to the at least one SPS configuration.
  • the UE may further generate HARQ-ACK feedback for the SPS PDSCH according to the transmission type indicated in the at least one SPS configuration and according to the number of CBGs per TB indicated in the at least one SPS configuration in the case that the transmission type is the CBG-based transmission.
  • performing the uplink transmission or downlink reception according to the at least one transmission configuration may include receiving a plurality of SPS PDSCHs with HARQ-ACK feedback to be transmitted in the same slot according to the at least one SPS configuration.
  • the UE may further generate a set of HARQ-ACK information bits for the plurality of SPS PDSCHs; and transmit the set of HARQ-ACK information bits.
  • the HARQ-ACK information bits in the set of HARQ-ACK information bits for the plurality of SPS PDSCHs are ordered firstly based on associated serving cell indices and then based on associated SPS configuration indices for SPS PDSCHs on the same serving cell. In some embodiments of the present disclosure, the HARQ-ACK information bits in the set of HARQ-ACK information bits for the plurality of SPS PDSCHs are ordered firstly based on associated serving cell indices and then based on associated transmission occasions for SPS PDSCHs on the same serving cell.
  • the UE may further receive a DCI format scheduling a retransmission of a first SPS PDSCH of the plurality of SPS PDSCHs.
  • the DCI format may include a field indicating CBGTI associated with the first SPS PDSCH, and wherein the size of the field is dependent on a maximum number of CBGs per TB among the at least one SPS configuration.
  • performing the uplink transmission or downlink reception according to the at least one transmission configuration may include transmitting a CG PUSCH according to the at least one CG configuration.
  • the UE may further: receive a DCI format scheduling a retransmission of the CG PUSCH, wherein the DCI format may include a field indicating CBGTI associated with the CG PUSCH, and wherein the size of the field is dependent on a maximum number of CBGs per TB among at least one CG configuration for the UE.
  • FIG. 9 illustrates a flow chart of an exemplary procedure 900 for wireless communications in accordance with some embodiments of the present disclosure. Details described in all of the foregoing embodiments of the present disclosure are applicable for the embodiments shown in FIG. 9.
  • the procedure may be performed by a BS, for example, BS 102 in FIG. 1.
  • a BS may transmit, to a UE, a plurality of PDSCHs on one or more serving cells of the UE, wherein HARQ-ACK feedback for the plurality of PDSCHs is to be transmitted in one HARQ-ACK codebook.
  • the BS may divide the plurality of PDSCHs into at least two sets of PDSCHs including a first set of PDSCHs and a second set of PDSCHs, wherein DAIs associated with dynamically scheduled PDSCHs in the first set of PDSCHs are counted independently from those associated with dynamically scheduled PDSCHs in the second set of PDSCHs.
  • the BS may receive a HARQ-ACK codebook including a first HARQ-ACK sub-codebook and a second HARQ-ACK sub-codebook.
  • the first HARQ-ACK sub-codebook may include HARQ-ACK information bits for PDSCHs in the first set of PDSCHs arranged according to a predefined rule for HARQ-ACK information bit ordering
  • the second HARQ-ACK sub-codebook may include HARQ-ACK information bits for PDSCHs in the second set of PDSCHs arranged according to the predefined rule for HARQ-ACK information bit ordering.
  • each PDSCH of the first set of PDSCHs requires TB-based feedback and the same number of TB-based HARQ-ACK information bits are generated in the first HARQ-ACK sub-codebook for each PDSCH of the first set of PDSCHs
  • each PDSCH of the second set of PDSCHs requires CBG-based feedback and the same number of CBG-based HARQ-ACK information bits are generated in the second HARQ-ACK sub-codebook for each PDSCH of the second set of PDSCHs.
  • the number of CBG-based HARQ-ACK information bits in the second HARQ-ACK sub-codebook for each PDSCH of the second set of PDSCHs is dependent on a maximum number among all maximum numbers of CBGs per TB for carriers of the UE configured with CBG-based transmission.
  • the first set of PDSCHs includes one or more of the following: a PDSCH scheduled by a fallback DCI format; a PDSCH scheduled by a non-fallback DCI format and transmitted on a carrier not configured with CBG-based transmission; or an SPS PDSCH transmitted on a carrier not configured with CBG-based transmission.
  • the second set of PDSCHs includes one or more of the following: a PDSCH scheduled by a non-fallback DCI format and transmitted on a carrier configured with CBG-based transmission; or an SPS PDSCH transmitted on a carrier configured with CBG-based transmission.
  • the first HARQ-ACK sub-codebook may include a first set of HARQ-ACK information bits for PDSCHs that are scheduled by DCI formats in the first set of PDSCHs, and a second set of HARQ-ACK information bits for SPS PDSCHs in the first set of PDSCHs.
  • HARQ-ACK information bits in the first set of HARQ-ACK information bits are ordered according to DAIs for the associated PDSCHs that are scheduled by DCI formats in the first set of PDSCHs.
  • the first set of HARQ-ACK information bits and the second set of HARQ-ACK information bits are arranged in the first HARQ-ACK sub-codebook according to a predefined order.
  • the second HARQ-ACK sub-codebook may include a first set of HARQ-ACK information bits for PDSCHs that are scheduled by DCI formats in the second set of PDSCHs, and a second set of HARQ-ACK information bits for SPS PDSCHs in the second set of PDSCHs.
  • HARQ-ACK information bits in the first set of HARQ-ACK information bits are ordered according to DAIs for the associated PDSCHs that are scheduled by DCI formats in the second set of PDSCHs.
  • the first set of HARQ-ACK information bits and the second set of HARQ-ACK information bits are arranged in the second HARQ-ACK sub-codebook according to a predefined order.
  • the second set of HARQ-ACK information bits for SPS PDSCHs in a respective set of PDSCHs are ordered firstly based on associated serving cell indices and then based on associated SPS configuration indices for SPS PDSCHs on the same serving cell. In some embodiments of the present disclosure, the second set of HARQ-ACK information bits for SPS PDSCHs in the respective set of PDSCHs are ordered firstly based on associated serving cell indices and then based on associated transmission occasions for SPS PDSCHs on the same serving cell.
  • each PDSCH in the first set of PDSCHs is a PDSCH scheduled by a first type DCI format and each PDSCH in the second set of PDSCHs is a PDSCH scheduled by a second type DCI format.
  • the first type DCI format requires a single HARQ-ACK information bit and the second type DCI format requires CBG-based HARQ-ACK feedback, wherein the same number of CBG-based HARQ-ACK information bits are generated in the second HARQ-ACK sub-codebook for each PDSCH of the second set of PDSCHs.
  • the number of CBG-based HARQ-ACK information bits in the second HARQ-ACK sub-codebook for each PDSCH of the second set of PDSCHs is dependent on a maximum number among all maximum numbers of CBGs per TB for carriers of the UE configured with CBG-based transmission.
  • the first type DCI format is from a group including one or more of the following: a fallback DCI format; a non-fallback DCI format scheduling a PDSCH transmitted on a carrier not configured with a CBG-based transmission; or a non-fallback DCI format scheduling a PDSCH transmitted on a carrier configured with a maximum of two TBs per PDSCH and spatial bundling.
  • the second type DCI format is from a group including one or more of the following: a non-fallback DCI format scheduling a PDSCH transmitted on a carrier configured with CBG-based transmission; or a non-fallback DCI format scheduling a PDSCH transmitted on a carrier configured with a maximum of two TBs per PDSCH and without spatial bundling.
  • At least two sets of PDSCHs further include at least one of a third set of PDSCHs and a fourth set of PDSCHs.
  • the third set of PDSCHs includes all SPS PDSCHs transmitted on a carrier (s) configured without CBG-based transmission in the plurality of PDSCHs.
  • the fourth set of PDSCHs includes all SPS PDSCHs transmitted on a carrier (s) configured with CBG-based transmission in the plurality of PDSCHs.
  • the BS may further receive at least one of the following: a third set of HARQ-ACK information bits for PDSCHs in the third set of PDSCHs arranged according to a HARQ-ACK information bit ordering rule for SPS PDSCHs; or a fourth set of HARQ-ACK information bits for PDSCHs in the fourth set of PDSCHs arranged according to a HARQ-ACK information bit ordering rule for SPS PDSCHs.
  • the HARQ-ACK information bit ordering rule for SPS PDSCHs may include: the HARQ-ACK information bits for SPS PDSCHs in a respective set of PDSCHs are ordered firstly based on associated serving cell indices and then based on associated SPS configuration indices for SPS PDSCHs on the same serving cell.
  • the HARQ-ACK information bit ordering rule for SPS PDSCHs may include: the HARQ-ACK information bits for SPS PDSCHs in the respective set of PDSCHs are ordered firstly based on associated serving cell indices and then based on associated transmission occasions for SPS PDSCHs on the same serving cell.
  • each PDSCH in the third set of PDSCHs is responded with a single bit in the third set of HARQ-ACK information bits
  • each PDSCH in the fourth set of PDSCHs is responded with a number of consecutive bits in the fourth set of HARQ-ACK information bits.
  • the HARQ-ACK codebook further may include at least one of a third HARQ-ACK sub-codebook including the third set of HARQ-ACK information bits or a fourth HARQ-ACK sub-codebook including the fourth set of HARQ-ACK information bits, wherein the first HARQ-ACK sub-codebook, the second HARQ-ACK sub-codebook, and the at least one of the third HARQ-ACK sub-codebook or the fourth HARQ-ACK sub-codebook are arranged in the HARQ-ACK codebook according to a predefined order.
  • the first HARQ-ACK sub-codebook further may include the third set of HARQ-ACK information bits and the second HARQ-ACK sub-codebook further may include the fourth set of HARQ-ACK information bits, and the first HARQ-ACK sub-codebook and the second HARQ-ACK sub-codebook are arranged in the HARQ-ACK codebook according to a predefined order.
  • the HARQ-ACK codebook further may include a fifth HARQ-ACK sub-codebook including the third set of HARQ-ACK information bits and the fourth set of HARQ-ACK information bits, and the first HARQ-ACK sub-codebook, the second HARQ-ACK sub-codebook and the fifth HARQ-ACK sub-codebook are arranged in the HARQ-ACK codebook according to a predefined order.
  • FIG. 10 illustrates a flow chart of an exemplary procedure 1000 for wireless communications in accordance with some embodiments of the present disclosure. Details described in all of the foregoing embodiments of the present disclosure are applicable for the embodiments shown in FIG. 10.
  • the procedure may be performed by a BS, for example, BS 102 in FIG. 1.
  • a BS may transmit, to a UE, at least one transmission configuration, wherein the at least one transmission configuration may include at least one SPS configuration for downlink transmission or at least one CG configuration for uplink transmission, wherein the at least one SPS configuration or the at least one CG configuration indicates a transmission type for associated transmission being either a TB-based transmission or a CBG-based transmission.
  • the BS may perform an uplink reception or downlink transmission according to the at least one transmission configuration.
  • the at least one SPS configuration or the at least one CG configuration further indicates a number of CBGs per TB in the case that the transmission type is the CBG-based transmission.
  • performing the uplink reception or downlink transmission according to the at least one transmission configuration may include transmitting an SPS PDSCH according to the at least one SPS configuration.
  • the BS may further receive HARQ-ACK feedback for the SPS PDSCH according to the transmission type indicated in the at least one SPS configuration and according to the number of CBGs per TB indicated in the at least one SPS configuration in the case that the transmission type is the CBG-based transmission.
  • performing the uplink reception or downlink transmission according to the at least one transmission configuration may include transmitting a plurality of SPS physical downlink shared channels (PDSCHs) with HARQ-ACK feedback to be transmitted in the same slot according to the at least one SPS configuration.
  • the BS may further receive a set of HARQ-ACK information bits for the plurality of SPS PDSCHs.
  • the HARQ-ACK information bits in the set of HARQ-ACK information bits for the plurality of SPS PDSCHs are ordered firstly based on associated serving cell indices and then based on associated SPS configuration indices for SPS PDSCHs on the same serving cell. In some embodiments of the present disclosure, the HARQ-ACK information bits in the set of HARQ-ACK information bits for the plurality of SPS PDSCHs are ordered firstly based on associated serving cell indices and then based on associated transmission occasions for SPS PDSCHs on the same serving cell.
  • the BS may further transmit a DCI format scheduling a retransmission of a first SPS PDSCH of the plurality of SPS PDSCHs, wherein the DCI format may include a field indicating CBGTI associated with the first SPS PDSCH, and wherein the size of the field is dependent on a maximum number of CBGs per TB among the at least one SPS configuration.
  • performing the uplink reception or downlink transmission according to the at least one transmission configuration may include receiving a CG PUSCH according to the at least one CG configuration.
  • the BS may further transmit a DCI format scheduling a retransmission of the CG PUSCH, wherein the DCI format may include a field indicating CBGTI associated with the CG PUSCH, and wherein the size of the field is dependent on a maximum number of CBGs per TB among the at least one CG configuration for the UE.
  • FIG. 11 illustrates a block diagram of an exemplary apparatus 1100 according to some embodiments of the present disclosure.
  • the apparatus 1100 may include at least one processor 1106 and at least one transceiver 1102 coupled to the processor 1106.
  • the apparatus 1100 may be a UE or a BS.
  • the transceiver 1102 may be divided into two devices, such as a receiving circuitry and a transmitting circuitry.
  • the apparatus 1100 may further include an input device, a memory, and/or other components.
  • the apparatus 1100 may be a UE.
  • the transceiver 1102 and the processor 1106 may interact with each other so as to perform the operations with respect to the UE described in FIGS. 1-10.
  • the apparatus 1100 may be a BS.
  • the transceiver 1102 and the processor 1106 may interact with each other so as to perform the operations with respect to the BS described in FIGS. 1-10.
  • the apparatus 1100 may further include at least one non-transitory computer-readable medium.
  • the non-transitory computer-readable medium may have stored thereon computer-executable instructions to cause the processor 1106 to implement the method with respect to the UE as described above.
  • the computer-executable instructions when executed, cause the processor 1106 interacting with transceiver 1102 to perform the operations with respect to the UE described in FIGS. 1-10.
  • the non-transitory computer-readable medium may have stored thereon computer-executable instructions to cause the processor 1106 to implement the method with respect to the BS as described above.
  • the computer-executable instructions when executed, cause the processor 1106 interacting with transceiver 1102 to perform the operations with respect to the BS described in FIGS. 1-10.
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
  • the operations or steps of a method may reside as one or any combination or set of codes and/or instructions on a non-transitory computer-readable medium, which may be incorporated into a computer program product.
  • the terms “includes, “ “including, “ or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that includes a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
  • An element proceeded by “a, “ “an, “ or the like does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that includes the element.
  • the term “another” is defined as at least a second or more.
  • the term “having” and the like, as used herein, are defined as "including.
  • Expressions such as “A and/or B” or “at least one of A and B” may include any and all combinations of words enumerated along with the expression.
  • the expression “A and/or B” or “at least one of A and B” may include A, B, or both A and B.
  • the wording "the first, " “the second” or the like is only used to clearly illustrate the embodiments of the present application, but is not used to limit the substance of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Embodiments of the present disclosure relate to methods and apparatuses for CBG-based HARQ-ACK feedback for an SPS PDSCH. According to some embodiments of the disclosure, a UE may: receive a plurality of PDSCHs, wherein HARQ-ACK feedback for the plurality of PDSCHs is to be transmitted in one HARQ-ACK codebook; divide the plurality of PDSCHs into at least two sets of PDSCHs including a first set of PDSCHs and a second set of PDSCHs; generate a first HARQ-ACK sub-codebook comprising HARQ-ACK information bits for PDSCHs in the first set of PDSCHs; generate a second HARQ-ACK sub-codebook comprising HARQ-ACK information bits for PDSCHs in the second set of PDSCHs; and transmit the HARQ-ACK codebook comprising the first HARQ-ACK sub-codebook and the second HARQ-ACK sub-codebook.

Description

METHOD AND APPARATUS FOR CBG-BASED HARQ-ACK FEEDBACK FOR CONFIGURED TRANSMISSION TECHNICAL FIELD
Embodiments of the present disclosure generally relate to wireless communication technology, and more particularly to code block group (CBG) based hybrid automatic repeat request acknowledgement (HARQ-ACK) feedback for a semi-persistent scheduling (SPS) PDSCH.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services, such as telephony, video, data, messaging, broadcasts, and so on. Wireless communication systems may employ multiple access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., time, frequency, and power) . Examples of wireless communication systems may include fourth generation (4G) systems, such as long-term evolution (LTE) systems, LTE-advanced (LTE-A) systems, or LTE-APro systems, and fifth generation (5G) systems, which may also be referred to as new radio (NR) systems.
In a wireless communication system, a base station (BS) may transmit data signals to user equipment (UE) via a physical downlink shared channel (PDSCH) . The PDSCH transmission to the UE may be a dynamic PDSCH or a semi-persistent scheduling (SPS) PDSCH. In dynamic scheduling, a BS may transmit, to a UE, downlink control information (DCI) via a corresponding physical downlink control channel (PDCCH) . In SPS, a PDSCH transmission may be configured to a UE by a BS through higher layer signaling, such as, for example, radio resource control (RRC) signaling.
A UE may transmit HARQ-ACK feedback (e.g., included in a HARQ-ACK codebook) corresponding to PDSCH transmissions through a physical uplink shared  channel (PUSCH) or physical uplink control channel (PUCCH) .
There is a need for HARQ-ACK feedback determination in a wireless communication system.
SUMMARY
Some embodiments of the present disclosure provide a user equipment (UE) . The UE may include a transceiver, and a processor coupled to the transceiver. The processor may be configured to: receive a plurality of physical downlink shared channels (PDSCHs) on one or more serving cells of the UE, wherein hybrid automatic repeat request acknowledgement (HARQ-ACK) feedback for the plurality of PDSCHs is to be transmitted in one HARQ-ACK codebook; divide the plurality of PDSCHs into at least two sets of PDSCHs including a first set of PDSCHs and a second set of PDSCHs, wherein downlink assignment indicators (DAIs) associated with dynamically scheduled PDSCHs in the first set of PDSCHs are counted independently from those associated with dynamically scheduled PDSCHs in the second set of PDSCHs; generate a first HARQ-ACK sub-codebook comprising HARQ-ACK information bits for PDSCHs in the first set of PDSCHs according to a predefined rule for HARQ-ACK information bit ordering; generate a second HARQ-ACK sub-codebook comprising HARQ-ACK information bits for PDSCHs in the second set of PDSCHs according to the predefined rule for HARQ-ACK information bit ordering; and transmit the HARQ-ACK codebook comprising the first HARQ-ACK sub-codebook and the second HARQ-ACK sub-codebook.
In some embodiments of the present disclosure, each PDSCH of the first set of PDSCHs requires transport block (TB) based feedback and the same number of TB-based HARQ-ACK information bits are generated in the first HARQ-ACK sub-codebook for each PDSCH of the first set of PDSCHs. Each PDSCH of the second set of PDSCHs requires code block group (CBG) based feedback and the same number of CBG-based HARQ-ACK information bits are generated in the second HARQ-ACK sub-codebook for each PDSCH of the second set of PDSCHs.
In some embodiments of the present disclosure, the number of CBG-based  HARQ-ACK information bits in the second HARQ-ACK sub-codebook for each PDSCH of the second set of PDSCHs is dependent on a maximum number among all maximum numbers of CBGs per TB for carriers of the UE configured with CBG-based transmission.
In some embodiments of the present disclosure, the first set of PDSCHs includes one or more of the following: a PDSCH scheduled by a fallback DCI format; a PDSCH scheduled by a non-fallback DCI format and transmitted on a carrier not configured with CBG-based transmission; or a semi-persistent scheduling (SPS) PDSCH transmitted on a carrier not configured with CBG-based transmission.
In some embodiments of the present disclosure, the second set of PDSCHs includes one or more of the following: a PDSCH scheduled by a non-fallback DCI format and transmitted on a carrier configured with CBG-based transmission; or a semi-persistent scheduling (SPS) PDSCH transmitted on a carrier configured with CBG-based transmission.
In some embodiments of the present disclosure, generating the first HARQ-ACK sub-codebook according to the predefined rule for HARQ-ACK information bit ordering may include: generating a first set of HARQ-ACK information bits for PDSCHs that are scheduled by DCI formats in the first set of PDSCHs, wherein the first set of HARQ-ACK information bits are ordered according to DAIs for the associated PDSCHs that are scheduled by DCI formats in the first set of PDSCHs; generating a second set of HARQ-ACK information bits for SPS PDSCHs in the first set of PDSCHs; and arranging the first set of HARQ-ACK information bits and the second set of HARQ-ACK information bits in the first HARQ-ACK sub-codebook according to a predefined order.
In some embodiments of the present disclosure, generating the second HARQ-ACK sub-codebook according to the predefined rule for HARQ-ACK information bit ordering may include: generating a first set of HARQ-ACK information bits for PDSCHs that are scheduled by DCI formats in the second set of PDSCHs, wherein the first set of HARQ-ACK information bits are ordered according to DAIs for the associated PDSCHs that are scheduled by DCI formats in the second set of PDSCHs; generating a second set of HARQ-ACK information bits for SPS  PDSCHs in the second set of PDSCHs; and arranging the first set of HARQ-ACK information bits and the second set of HARQ-ACK information bits in the second HARQ-ACK sub-codebook according to a predefined order.
In some embodiments of the present disclosure, the second set of HARQ-ACK information bits for SPS PDSCHs in a respective set of PDSCHs are ordered firstly based on associated serving cell indices and then based on associated SPS configuration indices for SPS PDSCHs on the same serving cell. In some embodiments of the present disclosure, the second set of HARQ-ACK information bits for SPS PDSCHs in the respective set of PDSCHs are ordered firstly based on associated serving cell indices and then based on associated transmission occasions for SPS PDSCHs on the same serving cell.
In some embodiments of the present disclosure, each PDSCH in the first set of PDSCHs is a PDSCH scheduled by a first type DCI format and each PDSCH in the second set of PDSCHs is a PDSCH scheduled by a second type DCI format. The first type DCI format requires a single HARQ-ACK information bit and the second type DCI format requires CBG-based HARQ-ACK feedback, wherein the same number of CBG-based HARQ-ACK information bits are generated in the second HARQ-ACK sub-codebook for each PDSCH of the second set of PDSCHs.
In some embodiments of the present disclosure, the number of CBG-based HARQ-ACK information bits in the second HARQ-ACK sub-codebook for each PDSCH of the second set of PDSCHs is dependent on a maximum number among all maximum numbers of CBGs per TB for carriers of the UE configured with CBG-based transmission.
In some embodiments of the present disclosure, the first type DCI format is from a group including one or more of the following: a fallback DCI format; a non-fallback DCI format scheduling a PDSCH transmitted on a carrier not configured with CBG-based transmission; or a non-fallback DCI format scheduling a PDSCH transmitted on a carrier configured with a maximum of two TBs per PDSCH and spatial bundling.
In some embodiments of the present disclosure, the second type DCI format  is from a group including one or more of the following: a non-fallback DCI format scheduling a PDSCH transmitted on a carrier configured with CBG-based transmission; or a non-fallback DCI format scheduling a PDSCH transmitted on a carrier configured with a maximum of two TBs per PDSCH and without spatial bundling.
In some embodiments of the present disclosure, at least two sets of PDSCHs further include at least one of a third set of PDSCHs and a fourth set of PDSCHs. The third set of PDSCHs includes all SPS PDSCHs transmitted on a carrier (s) configured without CBG-based transmission in the plurality of PDSCHs. The fourth set of PDSCHs includes all SPS PDSCHs transmitted on a carrier (s) configured with CBG-based transmission in the plurality of PDSCHs.
In some embodiments of the present disclosure, the processor may be further configured to generate at least one of the following: a third set of HARQ-ACK information bits for PDSCHs in the third set of PDSCHs according to a HARQ-ACK information bit ordering rule for SPS PDSCHs; or a fourth set of HARQ-ACK information bits for PDSCHs in the fourth set of PDSCHs according to the HARQ-ACK information bit ordering rule for SPS PDSCHs.
In some embodiments of the present disclosure, the HARQ-ACK information bit ordering rule for SPS PDSCHs may include: the HARQ-ACK information bits for SPS PDSCHs in a respective set of PDSCHs are ordered firstly based on associated serving cell indices and then based on associated SPS configuration indices for SPS PDSCHs on the same serving cell; or the HARQ-ACK information bits for SPS PDSCHs in the respective set of PDSCHs are ordered firstly based on associated serving cell indices and then based on associated transmission occasions for SPS PDSCHs on the same serving cell.
In some embodiments of the present disclosure, each PDSCH in the third set of PDSCHs is responded with a single bit in the third set of HARQ-ACK information bits, and each PDSCH in the fourth set of PDSCHs is responded with a number of consecutive bits in the fourth set of HARQ-ACK information bits.
In some embodiments of the present disclosure, the HARQ-ACK codebook  further may include at least one of a third HARQ-ACK sub-codebook including the third set of HARQ-ACK information bits or a fourth HARQ-ACK sub-codebook including the fourth set of HARQ-ACK information bits, and the first HARQ-ACK sub-codebook, the second HARQ-ACK sub-codebook, and the at least one of the third HARQ-ACK sub-codebook or the fourth HARQ-ACK sub-codebook are arranged in the HARQ-ACK codebook according to a predefined order.
In some embodiments of the present disclosure, the first HARQ-ACK sub-codebook further may include the third set of HARQ-ACK information bits and the second HARQ-ACK sub-codebook further may include the fourth set of HARQ-ACK information bits, and the first HARQ-ACK sub-codebook and the second HARQ-ACK sub-codebook are arranged in the HARQ-ACK codebook according to a predefined order.
In some embodiments of the present disclosure, the HARQ-ACK codebook further may include a fifth HARQ-ACK sub-codebook including the third set of HARQ-ACK information bits and the fourth set of HARQ-ACK information bits, and the first HARQ-ACK sub-codebook, the second HARQ-ACK sub-codebook and the fifth HARQ-ACK sub-codebook are arranged in the HARQ-ACK codebook according to a predefined order.
Some embodiments of the present disclosure provide a user equipment (UE) . The UE may include a transceiver, and a processor coupled to the transceiver. The processor may be configured to: receive at least one transmission configuration, wherein the at least one transmission configuration comprises at least one semi-persistent scheduling (SPS) configuration for downlink transmission or at least one configured grant (CG) configuration for uplink transmission, wherein the at least one SPS configuration or the at least one CG configuration indicates a transmission type for associated transmission being either a transport block (TB) based transmission or a code block group (CBG) based transmission; and perform an uplink transmission or downlink reception according to the at least one transmission configuration.
In some embodiments of the present disclosure, the at least one SPS configuration or the at least one CG configuration further indicates a number of CBGs  per TB in the case that the transmission type is the CBG-based transmission.
In some embodiments of the present disclosure, performing the uplink transmission or downlink reception according to the at least one transmission configuration may include receiving an SPS PDSCH according to the at least one SPS configuration. The processor may be further configured to generate HARQ-ACK feedback for the SPS PDSCH according to the transmission type indicated in the at least one SPS configuration and according to the number of CBGs per TB indicated in the at least one SPS configuration in the case that the transmission type is the CBG-based transmission.
In some embodiments of the present disclosure, performing the uplink transmission or downlink reception according to the at least one transmission configuration may include receiving a plurality of SPS physical downlink shared channels (PDSCHs) with HARQ-ACK feedback to be transmitted in the same slot according to the at least one SPS configuration. The processor may be further configured to: generate a set of HARQ-ACK information bits for the plurality of SPS PDSCHs; and transmit the set of HARQ-ACK information bits.
In some embodiments of the present disclosure, the HARQ-ACK information bits in the set of HARQ-ACK information bits for the plurality of SPS PDSCHs are ordered firstly based on associated serving cell indices and then based on associated SPS configuration indices for SPS PDSCHs on the same serving cell. In some embodiments of the present disclosure, the HARQ-ACK information bits in the set of HARQ-ACK information bits for the plurality of SPS PDSCHs are ordered firstly based on associated serving cell indices and then based on associated transmission occasions for SPS PDSCHs on the same serving cell.
In some embodiments of the present disclosure, the processor may be further configured to receive a DCI format scheduling a retransmission of a first SPS PDSCH of the plurality of SPS PDSCHs. The DCI format may include a field indicating CBG transmission information (CBGTI) associated with the first SPS PDSCH, and wherein the size of the field is dependent on a maximum number of CBGs per TB among the at least one SPS configuration.
In some embodiments of the present disclosure, performing the uplink transmission or downlink reception according to the at least one transmission configuration may include transmitting a CG PUSCH according to the at least one CG configuration. The processor may be further configured to: receive a DCI format scheduling a retransmission of the CG PUSCH, wherein the DCI format may include a field indicating CBGTI associated with the CG PUSCH, and wherein the size of the field is dependent on a maximum number of CBGs per TB among at least one CG configuration for the UE.
Some embodiments of the present disclosure provide a base station (BS) . The BS may include a transceiver, and a processor coupled to the transceiver. The processor may be configured to: transmit, to a user equipment (UE) , a plurality of physical downlink shared channels (PDSCHs) on one or more serving cells of the UE, wherein hybrid automatic repeat request acknowledgement (HARQ-ACK) feedback for the plurality of PDSCHs is to be transmitted in one HARQ-ACK codebook; divide the plurality of PDSCHs into at least two sets of PDSCHs including a first set of PDSCHs and a second set of PDSCHs, wherein downlink assignment indicators (DAIs) associated with dynamically scheduled PDSCHs in the first set of PDSCHs are counted independently from those associated with dynamically scheduled PDSCHs in the second set of PDSCHs; and receive a HARQ-ACK codebook comprising a first HARQ-ACK sub-codebook and a second HARQ-ACK sub-codebook, wherein the first HARQ-ACK sub-codebook comprises HARQ-ACK information bits for PDSCHs in the first set of PDSCHs arranged according to a predefined rule for HARQ-ACK information bit ordering, and the second HARQ-ACK sub-codebook comprises HARQ-ACK information bits for PDSCHs in the second set of PDSCHs arranged according to the predefined rule for HARQ-ACK information bit ordering.
In some embodiments of the present disclosure, each PDSCH of the first set of PDSCHs requires TB-based feedback and the same number of TB-based HARQ-ACK information bits are generated in the first HARQ-ACK sub-codebook for each PDSCH of the first set of PDSCHs, and wherein each PDSCH of the second set of PDSCHs requires CBG-based feedback and the same number of CBG-based HARQ-ACK information bits are generated in the second HARQ-ACK sub-codebook  for each PDSCH of the second set of PDSCHs.
In some embodiments of the present disclosure, the number of CBG-based HARQ-ACK information bits in the second HARQ-ACK sub-codebook for each PDSCH of the second set of PDSCHs is dependent on a maximum number among all maximum numbers of CBGs per TB for carriers of the UE configured with CBG-based transmission.
In some embodiments of the present disclosure, the first set of PDSCHs includes one or more of the following: a PDSCH scheduled by a fallback DCI format; a PDSCH scheduled by a non-fallback DCI format and transmitted on a carrier not configured with CBG-based transmission; or an SPS PDSCH transmitted on a carrier not configured with CBG-based transmission.
In some embodiments of the present disclosure, the second set of PDSCHs includes one or more of the following: a PDSCH scheduled by a non-fallback DCI format and transmitted on a carrier configured with CBG-based transmission; or an SPS PDSCH transmitted on a carrier configured with CBG-based transmission.
In some embodiments of the present disclosure, the first HARQ-ACK sub-codebook may include a first set of HARQ-ACK information bits for PDSCHs that are scheduled by DCI formats in the first set of PDSCHs, and a second set of HARQ-ACK information bits for semi-persistent scheduling (SPS) PDSCHs in the first set of PDSCHs. HARQ-ACK information bits in the first set of HARQ-ACK information bits are ordered according to DAIs for the associated PDSCHs that are scheduled by DCI formats in the first set of PDSCHs. The first set of HARQ-ACK information bits and the second set of HARQ-ACK information bits are arranged in the first HARQ-ACK sub-codebook according to a predefined order.
In some embodiments of the present disclosure, the second HARQ-ACK sub-codebook may include a first set of HARQ-ACK information bits for PDSCHs that are scheduled by DCI formats in the second set of PDSCHs, and a second set of HARQ-ACK information bits for SPS PDSCHs in the second set of PDSCHs. HARQ-ACK information bits in the first set of HARQ-ACK information bits are ordered according to DAIs for the associated PDSCHs that are scheduled by DCI  formats in the second set of PDSCHs. The first set of HARQ-ACK information bits and the second set of HARQ-ACK information bits are arranged in the second HARQ-ACK sub-codebook according to a predefined order.
In some embodiments of the present disclosure, the second set of HARQ-ACK information bits for SPS PDSCHs in a respective set of PDSCHs are ordered firstly based on associated serving cell indices and then based on associated SPS configuration indices for SPS PDSCHs on the same serving cell. In some embodiments of the present disclosure, the second set of HARQ-ACK information bits for SPS PDSCHs in the respective set of PDSCHs are ordered firstly based on associated serving cell indices and then based on associated transmission occasions for SPS PDSCHs on the same serving cell.
In some embodiments of the present disclosure, each PDSCH in the first set of PDSCHs is a PDSCH scheduled by a first type DCI format and each PDSCH in the second set of PDSCHs is a PDSCH scheduled by a second type DCI format. The first type DCI format requires a single HARQ-ACK information bit and the second type DCI format requires CBG-based HARQ-ACK feedback, wherein the same number of CBG-based HARQ-ACK information bits are generated in the second HARQ-ACK sub-codebook for each PDSCH of the second set of PDSCHs.
In some embodiments of the present disclosure, the number of CBG-based HARQ-ACK information bits in the second HARQ-ACK sub-codebook for each PDSCH of the second set of PDSCHs is dependent on a maximum number among all maximum numbers of CBGs per TB for carriers of the UE configured with CBG-based transmission.
In some embodiments of the present disclosure, the first type DCI format is from a group including one or more of the following: a fallback DCI format; a non-fallback DCI format scheduling a PDSCH transmitted on a carrier not configured with a CBG-based transmission; or a non-fallback DCI format scheduling a PDSCH transmitted on a carrier configured with a maximum of two TBs per PDSCH and spatial bundling.
In some embodiments of the present disclosure, the second type DCI format  is from a group including one or more of the following: a non-fallback DCI format scheduling a PDSCH transmitted on a carrier configured with CBG-based transmission; or a non-fallback DCI format scheduling a PDSCH transmitted on a carrier configured with a maximum of two TBs per PDSCH and without spatial bundling.
In some embodiments of the present disclosure, at least two sets of PDSCHs further include at least one of a third set of PDSCHs and a fourth set of PDSCHs. The third set of PDSCHs includes all SPS PDSCHs transmitted on a carrier (s) configured without CBG-based transmission in the plurality of PDSCHs. The fourth set of PDSCHs includes all SPS PDSCHs transmitted on a carrier (s) configured with CBG-based transmission in the plurality of PDSCHs.
In some embodiments of the present disclosure, the processor may be further configured to receive at least one of the following: a third set of HARQ-ACK information bits for PDSCHs in the third set of PDSCHs arranged according to a HARQ-ACK information bit ordering rule for SPS PDSCHs; or a fourth set of HARQ-ACK information bits for PDSCHs in the fourth set of PDSCHs arranged according to a HARQ-ACK information bit ordering rule for SPS PDSCHs.
In some embodiments of the present disclosure, the HARQ-ACK information bit ordering rule for SPS PDSCHs may include: the HARQ-ACK information bits for SPS PDSCHs in a respective set of PDSCHs are ordered firstly based on associated serving cell indices and then based on associated SPS configuration indices for SPS PDSCHs on the same serving cell. In some embodiments of the present disclosure, the HARQ-ACK information bit ordering rule for SPS PDSCHs may include: the HARQ-ACK information bits for SPS PDSCHs in the respective set of PDSCHs are ordered firstly based on associated serving cell indices and then based on associated transmission occasions for SPS PDSCHs on the same serving cell.
In some embodiments of the present disclosure, each PDSCH in the third set of PDSCHs is responded with a single bit in the third set of HARQ-ACK information bits, and each PDSCH in the fourth set of PDSCHs is responded with a number of consecutive bits in the fourth set of HARQ-ACK information bits.
In some embodiments of the present disclosure, the HARQ-ACK codebook further may include at least one of a third HARQ-ACK sub-codebook including the third set of HARQ-ACK information bits or a fourth HARQ-ACK sub-codebook including the fourth set of HARQ-ACK information bits, wherein the first HARQ-ACK sub-codebook, the second HARQ-ACK sub-codebook, and the at least one of the third HARQ-ACK sub-codebook or the fourth HARQ-ACK sub-codebook are arranged in the HARQ-ACK codebook according to a predefined order.
In some embodiments of the present disclosure, the first HARQ-ACK sub-codebook further may include the third set of HARQ-ACK information bits and the second HARQ-ACK sub-codebook further may include the fourth set of HARQ-ACK information bits, and the first HARQ-ACK sub-codebook and the second HARQ-ACK sub-codebook are arranged in the HARQ-ACK codebook according to a predefined order.
In some embodiments of the present disclosure, the HARQ-ACK codebook further may include a fifth HARQ-ACK sub-codebook including the third set of HARQ-ACK information bits and the fourth set of HARQ-ACK information bits, and the first HARQ-ACK sub-codebook, the second HARQ-ACK sub-codebook and the fifth HARQ-ACK sub-codebook are arranged in the HARQ-ACK codebook according to a predefined order.
Some embodiments of the present disclosure provide a base station (BS) . The BS may include a transceiver, and a processor coupled to the transceiver. The processor may be configured to: transmit, to a user equipment (UE) , at least one transmission configuration, wherein the at least one transmission configuration comprises at least one semi-persistent scheduling (SPS) configuration for downlink transmission or at least one configured grant (CG) configuration for uplink transmission, wherein the at least one SPS configuration or the at least one CG configuration indicates a transmission type for associated transmission being either a transport block (TB) based transmission or a code block group (CBG) based transmission; and perform an uplink reception or downlink transmission according to the at least one transmission configuration.
In some embodiments of the present disclosure, the at least one SPS  configuration or the at least one CG configuration further indicates a number of CBGs per TB in the case that the transmission type is the CBG-based transmission.
In some embodiments of the present disclosure, performing the uplink reception or downlink transmission according to the at least one transmission configuration may include transmitting an SPS PDSCH according to the at least one SPS configuration. The processor may be further configured to receive HARQ-ACK feedback for the SPS PDSCH according to the transmission type indicated in the at least one SPS configuration and according to the number of CBGs per TB indicated in the at least one SPS configuration in the case that the transmission type is the CBG-based transmission.
In some embodiments of the present disclosure, performing the uplink reception or downlink transmission according to the at least one transmission configuration may include transmitting a plurality of SPS physical downlink shared channels (PDSCHs) with HARQ-ACK feedback to be transmitted in the same slot according to the at least one SPS configuration. The processor may be further configured to receive a set of HARQ-ACK information bits for the plurality of SPS PDSCHs.
In some embodiments of the present disclosure, the HARQ-ACK information bits in the set of HARQ-ACK information bits for the plurality of SPS PDSCHs are ordered firstly based on associated serving cell indices and then based on associated SPS configuration indices for SPS PDSCHs on the same serving cell. In some embodiments of the present disclosure, the HARQ-ACK information bits in the set of HARQ-ACK information bits for the plurality of SPS PDSCHs are ordered firstly based on associated serving cell indices and then based on associated transmission occasions for SPS PDSCHs on the same serving cell.
In some embodiments of the present disclosure, the processor may be further configured to transmit a DCI format scheduling a retransmission of a first SPS PDSCH of the plurality of SPS PDSCHs, wherein the DCI format may include a field indicating CBGTI associated with the first SPS PDSCH, and wherein the size of the field is dependent on a maximum number of CBGs per TB among the at least one SPS configuration.
In some embodiments of the present disclosure, performing the uplink reception or downlink transmission according to the at least one transmission configuration may include receiving a CG PUSCH according to the at least one CG configuration. The processor may be further configured to transmit a DCI format scheduling a retransmission of the CG PUSCH, wherein the DCI format may include a field indicating CBGTI associated with the CG PUSCH, and wherein the size of the field is dependent on a maximum number of CBGs per TB among the at least one CG configuration for the UE.
Some embodiments of the present disclosure provide a method for wireless communication performed by a UE. The method may include: receiving a plurality of physical downlink shared channels (PDSCHs) on one or more serving cells of the UE, wherein hybrid automatic repeat request acknowledgement (HARQ-ACK) feedback for the plurality of PDSCHs is to be transmitted in one HARQ-ACK codebook; dividing the plurality of PDSCHs into at least two sets of PDSCHs including a first set of PDSCHs and a second set of PDSCHs, wherein downlink assignment indicators (DAIs) associated with dynamically scheduled PDSCHs in the first set of PDSCHs are counted independently from those associated with dynamically scheduled PDSCHs in the second set of PDSCHs; generating a first HARQ-ACK sub-codebook comprising HARQ-ACK information bits for PDSCHs in the first set of PDSCHs according to a predefined rule for HARQ-ACK information bit ordering; generating a second HARQ-ACK sub-codebook comprising HARQ-ACK information bits for PDSCHs in the second set of PDSCHs according to the predefined rule for HARQ-ACK information bit ordering; and transmitting the HARQ-ACK codebook comprising the first HARQ-ACK sub-codebook and the second HARQ-ACK sub-codebook.
Some embodiments of the present disclosure provide a method for wireless communication performed by a UE. The method may include: receiving at least one transmission configuration, wherein the at least one transmission configuration comprises at least one semi-persistent scheduling (SPS) configuration for downlink transmission or at least one configured grant (CG) configuration for uplink transmission, wherein the at least one SPS configuration or the at least one CG configuration indicates a transmission type for associated transmission being either a  transport block (TB) based transmission or a code block group (CBG) based transmission; and performing an uplink transmission or downlink reception according to the at least one transmission configuration.
Some embodiments of the present disclosure provide a method for wireless communication performed by a BS. The method may include: transmitting, to a user equipment (UE) , a plurality of physical downlink shared channels (PDSCHs) on one or more serving cells of the UE, wherein hybrid automatic repeat request acknowledgement (HARQ-ACK) feedback for the plurality of PDSCHs is to be transmitted in one HARQ-ACK codebook; dividing the plurality of PDSCHs into at least two sets of PDSCHs including a first set of PDSCHs and a second set of PDSCHs, wherein downlink assignment indicators (DAIs) associated with dynamically scheduled PDSCHs in the first set of PDSCHs are counted independently from those associated with dynamically scheduled PDSCHs in the second set of PDSCHs; and receiving a HARQ-ACK codebook comprising a first HARQ-ACK sub-codebook and a second HARQ-ACK sub-codebook, wherein the first HARQ-ACK sub-codebook comprises HARQ-ACK information bits for PDSCHs in the first set of PDSCHs arranged according to a predefined rule for HARQ-ACK information bit ordering, and the second HARQ-ACK sub-codebook comprises HARQ-ACK information bits for PDSCHs in the second set of PDSCHs arranged according to the predefined rule for HARQ-ACK information bit ordering.
Some embodiments of the present disclosure provide a method for wireless communication performed by a BS. The method may include: transmitting, to a user equipment (UE) , at least one transmission configuration, wherein the at least one transmission configuration comprises at least one semi-persistent scheduling (SPS) configuration for downlink transmission or at least one configured grant (CG) configuration for uplink transmission, wherein the at least one SPS configuration or the at least one CG configuration indicates a transmission type for associated transmission being either a transport block (TB) based transmission or a code block group (CBG) based transmission; and performing an uplink reception or downlink transmission according to the at least one transmission configuration.
Some embodiments of the present disclosure provide an apparatus.  According to some embodiments of the present disclosure, the apparatus may include: at least one non-transitory computer-readable medium having stored thereon computer-executable instructions; at least one receiving circuitry; at least one transmitting circuitry; and at least one processor coupled to the at least one non-transitory computer-readable medium, the at least one receiving circuitry and the at least one transmitting circuitry, wherein the at least one non-transitory computer-readable medium and the computer executable instructions may be configured to, with the at least one processor, cause the apparatus to perform a method according to some embodiments of the present disclosure.
BRIEF DESCRIPTION OF THE DRAWINGS
In order to describe the manner in which the advantages and features of the disclosure can be obtained, a description of the disclosure is rendered by reference to specific embodiments thereof, which are illustrated in the appended drawings. These drawings depict only exemplary embodiments of the disclosure and are not therefore to be considered limiting of its scope.
FIG. 1 illustrates a schematic diagram of a wireless communication system in accordance with some embodiments of the present disclosure;
FIG. 2 illustrates a schematic diagram of PDSCH transmissions in accordance with some embodiments of the present disclosure;
FIGS. 3-6 illustrate schematic diagrams of HARQ-ACK codebook determination in accordance with some embodiments of the present disclosure;
FIGS. 7-10 illustrate flow charts of exemplary procedures of wireless communications in accordance with some embodiments of the present disclosure; and
FIG. 11 illustrates a block diagram of an exemplary apparatus in accordance with some embodiments of the present disclosure.
DETAILED DESCRIPTION
The detailed description of the appended drawings is intended as a description of the preferred embodiments of the present disclosure and is not intended to represent the only form in which the present disclosure may be practiced. It should be understood that the same or equivalent functions may be accomplished by different embodiments that are intended to be encompassed within the spirit and scope of the present disclosure.
Reference will now be made in detail to some embodiments of the present disclosure, examples of which are illustrated in the accompanying drawings. To facilitate understanding, embodiments are provided under a specific network architecture (s) and new service scenarios, such as the 3rd generation partnership project (3GPP) 5G (NR) , 3GPP long-term evolution (LTE) Release 8, and so on. It is contemplated that along with the developments of network architectures and new service scenarios, all embodiments in the present disclosure are also applicable to similar technical problems; and moreover, the terminologies recited in the present disclosure may change, which should not affect the principles of the present disclosure.
FIG. 1 illustrates a schematic diagram of wireless communication system 100 in accordance with some embodiments of the present disclosure.
As shown in FIG. 1, wireless communication system 100 may include some UEs 101 (e.g., UE 101a and UE 101b) and a base station (e.g., BS 102) . Although a specific number of UEs 101 and BS 102 is depicted in FIG. 1, it is contemplated that any number of UEs and BSs may be included in the wireless communication system 100.
The UE (s) 101 may include computing devices, such as desktop computers, laptop computers, personal digital assistants (PDAs) , tablet computers, smart televisions (e.g., televisions connected to the Internet) , set-top boxes, game consoles, security systems (including security cameras) , vehicle on-board computers, network devices (e.g., routers, switches, and modems) , or the like. According to some embodiments of the present disclosure, the UE (s) 101 may include a portable wireless communication device, a smart phone, a cellular telephone, a flip phone, a device having a subscriber identity module, a personal computer, a selective call receiver, or  any other device that is capable of sending and receiving communication signals on a wireless network. In some embodiments of the present disclosure, the UE (s) 101 includes wearable devices, such as smart watches, fitness bands, optical head-mounted displays, or the like. Moreover, the UE (s) 101 may be referred to as a subscriber unit, a mobile, a mobile station, a user, a terminal, a mobile terminal, a wireless terminal, a fixed terminal, a subscriber station, a user terminal, or a device, or described using other terminology used in the art. The UE (s) 101 may communicate with the BS 102 via uplink (UL) communication signals.
The BS 102 may be distributed over a geographical region. In certain embodiments of the present disclosure, the BS 102 may also be referred to as an access point, an access terminal, a base, a base unit, a macro cell, a Node-B, an evolved Node B (eNB) , a gNB, a Home Node-B, a relay node, or a device, or described using other terminology used in the art. The BS 102 is generally a part of a radio access network that may include one or more controllers communicably coupled to one or more corresponding BSs 102. The BS 102 may communicate with UE(s) 101 via downlink (DL) communication signals.
The wireless communication system 100 may be compatible with any type of network that is capable of sending and receiving wireless communication signals. For example, the wireless communication system 100 is compatible with a wireless communication network, a cellular telephone network, a time division multiple access (TDMA) -based network, a code division multiple access (CDMA) -based network, an orthogonal frequency division multiple access (OFDMA) -based network, an LTE network, a 3GPP-based network, a 3GPP 5G network, a satellite communications network, a high-altitude platform network, and/or other communications networks.
In some embodiments of the present disclosure, the wireless communication system 100 is compatible with 5G NR of the 3GPP protocol. For example, BS 102 may transmit data using an orthogonal frequency division multiple (OFDM) modulation scheme on the DL and the UE (s) 101 may transmit data on the UL using a discrete Fourier transform-spread-orthogonal frequency division multiplexing (DFT-S-OFDM) or cyclic prefix-OFDM (CP-OFDM) scheme. More generally, however, the wireless communication system 100 may implement some other open or  proprietary communication protocols, for example, WiMAX, among other protocols.
In some embodiments of the present disclosure, the BS 102 and UE (s) 101 may communicate using other communication protocols, such as the IEEE 802.11 family of wireless communication protocols. Further, in some embodiments of the present disclosure, the BS 102 and UE (s) 101 may communicate over licensed spectrums, whereas in some other embodiments, the BS 102 and UE (s) 101 may communicate over unlicensed spectrums. The present disclosure is not intended to be limited to the implementation of any particular wireless communication system architecture or protocol.
A communication technology (e.g., NR) may support a wide range of spectrums in different frequency ranges. For example, in the market for 5G Advanced, it is expected that the availability of the spectrum will be increased, which is possibly due to re-farming the bands originally used for previous cellular generation networks. For example, for some low frequency bands of frequency range 1 (FR1) (e.g., 410 MHz -7125 MHz) , the available spectrum bands tend to be more fragmented and scattered with a narrower bandwidth. In addition, for bands of frequency range 2 (FR2) (e.g., 24250 MHz -52600 MHz) and some bands of FR1, the available spectrum may be wider such that an intra-band multi-carrier operation is necessary.
To meet different spectrum needs, it is important to ensure that these fragmented or scattered spectrum bands or spectrums with wider bandwidth are utilized in a more spectrum and power efficient and flexible manner, thereby providing higher throughput and decent coverage in the network.
For example, one motivation is to increase spectrum/power efficiency and flexibility on scheduling data over multiple cells including intra-band cells and inter-band cells. In some examples, scheduling mechanisms may only allow scheduling a single PUSCH or PDSCH on a single cell per a scheduling DCI. As more scattered spectrum bands or spectrums with wider bandwidth become available, it is advisable to allow simultaneous scheduling of multiple cells. To reduce control overhead, it is beneficial to extend from single-cell scheduling to multi-cell PUSCH/PDSCH scheduling with a single scheduling DCI. Meanwhile, a tradeoff  between signaling overhead reduction and scheduling restriction has to be taken into account. A communication system (e.g., NR) may be designed to support a maximum of 16 component carriers (CCs) in the case of carrier aggregation (CA) or a maximum of 32 CCs in the case of dual connectivity (DC) .
In some embodiments of the present disclosure, scheduling framework in a communication system may support TB-based (re) transmission, in which one HARQ-ACK feedback bit may correspond to one TB. Whenever one code block (CB) of a given TB is not correctly decoded at a receiver, the whole TB may be reported as a “negative ACK” (NACK) , and the transmitter may have to retransmit all the CBs of the TB.
One way to improve retransmission efficiency is to set one HARQ-ACK feedback bit to correspond to one CB. In this way, a BS can know the decoding state of each transmitted CB and only retransmit the failed CB (s) . Although the retransmission efficiency may be improved, the HARQ-ACK feedback overhead may be huge.
In some embodiments of the present disclosure, the concept of code block group (CBG) is introduced to balance the number of needed HARQ-ACK feedback bits and the retransmission efficiency. In general, the intention of employing the CBG is to group several code blocks into a code block group and generate HARQ-ACK feedback per CBG. When all the code blocks within a CBG are correctly decoded, the HARQ-ACK feedback for the CBG can be set as “ACK” ; otherwise, it is set as “NACK” . In response to the reception of the HARQ-ACK feedback, only the CBG (s) with “NACK” shall be retransmitted by the transmitter.
In some examples, RRC signaling may be used to configure the maximum number of CBGs per TB when CBG-based (re) transmission is employed. The maximum number of CBGs per TB can be, for example, 2, 4, 6 and 8. In some examples, for both the semi-static HARQ-ACK codebook (also known as “Type-1 HARQ-ACK codebook” ) and the dynamic HARQ-ACK codebook (also known as a “Type-2 HARQ-ACK codebook” ) , the number of HARQ-ACK bits for one TB may be equal to the configured maximum number of CBGs per TB, regardless of the variable TB size (TBS) of a given TB.
So far, CBG-based (re) transmission is supported for a dynamically scheduled PDSCH (s) and a PUSCH (s) , and not for an SPS PDSCH (s) or CG PUSCH (s) . It would be advantageous if the CBG-based (re) transmission can be applied to an SPS PDSCH and a CG PUSCH. For example, with the increasing size of the data packet for an SPS PDSCH or CG-PUSCH, CBG-based (re) transmission is quite appropriate so that the BS or UE can only retransmit CBGs not incorrectly decoded, instead of all the code blocks of the whole TB. Embodiments of the present disclosure provide solutions for applying CBG-based (re) transmission to an SPS PDSCH (s) and a CG PUSCH (s) .
Various issues may arise when applying CBG-based (re) transmission to an SPS PDSCH (s) and a CG PUSCH (s) . For example, when multiple PDSCHs including dynamically scheduled PDSCHs and SPS PDSCHs are to be responded in the same slot or the same PUCCH, the problem of how to generate the corresponding HARQ-ACK codebook needs to be addressed, especially considering that some SPS PDSCHs may be transmitted on a carrier (s) not configured with a CBG-based transmission while others may be transmitted on another carrier (s) configured with a CBG-based transmission.
Furthermore, when there are multiple SPS PDSCHs with corresponding CBG-based HARQ-ACK feedback to be transmitted in the same slot or the same PUCCH, the problem of how to order the HARQ-ACK information bits needs to be addressed.
In addition, when a BS uses a DCI format for scheduling a retransmission of an SPS TB or a CG TB which was not successfully received in an initial transmission, the BS needs to indicate the CBG transmission information (CBGTI) for the TB in the DCI format. Since different SPS configurations may be configured with different maximum numbers of CBGs per TB, there may be different DCI payload sizes which would lead to a high effort for UE blind detection. Therefore, a single DCI payload size for scheduling CBG-based retransmission of SPS PDSCH or CG-PUSCH is desired.
Embodiments of the present disclosure provide solutions that can solve at least the above issues. For example, embodiments of the present disclosure provide  solutions for CBG-based HARQ-ACK feedback determination for an SPS PDSCH in the case of CA. More details on the embodiments of the present disclosure will be illustrated in the following text in combination with the appended drawings.
A UE may receive a plurality of PDSCHs on one or more serving cells of the UE with HARQ-ACK feedback to be transmitted in the same HARQ-ACK codebook (e.g., in the same slot or in the same PUCCH) . To construct the HARQ-ACK codebook, the plurality of PDSCHs may be divided into at least two sets of PDSCHs. Based on the sets of PDSCHs, respective HARQ-ACK sub-codebooks are generated and HARQ-ACK information bits therein are ordered according to a certain rule (s) (e.g., a rule for HARQ-ACK information bit ordering) . Then, the HARQ-ACK sub-codebooks are concatenated into one HARQ-ACK codebook according to a predefined order.
As will be described in the following text, various methods can be employed for dividing the plurality of PDSCHs, and various methods can be employed for ordering the HARQ-ACK information bits in a HARQ-ACK sub-codebook and ordering the HARQ-ACK sub-codebooks in a HARQ-ACK codebook. These methods can be employed in any combination that can be conceived by persons skilled in the art.
In some embodiments of the present disclosure, HARQ-ACK codebook construction may be dependent on the HARQ-ACK feedback type (e.g., TB-based HARQ-ACK feedback or CBG-based HARQ-ACK feedback) that is required by the plurality of PDSCHs.
For example, in some embodiments, the plurality of PDSCHs may be divided into PDSCH set #1A and PDSCH set #1B. Each PDSCH in PDSCH set #1A requires TB-based HARQ-ACK feedback and the same number of TB-based HARQ-ACK information bits. For example, each PDSCH in PDSCH set #1A may be responded with a single HARQ-ACK information bit per TB. Each PDSCH in PDSCH set #1B requires CBG-based HARQ-ACK feedback and the same number of CBG-based HARQ-ACK information bits. For example, each PDSCH in PDSCH set #1B may be responded with M HARQ-ACK information bits per TB.
In some embodiments, the value of M may be dependent on a maximum number among all maximum numbers of CBGs per TB for carriers of the UE configured with CBG-based transmission. The value of M may be configured by RRC signaling, preconfigured, or predefined in a standard (s) . For example, among all carriers of a UE, carriers #1 and #2 may be configured with a CBG-based (re) transmission, and the maximum numbers of CBGs per TB for carriers #1 and #2 may be respectively configured as 4 and 6. In some examples, the value of M may be equal to 6.
A set of PDSCHs (e.g., PDSCH set #1A or PDSCH set #1B) may include dynamically scheduled PDSCHs, SPS PDSCHs or both. For an SPS PDSCH, whether it is responded with TB-based HARQ-ACK feedback or CBG-based HARQ-ACK feedback is dependent on the carrier where the SPS PDSCH is transmitted. For example, in the case that the SPS PDSCH is transmitted on a carrier configured with CBG-based transmission, the UE may transmit CBG-based HARQ-ACK feedback for the SPS PDSCH. In that case that the SPS PDSCH is transmitted on a carrier not configured with CBG-based transmission, the UE may transmit TB-based HARQ-ACK feedback for the SPS PDSCH.
In some embodiments, PDSCH set #1A may include one or more of the following PDSCHs:
- A PDSCH scheduled by a fallback DCI format (e.g., DCI format 1_0 as defined in 3GPP specifications) . Any PDSCH scheduled by a fallback DCI format is only included in PDSCH set #1A no matter the PDSCH is transmitted on a carrier configured with CBG-based transmission or not.
- A PDSCH scheduled by a non-fallback DCI format (e.g., DCI format 1_1 or DCI format 1_2 as defined in 3GPP specifications) and transmitted on a carrier not configured with CBG-based transmission.
- An SPS PDSCH transmitted on a carrier not configured with CBG-based transmission.
In some embodiments, PDSCH set #1B may include one or more of the  following PDSCHs:
- a PDSCH scheduled by a non-fallback DCI format (e.g., DCI format 1_1 or DCI format 1_2 as defined in 3GPP specifications) and transmitted on a carrier configured with CBG-based transmission; or
- an SPS PDSCH transmitted on a carrier configured with CBG-based transmission.
DAIs associated with dynamically scheduled PDSCHs in PDSCH set #1A are counted independently (or separately) from those associated with dynamically scheduled PDSCHs in PDSCH set #1B. For example, in the case of CA, the number of transmitted DCIs for scheduling dynamic PDSCHs among PDSCH set #1A and the number of transmitted DCIs for scheduling dynamic PDSCHs among PDSCH set #1B are independently (or separately) determined based on the respective total DAIs. In the case of single carrier, the number of transmitted DCIs for scheduling dynamic PDSCHs among PDSCH set #1A and the number of transmitted DCIs for scheduling dynamic PDSCHs among PDSCH set #1B are independently (or separately) determined based on the respective counter DAIs. The number of PDSCHs in each PDSCH set may be determined based on the associated DAI (s) for dynamically scheduled PDSCHs and the corresponding SPS configurations for SPS PDSCHs.
The HARQ-ACK codebook may include a HARQ-ACK sub-codebook (denoted as sub-codebook #1A) including HARQ-ACK information bits for PDSCHs in PDSCH set #1A and a HARQ-ACK sub-codebook (denoted as sub-codebook #1B) including HARQ-ACK information bits for PDSCHs in PDSCH set #1B. Each PDSCH in PDSCH set #1A is responded with a single bit per TB in sub-codebook #1A. Each PDSCH in PDSCH set #1B is responded with M consecutive bits in sub-codebook #1B. That is, every M consecutive bits in sub-codebook #1B correspond to one PDSCH in PDSCH set #1B.
Sub-codebook #1A or sub-codebook #1B may be generated according to a HARQ-ACK information bit ordering rule.
For example, in some embodiments, for either sub-codebook #1A or  sub-codebook #1B, the UE may generate a set of HARQ-ACK information bits (denoted as bit set #1A) for PDSCHs that are scheduled by DCI formats (e.g., dynamically scheduled PDSCHs) in the respective PDSCH set (e.g., PDSCH set #1A for sub-codebook #1A and PDSCH set #1B for sub-codebook #1B) . For either sub-codebook #1A or sub-codebook #1B, the UE may generate a set of HARQ-ACK information bits (denoted as bit set #1B) for SPS PDSCHs in the respective PDSCH set (e.g., PDSCH set #1A for sub-codebook #1A and PDSCH set #1B for sub-codebook #1B) . In either sub-codebook #1A or sub-codebook #1B, bit set #1A and bit set #1B may be arranged according to a predefined order. For example, bit set #1A may be placed firstly in the sub-codebook and then followed by bit set #1B. Alternatively, bit set #1B may be placed firstly in the sub-codebook and then followed by bit set #1A.
In some embodiments, bit set #1A may be ordered according to DAIs for the associated PDSCHs that are scheduled by DCI formats in the respective PDSCH set. For example, for sub-codebook #1A, bit set #1A includes HARQ-ACK information bits for dynamically scheduled PDSCHs in PDSCH set #1A. HARQ-ACK information bits in bit set #1A of sub-codebook #1A are ordered according to the DAIs (e.g., counter DAIs) of the DCI formats that schedule these dynamically scheduled PDSCHs in PDSCH set #1A. The order may include an ascending or descending order of the DAIs.
Various methods may be employed for ordering the HARQ-ACK information bits in bit set #1B (e.g., in either sub-codebook #1A or sub-codebook #1B) .
For example, in some embodiments, bit set #1B may be ordered firstly based on associated serving cell indices and then based on associated SPS configuration indices for SPS PDSCHs on the same serving cell (also referred to as “frequency first SPS configuration index second manner” or “serving cell index first SPS configuration index second manner” ) .
For example, bit set #1B may include HARQ-ACK information bits for a plurality of SPS PDSCHs transmitted on a plurality of serving cells of the UE. The HARQ-ACK information bits for the plurality of SPS PDSCHs may be ordered firstly  in a predefined order (e.g., an ascending or descending order) of the indices of the plurality of serving cells. In some examples, more than one SPS PDSCH of the plurality of SPS PDSCHs may be transmitted on the same serving cell with different SPS configurations corresponding to different SPS configuration indices. For example, the SPS configuration index of a certain SPS configuration may be indicated by sps-ConfigIndex as specified in 3GPP specifications and may have a value ranging from 0 to 7. HARQ-ACK information bits for the more than one SPS PDSCH may be ordered according to the associated SPS configuration indices (e.g., according to an ascending or descending order of the associated SPS configuration indices) .
In some embodiments, bit set #1B may be ordered firstly based on associated serving cell indices and then based on associated transmission occasions for SPS PDSCHs on the same serving cell (also referred to as “frequency first time second manner” or “serving cell index first time second manner” ) .
For example, bit set #1B may include HARQ-ACK information bits for a plurality of SPS PDSCHs transmitted on a plurality of serving cells of the UE. The HARQ-ACK information bits for the plurality of SPS PDSCHs may be ordered firstly in a predefined order (e.g., an ascending or descending order) of the indices of the plurality of serving cells. In some examples, more than one SPS PDSCH of the plurality of SPS PDSCHs may be transmitted on the same serving cell corresponding to different transmission occasions (e.g., transmitted in different times) . HARQ-ACK information bits for the more than one SPS PDSCH may be ordered according to the associated transmission occasions (e.g., according to an ascending or descending order of the associated transmission occasions) .
FIG. 2 illustrates a schematic diagram of PDSCH transmissions in accordance with some embodiments of the present disclosure.
Referring to FIG. 2, a plurality of CCs (e.g., including but not limited to CCs 231 to 234 in FIG. 2) may be configured for a UE. It should be understood that the sub-carrier spacings (SCSs) of the carriers configured for a UE may be the same or different. Each of the plurality of CCs may correspond to a respective cell (e.g., serving cell) or carrier of the UE. Each carrier (serving cell) may be associated with a (serving) cell index.
In some embodiments, CCs 231 to 233 may be configured with CBG-based transmission, and CC 234 may not be configured with CBG-based transmission (e.g., using TB-based transmission) . It is assumed that the serving cell indices of CCs 231 to 233 are: CC 231 < CC 232 < CC 233 < CC 234.
As shown in FIG. 2, DCI 211 schedules PDSCH 221 on CC 231, DCI 212 schedules PDSCH 222 on CC 232, DCI 213 schedules PDSCH 224 on CC 234, DCI 214 schedules PDSCH 225 on CC 231, DCI 215 schedules PDSCH 226 on CC 232, DCI 216 schedules PDSCH 2210 on CC 232, DCI 217 schedules PDSCH 2211 on CC 233, and DCI 218 schedules PDSCH 2212 on CC 234. DCI 211 and DCI 216 are fallback DCIs (e.g., DCI format 1_0) and DCI 212, DCIs 213 to 215 and DCIs 217 and 218 are non-fallback DCIs (e.g., DCI format 1_1) . PDSCH 229 on CC 231 is an SPS PDSCH, both PDSCH 223 and PDSCH 227 on CC 233 are SPS PDSCHs, and PDSCH 228 on CC 234 is an SPS PDSCH. It is assumed that HARQ-ACK feedback for PDSCH 221 to 2212 is to be transmitted in one HARQ-ACK codebook (e.g., in the same slot or on the same PUCCH) .
In some embodiments, PDSCH 221 to 2212 can be divided into two sets of PDSCHs. For example, a first PDSCH set (e.g., PDSCH set #1A) may include PDSCH 221, PDSCH 224, PDSCH 228, PDSCH 2210 and PDSCH 2212, and a second PDSCH set (e.g., PDSCH set #1B) may include PDSCH 222, PDSCH 223, PDSCH 225, PDSCH 226, PDSCH 227, PDSCH 229 and PDSCH 2211. Counter DAI and total DAI are separately counted within each PDSCH set for the dynamically scheduled PDSCHs. For example, the counter DAI and total DAI of DCIs 211 to 218 may respectively indicate {1, 2} , {1, 1} , {2, 2} , {2, 3} , {3, 3} , {3, 4} , {4, 4} and {4, 4} (e.g., denoted as {counter DAI, total DAI} ) .
It is assumed that the maximum number of CBGs per TB among CCs 231 to 233 is 4 (e.g., M=4) . Therefore, each PDSCH in the second PDSCH set may correspond to 4 HARQ-ACK information bits.
In some embodiments, the HARQ-ACK information bits for SPS PDSCHs may be ordered in the “serving cell index first SPS configuration index second manner” . FIG. 3 shows an exemplary HARQ-ACK codebook construction according to these embodiments.
It is assumed that in FIG. 2, SPS PDSCH 223 is associated with an SPS configuration index of 2 and SPS PDSCH 227 is associated with an SPS configuration index of 1. Referring to FIG. 3, HARQ-ACK sub-codebook 351 for the first PDSCH set as described with respect to FIG. 2 may include {a1, a4, a10, a12, a8} and HARQ-ACK sub-codebook 352 for the second PDSCH set as described with respect to FIG. 2 may include {b2, b5, b6, b11, b9, b7, b3} . In the above sub-codebook, ai represents a TB-based HARQ-ACK information bit for a corresponding PDSCH, and bj represents CBG-based HARQ-ACK information bits (e.g., M bits) for a corresponding PDSCH. For example, a1, a4, a10, and a12 respectively represent TB-based HARQ-ACK information bits for  PDSCHs  221, 224, 2210, and 2212 in FIG. 2, and a8 represents a TB-based HARQ-ACK information bit for PDSCH 228 in FIG. 2. For example, b2 represents 4 CBG-level HARQ-ACK information bits for PDSCH 222 in FIG. 2, b5 represents 4 CBG-level HARQ-ACK information bits for PDSCH 225 in FIG. 2, b6 represents 4 CBG-level HARQ-ACK information bits for PDSCH 226 in FIG. 2, b11 represents 4 CBG-level HARQ-ACK information bits for PDSCH 2211 in FIG. 2, b9 represents 4 CBG-level HARQ-ACK information bits for PDSCH 229 in FIG. 2, b7 represents 4 CBG-level HARQ-ACK information bits for PDSCH 227 in FIG. 2, and b3 represents 4 CBG-level HARQ-ACK information bits for PDSCH 223 in FIG. 2.
HARQ-ACK sub-codebook 351 and HARQ-ACK sub-codebook 352 are concatenated into one HARQ-ACK codebook, which is transmitted on PUCCH 361. For example, HARQ-ACK sub-codebook 351 may be placed firstly and then followed by HARQ-ACK sub-codebook 352 in the final HARQ-ACK codebook.
In some embodiments, the HARQ-ACK information bits for SPS PDSCHs may be ordered in the “serving cell index first time second manner” . FIG. 4 shows an exemplary HARQ-ACK codebook construction according to these embodiments.
It is assumed that in FIG. 2, SPS PDSCH 223 is transmitted earlier than SPS PDSCH 227. Referring to FIG. 4, HARQ-ACK sub-codebook 451 for the first PDSCH set as described with respect to FIG. 2 may include {a1, a4, a10, a12, a8} and HARQ-ACK sub-codebook 452 for the second PDSCH set as described with respect to FIG. 2 may include {b2, b5, b6, b11, b9, b3, b7} . As described above, in the  above sub-codebook, a1, a4, a10, and a12 respectively represent TB-based HARQ-ACK information bits for  PDSCHs  221, 224, 2210, and 2212 in FIG. 2, and a8 represents a TB-based HARQ-ACK information bit for PDSCH 228 in FIG. 2. For example, b2 represents 4 CBG-level HARQ-ACK information bits for PDSCH 222 in FIG. 2, b5 represents 4 CBG-level HARQ-ACK information bits for PDSCH 225 in FIG. 2, b6 represents 4 CBG-level HARQ-ACK information bits for PDSCH 226 in FIG. 2, b11 represents 4 CBG-level HARQ-ACK information bits for PDSCH 2211 in FIG. 2, b9 represents 4 CBG-level HARQ-ACK information bits for PDSCH 229 in FIG. 2, b3 represents 4 CBG-level HARQ-ACK information bits for PDSCH 223 in FIG. 2, and b7 represents 4 CBG-level HARQ-ACK information bits for PDSCH 227 in FIG. 2.
HARQ-ACK sub-codebook 451 and HARQ-ACK sub-codebook 452 are concatenated into one HARQ-ACK codebook, which is transmitted on PUCCH 461. For example, HARQ-ACK sub-codebook 451 may be placed firstly and then followed by HARQ-ACK sub-codebook 452 in the final HARQ-ACK codebook.
In some embodiments, from the perspective of a UE, when the UE receives a plurality of PDSCHs with HARQ-ACK feedback to be transmitted in the same HARQ-ACK codebook, the UE can perform the following operations to construct the HARQ-ACK codebook.
(1) Divide the plurality of PDSCHs into two sets, for example, PDSCH set #1A and PDSCH set #1B as described as above.
(2) Generate a HARQ-ACK sub-codebook (e.g., sub-codebook #1A) including HARQ-ACK information bits for each PDSCH in PDSCH set #1A, the HARQ-ACK information bits in sub-codebook #1A can be arranged according to the method as described above. For example, in sub-codebook #1A, the HARQ-ACK information bits for dynamically scheduled PDSCHs are placed firstly and then followed by HARQ-ACK information bits for SPS PDSCHs; or vice versa. In sub-codebook #1A, the HARQ-ACK information bits for the dynamically scheduled PDSCHs are ordered based on the associated DAIs. In sub-codebook #1A, HARQ-ACK information bits for SPS PDSCHs can be ordered in “serving cell index first SPS  configuration index second manner” or the “serving cell index first time second manner” as described above.
(3) Generate a HARQ-ACK sub-codebook (e.g., sub-codebook #1B) including HARQ-ACK information bits for each PDSCH in PDSCH set #1B, the HARQ-ACK information bits in sub-codebook #1B can be arranged according to the method as described above. For example, in sub-codebook #1B, the HARQ-ACK information bits for dynamically scheduled PDSCHs are placed firstly and then followed by HARQ-ACK information bits for SPS PDSCHs; or vice versa. In sub-codebook #1B, the HARQ-ACK information bits for the dynamically scheduled PDSCHs are ordered based on the associated DAIs. In sub-codebook #1B, HARQ-ACK information bits for SPS PDSCHs can be ordered in “serving cell index first SPS configuration index second manner” or the “serving cell index first time second manner” as described above.
(4) Concatenate the two HARQ-ACK sub-codebooks in a predefined order. In one embodiment, sub-codebook #1A is placed firstly in the HARQ-ACK codebook and followed by sub-codebook #1B. In another embodiment, sub-codebook #1B is placed firstly in the HARQ-ACK codebook and followed by sub-codebook #1A.
From the perspective of a BS, the BS may transmit, to the UE, a plurality of PDSCHs with HARQ-ACK feedback to be transmitted in the same HARQ-ACK codebook. The plurality of PDSCHs can be divided into two sets, for example, PDSCH set #1A and PDSCH set #1B as described as above. The BS may receive a HARQ-ACK codebook including HARQ-ACK feedback for the plurality of PDSCHs. The HARQ-ACK codebook is constructed in the manner as described above. For example, the HARQ-ACK codebook may include sub-codebook #1A and sub-codebook #1B.
In some embodiments of the present disclosure, HARQ-ACK codebook construction may be dependent on the types of DCI formats.
For example, in some embodiments, the plurality of PDSCHs with  HARQ-ACK feedback to be transmitted in the same HARQ-ACK codebook may be divided into at least two sets of PDSCHs (e.g., PDSCH set #2A and PDSCH set #2B) . Each PDSCH in PDSCH set #2A is a PDSCH scheduled by a first type DCI format (denoted as DCI type #1) and each PDSCH in PDSCH set #2B is a PDSCH scheduled by a second type DCI format (denoted as DCI type #2) . DCI type #1 requires a single HARQ-ACK information bit. That is, for a PDSCH scheduled by a DCI format of DCI type #1, a single HARQ-ACK information bit may be generated for the PDSCH. Put another way, each PDSCH in PDSCH set #2A may be responded with a single HARQ-ACK information bit.
DCI type #2 requires a plurality of HARQ-ACK information bits. For example, DCI type #2 requires CBG-based HARQ-ACK feedback. The same number of HARQ-ACK information bits (denoted as M’) may be generated for a PDSCH scheduled by DCI format of DCI type #2. Put another way, each PDSCH in PDSCH set #2B may be responded with M’ HARQ-ACK information bits.
In some embodiments, the value of M’ may be dependent on a maximum number among all maximum numbers of CBGs per TB for carriers of the UE configured with CBG-based transmission. The value of M’ may be configured by RRC signaling, preconfigured, or predefined in a standard (s) . For example, among all carriers of a UE, carriers #1 and #2 may be configured with a CBG-based (re) transmission, and the maximum numbers of CBGs per TB for carriers #1 and #2 may be respectively configured as 4 and 6. In some examples, the value of M may be equal to 6.
PDSCH set #2A and PDSCH set #2B may thus only include dynamically scheduled PDSCHs.
In some embodiments, DCI type #1 may be from a group including one or more of the following:
- a fallback DCI format (e.g., DCI format 1_0 as defined in 3GPP specifications) . A fallback DCI format is only included in DCI type #1, no matter the fallback DCI format is transmitted on a carrier configured with CBG-based transmission or not, no matter the fallback DCI format is  transmitted for SPS PDSCH release or SCell dormancy without scheduled PDSCH.
- a non-fallback DCI format (e.g., DCI format 1_1 or DCI format 1_2 as defined in 3GPP specifications) scheduling a PDSCH transmitted on a carrier not configured with CBG-based transmission; or
- a non-fallback DCI format (e.g., DCI format 1_1 or DCI format 1_2 as defined in 3GPP specifications) scheduling a PDSCH transmitted on a carrier configured with a maximum of two TBs per PDSCH and spatial bundling.
In some embodiments, DCI type #2 may be from a group including one or more of the following:
- a non-fallback DCI format (e.g., DCI format 1_1 or DCI format 1_2 as defined in 3GPP specifications) scheduling a PDSCH transmitted on a carrier configured with CBG-based transmission; or
- a non-fallback DCI format (e.g., DCI format 1_1 or DCI format 1_2 as defined in 3GPP specifications) scheduling a PDSCH transmitted on a carrier configured with a maximum of two TBs per PDSCH and without spatial bundling.
DAIs associated with the PDSCHs in PDSCH set #2A are counted independently (or separately) from those associated with the PDSCHs in PDSCH set #2B. Put another way, DAIs of DCIs of different DCI types (e.g., DCI type #1 and DCI type #2) are counted independently. For example, in the case of CA, the number of transmitted DCIs of DCI type #1 and the number of transmitted DCIs of DCI type #2 are independently (or separately) determined based on the respective total DAIs. In the case of single carrier, the number of transmitted DCIs of DCI type #1 and the number of transmitted DCIs of DCI type #2 are independently (or separately) determined based on the respective counter DAIs.
In some embodiments, the at least two sets of PDSCHs may further include an additional set (s) of PDSCHs, for example, at least one of PDSCH set #2C and  PDSCH set #2D. PDSCH set #2C includes all SPS PDSCHs transmitted on a carrier (s) configured without CBG-based transmission in the plurality of PDSCHs. PDSCH set #2D includes all SPS PDSCHs transmitted on a carrier (s) configured with CBG-based transmission in the plurality of PDSCHs. For clarity and convenience, the following embodiments takes the condition that the at least two sets of PDSCHs further include both PDSCH set #2C and PDSCH set #2D as an example. It should be noted that in some cases, PDSCH set #2C, PDSCH set #2D or both may not exist.
In some embodiments of the present disclosure, the HARQ-ACK codebook may include four HARQ-ACK sub-codebooks (denoted as sub-codebooks #2A-2D) . Sub-codebook #2A may include HARQ-ACK information bits for PDSCHs in PDSCH set #2A, and each bit in sub-codebook #2A may correspond to one PDSCH scheduled by a DCI of DCI type #1. Sub-codebook #2B may include HARQ-ACK information bits for PDSCHs in PDSCH set #2B, and every M’ consecutive bits in sub-codebook #2B may correspond to one PDSCH scheduled by a DCI of DCI type #2. Sub-codebook #2C may include HARQ-ACK information bits for PDSCHs in PDSCH set #2C, and each bit in sub-codebook #2C may correspond to one SPS PDSCH transmitted on a carrier not configured with CBG-based transmission. Sub-codebook #2D may include HARQ-ACK information bits for PDSCHs in PDSCH set #2D and every N consecutive bits in sub-codebook #2D may correspond to one SPS PDSCH transmitted on a carrier configured with CBG-based transmission.
The value of N can be based on the value of M’. For example, the UE may assume that the value of N is equal to M’. The value of N can be separately configured. For example, the value of N can be configured per SPS configuration. For example, when RRC signaling configures an SPS configuration, it also configured the value of N. For example, the value of N can be configured per carrier. For example, the SPS configurations on the same carrier may share the same value of N. The value of N can be the same or different from the value of M’.
In either sub-codebook #2A or sub-codebook #2B, HARQ-ACK information bits may be ordered according to DAIs for the associated PDSCHs that are scheduled by DCI formats in the respective PDSCH set. For example, HARQ-ACK information bits in sub-codebook #2A may be ordered according to the DAIs (e.g.,  counter DAIs) of the DCI formats that schedule the PDSCHs in PDSCH set #2A. The order may include an ascending or descending order of the DAIs.
Various methods may be employed for ordering the HARQ-ACK information bits in sub-codebook #2C or sub-codebook #2D. Put it another way, various methods may be employed for ordering the HARQ-ACK information bits for PDSCHs in PDSCH set #2C or PDSCH set #2D. For simplicity, denoting the HARQ-ACK information bits for PDSCHs in PDSCH set #2C or PDSCH set #2D as bit set #2B. That is, each of sub-codebook #2C and sub-codebook #2D may include a respective bit set #2B.
In some embodiments, bit set #2B may be ordered in the “serving cell index first SPS configuration index second manner. ” For example, bit set #2B may be firstly based on associated serving cell indices and then based on associated SPS configuration indices for SPS PDSCHs on the same serving cell.
For example, bit set #2B may include HARQ-ACK information bits for a plurality of SPS PDSCHs transmitted on a plurality of serving cells of the UE. The HARQ-ACK information bits for the plurality of SPS PDSCHs may be ordered firstly in a predefined order (e.g., an ascending or descending order) of the indices of the plurality of serving cells. In some examples, more than one SPS PDSCH of the plurality of SPS PDSCHs may be transmitted on the same serving cell with different SPS configurations corresponding to different SPS configuration indices. For example, the SPS configuration index of a certain SPS configuration may be indicated by sps-ConfigIndex as specified in 3GPP specifications and may have a value ranging from 0 to 7. HARQ-ACK information bits for the more than one SPS PDSCH may be ordered according to the associated SPS configuration indices (e.g., according to an ascending or descending order of the associated SPS configuration indices) .
In some embodiments, bit set #2B may be ordered in the “serving cell index first time second manner” . For example, bit set #2B may be ordered firstly based on associated serving cell indices and then based on associated transmission occasions for SPS PDSCHs on the same serving cell.
For example, bit set #2B may include HARQ-ACK information bits for a  plurality of SPS PDSCHs transmitted on a plurality of serving cells of the UE. The HARQ-ACK information bits for the plurality of SPS PDSCHs may be ordered firstly in a predefined order (e.g., an ascending or descending order) of the indices of the plurality of serving cells. In some examples, more than one SPS PDSCH of the plurality of SPS PDSCHs may be transmitted on the same serving cell corresponding to different transmission occasions (e.g., transmitted in different times) . HARQ-ACK information bits for the more than one SPS PDSCH may be ordered according to the associated transmission occasions (e.g., according to an ascending or descending order of the associated transmission occasions) .
The four sub-codebooks may be concatenated into one HARQ-ACK codebook according to a predefined order. For example, sub-codebook #2A may be placed firstly in the HARQ-ACK codebook and followed by sub-codebook #2C, sub-codebook #2B and sub-codebook #2D. For example, sub-codebook #2A may be placed firstly in the HARQ-ACK codebook and followed by sub-codebook #2B, sub-codebook #2C and sub-codebook #2D.
As mentioned above, in some cases, PDSCH set #2C, PDSCH set #2D or both may not exist. Accordingly, the final HARQ-ACK codebook may include (1) sub-codebooks #2A and #2B, (2) sub-codebooks #2A, #2B and #2C, or (3) sub-codebooks #2A, #2B and #2D. The sub-codebooks in the final HARQ-ACK codebook may be arranged according to a predefined order.
In some embodiments of the present disclosure, other methods may be applied to construct the final HARQ-ACK codebook.
For example, the HARQ-ACK codebook may include two HARQ-ACK sub-codebooks (denoted as sub-codebooks #3A and #3B) . For example, sub-codebook #3A may include HARQ-ACK information bits in sub-codebook #2A and HARQ-ACK information bits in sub-codebook #2C (if present) , and sub-codebook #3B may include HARQ-ACK information bits in sub-codebook #2B and HARQ-ACK information bits in sub-codebook #2D (if present) .
HARQ-ACK information bits in sub-codebook #2A and HARQ-ACK information bits in sub-codebook #2C may be arranged in sub-codebook #3A  according to a predefined order. For example, HARQ-ACK information bits in sub-codebook #2A may be placed firstly and followed by HARQ-ACK information bits in sub-codebook #2C; or vice versa.
HARQ-ACK information bits in sub-codebook #2B and HARQ-ACK information bits in sub-codebook #2D may be arranged in sub-codebook #3B according to a predefined order. For example, HARQ-ACK information bits in sub-codebook #2B may be placed firstly and followed by HARQ-ACK information bits in sub-codebook #2D; or vice versa.
It should be noted that although the above method for HARQ-ACK codebook construction is described using the concept of sub-codebooks #2A to #2D, it does not necessarily mean that the UE has to generate sub-codebooks #2A to #2D. The UE may only generate the associated HARQ-ACK information bits in these sub-codebooks according to the methods as described with respect to these sub-codebooks (e.g., applying the bit ordering rules) and include the generated HARQ-ACK information bits in sub-codebook #3A or sub-codebook #3B, without generating the actual sub-codebooks #2A to #2D.
Sub-codebooks #3A and #3B may be arranged in the HARQ-ACK codebook according to a predefined order. For example, sub-codebook #3A may be placed firstly in the HARQ-ACK codebook and followed by sub-codebook #3B; or vice versa.
For example, the HARQ-ACK codebook may include at most three HARQ-ACK sub-codebooks (e.g., sub-codebook #2A, sub-codebook #2B and sub-codebook #4C) . For example, sub-codebook #4C may include HARQ-ACK information bits in sub-codebook #2C (if present) and HARQ-ACK information bits in sub-codebook #2D (if present) .
HARQ-ACK information bits in sub-codebook #2C and HARQ-ACK information bits in sub-codebook #2D may be arranged in sub-codebook #4C according to a predefined order. For example, HARQ-ACK information bits in sub-codebook #2C may be placed firstly and followed by HARQ-ACK information bits in sub-codebook #2D; or vice versa.
It should be noted that although the above method for HARQ-ACK codebook construction is described using the concept of sub-codebooks #2C and #2D, it does not necessarily mean that the UE has to generate sub-codebooks #2C and #2D. The UE may only generate the associated HARQ-ACK information bits in these sub-codebooks according to the methods as described with respect to these sub-codebooks (e.g., applying the bit ordering rules) and include the generated HARQ-ACK information bits in sub-codebook #4C, without generating the actual sub-codebooks #2C and #2D.
Sub-codebook #2A, sub-codebook #2B and sub-codebook #4C may be arranged in the HARQ-ACK codebook according to a predefined order. For example, sub-codebook #2A may be placed firstly in the HARQ-ACK codebook and followed by sub-codebook #2B and sub-codebook #4C.
In some embodiments, from the perspective of a UE, when the UE receives a plurality of PDSCHs with HARQ-ACK feedback to be transmitted in the same HARQ-ACK codebook, the UE can perform the following operations to construct the HARQ-ACK codebook.
(1) Divide the plurality of PDSCHs into at least two sets, for example, PDSCH sets #2A to #2D as described as above.
(2) Generate a HARQ-ACK sub-codebook (e.g., sub-codebook #2A) including HARQ-ACK information bits for each PDSCH in PDSCH set #2A, the HARQ-ACK information bits in sub-codebook #2A can be ordered based on the associated DAIs.
(3) Generate a HARQ-ACK sub-codebook (e.g., sub-codebook #2B) including HARQ-ACK information bits for each PDSCH in PDSCH set #2B, the HARQ-ACK information bits in sub-codebook #2B can be ordered based on the associated DAIs.
(4) Generate a HARQ-ACK sub-codebook (e.g., sub-codebook #2C) including HARQ-ACK information bits for each PDSCH in PDSCH set #2C, the HARQ-ACK information bits in sub-codebook #2C can be ordered in  “serving cell index first SPS configuration index second manner” or the “serving cell index first time second manner” as described above.
(5) Generate a HARQ-ACK sub-codebook (e.g., sub-codebook #2D) including HARQ-ACK information bits for each PDSCH in PDSCH set #2D, the HARQ-ACK information bits in sub-codebook #2D can be ordered in “serving cell index first SPS configuration index second manner” or the “serving cell index first time second manner” as described above.
(6) Concatenate the four HARQ-ACK sub-codebooks as one HARQ-ACK codebook in a predefined order.
The above operation for dividing the plurality of PDSCHs into PDSCH sets can be described in another way as follows.
- Some or all of the plurality of PDSCHs may be dynamically scheduled PDSCHs and can be divided into two sets (e.g., PDSCH sets #2A and #2B) according to the types (e.g., DCI types #1 and #2) of scheduling DCIs. The remaining PDSCHs (if any) can be divided into one or two sets (e.g., PDSCH sets #2C and #2D) .
From the perspective of a BS, the BS may transmit, to the UE, a plurality of PDSCHs with HARQ-ACK feedback to be transmitted in the same HARQ-ACK codebook. The plurality of PDSCHs can be divided into at least two sets, for example, PDSCH sets #2A to #2D as described as above. The BS may receive a HARQ-ACK codebook including HARQ-ACK feedback for the plurality of PDSCHs. The HARQ-ACK codebook is constructed in the manner as described above. For example, the HARQ-ACK codebook may include sub-codebooks #2A to #2D.
Referring back to FIG. 2, DCIs 211-218 can be divided into two sets of DCIs according the DCI types. For example, a first set of DCIs include DCI 211, DCI 213, DCI 216 and DCI 218 as they are of DCI type #1. The second set of DCIs include DCI 212, DCI 214, DCI 215 and DCI 217 as they are of DCI type #2. Accordingly, a first PDSCH set (e.g., PDSCH set #2A) may include PDSCH 221, PDSCH 224, PDSCH 2210 and PDSCH 2212, and a second PDSCH set (e.g., PDSCH set #2B)  may include PDSCH 222, PDSCH 225, PDSCH 226, and PDSCH 2211.
Counter DAI and total DAI are separately counted within each of the two sets of DCIs or each of the two sets of PDSCHs. For example, the counter DAI and total DAI of DCIs 211 to 218 may respectively indicate {1, 2} , {1, 1} , {2, 2} , {2, 3} , {3, 3} , {3, 4} , {4, 4} and {4, 4} (e.g., denoted as {counter DAI, total DAI} ) .
It is assumed that the maximum number of CBGs per TB among CCs 231 to 233 is 4 (e.g., M=4) . Therefore, each PDSCH in the second PDSCH set (e.g., PDSCH set #2B) may correspond to 4 HARQ-ACK information bits. Put it another way, each DCI of DCI type #2 may have 4 associated HARQ-ACK information bits.
The remaining PDSCHs (e.g., SPS PDSCHs) of PDSCHs 221-2212 may be further divided into two PDSCH sets (e.g., PDSCH set #2C and PDSCH set #2D) . For example, a third PDSCH set (e.g., PDSCH set #2C) may include PDSCH 228 and a fourth PDSCH set (e.g., PDSCH set #2D) may include PDSCH 223, PDSCH 227, and PDSCH 229. Each PDSCH in the third PDSCH set (e.g., PDSCH set #2C) may correspond to a single information bit and each PDSCH in the fourth PDSCH set (e.g., PDSCH set #2D) may correspond to 4 HARQ-ACK information bits.
In some embodiments, the HARQ-ACK information bits for SPS PDSCHs may be ordered in the “serving cell index first SPS configuration index second manner” . FIG. 5 shows an exemplary HARQ-ACK codebook construction according to these embodiments.
It is assumed that in FIG. 2, SPS PDSCH 223 is associated with an SPS configuration index of 2 and SPS PDSCH 227 is associated with an SPS configuration index of 1. Referring to FIG. 5, HARQ-ACK sub-codebook 551 for the first PDSCH set (e.g., PDSCH set #2A) may include {a1, a4, a10, a12} , HARQ-ACK sub-codebook 552 for the third PDSCH set (e.g., PDSCH set #2C) may include {a8} , HARQ-ACK sub-codebook 553 for the second PDSCH set (e.g., PDSCH set #2B) may include {b2, b5, b6, b11} , and HARQ-ACK sub-codebook 554 for the fourth PDSCH set (e.g., PDSCH set #2D) may include {b9, b7, b3} . For example, a1, a4, a10, and a12 respectively represent a single HARQ-ACK information bit (e.g., TB-based HARQ-ACK information bit) for  PDSCHs  221, 224, 2210, and 2212 in  FIG. 2, and a8 represents a single HARQ-ACK information bit (e.g., TB-based HARQ-ACK information bit) for PDSCH 228 in FIG. 2. For example, b2 represents 4 CBG-level HARQ-ACK information bits for PDSCH 222 in FIG. 2, b5 represents 4 CBG-level HARQ-ACK information bits for PDSCH 225 in FIG. 2, b6 represents 4 CBG-level HARQ-ACK information bits for PDSCH 226 in FIG. 2, b11 represents 4 CBG-level HARQ-ACK information bits for PDSCH 2211 in FIG. 2, b9 represents 4 CBG-level HARQ-ACK information bits for PDSCH 229 in FIG. 2, b7 represents 4 CBG-level HARQ-ACK information bits for PDSCH 227 in FIG. 2, and b3 represents 4 CBG-level HARQ-ACK information bits for PDSCH 223 in FIG. 2.
HARQ-ACK sub-codebooks 551-554 are concatenated into one HARQ-ACK codebook, which is transmitted on PUCCH 561. For example, HARQ-ACK sub-codebook 551 may be placed firstly and then followed by HARQ-ACK sub-codebooks 552-554 in the final HARQ-ACK codebook.
In some embodiments, the HARQ-ACK information bits for SPS PDSCHs may be ordered in the “serving cell index first time second manner” . FIG. 6 shows an exemplary HARQ-ACK codebook construction according to these embodiments.
It is assumed that in FIG. 2, SPS PDSCH 223 is transmitted earlier than SPS PDSCH 227. Referring to FIG. 6, HARQ-ACK sub-codebook 651 for the first PDSCH set (e.g., PDSCH set #2A) may include {a1, a4, a10, a12} , HARQ-ACK sub-codebook 652 for the third PDSCH set (e.g., PDSCH set #2C) may include {a8} , HARQ-ACK sub-codebook 653 for the second PDSCH set (e.g., PDSCH set #2B) may include {b2, b5, b6, b11} , and HARQ-ACK sub-codebook 654 for the fourth PDSCH set (e.g., PDSCH set #2D) may include {b9, b3, b7} . For example, a1, a4, a10, and a12 respectively represent a single HARQ-ACK information bit (e.g., TB-based HARQ-ACK information bit) for  PDSCHs  221, 224, 2210, and 2212 in FIG. 2, and a8 represents a single HARQ-ACK information bit (e.g., TB-based HARQ-ACK information bit) for PDSCH 228 in FIG. 2. For example, b2 represents 4 CBG-level HARQ-ACK information bits for PDSCH 222 in FIG. 2, b5 represents 4 CBG-level HARQ-ACK information bits for PDSCH 225 in FIG. 2, b6 represents 4 CBG-level HARQ-ACK information bits for PDSCH 226 in FIG. 2, b11 represents 4 CBG-level HARQ-ACK information bits for PDSCH 2211 in FIG. 2, b9 represents 4  CBG-level HARQ-ACK information bits for PDSCH 229 in FIG. 2, b3 represents 4 CBG-level HARQ-ACK information bits for PDSCH 223 in FIG. 2, and b7 represents 4 CBG-level HARQ-ACK information bits for PDSCH 227 in FIG. 2.
HARQ-ACK sub-codebooks 651-654 are concatenated into one HARQ-ACK codebook, which is transmitted on PUCCH 661. For example, HARQ-ACK sub-codebook 651 may be placed firstly and then followed by HARQ-ACK sub-codebooks 652-654 in the final HARQ-ACK codebook.
In some embodiments of the present disclosure, for an SPS PDSCH, its transmission type (e.g., a TB-based transmission or a CBG-based transmission) is dependent on the SPS configuration associated with the SPS PDSCH. For example, whether an SPS PDSCH is responded in TB-based HARQ-ACK feedback (corresponding to the TB-based transmission type) or CBG-based HARQ-ACK feedback (corresponding to the CBG-based transmission type) may be dependent on the SPS configuration.
For example, when a BS configures an SPS configuration for a UE (e.g., via RRC signaling) , the SPS configuration may indicate a transmission type for the associated transmission (s) being either a TB-based transmission or a CBG-based transmission. The BS may configure one or more SPS configurations for a UE.
In some embodiments, in the case that an SPS configuration indicates the CBG-based transmission, the SPS configuration may further indicate the number of CBGs per TB (denoted as Z) . Different SPS configurations may indicate different or the same number of CBGs per TB. In some embodiments, the number of CBGs per SPS TB can be 2, 4, 6, or 8.
Alternatively, the “transmission type” as described above can be replaced with a “HARQ-ACK feedback type. ” Table 1 below shows an example of an SPS configuration. In this example, the transmission type is indicated via HARQ-ACK feedback type (i.e., “harq-FeedbackType” ) .
Table 1
Figure PCTCN2022112142-appb-000001
Based on the transmission type for the SPS configuration, the corresponding SPS PDSCH may be responded with TB-based or CBG-based HARQ-ACK feedback.  The HARQ-ACK feedback type of an SPS configuration may be fully dependent on the SPS configuration no matter whether the SPS configuration is configured on a carrier configured with CBG-based transmission or not.
For example, for an SPS PDSCH transmitted on a carrier configured with CBG-based transmission, if the SPS configuration associated with the SPS PDSCH configures TB-based HARQ-ACK feedback, then the UE may transmit TB-based HARQ-ACK feedback for the SPS PDSCH. For example, the UE may transmit a single HARQ-ACK information bit for each SPS PDSCH associated with the SPS configuration.
For example, for an SPS PDSCH transmitted on a carrier configured with CBG-based transmission where a maximum of M CBGs per TB is configured for the carrier, if the SPS configuration associated with the SPS PDSCH configures CBG-based HARQ-ACK feedback and Z1 CBGs per SPS TB, then the UE may transmit CBG-based HARQ-ACK feedback with Z1 HARQ-ACK information bits for each SPS PDSCH associated with the SPS configuration.
For example, for an SPS PDSCH transmitted on a carrier configured with TB-based transmission, if the SPS configuration associated with the SPS PDSCH configures CBG-based HARQ-ACK feedback and Z2 CBGs per SPS TB, then the UE may transmit CBG-based HARQ-ACK feedback with Z2 HARQ-ACK information bits for each SPS PDSCH associated with the SPS configuration.
For example, for an SPS PDSCH transmitted on a carrier configured with TB-based transmission, if the SPS configuration associated with the SPS PDSCH configures TB-based HARQ-ACK feedback, then the UE may transmit TB-based HARQ-ACK feedback. For example, the UE may transmit a single HARQ-ACK information bit for each SPS PDSCH associated with the SPS configuration.
In some embodiments, the number of CBGs per SPS TB can include more values. For example, the number of CBGs per SPS TB can be 1, 2, 3, 4, 5, 6, 7, or 8. This is because the TBS of an SPS configuration is pre-known to a UE. Different SPS configurations can be configured with different or the same number of CBGs per SPS TB according to the respective TBS.
For an SPS configuration, the number of HARQ-ACK information bits for each SPS PDSCH associated with the SPS configuration may be based on the configured number of CBGs per SPS TB (e.g., Z) . For example, the number of HARQ-ACK information bits for each SPS PDSCH may be equal to Z.
For example, a UE may receive an SPS PDSCH according to an SPS configuration. The UE may generate HARQ-ACK feedback for the SPS PDSCH according to the transmission type indicated in the SPS configuration. In the case that the transmission type is the CBG-based transmission, the UE may generate the HARQ-ACK feedback according to the number of CBGs per TB (e.g., Z) indicated in the SPS configuration.
In some embodiments, a UE may receive a plurality of SPS PDSCHs with HARQ-ACK feedback to be transmitted in the same slot or the same PUCCH or PUSCH. The plurality of SPS PDSCHs may be received at least one SPS configuration. Various methods may be employed to arrange the HARQ-ACK information bits for the plurality of SPS PDSCHs.
In some embodiments, the HARQ-ACK information bits for the plurality of SPS PDSCHs may be ordered in “serving cell index first SPS configuration index second manner. ” For example, the HARQ-ACK information bits may be ordered firstly based on associated serving cell indices and then based on associated SPS configuration indices for SPS PDSCHs on the same serving cell.
For example, the plurality of SPS PDSCHs may be transmitted on a plurality of serving cells of the UE. The HARQ-ACK information bits for the plurality of SPS PDSCHs may be ordered firstly in a predefined order (e.g., an ascending or descending order) of the indices of the plurality of serving cells. In some examples, more than one SPS PDSCH of the plurality of SPS PDSCHs may be transmitted on the same serving cell with different SPS configurations corresponding to different SPS configuration indices. For example, the SPS configuration index of a certain SPS configuration may be indicated by sps-ConfigIndex as specified in 3GPP specifications and may have a value ranging from 0 to 7. HARQ-ACK information bits for the more than one SPS PDSCH may be ordered according to the associated SPS configuration indices (e.g., according to an ascending or descending order of the  associated SPS configuration indices) .
In some embodiments, the HARQ-ACK information bits for the plurality of SPS PDSCHs may be ordered in “serving cell index first time second manner. ” For example, the HARQ-ACK information bits may be ordered firstly based on associated serving cell indices and then based on associated transmission occasions for SPS PDSCHs on the same serving cell.
For example, the plurality of SPS PDSCHs may be transmitted on a plurality of serving cells of the UE. The HARQ-ACK information bits for the plurality of SPS PDSCHs may be ordered firstly in a predefined order (e.g., an ascending or descending order) of the indices of the plurality of serving cells. In some examples, more than one SPS PDSCH of the plurality of SPS PDSCHs may be transmitted on the same serving cell corresponding to different transmission occasions (e.g., transmitted in different times) . HARQ-ACK information bits for the more than one SPS PDSCH may be ordered according to the associated transmission occasions (e.g., according to an ascending or descending order of the associated transmission occasions) .
In some embodiments, the UE may receive a DCI format scheduling a retransmission of a specific SPS PDSCH of the plurality of SPS PDSCHs associated with the at least one SPS configuration. For example, when the UE reports a NACK for the SPS PDSCH, the BS may transmit a DCI format with cyclic redundancy check (CRC) scrambled by configured scheduling radio network temporary identifier (CS-RNTI) , which schedules the retransmission of the SPS PDSCH. In some embodiments, the DCI format may include a field indicating CBG transmission information (CBGTI) associated with the SPS PDSCH. For example, the CBGTI may indicate which CBG (s) of the SPS PDSCH is to be retransmitted.
Due to different numbers of CBGs per SPS TB in different SPS configurations, the number of bits for the CBGTI in a DCI format may vary, which would lead to different DCI payload sizes. To solve the issue, the size of the field indicating the CBGTI in the DCI format may be dependent on (e.g., equal to or greater than) a maximum number of CBGs per TB among the at least one SPS configuration. For example, the size of the field indicating the CBGTI in the DCI  format may be dependent on the maximum number of CBGs per TB among all the SPS configurations on the same carrier or all carriers within the same PUCCH group, the HARQ-ACK feedback for the PDSCHs transmitted on which would be carried on the same carrier or same PUCCH or PUSCH.
In this way, the payload size of the DCI format is a single value for dynamically scheduling the retransmissions of the plurality of SPS TBs.
In some embodiments of the present disclosure, for a CG PUSCH, its transmission type (e.g., a TB-based transmission or a CBG-based transmission) is dependent on the CG configuration associated with the CG PUSCH. For example, whether a CG PUSCH is (re) transmitted in the TB-based transmission or CBG-based transmission may be dependent on the associated CG configuration.
For example, when a BS configures a CG configuration for a UE (e.g., via RRC signaling) , the CG configuration may indicate a transmission type for the associated (re) transmission (s) being either a TB-based transmission or a CBG-based transmission. The BS may configure one or more CG configurations for a UE.
In some embodiments, in the case that a CG configuration indicates the CBG-based transmission, the CG configuration may further indicate the number of CBGs per TB (denoted as Y) . Different CG configurations may indicate different or the same number of CBGs per TB. In some embodiments, the number of CBGs per CG TB can be 2, 4, 6, or 8.
Table 2 below shows an example of a CG configuration.
Table 2
Figure PCTCN2022112142-appb-000002
Figure PCTCN2022112142-appb-000003
Figure PCTCN2022112142-appb-000004
Figure PCTCN2022112142-appb-000005
Based on the transmission type for the CG configuration, the corresponding CG PUSCH may be transmitted with TB-based or CBG-based transmission according to the CBGTI in a DCI for scheduling the retransmission of the CG PUSCH.
For example, for a CG PUSCH, in the case that the associated CG configuration configures TB-based transmission, then after an initial transmission of the CG PUSCH, the UE may assume TB-based transmission scheduled by a DCI scheduling the retransmission of the CG PUSCH and that no CBGTI is included in the DCI.
For example, in the case that the associated CG configuration configures CBG-based transmission, then after an initial transmission of the CG PUSCH, the UE may assume CBG-based transmission scheduled by the DCI scheduling the retransmission of the CG PUSCH and that the CBGTI is included in the DCI (e.g., in the form of a bitmap, where each bit in the CBGTI corresponding to one CBG of the  CG TB carried on the CG PUSCH and indicating whether the CBG is retransmitted or not) .
The transmission type may be fully dependent on the CG configuration no matter whether the CG configuration is configured on a carrier configured with CBG-based transmission or not.
For example, for a CG PUSCH transmitted on a carrier configured with CBG-based transmission, if the CG configuration associated with the CG PUSCH configures TB-based transmission, then the UE may assume TB-based transmission scheduled by the DCI scheduling the retransmission of the CG PUSCH and no CBGTI included in the DCI.
For example, for a CG PUSCH transmitted on a carrier configured with CBG-based transmission where a maximum of M CBGs per TB is configured for the carrier, if the CG configuration associated with the CG PUSCH configures CBG-based transmission and Y1 CBGs per CG TB, then the UE may assume CBG-based transmission scheduled by the DCI scheduling the retransmission of the CG PUSCH and a Y1-bit bitmap of CBGTI included in the DCI where each bit in the CBGTI corresponding to one CBG of the CG TB carried on the CG PUSCH and indicating whether the CBG is retransmitted or not.
For example, for a CG PUSCH transmitted on a carrier configured with TB-based transmission, if the CG configuration associated with the CG PUSCH configures CBG-based transmission and Y2 CBGs per CG TB, then the UE may assume CBG-based transmission scheduled by the DCI scheduling retransmission of the CG PUSCH and a Y2-bit bitmap of CBGTI included in the DCI where each bit in the CBGTI corresponding to one CBG of the CG TB carried on the CG PUSCH and indicating whether the CBG is retransmitted or not.
For example, for a CG PUSCH transmitted on a carrier configured with TB-based transmission, if the CG configuration associated with the CG PUSCH configures TB-based transmission, then the UE may assume TB-based transmission scheduled by the DCI scheduling retransmission of the CG PUSCH and no CBGTI included in the DCI.
In some embodiments, the number of CBGs per CG TB can include more values. For example, the number of CBGs per CG TB can be 1, 2, 3, 4, 5, 6, 7, or 8. This is because the TBS of an CG configuration is pre-known to a UE. Different CG configurations can be configured with different or the same number of CBGs per CG TB according to the respective TBS.
In some embodiments, for a specific CG configuration, the number of bits of CBGTI in a DCI format for each CG PUSCH associated with the CG configuration may be based on the configured number of CBGs per CG TB indicated in the CG configuration. However, due to different numbers of CBGs per CG TB in different CG configurations for a UE, the number of bits for the CBGTI in a DCI format may vary, which would lead to different DCI payload sizes.
To solve the issue, the size of the field indicating the CBGTI in the DCI format may be dependent on (e.g., equal to or greater than) a maximum number of CBGs per TB among the CG configurations configured for the UE. For example, the size of the field indicating the CBGTI in the DCI format may be dependent on the maximum number of CBGs per TB among all the CG configurations on the same carrier or all carriers within the same PUCCH group or same cell group.
In this way, the payload size of the DCI format is a single value for dynamically scheduling the retransmissions of the plurality of CG TBs.
FIG. 7 illustrates a flow chart of an exemplary procedure 700 for wireless communications in accordance with some embodiments of the present disclosure. Details described in all of the foregoing embodiments of the present disclosure are applicable for the embodiments shown in FIG. 7. In some examples, the procedure may be performed by a UE, for example, UE 101 in FIG. 1.
Referring to FIG. 7, in operation 711, a UE may receive a plurality of PDSCHs on one or more serving cells of the UE, wherein HARQ-ACK feedback for the plurality of PDSCHs is to be transmitted in one HARQ-ACK codebook.
In operation 713, a UE may divide the plurality of PDSCHs into at least two sets of PDSCHs including a first set of PDSCHs and a second set of PDSCHs,  wherein DAIs associated with dynamically scheduled PDSCHs in the first set of PDSCHs are counted independently from those associated with dynamically scheduled PDSCHs in the second set of PDSCHs.
In operation 715, a UE may generate a first HARQ-ACK sub-codebook including HARQ-ACK information bits for PDSCHs in the first set of PDSCHs according to a predefined rule for HARQ-ACK information bit ordering. In operation 717, a UE may generate a second HARQ-ACK sub-codebook including HARQ-ACK information bits for PDSCHs in the second set of PDSCHs according to the predefined rule for HARQ-ACK information bit ordering. In operation 719, a UE may transmit the HARQ-ACK codebook including the first HARQ-ACK sub-codebook and the second HARQ-ACK sub-codebook.
In some embodiments of the present disclosure, each PDSCH of the first set of PDSCHs (e.g., PDSCH set #1A) requires TB-based feedback and the same number of TB-based HARQ-ACK information bits are generated in the first HARQ-ACK sub-codebook for each PDSCH of the first set of PDSCHs. Each PDSCH of the second set of PDSCHs (e.g., PDSCH set #1B) requires CBG-based feedback and the same number of CBG-based HARQ-ACK information bits are generated in the second HARQ-ACK sub-codebook for each PDSCH of the second set of PDSCHs.
In some embodiments of the present disclosure, the number of CBG-based HARQ-ACK information bits in the second HARQ-ACK sub-codebook for each PDSCH of the second set of PDSCHs is dependent on a maximum number among all maximum numbers of CBGs per TB for carriers of the UE configured with CBG-based transmission.
In some embodiments of the present disclosure, the first set of PDSCHs (e.g., PDSCH set #1A) includes one or more of the following: a PDSCH scheduled by a fallback DCI format; a PDSCH scheduled by a non-fallback DCI format and transmitted on a carrier not configured with CBG-based transmission; or an SPS PDSCH transmitted on a carrier not configured with CBG-based transmission.
In some embodiments of the present disclosure, the second set of PDSCHs (e.g., PDSCH set #1B) includes one or more of the following: a PDSCH scheduled by  a non-fallback DCI format and transmitted on a carrier configured with CBG-based transmission; or an SPS PDSCH transmitted on a carrier configured with CBG-based transmission.
In some embodiments of the present disclosure, generating the first HARQ-ACK sub-codebook (e.g., sub-codebook #1A) according to the predefined rule for HARQ-ACK information bit ordering may include: generating a first set of HARQ-ACK information bits for PDSCHs that are scheduled by DCI formats in the first set of PDSCHs, wherein the first set of HARQ-ACK information bits are ordered according to DAIs for the associated PDSCHs that are scheduled by DCI formats in the first set of PDSCHs; generating a second set of HARQ-ACK information bits for SPS PDSCHs in the first set of PDSCHs; and arranging the first set of HARQ-ACK information bits and the second set of HARQ-ACK information bits in the first HARQ-ACK sub-codebook according to a predefined order.
In some embodiments of the present disclosure, generating the second HARQ-ACK sub-codebook (e.g., sub-codebook #1B) according to the predefined rule for HARQ-ACK information bit ordering may include: generating a first set of HARQ-ACK information bits for PDSCHs that are scheduled by DCI formats in the second set of PDSCHs, wherein the first set of HARQ-ACK information bits are ordered according to DAIs for the associated PDSCHs that are scheduled by DCI formats in the second set of PDSCHs; generating a second set of HARQ-ACK information bits for SPS PDSCHs in the second set of PDSCHs; and arranging the first set of HARQ-ACK information bits and the second set of HARQ-ACK information bits in the second HARQ-ACK sub-codebook according to a predefined order.
In some embodiments of the present disclosure, the second set of HARQ-ACK information bits for SPS PDSCHs in a respective set of PDSCHs are ordered firstly based on associated serving cell indices and then based on associated SPS configuration indices for SPS PDSCHs on the same serving cell. In some embodiments of the present disclosure, the second set of HARQ-ACK information bits for SPS PDSCHs in the respective set of PDSCHs are ordered firstly based on associated serving cell indices and then based on associated transmission occasions  for SPS PDSCHs on the same serving cell.
In some embodiments of the present disclosure, each PDSCH in the first set of PDSCHs (e.g., PDSCH set #2A) is a PDSCH scheduled by a first type DCI format (e.g., DCI type #1) and each PDSCH in the second set of PDSCHs (e.g., PDSCH set #2B) is a PDSCH scheduled by a second type DCI format (e.g., DCI type #2) . The first type DCI format requires a single HARQ-ACK information bit and the second type DCI format requires CBG-based HARQ-ACK feedback, wherein the same number of CBG-based HARQ-ACK information bits are generated in the second HARQ-ACK sub-codebook for each PDSCH of the second set of PDSCHs.
In some embodiments of the present disclosure, the number of CBG-based HARQ-ACK information bits in the second HARQ-ACK sub-codebook for each PDSCH of the second set of PDSCHs is dependent on a maximum number among all maximum numbers of CBGs per TB for carriers of the UE configured with CBG-based transmission.
In some embodiments of the present disclosure, the first type DCI format is from a group including one or more of the following: a fallback DCI format; a non-fallback DCI format scheduling a PDSCH transmitted on a carrier not configured with CBG-based transmission; or a non-fallback DCI format scheduling a PDSCH transmitted on a carrier configured with a maximum of two TBs per PDSCH and spatial bundling.
In some embodiments of the present disclosure, the second type DCI format is from a group including one or more of the following: a non-fallback DCI format scheduling a PDSCH transmitted on a carrier configured with CBG-based transmission; or a non-fallback DCI format scheduling a PDSCH transmitted on a carrier configured with a maximum of two TBs per PDSCH and without spatial bundling.
In some embodiments of the present disclosure, at least two sets of PDSCHs further include at least one of a third set of PDSCHs (e.g., PDSCH set #2C) and a fourth set of PDSCHs (e.g., PDSCH set #2D) . The third set of PDSCHs includes all SPS PDSCHs transmitted on a carrier (s) configured without CBG-based transmission  in the plurality of PDSCHs. The fourth set of PDSCHs includes all SPS PDSCHs transmitted on a carrier (s) configured with CBG-based transmission in the plurality of PDSCHs.
In some embodiments of the present disclosure, the UE may generate at least one of the following: a third set of HARQ-ACK information bits for PDSCHs in the third set of PDSCHs according to a HARQ-ACK information bit ordering rule for SPS PDSCHs; or a fourth set of HARQ-ACK information bits for PDSCHs in the fourth set of PDSCHs according to the HARQ-ACK information bit ordering rule for SPS PDSCHs.
In some embodiments of the present disclosure, the HARQ-ACK information bit ordering rule for SPS PDSCHs may include: the HARQ-ACK information bits for SPS PDSCHs in a respective set of PDSCHs are ordered firstly based on associated serving cell indices and then based on associated SPS configuration indices for SPS PDSCHs on the same serving cell; or the HARQ-ACK information bits for SPS PDSCHs in the respective set of PDSCHs are ordered firstly based on associated serving cell indices and then based on associated transmission occasions for SPS PDSCHs on the same serving cell.
In some embodiments of the present disclosure, each PDSCH in the third set of PDSCHs is responded with a single bit in the third set of HARQ-ACK information bits, and each PDSCH in the fourth set of PDSCHs is responded with a number of consecutive bits in the fourth set of HARQ-ACK information bits.
In some embodiments of the present disclosure, the HARQ-ACK codebook further may include at least one of a third HARQ-ACK sub-codebook (e.g., sub-codebook #2C) including the third set of HARQ-ACK information bits or a fourth HARQ-ACK sub-codebook (e.g., sub-codebook #2D) including the fourth set of HARQ-ACK information bits, and the first HARQ-ACK sub-codebook (e.g., sub-codebook #2A) , the second HARQ-ACK sub-codebook (e.g., sub-codebook #2B) , and the at least one of the third HARQ-ACK sub-codebook or the fourth HARQ-ACK sub-codebook are arranged in the HARQ-ACK codebook according to a predefined order.
In some embodiments of the present disclosure, the first HARQ-ACK sub-codebook (e.g., sub-codebook #3A) further may include the third set of HARQ-ACK information bits and the second HARQ-ACK sub-codebook (e.g., sub-codebook #3B) further may include the fourth set of HARQ-ACK information bits, and the first HARQ-ACK sub-codebook and the second HARQ-ACK sub-codebook are arranged in the HARQ-ACK codebook according to a predefined order.
In some embodiments of the present disclosure, the HARQ-ACK codebook further may include a fifth HARQ-ACK sub-codebook (e.g., sub-codebook #4C) including the third set of HARQ-ACK information bits and the fourth set of HARQ-ACK information bits, and the first HARQ-ACK sub-codebook (e.g., sub-codebook #2A) , the second HARQ-ACK sub-codebook (e.g., sub-codebook #2B) and the fifth HARQ-ACK sub-codebook are arranged in the HARQ-ACK codebook according to a predefined order.
It should be appreciated by persons skilled in the art that the sequence of the operations in exemplary procedure 700 may be changed and some of the operations in exemplary procedure 700 may be eliminated or modified, without departing from the spirit and scope of the disclosure.
FIG. 8 illustrates a flow chart of an exemplary procedure 800 for wireless communications in accordance with some embodiments of the present disclosure. Details described in all of the foregoing embodiments of the present disclosure are applicable for the embodiments shown in FIG. 8. In some examples, the procedure may be performed by a UE, for example, UE 101 in FIG. 1.
Referring to FIG. 8, in operation 811, a UE may receive at least one transmission configuration, wherein the at least one transmission configuration may include at least one SPS configuration for downlink transmission or at least one CG configuration for uplink transmission, wherein the at least one SPS configuration or the at least one CG configuration indicates a transmission type for associated transmission being either a TB-based transmission or a CBG-based transmission.
In operation 813, a UE may perform an uplink transmission or downlink  reception according to the at least one transmission configuration.
In some embodiments of the present disclosure, the at least one SPS configuration or the at least one CG configuration further indicates a number of CBGs per TB in the case that the transmission type is the CBG-based transmission.
In some embodiments of the present disclosure, performing the uplink transmission or downlink reception according to the at least one transmission configuration may include receiving an SPS PDSCH according to the at least one SPS configuration. The UE may further generate HARQ-ACK feedback for the SPS PDSCH according to the transmission type indicated in the at least one SPS configuration and according to the number of CBGs per TB indicated in the at least one SPS configuration in the case that the transmission type is the CBG-based transmission.
In some embodiments of the present disclosure, performing the uplink transmission or downlink reception according to the at least one transmission configuration may include receiving a plurality of SPS PDSCHs with HARQ-ACK feedback to be transmitted in the same slot according to the at least one SPS configuration. The UE may further generate a set of HARQ-ACK information bits for the plurality of SPS PDSCHs; and transmit the set of HARQ-ACK information bits.
In some embodiments of the present disclosure, the HARQ-ACK information bits in the set of HARQ-ACK information bits for the plurality of SPS PDSCHs are ordered firstly based on associated serving cell indices and then based on associated SPS configuration indices for SPS PDSCHs on the same serving cell. In some embodiments of the present disclosure, the HARQ-ACK information bits in the set of HARQ-ACK information bits for the plurality of SPS PDSCHs are ordered firstly based on associated serving cell indices and then based on associated transmission occasions for SPS PDSCHs on the same serving cell.
In some embodiments of the present disclosure, the UE may further receive a DCI format scheduling a retransmission of a first SPS PDSCH of the plurality of SPS PDSCHs. The DCI format may include a field indicating CBGTI associated with the  first SPS PDSCH, and wherein the size of the field is dependent on a maximum number of CBGs per TB among the at least one SPS configuration.
In some embodiments of the present disclosure, performing the uplink transmission or downlink reception according to the at least one transmission configuration may include transmitting a CG PUSCH according to the at least one CG configuration. The UE may further: receive a DCI format scheduling a retransmission of the CG PUSCH, wherein the DCI format may include a field indicating CBGTI associated with the CG PUSCH, and wherein the size of the field is dependent on a maximum number of CBGs per TB among at least one CG configuration for the UE.
It should be appreciated by persons skilled in the art that the sequence of the operations in exemplary procedure 800 may be changed and some of the operations in exemplary procedure 800 may be eliminated or modified, without departing from the spirit and scope of the disclosure.
FIG. 9 illustrates a flow chart of an exemplary procedure 900 for wireless communications in accordance with some embodiments of the present disclosure. Details described in all of the foregoing embodiments of the present disclosure are applicable for the embodiments shown in FIG. 9. In some examples, the procedure may be performed by a BS, for example, BS 102 in FIG. 1.
Referring to FIG. 9, in operation 911, a BS may transmit, to a UE, a plurality of PDSCHs on one or more serving cells of the UE, wherein HARQ-ACK feedback for the plurality of PDSCHs is to be transmitted in one HARQ-ACK codebook.
In operation 913, the BS may divide the plurality of PDSCHs into at least two sets of PDSCHs including a first set of PDSCHs and a second set of PDSCHs, wherein DAIs associated with dynamically scheduled PDSCHs in the first set of PDSCHs are counted independently from those associated with dynamically scheduled PDSCHs in the second set of PDSCHs.
In operation 915, the BS may receive a HARQ-ACK codebook including a first HARQ-ACK sub-codebook and a second HARQ-ACK sub-codebook. The first  HARQ-ACK sub-codebook may include HARQ-ACK information bits for PDSCHs in the first set of PDSCHs arranged according to a predefined rule for HARQ-ACK information bit ordering, and the second HARQ-ACK sub-codebook may include HARQ-ACK information bits for PDSCHs in the second set of PDSCHs arranged according to the predefined rule for HARQ-ACK information bit ordering.
In some embodiments of the present disclosure, each PDSCH of the first set of PDSCHs requires TB-based feedback and the same number of TB-based HARQ-ACK information bits are generated in the first HARQ-ACK sub-codebook for each PDSCH of the first set of PDSCHs, and wherein each PDSCH of the second set of PDSCHs requires CBG-based feedback and the same number of CBG-based HARQ-ACK information bits are generated in the second HARQ-ACK sub-codebook for each PDSCH of the second set of PDSCHs.
In some embodiments of the present disclosure, the number of CBG-based HARQ-ACK information bits in the second HARQ-ACK sub-codebook for each PDSCH of the second set of PDSCHs is dependent on a maximum number among all maximum numbers of CBGs per TB for carriers of the UE configured with CBG-based transmission.
In some embodiments of the present disclosure, the first set of PDSCHs includes one or more of the following: a PDSCH scheduled by a fallback DCI format; a PDSCH scheduled by a non-fallback DCI format and transmitted on a carrier not configured with CBG-based transmission; or an SPS PDSCH transmitted on a carrier not configured with CBG-based transmission.
In some embodiments of the present disclosure, the second set of PDSCHs includes one or more of the following: a PDSCH scheduled by a non-fallback DCI format and transmitted on a carrier configured with CBG-based transmission; or an SPS PDSCH transmitted on a carrier configured with CBG-based transmission.
In some embodiments of the present disclosure, the first HARQ-ACK sub-codebook may include a first set of HARQ-ACK information bits for PDSCHs that are scheduled by DCI formats in the first set of PDSCHs, and a second set of HARQ-ACK information bits for SPS PDSCHs in the first set of PDSCHs.  HARQ-ACK information bits in the first set of HARQ-ACK information bits are ordered according to DAIs for the associated PDSCHs that are scheduled by DCI formats in the first set of PDSCHs. The first set of HARQ-ACK information bits and the second set of HARQ-ACK information bits are arranged in the first HARQ-ACK sub-codebook according to a predefined order.
In some embodiments of the present disclosure, the second HARQ-ACK sub-codebook may include a first set of HARQ-ACK information bits for PDSCHs that are scheduled by DCI formats in the second set of PDSCHs, and a second set of HARQ-ACK information bits for SPS PDSCHs in the second set of PDSCHs. HARQ-ACK information bits in the first set of HARQ-ACK information bits are ordered according to DAIs for the associated PDSCHs that are scheduled by DCI formats in the second set of PDSCHs. The first set of HARQ-ACK information bits and the second set of HARQ-ACK information bits are arranged in the second HARQ-ACK sub-codebook according to a predefined order.
In some embodiments of the present disclosure, the second set of HARQ-ACK information bits for SPS PDSCHs in a respective set of PDSCHs are ordered firstly based on associated serving cell indices and then based on associated SPS configuration indices for SPS PDSCHs on the same serving cell. In some embodiments of the present disclosure, the second set of HARQ-ACK information bits for SPS PDSCHs in the respective set of PDSCHs are ordered firstly based on associated serving cell indices and then based on associated transmission occasions for SPS PDSCHs on the same serving cell.
In some embodiments of the present disclosure, each PDSCH in the first set of PDSCHs is a PDSCH scheduled by a first type DCI format and each PDSCH in the second set of PDSCHs is a PDSCH scheduled by a second type DCI format. The first type DCI format requires a single HARQ-ACK information bit and the second type DCI format requires CBG-based HARQ-ACK feedback, wherein the same number of CBG-based HARQ-ACK information bits are generated in the second HARQ-ACK sub-codebook for each PDSCH of the second set of PDSCHs.
In some embodiments of the present disclosure, the number of CBG-based HARQ-ACK information bits in the second HARQ-ACK sub-codebook for each  PDSCH of the second set of PDSCHs is dependent on a maximum number among all maximum numbers of CBGs per TB for carriers of the UE configured with CBG-based transmission.
In some embodiments of the present disclosure, the first type DCI format is from a group including one or more of the following: a fallback DCI format; a non-fallback DCI format scheduling a PDSCH transmitted on a carrier not configured with a CBG-based transmission; or a non-fallback DCI format scheduling a PDSCH transmitted on a carrier configured with a maximum of two TBs per PDSCH and spatial bundling.
In some embodiments of the present disclosure, the second type DCI format is from a group including one or more of the following: a non-fallback DCI format scheduling a PDSCH transmitted on a carrier configured with CBG-based transmission; or a non-fallback DCI format scheduling a PDSCH transmitted on a carrier configured with a maximum of two TBs per PDSCH and without spatial bundling.
In some embodiments of the present disclosure, at least two sets of PDSCHs further include at least one of a third set of PDSCHs and a fourth set of PDSCHs. The third set of PDSCHs includes all SPS PDSCHs transmitted on a carrier (s) configured without CBG-based transmission in the plurality of PDSCHs. The fourth set of PDSCHs includes all SPS PDSCHs transmitted on a carrier (s) configured with CBG-based transmission in the plurality of PDSCHs.
In some embodiments of the present disclosure, the BS may further receive at least one of the following: a third set of HARQ-ACK information bits for PDSCHs in the third set of PDSCHs arranged according to a HARQ-ACK information bit ordering rule for SPS PDSCHs; or a fourth set of HARQ-ACK information bits for PDSCHs in the fourth set of PDSCHs arranged according to a HARQ-ACK information bit ordering rule for SPS PDSCHs.
In some embodiments of the present disclosure, the HARQ-ACK information bit ordering rule for SPS PDSCHs may include: the HARQ-ACK information bits for SPS PDSCHs in a respective set of PDSCHs are ordered firstly based on associated  serving cell indices and then based on associated SPS configuration indices for SPS PDSCHs on the same serving cell. In some embodiments of the present disclosure, the HARQ-ACK information bit ordering rule for SPS PDSCHs may include: the HARQ-ACK information bits for SPS PDSCHs in the respective set of PDSCHs are ordered firstly based on associated serving cell indices and then based on associated transmission occasions for SPS PDSCHs on the same serving cell.
In some embodiments of the present disclosure, each PDSCH in the third set of PDSCHs is responded with a single bit in the third set of HARQ-ACK information bits, and each PDSCH in the fourth set of PDSCHs is responded with a number of consecutive bits in the fourth set of HARQ-ACK information bits.
In some embodiments of the present disclosure, the HARQ-ACK codebook further may include at least one of a third HARQ-ACK sub-codebook including the third set of HARQ-ACK information bits or a fourth HARQ-ACK sub-codebook including the fourth set of HARQ-ACK information bits, wherein the first HARQ-ACK sub-codebook, the second HARQ-ACK sub-codebook, and the at least one of the third HARQ-ACK sub-codebook or the fourth HARQ-ACK sub-codebook are arranged in the HARQ-ACK codebook according to a predefined order.
In some embodiments of the present disclosure, the first HARQ-ACK sub-codebook further may include the third set of HARQ-ACK information bits and the second HARQ-ACK sub-codebook further may include the fourth set of HARQ-ACK information bits, and the first HARQ-ACK sub-codebook and the second HARQ-ACK sub-codebook are arranged in the HARQ-ACK codebook according to a predefined order.
In some embodiments of the present disclosure, the HARQ-ACK codebook further may include a fifth HARQ-ACK sub-codebook including the third set of HARQ-ACK information bits and the fourth set of HARQ-ACK information bits, and the first HARQ-ACK sub-codebook, the second HARQ-ACK sub-codebook and the fifth HARQ-ACK sub-codebook are arranged in the HARQ-ACK codebook according to a predefined order.
It should be appreciated by persons skilled in the art that the sequence of the  operations in exemplary procedure 900 may be changed and some of the operations in exemplary procedure 900 may be eliminated or modified, without departing from the spirit and scope of the disclosure.
FIG. 10 illustrates a flow chart of an exemplary procedure 1000 for wireless communications in accordance with some embodiments of the present disclosure. Details described in all of the foregoing embodiments of the present disclosure are applicable for the embodiments shown in FIG. 10. In some examples, the procedure may be performed by a BS, for example, BS 102 in FIG. 1.
Referring to FIG. 10, in operation 1011, a BS may transmit, to a UE, at least one transmission configuration, wherein the at least one transmission configuration may include at least one SPS configuration for downlink transmission or at least one CG configuration for uplink transmission, wherein the at least one SPS configuration or the at least one CG configuration indicates a transmission type for associated transmission being either a TB-based transmission or a CBG-based transmission.
In operation 1013, the BS may perform an uplink reception or downlink transmission according to the at least one transmission configuration.
In some embodiments of the present disclosure, the at least one SPS configuration or the at least one CG configuration further indicates a number of CBGs per TB in the case that the transmission type is the CBG-based transmission.
In some embodiments of the present disclosure, performing the uplink reception or downlink transmission according to the at least one transmission configuration may include transmitting an SPS PDSCH according to the at least one SPS configuration. The BS may further receive HARQ-ACK feedback for the SPS PDSCH according to the transmission type indicated in the at least one SPS configuration and according to the number of CBGs per TB indicated in the at least one SPS configuration in the case that the transmission type is the CBG-based transmission.
In some embodiments of the present disclosure, performing the uplink reception or downlink transmission according to the at least one transmission  configuration may include transmitting a plurality of SPS physical downlink shared channels (PDSCHs) with HARQ-ACK feedback to be transmitted in the same slot according to the at least one SPS configuration. The BS may further receive a set of HARQ-ACK information bits for the plurality of SPS PDSCHs.
In some embodiments of the present disclosure, the HARQ-ACK information bits in the set of HARQ-ACK information bits for the plurality of SPS PDSCHs are ordered firstly based on associated serving cell indices and then based on associated SPS configuration indices for SPS PDSCHs on the same serving cell. In some embodiments of the present disclosure, the HARQ-ACK information bits in the set of HARQ-ACK information bits for the plurality of SPS PDSCHs are ordered firstly based on associated serving cell indices and then based on associated transmission occasions for SPS PDSCHs on the same serving cell.
In some embodiments of the present disclosure, the BS may further transmit a DCI format scheduling a retransmission of a first SPS PDSCH of the plurality of SPS PDSCHs, wherein the DCI format may include a field indicating CBGTI associated with the first SPS PDSCH, and wherein the size of the field is dependent on a maximum number of CBGs per TB among the at least one SPS configuration.
In some embodiments of the present disclosure, performing the uplink reception or downlink transmission according to the at least one transmission configuration may include receiving a CG PUSCH according to the at least one CG configuration. The BS may further transmit a DCI format scheduling a retransmission of the CG PUSCH, wherein the DCI format may include a field indicating CBGTI associated with the CG PUSCH, and wherein the size of the field is dependent on a maximum number of CBGs per TB among the at least one CG configuration for the UE.
It should be appreciated by persons skilled in the art that the sequence of the operations in exemplary procedure 1000 may be changed and some of the operations in exemplary procedure 1000 may be eliminated or modified, without departing from the spirit and scope of the disclosure.
FIG. 11 illustrates a block diagram of an exemplary apparatus 1100  according to some embodiments of the present disclosure. As shown in FIG. 11, the apparatus 1100 may include at least one processor 1106 and at least one transceiver 1102 coupled to the processor 1106. The apparatus 1100 may be a UE or a BS.
Although in this figure, elements such as the at least one transceiver 1102 and processor 1106 are described in the singular, the plural is contemplated unless a limitation to the singular is explicitly stated. In some embodiments of the present application, the transceiver 1102 may be divided into two devices, such as a receiving circuitry and a transmitting circuitry. In some embodiments of the present application, the apparatus 1100 may further include an input device, a memory, and/or other components.
In some embodiments of the present application, the apparatus 1100 may be a UE. The transceiver 1102 and the processor 1106 may interact with each other so as to perform the operations with respect to the UE described in FIGS. 1-10. In some embodiments of the present application, the apparatus 1100 may be a BS. The transceiver 1102 and the processor 1106 may interact with each other so as to perform the operations with respect to the BS described in FIGS. 1-10.
In some embodiments of the present application, the apparatus 1100 may further include at least one non-transitory computer-readable medium.
For example, in some embodiments of the present disclosure, the non-transitory computer-readable medium may have stored thereon computer-executable instructions to cause the processor 1106 to implement the method with respect to the UE as described above. For example, the computer-executable instructions, when executed, cause the processor 1106 interacting with transceiver 1102 to perform the operations with respect to the UE described in FIGS. 1-10.
In some embodiments of the present disclosure, the non-transitory computer-readable medium may have stored thereon computer-executable instructions to cause the processor 1106 to implement the method with respect to the BS as described above. For example, the computer-executable instructions, when executed, cause the processor 1106 interacting with transceiver 1102 to perform the operations  with respect to the BS described in FIGS. 1-10.
Those having ordinary skill in the art would understand that the operations or steps of a method described in connection with the aspects disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. Additionally, in some aspects, the operations or steps of a method may reside as one or any combination or set of codes and/or instructions on a non-transitory computer-readable medium, which may be incorporated into a computer program product.
While this disclosure has been described with specific embodiments thereof, it is evident that many alternatives, modifications, and variations may be apparent to those skilled in the art. For example, various components of the embodiments may be interchanged, added, or substituted in other embodiments. Also, all of the elements of each figure are not necessary for the operation of the disclosed embodiments. For example, one of ordinary skill in the art of the disclosed embodiments would be enabled to make and use the teachings of the disclosure by simply employing the elements of the independent claims. Accordingly, embodiments of the disclosure as set forth herein are intended to be illustrative, not limiting. Various changes may be made without departing from the spirit and scope of the disclosure.
In this document, the terms "includes, " "including, " or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that includes a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by "a, " "an, " or the like does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that includes the element. Also, the term "another" is defined as at least a second or more. The term "having" and the like, as used herein, are defined as "including. " Expressions such as "A and/or  B" or "at least one of A and B" may include any and all combinations of words enumerated along with the expression. For instance, the expression "A and/or B" or "at least one of A and B" may include A, B, or both A and B. The wording "the first, " "the second" or the like is only used to clearly illustrate the embodiments of the present application, but is not used to limit the substance of the present application.

Claims (15)

  1. A user equipment (UE) , comprising:
    a transceiver; and
    a processor coupled to the transceiver, wherein the processor is configured to:
    receive a plurality of physical downlink shared channels (PDSCHs) on one or more serving cells of the UE, wherein hybrid automatic repeat request acknowledgement (HARQ-ACK) feedback for the plurality of PDSCHs is to be transmitted in one HARQ-ACK codebook;
    divide the plurality of PDSCHs into at least two sets of PDSCHs including a first set of PDSCHs and a second set of PDSCHs, wherein downlink assignment indicators (DAIs) associated with dynamically scheduled PDSCHs in the first set of PDSCHs are counted independently from those associated with dynamically scheduled PDSCHs in the second set of PDSCHs;
    generate a first HARQ-ACK sub-codebook comprising HARQ-ACK information bits for PDSCHs in the first set of PDSCHs according to a predefined rule for HARQ-ACK information bit ordering;
    generate a second HARQ-ACK sub-codebook comprising HARQ-ACK information bits for PDSCHs in the second set of PDSCHs according to the predefined rule for HARQ-ACK information bit ordering; and
    transmit the HARQ-ACK codebook comprising the first HARQ-ACK sub-codebook and the second HARQ-ACK sub-codebook.
  2. The UE of Claim 1, wherein each PDSCH of the first set of PDSCHs requires transport block (TB) based feedback and the same number of TB-based HARQ-ACK information bits are generated in the first HARQ-ACK sub-codebook for each PDSCH of the first set of PDSCHs, and wherein each PDSCH of the second set of PDSCHs requires code block group (CBG) based feedback and the same number of CBG-based HARQ-ACK information bits are generated in the second HARQ-ACK sub-codebook for each PDSCH of the second set of PDSCHs.
  3. The UE of Claim 1, wherein generating the first HARQ-ACK sub-codebook according to the predefined rule for HARQ-ACK information bit ordering comprises:
    generating a first set of HARQ-ACK information bits for PDSCHs that are scheduled by DCI formats in the first set of PDSCHs, wherein the first set of HARQ-ACK information bits are ordered according to DAIs for the associated PDSCHs that are scheduled by DCI formats in the first set of PDSCHs;
    generating a second set of HARQ-ACK information bits for semi-persistent scheduling (SPS) PDSCHs in the first set of PDSCHs; and
    arranging the first set of HARQ-ACK information bits and the second set of HARQ-ACK information bits in the first HARQ-ACK sub-codebook according to a predefined order.
  4. The UE of Claim 1, wherein generating the second HARQ-ACK sub-codebook according to the predefined rule for HARQ-ACK information bit ordering comprises:
    generating a first set of HARQ-ACK information bits for PDSCHs that are scheduled by DCI formats in the second set of PDSCHs, wherein the first set of HARQ-ACK information bits are ordered according to DAIs for the associated PDSCHs that are scheduled by DCI formats in the second set of PDSCHs;
    generating a second set of HARQ-ACK information bits for semi-persistent scheduling (SPS) PDSCHs in the second set of PDSCHs; and
    arranging the first set of HARQ-ACK information bits and the second set of HARQ-ACK information bits in the second HARQ-ACK sub-codebook according to a predefined order.
  5. The UE of Claim 3 or 4, wherein the second set of HARQ-ACK information bits for SPS PDSCHs in a respective set of PDSCHs are ordered firstly based on associated serving cell indices and then based on associated SPS configuration indices for SPS PDSCHs on the same serving cell; or
    wherein the second set of HARQ-ACK information bits for SPS PDSCHs in the respective set of PDSCHs are ordered firstly based on associated serving cell indices and then based on associated transmission occasions for SPS PDSCHs on the same serving cell.
  6. The UE of Claim 1, wherein each PDSCH in the first set of PDSCHs is a PDSCH scheduled by a first type DCI format and each PDSCH in the second set of PDSCHs is a PDSCH scheduled by a second type DCI format; and
    wherein the first type DCI format requires a single HARQ-ACK information bit and the second type DCI format requires CBG-based HARQ-ACK feedback, wherein the same number of CBG-based HARQ-ACK information bits are generated in the second HARQ-ACK sub-codebook for each PDSCH of the second set of PDSCHs.
  7. The UE of Claim 6, wherein at least two sets of PDSCHs further include at least one of a third set of PDSCHs and a fourth set of PDSCHs;
    wherein the third set of PDSCHs includes all semi-persistent scheduling (SPS) PDSCHs transmitted on a carrier (s) configured without CBG-based transmission in the plurality of PDSCHs, and
    wherein the fourth set of PDSCHs includes all SPS PDSCHs transmitted on a carrier (s) configured with CBG-based transmission in the plurality of PDSCHs.
  8. The UE of Claim 7, wherein the processor is further configured to generate at least one of the following:
    a third set of HARQ-ACK information bits for PDSCHs in the third set of PDSCHs according to a HARQ-ACK information bit ordering rule for SPS PDSCHs; or
    a fourth set of HARQ-ACK information bits for PDSCHs in the fourth set of PDSCHs according to the HARQ-ACK information bit ordering rule for SPS PDSCHs.
  9. The UE of Claim 8, wherein the HARQ-ACK information bit ordering rule for SPS PDSCHs comprises:
    the HARQ-ACK information bits for SPS PDSCHs in a respective set of PDSCHs are ordered firstly based on associated serving cell indices and then based on associated SPS configuration indices for SPS PDSCHs on the same serving cell; or
    the HARQ-ACK information bits for SPS PDSCHs in the respective set of PDSCHs are ordered firstly based on associated serving cell indices and then based on associated transmission occasions for SPS PDSCHs on the same serving cell.
  10. A user equipment (UE) , comprising:
    a transceiver; and
    a processor coupled to the transceiver, wherein the processor is configured to:
    receive at least one transmission configuration, wherein the at least one transmission configuration comprises at least one semi-persistent scheduling (SPS) configuration for downlink transmission or at least one configured grant (CG) configuration for uplink transmission, wherein the at least one SPS configuration or the at least one CG configuration indicates a transmission type for associated transmission being either a transport block (TB) based transmission or a code block group (CBG) based transmission; and
    perform an uplink transmission or downlink reception according to the at least one transmission configuration.
  11. The UE of Claim 10, wherein the at least one SPS configuration or the at least one CG configuration further indicates a number of CBGs per TB in the case that the transmission type is the CBG-based transmission.
  12. The UE of Claim 11, wherein performing the uplink transmission or downlink reception according to the at least one transmission configuration comprises receiving an SPS physical downlink shared channel (PDSCH) according to the at least one SPS configuration; and
    wherein the processor is further configured to generate HARQ-ACK feedback for the SPS PDSCH according to the transmission type indicated in the at least one SPS configuration and according to the number of CBGs per TB indicated in the at least one SPS configuration in the case that the transmission type is the CBG-based transmission.
  13. The UE of Claim 11, wherein performing the uplink transmission or downlink reception according to the at least one transmission configuration comprises receiving a plurality of SPS physical downlink shared channels (PDSCHs) with HARQ-ACK feedback to be transmitted in the same slot according to the at least one SPS configuration; and wherein the processor is further configured to:
    generate a set of HARQ-ACK information bits for the plurality of SPS PDSCHs; and
    transmit the set of HARQ-ACK information bits.
  14. The UE of Claim 13, wherein the HARQ-ACK information bits in the set of HARQ-ACK information bits for the plurality of SPS PDSCHs are ordered firstly based on associated serving cell indices and then based on associated SPS configuration indices for SPS PDSCHs on the same serving cell; or
    wherein the HARQ-ACK information bits in the set of HARQ-ACK information bits for the plurality of SPS PDSCHs are ordered firstly based on associated serving cell indices and then based on associated transmission occasions for SPS PDSCHs on the same serving cell.
  15. A base station (BS) , comprising:
    a transceiver; and
    a processor coupled to the transceiver, wherein the processor is configured to:
    transmit, to a user equipment (UE) , a plurality of physical downlink shared channels (PDSCHs) on one or more serving cells of the UE, wherein hybrid automatic repeat request acknowledgement (HARQ-ACK) feedback for the plurality of PDSCHs is to be transmitted in one HARQ-ACK codebook;
    divide the plurality of PDSCHs into at least two sets of PDSCHs including a first set of PDSCHs and a second set of PDSCHs, wherein downlink assignment indicators (DAIs) associated with dynamically scheduled PDSCHs in the first set of PDSCHs are counted independently from those associated with dynamically scheduled PDSCHs in the second set of PDSCHs; and
    receive a HARQ-ACK codebook comprising a first HARQ-ACK sub-codebook and a second HARQ-ACK sub-codebook, wherein the first HARQ-ACK sub-codebook comprises HARQ-ACK information bits for PDSCHs in the first set of PDSCHs arranged according to a predefined rule for HARQ-ACK information bit ordering, and the second HARQ-ACK sub-codebook comprises HARQ-ACK information bits for PDSCHs in the second set of PDSCHs arranged according to the predefined rule for HARQ-ACK information bit ordering.
PCT/CN2022/112142 2022-08-12 2022-08-12 Method and apparatus for cbg-based harq-ack feedback for configured transmission WO2024031644A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/112142 WO2024031644A1 (en) 2022-08-12 2022-08-12 Method and apparatus for cbg-based harq-ack feedback for configured transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/112142 WO2024031644A1 (en) 2022-08-12 2022-08-12 Method and apparatus for cbg-based harq-ack feedback for configured transmission

Publications (1)

Publication Number Publication Date
WO2024031644A1 true WO2024031644A1 (en) 2024-02-15

Family

ID=89850502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112142 WO2024031644A1 (en) 2022-08-12 2022-08-12 Method and apparatus for cbg-based harq-ack feedback for configured transmission

Country Status (1)

Country Link
WO (1) WO2024031644A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190103943A1 (en) * 2017-09-29 2019-04-04 Samsung Electronics Co., Ltd. Uplink transmission method and corresponding equipment
US20200295882A1 (en) * 2017-09-29 2020-09-17 Samsung Electronics Co., Ltd. Uplink transmission method and corresponding equipment
CN112821990A (en) * 2019-11-18 2021-05-18 北京三星通信技术研究有限公司 HARQ-ACK transmission method and device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190103943A1 (en) * 2017-09-29 2019-04-04 Samsung Electronics Co., Ltd. Uplink transmission method and corresponding equipment
US20200295882A1 (en) * 2017-09-29 2020-09-17 Samsung Electronics Co., Ltd. Uplink transmission method and corresponding equipment
CN112821990A (en) * 2019-11-18 2021-05-18 北京三星通信技术研究有限公司 HARQ-ACK transmission method and device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Maintenance on HARQ-ACK enhancement", 3GPP DRAFT; R1-2003514, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-meeting; 20200525 - 20200605, 16 May 2020 (2020-05-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051885298 *

Similar Documents

Publication Publication Date Title
WO2022027551A1 (en) Method and apparatus for harq-ack codebook determination for multi-carrier scheduling
US20230413289A1 (en) Method and apparatus for transmitting downlink control information
WO2024007296A1 (en) Methods and apparatuses for cbgti indication in dci scheduling multiple physical data channels
WO2022067461A1 (en) Method and apparatus for determining harq-ack codebook for multi-slot pdsch transmission
WO2024031644A1 (en) Method and apparatus for cbg-based harq-ack feedback for configured transmission
WO2024082355A1 (en) Method and apparatus for type-1 harq-ack codebook determination
WO2023137752A1 (en) Method and apparatus for harq-ack codebook determination for transport block repetition on multiple carriers
WO2023193248A1 (en) Method and apparatus for cbg-based harq-ack feedback for variable size data transmission
WO2023050053A1 (en) Method and apparatus for harq-ack feedback generation per downlink control information
WO2023155169A1 (en) Methods and apparatuses for harq-ack codebook determination per dci
WO2024000568A1 (en) Method and apparatus for harq process number indication
WO2024082433A1 (en) Method and apparatus for channel access related information indication in carrier aggregation scenario
WO2022205296A1 (en) Method and apparatus for harq-ack feedback for semi-persistent scheduling transmission
WO2024087531A1 (en) Method and apparatus for multi-cell scheduling enhancement
WO2024074003A1 (en) Method and apparatus for time domain resource indication in multi-cell scheduling scenario
WO2023137703A1 (en) Method and apparatus for multicast receptions on multiple carriers
WO2023206467A1 (en) Method and apparatus for harq-ack enhancement
US20240064755A1 (en) Method and apparatus for time domain resource allocation
WO2024011564A1 (en) Method and apparatus for scheduling multiple psschs by a single sci
WO2023115266A1 (en) Method and apparatus for harq-ack feedback on sidelink
WO2023123334A1 (en) Method and apparatus for pucch transmission
WO2022204856A1 (en) Method and apparatus for nack-only based harq-ack feedback multiplexing
WO2023206385A1 (en) Methods and apparatuses for harq-ack feedback timing determination for carrier aggregation
WO2024074041A1 (en) Method and apparatus for contention window size adjustment for psfch transmission
WO2022236673A1 (en) Method and apparatus for type-1 harq-ack codebook determination

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954603

Country of ref document: EP

Kind code of ref document: A1