WO2024031600A1 - Default channel state information beam for cross-carrier scheduling in unified transmission configuration indicator framework - Google Patents

Default channel state information beam for cross-carrier scheduling in unified transmission configuration indicator framework Download PDF

Info

Publication number
WO2024031600A1
WO2024031600A1 PCT/CN2022/111987 CN2022111987W WO2024031600A1 WO 2024031600 A1 WO2024031600 A1 WO 2024031600A1 CN 2022111987 W CN2022111987 W CN 2022111987W WO 2024031600 A1 WO2024031600 A1 WO 2024031600A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
value
received
configuring
csi
Prior art date
Application number
PCT/CN2022/111987
Other languages
French (fr)
Inventor
Fang Yuan
Yan Zhou
Ruhua He
Tao Luo
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2022/111987 priority Critical patent/WO2024031600A1/en
Publication of WO2024031600A1 publication Critical patent/WO2024031600A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present disclosure generally relates to communication systems, and more particularly, to default channel state information (CSI) beam for cross-carrier scheduling (CCS) in a unified transmission configuration indicator (TCI) framework.
  • CSI channel state information
  • CCS cross-carrier scheduling
  • TCI transmission configuration indicator
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • 5G New Radio is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements.
  • 3GPP Third Generation Partnership Project
  • 5G NR includes services associated with enhanced mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra-reliable low latency communications (URLLC) .
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communications
  • URLLC ultra-reliable low latency communications
  • Some aspects of 5G NR may be based on the 4G Long Term Evolution (LTE) standard.
  • LTE Long Term Evolution
  • some information such as a channel state information reference signal (CSI-RS) may be received on one or more default DL beams.
  • a transmission configuration indicator (TCI) framework whether unified or non-unified, as well as the configuration of the user equipment (UE) , may determine which beam or beams, and/or which location (s) in a beam or beams, the information is to be received at the UE.
  • the UE may receive CSI-RS on one or more downlink (DL) beams.
  • the CSI-RS may be received using a unified or non-unified TCI framework.
  • the UE may use various parameters, either received parameters or parameters known and/or stored by the UE, to determine where to receive CSI-RS information and how to configure scheduling offsets for receiving information from the base station (BS) .
  • the CSI-RS and/or CSI received at the UE may be aperiodic, and may be received on multiple carriers or carrier components.
  • a structure or configuration for the UE may be determined based, at least in part, on various parameters.
  • the UE may receive and/or configure one or more parameters to determine where and when CSI is to be received. Such parameters may determine one or more default DL beams, what bandwidth part the CSI is located in, or other locations and/or multiple beams for CSI-RS and/or aperiodic CSI-RS.
  • An apparatus for wireless communication in accordance with an aspect of the present disclosure may comprise a memory and at least one processor coupled to the memory and configured to configure a default beam parameter at a user equipment (UE) , receive, based on the configured default beam parameter, a downlink/transmission configuration indicator (DL/TCI) parameter at the UE; and receive, based on the received DL/TCI parameter, a control resource set (CORESET) on an active bandwidth part (BWP) at the UE.
  • UE user equipment
  • CORESET control resource set
  • Such an apparatus further optionally includes the at least one processor being further configured to receive, based on the received DL/TCI parameter and the received CORESET, a quasi co-located signal at the UE, the at least one processor being further configured to configure a scheduling offset at the UE based on the configured default beam parameter, the at least one processor being further configured to receive, at the UE, a downlink control information (DCI) on a first component carrier, and receive, at the UE, a channel state information reference signal (CSI-RS) on a second component carrier, the at least one processor being further configured to configure a first value of a first beam switch timing parameter at the UE, and configure the scheduling offset at the UE based on the configured default beam parameter and the configured first value, the at least one processor being further configured to configure a second value of a second beam switch timing parameter at the UE, and configure the scheduling offset at the UE based on the configured default beam parameter, the configured first value, and the configured second value, the at least one processor being further configured to receive a
  • An apparatus for wireless communication in accordance with an aspect of the present disclosure may comprise means for configuring a default beam parameter at a user equipment (UE) , means for receiving, based on the configured default beam parameter, a downlink/transmission configuration indicator (DL/TCI) parameter at the UE, and means for receiving, based on the DL/TCI parameter, a control resource set (CORESET) on an active bandwidth part (BWP) at the UE.
  • DL/TCI downlink/transmission configuration indicator
  • CORESET control resource set
  • Such an apparatus may further optionally include means for receiving, based on the received DL/TCI parameter and the received CORESET, a quasi co-located signal at the UE, means for configuring a scheduling offset at the UE based on the configured default beam parameter, means for receiving, at the UE, a downlink control information (DCI) on a first component carrier, and means for receiving, at the UE, a channel state information reference signal (CSI-RS) on a second component carrier, means for configuring a first value of a first beam switch timing parameter at the UE, and means for configuring the scheduling offset at the UE based on the configured default beam parameter and the configured first value, means for configuring a second value of a second beam switch timing parameter at the UE, and means for configuring the scheduling offset at the UE based on the configured default beam parameter, the configured first value, and the configured second value, means for receiving a beam switching timing parameter at the UE, and means for configuring the scheduling offset at the UE based on the configured first value, the
  • a method of wireless communication in accordance with an aspect of the present disclosure may comprise configuring a default beam parameter at a user equipment (UE) , receiving, based on the configured default beam parameter, a downlink/transmission configuration indicator (DL/TCI) parameter at the UE, and receiving, based on the received DL/TCI parameter, a control resource set (CORESET) on an active bandwidth part (BWP) at the UE.
  • UE user equipment
  • CORESET control resource set
  • Such a method may further optionally include receiving, based on the received DL/TCI parameter and the received CORESET, a quasi co-located signal at the UE, configuring a scheduling offset at the UE based on the configured default beam parameter, receiving, at the UE, a downlink control information (DCI) on a first component carrier, and receiving, at the UE, a channel state information reference signal (CSI-RS) on a second component carrier, configuring a first value of a first beam switch timing parameter at the UE, and configuring the scheduling offset at the UE based on the configured default beam parameter and the configured first value, configuring a second value of a second beam switch timing parameter at the UE, and configuring the scheduling offset at the UE based on the configured default beam parameter, the configured first value, and the configured second value, receiving a beam switching timing parameter at the UE, and configuring the scheduling offset at the UE based on the configured first value, the configured second value, and the received beam switching timing parameter, receiving a repetition parameter at the
  • a computer-readable medium storing computer executable code in accordance with an aspect of the present disclosure may have the code when executed by a processor cause the processor to configure a default beam parameter at a user equipment (UE) , receive, based on the configured default beam parameter, a downlink/transmission configuration indicator (DL/TCI) parameter at the UE, and receive, based on the received DL/TCI parameter, a control resource set (CORESET) on an active bandwidth part (BWP) at the UE.
  • DL/TCI downlink/transmission configuration indicator
  • CORESET control resource set
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
  • FIG. 2A is a diagram illustrating an example of a first frame, in accordance with various aspects of the present disclosure.
  • FIG. 2B is a diagram illustrating an example of DL channels within a subframe, in accordance with various aspects of the present disclosure.
  • FIG. 2C is a diagram illustrating an example of a second frame, in accordance with various aspects of the present disclosure.
  • FIG. 2D is a diagram illustrating an example of UL channels within a subframe, in accordance with various aspects of the present disclosure.
  • FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
  • UE user equipment
  • FIG. 4 is a block diagram illustrating an example disaggregated base station architecture in accordance with various aspects of the present disclosure.
  • FIG. 5 is a block diagram illustrating an example configuration of a default beam for receiving information in accordance with various aspects of the present disclosure.
  • FIG. 6 is a block diagram illustrating an example configuration of a default beam for receiving information in accordance with various aspects of the present disclosure.
  • FIG. 7 is a block diagram illustrating an example configuration of a default beam for receiving information in accordance with various aspects of the present disclosure.
  • FIG. 8 is a flow diagram of information transfer and configuration in accordance with an aspect of the present disclosure.
  • FIG. 9 is a flowchart of a method of wireless communication in accordance with an aspect of the present disclosure.
  • FIG. 10 is a diagram illustrating an example of a hardware implementation for an example apparatus in accordance with an aspect of the present disclosure.
  • processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • processors in the processing system may execute software.
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer.
  • such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • optical disk storage magnetic disk storage
  • magnetic disk storage other magnetic storage devices
  • combinations of the aforementioned types of computer-readable media or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100.
  • the wireless communications system also referred to as a wireless wide area network (WWAN)
  • WWAN wireless wide area network
  • UE user equipment
  • EPC Evolved Packet Core
  • another core network 190 e.g., a 5G Core (5GC)
  • the base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) .
  • the macrocells include base stations.
  • the small cells include femtocells, picocells, and microcells.
  • the base stations 102 configured for 4G Long Term Evolution (LTE) may interface with the EPC 160 through first backhaul links 132 (e.g., S1 interface) .
  • the base stations 102 configured for 5G New Radio (NR) may interface with core network 190 through second backhaul links 184.
  • NR Next Generation RAN
  • the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, Multimedia Broadcast Multicast Service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages.
  • NAS non-access stratum
  • RAN radio access network
  • MBMS Multimedia Broadcast Multicast Service
  • RIM RAN information management
  • the base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or core network 190) with each other over third backhaul links 134 (e.g., X2 interface) .
  • the first backhaul links 132, the second backhaul links 184, and the third backhaul links 134 may be wired or wireless.
  • the base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102.
  • a network that includes both small cell and macrocells may be known as a heterogeneous network.
  • a heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) .
  • eNBs Home Evolved Node Bs
  • HeNBs Home Evolved Node Bs
  • CSG closed subscriber group
  • the communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104.
  • the communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity.
  • the communication links may be through one or more carriers.
  • the base stations 102 /UEs 104 may use spectrum up to Y megahertz (MHz) (e.g., 5, 10, 15, 20, 100, 400, etc.
  • the component carriers may include a primary component carrier and one or more secondary component carriers.
  • a primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
  • D2D communication link 158 may use the DL/UL WWAN spectrum.
  • the D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • D2D communication may be through a variety of wireless D2D communications systems, such as for example, WiMedia, Bluetooth, ZigBe
  • the wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154, e.g., in a 5 gigahertz (GHz) unlicensed frequency spectrum or the like.
  • AP Wi-Fi access point
  • STAs Wi-Fi stations
  • communication links 154 e.g., in a 5 gigahertz (GHz) unlicensed frequency spectrum or the like.
  • GHz gigahertz
  • the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
  • CCA clear channel assessment
  • the small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102' may employ NR and use the same unlicensed frequency spectrum (e.g., 5 GHz, or the like) as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
  • the small cell 102' employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
  • the electromagnetic spectrum is often subdivided, based on frequency/wavelength, into various classes, bands, channels, etc.
  • two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) .
  • the frequencies between FR1 and FR2 are often referred to as mid-band frequencies.
  • FR1 is often referred to (interchangeably) as a “sub-6 GHz” band in various documents and articles.
  • FR2 which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • sub-6 GHz or the like if used herein may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies.
  • millimeter wave or the like if used herein may broadly represent frequencies that may include mid-band frequencies, may be within FR2, or may be within the EHF band.
  • a base station 102 may include and/or be referred to as an eNB, gNodeB (gNB) , or another type of base station.
  • Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave frequencies, and/or near millimeter wave frequencies in communication with the UE 104.
  • the gNB 180 may be referred to as a millimeter wave base station.
  • the millimeter wave base station 180 may utilize beamforming 182 with the UE 104 to compensate for the path loss and short range.
  • the base station 180 and the UE 104 may each include a plurality of antennas, such as antenna elements, antenna panels, and/or antenna arrays to facilitate the beamforming.
  • the base station 180 may transmit a beamformed signal to the UE 104 in one or more transmit directions 182'.
  • the UE 104 may receive the beamformed signal from the base station 180 in one or more receive directions 182” .
  • the UE 104 may also transmit a beamformed signal to the base station 180 in one or more transmit directions.
  • the base station 180 may receive the beamformed signal from the UE 104 in one or more receive directions.
  • the base station 180 /UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 180 /UE 104.
  • the transmit and receive directions for the base station 180 may or may not be the same.
  • the transmit and receive directions for the UE 104 may or may not be the same.
  • the EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, an MBMS Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172.
  • MME Mobility Management Entity
  • BM-SC Broadcast Multicast Service Center
  • PDN Packet Data Network
  • the MME 162 may be in communication with a Home Subscriber Server (HSS) 174.
  • HSS Home Subscriber Server
  • the MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160.
  • the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172.
  • the PDN Gateway 172 provides UE IP address allocation as well as other functions.
  • IP Internet protocol
  • the PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176.
  • the IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
  • the BM-SC 170 may provide functions for MBMS user service provisioning and delivery.
  • the BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions.
  • PLMN public land mobile network
  • the MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
  • MMSFN Multicast Broadcast Single Frequency Network
  • the core network 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195.
  • the AMF 192 may be in communication with a Unified Data Management (UDM) 196.
  • the AMF 192 is the control node that processes the signaling between the UEs 104 and the core network 190.
  • the AMF 192 provides Quality of Service (QoS) flow and session management. All user IP packets are transferred through the UPF 195.
  • the UPF 195 provides UE IP address allocation as well as other functions.
  • the UPF 195 is connected to the IP Services 197.
  • the IP Services 197 may include the Internet, an intranet, an IMS, a Packet Switch (PS) Streaming Service, and/or other IP services.
  • PS Packet Switch
  • the base station may include and/or be referred to as a gNB, Node B, eNB, an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology.
  • the base station 102 provides an access point to the EPC 160 or core network 190 for a UE 104.
  • Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device.
  • SIP session initiation protocol
  • PDA personal digital assistant
  • the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) .
  • the UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • CDMA Code Division Multiple Access
  • GSM Global System for Mobile communications
  • the UE 104 may be configured to configure a default beam for receiving CSI-RS 198.
  • UE 104 may configure a default beam parameter, receive, based on the configured default beam parameter, a DL/TCI parameter, and receive, based on the DL/TCI parameter, a CORESET on an active BWP.
  • FIG. 2A is a diagram 200 illustrating an example of a first subframe within a 5G NR frame structure.
  • FIG. 2B is a diagram 230 illustrating an example of DL channels within a 5G NR subframe.
  • FIG. 2C is a diagram 250 illustrating an example of a second subframe within a 5G NR frame structure.
  • FIG. 2D is a diagram 280 illustrating an example of UL channels within a 5G NR subframe.
  • the 5G NR frame structure may be frequency division duplexed (FDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be time division duplexed (TDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL.
  • FDD frequency division duplexed
  • TDD time division duplexed
  • the 5G NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and F is flexible for use between DL/UL, and subframe 3 being configured with slot format 34 (with mostly UL) . While subframes 3, 4 are shown with slot formats 34, 28, respectively, any particular subframe may be configured with any of the various available slot formats 0-61. Slot formats 0, 1 are all DL, UL, respectively. Other slot formats 2-61 include a mix of DL, UL, and flexible symbols.
  • UEs are configured with the slot format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) .
  • DCI DL control information
  • RRC radio resource control
  • SFI received slot format indicator
  • a frame e.g., of 10 milliseconds (ms)
  • ms milliseconds
  • Each subframe may include one or more time slots.
  • Subframes may also include mini-slots, which may include 7, 4, or 2 symbols.
  • Each slot may include 7 or 14 symbols, depending on the slot configuration. For slot configuration 0, each slot may include 14 symbols, and for slot configuration 1, each slot may include 7 symbols.
  • the symbols on DL may be cyclic prefix (CP) orthogonal frequency-division multiplexing (OFDM) (CP-OFDM) symbols.
  • CP-OFDM orthogonal frequency-division multiplexing
  • the symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (also referred to as single carrier frequency-division multiple access (SC-FDMA) symbols) (for power limited scenarios; limited to a single stream transmission) .
  • the number of slots within a subframe is based on the slot configuration and the numerology. For slot configuration 0, different numerologies ⁇ 0 to 4 allow for 1, 2, 4, 8, and 16 slots, respectively, per subframe. For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subframe. Accordingly, for slot configuration 0 and numerology ⁇ , there are 14 symbols/slot and 2 ⁇ slots/subframe.
  • the subcarrier spacing and symbol length/duration are a function of the numerology.
  • the subcarrier spacing may be equal to 2 ⁇ *15 kilohertz (kHz) , where ⁇ is the numerology 0 to 4.
  • is the numerology 0 to 4.
  • the symbol length/duration is inversely related to the subcarrier spacing.
  • the slot duration is 0.25 ms
  • the subcarrier spacing is 60 kHz
  • the symbol duration is approximately 16.67 ⁇ s.
  • Each BWP may have
  • a resource grid may be used to represent the frame structure.
  • Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers.
  • RB resource block
  • PRBs physical RBs
  • the resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
  • the RS may include demodulation RS (DM-RS) (indicated as R x for one particular configuration, where 100x is the port number, but other DM-RS configurations are possible) and channel state information reference signals (CSI-RS) for channel estimation at the UE.
  • DM-RS demodulation RS
  • CSI-RS channel state information reference signals
  • the RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
  • BRS beam measurement RS
  • BRRS beam refinement RS
  • PT-RS phase tracking RS
  • FIG. 2B illustrates an example of various DL channels within a subframe of a frame.
  • the physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) , each CCE including nine RE groups (REGs) , each REG including four consecutive REs in an OFDM symbol.
  • a PDCCH within one BWP may be referred to as a control resource set (CORESET) . Additional BWPs may be located at greater and/or lower frequencies across the channel bandwidth.
  • a primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a physical layer identity.
  • a secondary synchronization signal may be within symbol 4 of particular subframes of a frame.
  • the SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing. Based on the physical layer identity and the physical layer cell identity group number, the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DM-RS.
  • the physical broadcast channel (PBCH) which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block (also referred to as SS block (SSB) ) .
  • MIB master information block
  • the MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) .
  • the physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
  • SIBs system information blocks
  • some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel estimation at the base station.
  • the UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) .
  • the PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH.
  • the PUCCH DM-RS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used.
  • the UE may transmit sounding reference signals (SRS) .
  • the SRS may be transmitted in the last symbol of a subframe.
  • the SRS may have a comb structure, and a UE may transmit SRS on one of the combs.
  • the SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
  • FIG. 2D illustrates an example of various UL channels within a subframe of a frame.
  • the PUCCH may be located as indicated in one configuration.
  • the PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and hybrid automatic repeat request (HARQ) acknowledgement (ACK) /non-acknowledgement (NACK) feedback.
  • UCI uplink control information
  • the PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
  • BSR buffer status report
  • PHR power headroom report
  • FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network.
  • IP packets from the EPC 160 may be provided to a controller/processor 375.
  • the controller/processor 375 implements layer 3 and layer 2 functionality.
  • Layer 3 includes a radio resource control (RRC) layer
  • layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer.
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC medium access control
  • the controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression /decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDU
  • the transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions.
  • Layer 1 which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing.
  • the TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) .
  • BPSK binary phase-shift keying
  • QPSK quadrature phase-shift keying
  • M-PSK M-phase-shift keying
  • M-QAM M-quadrature amplitude modulation
  • the coded and modulated symbols may then be split into parallel streams.
  • Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream.
  • IFFT Inverse Fast Fourier Transform
  • the OFDM stream is spatially precoded to produce multiple spatial streams.
  • Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing.
  • the channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350.
  • Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318TX.
  • Each transmitter 318TX may modulate an RF carrier with a respective spatial stream for transmission.
  • each receiver 354RX receives a signal through its respective antenna 352.
  • Each receiver 354RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356.
  • the TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions.
  • the RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream.
  • the RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) .
  • FFT Fast Fourier Transform
  • the frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal.
  • the symbols on each subcarrier, and the reference signal are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358.
  • the soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel.
  • the data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
  • the controller/processor 359 can be associated with a memory 360 that stores program codes and data.
  • the memory 360 may be referred to as a computer-readable medium.
  • the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160.
  • the controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression /decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
  • RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting
  • PDCP layer functionality associated with
  • Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing.
  • the spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
  • the UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350.
  • Each receiver 318RX receives a signal through its respective antenna 320.
  • Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
  • the controller/processor 375 can be associated with a memory 376 that stores program codes and data.
  • the memory 376 may be referred to as a computer-readable medium.
  • the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160.
  • the controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • FIG. 4 is a block diagram illustrating an example disaggregated base station 400 architecture.
  • the disaggregated base station 400 architecture may include one or more CUs 410 that can communicate directly with a core network 420 via a backhaul link, or indirectly with the core network 420 through one or more disaggregated base station units (such as a near real-time (RT) RIC 425 via an E2 link, or a non-RT RIC 415 associated with a service management and orchestration (SMO) Framework 405, or both) .
  • a CU 410 may communicate with one or more DUs 430 via respective midhaul links, such as an F1 interface.
  • the DUs 430 may communicate with one or more RUs 440 via respective fronthaul links.
  • the RUs 440 may communicate with respective UEs 104 via one or more radio frequency (RF) access links.
  • RF radio frequency
  • Each of the units may include one or more interfaces or be coupled to one or more interfaces configured to receive or transmit signals, data, or information (collectively, signals) via a wired or wireless transmission medium.
  • Each of the units, or an associated processor or controller providing instructions to the communication interfaces of the units can be configured to communicate with one or more of the other units via the transmission medium.
  • the units can include a wired interface configured to receive or transmit signals over a wired transmission medium to one or more of the other units.
  • the units can include a wireless interface, which may include a receiver, a transmitter or transceiver (such as a radio frequency (RF) transceiver) , configured to receive or transmit signals, or both, over a wireless transmission medium to one or more of the other units.
  • a wireless interface which may include a receiver, a transmitter or transceiver (such as a radio frequency (RF) transceiver) , configured to receive or transmit signals, or both, over a wireless transmission medium to one or more of the other units.
  • RF radio frequency
  • the CU 410 may host higher layer control functions. Such control functions can include radio resource control (RRC) , packet data convergence protocol (PDCP) , service data adaptation protocol (SDAP) , or the like. Each control function can be implemented with an interface configured to communicate signals with other control functions hosted by the CU 410.
  • the CU 410 may be configured to handle user plane functionality (i.e., central unit –user plane (CU-UP) ) , control plane functionality (i.e., central unit –control plane (CU-CP) ) , or a combination thereof.
  • the CU 410 can be logically split into one or more CU-UP units and one or more CU-CP units.
  • the CU-UP unit can communicate bidirectionally with the CU-CP unit via an interface, such as the E1 interface when implemented in an O-RAN configuration.
  • the CU 410 can be implemented to communicate with the DU 430, as necessary, for network control and signaling.
  • the DU 430 may correspond to a logical unit that includes one or more base station functions to control the operation of one or more RUs 440.
  • the DU 430 may host one or more of a radio link control (RLC) layer, a medium access control (MAC) layer, and one or more high physical (PHY) layers (such as modules for forward error correction (FEC) encoding and decoding, scrambling, modulation and demodulation, or the like) depending, at least in part, on a functional split, such as those defined by the 3 rd Generation Partnership Project (3GPP) .
  • the DU 430 may further host one or more low PHY layers. Each layer (or module) can be implemented with an interface configured to communicate signals with other layers (and modules) hosted by the DU 430, or with the control functions hosted by the CU 410.
  • Lower-layer functionality can be implemented by one or more RUs 440.
  • an RU 440 controlled by a DU 430, may correspond to a logical node that hosts RF processing functions, or low-PHY layer functions (such as performing fast Fourier transform (FFT) , inverse FFT (iFFT) , digital beamforming, physical random access channel (PRACH) extraction and filtering, or the like) , or both, based at least in part on the functional split, such as a lower layer functional split.
  • the RU (s) 440 can be implemented to handle over the air (OTA) communication with one or more UEs 104.
  • OTA over the air
  • real-time and non-real-time aspects of control and user plane communication with the RU (s) 440 can be controlled by the corresponding DU 430.
  • this configuration can enable the DU (s) 430 and the CU 410 to be implemented in a cloud-based RAN architecture, such as a virtual RAN (vRAN) architecture.
  • vRAN virtual RAN
  • the SMO Framework 405 may be configured to support RAN deployment and provisioning of non-virtualized and virtualized network elements.
  • the SMO framework 405 may be configured to support the deployment of dedicated physical resources for RAN coverage requirements, which may be managed via an operations and maintenance interface (such as an O1 interface) .
  • the SMO framework 405 may be configured to interact with a cloud computing platform (such as an open cloud (O-cloud) 490) to perform network element life cycle management (such as to instantiate virtualized network elements) via a cloud computing platform interface (such as an O2 interface) .
  • a cloud computing platform such as an open cloud (O-cloud) 490
  • network element life cycle management such as to instantiate virtualized network elements
  • a cloud computing platform interface such as an O2 interface
  • Such virtualized network elements can include, but are not limited to, CUs 410, DUs 430, RUs 440 and near-RT RICs 425.
  • the SMO framework 405 can communicate with a hardware aspect of a 4G RAN, such as an open eNB (O-eNB) 411, via an O1 interface. Additionally, in some implementations, the SMO Framework 405 can communicate directly with one or more RUs 440 via an O1 interface.
  • the SMO framework 405 also may include the non-RT RIC 415 configured to support functionality of the SMO Framework 405.
  • the non-RT RIC 415 may be configured to include a logical function that enables non-real-time control and optimization of RAN elements and resources, artificial intelligence/machine learning (AI/ML) workflows including model training and updates, or policy-based guidance of applications/features in the near-RT RIC 425.
  • the non-RT RIC 415 may be coupled to or communicate with (such as via an A1 interface) the near-RT RIC 425.
  • the near-RT RIC 425 may be configured to include a logical function that enables near-real-time control and optimization of RAN elements and resources via data collection and actions over an interface (such as via an E2 interface) connecting one or more CUs 410, one or more DUs 430, or both, as well as an O-eNB, with the near-RT RIC 425.
  • the non-RT RIC 415 may receive parameters or external enrichment information from external servers. Such information may be utilized by the near-RT RIC 425 and may be received at the SMO Framework 405 or the non-RT RIC 415 from non-network data sources or from network functions.
  • the non-RT RIC 415 or the near-RT RIC 425 may be configured to tune RAN behavior or performance.
  • the non-RT RIC 415 may monitor long-term trends and patterns for performance and employ AI/ML models to perform corrective actions through the SMO Framework 405 (such as reconfiguration via O1) or via creation of RAN management policies (such as A1 policies) .
  • At least one of the TX processor 368, the RX processor 356, and the controller/processor 359 may be configured to perform aspects in connection with 198 of FIG. 1.
  • the UE 104 may receive CSI-RS on one or more DL beams.
  • the CSI-RS may be transmitted and/or received using a unified or non-unified TCI framework.
  • the UE 104 may use various parameters, either received parameters or parameters known and/or stored by the UE 104, to determine where to receive CSI-RS information.
  • the CSI-RS and/or CSI may be aperiodic, and may be received on multiple carriers in a CCS environment.
  • a structure or configuration for the UE 104 may be determined based, at least in part, on various parameters as discussed hereinbelow.
  • the UE 104 may receive and/or configure one or more parameters to determine where and when CSI is to be received. Such parameters may determine one or more default DL beams, what BWP the CSI is located in, or other locations and/or multiple beams for CSI-RS and/or A-CSI-RS.
  • a known or default beam for receiving CSI-RS may be supported for CCS using a non-unified TCI framework.
  • the CSI-RS default beam (s) may not be clearly defined in a unified TCI framework.
  • a default identification/location for the CSI-RS default beam (s) , or the DL beam (s) and locations within the BWP of one or more DL beams is determined by the UE 104.
  • the CSI-RS may be aperiodic (A-CSI-RS) , and the UE 104 may determine when to receive the A-CSI-RS and on which DL beams.
  • the TCI may be unified or non-unified.
  • Type 1 is a Joint TCI state that indicates a common beam for at least one DL channel/RS plus at least one UL channel/RS, including at least a UE-specific PDCCH, PDSCH, PUCCH, PUSCH, and CSI-RS.
  • Type 2 is a separate DL TCI state to indicate a common beam for more than one DL channel/RS, including at least a UE-specific PDCCH, PDSCH and CSI-RS.
  • Type 3 is a separate UL TCI state to indicate a common beam for more than one UL channel/RS, including at least a UE-specific PUCCH, PUSCH.
  • the CSI-RS may be received on different DL beams.
  • FIG. 5 is a block diagram illustrating an example configuration of a default beam for receiving information in accordance with various aspects of the present disclosure.
  • Diagram 500 illustrates a logic tree for the UE 104 such that the UE 104 can determine where the CSI-RS and/or A-CSI-RS information is to be received.
  • the UE 104 determines if a parameter, e.g., a parameter named “DefaultBeamForCCS” is received and/or configured to the UE 104. If the parameter is not received and/or configured, the UE must determine a scheduling offset between the DCI received on one CC and A-CSI-RS received on another CC as shown in block 504, and control would pass to block 506. The continuation of block 506 is shown in FIG. 6.
  • the UE 104 determines, in block 508, whether there is an indicated DL or indicated Joint TCI. If there is an indicated DL or indicated Joint TCI for reception of the DCI/CSI-RS, then the quasi-co location (QCL) of the indicated DL or indicated Joint DCI is applied by the UE 104 for reception of the DCI/CSI-RS as shown in block 510.
  • QCL quasi-co location
  • the UE determines, in block 512, if a CORESET has been received or is available on the active BWP of the DL.
  • the CORESET when received by the UE 104, provides the UE 104 with a search space set for CCS. If the CORESET has been received by the UE 104, then the UE 104 may apply the QCL of the CORESET for reception of the DCI/CSI-RS as shown in block 514.
  • block 516 may have the UE 104 apply the QCL of the lowest-ID activated TCI state for reception of the DCI/CSI-RS as shown in block 516; however, other TCI states may be used without departing from the scope of the present disclosure.
  • the scheduling offset between the last symbol of the PDCCH carrying the triggering DCI on one CC and the first symbol of the aperiodic CSI-RS resources in a NZP-CSI-RS-ResourceSet on another CC may be smaller than a predetermined time offset.
  • the QCL for the various different locations of the DCI and aperiodic CSI-RS needs to be determined. For example, 1) if there is an indicated DL or joint TCI on the active BWP of the cell in which the CSI-RS is to be received, the UE 104 applies the QCL assumption of the DL or joint TCI.
  • the UE 104 applies the QCL assumption of the CORESET associated with a monitored search space with the lowest controlResourceSetId in the latest slot in which one or more CORESETs within the active BWP of the cell are monitored by the UE, 3) else, the UE104 applies the QCL assumption of the lowest-ID activated TCI state applicable to the PDSCH within the active BWP of the cell in which the CSI-RS is to be received.
  • the UE 104 may determine a default QCL assumption in the case that aperiodic CSI reporting and/or aperiodic CSI-RS reception is triggered when the triggering PDCCH and the CSI-RS have the same numerology.
  • the UE For each aperiodic CSI-RS resource in a CSI-RS resource set associated with each CSI triggering state, the UE is indicated the quasi co-location configuration of quasi co-location RS source (s) and quasi co-location type (s) , through higher layer signaling of qcl-info which contains a list of references to TCI-State's for the aperiodic CSI-RS resources associated with the CSI triggering state.
  • RS may be an SS/PBCH block located in the same or different CC/DL BWP or a CSI-RS resource configured as periodic or semi-persistent located in the same or different CC/DL BWP.
  • the scheduling offset between the last symbol of the PDCCH carrying the triggering DCI and the first symbol of the aperiodic CSI-RS resources in a NZP-CSI-RS-ResourceSet configured without higher layer parameter trs-Info is smaller than the UE reported threshold beamSwitchTiming, when the reported value is one of the values of and enableBeamSwitchTiming is not provided, or is smaller than when the UE provides beamSwitchTiming-r16, enableBeamSwitchTiming is provided and the NZP-CSI-RS-ResourceSet is configured with the higher layer parameter repetition set to 'off' or configured without the higher layer parameter repetition, or is smaller than the UE reported threshold beamSwitchTiming-r16, when enableBeamSwitchTiming is provided and the NZP-CSI-RS-ResourceSet is configured with the higher layer parameter repetition set to 'on' : 1) if the UE is configured with enableDefaultBeamForCCS and is not indicated with a TCI state
  • the UE 104 may determine a default QCL assumption in the case that aperiodic CSI reporting and/or aperiodic CSI-RS is triggered when the triggering PDCCH and the CSI-RS have different numerologies. If the scheduling offset between the last symbol of the PDCCH carrying the triggering DCI and the first symbol of the aperiodic CSI-RS resources in a NZP-CSI-RS-ResourceSet configured without higher layer parameter trs-Info is smaller than in CSI-RS symbols, when the reported value is one of the values of and enableBeamSwitchTiming is not provided, or is smaller than in CSI-RS symbols when the UE provides beamSwitchTiming-r16 and enableBeamSwitchTiming is provided and the NZP-CSI-RS-ResourceSet is configured with the higher layer parameter repetition set to 'off' or configured without the higher layer parameter repetition, or is smaller than in CSI-RS symbols, when enableBeamSwitchTiming is provided and the
  • one of the associated trigger states has the higher layer parameter qcl-Type set to 'typeD' : 1) if there is any other DL signal with an indicated TCI state in the same symbols as the CSI-RS, the UE applies the QCL assumption of the other DL signal also when receiving the aperiodic CSI-RS.
  • the other DL signal refers to PDSCH scheduled with offset larger than or equal to the threshold timeDurationForQCL, periodic CSI-RS, semi-persistent CSI-RS, aperiodic CSI-RS scheduled with offset larger than or equal to in CSI-RS symbols when the reported value is one of the values and when enableBeamSwitchTiming is not provided or the NZP-CSI-RS-ResourceSet is configured with the higher layer parameter trs-Info, aperiodic CSI-RS in a NZP-CSI-RS-ResourceSet configured with the higher layer parameter repetition set to 'off' or configured without the higher layer parameters repetition and trs-Info scheduled with offset larger than or equal to in CSI-RS symbols when the UE provides beamSwitchTiming-r16 and enableBeamSwitchTiming is provided, aperiodic CSI-RS in a NZP-CSI-RS-ResourceSet configured with the higher layer parameter repetition set to 'on' and scheduled with offset larger than or equal
  • FIG. 6 is a block diagram illustrating an example configuration of a default beam for receiving information in accordance with various aspects of the present disclosure.
  • the time offset between the reception of the detected PDCCH in the search space set and the corresponding PDSCH may be larger than or equal to the threshold time period of the UE 104 to switch between CC, also known as the beam switch latency threshold of the UE 104.
  • the UE 104 may determine a scheduling offset between the DCI received on one CC and the A-CSI-RS received on another CC.
  • the scheduling offset may have different values, as described hereinbelow.
  • the UE 104 has determined that DefaultBeamForCCS has not been received/configured in block 502, and therefore a scheduling offset must be determined as described in block 504. Control then passes to block 506, which then passes to block 602.
  • the UE 104 determines, reports, and/or configures the value of another parameter, e.g., a parameter known as “beamSwitchTiming” to determine how large of a scheduling offset to generate. If the parameter beamSwitchTiming reported, in symbols, is one of ⁇ 14, 28, 48 ⁇ , then the UE 104 must determine, in block 604, whether another parameter has been configured and/or received. In an aspect of the present disclosure, the UE 104 configures a scheduling offset based on a configured default beam parameter, which may be the beamSwitchTiming parameter.
  • a configured default beam parameter which may be the beamSwitchTiming parameter.
  • an RRC parameter e.g., the RRC parameter known as “enableBeamSwitchingTiming” is verified as being received and/or configured. If so, control passes to block 606, which is an error case, as the UE 104 has not received a proper set of values to determine a scheduling offset. If not, control passes to block 608, where a scheduling offset can be configured by the UE 104 as being greater than the value of beamSwitchTiming plus d times 2 to the ⁇ CSIRS divided by 2 to the ⁇ PDCCH, in CSI-RS symbols, as follows:
  • the UE 104 may receive a DCI on a first CC and a CSI-RS on a second CC.
  • the determined scheduling offset is the minimum amount of time the UE has to wait between the reception of the DCI on the first CC and the CSI-RS on the second CC.
  • the UE 104 In block 602, if the UE 104 does not report the value of beamSwitchTiming as one of ⁇ 14, 28, 48 ⁇ , then the UE 104 must determine, report, and/or configure, in block 610 the value of another parameter, e.g., a parameter known as “beamSwitchTiming-r16” to determine how large of a scheduling offset to generate. If the parameter beamSwitchTiming-r16, in symbols, is one of ⁇ 14, 28, 48 ⁇ , then the UE 104 must determine, in block 612, whether another parameter has been configured and/or received. In an aspect of the present disclosure, the UE 104 configures a scheduling offset based on a configured default beam parameter, which may be the beamSwitchTiming-r16 parameter.
  • a configured default beam parameter which may be the beamSwitchTiming-r16 parameter.
  • an RRC parameter e.g., the RRC parameter known as “enableBeamSwitchingTiming” is verified as being received and/or configured. If not, control passes to block 614, which is an error case, as the UE 104 has not received a proper set of values to determine a scheduling offset.
  • a scheduling offset can be configured by the UE 104 in block 616 as being greater than the value of 48 times 2 to the maximum of (0, uCSIRS-3) plus d times 2 to the ⁇ CSIRS divided by 2 to the ⁇ PDCCH, in CSI-RS symbols, as follows:
  • the UE 104 may receive a DCI on a first CC and a CSI-RS on a second CC.
  • the determined scheduling offset is the minimum amount of time the UE has to wait between the reception of the DCI on the first CC and the CSI-RS on the second CC.
  • FIG. 7 is a block diagram illustrating an example configuration of a default beam for receiving information in accordance with various aspects of the present disclosure.
  • the UE 104 has determined that DefaultBeamForCCS has not been received/configured in block 502, and therefore a scheduling offset must be determined as described in block 504. Control then passes to block 506, which then passes to block 602.
  • the UE 104 has not reported beamSwitchTiming as one of ⁇ 14, 28, 48 ⁇ , and has not reported beamSwitchTiming-r16 as one of ⁇ 14, 28, 48 ⁇ , which passed control to block B 618.
  • Block B 618 passes control to block 702.
  • an RRC parameter e.g., the RRC parameter known as “enableBeamSwitchingTiming” is verified as being received and/or configured. If so, another RRC parameter, e.g., the RRC parameter known as “Repetition” is verified as being received and/or configured in block 708.
  • the scheduling offset is configured in block 710 as where a scheduling offset can be configured by the UE 104 as being greater than the value of beamSwitchTiming-r16 plus d times 2 to the ⁇ CSIRS divided by 2 to the ⁇ PDCCH, in CSI-RS symbols, as follows:
  • the scheduling offset is configured in block 712 as being greater than the value of 48 times 2 to the maximum of (0, ⁇ CSIRS-3) plus d times 2 to the ⁇ CSIRS divided by 2 to the ⁇ PDCCH, in CSI-RS symbols, as follows:
  • the UE 104 may receive a DCI on a first CC and a CSI-RS on a second CC.
  • the determined scheduling offset is the minimum amount of time the UE has to wait between the reception of the DCI on the first CC and the CSI-RS on the second CC.
  • FIG. 8 is a flow diagram of information transfer and configuration in accordance with an aspect of the present disclosure.
  • Diagram 800 illustrates information received by UE 802 from BS 804.
  • the UE 802 receives downlink information, such as DL/TCI 806, from the BS 804.
  • the UE 802 may also receive CORESET information 808 from the BS 804.
  • the UE 802 then configures/receives QCL information 810 based on the received DL/TCI 806 and the received CORESET 808.
  • the UE 802 may receive additional information DCI 812 and CSI/RS 814. The UE 802 then configures the beam switch timing 816 and the scheduling offset 818 based on the received DCI 812 and the received CSI/RS 814.
  • FIG. 9 is a flowchart 900 of a method of wireless communication.
  • the method may be performed by a UE (e.g., the UE 104; the apparatus 1002) .
  • the UE e.g., the UE 104; the apparatus 1002 .
  • the UE e.g., the UE 104; the apparatus 1002 .
  • a default beam parameter For example, 902 may be performed by default beam component 1040.
  • the UE receives, based on the configured default beam parameter, a downlink/transmission configuration indicator (DL/TCI) parameter.
  • DL/TCI downlink/transmission configuration indicator
  • 904 may be performed by DL/TCI Receive Component 1042.
  • the UE receives, based on the received DL/TCI parameter, a control resource set (CORESET) on an active bandwidth part (BWP) .
  • CORESET control resource set
  • BWP active bandwidth part
  • FIG. 10 is a diagram 1000 illustrating an example of a hardware implementation for an apparatus 1002.
  • the apparatus 1002 is a UE and includes a cellular baseband processor 1004 (also referred to as a modem) coupled to a cellular RF transceiver 1022 and one or more subscriber identity modules (SIM) cards 1020, an application processor 1006 coupled to a secure digital (SD) card 1008 and a screen 1010, a Bluetooth module 1012, a wireless local area network (WLAN) module 1014, a Global Positioning System (GPS) module 1016, and a power supply 1018.
  • the cellular baseband processor 1004 communicates through the cellular RF transceiver 1022 with the UE 104 and/or BS 102/180.
  • the cellular baseband processor 1004 may include a computer-readable medium /memory.
  • the computer-readable medium /memory may be non-transitory.
  • the cellular baseband processor 1004 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory.
  • the software when executed by the cellular baseband processor 1004, causes the cellular baseband processor 1004 to perform the various functions described supra.
  • the computer-readable medium /memory may also be used for storing data that is manipulated by the cellular baseband processor 1004 when executing software.
  • the cellular baseband processor 1004 further includes a reception component 1030, a communication manager 1032, and a transmission component 1034.
  • the communication manager 1032 includes the one or more illustrated components.
  • the components within the communication manager 1032 may be stored in the computer-readable medium /memory and/or configured as hardware within the cellular baseband processor 1004.
  • the cellular baseband processor 1004 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359.
  • the apparatus 1002 may be a modem chip and include just the baseband processor 1004, and in another configuration, the apparatus 1002 may be the entire UE (e.g., see 350 of FIG. 3) and include the aforediscussed additional modules of the apparatus 1002.
  • the communication manager 1032 includes a default beam component 1040 that is configured to configure a default beam parameter at the UE, e.g., as described in connection with 902.
  • the communication manager 1032 further includes a DL/TCI Receive Component 1042 that receives input in the form of DL/TCI information and is configured to receive DL/TCI information from the reception component 1030, e.g., as described in connection with 904.
  • the communication manager 1032 further includes a CORESET Receive component 1044 that receives input in the form of CORESET information from the reception component 1030 and is configured to receive CORESET information, e.g., as described in connection with 906.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowcharts of FIGs. 5-9. As such, each block in the aforementioned flowcharts of FIGs. 5-9 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • the apparatus 1002 includes means for means for configuring a default beam parameter, means for receiving, based on the configured default beam parameter, a downlink/transmission configuration indicator (DL/TCI) parameter, means for receiving, based on the DL/TCI parameter, a control resource set (CORESET) on an active bandwidth part (BWP) at the UE, means for receiving, based on the received DL/TCI parameter and the received CORESET, a quasi co-located signal at the UE, means for configuring a scheduling offset at the UE based on the configured default beam parameter, means for configuring a scheduling offset at the UE based on the configured default beam parameter, means for receiving, at the UE, a DCI on a first component carrier, means for receiving, at the UE, a CSI-RS on a second component carrier, means for configuring a first value of a first beam switch timing parameter at the UE, means for configuring the scheduling offset at the UE based
  • the aforementioned means may be one or more of the aforementioned components of the apparatus 1002 configured to perform the functions recited by the aforementioned means.
  • the apparatus 1002 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359.
  • the aforementioned means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the aforementioned means.
  • the present disclosure provides a solution to cross-carrier scheduling of CSI-RS in a unified TCI framework, where the CSI-RS may be aperiodic.
  • the present disclosure provides advantages to determine what CSI-RS when certain parameters are present or configured, e.g., enableDefaultBeamForCCS, as well as advantages when certain parameters are not present or not configured, e.g., enableDefaultBeamForCCS.
  • advantages of consistent, predictable CCS for each UE, whether default beams are determined or not are provided. Further, depending on which other parameters available to the UE, advantages of predictable, consistent CCS are available to allow for more traffic on a given system.
  • Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C.
  • combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C.
  • An apparatus for wireless communication in accordance with an aspect of the present disclosure may comprise a memory and at least one processor coupled to the memory and configured to configure a default beam parameter at a user equipment (UE) , receive, based on the configured default beam parameter, a downlink/transmission configuration indicator (DL/TCI) parameter at the UE; and receive, based on the received DL/TCI parameter, a control resource set (CORESET) on an active bandwidth part (BWP) at the UE.
  • DL/TCI downlink/transmission configuration indicator
  • CORESET control resource set
  • Example 2 The apparatus of Example 1, wherein the at least one processor is further configured to receive, based on the received DL/TCI parameter and the received CORESET, a quasi co-located signal at the UE.
  • Example 3 The apparatus of Example 2, wherein the at least one processor is further configured to configure a scheduling offset at the UE based on the configured default beam parameter.
  • Example 4 The apparatus of Example 3, wherein the at least one processor is further configured to receive, at the UE, a downlink control information (DCI) on a first component carrier, and receive, at the UE, a channel state information reference signal (CSI-RS) on a second component carrier.
  • DCI downlink control information
  • CSI-RS channel state information reference signal
  • Example 5 The apparatus of Example 4, wherein the at least one processor is further configured to configure a first value of a first beam switch timing parameter at the UE, and configure the scheduling offset at the UE based on the configured default beam parameter and the configured first value.
  • Example 6 The apparatus of Example 5, wherein the at least one processor is further configured to configure a second value of a second beam switch timing parameter at the UE, and configure the scheduling offset at the UE based on the configured default beam parameter, the configured first value, and the configured second value.
  • Example 7 The apparatus of Example 6, wherein the at least one processor is further configured to receive a beam switching timing parameter at the UE, and configure the scheduling offset at the UE based on the configured first value, the configured second value, and the received beam switching timing parameter.
  • Example 8 The apparatus of Example 7, wherein the at least one processor is further configured to receive a repetition parameter at the UE, and configure the scheduling offset at the UE based on the configured first value, the configured second value, the received beam switching timing parameter, and the received repetition parameter.
  • Example 9 The apparatus of Example 8, wherein the configured scheduling offset is greater than a beam switching latency threshold.
  • Example 10 The apparatus of any of Examples 1 to 9, wherein a channel state information reference signal (CSI-RS) is aperiodic.
  • CSI-RS channel state information reference signal
  • An apparatus for wireless communication in accordance with an aspect of the present disclosure may comprise means for configuring a default beam parameter at a user equipment (UE) , means for receiving, based on the configured default beam parameter, a downlink/transmission configuration indicator (DL/TCI) parameter at the UE, and means for receiving, based on the DL/TCI parameter, a control resource set (CORESET) on an active bandwidth part (BWP) at the UE.
  • DL/TCI downlink/transmission configuration indicator
  • CORESET control resource set
  • Example 12 The apparatus of Example 11, further comprising means for receiving, based on the received DL/TCI parameter and the received CORESET, a quasi co-located signal at the UE.
  • Example 13 The apparatus of Example 12, further comprising means for configuring a scheduling offset at the UE based on the configured default beam parameter.
  • Example 14 The apparatus of Example 13, further comprising means for receiving, at the UE, a downlink control information (DCI) on a first component carrier, and means for receiving, at the UE, a channel state information reference signal (CSI-RS) on a second component carrier.
  • DCI downlink control information
  • CSI-RS channel state information reference signal
  • Example 15 The apparatus of Example 14, further comprising means for configuring a first value of a first beam switch timing parameter at the UE, and means for configuring the scheduling offset at the UE based on the configured default beam parameter and the configured first value.
  • Example 16 The apparatus of Example 15, further comprising means for configuring a second value of a second beam switch timing parameter at the UE, and means for configuring the scheduling offset at the UE based on the configured default beam parameter, the configured first value, and the configured second value.
  • Example 17 The apparatus of Example 16, further comprising means for receiving a beam switching timing parameter at the UE, and means for configuring the scheduling offset at the UE based on the configured first value, the configured second value, and the received beam switching timing parameter.
  • Example 18 The apparatus of Example 17, further comprising means for receiving a repetition parameter at the UE, and means for configuring the scheduling offset at the UE based on the configured first value, the configured second value, the received beam switching timing parameter, and the received repetition parameter.
  • Example 19 The apparatus of any of Examples 11 to 18, wherein the configured scheduling offset is greater than a beam switching latency threshold.
  • Example 20 The apparatus of any of Examples 11 to 18, wherein a channel state information reference signal (CSI-RS) is aperiodic.
  • CSI-RS channel state information reference signal
  • a method of wireless communication in accordance with an aspect of the present disclosure may comprise configuring a default beam parameter at a user equipment (UE) , receiving, based on the configured default beam parameter, a downlink/transmission configuration indicator (DL/TCI) parameter at the UE, and receiving, based on the received DL/TCI parameter, a control resource set (CORESET) on an active bandwidth part (BWP) at the UE.
  • UE user equipment
  • CORESET control resource set
  • Example 22 The method of Example 21, further comprising receiving, based on the received DL/TCI parameter and the received CORESET, a quasi co-located signal at the UE.
  • Example 23 The method of Example 22, further comprising configuring a scheduling offset at the UE based on the configured default beam parameter.
  • Example 24 The method of Example 23, further comprising receiving, at the UE, a downlink control information (DCI) on a first component carrier, and receiving, at the UE, a channel state information reference signal (CSI-RS) on a second component carrier.
  • DCI downlink control information
  • CSI-RS channel state information reference signal
  • Example 25 The method of Example 24, further comprising configuring a first value of a first beam switch timing parameter at the UE, and configuring the scheduling offset at the UE based on the configured default beam parameter and the configured first value.
  • Example 26 The method of Example 25, further comprising configuring a second value of a second beam switch timing parameter at the UE, and configuring the scheduling offset at the UE based on the configured default beam parameter, the configured first value, and the configured second value.
  • Example 27 The method of Example 26, further comprising receiving a beam switching timing parameter at the UE, and configuring the scheduling offset at the UE based on the configured first value, the configured second value, and the received beam switching timing parameter.
  • Example 28 The method of Example 27, further comprising receiving a repetition parameter at the UE, and configuring the scheduling offset at the UE based on the configured first value, the configured second value, the received beam switching timing parameter, and the received repetition parameter.
  • Example 29 The method of any of Examples 21 to 28, wherein a channel state information reference signal (CSI-RS) is aperiodic.
  • CSI-RS channel state information reference signal
  • Example 30 A computer-readable medium storing computer executable code in accordance with an aspect of the present disclosure may have the code when executed by a processor cause the processor to configure a default beam parameter at a user equipment (UE) , receive, based on the configured default beam parameter, a downlink/transmission configuration indicator (DL/TCI) parameter at the UE, and
  • UE user equipment
  • DL/TCI downlink/transmission configuration indicator
  • CORESET control resource set
  • BWP active bandwidth part

Abstract

In a unified transmission configuration indicator framework, default beams for receiving channel state information and cross-carrier scheduling information may not always be clearly defined. An apparatus for wireless communication to alleviate this problem may comprise a memory, and at least one processor coupled to the memory and configured to configure a default beam parameter at a user equipment, receive, based on the configured default beam parameter, a downlink/transmission configuration indicator parameter at the user equipment, and receive, based on the received downlink/transmission configuration indicator parameter, a control resource set on an active bandwidth part at the user equipment.

Description

DEFAULT CHANNEL STATE INFORMATION BEAM FOR CROSS-CARRIER SCHEDULING IN UNIFIED TRANSMISSION CONFIGURATION INDICATOR FRAMEWORK BACKGROUND Technical Field
The present disclosure generally relates to communication systems, and more particularly, to default channel state information (CSI) beam for cross-carrier scheduling (CCS) in a unified transmission configuration indicator (TCI) framework.
Introduction
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. An example telecommunication standard is 5G New Radio (NR) . 5G NR is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements. 5G NR includes services associated with enhanced mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra-reliable low latency communications (URLLC) . Some aspects of 5G NR may be based on the 4G Long Term Evolution (LTE) standard. There exists a need for further improvements in 5G  NR technology. These improvements may also be applicable to other multi-access technologies and the telecommunication standards that employ these technologies.
SUMMARY
The following presents a simplified summary of one or more aspects in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated aspects, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.
In an aspect of the present disclosure, some information, such as a channel state information reference signal (CSI-RS) , may be received on one or more default DL beams. A transmission configuration indicator (TCI) framework, whether unified or non-unified, as well as the configuration of the user equipment (UE) , may determine which beam or beams, and/or which location (s) in a beam or beams, the information is to be received at the UE. The UE may receive CSI-RS on one or more downlink (DL) beams. The CSI-RS may be received using a unified or non-unified TCI framework.
The UE may use various parameters, either received parameters or parameters known and/or stored by the UE, to determine where to receive CSI-RS information and how to configure scheduling offsets for receiving information from the base station (BS) . In a non-unified TCI framework, the CSI-RS and/or CSI received at the UE may be aperiodic, and may be received on multiple carriers or carrier components. In an aspect of the present disclosure, a structure or configuration for the UE may be determined based, at least in part, on various parameters. The UE may receive and/or configure one or more parameters to determine where and when CSI is to be received. Such parameters may determine one or more default DL beams, what bandwidth part the CSI is located in, or other locations and/or multiple beams for CSI-RS and/or aperiodic CSI-RS.
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. An apparatus for wireless communication in accordance with an aspect of the present disclosure may comprise a memory and at least one processor coupled to the memory and configured to configure a default beam parameter at a user  equipment (UE) , receive, based on the configured default beam parameter, a downlink/transmission configuration indicator (DL/TCI) parameter at the UE; and receive, based on the received DL/TCI parameter, a control resource set (CORESET) on an active bandwidth part (BWP) at the UE.
Such an apparatus further optionally includes the at least one processor being further configured to receive, based on the received DL/TCI parameter and the received CORESET, a quasi co-located signal at the UE, the at least one processor being further configured to configure a scheduling offset at the UE based on the configured default beam parameter, the at least one processor being further configured to receive, at the UE, a downlink control information (DCI) on a first component carrier, and receive, at the UE, a channel state information reference signal (CSI-RS) on a second component carrier, the at least one processor being further configured to configure a first value of a first beam switch timing parameter at the UE, and configure the scheduling offset at the UE based on the configured default beam parameter and the configured first value, the at least one processor being further configured to configure a second value of a second beam switch timing parameter at the UE, and configure the scheduling offset at the UE based on the configured default beam parameter, the configured first value, and the configured second value, the at least one processor being further configured to receive a beam switching timing parameter at the UE, and configure the scheduling offset at the UE based on the configured first value, the configured second value, and the received beam switching timing parameter, the at least one processor, the at least one processor being further configured to receive a repetition parameter at the UE, and configure the scheduling offset at the UE based on the configured first value, the configured second value, the received beam switching timing parameter, and the received repetition parameter, the configured scheduling offset being greater than a beam switching latency threshold, and a channel state information reference signal (CSI-RS) being aperiodic.
An apparatus for wireless communication in accordance with an aspect of the present disclosure may comprise means for configuring a default beam parameter at a user equipment (UE) , means for receiving, based on the configured default beam parameter, a downlink/transmission configuration indicator (DL/TCI) parameter at the UE, and means for receiving, based on the DL/TCI parameter, a control resource set (CORESET) on an active bandwidth part (BWP) at the UE.
Such an apparatus may further optionally include means for receiving, based on the received DL/TCI parameter and the received CORESET, a quasi co-located signal at the UE, means for configuring a scheduling offset at the UE based on the configured default beam parameter, means for receiving, at the UE, a downlink control information (DCI) on a first component carrier, and means for receiving, at the UE, a channel state information reference signal (CSI-RS) on a second component carrier, means for configuring a first value of a first beam switch timing parameter at the UE, and means for configuring the scheduling offset at the UE based on the configured default beam parameter and the configured first value, means for configuring a second value of a second beam switch timing parameter at the UE, and means for configuring the scheduling offset at the UE based on the configured default beam parameter, the configured first value, and the configured second value, means for receiving a beam switching timing parameter at the UE, and means for configuring the scheduling offset at the UE based on the configured first value, the configured second value, and the received beam switching timing parameter, means for receiving a repetition parameter at the UE, and means for configuring the scheduling offset at the UE based on the configured first value, the configured second value, the received beam switching timing parameter, and the received repetition parameter, the configured scheduling offset being greater than a beam switching latency threshold, and a channel state information reference signal (CSI-RS) being aperiodic.
A method of wireless communication in accordance with an aspect of the present disclosure may comprise configuring a default beam parameter at a user equipment (UE) , receiving, based on the configured default beam parameter, a downlink/transmission configuration indicator (DL/TCI) parameter at the UE, and receiving, based on the received DL/TCI parameter, a control resource set (CORESET) on an active bandwidth part (BWP) at the UE.
Such a method may further optionally include receiving, based on the received DL/TCI parameter and the received CORESET, a quasi co-located signal at the UE, configuring a scheduling offset at the UE based on the configured default beam parameter, receiving, at the UE, a downlink control information (DCI) on a first component carrier, and receiving, at the UE, a channel state information reference signal (CSI-RS) on a second component carrier, configuring a first value of a first beam switch timing parameter at the UE, and configuring the scheduling offset at the  UE based on the configured default beam parameter and the configured first value, configuring a second value of a second beam switch timing parameter at the UE, and configuring the scheduling offset at the UE based on the configured default beam parameter, the configured first value, and the configured second value, receiving a beam switching timing parameter at the UE, and configuring the scheduling offset at the UE based on the configured first value, the configured second value, and the received beam switching timing parameter, receiving a repetition parameter at the UE, and configuring the scheduling offset at the UE based on the configured first value, the configured second value, the received beam switching timing parameter, and the received repetition parameter, and a channel state information reference signal (CSI-RS) being aperiodic.
A computer-readable medium storing computer executable code in accordance with an aspect of the present disclosure may have the code when executed by a processor cause the processor to configure a default beam parameter at a user equipment (UE) , receive, based on the configured default beam parameter, a downlink/transmission configuration indicator (DL/TCI) parameter at the UE, and receive, based on the received DL/TCI parameter, a control resource set (CORESET) on an active bandwidth part (BWP) at the UE.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
FIG. 2A is a diagram illustrating an example of a first frame, in accordance with various aspects of the present disclosure.
FIG. 2B is a diagram illustrating an example of DL channels within a subframe, in accordance with various aspects of the present disclosure.
FIG. 2C is a diagram illustrating an example of a second frame, in accordance with various aspects of the present disclosure.
FIG. 2D is a diagram illustrating an example of UL channels within a subframe, in accordance with various aspects of the present disclosure.
FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
FIG. 4 is a block diagram illustrating an example disaggregated base station architecture in accordance with various aspects of the present disclosure.
FIG. 5 is a block diagram illustrating an example configuration of a default beam for receiving information in accordance with various aspects of the present disclosure.
FIG. 6 is a block diagram illustrating an example configuration of a default beam for receiving information in accordance with various aspects of the present disclosure.
FIG. 7 is a block diagram illustrating an example configuration of a default beam for receiving information in accordance with various aspects of the present disclosure.
FIG. 8 is a flow diagram of information transfer and configuration in accordance with an aspect of the present disclosure.
FIG. 9 is a flowchart of a method of wireless communication in accordance with an aspect of the present disclosure.
FIG. 10 is a diagram illustrating an example of a hardware implementation for an example apparatus in accordance with an aspect of the present disclosure.
DETAILED DESCRIPTION
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
Several aspects of telecommunication systems will now be presented with reference to various apparatus and methods. These apparatus and methods will be described in  the following detailed description and illustrated in the accompanying drawings by various blocks, components, circuits, processes, algorithms, etc. (collectively referred to as “elements” ) . These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
By way of example, an element, or any portion of an element, or any combination of elements may be implemented as a “processing system” that includes one or more processors. Examples of processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. One or more processors in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
Accordingly, in one or more example embodiments, the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium. Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100. The wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes base stations 102, user equipment (s) (UE) 104, an Evolved Packet Core (EPC) 160, and another core network 190 (e.g., a 5G Core (5GC) ) . The base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) . The macrocells include base stations. The small cells include femtocells, picocells, and microcells.
The base stations 102 configured for 4G Long Term Evolution (LTE) (collectively referred to as Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN) ) may interface with the EPC 160 through first backhaul links 132 (e.g., S1 interface) . The base stations 102 configured for 5G New Radio (NR) (collectively referred to as Next Generation RAN (NG-RAN) ) may interface with core network 190 through second backhaul links 184. In addition to other functions, the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, Multimedia Broadcast Multicast Service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages. The base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or core network 190) with each other over third backhaul links 134 (e.g., X2 interface) . The first backhaul links 132, the second backhaul links 184, and the third backhaul links 134 may be wired or wireless.
The base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102. A network that includes both small cell and macrocells may be known as a heterogeneous network. A heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) . The  communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104. The communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity. The communication links may be through one or more carriers. The base stations 102 /UEs 104 may use spectrum up to Y megahertz (MHz) (e.g., 5, 10, 15, 20, 100, 400, etc. MHz) bandwidth per carrier allocated in a carrier aggregation of up to a total of Yx MHz (x component carriers) used for transmission in each direction. The carriers may or may not be adjacent to each other. Allocation of carriers may be asymmetric with respect to DL and UL (e.g., more or fewer carriers may be allocated for DL than for UL) . The component carriers may include a primary component carrier and one or more secondary component carriers. A primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
Certain UEs 104 may communicate with each other using device-to-device (D2D) communication link 158. The D2D communication link 158 may use the DL/UL WWAN spectrum. The D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) . D2D communication may be through a variety of wireless D2D communications systems, such as for example, WiMedia, Bluetooth, ZigBee, Wi-Fi based on the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard, LTE, or NR.
The wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154, e.g., in a 5 gigahertz (GHz) unlicensed frequency spectrum or the like. When communicating in an unlicensed frequency spectrum, the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
The small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102' may employ NR and use the same unlicensed frequency spectrum (e.g., 5 GHz, or the  like) as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
The electromagnetic spectrum is often subdivided, based on frequency/wavelength, into various classes, bands, channels, etc. In 5G NR, two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) . The frequencies between FR1 and FR2 are often referred to as mid-band frequencies. Although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “sub-6 GHz” band in various documents and articles. A similar nomenclature issue sometimes occurs with regard to FR2, which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
With the above aspects in mind, unless specifically stated otherwise, it should be understood that the term “sub-6 GHz” or the like if used herein may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies. Further, unless specifically stated otherwise, it should be understood that the term “millimeter wave” or the like if used herein may broadly represent frequencies that may include mid-band frequencies, may be within FR2, or may be within the EHF band.
base station 102, whether a small cell 102' or a large cell (e.g., macro base station) , may include and/or be referred to as an eNB, gNodeB (gNB) , or another type of base station. Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave frequencies, and/or near millimeter wave frequencies in communication with the UE 104. When the gNB 180 operates in millimeter wave or near millimeter wave frequencies, the gNB 180 may be referred to as a millimeter wave base station. The millimeter wave base station 180 may utilize beamforming 182 with the UE 104 to compensate for the path loss and short range. The base station 180 and the UE 104 may each include a plurality of antennas, such as antenna elements, antenna panels, and/or antenna arrays to facilitate the beamforming.
The base station 180 may transmit a beamformed signal to the UE 104 in one or more transmit directions 182'. The UE 104 may receive the beamformed signal from the  base station 180 in one or more receive directions 182” . The UE 104 may also transmit a beamformed signal to the base station 180 in one or more transmit directions. The base station 180 may receive the beamformed signal from the UE 104 in one or more receive directions. The base station 180 /UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 180 /UE 104. The transmit and receive directions for the base station 180 may or may not be the same. The transmit and receive directions for the UE 104 may or may not be the same.
The EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, an MBMS Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172. The MME 162 may be in communication with a Home Subscriber Server (HSS) 174. The MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160. Generally, the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172. The PDN Gateway 172 provides UE IP address allocation as well as other functions. The PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176. The IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services. The BM-SC 170 may provide functions for MBMS user service provisioning and delivery. The BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions. The MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
The core network 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195. The AMF 192 may be in communication with a Unified Data Management (UDM) 196. The AMF 192 is the control node that processes the signaling between the UEs 104 and the core network 190. Generally, the AMF 192  provides Quality of Service (QoS) flow and session management. All user IP packets are transferred through the UPF 195. The UPF 195 provides UE IP address allocation as well as other functions. The UPF 195 is connected to the IP Services 197. The IP Services 197 may include the Internet, an intranet, an IMS, a Packet Switch (PS) Streaming Service, and/or other IP services.
The base station may include and/or be referred to as a gNB, Node B, eNB, an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology. The base station 102 provides an access point to the EPC 160 or core network 190 for a UE 104. Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device. Some of the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) . The UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
Although the present disclosure may focus on 5G NR, the concepts and various aspects described herein may be applicable to other similar areas, such as LTE, LTE-Advanced (LTE-A) , Code Division Multiple Access (CDMA) , Global System for Mobile communications (GSM) , or other wireless/radio access technologies.
Referring again to FIG. 1, in certain aspects, the UE 104 may be configured to configure a default beam for receiving CSI-RS 198. As part of configuring default beam 198, UE 104 may configure a default beam parameter, receive, based on the configured default beam parameter, a DL/TCI parameter, and receive, based on the DL/TCI parameter, a CORESET on an active BWP.
FIG. 2A is a diagram 200 illustrating an example of a first subframe within a 5G NR frame structure. FIG. 2B is a diagram 230 illustrating an example of DL channels within a 5G NR subframe. FIG. 2C is a diagram 250 illustrating an example of a second subframe within a 5G NR frame structure. FIG. 2D is a diagram 280 illustrating an example of UL channels within a 5G NR subframe. The 5G NR frame structure may be frequency division duplexed (FDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be time division duplexed (TDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL. In the examples provided by FIGs. 2A, 2C, the 5G NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and F is flexible for use between DL/UL, and subframe 3 being configured with slot format 34 (with mostly UL) . While  subframes  3, 4 are shown with slot formats 34, 28, respectively, any particular subframe may be configured with any of the various available slot formats 0-61. Slot formats 0, 1 are all DL, UL, respectively. Other slot formats 2-61 include a mix of DL, UL, and flexible symbols. UEs are configured with the slot format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) . Note that the description infra applies also to a 5G NR frame structure that is TDD.
Other wireless communication technologies may have a different frame structure and/or different channels. A frame, e.g., of 10 milliseconds (ms) , may be divided into 10 equally sized subframes (1 ms) . Each subframe may include one or more time slots. Subframes may also include mini-slots, which may include 7, 4, or 2 symbols. Each slot may include 7 or 14 symbols, depending on the slot configuration. For slot configuration 0, each slot may include 14 symbols, and for slot configuration 1, each slot may include 7 symbols. The symbols on DL may be cyclic prefix (CP) orthogonal frequency-division multiplexing (OFDM) (CP-OFDM) symbols. The symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (also referred to as single carrier frequency-division multiple access (SC-FDMA) symbols) (for power limited scenarios; limited to a single stream transmission) . The number of slots within a  subframe is based on the slot configuration and the numerology. For slot configuration 0, different numerologies μ 0 to 4 allow for 1, 2, 4, 8, and 16 slots, respectively, per subframe. For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subframe. Accordingly, for slot configuration 0 and numerology μ, there are 14 symbols/slot and 2 μ slots/subframe. The subcarrier spacing and symbol length/duration are a function of the numerology. The subcarrier spacing may be equal to 2 μ*15 kilohertz (kHz) , where μ is the numerology 0 to 4. As such, the numerology μ=0 has a subcarrier spacing of 15 kHz and the numerology μ=4 has a subcarrier spacing of 240 kHz. The symbol length/duration is inversely related to the subcarrier spacing. FIGs. 2A-2D provide an example of slot configuration 0 with 14 symbols per slot and numerology μ=2 with 4 slots per subframe. The slot duration is 0.25 ms, the subcarrier spacing is 60 kHz, and the symbol duration is approximately 16.67 μs. Within a set of frames, there may be one or more different bandwidth parts (BWPs) (see FIG. 2B) that are frequency division multiplexed. Each BWP may have a particular numerology.
A resource grid may be used to represent the frame structure. Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers. The resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
As illustrated in FIG. 2A, some of the REs carry reference (pilot) signals (RS) for the UE.The RS may include demodulation RS (DM-RS) (indicated as R x for one particular configuration, where 100x is the port number, but other DM-RS configurations are possible) and channel state information reference signals (CSI-RS) for channel estimation at the UE. The RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
FIG. 2B illustrates an example of various DL channels within a subframe of a frame. The physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) , each CCE including nine RE groups (REGs) , each REG including four consecutive REs in an OFDM symbol. A PDCCH within one BWP may be referred to as a control resource set (CORESET) . Additional BWPs may be located at greater and/or lower frequencies across the channel bandwidth. A primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a  physical layer identity. A secondary synchronization signal (SSS) may be within symbol 4 of particular subframes of a frame. The SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing. Based on the physical layer identity and the physical layer cell identity group number, the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DM-RS. The physical broadcast channel (PBCH) , which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block (also referred to as SS block (SSB) ) . The MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) . The physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
As illustrated in FIG. 2C, some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel estimation at the base station. The UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) . The PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH. The PUCCH DM-RS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used. The UE may transmit sounding reference signals (SRS) . The SRS may be transmitted in the last symbol of a subframe. The SRS may have a comb structure, and a UE may transmit SRS on one of the combs. The SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
FIG. 2D illustrates an example of various UL channels within a subframe of a frame. The PUCCH may be located as indicated in one configuration. The PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and hybrid automatic repeat request (HARQ) acknowledgement (ACK) /non-acknowledgement (NACK) feedback. The PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network. In the DL, IP packets from the EPC 160 may be provided to a  controller/processor 375. The controller/processor 375 implements layer 3 and layer 2 functionality. Layer 3 includes a radio resource control (RRC) layer, and layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer. The controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression /decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
The transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions. Layer 1, which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing. The TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) . The coded and modulated symbols may then be split into parallel streams. Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream. The OFDM stream is spatially  precoded to produce multiple spatial streams. Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing. The channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350. Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318TX. Each transmitter 318TX may modulate an RF carrier with a respective spatial stream for transmission.
At the UE 350, each receiver 354RX receives a signal through its respective antenna 352. Each receiver 354RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356. The TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions. The RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream. The RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) . The frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal. The symbols on each subcarrier, and the reference signal, are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358. The soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel. The data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
The controller/processor 359 can be associated with a memory 360 that stores program codes and data. The memory 360 may be referred to as a computer-readable medium. In the UL, the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160. The controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
Similar to the functionality described in connection with the DL transmission by the base station 310, the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression /decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing. The spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
The UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350. Each receiver 318RX receives a signal through its respective antenna 320. Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
The controller/processor 375 can be associated with a memory 376 that stores program codes and data. The memory 376 may be referred to as a computer-readable medium. In the UL, the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160. The controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
FIG. 4 is a block diagram illustrating an example disaggregated base station 400 architecture. The disaggregated base station 400 architecture may include one or more  CUs 410 that can communicate directly with a core network 420 via a backhaul link, or indirectly with the core network 420 through one or more disaggregated base station units (such as a near real-time (RT) RIC 425 via an E2 link, or a non-RT RIC 415 associated with a service management and orchestration (SMO) Framework 405, or both) . A CU 410 may communicate with one or more DUs 430 via respective midhaul links, such as an F1 interface. The DUs 430 may communicate with one or more RUs 440 via respective fronthaul links. The RUs 440 may communicate with respective UEs 104 via one or more radio frequency (RF) access links. In some implementations, the UE 104 may be simultaneously served by multiple RUs 440.
Each of the units, i.e., the CUs 410, the DUs 430, the RUs 440, as well as the near-RT RICs 425, the non-RT RICs 415 and the SMO framework 405, may include one or more interfaces or be coupled to one or more interfaces configured to receive or transmit signals, data, or information (collectively, signals) via a wired or wireless transmission medium. Each of the units, or an associated processor or controller providing instructions to the communication interfaces of the units, can be configured to communicate with one or more of the other units via the transmission medium. For example, the units can include a wired interface configured to receive or transmit signals over a wired transmission medium to one or more of the other units. Additionally, the units can include a wireless interface, which may include a receiver, a transmitter or transceiver (such as a radio frequency (RF) transceiver) , configured to receive or transmit signals, or both, over a wireless transmission medium to one or more of the other units.
In some aspects, the CU 410 may host higher layer control functions. Such control functions can include radio resource control (RRC) , packet data convergence protocol (PDCP) , service data adaptation protocol (SDAP) , or the like. Each control function can be implemented with an interface configured to communicate signals with other control functions hosted by the CU 410. The CU 410 may be configured to handle user plane functionality (i.e., central unit –user plane (CU-UP) ) , control plane functionality (i.e., central unit –control plane (CU-CP) ) , or a combination thereof. In some implementations, the CU 410 can be logically split into one or more CU-UP units and one or more CU-CP units. The CU-UP unit can communicate bidirectionally with the CU-CP unit via an interface, such as the E1 interface when implemented in  an O-RAN configuration. The CU 410 can be implemented to communicate with the DU 430, as necessary, for network control and signaling.
The DU 430 may correspond to a logical unit that includes one or more base station functions to control the operation of one or more RUs 440. In some aspects, the DU 430 may host one or more of a radio link control (RLC) layer, a medium access control (MAC) layer, and one or more high physical (PHY) layers (such as modules for forward error correction (FEC) encoding and decoding, scrambling, modulation and demodulation, or the like) depending, at least in part, on a functional split, such as those defined by the 3 rd Generation Partnership Project (3GPP) . In some aspects, the DU 430 may further host one or more low PHY layers. Each layer (or module) can be implemented with an interface configured to communicate signals with other layers (and modules) hosted by the DU 430, or with the control functions hosted by the CU 410.
Lower-layer functionality can be implemented by one or more RUs 440. In some deployments, an RU 440, controlled by a DU 430, may correspond to a logical node that hosts RF processing functions, or low-PHY layer functions (such as performing fast Fourier transform (FFT) , inverse FFT (iFFT) , digital beamforming, physical random access channel (PRACH) extraction and filtering, or the like) , or both, based at least in part on the functional split, such as a lower layer functional split. In such an architecture, the RU (s) 440 can be implemented to handle over the air (OTA) communication with one or more UEs 104. In some implementations, real-time and non-real-time aspects of control and user plane communication with the RU (s) 440 can be controlled by the corresponding DU 430. In some scenarios, this configuration can enable the DU (s) 430 and the CU 410 to be implemented in a cloud-based RAN architecture, such as a virtual RAN (vRAN) architecture.
The SMO Framework 405 may be configured to support RAN deployment and provisioning of non-virtualized and virtualized network elements. For non-virtualized network elements, the SMO framework 405 may be configured to support the deployment of dedicated physical resources for RAN coverage requirements, which may be managed via an operations and maintenance interface (such as an O1 interface) . For virtualized network elements, the SMO framework 405 may be configured to interact with a cloud computing platform (such as an open cloud (O-cloud) 490) to perform network element life cycle management (such as to instantiate  virtualized network elements) via a cloud computing platform interface (such as an O2 interface) . Such virtualized network elements can include, but are not limited to, CUs 410, DUs 430, RUs 440 and near-RT RICs 425. In some implementations, the SMO framework 405 can communicate with a hardware aspect of a 4G RAN, such as an open eNB (O-eNB) 411, via an O1 interface. Additionally, in some implementations, the SMO Framework 405 can communicate directly with one or more RUs 440 via an O1 interface. The SMO framework 405 also may include the non-RT RIC 415 configured to support functionality of the SMO Framework 405.
The non-RT RIC 415 may be configured to include a logical function that enables non-real-time control and optimization of RAN elements and resources, artificial intelligence/machine learning (AI/ML) workflows including model training and updates, or policy-based guidance of applications/features in the near-RT RIC 425. The non-RT RIC 415 may be coupled to or communicate with (such as via an A1 interface) the near-RT RIC 425. The near-RT RIC 425 may be configured to include a logical function that enables near-real-time control and optimization of RAN elements and resources via data collection and actions over an interface (such as via an E2 interface) connecting one or more CUs 410, one or more DUs 430, or both, as well as an O-eNB, with the near-RT RIC 425.
In some implementations, to generate AI/ML models to be deployed in the near-RT RIC 425, the non-RT RIC 415 may receive parameters or external enrichment information from external servers. Such information may be utilized by the near-RT RIC 425 and may be received at the SMO Framework 405 or the non-RT RIC 415 from non-network data sources or from network functions. In some examples, the non-RT RIC 415 or the near-RT RIC 425 may be configured to tune RAN behavior or performance. For example, the non-RT RIC 415 may monitor long-term trends and patterns for performance and employ AI/ML models to perform corrective actions through the SMO Framework 405 (such as reconfiguration via O1) or via creation of RAN management policies (such as A1 policies) .
At least one of the TX processor 368, the RX processor 356, and the controller/processor 359 may be configured to perform aspects in connection with 198 of FIG. 1.
In an aspect of the present disclosure, the UE 104 may receive CSI-RS on one or more DL beams. The CSI-RS may be transmitted and/or received using a unified or non-unified TCI framework.
In an aspect of the present disclosure, the UE 104 may use various parameters, either received parameters or parameters known and/or stored by the UE 104, to determine where to receive CSI-RS information. In a non-unified TCI framework, the CSI-RS and/or CSI may be aperiodic, and may be received on multiple carriers in a CCS environment. In an aspect of the present disclosure, a structure or configuration for the UE 104 may be determined based, at least in part, on various parameters as discussed hereinbelow.
In an aspect of the present disclosure, the UE 104 may receive and/or configure one or more parameters to determine where and when CSI is to be received. Such parameters may determine one or more default DL beams, what BWP the CSI is located in, or other locations and/or multiple beams for CSI-RS and/or A-CSI-RS.
In an aspect of the present disclosure, a known or default beam for receiving CSI-RS may be supported for CCS using a non-unified TCI framework. However, the CSI-RS default beam (s) may not be clearly defined in a unified TCI framework. In an aspect of the present disclosure, a default identification/location for the CSI-RS default beam (s) , or the DL beam (s) and locations within the BWP of one or more DL beams, is determined by the UE 104. In an aspect of the present disclosure, the CSI-RS may be aperiodic (A-CSI-RS) , and the UE 104 may determine when to receive the A-CSI-RS and on which DL beams.
In an aspect of the present disclosure, the TCI may be unified or non-unified. There are three types of unified TCI. Type 1 is a Joint TCI state that indicates a common beam for at least one DL channel/RS plus at least one UL channel/RS, including at least a UE-specific PDCCH, PDSCH, PUCCH, PUSCH, and CSI-RS. Type 2 is a separate DL TCI state to indicate a common beam for more than one DL channel/RS, including at least a UE-specific PDCCH, PDSCH and CSI-RS. Type 3 is a separate UL TCI state to indicate a common beam for more than one UL channel/RS, including at least a UE-specific PUCCH, PUSCH. Depending on the type of unified TCI state, or non-unified TCI state, the CSI-RS may be received on different DL beams.
FIG. 5 is a block diagram illustrating an example configuration of a default beam for receiving information in accordance with various aspects of the present disclosure.
Diagram 500 illustrates a logic tree for the UE 104 such that the UE 104 can determine where the CSI-RS and/or A-CSI-RS information is to be received.
In block 502, the UE 104 determines if a parameter, e.g., a parameter named “DefaultBeamForCCS” is received and/or configured to the UE 104. If the parameter is not received and/or configured, the UE must determine a scheduling offset between the DCI received on one CC and A-CSI-RS received on another CC as shown in block 504, and control would pass to block 506. The continuation of block 506 is shown in FIG. 6.
If DefaultBeamForCCS is received and/or configured to the UE 104, the UE 104 determines, in block 508, whether there is an indicated DL or indicated Joint TCI. If there is an indicated DL or indicated Joint TCI for reception of the DCI/CSI-RS, then the quasi-co location (QCL) of the indicated DL or indicated Joint DCI is applied by the UE 104 for reception of the DCI/CSI-RS as shown in block 510.
If there is not an indicated DL or indicated Joint TCI as determined in block 508, the UE determines, in block 512, if a CORESET has been received or is available on the active BWP of the DL. The CORESET, when received by the UE 104, provides the UE 104 with a search space set for CCS. If the CORESET has been received by the UE 104, then the UE 104 may apply the QCL of the CORESET for reception of the DCI/CSI-RS as shown in block 514.
If there are no indicated DL or indicated Joint TCI as determined in block 508, and no CORESET as determined by block 512, then the UE 104 may apply a unique or known QCL for reception of the DCI/CSI-RS. In an aspect of the present disclosure, block 516 may have the UE 104 apply the QCL of the lowest-ID activated TCI state for reception of the DCI/CSI-RS as shown in block 516; however, other TCI states may be used without departing from the scope of the present disclosure.
In some aspects, when the UE 104 is configured with enableDefaultBeamForCCS, the scheduling offset between the last symbol of the PDCCH carrying the triggering DCI on one CC and the first symbol of the aperiodic CSI-RS resources in a NZP-CSI-RS-ResourceSet on another CC may be smaller than a predetermined time offset. Thus, the QCL for the various different locations of the DCI and aperiodic CSI-RS needs to be determined. For example, 1) if there is an indicated DL or joint TCI on the active BWP of the cell in which the CSI-RS is to be received, the UE 104 applies the QCL assumption of the DL or joint TCI. 2) else if there is at least a CORESET on  the active BWP of the cell in which the CSI-RS is to be received, the UE 104 applies the QCL assumption of the CORESET associated with a monitored search space with the lowest controlResourceSetId in the latest slot in which one or more CORESETs within the active BWP of the cell are monitored by the UE, 3) else, the UE104 applies the QCL assumption of the lowest-ID activated TCI state applicable to the PDSCH within the active BWP of the cell in which the CSI-RS is to be received.
For example, the UE 104 may determine a default QCL assumption in the case that aperiodic CSI reporting and/or aperiodic CSI-RS reception is triggered when the triggering PDCCH and the CSI-RS have the same numerology. For each aperiodic CSI-RS resource in a CSI-RS resource set associated with each CSI triggering state, the UE is indicated the quasi co-location configuration of quasi co-location RS source (s) and quasi co-location type (s) , through higher layer signaling of qcl-info which contains a list of references to TCI-State's for the aperiodic CSI-RS resources associated with the CSI triggering state. If a State referred to in the list is configured with a reference to an RS configured with qcl-Type set to 'typeD' , that RS may be an SS/PBCH block located in the same or different CC/DL BWP or a CSI-RS resource configured as periodic or semi-persistent located in the same or different CC/DL BWP. If the scheduling offset between the last symbol of the PDCCH carrying the triggering DCI and the first symbol of the aperiodic CSI-RS resources in a NZP-CSI-RS-ResourceSet configured without higher layer parameter trs-Info is smaller than the UE reported threshold beamSwitchTiming, when the reported value is one of the values of 
Figure PCTCN2022111987-appb-000001
and enableBeamSwitchTiming is not provided, or is smaller than 
Figure PCTCN2022111987-appb-000002
when the UE provides beamSwitchTiming-r16, enableBeamSwitchTiming is provided and the NZP-CSI-RS-ResourceSet is configured with the higher layer parameter repetition set to 'off' or configured without the higher layer parameter repetition, or is smaller than the UE reported threshold beamSwitchTiming-r16, when enableBeamSwitchTiming is provided and the NZP-CSI-RS-ResourceSet is configured with the higher layer parameter repetition set to 'on' : 1) if the UE is configured with enableDefaultBeamForCCS and is not indicated with a TCI state DLorJointTCIState for the active BWP of the cell in which the aperiodic CSI-RS is to be received, and when receiving the aperiodic CSI-RS, the UE applies the QCL assumption of the lowest-ID activated TCI state applicable to the PDSCH within the active BWP of the  cell in which the CSI-RS is to be received; 2) else if the UE is configured with enableDefaultBeamForCCS and is indicated with a TCI state DLorJointTCIState for the active BWP of the cell in which the aperiodic CSI-RS is to be received, and when receiving the aperiodic CSI-RS, the UE applies the QCL assumption based on the indicated DLorJointTCIState for the active BWP of the cell in which the aperiodic CSI-RS is to be received.
For another example, the UE 104 may determine a default QCL assumption in the case that aperiodic CSI reporting and/or aperiodic CSI-RS is triggered when the triggering PDCCH and the CSI-RS have different numerologies. If the scheduling offset between the last symbol of the PDCCH carrying the triggering DCI and the first symbol of the aperiodic CSI-RS resources in a NZP-CSI-RS-ResourceSet configured without higher layer parameter trs-Info is smaller than
Figure PCTCN2022111987-appb-000003
Figure PCTCN2022111987-appb-000004
in CSI-RS symbols, when the reported value is one of the values of 
Figure PCTCN2022111987-appb-000005
and enableBeamSwitchTiming is not provided, or is smaller than
Figure PCTCN2022111987-appb-000006
in CSI-RS symbols when the UE provides beamSwitchTiming-r16 and enableBeamSwitchTiming is provided and the NZP-CSI-RS-ResourceSet is configured with the higher layer parameter repetition set to 'off' or configured without the higher layer parameter repetition, or is smaller than
Figure PCTCN2022111987-appb-000007
in CSI-RS symbols, when enableBeamSwitchTiming is provided and the NZP-CSI-RS-ResourceSet is configured with the higher layer parameter repetition set to 'on' , where if the μ PDCCH <μ CSIRS, the beam switching timing delay d is as predefined, else d is zero. Further if one of the associated trigger states has the higher layer parameter qcl-Type set to 'typeD' : 1) if there is any other DL signal with an indicated TCI state in the same symbols as the CSI-RS, the UE applies the QCL assumption of the other DL signal also when receiving the aperiodic CSI-RS. The other DL signal refers to PDSCH scheduled with offset larger than or equal to the threshold timeDurationForQCL, periodic CSI-RS, semi-persistent CSI-RS, aperiodic CSI-RS scheduled with offset larger than or equal to
Figure PCTCN2022111987-appb-000008
in CSI-RS symbols when the reported value is one of the values
Figure PCTCN2022111987-appb-000009
and when enableBeamSwitchTiming is not provided or the NZP-CSI-RS-ResourceSet is configured with the higher layer parameter trs-Info, aperiodic CSI-RS in a NZP-CSI-RS-ResourceSet configured with the higher layer parameter repetition set to 'off' or  configured without the higher layer parameters repetition and trs-Info scheduled with offset larger than or equal to
Figure PCTCN2022111987-appb-000010
in CSI-RS symbols when the UE provides beamSwitchTiming-r16 and enableBeamSwitchTiming is provided, aperiodic CSI-RS in a NZP-CSI-RS-ResourceSet configured with the higher layer parameter repetition set to 'on' and scheduled with offset larger than or equal to
Figure PCTCN2022111987-appb-000011
Figure PCTCN2022111987-appb-000012
in CSI-RS symbols when enableBeamSwitchTiming is provided; 2) else 2-1) if at least one CORESET is configured for the BWP in which the aperiodic CSI-RS is to be received, when receiving the aperiodic CSI-RS, the UE applies the QCL assumption used for the CORESET associated with a monitored search space with the lowest controlResourceSetId in the latest slot in which one or more CORESETs within the active BWP of the serving cell are monitored; 2-2) else if the UE is configured with enableDefaultBeamForCCS and is not indicated with DLorJointTCIState for the active BWP of the cell in which the aperiodic CSI-RS is to be received, when receiving the aperiodic CSI-RS, the UE applies the QCL assumption of the lowest-ID activated TCI state applicable to the PDSCH within the active BWP of the cell in which the CSI-RS is to be received; 2-3) else if the UE is configured with enableDefaultBeamForCCS and is indicated with DLorJointTCIState for the active BWP of the cell in which the aperiodic CSI-RS is to be received, when receiving the aperiodic CSI-RS, the UE applies the QCL assumption based on the indicated DLorJointTCIState for the active BWP of the cell in which the aperiodic CSI-RS is to be received.
FIG. 6 is a block diagram illustrating an example configuration of a default beam for receiving information in accordance with various aspects of the present disclosure.
As shown in diagram 600, If the parameter DefaultBeamForCCS is not received and/or configured, the time offset between the reception of the detected PDCCH in the search space set and the corresponding PDSCH may be larger than or equal to the threshold time period of the UE 104 to switch between CC, also known as the beam switch latency threshold of the UE 104. As such, the UE 104 may determine a scheduling offset between the DCI received on one CC and the A-CSI-RS received on another CC. Depending on the configuration of the UE 104, the scheduling offset may have different values, as described hereinbelow.
As discussed with respect to FIG. 5, the UE 104 has determined that DefaultBeamForCCS has not been received/configured in block 502, and therefore a scheduling offset must be determined as described in block 504. Control then passes to block 506, which then passes to block 602.
In block 602, the UE 104 determines, reports, and/or configures the value of another parameter, e.g., a parameter known as “beamSwitchTiming” to determine how large of a scheduling offset to generate. If the parameter beamSwitchTiming reported, in symbols, is one of {14, 28, 48} , then the UE 104 must determine, in block 604, whether another parameter has been configured and/or received. In an aspect of the present disclosure, the UE 104 configures a scheduling offset based on a configured default beam parameter, which may be the beamSwitchTiming parameter.
In block 604, an RRC parameter, e.g., the RRC parameter known as “enableBeamSwitchingTiming” is verified as being received and/or configured. If so, control passes to block 606, which is an error case, as the UE 104 has not received a proper set of values to determine a scheduling offset. If not, control passes to block 608, where a scheduling offset can be configured by the UE 104 as being greater than the value of beamSwitchTiming plus d times 2 to the μCSIRS divided by 2 to the μPDCCH, in CSI-RS symbols, as follows:
Figure PCTCN2022111987-appb-000013
In an aspect of the present disclosure, the UE 104 may receive a DCI on a first CC and a CSI-RS on a second CC. The determined scheduling offset is the minimum amount of time the UE has to wait between the reception of the DCI on the first CC and the CSI-RS on the second CC.
In block 602, if the UE 104 does not report the value of beamSwitchTiming as one of {14, 28, 48} , then the UE 104 must determine, report, and/or configure, in block 610 the value of another parameter, e.g., a parameter known as “beamSwitchTiming-r16” to determine how large of a scheduling offset to generate. If the parameter beamSwitchTiming-r16, in symbols, is one of {14, 28, 48} , then the UE 104 must determine, in block 612, whether another parameter has been configured and/or received. In an aspect of the present disclosure, the UE 104 configures a scheduling offset based on a configured default beam parameter, which may be the beamSwitchTiming-r16 parameter.
In block 612, an RRC parameter, e.g., the RRC parameter known as “enableBeamSwitchingTiming” is verified as being received and/or configured. If not, control passes to block 614, which is an error case, as the UE 104 has not received a proper set of values to determine a scheduling offset.
In block 612, if the RRC parameter enableBeamSwitchingTiming is verified as being received and/or configured, a scheduling offset can be configured by the UE 104 in block 616 as being greater than the value of 48 times 2 to the maximum of (0, uCSIRS-3) plus d times 2 to the μCSIRS divided by 2 to the μPDCCH, in CSI-RS symbols, as follows:
Figure PCTCN2022111987-appb-000014
In an aspect of the present disclosure, the UE 104 may receive a DCI on a first CC and a CSI-RS on a second CC. The determined scheduling offset is the minimum amount of time the UE has to wait between the reception of the DCI on the first CC and the CSI-RS on the second CC.
If, in block 610, the value of beamSwitchTiming-r16, in symbols, is not one of {14, 28, 48} , control passes to block B 618.
FIG. 7 is a block diagram illustrating an example configuration of a default beam for receiving information in accordance with various aspects of the present disclosure.
As discussed with respect to FIGS. 5 and 6, and shown in diagram 700, the UE 104 has determined that DefaultBeamForCCS has not been received/configured in block 502, and therefore a scheduling offset must be determined as described in block 504. Control then passes to block 506, which then passes to block 602. The UE 104 has not reported beamSwitchTiming as one of {14, 28, 48} , and has not reported beamSwitchTiming-r16 as one of {14, 28, 48} , which passed control to block B 618. Block B 618 passes control to block 702.
In block 702, if the UE 104 does not report the value of beamSwitchTiming-r16 as one of {224, 336} , control passes to block 704, which is an error case, as the UE 104 has not received a proper set of values to determine a scheduling offset.
If in block 702 the UE 104 does report the value of beamSwitchTiming-r16 as one of {224, 336} , an RRC parameter, e.g., the RRC parameter known as “enableBeamSwitchingTiming” is verified as being received and/or configured. If so, another RRC parameter, e.g., the RRC parameter known as “Repetition” is verified as being received and/or configured in block 708.
In block 708, if the RRC parameter Repetition is set to ON for the CSI resources set, then in block 710 the scheduling offset is configured in block 710 as where a scheduling offset can be configured by the UE 104 as being greater than the value of beamSwitchTiming-r16 plus d times 2 to the μCSIRS divided by 2 to the μPDCCH, in CSI-RS symbols, as follows:
Figure PCTCN2022111987-appb-000015
If, in block 708, the RRC parameter Repetition is set to OFF or is not configured for the CSI resource set, , then the scheduling offset is configured in block 712 as being greater than the value of 48 times 2 to the maximum of (0, μCSIRS-3) plus d times 2 to the μCSIRS divided by 2 to the μPDCCH, in CSI-RS symbols, as follows:
Figure PCTCN2022111987-appb-000016
In an aspect of the present disclosure, the UE 104 may receive a DCI on a first CC and a CSI-RS on a second CC. The determined scheduling offset is the minimum amount of time the UE has to wait between the reception of the DCI on the first CC and the CSI-RS on the second CC.
FIG. 8 is a flow diagram of information transfer and configuration in accordance with an aspect of the present disclosure.
Diagram 800 illustrates information received by UE 802 from BS 804. Initially, the UE 802 receives downlink information, such as DL/TCI 806, from the BS 804. The UE 802 may also receive CORESET information 808 from the BS 804.
The UE 802 then configures/receives QCL information 810 based on the received DL/TCI 806 and the received CORESET 808.
Further, the UE 802 may receive additional information DCI 812 and CSI/RS 814. The UE 802 then configures the beam switch timing 816 and the scheduling offset 818 based on the received DCI 812 and the received CSI/RS 814.
FIG. 9 is a flowchart 900 of a method of wireless communication. The method may be performed by a UE (e.g., the UE 104; the apparatus 1002) . At 902, the UE
configures a default beam parameter. For example, 902 may be performed by default beam component 1040.
At 904, the UE receives, based on the configured default beam parameter, a downlink/transmission configuration indicator (DL/TCI) parameter. For example, 904 may be performed by DL/TCI Receive Component 1042.
Finally, at 906, the UE receives, based on the received DL/TCI parameter, a control resource set (CORESET) on an active bandwidth part (BWP) . For example, 906 may be performed by CORESET Receive Component 1044.
FIG. 10 is a diagram 1000 illustrating an example of a hardware implementation for an apparatus 1002. The apparatus 1002 is a UE and includes a cellular baseband processor 1004 (also referred to as a modem) coupled to a cellular RF transceiver 1022 and one or more subscriber identity modules (SIM) cards 1020, an application processor 1006 coupled to a secure digital (SD) card 1008 and a screen 1010, a Bluetooth module 1012, a wireless local area network (WLAN) module 1014, a Global Positioning System (GPS) module 1016, and a power supply 1018. The cellular baseband processor 1004 communicates through the cellular RF transceiver 1022 with the UE 104 and/or BS 102/180. The cellular baseband processor 1004 may include a computer-readable medium /memory. The computer-readable medium /memory may be non-transitory. The cellular baseband processor 1004 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory. The software, when executed by the cellular baseband processor 1004, causes the cellular baseband processor 1004 to perform the various functions described supra. The computer-readable medium /memory may also be used for storing data that is manipulated by the cellular baseband processor 1004 when executing software. The cellular baseband processor 1004 further includes a reception component 1030, a communication manager 1032, and a transmission component 1034. The communication manager 1032 includes the one or more illustrated components. The components within the communication manager 1032 may be stored in the computer-readable medium /memory and/or configured as hardware within the cellular baseband processor 1004. The cellular baseband processor 1004 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359. In one configuration, the apparatus 1002 may be a modem chip and include just the baseband processor 1004, and in another configuration, the apparatus 1002 may be the entire UE (e.g., see 350 of FIG. 3) and include the aforediscussed additional modules of the apparatus 1002.
The communication manager 1032 includes a default beam component 1040 that is configured to configure a default beam parameter at the UE, e.g., as described in  connection with 902. The communication manager 1032 further includes a DL/TCI Receive Component 1042 that receives input in the form of DL/TCI information and is configured to receive DL/TCI information from the reception component 1030, e.g., as described in connection with 904. The communication manager 1032 further includes a CORESET Receive component 1044 that receives input in the form of CORESET information from the reception component 1030 and is configured to receive CORESET information, e.g., as described in connection with 906.
The apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowcharts of FIGs. 5-9. As such, each block in the aforementioned flowcharts of FIGs. 5-9 may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
In one configuration, the apparatus 1002, and in particular the cellular baseband processor 1004, includes means for means for configuring a default beam parameter, means for receiving, based on the configured default beam parameter, a downlink/transmission configuration indicator (DL/TCI) parameter, means for receiving, based on the DL/TCI parameter, a control resource set (CORESET) on an active bandwidth part (BWP) at the UE, means for receiving, based on the received DL/TCI parameter and the received CORESET, a quasi co-located signal at the UE, means for configuring a scheduling offset at the UE based on the configured default beam parameter, means for configuring a scheduling offset at the UE based on the configured default beam parameter, means for receiving, at the UE, a DCI on a first component carrier, means for receiving, at the UE, a CSI-RS on a second component carrier, means for configuring a first value of a first beam switch timing parameter at the UE, means for configuring the scheduling offset at the UE based on the configured default beam parameter and the configured first value, means for configuring a second value of a second beam switch timing parameter at the UE, means for configuring the scheduling offset at the UE based on the configured default beam parameter, the configured first value, and the configured second value, means for receiving a beam switching timing parameter at the UE, means for configuring the scheduling offset at  the UE based on the configured first value, the configured second value, and the received beam switching timing parameter, means for receiving a repetition parameter at the UE, and means for configuring the scheduling offset at the UE based on the configured first value, the configured second value, the received beam switching timing parameter, and the received repetition parameter. The aforementioned means may be one or more of the aforementioned components of the apparatus 1002 configured to perform the functions recited by the aforementioned means. As described supra, the apparatus 1002 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359. As such, in one configuration, the aforementioned means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the aforementioned means.
The present disclosure provides a solution to cross-carrier scheduling of CSI-RS in a unified TCI framework, where the CSI-RS may be aperiodic. The present disclosure provides advantages to determine what CSI-RS when certain parameters are present or configured, e.g., enableDefaultBeamForCCS, as well as advantages when certain parameters are not present or not configured, e.g., enableDefaultBeamForCCS. In aspects of the present disclosure, advantages of consistent, predictable CCS for each UE, whether default beams are determined or not, are provided. Further, depending on which other parameters available to the UE, advantages of predictable, consistent CCS are available to allow for more traffic on a given system.
It is understood that the specific order or hierarchy of blocks in the processes /flowcharts disclosed is an illustration of example approaches. Based upon design preferences, it is understood that the specific order or hierarchy of blocks in the processes /flowcharts may be rearranged. Further, some blocks may be combined or omitted. The accompanying method claims present elements of the various blocks in a sample order, and are not meant to be limited to the specific order or hierarchy presented.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language  claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” Terms such as “if, ” “when, ” and “while” should be interpreted to mean “under the condition that” rather than imply an immediate temporal relationship or reaction. That is, these phrases, e.g., “when, ” do not imply an immediate action in response to or during the occurrence of an action, but simply imply that if a condition is met then an action will occur, but without requiring a specific or immediate time constraint for the action to occur. The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects. Unless specifically stated otherwise, the term “some” refers to one or more. Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C. Specifically, combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. The words “module, ” “mechanism, ” “element, ” “device, ” and the like may not be a substitute for the word “means. ” As such, no claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for. ”
The following examples are illustrative only and may be combined with aspects of other embodiments or teachings described herein, without limitation.
Example 1. An apparatus for wireless communication in accordance with an aspect of the present disclosure may comprise a memory and at least one processor coupled to the memory and configured to configure a default beam parameter at a user equipment (UE) , receive, based on the configured default beam parameter, a  downlink/transmission configuration indicator (DL/TCI) parameter at the UE; and receive, based on the received DL/TCI parameter, a control resource set (CORESET) on an active bandwidth part (BWP) at the UE.
Example 2. The apparatus of Example 1, wherein the at least one processor is further configured to receive, based on the received DL/TCI parameter and the received CORESET, a quasi co-located signal at the UE.
Example 3. The apparatus of Example 2, wherein the at least one processor is further configured to configure a scheduling offset at the UE based on the configured default beam parameter.
Example 4. The apparatus of Example 3, wherein the at least one processor is further configured to receive, at the UE, a downlink control information (DCI) on a first component carrier, and receive, at the UE, a channel state information reference signal (CSI-RS) on a second component carrier.
Example 5. The apparatus of Example 4, wherein the at least one processor is further configured to configure a first value of a first beam switch timing parameter at the UE, and configure the scheduling offset at the UE based on the configured default beam parameter and the configured first value.
Example 6. The apparatus of Example 5, wherein the at least one processor is further configured to configure a second value of a second beam switch timing parameter at the UE, and configure the scheduling offset at the UE based on the configured default beam parameter, the configured first value, and the configured second value.
Example 7. The apparatus of Example 6, wherein the at least one processor is further configured to receive a beam switching timing parameter at the UE, and configure the scheduling offset at the UE based on the configured first value, the configured second value, and the received beam switching timing parameter.
Example 8. The apparatus of Example 7, wherein the at least one processor is further configured to receive a repetition parameter at the UE, and configure the scheduling offset at the UE based on the configured first value, the configured second value, the received beam switching timing parameter, and the received repetition parameter.
Example 9. The apparatus of Example 8, wherein the configured scheduling offset is greater than a beam switching latency threshold.
Example 10. The apparatus of any of Examples 1 to 9, wherein a channel state information reference signal (CSI-RS) is aperiodic.
Example 11. An apparatus for wireless communication in accordance with an aspect of the present disclosure may comprise means for configuring a default beam parameter at a user equipment (UE) , means for receiving, based on the configured default beam parameter, a downlink/transmission configuration indicator (DL/TCI) parameter at the UE, and means for receiving, based on the DL/TCI parameter, a control resource set (CORESET) on an active bandwidth part (BWP) at the UE.
Example 12. The apparatus of Example 11, further comprising means for receiving, based on the received DL/TCI parameter and the received CORESET, a quasi co-located signal at the UE.
Example 13. The apparatus of Example 12, further comprising means for configuring a scheduling offset at the UE based on the configured default beam parameter.
Example 14. The apparatus of Example 13, further comprising means for receiving, at the UE, a downlink control information (DCI) on a first component carrier, and means for receiving, at the UE, a channel state information reference signal (CSI-RS) on a second component carrier.
Example 15. The apparatus of Example 14, further comprising means for configuring a first value of a first beam switch timing parameter at the UE, and means for configuring the scheduling offset at the UE based on the configured default beam parameter and the configured first value.
Example 16. The apparatus of Example 15, further comprising means for configuring a second value of a second beam switch timing parameter at the UE, and means for configuring the scheduling offset at the UE based on the configured default beam parameter, the configured first value, and the configured second value.
Example 17. The apparatus of Example 16, further comprising means for receiving a beam switching timing parameter at the UE, and means for configuring the scheduling offset at the UE based on the configured first value, the configured second value, and the received beam switching timing parameter.
Example 18. The apparatus of Example 17, further comprising means for receiving a repetition parameter at the UE, and means for configuring the scheduling offset at the UE based on the configured first value, the configured second value, the received beam switching timing parameter, and the received repetition parameter.
Example 19. The apparatus of any of Examples 11 to 18, wherein the configured scheduling offset is greater than a beam switching latency threshold.
Example 20. The apparatus of any of Examples 11 to 18, wherein a channel state information reference signal (CSI-RS) is aperiodic.
Example 21. A method of wireless communication in accordance with an aspect of the present disclosure may comprise configuring a default beam parameter at a user equipment (UE) , receiving, based on the configured default beam parameter, a downlink/transmission configuration indicator (DL/TCI) parameter at the UE, and receiving, based on the received DL/TCI parameter, a control resource set (CORESET) on an active bandwidth part (BWP) at the UE.
Example 22. The method of Example 21, further comprising receiving, based on the received DL/TCI parameter and the received CORESET, a quasi co-located signal at the UE.
Example 23. The method of Example 22, further comprising configuring a scheduling offset at the UE based on the configured default beam parameter.
Example 24. The method of Example 23, further comprising receiving, at the UE, a downlink control information (DCI) on a first component carrier, and receiving, at the UE, a channel state information reference signal (CSI-RS) on a second component carrier.
Example 25. The method of Example 24, further comprising configuring a first value of a first beam switch timing parameter at the UE, and configuring the scheduling offset at the UE based on the configured default beam parameter and the configured first value.
Example 26. The method of Example 25, further comprising configuring a second value of a second beam switch timing parameter at the UE, and configuring the scheduling offset at the UE based on the configured default beam parameter, the configured first value, and the configured second value.
Example 27. The method of Example 26, further comprising receiving a beam switching timing parameter at the UE, and configuring the scheduling offset at the UE based on the configured first value, the configured second value, and the received beam switching timing parameter.
Example 28. The method of Example 27, further comprising receiving a repetition parameter at the UE, and configuring the scheduling offset at the UE based on the configured first value, the configured second value, the received beam switching timing parameter, and the received repetition parameter.
Example 29. The method of any of Examples 21 to 28, wherein a channel state information reference signal (CSI-RS) is aperiodic.
Example 30. A computer-readable medium storing computer executable code in accordance with an aspect of the present disclosure may have the code when executed by a processor cause the processor to configure a default beam parameter at a user equipment (UE) , receive, based on the configured default beam parameter, a downlink/transmission configuration indicator (DL/TCI) parameter at the UE, and
receive, based on the received DL/TCI parameter, a control resource set (CORESET) on an active bandwidth part (BWP) at the UE.

Claims (30)

  1. An apparatus for wireless communication, comprising:
    a memory; and
    at least one processor coupled to the memory and configured to:
    configure a default beam parameter at a user equipment (UE) ;
    receive, based on the configured default beam parameter, a downlink/transmission configuration indicator (DL/TCI) parameter at the UE; and
    receive, based on the received DL/TCI parameter, a control resource set (CORESET) on an active bandwidth part (BWP) at the UE.
  2. The apparatus of claim 1, wherein the at least one processor is further configured to receive, based on the received DL/TCI parameter and the received CORESET, a quasi co-located signal at the UE.
  3. The apparatus of claim 2, wherein the at least one processor is further configured to:
    configure a scheduling offset at the UE based on the configured default beam parameter.
  4. The apparatus of claim 3, wherein the at least one processor is further configured to:
    receive, at the UE, a downlink control information (DCI) on a first component carrier; and
    receive, at the UE, a channel state information reference signal (CSI-RS) on a second component carrier.
  5. The apparatus of claim 4, wherein the at least one processor is further configured to:
    configure a first value of a first beam switch timing parameter at the UE; and
    configure the scheduling offset at the UE based on the configured default beam parameter and the configured first value.
  6. The apparatus of claim 5, wherein the at least one processor is further configured to:
    configure a second value of a second beam switch timing parameter at the UE; and
    configure the scheduling offset at the UE based on the configured default beam parameter, the configured first value, and the configured second value.
  7. The apparatus of claim 6, wherein the at least one processor is further configured to:
    receive a beam switching timing parameter at the UE; and
    configure the scheduling offset at the UE based on the configured first value, the configured second value, and the received beam switching timing parameter.
  8. The apparatus of claim 7, wherein the at least one processor is further configured to:
    receive a repetition parameter at the UE; and
    configure the scheduling offset at the UE based on the configured first value, the configured second value, the received beam switching timing parameter, and the received repetition parameter.
  9. The apparatus of claim 8, wherein the configured scheduling offset is greater than a beam switching latency threshold.
  10. The apparatus of claim 1, wherein a channel state information reference signal (CSI-RS) is aperiodic.
  11. An apparatus for wireless communication, comprising:
    means for configuring a default beam parameter at a user equipment (UE) ;
    means for receiving, based on the configured default beam parameter, a downlink/transmission configuration indicator (DL/TCI) parameter at the UE; and
    means for receiving, based on the DL/TCI parameter, a control resource set (CORESET) on an active bandwidth part (BWP) at the UE.
  12. The apparatus of claim 11, further comprising means for receiving, based on the received DL/TCI parameter and the received CORESET, a quasi co-located signal at the UE.
  13. The apparatus of claim 12, further comprising:
    means for configuring a scheduling offset at the UE based on the configured default beam parameter.
  14. The apparatus of claim 13, further comprising:
    means for receiving, at the UE, a downlink control information (DCI) on a first component carrier; and
    means for receiving, at the UE, a channel state information reference signal (CSI-RS) on a second component carrier.
  15. The apparatus of claim 14, further comprising:
    means for configuring a first value of a first beam switch timing parameter at the UE; and
    means for configuring the scheduling offset at the UE based on the configured default beam parameter and the configured first value.
  16. The apparatus of claim 15, further comprising:
    means for configuring a second value of a second beam switch timing parameter at the UE; and
    means for configuring the scheduling offset at the UE based on the configured default beam parameter, the configured first value, and the configured second value.
  17. The apparatus of claim 16, further comprising:
    means for receiving a beam switching timing parameter at the UE; and
    means for configuring the scheduling offset at the UE based on the configured first value, the configured second value, and the received beam switching timing parameter.
  18. The apparatus of claim 17, further comprising:
    means for receiving a repetition parameter at the UE; and
    means for configuring the scheduling offset at the UE based on the configured first value, the configured second value, the received beam switching timing parameter, and the received repetition parameter.
  19. The apparatus of claim 18, wherein the configured scheduling offset is greater than a beam switching latency threshold.
  20. The apparatus of claim 11, wherein a channel state information reference signal (CSI-RS) is aperiodic.
  21. Amethod of wireless communication, comprising:
    configuring a default beam parameter at a user equipment (UE) ;
    receiving, based on the configured default beam parameter, a downlink/transmission configuration indicator (DL/TCI) parameter at the UE; and
    receiving, based on the received DL/TCI parameter, a control resource set (CORESET) on an active bandwidth part (BWP) at the UE.
  22. The method of claim 21, further comprising receiving, based on the received DL/TCI parameter and the received CORESET, a quasi co-located signal at the UE.
  23. The method of claim 22, further comprising:
    configuring a scheduling offset at the UE based on the configured default beam parameter.
  24. The method of claim 23, further comprising:
    receiving, at the UE, a downlink control information (DCI) on a first component carrier; and
    receiving, at the UE, a channel state information reference signal (CSI-RS) on a second component carrier.
  25. The method of claim 24, further comprising:
    configuring a first value of a first beam switch timing parameter at the UE; and
    configuring the scheduling offset at the UE based on the configured default beam parameter and the configured first value.
  26. The method of claim 25, further comprising:
    configuring a second value of a second beam switch timing parameter at the UE; and
    configuring the scheduling offset at the UE based on the configured default beam parameter, the configured first value, and the configured second value.
  27. The method of claim 26, further comprising:
    receiving a beam switching timing parameter at the UE; and
    configuring the scheduling offset at the UE based on the configured first value, the configured second value, and the received beam switching timing parameter.
  28. The method of claim 27, further comprising:
    receiving a repetition parameter at the UE; and
    configuring the scheduling offset at the UE based on the configured first value, the configured second value, the received beam switching timing parameter, and the received repetition parameter.
  29. The method of claim 21, wherein a channel state information reference signal (CSI-RS) is aperiodic.
  30. A computer-readable medium storing computer executable code, the code when executed by a processor cause the processor to:
    configure a default beam parameter at a user equipment (UE) ;
    receive, based on the configured default beam parameter, a downlink/transmission configuration indicator (DL/TCI) parameter at the UE; and
    receive, based on the received DL/TCI parameter, a control resource set (CORESET) on an active bandwidth part (BWP) at the UE.
PCT/CN2022/111987 2022-08-12 2022-08-12 Default channel state information beam for cross-carrier scheduling in unified transmission configuration indicator framework WO2024031600A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/111987 WO2024031600A1 (en) 2022-08-12 2022-08-12 Default channel state information beam for cross-carrier scheduling in unified transmission configuration indicator framework

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/111987 WO2024031600A1 (en) 2022-08-12 2022-08-12 Default channel state information beam for cross-carrier scheduling in unified transmission configuration indicator framework

Publications (1)

Publication Number Publication Date
WO2024031600A1 true WO2024031600A1 (en) 2024-02-15

Family

ID=89850407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111987 WO2024031600A1 (en) 2022-08-12 2022-08-12 Default channel state information beam for cross-carrier scheduling in unified transmission configuration indicator framework

Country Status (1)

Country Link
WO (1) WO2024031600A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210143954A1 (en) * 2019-11-12 2021-05-13 Qualcomm Incorporated Qcl determination for a-csi-rs in full duplex systems
US20210360602A1 (en) * 2020-05-15 2021-11-18 Qualcomm Incorporated Applying a common beam for multiple signals to a default physical downlink shared channel (pdsch) beam
WO2022087190A1 (en) * 2020-10-23 2022-04-28 LENOVO (UNITED STATES) INC., a corporation of DELAWARE Apparatus and method of communicating on different beams
US20220150944A1 (en) * 2020-11-06 2022-05-12 Qualcomm Incorporated Common beam as a default beam for aperiodic channel state information reference signals
US20220217695A1 (en) * 2021-01-04 2022-07-07 FG Innovation Company Limited Method for configuring tci states for ue and ue using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210143954A1 (en) * 2019-11-12 2021-05-13 Qualcomm Incorporated Qcl determination for a-csi-rs in full duplex systems
US20210360602A1 (en) * 2020-05-15 2021-11-18 Qualcomm Incorporated Applying a common beam for multiple signals to a default physical downlink shared channel (pdsch) beam
WO2022087190A1 (en) * 2020-10-23 2022-04-28 LENOVO (UNITED STATES) INC., a corporation of DELAWARE Apparatus and method of communicating on different beams
US20220150944A1 (en) * 2020-11-06 2022-05-12 Qualcomm Incorporated Common beam as a default beam for aperiodic channel state information reference signals
US20220217695A1 (en) * 2021-01-04 2022-07-07 FG Innovation Company Limited Method for configuring tci states for ue and ue using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Enhancements on multi-beam operation in Rel-17", 3GPP DRAFT; R1-2005246, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-meeting; 20200817 - 20200828, 8 August 2020 (2020-08-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051917294 *

Similar Documents

Publication Publication Date Title
US11706610B2 (en) Signaling of capability information by user equipment
US11601159B2 (en) Switching between different configurations of frequency and beam hopping for single-beam and multi-beam PUCCH
US11902977B2 (en) Enhanced PUCCH transmission for repetition or frequency hopping
US20220361220A1 (en) Multi-pdsch or multi-pusch grant for non-contiguous resources on multiple slots
US20220094483A1 (en) Codebook generation for sps with delayed harq
US20220086826A1 (en) Signaling of pucch and pusch simultaneous transmission or multiplexing
US20230055203A1 (en) Pucch carrier switch
US11856513B2 (en) Network power mode pattern and switching configuration
US20230135507A1 (en) Pdcch repetition configuration based on l1 report
US20220022188A1 (en) Facilitating communication based on frequency ranges
WO2022086734A1 (en) Multiple trp pdsch scheduling using dci without tci field
WO2024031600A1 (en) Default channel state information beam for cross-carrier scheduling in unified transmission configuration indicator framework
WO2024031429A1 (en) Power headroom (ph) report for uplink transmission
US20230344559A1 (en) Transmitting feedback for repetitive harq processes
US11729706B2 (en) Methods and apparatus for multi-coreset PDCCH aggregation
US11943159B2 (en) Reference signal mapping
US20230038444A1 (en) Group common dci based power control with pucch carrier switch
WO2023206329A1 (en) Reduced complexity capability for uplink transmit switching
US20220361222A1 (en) Srs resource set and beam order association for multi-beam pusch
WO2024031629A1 (en) Uplink power control for l1/l2 based cell change
WO2023010522A1 (en) Power control state reset for unified tci states
US20240022937A1 (en) Inter-cell mobility
US20230397056A1 (en) Individual cell signaling for l1/l2 inter-cell mobility
US20240137195A1 (en) Configured grants and semi-persistent scheduling falling in a partially full duplex slot
WO2023164912A1 (en) Framework and mechanism to support skipping cell detection and sib reading

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954562

Country of ref document: EP

Kind code of ref document: A1