WO2024031471A1 - Techniques for performing location service in wireless communications - Google Patents

Techniques for performing location service in wireless communications Download PDF

Info

Publication number
WO2024031471A1
WO2024031471A1 PCT/CN2022/111561 CN2022111561W WO2024031471A1 WO 2024031471 A1 WO2024031471 A1 WO 2024031471A1 CN 2022111561 W CN2022111561 W CN 2022111561W WO 2024031471 A1 WO2024031471 A1 WO 2024031471A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
message
identifier
amf
communication device
Prior art date
Application number
PCT/CN2022/111561
Other languages
French (fr)
Inventor
Jinguo Zhu
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to PCT/CN2022/111561 priority Critical patent/WO2024031471A1/en
Publication of WO2024031471A1 publication Critical patent/WO2024031471A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/22Manipulation of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support

Definitions

  • This document is directed generally to digital wireless communications.
  • LTE Long-Term Evolution
  • 3GPP 3rd Generation Partnership Project
  • LTE-A LTE Advanced
  • 5G The 5th generation of wireless system, known as 5G, advances the LTE and LTE-Awireless standards and is committed to supporting higher data-rates, large number of connections, ultra-low latency, high reliability and other emerging business needs.
  • Techniques are disclosed for providing or receiving location information of a communication device.
  • a first example wireless communication method includes receiving, by a first network device from a second network device, a first message that triggers the first network device to provide a location information of a communication device, where the second network device is configured to manage a mobility context of the communication device, and where the mobility context describes at least a registration area of the communication device; and transmitting, in response to the receiving the first message, by the first network device to a third network device, a second message comprising the location information of the communication device, where the third network device is configured to not manage the mobility context of the communication device.
  • the first network device selects the third network device based on a routing identifier of a location management function (LMF) that requests the location information of the communication device.
  • LMF location management function
  • the first network device in response to the second message being a NGAP uplink user equipment (UE) associated new radio positioning protocol A (NRPPa) transport message: the first network device includes in the NGAP uplink UE associated NRPPa transport message: an access and mobility management function next generation application protocol user equipment identifier (AMF NGAP UE ID) , and a radio access network next generation application protocol user equipment identifier (RAN NGAP UE ID) , where the first network device sets values for the AMF NGAP UE ID and the RAN NGAP UE ID to be same as those received for the AMF NGAP UE ID and the RAN NGAP UE ID received from the second network device.
  • the first network device includes a base station
  • the second network device includes a serving access and mobility management function (AMF)
  • AMF
  • a second example wireless communication method includes receiving, by a first network device from a second network device, a first message that triggers the first network device to request a location information of a communication device from a third network device, where the first message includes a first identifier of the third network device configured to communicate with the communication device, and a second identifier of the communication device; and transmitting, in response to the receiving the first message, a second message to the third network device, where the second message triggers the third network device to provide the location information of the communication device.
  • a third example wireless communication method includes receiving, by the second network device, a first identifier of a third network device configured to communicate with a communication device, and a second identifier of the communication device; transmitting, by the second network device to a first network device, a first message that triggers the first network device to request a location information of the communication device from the third network device, where the first message includes the first identifier of the third network device and the second identifier of the communication device; and receiving, in response to the transmitting the first message, the location information of the communication device.
  • the second identifier includes a radio access network (RAN) next generation application protocol (NGAP) user equipment (UE) identifier (ID) , or a temporary mobile subscriber identity.
  • the first message includes a routing identifier of a location management function (LMF) that requests the location information of the communication device.
  • the second message is a next generation application protocol (NGAP) downlink user equipment (UE) associated new radio positioning protocol A (NRPPa) transport message in response to the second identifier of the communication device being a radio access network (RAN) next generation application protocol (NGAP) user equipment (UE) identifier (ID) .
  • NGAP next generation application protocol
  • NRPPa new radio positioning protocol A
  • the second message is a next generation application protocol (NGAP) downlink non user equipment (UE) associated new radio positioning protocol A (NRPPa) transport message in response to the second identifier of the communication device not being a radio access network (RAN) next generation application protocol (NGAP) user equipment (UE) identifier (ID) .
  • NGAP next generation application protocol
  • RAN radio access network
  • NGAP next generation application protocol
  • UE user equipment
  • ID identifier
  • the first network device includes a local access and mobility management function (AMF)
  • the second network device includes a location management function (LMF)
  • the third network device includes a base station.
  • AMF local access and mobility management function
  • LMF location management function
  • a fourth example wireless communication method includes receiving, by a first network device, a first message that triggers the first network device to initiate a process to obtain a location information of a communication device; and transmitting, in response to the receiving the first message, a second message to a second network device, where the second message triggers the second network device to provide the location information of the communication device, and where the second message includes a first identifier of a third network device configured to communicate with the communication device, and a second identifier of the communication device.
  • the first network device includes a serving access and mobility management function (AMF)
  • the second network device includes a location management function (LMF)
  • the third network device includes a base station.
  • AMF serving access and mobility management function
  • LMF location management function
  • the above-described methods are embodied in the form of processor-executable code and stored in a non-transitory computer-readable storage medium.
  • the code included in the computer readable storage medium when executed by a processor, causes the processor to implement the methods described in this patent document.
  • a device that is configured or operable to perform the above-described methods is disclosed.
  • FIG. 1 is a location service (LCS) architecture in 5G system.
  • LCS location service
  • FIG. 2 shows a mobile terminated location request service procedure.
  • FIG. 3 shows a network assisted positioning procedure between a location management function (LMF) and radio access network (RAN) node.
  • LMF location management function
  • RAN radio access network
  • FIG. 4 shows an obtaining non-UE associated network assistance data procedure from the RAN node.
  • FIG. 5 is an example architecture for determining location service.
  • FIG. 6 is a first example flowchart that shows that the LMF exposes the UE location to gateway mobile location center (GMLC) directly without going through the serving AMF.
  • GMLC gateway mobile location center
  • FIG. 7 is a second example flowchart that shows that the LMF requests UE related information from RAN via the serving access and mobility management function (AMF) .
  • AMF serving access and mobility management function
  • FIG. 8 is a third example flowchart that shows obtaining non-UE associated network assistance data procedure from the RAN node.
  • FIG. 9 is a fourth example flowchart that shows that the LMF requests UE related information from RAN via the Local AMF.
  • FIG. 10 shows an exemplary block diagram of a hardware platform that may be a part of a network device or a communication device.
  • FIG. 11 shows an example of wireless communication including a base station (BS) and user equipment (UE) based on some implementations of the disclosed technology.
  • BS base station
  • UE user equipment
  • FIG. 12 shows an example flowchart for transmitting location information of a communication device.
  • FIG. 13 shows an example flowchart for facilitating transmission of location information of a communication device.
  • FIG. 14 shows an example flowchart for receiving location information of a communication device.
  • FIG. 15 shows another example flowchart for facilitating transmission of location information of a communication device.
  • the UE location can be calculated in location management function (LMF) which are deployed in the public network.
  • LMF location management function
  • the UE location data can be sensitive, and the enterprise may not want to expose the UE location to the public network.
  • the latency of location procedure should be minimized as much as possible.
  • FIG. 1 is a LCS architecture in 5G system.
  • the architecture is FIG. 1 shows at least the following functions:
  • UE User Equipment
  • the UE can provide UE assistant information to LMF so the LMF can calculate the UE location.
  • Radio Access Network -
  • the RAN can be involved in the handling of various positioning procedures including positioning of a target UE, provision of location related information not associated with a particular target UE and transfer of positioning messages between an access and mobility management function (AMF) or LMF and a target UE.
  • AMF access and mobility management function
  • the RAN shall support determination of location estimates in geographical and/or local co-ordinates.
  • Access and Mobility Management function (AMF) -This function can include the following functionalities: Registration management, Connection management, Reachability management and Mobility Management. This function can also perform the access authentication and access authorization.
  • the AMF is the NAS security termination. The AMF can relay the NAS between UE and LMF, etc. The AMF also select a proper LMF when it receives location request from the gateway mobile location center (GMLC) .
  • GMLC gateway mobile location center
  • UDM User Data Management
  • LMF Location Management Function
  • the LMF can calculate or verify the UE location and any velocity estimate and may estimate the achieved accuracy.
  • the LMF receives location requests for a target UE from the serving AMF.
  • the LMF interacts with the UE in order to exchange location information applicable to UE assisted and UE based position methods and interacts with the RAN in order to obtain location information.
  • GMLC Gateway Mobile Location Center
  • the GMLC can contain functionality required to support LCS.
  • GMLC is the first node an external LCS client (Application Function) accesses in a PLMN.
  • AFs and NFs may access GMLC directly or via NEF.
  • the GMLC may request routing information and/or target UE privacy information from the UDM. After performing authorization of an external LCS Client or AF and verifying target UE privacy, a GMLC forwards a location request to a serving AMF.
  • LCS Client Application Function
  • NFs may access LCS services from a GMLC.
  • FIG. 2 shows a mobile terminated location request service procedure.
  • the operations mentioned below with corresponding numbers describe the operations associated with the numbers shown in FIG. 2.
  • the external location services client sends a request to the GMLC for a location for the target UE identified by an GPSI or an SUPI.
  • the GMLC invokes a Nudm_UECM_Get service operation towards the home UDM of the target UE to be located with the GPSI or SUPI of this UE.
  • the UDM returns the network addresses of the current serving AMF.
  • the GMLC invokes the Namf_Location_ProvidePositioningInfo service operation towards the AMF to request the current location of the UE.
  • the service operation includes the SUPI, and client type and may include the required QoS and Supported GAD shapes.
  • the AMF In response to receiving the Namf_Location_ProvidePositioningInfo request at Step 4, if the UE is in CM IDLE state, the AMF initiates a network triggered Service Request procedure to establish a signalling connection with the UE.
  • the AMF selects a LMF based on the available information or based on AMF local configuration.
  • the LMF selection takes the RAN currently serving the UE into account.
  • the AMF may also query the NRF (Network Repository Function) to select a LMF.
  • the AMF invokes the Nlmf_Location_DetermineLocation service operation towards the LMF to request the current location of the UE.
  • the service operation includes a LCS Correlation identifier, the client type, the required QoS, UE Positioning Capability if available and Supported GAD shapes.
  • the LMF performs LMF positioning procedure to calculate the UE location. This step is described in following figures.
  • the LMF returns the Nlmf_Location_DetermineLocation Response towards the AMF to return the current location of the UE.
  • the service operation includes the LCS Correlation identifier, the location estimate, its age and accuracy and may include information about the positioning method.
  • the AMF returns the Namf_Location_ProvidePositioningInfo Response towards the GMLC to return the current location of the UE.
  • the service operation includes LCS Correlation identifier, the location estimate, its age and accuracy and may include information about the positioning method.
  • the GMLC sends the location service response to the external location services client.
  • FIG. 3 shows a network assisted positioning procedure between the LMF and RAN node.
  • the LMF may perform this procedure to request UE related information from RAN, for example the cell information, the SRS (Sounding Reference Signal) configurations to support E-CID Location Information Transfer and Positioning Information Transfer.
  • This procedure is part of step 7 in FIG. 2.
  • the operations mentioned below with corresponding numbers describe the operations associated with the numbers shown in FIG. 3.
  • the LMF invokes the Namf_Communication_N1N2MessageTransfer service operation towards the serving AMF to request the transfer of a Network Positioning message to the serving RAN node for the UE.
  • the service operation includes the Network Positioning message.
  • the Network Positioning message may request location information for the UE from the RAN.
  • the AMF forwards the Network Positioning message to the serving RAN node in an N2 Transport message.
  • the AMF includes a Routing identifier, in the N2 Transport message, identifying the LMF (e.g. a global address of the LMF) .
  • the N2 Transport message is NGAP Downlink UE Associated NRPPa Transport since it is UE specific message.
  • the N2 Transport message includes AMF NGAP UE ID and RAN NGAP UE ID to uniquely identify the UE context in AMF and RAN respectively.
  • the RAN node use RAN NGAP UE ID to identify the UE context and obtains any location information for the UE requested.
  • the serving RAN node returns any location information to the AMF in a Network Positioning message included in an N2 Transport message.
  • the serving RAN node shall also include the Routing identifier in the N2 Transport message received in step 2.
  • the N2 Transport message is NGAP Uplink UE Associated NRPPa Transport since it is UE specific message.
  • the N2 Transport message includes AMF NGAP UE ID and RAN NGAP UE ID to uniquely identify the UE context in AMF and RAN respectively.
  • the AMF uses AMF NGAP UE ID to identify the UE context and invokes the Namf_Communication_N2InfoNotify service towards the LMF indicated by the routing identifier.
  • the service operation includes the Network Positioning message.
  • FIG. 4 shows an obtaining non-UE associated network assistance data procedure from the RAN node.
  • the LMF may perform this procedure to request non UE related information from RAN, to support OTDOA Information Transfer, Assistance Information Transfer, TRP Information Transfer, and Measurement Information Transfer.
  • This procedure is part of step 7 in FIG. 2.
  • the operations mentioned below with corresponding numbers describe the operations associated with the numbers shown in FIG. 4.
  • the LMF invokes the Namf_Communication_NonUEN2MessageTransfer service operation towards the serving AMF to request the transfer of a Network Positioning message to the serving RAN node.
  • the service operation includes the Network Positioning message, the target NG-RAN node identity.
  • the Network Positioning message may request location information from the RAN.
  • the AMF forwards the Network Positioning message to the target RAN node in an N2 Transport message.
  • the AMF includes a Routing identifier, in the N2 Transport message, identifying the LMF (e.g. a global address of the LMF) .
  • the N2 Transport message is NGAP Downlink Non UE Associated NRPPa Transport since it is non UE specific message.
  • the RAN node obtains any location information for the UE requested.
  • the serving RAN node returns any location information to the AMF in a Network Positioning message included in an N2 Transport message.
  • the serving RAN node shall also include the Routing identifier in the N2 Transport message received in step 2.
  • the N2 Transport message is NGAP Uplink Non UE Associated NRPPa Transport since it is not UE specific message.
  • the AMF invokes the Namf_Communication_N2InfoNotify service towards the LMF indicated by the routing identifier.
  • the service operation includes the Network Positioning message.
  • the UE location is calculated in LMF.
  • the GMLC, RAN and LMF are deployed in the enterprise, and the enterprise may not want to expose the UE location information outside its local area. Another issue is the enterprise may want to minimize the latency of location service to meet the service requirements.
  • FIG. 5 is an example architecture for determining location service.
  • the RAN/LMF/GMLC is deployed in the local area/Edge Computing area.
  • the LMF calculates the UE location and expose the UE location to local AF/LCS client via GMLC.
  • the network function in the core network should not be involved during the location calculation procedure.
  • the RAN connects to Local LMF via a Local AMF.
  • the transport Network between the RAN and LMF is N2 interface.
  • the TNL association between the RAN and Local AMF can be established based on local configuration.
  • the LMF exchanges Network Positioning Message with RAN via the local AMF, e.g., without going through the serving AMF in public network.
  • the serving AMF can store and/or configure a mobility context of a UE, where the mobility context is UE information on the UE subscription (e.g., from UDM) , UE mobility information (UE location information such as registration area that describes an area in which the communication device is configured to operate, S-TMSI etc. ) , UE capability information (from UE) .
  • the mobility context can be created during UE initial registration procedure and updated during UE mobility registration procedure.
  • the local AMF can only support a subset of functionalities of serving AMF, e.g., the Local AMF can only support the N2 interface towards the RAN and NL1 interface towards the LMF, but the Local AMF may not support any other interfaces. Thus, the Local AMF does not store the UE context information.
  • the interface between local AMF and LMF can be NL1.
  • the local AMF needs not retain state information for Network Assisted Positioning procedure and Non-UE Associated Network Assistance Data procedure, e.g., can treat any response from RAN as a separate non-associated transfer.
  • FIG. 6 is a first example flowchart that shows that the LMF exposes the UE location to GMLC directly without going through the serving AMF.
  • the operations mentioned below with corresponding numbers describe the operations associated with the numbers shown in FIG. 6.
  • the external location services client sends a request to the GMLC for a location for the target UE identified by an GPSI or an SUPI.
  • the GMLC invokes a Nudm_UECM_Get service operation towards the home UDM of the target UE to be located with the GPSI or SUPI of this UE.
  • the UDM returns the network addresses of the current serving AMF.
  • the GMLC invokes the Namf_Location_ProvidePositioningInfo service operation towards the AMF to request the current location of the UE.
  • the service operation includes the SUPI, and client type and may include the required QoS and Supported GAD shapes.
  • the AMF initiates a network triggered Service Request procedure to establish a signalling connection with the UE.
  • the AMF selects a LMF based on the available information or based on AMF local configuration.
  • the LMF selection takes the RAN currently serving the UE into account.
  • the AMF may also query the NRF (Network Repository Function) to select a LMF.
  • the AMF invokes the Nlmf_Location_DetermineLocation service operation towards the LMF to request the current location of the UE.
  • the service operation includes a LCS Correlation identifier, the client type, the required QoS, UE Positioning Capability if available and Supported GAD shapes.
  • the LMF performs LMF positioning procedure to calculate the UE location. This step is described in following figures.
  • the LMF returns the Nlmf_Location_DetermineLocation Response towards the AMF, This message response the AMF that the UE location service has been enforce and does not include any UE location.
  • the LMF invokes a new service operation Nlmf_Location_Notification Response towards the GMLC to return the current location of the UE.
  • the service operation includes LCS Correlation identifier, the location estimate, its age and accuracy and may include information about the positioning method.
  • the GMLC sends the location service response to the external location services client.
  • FIG. 7 is a second example flowchart that shows that the LMF requests UE related information from RAN via the serving AMF, for example the cell information, the Sounding Reference Signal (SRS) configurations to support E-CID Location Information Transfer and Positioning Information Transfer.
  • the RAN response the UE related information via a Local AMF towards the LMF.
  • the UE related information is not transferred via the serving AMF so the latency of the location service is reduced.
  • SRS Sounding Reference Signal
  • the LMF invokes the Namf_Communication_N1N2MessageTransfer service operation towards the serving AMF to request the transfer of a Network Positioning message to the serving RAN node for the UE.
  • the service operation includes the Network Positioning message.
  • the Network Positioning message may request location information for the UE from the RAN.
  • the AMF forwards the Network Positioning message to the serving RAN node in an N2 Transport message.
  • the AMF includes a Routing identifier, in the N2 Transport message, identifying the LMF (e.g. a global address of the LMF) .
  • the N2 Transport message is NGAP Downlink UE Associated NRPPa Transport since it is UE specific message.
  • the N2 Transport message includes AMF NGAP UE ID and RAN NGAP UE ID to uniquely identify the UE context in AMF and RAN respectively.
  • the RAN node use RAN NGAP UE ID to identify the UE context and obtains any location information for the UE requested.
  • the serving RAN node selects a Local AMF based on local configuration.
  • the Local AMF may be selected based on the Routing identifier of the LMF.
  • the Serving RAN node returns any location information to the local AMF in a Network Positioning message included in an N2 Transport message.
  • the serving RAN node shall also include the Routing identifier in the N2 Transport message received in step 2.
  • the N2 Transport message can be NGAP Uplink Non-UE Associated NRPPa Transport, or NGAP Uplink UE Associated NRPPa Transport.
  • the RAN sets the AMF NGAP UE ID and RAN NGAP UE ID as the ones used between RAN and serving AMF. For example, if the N2 Transport message is NGAP Uplink UE Associated NRPPa Transport, then RAN includes in NGAP Uplink UE Associated NRPPa Transport the AMF NGAP UE ID and RAN NGAP UE ID with values that are the same as those received for the AMF NGAP UE ID and RAN NGAP UE ID from the serving AMF at step 2.
  • the Local AMF invokes the Namf_Communication_N2InfoNotify service towards the LMF indicated by the Routing identifier.
  • the service operation includes the Network Positioning message.
  • FIG. 8 is a third example flowchart that shows obtaining non-UE associated network assistance data procedure from the RAN node.
  • the LMF may perform this procedure to request non UE related information from RAN, to support OTDOA Information Transfer, Assistance Information Transfer, TRP Information Transfer, and Measurement Information Transfer.
  • the RAN response the Non-UE related information via a Local AMF towards the LMF.
  • the Non-UE related information is not transferred via the serving AMF so the latency of location service is reduced.
  • the operations mentioned below with corresponding numbers describe the operations associated with the numbers shown in FIG. 8.
  • the LMF selects a Local AMF based on local configuration and invokes the Namf_Communication_NonUEN2MessageTransfer service operation towards the Local AMF to request the transfer of a Network Positioning message to the serving RAN node.
  • the service operation includes the Network Positioning message, the target NG-RAN node identity.
  • the Network Positioning message may request location information from the RAN.
  • the Local AMF forwards the Network Positioning message to the target RAN node in an N2 Transport message.
  • the AMF includes a Routing identifier, in the N2 Transport message, identifying the LMF (e.g. a global address of the LMF) .
  • the N2 Transport message is NGAP Downlink Non UE Associated NRPPa Transport since it is non UE specific message.
  • the RAN node obtains any location information for the UE requested.
  • the serving RAN node returns any location information to the Local AMF in a Network Positioning message included in an N2 Transport message.
  • the serving RAN node shall also include the Routing identifier in the N2 Transport message received in step 2.
  • the N2 Transport message is NGAP Uplink Non UE Associated NRPPa Transport since it is not UE specific message.
  • the Local AMF invokes the Namf_Communication_N2InfoNotify service towards the LMF indicated by the routing identifier.
  • the service operation includes the Network Positioning message.
  • FIG. 9 is a fourth example flowchart that shows that the LMF requests UE related information from RAN via the Local AMF, for example the cell information, the SRS (Sounding Reference Signal) configurations to support E-CID Location Information Transfer and Positioning Information Transfer.
  • the RAN response the UE related information via this Local AMF towards the LMF.
  • the UE related information is not transferred via the serving AMF so the latency of the location service is reduced.
  • the AMF should notify the RAN about the current serving RAN node after UE mobility so the LMF can communicate the RAN node via the Local AMF.
  • the operations mentioned below with corresponding numbers describe the operations associated with the numbers shown in FIG. 9.
  • the external location services client sends a request to the GMLC for a location for the target UE identified by an GPSI or an SUPI.
  • the GMLC invokes a Nudm_UECM_Get service operation towards the home UDM of the target UE to be located with the GPSI or SUPI of this UE.
  • the UDM returns the network addresses of the current serving AMF.
  • the GMLC invokes the Namf_Location_ProvidePositioningInfo service operation towards the AMF to request the current location of the UE.
  • the service operation includes the SUPI, and client type and may include the required QoS and Supported GAD shapes.
  • the AMF initiates a network triggered Service Request procedure to establish a signalling connection with the UE.
  • the AMF selects a LMF based on the available information or based on AMF local configuration.
  • the LMF selection takes the RAN currently serving the UE into account.
  • the AMF may also query the NRF (Network Repository Function) to select a LMF.
  • the AMF invokes the Nlmf_Location_DetermineLocation service operation towards the LMF to request the current location of the UE.
  • the service operation includes a LCS Correlation identifier, the client type, the required QoS, UE Positioning Capability if available and Supported GAD shapes.
  • the service operation also include the serving RAN node ID and an UE identifier which is used to identify the UE in the RAN node.
  • This UE identifier can be the RAN NGAP UE ID, or the S-TMSI which is allocated by the AMF to temporarily identify the UE (In this case the RAN has to know the S-TMSI) .
  • the LMF selects a Local AMF based on local configuration.
  • the LMF may invokes the Namf_Communication_N1N2MessageTransfer service operation, or Namf_Communication_NonUEN2MessageTransfer service operation towards the local AMF to request the transfer of a Network Positioning message to the serving RAN node for the UE.
  • the service operation includes the Network Positioning message.
  • the Network Positioning message may request location information for the UE from the RAN.
  • the service operation also include the serving RAN node ID and an UE identifier, as received in step 6. This service operation also include the Routing ID identifying the LMF (e.g. a global address of the LMF) .
  • the Local AMF selects the serving RAN node based on the RAN node ID and forwards the Network Positioning message to the serving RAN node in an N2 Transport message.
  • the Local AMF includes the Routing identifier, in the N2 Transport message, identifying the LMF. If the UE identifier received in step 7 is RAN NGAP UE ID, the N2 Transport message is NGAP Downlink UE Associated NRPPa Transport. Otherwise it is NGAP Downlink Non UE Associated NRPPa Transport.
  • the N2 Transport message includes the UE identifier as received in step 7.
  • the RAN node use UE identifier to identify the UE context and obtains any location information for the UE requested.
  • the Serving RAN node returns any location information to the local AMF in a Network Positioning message included in an N2 Transport message.
  • the serving RAN node shall also include the Routing identifier in the N2 Transport message.
  • the N2 Transport message can be NGAP Uplink UE Associated NRPPa Transport, or NGAP Uplink Non UE Associated NRPPa Transport. If the N2 Transport message is NGAP Uplink UE Associated NRPPa Transport, the RAN sets the AMF NGAP UE ID and RAN NGAP UE ID as the ones used between RAN and serving AMF.
  • RAN includes in NGAP Uplink UE Associated NRPPa Transport the AMF NGAP UE ID and RAN NGAP UE ID with values that are the same as those received for the AMF NGAP UE ID and RAN NGAP UE ID from the serving AMF.
  • the Local AMF invokes the Namf_Communication_N2InfoNotify service towards the LMF indicated by the Routing identifier.
  • the service operation includes the Network Positioning message.
  • the LMF returns the Nlmf_Location_DetermineLocation Response towards the AMF, This message response the AMF that the UE location service has been enforce and does not include any UE location.
  • the LMF invokes a new service operation Nlmf_Location_Notification Response towards the GMLC to return the current location of the UE.
  • the service operation includes LCS Correlation identifier, the location estimate, its age and accuracy and may include information about the positioning method.
  • the GMLC sends the location service response to the external location services client.
  • the LMF invokes Namf_EventExposure_Subscribe message to subscribe the event of UE identifier change.
  • the AMF detects that the UE identifier changes, e.g. if the UE identifier is RAN NGAP UE ID, the AMF detects the event after UE mobility handover, if the UE identifier is S-TMSI, the AMF detects the event after a new S-TMSI is allocated in AMF (in this case the AMF needs to send the new S-TMSI to RAN node) .
  • the AMF sends Namf_Location_eventNotify to the GMLC to notify the LMF about the new UE identifier and potential new RAN Node ID.
  • the LMF performs the step 7-13 to request new location information from the RAN node and calculate the UE location and notify the UE location to the GMLC and location client.
  • May receive location information request for a UE from the first AMF (serving) .
  • May send location information response via a second AMF (local) .
  • May receive location information request message for a UE from LMF, including the target RAN node ID and an UE ID.
  • May send location information request message to the target RAN node, including the UE ID.
  • the AMF may send the UE ID and RAN ID towards the LMF.
  • ⁇ LMF (e.g., as shown in first, second, third, and fourth example flowcharts)
  • May receive a request for UE Location the first AMF (serving) , including the GMLC address.
  • May receive location information from second AMF (local) which is different with the first AMF.
  • May notify the UE location to GMLC.
  • the LMF may send the location information request towards the first AMF, or towards the second AMF.
  • the LMF may receive UE ID or RAN ID from the first AMF.
  • the LMF may send the UE ID and RAN ID towards the second AMF.
  • FIG. 10 shows an exemplary block diagram of a hardware platform 1000 that may be a part of a network device (e.g., base station) or a communication device (e.g., a user equipment (UE) ) or a core network device (e.g., device comprising LMF) .
  • the hardware platform 1000 includes at least one processor 1010 and a memory 1005 having instructions stored thereupon. The instructions upon execution by the processor 1010 configure the hardware platform 1000 to perform the operations described in FIGS. 1 to 9 and 11 to 15 and in the various embodiments described in this patent document.
  • the transmitter 1015 transmits or sends information or data to another device.
  • a network device transmitter can send a message to a user equipment.
  • the receiver 1020 receives information or data transmitted or sent by another device.
  • a user equipment can receive a message from a network device.
  • FIG. 11 shows an example of a wireless communication system (e.g., a 5G or NR cellular network) that includes a base station 1120 and one or more user equipment (UE) 1111, 1112 and 1113.
  • the UEs access the BS (e.g., the network) using a communication link to the network (sometimes called uplink direction, as depicted by dashed arrows 1131, 1132, 1133) , which then enables subsequent communication (e.g., shown in the direction from the network to the UEs, sometimes called downlink direction, shown by arrows 1141, 1142, 1143) from the BS to the UEs.
  • a wireless communication system e.g., a 5G or NR cellular network
  • the UEs access the BS (e.g., the network) using a communication link to the network (sometimes called uplink direction, as depicted by dashed arrows 1131, 1132, 1133) , which then enables subsequent communication (e.
  • the BS send information to the UEs (sometimes called downlink direction, as depicted by arrows 1141, 1142, 1143) , which then enables subsequent communication (e.g., shown in the direction from the UEs to the BS, sometimes called uplink direction, shown by dashed arrows 1131, 1132, 1133) from the UEs to the BS.
  • the UE may be, for example, a smartphone, a tablet, a mobile computer, a machine to machine (M2M) device, an Internet of Things (IoT) device, and so on.
  • M2M machine to machine
  • IoT Internet of Things
  • FIG. 12 shows an example flowchart for transmitting location information of a communication device.
  • Operation 1202 includes receiving, by a first network device from a second network device, a first message that triggers the first network device to provide a location information of a communication device, where the second network device is configured to manage a mobility context of the communication device, and where the mobility context describes at least a registration area of the communication device.
  • Operation 1204 includes transmitting, in response to the receiving the first message, by the first network device to a third network device, a second message comprising the location information of the communication device, where the third network device is configured to not manage the mobility context of the communication device.
  • the first network device selects the third network device based on a routing identifier of a location management function (LMF) that requests the location information of the communication device.
  • LMF location management function
  • the first network device in response to the second message being a NGAP uplink user equipment (UE) associated new radio positioning protocol A (NRPPa) transport message: the first network device includes in the NGAP uplink UE associated NRPPa transport message: an access and mobility management function next generation application protocol user equipment identifier (AMF NGAP UE ID) , and a radio access network next generation application protocol user equipment identifier (RAN NGAP UE ID) , where the first network device sets values for the AMF NGAP UE ID and the RAN NGAP UE ID to be same as those received for the AMF NGAP UE ID and the RAN NGAP UE ID received from the second network device.
  • the first network device includes a base station
  • the second network device includes a serving access and mobility management function (AMF)
  • AMF
  • FIG. 13 shows an example flowchart for facilitating transmission of location information of a communication device.
  • Operation 1302 includes receiving, by a first network device from a second network device, a first message that triggers the first network device to request a location information of a communication device from a third network device, where the first message includes a first identifier of the third network device configured to communicate with the communication device, and a second identifier of the communication device.
  • Operation 1304 includes transmitting, in response to the receiving the first message, a second message to the third network device, where the second message triggers the third network device to provide the location information of the communication device.
  • FIG. 14 shows an example flowchart for receiving location information of a communication device.
  • Operation 1402 includes receiving, by the second network device, a first identifier of a third network device configured to communicate with a communication device, and a second identifier of the communication device.
  • Operation 1404 includes transmitting, by the second network device to a first network device, a first message that triggers the first network device to request a location information of the communication device from the third network device, where the first message includes the first identifier of the third network device and the second identifier of the communication device.
  • Operation 1406 includes receiving, in response to the transmitting the first message, the location information of the communication device.
  • the second identifier includes a radio access network (RAN) next generation application protocol (NGAP) user equipment (UE) identifier (ID) , or a temporary mobile subscriber identity.
  • the first message includes a routing identifier of a location management function (LMF) that requests the location information of the communication device.
  • the second message is a next generation application protocol (NGAP) downlink user equipment (UE) associated new radio positioning protocol A (NRPPa) transport message in response to the second identifier of the communication device being a radio access network (RAN) next generation application protocol (NGAP) user equipment (UE) identifier (ID) .
  • NGAP next generation application protocol
  • NRPPa new radio positioning protocol A
  • the second message is a next generation application protocol (NGAP) downlink non user equipment (UE) associated new radio positioning protocol A (NRPPa) transport message in response to the second identifier of the communication device not being a radio access network (RAN) next generation application protocol (NGAP) user equipment (UE) identifier (ID) .
  • NGAP next generation application protocol
  • RAN radio access network
  • NGAP next generation application protocol
  • UE user equipment
  • ID identifier
  • the first network device includes a local access and mobility management function (AMF)
  • the second network device includes a location management function (LMF)
  • the third network device includes a base station.
  • AMF local access and mobility management function
  • LMF location management function
  • FIG. 15 shows an example flowchart for facilitating transmission of location information of a communication device.
  • Operation 1502 includes receiving, by a first network device, a first message that triggers the first network device to initiate a process to obtain a location information of a communication device.
  • Operation 1504 includes transmitting, in response to the receiving the first message, a second message to a second network device, where the second message triggers the second network device to provide the location information of the communication device, and where the second message includes a first identifier of a third network device configured to communicate with the communication device, and a second identifier of the communication device.
  • the first network device includes a serving access and mobility management function (AMF)
  • the second network device includes a location management function (LMF)
  • the third network device includes a base station.
  • AMF serving access and mobility management function
  • LMF location management function
  • a computer-readable medium may include removable and non-removable storage devices including, but not limited to, Read Only Memory (ROM) , Random Access Memory (RAM) , compact discs (CDs) , digital versatile discs (DVD) , etc. Therefore, the computer-readable media can include a non-transitory storage media.
  • program modules may include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types.
  • Computer-or processor-executable instructions, associated data structures, and program modules represent examples of program code for executing steps of the methods disclosed herein. The particular sequence of such executable instructions or associated data structures represents examples of corresponding acts for implementing the functions described in such steps or processes.
  • a hardware circuit implementation can include discrete analog and/or digital components that are, for example, integrated as part of a printed circuit board.
  • the disclosed components or modules can be implemented as an Application Specific Integrated Circuit (ASIC) and/or as a Field Programmable Gate Array (FPGA) device.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • DSP digital signal processor
  • the various components or sub-components within each module may be implemented in software, hardware or firmware.
  • the connectivity between the modules and/or components within the modules may be provided using any one of the connectivity methods and media that is known in the art, including, but not limited to, communications over the Internet, wired, or wireless networks using the appropriate protocols.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Techniques are described for providing or receiving location information of a communication device. An example wireless communication device includes receiving, by a first network device from a second network device, a first message that triggers the first network device to provide a location information of a communication device, where the second network device is configured to manage a mobility context of the communication device, and where the mobility context describes at least a registration area of the communication device; and transmitting, in response to the receiving the first message, by the first network device to a third network device, a second message comprising the location information of the communication device, where the third network device is configured to not manage the mobility context of the communication device.

Description

TECHNIQUES FOR PERFORMING LOCATION SERVICE IN WIRELESS COMMUNICATIONS TECHNICAL FIELD
This document is directed generally to digital wireless communications.
BACKGROUND
Mobile telecommunication technologies are moving the world toward an increasingly connected and networked society. In comparison with the existing wireless networks, next generation systems and wireless communication techniques will need to support a much wider range of use-case characteristics and provide a more complex and sophisticated range of access requirements and flexibilities.
Long-Term Evolution (LTE) is a standard for wireless communication for mobile devices and data terminals developed by 3rd Generation Partnership Project (3GPP) . LTE Advanced (LTE-A) is a wireless communication standard that enhances the LTE standard. The 5th generation of wireless system, known as 5G, advances the LTE and LTE-Awireless standards and is committed to supporting higher data-rates, large number of connections, ultra-low latency, high reliability and other emerging business needs.
SUMMARY
Techniques are disclosed for providing or receiving location information of a communication device.
A first example wireless communication method includes receiving, by a first network device from a second network device, a first message that triggers the first network device to provide a location information of a communication device, where the second network device is configured to manage a mobility context of the communication device, and where the mobility context describes at least a registration area of the communication device; and transmitting, in response to the receiving the first message, by the first network device to a third network device, a second message comprising the location information of the communication device, where the third network device is configured to not manage the mobility context of the communication device.
In some embodiments, the first network device selects the third network device based on a routing identifier of a location management function (LMF) that requests the location information of the communication device. In some embodiments, in response to the second message being a NGAP uplink user equipment (UE) associated new radio positioning protocol A (NRPPa) transport message: the first network device includes in the NGAP uplink UE associated NRPPa transport message: an access and mobility management function next generation application protocol user equipment identifier (AMF NGAP UE ID) , and a radio access network next generation application protocol user equipment identifier (RAN NGAP UE ID) , where the first network device sets values for the AMF NGAP UE ID and the RAN NGAP UE ID to be same as those received for the AMF NGAP UE ID and the RAN NGAP UE ID received from the second network device. In some embodiments, the first network device includes a base station, the second network device includes a serving access and mobility management function (AMF) , and the third network device includes a local AMF.
A second example wireless communication method includes receiving, by a first network device from a second network device, a first message that triggers the first network device to request a location information of a communication device from a third network device, where the first message includes a first identifier of the third network device configured to communicate with the communication device, and a second identifier of the communication device; and transmitting, in response to the receiving the first message, a second message to the third network device, where the second message triggers the third network device to provide the location information of the communication device.
A third example wireless communication method includes receiving, by the second network device, a first identifier of a third network device configured to communicate with a communication device, and a second identifier of the communication device; transmitting, by the second network device to a first network device, a first message that triggers the first network device to request a location information of the communication device from the third network device, where the first message includes the first identifier of the third network device and the second identifier of the communication device; and receiving, in response to the transmitting the first message, the location information of the communication device.
In some embodiments, the second identifier includes a radio access network (RAN) next generation application protocol (NGAP) user equipment (UE) identifier (ID) , or a  temporary mobile subscriber identity. In some embodiments, the first message includes a routing identifier of a location management function (LMF) that requests the location information of the communication device. In some embodiments, the second message is a next generation application protocol (NGAP) downlink user equipment (UE) associated new radio positioning protocol A (NRPPa) transport message in response to the second identifier of the communication device being a radio access network (RAN) next generation application protocol (NGAP) user equipment (UE) identifier (ID) . In some embodiments, the second message is a next generation application protocol (NGAP) downlink non user equipment (UE) associated new radio positioning protocol A (NRPPa) transport message in response to the second identifier of the communication device not being a radio access network (RAN) next generation application protocol (NGAP) user equipment (UE) identifier (ID) . In some embodiments, the first network device includes a local access and mobility management function (AMF) , the second network device includes a location management function (LMF) , and the third network device includes a base station.
A fourth example wireless communication method includes receiving, by a first network device, a first message that triggers the first network device to initiate a process to obtain a location information of a communication device; and transmitting, in response to the receiving the first message, a second message to a second network device, where the second message triggers the second network device to provide the location information of the communication device, and where the second message includes a first identifier of a third network device configured to communicate with the communication device, and a second identifier of the communication device.
In some embodiments, the first network device includes a serving access and mobility management function (AMF) , the second network device includes a location management function (LMF) , and the third network device includes a base station.
In yet another exemplary aspect, the above-described methods are embodied in the form of processor-executable code and stored in a non-transitory computer-readable storage medium. The code included in the computer readable storage medium when executed by a processor, causes the processor to implement the methods described in this patent document.
In yet another exemplary embodiment, a device that is configured or operable to perform the above-described methods is disclosed.
The above and other aspects and their implementations are described in greater detail in the drawings, the descriptions, and the claims.
BRIEF DESCRIPTION OF THE DRAWING
FIG. 1 is a location service (LCS) architecture in 5G system.
FIG. 2 shows a mobile terminated location request service procedure.
FIG. 3 shows a network assisted positioning procedure between a location management function (LMF) and radio access network (RAN) node.
FIG. 4 shows an obtaining non-UE associated network assistance data procedure from the RAN node.
FIG. 5 is an example architecture for determining location service.
FIG. 6 is a first example flowchart that shows that the LMF exposes the UE location to gateway mobile location center (GMLC) directly without going through the serving AMF.
FIG. 7 is a second example flowchart that shows that the LMF requests UE related information from RAN via the serving access and mobility management function (AMF) .
FIG. 8 is a third example flowchart that shows obtaining non-UE associated network assistance data procedure from the RAN node.
FIG. 9 is a fourth example flowchart that shows that the LMF requests UE related information from RAN via the Local AMF.
FIG. 10 shows an exemplary block diagram of a hardware platform that may be a part of a network device or a communication device.
FIG. 11 shows an example of wireless communication including a base station (BS) and user equipment (UE) based on some implementations of the disclosed technology.
FIG. 12 shows an example flowchart for transmitting location information of a communication device.
FIG. 13 shows an example flowchart for facilitating transmission of location information of a communication device.
FIG. 14 shows an example flowchart for receiving location information of a communication device.
FIG. 15 shows another example flowchart for facilitating transmission of location information of a communication device.
DETAILED DESCRIPTION
In a location service (LCS) procedure, the UE location can be calculated in location management function (LMF) which are deployed in the public network. In some deployments such as enterprise, the UE location data can be sensitive, and the enterprise may not want to expose the UE location to the public network. There is need to study solutions to support location service without exposing the UE location to public network. In addition, the latency of location procedure should be minimized as much as possible.
The example headings for the various sections below are used to facilitate the understanding of the disclosed subject matter and do not limit the scope of the claimed subject matter in any way. Accordingly, one or more features of one example section can be combined with one or more features of another example section. Furthermore, 5G terminology is used for the sake of clarity of explanation, but the techniques disclosed in the present document are not limited to 5G technology only, and may be used in wireless systems that implemented other protocols.
I. Introduction
FIG. 1 is a LCS architecture in 5G system. The architecture is FIG. 1 shows at least the following functions:
1) User Equipment (UE) -The UE can provide UE assistant information to LMF so the LMF can calculate the UE location.
2) Radio Access Network (RAN) -The RAN can be involved in the handling of various positioning procedures including positioning of a target UE, provision of location related information not associated with a particular target UE and transfer of positioning messages between an access and mobility management function (AMF) or LMF and a target UE. The RAN shall support determination of location estimates in geographical and/or local co-ordinates.
3) Access and Mobility Management function (AMF) -This function can include the following functionalities: Registration management, Connection management, Reachability management and Mobility Management. This function can also perform the access authentication and access authorization. The AMF is the NAS security termination. The AMF can relay the NAS between UE and LMF, etc. The AMF also select a proper LMF when it receives location request from the gateway mobile location center (GMLC) .
4) User Data Management (UDM) -This function can provide UE subscription information to the GMLC. This function also maintains the serving AMF information that the UE is currently registered so it can update the AMF when the UE subscription has been updated. The UDM contains LCS subscriber LCS privacy profile.
5) Location Management Function (LMF) -The LMF can calculate or verify the UE location and any velocity estimate and may estimate the achieved accuracy. The LMF receives location requests for a target UE from the serving AMF. The LMF interacts with the UE in order to exchange location information applicable to UE assisted and UE based position methods and interacts with the RAN in order to obtain location information.
6) Gateway Mobile Location Center (GMLC) -The GMLC can contain functionality required to support LCS. GMLC is the first node an external LCS client (Application Function) accesses in a PLMN. AFs and NFs may access GMLC directly or via NEF. The GMLC may request routing information and/or target UE privacy information from the UDM. After performing authorization of an external LCS Client or AF and verifying target UE privacy, a GMLC forwards a location request to a serving AMF.
7) LCS Client (Application Function) -AFs and NFs may access LCS services from a GMLC.
FIG. 2 shows a mobile terminated location request service procedure. The operations mentioned below with corresponding numbers describe the operations associated with the numbers shown in FIG. 2.
1. The external location services client sends a request to the GMLC for a location for the target UE identified by an GPSI or an SUPI.
2. The GMLC invokes a Nudm_UECM_Get service operation towards the home UDM of the target UE to be located with the GPSI or SUPI of this UE.
3. The UDM returns the network addresses of the current serving AMF.
4. The GMLC invokes the Namf_Location_ProvidePositioningInfo service operation towards the AMF to request the current location of the UE. The service operation includes the SUPI, and client type and may include the required QoS and Supported GAD shapes.
5. In response to receiving the Namf_Location_ProvidePositioningInfo request at Step 4, if the UE is in CM IDLE state, the AMF initiates a network triggered Service Request procedure to establish a signalling connection with the UE.
6. In response to receiving the Namf_Location_ProvidePositioningInfo request at Step 4, the AMF selects a LMF based on the available information or based on AMF local configuration. The LMF selection takes the RAN currently serving the UE into account. The AMF may also query the NRF (Network Repository Function) to select a LMF. The AMF invokes the Nlmf_Location_DetermineLocation service operation towards the LMF to request the current location of the UE. The service operation includes a LCS Correlation identifier, the client type, the required QoS, UE Positioning Capability if available and Supported GAD shapes.
7. The LMF performs LMF positioning procedure to calculate the UE location. This step is described in following figures.
8. The LMF returns the Nlmf_Location_DetermineLocation Response towards the AMF to return the current location of the UE. The service operation includes the LCS Correlation identifier, the location estimate, its age and accuracy and may include information about the positioning method.
9. The AMF returns the Namf_Location_ProvidePositioningInfo Response towards the GMLC to return the current location of the UE. The service operation includes LCS Correlation identifier, the location estimate, its age and accuracy and may include information about the positioning method.
10. The GMLC sends the location service response to the external location services client.
FIG. 3 shows a network assisted positioning procedure between the LMF and RAN node. The LMF may perform this procedure to request UE related information from RAN, for example the cell information, the SRS (Sounding Reference Signal) configurations to support E-CID Location Information Transfer and Positioning Information Transfer. This procedure is part of step 7 in FIG. 2. The operations mentioned below with corresponding numbers describe the operations associated with the numbers shown in FIG. 3.
1. The LMF invokes the Namf_Communication_N1N2MessageTransfer service operation towards the serving AMF to request the transfer of a Network Positioning message to the serving RAN node for the UE. The service operation includes the Network Positioning message. The Network Positioning message may request location information for the UE from the RAN.
2. The AMF forwards the Network Positioning message to the serving RAN node in an N2 Transport message. The AMF includes a Routing identifier, in the N2 Transport message, identifying the LMF (e.g. a global address of the LMF) . In existing procedure the N2 Transport message is NGAP Downlink UE Associated NRPPa Transport since it is UE specific message. The N2 Transport message includes AMF NGAP UE ID and RAN NGAP UE ID to uniquely identify the UE context in AMF and RAN respectively.
3. The RAN node use RAN NGAP UE ID to identify the UE context and obtains any location information for the UE requested. The serving RAN node returns any location information to the AMF in a Network Positioning message included in an N2 Transport message. The serving RAN node shall also include the Routing identifier in the N2 Transport message received in step 2. In existing procedure the N2 Transport message is NGAP Uplink UE Associated NRPPa Transport since it is UE specific message. The N2 Transport message includes AMF NGAP UE ID and RAN NGAP UE ID to uniquely identify the UE context in AMF and RAN respectively.
4. The AMF uses AMF NGAP UE ID to identify the UE context and invokes the Namf_Communication_N2InfoNotify service towards the LMF indicated by the routing identifier. The service operation includes the Network Positioning message.
FIG. 4 shows an obtaining non-UE associated network assistance data procedure from the RAN node. The LMF may perform this procedure to request non UE related information from RAN, to support OTDOA Information Transfer, Assistance Information Transfer, TRP Information Transfer, and Measurement Information Transfer. This procedure is part of step 7 in FIG. 2. The operations mentioned below with corresponding numbers describe the operations associated with the numbers shown in FIG. 4.
1. The LMF invokes the Namf_Communication_NonUEN2MessageTransfer service operation towards the serving AMF to request the transfer of a Network Positioning message to the serving RAN node. The service operation includes the Network Positioning message, the target NG-RAN node identity. The Network Positioning message may request location information from the RAN.
2. The AMF forwards the Network Positioning message to the target RAN node in an N2 Transport message. The AMF includes a Routing identifier, in the N2 Transport message, identifying the LMF (e.g. a global address of the LMF) . In existing procedure the N2 Transport message is NGAP Downlink Non UE Associated NRPPa Transport since it is non UE specific message.
3. The RAN node obtains any location information for the UE requested. The serving RAN node returns any location information to the AMF in a Network Positioning message included in an N2 Transport message. The serving RAN node shall also include the Routing identifier in the N2 Transport message received in step 2. In existing procedure the N2 Transport message is NGAP Uplink Non UE Associated NRPPa Transport since it is not UE specific message.
4. The AMF invokes the Namf_Communication_N2InfoNotify service towards the LMF indicated by the routing identifier. The service operation includes the Network Positioning message.
From above procedure, the UE location is calculated in LMF. In some deployment the GMLC, RAN and LMF are deployed in the enterprise, and the enterprise may not want to expose the UE location information outside its local area. Another issue is the enterprise may want to minimize the latency of location service to meet the service requirements.
II. Example Techniques and Architecture
FIG. 5 is an example architecture for determining location service. In this architecture, the RAN/LMF/GMLC is deployed in the local area/Edge Computing area. The LMF calculates the UE location and expose the UE location to local AF/LCS client via GMLC. The network function in the core network should not be involved during the location calculation procedure. In this architecture, the RAN connects to Local LMF via a Local AMF. The transport Network  between the RAN and LMF is N2 interface. The TNL association between the RAN and Local AMF can be established based on local configuration.
The LMF exchanges Network Positioning Message with RAN via the local AMF, e.g., without going through the serving AMF in public network. The serving AMF can store and/or configure a mobility context of a UE, where the mobility context is UE information on the UE subscription (e.g., from UDM) , UE mobility information (UE location information such as registration area that describes an area in which the communication device is configured to operate, S-TMSI etc. ) , UE capability information (from UE) . The mobility context can be created during UE initial registration procedure and updated during UE mobility registration procedure. In some embodiments, the local AMF can only support a subset of functionalities of serving AMF, e.g., the Local AMF can only support the N2 interface towards the RAN and NL1 interface towards the LMF, but the Local AMF may not support any other interfaces. Thus, the Local AMF does not store the UE context information.
The interface between local AMF and LMF can be NL1. The local AMF needs not retain state information for Network Assisted Positioning procedure and Non-UE Associated Network Assistance Data procedure, e.g., can treat any response from RAN as a separate non-associated transfer.
FIG. 6 is a first example flowchart that shows that the LMF exposes the UE location to GMLC directly without going through the serving AMF. The operations mentioned below with corresponding numbers describe the operations associated with the numbers shown in FIG. 6.
1. The external location services client sends a request to the GMLC for a location for the target UE identified by an GPSI or an SUPI.
2. The GMLC invokes a Nudm_UECM_Get service operation towards the home UDM of the target UE to be located with the GPSI or SUPI of this UE.
3. The UDM returns the network addresses of the current serving AMF.
4. The GMLC invokes the Namf_Location_ProvidePositioningInfo service operation towards the AMF to request the current location of the UE. The service operation includes the SUPI, and client type and may include the required QoS and Supported GAD shapes.
5. If the UE is in CM IDLE state, the AMF initiates a network triggered Service Request procedure to establish a signalling connection with the UE.
6. The AMF selects a LMF based on the available information or based on AMF local configuration. The LMF selection takes the RAN currently serving the UE into account. The AMF may also query the NRF (Network Repository Function) to select a LMF. The AMF invokes the Nlmf_Location_DetermineLocation service operation towards the LMF to request the current location of the UE. The service operation includes a LCS Correlation identifier, the client type, the required QoS, UE Positioning Capability if available and Supported GAD shapes.
7. The LMF performs LMF positioning procedure to calculate the UE location. This step is described in following figures.
8. The LMF returns the Nlmf_Location_DetermineLocation Response towards the AMF, This message response the AMF that the UE location service has been enforce and does not include any UE location.
9. The LMF invokes a new service operation Nlmf_Location_Notification Response towards the GMLC to return the current location of the UE. The service operation includes LCS Correlation identifier, the location estimate, its age and accuracy and may include information about the positioning method.
10. The GMLC sends the location service response to the external location services client.
FIG. 7 is a second example flowchart that shows that the LMF requests UE related information from RAN via the serving AMF, for example the cell information, the Sounding Reference Signal (SRS) configurations to support E-CID Location Information Transfer and Positioning Information Transfer. The RAN response the UE related information via a Local AMF towards the LMF. The UE related information is not transferred via the serving AMF so the latency of the location service is reduced. The operations mentioned below with corresponding numbers describe the operations associated with the numbers shown in FIG. 7.
1. The LMF invokes the Namf_Communication_N1N2MessageTransfer service operation towards the serving AMF to request the transfer of a Network Positioning message to the  serving RAN node for the UE. The service operation includes the Network Positioning message. The Network Positioning message may request location information for the UE from the RAN.
2. The AMF forwards the Network Positioning message to the serving RAN node in an N2 Transport message. The AMF includes a Routing identifier, in the N2 Transport message, identifying the LMF (e.g. a global address of the LMF) . The N2 Transport message is NGAP Downlink UE Associated NRPPa Transport since it is UE specific message. The N2 Transport message includes AMF NGAP UE ID and RAN NGAP UE ID to uniquely identify the UE context in AMF and RAN respectively.
3. The RAN node use RAN NGAP UE ID to identify the UE context and obtains any location information for the UE requested. The serving RAN node selects a Local AMF based on local configuration. The Local AMF may be selected based on the Routing identifier of the LMF. The Serving RAN node returns any location information to the local AMF in a Network Positioning message included in an N2 Transport message. The serving RAN node shall also include the Routing identifier in the N2 Transport message received in step 2. In this example the N2 Transport message can be NGAP Uplink Non-UE Associated NRPPa Transport, or NGAP Uplink UE Associated NRPPa Transport. If the N2 Transport message is NGAP Uplink UE Associated NRPPa Transport, the RAN sets the AMF NGAP UE ID and RAN NGAP UE ID as the ones used between RAN and serving AMF. For example, if the N2 Transport message is NGAP Uplink UE Associated NRPPa Transport, then RAN includes in NGAP Uplink UE Associated NRPPa Transport the AMF NGAP UE ID and RAN NGAP UE ID with values that are the same as those received for the AMF NGAP UE ID and RAN NGAP UE ID from the serving AMF at step 2.
4. The Local AMF invokes the Namf_Communication_N2InfoNotify service towards the LMF indicated by the Routing identifier. The service operation includes the Network Positioning message.
FIG. 8 is a third example flowchart that shows obtaining non-UE associated network assistance data procedure from the RAN node. The LMF may perform this procedure to request non UE related information from RAN, to support OTDOA Information Transfer, Assistance  Information Transfer, TRP Information Transfer, and Measurement Information Transfer. The RAN response the Non-UE related information via a Local AMF towards the LMF. The Non-UE related information is not transferred via the serving AMF so the latency of location service is reduced. The operations mentioned below with corresponding numbers describe the operations associated with the numbers shown in FIG. 8.
1. The LMF selects a Local AMF based on local configuration and invokes the Namf_Communication_NonUEN2MessageTransfer service operation towards the Local AMF to request the transfer of a Network Positioning message to the serving RAN node. The service operation includes the Network Positioning message, the target NG-RAN node identity. The Network Positioning message may request location information from the RAN.
2. The Local AMF forwards the Network Positioning message to the target RAN node in an N2 Transport message. The AMF includes a Routing identifier, in the N2 Transport message, identifying the LMF (e.g. a global address of the LMF) . The N2 Transport message is NGAP Downlink Non UE Associated NRPPa Transport since it is non UE specific message.
3. The RAN node obtains any location information for the UE requested. The serving RAN node returns any location information to the Local AMF in a Network Positioning message included in an N2 Transport message. The serving RAN node shall also include the Routing identifier in the N2 Transport message received in step 2. The N2 Transport message is NGAP Uplink Non UE Associated NRPPa Transport since it is not UE specific message.
4. The Local AMF invokes the Namf_Communication_N2InfoNotify service towards the LMF indicated by the routing identifier. The service operation includes the Network Positioning message.
FIG. 9 is a fourth example flowchart that shows that the LMF requests UE related information from RAN via the Local AMF, for example the cell information, the SRS (Sounding Reference Signal) configurations to support E-CID Location Information Transfer and Positioning Information Transfer. The RAN response the UE related information via this Local  AMF towards the LMF. The UE related information is not transferred via the serving AMF so the latency of the location service is reduced. In addition, the AMF should notify the RAN about the current serving RAN node after UE mobility so the LMF can communicate the RAN node via the Local AMF. The operations mentioned below with corresponding numbers describe the operations associated with the numbers shown in FIG. 9.
1. The external location services client sends a request to the GMLC for a location for the target UE identified by an GPSI or an SUPI.
2. The GMLC invokes a Nudm_UECM_Get service operation towards the home UDM of the target UE to be located with the GPSI or SUPI of this UE.
3. The UDM returns the network addresses of the current serving AMF.
4. The GMLC invokes the Namf_Location_ProvidePositioningInfo service operation towards the AMF to request the current location of the UE. The service operation includes the SUPI, and client type and may include the required QoS and Supported GAD shapes.
5. If the UE is in CM IDLE state, the AMF initiates a network triggered Service Request procedure to establish a signalling connection with the UE.
6. The AMF selects a LMF based on the available information or based on AMF local configuration. The LMF selection takes the RAN currently serving the UE into account. The AMF may also query the NRF (Network Repository Function) to select a LMF. The AMF invokes the Nlmf_Location_DetermineLocation service operation towards the LMF to request the current location of the UE. The service operation includes a LCS Correlation identifier, the client type, the required QoS, UE Positioning Capability if available and Supported GAD shapes. The service operation also include the serving RAN node ID and an UE identifier which is used to identify the UE in the RAN node. One example of this UE identifier can be the RAN NGAP UE ID, or the S-TMSI which is allocated by the AMF to temporarily identify the UE (In this case the RAN has to know the S-TMSI) .
7. The LMF selects a Local AMF based on local configuration. The LMF may invokes the Namf_Communication_N1N2MessageTransfer service operation, or Namf_Communication_NonUEN2MessageTransfer service operation towards the local  AMF to request the transfer of a Network Positioning message to the serving RAN node for the UE. The service operation includes the Network Positioning message. The Network Positioning message may request location information for the UE from the RAN. The service operation also include the serving RAN node ID and an UE identifier, as received in step 6. This service operation also include the Routing ID identifying the LMF (e.g. a global address of the LMF) .
8. The Local AMF selects the serving RAN node based on the RAN node ID and forwards the Network Positioning message to the serving RAN node in an N2 Transport message. The Local AMF includes the Routing identifier, in the N2 Transport message, identifying the LMF. If the UE identifier received in step 7 is RAN NGAP UE ID, the N2 Transport message is NGAP Downlink UE Associated NRPPa Transport. Otherwise it is NGAP Downlink Non UE Associated NRPPa Transport. The N2 Transport message includes the UE identifier as received in step 7.
9. The RAN node use UE identifier to identify the UE context and obtains any location information for the UE requested. The Serving RAN node returns any location information to the local AMF in a Network Positioning message included in an N2 Transport message. The serving RAN node shall also include the Routing identifier in the N2 Transport message. The N2 Transport message can be NGAP Uplink UE Associated NRPPa Transport, or NGAP Uplink Non UE Associated NRPPa Transport. If the N2 Transport message is NGAP Uplink UE Associated NRPPa Transport, the RAN sets the AMF NGAP UE ID and RAN NGAP UE ID as the ones used between RAN and serving AMF. For example, if the N2 Transport message is NGAP Uplink UE Associated NRPPa Transport, then RAN includes in NGAP Uplink UE Associated NRPPa Transport the AMF NGAP UE ID and RAN NGAP UE ID with values that are the same as those received for the AMF NGAP UE ID and RAN NGAP UE ID from the serving AMF.
10. The Local AMF invokes the Namf_Communication_N2InfoNotify service towards the LMF indicated by the Routing identifier. The service operation includes the Network Positioning message.
11. The LMF returns the Nlmf_Location_DetermineLocation Response towards the AMF, This message response the AMF that the UE location service has been enforce and does not include any UE location.
12. The LMF invokes a new service operation Nlmf_Location_Notification Response towards the GMLC to return the current location of the UE. The service operation includes LCS Correlation identifier, the location estimate, its age and accuracy and may include information about the positioning method.
13. The GMLC sends the location service response to the external location services client.
14. If the location service is not one time and the LMF has to request new information from the RAN node, the LMF invokes Namf_EventExposure_Subscribe message to subscribe the event of UE identifier change.
15. The AMF detects that the UE identifier changes, e.g. if the UE identifier is RAN NGAP UE ID, the AMF detects the event after UE mobility handover, if the UE identifier is S-TMSI, the AMF detects the event after a new S-TMSI is allocated in AMF (in this case the AMF needs to send the new S-TMSI to RAN node) .
16. The AMF sends Namf_Location_eventNotify to the GMLC to notify the LMF about the new UE identifier and potential new RAN Node ID.
17. The LMF performs the step 7-13 to request new location information from the RAN node and calculate the UE location and notify the UE location to the GMLC and location client.
This patent document describes at least the following techniques for the described device/function:
● RAN (e.g., as shown in second example flowchart)
○ May receive location information request for a UE from the first AMF (serving) .
○ May send location information response via a second AMF (local) .
● Local AMF (e.g., as shown in fourth example flowchart)
○ May receive location information request message for a UE from LMF, including the target RAN node ID and an UE ID.
○ May send location information request message to the target RAN node, including  the UE ID.
● Serving AMF (e.g., as shown in fourth example flowchart) 
○ The AMF may send the UE ID and RAN ID towards the LMF.
● LMF (e.g., as shown in first, second, third, and fourth example flowcharts) 
○ May receive a request for UE Location the first AMF (serving) , including the GMLC address.
○ May receive location information from second AMF (local) which is different with the first AMF.
○ May notify the UE location to GMLC.
○ The LMF may send the location information request towards the first AMF, or towards the second AMF.
○ The LMF may receive UE ID or RAN ID from the first AMF.
○ The LMF may send the UE ID and RAN ID towards the second AMF.
FIG. 10 shows an exemplary block diagram of a hardware platform 1000 that may be a part of a network device (e.g., base station) or a communication device (e.g., a user equipment (UE) ) or a core network device (e.g., device comprising LMF) . The hardware platform 1000 includes at least one processor 1010 and a memory 1005 having instructions stored thereupon. The instructions upon execution by the processor 1010 configure the hardware platform 1000 to perform the operations described in FIGS. 1 to 9 and 11 to 15 and in the various embodiments described in this patent document. The transmitter 1015 transmits or sends information or data to another device. For example, a network device transmitter can send a message to a user equipment. The receiver 1020 receives information or data transmitted or sent by another device. For example, a user equipment can receive a message from a network device.
The implementations as discussed above will apply to a wireless communication. FIG. 11 shows an example of a wireless communication system (e.g., a 5G or NR cellular network) that includes a base station 1120 and one or more user equipment (UE) 1111, 1112 and 1113. In some embodiments, the UEs access the BS (e.g., the network) using a communication link to the network (sometimes called uplink direction, as depicted by dashed  arrows  1131, 1132, 1133) , which then enables subsequent communication (e.g., shown in the direction from the network to the UEs, sometimes called downlink direction, shown by  arrows  1141, 1142, 1143) from the BS to the UEs. In some embodiments, the BS send information to the UEs (sometimes  called downlink direction, as depicted by  arrows  1141, 1142, 1143) , which then enables subsequent communication (e.g., shown in the direction from the UEs to the BS, sometimes called uplink direction, shown by dashed  arrows  1131, 1132, 1133) from the UEs to the BS. The UE may be, for example, a smartphone, a tablet, a mobile computer, a machine to machine (M2M) device, an Internet of Things (IoT) device, and so on.
FIG. 12 shows an example flowchart for transmitting location information of a communication device. Operation 1202 includes receiving, by a first network device from a second network device, a first message that triggers the first network device to provide a location information of a communication device, where the second network device is configured to manage a mobility context of the communication device, and where the mobility context describes at least a registration area of the communication device. Operation 1204 includes transmitting, in response to the receiving the first message, by the first network device to a third network device, a second message comprising the location information of the communication device, where the third network device is configured to not manage the mobility context of the communication device.
In some embodiments, the first network device selects the third network device based on a routing identifier of a location management function (LMF) that requests the location information of the communication device. In some embodiments, in response to the second message being a NGAP uplink user equipment (UE) associated new radio positioning protocol A (NRPPa) transport message: the first network device includes in the NGAP uplink UE associated NRPPa transport message: an access and mobility management function next generation application protocol user equipment identifier (AMF NGAP UE ID) , and a radio access network next generation application protocol user equipment identifier (RAN NGAP UE ID) , where the first network device sets values for the AMF NGAP UE ID and the RAN NGAP UE ID to be same as those received for the AMF NGAP UE ID and the RAN NGAP UE ID received from the second network device. In some embodiments, the first network device includes a base station, the second network device includes a serving access and mobility management function (AMF) , and the third network device includes a local AMF.
FIG. 13 shows an example flowchart for facilitating transmission of location information of a communication device. Operation 1302 includes receiving, by a first network device from a second network device, a first message that triggers the first network device to  request a location information of a communication device from a third network device, where the first message includes a first identifier of the third network device configured to communicate with the communication device, and a second identifier of the communication device. Operation 1304 includes transmitting, in response to the receiving the first message, a second message to the third network device, where the second message triggers the third network device to provide the location information of the communication device.
FIG. 14 shows an example flowchart for receiving location information of a communication device. Operation 1402 includes receiving, by the second network device, a first identifier of a third network device configured to communicate with a communication device, and a second identifier of the communication device. Operation 1404 includes transmitting, by the second network device to a first network device, a first message that triggers the first network device to request a location information of the communication device from the third network device, where the first message includes the first identifier of the third network device and the second identifier of the communication device. Operation 1406 includes receiving, in response to the transmitting the first message, the location information of the communication device.
In some embodiments, the second identifier includes a radio access network (RAN) next generation application protocol (NGAP) user equipment (UE) identifier (ID) , or a temporary mobile subscriber identity. In some embodiments, the first message includes a routing identifier of a location management function (LMF) that requests the location information of the communication device. In some embodiments, the second message is a next generation application protocol (NGAP) downlink user equipment (UE) associated new radio positioning protocol A (NRPPa) transport message in response to the second identifier of the communication device being a radio access network (RAN) next generation application protocol (NGAP) user equipment (UE) identifier (ID) . In some embodiments, the second message is a next generation application protocol (NGAP) downlink non user equipment (UE) associated new radio positioning protocol A (NRPPa) transport message in response to the second identifier of the communication device not being a radio access network (RAN) next generation application protocol (NGAP) user equipment (UE) identifier (ID) . In some embodiments, the first network device includes a local access and mobility management function (AMF) , the second network device includes a location management function (LMF) , and the third network device includes a base station.
FIG. 15 shows an example flowchart for facilitating transmission of location information of a communication device. Operation 1502 includes receiving, by a first network device, a first message that triggers the first network device to initiate a process to obtain a location information of a communication device. Operation 1504 includes transmitting, in response to the receiving the first message, a second message to a second network device, where the second message triggers the second network device to provide the location information of the communication device, and where the second message includes a first identifier of a third network device configured to communicate with the communication device, and a second identifier of the communication device.
In some embodiments, the first network device includes a serving access and mobility management function (AMF) , the second network device includes a location management function (LMF) , and the third network device includes a base station.
In this document the term “exemplary” is used to mean “an example of” and, unless otherwise stated, does not imply an ideal or a preferred embodiment.
Some of the embodiments described herein are described in the general context of methods or processes, which may be implemented in one embodiment by a computer program product, embodied in a computer-readable medium, including computer-executable instructions, such as program code, executed by computers in networked environments. A computer-readable medium may include removable and non-removable storage devices including, but not limited to, Read Only Memory (ROM) , Random Access Memory (RAM) , compact discs (CDs) , digital versatile discs (DVD) , etc. Therefore, the computer-readable media can include a non-transitory storage media. Generally, program modules may include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. Computer-or processor-executable instructions, associated data structures, and program modules represent examples of program code for executing steps of the methods disclosed herein. The particular sequence of such executable instructions or associated data structures represents examples of corresponding acts for implementing the functions described in such steps or processes.
Some of the disclosed embodiments can be implemented as devices or modules using hardware circuits, software, or combinations thereof. For example, a hardware circuit implementation can include discrete analog and/or digital components that are, for example,  integrated as part of a printed circuit board. Alternatively, or additionally, the disclosed components or modules can be implemented as an Application Specific Integrated Circuit (ASIC) and/or as a Field Programmable Gate Array (FPGA) device. Some implementations may additionally or alternatively include a digital signal processor (DSP) that is a specialized microprocessor with an architecture optimized for the operational needs of digital signal processing associated with the disclosed functionalities of this application. Similarly, the various components or sub-components within each module may be implemented in software, hardware or firmware. The connectivity between the modules and/or components within the modules may be provided using any one of the connectivity methods and media that is known in the art, including, but not limited to, communications over the Internet, wired, or wireless networks using the appropriate protocols.
While this document contains many specifics, these should not be construed as limitations on the scope of an invention that is claimed or of what may be claimed, but rather as descriptions of features specific to particular embodiments. Certain features that are described in this document in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or a variation of a sub-combination. Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results.
Only a few implementations and examples are described and other implementations, enhancements and variations can be made based on what is described and illustrated in this disclosure.

Claims (15)

  1. A wireless communication method, comprising:
    receiving, by a first network device from a second network device, a first message that triggers the first network device to provide a location information of a communication device,
    wherein the second network device is configured to manage a mobility context of the communication device, and
    wherein the mobility context describes at least a registration area of the communication device; and
    transmitting, in response to the receiving the first message, by the first network device to a third network device, a second message comprising the location information of the communication device,
    wherein the third network device is configured to not manage the mobility context of the communication device.
  2. The method of claim 1, wherein the first network device selects the third network device based on a routing identifier of a location management function (LMF) that requests the location information of the communication device.
  3. The method of claim 1,
    wherein, in response to the second message being a NGAP uplink user equipment (UE) associated new radio positioning protocol A (NRPPa) transport message:
    the first network device includes in the NGAP uplink UE associated NRPPa transport message:
    an access and mobility management function next generation application protocol user equipment identifier (AMF NGAP UE ID) , and
    a radio access network next generation application protocol user equipment identifier (RAN NGAP UE ID) ,
    wherein the first network device sets values for the AMF NGAP UE ID and the RAN NGAP UE ID to be same as those received for the AMF NGAP UE ID and the RAN NGAP UE ID received from the second network device.
  4. The method of any one of claims 1 to 3,
    wherein the first network device includes a base station,
    wherein the second network device includes a serving access and mobility management function (AMF) , and
    wherein the third network device includes a local AMF.
  5. A wireless communication method, comprising:
    receiving, by a first network device from a second network device, a first message that triggers the first network device to request a location information of a communication device from a third network device,
    wherein the first message includes a first identifier of the third network device configured to communicate with the communication device, and a second identifier of the communication device; and
    transmitting, in response to the receiving the first message, a second message to the third network device,
    wherein the second message triggers the third network device to provide the location information of the communication device.
  6. A wireless communication method, comprising:
    receiving, by the second network device, a first identifier of a third network device configured to communicate with a communication device, and a second identifier of the communication device;
    transmitting, by the second network device to a first network device, a first message that triggers the first network device to request a location information of the communication device from the third network device,
    wherein the first message includes the first identifier of the third network  device and the second identifier of the communication device; and
    receiving, in response to the transmitting the first message, the location information of the communication device.
  7. The method of any one of claims 5 or 6, wherein the second identifier includes a radio access network (RAN) next generation application protocol (NGAP) user equipment (UE) identifier (ID) , or a temporary mobile subscriber identity.
  8. The method of any one of claims 5 or 6, wherein the first message includes a routing identifier of a location management function (LMF) that requests the location information of the communication device.
  9. The method of claim 5, wherein the second message is a next generation application protocol (NGAP) downlink user equipment (UE) associated new radio positioning protocol A (NRPPa) transport message in response to the second identifier of the communication device being a radio access network (RAN) next generation application protocol (NGAP) user equipment (UE) identifier (ID) .
  10. The method of claim 5, wherein the second message is a next generation application protocol (NGAP) downlink non user equipment (UE) associated new radio positioning protocol A (NRPPa) transport message in response to the second identifier of the communication device not being a radio access network (RAN) next generation application protocol (NGAP) user equipment (UE) identifier (ID) .
  11. The method of any one of claims 5 to 10,
    wherein the first network device includes a local access and mobility management function (AMF) ,
    wherein the second network device includes a location management function (LMF) , and
    wherein the third network device includes a base station.
  12. A wireless communication method, comprising:
    receiving, by a first network device, a first message that triggers the first network device to initiate a process to obtain a location information of a communication device;
    transmitting, in response to the receiving the first message, a second message to a second network device,
    wherein the second message triggers the second network device to provide the location information of the communication device, and
    wherein the second message includes a first identifier of a third network device configured to communicate with the communication device, and a second identifier of the communication device.
  13. The method of claim 12,
    wherein the first network device includes a serving access and mobility management function (AMF) ,
    wherein the second network device includes a location management function (LMF) , and
    wherein the third network device includes a base station.
  14. An apparatus for wireless communication comprising a processor, configured to implement a method recited in one or more of claims 1 to 13.
  15. A non-transitory computer readable program storage medium having code stored thereon, the code, when executed by a processor, causing the processor to implement a method recited in one or more of claims 1 to 13.
PCT/CN2022/111561 2022-08-10 2022-08-10 Techniques for performing location service in wireless communications WO2024031471A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/111561 WO2024031471A1 (en) 2022-08-10 2022-08-10 Techniques for performing location service in wireless communications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/111561 WO2024031471A1 (en) 2022-08-10 2022-08-10 Techniques for performing location service in wireless communications

Publications (1)

Publication Number Publication Date
WO2024031471A1 true WO2024031471A1 (en) 2024-02-15

Family

ID=89850269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111561 WO2024031471A1 (en) 2022-08-10 2022-08-10 Techniques for performing location service in wireless communications

Country Status (1)

Country Link
WO (1) WO2024031471A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180199160A1 (en) * 2017-01-09 2018-07-12 Qualcomm Incorporated Systems and methods for supporting control plane location in a fifth generation wireless network
CN113194530A (en) * 2017-02-06 2021-07-30 华为技术有限公司 Method and apparatus for supporting access control and mobility management

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180199160A1 (en) * 2017-01-09 2018-07-12 Qualcomm Incorporated Systems and methods for supporting control plane location in a fifth generation wireless network
CN113194530A (en) * 2017-02-06 2021-07-30 华为技术有限公司 Method and apparatus for supporting access control and mobility management

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CATT: "[AT112-e][607][POS]Gathering of latency enhancement solutions (CATT)", 3GPP TSG-RAN WG2 MEETING #112-E, R2-2010868, 16 November 2020 (2020-11-16), XP052255521 *
CATT: "[Post112-e][617][POS] Evaluation of latency enhancement solutions (CATT)", 3GPP TSG-RAN WG2 MEETING #113-E R2-2100407, 15 January 2021 (2021-01-15), XP051973591 *
ERICSSON, HUAWEI: "Discussion on the latency analysis in the on-going RAN2 Positioning SI", 3GPP TSG-RAN3 MEETING # 111-E R3-210653, 14 January 2021 (2021-01-14), XP051969041 *
QUALCOMM INCORPORATED: "Location Services Alternatives for 5G System Architecture and 5G Procedures", SA WG2 MEETING #120, S2-171982, 26 March 2017 (2017-03-26), XP051247716 *
QUALCOMM INCORPORATED: "Location Services for 5G System Procedures", SA WG2 MEETING #119, S2-170821, 13 February 2017 (2017-02-13), XP051216942 *

Similar Documents

Publication Publication Date Title
US11678147B2 (en) Systems and methods for supporting control plane location in a fifth generation wireless network
US11696095B2 (en) Systems and methods for 5G location support using service based interfaces
US20190053010A1 (en) Systems and methods for 5g location support using service based interfaces
US9137770B2 (en) Emergency circuit-mode call support
US9807562B2 (en) Method and system for obtaining location information regarding a device in a wireless network
US20230148189A1 (en) Apparatus and method for providing low-latency location information service in wireless communication system
US12003592B2 (en) Method and apparatus for service discovery
US11134361B2 (en) Systems and architectures for support of high-performance location in a Next Generation Radio Access Network
CN114270882A (en) System and method for 5G location session handoff of NG-RAN location management component
CN113785552B (en) Session management function selection
US9479897B2 (en) SUPL-WiFi access point controller location based services for WiFi enabled mobile devices
WO2021093099A1 (en) Conflict resolution for protocol data unit session registration and de-registration
WO2021073529A1 (en) Information interaction method and apparatus, base station, and location management functional entity
CN113474679A (en) Obtaining and providing positioning assistance data
WO2024031471A1 (en) Techniques for performing location service in wireless communications
EP4113743A1 (en) Method and device for controlling terminal connection state for providing ultra-low-latency location information service in wireless communication system
CN111512692A (en) Selecting non-3 GPP access nodes to support IMS services to a 5G core network
CN116391402A (en) Method, apparatus and computer program product for wireless communication
US20230116776A1 (en) Method and device for controlling terminal connection state for providing ultra-low-latency location information service in wireless communication system
WO2023045741A1 (en) Positioning method and apparatus, and readable storage medium
WO2023015568A1 (en) A method for location service in edge computing
JP7220209B2 (en) Efficient UE Position Reporting in Cellular Networks
WO2024082484A1 (en) Method and apparatus of supporting positioning method selection
WO2022200841A1 (en) Network action based on co-hosted cells
WO2024114965A1 (en) Overload handling for sidelink positioning in a wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954444

Country of ref document: EP

Kind code of ref document: A1