WO2024031389A1 - 计费处理方法及装置、通信设备及存储介质 - Google Patents

计费处理方法及装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2024031389A1
WO2024031389A1 PCT/CN2022/111279 CN2022111279W WO2024031389A1 WO 2024031389 A1 WO2024031389 A1 WO 2024031389A1 CN 2022111279 W CN2022111279 W CN 2022111279W WO 2024031389 A1 WO2024031389 A1 WO 2024031389A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
pdu
data packet
packets
data
Prior art date
Application number
PCT/CN2022/111279
Other languages
English (en)
French (fr)
Inventor
吴锦花
沈洋
刘建宁
毛玉欣
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/111279 priority Critical patent/WO2024031389A1/zh
Priority to CN202280002895.5A priority patent/CN117859298A/zh
Publication of WO2024031389A1 publication Critical patent/WO2024031389A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems

Definitions

  • the present disclosure relates to the field of wireless communication technology but is not limited to the field of wireless communication technology, and in particular, to a charging processing method and device, communication equipment and storage media.
  • the fifth generation cellular mobile communication system adopts a universal Quality of Service (QoS) mechanism to handle various services including Extended Reality (XR) services and/or multi-modal data services.
  • QoS Quality of Service
  • XR Extended Reality
  • Class data service Class data service.
  • the 5GS system does not yet support XR service data stream QoS enhancement and corresponding charging.
  • XR service data stream QoS enhancement and corresponding charging For example, after downlink data is billed and reported in UPF (User Plane Function), RAN (Radio Access Network) calculates the data between data units within the data set and/or between data sets. If the QoS features or requirements are not matched, data packets are actively discarded, and billed data packets are actively discarded in batches, which will lead to inaccurate accounting results.
  • UPF User Plane Function
  • Embodiments of the present disclosure provide a charging processing method and device, communication equipment, and storage media.
  • a first aspect of an embodiment of the present disclosure provides a charging processing method, which is executed by an access network node.
  • the method includes:
  • the charging offset indication it is determined whether to perform charging correction on the discarded data packet.
  • the charging offset indication is carried in the charging information included in the Policy Control and Charging (PCC) rules; and/or,
  • the charging offset indication is carried in the relevant policy information of the packet data unit (Packet Data Unit, PDU) session; and/or,
  • the charging offset indication is carried in the relevant policy information of the PDU set.
  • the discarded data packets include: PDU sets actively discarded by the access network node in QoS processing based on the PDU set and/or data packets actively discarded by the access network node in the PDU set.
  • the actively discarded PDU set includes at least one of the following:
  • the relationship between the first PDU set and the second PDU set includes at least one of the following:
  • the second PDU set depends on the first PDU set; and/or,
  • the second set of PDUs is less important than the first set of PDUs; and/or,
  • the second set of PDUs has a lower priority than the first set of PDUs.
  • the actively discarded data packets include at least one of the following:
  • the first data packet and the second data packet belong to the same PDU set, and the relationship between the first data packet and the second data packet includes at least one of the following:
  • the second data packet depends on the first data packet; and/or,
  • the second data packet is less important than the first data packet; and/or,
  • the priority of the second data packet is lower than that of the first data packet.
  • the data flow of discarded data packets is an XR-type service data flow or a multi-modal data service data flow.
  • the method further includes:
  • a second aspect of the embodiment of the present disclosure provides a billing processing method, which is executed by a Policy Control Function (PCF).
  • PCF Policy Control Function
  • the charging offset indication is sent to the SMF, where the charging offset indication is used to indicate whether the access network node performs charging correction on the discarded data packet.
  • the charging offset indication is carried in the charging information included in the PCC rule; and/or,
  • the charging offset indication is carried in the relevant policy information of the PDU session; and/or,
  • the charging offset indication is carried in the relevant policy information of the PDU set.
  • the discarded data packets include: PDU sets actively discarded by the access network node in QoS processing based on the PDU set and/or data packets actively discarded by the access network node in the PDU set.
  • the actively discarded PDU set includes at least one of the following:
  • the relationship between the first PDU set and the second PDU set includes at least one of the following:
  • the second PDU set depends on the first PDU set; and/or,
  • the second set of PDUs is less important than the first set of PDUs; and/or,
  • the second set of PDUs has a lower priority than the first set of PDUs.
  • the actively discarded data packets include at least one of the following:
  • the first data packet and the second data packet belong to the same PDU set, and the relationship between the first data packet and the second data packet includes at least one of the following:
  • the second data packet depends on the first data packet; and/or,
  • the second data packet is less important than the first data packet; and/or,
  • the priority of the second data packet is lower than that of the first data packet.
  • the data flow of discarded data packets is an XR-type service data flow or a multi-modal data service data flow.
  • sending the charging offset indication to the SMF includes:
  • the charging offset indication is sent to the SMF.
  • the third aspect of the embodiment of the present disclosure provides a charging processing method, which is executed by SMF.
  • the method includes:
  • the charging offset indication is sent to the access network node, where the charging offset indication is used to indicate whether the access network node performs charging correction on the discarded data packet.
  • the charging offset indication is carried in the charging information included in the PCC rule; and/or,
  • the charging offset indication is carried in the relevant policy information of the PDU session; and/or,
  • the charging offset indication is carried in the relevant policy information of the PDU set.
  • the discarded data packets include: PDU sets actively discarded by the access network node in QoS processing based on the PDU set and/or data packets actively discarded by the access network node in the PDU set.
  • the actively discarded PDU set includes at least one of the following:
  • the relationship between the first PDU set and the second PDU set includes at least one of the following:
  • the second PDU set depends on the first PDU set; and/or,
  • the second set of PDUs is less important than the first set of PDUs; and/or,
  • the second set of PDUs has a lower priority than the first set of PDUs.
  • the actively discarded data packets include at least one of the following:
  • the first data packet and the second data packet belong to the same PDU set, and the relationship between the first data packet and the second data packet includes at least one of the following:
  • the second data packet depends on the first data packet; and/or,
  • the second data packet is less important than the first data packet; and/or,
  • the priority of the second data packet is lower than that of the first data packet.
  • the data flow of discarded data packets is an XR-type service data flow or a multi-modal data service data flow.
  • the method further includes:
  • the charging offset indication sent by the PCF includes:
  • the charging offset indication sent by the PCF is received.
  • the method further includes:
  • the fourth aspect of the embodiment of the present disclosure provides an access network node, including:
  • a receiving module configured to receive a charging offset indication sent by the session management function (SMF);
  • SMF session management function
  • the processing module is configured to determine whether to perform charging correction on the discarded data packet according to the charging offset indication.
  • PCF policy control function
  • the sending module is configured to send a charging offset indication to the SMF, where the charging offset indication is used to indicate whether the access network node performs charging correction on discarded data packets.
  • the sixth aspect of the embodiment of the present disclosure provides a session management function (SMF), including:
  • the sending module is configured to send a charging offset indication to the access network node, where the charging offset indication is used to indicate whether the access network node performs charging correction on the discarded data packet.
  • a seventh aspect of the embodiment of the present disclosure provides a communication device, including:
  • memory for storing instructions executable by the processor
  • the processor is configured to implement the charging processing method described in any one of the first aspect, the second aspect, or the third aspect when running the executable instructions.
  • the eighth aspect of the embodiment of the present disclosure is a communication system, which includes: a policy control function (PCF), a session management function (SMF) and an access network node;
  • PCF policy control function
  • SMF session management function
  • access network node an access network node
  • the PCF is used to execute the charging processing method described in any one of the second aspects
  • the SMF is used to execute the charging processing method described in any one of the third aspects
  • the access network node is configured to perform the charging processing method described in any one of the first aspects.
  • a ninth aspect of the embodiment of the present disclosure provides a computer storage medium, wherein the computer storage medium stores a computer executable program, and when the executable program is executed by a processor, the first aspect, the second aspect, or the third aspect is implemented. Described billing processing method.
  • the technical solution provided by the embodiment of the present disclosure is to receive the charging offset indication sent by the session management function (SMF) through the access network node, and determine whether to perform charging correction on the discarded data packet according to the charging offset indication, It can improve the accuracy of billing results.
  • SMF session management function
  • Figure 1 is a schematic structural diagram of a wireless communication system according to an exemplary embodiment.
  • FIG. 2 is a schematic flowchart of a charging processing method according to an exemplary embodiment.
  • FIG. 3 is a schematic flowchart of a charging processing method according to an exemplary embodiment.
  • FIG. 4 is a schematic flowchart of a charging processing method according to an exemplary embodiment.
  • FIG. 5 is a schematic flowchart of a charging processing method according to an exemplary embodiment.
  • Figure 6 is a schematic flowchart of a charging processing method according to an exemplary embodiment.
  • FIG. 7A is a schematic flowchart of a charging processing method according to an exemplary embodiment.
  • FIG. 7B is a schematic flowchart of a charging processing method according to an exemplary embodiment.
  • FIG. 7C is a schematic flowchart of a charging processing method according to an exemplary embodiment.
  • Figure 8 is a schematic structural diagram of an access network node according to an exemplary embodiment.
  • FIG. 9 is a schematic structural diagram of a policy control function (PCF) according to an exemplary embodiment.
  • PCF policy control function
  • FIG 10 is a schematic structural diagram of a session management function (SMF) according to an exemplary embodiment.
  • SMF session management function
  • Figure 11 is a schematic structural diagram of a communication device according to an exemplary embodiment.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • word “if” as used herein may be interpreted as "when” or "when” or "in response to determining.”
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology.
  • the wireless communication system may include: several user equipments 11 and several access network devices 12.
  • the user equipment 11 may be a device that provides voice and/or data connectivity to the user.
  • the user equipment 11 can communicate with one or more core networks via a Radio Access Network (RAN).
  • RAN Radio Access Network
  • the user equipment 11 can be an Internet of Things user equipment, such as a sensor device, a mobile phone (or a "cellular" phone) ) and computers with IoT user equipment, which may be, for example, fixed, portable, pocket-sized, handheld, computer-built-in, or vehicle-mounted devices.
  • station STA
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • mobile station mobile
  • remote station remote station
  • access point remote user equipment
  • access user equipment access terminal
  • user device user terminal
  • user agent user agent
  • user equipment user device
  • user equipment user equipment
  • the user device 11 may also be a wearable device, a virtual reality (VR) device, an augmented reality (AR) device or a VR/AR hybrid head-mounted device.
  • the user equipment 11 may also be equipment of an unmanned aerial vehicle.
  • the user equipment 11 may also be a vehicle-mounted device, for example, it may be a trip computer with a wireless communication function, or a wireless user equipment connected to an external trip computer.
  • the user equipment 11 may also be a roadside device, for example, it may be a street light, a signal light or other roadside device with a wireless communication function.
  • the access network device 12 may be a device used to communicate with the user equipment 11 in a wireless communication system, and may be a base station, an access point, or a network device, or may refer to an access network device that communicates with the user equipment 11 through an air interface in the access network.
  • the network equipment may be used to convert received air frames to and from IP packets and act as a router between the wireless terminal and the remainder of the access network, which may include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • Network devices also coordinate attribute management of the air interface.
  • the wireless communication system can be the 4th generation mobile communication technology (the 4th generation mobile communication, 4G) system, also known as the Long Term Evolution (LTE) system; or the wireless communication system can also be a 5G system, Also called new radio (NR) system or 5G NR system. Alternatively, the wireless communication system may also be a next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network).
  • the access network device 12 may be an evolved access device (eNB) used in the 4G system.
  • the access network device 12 may also be an access device (gNB) using a centralized distributed architecture in the 5G system.
  • eNB evolved access device
  • gNB access device
  • the access network device 12 adopts a centralized distributed architecture it usually includes a centralized unit (central unit, CU) and at least two distributed units (distributed unit, DU).
  • the centralized unit is equipped with a protocol stack including the Packet Data Convergence Protocol (PDCP) layer, the Radio Link Control protocol (Radio Link Control, RLC) layer, and the Media Access Control (Media Access Control, MAC) layer; distributed
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Media Access Control
  • the unit is provided with a physical (Physical, PHY) layer protocol stack, and the embodiment of the present disclosure does not limit the specific implementation of the access network device 12.
  • a wireless connection can be established between the access network device 12 and the user equipment 11 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth generation mobile communication network technology (4G) standard; or the wireless air interface is a wireless air interface based on the fifth generation mobile communication network technology (5G) standard, such as
  • the wireless air interface is a new air interface; alternatively, the wireless air interface may also be a wireless air interface based on the next generation mobile communication network technology standard of 5G.
  • an E2E (End to End, end-to-end) or D2D (device to device, terminal to terminal) connection can also be established between user devices 11.
  • V2V (vehicle to vehicle, vehicle to vehicle) communication V2I (vehicle to infrastructure, vehicle to roadside equipment) communication
  • V2P (vehicle to pedestrian, vehicle to person) communication in vehicle networking communication Vhicle to everything, V2X Wait for the scene.
  • the above-mentioned wireless communication system may also include core network equipment 13.
  • Several access network devices 12 are connected to core network devices 13 respectively.
  • the core network device 13 may be a Mobility Management Entity (MME) in an evolved packet core network (Evolved Packet Core, EPC).
  • MME Mobility Management Entity
  • EPC evolved Packet Core
  • the core network device can also be a serving gateway (Serving GateWay, SGW), a public data network gateway (Public Data Network GateWay, PGW), a policy and charging rules function unit (Policy and Charging Rules Function, PCRF) or a home contract User Server (Home Subscriber Server, HSS), etc.
  • MME Mobility Management Entity
  • EPC evolved Packet Core
  • the core network device can also be a serving gateway (Serving GateWay, SGW), a public data network gateway (Public Data Network GateWay, PGW), a policy and charging rules function unit (Policy and Charging Rules Function, PCRF) or a home contract User Server (Home Subscriber Server, HSS), etc.
  • PCRF Policy and Charging Rules Function
  • HSS Home Subscriber Server
  • the core network device 13 may be an Access and Mobility Management Function (AMF), a Session Management Function (SMF), or a User Plane Function (UPF). , Policy Control Function (PCF, Policy Control Function), Network Repository Function (NRF, Network Repository Function) entities, etc.
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • PCF Policy Control Function
  • PCF Policy Control Function
  • NRF Network Repository Function
  • the main functions of core network equipment are as follows:
  • SMF is responsible for session management, including the establishment, modification, and release of PDU sessions
  • PCF is responsible for user policy management, including mobility-related policies and PDU session-related policies, such as QoS policies, charging policies, etc.;
  • UPF is responsible for forwarding user data.
  • PCF, SMF, UPF, etc. in the embodiments of the present disclosure can be implemented by one physical device, or can be jointly implemented by multiple physical devices. It can be understood that the PCF, SMF, etc. in the embodiments of the present disclosure can be a logical function module in the physical device, or can be a logical function module composed of multiple physical devices. The embodiments of the present disclosure are not limited. .
  • the embodiments of the present disclosure enumerate multiple implementations to clearly describe the technical solutions of the embodiments of the present disclosure.
  • the multiple embodiments provided in the embodiments of the present disclosure can be executed alone or in combination with the methods of other embodiments in the embodiments of the present disclosure. They can also be executed alone or in combination. It is then executed together with some methods in other related technologies; the embodiments of the present disclosure do not limit this.
  • XR services also involve multi-modal data streams, such as data streams for biological tactile perception. These multi-modal data are data input from the same device or different devices (including sensors) describing the same business or application. These data may be output to one or more destination device terminals. Each data stream in multimodal data often has a certain or even strong correlation, such as the synchronization of audio and video streams, the synchronization of touch and vision, etc.
  • XR media data streams have the characteristics of high bandwidth, low latency and high reliability requirements. They need to further match the QoS requirements of data units and data sets within the data stream to effectively improve user experience.
  • the 5GS system does not yet support XR service data stream QoS enhancement and corresponding charging.
  • RAN actively discards the remaining data packets and packets in the data set based on the matching of QoS characteristics or requirements between data units in the data set and/or between data sets. /or data packets from related data sets. Actively discarding billed data packets in batches will lead to inaccurate accounting results.
  • FIG. 2 is a flow chart of a charging processing method according to an exemplary embodiment. As shown in Figure 2, the charging processing method is executed by the access network node, and the method includes:
  • Step 201 Receive the charging offset indication sent by SMF
  • Step 202 Determine whether to perform charging correction on the discarded data packet according to the charging offset indication.
  • the access network node may be a base station, such as a base station of a 5G network or other evolved base stations.
  • the charging offset indication is used to indicate whether to perform charging correction for discarded data packets.
  • the discarded data packets may include: a PDU set (PDU set) actively discarded by the access network node, and/or a data packet actively discarded by the access network node in the PDU set.
  • PDU set PDU set
  • a data packet actively discarded by the access network node in the PDU set may include: a PDU set (PDU set) actively discarded by the access network node, and/or a data packet actively discarded by the access network node in the PDU set.
  • a PDU set is a PDU set consisting of one or more PDUs. These PDUs carry valid data of an information unit generated by the application layer, for example, frames or video slices for XRM (Extended Reality Media, Extended Reality Media) services) .
  • XRM Extended Reality Media, Extended Reality Media
  • the application layer needs to use all PDUs in the PDU set to correspond to the information unit. In other implementations, when some PDUs are lost, the application layer can still recover all or part of the information units.
  • the discarded data packets may include at least one of the following: a PDU set with a priority lower than a specified priority, a PDU set with a PDU set whose importance is lower than a specified importance, or a data packet within the PDU set with a low priority. Data packets with a preset priority and data packets in the PDU set whose importance is lower than the preset importance.
  • the value of the charging offset indication when the value of the charging offset indication is the first value, it indicates that charging correction for discarded data packets is required or allowed.
  • the value of the charging offset indication when the value of the charging offset indication is the second value, it indicates that charging correction for discarded data packets is not required or is not allowed.
  • the first value is “charging offset” and the second value is “non-offset”.
  • the first value is 1 and the second value is 0.
  • the charging offset indication may include a data volume threshold used to determine whether to perform charging correction for dropped data packets.
  • the amount of discarded data packets when the amount of discarded data packets is greater than the data volume threshold, it indicates that charging correction for discarded data packets is required or allowed. When the amount of discarded data packets is less than or equal to the data volume threshold, it means that charging correction for discarded data packets is not required or is not allowed.
  • the charging offset indication may be generated by the PCF according to subscription information or local policies.
  • the PCF may generate a charging offset indication according to the subscription information or local policy, and send the charging offset indication to the access network node through SMF.
  • the charging offset indication may be obtained by the SMF from the PCF and sent by the SMF to the access network node.
  • the charging offset indication may be obtained by the SMF from the PCF during the PDU session establishment process or the PDU session modification process.
  • Embodiments of the present disclosure provide a charging processing method that receives the charging offset indication sent by the SMF through the access network node, and determines whether to perform charging correction on the discarded data packet according to the charging offset indication, which can improve Accuracy of billing results.
  • the charging offset indication is carried in the charging information included in the PCC rule; and/or,
  • the charging offset indication is carried in the relevant policy information of the PDU session; and/or,
  • the charging offset indication is carried in the relevant policy information of the PDU set.
  • the PCC rules include relevant QoS parameters and charging information of the PDU set, and the charging offset indication may be carried in the charging information.
  • the relevant policy information of the PDU session includes the charging parameters of the PDU session
  • the charging offset indication may be carried in the charging parameters included in the relevant policy information of the PDU session.
  • the relevant policy information of the PDU set includes charging parameters
  • the charging offset indication may be carried in the charging parameters included in the relevant policy information of the PDU set.
  • the policy information related to the PDU session and the policy information related to the PDU set can be included in the PCC rule.
  • the PCC rules may be associated with the user identification of the terminal.
  • the PCC rules are provided to the SMF by the PCF.
  • the charging offset indication may be included in the PCC rule information, as shown in Table 1.
  • the charging offset indication may be included in the relevant policy information of the PDU session, as shown in Table 2.
  • the discarded data packets include: PDU sets actively discarded by the access network node in QoS processing based on PDU sets and/or data packets actively discarded within the PDU set.
  • the access network node is based on the matching of QoS characteristics or requirements between data units in the PDU set and/or between PDU sets (for example, dependencies between data units in the PDU set relationships, dependencies between PDU sets, importance/priority of data units in PDU sets, importance/priority of PDU sets, etc.), proactively discard remaining data packets in the data set and/or data packets of related data sets .
  • QoS characteristics or requirements between data units in the PDU set and/or between PDU sets for example, dependencies between data units in the PDU set relationships, dependencies between PDU sets, importance/priority of data units in PDU sets, importance/priority of PDU sets, etc.
  • the actively discarded PDU set includes at least one of the following:
  • the relationship between the first PDU set and the second PDU set includes at least one of the following:
  • the second PDU set depends on the first PDU set
  • the second set of PDUs is less important than the first set of PDUs
  • the second set of PDUs has a lower priority than the first set of PDUs.
  • the PDU set transmission delay budget, the PDU set transmission error rate threshold, the dependency between PDU sets, and the importance of the PDU set can all be included in the relevant QoS parameters of the PDU set.
  • the set of PDUs that failed to be transmitted may be: the set of PDUs that the access network node has not successfully received within a set time period.
  • PDU set#1 and PDU set#2 if the transmission of PDU set#1 fails, and PDU set#2 depends on PDU set#1, then PDU set# 1 is the first PDU set, and PDU set #2 can be the second PDU set actively discarded by the access network node.
  • PDU set #1 is the first PDU set
  • PDU set #2 can be the second PDU set actively discarded by the access network node.
  • PDU set #1 is the first PDU set
  • PDU set #2 can be the second PDU set actively discarded by the access network node.
  • the PDU set may be actively discarded by the access network node.
  • PDU sets can be configured with corresponding priorities. If the priority of a PDU set is lower than the preset priority, the PDU set can be actively discarded by the access network node.
  • Corresponding dependencies can be configured between PDU sets. If a PDU set depends on other PDU sets, the PDU set can be actively discarded by the access network node.
  • PDU sets can be configured with corresponding importance. If the importance of a PDU set is lower than the preset importance, the PDU set can be actively discarded by the access network node.
  • the actively discarded data packets include at least one of the following:
  • the first data packet and the second data packet belong to the same PDU set, and the relationship between the first data packet and the second data packet includes at least one of the following:
  • the second data packet depends on the first data packet
  • the importance of the second data packet is lower than that of the first data packet
  • the priority of the second data packet is lower than that of the first data packet.
  • the data packet transmission delay budget, the data packet transmission error rate threshold, the dependency between data packets in the same PDU set, and the importance of the data packet can all be included in the relevant QoS parameters of the PDU set.
  • the data packets that fail to be transmitted may be: data packets in the PDU set that are not successfully received by the access network node within a set time period.
  • PDU#1 and PDU#2 in a certain PDU if the transmission of PDU#1 fails and PDU#2 depends on PDU#1, then PDU#1 is the first data packet, and PDU#2 may be the second data packet actively discarded by the access network node.
  • PDU#1 and PDU#2 in a certain PDU if PDU#1 fails to be transmitted, and the importance of PDU#2 is lower than that of PDU The importance of #1, then PDU#1 is the first data packet, and PDU#2 can be the second data packet actively discarded by the access network node.
  • PDU#1 and PDU#2 in a certain PDU if the transmission of PDU#1 fails and the priority of PDU#2 is lower than According to the priority of PDU#1, PDU#1 is the first data packet, and PDU#2 may be the second data packet actively discarded by the access network node.
  • the data packet may be The access network node actively discards it.
  • Data packets in the PDU set can be configured with corresponding priorities. If the priority of a data packet is lower than the preset priority, the data packet can be actively discarded by the access network node.
  • Corresponding dependencies can be configured between different data packets in the same PDU set. If a data packet depends on other data packets, the data packet can be actively discarded by the access network node.
  • Different data packets in the same PDU set can be configured with corresponding importance. If the importance of a data packet is lower than the preset importance, the data packet can be actively discarded by the access network node.
  • the data flow of discarded data packets is an XR-type service data flow or a multi-modal data service data flow.
  • the data flow may be a service data flow provided by the core network to the terminal through the access network node in response to the terminal's service request.
  • both the XR service data flow and the multi-modal data service data flow have the characteristics of high bandwidth, low latency and high reliability requirements.
  • the access network node will actively discard the data packets based on the QoS requirements of the data units and/or data sets in the data flow. In this way, the charging offset indication is used to determine whether to discard the packets. Performing charging correction on data packets can improve the accuracy of charging results.
  • the method further includes:
  • Step 203 Determine to perform charging correction on the discarded data packet.
  • the value of the charging offset indication is a charging offset
  • Step 204 Send the usage information of the discarded data packets and/or the data packets with the discard mark to the UPF.
  • the access network node when it is determined to perform charging correction for discarded data packets, can count the usage information of the discarded data packets, and send the usage information of the discarded data packets and the corresponding user identification to the UPF, or it can Send the packet with the discard mark and the corresponding user ID to UPF.
  • the UPF receives the usage information of the discarded data packets, it can report the usage information of the discarded data packets to the accounting function network element.
  • the charging function network element can determine the charging corresponding to the usage information of the discarded data packets, and subtract the charging corresponding to the usage information of the discarded data packets from the total statistics.
  • the UPF receives a packet with a discard mark, it can count the usage information of the discarded packet and report the calculated usage information of the discarded packet to the accounting function network element.
  • the charging scenario for charging correction includes at least one of the following:
  • charging may be performed based on the usage and time information of the service data flow (the time information includes, for example, the start time and the end time).
  • charging may be performed based on the usage of the service data flow and event information (the event information is, for example, the service type of the service data flow).
  • the charging scenario for charging correction may be determined based on charging policy information, such as charging information in PCC rules.
  • the charging method for charging correction includes at least one of the following:
  • the converged charging refers to the integration of online charging and offline charging.
  • the charging method for charging correction may be determined based on charging policy information, such as charging information in PCC rules.
  • charging correction for discarded data packets is implemented through at least one charging method among online charging, offline charging and converged charging, which improves the flexibility of charging processing.
  • FIG 4 is a flow chart of a charging processing method according to an exemplary embodiment. As shown in Figure 4, the charging processing method is executed by PCF, and the method includes:
  • Step 301 Send a charging offset indication to the SMF, where the charging offset indication is used to indicate whether the access network node performs charging correction on discarded data packets.
  • the discarded data packets may include: a PDU set (PDU set) actively discarded by the access network node, and/or a data packet actively discarded by the access network node in the PDU set.
  • PDU set PDU set
  • a data packet actively discarded by the access network node in the PDU set may include: a PDU set (PDU set) actively discarded by the access network node, and/or a data packet actively discarded by the access network node in the PDU set.
  • the RAN access network node actively discards the remaining data packets in the data set based on the matching of QoS characteristics or requirements between data units in the data set and/or between data sets. and/or packages of related data sets.
  • the discarded data packets may include at least one of the following: a PDU set with a priority lower than a specified priority, a PDU set with a PDU set whose importance is lower than a specified importance, or a data packet within the PDU set with a low priority. Data packets with a preset priority and data packets in the PDU set whose importance is lower than the preset importance.
  • the value of the charging offset indication when the value of the charging offset indication is the first value, it indicates that charging correction for discarded data packets is required or allowed.
  • the value of the charging offset indication when the value of the charging offset indication is the second value, it indicates that charging correction for discarded data packets is not required or is not allowed.
  • the first value is “charging offset” and the second value is “non-offset”.
  • the first value is 1 and the second value is 0.
  • the charging offset indication may include a data volume threshold used to determine whether to perform charging correction for dropped data packets.
  • the amount of discarded data packets when the amount of discarded data packets is greater than the data volume threshold, it indicates that charging correction for discarded data packets is required or allowed. When the amount of discarded data packets is less than or equal to the data volume threshold, it means that charging correction for discarded data packets is not required or is not allowed.
  • the charging offset indication may be generated by the PCF according to subscription information or local policies.
  • the PCF can generate a charging offset indication according to the subscription information or local policy, and send the charging offset indication to the access network node through SMF.
  • the PCF may send the PCC rule carrying the charging offset indication to the SMF.
  • the PCF may send the PCC rule carrying the charging offset indication to the SMF during the PDU session establishment process or the PDU session modification process.
  • the PCC rules include relevant QoS parameters and charging information of the PDU set.
  • the charging offset indication may be carried in the charging information.
  • the PCF may generate PCC rules based on the request message from the AF.
  • the PCF receives a request message sent by the AF, and the request message includes the QoS parameters of each PDU set in the QoS flow and the parameters of the frame identification.
  • the PCF can receive the request message directly sent by the AF. If AF needs to interact with PCF through NEF (Network Exposure Function), PCF can receive the request message from AF forwarded by NEF.
  • NEF Network Exposure Function
  • the QoS parameters of each PDU set in the QoS flow can include:
  • PDU set processing indication used to indicate whether to apply PDU set-based processing activation to a QoS flow. This indication can be implicitly indicated through other PDU set related information provided by the AF.
  • the parameters of the frame identification include burst periodicity (Burst periodicity).
  • the embodiment of the present disclosure provides a charging processing method that sends the charging offset indication to the SMF through the PCF, so that the SMF can send the charging offset indication to the access network node, thereby triggering the access network node to calculate the offset according to the calculation.
  • the charge offset indication determines whether to perform charging correction on discarded data packets, which can improve the accuracy of the charging results.
  • the charging offset indication is carried in the charging information included in the PCC rule; and/or,
  • the charging offset indication is carried in the relevant policy information of the PDU session; and/or,
  • the charging offset indication is carried in the relevant policy information of the PDU set.
  • the PCC rules include relevant QoS parameters and charging information of the PDU set, and the charging offset indication may be carried in the charging information.
  • the relevant policy information of the PDU session includes the charging parameters of the PDU session
  • the charging offset indication may be carried in the charging parameters included in the relevant policy information of the PDU session.
  • the relevant policy information of the PDU set includes charging parameters
  • the charging offset indication may be carried in the charging parameters included in the relevant policy information of the PDU set.
  • the policy information related to the PDU session and the policy information related to the PDU set can be included in the PCC rule.
  • the PCC rules may be associated with the user identification of the terminal.
  • the PCC rules are provided to the SMF by the PCF.
  • the discarded data packets include: PDU sets actively discarded by the access network node in QoS processing based on the PDU set and/or data packets actively discarded by the access network node in the PDU set.
  • the access network node is based on the matching of QoS characteristics or requirements between data units in the PDU set and/or between PDU sets (for example, dependencies between data units in the PDU set relationships, dependencies between PDU sets, importance/priority of data units in PDU sets, importance/priority of PDU sets, etc.), proactively discard remaining data packets in the data set and/or data packets of related data sets .
  • QoS characteristics or requirements between data units in the PDU set and/or between PDU sets for example, dependencies between data units in the PDU set relationships, dependencies between PDU sets, importance/priority of data units in PDU sets, importance/priority of PDU sets, etc.
  • the actively discarded PDU set includes at least one of the following:
  • the relationship between the first PDU set and the second PDU set includes at least one of the following:
  • the second PDU set depends on the first PDU set; and/or,
  • the second set of PDUs is less important than the first set of PDUs; and/or,
  • the second set of PDUs has a lower priority than the first set of PDUs.
  • the PDU set delay budget, the PDU set error rate threshold, the dependency between PDU sets, and the importance of the PDU set can all be included in the relevant QoS parameters of the PDU set.
  • the set of PDUs that failed to be transmitted may be: the set of PDUs that the access network node has not successfully received within a set time period.
  • the actively discarded data packets include at least one of the following:
  • the first data packet and the second data packet belong to the same PDU set, and the relationship between the first data packet and the second data packet includes at least one of the following:
  • the second data packet depends on the first data packet; and/or,
  • the second data packet is less important than the first data packet; and/or,
  • the priority of the second data packet is lower than that of the first data packet.
  • packet delay budget packet error rate threshold
  • dependency between packets in the PDU set and the importance of the packets in the PDU set can all be included in the relevant QoS parameters of the PDU set.
  • the data packets that fail to be transmitted may be: data packets in the PDU set that are not successfully received by the access network node within a set time period.
  • the data flow of discarded data packets is an XR-type service data flow or a multi-modal data service data flow.
  • the data flow is a service data flow provided to the terminal through the access network node in response to the terminal's service request through the core network.
  • both the XR service data flow and the multi-modal data service data flow have the characteristics of high bandwidth, low latency and high reliability requirements.
  • the access network node will actively discard the data packets based on the QoS requirements of the data units and/or data sets in the data flow. In this way, the charging offset indication is used to determine whether to discard the packets. Performing charging correction on data packets can improve the accuracy of charging results.
  • sending the charging offset indication to the SMF includes:
  • the charging offset indication is sent to the SMF.
  • the PCF may carry the charging offset indication in at least one of the PCC rules, the relevant policies of the PDU session and/or the relevant policies of the PDU set, and send it to the SMF. .
  • the charging scenario for charging correction includes at least one of the following:
  • charging may be performed based on the usage and time information of the service data flow (the time information includes, for example, the start time and the end time).
  • charging may be performed based on the usage of the service data flow and event information (the event information is, for example, the service type of the service data flow).
  • the charging scenario for charging correction may be determined based on charging policy information, such as charging information in PCC rules.
  • the charging method for charging correction includes at least one of the following:
  • the converged charging refers to the integration of online charging and offline charging.
  • the charging method for charging correction may be determined based on charging policy information, such as charging information in PCC rules.
  • charging correction for discarded data packets is implemented through at least one charging method among online charging, offline charging and converged charging, which improves the flexibility of charging processing.
  • FIG. 5 is a flow chart of a charging processing method according to an exemplary embodiment. As shown in Figure 5, the charging processing method is executed by SMF, and the method includes:
  • Step 402 Send a charging offset indication to the access network node, where the charging offset indication is used to indicate whether the access network node performs charging correction on discarded data packets.
  • the discarded data packets may include: a PDU set (PDU set) actively discarded by the access network node, and/or a data packet actively discarded by the access network node in the PDU set.
  • PDU set PDU set
  • a data packet actively discarded by the access network node in the PDU set may include: a PDU set (PDU set) actively discarded by the access network node, and/or a data packet actively discarded by the access network node in the PDU set.
  • the RAN access network node actively discards the remaining data packets in the data set based on the matching of QoS characteristics or requirements between data units in the data set and/or between data sets. and/or packages of related data sets.
  • the discarded data packets may include at least one of the following: a PDU set with a priority lower than a specified priority, a PDU set with a PDU set whose importance is lower than a specified importance, or a data packet within the PDU set with a low priority. Data packets with a preset priority and data packets in the PDU set whose importance is lower than the preset importance.
  • the value of the charging offset indication when the value of the charging offset indication is the first value, it indicates that charging correction for discarded data packets is required or allowed.
  • the value of the charging offset indication when the value of the charging offset indication is the second value, it indicates that charging correction for discarded data packets is not required or is not allowed.
  • the first value is “charging offset” and the second value is “non-offset”.
  • the first value is 1 and the second value is 0.
  • the charging offset indication may include a data volume threshold used to determine whether to perform charging correction for dropped data packets.
  • the amount of discarded data packets when the amount of discarded data packets is greater than the data volume threshold, it indicates that charging correction for discarded data packets is required or allowed. When the amount of discarded data packets is less than or equal to the data volume threshold, it means that charging correction for discarded data packets is not required or is not allowed.
  • the charging offset indication may be generated by the PCF according to subscription information or local policies.
  • the PCF can generate a charging offset indication according to the subscription information or local policy, and send the charging offset indication to the access network node through SMF.
  • Embodiments of the present disclosure provide a charging processing method.
  • the access network node determines whether to perform charging correction for discarded data packets based on the charging offset indication, which can improve Accuracy of billing results.
  • the charging offset indication is carried in the charging information included in the PCC rule; and/or,
  • the charging offset indication is carried in the relevant policy information of the PDU session; and/or,
  • the charging offset indication is carried in the relevant policy information of the PDU set.
  • the PCC rules include relevant QoS parameters and charging information of the PDU set, and the charging offset indication may be carried in the charging information.
  • the relevant policy information of the PDU session includes the charging parameters of the PDU session
  • the charging offset indication may be carried in the charging parameters included in the relevant policy information of the PDU session.
  • the relevant policy information of the PDU set includes charging parameters
  • the charging offset indication may be carried in the charging parameters included in the relevant policy information of the PDU set.
  • the policy information related to the PDU session and the policy information related to the PDU set can be included in the PCC rule.
  • the PCC rules may be associated with the user identification of the terminal.
  • the PCC rules are provided to the SMF by the PCF.
  • the discarded data packets include: PDU sets actively discarded by the access network node in QoS processing based on the PDU set and/or data packets actively discarded by the access network node in the PDU set.
  • the access network node is based on the matching of QoS characteristics or requirements between data units in the PDU set and/or between PDU sets (for example, dependencies between data units in the PDU set relationships, dependencies between PDU sets, importance/priority of data units in PDU sets, importance/priority of PDU sets, etc.), proactively discard remaining data packets in the data set and/or data packets of related data sets .
  • QoS characteristics or requirements between data units in the PDU set and/or between PDU sets for example, dependencies between data units in the PDU set relationships, dependencies between PDU sets, importance/priority of data units in PDU sets, importance/priority of PDU sets, etc.
  • the actively discarded PDU set includes at least one of the following:
  • the relationship between the first PDU set and the second PDU set includes at least one of the following:
  • the second PDU set depends on the first PDU set; and/or,
  • the second set of PDUs is less important than the first set of PDUs; and/or,
  • the second set of PDUs has a lower priority than the first set of PDUs.
  • the PDU set delay budget, the PDU set error rate threshold, the dependency between PDU sets, and the importance of the PDU set can all be included in the relevant QoS parameters of the PDU set.
  • the set of PDUs that failed to be transmitted may be: the set of PDUs that the access network node has not successfully received within a set time period.
  • the actively discarded data packets include at least one of the following:
  • the first data packet and the second data packet belong to the same PDU set, and the relationship between the first data packet and the second data packet includes at least one of the following:
  • the second data packet depends on the first data packet; and/or,
  • the second data packet is less important than the first data packet; and/or,
  • the priority of the second data packet is lower than that of the first data packet.
  • packet delay budget packet error rate threshold
  • dependency between packets in the PDU set and the importance of the packets in the PDU set can all be included in the relevant QoS parameters of the PDU set.
  • the data packets that fail to be transmitted may be: data packets in the PDU set that are not successfully received by the access network node within a set time period.
  • the data flow of discarded data packets is an extended reality XR service data flow or a multi-modal data service data flow.
  • the data flow is a service data flow provided to the terminal through the access network node in response to the terminal's service request through the core network.
  • both the XR service data flow and the multi-modal data service data flow have the characteristics of high bandwidth, low latency and high reliability requirements.
  • the access network node will actively discard the data packets based on the QoS requirements of the data units and/or data sets in the data flow. In this way, the charging offset indication is used to determine whether to discard the packets. Performing charging correction on data packets can improve the accuracy of charging results.
  • the method further includes:
  • Step 401 Receive the charging offset indication sent by the PCF.
  • the receiving the charging offset indication sent by the PCF includes at least one of the following:
  • the PCC rules include relevant QoS parameters and charging information of the PDU set.
  • the charging offset indication may be carried in the charging information.
  • receiving the charging offset indication sent by the PCF includes:
  • the charging offset indication sent by the PCF is received.
  • the SMF can request the PCF to provide PCC rules by sending an SM policy association establishment request to the PCF.
  • the PCF After receiving the SM policy association establishment request sent by the SMF, the PCF carries the charging offset indication in the PCC rule and sends it to the SMF.
  • SMF can request PCF to provide PCC rules by sending an SM policy association modification request to PCF.
  • the PCF After receiving the SM policy association modification request sent by the SMF, the PCF carries the charging offset indication in the PCC rule and sends it to the SMF.
  • the method further includes:
  • the charging scenario for charging correction includes at least one of the following:
  • charging may be performed based on the usage and time information of the service data flow (the time information includes, for example, the start time and the end time).
  • charging may be performed based on the usage of the service data flow and event information (the event information is, for example, the service type of the service data flow).
  • the charging scenario for charging correction may be determined based on charging policy information, such as charging information in PCC rules.
  • the charging method for charging correction includes at least one of the following:
  • the converged charging refers to the integration of online charging and offline charging.
  • the charging method for charging correction may be determined based on charging policy information, such as charging information in PCC rules.
  • charging correction for discarded data packets is implemented through at least one charging method among online charging, offline charging and converged charging, which improves the flexibility of charging processing.
  • Embodiments of the present disclosure provide a charging processing method that can perform PDU set-based policy and charging control during PDU session establishment (PDU Session Establishment) or PDU session modification (PDU Session Modification).
  • PDU Session Establishment PDU Session Establishment
  • PDU Session Modification PDU Session Modification
  • the method includes the following steps:
  • Step S1a Perform steps 1-7a of the PDU session establishment process
  • Step S1b The AF can send information to the PCF through the Nnef_AFsessionWithQoS_Create request, including: QoS parameters of each PDU set in the QoS flow and parameters of the frame identification. AF can also provide this information to 5GS before the PDU session is established.
  • the QoS parameters of each PDU set in the QoS flow can include:
  • PDU set processing indication used to indicate whether to apply PDU set-based processing activation to a QoS flow. This indication can be implicitly indicated through other PDU set related information provided by the AF.
  • the parameters of the frame identification include burst periodicity (Burst periodicity);
  • Step S2 PCF generates appropriate PCC rules, which include relevant QoS parameters of the PDU set. PCF sends PCC rules to SMF.
  • the PCC rule carries a charging offset indication during QoS processing based on the PDU set. After receiving the charging offset indication, the RAN determines whether to perform charging correction on the corresponding discarded data packet.
  • Charging offset indication during PDU set-based QoS processing indicating whether charging correction for discarded packets in PDU set-based QoS processing is required or allowed.
  • the value indicated by the charging offset includes: charging offset (charging offset) or non-offset (non-offset).
  • the accounting offset is used to count and report the discarded data packets in the QoS processing of the PDU set, and perform accounting accuracy correction for this part of the discarded usage. If the accounting is not offset, the usage statistics and reporting of discarded packets in the QoS processing of the PDU set will not be performed, or the accounting accuracy correction will not be performed for this part of the usage after the usage statistics and reporting of the corresponding discarded packets are performed.
  • the charging offset indication can be passed:
  • the charging information in the PCC rules is carried and distributed;
  • the charging parameters in the relevant policy information of the PDU session are carried and delivered;
  • the charging parameters in the relevant policy information of the PDU set are carried and delivered;
  • the relevant QoS parameters of the PDU set are new QoS parameters based on the QoS processing of the PDU set in the 5GS system, and may include at least one of the following:
  • PSDB PDU Set Delay Preset
  • PSER PDU set error rate
  • PDU set priority the PDU set priority of all PDU sets is the same, or each PDU set is different (that is, the importance of the PDU set is the same).
  • This step can be completed in step 7b of the PDU session establishment process, or in step 1b of the PDU session modification process.
  • step 1b PCF generates PCC rules based on the information provided by AF.
  • Step S3 SMF generates QoS configuration files and N4 rules based on PCC rules from PCF. SMF sends N4 rules to UPF and QoS profiles to RAN nodes via AMF. N4 rules contain PDU set charging information. This step can be completed in steps 8-15 in the PDU session establishment process, or in steps 2-7 in the PDU session modification process.
  • Step S4 The remaining steps can be based on the session creation or modification process of the existing technology.
  • Step S5 UPF identifies relevant information based on the received N4 rules or UPF local configuration, and performs QoS processing based on PDU Set based on N4 rules.
  • UPF stores the charging offset indication; if necessary, UPF can cooperate with RAN to perform charging correction, and UPF can cooperate with RAN to perform charging correction for corresponding discarded data packets.
  • UPF identifies PDUs that belong to a PDU set and the following information for each PDU set:
  • the information processed in the PDU set includes at least one of the following parameters:
  • PDU set sequence number For example: use the QoS flow ID to identify the QoS flow, and use the PDU set SN to identify each PDU set in the QoS flow.
  • a QoS flow can be used to deliver one or more sets of PDUs.
  • the starting PDU and/or ending PDU of the PDU set are The starting PDU and/or ending PDU of the PDU set;
  • UPF identifies relevant information through corresponding methods/mechanisms, see the following instructions:
  • Option 1 By matching RTP (Real-time Transport Protocol, Real-time Transport Protocol) or SRTP (Secure Real-time Transport Protocol, Secure Real-time Transport Protocol) header and payload;
  • Option 3 Information provided by AS in the N6 encapsulation header, such as GTP-U (User Plane Part of GTP, GPRS user plane part);
  • GTP-U User Plane Part of GTP, GPRS user plane part
  • Option 4 Pass detection based on traffic characteristics
  • Option 5 UPF implementation via non-standardized mechanism.
  • Step S6 UPF sends the relevant information of the PDU set to the RAN.
  • options include:
  • Option 1 UPF classifies DL traffic into different QoS flows based on the importance of PDU sets
  • Option 2 UPF classifies DL traffic into different sub-QoS flows based on PDU set importance
  • Option 3 UPF adds PDU set importance to the GTP-U header.
  • step S5 For information related to other PDU sets in step S5, UPF adds them to the GTP-U Header.
  • Step S7 Based on the relevant information of the PDU set received in step S6, the RAN performs QoS processing based on the PDU set.
  • the RAN determines whether to perform charging correction on the corresponding discarded data packet according to the received charging offset indication.
  • the discarded data packets include: actively discarded PDU sets and/or actively discarded data packets within the PDU set.
  • Step S8 When the RAN determines to perform charging correction on the discarded data packet, it sends the usage information of the discarded data packet and/or the data packet with the discard mark to the UPF.
  • the charging scenarios applicable to the above-mentioned charging correction include at least one of the following: usage billing, usage and time combined billing, usage and event combined billing, usage and time and event combined billing.
  • the charging methods applicable to the above-mentioned charging correction include at least one of the following: online charging, offline charging, and integrated charging including online and offline.
  • Embodiments of the present disclosure provide a charging processing method that can perform PDU set-based policy and charging control during the PDU session establishment process.
  • the method includes the following steps:
  • Step 7b The SMF performs the SM policy association establishment process to establish the SM policy association with the PCF and obtain the default PCC rules for the PDU session.
  • ON-SNPN Seand-alone NPN, independent non-public network
  • SMF provides GPSI (Generic Public Subscription Identifier, universal public user identification), PVS (Provisioning Services, supply services)-FQDN (Fully Qualified Domain Name (fully qualified domain name) or PVS IP address (Internet Protocol Address) and new user onboarding instructions should be included.
  • GPSI Generic Public Subscription Identifier, universal public user identification
  • PVS Provisioning Services, supply services
  • FQDN Full Qualified Domain Name
  • PVS IP address Internet Protocol Address
  • the SMF can provide information about the policy control request triggering conditions that have been met by the SM policy association modification process initiated by the SMF.
  • PCF can provide policy information to SMF.
  • PCF generates and provides PCC rules to SMF.
  • PCC rules include relevant QoS and charging information of PDU sets.
  • the PCC rule includes a charging offset indication during QoS processing based on the PDU set. The charging offset indication is used by the RAN to determine whether to perform charging correction on the corresponding discarded data packet after receiving it.
  • the PCF generates appropriate PCC rules, which may include relevant QoS parameters and charging information for the PDU set, and the PCF sends the PCC rules to the SMF.
  • Charging offset indication during PDU set-based QoS processing indicating whether charging correction for dropped packets in PDU set-based QoS processing is required/allowed.
  • the value indicated by the charging offset includes: charging offset or no offset.
  • the accounting offset is used to count and report the discarded data packets in the QoS processing of the PDU set, and perform accounting accuracy correction for this part of the discarded usage. If the accounting is not offset, the usage statistics and reporting of discarded packets in the QoS processing of the PDU set will not be performed, or the accounting accuracy correction will not be performed for this part of the usage after the usage statistics and reporting of the corresponding discarded packets are performed.
  • the charging offset indication can be passed:
  • the charging information in the PCC rules is carried and distributed;
  • the charging parameters in the relevant policy information of the PDU session are carried and delivered;
  • the charging parameters in the relevant policy information of the PDU set are carried and delivered.
  • the relevant QoS parameters of the PDU set are new QoS parameters based on the QoS processing of the PDU set in the 5GS system, and may include at least one of the following:
  • PSDB PDU Set Delay Preset
  • PSER PDU set error rate
  • PDU set priority the PDU set priority of all PDU sets is the same, or each PDU set is different (that is, the importance of the PDU set is the same).
  • Step 8-15 SMF generates QoS profile and N4 rules based on PCC rules from PCF. SMF sends N4 rules to UPF and QoS profiles to RAN nodes via AMF. The N4 rule contains the charging information of the PDU set.
  • the remaining steps of the session creation process can be based on the session creation process of the existing technology.
  • Embodiments of the present disclosure provide a charging processing method that can perform PDU set-based policy and charging control during the PDU session modification process.
  • PDU session modification can be initiated by the UE or the network.
  • the method includes the following steps:
  • Step 1b PCF initiates SM policy association modification.
  • PCF executes the SM policy association modification process initiated by PCF and notifies SMF of the policy modification. This could be e.g. triggered by a policy decision or an AF request, e.g. applying functionality AF to a container that affects traffic routing or AF to provide port management information.
  • PCF generates and provides PCC rules to SMF.
  • PCC rules include relevant QoS and charging information for PDU sets.
  • the PCC rule includes a charging offset indication during QoS processing based on the PDU set. The charging offset indication is used by the RAN to determine whether to perform charging correction on the corresponding discarded data packet after receiving it.
  • the PCF generates appropriate PCC rules, which may include relevant QoS parameters for the PDU set, and the PCF sends the PCC rules to the SMF.
  • Charging offset indication during PDU set-based QoS processing indicating whether charging correction for dropped packets in PDU set-based QoS processing is required/allowed.
  • the value indicated by the charging offset includes: charging offset or no offset.
  • the accounting offset is used to count and report the discarded data packets in the QoS processing of the PDU set, and perform accounting accuracy correction for this part of the discarded usage. If the accounting is not offset, the usage statistics and reporting of discarded packets in the QoS processing of the PDU set will not be performed, or the accounting accuracy correction will not be performed for this part of the usage after the usage statistics and reporting of the corresponding discarded packets are performed.
  • the billing offset indication can be passed:
  • the charging information in the PCC rules is carried and distributed;
  • the charging parameters in the relevant policy information of the PDU session are carried and delivered;
  • the charging parameters in the relevant policy information of the PDU set are carried and delivered.
  • the relevant QoS parameters of the PDU set are new QoS parameters based on the QoS processing of the PDU set in the 5GS system, and may include at least one of the following:
  • PSDB PDU Set Delay Preset
  • PSER PDU set error rate
  • PDU set priority the PDU set priority of all PDU sets is the same, or each PDU set is different (that is, the importance of the PDU set is the same).
  • Step 2-7 SMF generates QoS profile and N4 rules based on PCC rules from PCF.
  • N4 rules contain PDU set charging information.
  • the remaining steps of the session modification process can be carried out according to the session modification process of the existing technology
  • the technical solution provided by the embodiment of the present disclosure supports XR service data flow QoS enhancement and corresponding charging.
  • UPF performs charging statistics and reporting of downlink data
  • RAN actively discards the remaining data packets in the data set based on the QoS characteristics/requirements matching between data units in the data set and/or related data sets.
  • the data package of the data set supports billing correction in PDU set scenarios, achieving accurate billing.
  • FIG 8 is a structural diagram of an access network node according to an exemplary embodiment. As shown in Figure 8, the access network node 100 includes:
  • the receiving module 110 is configured to receive the charging offset indication sent by the SMF;
  • the processing module 120 is configured to determine whether to perform charging correction on the discarded data packet according to the charging offset indication.
  • the charging offset indication is carried in the charging information included in the PCC rule; and/or,
  • the charging offset indication is carried in the relevant policy information of the PDU session; and/or,
  • the charging offset indication is carried in the relevant policy information of the PDU set.
  • the discarded data packets include: PDU sets actively discarded by the access network node in QoS processing based on the PDU set and/or data packets actively discarded by the access network node in the PDU set.
  • the actively discarded PDU set includes at least one of the following:
  • the relationship between the first PDU set and the second PDU set includes at least one of the following:
  • the second PDU set depends on the first PDU set; and/or,
  • the second set of PDUs is less important than the first set of PDUs; and/or,
  • the second set of PDUs has a lower priority than the first set of PDUs.
  • the actively discarded data packets include at least one of the following:
  • the first data packet and the second data packet belong to the same PDU set, and the relationship between the first data packet and the second data packet includes at least one of the following:
  • the second data packet depends on the first data packet; and/or,
  • the second data packet is less important than the first data packet; and/or,
  • the priority of the second data packet is lower than that of the first data packet.
  • the data flow of discarded data packets is an XR-type service data flow or a multi-modal data service data flow.
  • the processing module is configured to determine to perform charging correction on the discarded data packet
  • the access network node 100 also includes:
  • the sending module is configured to send the usage information of the discarded data packets and/or the data packets with the discard mark to the UPF.
  • the charging scenario for charging correction includes at least one of the following:
  • the charging method for charging correction includes at least one of the following:
  • FIG. 9 is a structural diagram of a policy control function (PCF) according to an exemplary embodiment.
  • the policy control function 200 includes:
  • the sending module 210 is configured to send a charging offset indication to the SMF, where the charging offset indication is used to indicate whether the access network node performs charging correction on discarded data packets.
  • the charging offset indication is carried in the charging information included in the PCC rule; and/or,
  • the charging offset indication is carried in the relevant policy information of the PDU session; and/or,
  • the charging offset indication is carried in the relevant policy information of the PDU set.
  • the discarded data packets include: PDU sets actively discarded by the access network node in QoS processing based on the PDU set and/or data packets actively discarded by the access network node in the PDU set.
  • the actively discarded PDU set includes at least one of the following:
  • the relationship between the first PDU set and the second PDU set includes at least one of the following:
  • the second PDU set depends on the first PDU set; and/or,
  • the second set of PDUs is less important than the first set of PDUs; and/or,
  • the second set of PDUs has a lower priority than the first set of PDUs.
  • the actively discarded data packets include at least one of the following:
  • the first data packet and the second data packet belong to the same PDU set, and the relationship between the first data packet and the second data packet includes at least one of the following:
  • the second data packet depends on the first data packet; and/or,
  • the second data packet is less important than the first data packet; and/or,
  • the priority of the second data packet is lower than that of the first data packet.
  • the data flow of discarded data packets is an XR-type service data flow or a multi-modal data service data flow.
  • the sending module is configured as:
  • the charging offset indication is sent to the SMF.
  • the charging scenario for charging correction includes at least one of the following:
  • the charging method for charging correction includes at least one of the following:
  • FIG 10 is a structural diagram of a session management function (SMF) according to an exemplary embodiment.
  • the session management function 300 includes:
  • the sending module 310 is configured to send a charging offset indication to the access network node, where the charging offset indication is used to indicate whether the access network node performs charging correction on discarded data packets.
  • the charging offset indication is carried in the charging information included in the PCC rule; and/or,
  • the charging offset indication is carried in the relevant policy information of the PDU session; and/or,
  • the charging offset indication is carried in the relevant policy information of the PDU set.
  • the discarded data packets include: PDU sets actively discarded by the access network node in QoS processing based on the PDU set and/or data packets actively discarded by the access network node in the PDU set.
  • the actively discarded PDU set includes at least one of the following:
  • the relationship between the first PDU set and the second PDU set includes at least one of the following:
  • the second PDU set depends on the first PDU set; and/or,
  • the second set of PDUs is less important than the first set of PDUs; and/or,
  • the second set of PDUs has a lower priority than the first set of PDUs.
  • the actively discarded data packets include at least one of the following:
  • the first data packet and the second data packet belong to the same PDU set, and the relationship between the first data packet and the second data packet includes at least one of the following:
  • the second data packet depends on the first data packet; and/or,
  • the second data packet is less important than the first data packet; and/or,
  • the priority of the second data packet is lower than that of the first data packet.
  • the data flow of discarded data packets is an XR-type service data flow or a multi-modal data service data flow.
  • the session management function 300 further includes:
  • the receiving module is configured to receive the charging offset indication sent by the PCF.
  • the receiving module is configured to:
  • the charging offset indication sent by the PCF is received.
  • the sending module is configured as:
  • the charging scenario for charging correction includes at least one of the following:
  • the charging method for charging correction includes at least one of the following:
  • Embodiments of the present disclosure provide a communication system, including: a policy control function (PCF), a session management function (SMF), and an access network node;
  • PCF policy control function
  • SMF session management function
  • access network node an access network node
  • the PCF is used to send a charging offset indication to the SMF
  • the SMF is used to send the charging offset indication to the access network node
  • the access network node is configured to receive the charging offset indication sent by the SMF, and determine whether to perform charging correction on the discarded data packet according to the charging offset indication.
  • the charging offset indication is carried in the charging information included in the PCC rule; and/or,
  • the charging offset indication is carried in the relevant policy information of the PDU session; and/or,
  • the charging offset indication is carried in the relevant policy information of the PDU set.
  • the discarded data packets include: PDU sets actively discarded by the access network node in QoS processing based on the PDU set and/or data packets actively discarded by the access network node in the PDU set.
  • the actively discarded PDU set includes at least one of the following:
  • the relationship between the first PDU set and the second PDU set includes at least one of the following:
  • the second PDU set depends on the first PDU set; and/or,
  • the second set of PDUs is less important than the first set of PDUs; and/or,
  • the second set of PDUs has a lower priority than the first set of PDUs.
  • the actively discarded data packets include at least one of the following:
  • the first data packet and the second data packet belong to the same PDU set, and the relationship between the first data packet and the second data packet includes at least one of the following:
  • the second data packet depends on the first data packet; and/or,
  • the second data packet is less important than the first data packet; and/or,
  • the priority of the second data packet is lower than that of the first data packet.
  • the data flow of discarded data packets is an XR-type service data flow or a multi-modal data service data flow.
  • the PCF is used for:
  • the charging offset indication is sent to the SMF.
  • the SMF is used for:
  • the access network node is used for:
  • the charging scenario for charging correction includes at least one of the following:
  • the charging method for charging correction includes at least one of the following:
  • An embodiment of the present disclosure provides a communication device, including:
  • memory for storing instructions executable by the processor
  • the processor is configured to implement the charging processing method provided by any of the foregoing technical solutions when running the executable instructions.
  • the processor may include various types of storage media, which are non-transitory computer storage media that can continue to store information stored thereon after the communication device is powered off.
  • the communication equipment includes: core network equipment or access network equipment, etc.
  • the access network equipment may include a base station; the core network equipment may include PCF and SMF.
  • the processor may be connected to the memory through a bus or the like, and be used to read executable programs stored on the memory, for example, at least one of the charging processing methods shown in FIGS. 2 to 6 .
  • communications device 900 includes a processing component 922, which further includes one or more processors, and memory resources, represented by memory 932, for storing instructions, such as application programs, executable by processing component 922.
  • the application program stored in memory 932 may include one or more modules, each corresponding to a set of instructions.
  • the processing component 922 is configured to execute instructions to perform the charging processing method provided by any of the foregoing embodiments of the above method.
  • Communication device 900 may also include a power supply component 926 configured to perform power management of communication device 900, a wired or wireless network interface 950 configured to connect communication device 900 to a network, and an input-output (I/O) interface 958 .
  • the communication device 900 may operate based on an operating system stored in the memory 932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
  • a non-transitory computer-readable storage medium including instructions such as a memory 932 including instructions, which can be executed by the processing component 922 of the communication device 900 to apply the above application on the communication device is also provided. Any method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种计费处理方法及装置、通信设备及存储介质。接入网节点接收会话管理功能(SMF)发送的计费偏移指示;根据所述计费偏移指示,确定是否对丢弃数据包执行计费校正。

Description

计费处理方法及装置、通信设备及存储介质 技术领域
本公开涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及一种计费处理方法及装置、通信设备及存储介质。
背景技术
目前,第五代蜂窝移动通信系统(5GS)采用的是通用服务质量(QoS,Quality of Service)机制,处理包括扩展现实(Extended Reality,XR)业务和/或多模态数据业务在内的各类数据服务。
相关技术中,5GS系统尚不支持XR业务数据流QoS增强相应的计费。比如,下行数据在UPF(User Plane Function,用户面功能)执行计费统计和上报后,RAN(Radio Access Network,无线接入网)基于数据集内的数据单元之间和/或数据集之间的QoS特性或者需求的匹配,主动丢弃了数据包,主动批量丢弃已计费的数据包将导致计费结果不准确。
发明内容
本公开实施例提供一种计费处理方法及装置、通信设备及存储介质。
本公开实施例第一方面提供一种计费处理方法,其中,由接入网节点执行,所述方法包括:
接收会话管理功能(Session Management Function,SMF)发送的计费偏移指示;
根据所述计费偏移指示,确定是否对丢弃数据包执行计费校正。
在一个实施例中,所述计费偏移指示,携带于策略控制和计费(Policy Control and Charging,PCC)规则包含的计费信息中;和/或,
所述计费偏移指示,携带于分组数据单元(Packet Data Unit,PDU)会话的相关策略信息中;和/或,
所述计费偏移指示,携带于PDU集的相关策略信息中。
在一个实施例中,所述丢弃数据包包括:所述接入网节点在基于PDU集的QoS处理中主动丢弃的PDU集和/或PDU集内所述接入网节点主动丢弃的数据包。
在一个实施例中,所述主动丢弃的PDU集包括以下至少之一:
传输延迟时间超过PDU集传输延迟预算的PDU集;
传输错误率超过PDU集传输错误率阈值的PDU集;
基于传输失败的第一PDU集而主动丢弃的第二PDU集;
优先级低于预设优先级的PDU集;
依赖其他PDU集的PDU集;
重要性低于预设重要性的PDU集。
在一个实施例中,所述第一PDU集与所述第二PDU集之间的关系包括以下至少之一:
所述第二PDU集依赖所述第一PDU集;和/或,
所述第二PDU集的重要性低于所述第一PDU集;和/或,
所述第二PDU集的优先级低于所述第一PDU集。
在一个实施例中,所述主动丢弃的数据包包括以下至少之一:
传输延迟时间超过数据包传输延迟预算的数据包;
传输错误率超过数据包传输错误率阈值的数据包;
基于传输失败的第一数据包而主动丢弃的第二数据包;
优先级低于预设优先级的数据包;
依赖其他数据包的数据包;
重要性低于预设重要性的数据包。
在一个实施例中,所述第一数据包与所述第二数据包属于同一个PDU集,且所述第一数据包和所述第二数据包之间的关系包括以下至少之一:
所述第二数据包依赖所述第一数据包;和/或,
所述第二数据包的重要性低于所述第一数据包;和/或,
所述第二数据包的优先级低于所述第一数据包。
在一个实施例中,所述丢弃数据包的数据流为XR类业务数据流或多模态数据业务数据流。
在一个实施例中,所述方法还包括:
确定对所述丢弃数据包执行计费校正;
将所述丢弃数据包的用量信息和/或带有丢弃标记的数据包发送至UPF。
本公开实施例第二方面提供一种计费处理方法,其中,由策略控制功能(Policy Control Function,PCF)执行,所述方法包括:
将计费偏移指示发送至SMF,其中,所述计费偏移指示,用于用于指示所述接入网节点是否对丢弃数据包执行计费校正。
在一个实施例中,所述计费偏移指示,携带于PCC规则包含的计费信息中;和/或,
所述计费偏移指示,携带于PDU会话的相关策略信息中;和/或,
所述计费偏移指示,携带于PDU集的相关策略信息中。
在一个实施例中,所述丢弃数据包包括:所述接入网节点在基于PDU集的QoS处理中主动丢弃的PDU集和/或PDU集内所述接入网节点主动丢弃的数据包。
在一个实施例中,所述主动丢弃的PDU集包括以下至少之一:
传输延迟时间超过PDU集传输延迟预算的PDU集;
传输错误率超过PDU集传输错误率阈值的PDU集;
基于传输失败的第一PDU集而主动丢弃的第二PDU集;
优先级低于预设优先级的PDU集;
依赖其他PDU集的PDU集;
重要性低于预设重要性的PDU集。
在一个实施例中,所述第一PDU集与所述第二PDU集之间的关系包括以下至少之一:
所述第二PDU集依赖所述第一PDU集;和/或,
所述第二PDU集的重要性低于所述第一PDU集;和/或,
所述第二PDU集的优先级低于所述第一PDU集。
在一个实施例中,所述主动丢弃的数据包包括以下至少之一:
传输延迟时间超过数据包传输延迟预算的数据包;
传输错误率超过数据包传输错误率阈值的数据包;
基于传输失败的第一数据包而主动丢弃的第二数据包;
优先级低于预设优先级的数据包;
依赖其他数据包的数据包;
重要性低于预设重要性的数据包。
在一个实施例中,所述第一数据包与所述第二数据包属于同一个PDU集,且所述第一数据包和所述第二数据包之间的关系包括以下至少之一:
所述第二数据包依赖所述第一数据包;和/或,
所述第二数据包的重要性低于所述第一数据包;和/或,
所述第二数据包的优先级低于所述第一数据包。
在一个实施例中,所述丢弃数据包的数据流为XR类业务数据流或多模态数据业务数据流。
在一个实施例中,所述将计费偏移指示发送至SMF,包括:
在PDU会话建立或修改过程中,将计费偏移指示发送至SMF。
本公开实施例第三方面提供一种计费处理方法,其中,由SMF执行,所述方法包括:
将计费偏移指示发送至接入网节点,其中,所述计费偏移指示,用于指示所述接入网节点是否对丢弃数据包执行计费校正。
在一个实施例中,所述计费偏移指示,携带于PCC规则包含的计费信息中;和/或,
所述计费偏移指示,携带于PDU会话的相关策略信息中;和/或,
所述计费偏移指示,携带于PDU集的相关策略信息中。
在一个实施例中,所述丢弃数据包包括:所述接入网节点在基于PDU集的QoS处理中主动丢弃的PDU集和/或PDU集内所述接入网节点主动丢弃的数据包。
在一个实施例中,所述主动丢弃的PDU集包括以下至少之一:
传输延迟时间超过PDU集传输延迟预算的PDU集;
传输错误率超过PDU集传输错误率阈值的PDU集;
基于传输失败的第一PDU集而主动丢弃的第二PDU集;
优先级低于预设优先级的PDU集;
依赖其他PDU集的PDU集;
重要性低于预设重要性的PDU集。
在一个实施例中,所述第一PDU集与所述第二PDU集之间的关系包括以下至少之一:
所述第二PDU集依赖所述第一PDU集;和/或,
所述第二PDU集的重要性低于所述第一PDU集;和/或,
所述第二PDU集的优先级低于所述第一PDU集。
在一个实施例中,所述主动丢弃的数据包包括以下至少之一:
传输延迟时间超过数据包传输延迟预算的数据包;
传输错误率超过数据包传输错误率阈值的数据包;
基于传输失败的第一数据包而主动丢弃的第二数据包;
优先级低于预设优先级的数据包;
依赖其他数据包的数据包;
重要性低于预设重要性的数据包。
在一个实施例中,所述第一数据包与所述第二数据包属于同一个PDU集,且所述第一数据包和所述第二数据包之间的关系包括以下至少之一:
所述第二数据包依赖所述第一数据包;和/或,
所述第二数据包的重要性低于所述第一数据包;和/或,
所述第二数据包的优先级低于所述第一数据包。
在一个实施例中,所述丢弃数据包的数据流为XR类业务数据流或多模态数据业务数据流。
在一个实施例中,所述方法还包括:
接收PCF发送的所述计费偏移指示。
在一个实施例中,所述PCF发送的所述计费偏移指示,包括:
在PDU会话建立或修改过程中,接收所述PCF发送的所述计费偏移指示。
在一个实施例中,所述方法还包括:
将所述计费偏移指示发送至UPF。
本公开实施例第四方面提供一种接入网节点,包括:
接收模块,被配置为接收会话管理功能(SMF)发送的计费偏移指示;
处理模块,被配置为根据所述计费偏移指示,确定是否对丢弃数据包执行计费校正。
本公开实施例第五方面提供一种策略控制功能(PCF),包括:
发送模块,被配置为将计费偏移指示发送至SMF,其中,所述计费偏移指示,用于指示所述接入网节点是否对丢弃数据包执行计费校正。
本公开实施例第六方面提供一种会话管理功能(SMF),包括:
发送模块,被配置为将计费偏移指示发送至接入网节点,其中,所述计费偏移指示,用于指示所述接入网节点是否对丢弃数据包执行计费校正。
本公开实施例第七方面提供一种通信设备,包括:
处理器;
用于存储所述处理器可执行指令的存储器;
其中,所述处理器被配置为:用于运行所述可执行指令时,实现第一方面或第二方面或第三方面任一项所述的计费处理方法。
本公开实施例第八方面一种通信系统,其中,包括:策略控制功能(PCF)、会话管理功能(SMF)和接入网节点;
所述PCF,用于执行第二方面任一项所述的计费处理方法;
所述SMF,用于执行第三方面任一项所述的计费处理方法;
所述接入网节点,用于执行第一方面任一项所述的计费处理方法。
本公开实施例第九方面提供一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行程序,所述可执行程序被处理器执行时实现第一方面或第二方面或第三方面所述的计费处理方法。
本公开实施例提供的技术方案,通过接入网节点接收会话管理功能(SMF)发送的计费偏移指示,并根据所述计费偏移指示,确定是否对丢弃数据包执行计费校正,能够提高计费结果的准确性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开实施例。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明实施例,并与说明书一起用于解释本发明实施例的原理。
图1是根据一示例性实施例示出的一种无线通信系统的结构示意图。
图2是根据一示例性实施例示出的一种计费处理方法的流程示意图。
图3是根据一示例性实施例示出的一种计费处理方法的流程示意图。
图4是根据一示例性实施例示出的一种计费处理方法的流程示意图。
图5是根据一示例性实施例示出的一种计费处理方法的流程示意图。
图6是根据一示例性实施例示出的一种计费处理方法的流程示意图。
图7A是根据一示例性实施例示出的一种计费处理方法的流程示意图。
图7B是根据一示例性实施例示出的一种计费处理方法的流程示意图。
图7C是根据一示例性实施例示出的一种计费处理方法的流程示意图。
图8是根据一示例性实施例示出的一种接入网节点的结构示意图。
图9是根据一示例性实施例示出的一种策略控制功能(PCF)的结构示意图。
图10是根据一示例性实施例示出的一种会话管理功能(SMF)的结构示意图。
图11是根据一示例性实施例示出的一种通信设备的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明实施例相一致的所有实施方式。相反,它们仅是本发明实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个用户设备11以及若干个接入网设备12。
其中,用户设备11可以是指向用户提供语音和/或数据连通性的设备。用户设备11可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,用户设备11可以是物联网用户设备,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网用户设备的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程用户设备(remote terminal)、接入用户设备(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户设备(user equipment)。或者,用户设备11也可以是可穿戴设备、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备或者VR/AR混合头戴设备。或者,用户设备11也可以是无人飞行器的设备。或者,用户设备11也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线用户设备。或者,用户设备11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
接入网设备12可以是无线通信系统中用于与用户设备11进行通信的设备,可以是基站,或者接入点,或者网络设备,或者可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信 的设备。网络设备可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。网络设备还可协调对空中接口的属性管理。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(new radio,NR)系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。
其中,接入网设备12可以是4G系统中采用的演进型接入设备(eNB)。或者,接入网设备12也可以是5G系统中采用集中分布式架构的接入设备(gNB)。当接入网设备12采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对接入网设备12的具体实现方式不加以限定。
接入网设备12和用户设备11之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,用户设备11之间还可以建立E2E(End to End,端到端)或D2D(device to device,终端到终端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
在一些实施例中,上述无线通信系统还可以包含核心网设备13。若干个接入网设备12分别与核心网设备13相连。
在一些实施例中,核心网设备13可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该核心网设备也可以是服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。
在一些实施例中,核心网设备13可以是接入和移动性管理功能(AMF,Access and Mobility Management Function)、会话管理功能(SMF,Session Management Function)、用户面功能(UPF,User Plane Function)、策略控制功能(PCF,Policy Control Function)、网络存储功能(NRF,Network Repository Function)实体等。
其中,核心网设备的主要作用如下:
SMF负责会话管理,包括PDU会话的建立、修改、释放等;
PCF负责用户策略管理,既包括移动性相关策略,也包括PDU会话相关策略,如QoS策略、计费策略等;
UPF负责用户数据的转发。
其中,本公开实施例中的PCF、SMF、UPF等,均可以由一个实体设备实现,也可以由多个实体设备共同实现。可以理解的是,本公开实施例中的PCF、SMF等,均可以是实体设备内的一个逻辑功能模块,也可以是由多个实体设备组成的一个逻辑功能模块,本公开实施例不做限定。
为了便于本领域内技术人员理解,本公开实施例列举了多个实施方式以对本公开实施例的技术方案进行清晰地说明。当然,本领域内技术人员可以理解,本公开实施例提供的多个实施例,可以被单独执行,也可以与本公开实施例中其他实施例的方法结合后一起被执行,还可以单独或结合后与其他相关技术中的一些方法一起被执行;本公开实施例并不对此作出限定。
移动媒体类服务、云AR(augmented reality,增强现实)/VR(virtual reality,虚拟现实)等XR业务、云游戏、基于视频的机器或无人机远程控制等业务,预计将为5G网络贡献越来越高的流量。除了音视频流外,XR业务还涉及多模态数据流,例如生物触觉感知的数据流。这些多模态数据,是描述同一业务或应用的从同一个设备或不同设备(包括传感器)输入的数据,这些数据可能会输出到一个或多个目的设备终端。多模态数据中的各数据流往往具有一定甚至很强的相关性,比如音频和视频流的同步,触觉和视觉的同步等。这类媒体业务的数据流本身,各数据流之间,以及这些业务数据流对网络传输的需求,都存在一些共性特征,这些特性的有效识别和利用将更有助于网络和业务的传输、控制,也更有助于业务保障和用户体验。
XR媒体数据流具有高带宽、低时延和高可靠性需求的特点,需要进一步匹配数据流内的数据单元和数据集的QoS需求,以有效提升用户体验。
相关技术中,5GS系统尚不支持XR业务数据流QoS增强相应的计费。比如,下行数据在UPF执行计费统计和上报后,RAN基于数据集内的数据单元之间和/或数据集之间的QoS特性或者需求的匹配,主动丢弃了数据集内的剩余数据包和/或相关数据集的数据包,主动批量丢弃已计费的数据包将导致计费结果不准确。
图2是根据一示例性实施例示出的一种计费处理方法的流程图。如图2所示,所述计费处理方法由接入网节点执行,所述方法包括:
步骤201:接收SMF发送的计费偏移指示;
步骤202:根据所述计费偏移指示,确定是否对丢弃数据包执行计费校正。
其中,所述接入网节点可以为基站,例如5G网络的基站或其它演进型基站。
所述计费偏移指示,用于指示是否对丢弃数据包执行计费校正。
在一些示例中,所述丢弃数据包可包括:所述接入网节点主动丢弃的PDU集(PDU set)、和/或PDU集内所述接入网节点主动丢弃的数据包。
PDU集是一个PDU集由一个或多个PDU组成,这些PDU承载了应用层生成的一个信息单元 的有效数据,例如,用于XRM(Extended Reality Media,扩展现实媒体)服务的帧或视频切片)。
在一些实施方式中,应用层需要使用PDU集内的所有PDU与信息单元相对应。在另一些实施方式中,当某些PDU丢失时,应用层仍然能够恢复全部或部分信息单元。
在一些示例中,所述丢弃数据包可以包括以下至少之一:优先级低于指定优先级的PDU集、PDU集重要性低于指定重要性的PDU集、PDU集内的数据包优先级低于预设优先级的数据包、PDU集内的数据包重要性低于预设重要性的数据包。
在一些示例中,当所述计费偏移指示的值为第一值时,表示需要或允许对丢弃数据包执行计费校正。当所述计费偏移指示的值为第二值时,表示不需要或不允许对丢弃数据包执行计费校正。
例如,第一值为“charging offset”,第二值为“non-offset”。又例如,第一值为1,第二值为0。
在另一些示例中,所述计费偏移指示可以包括数据量阈值,所述数据量阈值用于确定是否对丢弃数据包执行计费校正。
例如,当丢弃数据包的用量大于数据量阈值时,表示需要或允许对丢弃数据包执行计费校正。当丢弃数据包的用量小于或等于数据量阈值时,表示不需要或不允许对丢弃数据包执行计费校正。
在一些示例中,所述计费偏移指示可以是PCF根据签约信息或本地策略生成的。
PCF可以根据签约信息或本地策略生成计费偏移指示,并将所述计费偏移指示通过SMF发送至接入网节点。
上述步骤201中,计费偏移指示可以是所述SMF从PCF获取到,并由SMF发送给所述接入网节点的。
在一些示例中,所述计费偏移指示可以是所述SMF在PDU会话建立过程或PDU会话修改过程中从PCF获取到的。
本公开实施例提供一种计费处理方法,通过接入网节点接收SMF发送的计费偏移指示,并根据所述计费偏移指示,确定是否对丢弃数据包执行计费校正,能够提高计费结果的准确性。
在一个实施例中,所述计费偏移指示,携带于PCC规则包含的计费信息中;和/或,
所述计费偏移指示,携带于PDU会话的相关策略信息中;和/或,
所述计费偏移指示,携带于PDU集的相关策略信息中。
在一些示例中,PCC规则中包含有PDU集的相关QoS参数和计费信息,所述计费偏移指示可以携带于所述计费信息中。
在另一些示例中,PDU会话的相关策略信息中包含有PDU会话的计费参数,所述计费偏移指示可以携带于所述PDU会话的相关策略信息包含的计费参数中。
在又一些示例中,PDU集的相关策略信息中包含有计费参数,所述计费偏移指示可以携带于所述PDU集的相关策略信息包含的计费参数中。
在一些示例中,PDU会话的相关策略信息、PDU集的相关策略信息均可以包含在PCC规则中。
在一些示例中,所述PCC规则可以与终端的用户标识相关联。
在一些示例中,所述PCC规则是由PCF提供给SMF的。
示例性地,计费偏移指示可包含在PCC规则信息中,如表1所示。
表1:5G核心网(5GC)中的PCC规则信息
Figure PCTCN2022111279-appb-000001
又示例性地,计费偏移指示可包含在PDU会话的相关策略信息中,如表2所示。
表2:PDU会话的相关策略信息
Figure PCTCN2022111279-appb-000002
在一个实施例中,所述丢弃数据包包括:所述接入网节点在基于PDU集的QoS处理中主动丢弃的PDU集和/或PDU集内主动丢弃的数据包。
针对下行链路方向的业务数据流,接入网节点基于PDU集内的数据单元之间和/或PDU集之间的QoS特性或者需求的匹配(例如,PDU集内的数据单元之间的依赖关系、PDU集之间的依赖关系、PDU集中数据单元的重要性/优先级,PDU集的重要性/优先级等),主动丢弃数据集内的剩余数据包和/或相关数据集的数据包。
在一个实施例中,所述主动丢弃的PDU集包括以下至少之一:
传输延迟时间超过PDU集传输延迟预算的PDU集;
传输错误率超过PDU集传输错误率阈值的PDU集;
基于传输失败的第一PDU集而主动丢弃的第二PDU集;
优先级低于预设优先级的PDU集;
依赖其他PDU集的PDU集;
重要性低于预设重要性的PDU集。
在一个实施例中,所述第一PDU集与所述第二PDU集之间的关系包括以下至少之一:
所述第二PDU集依赖所述第一PDU集;
所述第二PDU集的重要性低于所述第一PDU集;
所述第二PDU集的优先级低于所述第一PDU集。
其中,PDU集传输延迟预算、PDU集传输错误率阈值、PDU集之间的依赖关系以及PDU集的重要性均可以包含在PDU集的相关QoS参数中。
其中,传输失败的PDU集可以是:接入网节点在设定时长内未成功接收到的PDU集。
示例性地,以PDU集之间的依赖关系为例,对于PDU set#1和PDU set#2,若PDU set#1传输失败,且PDU set#2的依赖PDU set#1,则PDU set#1即是第一PDU集,PDU set#2可以是接入网节点主动丢弃的第二PDU集。
又示例性地,以PDU集之间的优先级关系为例,对于PDU set#1和PDU set#2,若PDU set#1传输失败,且PDU set#2的优先级低于PDU set#1的优先级,则PDU set#1即作为第一PDU集,PDU  set#2可以是接入网节点主动丢弃的第二PDU集。
再示例性地,以PDU集之间的重要性为例,对于PDU set#1和PDU set#2,若PDU set#1传输失败,且PDU set#2的重要性低于PDU set#1的重要性,则PDU set#1即作为第一PDU集,PDU set#2可以是接入网节点主动丢弃的第二PDU集。
再示例性地,PDU集在UE和UPF之间传输时可能存在传输延迟时间,若一个PDU集的传输延迟时间超过PDU集传输延迟预算,则该PDU集可以被接入网节点主动丢弃。
PDU集在UE和UPF之间传输时可能存在传输错误率,若一个PDU集的传输错误率超过PDU集传输错误率阈值,则该PDU集可以被接入网节点主动丢弃。
PDU集可以被配置相应的优先级,若一个PDU集的优先级低于预设优先级,则该PDU集可以被接入网节点主动丢弃。
PDU集之间可以被配置相应的依赖关系,若一个PDU集依赖其他PDU集,则该PDU集可以被将被接入网节点主动丢弃。
PDU集可以被配置相应的重要性,若一个PDU集的重要性低于预设重要性,则该PDU集可以被接入网节点主动丢弃。
在一个实施例中,所述主动丢弃的数据包包括以下至少之一:
传输延迟时间超过数据包传输延迟预算的数据包;
传输错误率超过数据包传输错误率阈值的数据包;
基于传输失败的第一数据包而主动丢弃的第二数据包;
优先级低于预设优先级的数据包;
依赖其他数据包的数据包;
重要性低于预设重要性的数据包。
在一个实施例中,所述第一数据包与所述第二数据包属于同一个PDU集,且所述第一数据包和所述第二数据包之间的关系包括以下至少之一:
所述第二数据包依赖于所述第一数据包;
所述第二数据包的重要性低于所述第一数据包;
所述第二数据包的优先级低于所述第一数据包。
其中,数据包传输延迟预算、数据包传输错误率阈值、同一PDU集内的数据包之间的依赖关系以及数据包的重要性均可以包含在PDU集的相关QoS参数中。
其中,传输失败的数据包可以是:接入网节点在设定时长内未成功接收到的PDU集内的数据包。
示例性地,以PDU集内数据包之间的依赖关系为例,对于某一个PDU内的PDU#1和PDU#2,若PDU#1传输失败,且PDU#2的依赖PDU#1,则PDU#1即是第一数据包,PDU#2可以是接入网节点主动丢弃的第二数据包。
又示例性地,以PDU集内数据包之间的重要性为例,对于某一个PDU内的PDU#1和PDU#2,若PDU#1传输失败,且PDU#2的重要性低于PDU#1的重要性,则PDU#1即是第一数据包,PDU#2 可以是接入网节点主动丢弃的第二数据包。
再示例性地,以PDU集内数据包之间的优先级关系为例,对于某一个PDU内的PDU#1和PDU#2,若PDU#1传输失败,且PDU#2的优先级低于PDU#1的优先级,则PDU#1即是第一数据包,PDU#2可以是接入网节点主动丢弃的第二数据包。
再示例性地,PDU集内的数据包在UE和UPF之间传输时可能存在传输延迟时间,若一个PDU集内的数据包的传输延迟时间超过数据包传输延迟预算,则该数据包可以被接入网节点主动丢弃。
PDU集内的数据包在UE和UPF之间传输时可能存在传输错误率,若一个数据包的传输错误率超过数据包传输错误率阈值,则该数据包可以被接入网节点主动丢弃。
PDU集内的数据包可以被配置相应的优先级,若一个数据包的优先级低于预设优先级,则该数据包可以被接入网节点主动丢弃。
同一PDU集内的不同数据包之间可以被配置相应的依赖关系,若一个数据包依赖其他数据包,则该数据包可以被将被接入网节点主动丢弃。
同一PDU集内的不同数据包可以被配置相应的重要性,若一个数据包的重要性低于预设重要性,则该数据包可以被接入网节点主动丢弃。
在一个实施例中,所述丢弃数据包的数据流为XR类业务数据流或多模态数据业务数据流。
所述数据流可以是核心网响应于终端的业务请求,通过接入网节点提供给终端的业务数据流。
本实施例中,XR类业务数据流和多模态数据业务数据流均具有高带宽、低时延和高可靠性需求的特点。针对这些类型业务数据流的下行传输,接入网节点基于数据流内的数据单元和/或数据集的QoS需求匹配时,会主动丢弃数据包,这样通过利用计费偏移指示确定是否对丢弃数据包执行计费校正,能够提高计费结果的准确性。
在一个实施例中,如图3所示,所述方法还包括:
步骤203:确定对所述丢弃数据包执行计费校正。
具体地,当所述计费偏移指示的值为计费偏移(charging offset)时,确定对丢弃数据包执行计费校正。
步骤204:将所述丢弃数据包的用量信息和/或带有丢弃标记的数据包发送至UPF。
本实施例中,在确定对丢弃数据包执行计费校正的情况下,接入网节点可以统计丢弃数据包的用量信息,将丢弃数据包的用量信息与对应的用户标识发送至UPF,也可以将带有丢弃标记的数据包与对应的用户标识发送至UPF。
UPF若接收到丢弃数据包的用量信息,则可以将丢弃数据包的用量信息上报至计费功能网元。计费功能网元可以确定出丢弃数据包的用量信息对应的计费,从已统计的总计费中减去丢弃数据包的用量信息对应的计费。
UPF若接收到带有丢弃标记的数据包,则可以统计出带有丢弃数据包的用量信息,将统计出的带有丢弃数据包的用量信息上报至计费功能网元。
在一个实施例中,所述计费校正的计费场景包括以下至少之一:
按使用量计费的场景;
按使用量和时间组合计费的场景;
按使用量和事件组合计费的场景;
按使用量和时间和事件组合计费的场景。
其中,按所述使用量和时间组合计费时,可以根据业务数据流的使用量和时间信息(时间信息例如包括起始时刻和结束时刻)进行计费。
其中,按所述使用量和事件组合计费时,可以根据业务数据流的使用量和事件信息(事件信息例如为业务数据流的业务类型)进行计费。
在一些示例中,所述计费校正的计费场景可以根据计费策略信息确定,所述计费策略信息例如为PCC规则中的计费信息。
本实施例中,通过提供计费校正的多种计费场景,提高了计费处理的灵活性。
在一个实施例中,所述计费校正的计费方法包括以下至少之一:
在线计费;
离线计费;
融合计费。
其中,所述融合计费指的是在线计费和离线计费融合的计费。
在一些示例中,所述计费校正的计费方法可以根据计费策略信息确定,所述计费策略信息例如为PCC规则中的计费信息。
本实施例中,通过在线计费、离线计费和融合计费中的至少一种计费方法实现针对丢弃数据包的计费校正,提高了计费处理的灵活性。
图4是根据一示例性实施例示出的一种计费处理方法的流程图。如图4所示,所述计费处理方法由PCF执行,所述方法包括:
步骤301:将计费偏移指示发送至SMF,其中,所述计费偏移指示,用于指示接入网节点是否对丢弃数据包执行计费校正。
在一些示例中,所述丢弃数据包可包括:所述接入网节点主动丢弃的PDU集(PDU set)、和/或PDU集内所述接入网节点主动丢弃的数据包。
例如,针对下行链路方向的业务数据流,RAN接入网节点基于数据集内的数据单元之间和/或数据集之间的QoS特性或者需求的匹配,主动丢弃数据集内的剩余数据包和/或相关数据集的数据包。
在一些示例中,所述丢弃数据包可以包括以下至少之一:优先级低于指定优先级的PDU集、PDU集重要性低于指定重要性的PDU集、PDU集内的数据包优先级低于预设优先级的数据包、PDU集内的数据包重要性低于预设重要性的数据包。
在一些示例中,当所述计费偏移指示的值为第一值时,表示需要或允许对丢弃数据包执行计费校正。当所述计费偏移指示的值为第二值时,表示不需要或不允许对丢弃数据包执行计费校正。
例如,第一值为“charging offset”,第二值为“non-offset”。又例如,第一值为1,第二值为0。
在另一些示例中,所述计费偏移指示可以包括数据量阈值,所述数据量阈值用于确定是否对丢弃数据包执行计费校正。
例如,当丢弃数据包的用量大于数据量阈值时,表示需要或允许对丢弃数据包执行计费校正。当丢弃数据包的用量小于或等于数据量阈值时,表示不需要或不允许对丢弃数据包执行计费校正。
在一些示例中,所述计费偏移指示可以是PCF根据签约信息或本地策略生成的。
PCF可以根据签约信息或本地策略生成计费偏移指示,并将计费偏移指示通过SMF发送至接入网节点。
在一些示例中,PCF可以将携带有计费偏移指示的PCC规则发送至SMF。
在一些示例中,PCF可以在PDU会话建立过程中或PDU会话修改过程中,将携带有计费偏移指示的PCC规则发送至所述SMF。
在一些示例中,PCC规则中包含有PDU集的相关QoS参数和计费信息。所述计费偏移指示可以携带于所述计费信息中。
在一些示例中,在PDU会话修改过程中,PCF可以根据来自AF的请求消息生成PCC规则。
在一些示例中,所述PCF接收AF发送的请求消息,该请求消息中包含有QoS流中每个PDU集的QoS参数以及帧标识的参数。
若AF可以直接与PCF进行交互,则PCF可以接收AF直接发送的请求消息。若AF需要通过NEF(Network Exposure Function,网络业务呈现功能)来与PCF进行交互,则PCF可以接收NEF转发的来自于AF的请求消息。
其中,QoS流中每个PDU集的QoS参数可以包括:
PDU集处理指示,用于指示是否将基于PDU集的处理激活应用到一个QoS流。该指示可以通过AF提供的其他PDU集相关信息来隐式指示。
是否需要所有PDU用于应用层对PDU集的使用;
PDU集延迟预算(PDU Set Delay Budget);
PDU集错误率(PDU Set Error Rate);
其中,帧标识的参数包括突发周期性(Burst periodicity)。
本公开实施例提供一种计费处理方法,通过PCF将计费偏移指示发送至SMF,使得SMF可以将计费偏移指示发送给接入网节点,由此可以触发接入网节点根据计费偏移指示确定是否对丢弃数据包执行计费校正,能够提高计费结果的准确性。
在一个实施例中,所述计费偏移指示,携带于PCC规则包含的计费信息中;和/或,
所述计费偏移指示,携带于PDU会话的相关策略信息中;和/或,
所述计费偏移指示,携带于PDU集的相关策略信息中。
在一些示例中,PCC规则中包含有PDU集的相关QoS参数和计费信息,所述计费偏移指示可以携带于所述计费信息中。
在另一些示例中,PDU会话的相关策略信息中包含有PDU会话的计费参数,所述计费偏移指 示可以携带于所述PDU会话的相关策略信息包含的计费参数中。
在又一些示例中,PDU集的相关策略信息中包含有计费参数,所述计费偏移指示可以携带于所述PDU集的相关策略信息包含的计费参数中。
在一些示例中,PDU会话的相关策略信息、PDU集的相关策略信息均可以包含在PCC规则中。
在一些示例中,所述PCC规则可以与终端的用户标识相关联。
在一些示例中,所述PCC规则是由PCF提供给SMF的。
在一个实施例中,所述丢弃数据包包括:所述接入网节点在基于PDU集的QoS处理中主动丢弃的PDU集和/或PDU集内所述接入网节点主动丢弃的数据包。
针对下行链路方向的业务数据流,接入网节点基于PDU集内的数据单元之间和/或PDU集之间的QoS特性或者需求的匹配(例如,PDU集内的数据单元之间的依赖关系、PDU集之间的依赖关系、PDU集中数据单元的重要性/优先级,PDU集的重要性/优先级等),主动丢弃数据集内的剩余数据包和/或相关数据集的数据包。
在一个实施例中,所述主动丢弃的PDU集包括以下至少之一:
传输延迟时间超过PDU集传输延迟预算的PDU集;
传输错误率超过PDU集传输错误率阈值的PDU集;
基于传输失败的第一PDU集而主动丢弃的第二PDU集;
优先级低于预设优先级的PDU集;
依赖其他PDU集的PDU集;
重要性低于预设重要性的PDU集。
在一个实施例中,所述第一PDU集与所述第二PDU集之间的关系包括以下至少之一:
所述第二PDU集依赖所述第一PDU集;和/或,
所述第二PDU集的重要性低于所述第一PDU集;和/或,
所述第二PDU集的优先级低于所述第一PDU集。其中,PDU集延迟预算、PDU集错误率阈值、PDU集之间的依赖关系以及PDU集的重要性均可以包含在PDU集的相关QoS参数中。
其中,传输失败的PDU集可以是:接入网节点在设定时长内未成功接收到的PDU集。
在一个实施例中,所述主动丢弃的数据包包括以下至少之一:
传输延迟时间超过数据包传输延迟预算的数据包;
传输错误率超过数据包传输错误率阈值的数据包;
基于传输失败的第一数据包而主动丢弃的数据包;
优先级低于预设优先级的数据包;
依赖其他数据包的数据包;
重要性低于预设重要性的数据包。
在一个实施例中,所述第一数据包与所述第二数据包属于同一个PDU集,且所述第一数据包和所述第二数据包之间的关系包括以下至少之一:
所述第二数据包依赖所述第一数据包;和/或,
所述第二数据包的重要性低于所述第一数据包;和/或,
所述第二数据包的优先级低于所述第一数据包。
其中,数据包延迟预算、数据包错误率阈值、PDU集内数据包之间的依赖关系以及PDU集内数据包的重要性均可以包含在PDU集的相关QoS参数中。
其中,传输失败的数据包可以是:接入网节点在设定时长内未成功接收到的PDU集内的数据包。
在一个实施例中,所述丢弃数据包的数据流为XR类业务数据流或多模态数据业务数据流。
所述数据流为通过核心网响应于终端的业务请求,通过接入网节点提供给终端的业务数据流。
本实施例中,XR类业务数据流和多模态数据业务数据流均具有高带宽、低时延和高可靠性需求的特点。针对这些类型业务数据流的下行传输,接入网节点基于数据流内的数据单元和/或数据集的QoS需求匹配时,会主动丢弃数据包,这样通过利用计费偏移指示确定是否对丢弃数据包执行计费校正,能够提高计费结果的准确性。
在一个实施例中,所述将计费偏移指示发送至SMF,包括:
在PDU会话建立或修改过程中,将计费偏移指示发送至SMF。
本实施例中,在PDU会话建立或修改过程中,PCF可以将所述计费偏移指示携带于PCC规则、PDU会话的相关策略和/或PDU集的相关策略中的至少一个,发送至SMF。
在一个实施例中,所述计费校正的计费场景包括以下至少之一:
按使用量计费的场景;
按使用量和时间组合计费的场景;
按使用量和事件组合计费的场景;
按使用量和时间和事件组合计费的场景。
其中,按所述使用量和时间组合计费时,可以根据业务数据流的使用量和时间信息(时间信息例如包括起始时刻和结束时刻)进行计费。
其中,按所述使用量和事件组合计费时,可以根据业务数据流的使用量和事件信息(事件信息例如为业务数据流的业务类型)进行计费。
在一些示例中,所述计费校正的计费场景可以根据计费策略信息确定,所述计费策略信息例如为PCC规则中的计费信息。
本实施例中,通过提供计费校正的多种计费场景,提高了计费处理的灵活性。
在一个实施例中,所述计费校正的计费方法包括以下至少之一:
在线计费;
离线计费;
融合计费。
其中,所述融合计费指的是在线计费和离线计费融合的计费。
在一些示例中,所述计费校正的计费方法可以根据计费策略信息确定,所述计费策略信息例如 为PCC规则中的计费信息。
本实施例中,通过在线计费、离线计费和融合计费中的至少一种计费方法实现针对丢弃数据包的计费校正,提高了计费处理的灵活性。
图5是根据一示例性实施例示出的一种计费处理方法的流程图。如图5所示,所述计费处理方法由SMF执行,所述方法包括:
步骤402:将计费偏移指示发送至接入网节点,其中,所述计费偏移指示,用于指示所述接入网节点是否对丢弃数据包执行计费校正。
在一些示例中,所述丢弃数据包可包括:接入网节点主动丢弃的PDU集(PDU set)、和/或PDU集内所述接入网节点主动丢弃的数据包。
例如,针对下行链路方向的业务数据流,RAN接入网节点基于数据集内的数据单元之间和/或数据集之间的QoS特性或者需求的匹配,主动丢弃数据集内的剩余数据包和/或相关数据集的数据包。
在一些示例中,所述丢弃数据包可以包括以下至少之一:优先级低于指定优先级的PDU集、PDU集重要性低于指定重要性的PDU集、PDU集内的数据包优先级低于预设优先级的数据包、PDU集内的数据包重要性低于预设重要性的数据包。
在一些示例中,当所述计费偏移指示的值为第一值时,表示需要或允许对丢弃数据包执行计费校正。当所述计费偏移指示的值为第二值时,表示不需要或不允许对丢弃数据包执行计费校正。
例如,第一值为“charging offset”,第二值为“non-offset”。又例如,第一值为1,第二值为0。
在另一些示例中,所述计费偏移指示可以包括数据量阈值,所述数据量阈值用于确定是否对丢弃数据包执行计费校正。
例如,当丢弃数据包的用量大于数据量阈值时,表示需要或允许对丢弃数据包执行计费校正。当丢弃数据包的用量小于或等于数据量阈值时,表示不需要或不允许对丢弃数据包执行计费校正。
在一些示例中,所述计费偏移指示可以是PCF根据签约信息或本地策略生成的。
PCF可以根据签约信息或本地策略生成计费偏移指示,并将计费偏移指示通过SMF发送至接入网节点。
本公开实施例提供一种计费处理方法,通过将计费偏移指示发送至接入网节点,使得接入网节点根据计费偏移指示确定是否对丢弃数据包执行计费校正,能够提高计费结果的准确性。
在一个实施例中,所述计费偏移指示,携带于PCC规则包含的计费信息中;和/或,
所述计费偏移指示,携带于PDU会话的相关策略信息中;和/或,
所述计费偏移指示,携带于PDU集的相关策略信息中。
在一些示例中,PCC规则中包含有PDU集的相关QoS参数和计费信息,所述计费偏移指示可以携带于所述计费信息中。
在另一些示例中,PDU会话的相关策略信息中包含有PDU会话的计费参数,所述计费偏移指示可以携带于所述PDU会话的相关策略信息包含的计费参数中。
在又一些示例中,PDU集的相关策略信息中包含有计费参数,所述计费偏移指示可以携带于所 述PDU集的相关策略信息包含的计费参数中。
在一些示例中,PDU会话的相关策略信息、PDU集的相关策略信息均可以包含在PCC规则中。
在一些示例中,所述PCC规则可以与终端的用户标识相关联。
在一些示例中,所述PCC规则是由PCF提供给SMF的。
在一个实施例中,所述丢弃数据包包括:所述接入网节点在基于PDU集的QoS处理中主动丢弃的PDU集和/或PDU集内所述接入网节点主动丢弃的数据包。
针对下行链路方向的业务数据流,接入网节点基于PDU集内的数据单元之间和/或PDU集之间的QoS特性或者需求的匹配(例如,PDU集内的数据单元之间的依赖关系、PDU集之间的依赖关系、PDU集中数据单元的重要性/优先级,PDU集的重要性/优先级等),主动丢弃数据集内的剩余数据包和/或相关数据集的数据包。
在一个实施例中,所述主动丢弃的PDU集包括以下至少之一:
延迟时间超过PDU集延迟预算的PDU集;
错误率超过PDU集错误率阈值的PDU集;
基于传输失败的第一PDU集而主动丢弃的第二PDU集;
优先级低于预设优先级的PDU集;
依赖其他PDU集的PDU集;
重要性低于预设重要性的PDU集。
在一个实施例中,所述第一PDU集与所述第二PDU集之间的关系包括以下至少之一:
所述第二PDU集依赖所述第一PDU集;和/或,
所述第二PDU集的重要性低于所述第一PDU集;和/或,
所述第二PDU集的优先级低于所述第一PDU集。
其中,PDU集延迟预算、PDU集错误率阈值、PDU集之间的依赖关系以及PDU集的重要性均可以包含在PDU集的相关QoS参数中。
其中,传输失败的PDU集可以是:接入网节点在设定时长内未成功接收到的PDU集。
在一个实施例中,所述主动丢弃的数据包包括以下至少之一:
传输延迟时间超过数据包传输延迟预算的数据包;
传输错误率超过数据包传输错误率阈值的数据包;
基于传输失败的第一数据包而主动丢弃的数据包;
优先级低于预设优先级的数据包;
依赖其他数据包的数据包;
重要性低于预设重要性的数据包。
在一个实施例中,所述第一数据包与所述第二数据包属于同一个PDU集,且所述第一数据包和所述第二数据包之间的关系包括以下至少之一:
所述第二数据包依赖所述第一数据包;和/或,
所述第二数据包的重要性低于所述第一数据包;和/或,
所述第二数据包的优先级低于所述第一数据包。
其中,数据包延迟预算、数据包错误率阈值、PDU集内数据包之间的依赖关系以及PDU集内数据包的重要性均可以包含在PDU集的相关QoS参数中。
其中,传输失败的数据包可以是:接入网节点在设定时长内未成功接收到的PDU集内的数据包。
在一个实施例中,所述丢弃数据包的数据流为扩展现实XR类业务数据流或多模态数据业务数据流。
所述数据流为通过核心网响应于终端的业务请求,通过接入网节点提供给终端的业务数据流。
本实施例中,XR类业务数据流和多模态数据业务数据流均具有高带宽、低时延和高可靠性需求的特点。针对这些类型业务数据流的下行传输,接入网节点基于数据流内的数据单元和/或数据集的QoS需求匹配时,会主动丢弃数据包,这样通过利用计费偏移指示确定是否对丢弃数据包执行计费校正,能够提高计费结果的准确性。
在一个实施例中,如图6所示,所述方法还包括:
步骤401:接收PCF发送的所述计费偏移指示。
在一些示例中,所述接收PCF发送的所述计费偏移指示,包括以下至少之一:
接收PCF发送的携带有计费偏移指示的PCC规则;
接收PCF发送的携带有计费偏移指示的PDU会话的相关策略信息;
接收PCF发送的携带有计费偏移指示的PDU集的相关策略信息。
在一些示例中,PCC规则中包含有PDU集的相关QoS参数和计费信息。所述计费偏移指示可以携带于所述计费信息中。
在一个实施例中,所述接收PCF发送的所述计费偏移指示,包括:
在PDU会话建立或修改过程中,接收PCF发送的所述计费偏移指示。
在PDU会话建立过程中,SMF可以通过向PCF发送SM策略关联建立请求,请求PCF提供PCC规则。PCF在接收到SMF发送的SM策略关联建立请求后,将计费偏移指示携带于PCC规则中发送至SMF。
在PDU会话修改过程中,SMF可以通过向PCF发送SM策略关联修改请求,请求PCF提供PCC规则。PCF在接收到SMF发送的SM策略关联修改请求后,将计费偏移指示携带于PCC规则中发送至SMF。
在一个实施例中,所述方法还包括:
将所述计费偏移指示发送至UPF。
在一个实施例中,所述计费校正的计费场景包括以下至少之一:
按使用量计费的场景;
按使用量和时间组合计费的场景;
按使用量和事件组合计费的场景;
按使用量和时间和事件组合计费的场景。
其中,按所述使用量和时间组合计费时,可以根据业务数据流的使用量和时间信息(时间信息例如包括起始时刻和结束时刻)进行计费。
其中,按所述使用量和事件组合计费时,可以根据业务数据流的使用量和事件信息(事件信息例如为业务数据流的业务类型)进行计费。
在一些示例中,所述计费校正的计费场景可以根据计费策略信息确定,所述计费策略信息例如为PCC规则中的计费信息。
本实施例中,通过提供计费校正的多种计费场景,提高了计费处理的灵活性。
在一个实施例中,所述计费校正的计费方法包括以下至少之一:
在线计费;
离线计费;
融合计费。
其中,所述融合计费指的是在线计费和离线计费融合的计费。
在一些示例中,所述计费校正的计费方法可以根据计费策略信息确定,所述计费策略信息例如为PCC规则中的计费信息。
本实施例中,通过在线计费、离线计费和融合计费中的至少一种计费方法实现针对丢弃数据包的计费校正,提高了计费处理的灵活性。
为了进一步解释本公开任意实施例,以下提供几个具体实施例。
本公开实施例提供一种计费处理方法,该方法可以在PDU会话建立(PDU Session Establishment)或PDU会话修改(PDU Session Modification)过程中执行基于PDU集的策略和计费控制。
如图7A所示,该方法包括以下步骤:
步骤S1a:执行PDU会话建立过程的步骤1-7a;
步骤S1b:AF可以通过Nnef_AFsessionWithQoS_Create请求向PCF发送信息,包括:QoS流中每个PDU集的QoS参数以及帧标识的参数。AF还可以在PDU会话建立之前将这些信息提供给5GS。
其中,QoS流中每个PDU集的QoS参数可以包括:
PDU集处理指示,用于指示是否将基于PDU集的处理激活应用到一个QoS流。该指示可以通过AF提供的其他PDU集相关信息来隐式指示。
是否需要所有PDU用于应用层对PDU集的使用;
PDU集延迟预算(PDU Set Delay Budget);
PDU集错误率(PDU Set Error Rate);
其中,帧标识的参数,包括突发周期性(Burst periodicity);
步骤S2:PCF生成合适的PCC规则,其中包括PDU集的相关QoS参数。PCF将PCC规则发送给SMF。
所述PCC规则中携带有基于PDU集的QoS处理时的计费偏移指示,该计费偏移指示用于供RAN 接收到后,确定是否对相应丢弃数据包执行计费校正。
基于PDU集的QoS处理时的计费偏移指示,指示是否需要或允许对基于PDU集的QoS处理中的丢弃数据包进行计费校正。计费偏移指示的值包括:计费偏移(charging offset)或不偏移(non-offset)。其中,计费偏移,则针对PDU集的QoS处理中的丢弃数据包进行用量统计和上报,并对这部分丢弃的用量执行计费准确性校正。计费不偏移,则不对PDU集的QoS处理中的丢弃数据包进行用量统计和上报,或者执行了相应丢弃数据包的用量统计和上报后不对该部分用量执行计费准确性校正。
其中,计费偏移指示可以通过:
PCC规则中的计费信息携带下发;
和/或,PDU会话的相关策略信息中的计费参数携带下发;
和/或,PDU集的相关策略信息中的计费参数携带下发;
其中,PDU集的相关QoS参数为5GS系统中基于PDU集的QoS处理的新的QoS参数,可以包括以下至少之一:
PDU集延迟预设(PSDB);
PDU集错误率(PSER);
是否需要所有PDU用于应用层对PDU集的使用;
是否在超过PSDB的情况下丢弃PDU集;
PDU集优先级,所有PDU集的PDU集优先级相同,或者每个PDU集不同(即与PDU集重要性相同)。
该步骤可以在PDU会话建立过程中的步骤7b,或者在PDU会话修改过程中的步骤1b中完成。
如果该步骤由步骤1b触发,则PCF会根据AF提供的信息生成PCC规则。
步骤S3:SMF根据来自PCF的PCC规则生成QoS配置文件和N4规则。SMF将N4规则发送到UPF,并通过AMF将QoS配置文件发送到RAN节点。N4规则中含PDU集计费信息。该步骤可以在PDU会话建立过程中的步骤8-15,或者在PDU会话修改过程中的步骤2-7完成。
步骤S4:剩余步骤按现有技术的会话创建或修改流程即可。
步骤S5:UPF根据收到的N4规则或UPF本地配置,识别相关信息,并根据N4规则进行基于PDU Set的QoS处理。UPF存储计费偏移指示;若需要UPF可以配合RAN执行计费校正,UPF可以配合RAN对相应的丢弃数据包执行计费校正。
UPF识别属于PDU集的PDU以及每个PDU集的以下信息:
PDU集内处理的信息,包括以下参数中的至少一个:
PDU集序列号(SN)。例如:使用QoS流ID标识QoS流,使用PDU集SN标识QoS流中的每个PDU集。一个QoS流可用于传递一个或多个PDU集。
PDU集的开始PDU和/或结束PDU;
一个PDU集内的PDU SN;
一个PDU集内的PDU数量;
PDU集间处理的信息,包括以下参数中的至少一个:
PDU集重要性;
PDU集相关性。
其中,UPF通过相应的方法/机制识别相关信息,参见如下说明:
选项1:通过匹配RTP(Real-time Transport Protocol,实时传输协议)或者SRTP(Secure Real-time Transport Protocol,安全实时传输协议)标头和有效负载;
选项2:新的RTP扩展头;
选项3:由AS在N6封装头中提供的信息,例如GTP-U(User Plane Part of GTP,GPRS用户平面部分);
选项4:通过基于流量特征的检测;
选项5:通过非标准化机制UPF实施。
步骤S6:UPF将PDU集的相关信息发送给RAN。
对于PDU集重要性,选项包括:
选项1:UPF根据PDU集的重要性,将DL流量分类为不同的QoS流,
选项2:UPF根据PDU集重要性,将DL流量分类为不同的sub-QoS流,
选项3:UPF将PDU集重要性添加到GTP-U标头中。
对于步骤S5中的其他PDU集的相关信息,UPF将它们添加到GTP-U Header。
步骤S7:基于在步骤S6中接收到的PDU集的相关信息,RAN执行基于PDU集的QoS处理。
RAN根据接收到的计费偏移指示,确定是否对相应的丢弃数据包执行计费校正。
其中,丢弃数据包包括:主动丢弃的PDU集和/或PDU集内主动丢弃的数据包。
1)PDU集的丢弃原因例如:超过PDU集延迟预算(PSDB)、超过PDU集错误率、依赖的PDU集的传输失败、重要的PDU集传输失败;
2)PDU集内的数据包的丢弃原因:超出数据包延迟预算(PDB)、超过数据包错误率、PDU集内所依赖的数据包传输失败、PDU集内重要性更高的数据包传输失败。
步骤S8:RAN在确定对丢弃数据包执行计费校正的情况下,将丢弃数据包的用量信息和/或带有丢弃标记的数据包发送至UPF。
上述的计费校正适用的计费场景包括以下至少之一:用量计费、用量和时间组合计费、用量和事件组合计费、用量和时间和事件组合计费。
上述的计费校正适用的计费方法包括以下至少之一:在线计费、离线计费、包括在线和离线的融合计费。
本公开实施例提供一种计费处理方法,该方法可以在PDU会话建立过程中执行基于PDU集的策略和计费控制。
如图7B所示,该方法包括以下步骤:
步骤7b:SMF执行SM策略关联建立过程以与PCF建立SM策略关联,并获得PDU会话的默认PCC规则。在ON-SNPN(Stand-alone NPN,独立的非公共网络)的情况下,如果SMF提供GPSI(Generic Public Subscription Identifier,通用公共用户标识)、PVS(Provisioning Services,供应服务)-FQDN(Fully Qualified Domain Name,全限定域名)或PVS IP地址(Internet Protocol Address,互联网协议地址)和新用户引导指示,则应包括在内。
如果图7B所示的步骤3中的请求类型指示“现存的PDU会话”,则SMF可以提供有关策略控制请求触发条件的信息,这些条件已由SMF发起的SM策略关联修改过程满足。PCF可以向SMF提供策略信息。
PCF生成并提供PCC规则给SMF,PCC规则包括PDU集的相关QoS和计费信息。其中,PCC规则包括基于PDU集的QoS处理时的计费偏移指示,该计费偏移指示用于供RAN接收到后,确定是否对相应丢弃数据包执行计费校正。
PCF生成适当的PCC规则,其中可以包括PDU集的相关QoS参数和计费信息,PCF将PCC规则发送给SMF。
基于PDU集的QoS处理时的计费偏移指示,指示是否需要/允许对基于PDU集的QoS处理中的丢弃数据包进行计费校正。计费偏移指示的值包括:计费偏移或不偏移。其中,计费偏移,则针对PDU集的QoS处理中的丢弃数据包进行用量统计和上报,并对这部分丢弃的用量执行计费准确性校正。计费不偏移,则不对PDU集的QoS处理中的丢弃数据包进行用量统计和上报,或者执行了相应丢弃数据包的用量统计和上报后不对该部分用量执行计费准确性校正。
其中,计费偏移指示可以通过:
PCC规则中的计费信息携带下发;
和/或,PDU会话的相关策略信息中的计费参数携带下发;
和/或,PDU集的相关策略信息中的计费参数携带下发。
其中,PDU集的相关QoS参数为5GS系统中基于PDU集的QoS处理的新的QoS参数,可以包括以下至少之一:
PDU集延迟预设(PSDB);
PDU集错误率(PSER);
是否需要所有PDU用于应用层对PDU集的使用;
是否在超过PSDB的情况下丢弃PDU集;
PDU集优先级,所有PDU集的PDU集优先级相同,或者每个PDU集不同(即与PDU集重要性相同)。
步骤8-15:SMF根据来自PCF的PCC规则生成QoS配置文件和N4规则。SMF将N4规则发送至UPF,并通过AMF将QoS配置文件发送至RAN节点。N4规则中含PDU集的计费信息。
其余步骤:
会话创建流程其余步骤,按现有技术的会话创建流程即可。
UPF和RAN的PDU集的相关QoS和计费,同图7A所示的步骤S5至步骤S8,此处不再赘述。
本公开实施例提供一种计费处理方法,该方法可以在PDU会话修改过程中执行基于PDU集的策略和计费控制。PDU会话修改可以由UE或网络发起的。
如图7C所示,该方法包括以下步骤:
步骤1b:PCF发起SM策略关联修改。PCF执行PCF发起的SM策略关联修改过程,通知SMF策略的修改。这可以是例如:由策略决定或AF请求触发,例如应用功能AF影响流量路由或AF以提供端口管理信息的容器。
PCF生成并提供PCC规则给SMF。PCC规则包括PDU集的相关QoS和计费信息。其中,PCC规则包括基于PDU集的QoS处理时的计费偏移指示,该计费偏移指示用于供RAN接收到后,确定是否对相应丢弃数据包执行计费校正。
PCF生成适当的PCC规则,其中可以包括PDU集的相关QoS参数,PCF将PCC规则发送给SMF。
基于PDU集的QoS处理时的计费偏移指示,指示是否需要/允许对基于PDU集的QoS处理中的丢弃数据包进行计费校正。计费偏移指示的值包括:计费偏移或不偏移。其中,计费偏移,则针对PDU集的QoS处理中的丢弃数据包进行用量统计和上报,并对这部分丢弃的用量执行计费准确性校正。计费不偏移,则不对PDU集的QoS处理中的丢弃数据包进行用量统计和上报,或者执行了相应丢弃数据包的用量统计和上报后不对该部分用量执行计费准确性校正。
其中,计费偏移指示,可以通过:
PCC规则中的计费信息携带下发;
和/或,PDU会话的相关策略信息中的计费参数携带下发;
和/或,PDU集的相关策略信息中的计费参数携带下发。
其中,PDU集的相关QoS参数为5GS系统中基于PDU集的QoS处理的新的QoS参数,可以包括以下至少之一:
PDU集延迟预设(PSDB);
PDU集错误率(PSER);
是否需要所有PDU用于应用层对PDU集的使用;
是否在超过PSDB的情况下丢弃PDU集;
PDU集优先级,所有PDU集的PDU集优先级相同,或者每个PDU集不同(即与PDU集重要性相同)。
步骤2-7:SMF根据来自PCF的PCC规则生成QoS配置文件和N4规则。
SMF将N4规则发送至UPF,并通过AMF将QoS配置文件发送至RAN节点。N4规则中含PDU集计费信息。
其余步骤:
会话修改流程其余步骤,按现有技术的会话修改流程即可;
UPF和RAN的PDU集的相关QoS和计费,同图7A所示的步骤S5至步骤S8,此处不再赘述。
本公开实施例提供的技术方案,支持了XR业务数据流QoS增强相应的计费。下行数据在UPF执行计费统计和上报后,RAN基于数据集内的数据单元之间和或数据集之间的QoS特性/需求匹配,主动丢弃了数据集内的剩余数据包,和/或相关数据集的数据包,支持了PDU集场景的计费校正,实现了精准计费。
下述为本公开装置实施例,可以用于执行本公开相应的方法实施例。对于本公开装置实施例中未披露的细节,请参照本公开相应的方法实施例。
图8是根据一示例性实施例示出的一种接入网节点的结构图。如图8所示,所述接入网节点100,包括:
接收模块110,被配置为接收SMF发送的计费偏移指示;
处理模块120,被配置为根据所述计费偏移指示,确定是否对丢弃数据包执行计费校正。
在一个实施例中,所述计费偏移指示,携带于PCC规则包含的计费信息中;和/或,
所述计费偏移指示,携带于PDU会话的相关策略信息中;和/或,
所述计费偏移指示,携带于PDU集的相关策略信息中。
在一个实施例中,所述丢弃数据包包括:所述接入网节点在基于PDU集的QoS处理中主动丢弃的PDU集和/或PDU集内所述接入网节点主动丢弃的数据包。
在一个实施例中,所述主动丢弃的PDU集包括以下至少之一:
延迟时间超过PDU集延迟预算的PDU集;
错误率超过PDU集错误率阈值的PDU集;
基于传输失败的第一PDU集而主动丢弃的第二PDU集;
优先级低于预设优先级的PDU集;
依赖其他PDU集的PDU集;
重要性低于预设重要性的PDU集。
在一个实施例中,所述第一PDU集与所述第二PDU集之间的关系包括以下至少之一:
所述第二PDU集依赖所述第一PDU集;和/或,
所述第二PDU集的重要性低于所述第一PDU集;和/或,
所述第二PDU集的优先级低于所述第一PDU集。
在一个实施例中,所述主动丢弃的数据包包括以下至少之一:
传输延迟时间超过数据包传输延迟预算的数据包;
传输错误率超过数据包传输错误率阈值的数据包;
基于传输失败的第一数据包而主动丢弃的数据包;
优先级低于预设优先级的数据包;
依赖其他数据包的数据包;
重要性低于预设重要性的数据包。
在一个实施例中,所述第一数据包与所述第二数据包属于同一个PDU集,且所述第一数据包和所述第二数据包之间的关系包括以下至少之一:
所述第二数据包依赖所述第一数据包;和/或,
所述第二数据包的重要性低于所述第一数据包;和/或,
所述第二数据包的优先级低于所述第一数据包。
在一个实施例中,所述丢弃数据包的数据流为XR类业务数据流或多模态数据业务数据流。
在一个实施例中,所述处理模块,被配置为确定对所述丢弃数据包执行计费校正;
所述接入网节点100还包括:
发送模块,被配置为将所述丢弃数据包的用量信息和/或带有丢弃标记的数据包发送至UPF。
在一个实施例中,所述计费校正的计费场景包括以下至少之一:
按使用量计费的场景;
按使用量和时间组合计费的场景;
按使用量和事件组合计费的场景;
按使用量和时间和事件组合计费的场景。
在一个实施例中,所述计费校正的计费方法包括以下至少之一:
在线计费;
离线计费;
融合计费。
图9是根据一示例性实施例示出的一种策略控制功能(PCF)的结构图。如图9所示,所述种策略控制功能200,包括:
发送模块210,被配置为将计费偏移指示发送至SMF,其中,所述计费偏移指示,用于指示接入网节点是否对丢弃数据包执行计费校正。
在一个实施例中,所述计费偏移指示,携带于PCC规则包含的计费信息中;和/或,
所述计费偏移指示,携带于PDU会话的相关策略信息中;和/或,
所述计费偏移指示,携带于PDU集的相关策略信息中。
在一个实施例中,所述丢弃数据包包括:所述接入网节点在基于PDU集的QoS处理中主动丢弃的PDU集和/或PDU集内所述接入网节点主动丢弃的数据包。
在一个实施例中,所述主动丢弃的PDU集包括以下至少之一:
延迟时间超过PDU集延迟预算的PDU集;
错误率超过PDU集错误率阈值的PDU集;
基于传输失败的第一PDU集而主动丢弃的第二PDU集;
优先级低于预设优先级的PDU集;
依赖其他PDU集的PDU集;
重要性低于预设重要性的PDU集。
在一个实施例中,所述第一PDU集与所述第二PDU集之间的关系包括以下至少之一:
所述第二PDU集依赖所述第一PDU集;和/或,
所述第二PDU集的重要性低于所述第一PDU集;和/或,
所述第二PDU集的优先级低于所述第一PDU集。
在一个实施例中,所述主动丢弃的数据包包括以下至少之一:
传输延迟时间超过数据包传输延迟预算的数据包;
传输错误率超过数据包传输错误率阈值的数据包;
基于传输失败的第一数据包而主动丢弃的数据包;
优先级低于预设优先级的数据包;
依赖其他数据包的数据包;
重要性低于预设重要性的数据包。
在一个实施例中,所述第一数据包与所述第二数据包属于同一个PDU集,且所述第一数据包和所述第二数据包之间的关系包括以下至少之一:
所述第二数据包依赖所述第一数据包;和/或,
所述第二数据包的重要性低于所述第一数据包;和/或,
所述第二数据包的优先级低于所述第一数据包。在一个实施例中,所述丢弃数据包的数据流为XR类业务数据流或多模态数据业务数据流。
在一个实施例中,所述发送模块被配置为:
在PDU会话建立或修改过程中,将计费偏移指示发送至SMF。
在一个实施例中,所述计费校正的计费场景包括以下至少之一:
按使用量计费的场景;
按使用量和时间组合计费的场景;
按使用量和事件组合计费的场景;
按使用量和时间和事件组合计费的场景。
在一个实施例中,所述计费校正的计费方法包括以下至少之一:
在线计费;
离线计费;
融合计费。
图10是根据一示例性实施例示出的一种会话管理功能(SMF)的结构图。如图10所示,所述会话管理功能300,包括:
发送模块310,被配置为将计费偏移指示发送至接入网节点,其中,所述计费偏移指示,用于指示所述接入网节点是否对丢弃数据包执行计费校正。
在一个实施例中,所述计费偏移指示,携带于PCC规则包含的计费信息中;和/或,
所述计费偏移指示,携带于PDU会话的相关策略信息中;和/或,
所述计费偏移指示,携带于PDU集的相关策略信息中。
在一个实施例中,所述丢弃数据包包括:所述接入网节点在基于PDU集的QoS处理中主动丢弃的PDU集和/或PDU集内所述接入网节点主动丢弃的数据包。
在一个实施例中,所述主动丢弃的PDU集包括以下至少之一:
延迟时间超过PDU集延迟预算的PDU集;
错误率超过PDU集错误率阈值的PDU集;
基于传输失败的第一PDU集而主动丢弃的第二PDU集;
优先级低于预设优先级的PDU集;
依赖其他PDU集的PDU集;
重要性低于预设重要性的PDU集。
在一个实施例中,所述第一PDU集与所述第二PDU集之间的关系包括以下至少之一:
所述第二PDU集依赖所述第一PDU集;和/或,
所述第二PDU集的重要性低于所述第一PDU集;和/或,
所述第二PDU集的优先级低于所述第一PDU集。
在一个实施例中,所述主动丢弃的数据包包括以下至少之一:
传输延迟时间超过数据包传输延迟预算的数据包;
传输错误率超过数据包传输错误率阈值的数据包;
基于传输失败的第一数据包而主动丢弃的数据包;
优先级低于预设优先级的数据包;
依赖其他数据包的数据包;
重要性低于预设重要性的数据包。
在一个实施例中,所述第一数据包与所述第二数据包属于同一个PDU集,且所述第一数据包和所述第二数据包之间的关系包括以下至少之一:
所述第二数据包依赖所述第一数据包;和/或,
所述第二数据包的重要性低于所述第一数据包;和/或,
所述第二数据包的优先级低于所述第一数据包。
在一个实施例中,所述丢弃数据包的数据流为XR类业务数据流或多模态数据业务数据流。
在一个实施例中,所述会话管理功能300还包括:
接收模块,被配置为接收PCF发送的所述计费偏移指示。
在一个实施例中,所述接收模块被配置为:
在PDU会话建立或修改过程中,接收所述PCF发送的所述计费偏移指示。
在一个实施例中,所述发送模块被配置为:
将所述计费偏移指示发送至UPF。
在一个实施例中,所述计费校正的计费场景包括以下至少之一:
按使用量计费的场景;
按使用量和时间组合计费的场景;
按使用量和事件组合计费的场景;
按使用量和时间和事件组合计费的场景。
在一个实施例中,所述计费校正的计费方法包括以下至少之一:
在线计费;
离线计费;
融合计费。
关于上述的装置实施例,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开实施例提供一种通信系统,包括:策略控制功能(PCF)、会话管理功能(SMF)和接入网节点;
所述PCF,用于将计费偏移指示发送至所述SMF;
所述SMF,用于将所述计费偏移指示发送至所述接入网节点;
所述接入网节点,用于接收所述SMF发送的计费偏移指示,根据所述计费偏移指示,确定是否对丢弃数据包执行计费校正。
在一个实施例中,所述计费偏移指示,携带于PCC规则包含的计费信息中;和/或,
所述计费偏移指示,携带于PDU会话的相关策略信息中;和/或,
所述计费偏移指示,携带于PDU集的相关策略信息中。
在一个实施例中,所述丢弃数据包包括:所述接入网节点在基于PDU集的QoS处理中主动丢弃的PDU集和/或PDU集内所述接入网节点主动丢弃的数据包。
在一个实施例中,所述主动丢弃的PDU集包括以下至少之一:
延迟时间超过PDU集延迟预算的PDU集;
错误率超过PDU集错误率阈值的PDU集;
基于传输失败的第一PDU集而主动丢弃的第二PDU集;
优先级低于预设优先级的PDU集;
依赖其他PDU集的PDU集;
重要性低于预设重要性的PDU集。
在一个实施例中,所述第一PDU集与所述第二PDU集之间的关系包括以下至少之一:
所述第二PDU集依赖所述第一PDU集;和/或,
所述第二PDU集的重要性低于所述第一PDU集;和/或,
所述第二PDU集的优先级低于所述第一PDU集。
在一个实施例中,所述主动丢弃的数据包包括以下至少之一:
传输延迟时间超过数据包传输延迟预算的数据包;
传输错误率超过数据包传输错误率阈值的数据包;
基于传输失败的第一数据包而主动丢弃的数据包;
优先级低于预设优先级的数据包;
依赖其他数据包的数据包;
重要性低于预设重要性的数据包。
在一个实施例中,所述第一数据包与所述第二数据包属于同一个PDU集,且所述第一数据包和所述第二数据包之间的关系包括以下至少之一:
所述第二数据包依赖所述第一数据包;和/或,
所述第二数据包的重要性低于所述第一数据包;和/或,
所述第二数据包的优先级低于所述第一数据包。
在一个实施例中,所述丢弃数据包的数据流为XR类业务数据流或多模态数据业务数据流。
在一个实施例中,所述PCF用于:
在PDU会话建立或修改过程中,将计费偏移指示发送至SMF。
在一个实施例中,所述SMF用于:
将所述计费偏移指示发送至UPF。
在一个实施例中,所述接入网节点用于:
确定对所述丢弃数据包执行计费校正;
将所述丢弃数据包的用量信息和/或带有丢弃标记的数据包发送至UPF。
在一个实施例中,所述计费校正的计费场景包括以下至少之一:
按使用量计费的场景;
按使用量和时间组合计费的场景;
按使用量和事件组合计费的场景;
按使用量和时间和事件组合计费的场景。
在一个实施例中,所述计费校正的计费方法包括以下至少之一:
在线计费;
离线计费;
融合计费。
本公开实施例提供一种通信设备,包括:
处理器;
用于存储所述处理器可执行指令的存储器;
其中,所述处理器被配置为:用于运行所述可执行指令时,实现前述任意技术方案提供的计费处理方法。
处理器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在通信设备掉电之后能够继续记忆存储其上的信息。
这里,所述通信设备包括:核心网设备或者接入网设备等。这里,接入网设备可包括基站;核心网设备可包括PCF、SMF。
所述处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序,例如,如图2至图6所示的计费处理方法的至少其中之一。
如图11所示,本公开一实施例示出一种网络设备的结构。参照图11,通信设备900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述方法前述任意实施例提供的计费处理方法。
通信设备900还可以包括一个电源组件926被配置为执行通信设备900的电源管理,一个有线或无线网络接口950被配置为将通信设备900连接到网络,和一个输入输出(I/O)接口958。通信设备900可以操作基于存储在存储器932的操作系统,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器932,上述指令可由通信设备900的处理组件922执行上述应用在所述通信设备的任意方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (35)

  1. 一种计费处理方法,其中,由接入网节点执行,所述方法包括:
    接收会话管理功能SMF发送的计费偏移指示;
    根据所述计费偏移指示,确定是否对丢弃数据包执行计费校正。
  2. 根据权利要求1所述的方法,其中,
    所述计费偏移指示,携带于策略控制和计费PCC规则包含的计费信息中;和/或,
    所述计费偏移指示,携带于分组数据单元PDU会话的相关策略信息中;和/或,
    所述计费偏移指示,携带于PDU集的相关策略信息中。
  3. 根据权利要求1或2所述的方法,其中,所述丢弃数据包包括:所述接入网节点在基于PDU集的服务质量QoS处理中主动丢弃的PDU集和/或PDU集内所述接入网节点主动丢弃的数据包。
  4. 根据权利要求3所述的方法,其中,所述主动丢弃的PDU集包括以下至少之一
    传输延迟时间超过PDU集传输延迟预算的PDU集;
    传输错误率超过PDU集传输错误率阈值的PDU集;
    基于传输失败的第一PDU集而主动丢弃的第二PDU集;
    优先级低于预设优先级的PDU集;
    依赖其他PDU集的PDU集;
    重要性低于预设重要性的PDU集。
  5. 根据权利要求4所述的方法,其中,所述第一PDU集与所述第二PDU集之间的关系包括以下至少之一:
    所述第二PDU集依赖所述第一PDU集;和/或,
    所述第二PDU集的重要性低于所述第一PDU集;和/或,
    所述第二PDU集的优先级低于所述第一PDU集。
  6. 根据权利要求3所述的方法,其中,所述主动丢弃的数据包包括以下至少之一
    传输延迟时间超过数据包传输延迟预算的数据包;
    传输错误率超过数据包传输错误率阈值的数据包;
    基于传输失败的第一数据包而主动丢弃的第二数据包;
    优先级低于预设优先级的数据包;
    依赖其他数据包的数据包;
    重要性低于预设重要性的数据包。
  7. 根据权利要求6所述的方法,其中,所述第一数据包与所述第二数据包属于同一个PDU集,且所述第一数据包和所述第二数据包之间的关系包括以下至少之一:
    所述第二数据包依赖所述第一数据包;和/或,
    所述第二数据包的重要性低于所述第一数据包;和/或,
    所述第二数据包的优先级低于所述第一数据包。
  8. 根据权利要求1至7任一项所述的方法,其中,
    所述丢弃数据包的数据流为扩展现实XR类业务数据流或多模态数据业务数据流。
  9. 根据权利要求1至8任一项所述的方法,其中,所述方法还包括:
    确定对所述丢弃数据包执行计费校正;
    将所述丢弃数据包的用量信息和/或带有丢弃标记的数据包发送至用户面功能UPF。
  10. 一种计费处理方法,其中,由策略控制功能PCF执行,所述方法包括:
    将计费偏移指示发送至会话管理功能SMF,其中,所述计费偏移指示,用于指示接入网节点是否对丢弃数据包执行计费校正。
  11. 根据权利要求10所述的方法,其中,
    所述计费偏移指示,携带于策略控制和计费PCC规则包含的计费信息中;和/或,
    所述计费偏移指示,携带于分组数据单元PDU会话的相关策略信息中;和/或,
    所述计费偏移指示,携带于PDU集的相关策略信息中。
  12. 根据权利要求10或11所述的方法,其中,所述丢弃数据包包括:所述接入网节点在基于PDU集的服务质量QoS处理中主动丢弃的PDU集和/或PDU集内所述接入网节点主动丢弃的数据包。
  13. 根据权利要求12所述的方法,其中,所述主动丢弃的PDU集包括以下至少之一
    传输延迟时间超过PDU集传输延迟预算的PDU集;
    传输错误率超过PDU集传输错误率阈值的PDU集;
    基于传输失败的第一PDU集而主动丢弃的第二PDU集;
    优先级低于预设优先级的PDU集;
    依赖其他PDU集的PDU集;
    重要性低于预设重要性的PDU集。
  14. 根据权利要求13所述的方法,其中,所述第一PDU集与所述第二PDU集之间的关系包括以下至少之一:
    所述第二PDU集依赖所述第一PDU集;和/或,
    所述第二PDU集的重要性低于所述第一PDU集;和/或,
    所述第二PDU集的优先级低于所述第一PDU集。
  15. 根据权利要求12所述的方法,其中,所述主动丢弃的数据包包括以下至少之一
    传输延迟时间超过数据包传输延迟预算的数据包;
    传输错误率超过数据包传输错误率阈值的数据包;
    基于传输失败的第一数据包而主动丢弃的第二数据包;
    优先级低于预设优先级的数据包;
    依赖其他数据包的数据包;
    重要性低于预设重要性的数据包。
  16. 根据权利要求15所述的方法,其中,所述第一数据包与所述第二数据包属于同一个PDU集,且所述第一数据包和所述第二数据包之间的关系包括以下至少之一:
    所述第二数据包依赖所述第一数据包;和/或,
    所述第二数据包的重要性低于所述第一数据包;和/或,
    所述第二数据包的优先级低于所述第一数据包。
  17. 根据权利要求10至16任一项所述的方法,其中,
    所述丢弃数据包的数据流为扩展现实XR类业务数据流或多模态数据业务数据流。
  18. 根据权利要求10至17任一项所述的方法,其中,所述将计费偏移指示发送至会话管理功能SMF,包括:
    在PDU会话建立或修改过程中,将计费偏移指示发送至会话管理功能SMF。
  19. 一种计费处理方法,其中,由会话管理功能SMF执行,所述方法包括:
    将计费偏移指示发送至接入网节点,其中,所述计费偏移指示,用于指示所述接入网节点是否对丢弃数据包执行计费校正。
  20. 根据权利要求19所述的方法,其中,
    所述计费偏移指示,携带于策略控制和计费PCC规则包含的计费信息中;和/或,
    所述计费偏移指示,携带于分组数据单元PDU会话的相关策略信息中;和/或,
    所述计费偏移指示,携带于PDU集的相关策略信息中。
  21. 根据权利要求19或20所述的方法,其中,所述丢弃数据包包括:所述接入网节点在基于PDU集的服务质量QoS处理中主动丢弃的PDU集和/或PDU集内所述接入网节点主动丢弃的数据包。
  22. 根据权利要求21所述的方法,其中,所述主动丢弃的PDU集包括以下至少之一
    传输延迟时间超过PDU集传输延迟预算的PDU集;
    传输错误率超过PDU集传输错误率阈值的PDU集;
    基于传输失败的第一PDU集而主动丢弃的第二PDU集;
    优先级低于预设优先级的PDU集;
    依赖其他PDU集的PDU集;
    重要性低于预设重要性的PDU集。
  23. 根据权利要求22所述的方法,其中,所述第一PDU集与所述第二PDU集之间的关系包括以下至少之一:
    所述第二PDU集依赖所述第一PDU集;和/或,
    所述第二PDU集的重要性低于所述第一PDU集;和/或,
    所述第二PDU集的优先级低于所述第一PDU集。
  24. 根据权利要求21所述的方法,其中,所述主动丢弃的数据包包括以下至少之一
    传输延迟时间超过数据包传输延迟预算的数据包;
    传输错误率超过数据包传输错误率阈值的数据包;
    基于传输失败的第一数据包而主动丢弃的第二数据包;
    优先级低于预设优先级的数据包;
    依赖其他数据包的数据包;
    重要性低于预设重要性的数据包。
  25. 根据权利要求24所述的方法,其中,所述第一数据包与所述第二数据包属于同一个PDU集,且所述第一数据包和所述第二数据包之间的关系包括以下至少之一:
    所述第二数据包依赖所述第一数据包;和/或,
    所述第二数据包的重要性低于所述第一数据包;和/或,
    所述第二数据包的优先级低于所述第一数据包。
  26. 根据权利要求19至25任一项所述的方法,其中,
    所述丢弃数据包的数据流为扩展现实XR类业务数据流或多模态数据业务数据流。
  27. 根据权利要求19至26任一项所述的方法,其中,所述方法还包括:
    接收策略控制功能PCF发送的所述计费偏移指示。
  28. 根据权利要求27所述的方法,其中,所述接收策略控制功能PCF发送的所述计费偏移指示,包括:
    在PDU会话建立或修改过程中,接收所述PCF发送的所述计费偏移指示。
  29. 根据权利要求19至28任一项所述的方法,其中,所述方法还包括:
    将所述计费偏移指示发送至用户面功能UPF。
  30. 一种接入网节点,包括:
    接收模块,被配置为接收会话管理功能SMF发送的计费偏移指示;
    处理模块,被配置为根据所述计费偏移指示,确定是否对丢弃数据包执行计费校正。
  31. 一种策略控制功能PCF,包括:
    发送模块,被配置为将计费偏移指示发送至会话管理功能SMF,其中,所述计费偏移指示,用于指示接入网节点是否对丢弃数据包执行计费校正。
  32. 一种会话管理功能SMF,包括:
    发送模块,被配置为将计费偏移指示发送至接入网节点,其中,所述计费偏移指示,用于指示所述接入网节点是否对丢弃数据包执行计费校正。
  33. 一种通信设备,其中,所述通信设备,包括:
    处理器;
    用于存储所述处理器可执行指令的存储器;
    其中,所述处理器被配置为:用于运行所述可执行指令时,实现权利要求1至29任一项所述的计费处理方法。
  34. 一种通信系统,其中,包括:策略控制功能PCF、会话管理功能SMF和接入网节点;
    所述PCF,用于执行如权利要求10至18中任一项所述的计费处理方法;
    所述SMF,用于执行如权利要求19至29中任一项所述的计费处理方法;
    所述接入网节点,用于执行如权利要求1至9中任一项所述的计费处理方法。
  35. 一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行程序,所述可执行程序被处理器执行时实现权利要求1至29任一项所述的计费处理方法。
PCT/CN2022/111279 2022-08-09 2022-08-09 计费处理方法及装置、通信设备及存储介质 WO2024031389A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/111279 WO2024031389A1 (zh) 2022-08-09 2022-08-09 计费处理方法及装置、通信设备及存储介质
CN202280002895.5A CN117859298A (zh) 2022-08-09 2022-08-09 计费处理方法及装置、通信设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/111279 WO2024031389A1 (zh) 2022-08-09 2022-08-09 计费处理方法及装置、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024031389A1 true WO2024031389A1 (zh) 2024-02-15

Family

ID=89850052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111279 WO2024031389A1 (zh) 2022-08-09 2022-08-09 计费处理方法及装置、通信设备及存储介质

Country Status (2)

Country Link
CN (1) CN117859298A (zh)
WO (1) WO2024031389A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015039307A1 (zh) * 2013-09-18 2015-03-26 华为技术有限公司 计费方法及设备
CN110505653A (zh) * 2018-05-17 2019-11-26 电信科学技术研究院有限公司 一种服务质量控制的方法、设备及计算机存储介质
CN111771351A (zh) * 2020-04-30 2020-10-13 北京小米移动软件有限公司 数据传输处理方法、装置、通信设备及存储介质
CN113923064A (zh) * 2020-07-10 2022-01-11 华为技术有限公司 计费方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015039307A1 (zh) * 2013-09-18 2015-03-26 华为技术有限公司 计费方法及设备
CN110505653A (zh) * 2018-05-17 2019-11-26 电信科学技术研究院有限公司 一种服务质量控制的方法、设备及计算机存储介质
CN111771351A (zh) * 2020-04-30 2020-10-13 北京小米移动软件有限公司 数据传输处理方法、装置、通信设备及存储介质
CN113923064A (zh) * 2020-07-10 2022-01-11 华为技术有限公司 计费方法及装置

Also Published As

Publication number Publication date
CN117859298A (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
CN111758279B (zh) 跟踪QoS违规事件
EP3767890B1 (en) Method and apparatus for monitoring service quality
EP3695639B1 (en) Monitoring and reporting service performance
WO2017193427A1 (zh) 分组交换业务识别方法及终端
EP3675551B1 (en) Method and system for detecting quality of service of service
WO2020019764A1 (zh) 信息传输方法、设备及计算机可读存储介质
EP4138439A1 (en) Communication method, apparatus, and system
WO2013131458A1 (zh) 一种ip数据包的传输方法和设备
JPWO2020150333A5 (zh)
CN113747479A (zh) 获取网络资源的方法、设备及系统
WO2024031389A1 (zh) 计费处理方法及装置、通信设备及存储介质
US20220330080A1 (en) Communication method, apparatus, and system
WO2022267652A1 (zh) 一种通信方法、通信装置及通信系统
WO2013071860A1 (zh) 一种进行策略决策的方法及网络设备
WO2024031403A1 (zh) 信息处理方法及装置、通信设备及存储介质
WO2024055332A1 (zh) 信息处理方法以及装置、通信设备及存储介质
WO2023213156A1 (zh) 通信方法、通信装置及通信系统
WO2024031394A1 (zh) 信息处理方法、系统及装置、通信设备及存储介质
WO2023212956A1 (zh) 一种数据包处理方法、装置及可读存储介质
US20240089795A1 (en) Data Unit Processing
TWI821882B (zh) 丟包率的檢測方法、通信裝置及通信系統
WO2023185402A1 (zh) 通信方法及装置
WO2024055331A1 (zh) 信息处理方法以及装置、通信设备及存储介质
WO2023061207A1 (zh) 一种通信方法、通信装置及通信系统
WO2024055334A1 (zh) 丢包处理方法、装置、通信设备及存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280002895.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954365

Country of ref document: EP

Kind code of ref document: A1