WO2024031363A1 - Ue handling of conflicting multiple conditional configurations - Google Patents

Ue handling of conflicting multiple conditional configurations Download PDF

Info

Publication number
WO2024031363A1
WO2024031363A1 PCT/CN2022/111246 CN2022111246W WO2024031363A1 WO 2024031363 A1 WO2024031363 A1 WO 2024031363A1 CN 2022111246 W CN2022111246 W CN 2022111246W WO 2024031363 A1 WO2024031363 A1 WO 2024031363A1
Authority
WO
WIPO (PCT)
Prior art keywords
cpc
configuration
cpc configuration
transceiver
processor
Prior art date
Application number
PCT/CN2022/111246
Other languages
French (fr)
Inventor
Yuqin Chen
Naveen Kumar R. PALLE VENKATA
Haijing Hu
Fangli Xu
Original Assignee
Apple Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apple Inc. filed Critical Apple Inc.
Priority to PCT/CN2022/111246 priority Critical patent/WO2024031363A1/en
Publication of WO2024031363A1 publication Critical patent/WO2024031363A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink

Definitions

  • Embodiments of the present disclosure generally relate to the field of telecommunications, and in particular, to a solution for UE handling of conflicting multiple conditional configurations.
  • a user equipment may establish a connection to at least one of a plurality of different networks or types of networks, for example a 5G New Radio (NR) radio access technology (RAT) and a Long-Term Evolution (LTE) RAT.
  • the UE may support standalone (SA) carrier aggregation (CA) on LTE, SA CA on NR (NR-CA) , or a variety of non-standalone (NSA) and/or dual-connectivity (DC) functionalities in which a plurality of component carriers (CCs) are combined across LTE and/or NR.
  • SA carrier aggregation
  • NR-CA SA CA on NR
  • NSA non-standalone
  • DC dual-connectivity
  • NR-NR DC NR-DC
  • the UE is connected to two cells or cell groups (CG) wherein one gNB acts as master node (MN) , or primary cell (PCell) in a master CG (MCG) and another gNB acts as a secondary node (SN) (or primary secondary cell (PSCell) ) in a secondary CG (SCG) .
  • MN master node
  • PCell primary cell
  • SCG secondary CG
  • CPC Conditional PSCell Change
  • example embodiments of the present disclosure provide a solution for UE handling of conflicting multiple conditional configurations.
  • a processor of a user equipment communicatively coupled to a transceiver of the UE and configured to perform operations comprising: in accordance with a determination that a first conditional primary secondary cell (PSCell) change (CPC) configuration is received from a master node (MN) when the UE is configured with a second CPC configuration from a secondary node (SN) , ignoring the second CPC configuration; and in accordance with a determination that the second CPC configuration is received when the UE is configured with the first CPC configuration, ignoring the second CPC configuration.
  • PSCell conditional primary secondary cell
  • CPC conditional primary secondary cell
  • a processor of a base station communicatively coupled to a transceiver of the base station and configured to perform operations comprising: transmitting, using the transceiver to a user equipment (UE) , a first conditional primary secondary cell (PSCell) change (CPC) configuration when the UE is configured with a second CPC configuration from a secondary node (SN) of the UE, the base station being a mater node (MN) of the UE; and receiving, using the transceiver from the UE, a notification informing the MN that the second CPC configuration is ignored by the UE.
  • UE user equipment
  • PSCell conditional primary secondary cell
  • MN mater node
  • a processor of a base station communicatively coupled to a transceiver of the base station and configured to perform operations comprising: transmitting, using the transceiver to a user equipment (UE) , a second conditional primary secondary cell (PSCell) change (CPC) configuration when the UE is configured with a first CPC configuration from a mater node (MN) of the UE, the base station being a secondary node (SN) of the UE; and receiving, using the transceiver from the MN, an indication to release the second CPC configuration.
  • UE user equipment
  • PSCell conditional primary secondary cell
  • CPC conditional primary secondary cell
  • Fig. 1 shows an exemplary communication network in which example embodiments of the present disclosure can be implemented
  • Fig. 2A illustrates an exemplary Release 17 SN-initiated CPC with which example embodiments of the present disclosure can be implemented together;
  • Fig. 2B illustrates an exemplary Release 17 MN-initiated CPC with which example embodiments of the present disclosure can be implemented together;
  • Fig. 2C illustrates an exemplary Release 16 CPC according with which example embodiments of the present disclosure can be implemented together;
  • Fig. 3 illustrates an exemplary process flow for UE handling of conflicting multiple conditional configurations according to some embodiments of the present disclosure
  • Fig. 4 illustrates an exemplary process flow for UE handling of R17 CPC configured after R16 CPC according to some embodiments of the present disclosure
  • Fig. 5 illustrates another an exemplary process flow for UE handling of R17 CPC configured after R16 CPC according to some embodiments of the present disclosure
  • Fig. 6 illustrates an exemplary information element for UE to inform MN about presence of R16 CPC according to some embodiments of the present disclosure
  • Fig. 7 illustrates another exemplary information element for UE to inform MN about presence of R16 CPC according to some embodiments of the present disclosure
  • Fig. 8 illustrates an exemplary information element for configuration from MN to UE according to some embodiments of the present disclosure
  • Fig. 9 illustrates an exemplary method implemented at a UE according to some embodiments of the present disclosure
  • Fig. 10 illustrates an exemplary method implemented at a MN according to some embodiments of the present disclosure
  • Fig. 11 illustrates an exemplary method implemented at a SN according to some embodiments of the present disclosure.
  • Fig. 12 illustrates a simplified block diagram of a device that is suitable for implementing embodiments of the present disclosure.
  • first and second etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments.
  • the term “and/or” includes any and all combinations of one or more of the listed terms.
  • the term “communication network” refers to a network following any suitable communication standards, such as Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) and so on.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • WCDMA Wideband Code Division Multiple Access
  • HSPA High-Speed Packet Access
  • NB-IoT Narrow Band Internet of Things
  • the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the fourth generation (4G) , 4.5G, the future fifth generation (5G) communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • 4G fourth generation
  • 4.5G the future fifth generation
  • 5G fifth generation
  • Embodiments of the present disclosure may be applied in various
  • the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom.
  • the network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR NB (also referred to as a gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, an Integrated and Access Backhaul (IAB) node, a low power node such as a femto, a pico, a non-terrestrial network (NTN) or non-ground network device such as a satellite network device, a low earth orbit (LEO) satellite and a geosynchronous earth orbit (GEO) satellite, an aircraft network device, and so forth, depending on the applied terminology and
  • terminal device refers to any end device that may be capable of wireless communication.
  • a terminal device may also be referred to as a communication device, user equipment (UE) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) .
  • UE user equipment
  • SS Subscriber Station
  • MS Mobile Station
  • AT Access Terminal
  • the terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (IoT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (for example, remote surgery) , an industrial device and applications (for example, a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/or industrial wireless networks
  • a UE may establish a connection to at least one of a plurality of different networks or types of networks, for example a 5G New Radio (NR) radio access technology (RAT) and a Long-Term Evolution (LTE) RAT.
  • the UE may support standalone (SA) carrier aggregation (CA) on LTE, SA CA on NR (NR-CA) , or a variety of non-standalone (NSA) and/or dual-connectivity (DC) functionalities in which a plurality of component carriers (CCs) are combined across LTE and/or NR.
  • SA carrier aggregation
  • NR-CA SA CA on NR
  • DC dual-connectivity
  • NR-NR DC NR-DC
  • the UE is connected to two cells or cell groups (CG) wherein one gNB acts as master node (MN) (or primary cell (PCell) ) in a master CG (MCG) and another gNB acts as a secondary node (SN) (or primary secondary cell (PSCell) ) in a secondary CG (SCG) .
  • MN master node
  • SN secondary node
  • PSCell primary secondary cell
  • SCG secondary CG
  • CPC Conditional PSCell Change
  • Embodiments of the present disclosure propose a solution for UE handling of conflicting multiple conditional configurations.
  • the UE deals with conflict of a first CPC configuration from the MN and a second CPC configuration from the SN.
  • the UE ignores the second CPC configuration.
  • the UE ignores the second CPC configuration.
  • the UE can transmit a notification, informing the MN about the present and ignoring of the second CPC configuration, then forward this notification to the SN.
  • the UE can handle the conflict of CPC configuration from the MN and the SN, and avoid out of sync configuration between the UE and the network, such as the MN and the SN.
  • Fig. 1 shows an exemplary communication network 100 in which example embodiments of the present disclosure can be implemented.
  • the network 100 includes a UE 101, a master node (MN) 103 and a R16 secondary node (SN) 105.
  • the MN 103 and SN 105 are both base stations.
  • the UE 101 is in dual connection (DC) with the MN 103 and the SN 105.
  • the wireless connection between the UE 101 and the MN 103 is 113, and the wireless connection between the UE 101 and the SN 105 is 109.
  • the connection between the MN 103 and the SN 105 is 111.
  • UE 101 can be in dual connection with MN103 and SN107.
  • the wireless connection between UE 101 and SN 107 is 117, and connection between MN 103 and SN 107 is 115.
  • one of the targets is to specify Conditional Hand Over (CHO) including target Master Cell Group (MCG) and target Secondary Cell Group (SCG) in Radio Access Network (RAN) 3 and RAN 2.
  • the target is also to specify CHO including target MCG and candidate SCGs for Conditional PSCell change (CPC) and Conditional PSCell Addition/Change (CPAC) in New Radio (NR) DC.
  • CPC Conditional PSCell change
  • CPAC Conditional PSCell Addition/Change
  • NR New Radio
  • the MN 103 can configure the UE 101 with CPC configuration.
  • the SN 105 can also configure the UE 101 with CPC configuration.
  • the CPC configuration is confined such that, the PSCell candidate is only limited to the current serving cells of the SCG. The primary intention is to avoid the MN 103 getting involved. So for R16 CPC, the MN 103 is not aware of this at all. In R17, both the MN 103 and the SN 105 can initiate CPC configuration, but the MN 103 is always in co-ordination.
  • the SN candidates are not limited to just serving cells of the current SCG.
  • the SN 105 informs the MN 103 about this, and provides the CPC configurations.
  • the MN 103 then provides these to the UE.
  • the MN 103 can also evaluate SN candidates without ever informing the current SN 105.
  • MN 103 directly configures the UE 101 with these candidates.
  • MI-CPC MN initiated CPC
  • MN 103 does inform the current SN 105 about the procedure, just does not need to get permissions/ACK from current SN 105.
  • Fig. 2A illustrates an exemplary Release 17 SN-initiated CPC with which example embodiments of the present disclosure can be implemented together.
  • the UE 101, MN 103 and R17 SN 107 are the same as in Fig. 1.
  • the UE 101 is in DC with the MN 103 and the SN 107.
  • the SN 107 coordinates R17 CPC candidates 203 for SI-CPC.
  • the SN 107 transmits (213) SgNB modification 215, or CG configuration to the MN 103, to trigger a SI-CPC.
  • the MN 103 transmits (218) a SgNB modification ACK 220 to the SN 107.
  • the SgNB modification ACK 220 the SN 107 gets positive feedback from the MN 103.
  • the MN 103 transmits (223) an RRCReconfig with SI-CPC configuration 225 to the UE 101.
  • the UE 101 After receiving (227) the RRCReconfig with SI-CPC configuration 225, the UE 101 transmits (228) a RRC Reconfiguration complete message 230 to the MN 103. The UE 101 make evaluation in 235, then transmits (238) RRC Reconfiguration complete message 240 to the MN 103. After receiving (242) the RRC Reconfiguration complete message 240, the MN 103 knows the SI-CPC successful in the UE 101, then transmits (243) RRC Reconfiguration complete message 245 to the new SN. After receiving (247) the RRC Reconfiguration complete message 245, a R17 SN candidate chosen by SN 105 becomes the new SN. This way, a R17 SI-CPC is completed.
  • Fig. 2B illustrates an exemplary Release 17 MN-initiated CPC with which example embodiments of the present disclosure can be implemented together.
  • the UE 101, MN 103, R17 SN 107, R17 SN candidate chosen by MN 201, R17 SN candidate chosen by SN 203, and block 205 are the same as in Fig. 2A.
  • the MN 103 coordinates R17 candidates for MI-CPC.
  • the MN 103 transmits (248) SgNB modification 250, or CG configuration to the SN 107, to trigger a MI-CPC.
  • the SN 107 transmits (253) a SgNB modification ACK 255 to the MN 103.
  • the MN 103 gets positive feedback from the SN 107.
  • the MN 103 transmits (223) an RRCReconfig with MI-CPC configuration 259 to the UE 101.
  • the UE 101 After receiving (227) the RRCReconfig with MI-CPC configuration 259, the UE 101 transmits (228) a RRC Reconfiguration complete message 230 to the MN 103. The UE 101 make evaluation in 235, then transmits (238) RRC Reconfiguration complete message 240 to the MN 103. After receiving (242) the RRC Reconfiguration complete message 240, the MN 103 knows the MI-CPC successful in the UE 101, then transmits (258) RRC Reconfiguration complete message 260 to the new SN. After receiving (262) the RRC Reconfiguration complete message 260, a R17 SN candidate chosen by MN 103 becomes the new SN. This way, a R17 MI-CPC is completed.
  • Fig. 2C illustrates an exemplary Release 16 CPC with which example embodiments of the present disclosure can be implemented together.
  • the UE 101, MN 103, SN 105, R17 SN candidate chosen by MN 201, and block 205 are the same as in Fig. 2A and 2B.
  • the SN 106 coordinates R16 CPC candidates.
  • the SN 103 transmits (273) R16 CPC configuration message 275 to the UE 101 directly, and the MN 103 does not aware of the R16 CPC configuration message 275.
  • the UE 101 evaluates and triggers a PSCell change at block 280.
  • the UE 101 transmits (283) R16 configuration complete message 285 to the SN 105 directly.
  • the MN 103 does not aware of the R16 configuration complete message 285.
  • the R16 CPC ends. So, in the whole R16 CPC process, the communication is between the SN 105 and the UE 101, the MN 103 does not aware of it.
  • the UE 101 considers conditional reconfigurations, which are received via the MCG, such as from the MN 013, for CHO and Rel-17 CPAC, and via the SCG, such as from the SN 105, or for Rel-16 CPC, as separate UE variables.
  • the MN 103 can choose whether to configure the UE 101 directly after receiving the response from the at least one target candidate SN, without first perform a second step of signalling towards the source SN so that it could update such as the measurement configuration.
  • the UE 101 can have a measurement configuration with at least one measID with reportType set to condTriggerConfig that are not linked to any conditional configuration.
  • the UE is not required to perform measurements on at least one measId with reportType set to condTriggerConfig that are not included in any conditional reconfigurations.
  • R16 SN CPC While MN 103 has already configured a R17 CHO or CPC, there are already some checks within network (NW) nodes to prevent CHO and R16 CPC in Release 16. For example, the MN 103 does not configure CHO if DC is configured to the UE 101. MI-CPC and SI-CPC both use MN 103 for configuration, while SN-CPC in Release 16 is via the SN 105. So the UE 101 has some level of distinction already. The UE 101 can know if the provided CPC is R16 CPC or R17 CPC.
  • the UE 101 since the UE 101 releases all conditional configurations whenever a condition is triggered, and the MN 103 is not aware of the R16 SN CPC, there are cases where UE 101 and the NW are out of sync in terms of what the UE 101 configuration is.
  • SN 105 transparently configures R16 CPC to the UE 101, while MN 103 has provided a MI-CPC or SI-CPC. If the UE 101 executes R16 CPC, the MI-CPC or SI-CPC is now released at the UE 101. MN 103 is not aware. If the UE 101 executes R17 CPC, then UE releases R16 CPC and SN is not aware. Such out of sync configurations need to be avoided.
  • the previous out of sync configuration problem can be handled at the UE 101. Some changes may be achieved to Release 17 UE to address the issues. The UE is expected to store the configuration for Release 18. This results in new UE behavior in R16, R17 or R18 NW.
  • Fig. 3 illustrates an exemplary process flow 300 for UE handling of conflicting multiple conditional configurations according to some embodiments of the present disclosure.
  • the UE 101 receives (312) a first CPC configuration 310 from the MN 103.
  • UE 101 evaluates the first CPC configuration.
  • the UE 101 receives (322) a second CPC configuration 320 from the SN 105.
  • the UE 101 ignores the second CPC configuration.
  • the UE 101 transmits (328) notification of ignoring the second CPC configuration 330 to the MN 103.
  • the notification of ignoring the second CPC configuration 330 is a notification informing the MN 103 that the second CPC configuration is present at and ignored by the UE 101.
  • a UE-assisted information (UAI) message is a notification informing the MN 103 that the second CPC configuration is present at and ignored by the UE 101.
  • the UE 101 in accordance with a determination that the UE 101 is evaluating a condition for the second CPC configuration, the UE 101 stops evaluating the condition. This way, the UE 101 can save computation resource, and avoid conflict between CPC configurations.
  • the UE 101 can also receive a UE capability enquiry from the MN 103, then transmits UE capability information to the MN 103.
  • the UE capability information indicates that the UE 101 is configured to ignore the second CPC configuration if the UE is configured with the first CPC configuration.
  • the UE 101 transmits the UE capability information to the SN 105. This way, according to the enquiry from the MN 103, the UE 101 can report its capability to ignore the second CPC configuration. This gives more possibility for the synchronization to the NW, about the UE capability.
  • the UE 101 can also transmit to the MN 103, a notification informing the MN 103 that the second CPC configuration is present at and ignored by the UE 101.
  • the notification can be transmitted via a radio resource control (RRC) reconfiguration complete message.
  • RRC radio resource control
  • UAI UE-assisted information
  • the UE 101 in accordance with receiving an indication from the MN 103 that the UE 101 is configured to report presence of the second CPC configuration, the UE 101 transmits the notification to the MN 103. This way, after ignoring the second CPC configuration, the UE 101 can inform this situation to the NW, avoiding out of sync between the UE 101 and the NW.
  • the indication that UE 101 is configured to report presence of the second CPC configuration is included in a field of the first CPC configuration. This way, it can reuse the space in the first CPC configuration, and make the CPC configuration process more efficiently.
  • the UE 101 can also receive form the SN, information indicating that the second CPC configuration is released by the SN. This way, the situation can be synchronized between UE 101 and SN 103, to avoid out of sync.
  • the CPC configuration is a R16 or R17 CPC configuration. This way, it can keep compatibility.
  • the MN 103 is a release 17 MN.
  • the SN 105 is a release 16 SN.
  • the first CPC configuration is a release 17 CPC configuration initiated by the MN or a release 17 SN.
  • the second CPC configuration is a release 16 CPC configuration.
  • the version of the MN 103 is higher than that of the SN 105.
  • the version of the first CPC configuration is also higher than that of the second CPC configuration. So the second CPC configuration can be ignored.
  • the first CPC configuration and the second CPC configuration are released by the UE after execution, even in release 18 or higher. This can make the proposal keep compatibility in the future.
  • the MN 103 transmits (308) the first CPC configuration 310 to the UE 101. Then, the MN 103 receives (332) notification of ignoring the second CPC configuration 330 from the UE 101. After receiving notification of ignoring the second CPC configuration 330, the MN 103 transmits (333) indication to release the second CPC configuration 335 to the SN 105. This way, MN 103 can get notification of ignoring the second CPC configuration, and avoiding out of sync between the UE 101 and the MN 103.
  • the MN 103 also transmits a UE capability enquiry to the UE 101, and receives from the UE, the UE capability information indicating that the UE is configured to ignore the second CPC configuration if the UE is configured with the first CPC configuration. This way, the MN 103 can get UE capability information, to avoid out of sync.
  • the MN 103 based on receiving the notification from the UE 101, the MN 103 transmits to the SN 105, an indication to release the second CPC configuration. This way, the situation of the SN 105 can be synchronized with UE 101 and MN 103, to avoid out of sync.
  • the notification is received via a radio resource control (RRC) reconfiguration complete message.
  • the notification is received via a UE-assisted information (UAI) message.
  • RRC radio resource control
  • UAI UE-assisted information
  • the MN 103 can also transmit to the UE 101, an indication that the UE 101 is configured to report presence of the second CPC configuration. This way, the MN 101 can get the UE capability directly.
  • the indication is included in a field of the first CPC configuration. This way, it can reuse the space in the CPC configuration, and improve efficiency.
  • the MN 103 is a release 17 MN.
  • the SN 105 is a release 16 SN.
  • the first CPC configuration is a release 17 CPC configuration initiated by the MN or a release 17 SN.
  • the second CPC configuration is a release 16 CPC configuration.
  • the version of the MN 103 is higher than that of the SN 105.
  • the version of the first CPC configuration is also higher than that of the second CPC configuration. So the second CPC configuration can be ignored.
  • the first CPC configuration and the second CPC configuration are released by the UE after execution, even in release 18 or higher. This can make the proposal keep compatibility in the future.
  • the SN 105 transmits (318) the second CPC configuration 320 to the UE 101. Then, the SN 105 receives (337) the indication to release the second CPC configuration from the MN 103. This way, the SN 105 can be informed that the second CPC configuration is released, thus synchronize the UE 101 and the MN 103.
  • the SN 105 can also receive from the UE, UE capability information indicating that the UE is configured to ignore the second CPC configuration if the UE is configured with the first CPC configuration. Based on receiving the indication from the MN103, the SN 105 also transmits to the UE 101, information indicating that the CPC configuration is released by the SN 105. This way, the situation of SN 101 can be synchronized with UE 101 and MN 103, avoiding out of sync. According to embodiments of the present disclosure, the SN 105 also receives from the UE 101, the UE capability information indicating that the UE is configured to ignore the second CPC configuration if the UE is configured with the first CPC configuration. This way, the SN 105 can get UE capability, to avoid out of sync with UE 101.
  • the Release 17 UE 101 which implements the R17 CPC enhancements is configured with R17 MI-CPC or SI-CPC, and also configured with a R16 CPC, then the UE 101 ignores the R16 CPC configuration. The UE 101 which does this function needs to support this with a capability to the NW. And UE 101 informs this capability to the NW as part of UE capability exchange. If the R16 CPC is configured first, the UE evaluates this CPC configuration. If during this time, a R17 MI-CPC or SI-CPC is also configured, the UE 101 then stops evaluating conditions for R16-CPC. The UE 101 considers that the R16-CPC is not present.
  • the UE 101 can send a notification to the R17 MN 103, as only R17 MN can configure R17 MI-CPC or R17 SI-CPC that it is ignoring the R16 CPC.
  • the signaling can be with a RRCReconfigComplete message, where the UE 101 indicates the presence of R16 CPC or can be with a UAI message.
  • the whole operation at the UE can be protected by a UE capability.
  • the UE 101 informs to both MN 103 and SN 105 that it has implemented the feature where the UE ignores the R16 CPC in case it is configured with R17 MI-CPC or SI-CPC and R16-CPC.
  • the UE 101 informs the R17 MN 105 about the presence of R16 CPC configuration, only if the R17 MI or SI-CPC configuration has a field that allows the UE to report such presence. This way, the R17 NW which has not implemented this, would not be confused by the new indication from the UE 101.
  • the UE 101 does not release the conditional configuration if the UE101 is a Release 18 UE and the NW intends the UE to perform back to back CHO or CPC without explicit RRC messages. In this case, special handling is needed by the Release 18, which preserves the conditional configuration.
  • the root cause of the problem is that MN 103 is not aware of configurations done by SN 105 with R16 CPC. With R18, there is persistence element. If the MN 103 is aware of this persistence, then the UE 101 configuration is always clearly aware at the NW, including MN 103 and via MN 103 to SN105.
  • the Release 18 UE is configured with R16 CPC, once the condition is triggered, the R18 UE does not save this R16 CPC configuration.
  • the Release18 NW configuration asks UE to preserve the config, and does not apply to Rel-16 configuration.
  • the R16 CPC configuration is always released after execution, even in Release 18, while the other configurations are saved. This can make the proposal keep compatibility in the future.
  • Fig. 4 illustrates an exemplary process flow 400 for UE handling of R17 CPC configured after R16 CPC according to some embodiments of the present disclosure.
  • the UE 101 receives (412) UE capability enquiry 410 from the MN 103, then transmits (413) the UE capability information 315 to the MN 103.
  • the UE capability information indicates that the UE 101 is configured to ignore the second CPC configuration if the UE 101 is configured with the first CPC configuration.
  • the UE 101 also transmits (416) the UE capability information 315 to the SN 105.
  • the UE 101 is in dual connection (DC) with MN 103 and SN 105.
  • the UE 101 receives (422) R16 CPC configuration 420 directly from the SN 105.
  • the R16 CPC configuration 420 is the second CPC configuration.
  • the UE 101 evaluates R16 CPC configuration from the SN 105. During the evaluation, the UE 101 receives (433) RRCReconfig with R17 MI-CPC 435. RRCReconfig with R17 MI-CPC 435 is the first CPC configuration. It is also a flag indicating the UE is allowed to ignore R16 CPC. The UE 101 transmits (438) RRCReconfigComplete message 440 to MN 103, to inform MN 103 about ignoring R16 CPC. At block 450, UE 101 ignores R16 CPC form SN 105. Then, UE 101 receives (457) from the SN 105 that R16 CPC configuration is released 455.
  • Fig. 6 illustrates an exemplary information element for UE to inform MN about presence of R16 CPC according to some embodiments of the present disclosure.
  • the RRC information element RRCReconfigurationComplete-v17xy-IEs in block 601 is for informing the MN 103 about presence of a R16 CPC configuration at the UE 101.
  • Fig. 7 illustrates another exemplary information element for UE to inform MN about presence of R16 CPC according to some embodiments of the present disclosure.
  • the information element UEAssistanceInformation-v17xy-IEs in block 701 is for informing the MN 103 about presence of a R16 CPC configuration at the UE 101.
  • UEAssistanceInformation-v17xy-IE is a UAI message.
  • Fig. 8 illustrates an exemplary information element for configuration from MN to UE according to some embodiments of the present disclosure.
  • the information element RRCReconfiguration-v17xy-IEs in block 801 is explicit configuration from the NW to UE 101, indicating the presence of R16 CPC when R17 MI or SI-CPC is configured.
  • the MN 103 transmits (408) UE capability enquiry 410 to the UE 101, and receives (414) UE capability information 413 from UE 101.
  • MN 103 coordinates SN candidates for R17 MI-CPC.
  • MN 103 transmits (437) RRCReconfig with R17 MI-CPC 435. It is also a flag indicating the UE is allowed to ignore R16 CPC.
  • the MN 103 receives (442) RRCReconfigComplete message 440 from the UE 101, to inform MN 103 about ignoring R16 CPC. Then, the MN 103 transmits (443) SgNB modification request 445 to the SN 105.
  • the SN 105 receives (417) UE capability information 415 form the UE 101.
  • the SN 105 coordinates R16 CPC candidates.
  • the SN 105 transmits (422) R16 CPC configuration 420 directly to the UE 101.
  • SN 105 receives (447) SgNB modification request 445 from the MN 103, to informing ignoring of R16 CPC.
  • the SN 105 transmits (453) to the UE 101, R16 CPC configuration is released 455.
  • Fig. 5 illustrates another exemplary process flow for UE handling of R17 CPC configured after R16 CPC according to some embodiments of the present disclosure.
  • UE capability enquiry 410 from the MN 103 to UE 101
  • UE capability information 315 form UE 101 to MN 103 and SN 105.
  • the Rel-17 UE 101 which implements the R17 CPC enhancements, is configured with R17 MI-CPC or SI-CPC, and also configured with a R16 CPC, then the UE 101 ignores the R16 CPC configuration. In this alternate, the UE does not provide any capability to the NW about this feature.
  • the R16 CPC is configured first, the UE 101 evaluates this conditional configuration.
  • the UE 101 stops evaluating conditions for R16-CPC.
  • the UE 101 considers that the R16-CPC is not present.
  • the UE can send a notification to the R17 MN, only R17 MN can configure R17 MI-CPC or R17 SI-CPC that it is ignoring the R16 CPC.
  • the signaling can be with a RRCReconfigComplete message, where the UE indicates the presence of R16 CPC.
  • the RRCReconfigComplete message can be with a UAI message.
  • Fig. 9 illustrates an exemplary method 900 implemented at a UE according to some embodiments of the present disclosure.
  • the UE 101 ignores the second CPC configuration.
  • the UE 101 ignores the second CPC configuration.
  • the UE 101 in accordance with a determination that the UE is evaluating a condition for the second CPC configuration, stops evaluating the condition.
  • the UE 101 can further receives a UE capability enquiry from the MN 103 using the transceiver, and transmits, using the transceiver to the MN 103, UE capability information indicating that the UE 101 is configured to ignore the second CPC configuration if the UE 101 is configured with the first CPC configuration.
  • the UE 101 further transmits the UE capability information to the SN using the transceiver.
  • the UE 101 further transmits, using the transceiver to the MN 103, a notification informing the MN 103 that the second CPC configuration is present at and ignored by the UE 101.
  • notification is transmitted via a radio resource control (RRC) reconfiguration complete message. Additionally or alternatively, the notification is transmitted via a UE-assisted information (UAI) message.
  • RRC radio resource control
  • UAI UE-assisted information
  • the UE 101 transmitting the notification comprises: in accordance with receiving, using the transceiver from the MN, an indication that the UE is configured to report presence of the second CPC configuration, the UE 101 transmits the notification to the MN using the transceiver.
  • the indication is included in a field of the first CPC configuration.
  • the UE 101 further receives, using the transceiver form the SN, information indicating that the second CPC configuration is released by the SN. According to embodiments of the present disclosure, based on determining that the UE is configured with a configuration for persisting a conditional configuration after execution, the UE 101 further releases the CPC configuration regardless of the configuration for persisting the conditional configuration.
  • the MN 103 is a release 17 MN. Additionally or alternatively, the SN 105 is a release 16 SN. Additionally or alternatively, the first CPC configuration is a release 17 CPC configuration initiated by the MN or a release 17 SN. Additionally or alternatively, the second CPC configuration is a release 16 CPC configuration. Additionally or alternatively, the first CPC configuration and the second CPC configuration are released by the UE after execution.
  • Fig. 10 illustrates an exemplary method 1000 implemented at a MN 103 according to some embodiments of the present disclosure.
  • the MN 103 transmits, using the transceiver to a UE 101, a first conditional CPC configuration when the UE 101 is configured with a second CPC configuration from a secondary node (SN) of the UE, the base station being a mater node (MN) of the UE 101.
  • the MN 103 receives, using the transceiver from the UE, a notification informing the MN that the second CPC configuration is ignored by the UE.
  • the MN 103 further transmits, using the transceiver, a UE capability enquiry to the UE; and receives, using the transceiver from the UE, UE capability information indicating that the UE is configured to ignore the second CPC configuration if the UE is configured with the first CPC configuration.
  • the MN 103 further receives, using the transceiver from the UE, a notification informing the MN that the second CPC configuration is present at and ignored by the UE.
  • the MN 103 based on receiving the notification from the UE, the MN 103 further transmits, using the transceiver to the SN, an indication to release the second CPC configuration.
  • the notification is received via a radio resource control (RRC) reconfiguration complete message. Additionally or alternatively, the notification is received via a UE-assisted information (UAI) message.
  • RRC radio resource control
  • UAI UE-assisted information
  • the MN 103 further transmits, using the transceiver to the UE, an indication that the UE is configured to report presence of the second CPC configuration. According to embodiments of the present disclosure, the indication is included in a field of the first CPC configuration.
  • the MN 103 based on determining that the UE is configured with a configuration for persisting a conditional configuration after execution, the MN 103 further releases the second CPC configuration regardless of the configuration for persisting the conditional configuration, and persists the first CPC configuration.
  • the MN is a release 17 MN.
  • the SN is a release 16 SN.
  • the first CPC configuration is a release 17 CPC configuration initiated by the MN or a release 17 SN.
  • the second CPC configuration is a release 16 CPC configuration. Additionally or alternatively, the first CPC configuration and the second CPC configuration are released by the UE after execution.
  • Fig. 11 illustrates an exemplary method implemented at a SN according to some embodiments of the present disclosure.
  • the SN 105 transmits, using the transceiver to a user equipment (UE) 101, a second conditional primary secondary cell (PSCell) change (CPC) configuration when the UE is configured with a first CPC configuration from a mater node (MN) of the UE, the base station being a secondary node (SN) of the UE.
  • the SN 105 receives, using the transceiver from the MN 103, an indication to release the second CPC configuration.
  • PSCell conditional primary secondary cell
  • the SN 105 further receives, using the transceiver from the UE, UE capability information indicating that the UE is configured to ignore the second CPC configuration if the UE is configured with the first CPC configuration.
  • the SN 105 based on receiving the indication from the MN 103, transmits, using the transceiver to the UE 101, information indicating that the CPC configuration is released by the SN 105.
  • the SN 105 further receives, using the transceiver from the UE 101, the UE capability information indicating that the UE 101 is configured to ignore the second CPC configuration if the UE 101 is configured with the first CPC configuration.
  • the MN 103 is a release 17 MN. Additionally or alternatively, the SN 105 is a release 16 SN. Additionally or alternatively, the first CPC configuration is a release 17 CPC configuration initiated by the MN or a release 17 SN. Additionally or alternatively, the second CPC configuration is a release 16 CPC configuration. Additionally or alternatively, the first CPC configuration and the second CPC configuration are released by the UE after execution.
  • Fig. 12 is a simplified block diagram of a device 1200 that is suitable for implementing embodiments of the present disclosure.
  • the UE 101, the MN 103 and the SN 105 can be implemented by the device 1200.
  • the device 1200 includes a processor 1210, a memory 1220 coupled to the processor 1210, and a transceiver 1240 coupled to the processor 1210.
  • the transceiver 1240 is for bidirectional communications.
  • the transceiver 1240 is coupled to at least one antenna to facilitate communication.
  • the transceiver 1240 can comprise a transmitter circuitry (e.g., associated with one or more transmit chains) and/or a receiver circuitry (e.g., associated with one or more receive chains) .
  • the transmitter circuitry and receiver circuitry can employ common circuit elements, distinct circuit elements, or a combination thereof.
  • the processor 1210 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 1200 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • the memory 1220 may include one or more non-volatile memories and one or more volatile memories.
  • the non-volatile memories include, but are not limited to, a Read Only Memory (ROM) 1224, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital video disk (DVD) , and other magnetic storage and/or optical storage.
  • the volatile memories include, but are not limited to, a random access memory (RAM) 1222 and other volatile memories that will not last in the power-down duration.
  • a computer program 1230 includes computer executable instructions that are executed by the associated processor 1210.
  • the program 1230 may be stored in the ROM 1224.
  • the processor 1210 may perform any suitable actions and processing by loading the program 1230 into the RAM 1222.
  • the embodiments of the present disclosure may be implemented by means of the program 1230 so that the device 1200 may perform any process of the disclosure as discussed with reference to Figs. 3-5 and 9-11.
  • the embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the method 900 as described above with reference to Fig. 9 and/or the method 1000 as described above with reference to Fig. 10, and/or the method 1100 as described above with reference to Fig. 11.

Abstract

Embodiments of the present disclosure relate to UE handling of conflicting multiple conditional configurations. According to embodiments of the present disclosure, In accordance with a determination that a first CPC configuration is received from a MN when the UE is configured with a second CPC configuration from a SN, the UE ignores the second CPC configuration. In accordance with a determination that the second CPC configuration is received when the UE is configured with the first CPC configuration, the UE ignores the second CPC configuration. This way, the UE can handle the conflict of CPC configuration from the MN and the SN, and avoid out of sync configuration between the UE and the network, such as the MN and the SN.

Description

UE HANDLING OF CONFLICTING MULTIPLE CONDITIONAL CONFIGURATIONS TECHNICAL FIELD
Embodiments of the present disclosure generally relate to the field of telecommunications, and in particular, to a solution for UE handling of conflicting multiple conditional configurations.
BACKGROUND
A user equipment (UE) may establish a connection to at least one of a plurality of different networks or types of networks, for example a 5G New Radio (NR) radio access technology (RAT) and a Long-Term Evolution (LTE) RAT. The UE may support standalone (SA) carrier aggregation (CA) on LTE, SA CA on NR (NR-CA) , or a variety of non-standalone (NSA) and/or dual-connectivity (DC) functionalities in which a plurality of component carriers (CCs) are combined across LTE and/or NR. In NR-NR DC (NR-DC) , the UE is connected to two cells or cell groups (CG) wherein one gNB acts as master node (MN) , or primary cell (PCell) in a master CG (MCG) and another gNB acts as a secondary node (SN) (or primary secondary cell (PSCell) ) in a secondary CG (SCG) . In Conditional PSCell Change (CPC) , out of sync configuration may happen between the UE and the network. Such out of sync configuration needs to be avoided.
SUMMARY
In general, example embodiments of the present disclosure provide a solution for UE handling of conflicting multiple conditional configurations.
In a first aspect, there is provided a processor of a user equipment (UE) , communicatively coupled to a transceiver of the UE and configured to perform operations comprising: in accordance with a determination that a first conditional primary secondary cell (PSCell) change (CPC) configuration is received from a master node (MN) when the UE is configured with a second CPC configuration from a secondary node (SN) , ignoring the second CPC configuration; and in accordance with a determination that the second CPC configuration is received when the UE is configured with the first CPC configuration, ignoring the second CPC configuration.
In a second aspect, there is provided a processor of a base station, communicatively coupled to a transceiver of the base station and configured to perform operations comprising: transmitting, using the transceiver to a user equipment (UE) , a first conditional primary secondary cell (PSCell) change (CPC) configuration when the UE is configured with a second CPC configuration from a secondary node (SN) of the UE, the base station being a mater node (MN) of the UE; and receiving, using the transceiver from the UE, a notification informing the MN that the second CPC configuration is ignored by the UE.
In a third aspect, there is provided a processor of a base station, communicatively coupled to a transceiver of the base station and configured to perform operations comprising: transmitting, using the transceiver to a user equipment (UE) , a second conditional primary secondary cell (PSCell) change (CPC) configuration when the UE is configured with a first CPC configuration from a mater node (MN) of the UE, the base station being a secondary node (SN) of the UE; and receiving, using the transceiver from the MN, an indication to release the second CPC configuration.
It is to be understood that the summary section is not intended to identify key or essential features of embodiments of the present disclosure, nor is it intended to be used to limit the scope of the present disclosure. Other features of the present disclosure will become easily comprehensible through the following description.
BRIEF DESCRIPTION OF THE DRAWINGS
Through the more detailed description of some embodiments of the present disclosure in the accompanying drawings, the above and other objects, features and advantages of the present disclosure will become more apparent, wherein:
Fig. 1 shows an exemplary communication network in which example embodiments of the present disclosure can be implemented;
Fig. 2A illustrates an exemplary Release 17 SN-initiated CPC with which example embodiments of the present disclosure can be implemented together;
Fig. 2B illustrates an exemplary Release 17 MN-initiated CPC with which example embodiments of the present disclosure can be implemented together;
Fig. 2C illustrates an exemplary Release 16 CPC according with which example embodiments of the present disclosure can be implemented together;
Fig. 3 illustrates an exemplary process flow for UE handling of conflicting multiple conditional configurations according to some embodiments of the present disclosure;
Fig. 4 illustrates an exemplary process flow for UE handling of R17 CPC configured after R16 CPC according to some embodiments of the present disclosure;
Fig. 5 illustrates another an exemplary process flow for UE handling of R17 CPC configured after R16 CPC according to some embodiments of the present disclosure;
Fig. 6 illustrates an exemplary information element for UE to inform MN about presence of R16 CPC according to some embodiments of the present disclosure;
Fig. 7 illustrates another exemplary information element for UE to inform MN about presence of R16 CPC according to some embodiments of the present disclosure;
Fig. 8 illustrates an exemplary information element for configuration from MN to UE according to some embodiments of the present disclosure;
Fig. 9 illustrates an exemplary method implemented at a UE according to some embodiments of the present disclosure;
Fig. 10 illustrates an exemplary method implemented at a MN according to some embodiments of the present disclosure;
Fig. 11 illustrates an exemplary method implemented at a SN according to some embodiments of the present disclosure; and
Fig. 12 illustrates a simplified block diagram of a device that is suitable for implementing embodiments of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar element.
DETAILED DESCRIPTION
Principle of the present disclosure will now be described with reference to some embodiments. It is to be understood that these embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitation as to the scope of the disclosure. The disclosure described herein can be implemented in various manners other than the ones described below.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of example embodiments. For example, as used herein, the singular forms “a” , “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises” , “comprising” , “has” , “having” , “includes” and/or “including” , when used herein, specify the presence of stated features, elements, and/or components etc., but do not preclude the presence or addition of one or more other features, elements, components and/or combinations thereof. Moreover, when a particular feature, structure, or characteristic is described in connection with some embodiments, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
It is also to be understood that although the terms “first” and “second” etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments. As used herein, the term “and/or” includes any and all combinations of one or more of the listed terms.
As used herein, the term “communication network” refers to a network following any suitable communication standards, such as Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) and so on. Furthermore, the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the fourth generation (4G) , 4.5G, the future fifth generation (5G) communication protocols, and/or any other protocols either currently known or to be developed in the future. Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as  limiting the scope of the present disclosure to only the aforementioned system.
As used herein, the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom. The network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR NB (also referred to as a gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, an Integrated and Access Backhaul (IAB) node, a low power node such as a femto, a pico, a non-terrestrial network (NTN) or non-ground network device such as a satellite network device, a low earth orbit (LEO) satellite and a geosynchronous earth orbit (GEO) satellite, an aircraft network device, and so forth, depending on the applied terminology and technology.
The term “terminal device” refers to any end device that may be capable of wireless communication. By way of example rather than limitation, a terminal device may also be referred to as a communication device, user equipment (UE) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) . The terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (IoT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (for example, remote surgery) , an industrial device and applications (for example, a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/or industrial wireless networks, and the like. In the following description, the terms “terminal device” , “communication device” , “terminal” may be used interchangeably.
As mentioned above, a UE may establish a connection to at least one of a plurality of different networks or types of networks, for example a 5G New Radio (NR) radio access technology (RAT) and a Long-Term Evolution (LTE) RAT. The UE may support standalone (SA) carrier aggregation (CA) on LTE, SA CA on NR (NR-CA) , or a variety of  non-standalone (NSA) and/or dual-connectivity (DC) functionalities in which a plurality of component carriers (CCs) are combined across LTE and/or NR. In NR-NR DC (NR-DC) , the UE is connected to two cells or cell groups (CG) wherein one gNB acts as master node (MN) (or primary cell (PCell) ) in a master CG (MCG) and another gNB acts as a secondary node (SN) (or primary secondary cell (PSCell) ) in a secondary CG (SCG) . In Conditional PSCell Change (CPC) , out of sync configuration may happen between the UE and the network. Such out of sync configuration needs to be avoided.
Embodiments of the present disclosure propose a solution for UE handling of conflicting multiple conditional configurations. In this solution, the UE deals with conflict of a first CPC configuration from the MN and a second CPC configuration from the SN. In accordance with a determination that a first CPC configuration is received from a MN when the UE is configured with a second CPC configuration from a SN, the UE ignores the second CPC configuration. In accordance with a determination that the second CPC configuration is received when the UE is configured with the first CPC configuration, the UE ignores the second CPC configuration. Additionally, the UE can transmit a notification, informing the MN about the present and ignoring of the second CPC configuration, then forward this notification to the SN.
According to embodiments of the present disclosure, this way, the UE can handle the conflict of CPC configuration from the MN and the SN, and avoid out of sync configuration between the UE and the network, such as the MN and the SN.
Principle and implementations of the present disclosure will be described in detail below with reference to Figs. 1-12. Fig. 1 shows an exemplary communication network 100 in which example embodiments of the present disclosure can be implemented. The network 100 includes a UE 101, a master node (MN) 103 and a R16 secondary node (SN) 105. The MN 103 and SN 105 are both base stations. The UE 101 is in dual connection (DC) with the MN 103 and the SN 105. The wireless connection between the UE 101 and the MN 103 is 113, and the wireless connection between the UE 101 and the SN 105 is 109. The connection between the MN 103 and the SN 105 is 111. There also can be a R17 SN 107. UE 101 can be in dual connection with MN103 and SN107. The wireless connection between UE 101 and SN 107 is 117, and connection between MN 103 and SN 107 is 115.
In 3GPP release 18 mobility work item, one of the targets is to specify Conditional Hand Over (CHO) including target Master Cell Group (MCG) and target Secondary Cell  Group (SCG) in Radio Access Network (RAN) 3 and RAN 2. The target is also to specify CHO including target MCG and candidate SCGs for Conditional PSCell change (CPC) and Conditional PSCell Addition/Change (CPAC) in New Radio (NR) DC. Here, CHO including target MCG and target SCG can be used as the baseline.
The MN 103 can configure the UE 101 with CPC configuration. The SN 105 can also configure the UE 101 with CPC configuration. For Release (R) 16, the CPC configuration is confined such that, the PSCell candidate is only limited to the current serving cells of the SCG. The primary intention is to avoid the MN 103 getting involved. So for R16 CPC, the MN 103 is not aware of this at all. In R17, both the MN 103 and the SN 105 can initiate CPC configuration, but the MN 103 is always in co-ordination. The SN candidates are not limited to just serving cells of the current SCG. If it’s SN that wants to initiate a CPC configuration, such as with possible candidates outside of the current SCG serving cells, the SN 105 informs the MN 103 about this, and provides the CPC configurations. The MN 103 then provides these to the UE. This is SN initiated CPC (SI-CPC) . The MN 103 can also evaluate SN candidates without ever informing the current SN 105. Then MN 103 directly configures the UE 101 with these candidates. This is MN initiated CPC (MI-CPC) . MN 103 does inform the current SN 105 about the procedure, just does not need to get permissions/ACK from current SN 105.
Fig. 2A illustrates an exemplary Release 17 SN-initiated CPC with which example embodiments of the present disclosure can be implemented together. According to embodiments of the present disclosure, in 200, the UE 101, MN 103 and R17 SN 107 are the same as in Fig. 1.
At block 205, the UE 101 is in DC with the MN 103 and the SN 107. At block 210, the SN 107 coordinates R17 CPC candidates 203 for SI-CPC. The SN 107 transmits (213) SgNB modification 215, or CG configuration to the MN 103, to trigger a SI-CPC. After receiving (217) the SgNB modification 215, the MN 103 transmits (218) a SgNB modification ACK 220 to the SN 107. According to receiving (222) the SgNB modification ACK 220, the SN 107 gets positive feedback from the MN 103. The MN 103 transmits (223) an RRCReconfig with SI-CPC configuration 225 to the UE 101. After receiving (227) the RRCReconfig with SI-CPC configuration 225, the UE 101 transmits (228) a RRC Reconfiguration complete message 230 to the MN 103. The UE 101 make evaluation in 235, then transmits (238) RRC Reconfiguration complete message 240 to the MN 103. After receiving (242) the RRC Reconfiguration complete message 240, the MN 103 knows  the SI-CPC successful in the UE 101, then transmits (243) RRC Reconfiguration complete message 245 to the new SN. After receiving (247) the RRC Reconfiguration complete message 245, a R17 SN candidate chosen by SN 105 becomes the new SN. This way, a R17 SI-CPC is completed.
Fig. 2B illustrates an exemplary Release 17 MN-initiated CPC with which example embodiments of the present disclosure can be implemented together. According to embodiments of the present disclosure, in 251, the UE 101, MN 103, R17 SN 107, R17 SN candidate chosen by MN 201, R17 SN candidate chosen by SN 203, and block 205 are the same as in Fig. 2A.
At block 265, the MN 103 coordinates R17 candidates for MI-CPC. The MN 103 transmits (248) SgNB modification 250, or CG configuration to the SN 107, to trigger a MI-CPC. After receiving (252) the SgNB modification 250, the SN 107 transmits (253) a SgNB modification ACK 255 to the MN 103. According to receiving (257) the SgNB modification ACK 255, the MN 103 gets positive feedback from the SN 107. The MN 103 transmits (223) an RRCReconfig with MI-CPC configuration 259 to the UE 101. After receiving (227) the RRCReconfig with MI-CPC configuration 259, the UE 101 transmits (228) a RRC Reconfiguration complete message 230 to the MN 103. The UE 101 make evaluation in 235, then transmits (238) RRC Reconfiguration complete message 240 to the MN 103. After receiving (242) the RRC Reconfiguration complete message 240, the MN 103 knows the MI-CPC successful in the UE 101, then transmits (258) RRC Reconfiguration complete message 260 to the new SN. After receiving (262) the RRC Reconfiguration complete message 260, a R17 SN candidate chosen by MN 103 becomes the new SN. This way, a R17 MI-CPC is completed.
Fig. 2C illustrates an exemplary Release 16 CPC with which example embodiments of the present disclosure can be implemented together. According to embodiments of the present disclosure, in 271, the UE 101, MN 103, SN 105, R17 SN candidate chosen by MN 201, and block 205 are the same as in Fig. 2A and 2B.
At block, 270, the SN 106 coordinates R16 CPC candidates. The SN 103 transmits (273) R16 CPC configuration message 275 to the UE 101 directly, and the MN 103 does not aware of the R16 CPC configuration message 275. After receiving (277) the R16 CPC configuration 275, the UE 101 evaluates and triggers a PSCell change at block 280. Then, the UE 101 transmits (283) R16 configuration complete message 285 to the SN 105 directly.  The MN 103 does not aware of the R16 configuration complete message 285. At block 290, the R16 CPC ends. So, in the whole R16 CPC process, the communication is between the SN 105 and the UE 101, the MN 103 does not aware of it.
According to embodiments of the present disclosure, if several CPC configurations are available, when one CPC configuration is executed, the other CPC configurations are released. The UE 101 considers conditional reconfigurations, which are received via the MCG, such as from the MN 013, for CHO and Rel-17 CPAC, and via the SCG, such as from the SN 105, or for Rel-16 CPC, as separate UE variables. For SN initiated CPC, the MN 103 can choose whether to configure the UE 101 directly after receiving the response from the at least one target candidate SN, without first perform a second step of signalling towards the source SN so that it could update such as the measurement configuration. The UE 101 can have a measurement configuration with at least one measID with reportType set to condTriggerConfig that are not linked to any conditional configuration. The UE is not required to perform measurements on at least one measId with reportType set to condTriggerConfig that are not included in any conditional reconfigurations.
In the case of R16 SN CPC, while MN 103 has already configured a R17 CHO or CPC, there are already some checks within network (NW) nodes to prevent CHO and R16 CPC in Release 16. For example, the MN 103 does not configure CHO if DC is configured to the UE 101. MI-CPC and SI-CPC both use MN 103 for configuration, while SN-CPC in Release 16 is via the SN 105. So the UE 101 has some level of distinction already. The UE 101 can know if the provided CPC is R16 CPC or R17 CPC.
According to embodiments of the present disclosure, since the UE 101 releases all conditional configurations whenever a condition is triggered, and the MN 103 is not aware of the R16 SN CPC, there are cases where UE 101 and the NW are out of sync in terms of what the UE 101 configuration is. In some cases, SN 105 transparently configures R16 CPC to the UE 101, while MN 103 has provided a MI-CPC or SI-CPC. If the UE 101 executes R16 CPC, the MI-CPC or SI-CPC is now released at the UE 101. MN 103 is not aware. If the UE 101 executes R17 CPC, then UE releases R16 CPC and SN is not aware. Such out of sync configurations need to be avoided.
According to embodiments of the present disclosure, the previous out of sync configuration problem can be handled at the UE 101. Some changes may be achieved to Release 17 UE to address the issues. The UE is expected to store the configuration for  Release 18. This results in new UE behavior in R16, R17 or R18 NW.
Fig. 3 illustrates an exemplary process flow 300 for UE handling of conflicting multiple conditional configurations according to some embodiments of the present disclosure. The UE 101 receives (312) a first CPC configuration 310 from the MN 103. At block 315, UE 101 evaluates the first CPC configuration. The UE 101 receives (322) a second CPC configuration 320 from the SN 105. At block 325, the UE 101 ignores the second CPC configuration. The UE 101 transmits (328) notification of ignoring the second CPC configuration 330 to the MN 103. The notification of ignoring the second CPC configuration 330 is a notification informing the MN 103 that the second CPC configuration is present at and ignored by the UE 101. a UE-assisted information (UAI) message.
This way, the conflict of CPC configuration can be avoided, and avoid out of sync between the UE 101 and the NW, such as MN 103 or SN 105.
According to embodiments of the present disclosure, in ignoring the second CPC configuration, in accordance with a determination that the UE 101 is evaluating a condition for the second CPC configuration, the UE 101 stops evaluating the condition. This way, the UE 101 can save computation resource, and avoid conflict between CPC configurations.
According to embodiments of the present disclosure, the UE 101 can also receive a UE capability enquiry from the MN 103, then transmits UE capability information to the MN 103. The UE capability information indicates that the UE 101 is configured to ignore the second CPC configuration if the UE is configured with the first CPC configuration. Also, the UE 101 transmits the UE capability information to the SN 105. This way, according to the enquiry from the MN 103, the UE 101 can report its capability to ignore the second CPC configuration. This gives more possibility for the synchronization to the NW, about the UE capability.
According to embodiments of the present disclosure, the UE 101 can also transmit to the MN 103, a notification informing the MN 103 that the second CPC configuration is present at and ignored by the UE 101. The notification can be transmitted via a radio resource control (RRC) reconfiguration complete message. Or, the notification can be transmitted via a UE-assisted information (UAI) message. According to embodiments of the present disclosure, in accordance with receiving an indication from the MN 103 that the UE 101 is configured to report presence of the second CPC configuration, the UE 101  transmits the notification to the MN 103. This way, after ignoring the second CPC configuration, the UE 101 can inform this situation to the NW, avoiding out of sync between the UE 101 and the NW.
According to embodiments of the present disclosure, the indication that UE 101 is configured to report presence of the second CPC configuration is included in a field of the first CPC configuration. This way, it can reuse the space in the first CPC configuration, and make the CPC configuration process more efficiently. According to embodiments of the present disclosure, the UE 101 can also receive form the SN, information indicating that the second CPC configuration is released by the SN. This way, the situation can be synchronized between UE 101 and SN 103, to avoid out of sync.
According to embodiments of the present disclosure, based on determining that the UE 101 is configured with a configuration for persisting a conditional configuration after execution, releasing the CPC configuration regardless of the configuration for persisting the conditional configuration. According to embodiments of the present disclosure, , the CPC configuration is a R16 or R17 CPC configuration. This way, it can keep compatibility.
According to embodiments of the present disclosure, the MN 103 is a release 17 MN.Additionally or alternatively, the SN 105 is a release 16 SN. Additionally or alternatively, the first CPC configuration is a release 17 CPC configuration initiated by the MN or a release 17 SN. Additionally or alternatively, the second CPC configuration is a release 16 CPC configuration. The version of the MN 103 is higher than that of the SN 105. The version of the first CPC configuration is also higher than that of the second CPC configuration. So the second CPC configuration can be ignored. Additionally or alternatively, the first CPC configuration and the second CPC configuration are released by the UE after execution, even in release 18 or higher. This can make the proposal keep compatibility in the future.
Continuing with reference to FIG. 3, on another side, the MN 103 transmits (308) the first CPC configuration 310 to the UE 101. Then, the MN 103 receives (332) notification of ignoring the second CPC configuration 330 from the UE 101. After receiving notification of ignoring the second CPC configuration 330, the MN 103 transmits (333) indication to release the second CPC configuration 335 to the SN 105. This way, MN 103 can get notification of ignoring the second CPC configuration, and avoiding out of sync between the UE 101 and the MN 103.
According to embodiments of the present disclosure, the MN 103 also transmits a UE capability enquiry to the UE 101, and receives from the UE, the UE capability information indicating that the UE is configured to ignore the second CPC configuration if the UE is configured with the first CPC configuration. This way, the MN 103 can get UE capability information, to avoid out of sync. According to embodiments of the present disclosure, based on receiving the notification from the UE 101, the MN 103 transmits to the SN 105, an indication to release the second CPC configuration. This way, the situation of the SN 105 can be synchronized with UE 101 and MN 103, to avoid out of sync.
According to embodiments of the present disclosure, the notification is received via a radio resource control (RRC) reconfiguration complete message. Or, the notification is received via a UE-assisted information (UAI) message. This way, it provides flexibility for the transmission of the notification. According to embodiments of the present disclosure, the MN 103 can also transmit to the UE 101, an indication that the UE 101 is configured to report presence of the second CPC configuration. This way, the MN 101 can get the UE capability directly. According to embodiments of the present disclosure, the indication is included in a field of the first CPC configuration. This way, it can reuse the space in the CPC configuration, and improve efficiency.
According to embodiments of the present disclosure, the MN 103 is a release 17 MN.Additionally or alternatively, the SN 105 is a release 16 SN. Additionally or alternatively, the first CPC configuration is a release 17 CPC configuration initiated by the MN or a release 17 SN. Additionally or alternatively, the second CPC configuration is a release 16 CPC configuration. The version of the MN 103 is higher than that of the SN 105. The version of the first CPC configuration is also higher than that of the second CPC configuration. So the second CPC configuration can be ignored. Additionally or alternatively, the first CPC configuration and the second CPC configuration are released by the UE after execution, even in release 18 or higher. This can make the proposal keep compatibility in the future.
Continuing with reference to FIG. 3, on another side, the SN 105 transmits (318) the second CPC configuration 320 to the UE 101. Then, the SN 105 receives (337) the indication to release the second CPC configuration from the MN 103. This way, the SN 105 can be informed that the second CPC configuration is released, thus synchronize the UE 101 and the MN 103.
According to embodiments of the present disclosure, the SN 105 can also receive from the UE, UE capability information indicating that the UE is configured to ignore the second CPC configuration if the UE is configured with the first CPC configuration. Based on receiving the indication from the MN103, the SN 105 also transmits to the UE 101, information indicating that the CPC configuration is released by the SN 105. This way, the situation of SN 101 can be synchronized with UE 101 and MN 103, avoiding out of sync. According to embodiments of the present disclosure, the SN 105 also receives from the UE 101, the UE capability information indicating that the UE is configured to ignore the second CPC configuration if the UE is configured with the first CPC configuration. This way, the SN 105 can get UE capability, to avoid out of sync with UE 101.
If the Release 17 UE 101 which implements the R17 CPC enhancements, is configured with R17 MI-CPC or SI-CPC, and also configured with a R16 CPC, then the UE 101 ignores the R16 CPC configuration. The UE 101 which does this function needs to support this with a capability to the NW. And UE 101 informs this capability to the NW as part of UE capability exchange. If the R16 CPC is configured first, the UE evaluates this CPC configuration. If during this time, a R17 MI-CPC or SI-CPC is also configured, the UE 101 then stops evaluating conditions for R16-CPC. The UE 101 considers that the R16-CPC is not present. The UE 101 can send a notification to the R17 MN 103, as only R17 MN can configure R17 MI-CPC or R17 SI-CPC that it is ignoring the R16 CPC. The signaling can be with a RRCReconfigComplete message, where the UE 101 indicates the presence of R16 CPC or can be with a UAI message. The whole operation at the UE can be protected by a UE capability. The UE 101 informs to both MN 103 and SN 105 that it has implemented the feature where the UE ignores the R16 CPC in case it is configured with R17 MI-CPC or SI-CPC and R16-CPC. As a variation, the UE 101 informs the R17 MN 105 about the presence of R16 CPC configuration, only if the R17 MI or SI-CPC configuration has a field that allows the UE to report such presence. This way, the R17 NW which has not implemented this, would not be confused by the new indication from the UE 101.
According to embodiments of the present disclosure, the UE 101 does not release the conditional configuration if the UE101 is a Release 18 UE and the NW intends the UE to perform back to back CHO or CPC without explicit RRC messages. In this case, special handling is needed by the Release 18, which preserves the conditional configuration. The root cause of the problem is that MN 103 is not aware of configurations done by SN 105  with R16 CPC. With R18, there is persistence element. If the MN 103 is aware of this persistence, then the UE 101 configuration is always clearly aware at the NW, including MN 103 and via MN 103 to SN105. Based on this, it is proposed that if the Release 18 UE is configured with R16 CPC, once the condition is triggered, the R18 UE does not save this R16 CPC configuration. The Release18 NW configuration asks UE to preserve the config, and does not apply to Rel-16 configuration. The R16 CPC configuration is always released after execution, even in Release 18, while the other configurations are saved. This can make the proposal keep compatibility in the future.
Fig. 4 illustrates an exemplary process flow 400 for UE handling of R17 CPC configured after R16 CPC according to some embodiments of the present disclosure. The UE 101 receives (412) UE capability enquiry 410 from the MN 103, then transmits (413) the UE capability information 315 to the MN 103. The UE capability information indicates that the UE 101 is configured to ignore the second CPC configuration if the UE 101 is configured with the first CPC configuration. The UE 101 also transmits (416) the UE capability information 315 to the SN 105. At block 205, the UE 101 is in dual connection (DC) with MN 103 and SN 105. The UE 101 receives (422) R16 CPC configuration 420 directly from the SN 105. The R16 CPC configuration 420 is the second CPC configuration. At block 425, the UE 101 evaluates R16 CPC configuration from the SN 105. During the evaluation, the UE 101 receives (433) RRCReconfig with R17 MI-CPC 435. RRCReconfig with R17 MI-CPC 435 is the first CPC configuration. It is also a flag indicating the UE is allowed to ignore R16 CPC. The UE 101 transmits (438) RRCReconfigComplete message 440 to MN 103, to inform MN 103 about ignoring R16 CPC. At block 450, UE 101 ignores R16 CPC form SN 105. Then, UE 101 receives (457) from the SN 105 that R16 CPC configuration is released 455.
Fig. 6 illustrates an exemplary information element for UE to inform MN about presence of R16 CPC according to some embodiments of the present disclosure. The RRC information element RRCReconfigurationComplete-v17xy-IEs in block 601 is for informing the MN 103 about presence of a R16 CPC configuration at the UE 101. Fig. 7 illustrates another exemplary information element for UE to inform MN about presence of R16 CPC according to some embodiments of the present disclosure. The information element UEAssistanceInformation-v17xy-IEs in block 701 is for informing the MN 103 about presence of a R16 CPC configuration at the UE 101. UEAssistanceInformation-v17xy-IE is a UAI message. Fig. 8 illustrates an exemplary  information element for configuration from MN to UE according to some embodiments of the present disclosure. The information element RRCReconfiguration-v17xy-IEs in block 801 is explicit configuration from the NW to UE 101, indicating the presence of R16 CPC when R17 MI or SI-CPC is configured.
Continuing with reference to FIG. 4, on another side, the MN 103 transmits (408) UE capability enquiry 410 to the UE 101, and receives (414) UE capability information 413 from UE 101. At block 430, MN 103 coordinates SN candidates for R17 MI-CPC. MN 103 transmits (437) RRCReconfig with R17 MI-CPC 435. It is also a flag indicating the UE is allowed to ignore R16 CPC. The MN 103 receives (442) RRCReconfigComplete message 440 from the UE 101, to inform MN 103 about ignoring R16 CPC. Then, the MN 103 transmits (443) SgNB modification request 445 to the SN 105.
Continuing with reference to FIG. 4, on another side, the SN 105 receives (417) UE capability information 415 form the UE 101. At block 270, the SN 105 coordinates R16 CPC candidates. The SN 105 transmits (422) R16 CPC configuration 420 directly to the UE 101. Then, SN 105 receives (447) SgNB modification request 445 from the MN 103, to informing ignoring of R16 CPC. The SN 105 transmits (453) to the UE 101, R16 CPC configuration is released 455.
Fig. 5 illustrates another exemplary process flow for UE handling of R17 CPC configured after R16 CPC according to some embodiments of the present disclosure. Comparing with Fig. 4, there are no UE capability enquiry 410 from the MN 103 to UE 101, and UE capability information 315 form UE 101 to MN 103 and SN 105. If the Rel-17 UE 101 which implements the R17 CPC enhancements, is configured with R17 MI-CPC or SI-CPC, and also configured with a R16 CPC, then the UE 101 ignores the R16 CPC configuration. In this alternate, the UE does not provide any capability to the NW about this feature. If the R16 CPC is configured first, the UE 101 evaluates this conditional configuration. If during this time, a R17 MI-CPC or SI-CPC is also configured, the UE 101 then stops evaluating conditions for R16-CPC. The UE 101 considers that the R16-CPC is not present. the UE can send a notification to the R17 MN, only R17 MN can configure R17 MI-CPC or R17 SI-CPC that it is ignoring the R16 CPC. The signaling can be with a RRCReconfigComplete message, where the UE indicates the presence of R16 CPC. Alternatively, the RRCReconfigComplete message can be with a UAI message.
Fig. 9 illustrates an exemplary method 900 implemented at a UE according to  some embodiments of the present disclosure.
At block 910, in accordance with a determination that a first CPC configuration is received from a MN 103 when the UE 101 is configured with a second CPC configuration from a SN 105, the UE 101 ignores the second CPC configuration. At block 920, in accordance with a determination that the second CPC configuration is received when the UE 101 is configured with the first CPC configuration, the UE 101 ignores the second CPC configuration.
According to embodiments of the present disclosure, in accordance with a determination that the UE is evaluating a condition for the second CPC configuration, the UE 101 stops evaluating the condition. According to embodiments of the present disclosure, the UE 101 can further receives a UE capability enquiry from the MN 103 using the transceiver, and transmits, using the transceiver to the MN 103, UE capability information indicating that the UE 101 is configured to ignore the second CPC configuration if the UE 101 is configured with the first CPC configuration.
According to embodiments of the present disclosure, the UE 101 further transmits the UE capability information to the SN using the transceiver. According to embodiments of the present disclosure, the UE 101 further transmits, using the transceiver to the MN 103, a notification informing the MN 103 that the second CPC configuration is present at and ignored by the UE 101. According to embodiments of the present disclosure, notification is transmitted via a radio resource control (RRC) reconfiguration complete message. Additionally or alternatively, the notification is transmitted via a UE-assisted information (UAI) message.
According to embodiments of the present disclosure, the UE 101 transmitting the notification comprises: in accordance with receiving, using the transceiver from the MN, an indication that the UE is configured to report presence of the second CPC configuration, the UE 101 transmits the notification to the MN using the transceiver. According to embodiments of the present disclosure, the indication is included in a field of the first CPC configuration.
According to embodiments of the present disclosure, the UE 101 further receives, using the transceiver form the SN, information indicating that the second CPC configuration is released by the SN. According to embodiments of the present disclosure, based on determining that the UE is configured with a configuration for persisting a  conditional configuration after execution, the UE 101 further releases the CPC configuration regardless of the configuration for persisting the conditional configuration.
According to embodiments of the present disclosure, the MN 103 is a release 17 MN. Additionally or alternatively, the SN 105 is a release 16 SN. Additionally or alternatively, the first CPC configuration is a release 17 CPC configuration initiated by the MN or a release 17 SN. Additionally or alternatively, the second CPC configuration is a release 16 CPC configuration. Additionally or alternatively, the first CPC configuration and the second CPC configuration are released by the UE after execution.
Fig. 10 illustrates an exemplary method 1000 implemented at a MN 103 according to some embodiments of the present disclosure. At block 1010, the MN 103 transmits, using the transceiver to a UE 101, a first conditional CPC configuration when the UE 101 is configured with a second CPC configuration from a secondary node (SN) of the UE, the base station being a mater node (MN) of the UE 101. At block 1020, the MN 103 receives, using the transceiver from the UE, a notification informing the MN that the second CPC configuration is ignored by the UE.
According to embodiments of the present disclosure, the MN 103 further transmits, using the transceiver, a UE capability enquiry to the UE; and receives, using the transceiver from the UE, UE capability information indicating that the UE is configured to ignore the second CPC configuration if the UE is configured with the first CPC configuration. According to embodiments of the present disclosure, the MN 103 further receives, using the transceiver from the UE, a notification informing the MN that the second CPC configuration is present at and ignored by the UE. According to embodiments of the present disclosure, based on receiving the notification from the UE, the MN 103 further transmits, using the transceiver to the SN, an indication to release the second CPC configuration.
According to embodiments of the present disclosure, the notification is received via a radio resource control (RRC) reconfiguration complete message. Additionally or alternatively, the notification is received via a UE-assisted information (UAI) message. According to embodiments of the present disclosure, the MN 103 further transmits, using the transceiver to the UE, an indication that the UE is configured to report presence of the second CPC configuration. According to embodiments of the present disclosure, the indication is included in a field of the first CPC configuration.
According to embodiments of the present disclosure, based on determining that the  UE is configured with a configuration for persisting a conditional configuration after execution, the MN 103 further releases the second CPC configuration regardless of the configuration for persisting the conditional configuration, and persists the first CPC configuration. According to embodiments of the present disclosure, the MN is a release 17 MN.Additionally or alternatively, the SN is a release 16 SN. Additionally or alternatively, the first CPC configuration is a release 17 CPC configuration initiated by the MN or a release 17 SN. Additionally or alternatively, the second CPC configuration is a release 16 CPC configuration. Additionally or alternatively, the first CPC configuration and the second CPC configuration are released by the UE after execution.
Fig. 11 illustrates an exemplary method implemented at a SN according to some embodiments of the present disclosure. At block 1110, the SN 105 transmits, using the transceiver to a user equipment (UE) 101, a second conditional primary secondary cell (PSCell) change (CPC) configuration when the UE is configured with a first CPC configuration from a mater node (MN) of the UE, the base station being a secondary node (SN) of the UE. At block 1120, the SN 105 receives, using the transceiver from the MN 103, an indication to release the second CPC configuration.
According to embodiments of the present disclosure, the SN 105 further receives, using the transceiver from the UE, UE capability information indicating that the UE is configured to ignore the second CPC configuration if the UE is configured with the first CPC configuration. According to embodiments of the present disclosure, based on receiving the indication from the MN 103, the SN 105 transmits, using the transceiver to the UE 101, information indicating that the CPC configuration is released by the SN 105. According to embodiments of the present disclosure, the SN 105 further receives, using the transceiver from the UE 101, the UE capability information indicating that the UE 101 is configured to ignore the second CPC configuration if the UE 101 is configured with the first CPC configuration. According to embodiments of the present disclosure, the MN 103 is a release 17 MN. Additionally or alternatively, the SN 105 is a release 16 SN. Additionally or alternatively, the first CPC configuration is a release 17 CPC configuration initiated by the MN or a release 17 SN. Additionally or alternatively, the second CPC configuration is a release 16 CPC configuration. Additionally or alternatively, the first CPC configuration and the second CPC configuration are released by the UE after execution.
Fig. 12 is a simplified block diagram of a device 1200 that is suitable for implementing embodiments of the present disclosure. For example, the UE 101, the MN  103 and the SN 105 can be implemented by the device 1200. As shown, the device 1200 includes a processor 1210, a memory 1220 coupled to the processor 1210, and a transceiver 1240 coupled to the processor 1210.
The transceiver 1240 is for bidirectional communications. The transceiver 1240 is coupled to at least one antenna to facilitate communication. The transceiver 1240 can comprise a transmitter circuitry (e.g., associated with one or more transmit chains) and/or a receiver circuitry (e.g., associated with one or more receive chains) . The transmitter circuitry and receiver circuitry can employ common circuit elements, distinct circuit elements, or a combination thereof.
The processor 1210 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 1200 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
The memory 1220 may include one or more non-volatile memories and one or more volatile memories. Examples of the non-volatile memories include, but are not limited to, a Read Only Memory (ROM) 1224, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital video disk (DVD) , and other magnetic storage and/or optical storage. Examples of the volatile memories include, but are not limited to, a random access memory (RAM) 1222 and other volatile memories that will not last in the power-down duration.
computer program 1230 includes computer executable instructions that are executed by the associated processor 1210. The program 1230 may be stored in the ROM 1224. The processor 1210 may perform any suitable actions and processing by loading the program 1230 into the RAM 1222.
The embodiments of the present disclosure may be implemented by means of the program 1230 so that the device 1200 may perform any process of the disclosure as discussed with reference to Figs. 3-5 and 9-11. The embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer  program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the method 900 as described above with reference to Fig. 9 and/or the method 1000 as described above with reference to Fig. 10, and/or the method 1100 as described above with reference to Fig. 11.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in languages specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (25)

  1. A processor of a user equipment (UE) , communicatively coupled to a transceiver of the UE and configured to perform operations comprising:
    in accordance with a determination that a first conditional primary secondary cell (PSCell) change (CPC) configuration is received from a master node (MN) when the UE is configured with a second CPC configuration from a secondary node (SN) , ignoring the second CPC configuration; and
    in accordance with a determination that the second CPC configuration is received when the UE is configured with the first CPC configuration, ignoring the second CPC configuration.
  2. The processor of claim 1, wherein ignoring the second CPC configuration comprises:
    in accordance with a determination that the UE is evaluating a condition for the second CPC configuration, stopping evaluating the condition.
  3. The processor of any of claims 1-2, wherein the operations further comprise:
    receiving a UE capability enquiry from the MN using the transceiver, and
    transmitting, using the transceiver to the MN, UE capability information indicating that the UE is configured to ignore the second CPC configuration if the UE is configured with the first CPC configuration.
  4. The processor of claim 3, wherein the operations further comprise:
    transmitting the UE capability information to the SN using the transceiver.
  5. The processor of any of claims 1-4, wherein the operations further comprise:
    transmitting, using the transceiver to the MN, a notification informing the MN that the second CPC configuration is present at and ignored by the UE.
  6. The processor of claim 5, wherein the notification is transmitted via at least one of:
    a radio resource control (RRC) reconfiguration complete message, or
    a UE-assisted information (UAI) message.
  7. The processor of any of claim 5-6, wherein transmitting the notification comprises:
    in accordance with receiving, using the transceiver from the MN, an indication that the UE is configured to report presence of the second CPC configuration, transmitting the notification to the MN using the transceiver.
  8. The processor of claim 7, wherein the indication is included in a field of the first CPC configuration.
  9. The processor of any of claims 5-8, wherein the operations further comprise:
    receiving, using the transceiver form the SN, information indicating that the second CPC configuration is released by the SN.
  10. The processor of any of claims 1-9, wherein the operations further comprise:
    based on determining that the UE is configured with a configuration for persisting a conditional configuration after execution, releasing the CPC configuration regardless of the configuration for persisting the conditional configuration.
  11. The processor of any of claims 1-10, wherein at least one of:
    the MN is a release 17 MN,
    the SN is a release 16 SN,
    the first CPC configuration is a release 17 CPC configuration initiated by the MN or a release 17 SN,
    the second CPC configuration is a release 16 CPC configuration, or
    the first CPC configuration and the second CPC configuration are released by the UE after execution.
  12. A processor of a base station, communicatively coupled to a transceiver of the base station and configured to perform operations comprising:
    transmitting, using the transceiver to a user equipment (UE) , a first conditional primary secondary cell (PSCell) change (CPC) configuration when the UE is configured with a second CPC configuration from a secondary node (SN) of the UE, the base station  being a mater node (MN) of the UE; and
    receiving, using the transceiver from the UE, a notification informing the MN that the second CPC configuration is ignored by the UE.
  13. The processor of claim 12, wherein the operations further comprise:
    transmitting, using the transceiver, a UE capability enquiry to the UE; and
    receiving, using the transceiver from the UE, UE capability information indicating that the UE is configured to ignore the second CPC configuration if the UE is configured with the first CPC configuration.
  14. The processor of claim 12 or 13, wherein the operations further comprise:
    receiving, using the transceiver from the UE, a notification informing the MN that the second CPC configuration is present at and ignored by the UE.
  15. The processor of claim 14, wherein the operations further comprise:
    based on receiving the notification from the UE, transmitting, using the transceiver to the SN, an indication to release the second CPC configuration.
  16. The processor of any of claims 14-15, wherein the notification is received via at least one of:
    a radio resource control (RRC) reconfiguration complete message, or
    a UE-assisted information (UAI) message.
  17. The processor of any of claims 12-16, wherein the operations further comprise:
    transmitting, using the transceiver to the UE, an indication that the UE is configured to report presence of the second CPC configuration.
  18. The processor of claim 17, wherein the indication is included in a field of the first CPC configuration.
  19. The processor of any of claims 12-18, wherein at least one of:
    the MN is a release 17 MN,
    the SN is a release 16 SN,
    the first CPC configuration is a release 17 CPC configuration initiated by the MN or a release 17 SN,
    the second CPC configuration is a release 16 CPC configuration, or
    the first CPC configuration and the second CPC configuration are released by the UE after execution.
  20. A processor of a base station, communicatively coupled to a transceiver of the base station and configured to perform operations comprising:
    transmitting, using the transceiver to a user equipment (UE) , a second conditional primary secondary cell (PSCell) change (CPC) configuration when the UE is configured with a first CPC configuration from a mater node (MN) of the UE, the base station being a secondary node (SN) of the UE; and
    receiving, using the transceiver from the MN, an indication to release the second CPC configuration.
  21. The processor of claim 20, wherein the operations further comprise:
    receiving, using the transceiver from the UE, UE capability information indicating that the UE is configured to ignore the second CPC configuration if the UE is configured with the first CPC configuration.
  22. The processor of any of claims 20-21, wherein the operations further comprise:
    based on receiving the indication from the MN, transmitting, using the transceiver to the UE, information indicating that the CPC configuration is released by the SN.
  23. The processor of any of claims 20-22, wherein the operations further comprise:
    receiving, using the transceiver from the UE, the UE capability information indicating that the UE is configured to ignore the second CPC configuration if the UE is configured with the first CPC configuration.
  24. The processor of any of claims 20-23, wherein the operations further comprise:
    based on determining that the UE is configured with a configuration for persisting a  conditional configuration after execution,
    releasing the second CPC configuration regardless of the configuration for persisting the conditional configuration, and
    persisting the first CPC configuration.
  25. The processor of any of claims 20-24, wherein at least one of:
    the MN is a release 17 MN,
    the SN is a release 16 SN,
    the first CPC configuration is a release 17 CPC configuration initiated by the MN or a release 17 SN,
    the second CPC configuration is a release 16 CPC configuration, or
    the first CPC configuration and the second CPC configuration are released by the UE after execution.
PCT/CN2022/111246 2022-08-09 2022-08-09 Ue handling of conflicting multiple conditional configurations WO2024031363A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/111246 WO2024031363A1 (en) 2022-08-09 2022-08-09 Ue handling of conflicting multiple conditional configurations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/111246 WO2024031363A1 (en) 2022-08-09 2022-08-09 Ue handling of conflicting multiple conditional configurations

Publications (1)

Publication Number Publication Date
WO2024031363A1 true WO2024031363A1 (en) 2024-02-15

Family

ID=89850083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111246 WO2024031363A1 (en) 2022-08-09 2022-08-09 Ue handling of conflicting multiple conditional configurations

Country Status (1)

Country Link
WO (1) WO2024031363A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200328862A1 (en) * 2019-04-10 2020-10-15 Samsung Electronics Co., Ltd. Method and apparatus to enable csi reporting in wireless communication systems
CN113517993A (en) * 2020-04-10 2021-10-19 大唐移动通信设备有限公司 Configuration method, device, equipment and storage medium of network equipment
WO2022074620A1 (en) * 2020-10-09 2022-04-14 Telefonaktiebolaget Lm Ericsson (Publ) Handling conditional pscell change (cpc) upon sn release
WO2022074559A1 (en) * 2020-10-09 2022-04-14 Telefonaktiebolaget Lm Ericsson (Publ) Target secondary node initiated cancel of conditional pscell change
US20220116840A1 (en) * 2020-10-12 2022-04-14 Qualcomm Incorporated Signaling for conditional primary secondary cell addition/change configuration
CN114503666A (en) * 2019-09-26 2022-05-13 鸿颖创新有限公司 Method and apparatus for conditionally changing primary and secondary cell group cell (PSCell)
CN114631396A (en) * 2019-10-01 2022-06-14 Idac控股公司 Conditional mobility with multiple connections
CN114788398A (en) * 2019-10-03 2022-07-22 瑞典爱立信有限公司 Handling of stored conditional configurations in a wireless communication network

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200328862A1 (en) * 2019-04-10 2020-10-15 Samsung Electronics Co., Ltd. Method and apparatus to enable csi reporting in wireless communication systems
CN114503666A (en) * 2019-09-26 2022-05-13 鸿颖创新有限公司 Method and apparatus for conditionally changing primary and secondary cell group cell (PSCell)
CN114631396A (en) * 2019-10-01 2022-06-14 Idac控股公司 Conditional mobility with multiple connections
CN114788398A (en) * 2019-10-03 2022-07-22 瑞典爱立信有限公司 Handling of stored conditional configurations in a wireless communication network
CN113517993A (en) * 2020-04-10 2021-10-19 大唐移动通信设备有限公司 Configuration method, device, equipment and storage medium of network equipment
WO2022074620A1 (en) * 2020-10-09 2022-04-14 Telefonaktiebolaget Lm Ericsson (Publ) Handling conditional pscell change (cpc) upon sn release
WO2022074559A1 (en) * 2020-10-09 2022-04-14 Telefonaktiebolaget Lm Ericsson (Publ) Target secondary node initiated cancel of conditional pscell change
US20220116840A1 (en) * 2020-10-12 2022-04-14 Qualcomm Incorporated Signaling for conditional primary secondary cell addition/change configuration

Similar Documents

Publication Publication Date Title
WO2022120817A1 (en) Coordinated positioning via sidelink resource
WO2022126496A1 (en) Retransmission of sidelink positioning reference signal
US20230232494A1 (en) Methods of communication, terminal devices, network devices and computer readable media
US20220322274A1 (en) Beam Selection During Downlink Positioning
WO2022178837A1 (en) Positioning assistance data delivery for ue positioning in radio resource control inactive state
WO2021168603A1 (en) Event triggered measurement for channel state information
WO2024031363A1 (en) Ue handling of conflicting multiple conditional configurations
WO2022109864A1 (en) Transmission of periodic data in inactive state
US20200187192A1 (en) Method for indicating number of transmitting ports of ue, ue and network device
WO2024031383A1 (en) Network handling for conflicting multiple conditional configurations
WO2022241611A1 (en) Timing advance pre-compensation information reporting in non-terrestrial network
US20220312287A1 (en) Device, method, apparatus and computer readable medium for inter-cu topology adaptation
WO2024065322A1 (en) Positioning
US20240129987A1 (en) Methods, devices, and medium for communication
WO2024087122A1 (en) Positioning
WO2024065577A1 (en) Positioning enhancements
WO2024026753A1 (en) Positioning measurement across frequency hops
WO2022227039A1 (en) Measurement gap enhancement
WO2024031457A1 (en) Resource reservation for a positioning reference signal
US20240121854A1 (en) Indication of cell status
WO2023082274A1 (en) Transmit power determination in radio resource control inactive state
US20240107390A1 (en) Configuration of successful primary secondary cell change report
WO2021056387A1 (en) Device, method, apparatus and computer readable medium for inter-master node handover
WO2024065791A1 (en) Aperiodic reference signal based secondary cell activation
WO2023070243A1 (en) Panel selection for positioning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954339

Country of ref document: EP

Kind code of ref document: A1