WO2024031338A1 - 储能系统的控制系统及其控制方法和储能系统 - Google Patents

储能系统的控制系统及其控制方法和储能系统 Download PDF

Info

Publication number
WO2024031338A1
WO2024031338A1 PCT/CN2022/111168 CN2022111168W WO2024031338A1 WO 2024031338 A1 WO2024031338 A1 WO 2024031338A1 CN 2022111168 W CN2022111168 W CN 2022111168W WO 2024031338 A1 WO2024031338 A1 WO 2024031338A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
energy storage
valve
control unit
battery
Prior art date
Application number
PCT/CN2022/111168
Other languages
English (en)
French (fr)
Inventor
梁李柳元
卢艳华
余东旭
吴国秀
徐祥祥
李盟
骆兵团
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/111168 priority Critical patent/WO2024031338A1/zh
Publication of WO2024031338A1 publication Critical patent/WO2024031338A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present application relates to the technical field of power system energy storage, and in particular to a control system of an energy storage system, a control method thereof, and an energy storage system.
  • embodiments of the present application provide a control system for an energy storage system, a control method thereof, and an energy storage system, which can realize collaborative control between the converter valve and the energy storage valve.
  • a control system for an energy storage system includes a converter valve and an energy storage valve.
  • the energy storage valve is connected to the DC side of the converter valve.
  • the control system includes: a coordination control subsystem. system, the converter valve control subsystem and the energy storage valve control subsystem; the coordination control subsystem is used to send instructions to control the operation of the converter valve control subsystem and the energy storage valve control subsystem; the converter valve control subsystem The system is used to control the operation of the converter valve according to the instructions of the coordination control subsystem; the energy storage valve control subsystem is used to control the operation of the energy storage valve according to the instructions of the coordination control subsystem.
  • the converter valve includes N first power modules, and the converter valve control subsystem includes a converter valve control unit and N first power control units, where N is a positive integer;
  • the flow valve control unit is used to generate K first control instructions for the N first power modules according to the instructions of the coordinated control subsystem, where K is a positive integer less than or equal to N; the N first power control units use According to the K first control instructions, the input or disconnection of the N first power modules is controlled respectively.
  • the converter valve control unit and the N first power control units are provided for the N first power modules in the converter valve, and the converter valve control unit serves as the N first power control unit.
  • the upper control unit communicates with the coordination control subsystem, that is, the converter valve control subsystem adopts a layered design and a modular design, which is easy to expand and integrate.
  • each first power control unit among the N first power control units is also configured to upload status information of the corresponding first power module to the converter valve control unit.
  • the first power control unit uploads the status information of the first power module to the converter valve control unit, which is helpful for the converter valve control unit to know the status of each first power module in a timely manner, thereby ensuring the system control. reliability.
  • the converter valve control unit is also configured to upload the valve control status information of the converter valve to the coordinated control subsystem.
  • valve control status information of the converter valve is uploaded to the coordination control subsystem through the converter valve control unit, which is helpful for the coordination control subsystem to understand the status of the converter valve in a timely manner to better coordinate the control of the converter valve.
  • the flow valve and energy storage valve work, thereby ensuring the reliability of system control.
  • the energy storage valve includes M energy storage modules, each of the M energy storage modules includes a second power module and a battery module, and the energy storage valve control subsystem includes Energy storage valve control unit, M second power control units, M battery control units, M is a positive integer; the energy storage valve control unit is used to generate the M energy storage modules according to the instructions of the coordination control subsystem.
  • Q second control instructions of the M second power modules, Q is a positive integer less than or equal to M; the M second power control units are used to respectively control the M second control instructions according to the Q second control instructions.
  • the two power modules are put in or out; the M battery control units are used to respectively control charge and discharge of the M battery modules among the M energy storage modules.
  • energy storage valve control units, M second power control units, and M battery control units are provided for M second power modules and M battery modules in the energy storage valve, and the energy storage valve
  • the control unit communicates with the coordination control subsystem. That is, the energy storage valve control subsystem adopts a hierarchical design and a modular design, which is easy to expand and integrate.
  • the converter valve and energy storage generator are controlled separately.
  • the technology of the converter valve control subsystem is relatively mature.
  • the energy storage valve control subsystem can be expanded and developed based on the converter valve control subsystem, which is easy to implement.
  • the energy storage valve control unit is also used to generate P third control instructions for the M battery modules according to instructions from the coordination control subsystem, where P is a positive integer less than or equal to M. ;
  • the M battery control units are used to control charge and discharge of the M battery modules respectively according to the P third control instructions.
  • the M battery control units can directly communicate with the energy storage valve control unit, which facilitates the second power control unit and the battery control unit to control the second power module and the battery module in parallel, thus improving the control of the system. efficiency.
  • each of the M battery control units is also used to upload the corresponding status information of the battery module to the energy storage valve control unit.
  • the battery control unit uploads the status information of the corresponding battery module to the energy storage valve control unit, so that the energy storage valve control unit can understand the status of the battery module in a timely manner and control the battery module accordingly, thereby ensuring Control reliability of energy storage valve control subsystem.
  • the M second power control units are also used to respectively generate R fourth control instructions for the M battery modules according to the Q second control instructions, where R is less than or equal to M is a positive integer; the M battery control units are used to control charge and discharge of the M battery modules respectively according to the R fourth control instructions.
  • M battery control units are respectively controlled by M second power control units, which can reduce the communication load of the energy storage valve control unit.
  • each of the M battery control units is also configured to upload status information of the corresponding battery module to the corresponding second power control unit.
  • the second power control unit can promptly feedback the status of the battery module to the energy storage valve control unit, and perform corresponding operations on the battery module. control, thereby ensuring the control reliability of the energy storage valve control subsystem.
  • the energy storage valve control unit is also used to upload the valve control status information of the energy storage valve to the coordination control subsystem.
  • the energy storage valve control unit uploads the valve control status information of the energy storage valve to the coordination control subsystem, which is helpful for the coordination control subsystem to understand the status of the energy storage valve in a timely manner to better coordinate and control the energy storage valve.
  • Energy valve and energy storage valve work, thereby ensuring the reliability of system control.
  • each second power control unit among the M second power control units is also configured to upload status information of the corresponding second power module to the energy storage valve control unit.
  • the second power control unit uploads the status information of the second power module to the energy storage valve control unit, which is helpful for the energy storage valve control unit to understand the status of each second power module in a timely manner, thereby ensuring the system control. reliability.
  • the second power control unit and the battery control unit corresponding to the same energy storage module communicate with each other.
  • the energy storage valve control subsystem further includes: a battery monitoring unit, configured to obtain battery data of the M battery modules.
  • M is a positive integer greater than 1, and the M battery control units are connected through daisy chain communication.
  • the converter valve control subsystem includes a plurality of converter valve control units, each of the plurality of converter valve control units is connected to the N first power The control unit communicates with each other. The plurality of converter valve control units communicate with each other.
  • the converter valve control subsystem includes multiple converter valve control units, and the multiple converter valve control units communicate with each other and communicate with the N first power control units, which can meet the needs of conversion.
  • the requirement for redundant design of the flow valve control subsystem ensures the control reliability of the converter valve control subsystem.
  • the energy storage valve control subsystem includes multiple energy storage valve control units, and each energy storage valve control unit in the multiple energy storage valve control units is connected to the M second power The control units communicate with each other.
  • the multiple energy storage valve control units communicate with each other.
  • the energy storage valve control subsystem includes multiple energy storage valve control units, and the multiple energy storage valve control units communicate with each other and communicate with M second power control units, which can meet the storage requirements.
  • the requirement for redundant design of the energy valve control subsystem ensures the control reliability of the energy storage valve control subsystem.
  • the coordinated control subsystem includes a plurality of system control units, and each of the multiple system control units is connected to the converter valve control subsystem and the energy storage valve control subsystem. Communication between systems, the multiple system control units communicate with each other.
  • the coordinated control subsystem includes multiple system control units, and the multiple system control units communicate with each other, and all communicate with the converter valve control subsystem and the energy storage valve control subsystem, which can meet the coordination requirements.
  • the requirement for redundant design of the control subsystem ensures the control reliability of the coordinated control subsystem.
  • the converter valve control subsystem is integrated in the converter valve, and the energy storage valve control subsystem is integrated in the energy storage valve.
  • an energy storage system including a converter valve and an energy storage valve.
  • the energy storage valve is connected to the DC side of the converter valve.
  • the energy storage system also includes the first aspect and any one thereof. Control system among possible implementations.
  • a control method for an energy storage system includes a converter valve and an energy storage valve.
  • the energy storage valve is connected to the DC side of the converter valve.
  • the control method includes: The control subsystem sends a first instruction and a second instruction to the energy storage valve control subsystem. The first instruction is used to control the operation of the converter valve, and the second instruction is used to control the operation of the energy storage valve.
  • a computer-readable storage medium which is characterized in that it is used to store a computer program, and the computer program causes the computer to execute the method in the first aspect and any possible implementation manner of the first aspect.
  • Figure 1 shows a schematic architecture diagram of a high-voltage DC direct-connected energy storage system applicable to embodiments of the present application.
  • FIG. 2 shows a schematic structural diagram of the VSC converter valve in FIG. 1 .
  • FIG. 3 shows a schematic structural diagram of the DC energy storage valve in FIG. 1 .
  • Figure 4a shows a schematic structural diagram of the energy storage module in Figure 3.
  • Figure 4b shows another schematic structural diagram of the energy storage module in Figure 3.
  • FIG. 5 shows a schematic architecture diagram of the control system provided by the embodiment of the present application.
  • FIG. 6 shows a schematic block diagram of the converter valve control subsystem in the control system of FIG. 5 .
  • FIG. 7 shows a schematic block diagram of the energy storage valve control subsystem in the control system in FIG. 5 .
  • FIG 8 shows another schematic architecture diagram of the control system provided by the embodiment of the present application.
  • FIG. 9 shows yet another schematic architecture diagram of the control system provided by the embodiment of the present application.
  • Figure 10 shows a schematic block diagram of the control method provided by the embodiment of the present application.
  • Figure 11 shows a schematic flow chart of the control method of the energy storage system provided by the embodiment of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. It will be explicitly and implicitly understood by those skilled in the art that the embodiments described herein may be combined with other embodiments.
  • new energy storage technology integrates converter valves and energy storage valves, which has the advantages of high modularity, low system network loss, good economic benefits, and high operational reliability.
  • VSC voltage source converter
  • AC/DC power conversion and energy storage can be achieved simultaneously.
  • new energy storage systems have higher voltage levels, larger capacity, stronger grid regulation capabilities and grid support, which are of great research significance for new power systems with new energy as the main body.
  • embodiments of the present application provide a control system for an energy storage system, which can realize collaborative control between the converter valve and the energy storage valve through the coordinated control subsystem.
  • FIG. 1 shows a schematic architecture diagram of a high-voltage DC direct-connected energy storage system applicable to embodiments of the present application.
  • the high-voltage direct current energy storage system 100 includes a VSC converter valve 110 and an energy storage valve 120 .
  • the energy storage valve 120 is connected to the DC side of the VSC converter valve 110 .
  • the VSC converter valve 110 may adopt an MMC structure as shown in FIG. 2 .
  • the VSC converter valve 110 may include six bridge arms, and every two bridge arms are connected in series. Each bridge arm includes n power modules (111_1, 111_2,..., 111_n).
  • the energy storage valve 120 includes m energy storage modules 121 (121_1, 121_2,..., 121_m-1, 121_m) connected in series.
  • Each energy storage module 121 may be composed of a power module 1211 connected to a battery module 1212.
  • the power module 1211 may be a half-bridge power module as shown in Figure 4a, or a full-bridge power module as shown in Figure 4b.
  • the battery module 1212 may be a single-branch series battery module, a multi-branch parallel battery module, or a series-parallel battery module.
  • control system of the energy storage system provided by the embodiment of the present application is not only applicable to the high-voltage DC direct-connected energy storage system 100 as shown in Figure 1 , but can also be applied to other energy storage systems, such as high-voltage AC direct-connected energy storage systems.
  • the energy storage system is not limited in the embodiments of this application.
  • FIG. 5 shows a schematic block diagram of the control system 200 of the energy storage system according to the embodiment of the present application.
  • the energy storage system may be the high-voltage DC direct-current energy storage system 100 described in Figure 1 .
  • the energy storage system may include a converter valve and an energy storage valve, and the energy storage valve is connected to the DC side of the converter valve.
  • the energy storage valve can be connected in parallel to the DC side of the converter valve.
  • the control system 200 may include: a coordination control subsystem 210 , a converter valve control subsystem 220 and an energy storage valve control subsystem 230 .
  • the coordination control subsystem 210 is used to send instructions to control the operation of the converter valve control subsystem 220 and the energy storage valve control subsystem 230; the converter valve control subsystem 220 is used to control the operation of the converter valve control subsystem 220 according to the coordination control subsystem 210.
  • the energy storage valve control subsystem 230 is used to control the operation of the energy storage valve according to the instructions of the coordination control subsystem 210.
  • the coordination control subsystem 210 may be responsible for receiving instructions from the upper-layer control system of the control system 200 and coordinately controlling the converter valve control subsystem 220 and the energy storage valve control subsystem 230 based on the instructions of the upper-layer control system. Work.
  • the coordination control subsystem 210 communicates with the converter valve control subsystem 220 and the energy storage valve control subsystem 230 respectively.
  • the coordination control subsystem 210 can issue instructions to the converter valve control subsystem 220 to control the operation of the converter valve; the coordination control subsystem 210 can also issue instructions to the energy storage valve control subsystem 230 to control The energy storage valve works.
  • the converter valve includes N first power modules.
  • the converter valve control subsystem 220 includes a converter valve control unit 221 and N first power control units 222 , where N is a positive integer.
  • the converter valve control unit 221 is configured to generate K first control instructions for the N first power modules according to the instructions of the coordinated control subsystem 210, where K is a positive integer less than or equal to N; the N first power
  • the control unit 222 is configured to respectively control the input or disconnection of the N first power modules according to the K first control instructions.
  • the converter valve includes N first power modules, and the first power modules may be power modules 111 as shown in FIG. 2 .
  • the first power module may be a half-bridge power module 1211 as shown in Figure 4a.
  • the first power module may also be a full-bridge power module 1211 as shown in Figure 4b.
  • the converter valve control subsystem 220 may include a converter valve control unit 221 and N first power control units 222. That is to say, each first power module in the N first power modules corresponds to One first power control unit 222 , and N first power control units 222 correspond to a common converter valve control unit 221 .
  • the converter valve control unit 221 is responsible for receiving instructions from the coordinated control subsystem 210 and generating control instructions for the K first power modules.
  • K equals N, that is, each first power module corresponds to a control instruction
  • each first power control unit 222 corresponds to a control instruction
  • each of the N first power control units 222 The power control unit 222 is responsible for receiving corresponding control instructions generated by the converter valve control unit 221 and controlling the operation of the corresponding first power module, for example, controlling the input or cut-out of the corresponding first power module.
  • K is less than N, that is, only some of the N first power control units 222 receive control instructions.
  • These first power control units 222 can, according to the received control instructions, Control the operation of the corresponding first power module, for example, control the input or disconnection of the corresponding first power module, and the other part of the first power control unit 222 that has not received the control instruction can control the corresponding first power module to be in the default state.
  • the state for example, defaults to the switch-out state, or the default is the input state.
  • the converter valve control unit 221 and the N first power control units 222 are provided for the N first power modules in the converter valve, and the converter valve control unit 221 serves as the N first power modules.
  • the upper control unit of the control unit 222 communicates with the coordination control subsystem 210, that is, the converter valve control subsystem 220 adopts a layered design and a modular design, which is easy to expand and integrate.
  • each first power control unit 222 among the N first power control units 222 is also used to upload status information of the corresponding first power module to the converter valve control unit 221 .
  • the status information of the first power module mainly includes states such as input, cut-out, lockout, and fault. That is to say, the status information of the first power module is used to indicate to the converter valve control unit 221 which status the corresponding first power module is currently in: input, cut-out, blocking, or fault. Further, if the first power module is in a fault state, the status information of the first power module is also used to indicate to the converter valve control unit 221 the current fault of the corresponding first power module.
  • uploading the status information of the first power module to the converter valve control unit 221 through the first power control unit 222 is helpful for the converter valve control unit 221 to understand the status of each first power module in a timely manner, thereby ensuring System control reliability.
  • the converter valve control unit 221 is also configured to upload the valve control status information of the converter valve to the coordinated control subsystem 210 .
  • the valve control status information of the converter valve mainly includes three major statuses: latching, failure or operation. That is to say, the valve control status information is used to indicate to the coordinated control subsystem 210 which state the converter valve is currently in: locked, faulty, or in operation. Further, if the converter valve is in a fault state, the valve control status information of the converter valve is also used to indicate the current fault of the converter valve to the coordinated control subsystem 210 .
  • the converter valve control unit 221 may also determine the valve control status information of the converter valve based on the status information of the N first power modules reported by the N first power control units 222, and then provide the coordinated control The subsystem 210 reports the determined valve control status information.
  • valve control status information of the converter valve is uploaded to the coordination control subsystem 210 through the converter valve control unit 221, which is helpful for the coordination control subsystem 210 to understand the status of the converter valve in a timely manner to better Coordinately control the work of the converter valve and energy storage valve to ensure the reliability of system control.
  • the converter valve control subsystem 220 includes multiple converter valve control units 221, and each of the multiple converter valve control units 221 is connected to The N first power control units 222 communicate with each other, and the plurality of converter valve control units 221 communicate with each other.
  • the plurality of converter valve control units 221 can communicate with each other, exchange control information, and can switch between master and slave. That is to say, one of the plurality of converter valve control units 221 is the master control unit, and the other converter valve control units 221 are slave control units. Once the master control unit fails, it can Set one of the slave control units as the master control unit.
  • the plurality of converter valve control units 221 can be integrated in different plug-ins within the same device, or can be provided in different devices; similarly, the N first power control units 222 can be integrated in the same device. Different plug-ins can also be installed in different devices; in addition, the converter valve control unit 221 and the first power control unit 222 can be integrated into different plug-ins in the same device, or they can also be installed in different devices. According to the embodiment of the present application There is no limit to this.
  • the converter valve control subsystem 220 includes a plurality of converter valve control units 221 , and the plurality of converter valve control units 221 communicate with each other and each communicate with the N first power control units 222 , can meet the redundant design requirements of the converter valve control subsystem 220 and ensure the control reliability of the converter valve control subsystem 220 .
  • the energy storage valve includes M energy storage modules, each of the M energy storage modules includes a second power module and a battery module, and M is a positive integer.
  • the energy storage valve control subsystem 230 includes an energy storage valve control unit 231 , M second power control units 232 and M battery control units 233 .
  • the energy storage valve control unit 231 is used to generate Q second control instructions for the M second power modules in the M energy storage modules according to the instructions of the coordinated control subsystem 210, where Q is less than or equal to M.
  • the M second power control units 232 are used to respectively control the input or withdrawal of the M second power modules according to the Q second control instructions; the M battery control units 233 are used to respectively control the The M battery modules among the M energy storage modules perform charge and discharge control.
  • the energy storage valve includes M energy storage modules, each of the energy storage modules may be the energy storage module 121 as shown in Figure 3, and each of the energy storage modules includes a parallel second power module and a battery module. . That is to say, the energy storage valve includes M second power modules and M battery modules.
  • the second power module may be a half-bridge power module 1211 as shown in Figure 4a. In another example, the second power module may also be a full-bridge power module 1211 as shown in Figure 4b.
  • the energy storage valve control subsystem 230 may include an energy storage valve control unit 231, M second power control units 232 and M battery control units 233.
  • each second power module corresponds to a second power control unit 232
  • each of the M battery modules corresponds to a battery control unit 233
  • the M second power control units 232 correspond to the M battery control units 233.
  • the energy storage valve control unit 231 is responsible for receiving instructions from the coordination control subsystem 210 and generating control instructions for Q second power modules.
  • Q is equal to M, that is, each second power module corresponds to a control instruction, each second power control unit 232 corresponds to a control instruction, and each of the M second power control units 232
  • the power control unit 232 is responsible for receiving the corresponding control instructions generated by the energy storage valve control unit 231 and controlling the operation of the corresponding second power module, for example, controlling the input or cut-out of the corresponding second power module.
  • Q is less than M, that is, only some of the M second power control units 232 receive control instructions.
  • This part of the second power control units 232 can, according to the received control instructions, Control the operation of the corresponding second power module, for example, control the input or disconnection of the corresponding second power module, and the other part of the second power control unit 232 that has not received the control instruction can control the corresponding second power module to be in the default state.
  • the state for example, defaults to the switch-out state, or the default is the input state.
  • each of the M battery control units 233 is used to control the operation of the corresponding battery module, for example, to control the corresponding battery module to charge and discharge.
  • the energy storage valve control unit 231, M second power control units 232, and M battery control units 233 are provided for the M second power modules and M battery modules in the energy storage valve, and the The energy storage valve control unit 231 serves as the upper-layer control unit of the M second power control units 232 to communicate with the coordination control subsystem 210. That is, the energy storage valve control subsystem 230 adopts a layered design and a modular design, which is easy to expand and integrate. In addition, the converter valve and the energy storage generator are controlled separately. The technology of the converter valve control subsystem 220 is relatively mature. The energy storage valve control subsystem 230 can be expanded and developed based on the converter valve control subsystem 220, which is easy to implement.
  • first power module and the second power module may be the same or different.
  • the embodiments of the present application do not limit this.
  • the energy storage valve control unit 231 is also configured to generate P third control instructions for the M battery modules according to instructions from the coordination control subsystem 210 .
  • P is a positive integer less than or equal to M
  • the M battery control units 233 are used to control charge and discharge of the M battery modules respectively according to the P third control instructions.
  • P is equal to M, that is, each battery module corresponds to a control instruction, and each battery control unit 233 corresponds to a control instruction.
  • Each of the M battery control units 233 is responsible for receiving the storage battery control unit 233 .
  • the valve control unit 231 can generate corresponding control instructions and control the operation of the corresponding battery module, for example, control the corresponding battery module to charge and discharge.
  • P is less than M, that is, only some battery control units 233 among the M battery control units 233 receive control instructions. These battery control units 233 can control the operation of the corresponding battery module according to the received control instructions.
  • control the corresponding battery module to charge and discharge and another part of the battery control unit 233 that has not received the control instruction can control the corresponding battery module to be in a default state, for example, not charging by default, or not discharging by default.
  • M battery control units 233 can directly communicate with the energy storage valve control unit 231, which is beneficial to the second power control unit 232 and the battery control unit 233 controlling the second power module and the battery module in parallel, so that Improve the control efficiency of the system.
  • each of the M battery control units 233 is also used to upload the status information of the corresponding battery module to the energy storage valve control unit 231 .
  • the status information of the battery module may include at least one battery parameter such as voltage, capacity, temperature, state of charge (SOC), temperature, and current of the battery module.
  • the status information of the battery module may also be a function of the various battery parameters mentioned above.
  • the battery control unit 233 can upload the status information of the corresponding battery module according to the needs of the energy storage valve control unit 231 . In other words, whatever status information the energy storage valve control unit 231 needs, the battery control unit 233 just uploads the required status information.
  • the energy storage valve control unit 231 can understand the status of the battery module in time and perform corresponding control on the battery module.
  • the control reliability of the energy storage valve control subsystem 230 can be ensured.
  • the M second power control units 232 are also configured to respectively generate R fourth control instructions for the M battery modules according to the M second control instructions, where R is less than Or a positive integer equal to M; the M battery control units 233 are used to control charge and discharge of the M battery modules respectively according to the R fourth control instructions.
  • the M battery control units 233 do not directly communicate with the energy storage valve control unit 231 , but indirectly communicate with the energy storage valve control unit 231 through the M second power control units 232 .
  • R equals M, that is, each battery module corresponds to a control instruction, and each battery control unit 233 corresponds to a control instruction.
  • Each of the M battery control units 233 is responsible for receiving the corresponding control instruction.
  • the second power control unit 232 generates a corresponding control instruction and controls the operation of the corresponding battery module, for example, controls the corresponding battery module to charge and discharge.
  • R is less than M, that is, only some battery control units 233 among the M battery control units 233 receive the control instructions sent by their corresponding second power control units 232.
  • These battery control units 233 can receive The control instruction received controls the operation of the corresponding battery module, for example, controlling the corresponding battery module to charge and discharge, while the other part of the battery control unit 233 that has not received the control instruction can control the corresponding battery module to be in a default state, for example, The default is not charging, or the default is not discharging.
  • M battery control units 233 are respectively controlled by M second power control units 232, which can reduce the communication load of the energy storage valve control unit 231.
  • each battery control unit 233 among the M battery control units 233 is also used to upload the status information of the corresponding battery module to the corresponding second power control unit 232 .
  • the status information of the battery module may include at least one battery parameter such as voltage, power, temperature, state of charge (SOC), temperature, and current of the battery module.
  • the status information of the battery module may also be a function of the various battery parameters mentioned above.
  • the battery control unit 233 may upload the status information of the battery module to the second power control unit 232 according to the content of the fourth control instruction. That is, the battery control unit 233 uploads whatever information the fourth control instruction indicates.
  • the second power control unit 232 can feed back the status of the battery module to the energy storage valve control unit 231 in a timely manner.
  • the battery module performs corresponding control, thereby ensuring the control reliability of the energy storage valve control subsystem 230.
  • each second power control unit 232 among the M second power control units 232 is also used to upload status information of the corresponding second power module to the energy storage valve control unit 231 .
  • the status information of the second power module mainly includes states such as input, cut-out, lockout, and fault. That is to say, the status information of the second power module is used to indicate to the energy storage valve control unit 231 which state the corresponding second power module is currently in: input, cut-out, blocking, or fault. Further, if the second power module is in a fault state, the status information of the second power module is also used to indicate to the energy storage valve control unit 231 the current fault of the corresponding second power module.
  • uploading the status information of the second power module to the energy storage valve control unit 231 through the second power control unit 232 is helpful for the energy storage valve control unit 231 to understand the status of each second power module in a timely manner, thereby ensuring System control reliability.
  • the energy storage valve control unit 231 is also used to upload the valve control status information of the energy storage valve to the coordination control subsystem 210.
  • the valve control status information of the energy storage valve mainly includes three major statuses: latching, failure or operation. That is to say, the valve control status information is used to indicate to the coordinated control subsystem 210 which state the energy storage valve is currently in: locked, faulty, or running. Further, if the energy storage valve is in a fault state, the valve control status information of the energy storage valve is also used to indicate to the coordination control subsystem 210 the current fault of the energy storage valve.
  • the energy storage valve control unit 231 may also be based on the status information of the M second power modules reported by the M second power control units 232 and the status information of the M battery modules reported by the M battery control units 233 , determine the valve control status information of the energy storage valve, and then report the determined valve control status information to the coordination control subsystem 210.
  • valve control status information of the energy storage valve is uploaded to the coordination control subsystem 210 through the energy storage valve control unit 231, which is helpful for the coordination control subsystem 210 to understand the status of the energy storage valve in a timely manner to better Coordinate and control the work of the energy storage valve and the energy storage valve to ensure the reliability of system control.
  • the second power control unit 232 and the battery control unit 233 corresponding to the same energy storage module communicate with each other.
  • the energy storage valve control subsystem 230 also includes: a battery monitoring unit, used to obtain battery data of the M battery modules.
  • the battery data may include all battery parameters such as voltage, capacity, temperature, state of charge (SOC), temperature, and current of the battery module.
  • the battery data is actively reported to the battery monitoring unit by the battery control unit 233.
  • each battery control unit 233 may communicate with the battery monitoring unit, that is, each battery control unit 233 directly reports the battery data of the corresponding battery module to the battery monitoring unit.
  • daisy chain communication is adopted between each battery control unit 233 , and only the first and last two battery control units 233 of the daisy chain directly communicate with the battery monitoring unit. That is, the two battery control units 233 at the head and tail of the daisy chain can aggregate the battery data obtained by all the battery control units 233 and upload the aggregated battery data to the battery monitoring unit.
  • daisy chain communication can be used between the M battery control units 233 .
  • the energy storage valve control subsystem 230 includes a plurality of energy storage valve control units 231, and each energy storage valve control unit 231 of the plurality of energy storage valve control units 231 is connected to M A second power control unit 232 communicates with each other, and the plurality of energy storage valve control units 232 communicate with each other.
  • the plurality of energy storage valve control units 231 can communicate with each other, exchange control information, and switch between master and slave. That is to say, one of the energy storage valve control units 231 among the plurality of energy storage valve control units 231 is the master control unit, while the remaining energy storage valve control units 231 are slave control units. Once the master control unit fails, it can Set one of the slave control units as the master control unit.
  • the plurality of energy storage valve control units 231 can be integrated into different plug-ins within the same device, or can be provided in different devices; similarly, the M second power control units 232 can be integrated into the same device. Different plug-ins can also be installed in different devices; the M battery control units 233 can be integrated into different plug-ins in the same device, or can be installed in different devices.
  • the energy storage valve control unit 231, the second power control unit 232 and the battery control unit 233 may be integrated into different plug-ins within the same device, or may be provided in different devices, which is not limited in the embodiments of the present application.
  • the energy storage valve control subsystem 230 includes multiple energy storage valve control units 231 , and the multiple energy storage valve control units 231 communicate with each other and communicate with M second power control units 232 , can meet the redundant design requirements of the energy storage valve control subsystem 230 and ensure the control reliability of the energy storage valve control subsystem 230 .
  • the coordinated control subsystem 210 includes a plurality of system control units, each of which is connected to the converter valve control subsystem 220 and the energy storage valve.
  • the control subsystems 230 communicate with each other, and the multiple system control units communicate with each other.
  • the multiple system control units can communicate with each other, exchange control information, and switch between master and slave. That is to say, one of the multiple system control units is the master control unit, while the remaining system control units are slave control units. Once the master control unit fails, one of the slave control units can be Set as the main control unit.
  • multiple system control units may be integrated into different plug-ins within the same device, or may be provided in different devices, which is not limited in the embodiments of the present application.
  • the coordination control subsystem 210 includes multiple system control units, and the multiple system control units communicate with each other, and all communicate with the converter valve control subsystem 220 and the energy storage valve control subsystem 230, It can meet the redundant design requirements of the coordination control subsystem 210 and ensure the control reliability of the coordination control subsystem 210 .
  • the converter valve control subsystem 220 is integrated in the converter valve
  • the energy storage valve control subsystem 230 is integrated in the energy storage valve.
  • Figure 8 is a three-layer control architecture diagram of the energy storage valve control subsystem.
  • the control system includes a coordination control subsystem, a converter valve control subsystem and an energy storage valve control subsystem.
  • the coordination control subsystem includes system control unit A and system control unit B.
  • the system control unit A and system control unit B communicate with each other and exchange control information.
  • the converter valve control subsystem includes two converter valve control units. (Converter valve control unit A and converter valve control unit B communicate with each other and exchange control information) and N first power control units (first power control units) Unit 1, first power control unit 2, ..., first power control unit N-1, first power control unit N).
  • the energy storage valve control subsystem includes N energy storage valve control units (energy storage valve control unit A and energy storage valve control unit B.
  • the energy storage valve control unit A and the energy storage valve control unit B communicate with each other and interact with each other. control information), M second power control units (second power control unit 1, second power control unit 2,..., second power control unit M), M battery control units (battery control unit 1, battery control unit Unit 2,..., battery control unit M) and battery monitoring unit.
  • the system control unit A generates control instructions and sends them to the converter valve control unit A and the energy storage valve control unit A.
  • the system control unit B generates control instructions and sends them to the converter valve control unit B and the energy storage valve. Control unit B.
  • the converter valve control unit A and the converter valve control unit B send switching instructions to the first power control unit 1-N according to the control instructions generated by the system control unit A and the system control unit B respectively, and the first power control unit
  • the unit 1 -N sends the status of the controlled first power module to the converter valve control unit A and the converter valve control unit B.
  • the converter valve control unit A sends the valve control status of the converter valve to the system control unit A
  • the converter valve control unit B sends the valve control status of the converter valve to the system control unit B.
  • the energy storage valve control unit A and the energy storage valve control unit B respectively send switching instructions to the second power control unit 1-M according to the control instructions generated by the system control unit A and the system control unit B, and the second power control unit Unit 1-M sends the status of the second power module to the storage valve control unit A and the storage valve control unit B.
  • the second power control unit 1-M can also send charging and discharging instructions to the battery control unit 1-M respectively.
  • the battery control unit 1-M controls the charging and discharging of the battery module according to the charging and discharging instructions, and uploads the battery status of the battery module to
  • the second power control unit 1-M and the battery control unit 1-M adopt a daisy chain communication connection to collect the battery data obtained by the battery control unit 1-M into the battery monitoring unit.
  • Figure 9 is a two-layer control architecture diagram of the energy storage valve control subsystem.
  • the control system includes a coordination control subsystem, a converter valve control subsystem and an energy storage valve control subsystem.
  • the coordination control subsystem includes system control unit A and system control unit B.
  • the system control unit A and system control unit B communicate with each other and exchange control information.
  • the converter valve control subsystem includes two converter valve control units. (Converter valve control unit A and converter valve control unit B communicate with each other and exchange control information) and N first power control units (first power control units) Unit 1, first power control unit 2, ..., first power control unit N-1, first power control unit N).
  • the energy storage valve control subsystem includes N energy storage valve control units (energy storage valve control unit A and energy storage valve control unit B.
  • the energy storage valve control unit A and the energy storage valve control unit B communicate with each other and interact with each other. control information), M second power control units (second power control unit 1, second power control unit 2,..., second power control unit M), M battery control units (battery control unit 1, battery control unit Unit 2,..., battery control unit M) and battery monitoring unit.
  • the system control unit A generates control instructions and sends them to the converter valve control unit A and the energy storage valve control unit A.
  • the system control unit B generates control instructions and sends them to the converter valve control unit B and the energy storage valve. Control unit B.
  • the converter valve control unit A and the converter valve control unit B send switching instructions to the first power control unit 1-N according to the control instructions generated by the system control unit A and the system control unit B respectively, and the first power control unit
  • the unit 1-N sends status information of the controlled first power module to the converter valve control unit A and the converter valve control unit B.
  • the energy storage valve control unit A and the energy storage valve control unit B send switching instructions to the second power control unit 1-M and to the battery control unit 1-M according to the control instructions generated by the system control unit A and the system control unit B respectively. M sends charging and discharging instructions.
  • the second power control unit 1-M sends the status information of the second power module to the energy storage valve control unit A and the energy storage valve control unit B.
  • the battery control unit 1-M controls the charging and discharging of the battery module according to the charging and discharging instructions. And upload the battery status of the battery module to energy storage valve control unit A and energy storage valve control unit B.
  • the battery control units 1-M use daisy chain communication to connect the battery data obtained by the battery control unit 1-M. collected into the battery monitoring unit.
  • the second power control unit and the battery control unit corresponding to the same energy storage module communicate with each other and exchange control information.
  • FIG 10 shows a schematic block diagram of a control method 300 for an energy storage system provided by an embodiment of the present application.
  • the energy storage system includes a converter valve and an energy storage valve, and the energy storage valve is connected to the DC side of the converter valve.
  • the control method may be executed by the coordinated control subsystem described above.
  • the control method 300 includes:
  • S310 Send a first instruction to the converter valve control subsystem and a second instruction to the energy storage valve control subsystem.
  • the first instruction is used to control the operation of the converter valve
  • the second instruction is used to control the energy storage valve. Work.
  • control method 300 can refer to the various steps executed by the above-mentioned coordination control subsystem 210 .
  • control method 200 may also include various steps performed by the above-mentioned converter valve subsystem 220 and energy storage valve subsystem 230, which will not be described again here for the sake of brevity.
  • FIG. 11 is a schematic flow chart of a control method of an energy storage system based on the control architecture shown in FIG. 8 .
  • the control method includes: (1), the system control unit in the coordination control subsystem sequentially adopts control mode selection, power calculation, power control (AC power/DC power) and internal and external dual-loop control (active power/reactive power).
  • the converter valve control unit determines the valve control instructions of the converter valve and energy storage valve under different control modes; (2), in the converter valve control subsystem, the converter valve control unit completes bridge arm current control, capacitor voltage balance control and modulation , generate the switching command of the first power module in the converter valve; (3) The first power control unit in the converter valve control subsystem completes the switching control of the first power control unit; (4) In the energy storage valve In the control subsystem, the energy storage valve control unit completes battery current control, battery state balance control and modulation, and generates switching instructions for the first power module in the energy storage valve; (5) Then the energy storage valve control unit in the energy storage valve control subsystem The second power control unit completes the switching control of the second power module; (6) Finally, the battery control unit in the energy storage valve control subsystem controls the energy storage valve in accordance with the charge and discharge instructions generated by the second power control unit. The battery module charges and discharges, and at the same time completes the battery information summary and calculation of the battery module.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the control system in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the control system in the various methods of the embodiment of the present application. For the sake of simplicity, here No longer.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the control system in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the control system in the various methods of the embodiment of the present application. For the sake of brevity, they are not included here. Again.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the control system in the embodiment of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the control system in each method of the embodiment of the present application.
  • the computer program For the sake of simplicity , which will not be described in detail here.
  • the embodiment of the present application also provides an energy storage system.
  • the energy storage system includes a converter valve and an energy storage valve.
  • the energy storage valve is connected to the DC side of the converter valve, and the high-pressure direct-connected energy storage system
  • the system may also include the control system described in the above various embodiments.
  • the converter valve is a VSC converter valve.
  • the VSC converter valve adopts a modular multilevel converter (MMC) structure.
  • MMC modular multilevel converter

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

一种储能系统(100)、储能系统(100)的控制系统(200)和控制方法(300),储能系统(100)包括换流阀(110)和储能阀(120),储能阀(120)连接于换流阀(110)的直流侧,控制系统(200)包括:协调控制子系统(210)、换流阀控制子系统(220)和储能阀控制子系统(230)。协调控制子系统(210)用于发送指令以控制换流阀控制子系统(220)和储能阀控制子系统(230)工作。换流阀控制子系统(220)用于根据协调控制子系统(210)的指令,控制换流阀(110)工作。储能阀控制子系统(230)用于根据协调控制子系统(210)的指令,控制储能阀(120)工作。储能系统(100)的控制系统(200),能够实现换流阀(110)与储能阀(120)之间的协同配合控制。

Description

储能系统的控制系统及其控制方法和储能系统 技术领域
本申请涉及电力系统储能技术领域,尤其涉及一种储能系统的控制系统及其控制方法和储能系统。
背景技术
在电力系统储能技术领域,新型储能技术将换流阀与储能阀集成,具有模块化程度高、系统网损低、经济效益好、运行可靠性高等优势。
目前,对于新型储能系统的控制架构尚未研究。
发明内容
有鉴于此,本申请实施例提供了一种储能系统的控制系统及其控制方法和储能系统,能够实现换流阀与储能阀之间的协同配合控制。
第一方面,提供了一种储能系统的控制系统,该储能系统包括换流阀和储能阀,该储能阀连接于该换流阀的直流侧,该控制系统包括:协调控制子系统、换流阀控制子系统和储能阀控制子系统;该协调控制子系统用于发送指令以控制该换流阀控制子系统和该储能阀控制子系统工作;该换流阀控制子系统用于根据该协调控制子系统的指令,控制该换流阀工作;该储能阀控制子系统用于根据该协调控制子系统的指令,控制该储能阀工作。
在该实施例中,通过协调控制子系统控制换流阀控制子系统和储能阀控制子系统工作,能够实现换流阀与储能阀之间的协同配合控制。
在一种可能的实现方式中,该换流阀包括N个第一功率模块,该换流阀控制子系统包括换流阀控制单元和N个第一功率控制单元,N为正整数;该换流阀控制单元用于根据该协调控制子系统的指令,生成该N个第一功率模块的K个第一控制指令,K为小于或等于N的正整数;该N个第一功率控制单元用于根据该K个第一控制指令,分别控制该N个第一功率模块的投入或切出。
在该实施例中,通过为换流阀中的N个第一功率模块设置换流阀控制单元和N个第一功率控制单元,并且该换流阀控制单元作为N个第一功率控制单元的上层控制单元与协调控制子系统进行通信,即换流阀控制子系统采用分层设计和模块化设计,易于扩展集成。
在一种可能的实现方式中,该N个第一功率控制单元中的每个第一功率控制单元还用于向该换流阀控制单元上传对应的该第一功率模块的状态信息。
在该实施例中,通过第一功率控制单元向换流阀控制单元上传第一功率模块的状态信息,有利于换流阀控制单元及时了解各个第一功率模块的状态,从而可以保证系统控制的可靠性。
在一种可能的实现方式中,该换流阀控制单元还用于向该协调控制子系统上传该换流阀的阀控状态信息。
在该实施例中,通过换流阀控制单元向协调控制子系统上传该换流阀的阀控状态信息,有利于协调控制子系统及时了解该换流阀的状态,以更好地协调控制换流阀和储能阀的工作,从而可以保证系统控制的可靠性。
在一种可能的实现方式中,该储能阀包括M个储能模块,该M个储能模块中的每个储能模块包括第二功率模块和电池模块,该储能阀控制子系统包括储能阀控制单元、M个第二功率控制单元、M个电池控制单元,M为正整数;该储能阀控制单元用于根据该协调控制子系统的指令,生成该M个储能模块中的M个第二功率模块的Q个第二控制指令,Q为小于或等于M的正整数;该M个第二功率控制单元用于根据该Q个第二控制指令,分别控制该M个第二功率模块的投入或切出;该M个电池控制单元用于分别对该M个储能模块中的M个电池模块进行充放电控制。
在该实施例中,通过为储能阀中的M个第二功率模块和M个电池模块设置储能阀控制单元、M个第二功率控制单元以及M个电池控制单元,并且该储能阀控制单元作为M个第二功率控制单元的上层控制单元与协调控制子系统进行通信,即储能阀控制子系统采用分层设计和模块化设计,易于扩展集成。另外,换流阀和储能发分开进行控制,换流阀控制子系统的技术已相对成熟,储能阀控制子系统可以基于换流阀控制子系统进行扩展开发,易于工程实现。
在一种可能的实现方式中,该储能阀控制单元还用于根据该协调控制子系统的指令,生成该M个电池模块的P个第三控制指令,P为小于或等于M的正整数;该M个电池控制单元用于根据该P个第三控制指令,分别对该M个电池模块进行充放电控制。
在该实施例中,M个电池控制单元可以直接与储能阀控制单元通信,有利于第二功率控制单元与电池控制单元并行对第二功率模块与电池模块的控制,从而可以提高系统的控制效率。
在一种可能的实现方式中,该M个电池控制单元中的每个电池控制单元还用于向该储能阀控制单元上传对应的该电池模块的状态信息。
在该实施例中,通过电池控制单元向储能阀控制单元上传对应的电池模块的状态信息,能够使得储能阀控制单元及时了解电池模块的状态,对电池模块进行相应的控制,从而可以保证储能阀控制子系统的控制可靠性。
在一种可能的实现方式中,该M个第二功率控制单元还用于根据该Q个第二控制指令,分别生成该M个电池模块的R个第四控制指令,R为小于或等于M的正整数;该M个电池控制单元用于根据该R个第四控制指令,分别对该M个电池模块进行充放电控制。
在该实施例中,M个电池控制单元分别由M个第二功率控制单元控制,可以降低储能阀控制单元的通信负荷。
在一种可能的实现方式中,该M个电池控制单元中的每个电池控制单元还用于向对应的该第二功率控制单元上传对应的该电池模块的状态信息。
在该实施例中,通过电池控制单元向第二功率控制单元上传对应的电池模块的状态信息,能够使得第二功率控制单元向储能阀控制单元及时反馈电池模块的状态,对电池模块进行相应的控制,从而可以保证储能阀控制子系统的控制可靠性。
在一种可能的实现方式中,该储能阀控制单元还用于向该协调控制子系统上传该储能阀的阀控状态信息。
在该实施例中,通过储能阀控制单元向协调控制子系统上传该储能阀的阀控状态信息,有利于协调控制子系统及时了解该储能阀的状态,以更好地协调控制储能阀和储能阀的工作,从而可以保证系统控制的可靠性。
在一种可能的实现方式中,该M个第二功率控制单元中的每个第二功率控制单元还用于向该储能阀控制单元上传对应的该第二功率模块的状态信息。
在该实施例中,通过第二功率控制单元向储能阀控制单元上传第二功率模块的状态信息,有利于储能阀控制单元及时了解各个第二功率模块的状态,从而可以保证系统控制的可靠性。
在一种可能的实现方式中,对应于同一储能模块的该第二功率控制单元和该电池控制单元之间相互通信。
在一种可能的实现方式中,该储能阀控制子系统还包括:电池监控单元,用于获取该M个电池模块的电池数据。
在一种可能的实现方式中,M为大于1的正整数,该M个电池控制单元之间采用菊花链通信连接。
在一种可能的实现方式中,该换流阀控制子系统包括多个换流阀控制单元,该多个换流阀控制单元中的每个换流阀控制单元均与该N个第一功率控制单元通信,该多个换流阀控制单元之间相互通信。
在该实施例中,换流阀控制子系统包括多个换流阀控制单元,并且该多个换流阀控制单元之间互相通信,且均与N个第一功率控制单元通信,能够满足换流阀控制子系统的冗余设计的要求,保证了换流阀控制子系统的控制可靠性。
在一种可能的实现方式中,该储能阀控制子系统包括多个储能阀控制单元,该多个储能阀控制单元中的每个储能阀控制单元均与该M个第二功率控制单元通信,该多个储能阀控制单元之间相互通信。
在该实施例中,储能阀控制子系统包括多个储能阀控制单元,并且该多个储能阀控制单元之间互相通信,且均与M个第二功率控制单元通信,能够满足储能阀控制子系统的冗余设计的要求,保证了储能阀控制子系统的控制可靠性。
在一种可能的实现方式中,该协调控制子系统包括多个系统控制单元,该多个系统控制单元中的每个系统控制单元均与该换流阀控制子系统和该储能阀控制子系统之间通信,该多个系统控制单元之间相互通信。
在该实施例中,协调控制子系统包括多个系统控制单元,并且该多个系统控制单元之间互相通信,且均与换流阀控制子系统和储能阀控制子系统通信,能够满足协调控制子系统的冗余设计的要求,保证了协调控制子系统的控制可靠性。
在一种可能的实现方式中,该换流阀控制子系统集成在该换流阀中,该储能阀控制子系统集成在该储能阀中。
第二方面,提供了一种储能系统,包括换流阀和储能阀,该储能阀连接于该换流阀的直流侧,该储能系统还包括如第一方面及其任一种可能的实现方式中的控制系统。
第三方面,提供了一种储能系统的控制方法,该储能系统包括换流阀和储能阀,该储能阀连接于换流阀的直流侧,该控制方法包括:向换流阀控制子系统发送第一指令以及向储能阀控制子系统发送第二指令,该第一指令用于控制该换流阀工作,该第二指令用于控制该储能阀工作。
第四方面,提供了一种计算机可读存储介质,其特征在于,用于存储计算机程序,该计算机程序使得计算机执行第一方面及其第一方面任一种可能的实现方式中该的方法。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1示出了本申请实施例所适用的高压直流直挂储能系统的示意性架构图。
图2示出了图1中的VSC换流阀的示意性结构图。
图3示出了图1中的直流储能阀的示意性结构图。
图4a示出了图3中的储能模块的一种示意性结构图。
图4b示出了图3中的储能模块的另一示意性结构图。
图5示出了本申请实施例提供的控制系统的示意性架构图。
图6示出了图5中控制系统中的换流阀控制子系统的示意性框图。
图7示出了图5中控制系统中储能阀控制子系统的示意性框图。
图8示出了本申请实施例提供的控制系统的另一示意性架构图。
图9示出了本申请实施例提供的控制系统的再一示意性架构图。
图10示出了本申请实施例提供的控制方法的示意性框图。
图11示出了本申请实施例提供的储能系统的控制方法的示意性流程图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”、“连接”可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在电力系统储能技术领域,新型的储能技术将换流阀与储能阀集成,具有模块化程度高、系统网损低、经济效益好、运行可靠性高等优势。例如,通过将储能阀集成在电压源型换流器(voltage source converter,VSC)换流阀的直流侧,同时实现交直 流功率转换和能量存储。对比传统的储能技术,新型储能系统的电压等级更高,容量更大,具有更强的电网调节能力和电网支撑作用,对以新能源为主体的新型电力系统具有重要的研究意义。
目前,对于新型储能系统的控制架构尚未研究。
有鉴于此,本申请实施例提供了一种储能系统的控制系统,通过协调控制子系统能够实现换流阀与储能阀之间的协同配合控制。
图1示出了本申请实施例所适用的高压直流直挂储能系统的示意性架构图。如图1所示,该高压直流直挂储能系统100包括VSC换流阀110和储能阀120。该储能阀120连接于VSC换流阀110的直流侧。可选地,该VSC换流阀110可以采用如图2所示的MMC式结构。具体地,如图2所示,该VSC换流阀110可以包括6个桥臂,每两个桥臂串联在一起。其中,每个桥臂包括n个功率模块(111_1,111_2,……,111_n)。如图3所示,该储能阀120包括m个串联的储能模块121(121_1,121_2,……,121_m-1,121_m)。该每个储能模块121可以由功率模块1211连接电池模块1212构成。具体地,该功率模块1211可以是如图4a所示的半桥式功率模块,也可以是如图4b所示的全桥式功率模块。电池模块1212可以是单支路串联电池模块,也可以是多支路并联电池模块,还可以是串并联的电池模块。
需要说明的是,本申请实施例提供的储能系统的控制系统不仅适用于如图1所示的高压直流直挂储能系统100,还可以适用于其他储能系统,例如,高压交流直挂储能系统,本申请实施例对此不作限定。
图5示出了本申请实施例的储能系统的控制系统200的示意性框图。可选地,该储能系统可以为图1所述的高压直流直挂储能系统100。该储能系统可以包括换流阀和储能阀,该储能阀连接于换流阀的直流侧。例如,该储能阀可以并联于换流阀的直流侧。如图5所示,该控制系统200可以包括:协调控制子系统210、换流阀控制子系统220和储能阀控制子系统230。其中,该协调控制子系统210用于发送指令以控制该换流阀控制子系统220和该储能阀控制子系统230工作;该换流阀控制子系统220用于根据该协调控制子系统210的指令,控制换流阀工作;该储能阀控制子系统230用于根据该协调控制子系统210的指令,控制储能阀工作。
具体地,该协调控制子系统210可以负责接收该控制系统200的上层控制系统的指令,并基于该上层控制系统的指令协调控制该换流阀控制子系统220和储能阀控制子系统230的工作。换句话说,该协调控制子系统210分别与换流阀控制子系统220和储能阀控制子系统230之间进行通信。例如,该协调控制子系统210可以向换流阀控制子系统220下发指令,以控制换流阀工作;该协调控制子系统210还可以向储能阀控制子系统230下发指令,以控制储能阀工作。
在该实施例中,通过协调控制子系统210控制换流阀控制子系统220和储能阀控制子系统230工作,能够实现换流阀与储能阀之间的协同配合控制。
可选地,在本申请实施例中,该换流阀包括N个第一功率模块。进一步地,如图6所示,该换流阀控制子系统220包括换流阀控制单元221和N个第一功率控制单元222,N为正整数。该换流阀控制单元221用于根据协调控制子系统210的指令,生成该N个第一功率模块的K个第一控制指令,K为小于或等于N的正整数;该N个第一功率控制单元222用于根据该K个第一控制指令,分别控制该N个第一功率模块的投入或切出。
具体地,该换流阀包括N个第一功率模块,该第一功率模块可以是如图2所示的功率模块111。在一种示例中,该第一功率模块可以是如图4a所示的半桥式功率模块1211。在另一种示例中,该第一功率模块也可以是如图4b所示的全桥式功率模块 1211。可选地,该换流阀控制子系统220可以包括换流阀控制单元221和N个第一功率控制单元222,也就是说,该N个第一功率模块中的每个第一功率模块对应一个第一功率控制单元222,而N个第一功率控制单元222对应共同的换流阀控制单元221。该换流阀控制单元221负责接收协调控制子系统210的指令,并生成K个第一功率模块的控制指令。在一种示例中,K等于N,即每个第一功率模块对应一个控制指令,每个第一功率控制单元222对应一个控制指令,该N个第一功率控制单元222中的每个第一功率控制单元222则负责接收换流阀控制单元221生成的与其对应的控制指令,并控制对应的第一功率模块工作,例如,控制对应的第一功率模块的投入或切出。在另一种示例中,K小于N,即N个第一功率控制单元222中只有部分第一功率控制单元222接收到控制指令,该部分第一功率控制单元222可以根据接收到的控制指令,控制对应的第一功率模块工作,例如,控制对应的第一功率模块的投入或切出,而未接收到控制指令的另一部分第一功率控制单元222则可以控制对应的第一功率模块处于默认的状态,例如,默认为切出状态,或者,默认为投入状态。
在该实施例中,通过为换流阀中的N个第一功率模块设置换流阀控制单元221和N个第一功率控制单元222,并且该换流阀控制单元221作为N个第一功率控制单元222的上层控制单元与协调控制子系统210进行通信,即换流阀控制子系统220采用分层设计和模块化设计,易于扩展集成。
可选地,在本申请实施例中,该N个第一功率控制单元222中的每个第一功率控制单元222还用于向换流阀控制单元221上传对应的第一功率模块的状态信息。
可选地,该第一功率模块的状态信息主要包括投入、切出、闭锁以及故障等状态。也就是说,该第一功率模块的状态信息用于向换流阀控制单元221指示对应的第一功率模块当前处于投入、切出、闭锁以及故障中的哪种状态。进一步地,若第一功率模块处于故障状态,则该第一功率模块的状态信息还用于向换流阀控制单元221指示对应的第一功率模块当前存在的故障。
在该实施例中,通过第一功率控制单元222向换流阀控制单元221上传第一功率模块的状态信息,有利于换流阀控制单元221及时了解各个第一功率模块的状态,从而可以保证系统控制的可靠性。
可选地,在本申请实施例中,该换流阀控制单元221还用于向协调控制子系统210上传该换流阀的阀控状态信息。
可选地,该换流阀的阀控状态信息主要包括闭锁、故障或运行这三大状态。也就是说,该阀控状态信息用于向协调控制子系统210指示该换流阀当前处于闭锁、故障以及运行中的哪种状态。进一步地,若换流阀处于故障状态,则该换流阀的阀控状态信息还用于向协调控制子系统210指示该换流阀当前存在的故障。
可选地,该换流阀控制单元221还可以基于该N个第一功率控制单元222上报的N个第一功率模块的状态信息,确定该换流阀的阀控状态信息,进而向协调控制子系统210上报所确定的阀控状态信息。
在该实施例中,通过换流阀控制单元221向协调控制子系统210上传该换流阀的阀控状态信息,有利于协调控制子系统210及时了解该换流阀的状态,以更好地协调控制换流阀和储能阀的工作,从而可以保证系统控制的可靠性。
可选地,在本申请实施例中,该换流阀控制子系统220包括多个换流阀控制单元221,该多个换流阀控制单元221中的每个换流阀控制单元221均与N个第一功率控制单元222通信,并且该多个换流阀控制单元221之间相互通信。
可选地,该多个换流阀控制单元221之间可以相互通信,交换控制信息,并且可以互为主从切换。也就是说,该多个换流阀控制单元221中的一个换流阀控制单元 221为主控制单元,而其余换流阀控制单元221则为从控制单元,一旦主控制单元出现故障,则可以将从控制单元中的一个控制单元设置为主控制单元。
应理解,该多个换流阀控制单元221可以集成在同一装置内的不同插件,也可以设置于不同的装置中;类似地,该N个第一功率控制单元222可以集成在同一装置内的不同插件,也可以设置于不同的装置中;另外,换流阀控制单元221可以与第一功率控制单元222集成在同一装置内的不同插件,也可以设置于不同的装置中,本申请实施例对此不作限定。
在该实施例中,换流阀控制子系统220包括多个换流阀控制单元221,并且该多个换流阀控制单元221之间互相通信,且均与N个第一功率控制单元222通信,能够满足换流阀控制子系统220的冗余设计的要求,保证了换流阀控制子系统220的控制可靠性。
可选地,在本申请实施例中,储能阀包括M个储能模块,该M个储能模块中的每个储能模块包括第二功率模块和电池模块,M为正整数。进一步地,如图7所示,该储能阀控制子系统230包括储能阀控制单元231、M个第二功率控制单元232以及M个电池控制单元233。其中,该储能阀控制单元231用于根据协调控制子系统210的指令,生成该M个储能模块中的M个第二功率模块的Q个第二控制指令,Q为小于或等于M的正整数;该M个第二功率控制单元232用于根据该Q个第二控制指令,分别控制该M个第二功率模块的投入或切出;该M个电池控制单元233用于分别对该M个储能模块中的M个电池模块进行充放电控制。
具体地,该储能阀包括M个储能模块,该每个储能模块可以是如图3所示的储能模块121,并且每个该储能模块包括并联的第二功率模块和电池模块。也就是说,该储能阀包括M个第二功率模块和M个电池模块。在一种示例中,该第二功率模块可以是如图4a所示的半桥式功率模块1211。在另一种示例中,该第二功率模块也可以是如图4b所示的全桥式功率模块1211。可选地,该储能阀控制子系统230可以包括储能阀控制单元231、M个第二功率控制单元232和M个电池控制单元233,也就是说,该M个第二功率模块中的每个第二功率模块对应一个第二功率控制单元232,该M个电池模块中的每个电池模块对应一个电池控制单元233,而M个第二功率控制单元232和M个电池控制单元233对应共同的储能阀控制单元231。该储能阀控制单元231负责接收协调控制子系统210的指令,并生成Q个第二功率模块的控制指令。在一种示例中,Q等于M,即每个第二功率模块对应一个控制指令,每个第二功率控制单元232对应一个控制指令,该M个第二功率控制单元232中的每个第二功率控制单元232则负责接收储能阀控制单元231生成的与其对应的控制指令,并控制对应的第二功率模块工作,例如,控制对应的第二功率模块的投入或切出。在另一种示例中,Q小于M,即M个第二功率控制单元232中只有部分第二功率控制单元232接收到控制指令,该部分第二功率控制单元232可以根据接收到的控制指令,控制对应的第二功率模块工作,例如,控制对应的第二功率模块的投入或切出,而未接收到控制指令的另一部分第二功率控制单元232则可以控制对应的第二功率模块处于默认的状态,例如,默认为切出状态,或者,默认为投入状态。此外,该M个电池控制单元233中的每个电池控制单元233则用于控制对应的电池模块工作,例如,控制对应的电池模块进行充放电。
在该实施例中,通过为储能阀中的M个第二功率模块和M个电池模块设置储能阀控制单元231、M个第二功率控制单元232以及M个电池控制单元233,并且该储能阀控制单元231作为M个第二功率控制单元232的上层控制单元与协调控制子系统210进行通信,即储能阀控制子系统230采用分层设计和模块化设计,易于扩展集 成。另外,换流阀和储能发分开进行控制,换流阀控制子系统220的技术已相对成熟,储能阀控制子系统230可以基于换流阀控制子系统220进行扩展开发,易于工程实现。
需要说明的是,第一功率模块与第二功率模块可以相同,也可以不同。本申请实施例对此不作限定。
可选地,在本申请实施例中,该储能阀控制单元231还用于根据该协调控制子系统210的指令,生成该M个电池模块的P个第三控制指令。P为小于或等于M的正整数,该M个电池控制单元233用于根据该P个第三控制指令,分别对该M个电池模块进行充放电控制。
在一种示例中,P等于M,即每个电池模块对应一个控制指令,每个电池控制单元233对应一个控制指令,该M个电池控制单元233中的每个电池控制单元233则负责接收储能阀控制单元231生成的与其对应的控制指令,并控制对应的电池模块工作,例如,控制对应的电池模块进行充放电。在另一种示例中,P小于M,即M个电池控制单元233中只有部分电池控制单元233接收到控制指令,该部分电池控制单元233可以根据接收到的控制指令,控制对应的电池模块工作,例如,控制对应的电池模块进行充放电,而未接收到控制指令的另一部分电池控制单元233则可以控制对应的电池模块处于默认的状态,例如,默认为不充电,或者默认为不放电。
在该实施例中,M个电池控制单元233可以直接与储能阀控制单元231通信,有利于第二功率控制单元232与电池控制单元233并行对第二功率模块与电池模块的控制,从而可以提高系统的控制效率。
可选地,在本申请实施例中,该M个电池控制单元233中的每个电池控制单元233还用于向该储能阀控制单元231上传对应的电池模块的状态信息。
可选地,该电池模块的状态信息可以包括电池模块的电压、电量、温度、荷电状态(state of charge,SOC)、温度、电流等至少一种电池参数。可选地,该电池模块的状态信息还可以是上述各种电池参数的函数。电池控制单元233可以根据储能阀控制单元231的需求上传对应的电池模块的状态信息。也就是说,储能阀控制单元231需要哪种状态信息,电池控制单元233就上传所需的状态信息即可。
在该实施例中,通过电池控制单元233向储能阀控制单元231上传对应的电池模块的状态信息,能够使得储能阀控制单元231及时了解电池模块的状态,对电池模块进行相应的控制,从而可以保证储能阀控制子系统230的控制可靠性。
可选地,在本申请实施例中,该M个第二功率控制单元232还用于根据该M个第二控制指令,分别生成该M个电池模块的R个第四控制指令,R为小于或等于M的正整数;该M个电池控制单元233用于根据该R个第四控制指令,分别对该M个电池模块进行充放电控制。
也就是说,该M个电池控制单元233不直接与储能阀控制单元231之间通信,而是通过M个第二功率控制单元232间接与储能阀控制单元231通信。
在一种示例中,R等于M,即每个电池模块对应一个控制指令,每个电池控制单元233对应一个控制指令,该M个电池控制单元233中的每个电池控制单元233则负责接收对应的第二功率控制单元232生成的与其对应的控制指令,并控制对应的电池模块工作,例如,控制对应的电池模块进行充放电。在另一种示例中,R小于M,即M个电池控制单元233中只有部分电池控制单元233接收到与其对应的第二功率控制单元232发送的控制指令,该部分电池控制单元233可以根据接收到的控制指令,控制对应的电池模块工作,例如,控制对应的电池模块进行充放电,而未接收到控制 指令的另一部分电池控制单元233则可以控制对应的电池模块处于默认的状态,例如,默认为不充电,或者默认为不放电。
在该实施例中,M个电池控制单元233分别由M个第二功率控制单元232控制,可以降低储能阀控制单元231的通信负荷。
可选地,在本申请实施例中,该M个电池控制单元233中的每个电池控制单元233还用于向对应的第二功率控制单元232上传对应的电池模块的状态信息。
与上述实施例类似,该电池模块的状态信息可以包括电池模块的电压、电量、温度、荷电状态(state of charge,SOC)、温度、电流等至少一种电池参数。可选地,该电池模块的状态信息还可以是上述各种电池参数的函数。电池控制单元233可以根据第四控制指令的内容,向第二功率控制单元232上传电池模块的状态信息。即第四控制指令指示哪些信息,电池控制单元233就上传哪些信息即可。
在该实施例中,通过电池控制单元233向第二功率控制单元232上传对应的电池模块的状态信息,能够使得第二功率控制单元232向储能阀控制单元231及时反馈电池模块的状态,对电池模块进行相应的控制,从而可以保证储能阀控制子系统230的控制可靠性。
可选地,在本申请实施例中,该M个第二功率控制单元232中的每个第二功率控制单元232还用于向储能阀控制单元231上传对应的第二功率模块的状态信息。
可选地,该第二功率模块的状态信息主要包括投入、切出、闭锁以及故障等状态。也就是说,该第二功率模块的状态信息用于向储能阀控制单元231指示对应的第二功率模块当前处于投入、切出、闭锁以及故障中的哪种状态。进一步地,若第二功率模块处于故障状态,则该第二功率模块的状态信息还用于向储能阀控制单元231指示对应的第二功率模块当前存在的故障。
在该实施例中,通过第二功率控制单元232向储能阀控制单元231上传第二功率模块的状态信息,有利于储能阀控制单元231及时了解各个第二功率模块的状态,从而可以保证系统控制的可靠性。
可选地,在本申请实施例中,该储能阀控制单元231还用于向协调控制子系统210上传该储能阀的阀控状态信息。
可选地,该储能阀的阀控状态信息主要包括闭锁、故障或运行这三大状态。也就是说,该阀控状态信息用于向协调控制子系统210指示该储能阀当前处于闭锁、故障以及运行中的哪种状态。进一步地,若储能阀处于故障状态,则该储能阀的阀控状态信息还用于向协调控制子系统210指示该储能阀当前存在的故障。
可选地,该储能阀控制单元231还可以基于该M个第二功率控制单元232上报的M个第二功率模块的状态信息以及M个电池控制单元233上报的M个电池模块的状态信息,确定该储能阀的阀控状态信息,进而向协调控制子系统210上报所确定的阀控状态信息。
在该实施例中,通过储能阀控制单元231向协调控制子系统210上传该储能阀的阀控状态信息,有利于协调控制子系统210及时了解该储能阀的状态,以更好地协调控制储能阀和储能阀的工作,从而可以保证系统控制的可靠性。
可选地,在本申请实施例中,对应于同一储能模块的第二功率控制单元232与电池控制单元233之间相互通信。
可选地,在本申请实施例中,该储能阀控制子系统230还包括:电池监控单元,用于获取该M个电池模块的电池数据。
可选地,该电池数据可以包括电池模块的电压、电量、温度、荷电状态(state of charge,SOC)、温度、电流等所有电池参数。并且该电池数据是由电池控制单元233主动上报给电池监控单元的。
在一种示例中,该每个电池控制单元233可以都与电池监控单元通信,即每个电池控制单元233直接向电池监控单元上报对应的电池模块的电池数据。
在其他示例中,该每个电池控制单元233之间采用菊花链通信,只有该菊花链头尾两个电池控制单元233与电池监控单元直接通信。即可以由菊花链头尾的两个电池控制单元233汇总所有电池控制单元233获取到的电池数据,并将汇总后的电池数据上传至电池监控单元。
可选地,无论电池监控单元采用上述哪种示例获取M个电池模块的电池数据,该M个电池控制单元233之间都可以采用菊花链通信。
可选地,在该实施例中,该储能阀控制子系统230包括多个储能阀控制单元231,该多个储能阀控制单元231中的每个储能阀控制单元231均与M个第二功率控制单元232通信,并且该多个储能阀控制单元232之间相互通信。
可选地,该多个储能阀控制单元231之间可以相互通信,交换控制信息,并且可以互为主从切换。也就是说,该多个储能阀控制单元231中的一个储能阀控制单元231为主控制单元,而其余储能阀控制单元231则为从控制单元,一旦主控制单元出现故障,则可以将从控制单元中的一个控制单元设置为主控制单元。
应理解,该多个储能阀控制单元231可以集成在同一装置内的不同插件,也可以设置于不同的装置中;类似地,该M个第二功率控制单元232可以集成在同一装置内的不同插件,也可以设置于不同的装置中;该M个电池控制单元233可以集成在同一装置内的不同插件,也可以设置于不同的装置中。另外,储能阀控制单元231、第二功率控制单元232以及电池控制单元233可以集成在同一装置内的不同插件,也可以设置于不同的装置中,本申请实施例对此不作限定。
在该实施例中,储能阀控制子系统230包括多个储能阀控制单元231,并且该多个储能阀控制单元231之间互相通信,且均与M个第二功率控制单元232通信,能够满足储能阀控制子系统230的冗余设计的要求,保证了储能阀控制子系统230的控制可靠性。
可选地,在本申请实施例中,该协调控制子系统210包括多个系统控制单元,该多个系统控制单元中的每个系统控制单元均与换流阀控制子系统220和储能阀控制子系统230之间通信,该多个系统控制单元之间相互通信。
可选地,该多个系统控制单元之间可以相互通信,交换控制信息,并且可以互为主从切换。也就是说,该多个系统控制单元中的一个系统控制单元为主控制单元,而其余系统控制单元则为从控制单元,一旦主控制单元出现故障,则可以将从控制单元中的一个控制单元设置为主控制单元。
应理解,该多个系统控制单元可以集成在同一装置内的不同插件,也可以设置于不同的装置中,本申请实施例对此不作限定。
在该实施例中,协调控制子系统210包括多个系统控制单元,并且该多个系统控制单元之间互相通信,且均与换流阀控制子系统220和储能阀控制子系统230通信,能够满足协调控制子系统210的冗余设计的要求,保证了协调控制子系统210的控制可靠性。
可选地,在本申请实施例中,该换流阀控制子系统220集成在换流阀中,该储能阀控制子系统230集成在储能阀中。
下面将结合图8和图9详细描述本申请实施例提供的储能系统的控制系统。
图8是储能阀控制子系统的三层控制架构图。如图8所示,该控制系统包括协调控制子系统,、换流阀控制子系统和储能阀控制子系统。该协调控制子系统包括系统控制单元A和系统控制单元B,该系统控制单元A和系统控制单元B之间相互通信,交互控制信息,该换流阀控制子系统包括两个换流阀控制单元(换流阀控制单元A和换流阀控制单元B,换流阀控制单元A和换流阀控制单元B之间相互通信,交互控制信息)和N个第一功率控制单元(第一功率控制单元1,第一功率控制单元2,……,第一功率控制单元N-1,第一功率控制单元N)。该储能阀控制子系统包括N个储能阀控制单元(储能阀控制单元A和储能阀控制单元B,该储能阀控制单元A和储能阀控制单元B之间相互通信,交互控制信息)、M个第二功率控制单元(第二功率控制单元1,第二功率控制单元2,……,第二功率控制单元M)、M个电池控制单元(电池控制单元1,电池控制单元2,……,电池控制单元M)和电池监控单元。其中,该系统控制单元A生成控制指令,并发送给换流阀控制单元A和储能阀控制单元A,该系统控制单元B生成控制指令,并发送给换流阀控制单元B和储能阀控制单元B。该换流阀控制单元A和换流阀控制单元B分别根据系统控制单元A和系统控制单元B生成的控制指令,向第一功率控制单元1-N发送投切指令,并且该第一功率控制单元1-N向换流阀控制单元A和换流阀控制单元B发送所控制的第一功率模块的状态。该换流阀控制单元A向系统控制单元A发送换流阀的阀控状态,该换流阀控制单元B向系统控制单元B发送换流阀的阀控状态。该储能阀控制单元A和储能阀控制单元B分别根据系统控制单元A和系统控制单元B生成的控制指令,向第二功率控制单元1-M发送投切指令,并且该第二功率控制单元1-M向储能阀控制单元A和储能阀控制单元B发送第二功率模块的状态。该第二功率控制单元1-M还可以分别向电池控制单元1-M发送充放电指令,电池控制单元1-M一方面根据充放电指令控制电池模块充放电,并上传电池模块的电池状态至第二功率控制单元1-M,另一方面电池控制单元1-M之间采用菊花链通信连接,将电池控制单元1-M获取的电池数据汇集至电池监控单元中。
图9是储能阀控制子系统的两层控制架构图。如图9所示,该控制系统包括协调控制子系统,、换流阀控制子系统和储能阀控制子系统。该协调控制子系统包括系统控制单元A和系统控制单元B,该系统控制单元A和系统控制单元B之间相互通信,交互控制信息,该换流阀控制子系统包括两个换流阀控制单元(换流阀控制单元A和换流阀控制单元B,换流阀控制单元A和换流阀控制单元B之间相互通信,交互控制信息)和N个第一功率控制单元(第一功率控制单元1,第一功率控制单元2,……,第一功率控制单元N-1,第一功率控制单元N)。该储能阀控制子系统包括N个储能阀控制单元(储能阀控制单元A和储能阀控制单元B,该储能阀控制单元A和储能阀控制单元B之间相互通信,交互控制信息)、M个第二功率控制单元(第二功率控制单元1,第二功率控制单元2,……,第二功率控制单元M)、M个电池控制单元(电池控制单元1,电池控制单元2,……,电池控制单元M)和电池监控单元。其中,该系统控制单元A生成控制指令,并发送给换流阀控制单元A和储能阀控制单元A,该系统控制单元B生成控制指令,并发送给换流阀控制单元B和储能阀控制单元B。该换流阀控制单元A和换流阀控制单元B分别根据系统控制单元A和系统控制单元B生成的控制指令,向第一功率控制单元1-N发送投切指令,并且该第一功率控制单元1-N向换流阀控制单元A和换流阀控制单元B发送所控制的第一功率模块的状态信息。该储能阀控制单元A和储能阀控制单元B分别根据系统控制单元A和系统控制单元B生成的控制指令,向第二功率控制单元1-M发送投切指令并且向电池控制单元1-M发送充放电指令。该第二功率控制单元1-M向储能阀控制单元A和储能阀控制单元B发送第二功率模块的状态信息,电池控制单元1-M一方面根据充放电指令控制电池模块 充放电,并上传电池模块的电池状态至储能阀控制单元A和储能阀控制单元B,另一方面电池控制单元1-M之间采用菊花链通信连接,将电池控制单元1-M获取的电池数据汇集至电池监控单元中。另外,同一个储能模块对应的第二功率控制单元和电池控制单元之间相互通信,交互控制信息。
图10示出了本申请实施例提供的储能系统的控制方法300的示意性框图。该储能系统包括换流阀和储能阀,该储能阀连接于换流阀的直流侧。可选地,该控制方法可以由上文描述的协调控制子系统执行。如图10所示,该控制方法300包括:
S310,向换流阀控制子系统发送第一指令以及向储能阀控制子系统发送第二指令,该第一指令用于控制该换流阀工作,该第二指令用于控制该储能阀工作。
需要说明的是,控制方法300所包括的内容可以参见上述协调控制子系统210所执行的各种步骤。可选地,该控制方法200还可以包括上述换流阀子系统220以及储能阀子系统230所执行的各种步骤,为了简洁,此处不再赘述。
图11为基于图8所示的控制架构的储能系统的控制方法的示意性流程图。具体地,该控制方法包括:(1),由协调控制子系统中的系统控制单元依次通过控制模式选择、功率计算、功率控制(交流功率/直流功率)和内外双环控制(有功功率/无功功率)确定不同控制模式下换流阀和储能阀的阀控指令;(2),在换流阀控制子系统中,由换流阀控制单元完成桥臂电流控制、电容电压均衡控制以及调制,生成换流阀中第一功率模块的投切指令;(3)由换流阀控制子系统中的第一功率控制单元完成第一功率控制单元的投切控制;(4)在储能阀控制子系统中,由储能阀控制单元完成电池电流控制、电池状态均衡控制以及调制,生成储能阀中第一功率模块的投切指令;(5)再由储能阀控制子系统中的第二功率控制单元完成第二功率模块的投切控制;(6)最后,储能阀控制子系统中的电池控制单元再根据第二功率控制单元生成的充放电指令,控制储能阀中的电池模块进行充放电,同时完成电池模块的电池信息汇总及计算。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的控制系统,并且该计算机程序使得计算机执行本申请实施例的各个方法中由控制系统实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的控制系统,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由控制系统实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的控制系统,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由控制系统实现的相应流程,为了简洁,在此不再赘述。
可选地,本申请实施例还提供了一种储能系统,该储能系统包括换流阀和储能阀,该储能阀连接于换流阀的直流侧,并且该高压直挂储能系统还可以包括上述各种实施例所描述的控制系统。
可选地,在本申请实施例中,该换流阀为VSC换流阀。
进一步地,在本申请实施例中,该VSC换流阀采用模块化多电平换流器(modular multilevel converter,MMC)式结构。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (20)

  1. 一种储能系统的控制系统,其特征在于,所述储能系统包括换流阀和储能阀,所述储能阀连接于所述换流阀的直流侧,所述控制系统包括:协调控制子系统、换流阀控制子系统和储能阀控制子系统;
    所述协调控制子系统用于发送指令以控制所述换流阀控制子系统和所述储能阀控制子系统工作;
    所述换流阀控制子系统用于根据所述协调控制子系统的指令,控制所述换流阀工作;
    所述储能阀控制子系统用于根据所述协调控制子系统的指令,控制所述储能阀工作。
  2. 根据权利要求1所述的控制系统,其特征在于,所述换流阀包括N个第一功率模块,所述换流阀控制子系统包括换流阀控制单元和N个第一功率控制单元,N为正整数;
    所述换流阀控制单元用于根据所述协调控制子系统的指令,生成所述N个第一功率模块的K个第一控制指令,K为小于或等于N的正整数;
    所述N个第一功率控制单元用于根据所述K个第一控制指令,分别控制所述N个第一功率模块的投入或切出。
  3. 根据权利要求2所述的控制系统,其特征在于,所述N个第一功率控制单元中的每个第一功率控制单元还用于向所述换流阀控制单元上传对应的所述第一功率模块的状态信息。
  4. 根据权利要求2或3所述的控制系统,其特征在于,所述换流阀控制单元还用于向所述协调控制子系统上传所述换流阀的阀控状态信息。
  5. 根据权利要求1至4中任一项所述的控制系统,其特征在于,所述储能阀包括M个储能模块,所述M个储能模块中的每个储能模块包括第二功率模块和电池模块,所述储能阀控制子系统包括储能阀控制单元、M个第二功率控制单元、M个电池控制单元,M为正整数;
    所述储能阀控制单元用于根据所述协调控制子系统的指令,生成所述M个储能模块中的M个第二功率模块的Q个第二控制指令,Q为小于或等于M的正整数;
    所述M个第二功率控制单元用于根据所述Q个第二控制指令,分别控制所述M个第二功率模块的投入或切出;
    所述M个电池控制单元用于分别对所述M个储能模块中的M个电池模块进行充放电控制。
  6. 根据权利要求5所述的控制系统,其特征在于,所述储能阀控制单元还用于根据所述协调控制子系统的指令,生成所述M个电池模块的P个第三控制指令,P为小于或等于M的正整数;所述M个电池控制单元用于根据所述P个第三控制指令,分别对所述M个电池模块进行充放电控制。
  7. 根据权利要求6所述的控制系统,其特征在于,所述M个电池控制单元中的每 个电池控制单元还用于向所述储能阀控制单元上传对应的所述电池模块的状态信息。
  8. 根据权利要求5所述的控制系统,其特征在于,所述M个第二功率控制单元还用于根据所述Q个第二控制指令,分别生成所述M个电池模块的R个第四控制指令,R为小于或等于M的正整数;所述M个电池控制单元用于根据所述R个第四控制指令,分别对所述M个电池模块进行充放电控制。
  9. 根据权利要求8所述的控制系统,其特征在于,所述M个电池控制单元中的每个电池控制单元还用于向对应的所述第二功率控制单元上传对应的所述电池模块的状态信息。
  10. 根据权利要求5至9中任一项所述的控制系统,其特征在于,所述储能阀控制单元还用于向所述协调控制子系统上传所述储能阀的阀控状态信息。
  11. 根据权利要求5至10中任一项所述的控制系统,其特征在于,所述M个第二功率控制单元中的每个第二功率控制单元还用于向所述储能阀控制单元上传对应的所述第二功率模块的状态信息。
  12. 根据权利要求5至11中任一项所述的控制系统,其特征在于,对应于同一储能模块的所述第二功率控制单元和所述电池控制单元之间相互通信。
  13. 根据权利要求5至12中任一项所述的控制系统,其特征在于,所述储能阀控制子系统还包括:
    电池监控单元,用于获取所述M个电池模块的电池数据。
  14. 根据权利要求5至13中任一项所述的控制系统,其特征在于,M为大于1的正整数,所述M个电池控制单元之间采用菊花链通信连接。
  15. 根据权利要求2至4中任一项所述的控制系统,其特征在于,所述换流阀控制子系统包括多个换流阀控制单元,所述多个换流阀控制单元中的每个换流阀控制单元均与所述N个第一功率控制单元通信,所述多个换流阀控制单元之间相互通信。
  16. 根据权利要求5至14中任一项所述的控制系统,其特征在于,所述储能阀控制子系统包括多个储能阀控制单元,所述多个储能阀控制单元中的每个储能阀控制单元均与所述M个第二功率控制单元通信,所述多个储能阀控制单元之间相互通信。
  17. 根据权利要求1至16中任一项所述的控制系统,其特征在于,所述协调控制子系统包括多个系统控制单元,所述多个系统控制单元中的每个系统控制单元均与所述换流阀控制子系统和所述储能阀控制子系统之间通信,所述多个系统控制单元之间相互通信。
  18. 根据权利要求1至17中任一项所述的控制系统,其特征在于,所述换流阀控制子系统集成在所述换流阀中,所述储能阀控制子系统集成在所述储能阀中。
  19. 一种储能系统,其特征在于,包括换流阀和储能阀,所述储能阀连接于所述换流阀的直流侧,所述储能系统还包括如权利要求1至18中任一项所述的控制系统。
  20. 一种储能系统的控制方法,其特征在于,所述储能系统包括换流阀和储能阀,所述储能阀连接于所述换流阀的直流侧,所述控制方法包括:
    向换流阀控制子系统发送第一指令以及向储能阀控制子系统发送第二指令,所述第一指令用于控制所述换流阀工作,所述第二指令用于控制所述储能阀工作。
PCT/CN2022/111168 2022-08-09 2022-08-09 储能系统的控制系统及其控制方法和储能系统 WO2024031338A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/111168 WO2024031338A1 (zh) 2022-08-09 2022-08-09 储能系统的控制系统及其控制方法和储能系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/111168 WO2024031338A1 (zh) 2022-08-09 2022-08-09 储能系统的控制系统及其控制方法和储能系统

Publications (1)

Publication Number Publication Date
WO2024031338A1 true WO2024031338A1 (zh) 2024-02-15

Family

ID=89850126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111168 WO2024031338A1 (zh) 2022-08-09 2022-08-09 储能系统的控制系统及其控制方法和储能系统

Country Status (1)

Country Link
WO (1) WO2024031338A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109586326A (zh) * 2018-10-29 2019-04-05 中电普瑞科技有限公司 一种超大规模储能系统控制保护装置
CN112542827A (zh) * 2020-11-12 2021-03-23 广东电网有限责任公司佛山供电局 一种直流微电网的启停协调控制方法
CN112736977A (zh) * 2020-12-31 2021-04-30 中国长江三峡集团有限公司 多端海上风电柔性直流与储能协同并网系统及其控制方法
CN114188967A (zh) * 2022-01-10 2022-03-15 南京南瑞继保电气有限公司 电网支撑型有源换流器及其控制方法和换流系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109586326A (zh) * 2018-10-29 2019-04-05 中电普瑞科技有限公司 一种超大规模储能系统控制保护装置
CN112542827A (zh) * 2020-11-12 2021-03-23 广东电网有限责任公司佛山供电局 一种直流微电网的启停协调控制方法
CN112736977A (zh) * 2020-12-31 2021-04-30 中国长江三峡集团有限公司 多端海上风电柔性直流与储能协同并网系统及其控制方法
CN114188967A (zh) * 2022-01-10 2022-03-15 南京南瑞继保电气有限公司 电网支撑型有源换流器及其控制方法和换流系统

Similar Documents

Publication Publication Date Title
EP3651305A1 (en) Chained multi-port grid-connected interface apparatus and control method
WO2021056747A1 (zh) 交直流配电系统电压协调控制方法及交直流配电系统
WO2018098673A1 (zh) 一种双极型vsc-hvdc和upfc混合拓扑结构及其运行方法
CN112117767A (zh) 基于多站融合的供配电系统
CN111555335B (zh) 基于主从控制的自储能多端背靠背柔直系统协调控制方法
CN212400925U (zh) 增程式混合动力工程机械能量管理系统
CN110601199B (zh) 一种多制式输入组合模块式能源转化装置
CN112165108A (zh) 一种数据中心绿色备用电源系统及方法
CN111463837B (zh) 一种用于多源混合动力系统的分散式功率分配法
CN114825450B (zh) 一种采用电力电子变压sop的光储并网厂用系统
CN212435428U (zh) 不间断电源
WO2024031338A1 (zh) 储能系统的控制系统及其控制方法和储能系统
CN106208396A (zh) 一种基于mmc拓扑的分散式混合储能与电力补偿系统
WO2021232418A1 (zh) 充电控制方法、储能模块及用电设备
CN112994019B (zh) 柔性互联配电网系统
CN116014844A (zh) 一种集装箱储能系统的控制方法
CN213959823U (zh) 一种基于铝空气电池的不间断铝燃料电源系统
CN105119271A (zh) 基于二维双向能量调配树的能量管理与控制系统及方法
Dong et al. A service restoration strategy for active distribution network based on multiagent system
CN113078664A (zh) 新型数据供电中心及不间断供电方法
CN111509751B (zh) 一种换流器单极故障下的极间功率协调控制方法及装置
CN113270894A (zh) 一种基于航天器pcu系统的直流微网组网系统及控制方法
CN114030364A (zh) 工程机械能量管理系统、方法、装置和存储介质
JPH04351424A (ja) 電源装置
CN114498714B (zh) 分散接入柔性牵引变压器的新能源储能系统及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954315

Country of ref document: EP

Kind code of ref document: A1