WO2024031304A1 - Techniques for configuration parameters for flexible occasions - Google Patents

Techniques for configuration parameters for flexible occasions Download PDF

Info

Publication number
WO2024031304A1
WO2024031304A1 PCT/CN2022/111029 CN2022111029W WO2024031304A1 WO 2024031304 A1 WO2024031304 A1 WO 2024031304A1 CN 2022111029 W CN2022111029 W CN 2022111029W WO 2024031304 A1 WO2024031304 A1 WO 2024031304A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
configuration parameters
flexible
configuration
sub
Prior art date
Application number
PCT/CN2022/111029
Other languages
French (fr)
Inventor
Zhichao ZHOU
Ahmed Elshafie
Huilin Xu
Diana MAAMARI
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2022/111029 priority Critical patent/WO2024031304A1/en
Publication of WO2024031304A1 publication Critical patent/WO2024031304A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for configuration parameters for flexible occasions.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (for example, bandwidth, transmit power, etc. ) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless network may include one or more network nodes that support communication for wireless communication devices, such as a user equipment (UE) or multiple UEs.
  • a UE may communicate with a network node via downlink communications and uplink communications.
  • Downlink (or “DL” ) refers to a communication link from the network node to the UE
  • uplink (or “UL” ) refers to a communication link from the UE to the network node.
  • Some wireless networks may support device-to-device communication, such as via a local link (e.g., a sidelink (SL) , a wireless local area network (WLAN) link, and/or a wireless personal area network (WPAN) link, among other examples) .
  • SL sidelink
  • WLAN wireless local area network
  • WPAN wireless personal area network
  • New Radio which also may be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the 3GPP.
  • NR is designed to better support mobile broadband internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency-division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink, using CP-OFDM or single-carrier frequency division multiplexing (SC-FDM) (also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink, as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency-division multiplexing
  • SC-FDM single-carrier frequency division multiplexing
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • the method may include receiving configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications.
  • the method may include communicating at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters.
  • the method may include transmitting, to a UE, configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications.
  • the method may include communicating at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters.
  • the apparatus may include a memory and one or more processors coupled to the memory.
  • the one or more processors may be configured to receive configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications.
  • the one or more processors may be configured to communicate at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters.
  • the apparatus may include a memory and one or more processors coupled to the memory.
  • the one or more processors may be configured to transmit, to UE, configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications.
  • the one or more processors may be configured to communicate at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters.
  • Some aspects described herein relate to a non-transitory computer-readable medium that stores a set of instructions for wireless communication by a UE.
  • the set of instructions when executed by one or more processors of the UE, may cause the UE to receive configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications.
  • the set of instructions when executed by one or more processors of the UE, may cause the UE to communicate at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters.
  • Some aspects described herein relate to a non-transitory computer-readable medium that stores a set of instructions for wireless communication by a network node.
  • the set of instructions when executed by one or more processors of the network node, may cause the network node to transmit, to a UE, configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications.
  • the set of instructions when executed by one or more processors of the network node, may cause the network node to communicate at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters.
  • the apparatus may include means for receiving configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications.
  • the apparatus may include means for communicating at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters.
  • the apparatus may include means for transmitting, to a UE, configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications.
  • the apparatus may include means for communicating at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, network entity, network node, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
  • Fig. 1 is a diagram illustrating an example of a wireless network.
  • Fig. 2 is a diagram illustrating an example of a network node in communication with a user equipment (UE) in a wireless network.
  • UE user equipment
  • Fig. 3 is a diagram illustrating an example disaggregated base station architecture.
  • Fig. 4 is a diagram illustrating an example of downlink semi-persistent scheduling (SPS) communication and an example of uplink configured grant (CG) communication, in accordance with the present disclosure.
  • SPS downlink semi-persistent scheduling
  • CG uplink configured grant
  • Fig. 5 is a diagram of examples associated with configuration parameters for flexible occasions, in accordance with the present disclosure.
  • Fig. 6 is a diagram of another example associated with configuration parameters for flexible occasions, in accordance with the present disclosure.
  • Fig. 7 is a diagram illustrating an example process performed, for example, by a UE, in accordance with the present disclosure.
  • Fig. 8 is a diagram illustrating an example process performed, for example, by a network node, in accordance with the present disclosure.
  • Fig. 9 is a diagram of an example apparatus for wireless communication, in accordance with the present disclosure.
  • Fig. 10 is a diagram of an example apparatus for wireless communication, in accordance with the present disclosure.
  • NR New Radio
  • RAT radio access technology
  • Fig. 1 is a diagram illustrating an example of a wireless network 100.
  • the wireless network 100 may be or may include elements of a 5G (for example, NR) network or a 4G (for example, Long Term Evolution (LTE) ) network, among other examples.
  • the wireless network 100 may include one or more network nodes 110 (shown as a network node 110a, a network node 110b, a network node 110c, and a network node 110d) , a user equipment (UE) 120 or multiple UEs 120 (shown as a UE 120a, a UE 120b, a UE 120c, a UE 120d, and a UE 120e) , or other entities.
  • UE user equipment
  • a network node 110 is an example of a network node that communicates with UEs 120. As shown, a network node 110 may include one or more network nodes. For example, a network node 110 may be an aggregated network node, meaning that the aggregated network node is configured to utilize a radio protocol stack that is physically or logically integrated within a single RAN node (for example, within a single device or unit) .
  • a network node 110 may be a disaggregated network node (sometimes referred to as a disaggregated base station) , meaning that the network node 110 is configured to utilize a protocol stack that is physically or logically distributed among two or more nodes (such as one or more central units (CUs) , one or more distributed units (DUs) , or one or more radio units (RUs) ) .
  • CUs central units
  • DUs distributed units
  • RUs radio units
  • a network node 110 is or includes a network node that communicates with UEs 120 via a radio access link, such as an RU. In some examples, a network node 110 is or includes a network node that communicates with other network nodes 110 via a fronthaul link or a midhaul link, such as a DU. In some examples, a network node 110 is or includes a network node that communicates with other network nodes 110 via a midhaul link or a core network via a backhaul link, such as a CU.
  • a network node 110 may include multiple network nodes, such as one or more RUs, one or more CUs, and/or one or more DUs.
  • a network node 110 may include, for example, an NR base station, an LTE base station, a Node B, an eNB (for example, in 4G) , a gNB (for example, in 5G) , an access point, or a transmission reception point (TRP) , a DU, an RU, a CU, a mobility element of a network, a core network node, a network element, a network equipment, a RAN node, or a combination thereof.
  • the network nodes 110 may be interconnected to one another or to one or more other network nodes 110 in the wireless network 100 through various types of fronthaul, midhaul, and/or backhaul interfaces, such as a direct physical connection, an air interface, or a virtual network, using any suitable transport network.
  • a network node 110 may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a network node 110 or a network node subsystem serving this coverage area, depending on the context in which the term is used.
  • a network node 110 may provide communication coverage for a macro cell, a pico cell, a femto cell, or another type of cell.
  • a macro cell may cover a relatively large geographic area (for example, several kilometers in radius) and may allow unrestricted access by UEs 120 with service subscriptions.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs 120 with service subscription.
  • a femto cell may cover a relatively small geographic area (for example, a home) and may allow restricted access by UEs 120 having association with the femto cell (for example, UEs 120 in a closed subscriber group (CSG) ) .
  • a network node 110 for a macro cell may be referred to as a macro network node.
  • a network node 110 for a pico cell may be referred to as a pico network node.
  • a network node 110 for a femto cell may be referred to as a femto network node or an in-home network node. In the example shown in Fig.
  • the network node 110a may be a macro network node for a macro cell 102a
  • the network node 110b may be a pico network node for a pico cell 102b
  • the network node 110c may be a femto network node for a femto cell 102c.
  • a network node may support one or multiple (for example, three) cells.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a network node 110 that is mobile (for example, a mobile network node) .
  • base station or “network node” may refer to an aggregated base station, a disaggregated base station, an integrated access and backhaul (IAB) node, a relay node, or one or more components thereof.
  • base station or “network node” may refer to a CU, a DU, an RU, a Near-Real Time (Near-RT) RAN Intelligent Controller (RIC) , or a Non-Real Time (Non-RT) RIC, or a combination thereof.
  • the term “base station” or “network node” may refer to one device configured to perform one or more functions, such as those described herein in connection with the network node 110.
  • the term “base station” or “network node” may refer to a plurality of devices configured to perform the one or more functions. For example, in some distributed systems, each of a quantity of different devices (which may be located in the same geographic location or in different geographic locations) may be configured to perform at least a portion of a function, or to duplicate performance of at least a portion of the function, and the term “base station” or “network node” may refer to any one or more of those different devices.
  • the term “base station” or “network node” may refer to one or more virtual base stations or one or more virtual base station functions. For example, in some aspects, two or more base station functions may be instantiated on a single device.
  • the term “base station” or “network node” may refer to one of the base station functions and not another. In this way, a single device may include more than one base station.
  • the wireless network 100 may include one or more relay stations.
  • a relay station is a network node that can receive a transmission of data from an upstream node (for example, a network node 110 or a UE 120) and send a transmission of the data to a downstream node (for example, a UE 120 or a network node 110) .
  • a relay station may be a UE 120 that can relay transmissions for other UEs 120.
  • the network node 110d (for example, a relay network node) may communicate with the network node 110a (for example, a macro network node) and the UE 120d in order to facilitate communication between the network node 110a and the UE 120d.
  • a network node 110 that relays communications may be referred to as a relay station, a relay base station, a relay network node, a relay node, or a relay, among other examples.
  • the wireless network 100 may be a heterogeneous network that includes network nodes 110 of different types, such as macro network nodes, pico network nodes, femto network nodes, or relay network nodes. These different types of network nodes 110 may have different transmit power levels, different coverage areas, or different impacts on interference in the wireless network 100.
  • macro network nodes may have a high transmit power level (for example, 5 to 40 watts) whereas pico network nodes, femto network nodes, and relay network nodes may have lower transmit power levels (for example, 0.1 to 2 watts) .
  • a network controller 130 may couple to or communicate with a set of network nodes 110 and may provide coordination and control for these network nodes 110.
  • the network controller 130 may communicate with the network nodes 110 via a backhaul communication link or a midhaul communication link.
  • the network nodes 110 may communicate with one another directly or indirectly via a wireless or wireline backhaul communication link.
  • the network controller 130 may be a CU or a core network device, or may include a CU or a core network device.
  • the UEs 120 may be dispersed throughout the wireless network 100, and each UE 120 may be stationary or mobile.
  • a UE 120 may include, for example, an access terminal, a terminal, a mobile station, or a subscriber unit.
  • a UE 120 may be a cellular phone (for example, a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device, a biometric device, a wearable device (for example, a smart watch, smart clothing, smart glasses, a smart wristband, smart jewelry (for example, a smart ring or a smart bracelet) ) , an entertainment device (for example, a music device, a video device, or a satellite radio) , a vehicular component or sensor, a smart
  • Some UEs 120 may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs.
  • An MTC UE or an eMTC UE may include, for example, a robot, a drone, a remote device, a sensor, a meter, a monitor, or a location tag, that may communicate with a network node, another device (for example, a remote device) , or some other entity.
  • Some UEs 120 may be considered Internet-of-Things (IoT) devices, or may be implemented as NB-IoT (narrowband IoT) devices.
  • Some UEs 120 may be considered a Customer Premises Equipment.
  • a UE 120 may be included inside a housing that houses components of the UE 120, such as processor components or memory components.
  • the processor components and the memory components may be coupled together.
  • the processor components for example, one or more processors
  • the memory components for example, a memory
  • the processor components and the memory components may be operatively coupled, communicatively coupled, electronically coupled, or electrically coupled.
  • any number of wireless networks 100 may be deployed in a given geographic area.
  • Each wireless network 100 may support a particular RAT and may operate on one or more frequencies.
  • a RAT may be referred to as a radio technology or an air interface.
  • a frequency may be referred to as a carrier or a frequency channel.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (for example, without using a network node 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (for example, which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, or a vehicle-to-pedestrian (V2P) protocol) , or a mesh network.
  • V2X vehicle-to-everything
  • a UE 120 may perform scheduling operations, resource selection operations, or other operations described elsewhere herein as being performed by the network node 110.
  • Devices of the wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided by frequency or wavelength into various classes, bands, or channels.
  • devices of the wireless network 100 may communicate using one or more operating bands.
  • two initial operating bands have been identified as frequency range designations FR1 (410 MHz -7.125 GHz) and FR2 (24.25 GHz -52.6 GHz) .
  • FR1 frequency range designations FR1 (410 MHz -7.125 GHz)
  • FR2 24.25 GHz -52.6 GHz)
  • FR1 is often referred to (interchangeably) as a “Sub-6 GHz” band in various documents and articles.
  • FR2 which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz -300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • FR3 7.125 GHz -24.25 GHz
  • FR3 7.125 GHz -24.25 GHz
  • FR4a or FR4-1 52.6 GHz -71 GHz
  • FR4 52.6 GHz -114.25 GHz
  • FR5 114.25 GHz -300 GHz
  • sub-6 GHz may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies.
  • millimeter wave if used herein, may broadly represent frequencies that may include mid-band frequencies, may be within FR2, FR4, FR4-a or FR4-1, or FR5, or may be within the EHF band. It is contemplated that the frequencies included in these operating bands (for example, FR1, FR2, FR3, FR4, FR4-a, FR4-1, or FR5) may be modified, and techniques described herein are applicable to those modified frequency ranges.
  • the UE 120 may include a communication manager 140.
  • the communication manager 140 may receive configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications; and communicate at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters. Additionally, or alternatively, the communication manager 140 may perform one or more other operations described herein.
  • the network node 110 may include a communication manager 150.
  • the communication manager 150 may transmit, to a UE 120, configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications; and communicate at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters. Additionally, or alternatively, the communication manager 150 may perform one or more other operations described herein.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 is a diagram illustrating an example 200 of a network node 110 in communication with a UE 120 in a wireless network 100.
  • the network node 110 may be equipped with a set of antennas 234a through 234t, such as T antennas (T ⁇ 1) .
  • the UE 120 may be equipped with a set of antennas 252a through 252r, such as R antennas (R ⁇ 1) .
  • the network node 110 of example 200 includes one or more radio frequency components, such as antennas 234 and a modem 254.
  • a network node 110 may include an interface, a communication component, or another component that facilitates communication with the UE 120 or another network node.
  • Some network nodes 110 may not include radio frequency components that facilitate direct communication with the UE 120, such as one or more CUs, or one or more DUs.
  • a transmit processor 220 may receive data, from a data source 212, intended for the UE 120 (or a set of UEs 120) .
  • the transmit processor 220 may select one or more modulation and coding schemes (MCSs) for the UE 120 using one or more channel quality indicators (CQIs) received from that UE 120.
  • MCSs modulation and coding schemes
  • CQIs channel quality indicators
  • the network node 110 may process (for example, encode and modulate) the data for the UE 120 using the MCS (s) selected for the UE 120 and may provide data symbols for the UE 120.
  • the transmit processor 220 may process system information (for example, for semi-static resource partitioning information (SRPI) ) and control information (for example, CQI requests, grants, or upper layer signaling) and provide overhead symbols and control symbols.
  • SRPI semi-static resource partitioning information
  • the transmit processor 220 may generate reference symbols for reference signals (for example, a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS) ) and synchronization signals (for example, a primary synchronization signal (PSS) or a secondary synchronization signal (SSS) ) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (for example, precoding) on the data symbols, the control symbols, the overhead symbols, or the reference symbols, if applicable, and may provide a set of output symbol streams (for example, T output symbol streams) to a corresponding set of modems 232 (for example, T modems) , shown as modems 232a through 232t.
  • each output symbol stream may be provided to a modulator component (shown as MOD) of a modem 232.
  • Each modem 232 may use a respective modulator component to process a respective output symbol stream (for example, for OFDM) to obtain an output sample stream.
  • Each modem 232 may further use a respective modulator component to process (for example, convert to analog, amplify, filter, or upconvert) the output sample stream to obtain a downlink signal.
  • the modems 232a through 232t may transmit a set of downlink signals (for example, T downlink signals) via a corresponding set of antennas 234 (for example, T antennas) , shown as antennas 234a through 234t.
  • a set of antennas 252 may receive the downlink signals from the network node 110 or other network nodes 110 and may provide a set of received signals (for example, R received signals) to a set of modems 254 (for example, R modems) , shown as modems 254a through 254r.
  • each received signal may be provided to a demodulator component (shown as DEMOD) of a modem 254.
  • DEMOD demodulator component
  • Each modem 254 may use a respective demodulator component to condition (for example, filter, amplify, downconvert, or digitize) a received signal to obtain input samples.
  • Each modem 254 may use a demodulator component to further process the input samples (for example, for OFDM) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from the modems 254, may perform MIMO detection on the received symbols if applicable, and may provide detected symbols.
  • a receive processor 258 may process (for example, demodulate and decode) the detected symbols, may provide decoded data for the UE 120 to a data sink 260, and may provide decoded control information and system information to a controller/processor 280.
  • controller/processor may refer to one or more controllers, one or more processors, or a combination thereof.
  • a channel processor may determine a reference signal received power (RSRP) parameter, a received signal strength indicator (RSSI) parameter, a reference signal received quality (RSRQ) parameter, or a CQI parameter, among other examples.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSSRQ reference signal received quality
  • CQI CQI parameter
  • the network controller 130 may include a communication unit 294, a controller/processor 290, and a memory 292.
  • the network controller 130 may include, for example, one or more devices in a core network.
  • the network controller 130 may communicate with the network node 110 via the communication unit 294.
  • One or more antennas may include, or may be included within, one or more antenna panels, one or more antenna groups, one or more sets of antenna elements, or one or more antenna arrays, among other examples.
  • An antenna panel, an antenna group, a set of antenna elements, or an antenna array may include one or more antenna elements (within a single housing or multiple housings) , a set of coplanar antenna elements, a set of non-coplanar antenna elements, or one or more antenna elements coupled to one or more transmission or reception components, such as one or more components of Fig. 2.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (for example, for reports that include RSRP, RSSI, RSRQ, or CQI) from the controller/processor 280.
  • the transmit processor 264 may generate reference symbols for one or more reference signals.
  • the symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the modems 254 (for example, for DFT-s-OFDM or CP-OFDM) , and transmitted to the network node 110.
  • the modem 254 of the UE 120 may include a modulator and a demodulator.
  • the UE 120 includes a transceiver.
  • the transceiver may include any combination of the antenna (s) 252, the modem (s) 254, the MIMO detector 256, the receive processor 258, the transmit processor 264, or the TX MIMO processor 266.
  • the transceiver may be used by a processor (for example, the controller/processor 280) and the memory 282 to perform aspects of any of the processes described herein (e.g., with reference to Figs. 5-10) .
  • the uplink signals from UE 120 or other UEs may be received by the antennas 234, processed by the modem 232 (for example, a demodulator component, shown as DEMOD, of the modem 232) , detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 120.
  • the receive processor 238 may provide the decoded data to a data sink 239 and provide the decoded control information to the controller/processor 240.
  • the network node 110 may include a communication unit 244 and may communicate with the network controller 130 via the communication unit 244.
  • the network node 110 may include a scheduler 246 to schedule one or more UEs 120 for downlink or uplink communications.
  • the modem 232 of the network node 110 may include a modulator and a demodulator.
  • the network node 110 includes a transceiver.
  • the transceiver may include any combination of the antenna (s) 234, the modem (s) 232, the MIMO detector 236, the receive processor 238, the transmit processor 220, or the TX MIMO processor 230.
  • the transceiver may be used by a processor (for example, the controller/processor 240) and the memory 242 to perform aspects of any of the processes described herein (e.g., with reference to Figs. 5-10) .
  • the controller/processor 280 may be a component of a processing system.
  • a processing system may generally be a system or a series of machines or components that receives inputs and processes the inputs to produce a set of outputs (which may be passed to other systems or components of, for example, the UE 120) .
  • a processing system of the UE 120 may be a system that includes the various other components or subcomponents of the UE 120.
  • the processing system of the UE 120 may interface with one or more other components of the UE 120, may process information received from one or more other components (such as inputs or signals) , or may output information to one or more other components.
  • a chip or modem of the UE 120 may include a processing system, a first interface to receive or obtain information, and a second interface to output, transmit, or provide information.
  • the first interface may be an interface between the processing system of the chip or modem and a receiver, such that the UE 120 may receive information or signal inputs, and the information may be passed to the processing system.
  • the second interface may be an interface between the processing system of the chip or modem and a transmitter, such that the UE 120 may transmit information output from the chip or modem.
  • the second interface also may obtain or receive information or signal inputs, and the first interface also may output, transmit, or provide information.
  • the controller/processor 240 may be a component of a processing system.
  • a processing system may generally be a system or a series of machines or components that receives inputs and processes the inputs to produce a set of outputs (which may be passed to other systems or components of, for example, the network node 110) .
  • a processing system of the network node 110 may be a system that includes the various other components or subcomponents of the network node 110.
  • the processing system of the network node 110 may interface with one or more other components of the network node 110, may process information received from one or more other components (such as inputs or signals) , or may output information to one or more other components.
  • a chip or modem of the network node 110 may include a processing system, a first interface to receive or obtain information, and a second interface to output, transmit, or provide information.
  • the first interface may be an interface between the processing system of the chip or modem and a receiver, such that the network node 110 may receive information or signal inputs, and the information may be passed to the processing system.
  • the second interface may be an interface between the processing system of the chip or modem and a transmitter, such that the network node 110 may transmit information output from the chip or modem.
  • the second interface also may obtain or receive information or signal inputs, and the first interface also may output, transmit, or provide information.
  • the controller/processor 240 of the network node 110, the controller/processor 280 of the UE 120, or any other component (s) of Fig. 2 may perform one or more techniques associated with configuration parameters for flexible occasions, as described in more detail elsewhere herein.
  • the controller/processor 240 of the network node 110, the controller/processor 280 of the UE 120, or any other component (s) (or combinations of components) of Fig. 2 may perform or direct operations of, for example, process 700 of Fig. 7, process 800 of Fig. 8, and/or other processes as described herein.
  • the memory 242 and the memory 282 may store data and program codes for the network node 110 and the UE 120, respectively.
  • the memory 242 and the memory 282 may include a non-transitory computer-readable medium storing one or more instructions (for example, code or program code) for wireless communication.
  • the one or more instructions when executed (for example, directly, or after compiling, converting, or interpreting) by one or more processors of the network node 110 or the UE 120, may cause the one or more processors, the UE 120, or the network node 110 to perform or direct operations of, for example, process 700 of Fig. 7, process 800 of Fig. 8, and/or other processes as described herein.
  • executing instructions may include running the instructions, converting the instructions, compiling the instructions, and/or interpreting the instructions, among other examples.
  • the UE 120 includes means for receiving configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications; and/or means for communicating at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters.
  • the means for the UE 120 to perform operations described herein may include, for example, one or more of communication manager 140, antenna 252, modem 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, controller/processor 280, or memory 282.
  • the network node 110 includes means for transmitting, to a UE 120, configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications; and/or means for communicating at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters.
  • the means for the network node to perform operations described herein may include, for example, one or more of communication manager 150, transmit processor 220, TX MIMO processor 230, modem 232, antenna 234, MIMO detector 236, receive processor 238, controller/processor 240, memory 242, or scheduler 246.
  • While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components.
  • the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of the controller/processor 280.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • Deployment of communication systems may be arranged in multiple manners with various components or constituent parts.
  • a network node, a network entity, a mobility element of a network, a RAN node, a core network node, a network element, a base station, or a network equipment may be implemented in an aggregated or disaggregated architecture.
  • a base station such as a Node B (NB) , an evolved NB (eNB) , an NR base station, a 5G NB, an access point (AP) , a TRP, or a cell, among other examples
  • NB Node B
  • eNB evolved NB
  • AP access point
  • TRP TRP
  • a cell a cell
  • a base station such as a Node B (NB) , an evolved NB (eNB) , an NR base station, a 5G NB, an access point (AP) , a TRP, or a cell, among other examples
  • a base station such as a Node B (NB) , an evolved NB (eNB) , an NR base station, a 5G NB, an access point (AP) , a TRP, or a cell, among other examples
  • AP access point
  • TRP TRP
  • a cell a cell, among other examples
  • Network entity or “network node”
  • An aggregated base station may be configured to utilize a radio protocol stack that is physically or logically integrated within a single RAN node (for example, within a single device or unit) .
  • a disaggregated base station e.g., a disaggregated network node
  • a CU may be implemented within a network node, and one or more DUs may be co-located with the CU, or alternatively, may be geographically or virtually distributed throughout one or multiple other network nodes.
  • the DUs may be implemented to communicate with one or more RUs.
  • Each of the CU, DU, and RU also can be implemented as virtual units, such as a virtual central unit (VCU) , a virtual distributed unit (VDU) , or a virtual radio unit (VRU) , among other examples.
  • VCU virtual central unit
  • VDU virtual distributed unit
  • VRU virtual radio unit
  • Base station-type operation or network design may consider aggregation characteristics of base station functionality.
  • disaggregated base stations may be utilized in an IAB network, an open radio access network (O-RAN (such as the network configuration sponsored by the O-RAN Alliance) ) , or a virtualized radio access network (vRAN, also known as a cloud radio access network (C-RAN) ) to facilitate scaling of communication systems by separating base station functionality into one or more units that can be individually deployed.
  • a disaggregated base station may include functionality implemented across two or more units at various physical locations, as well as functionality implemented for at least one unit virtually, which can enable flexibility in network design.
  • the various units of the disaggregated base station can be configured for wired or wireless communication with at least one other unit of the disaggregated base station.
  • Fig. 3 is a diagram illustrating an example disaggregated base station architecture 300, in accordance with the present disclosure.
  • the disaggregated base station architecture 300 may include a CU 310 that can communicate directly with a core network 320 via a backhaul link, or indirectly with the core network 320 through one or more disaggregated control units (such as a Near-RT RIC 325 via an E2 link, or a Non-RT RIC 315 associated with a Service Management and Orchestration (SMO) Framework 305, or both) .
  • a CU 310 may communicate with one or more DUs 330 via respective midhaul links, such as through RRC1 interfaces.
  • Each of the DUs 330 may communicate with one or more RUs 340 via respective fronthaul links.
  • Each of the RUs 340 may communicate with one or more UEs 120 via respective radio frequency (RF) access links.
  • RF radio frequency
  • Each of the units may include one or more interfaces or be coupled with one or more interfaces configured to receive or transmit signals, data, or information (collectively, signals) via a wired or wireless transmission medium.
  • Each of the units, or an associated processor or controller providing instructions to one or multiple communication interfaces of the respective unit, can be configured to communicate with one or more of the other units via the transmission medium.
  • each of the units can include a wired interface, configured to receive or transmit signals over a wired transmission medium to one or more of the other units, and a wireless interface, which may include a receiver, a transmitter or transceiver (such as a RF transceiver) , configured to receive or transmit signals, or both, over a wireless transmission medium to one or more of the other units.
  • a wireless interface which may include a receiver, a transmitter or transceiver (such as a RF transceiver) , configured to receive or transmit signals, or both, over a wireless transmission medium to one or more of the other units.
  • the CU 310 may host one or more higher layer control functions.
  • control functions can include radio resource control (RRC) functions, packet data convergence protocol (PDCP) functions, or service data adaptation protocol (SDAP) functions, among other examples.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • SDAP service data adaptation protocol
  • Each control function can be implemented with an interface configured to communicate signals with other control functions hosted by the CU 310.
  • the CU 310 may be configured to handle user plane functionality (for example, Central Unit -User Plane (CU-UP) functionality) , control plane functionality (for example, Central Unit -Control Plane (CU-CP) functionality) , or a combination thereof.
  • the CU 310 can be logically split into one or more CU-UP units and one or more CU-CP units.
  • a CU-UP unit can communicate bidirectionally with a CU-CP unit via an interface, such as the E1 interface when implemented in an O-RAN configuration.
  • the CU 310 can be implemented to communicate with a DU 330, as necessary, for network control and signaling.
  • Each DU 330 may correspond to a logical unit that includes one or more base station functions to control the operation of one or more RUs 340.
  • the DU 330 may host one or more of a radio link control (RLC) layer, a medium access control (MAC) layer, and one or more high physical (PHY) layers depending, at least in part, on a functional split, such as a functional split defined by the 3GPP.
  • the one or more high PHY layers may be implemented by one or more modules for forward error correction (FEC) encoding and decoding, scrambling, and modulation and demodulation, among other examples.
  • FEC forward error correction
  • the DU 330 may further host one or more low PHY layers, such as implemented by one or more modules for a fast Fourier transform (FFT) , an inverse FFT (iFFT) , digital beamforming, or physical random access channel (PRACH) extraction and filtering, among other examples.
  • FFT fast Fourier transform
  • iFFT inverse FFT
  • PRACH physical random access channel
  • Each layer (which also may be referred to as a module) can be implemented with an interface configured to communicate signals with other layers (and modules) hosted by the DU 330, or with the control functions hosted by the CU 310.
  • Each RU 340 may implement lower-layer functionality.
  • an RU 340, controlled by a DU 330 may correspond to a logical node that hosts RF processing functions or low-PHY layer functions, such as performing an FFT, performing an iFFT, digital beamforming, or PRACH extraction and filtering, among other examples, based on a functional split (for example, a functional split defined by the 3GPP) , such as a lower layer functional split.
  • each RU 340 can be operated to handle over the air (OTA) communication with one or more UEs 120.
  • OTA over the air
  • real-time and non-real- time aspects of control and user plane communication with the RU (s) 340 can be controlled by the corresponding DU 330.
  • this configuration can enable each DU 330 and the CU 310 to be implemented in a cloud-based RAN architecture, such as a vRAN architecture.
  • the SMO Framework 305 may be configured to support RAN deployment and provisioning of non-virtualized and virtualized network elements.
  • the SMO Framework 305 may be configured to support the deployment of dedicated physical resources for RAN coverage requirements, which may be managed via an operations and maintenance interface (such as an O1 interface) .
  • the SMO Framework 305 may be configured to interact with a cloud computing platform (such as an open cloud (O-Cloud) platform 390) to perform network element life cycle management (such as to instantiate virtualized network elements) via a cloud computing platform interface (such as an O2 interface) .
  • a cloud computing platform such as an open cloud (O-Cloud) platform 390
  • network element life cycle management such as to instantiate virtualized network elements
  • a cloud computing platform interface such as an O2 interface
  • Such virtualized network elements can include, but are not limited to, CUs 310, DUs 330, RUs 340, non-RT RICs 315, and Near-RT RICs 325.
  • the SMO Framework 305 can communicate with a hardware aspect of a 4G RAN, such as an open eNB (O-eNB) 311, via an O1 interface. Additionally, in some implementations, the SMO Framework 305 can communicate directly with each of one or more RUs 340 via a respective O1 interface.
  • the SMO Framework 305 also may include a Non-RT RIC 315 configured to support functionality of the SMO Framework 305.
  • the Non-RT RIC 315 may be configured to include a logical function that enables non-real-time control and optimization of RAN elements and resources, Artificial Intelligence/Machine Learning (AI/ML) workflows including model training and updates, or policy-based guidance of applications/features in the Near-RT RIC 325.
  • the Non-RT RIC 315 may be coupled to or communicate with (such as via an A1 interface) the Near-RT RIC 325.
  • the Near-RT RIC 325 may be configured to include a logical function that enables near-real-time control and optimization of RAN elements and resources via data collection and actions over an interface (such as via an E2 interface) connecting one or more CUs 310, one or more DUs 330, or both, as well as an O-eNB, with the Near-RT RIC 325.
  • the Non-RT RIC 315 may receive parameters or external enrichment information from external servers. Such information may be utilized by the Near-RT RIC 325 and may be received at the SMO Framework 305 or the Non-RT RIC 315 from non-network data sources or from network functions. In some examples, the Non-RT RIC 315 or the Near-RT RIC 325 may be configured to tune RAN behavior or performance. For example, the Non-RT RIC 315 may monitor long-term trends and patterns for performance and employ AI/ML models to perform corrective actions through the SMO Framework 305 (such as reconfiguration via an O1 interface) or via creation of RAN management policies (such as A1 interface policies) .
  • Fig. 3 is provided as an example. Other examples may differ from what is described with regard to Fig. 3.
  • Fig. 4 is a diagram illustrating an example 400 of downlink semi-persistent scheduling (SPS) communication and an example 410 of uplink configured grant (CG) communication, in accordance with the present disclosure.
  • SPS downlink semi-persistent scheduling
  • CG uplink configured grant
  • a UE 120 and a network node 110 may communicate using a dynamic grant (DG) scheduling scheme, while, in some other instances, a UE 120 and a network node 110 may communicate using an SPS and/or CG scheduling scheme.
  • DG-based scheduling when a UE 120 has data to transmit in the uplink, the UE 120 may transmit, to the network node 110, a scheduling request (SR) in a pre-defined occasion indicating that the UE 120 has data to transmit.
  • SR scheduling request
  • the network node 110 may schedule, via a downlink control information (DCI) message or a similar message, uplink resources (e.g., physical uplink shared channel (PUSCH) resources) for the UE 120 to report the UE’s buffer size and/or related information.
  • the UE 120 may then transmit a buffer status report (BSR) using the uplink resources scheduled by the network node 110 (e.g., using a MAC control element (MAC-CE) communication transmitted via the PUSCH resources scheduled by the network node 110) , which may indicate to the network node 110 the buffer size associated with the data transmission and related information. More particularly, the BSR may indicate the logical channel data amount of the packet to be transmitted.
  • DCI downlink control information
  • PUSCH physical uplink shared channel
  • the network node 110 may transmit, to the UE 120, a DCI message (sometimes referred to as a scheduling grant) that schedules resources (e.g., PUSCH resources) for the UE 120 to transmit one or more packets in the uplink and which indicates corresponding configuration parameters associated with the uplink transmission.
  • a DCI message (sometimes referred to as a scheduling grant) that schedules resources (e.g., PUSCH resources) for the UE 120 to transmit one or more packets in the uplink and which indicates corresponding configuration parameters associated with the uplink transmission.
  • resources e.g., PUSCH resources
  • DG-based scheduling may require that the UE 120 blind decode a physical downlink control channel (PDCCH) communication for each transmission, which may time consuming and consume large amounts of power.
  • PDCCH physical downlink control channel
  • SPS-based and/or CG-based scheduling may eliminate some of the latency and power consumption associated with DG-based scheduling.
  • SPS communications may include periodic downlink communications that are configured for a UE 120, such that a network node 110 does not need to transmit (e.g., directly or via one or more network nodes) separate DCI to schedule each downlink communication, thereby conserving signaling overhead, reducing latency as compared to DG-based communications, and reducing power consumption as compared to DG-based communications.
  • CG communications may include periodic uplink communications that are configured for a UE 120, such that the network node 110 does not need to transmit (e.g., directly or via one or more network nodes) separate DCI to schedule each uplink communication, thereby conserving signaling overhead, reducing latency as compared to DG-based communications, and reducing power consumption as compared to DG-based communications.
  • a UE 120 may be configured with an SPS configuration for SPS communications.
  • the UE 120 may receive the SPS configuration via an RRC message transmitted by a network node 110 (e.g., directly to the UE 120 or via one or more network nodes 110) .
  • the SPS configuration may indicate a resource allocation associated with SPS downlink communications (e.g., in a time domain, frequency domain, spatial domain, and/or code domain) and a periodicity at which the resource allocation is repeated, resulting in periodically reoccurring scheduled SPS occasions 405 for the UE 120.
  • the SPS configuration may also configure hybrid automatic repeat request (HARQ) -acknowledgement (ACK) (HARQ-ACK) feedback resources for the UE 120 to transmit HARQ-ACK feedback for SPS physical downlink shared channel (PDSCH) communications received in the SPS occasions 405.
  • HARQ-ACK hybrid automatic repeat request
  • ACK acknowledgement
  • PDSCH physical downlink shared channel
  • the SPS configuration may indicate a PDSCH-to-HARQ feedback timing value, which may be referred to as a K1 value in a wireless communication standard (e.g., a 3GPP standard) .
  • the network node 110 may transmit SPS activation DCI to the UE 120 (e.g., directly or via one or more network nodes 110) to activate the SPS configuration for the UE 120.
  • the network node 110 may indicate, in the SPS activation DCI, communication parameters, such as an MCS, a resource block (RB) allocation, and/or antenna ports, for the SPS PDSCH communications to be transmitted in the scheduled SPS occasions 405.
  • the UE 120 may begin monitoring the SPS occasions 405 based at least in part on receiving the SPS activation DCI.
  • the UE 120 may monitor the scheduled SPS occasions 405 to decode PDSCH communications using the communication parameters indicated in the SPS activation DCI. The UE 120 may refrain from monitoring configured SPS occasions 405 prior to receiving the SPS activation DCI.
  • the network node 110 may transmit SPS reactivation DCI to the UE 120 (e.g., directly or via one or more network nodes 110) to change the communication parameters for the SPS PDSCH communications.
  • the UE 120 may begin monitoring the scheduled SPS occasions 405 using the communication parameters indicated in the SPS reactivation DCI. For example, beginning with a next scheduled SPS occasion 405 subsequent to receiving the SPS reactivation DCI, the UE 120 may monitor the scheduled SPS occasions 405 to decode PDSCH communications based on the communication parameters indicated in the SPS reactivation DCI.
  • the network node 110 may transmit SPS cancellation DCI to the UE 120 (e.g., directly or via one or more network nodes 110) to temporarily cancel or deactivate one or more subsequent SPS occasions 405 for the UE 120.
  • the SPS cancellation DCI may deactivate only a subsequent one SPS occasion 405 or a subsequent N SPS occasions 405 (where N is an integer) .
  • SPS occasions 405 after the one or more (e.g., N) SPS occasions 405 subsequent to the SPS cancellation DCI may remain activated.
  • the UE 120 may refrain from monitoring the one or more (e.g., N) SPS occasions 405 subsequent to receiving the SPS cancellation DCI. As shown in example 400, the SPS cancellation DCI cancels one subsequent SPS occasion 405 for the UE 120. After the SPS occasion 405 (or N SPS occasions) subsequent to receiving the SPS cancellation DCI, the UE 120 may automatically resume monitoring the scheduled SPS occasions 405.
  • the SPS cancellation DCI cancels one subsequent SPS occasion 405 for the UE 120.
  • the UE 120 may automatically resume monitoring the scheduled SPS occasions 405.
  • the network node 110 may transmit SPS release DCI to the UE 120 (e.g., directly or via one or more network nodes) to deactivate the SPS configuration for the UE 120.
  • the UE 120 may stop monitoring the scheduled SPS occasions 405 based at least in part on receiving the SPS release DCI. For example, the UE 120 may refrain from monitoring any scheduled SPS occasions 405 until another SPS activation DCI is received by the UE 120.
  • the SPS cancellation DCI may deactivate only a subsequent one SPS occasion 405 or a subsequent N SPS occasions 405
  • the SPS release DCI deactivates all subsequent SPS occasions 405 for a given SPS configuration for the UE 120 until the given SPS configuration is activated again by a new SPS activation DCI.
  • a UE 120 may be configured with a CG configuration for CG communications.
  • the UE 120 may receive the CG configuration via an RRC message transmitted by a network node 110 (e.g., directly to the UE 120 or via one or more network nodes 110) .
  • the CG configuration may indicate a resource allocation associated with CG uplink communications (e.g., in a time domain, frequency domain, spatial domain, and/or code domain) and a periodicity at which the resource allocation is repeated, resulting in periodically reoccurring scheduled CG occasions 415 for the UE 120.
  • the CG configuration may identify a resource pool or multiple resource pools that are available to the UE 120 for an uplink transmission.
  • the CG configuration may configure contention-free CG communications (e.g., where resources are dedicated for the UE 120 to transmit uplink communications) or contention-based CG communications (e.g., where the UE 120 contends for access to a channel in the configured resource allocation, such as by using a channel access procedure or a channel sensing procedure) .
  • contention-free CG communications e.g., where resources are dedicated for the UE 120 to transmit uplink communications
  • contention-based CG communications e.g., where the UE 120 contends for access to a channel in the configured resource allocation, such as by using a channel access procedure or a channel sensing procedure
  • the network node 110 may transmit CG activation DCI to the UE 120 (e.g., directly or via one or more network nodes) to activate the CG configuration for the UE 120.
  • the network node 110 may indicate, in the CG activation DCI, communication parameters, such as an MCS, an RB allocation, and/or antenna ports, for the CG PUSCH communications to be transmitted in the scheduled CG occasions 415.
  • the UE 120 may begin transmitting in the CG occasions 415 based at least in part on receiving the CG activation DCI.
  • the UE 120 may transmit a PUSCH communication in the scheduled CG occasions 415 using the communication parameters indicated in the CG activation DCI.
  • the UE 120 may refrain from transmitting in configured CG occasions 415 prior to receiving the CG activation DCI.
  • the network node 110 may transmit CG reactivation DCI to the UE 120 (e.g., directly or via one or more network nodes) to change the communication parameters for the CG PUSCH communications. Based at least in part on receiving the CG reactivation DCI, and the UE 120 may begin transmitting in the scheduled CG occasions 415 using the communication parameters indicated in the CG reactivation DCI. For example, beginning with a next scheduled CG occasion 415 subsequent to receiving the CG reactivation DCI, the UE 120 may transmit PUSCH communications in the scheduled CG occasions 415 based at least in part on the communication parameters indicated in the CG reactivation DCI.
  • the network node 110 may transmit CG cancellation DCI to the UE 120 (e.g., directly or via one or more network nodes 110) to temporarily cancel or deactivate one or more subsequent CG occasions 415 for the UE 120.
  • the CG cancellation DCI may deactivate only a subsequent one CG occasion 415 or a subsequent N CG occasions 415 (where N is an integer) .
  • CG occasions 415 after the one or more (e.g., N) CG occasions 415 subsequent to the CG cancellation DCI may remain activated.
  • the UE 120 may refrain from transmitting in the one or more (e.g., N) CG occasions 415 subsequent to receiving the CG cancellation DCI. As shown in example 410, the CG cancellation DCI cancels one subsequent CG occasion 415 for the UE 120. After the CG occasion 415 (or N CG occasions) subsequent to receiving the CG cancellation DCI, the UE 120 may automatically resume transmission in the scheduled CG occasions 415.
  • the CG cancellation DCI cancels one subsequent CG occasion 415 for the UE 120.
  • the UE 120 may automatically resume transmission in the scheduled CG occasions 415.
  • the network node 110 may transmit CG release DCI to the UE 120 (e.g., directly or via one or more network nodes) to deactivate the CG configuration for the UE 120.
  • the UE 120 may stop transmitting in the scheduled CG occasions 415 based at least in part on receiving the CG release DCI. For example, the UE 120 may refrain from transmitting in any scheduled CG occasions 415 until another CG activation DCI is received by the UE 120.
  • the CG cancellation DCI may deactivate only a subsequent one CG occasion 415 or a subsequent N CG occasions 415
  • the CG release DCI deactivates all subsequent CG occasions 415 for a given CG configuration for the UE 120 until the given CG configuration is activated again by a new CG activation DCI.
  • XR communications may be associated with different types of flows (sometimes referred to Flows A, H, B, C1, F, E, and G, as defined by sections 5.5.2.2, 5.5.2.3, and 5.5.2.4 of Technical Report 38.838, promulgated by the 3GPP) , with certain of the flows being associated with stringent packet delay budgets (PDBs) (e.g., Flow B may be associated with a PDB of 1 millisecond (ms) ) , and with other flows being associated with less stringent latency by requiring more bandwidth for carrying large volumes of data (e.g., Flow F may be associated with a PDB of 67 ms and an average payload of 2.53 kilobits (kbits) , and Flow E may be associated with a PDB of 100 ms and
  • PDBs packet delay budgets
  • a network node 110 manages the scheduling of data reception and transmission in SPS and CG communications, which requires high signaling overhead.
  • a network node 110 schedules resources independent of the uplink traffic to be transmitted by the UE 120 (e.g., without information indicating the uplink traffic to be transmitted) , which may result in a mismatch between allocated resources and data size, leading to inefficient usage of network resources.
  • Some techniques and apparatuses described herein enable communications between network devices (e.g., between a network node 110 and a UE 120, between two UEs 120, or between two other network devices) using a flexible occasion, which may be associated with resources available for both uplink communications and downlink communications.
  • the network devices may be presented with more opportunities for uplink and/or downlink communications as compared to SPS occasions (which may be used for downlink communications) or CG communications (which may be used for uplink communications) , thereby reducing latency for communications between the two network devices and/or increasing throughput between the two network devices.
  • some techniques and apparatuses described herein enable configuration of a network device with multiple sets of configuration parameters associated with the flexible occasion, with one of more of the sets of configuration parameters selected for communicating a communication in a flexible occasion.
  • signaling overhead may be reduced as compared to dynamically scheduled resources, SPS scheduled resources, and/or CG scheduled resources, resulting in more efficient usage of computing, power, and network resources.
  • Fig. 4 is provided as an example. Other examples may differ from what is described with respect to Fig. 4.
  • Fig. 5 is a diagram of examples 500, 502, 504 associated with configuration parameters for flexible occasions.
  • a network device may be configured with flexible occasions associated with resources available for both uplink communications and downlink communications. Additionally, or alternatively, the network device may receive configuration information indicating multiple sets of configuration parameters associated with the flexible occasions. In this way, the network device may flexibly receive and/or transmit communications in each flexible occasion, which may reduce latency because there may be more opportunities to receive and/or transmit time-sensitive communications (e.g., communications associated with low PDBs) and/or because the network device may be preconfigured with configuration parameters for receiving or transmitting the communications in the flexible occasions.
  • time-sensitive communications e.g., communications associated with low PDBs
  • an amount of memory allocated for storing configuration parameters may be reduced as compared to configurations associated with SPS and/or CG resources, because the flexible occasions may be used for both uplink and downlink communications and thus the network device does not need to be separately configured with configuration parameters for uplink (e.g., CG) communications and downlink (e.g., SPS) configurations.
  • uplink e.g., CG
  • downlink e.g., SPS
  • the network device may be configured with multiple flexible occasions 506, which may be occasions associated with resources available for either of or both of uplink communications and downlink communications. Moreover, and as indicated by reference number 508, the network device may receive configuration information indicating multiple sets of configuration parameters (sometimes referred to as multiple configuration patterns) associated with the flexible occasions 506.
  • each set of configuration parameters may indicate an MCS associated with a communication, a resource allocation associated with the communication (e.g., a time domain resource allocation (TDRA) and/or a frequency domain resource allocation (FDRA) ) , a specific periodicity associated with resources associated with the communication, an offset associated with resources associated with the communication, a transmission power associated with the communication, and/or other similar configuration parameters.
  • Each set of configuration parameters, or configuration pattern may be associated with candidate transmission and/or reception configurations for uplink and downlink communications.
  • a network device e.g., a UE 120
  • a configuration set which includes the multiple sets of configuration parameters (e.g., multiple configuration patterns) , as described, as well as common parameters applicable to each set of configuration parameters, of the multiple sets of configuration parameters.
  • the common parameters may indicate resource allocations (e.g., TDRA and/or FDRA) associated with the flexible occasions 506, and each set of configuration parameters may indicate additional parameters associated with a particular traffic or flow type (e.g., uplink or downlink traffic, different QoS requirements, different HARQ feedback requirements (sometimes indicated using a nrofHARQ-Processes parameter) , different RB group (RBG) sizes (sometimes indicated using a rbg-size parameter) , different periodicities, different repK parameters, different uci-onPUSCH parameters, or the like) .
  • traffic or flow type e.g., uplink or downlink traffic, different QoS requirements, different HARQ feedback requirements (sometimes indicated using a nrofHARQ-Processes parameter) , different RB group (RBG) sizes (sometimes indicated using a rbg-size parameter) , different periodicities, different repK parameters, different uci-onPUSCH parameters, or the like.
  • traffic with certain characteristics may be communicated in each flexible occasion 506 based at least in part on a selected set of configuration parameters.
  • a network device e.g., a network node 110
  • may signal an indication of the selected set of configuration parameters to another network device e.g., a UE 120
  • a network device e.g., a UE 120
  • CSI channel state information
  • some flows may be associated with low latency (e.g., Flows A, B, or C1) , while other flows may be associated with a large bandwidth that can accommodate a large volume of data (e.g., Flows F and E) .
  • a transmission direction e.g., uplink or downlink
  • a characteristic of data to be transmitted e.g., low latency, high bandwidth, or the like
  • an appropriate set of configuration parameters may be selected, and the communication may be transmitted in one or more flexible occasions 506 based at least in part on the selected set of configuration parameters.
  • multiple communications may be multiplexed in a single flexible occasion 506, further reducing latency of communications between two network devices (e.g., a network node 110 and a UE 120) and/or increasing throughput of the communications between two network devices.
  • a first portion of the resources are used for transmitting an uplink communication (shown as “UL” in Fig. 5)
  • a second portion of the resources are used for transmitting a downlink communication (shown as “DL” in Fig. 5) .
  • the network device may communicate the uplink communication using a first set of configuration parameters and/or a first configuration pattern, as shown by reference number 510, and the network device may communicate the downlink communication using a second set of configuration parameters and/or a second configuration pattern, as shown by reference number 512.
  • flexible occasions 506 and/or resources associated with flexible occasions 506 may be associated with different frequency sub-bands, such as for purposes of acquiring frequency diversity associated with a communication, or the like. More particularly, in this aspect, each flexible occasion 506 may be offset, in the frequency domain, from a neighboring flexible occasion 506 by at least a configured number of RBs, such as K RBs. Put another way, multiple flexible occasions 506 may be associated with frequency hopping, with a sub-band of each flexible occasion 506 associated with a defined pattern associated with an offset (e.g., K RBs) .
  • each flexible occasion 506 may be associated with M RBs (e.g., a bandwidth of each flexible occasion 506 may be M RBs) .
  • a first flexible occasion 506 e.g., a flexible occasion 506 indexed as 0
  • M e.g., an RB indexed as 0, such as a configured reference RB or initial RB, through an RB indexed as M
  • a second flexible occasion 506 e.g., a flexible occasion 506 indexed as 1
  • K RBs such that the second flexible occasion 506 may include RBs K through K+M.
  • a third flexible occasion 506 (e.g., a flexible occasion 506 indexed as 2) may be offset from the second flexible occasion 506 by K RBs (and thus may be offset from the first flexible occasion 506 by 2K) , such that the third flexible occasion 506 may include RBs 2K through 2K+M, and so forth.
  • an n-th indexed flexible occasion 506 may be offset from the first flexible occasion 506 by n*K RBs, such that the n-th indexed flexible occasion 506 may include RBs n*K through n*K + M.
  • the n-th indexed flexible occasion 506 may begin at the reference RB (e.g., the RB indexed as 0) .
  • the n-th indexed flexible occasion 506 may include RBs 0 through M (as shown by the fourth flexible occasion 506 in example 504)
  • the (n+1) -th indexed flexible occasion 506 may include RBs K through K + M, and so forth.
  • one or more parameters associated with frequency hopping may be indicated by a network node 110 to a UE 120.
  • one or more parameters associated with frequency hopping may be RRC configured (e.g., indicated via an RRC message) .
  • one or more parameters associated with frequency hopping may be indicated via a MAC-CE communication and/or a DCI communication.
  • one or more of a frequency hopping pattern, a K parameter, or an M parameter may be indicated by a network node 110, to a UE 120, by a DCI communication, such as via an activation DCI transmitted by the network node 110, to the UE 120, to activate one or more flexible occasions 506.
  • a network device may communicate the uplink communications and/or the downlink communications using a subset of resources 514 (e.g., a subset of time domain resources and/or a subset of frequency domain resources) associated with each flexible occasion 506.
  • a network node 110 may indicate, to a UE 120, the subset of resources 514 to be used in each flexible occasion 506, such as via a DCI or the like.
  • a network node 110 may indicate, to a UE 120, one or more subset of resources 514 to be used in one or more flexible occasions 506 via a downlink-scheduling DCI.
  • a network node 110 may indicate, to a UE 120, one or more subset of resources 514 to be used in one or more flexible occasions 506 via an uplink-scheduling DCI.
  • a network device may autonomously select the subset of resources 514.
  • a UE 120 may select a subset of resources 514 associated with each flexible occasion 506 based at least in part on a type or size of communication to be communicated, channel state information associated with the flexible occasion 506, or the like.
  • Fig. 5 is provided as an example. Other examples may differ from what is described with regard to Fig. 5.
  • Fig. 6 is a diagram of an example 600 associated with configuration parameters for flexible occasion, in accordance with the present disclosure.
  • a network node 110 may communicate with a UE 120.
  • the network node 110 and the UE 120 may be part of a wireless network (e.g., wireless network 100) .
  • the UE 120 and the network node 110 may have established a wireless connection prior to operations shown in Fig. 6.
  • the network node 110 may transmit, and the UE 120 may receive, configuration information.
  • the UE 120 may receive the configuration information via one or more of RRC signaling, one or more MAC-CEs, and/or DCI, among other examples.
  • the configuration information may include an indication of one or more configuration parameters (e.g., already known to the UE 120 and/or previously indicated by the network node 110 or other network device) for selection by the UE 120, and/or explicit configuration information for the UE 120 to use to configure the UE 120, among other examples.
  • the configuration information may indicate multiple sets of configuration parameters associated with a flexible occasion (e.g., flexible occasion 506) .
  • a flexible occasion may be associated with resources available for both uplink communications and downlink communications, which will be described in more detail in connection with reference numbers 630-645.
  • the multiple sets of configuration parameters may include a first group of sets of configuration parameters associated with uplink communications, and the multiple sets of configuration parameters may include a second group of sets of configuration parameters associated with downlink communications.
  • each set of configuration parameters, of the multiple sets of configuration patterns may be associated with a corresponding index.
  • the network node 110 and/or the UE 120 may indicate a selected set of configuration patterns based at least in part on by indicating an index corresponding to the selected set of configuration parameters, which will be described in more detail below in connection with reference numbers 610 and 620.
  • the configuration information may include a configuration set.
  • the configuration set may include the multiple sets of configuration parameters as well as common parameters applicable to each set of configuration parameters, of the multiple sets of configuration parameters.
  • the common parameters applicable to each set of configuration parameters may include a flexible occasion resource allocation (e.g., a TDRA and/or an FDRA associated with the flexible occasion)
  • each set of configuration parameters may indicate additional parameters specific to the corresponding set of configuration parameters such as RBG size, a number of HARQ processes, a periodicity, a repK parameter, a uci-onPUSCH parameter, or the like.
  • the network node 110 may transmit, and the UE 120 may receive, additional configuration information (e.g., configuration information in addition to the multiple sets of configuration parameters and/or the configuration set described above) .
  • additional configuration information e.g., configuration information in addition to the multiple sets of configuration parameters and/or the configuration set described above
  • the configuration information described in connection with reference number 605 may be transmitted by the network node 110, and received by the UE 120, via an RRC communication, and the additional configuration information may be later transmitted by the network node 110, and received by the UE 120, via a DCI communication.
  • the additional configuration information may include one or more parameters to replace and/or overwrite one or more parameters contained in the configuration information described in connection with reference number 605.
  • an activation and/or deactivation uplink or downlink DCI may indicate a configuration index associated with one or the sets of configuration parameters indicating that the set of configuration parameters associated with the configuration index should be used for a transmission in a flexible occasion, and the activation and/or deactivation uplink or downlink DCI may further indicate one or more specific parameters to update one or more default parameters associated with the indicated set of configuration parameters.
  • the UE 120 may overwrite at least one configuration parameter associated with the configuration set with a corresponding at least one configuration parameter associated with the additional configuration information.
  • the UE 120 may configure itself based at least in part on the configuration information. In some aspects, the UE 120 may be configured to perform one or more operations described herein based at least in part on the configuration information.
  • the network node 110 may transmit, and the UE 120 may receive, an indication of the set of configuration parameters associated with one or more communications to be communicated in a flexible occasion.
  • the UE 120 may receive the indication of the set of configuration parameters via one of an uplink-scheduling DCI communication (e.g., when an uplink communication is to be communicated in a flexible occasion) or a downlink-scheduling DCI communication (e.g., when a downlink communication is to be communicated in a flexible occasion) .
  • a flexible occasion to be used to communicate at least one communication may be activated by an uplink-scheduling DCI, and the DCI may indicate a configuration index of the selected set of configuration parameters.
  • the UE 120 can determined the set of configuration patterns to use for an uplink transmission, such as specific time and/or frequency resources to use, a transmission power to use, an MCS to use, or the like.
  • a flexible occasion to be used to communicate at least one communication may be activated by a downlink-scheduling DCI, and the DCI may indicate a configuration index of the selected set of configuration parameters that the network node 110 will use for the downlink transmission.
  • the UE 120 may determine PDSCH decoding parameters to be used for the communication, such as a specific resource allocation, an MCS, or the like.
  • the indicated set of configuration parameters may be associated with one or more attributes of the at least one communication to be communicated between the network node 110 and the UE 120.
  • the communication may be associated with a certain QoS requirement, such as a maximum PDB.
  • the indicated set of configuration parameters may be based at least in part on the QoS requirement associated with the at least one communication.
  • the UE 120 may autonomously select a set of configuration parameters to be used for at least one communication associated with a flexible occasion. That is, rather than the network node 110 selecting a set of configuration parameters to be used for the at least one communication and signaling the selected set of configuration parameters as described in connection with reference number 610, the UE 120 may select one of the sets of configuration parameters. For example, a UE 120 may select one of the sets of configuration parameters based at least in part on a QoS requirement associated with the at least one communication. For example, the UE 120 may have XR traffic in the UE’s buffer, which may be associated with a certain QoS requirement, such as a maximum PDB, or the like. The UE 120 may thus select an appropriate set of configuration parameters in order to satisfy the QoS requirement.
  • the UE 120 may further select specific resources associated with a flexible occasion to be used for the at least one communication. For example, the UE 120 may select a subset of frequency resources associated with the flexible occasion for communicating the at least one communication and/or the UE 120 may select a subset of time resources for communicating the at least one communication, as described above in connection with example 504 of Fig. 5. More particularly, in some aspects, the UE 120 may select a sub-band associated with the flexible occasion for communicating the at least one communication, and thus the selected set of configuration parameters may be associated with the specific sub-band selected by the UE 120.
  • the UE may select specific resources associated with a flexible occasion based at least in part on information about the channel known to the UE 120, such as CSI determined based at least in part on one more measured reference signals. For example, the UE 120 may select a specific sub-band based at least in part on CSI associated with the sub-band. In this way, diversity may be acquired by the UE 120 selecting different sub-bands in each flexible occasion, as described in connection with example 504 of Fig. 5.
  • the UE 120 may transmit, and the network node 110 may receive, an indication of the set of configuration patterns, as shown by reference number 620.
  • the UE 120 may transmit an indication of the set of configuration patterns via a MAC-CE communication. Additionally, or alternatively, the UE 120 may transmit an indication of the set of configuration patterns via an uplink communication information (UCI) communication.
  • UCI uplink communication information
  • the network node 110 and the UE 120 may communicate at least one communication using a flexible occasion 625 (e.g., flexible occasion 506) based at least in part on the selected set of configuration parameters, of the multiple sets of configuration parameters.
  • a flexible occasion 625 e.g., flexible occasion 506
  • the flexible occasions 625 may associated with resources available for both uplink communications and downlink communications
  • the UE 120 may be configured with multiple sets of configuration parameters, such as sets of configuration parameters associated with uplink, downlink, and/or full-duplex communications
  • the at least one communication may include an uplink communication, a downlink communication, or both an uplink communication and a downlink communication.
  • the network node 110 and the UE 120 may communicate at least one uplink communication in a flexible occasion 625 based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters. Additionally, or alternatively, as shown by reference number 635, the network node 110 and the UE 120 may communicate at least one downlink communication in a flexible occasion 625 based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters.
  • the network node 110 and the UE 120 may communicate at least one downlink communication and at least one downlink communication in a flexible occasion 625 based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters (e.g., the network node 110 and/or the UE 120 may operate in a full-duplex mode in a flexible occasion 625) .
  • both the uplink communication (as shown by reference number 640) and the downlink communication (as shown by reference number 645) may be activated by a single DCI communication (which may be associated with the communication described in connection with reference number 610) .
  • the DCI may indicate a single FDRA, a single TDRA associated with the flexible occasion 625, and/or a set of configuration parameters to be used for the full-duplex communication (e.g., an index of the set of configuration parameters to be used for the full-duplex communication) .
  • the UE 120 may determine allocated resources and/or configuration parameters for the uplink communication to be transmitted to the network node 110 in the flexible occasion 625 and/or the downlink communication to be received from the network node 110 in the flexible occasion 625 and/or configuration parameters associated with the uplink communication and the downlink communications.
  • the uplink communication (as shown by reference number 640) may be activated by a first DCI communication (e.g., an uplink activation and/or scheduling DCI, which may be associated with the communication described in connection with reference number 610)
  • the downlink communication (as shown by reference number 645) may be activated by a second DCI communication (e.g., a downlink activation and/or scheduling DCI, which may be associated with the communication described in connection with reference number 610) .
  • the first DCI may indicate an FDRA, a TDRA, and/or a set of configuration parameters to be used for the uplink communication (e.g., an index of the set of configuration parameters to be used for the uplink communication)
  • the second DCI may indicate an FDRA, a TDRA, and/or a set of configuration parameters to be used for the downlink communication (e.g., an index of the set of configuration parameters to be used for the downlink communication) .
  • the UE 120 may determine allocated resources and/or configuration parameters for the uplink communication to be transmitted to the network node 110 in the flexible occasion 625 and/or the downlink communication to be received from the network node 110 in the flexible occasion 625.
  • the UE 120 may select a subset of resources associated with the flexible occasion 625 for transmitting an uplink communication.
  • the UE 120 may select a sub-band associated with the flexible occasion 625 for transmitting the uplink communication.
  • the flexible occasions 625 may be associated with multiple sub-bands, as described above in connection with example 504 of Fig. 5.
  • communicating the at least one communication may include performing frequency hopping between the multiple sub-bands.
  • performing frequency hopping between the multiple sub-bands may include performing frequency hopping according to a hopping pattern, such as a pattern described above in connection with example 504.
  • the network node 110 may transmit, and the UE 120 may receive, an indication of a hopping pattern associated with performing frequency hopping between the multiple sub-bands.
  • the network node 110 may indicate a hopping pattern via an activation DCI communication (e.g., a DCI activating an uplink communication, a downlink communication, or a full-duplex communication) , or the like.
  • the network node 110 may indicate, or else the UE 120 may autonomously select, a subset of resources of a flexible occasion 625 UE 120 to be used for a communication.
  • the network node 110 may transmit, and the UE 120 may receive, an indication of at least one of a TDRA allocation associated with each sub-band, of multiple sub-bands associated with the flexible occasions 625, or an FDRA associated with each sub-band, of the multiple sub-bands associated with the flexible occasions 625.
  • the UE 120 may autonomously select a subset of at least one sub-band, of the multiple sub-bands associated with the flexible occasions 625, for communicating the at least one communication.
  • the UE 120 may be preconfigured or hard coded with an indication of a relationship between an uplink and/or downlink frequency band and a starting RB (sometimes referred to as start_RB) and/or an ending RB (sometimes referred to as end_RB) of the flexible occasion 625.
  • the UE 120 may determine a resource allocation associated with the flexible occasion 625 based at least in part on the predefined relationship.
  • the UE 120 may receive an indication of at least one of a first sub-band associated with the uplink communication or a second sub-band associated with the downlink communication, with the resources available for both the uplink communications and the downlink communications (e.g., the resources associated with the flexible occasion 625) being based at least in part on the at least one of the first sub-band associated with the uplink communication or the second sub-band associated with the downlink communication.
  • the resources available for both the uplink communications and the downlink communications e.g., the resources associated with the flexible occasion 625
  • the resources available for both the uplink communications and the downlink communications e.g., the resources associated with the flexible occasion 625
  • the resources available for both the uplink communications and the downlink communications e.g., the resources associated with the flexible occasion 625
  • the resources available for both the uplink communications and the downlink communications e.g., the resources associated with the flexible occasion 625
  • the UE 120 may determine a resource allocation associated with the flexible occasion 625
  • one network device may communicate with another device using a flexible occasion 625 based at least in part on one or more of the aspects described above.
  • two UEs 120 may communicate via a sidelink using a flexible occasion 625.
  • communicating at least one communication using the flexible occasion 625 may include communicating the at least one communication via a sidelink.
  • the multiple sets of configuration parameters described above in connection with reference number 605 may be associated with a resource pool associated with the sidelink.
  • the multiple sets of configuration parameters may be configured per resource pool to be used by different UEs 120 communicating in the sidelink.
  • the UEs 120 may select one or more of the sets of configuration parameters to be used for half-duplex or full-duplex operation.
  • the UE 120 and/or the network node 110 may conserve computing, power, network, and/or communication resources that may have otherwise been consumed communicating used dynamically granted resources, SPS resources, or CG resources. For example, based at least in part on the UE 120 and/or the network node 110 communicating using a flexible occasion, the UE 120 and the network node 110 may communicate with a reduced signaling overhead and reduce latency, while requiring less memory capacity at the UE 120 to store multiple configurations.
  • Fig. 6 is provided as an example. Other examples may differ from what is described with respect to Fig. 6.
  • Fig. 7 is a diagram illustrating an example process 700 performed, for example, by a UE, in accordance with the present disclosure.
  • Example process 700 is an example where the UE (e.g., UE 120) performs operations associated with configuration parameters for flexible occasions.
  • the UE e.g., UE 120
  • process 700 may include receiving configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications (block 710) .
  • the UE e.g., using communication manager 140 and/or reception component 902, depicted in Fig. 9 may receive configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications, as described above.
  • process 700 may include communicating at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters (block 720) .
  • the UE e.g., using communication manager 140, reception component 902, and/or transmission component 904, depicted in Fig. 9
  • Process 700 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • each set of configuration parameters, of the multiple sets of configuration patterns is associated with a corresponding index.
  • process 700 includes receiving an indication of the set of configuration parameters.
  • the indication of the set of configuration parameters is received via one of an uplink-scheduling DCI communication or a downlink-scheduling DCI communication.
  • process 700 includes selecting the set of configuration parameters.
  • the set of configuration parameters is based at least in part on a quality of service requirement associated with the at least one communication.
  • process 700 includes transmitting an indication of the set of configuration patterns.
  • process 700 includes selecting a sub-band associated with the flexible occasion for communicating the at least one communication, wherein the set of configuration parameters is associated with the sub-band.
  • selecting the sub-band is based at least in part on channel state information associated with the sub-band.
  • the configuration information includes a configuration set
  • the configuration set includes the multiple sets of configuration parameters and common parameters applicable to each set of configuration parameters, of the multiple sets of configuration parameters.
  • process 700 includes receiving additional configuration information via a downlink communication information communication, wherein communicating the at least one communication includes overwriting at least one configuration parameter associated with the configuration set with a corresponding at least one configuration parameter associated with the additional configuration information.
  • the flexible occasion is associated with multiple sub-bands, and communicating the at least one communication using the flexible occasion includes performing frequency hopping between the multiple sub-bands.
  • process 700 includes receiving an indication of a hopping pattern associated with performing frequency hopping between the multiple sub-bands.
  • process 700 includes receiving an indication of at least one of a time domain resource allocation associated with each sub-band, of the multiple sub-bands, or a frequency domain resource allocation associated with each sub-band, of the multiple sub-bands.
  • process 700 includes selecting a subset of at least one sub-band, of the multiple sub-bands, for communicating the at least one communication.
  • communicating the at least one communication using the flexible occasion includes transmitting an uplink communication using the flexible occasion and receiving a downlink communication using the flexible occasion.
  • the uplink communication and the downlink communication are activated by a single downlink communication information communication.
  • process 700 includes receiving an indication of at least one of a TDRA associated with the uplink communication, a TDRA associated with the downlink communication, an FDRA associated with the uplink communication, an FDRA associated with the downlink communication, or the set of configuration parameters.
  • the uplink communication is activated by a first DCI communication
  • the downlink communication is activated by a second DCI communication
  • the first DCI communication indicates at least one of a TDRA associated with the uplink communication, an FDRA associated with the uplink communication, or the set of configuration parameters
  • the second DCI communication indicates at least one of a TDRA associated with the downlink communication, an FDRA associated with the downlink communication, or the set of configuration parameters.
  • process 700 includes selecting a sub-band associated with the flexible occasion for transmitting the uplink communication.
  • process 700 includes receiving an indication of at least one of a first sub-band associated with the uplink communication or a second sub-band associated with the downlink communication, wherein the resources available for both the uplink communications and the downlink communications are based at least in part on the at least one of the first sub-band associated with the uplink communication or the second sub-band associated with the downlink communication.
  • communicating the at least one communication using the flexible occasion includes communicating the at least one communication via a sidelink.
  • the multiple sets of configuration parameters are associated with a resource pool associated with the sidelink.
  • process 700 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 7. Additionally, or alternatively, two or more of the blocks of process 700 may be performed in parallel.
  • Fig. 8 is a diagram illustrating an example process 800 performed, for example, by a network node, in accordance with the present disclosure.
  • Example process 800 is an example where the network node (e.g., network node 110) performs operations associated with configuration parameters for flexible occasions.
  • the network node e.g., network node 110
  • process 800 may include transmitting, to a UE, configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications (block 810) .
  • the network node e.g., using communication manager 150, transmission component 1004, and/or configuration component 1008, depicted in Fig. 10) may transmit, to a UE, configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications, as described above.
  • process 800 may include communicating at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters (block 820) .
  • the network node e.g., using communication manager 150, reception component 1002, and/or transmission component 1004, depicted in Fig. 10) may communicate at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters, as described above.
  • Process 800 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • each set of configuration parameters, of the multiple sets of configuration patterns is associated with a corresponding index.
  • process 800 includes transmitting, to the UE, an indication of the set of configuration parameters.
  • the indication of the set of configuration parameters is transmitted via one of an uplink-scheduling DCI communication or a downlink-scheduling DCI communication.
  • process 800 includes receiving, from the UE, an indication of the set of configuration patterns.
  • the set of configuration parameters is associated a selected sub-band associated with the flexible occasion for communicating the at least one communication.
  • the selected sub-band is based at least in part on channel state information associated with the selected sub-band.
  • the configuration information includes a configuration set
  • the configuration set includes the multiple sets of configuration parameters and common parameters applicable to each set of configuration parameters, of the multiple sets of configuration parameters.
  • process 800 includes transmitting, to the UE, additional configuration information via a downlink communication information communication, wherein communicating the at least one communication includes overwriting at least one configuration parameter associated with the configuration set with a corresponding at least one configuration parameter associated with the additional configuration information.
  • the flexible occasion is associated with multiple sub-bands, and communicating the at least one communication using the flexible occasion includes performing frequency hopping between the multiple sub-bands.
  • process 800 includes transmitting, to the UE, an indication of a hopping pattern associated with performing frequency hopping between the multiple sub-bands.
  • process 800 includes transmitting, to the UE, an indication of at least one of a time domain resource allocation associated with each sub-band, of the multiple sub-bands, or a frequency domain resource allocation associated with each sub-band, of the multiple sub-bands.
  • communicating the at least one communication using the flexible occasion includes receiving, from the UE, an uplink communication using the flexible occasion and transmitting, to the UE, a downlink communication using the flexible occasion.
  • the uplink communication and the downlink communication are activated by a single downlink communication information communication.
  • process 800 includes transmitting, to the UE, an indication of at least one of a TDRA associated with the uplink communication, a TDRA associated with the downlink communication, an FDRA associated with the uplink communication, an FDRA associated with the downlink communication, or the set of configuration parameters.
  • the uplink communication is activated by a first DCI communication
  • the downlink communication is activated by a second DCI communication
  • the first DCI communication indicates at least one of a TDRA associated with the uplink communication, an FDRA associated with the uplink communication, or the set of configuration parameters
  • the second DCI communication indicates at least one of a TDRA associated with the downlink communication, an FDRA associated with the downlink communication, or the set of configuration parameters.
  • process 800 includes transmitting, to the UE, an indication of at least one of a first sub-band associated with the uplink communication or a second sub-band associated with the downlink communication, wherein the resources available for both the uplink communications and the downlink communications are based at least in part on the at least one of the first sub-band associated with the uplink communication or the second sub-band associated with the downlink communication.
  • process 800 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 8. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
  • Fig. 9 is a diagram of an example apparatus 900 for wireless communication, in accordance with the present disclosure.
  • the apparatus 900 may be a UE 120, or a UE 120 may include the apparatus 900.
  • the apparatus 900 includes a reception component 902 and a transmission component 904, which may be in communication with one another (for example, via one or more buses and/or one or more other components) .
  • the apparatus 900 may communicate with another apparatus 906 (such as a UE 120, a network node 110, or another wireless communication device) using the reception component 902 and the transmission component 904.
  • the apparatus 900 may include the communication manager 140.
  • the communication manager 140 may include a selection component 908, among other examples.
  • the apparatus 900 may be configured to perform one or more operations described herein in connection with Figs. 5-6. Additionally, or alternatively, the apparatus 900 may be configured to perform one or more processes described herein, such as process 700 of Fig. 7.
  • the apparatus 900 and/or one or more components shown in Fig. 9 may include one or more components of the UE 120 described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 9 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 902 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 906.
  • the reception component 902 may provide received communications to one or more other components of the apparatus 900.
  • the reception component 902 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 900.
  • the reception component 902 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE 120 described in connection with Fig. 2.
  • the transmission component 904 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 906.
  • one or more other components of the apparatus 900 may generate communications and may provide the generated communications to the transmission component 904 for transmission to the apparatus 906.
  • the transmission component 904 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 906.
  • the transmission component 904 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE 120 described in connection with Fig. 2. In some aspects, the transmission component 904 may be co-located with the reception component 902 in a transceiver.
  • the reception component 902 may receive configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications.
  • the reception component 902 and/or the transmission component 904 may communicate at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters.
  • the reception component 902 may receive an indication of the set of configuration parameters.
  • the selection component 908 may select the set of configuration parameters.
  • the transmission component 904 may transmit an indication of the set of configuration patterns.
  • the selection component 908 may select a sub-band associated with the flexible occasion for communicating the at least one communication, wherein the set of configuration parameters is associated with the sub-band.
  • the reception component 902 may receive additional configuration information via a downlink communication information communication, wherein communicating the at least one communication includes overwriting at least one configuration parameter associated with the configuration set with a corresponding at least one configuration parameter associated with the additional configuration information.
  • the reception component 902 may receive an indication of a hopping pattern associated with performing frequency hopping between the multiple sub-bands.
  • the reception component 902 may receive an indication of at least one of a time domain resource allocation associated with each sub-band, of the multiple sub-bands, or a frequency domain resource allocation associated with each sub-band, of the multiple sub-bands.
  • the selection component 908 may select a subset of at least one sub-band, of the multiple sub-bands, for communicating the at least one communication.
  • the reception component 902 may receive an indication of at least one of a TDRA associated with the uplink communication, a TDRA associated with the downlink communication, an FDRA associated with the uplink communication, an FDRA associated with the downlink communication, or the set of configuration parameters.
  • the selection component 908 may select a sub-band associated with the flexible occasion for transmitting the uplink communication.
  • the reception component 902 may receive an indication of at least one of a first sub-band associated with the uplink communication or a second sub-band associated with the downlink communication, wherein the resources available for both the uplink communications and the downlink communications are based at least in part on the at least one of the first sub-band associated with the uplink communication or the second sub-band associated with the downlink communication.
  • Fig. 9 The number and arrangement of components shown in Fig. 9 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 9. Furthermore, two or more components shown in Fig. 9 may be implemented within a single component, or a single component shown in Fig. 9 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 9 may perform one or more functions described as being performed by another set of components shown in Fig. 9.
  • Fig. 10 is a diagram of an example apparatus 1000 for wireless communication, in accordance with the present disclosure.
  • the apparatus 1000 may be a network node 110, or a network node 110 may include the apparatus 1000.
  • the apparatus 1000 includes a reception component 1002 and a transmission component 1004, which may be in communication with one another (for example, via one or more buses and/or one or more other components) .
  • the apparatus 1000 may communicate with another apparatus 1006 (such as a UE 120, a network node 110, or another wireless communication device) using the reception component 1002 and the transmission component 1004.
  • the apparatus 1000 may include the communication manager 150.
  • the communication manager 150 may include a configuration component 1008, among other examples.
  • the apparatus 1000 may be configured to perform one or more operations described herein in connection with Figs. 5-6. Additionally, or alternatively, the apparatus 1000 may be configured to perform one or more processes described herein, such as process 800 of Fig. 8, or a combination thereof.
  • the apparatus 1000 and/or one or more components shown in Fig. 10 may include one or more components of the network node 110 described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 10 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 1002 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1006.
  • the reception component 1002 may provide received communications to one or more other components of the apparatus 1000.
  • the reception component 1002 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1000.
  • the reception component 1002 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the network node 110 described in connection with Fig. 2.
  • the transmission component 1004 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1006.
  • one or more other components of the apparatus 1000 may generate communications and may provide the generated communications to the transmission component 1004 for transmission to the apparatus 1006.
  • the transmission component 1004 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1006.
  • the transmission component 1004 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the network node 110 described in connection with Fig. 2. In some aspects, the transmission component 1004 may be co-located with the reception component 1002 in a transceiver.
  • the transmission component 1004 and/or the configuration component 1008 may transmit, to a UE, configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications.
  • the reception component 1002 and/or the transmission component 1004 may communicate at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters.
  • the transmission component 1004 and/or the configuration component 1008 may transmit, to the UE, an indication of the set of configuration parameters.
  • the reception component 1002 may receive, from the UE, an indication of the set of configuration patterns.
  • the transmission component 1004 and/or the configuration component 1008 may transmit, to the UE, additional configuration information via a downlink communication information communication, wherein communicating the at least one communication includes overwriting at least one configuration parameter associated with the configuration set with a corresponding at least one configuration parameter associated with the additional configuration information.
  • the transmission component 1004 may transmit, to the UE, an indication of a hopping pattern associated with performing frequency hopping between the multiple sub-bands.
  • the transmission component 1004 may transmit, to the UE, an indication of at least one of a time domain resource allocation associated with each sub-band, of the multiple sub-bands, or a frequency domain resource allocation associated with each sub-band, of the multiple sub-bands.
  • the transmission component 1004 may transmit, to the UE, an indication of at least one of a TDRA associated with the uplink communication, a TDRA associated with the downlink communication, an FDRA associated with the uplink communication, an FDRA associated with the downlink communication, or the set of configuration parameters.
  • the transmission component 1004 may transmit, to the UE, an indication of at least one of a first sub-band associated with the uplink communication or a second sub-band associated with the downlink communication, wherein the resources available for both the uplink communications and the downlink communications are based at least in part on the at least one of the first sub-band associated with the uplink communication or the second sub-band associated with the downlink communication.
  • Fig. 10 The number and arrangement of components shown in Fig. 10 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 10. Furthermore, two or more components shown in Fig. 10 may be implemented within a single component, or a single component shown in Fig. 10 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 10 may perform one or more functions described as being performed by another set of components shown in Fig. 10.
  • a method of wireless communication performed by a UE comprising: receiving configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications; and communicating at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters.
  • Aspect 2 The method of Aspect 1, wherein each set of configuration parameters, of the multiple sets of configuration patterns, is associated with a corresponding index.
  • Aspect 3 The method of any of Aspects 1-2, further comprising receiving an indication of the set of configuration parameters.
  • Aspect 4 The method of Aspect 3, wherein the indication of the set of configuration parameters is received via one of an uplink-scheduling DCI communication or a downlink-scheduling DCI communication.
  • Aspect 5 The method of any of Aspects 1-4, further comprising selecting the set of configuration parameters.
  • Aspect 6 The method of any of Aspects 1-5, wherein the set of configuration parameters is based at least in part on a quality of service requirement associated with the at least one communication.
  • Aspect 7 The method of any of Aspects 1-6, further comprising transmitting an indication of the set of configuration patterns.
  • Aspect 8 The method of any of Aspects 1-7, further comprising selecting a sub-band associated with the flexible occasion for communicating the at least one communication, wherein the set of configuration parameters is associated with the sub-band.
  • Aspect 9 The method of Aspect 8, wherein selecting the sub-band is based at least in part on channel state information associated with the sub-band.
  • Aspect 10 The method of any of Aspects 1-9, wherein the configuration information includes a configuration set, and wherein the configuration set includes the multiple sets of configuration parameters and common parameters applicable to each set of configuration parameters, of the multiple sets of configuration parameters.
  • Aspect 11 The method of Aspect 10, further comprising receiving additional configuration information via a downlink communication information communication, wherein communicating the at least one communication includes overwriting at least one configuration parameter associated with the configuration set with a corresponding at least one configuration parameter associated with the additional configuration information.
  • Aspect 12 The method of any of Aspects 1-11, wherein the flexible occasion is associated with multiple sub-bands, and wherein communicating the at least one communication using the flexible occasion includes performing frequency hopping between the multiple sub-bands.
  • Aspect 13 The method of Aspect 12, further comprising receiving an indication of a hopping pattern associated with performing frequency hopping between the multiple sub-bands.
  • Aspect 14 The method of any of Aspects 12-13, further comprising receiving an indication of at least one of a time domain resource allocation associated with each sub-band, of the multiple sub-bands, or a frequency domain resource allocation associated with each sub-band, of the multiple sub-bands.
  • Aspect 15 The method of any of Aspects 12-14, further comprising selecting a subset of at least one sub-band, of the multiple sub-bands, for communicating the at least one communication.
  • Aspect 16 The method of any of Aspects 1-15, wherein communicating the at least one communication using the flexible occasion includes transmitting an uplink communication using the flexible occasion and receiving a downlink communication using the flexible occasion.
  • Aspect 17 The method of Aspect 16, wherein the uplink communication and the downlink communication are activated by a single downlink communication information communication.
  • Aspect 18 The method of any of Aspects 16-17, further comprising receiving an indication of at least one of: a TDRA associated with the uplink communication, a TDRA associated with the downlink communication, an FDRA associated with the uplink communication, an FDRA associated with the downlink communication, or the set of configuration parameters.
  • Aspect 19 The method of Aspect 16, wherein the uplink communication is activated by a first DCI communication, and wherein the downlink communication is activated by a second DCI communication.
  • Aspect 20 The method of Aspect 19, wherein the first DCI communication indicates at least one of a TDRA associated with the uplink communication, an FDRA associated with the uplink communication, or the set of configuration parameters, and wherein the second DCI communication indicates at least one of a TDRA associated with the downlink communication, an FDRA associated with the downlink communication, or the set of configuration parameters.
  • Aspect 21 The method of any of Aspects 16-20, further comprising selecting a sub-band associated with the flexible occasion for transmitting the uplink communication.
  • Aspect 22 The method of any of Aspects 16-21, further comprising receiving an indication of at least one of a first sub-band associated with the uplink communication or a second sub-band associated with the downlink communication, wherein the resources available for both the uplink communications and the downlink communications are based at least in part on the at least one of the first sub-band associated with the uplink communication or the second sub-band associated with the downlink communication.
  • Aspect 23 The method of any of Aspects 1-22, wherein communicating the at least one communication using the flexible occasion includes communicating the at least one communication via a sidelink.
  • Aspect 24 The method of Aspect 23, wherein the multiple sets of configuration parameters are associated with a resource pool associated with the sidelink.
  • a method of wireless communication performed by a network node comprising: transmitting, to a UE, configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications; and communicating at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters.
  • Aspect 26 The method of Aspect 25, wherein each set of configuration parameters, of the multiple sets of configuration patterns, is associated with a corresponding index.
  • Aspect 27 The method of any of Aspects 25-26, further comprising transmitting, to the UE, an indication of the set of configuration parameters.
  • Aspect 28 The method of Aspect 27, wherein the indication of the set of configuration parameters is transmitted via one of an uplink-scheduling DCI communication or a downlink-scheduling DCI communication.
  • Aspect 29 The method of any of Aspects 25-28, further comprising receiving, from the UE, an indication of the set of configuration patterns.
  • Aspect 30 The method of Aspect 29, wherein the set of configuration parameters is associated a selected sub-band associated with the flexible occasion for communicating the at least one communication.
  • Aspect 31 The method of Aspect 30, wherein the selected sub-band is based at least in part on channel state information associated with the selected sub-band.
  • Aspect 32 The method of any of Aspects 25-31, wherein the configuration information includes a configuration set, and wherein the configuration set includes the multiple sets of configuration parameters and common parameters applicable to each set of configuration parameters, of the multiple sets of configuration parameters.
  • Aspect 33 The method of Aspect 32, further comprising transmitting, to the UE, additional configuration information via a downlink communication information communication, wherein communicating the at least one communication includes overwriting at least one configuration parameter associated with the configuration set with a corresponding at least one configuration parameter associated with the additional configuration information.
  • Aspect 34 The method of any of Aspects 25-33, wherein the flexible occasion is associated with multiple sub-bands, and wherein communicating the at least one communication using the flexible occasion includes performing frequency hopping between the multiple sub-bands.
  • Aspect 35 The method of Aspect 34, further comprising transmitting, to the UE, an indication of a hopping pattern associated with performing frequency hopping between the multiple sub-bands.
  • Aspect 36 The method of any of Aspects 34-35, further comprising transmitting, to the UE, an indication of at least one of a time domain resource allocation associated with each sub-band, of the multiple sub-bands, or a frequency domain resource allocation associated with each sub-band, of the multiple sub-bands.
  • Aspect 37 The method of any of Aspects 25-36, wherein communicating the at least one communication using the flexible occasion includes receiving, from the UE, an uplink communication using the flexible occasion and transmitting, to the UE, a downlink communication using the flexible occasion.
  • Aspect 38 The method of Aspect 37, wherein the uplink communication and the downlink communication are activated by a single downlink communication information communication.
  • Aspect 39 The method of any of Aspect 37-38, further comprising transmitting, to the UE, an indication of at least one of: a TDRA associated with the uplink communication, a TDRA associated with the downlink communication, an FDRA associated with the uplink communication, an FDRA associated with the downlink communication, or the set of configuration parameters.
  • Aspect 40 The method of Aspect 37, wherein the uplink communication is activated by a first DCI communication, and wherein the downlink communication is activated by a second DCI communication.
  • Aspect 41 The method of Aspect 40, wherein the first DCI communication indicates at least one of a TDRA associated with the uplink communication, an FDRA associated with the uplink communication, or the set of configuration parameters, and wherein the second DCI communication indicates at least one of a TDRA associated with the downlink communication, an FDRA associated with the downlink communication, or the set of configuration parameters.
  • Aspect 42 The method of any of Aspects 37-41, further comprising transmitting, to the UE, an indication of at least one of a first sub-band associated with the uplink communication or a second sub-band associated with the downlink communication, wherein the resources available for both the uplink communications and the downlink communications are based at least in part on the at least one of the first sub-band associated with the uplink communication or the second sub-band associated with the downlink communication.
  • Aspect 43 An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 1-24.
  • Aspect 44 A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the one or more processors configured to perform the method of one or more of Aspects 1-24.
  • Aspect 45 An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 1-24.
  • Aspect 46 A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 1-24.
  • Aspect 47 A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 1-24.
  • Aspect 48 An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 25-42.
  • Aspect 49 A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the one or more processors configured to perform the method of one or more of Aspects 25-42.
  • Aspect 50 An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 25-42.
  • Aspect 51 A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 25-42.
  • Aspect 52 A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 25-42.
  • the term “component” is intended to be broadly construed as hardware, firmware, or a combination of hardware and software.
  • a processor is implemented in hardware, firmware, or a combination of hardware and software.
  • the phrase “based on” is intended to be broadly construed to mean “based at least in part on. ”
  • “satisfying a threshold” may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, or not equal to the threshold, among other examples.
  • a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members.
  • “at least one of: a, b, or c” is intended to cover: a, b, c, a + b, a + c, b + c, and a + b + c.
  • the articles “a” and “an” are intended to include one or more items and may be used interchangeably with “one or more. ”
  • the article “the” is intended to include one or more items referenced in connection with the article “the” and may be used interchangeably with “the one or more. ”
  • the terms “set” and “group” are intended to include one or more items (for example, related items, unrelated items, or a combination of related and unrelated items) , and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used.
  • the terms “has, ” “have, ” “having, ” and similar terms are intended to be open-ended terms that do not limit an element that they modify (for example, an element “having” A also may have B) .
  • the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (for example, if used in combination with “either” or “only one of” ) .
  • the hardware and data processing apparatus used to implement the various illustrative logics, logical blocks, modules and circuits described in connection with the aspects disclosed herein may be implemented or performed with a general purpose single-or multi-chip processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein.
  • a general purpose processor may be a microprocessor, or any conventional processor, controller, microcontroller, or state machine.
  • a processor also may be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • particular processes and methods may be performed by circuitry that is specific to a given function.
  • the functions described may be implemented in hardware, digital electronic circuitry, computer software, firmware, including the structures disclosed in this specification and their structural equivalents thereof, or in any combination thereof.
  • aspects of the subject matter described in this specification also can be implemented as one or more computer programs (such as one or more modules of computer program instructions) encoded on a computer storage media for execution by, or to control the operation of, a data processing apparatus.
  • Computer-readable media includes both computer storage media and communication media including any medium that can be enabled to transfer a computer program from one place to another.
  • a storage media may be any available media that may be accessed by a computer.
  • such computer-readable media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that may be used to store desired program code in the form of instructions or data structures and that may be accessed by a computer.
  • Disk and disc includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the media described herein should also be included within the scope of computer-readable media. Additionally, the operations of a method or algorithm may reside as one or any combination or set of codes and instructions on a machine readable medium and computer-readable medium, which may be incorporated into a computer program product.

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications. The UE may communicate at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters. Numerous other aspects are described.

Description

TECHNIQUES FOR CONFIGURATION PARAMETERS FOR FLEXIBLE OCCASIONS
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for configuration parameters for flexible occasions.
DESCRIPTION OF RELATED ART
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (for example, bandwidth, transmit power, etc. ) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless network may include one or more network nodes that support communication for wireless communication devices, such as a user equipment (UE) or multiple UEs. A UE may communicate with a network node via downlink communications and uplink communications. “Downlink” (or “DL” ) refers to a communication link from the network node to the UE, and “uplink” (or “UL” ) refers to a communication link from the UE to the network node. Some wireless networks may support device-to-device communication, such as via a local link (e.g., a sidelink (SL) , a wireless local area network (WLAN) link, and/or a wireless personal area network (WPAN) link, among other examples) .
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different UEs to communicate on a municipal, national, regional, or global level. New Radio (NR) , which also may be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the 3GPP. NR is designed to better support mobile broadband internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency-division multiplexing (OFDM) with a cyclic  prefix (CP) (CP-OFDM) on the downlink, using CP-OFDM or single-carrier frequency division multiplexing (SC-FDM) (also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink, as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
SUMMARY
Some aspects described herein relate to a method of wireless communication performed by a user equipment (UE) . The method may include receiving configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications. The method may include communicating at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters.
Some aspects described herein relate to a method of wireless communication performed by a network node. The method may include transmitting, to a UE, configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications. The method may include communicating at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters.
Some aspects described herein relate to an apparatus for wireless communication at a UE. The apparatus may include a memory and one or more processors coupled to the memory. The one or more processors may be configured to receive configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications. The one or more processors may be configured to communicate at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters.
Some aspects described herein relate to an apparatus for wireless communication at a network node. The apparatus may include a memory and one or more processors coupled to the memory. The one or more processors may be configured to transmit, to UE, configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications. The one or more processors may be configured to communicate at least one communication using the flexible occasion based at  least in part on a set of configuration parameters, of the multiple sets of configuration parameters.
Some aspects described herein relate to a non-transitory computer-readable medium that stores a set of instructions for wireless communication by a UE. The set of instructions, when executed by one or more processors of the UE, may cause the UE to receive configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications. The set of instructions, when executed by one or more processors of the UE, may cause the UE to communicate at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters.
Some aspects described herein relate to a non-transitory computer-readable medium that stores a set of instructions for wireless communication by a network node. The set of instructions, when executed by one or more processors of the network node, may cause the network node to transmit, to a UE, configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications. The set of instructions, when executed by one or more processors of the network node, may cause the network node to communicate at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters.
Some aspects described herein relate to an apparatus for wireless communication. The apparatus may include means for receiving configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications. The apparatus may include means for communicating at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters.
Some aspects described herein relate to an apparatus for wireless communication. The apparatus may include means for transmitting, to a UE, configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications. The apparatus may include means for communicating at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, network entity, network node, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a diagram illustrating an example of a wireless network.
Fig. 2 is a diagram illustrating an example of a network node in communication with a user equipment (UE) in a wireless network.
Fig. 3 is a diagram illustrating an example disaggregated base station architecture.
Fig. 4 is a diagram illustrating an example of downlink semi-persistent scheduling (SPS) communication and an example of uplink configured grant (CG) communication, in accordance with the present disclosure.
Fig. 5 is a diagram of examples associated with configuration parameters for flexible occasions, in accordance with the present disclosure.
Fig. 6 is a diagram of another example associated with configuration parameters for flexible occasions, in accordance with the present disclosure.
Fig. 7 is a diagram illustrating an example process performed, for example, by a UE, in accordance with the present disclosure.
Fig. 8 is a diagram illustrating an example process performed, for example, by a network node, in accordance with the present disclosure.
Fig. 9 is a diagram of an example apparatus for wireless communication, in accordance with the present disclosure.
Fig. 10 is a diagram of an example apparatus for wireless communication, in accordance with the present disclosure.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. One skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, or the like (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
While aspects may be described herein using terminology commonly associated with a 5G or New Radio (NR) radio access technology (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
Fig. 1 is a diagram illustrating an example of a wireless network 100. The wireless network 100 may be or may include elements of a 5G (for example, NR) network or a 4G (for example, Long Term Evolution (LTE) ) network, among other examples. The wireless network 100 may include one or more network nodes 110 (shown as a network node 110a, a network  node 110b, a network node 110c, and a network node 110d) , a user equipment (UE) 120 or multiple UEs 120 (shown as a UE 120a, a UE 120b, a UE 120c, a UE 120d, and a UE 120e) , or other entities. A network node 110 is an example of a network node that communicates with UEs 120. As shown, a network node 110 may include one or more network nodes. For example, a network node 110 may be an aggregated network node, meaning that the aggregated network node is configured to utilize a radio protocol stack that is physically or logically integrated within a single RAN node (for example, within a single device or unit) . As another example, a network node 110 may be a disaggregated network node (sometimes referred to as a disaggregated base station) , meaning that the network node 110 is configured to utilize a protocol stack that is physically or logically distributed among two or more nodes (such as one or more central units (CUs) , one or more distributed units (DUs) , or one or more radio units (RUs) ) .
In some examples, a network node 110 is or includes a network node that communicates with UEs 120 via a radio access link, such as an RU. In some examples, a network node 110 is or includes a network node that communicates with other network nodes 110 via a fronthaul link or a midhaul link, such as a DU. In some examples, a network node 110 is or includes a network node that communicates with other network nodes 110 via a midhaul link or a core network via a backhaul link, such as a CU. In some examples, a network node 110 (such as an aggregated network node 110 or a disaggregated network node 110) may include multiple network nodes, such as one or more RUs, one or more CUs, and/or one or more DUs. A network node 110 may include, for example, an NR base station, an LTE base station, a Node B, an eNB (for example, in 4G) , a gNB (for example, in 5G) , an access point, or a transmission reception point (TRP) , a DU, an RU, a CU, a mobility element of a network, a core network node, a network element, a network equipment, a RAN node, or a combination thereof. In some examples, the network nodes 110 may be interconnected to one another or to one or more other network nodes 110 in the wireless network 100 through various types of fronthaul, midhaul, and/or backhaul interfaces, such as a direct physical connection, an air interface, or a virtual network, using any suitable transport network.
In some examples, a network node 110 may provide communication coverage for a particular geographic area. In the Third Generation Partnership Project (3GPP) , the term “cell” can refer to a coverage area of a network node 110 or a network node subsystem serving this coverage area, depending on the context in which the term is used. A network node 110 may provide communication coverage for a macro cell, a pico cell, a femto cell, or another type of cell. A macro cell may cover a relatively large geographic area (for example, several kilometers in radius) and may allow unrestricted access by UEs 120 with service subscriptions. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs 120 with service subscription. A femto cell may cover a relatively small geographic area (for  example, a home) and may allow restricted access by UEs 120 having association with the femto cell (for example, UEs 120 in a closed subscriber group (CSG) ) . A network node 110 for a macro cell may be referred to as a macro network node. A network node 110 for a pico cell may be referred to as a pico network node. A network node 110 for a femto cell may be referred to as a femto network node or an in-home network node. In the example shown in Fig. 1, the network node 110a may be a macro network node for a macro cell 102a, the network node 110b may be a pico network node for a pico cell 102b, and the network node 110c may be a femto network node for a femto cell 102c. A network node may support one or multiple (for example, three) cells. In some examples, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a network node 110 that is mobile (for example, a mobile network node) .
In some aspects, the term “base station” or “network node” may refer to an aggregated base station, a disaggregated base station, an integrated access and backhaul (IAB) node, a relay node, or one or more components thereof. For example, in some aspects, “base station” or “network node” may refer to a CU, a DU, an RU, a Near-Real Time (Near-RT) RAN Intelligent Controller (RIC) , or a Non-Real Time (Non-RT) RIC, or a combination thereof. In some aspects, the term “base station” or “network node” may refer to one device configured to perform one or more functions, such as those described herein in connection with the network node 110. In some aspects, the term “base station” or “network node” may refer to a plurality of devices configured to perform the one or more functions. For example, in some distributed systems, each of a quantity of different devices (which may be located in the same geographic location or in different geographic locations) may be configured to perform at least a portion of a function, or to duplicate performance of at least a portion of the function, and the term “base station” or “network node” may refer to any one or more of those different devices. In some aspects, the term “base station” or “network node” may refer to one or more virtual base stations or one or more virtual base station functions. For example, in some aspects, two or more base station functions may be instantiated on a single device. In some aspects, the term “base station” or “network node” may refer to one of the base station functions and not another. In this way, a single device may include more than one base station.
The wireless network 100 may include one or more relay stations. A relay station is a network node that can receive a transmission of data from an upstream node (for example, a network node 110 or a UE 120) and send a transmission of the data to a downstream node (for example, a UE 120 or a network node 110) . A relay station may be a UE 120 that can relay transmissions for other UEs 120. In the example shown in Fig. 1, the network node 110d (for example, a relay network node) may communicate with the network node 110a (for example, a macro network node) and the UE 120d in order to facilitate communication between the network node 110a and the UE 120d. A network node 110 that relays communications may be  referred to as a relay station, a relay base station, a relay network node, a relay node, or a relay, among other examples.
The wireless network 100 may be a heterogeneous network that includes network nodes 110 of different types, such as macro network nodes, pico network nodes, femto network nodes, or relay network nodes. These different types of network nodes 110 may have different transmit power levels, different coverage areas, or different impacts on interference in the wireless network 100. For example, macro network nodes may have a high transmit power level (for example, 5 to 40 watts) whereas pico network nodes, femto network nodes, and relay network nodes may have lower transmit power levels (for example, 0.1 to 2 watts) .
network controller 130 may couple to or communicate with a set of network nodes 110 and may provide coordination and control for these network nodes 110. The network controller 130 may communicate with the network nodes 110 via a backhaul communication link or a midhaul communication link. The network nodes 110 may communicate with one another directly or indirectly via a wireless or wireline backhaul communication link. In some aspects, the network controller 130 may be a CU or a core network device, or may include a CU or a core network device.
The UEs 120 may be dispersed throughout the wireless network 100, and each UE 120 may be stationary or mobile. A UE 120 may include, for example, an access terminal, a terminal, a mobile station, or a subscriber unit. A UE 120 may be a cellular phone (for example, a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device, a biometric device, a wearable device (for example, a smart watch, smart clothing, smart glasses, a smart wristband, smart jewelry (for example, a smart ring or a smart bracelet) ) , an entertainment device (for example, a music device, a video device, or a satellite radio) , a vehicular component or sensor, a smart meter/sensor, industrial manufacturing equipment, a global positioning system device, a UE function of a network node, or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs 120 may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. An MTC UE or an eMTC UE may include, for example, a robot, a drone, a remote device, a sensor, a meter, a monitor, or a location tag, that may communicate with a network node, another device (for example, a remote device) , or some other entity. Some UEs 120 may be considered Internet-of-Things (IoT) devices, or may be implemented as NB-IoT (narrowband IoT) devices. Some UEs 120 may be considered a Customer Premises Equipment. A UE 120 may be included inside a housing that houses components of the UE 120, such as processor components or memory components. In some examples, the processor components and the memory components may be coupled  together. For example, the processor components (for example, one or more processors) and the memory components (for example, a memory) may be operatively coupled, communicatively coupled, electronically coupled, or electrically coupled.
In general, any number of wireless networks 100 may be deployed in a given geographic area. Each wireless network 100 may support a particular RAT and may operate on one or more frequencies. A RAT may be referred to as a radio technology or an air interface. A frequency may be referred to as a carrier or a frequency channel. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some examples, two or more UEs 120 (for example, shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (for example, without using a network node 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (for example, which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, or a vehicle-to-pedestrian (V2P) protocol) , or a mesh network. In such examples, a UE 120 may perform scheduling operations, resource selection operations, or other operations described elsewhere herein as being performed by the network node 110.
Devices of the wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided by frequency or wavelength into various classes, bands, or channels. For example, devices of the wireless network 100 may communicate using one or more operating bands. In 5G NR, two initial operating bands have been identified as frequency range designations FR1 (410 MHz -7.125 GHz) and FR2 (24.25 GHz -52.6 GHz) . Although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “Sub-6 GHz” band in various documents and articles. A similar nomenclature issue sometimes occurs with regard to FR2, which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz -300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
The frequencies between FR1 and FR2 are often referred to as mid-band frequencies. Recent 5G NR studies have identified an operating band for these mid-band frequencies as frequency range designation FR3 (7.125 GHz -24.25 GHz) . Frequency bands falling within FR3 may inherit FR1 characteristics or FR2 characteristics, and thus may effectively extend features of FR1 or FR2 into mid-band frequencies. In addition, higher frequency bands are currently being explored to extend 5G NR operation beyond 52.6 GHz. For example, three higher operating bands have been identified as frequency range designations FR4a or FR4-1  (52.6 GHz -71 GHz) , FR4 (52.6 GHz -114.25 GHz) , and FR5 (114.25 GHz -300 GHz) . Each of these higher frequency bands falls within the EHF band.
With these examples in mind, unless specifically stated otherwise, the term “sub-6 GHz, ” if used herein, may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies. Further, unless specifically stated otherwise, the term “millimeter wave, ” if used herein, may broadly represent frequencies that may include mid-band frequencies, may be within FR2, FR4, FR4-a or FR4-1, or FR5, or may be within the EHF band. It is contemplated that the frequencies included in these operating bands (for example, FR1, FR2, FR3, FR4, FR4-a, FR4-1, or FR5) may be modified, and techniques described herein are applicable to those modified frequency ranges.
In some aspects, the UE 120 may include a communication manager 140. As described in more detail elsewhere herein, the communication manager 140 may receive configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications; and communicate at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters. Additionally, or alternatively, the communication manager 140 may perform one or more other operations described herein.
In some aspects, the network node 110 may include a communication manager 150. As described in more detail elsewhere herein, the communication manager 150 may transmit, to a UE 120, configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications; and communicate at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters. Additionally, or alternatively, the communication manager 150 may perform one or more other operations described herein.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 is a diagram illustrating an example 200 of a network node 110 in communication with a UE 120 in a wireless network 100. The network node 110 may be equipped with a set of antennas 234a through 234t, such as T antennas (T ≥ 1) . The UE 120 may be equipped with a set of antennas 252a through 252r, such as R antennas (R ≥ 1) . The network node 110 of example 200 includes one or more radio frequency components, such as antennas 234 and a modem 254. In some examples, a network node 110 may include an interface, a communication component, or another component that facilitates communication  with the UE 120 or another network node. Some network nodes 110 may not include radio frequency components that facilitate direct communication with the UE 120, such as one or more CUs, or one or more DUs.
At the network node 110, a transmit processor 220 may receive data, from a data source 212, intended for the UE 120 (or a set of UEs 120) . The transmit processor 220 may select one or more modulation and coding schemes (MCSs) for the UE 120 using one or more channel quality indicators (CQIs) received from that UE 120. The network node 110 may process (for example, encode and modulate) the data for the UE 120 using the MCS (s) selected for the UE 120 and may provide data symbols for the UE 120. The transmit processor 220 may process system information (for example, for semi-static resource partitioning information (SRPI) ) and control information (for example, CQI requests, grants, or upper layer signaling) and provide overhead symbols and control symbols. The transmit processor 220 may generate reference symbols for reference signals (for example, a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS) ) and synchronization signals (for example, a primary synchronization signal (PSS) or a secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (for example, precoding) on the data symbols, the control symbols, the overhead symbols, or the reference symbols, if applicable, and may provide a set of output symbol streams (for example, T output symbol streams) to a corresponding set of modems 232 (for example, T modems) , shown as modems 232a through 232t. For example, each output symbol stream may be provided to a modulator component (shown as MOD) of a modem 232. Each modem 232 may use a respective modulator component to process a respective output symbol stream (for example, for OFDM) to obtain an output sample stream. Each modem 232 may further use a respective modulator component to process (for example, convert to analog, amplify, filter, or upconvert) the output sample stream to obtain a downlink signal. The modems 232a through 232t may transmit a set of downlink signals (for example, T downlink signals) via a corresponding set of antennas 234 (for example, T antennas) , shown as antennas 234a through 234t.
At the UE 120, a set of antennas 252 (shown as antennas 252a through 252r) may receive the downlink signals from the network node 110 or other network nodes 110 and may provide a set of received signals (for example, R received signals) to a set of modems 254 (for example, R modems) , shown as modems 254a through 254r. For example, each received signal may be provided to a demodulator component (shown as DEMOD) of a modem 254. Each modem 254 may use a respective demodulator component to condition (for example, filter, amplify, downconvert, or digitize) a received signal to obtain input samples. Each modem 254 may use a demodulator component to further process the input samples (for example, for OFDM) to obtain received symbols. A MIMO detector 256 may obtain received symbols from  the modems 254, may perform MIMO detection on the received symbols if applicable, and may provide detected symbols. A receive processor 258 may process (for example, demodulate and decode) the detected symbols, may provide decoded data for the UE 120 to a data sink 260, and may provide decoded control information and system information to a controller/processor 280. The term “controller/processor” may refer to one or more controllers, one or more processors, or a combination thereof. A channel processor may determine a reference signal received power (RSRP) parameter, a received signal strength indicator (RSSI) parameter, a reference signal received quality (RSRQ) parameter, or a CQI parameter, among other examples. In some examples, one or more components of the UE 120 may be included in a housing 284.
The network controller 130 may include a communication unit 294, a controller/processor 290, and a memory 292. The network controller 130 may include, for example, one or more devices in a core network. The network controller 130 may communicate with the network node 110 via the communication unit 294.
One or more antennas (for example, antennas 234a through 234t or antennas 252a through 252r) may include, or may be included within, one or more antenna panels, one or more antenna groups, one or more sets of antenna elements, or one or more antenna arrays, among other examples. An antenna panel, an antenna group, a set of antenna elements, or an antenna array may include one or more antenna elements (within a single housing or multiple housings) , a set of coplanar antenna elements, a set of non-coplanar antenna elements, or one or more antenna elements coupled to one or more transmission or reception components, such as one or more components of Fig. 2.
On the uplink, at the UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (for example, for reports that include RSRP, RSSI, RSRQ, or CQI) from the controller/processor 280. The transmit processor 264 may generate reference symbols for one or more reference signals. The symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the modems 254 (for example, for DFT-s-OFDM or CP-OFDM) , and transmitted to the network node 110. In some examples, the modem 254 of the UE 120 may include a modulator and a demodulator. In some examples, the UE 120 includes a transceiver. The transceiver may include any combination of the antenna (s) 252, the modem (s) 254, the MIMO detector 256, the receive processor 258, the transmit processor 264, or the TX MIMO processor 266. The transceiver may be used by a processor (for example, the controller/processor 280) and the memory 282 to perform aspects of any of the processes described herein (e.g., with reference to Figs. 5-10) .
At the network node 110, the uplink signals from UE 120 or other UEs may be received by the antennas 234, processed by the modem 232 (for example, a demodulator component, shown as DEMOD, of the modem 232) , detected by a MIMO detector 236 if  applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 120. The receive processor 238 may provide the decoded data to a data sink 239 and provide the decoded control information to the controller/processor 240. The network node 110 may include a communication unit 244 and may communicate with the network controller 130 via the communication unit 244. The network node 110 may include a scheduler 246 to schedule one or more UEs 120 for downlink or uplink communications. In some examples, the modem 232 of the network node 110 may include a modulator and a demodulator. In some examples, the network node 110 includes a transceiver. The transceiver may include any combination of the antenna (s) 234, the modem (s) 232, the MIMO detector 236, the receive processor 238, the transmit processor 220, or the TX MIMO processor 230. The transceiver may be used by a processor (for example, the controller/processor 240) and the memory 242 to perform aspects of any of the processes described herein (e.g., with reference to Figs. 5-10) .
In some aspects, the controller/processor 280 may be a component of a processing system. A processing system may generally be a system or a series of machines or components that receives inputs and processes the inputs to produce a set of outputs (which may be passed to other systems or components of, for example, the UE 120) . For example, a processing system of the UE 120 may be a system that includes the various other components or subcomponents of the UE 120.
The processing system of the UE 120 may interface with one or more other components of the UE 120, may process information received from one or more other components (such as inputs or signals) , or may output information to one or more other components. For example, a chip or modem of the UE 120 may include a processing system, a first interface to receive or obtain information, and a second interface to output, transmit, or provide information. In some examples, the first interface may be an interface between the processing system of the chip or modem and a receiver, such that the UE 120 may receive information or signal inputs, and the information may be passed to the processing system. In some examples, the second interface may be an interface between the processing system of the chip or modem and a transmitter, such that the UE 120 may transmit information output from the chip or modem. A person having ordinary skill in the art will readily recognize that the second interface also may obtain or receive information or signal inputs, and the first interface also may output, transmit, or provide information.
In some aspects, the controller/processor 240 may be a component of a processing system. A processing system may generally be a system or a series of machines or components that receives inputs and processes the inputs to produce a set of outputs (which may be passed to other systems or components of, for example, the network node 110) . For example, a  processing system of the network node 110 may be a system that includes the various other components or subcomponents of the network node 110.
The processing system of the network node 110 may interface with one or more other components of the network node 110, may process information received from one or more other components (such as inputs or signals) , or may output information to one or more other components. For example, a chip or modem of the network node 110 may include a processing system, a first interface to receive or obtain information, and a second interface to output, transmit, or provide information. In some examples, the first interface may be an interface between the processing system of the chip or modem and a receiver, such that the network node 110 may receive information or signal inputs, and the information may be passed to the processing system. In some examples, the second interface may be an interface between the processing system of the chip or modem and a transmitter, such that the network node 110 may transmit information output from the chip or modem. A person having ordinary skill in the art will readily recognize that the second interface also may obtain or receive information or signal inputs, and the first interface also may output, transmit, or provide information.
The controller/processor 240 of the network node 110, the controller/processor 280 of the UE 120, or any other component (s) of Fig. 2 may perform one or more techniques associated with configuration parameters for flexible occasions, as described in more detail elsewhere herein. For example, the controller/processor 240 of the network node 110, the controller/processor 280 of the UE 120, or any other component (s) (or combinations of components) of Fig. 2 may perform or direct operations of, for example, process 700 of Fig. 7, process 800 of Fig. 8, and/or other processes as described herein. The memory 242 and the memory 282 may store data and program codes for the network node 110 and the UE 120, respectively. In some examples, the memory 242 and the memory 282 may include a non-transitory computer-readable medium storing one or more instructions (for example, code or program code) for wireless communication. For example, the one or more instructions, when executed (for example, directly, or after compiling, converting, or interpreting) by one or more processors of the network node 110 or the UE 120, may cause the one or more processors, the UE 120, or the network node 110 to perform or direct operations of, for example, process 700 of Fig. 7, process 800 of Fig. 8, and/or other processes as described herein. In some examples, executing instructions may include running the instructions, converting the instructions, compiling the instructions, and/or interpreting the instructions, among other examples.
In some aspects, the UE 120 includes means for receiving configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications; and/or means for communicating at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple  sets of configuration parameters. The means for the UE 120 to perform operations described herein may include, for example, one or more of communication manager 140, antenna 252, modem 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, controller/processor 280, or memory 282.
In some aspects, the network node 110 includes means for transmitting, to a UE 120, configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications; and/or means for communicating at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters. In some aspects, the means for the network node to perform operations described herein may include, for example, one or more of communication manager 150, transmit processor 220, TX MIMO processor 230, modem 232, antenna 234, MIMO detector 236, receive processor 238, controller/processor 240, memory 242, or scheduler 246.
While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components. For example, the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of the controller/processor 280.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
Deployment of communication systems, such as 5G NR systems, may be arranged in multiple manners with various components or constituent parts. In a 5G NR system, or network, a network node, a network entity, a mobility element of a network, a RAN node, a core network node, a network element, a base station, or a network equipment may be implemented in an aggregated or disaggregated architecture. For example, a base station (such as a Node B (NB) , an evolved NB (eNB) , an NR base station, a 5G NB, an access point (AP) , a TRP, or a cell, among other examples) , or one or more units (or one or more components) performing base station functionality, may be implemented as an aggregated base station (also known as a standalone base station or a monolithic base station) or a disaggregated base station. “Network entity” or “network node” may refer to a disaggregated base station, or to one or more units of a disaggregated base station (such as one or more CUs, one or more DUs, one or more RUs, or a combination thereof) .
An aggregated base station (e.g., an aggregated network node) may be configured to utilize a radio protocol stack that is physically or logically integrated within a single RAN node (for example, within a single device or unit) . A disaggregated base station (e.g., a disaggregated  network node) may be configured to utilize a protocol stack that is physically or logically distributed among two or more units (such as one or more CUs, one or more DUs, or one or more RUs) . In some examples, a CU may be implemented within a network node, and one or more DUs may be co-located with the CU, or alternatively, may be geographically or virtually distributed throughout one or multiple other network nodes. The DUs may be implemented to communicate with one or more RUs. Each of the CU, DU, and RU also can be implemented as virtual units, such as a virtual central unit (VCU) , a virtual distributed unit (VDU) , or a virtual radio unit (VRU) , among other examples.
Base station-type operation or network design may consider aggregation characteristics of base station functionality. For example, disaggregated base stations may be utilized in an IAB network, an open radio access network (O-RAN (such as the network configuration sponsored by the O-RAN Alliance) ) , or a virtualized radio access network (vRAN, also known as a cloud radio access network (C-RAN) ) to facilitate scaling of communication systems by separating base station functionality into one or more units that can be individually deployed. A disaggregated base station may include functionality implemented across two or more units at various physical locations, as well as functionality implemented for at least one unit virtually, which can enable flexibility in network design. The various units of the disaggregated base station can be configured for wired or wireless communication with at least one other unit of the disaggregated base station.
Fig. 3 is a diagram illustrating an example disaggregated base station architecture 300, in accordance with the present disclosure. The disaggregated base station architecture 300 may include a CU 310 that can communicate directly with a core network 320 via a backhaul link, or indirectly with the core network 320 through one or more disaggregated control units (such as a Near-RT RIC 325 via an E2 link, or a Non-RT RIC 315 associated with a Service Management and Orchestration (SMO) Framework 305, or both) . A CU 310 may communicate with one or more DUs 330 via respective midhaul links, such as through RRC1 interfaces. Each of the DUs 330 may communicate with one or more RUs 340 via respective fronthaul links. Each of the RUs 340 may communicate with one or more UEs 120 via respective radio frequency (RF) access links. In some implementations, a UE 120 may be simultaneously served by multiple RUs 340.
Each of the units, including the CUs 310, the DUs 330, the RUs 340, as well as the Near-RT RICs 325, the Non-RT RICs 315, and the SMO Framework 305, may include one or more interfaces or be coupled with one or more interfaces configured to receive or transmit signals, data, or information (collectively, signals) via a wired or wireless transmission medium. Each of the units, or an associated processor or controller providing instructions to one or multiple communication interfaces of the respective unit, can be configured to communicate with one or more of the other units via the transmission medium. In some examples, each of the  units can include a wired interface, configured to receive or transmit signals over a wired transmission medium to one or more of the other units, and a wireless interface, which may include a receiver, a transmitter or transceiver (such as a RF transceiver) , configured to receive or transmit signals, or both, over a wireless transmission medium to one or more of the other units.
In some aspects, the CU 310 may host one or more higher layer control functions. Such control functions can include radio resource control (RRC) functions, packet data convergence protocol (PDCP) functions, or service data adaptation protocol (SDAP) functions, among other examples. Each control function can be implemented with an interface configured to communicate signals with other control functions hosted by the CU 310. The CU 310 may be configured to handle user plane functionality (for example, Central Unit -User Plane (CU-UP) functionality) , control plane functionality (for example, Central Unit -Control Plane (CU-CP) functionality) , or a combination thereof. In some implementations, the CU 310 can be logically split into one or more CU-UP units and one or more CU-CP units. A CU-UP unit can communicate bidirectionally with a CU-CP unit via an interface, such as the E1 interface when implemented in an O-RAN configuration. The CU 310 can be implemented to communicate with a DU 330, as necessary, for network control and signaling.
Each DU 330 may correspond to a logical unit that includes one or more base station functions to control the operation of one or more RUs 340. In some aspects, the DU 330 may host one or more of a radio link control (RLC) layer, a medium access control (MAC) layer, and one or more high physical (PHY) layers depending, at least in part, on a functional split, such as a functional split defined by the 3GPP. In some aspects, the one or more high PHY layers may be implemented by one or more modules for forward error correction (FEC) encoding and decoding, scrambling, and modulation and demodulation, among other examples. In some aspects, the DU 330 may further host one or more low PHY layers, such as implemented by one or more modules for a fast Fourier transform (FFT) , an inverse FFT (iFFT) , digital beamforming, or physical random access channel (PRACH) extraction and filtering, among other examples. Each layer (which also may be referred to as a module) can be implemented with an interface configured to communicate signals with other layers (and modules) hosted by the DU 330, or with the control functions hosted by the CU 310.
Each RU 340 may implement lower-layer functionality. In some deployments, an RU 340, controlled by a DU 330, may correspond to a logical node that hosts RF processing functions or low-PHY layer functions, such as performing an FFT, performing an iFFT, digital beamforming, or PRACH extraction and filtering, among other examples, based on a functional split (for example, a functional split defined by the 3GPP) , such as a lower layer functional split. In such an architecture, each RU 340 can be operated to handle over the air (OTA) communication with one or more UEs 120. In some implementations, real-time and non-real- time aspects of control and user plane communication with the RU (s) 340 can be controlled by the corresponding DU 330. In some scenarios, this configuration can enable each DU 330 and the CU 310 to be implemented in a cloud-based RAN architecture, such as a vRAN architecture.
The SMO Framework 305 may be configured to support RAN deployment and provisioning of non-virtualized and virtualized network elements. For non-virtualized network elements, the SMO Framework 305 may be configured to support the deployment of dedicated physical resources for RAN coverage requirements, which may be managed via an operations and maintenance interface (such as an O1 interface) . For virtualized network elements, the SMO Framework 305 may be configured to interact with a cloud computing platform (such as an open cloud (O-Cloud) platform 390) to perform network element life cycle management (such as to instantiate virtualized network elements) via a cloud computing platform interface (such as an O2 interface) . Such virtualized network elements can include, but are not limited to, CUs 310, DUs 330, RUs 340, non-RT RICs 315, and Near-RT RICs 325. In some implementations, the SMO Framework 305 can communicate with a hardware aspect of a 4G RAN, such as an open eNB (O-eNB) 311, via an O1 interface. Additionally, in some implementations, the SMO Framework 305 can communicate directly with each of one or more RUs 340 via a respective O1 interface. The SMO Framework 305 also may include a Non-RT RIC 315 configured to support functionality of the SMO Framework 305.
The Non-RT RIC 315 may be configured to include a logical function that enables non-real-time control and optimization of RAN elements and resources, Artificial Intelligence/Machine Learning (AI/ML) workflows including model training and updates, or policy-based guidance of applications/features in the Near-RT RIC 325. The Non-RT RIC 315 may be coupled to or communicate with (such as via an A1 interface) the Near-RT RIC 325. The Near-RT RIC 325 may be configured to include a logical function that enables near-real-time control and optimization of RAN elements and resources via data collection and actions over an interface (such as via an E2 interface) connecting one or more CUs 310, one or more DUs 330, or both, as well as an O-eNB, with the Near-RT RIC 325.
In some implementations, to generate AI/ML models to be deployed in the Near-RT RIC 325, the Non-RT RIC 315 may receive parameters or external enrichment information from external servers. Such information may be utilized by the Near-RT RIC 325 and may be received at the SMO Framework 305 or the Non-RT RIC 315 from non-network data sources or from network functions. In some examples, the Non-RT RIC 315 or the Near-RT RIC 325 may be configured to tune RAN behavior or performance. For example, the Non-RT RIC 315 may monitor long-term trends and patterns for performance and employ AI/ML models to perform corrective actions through the SMO Framework 305 (such as reconfiguration via an O1 interface) or via creation of RAN management policies (such as A1 interface policies) .
As indicated above, Fig. 3 is provided as an example. Other examples may differ from what is described with regard to Fig. 3.
Fig. 4 is a diagram illustrating an example 400 of downlink semi-persistent scheduling (SPS) communication and an example 410 of uplink configured grant (CG) communication, in accordance with the present disclosure.
In some instances, a UE 120 and a network node 110 may communicate using a dynamic grant (DG) scheduling scheme, while, in some other instances, a UE 120 and a network node 110 may communicate using an SPS and/or CG scheduling scheme. For DG-based scheduling, when a UE 120 has data to transmit in the uplink, the UE 120 may transmit, to the network node 110, a scheduling request (SR) in a pre-defined occasion indicating that the UE 120 has data to transmit. In response, the network node 110 may schedule, via a downlink control information (DCI) message or a similar message, uplink resources (e.g., physical uplink shared channel (PUSCH) resources) for the UE 120 to report the UE’s buffer size and/or related information. The UE 120 may then transmit a buffer status report (BSR) using the uplink resources scheduled by the network node 110 (e.g., using a MAC control element (MAC-CE) communication transmitted via the PUSCH resources scheduled by the network node 110) , which may indicate to the network node 110 the buffer size associated with the data transmission and related information. More particularly, the BSR may indicate the logical channel data amount of the packet to be transmitted. In response, the network node 110 may transmit, to the UE 120, a DCI message (sometimes referred to as a scheduling grant) that schedules resources (e.g., PUSCH resources) for the UE 120 to transmit one or more packets in the uplink and which indicates corresponding configuration parameters associated with the uplink transmission. Moreover, in the both the uplink and the downlink, DG-based scheduling may require that the UE 120 blind decode a physical downlink control channel (PDCCH) communication for each transmission, which may time consuming and consume large amounts of power.
In some cases, SPS-based and/or CG-based scheduling may eliminate some of the latency and power consumption associated with DG-based scheduling. More particularly, SPS communications may include periodic downlink communications that are configured for a UE 120, such that a network node 110 does not need to transmit (e.g., directly or via one or more network nodes) separate DCI to schedule each downlink communication, thereby conserving signaling overhead, reducing latency as compared to DG-based communications, and reducing power consumption as compared to DG-based communications. CG communications may include periodic uplink communications that are configured for a UE 120, such that the network node 110 does not need to transmit (e.g., directly or via one or more network nodes) separate DCI to schedule each uplink communication, thereby conserving signaling overhead, reducing  latency as compared to DG-based communications, and reducing power consumption as compared to DG-based communications.
As shown in example 400, a UE 120 may be configured with an SPS configuration for SPS communications. For example, the UE 120 may receive the SPS configuration via an RRC message transmitted by a network node 110 (e.g., directly to the UE 120 or via one or more network nodes 110) . The SPS configuration may indicate a resource allocation associated with SPS downlink communications (e.g., in a time domain, frequency domain, spatial domain, and/or code domain) and a periodicity at which the resource allocation is repeated, resulting in periodically reoccurring scheduled SPS occasions 405 for the UE 120. The SPS configuration may also configure hybrid automatic repeat request (HARQ) -acknowledgement (ACK) (HARQ-ACK) feedback resources for the UE 120 to transmit HARQ-ACK feedback for SPS physical downlink shared channel (PDSCH) communications received in the SPS occasions 405. For example, the SPS configuration may indicate a PDSCH-to-HARQ feedback timing value, which may be referred to as a K1 value in a wireless communication standard (e.g., a 3GPP standard) .
The network node 110 may transmit SPS activation DCI to the UE 120 (e.g., directly or via one or more network nodes 110) to activate the SPS configuration for the UE 120. The network node 110 may indicate, in the SPS activation DCI, communication parameters, such as an MCS, a resource block (RB) allocation, and/or antenna ports, for the SPS PDSCH communications to be transmitted in the scheduled SPS occasions 405. The UE 120 may begin monitoring the SPS occasions 405 based at least in part on receiving the SPS activation DCI. For example, beginning with a next scheduled SPS occasion 405 subsequent to receiving the SPS activation DCI, the UE 120 may monitor the scheduled SPS occasions 405 to decode PDSCH communications using the communication parameters indicated in the SPS activation DCI. The UE 120 may refrain from monitoring configured SPS occasions 405 prior to receiving the SPS activation DCI.
The network node 110 may transmit SPS reactivation DCI to the UE 120 (e.g., directly or via one or more network nodes 110) to change the communication parameters for the SPS PDSCH communications. Based at least in part on receiving the SPS reactivation DCI, the UE 120 may begin monitoring the scheduled SPS occasions 405 using the communication parameters indicated in the SPS reactivation DCI. For example, beginning with a next scheduled SPS occasion 405 subsequent to receiving the SPS reactivation DCI, the UE 120 may monitor the scheduled SPS occasions 405 to decode PDSCH communications based on the communication parameters indicated in the SPS reactivation DCI.
In some cases, such as when the network node 110 does not have downlink traffic to transmit to the UE 120, the network node 110 may transmit SPS cancellation DCI to the UE 120 (e.g., directly or via one or more network nodes 110) to temporarily cancel or deactivate one or  more subsequent SPS occasions 405 for the UE 120. The SPS cancellation DCI may deactivate only a subsequent one SPS occasion 405 or a subsequent N SPS occasions 405 (where N is an integer) . SPS occasions 405 after the one or more (e.g., N) SPS occasions 405 subsequent to the SPS cancellation DCI may remain activated. Based at least in part on receiving the SPS cancellation DCI, the UE 120 may refrain from monitoring the one or more (e.g., N) SPS occasions 405 subsequent to receiving the SPS cancellation DCI. As shown in example 400, the SPS cancellation DCI cancels one subsequent SPS occasion 405 for the UE 120. After the SPS occasion 405 (or N SPS occasions) subsequent to receiving the SPS cancellation DCI, the UE 120 may automatically resume monitoring the scheduled SPS occasions 405.
The network node 110 may transmit SPS release DCI to the UE 120 (e.g., directly or via one or more network nodes) to deactivate the SPS configuration for the UE 120. The UE 120 may stop monitoring the scheduled SPS occasions 405 based at least in part on receiving the SPS release DCI. For example, the UE 120 may refrain from monitoring any scheduled SPS occasions 405 until another SPS activation DCI is received by the UE 120. Whereas the SPS cancellation DCI may deactivate only a subsequent one SPS occasion 405 or a subsequent N SPS occasions 405, the SPS release DCI deactivates all subsequent SPS occasions 405 for a given SPS configuration for the UE 120 until the given SPS configuration is activated again by a new SPS activation DCI.
As shown in example 410, a UE 120 may be configured with a CG configuration for CG communications. For example, the UE 120 may receive the CG configuration via an RRC message transmitted by a network node 110 (e.g., directly to the UE 120 or via one or more network nodes 110) . The CG configuration may indicate a resource allocation associated with CG uplink communications (e.g., in a time domain, frequency domain, spatial domain, and/or code domain) and a periodicity at which the resource allocation is repeated, resulting in periodically reoccurring scheduled CG occasions 415 for the UE 120. In some examples, the CG configuration may identify a resource pool or multiple resource pools that are available to the UE 120 for an uplink transmission. The CG configuration may configure contention-free CG communications (e.g., where resources are dedicated for the UE 120 to transmit uplink communications) or contention-based CG communications (e.g., where the UE 120 contends for access to a channel in the configured resource allocation, such as by using a channel access procedure or a channel sensing procedure) .
The network node 110 may transmit CG activation DCI to the UE 120 (e.g., directly or via one or more network nodes) to activate the CG configuration for the UE 120. The network node 110 may indicate, in the CG activation DCI, communication parameters, such as an MCS, an RB allocation, and/or antenna ports, for the CG PUSCH communications to be transmitted in the scheduled CG occasions 415. The UE 120 may begin transmitting in the CG occasions 415 based at least in part on receiving the CG activation DCI. For example,  beginning with a next scheduled CG occasion 415 subsequent to receiving the CG activation DCI, the UE 120 may transmit a PUSCH communication in the scheduled CG occasions 415 using the communication parameters indicated in the CG activation DCI. The UE 120 may refrain from transmitting in configured CG occasions 415 prior to receiving the CG activation DCI.
The network node 110 may transmit CG reactivation DCI to the UE 120 (e.g., directly or via one or more network nodes) to change the communication parameters for the CG PUSCH communications. Based at least in part on receiving the CG reactivation DCI, and the UE 120 may begin transmitting in the scheduled CG occasions 415 using the communication parameters indicated in the CG reactivation DCI. For example, beginning with a next scheduled CG occasion 415 subsequent to receiving the CG reactivation DCI, the UE 120 may transmit PUSCH communications in the scheduled CG occasions 415 based at least in part on the communication parameters indicated in the CG reactivation DCI.
In some cases, such as when the network node 110 overrides a scheduled CG communication for a higher priority communication, the network node 110 may transmit CG cancellation DCI to the UE 120 (e.g., directly or via one or more network nodes 110) to temporarily cancel or deactivate one or more subsequent CG occasions 415 for the UE 120. The CG cancellation DCI may deactivate only a subsequent one CG occasion 415 or a subsequent N CG occasions 415 (where N is an integer) . CG occasions 415 after the one or more (e.g., N) CG occasions 415 subsequent to the CG cancellation DCI may remain activated. Based at least in part on receiving the CG cancellation DCI, the UE 120 may refrain from transmitting in the one or more (e.g., N) CG occasions 415 subsequent to receiving the CG cancellation DCI. As shown in example 410, the CG cancellation DCI cancels one subsequent CG occasion 415 for the UE 120. After the CG occasion 415 (or N CG occasions) subsequent to receiving the CG cancellation DCI, the UE 120 may automatically resume transmission in the scheduled CG occasions 415.
The network node 110 may transmit CG release DCI to the UE 120 (e.g., directly or via one or more network nodes) to deactivate the CG configuration for the UE 120. The UE 120 may stop transmitting in the scheduled CG occasions 415 based at least in part on receiving the CG release DCI. For example, the UE 120 may refrain from transmitting in any scheduled CG occasions 415 until another CG activation DCI is received by the UE 120. Whereas the CG cancellation DCI may deactivate only a subsequent one CG occasion 415 or a subsequent N CG occasions 415, the CG release DCI deactivates all subsequent CG occasions 415 for a given CG configuration for the UE 120 until the given CG configuration is activated again by a new CG activation DCI.
Due to the low latency associated with SPS and CG communications, SPS-based and/or CG-based scheduling may be beneficial for certain latency critical communications, such  as extended reality (XR) communications. More particularly, XR communications may be associated with different types of flows (sometimes referred to Flows A, H, B, C1, F, E, and G, as defined by sections 5.5.2.2, 5.5.2.3, and 5.5.2.4 of Technical Report 38.838, promulgated by the 3GPP) , with certain of the flows being associated with stringent packet delay budgets (PDBs) (e.g., Flow B may be associated with a PDB of 1 millisecond (ms) ) , and with other flows being associated with less stringent latency by requiring more bandwidth for carrying large volumes of data (e.g., Flow F may be associated with a PDB of 67 ms and an average payload of 2.53 kilobits (kbits) , and Flow E may be associated with a PDB of 100 ms and an average payload of 426.60 kbits) . However, implementing SPS-based scheduling and CG-based scheduling requires that a UE 120 store multiple configurations associated with the SPS communications and the CG communications. These multiple configurations may consume large volumes of memory at the UE 120, which may be impractical for certain UEs 120, such as passive internet of things (IoT) devices or the like having limited memory. Moreover, a network node 110 manages the scheduling of data reception and transmission in SPS and CG communications, which requires high signaling overhead. Moreover, for CG-based communications, a network node 110 schedules resources independent of the uplink traffic to be transmitted by the UE 120 (e.g., without information indicating the uplink traffic to be transmitted) , which may result in a mismatch between allocated resources and data size, leading to inefficient usage of network resources.
Some techniques and apparatuses described herein enable communications between network devices (e.g., between a network node 110 and a UE 120, between two UEs 120, or between two other network devices) using a flexible occasion, which may be associated with resources available for both uplink communications and downlink communications. In this way, the network devices may be presented with more opportunities for uplink and/or downlink communications as compared to SPS occasions (which may be used for downlink communications) or CG communications (which may be used for uplink communications) , thereby reducing latency for communications between the two network devices and/or increasing throughput between the two network devices. Moreover, some techniques and apparatuses described herein enable configuration of a network device with multiple sets of configuration parameters associated with the flexible occasion, with one of more of the sets of configuration parameters selected for communicating a communication in a flexible occasion. In this way, signaling overhead may be reduced as compared to dynamically scheduled resources, SPS scheduled resources, and/or CG scheduled resources, resulting in more efficient usage of computing, power, and network resources.
As indicated above, Fig. 4 is provided as an example. Other examples may differ from what is described with respect to Fig. 4.
Fig. 5 is a diagram of examples 500, 502, 504 associated with configuration parameters for flexible occasions.
In some aspects, a network device (e.g., a UE 120) may be configured with flexible occasions associated with resources available for both uplink communications and downlink communications. Additionally, or alternatively, the network device may receive configuration information indicating multiple sets of configuration parameters associated with the flexible occasions. In this way, the network device may flexibly receive and/or transmit communications in each flexible occasion, which may reduce latency because there may be more opportunities to receive and/or transmit time-sensitive communications (e.g., communications associated with low PDBs) and/or because the network device may be preconfigured with configuration parameters for receiving or transmitting the communications in the flexible occasions. Moreover, an amount of memory allocated for storing configuration parameters may be reduced as compared to configurations associated with SPS and/or CG resources, because the flexible occasions may be used for both uplink and downlink communications and thus the network device does not need to be separately configured with configuration parameters for uplink (e.g., CG) communications and downlink (e.g., SPS) configurations.
More particularly, and with reference to example 500, the network device may be configured with multiple flexible occasions 506, which may be occasions associated with resources available for either of or both of uplink communications and downlink communications. Moreover, and as indicated by reference number 508, the network device may receive configuration information indicating multiple sets of configuration parameters (sometimes referred to as multiple configuration patterns) associated with the flexible occasions 506. In some aspects, each set of configuration parameters may indicate an MCS associated with a communication, a resource allocation associated with the communication (e.g., a time domain resource allocation (TDRA) and/or a frequency domain resource allocation (FDRA) ) , a specific periodicity associated with resources associated with the communication, an offset associated with resources associated with the communication, a transmission power associated with the communication, and/or other similar configuration parameters. Each set of configuration parameters, or configuration pattern, may be associated with candidate transmission and/or reception configurations for uplink and downlink communications.
Moreover in some aspects, a network device (e.g., a UE 120) may be configured with a configuration set, which includes the multiple sets of configuration parameters (e.g., multiple configuration patterns) , as described, as well as common parameters applicable to each set of configuration parameters, of the multiple sets of configuration parameters. For example, the common parameters may indicate resource allocations (e.g., TDRA and/or FDRA) associated with the flexible occasions 506, and each set of configuration parameters may indicate  additional parameters associated with a particular traffic or flow type (e.g., uplink or downlink traffic, different QoS requirements, different HARQ feedback requirements (sometimes indicated using a nrofHARQ-Processes parameter) , different RB group (RBG) sizes (sometimes indicated using a rbg-size parameter) , different periodicities, different repK parameters, different uci-onPUSCH parameters, or the like) .
In some aspects, traffic with certain characteristics may be communicated in each flexible occasion 506 based at least in part on a selected set of configuration parameters. In some aspects, a network device (e.g., a network node 110) may signal an indication of the selected set of configuration parameters to another network device (e.g., a UE 120) , while, in some other aspects, a network device (e.g., a UE 120) may autonomously select the selected set of configuration parameters based at least in part on a size of a transmission, channel state information (CSI) associated with sub-bands of the flexible occasion, or the like, which is described in more detail in connection with Fig. 6. For example, for XR traffic, some flows may be associated with low latency (e.g., Flows A, B, or C1) , while other flows may be associated with a large bandwidth that can accommodate a large volume of data (e.g., Flows F and E) . Depending on a transmission direction (e.g., uplink or downlink) and/or a characteristic of data to be transmitted (e.g., low latency, high bandwidth, or the like) , an appropriate set of configuration parameters may be selected, and the communication may be transmitted in one or more flexible occasions 506 based at least in part on the selected set of configuration parameters.
Moreover, in some aspects, multiple communications may be multiplexed in a single flexible occasion 506, further reducing latency of communications between two network devices (e.g., a network node 110 and a UE 120) and/or increasing throughput of the communications between two network devices. For example, as shown by example 502, in each flexible occasion 506, a first portion of the resources are used for transmitting an uplink communication (shown as “UL” in Fig. 5) , and a second portion of the resources are used for transmitting a downlink communication (shown as “DL” in Fig. 5) . More particularly, the network device may communicate the uplink communication using a first set of configuration parameters and/or a first configuration pattern, as shown by reference number 510, and the network device may communicate the downlink communication using a second set of configuration parameters and/or a second configuration pattern, as shown by reference number 512.
As shown by example 504, in some aspects, flexible occasions 506 and/or resources associated with flexible occasions 506 may be associated with different frequency sub-bands, such as for purposes of acquiring frequency diversity associated with a communication, or the like. More particularly, in this aspect, each flexible occasion 506 may be offset, in the frequency domain, from a neighboring flexible occasion 506 by at least a configured number of  RBs, such as K RBs. Put another way, multiple flexible occasions 506 may be associated with frequency hopping, with a sub-band of each flexible occasion 506 associated with a defined pattern associated with an offset (e.g., K RBs) . In some aspects, each flexible occasion 506 may be associated with M RBs (e.g., a bandwidth of each flexible occasion 506 may be M RBs) . Moreover, a first flexible occasion 506 (e.g., a flexible occasion 506 indexed as 0) may include RBs 0 through M (e.g., an RB indexed as 0, such as a configured reference RB or initial RB, through an RB indexed as M) . A second flexible occasion 506 (e.g., a flexible occasion 506 indexed as 1) may be offset from the first flexible occasion 506 by K RBs, such that the second flexible occasion 506 may include RBs K through K+M. Similarly, a third flexible occasion 506 (e.g., a flexible occasion 506 indexed as 2) may be offset from the second flexible occasion 506 by K RBs (and thus may be offset from the first flexible occasion 506 by 2K) , such that the third flexible occasion 506 may include RBs 2K through 2K+M, and so forth. More generally, an n-th indexed flexible occasion 506 may be offset from the first flexible occasion 506 by n*K RBs, such that the n-th indexed flexible occasion 506 may include RBs n*K through n*K + M. In some aspects, if n*K + M exceeds a boundary of a configured bandwidth (e.g., an upper boundary of a component carrier) , the n-th indexed flexible occasion 506 may begin at the reference RB (e.g., the RB indexed as 0) . In such aspects, thus the n-th indexed flexible occasion 506 may include RBs 0 through M (as shown by the fourth flexible occasion 506 in example 504) , the (n+1) -th indexed flexible occasion 506 may include RBs K through K + M, and so forth.
In some aspects, one or more parameters associated with frequency hopping may be indicated by a network node 110 to a UE 120. For example, one or more parameters associated with frequency hopping may be RRC configured (e.g., indicated via an RRC message) . Additionally, or alternatively, one or more parameters associated with frequency hopping may be indicated via a MAC-CE communication and/or a DCI communication. For example, in some implementations, one or more of a frequency hopping pattern, a K parameter, or an M parameter may be indicated by a network node 110, to a UE 120, by a DCI communication, such as via an activation DCI transmitted by the network node 110, to the UE 120, to activate one or more flexible occasions 506.
Additionally, or alternatively, in some aspects, a network device may communicate the uplink communications and/or the downlink communications using a subset of resources 514 (e.g., a subset of time domain resources and/or a subset of frequency domain resources) associated with each flexible occasion 506. In some aspects, a network node 110 may indicate, to a UE 120, the subset of resources 514 to be used in each flexible occasion 506, such as via a DCI or the like. For example, for downlink transmissions, a network node 110 may indicate, to a UE 120, one or more subset of resources 514 to be used in one or more flexible occasions 506 via a downlink-scheduling DCI. Similarly, for uplink transmissions, a network node 110 may  indicate, to a UE 120, one or more subset of resources 514 to be used in one or more flexible occasions 506 via an uplink-scheduling DCI. In some other aspects, a network device may autonomously select the subset of resources 514. For example, a UE 120 may select a subset of resources 514 associated with each flexible occasion 506 based at least in part on a type or size of communication to be communicated, channel state information associated with the flexible occasion 506, or the like. Aspects of the flexible occasions 506 and network signaling associated with flexible occasions 506 and associated sets of configuration parameters are described in more detail in connection with Fig. 6, below.
As indicated above, Fig. 5 is provided as an example. Other examples may differ from what is described with regard to Fig. 5.
Fig. 6 is a diagram of an example 600 associated with configuration parameters for flexible occasion, in accordance with the present disclosure. As shown in Fig. 6, a network node 110 may communicate with a UE 120. In some aspects, the network node 110 and the UE 120 may be part of a wireless network (e.g., wireless network 100) . The UE 120 and the network node 110 may have established a wireless connection prior to operations shown in Fig. 6.
As shown by reference number 605, the network node 110 may transmit, and the UE 120 may receive, configuration information. In some aspects, the UE 120 may receive the configuration information via one or more of RRC signaling, one or more MAC-CEs, and/or DCI, among other examples. In some aspects, the configuration information may include an indication of one or more configuration parameters (e.g., already known to the UE 120 and/or previously indicated by the network node 110 or other network device) for selection by the UE 120, and/or explicit configuration information for the UE 120 to use to configure the UE 120, among other examples.
In some aspects, the configuration information may indicate multiple sets of configuration parameters associated with a flexible occasion (e.g., flexible occasion 506) . As described above in connection with Fig. 5, a flexible occasion may be associated with resources available for both uplink communications and downlink communications, which will be described in more detail in connection with reference numbers 630-645. Thus, the multiple sets of configuration parameters may include a first group of sets of configuration parameters associated with uplink communications, and the multiple sets of configuration parameters may include a second group of sets of configuration parameters associated with downlink communications. In some aspects, each set of configuration parameters, of the multiple sets of configuration patterns, may be associated with a corresponding index. In such aspects, the network node 110 and/or the UE 120 may indicate a selected set of configuration patterns based at least in part on by indicating an index corresponding to the selected set of configuration  parameters, which will be described in more detail below in connection with reference numbers 610 and 620.
In some aspects, the configuration information may include a configuration set. The configuration set may include the multiple sets of configuration parameters as well as common parameters applicable to each set of configuration parameters, of the multiple sets of configuration parameters. For example, the common parameters applicable to each set of configuration parameters may include a flexible occasion resource allocation (e.g., a TDRA and/or an FDRA associated with the flexible occasion) , while each set of configuration parameters may indicate additional parameters specific to the corresponding set of configuration parameters such as RBG size, a number of HARQ processes, a periodicity, a repK parameter, a uci-onPUSCH parameter, or the like.
In some aspects, the network node 110 may transmit, and the UE 120 may receive, additional configuration information (e.g., configuration information in addition to the multiple sets of configuration parameters and/or the configuration set described above) . For example, the configuration information described in connection with reference number 605 may be transmitted by the network node 110, and received by the UE 120, via an RRC communication, and the additional configuration information may be later transmitted by the network node 110, and received by the UE 120, via a DCI communication. In some aspects, the additional configuration information may include one or more parameters to replace and/or overwrite one or more parameters contained in the configuration information described in connection with reference number 605. For example, an activation and/or deactivation uplink or downlink DCI may indicate a configuration index associated with one or the sets of configuration parameters indicating that the set of configuration parameters associated with the configuration index should be used for a transmission in a flexible occasion, and the activation and/or deactivation uplink or downlink DCI may further indicate one or more specific parameters to update one or more default parameters associated with the indicated set of configuration parameters. In such aspects, when communicating one or more communications in a flexible occasion (as will be described in more detail in connection with reference numbers 630-645) , the UE 120 may overwrite at least one configuration parameter associated with the configuration set with a corresponding at least one configuration parameter associated with the additional configuration information.
The UE 120 may configure itself based at least in part on the configuration information. In some aspects, the UE 120 may be configured to perform one or more operations described herein based at least in part on the configuration information.
As shown by reference number 610, in some aspects, the network node 110 may transmit, and the UE 120 may receive, an indication of the set of configuration parameters associated with one or more communications to be communicated in a flexible occasion. For  example, in some aspects, the UE 120 may receive the indication of the set of configuration parameters via one of an uplink-scheduling DCI communication (e.g., when an uplink communication is to be communicated in a flexible occasion) or a downlink-scheduling DCI communication (e.g., when a downlink communication is to be communicated in a flexible occasion) . More particularly, in the uplink, a flexible occasion to be used to communicate at least one communication may be activated by an uplink-scheduling DCI, and the DCI may indicate a configuration index of the selected set of configuration parameters. After the UE 120 receives the indication of the configuration index, the UE 120 can determined the set of configuration patterns to use for an uplink transmission, such as specific time and/or frequency resources to use, a transmission power to use, an MCS to use, or the like. In the downlink, a flexible occasion to be used to communicate at least one communication may be activated by a downlink-scheduling DCI, and the DCI may indicate a configuration index of the selected set of configuration parameters that the network node 110 will use for the downlink transmission. By decoding the configuration index, the UE 120 may determine PDSCH decoding parameters to be used for the communication, such as a specific resource allocation, an MCS, or the like. In some aspects, the indicated set of configuration parameters may be associated with one or more attributes of the at least one communication to be communicated between the network node 110 and the UE 120. For example, the communication may be associated with a certain QoS requirement, such as a maximum PDB. In such aspects, the indicated set of configuration parameters may be based at least in part on the QoS requirement associated with the at least one communication.
Alternatively, as indicated by reference number 615, the UE 120 may autonomously select a set of configuration parameters to be used for at least one communication associated with a flexible occasion. That is, rather than the network node 110 selecting a set of configuration parameters to be used for the at least one communication and signaling the selected set of configuration parameters as described in connection with reference number 610, the UE 120 may select one of the sets of configuration parameters. For example, a UE 120 may select one of the sets of configuration parameters based at least in part on a QoS requirement associated with the at least one communication. For example, the UE 120 may have XR traffic in the UE’s buffer, which may be associated with a certain QoS requirement, such as a maximum PDB, or the like. The UE 120 may thus select an appropriate set of configuration parameters in order to satisfy the QoS requirement.
In some aspects, the UE 120 may further select specific resources associated with a flexible occasion to be used for the at least one communication. For example, the UE 120 may select a subset of frequency resources associated with the flexible occasion for communicating the at least one communication and/or the UE 120 may select a subset of time resources for communicating the at least one communication, as described above in connection with example  504 of Fig. 5. More particularly, in some aspects, the UE 120 may select a sub-band associated with the flexible occasion for communicating the at least one communication, and thus the selected set of configuration parameters may be associated with the specific sub-band selected by the UE 120. Moreover, in some aspects, the UE may select specific resources associated with a flexible occasion based at least in part on information about the channel known to the UE 120, such as CSI determined based at least in part on one more measured reference signals. For example, the UE 120 may select a specific sub-band based at least in part on CSI associated with the sub-band. In this way, diversity may be acquired by the UE 120 selecting different sub-bands in each flexible occasion, as described in connection with example 504 of Fig. 5.
In aspects in which the UE 120 selects the set of configuration parameters to be used for at least one communication, the UE 120 may transmit, and the network node 110 may receive, an indication of the set of configuration patterns, as shown by reference number 620. In some aspects, the UE 120 may transmit an indication of the set of configuration patterns via a MAC-CE communication. Additionally, or alternatively, the UE 120 may transmit an indication of the set of configuration patterns via an uplink communication information (UCI) communication.
Once a set of configuration parameters has been selected either by the network node 110 or the UE 120, the network node 110 and the UE 120 may communicate at least one communication using a flexible occasion 625 (e.g., flexible occasion 506) based at least in part on the selected set of configuration parameters, of the multiple sets of configuration parameters. Moreover, because the flexible occasions 625 may associated with resources available for both uplink communications and downlink communications, and because the UE 120 may be configured with multiple sets of configuration parameters, such as sets of configuration parameters associated with uplink, downlink, and/or full-duplex communications, the at least one communication may include an uplink communication, a downlink communication, or both an uplink communication and a downlink communication.
More particularly, as shown by reference number 630, the network node 110 and the UE 120 may communicate at least one uplink communication in a flexible occasion 625 based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters. Additionally, or alternatively, as shown by reference number 635, the network node 110 and the UE 120 may communicate at least one downlink communication in a flexible occasion 625 based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters. Additionally, or alternatively, as shown by  reference numbers  640 and 645, the network node 110 and the UE 120 may communicate at least one downlink communication and at least one downlink communication in a flexible occasion 625 based at least in part on a set of configuration parameters, of the multiple sets of configuration  parameters (e.g., the network node 110 and/or the UE 120 may operate in a full-duplex mode in a flexible occasion 625) .
In some aspects, when the network node 110 and/or the UE 120 are operating in a full-duplex mode, both the uplink communication (as shown by reference number 640) and the downlink communication (as shown by reference number 645) may be activated by a single DCI communication (which may be associated with the communication described in connection with reference number 610) . In such aspects, the DCI may indicate a single FDRA, a single TDRA associated with the flexible occasion 625, and/or a set of configuration parameters to be used for the full-duplex communication (e.g., an index of the set of configuration parameters to be used for the full-duplex communication) . Based at least in part on the indication of the FDRA, the indication of the TDRA, and/or the indication of set of configuration patterns, the UE 120 may determine allocated resources and/or configuration parameters for the uplink communication to be transmitted to the network node 110 in the flexible occasion 625 and/or the downlink communication to be received from the network node 110 in the flexible occasion 625 and/or configuration parameters associated with the uplink communication and the downlink communications.
In some other aspects, when the network node 110 and/or the UE 120 are operating in a full-duplex mode, the uplink communication (as shown by reference number 640) may be activated by a first DCI communication (e.g., an uplink activation and/or scheduling DCI, which may be associated with the communication described in connection with reference number 610) , and the downlink communication (as shown by reference number 645) may be activated by a second DCI communication (e.g., a downlink activation and/or scheduling DCI, which may be associated with the communication described in connection with reference number 610) . In such aspects, the first DCI may indicate an FDRA, a TDRA, and/or a set of configuration parameters to be used for the uplink communication (e.g., an index of the set of configuration parameters to be used for the uplink communication) , and the second DCI may indicate an FDRA, a TDRA, and/or a set of configuration parameters to be used for the downlink communication (e.g., an index of the set of configuration parameters to be used for the downlink communication) . Based at least in part on the indications of the FDRAs, the indications of the TDRAs, and/or the indications of set of configuration patterns, the UE 120 may determine allocated resources and/or configuration parameters for the uplink communication to be transmitted to the network node 110 in the flexible occasion 625 and/or the downlink communication to be received from the network node 110 in the flexible occasion 625.
Moreover, as described above in connection with example 504 of Fig. 5, in some aspects the UE 120 may select a subset of resources associated with the flexible occasion 625 for transmitting an uplink communication. Thus, in aspects when the network node 110 and/or  the UE 120 are operating in a full-duplex mode, the UE 120 may select a sub-band associated with the flexible occasion 625 for transmitting the uplink communication.
Additionally, or alternatively, in some aspects, the flexible occasions 625 may be associated with multiple sub-bands, as described above in connection with example 504 of Fig. 5. In such aspects, communicating the at least one communication, as shown by reference numbers 630-645, may include performing frequency hopping between the multiple sub-bands. In some aspects, performing frequency hopping between the multiple sub-bands may include performing frequency hopping according to a hopping pattern, such as a pattern described above in connection with example 504. Moreover, in some aspects, the network node 110 may transmit, and the UE 120 may receive, an indication of a hopping pattern associated with performing frequency hopping between the multiple sub-bands. For example, the network node 110 may indicate a hopping pattern via an activation DCI communication (e.g., a DCI activating an uplink communication, a downlink communication, or a full-duplex communication) , or the like.
As described above in connection with example 504 of Fig. 5, in some aspects, the network node 110 may indicate, or else the UE 120 may autonomously select, a subset of resources of a flexible occasion 625 UE 120 to be used for a communication. For example, in some aspects, the network node 110 may transmit, and the UE 120 may receive, an indication of at least one of a TDRA allocation associated with each sub-band, of multiple sub-bands associated with the flexible occasions 625, or an FDRA associated with each sub-band, of the multiple sub-bands associated with the flexible occasions 625. In some other aspects, the UE 120 may autonomously select a subset of at least one sub-band, of the multiple sub-bands associated with the flexible occasions 625, for communicating the at least one communication.
In some aspects, there may be a predefined relationship between uplink and/or downlink resources associated with a flexible occasion 625 and a frequency band associated with an uplink and/or downlink communication. For example, the UE 120 may be preconfigured or hard coded with an indication of a relationship between an uplink and/or downlink frequency band and a starting RB (sometimes referred to as start_RB) and/or an ending RB (sometimes referred to as end_RB) of the flexible occasion 625. In such aspects, the UE 120 may determine a resource allocation associated with the flexible occasion 625 based at least in part on the predefined relationship. Put another way, in some aspects, the UE 120 may receive an indication of at least one of a first sub-band associated with the uplink communication or a second sub-band associated with the downlink communication, with the resources available for both the uplink communications and the downlink communications (e.g., the resources associated with the flexible occasion 625) being based at least in part on the at least one of the first sub-band associated with the uplink communication or the second sub-band associated with the downlink communication. In this way, signaling overhead may be reduced  because the UE 120 may determine a resource allocation associated with the flexible occasion 625 without explicit signaling from the network node 110.
Although the aspects described above in connection with reference numbers 605-645 are described with reference to communications between a network node 110 and a UE 120, aspects of the disclosure are not so limited. More generally, in some other aspects, one network device may communicate with another device using a flexible occasion 625 based at least in part on one or more of the aspects described above. For example, in some aspects, two UEs 120 may communicate via a sidelink using a flexible occasion 625. Put another way, in some aspects, communicating at least one communication using the flexible occasion 625 may include communicating the at least one communication via a sidelink. In such aspects, the multiple sets of configuration parameters described above in connection with reference number 605 may be associated with a resource pool associated with the sidelink. More particularly, the multiple sets of configuration parameters (e.g., the multiple configuration patterns) may be configured per resource pool to be used by different UEs 120 communicating in the sidelink. In such aspects, when a pair of UEs 120 communicate in the sidelink using a specific resource pool, the UEs 120 may select one or more of the sets of configuration parameters to be used for half-duplex or full-duplex operation.
Based at least in part on the UE 120 and/or the network node 110 communicating using a flexible occasion, the UE 120 and/or the network node 110 may conserve computing, power, network, and/or communication resources that may have otherwise been consumed communicating used dynamically granted resources, SPS resources, or CG resources. For example, based at least in part on the UE 120 and/or the network node 110 communicating using a flexible occasion, the UE 120 and the network node 110 may communicate with a reduced signaling overhead and reduce latency, while requiring less memory capacity at the UE 120 to store multiple configurations.
As indicated above, Fig. 6 is provided as an example. Other examples may differ from what is described with respect to Fig. 6.
Fig. 7 is a diagram illustrating an example process 700 performed, for example, by a UE, in accordance with the present disclosure. Example process 700 is an example where the UE (e.g., UE 120) performs operations associated with configuration parameters for flexible occasions.
As shown in Fig. 7, in some aspects, process 700 may include receiving configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications (block 710) . For example, the UE (e.g., using communication manager 140 and/or reception component 902, depicted in Fig. 9) may receive  configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications, as described above.
As further shown in Fig. 7, in some aspects, process 700 may include communicating at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters (block 720) . For example, the UE (e.g., using communication manager 140, reception component 902, and/or transmission component 904, depicted in Fig. 9) may communicate at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters, as described above.
Process 700 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, each set of configuration parameters, of the multiple sets of configuration patterns, is associated with a corresponding index.
In a second aspect, alone or in combination with the first aspect, process 700 includes receiving an indication of the set of configuration parameters.
In a third aspect, alone or in combination with one or more of the first and second aspects, the indication of the set of configuration parameters is received via one of an uplink-scheduling DCI communication or a downlink-scheduling DCI communication.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, process 700 includes selecting the set of configuration parameters.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the set of configuration parameters is based at least in part on a quality of service requirement associated with the at least one communication.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, process 700 includes transmitting an indication of the set of configuration patterns.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, process 700 includes selecting a sub-band associated with the flexible occasion for communicating the at least one communication, wherein the set of configuration parameters is associated with the sub-band.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, selecting the sub-band is based at least in part on channel state information associated with the sub-band.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, the configuration information includes a configuration set, and the configuration set  includes the multiple sets of configuration parameters and common parameters applicable to each set of configuration parameters, of the multiple sets of configuration parameters.
In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, process 700 includes receiving additional configuration information via a downlink communication information communication, wherein communicating the at least one communication includes overwriting at least one configuration parameter associated with the configuration set with a corresponding at least one configuration parameter associated with the additional configuration information.
In an eleventh aspect, alone or in combination with one or more of the first through tenth aspects, the flexible occasion is associated with multiple sub-bands, and communicating the at least one communication using the flexible occasion includes performing frequency hopping between the multiple sub-bands.
In a twelfth aspect, alone or in combination with one or more of the first through eleventh aspects, process 700 includes receiving an indication of a hopping pattern associated with performing frequency hopping between the multiple sub-bands.
In a thirteenth aspect, alone or in combination with one or more of the first through twelfth aspects, process 700 includes receiving an indication of at least one of a time domain resource allocation associated with each sub-band, of the multiple sub-bands, or a frequency domain resource allocation associated with each sub-band, of the multiple sub-bands.
In a fourteenth aspect, alone or in combination with one or more of the first through thirteenth aspects, process 700 includes selecting a subset of at least one sub-band, of the multiple sub-bands, for communicating the at least one communication.
In a fifteenth aspect, alone or in combination with one or more of the first through fourteenth aspects, communicating the at least one communication using the flexible occasion includes transmitting an uplink communication using the flexible occasion and receiving a downlink communication using the flexible occasion.
In a sixteenth aspect, alone or in combination with one or more of the first through fifteenth aspects, the uplink communication and the downlink communication are activated by a single downlink communication information communication.
In a seventeenth aspect, alone or in combination with one or more of the first through sixteenth aspects, process 700 includes receiving an indication of at least one of a TDRA associated with the uplink communication, a TDRA associated with the downlink communication, an FDRA associated with the uplink communication, an FDRA associated with the downlink communication, or the set of configuration parameters.
In an eighteenth aspect, alone or in combination with one or more of the first through seventeenth aspects, the uplink communication is activated by a first DCI communication, and the downlink communication is activated by a second DCI communication.
In a nineteenth aspect, alone or in combination with one or more of the first through eighteenth aspects, the first DCI communication indicates at least one of a TDRA associated with the uplink communication, an FDRA associated with the uplink communication, or the set of configuration parameters, and the second DCI communication indicates at least one of a TDRA associated with the downlink communication, an FDRA associated with the downlink communication, or the set of configuration parameters.
In a twentieth aspect, alone or in combination with one or more of the first through nineteenth aspects, process 700 includes selecting a sub-band associated with the flexible occasion for transmitting the uplink communication.
In a twenty-first aspect, alone or in combination with one or more of the first through twentieth aspects, process 700 includes receiving an indication of at least one of a first sub-band associated with the uplink communication or a second sub-band associated with the downlink communication, wherein the resources available for both the uplink communications and the downlink communications are based at least in part on the at least one of the first sub-band associated with the uplink communication or the second sub-band associated with the downlink communication.
In a twenty-second aspect, alone or in combination with one or more of the first through twenty-first aspects, communicating the at least one communication using the flexible occasion includes communicating the at least one communication via a sidelink.
In a twenty-third aspect, alone or in combination with one or more of the first through twenty-second aspects, the multiple sets of configuration parameters are associated with a resource pool associated with the sidelink.
Although Fig. 7 shows example blocks of process 700, in some aspects, process 700 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 7. Additionally, or alternatively, two or more of the blocks of process 700 may be performed in parallel.
Fig. 8 is a diagram illustrating an example process 800 performed, for example, by a network node, in accordance with the present disclosure. Example process 800 is an example where the network node (e.g., network node 110) performs operations associated with configuration parameters for flexible occasions.
As shown in Fig. 8, in some aspects, process 800 may include transmitting, to a UE, configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both  uplink communications and downlink communications (block 810) . For example, the network node (e.g., using communication manager 150, transmission component 1004, and/or configuration component 1008, depicted in Fig. 10) may transmit, to a UE, configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications, as described above.
As further shown in Fig. 8, in some aspects, process 800 may include communicating at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters (block 820) . For example, the network node (e.g., using communication manager 150, reception component 1002, and/or transmission component 1004, depicted in Fig. 10) may communicate at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters, as described above.
Process 800 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, each set of configuration parameters, of the multiple sets of configuration patterns, is associated with a corresponding index.
In a second aspect, alone or in combination with the first aspect, process 800 includes transmitting, to the UE, an indication of the set of configuration parameters.
In a third aspect, alone or in combination with one or more of the first and second aspects, the indication of the set of configuration parameters is transmitted via one of an uplink-scheduling DCI communication or a downlink-scheduling DCI communication.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, process 800 includes receiving, from the UE, an indication of the set of configuration patterns.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the set of configuration parameters is associated a selected sub-band associated with the flexible occasion for communicating the at least one communication.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the selected sub-band is based at least in part on channel state information associated with the selected sub-band.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, the configuration information includes a configuration set, and the configuration set includes the multiple sets of configuration parameters and common parameters applicable to each set of configuration parameters, of the multiple sets of configuration parameters.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, process 800 includes transmitting, to the UE, additional configuration information via a downlink communication information communication, wherein communicating the at least one communication includes overwriting at least one configuration parameter associated with the configuration set with a corresponding at least one configuration parameter associated with the additional configuration information.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, the flexible occasion is associated with multiple sub-bands, and communicating the at least one communication using the flexible occasion includes performing frequency hopping between the multiple sub-bands.
In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, process 800 includes transmitting, to the UE, an indication of a hopping pattern associated with performing frequency hopping between the multiple sub-bands.
In an eleventh aspect, alone or in combination with one or more of the first through tenth aspects, process 800 includes transmitting, to the UE, an indication of at least one of a time domain resource allocation associated with each sub-band, of the multiple sub-bands, or a frequency domain resource allocation associated with each sub-band, of the multiple sub-bands.
In a twelfth aspect, alone or in combination with one or more of the first through eleventh aspects, communicating the at least one communication using the flexible occasion includes receiving, from the UE, an uplink communication using the flexible occasion and transmitting, to the UE, a downlink communication using the flexible occasion.
In a thirteenth aspect, alone or in combination with one or more of the first through twelfth aspects, the uplink communication and the downlink communication are activated by a single downlink communication information communication.
In a fourteenth aspect, alone or in combination with one or more of the first through thirteenth aspects, process 800 includes transmitting, to the UE, an indication of at least one of a TDRA associated with the uplink communication, a TDRA associated with the downlink communication, an FDRA associated with the uplink communication, an FDRA associated with the downlink communication, or the set of configuration parameters.
In a fifteenth aspect, alone or in combination with one or more of the first through fourteenth aspects, the uplink communication is activated by a first DCI communication, and the downlink communication is activated by a second DCI communication.
In a sixteenth aspect, alone or in combination with one or more of the first through fifteenth aspects, the first DCI communication indicates at least one of a TDRA associated with the uplink communication, an FDRA associated with the uplink communication, or the set of configuration parameters, and the second DCI communication indicates at least one of a TDRA  associated with the downlink communication, an FDRA associated with the downlink communication, or the set of configuration parameters.
In a seventeenth aspect, alone or in combination with one or more of the first through sixteenth aspects, process 800 includes transmitting, to the UE, an indication of at least one of a first sub-band associated with the uplink communication or a second sub-band associated with the downlink communication, wherein the resources available for both the uplink communications and the downlink communications are based at least in part on the at least one of the first sub-band associated with the uplink communication or the second sub-band associated with the downlink communication.
Although Fig. 8 shows example blocks of process 800, in some aspects, process 800 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 8. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
Fig. 9 is a diagram of an example apparatus 900 for wireless communication, in accordance with the present disclosure. The apparatus 900 may be a UE 120, or a UE 120 may include the apparatus 900. In some aspects, the apparatus 900 includes a reception component 902 and a transmission component 904, which may be in communication with one another (for example, via one or more buses and/or one or more other components) . As shown, the apparatus 900 may communicate with another apparatus 906 (such as a UE 120, a network node 110, or another wireless communication device) using the reception component 902 and the transmission component 904. As further shown, the apparatus 900 may include the communication manager 140. The communication manager 140 may include a selection component 908, among other examples.
In some aspects, the apparatus 900 may be configured to perform one or more operations described herein in connection with Figs. 5-6. Additionally, or alternatively, the apparatus 900 may be configured to perform one or more processes described herein, such as process 700 of Fig. 7. In some aspects, the apparatus 900 and/or one or more components shown in Fig. 9 may include one or more components of the UE 120 described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 9 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
The reception component 902 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 906. The reception component 902 may provide received communications to one or more other components of the apparatus 900. In some aspects, the reception component 902 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 900. In some aspects, the reception component 902 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE 120 described in connection with Fig. 2.
The transmission component 904 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 906. In some aspects, one or more other components of the apparatus 900 may generate communications and may provide the generated communications to the transmission component 904 for transmission to the apparatus 906. In some aspects, the transmission component 904 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 906. In some aspects, the transmission component 904 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE 120 described in connection with Fig. 2. In some aspects, the transmission component 904 may be co-located with the reception component 902 in a transceiver.
The reception component 902 may receive configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications. The reception component 902 and/or the transmission component 904 may communicate at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters.
The reception component 902 may receive an indication of the set of configuration parameters.
The selection component 908 may select the set of configuration parameters.
The transmission component 904 may transmit an indication of the set of configuration patterns.
The selection component 908 may select a sub-band associated with the flexible occasion for communicating the at least one communication, wherein the set of configuration parameters is associated with the sub-band.
The reception component 902 may receive additional configuration information via a downlink communication information communication, wherein communicating the at least one communication includes overwriting at least one configuration parameter associated with the configuration set with a corresponding at least one configuration parameter associated with the additional configuration information.
The reception component 902 may receive an indication of a hopping pattern associated with performing frequency hopping between the multiple sub-bands.
The reception component 902 may receive an indication of at least one of a time domain resource allocation associated with each sub-band, of the multiple sub-bands, or a frequency domain resource allocation associated with each sub-band, of the multiple sub-bands.
The selection component 908 may select a subset of at least one sub-band, of the multiple sub-bands, for communicating the at least one communication.
The reception component 902 may receive an indication of at least one of a TDRA associated with the uplink communication, a TDRA associated with the downlink communication, an FDRA associated with the uplink communication, an FDRA associated with the downlink communication, or the set of configuration parameters.
The selection component 908 may select a sub-band associated with the flexible occasion for transmitting the uplink communication.
The reception component 902 may receive an indication of at least one of a first sub-band associated with the uplink communication or a second sub-band associated with the downlink communication, wherein the resources available for both the uplink communications and the downlink communications are based at least in part on the at least one of the first sub-band associated with the uplink communication or the second sub-band associated with the downlink communication.
The number and arrangement of components shown in Fig. 9 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 9. Furthermore, two or more components shown in Fig. 9 may be implemented within a single component, or a single component shown in Fig. 9 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 9 may perform one or more functions described as being performed by another set of components shown in Fig. 9.
Fig. 10 is a diagram of an example apparatus 1000 for wireless communication, in accordance with the present disclosure. The apparatus 1000 may be a network node 110, or a network node 110 may include the apparatus 1000. In some aspects, the apparatus 1000 includes a reception component 1002 and a transmission component 1004, which may be in communication with one another (for example, via one or more buses and/or one or more other components) . As shown, the apparatus 1000 may communicate with another apparatus 1006 (such as a UE 120, a network node 110, or another wireless communication device) using the reception component 1002 and the transmission component 1004. As further shown, the apparatus 1000 may include the communication manager 150. The communication manager 150 may include a configuration component 1008, among other examples.
In some aspects, the apparatus 1000 may be configured to perform one or more operations described herein in connection with Figs. 5-6. Additionally, or alternatively, the apparatus 1000 may be configured to perform one or more processes described herein, such as process 800 of Fig. 8, or a combination thereof. In some aspects, the apparatus 1000 and/or one or more components shown in Fig. 10 may include one or more components of the network node 110 described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 10 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
The reception component 1002 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1006. The reception component 1002 may provide received communications to one or more other components of the apparatus 1000. In some aspects, the reception component 1002 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1000. In some aspects, the reception component 1002 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the network node 110 described in connection with Fig. 2.
The transmission component 1004 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1006. In some aspects, one or more other components of the apparatus 1000 may generate communications and may provide the generated communications to the transmission component  1004 for transmission to the apparatus 1006. In some aspects, the transmission component 1004 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1006. In some aspects, the transmission component 1004 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the network node 110 described in connection with Fig. 2. In some aspects, the transmission component 1004 may be co-located with the reception component 1002 in a transceiver.
The transmission component 1004 and/or the configuration component 1008 may transmit, to a UE, configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications. The reception component 1002 and/or the transmission component 1004 may communicate at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters.
The transmission component 1004 and/or the configuration component 1008 may transmit, to the UE, an indication of the set of configuration parameters.
The reception component 1002 may receive, from the UE, an indication of the set of configuration patterns.
The transmission component 1004 and/or the configuration component 1008 may transmit, to the UE, additional configuration information via a downlink communication information communication, wherein communicating the at least one communication includes overwriting at least one configuration parameter associated with the configuration set with a corresponding at least one configuration parameter associated with the additional configuration information.
The transmission component 1004 may transmit, to the UE, an indication of a hopping pattern associated with performing frequency hopping between the multiple sub-bands.
The transmission component 1004 may transmit, to the UE, an indication of at least one of a time domain resource allocation associated with each sub-band, of the multiple sub-bands, or a frequency domain resource allocation associated with each sub-band, of the multiple sub-bands.
The transmission component 1004 may transmit, to the UE, an indication of at least one of a TDRA associated with the uplink communication, a TDRA associated with the downlink communication, an FDRA associated with the uplink communication, an FDRA associated with the downlink communication, or the set of configuration parameters.
The transmission component 1004 may transmit, to the UE, an indication of at least one of a first sub-band associated with the uplink communication or a second sub-band associated with the downlink communication, wherein the resources available for both the uplink communications and the downlink communications are based at least in part on the at least one of the first sub-band associated with the uplink communication or the second sub-band associated with the downlink communication.
The number and arrangement of components shown in Fig. 10 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 10. Furthermore, two or more components shown in Fig. 10 may be implemented within a single component, or a single component shown in Fig. 10 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 10 may perform one or more functions described as being performed by another set of components shown in Fig. 10.
The following provides an overview of some Aspects of the present disclosure:
Aspect 1: A method of wireless communication performed by a UE, comprising: receiving configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications; and communicating at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters.
Aspect 2: The method of Aspect 1, wherein each set of configuration parameters, of the multiple sets of configuration patterns, is associated with a corresponding index.
Aspect 3: The method of any of Aspects 1-2, further comprising receiving an indication of the set of configuration parameters.
Aspect 4: The method of Aspect 3, wherein the indication of the set of configuration parameters is received via one of an uplink-scheduling DCI communication or a downlink-scheduling DCI communication.
Aspect 5: The method of any of Aspects 1-4, further comprising selecting the set of configuration parameters.
Aspect 6: The method of any of Aspects 1-5, wherein the set of configuration parameters is based at least in part on a quality of service requirement associated with the at least one communication.
Aspect 7: The method of any of Aspects 1-6, further comprising transmitting an indication of the set of configuration patterns.
Aspect 8: The method of any of Aspects 1-7, further comprising selecting a sub-band associated with the flexible occasion for communicating the at least one communication, wherein the set of configuration parameters is associated with the sub-band.
Aspect 9: The method of Aspect 8, wherein selecting the sub-band is based at least in part on channel state information associated with the sub-band.
Aspect 10: The method of any of Aspects 1-9, wherein the configuration information includes a configuration set, and wherein the configuration set includes the multiple sets of configuration parameters and common parameters applicable to each set of configuration parameters, of the multiple sets of configuration parameters.
Aspect 11: The method of Aspect 10, further comprising receiving additional configuration information via a downlink communication information communication, wherein communicating the at least one communication includes overwriting at least one configuration parameter associated with the configuration set with a corresponding at least one configuration parameter associated with the additional configuration information.
Aspect 12: The method of any of Aspects 1-11, wherein the flexible occasion is associated with multiple sub-bands, and wherein communicating the at least one communication using the flexible occasion includes performing frequency hopping between the multiple sub-bands.
Aspect 13: The method of Aspect 12, further comprising receiving an indication of a hopping pattern associated with performing frequency hopping between the multiple sub-bands.
Aspect 14: The method of any of Aspects 12-13, further comprising receiving an indication of at least one of a time domain resource allocation associated with each sub-band, of the multiple sub-bands, or a frequency domain resource allocation associated with each sub-band, of the multiple sub-bands.
Aspect 15: The method of any of Aspects 12-14, further comprising selecting a subset of at least one sub-band, of the multiple sub-bands, for communicating the at least one communication.
Aspect 16: The method of any of Aspects 1-15, wherein communicating the at least one communication using the flexible occasion includes transmitting an uplink communication using the flexible occasion and receiving a downlink communication using the flexible occasion.
Aspect 17: The method of Aspect 16, wherein the uplink communication and the downlink communication are activated by a single downlink communication information communication.
Aspect 18: The method of any of Aspects 16-17, further comprising receiving an indication of at least one of: a TDRA associated with the uplink communication, a TDRA  associated with the downlink communication, an FDRA associated with the uplink communication, an FDRA associated with the downlink communication, or the set of configuration parameters.
Aspect 19: The method of Aspect 16, wherein the uplink communication is activated by a first DCI communication, and wherein the downlink communication is activated by a second DCI communication.
Aspect 20: The method of Aspect 19, wherein the first DCI communication indicates at least one of a TDRA associated with the uplink communication, an FDRA associated with the uplink communication, or the set of configuration parameters, and wherein the second DCI communication indicates at least one of a TDRA associated with the downlink communication, an FDRA associated with the downlink communication, or the set of configuration parameters.
Aspect 21: The method of any of Aspects 16-20, further comprising selecting a sub-band associated with the flexible occasion for transmitting the uplink communication.
Aspect 22: The method of any of Aspects 16-21, further comprising receiving an indication of at least one of a first sub-band associated with the uplink communication or a second sub-band associated with the downlink communication, wherein the resources available for both the uplink communications and the downlink communications are based at least in part on the at least one of the first sub-band associated with the uplink communication or the second sub-band associated with the downlink communication.
Aspect 23: The method of any of Aspects 1-22, wherein communicating the at least one communication using the flexible occasion includes communicating the at least one communication via a sidelink.
Aspect 24: The method of Aspect 23, wherein the multiple sets of configuration parameters are associated with a resource pool associated with the sidelink.
Aspect 25: A method of wireless communication performed by a network node, comprising: transmitting, to a UE, configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications; and communicating at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters.
Aspect 26: The method of Aspect 25, wherein each set of configuration parameters, of the multiple sets of configuration patterns, is associated with a corresponding index.
Aspect 27: The method of any of Aspects 25-26, further comprising transmitting, to the UE, an indication of the set of configuration parameters.
Aspect 28: The method of Aspect 27, wherein the indication of the set of configuration parameters is transmitted via one of an uplink-scheduling DCI communication or a downlink-scheduling DCI communication.
Aspect 29: The method of any of Aspects 25-28, further comprising receiving, from the UE, an indication of the set of configuration patterns.
Aspect 30: The method of Aspect 29, wherein the set of configuration parameters is associated a selected sub-band associated with the flexible occasion for communicating the at least one communication.
Aspect 31: The method of Aspect 30, wherein the selected sub-band is based at least in part on channel state information associated with the selected sub-band.
Aspect 32: The method of any of Aspects 25-31, wherein the configuration information includes a configuration set, and wherein the configuration set includes the multiple sets of configuration parameters and common parameters applicable to each set of configuration parameters, of the multiple sets of configuration parameters.
Aspect 33: The method of Aspect 32, further comprising transmitting, to the UE, additional configuration information via a downlink communication information communication, wherein communicating the at least one communication includes overwriting at least one configuration parameter associated with the configuration set with a corresponding at least one configuration parameter associated with the additional configuration information.
Aspect 34: The method of any of Aspects 25-33, wherein the flexible occasion is associated with multiple sub-bands, and wherein communicating the at least one communication using the flexible occasion includes performing frequency hopping between the multiple sub-bands.
Aspect 35: The method of Aspect 34, further comprising transmitting, to the UE, an indication of a hopping pattern associated with performing frequency hopping between the multiple sub-bands.
Aspect 36: The method of any of Aspects 34-35, further comprising transmitting, to the UE, an indication of at least one of a time domain resource allocation associated with each sub-band, of the multiple sub-bands, or a frequency domain resource allocation associated with each sub-band, of the multiple sub-bands.
Aspect 37: The method of any of Aspects 25-36, wherein communicating the at least one communication using the flexible occasion includes receiving, from the UE, an uplink communication using the flexible occasion and transmitting, to the UE, a downlink communication using the flexible occasion.
Aspect 38: The method of Aspect 37, wherein the uplink communication and the downlink communication are activated by a single downlink communication information communication.
Aspect 39: The method of any of Aspect 37-38, further comprising transmitting, to the UE, an indication of at least one of: a TDRA associated with the uplink communication, a TDRA associated with the downlink communication, an FDRA associated with the uplink communication, an FDRA associated with the downlink communication, or the set of configuration parameters.
Aspect 40: The method of Aspect 37, wherein the uplink communication is activated by a first DCI communication, and wherein the downlink communication is activated by a second DCI communication.
Aspect 41: The method of Aspect 40, wherein the first DCI communication indicates at least one of a TDRA associated with the uplink communication, an FDRA associated with the uplink communication, or the set of configuration parameters, and wherein the second DCI communication indicates at least one of a TDRA associated with the downlink communication, an FDRA associated with the downlink communication, or the set of configuration parameters.
Aspect 42: The method of any of Aspects 37-41, further comprising transmitting, to the UE, an indication of at least one of a first sub-band associated with the uplink communication or a second sub-band associated with the downlink communication, wherein the resources available for both the uplink communications and the downlink communications are based at least in part on the at least one of the first sub-band associated with the uplink communication or the second sub-band associated with the downlink communication.
Aspect 43: An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 1-24.
Aspect 44: A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the one or more processors configured to perform the method of one or more of Aspects 1-24.
Aspect 45: An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 1-24.
Aspect 46: A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 1-24.
Aspect 47: A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that,  when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 1-24.
Aspect 48: An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 25-42.
Aspect 49: A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the one or more processors configured to perform the method of one or more of Aspects 25-42.
Aspect 50: An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 25-42.
Aspect 51: A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 25-42.
Aspect 52: A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 25-42.
The foregoing disclosure provides illustration and description but is not intended to be exhaustive or to limit the aspects to the precise forms disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware, firmware, or a combination of hardware and software. As used herein, a processor is implemented in hardware, firmware, or a combination of hardware and software. As used herein, the phrase “based on” is intended to be broadly construed to mean “based at least in part on. ” As used herein, “satisfying a threshold” may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, or not equal to the threshold, among other examples. As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover: a, b, c, a + b, a + c, b + c, and a + b + c.
Also, as used herein, the articles “a” and “an” are intended to include one or more items and may be used interchangeably with “one or more. ” Further, as used herein, the article “the” is intended to include one or more items referenced in connection with the article “the” and may be used interchangeably with “the one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items (for example, related items,  unrelated items, or a combination of related and unrelated items) , and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” and similar terms are intended to be open-ended terms that do not limit an element that they modify (for example, an element “having” A also may have B) . Further, as used herein, the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (for example, if used in combination with “either” or “only one of” ) .
The various illustrative logics, logical blocks, modules, circuits and algorithm processes described in connection with the aspects disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. The interchangeability of hardware and software has been described generally, in terms of functionality, and illustrated in the various illustrative components, blocks, modules, circuits and processes described herein. Whether such functionality is implemented in hardware or software depends upon the particular application and design constraints imposed on the overall system.
The hardware and data processing apparatus used to implement the various illustrative logics, logical blocks, modules and circuits described in connection with the aspects disclosed herein may be implemented or performed with a general purpose single-or multi-chip processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, or any conventional processor, controller, microcontroller, or state machine. A processor also may be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. In some aspects, particular processes and methods may be performed by circuitry that is specific to a given function.
In one or more aspects, the functions described may be implemented in hardware, digital electronic circuitry, computer software, firmware, including the structures disclosed in this specification and their structural equivalents thereof, or in any combination thereof. Aspects of the subject matter described in this specification also can be implemented as one or more computer programs (such as one or more modules of computer program instructions) encoded on a computer storage media for execution by, or to control the operation of, a data processing apparatus.
If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. The processes of a method or algorithm disclosed herein may be implemented in a processor-executable software module  which may reside on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that can be enabled to transfer a computer program from one place to another. A storage media may be any available media that may be accessed by a computer. By way of example, and not limitation, such computer-readable media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that may be used to store desired program code in the form of instructions or data structures and that may be accessed by a computer. Also, any connection can be properly termed a computer-readable medium. Disk and disc, as used herein, includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the media described herein should also be included within the scope of computer-readable media. Additionally, the operations of a method or algorithm may reside as one or any combination or set of codes and instructions on a machine readable medium and computer-readable medium, which may be incorporated into a computer program product.
Various modifications to the aspects described in this disclosure may be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects without departing from the spirit or scope of this disclosure. Thus, the claims are not intended to be limited to the aspects shown herein, but are to be accorded the widest scope consistent with this disclosure, the principles and the novel features disclosed herein.
Additionally, a person having ordinary skill in the art will readily appreciate, the terms “upper” and “lower” are sometimes used for ease of describing the figures, and indicate relative positions corresponding to the orientation of the figure on a properly oriented page, and may not reflect the proper orientation of any device as implemented.
Certain features that are described in this specification in the context of separate aspects also can be implemented in combination in a single aspect. Conversely, various features that are described in the context of a single aspect also can be implemented in multiple aspects separately or in any suitable subcombination. Moreover, although features may be described as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.
Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. Further, the drawings may schematically depict one more example processes in the form of a flow diagram. However, other operations that are not depicted can be incorporated in the example processes that are schematically illustrated. For example, one or more additional  operations can be performed before, after, simultaneously, or between any of the illustrated operations. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various system components in the aspects described should not be understood as requiring such separation in all aspects, and it should be understood that the described program components and systems can generally be integrated together in a single software product or packaged into multiple software products. Additionally, other aspects are within the scope of the following claims. In some cases, the actions recited in the claims can be performed in a different order and still achieve desirable results.

Claims (30)

  1. An apparatus for wireless communication at a user equipment (UE) , comprising:
    a memory; and
    one or more processors, coupled to the memory, configured to:
    receive configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications; and
    communicate at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters.
  2. The apparatus of claim 1, wherein the one or more processors are further configured to receive an indication of the set of configuration parameters.
  3. The apparatus of claim 1, wherein the one or more processors are further configured to select the set of configuration parameters.
  4. The apparatus of claim 1, wherein the set of configuration parameters is based at least in part on a quality of service requirement associated with the at least one communication.
  5. The apparatus of claim 1, wherein the one or more processors are further configured to select a sub-band associated with the flexible occasion for communicating the at least one communication, wherein the set of configuration parameters is associated with the sub-band.
  6. The apparatus of claim 5, wherein selecting the sub-band is based at least in part on channel state information associated with the sub-band.
  7. The apparatus of claim 1, wherein the configuration information includes a configuration set, and wherein the configuration set includes the multiple sets of configuration parameters and common parameters applicable to each set of configuration parameters, of the multiple sets of configuration parameters.
  8. The apparatus of claim 1, wherein the flexible occasion is associated with multiple sub-bands, and wherein communicating the at least one communication using the flexible occasion includes performing frequency hopping between the multiple sub-bands.
  9. The apparatus of claim 8, wherein the one or more processors are further configured to receive an indication of a hopping pattern associated with performing frequency hopping between the multiple sub-bands.
  10. The apparatus of claim 8, wherein the one or more processors are further configured to receive an indication of at least one of a time domain resource allocation associated with each sub-band, of the multiple sub-bands, or a frequency domain resource allocation associated with each sub-band, of the multiple sub-bands.
  11. The apparatus of claim 8, wherein the one or more processors are further configured to select a subset of at least one sub-band, of the multiple sub-bands, for communicating the at least one communication.
  12. The apparatus of claim 1, wherein the one or more processors, to communicate the at least one communication using the flexible occasion, are configured to transmit an uplink communication using the flexible occasion and receiving a downlink communication using the flexible occasion.
  13. The apparatus of claim 12, wherein the uplink communication and the downlink communication are activated by a single downlink communication information communication.
  14. The apparatus of claim 12, wherein the one or more processors are further configured to receive an indication of at least one of:
    a time domain resource allocation (TDRA) associated with the uplink communication,
    a TDRA associated with the downlink communication,
    a frequency domain resource allocation (FDRA) associated with the uplink communication,
    an FDRA associated with the downlink communication, or
    the set of configuration parameters.
  15. The apparatus of claim 12, wherein the uplink communication is activated by a first downlink communication information (DCI) communication, and wherein the downlink communication is activated by a second DCI communication.
  16. The apparatus of claim 15, wherein the first DCI communication indicates at least one of a time domain resource allocation (TDRA) associated with the uplink communication, a  frequency domain resource allocation (FDRA) associated with the uplink communication, or the set of configuration parameters, and
    wherein the second DCI communication indicates at least one of a TDRA associated with the downlink communication, an FDRA associated with the downlink communication, or the set of configuration parameters.
  17. The apparatus of claim 12, wherein the one or more processors are further configured to receive an indication of at least one of a first sub-band associated with the uplink communication or a second sub-band associated with the downlink communication, wherein the resources available for both the uplink communications and the downlink communications are based at least in part on the at least one of the first sub-band associated with the uplink communication or the second sub-band associated with the downlink communication.
  18. The apparatus of claim 1, wherein the one or more processors, to communicate the at least one communication using the flexible occasion, are configured to communicate the at least one communication via a sidelink.
  19. The apparatus of claim 18, wherein the multiple sets of configuration parameters are associated with a resource pool associated with the sidelink.
  20. An apparatus for wireless communication at a network node, comprising:
    a memory; and
    one or more processors, coupled to the memory, configured to:
    transmit, to a user equipment (UE) , configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications; and
    communicate at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters.
  21. The apparatus of claim 20, wherein the one or more processors are further configured to transmit, to the UE, an indication of the set of configuration parameters.
  22. The network node of claim 20, wherein the configuration information includes a configuration set, and wherein the configuration set includes the multiple sets of configuration  parameters and common parameters applicable to each set of configuration parameters, of the multiple sets of configuration parameters.
  23. The network node of claim 20, wherein the flexible occasion is associated with multiple sub-bands, and wherein communicating the at least one communication using the flexible occasion includes performing frequency hopping between the multiple sub-bands.
  24. The network node of claim 23, wherein the one or more processors are further configured to transmit, to the UE, an indication of a hopping pattern associated with performing frequency hopping between the multiple sub-bands.
  25. The network node of claim 20, wherein the one or more processors, to communicate the at least one communication using the flexible occasion, are configured to receive, from the UE, an uplink communication using the flexible occasion and transmitting, to the UE, a downlink communication using the flexible occasion.
  26. A method of wireless communication performed by a user equipment (UE) , comprising:
    receiving configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications; and
    communicating at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters.
  27. The method of claim 26, further comprising receiving an indication of the set of configuration parameters.
  28. The method of claim 26, further comprising selecting the set of configuration parameters.
  29. A method of wireless communication performed by a network node, comprising:
    transmitting, to a user equipment (UE) , configuration information indicating multiple sets of configuration parameters associated with a flexible occasion, wherein the flexible occasion is associated with resources available for both uplink communications and downlink communications; and
    communicating at least one communication using the flexible occasion based at least in part on a set of configuration parameters, of the multiple sets of configuration parameters.
  30. The method of claim 29, further comprising transmitting, to the UE, an indication of the set of configuration parameters.
PCT/CN2022/111029 2022-08-09 2022-08-09 Techniques for configuration parameters for flexible occasions WO2024031304A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/111029 WO2024031304A1 (en) 2022-08-09 2022-08-09 Techniques for configuration parameters for flexible occasions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/111029 WO2024031304A1 (en) 2022-08-09 2022-08-09 Techniques for configuration parameters for flexible occasions

Publications (1)

Publication Number Publication Date
WO2024031304A1 true WO2024031304A1 (en) 2024-02-15

Family

ID=89849985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111029 WO2024031304A1 (en) 2022-08-09 2022-08-09 Techniques for configuration parameters for flexible occasions

Country Status (1)

Country Link
WO (1) WO2024031304A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180367289A1 (en) * 2017-06-15 2018-12-20 Apple Inc. Semi-Static and Dynamic TDD Configuration for 5G-NR
US20190021032A1 (en) * 2015-08-07 2019-01-17 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement for requesting of resources
US20190268923A1 (en) * 2018-02-26 2019-08-29 Qualcomm Incorporated Grant free uplink transmission techniques
CN110800352A (en) * 2017-09-30 2020-02-14 Oppo广东移动通信有限公司 Wireless communication method and apparatus
US20200120662A1 (en) * 2017-06-15 2020-04-16 Huawei Technologies Co., Ltd. Slot resource configuration method in wireless communication and device
US20220046640A1 (en) * 2019-04-26 2022-02-10 Sony Group Corporation Base station device, method of controlling base station device, terminal device, and method of controlling terminal device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190021032A1 (en) * 2015-08-07 2019-01-17 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement for requesting of resources
US20180367289A1 (en) * 2017-06-15 2018-12-20 Apple Inc. Semi-Static and Dynamic TDD Configuration for 5G-NR
US20200120662A1 (en) * 2017-06-15 2020-04-16 Huawei Technologies Co., Ltd. Slot resource configuration method in wireless communication and device
CN110800352A (en) * 2017-09-30 2020-02-14 Oppo广东移动通信有限公司 Wireless communication method and apparatus
US20190268923A1 (en) * 2018-02-26 2019-08-29 Qualcomm Incorporated Grant free uplink transmission techniques
US20220046640A1 (en) * 2019-04-26 2022-02-10 Sony Group Corporation Base station device, method of controlling base station device, terminal device, and method of controlling terminal device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "CR on flexible occasion of initial transmission and repetition for configured grant", 3GPP RSG-RAN WG2 MEETING AH 1801 R2-1801037, 12 January 2018 (2018-01-12), XP051386534 *

Similar Documents

Publication Publication Date Title
WO2024031304A1 (en) Techniques for configuration parameters for flexible occasions
US20230269724A1 (en) Unifying sidelink and uu interface downlink control information
US20240040575A1 (en) Resource skipping for multiple grants
US20240023110A1 (en) Status indications for uplink configured grant instances
US20230336292A1 (en) Skipped resources of a grant
US20240090016A1 (en) Prioritization for reducing semi-persistent scheduling or configured grant blind decoding
WO2024026605A1 (en) Modification of modulation and coding scheme
WO2024026606A1 (en) Downlink semi-persistent scheduling opportunity skipping
US20230300756A1 (en) Prioritizations for transmission power reductions in carrier aggregation for simultaneous transmissions
US20240057097A1 (en) Slot pattern for repetitions of slot type
US20230371030A1 (en) Soft uplink grant
WO2024031964A1 (en) Techniques for system information block 1 request configurations
WO2024007234A1 (en) Techniques for providing channel state information report information
US20240107351A1 (en) Cross-link interference information exchange
US20240064751A1 (en) Cross sub-band scheduling in a full-duplex network
WO2023206326A1 (en) Uplink control multiplexing for multiple transmit receive points
WO2023184379A1 (en) Configured grant data termination indication
US20230318765A1 (en) Reception interference indication
US20240113846A1 (en) Downlink reception in an uplink subband
US20240073718A1 (en) Cross-link interference measurement activity during network entity inactivity period
WO2024011437A1 (en) Physical downlink channel repetitions in subbands
US20240121789A1 (en) Downlink control information (dci) for single dci and multiple dci transmission modes
US20240121070A1 (en) Collision handling for sub-band full duplex aware user equipment
US20230107250A1 (en) Techniques for selectively receiving a communication based at least in part on timing of a resource allocation relative to a closest periodic communication
US20230362926A1 (en) Indication of whether configured grant physical uplink shared channel is to be transmitted

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954284

Country of ref document: EP

Kind code of ref document: A1