WO2024029679A1 - High corrosion resistance and high strength stainless steel and method for manufacturing same - Google Patents

High corrosion resistance and high strength stainless steel and method for manufacturing same Download PDF

Info

Publication number
WO2024029679A1
WO2024029679A1 PCT/KR2023/003277 KR2023003277W WO2024029679A1 WO 2024029679 A1 WO2024029679 A1 WO 2024029679A1 KR 2023003277 W KR2023003277 W KR 2023003277W WO 2024029679 A1 WO2024029679 A1 WO 2024029679A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
corrosion
resistant
strength stainless
strength
Prior art date
Application number
PCT/KR2023/003277
Other languages
French (fr)
Korean (ko)
Inventor
공정현
김상석
박미남
김상윤
태기선
김회훈
김도훈
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of WO2024029679A1 publication Critical patent/WO2024029679A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a highly corrosion-resistant, high-strength stainless steel composed of dual phases of martensite and ferrite after cold rolling annealing heat treatment, and a method of manufacturing the same.
  • Ferritic stainless steel products which are widely used in various kitchen utensils, home appliances, and automobile parts, are increasingly requiring high functionality such as high strength and weight reduction.
  • high functionality such as high strength and weight reduction.
  • there is no phase transformation so there is a limit to improving strength through grain refinement.
  • the martensite phase is formed in the hot rolling annealing step to reduce roffing that may be generated in the cold rolling process, thereby securing a cold rolled steel sheet with an attractive surface.
  • the strength increases. Therefore, during cold rolling, problems such as cracks or tearing of the steel sheet may occur during rolling due to the rolling load.
  • the reduction rate per pass can be reduced during cold rolling, but this increases the number of passes and causes economic loss.
  • Stainless steel that can secure strength without reducing corrosion resistance is required.
  • the purpose of the present invention to solve the above-described problems is to provide a high-corrosion-resistant, high-strength stainless steel and a method of manufacturing the same by controlling the distribution of carbides and forming a martensite phase in the cold rolling annealing step.
  • High-corrosion-resistant, high-strength stainless steel according to one embodiment is, in weight percent, C: 0.01 to 0.1%, N: 0.01 to 0.1%, Si: 0.01 to 1.0%, Mn: 0.01 to 3.0%, Cr: 10.0 to 20.0%.
  • Al 0.001 ⁇ 1.0%
  • P 0.05% or less
  • S 0.01% or less, including the remaining Fe and other inevitable impurities
  • the distribution of carbides with a diameter of 0.5 ⁇ m or more is 7/100 ⁇ m 2 or less per unit area
  • It may be a high-corrosion-resistant, high-strength stainless steel with a microstructure of two phases, a martensite phase and a ferrite phase, and where the martensite phase has an area ratio of 20% or more.
  • the high-corrosion-resistant, high-strength stainless steel may be a high-corrosion-resistant, high-strength stainless steel that satisfies Equation (1): 420C+470N+23Ni+10Mn+180-(11.5Cr+11.5Si+52Al) ⁇ 10.
  • C, N, Ni, Mn, Cr, Si, and Al represent the weight percent of each element.
  • the high-corrosion-resistant, high-strength stainless steel may be a high-corrosion-resistant, high-strength stainless steel that has a pitting potential of 70 mV or more and a yield strength of 350 MPa or more.
  • the highly corrosion-resistant, high-strength stainless steel may be a highly corrosion-resistant, high-strength stainless steel with a tensile strength of 500 MPa or more.
  • the highly corrosion-resistant, high-strength stainless steel may be a highly corrosion-resistant, high-strength stainless steel with a hardness of 200Hv or more.
  • the high-corrosion-resistant, high-strength stainless steel may be a high-corrosion-resistant, high-strength stainless steel in which the martensite phase itself has a hardness of 400 Hv or more.
  • the highly corrosion-resistant, high-strength stainless steel may be a highly corrosion-resistant, high-strength stainless steel in which the aspect ratio of ferrite grains is 2.0 or less.
  • a method of manufacturing high corrosion resistance and high strength stainless steel includes, in weight %, C: 0.01 ⁇ 0.1%, N: 0.01 ⁇ 0.1%, Si: 0.01 ⁇ 1.0%, Mn: 0.01 ⁇ 3.0%, Cr: 10.0 ⁇ Reheating the slab containing 20.0%, Al: 0.001 to 1.0%, P: 0.05% or less, S: 0.01% or less, the remaining Fe and other inevitable impurities to 1050 to 1250°C; Hot rolling and hot rolling annealing; It includes the steps of cold rolling and cold rolling annealing at 950 to 1100°C, satisfies the following equation (1): 420C+470N+23Ni+10Mn+180-(11.5Cr+11.5Si+52Al) ⁇ 10, and has a microstructure
  • This may be a method of manufacturing high-corrosion-resistant, high-strength stainless steel, which is a two-phase martensite phase and a ferrite phase.
  • a method of manufacturing a highly corrosion-resistant, high-strength stainless steel according to an embodiment may be a method of manufacturing a highly corrosion-resistant, high-strength stainless steel in which the distribution of carbides with a diameter of 0.5 ⁇ m or more is 7/100 ⁇ m 2 or less per unit area.
  • the method of manufacturing highly corrosion-resistant, high-strength stainless steel may be a method of manufacturing highly corrosion-resistant, high-strength stainless steel in which the hot rolling annealing step is performed at a temperature range of 750 to 900°C.
  • a method of manufacturing high corrosion resistance and high strength stainless steel according to an embodiment may be a method of manufacturing high corrosion resistance and high strength stainless steel in which the martensite phase may be 20% or more in area ratio after cold rolling annealing, and the hardness of the martensite phase may be 400 Hv or more.
  • a method of manufacturing highly corrosion-resistant, high-strength stainless steel according to an embodiment may be a method of manufacturing highly corrosion-resistant, high-strength stainless steel in which the aspect ratio of ferrite grains is 2.0 or less.
  • Figure 1 is a photograph showing the microstructure of a comparative example according to cold rolling annealing temperature.
  • Figure 2 is a photograph showing the microstructure of the invention example according to the cold rolling annealing temperature.
  • Figure 3 is a photograph showing the microstructure and carbide of a comparative example according to cold rolling annealing temperature.
  • Figure 4 is a photograph showing the microstructure and carbide of the invention example according to the cold rolling annealing temperature.
  • High-corrosion-resistant, high-strength stainless steel according to one embodiment is, in weight percent, C: 0.01 to 0.1%, N: 0.01 to 0.1%, Si: 0.01 to 1.0%, Mn: 0.01 to 3.0%, Cr: 10.0 to 20.0%.
  • Al 0.001 ⁇ 1.0%
  • P 0.05% or less
  • S 0.01% or less, including the remaining Fe and other inevitable impurities
  • the distribution of carbides with a diameter of 0.5 ⁇ m or more is 7/100 ⁇ m 2 or less per unit area
  • It may be a high-corrosion-resistant, high-strength stainless steel with a microstructure of two phases, a martensite phase and a ferrite phase, and where the martensite phase has an area ratio of 20% or more.
  • the present invention increases the stability of the austenite phase in the ferrite matrix, and performs cold rolling annealing heat treatment at a temperature at which the austenite phase is generated, so that the final product consists of a dual phase of ferrite and martensite through martensite phase transformation during cooling.
  • hot rolling annealing was performed directly below Ac1, which is the ferrite single phase region, to form a soft ferrite single phase, and after completion of cold rolling, heat treatment was performed at a temperature at which an austenite phase is generated in the cold rolling annealing stage. The aim was to improve strength by inducing martensite phase transformation during cooling.
  • the cold rolling annealing step heat treatment is performed at a temperature at which the austenite phase is formed, and the M 23 C 6 type carbides precipitated on the ferrite phase are dissolved into the matrix. According to the present invention, it is possible to provide a stainless steel and a manufacturing method thereof that can secure high strength without deteriorating corrosion resistance by controlling the distribution of these carbides.
  • the high-corrosion-resistant, high-strength stainless steel according to an example of the present invention has, in weight percent, C: 0.01 ⁇ 0.1%, N: 0.01 ⁇ 0.1%, Si: 0.01 ⁇ 1.0%, Mn: 0.01 ⁇ 3.0%, Cr: 10.0 ⁇ 20.0%, Al: 0.001 to 1.0%, P: 0.05% or less, S: 0.01% or less, and may include the remaining Fe and other unavoidable impurities.
  • C 0.01 ⁇ 0.1%
  • N 0.01 ⁇ 0.1%
  • Si 0.01 ⁇ 1.0%
  • Mn 0.01 ⁇ 3.0%
  • Cr 10.0 ⁇ 20.0%
  • Al 0.001 to 1.0%
  • P 0.05% or less
  • S 0.01% or less
  • the content of C may be 0.01% to 0.1%.
  • C is an austenite stabilizing element and has the effect of expanding the austenite phase area, forming light martensite upon cooling, thereby improving the strength of steel.
  • a content of 0.01% or more is required.
  • the steel sheet hardens and ductility significantly decreases, and if the amount of martensite produced is too large, formability cannot be obtained.
  • the C content is in the range of 0.01 to 0.1%. Preferably it may be in the range of 0.02 to 0.1%.
  • the content of N may be 0.01 to 0.1%.
  • N is an austenite stabilizing element and has the effect of expanding the austenite region.
  • the N content must be 0.01% or more.
  • the N content is in the range of 0.01 to 0.1%.
  • it may be in the range of 0.02 to 0.1%, and more preferably in the range of 0.01 to 0.07%.
  • the Si content may be 0.01 to 1.0%.
  • Si is an element that acts as a deoxidizing agent when melting steel. To obtain this effect, a content of 0.01% or more is required. However, if the Si content exceeds 1.0%, the steel sheet becomes hard, the rolling load during hot rolling increases, and surface defects such as sticking are caused. In addition, Si is a ferrite stabilizing element, and excessive addition of Si reduces the stability of austenite. Therefore, the Si content is in the range of 0.01 to 1.0%. Preferably, it may be in the range of 0.20 to 0.50%.
  • the content of Mn may be 0.01 to 3.0%.
  • Mn is an austenite phase stabilizing element and has the effect of expanding the austenite phase area. To obtain this effect, a content of 0.01% or more is required. However, when the Mn content exceeds 3.0%, the amount of MnS produced increases and corrosion resistance deteriorates. Therefore, the Mn content is in the range of 0.01 to 3.0%. Preferably it may be 0.2 to 1.0%.
  • the content of Cr may be 10.0 to 20.0%.
  • Cr is an element that has the effect of improving corrosion resistance by forming a passive film on the surface of the steel sheet. This effect appears when the Cr content is 10.0% or more, and corrosion resistance improves as the Cr content increases. Additionally, Cr is a ferrite stabilizing element and has the effect of suppressing the formation of an austenite phase. If the Cr content is less than 10.0%, too much austenite phase is generated, and the desired formability cannot be obtained. Therefore, the Cr content is set to 10.0% or more. However, if the Cr content exceeds 20.0%, the austenite phase is not generated and the required martensite phase fraction cannot be secured. Therefore, the Cr content is in the range of 10.0 to 20.0%. Preferably it may be in the range of 12.0 to 18.0%.
  • the Al content may be 0.001 to 1.0%.
  • Al is an element that acts as a deoxidizing agent like Si. To obtain this effect, a content of 0.001% or more is required. However, when the Al content exceeds 1.0%, Al inclusions such as Al 2 O 3 increase, and surface properties tend to deteriorate. Therefore, the Al content is in the range of 0.001 to 1.0%. Preferably, it may be in the range of 0.001 to 0.1%.
  • the content of Ni may be 0.01% to 1.0%.
  • Ni is a representative austenite stabilizing element, but is an expensive element, increasing manufacturing costs.
  • Ni may optionally be further included in an amount of 0.01 to 1.0%. Preferably it may be 0.5% or less.
  • the content of P may be 0.05% or less.
  • the P content is set to 0.05 or less. More preferably, it may be 0.03% or less.
  • the S content may be 0.01% or less.
  • the S content is an element that exists as sulfide-based inclusions such as MnS and reduces ductility and corrosion resistance, and its adverse effects are particularly noticeable when the content exceeds 0.01%. Therefore, the S content is an unavoidable impurity for which it is desirable to keep the content as low as possible. Therefore, the S content is set to 0.01% or less. More preferably, it may be 0.005% or less.
  • the remaining ingredient is iron (Fe).
  • Fe iron
  • unintended impurities from raw materials or the surrounding environment may inevitably be mixed, so this cannot be ruled out. Since these impurities are known to anyone skilled in the normal manufacturing process, all of them are not specifically mentioned in this specification.
  • the distribution of carbides with a diameter of 0.5 ⁇ m or more may be 7/100 ⁇ m 2 or less per unit area. If the distribution of carbides exceeds 7/ 100 ⁇ m2 per unit area, corrosion resistance and high strength cannot be secured at the same time.
  • the high-corrosion-resistant, high-strength stainless steel according to an example of the present invention has a microstructure of two phases, a martensite phase and a ferrite phase, where the martensite phase may have an area ratio of 20% or more. If the martensite phase is less than 20% in terms of area, high strength cannot be secured.
  • High-corrosion-resistant, high-strength stainless steel prevents a decrease in corrosion resistance due to carbide precipitation when carbides are dissolved in the matrix and the distribution of carbides with a diameter of 0.5 ⁇ m or more is less than 7 per unit area / 100 ⁇ m 2 . It can be done, and at the same time, high strength can be secured by securing the martensite phase area ratio of 20% or more, so it can be a stainless steel that satisfies high corrosion resistance and high strength at the same time.
  • the value of equation (1) may be 10 or more.
  • Equation (1) 420C+470N+23Ni+10Mn+180-(11.5Cr+11.5Si+52Al)
  • C, N, Ni, Mn, Cr, Si, and Al represent the weight percent of each element.
  • the austenite phase stability is low and the austenite phase does not actively occur, so the phase transformation to martensite may not occur. Therefore, it is controlled to be 10 or more, and preferably to be 30 or more. Through this, after forming the austenite phase at high temperature, the martensite phase transformation can be smoothed during cooling, and the martensite phase can be secured at an area ratio of 20% or more.
  • the high-corrosion-resistant, high-strength stainless steel according to an example of the present invention has a pitting potential of 70 mV or more and a yield strength of 350 MPa or more, thereby satisfying both corrosion resistance and strength.
  • the high-corrosion-resistant, high-strength stainless steel according to an example of the present invention may have a tensile strength of 500 MPa or more and a steel hardness of 200 Hv or more. Additionally, the hardness of the martensite phase may be 400 Hv or more.
  • the high-corrosion-resistant, high-strength stainless steel according to an example of the present invention may have an aspect ratio of ferrite grains of 2.0 or less.
  • the aspect ratio of ferrite grains refers to the ratio of the length of the ferrite grains in the rolling direction divided by the length of the ferrite grains in the thickness direction. In the present invention, this is expressed as equation (2).
  • Ar is the aspect ratio of the ferrite grain
  • Dr is the rolling direction length of the ferrite grain
  • Dt is the thickness direction length of the ferrite grain.
  • Ferrite grains are about 30 to 50 ⁇ m in size, and if unrecrystallized ferrite grains elongated in the rolling direction are distributed, there is a high possibility that the molding quality will be inferior, such as in ridging. Therefore, it is desirable that the ferrite phase in which phase transformation does not occur is distributed as equiaxed recrystallized grains as much as possible to prevent the molding quality of the final product from deteriorating. Accordingly, the present invention can improve molding quality by controlling the aspect ratio of ferrite grains to 2.0 or less.
  • the high-corrosion-resistant, high-strength stainless steel of the present invention can be manufactured through the following processes: reheating, hot rolling, finish rolling, hot rolling annealing, cold rolling, and cold rolling annealing of a slab having the above-described alloy composition.
  • the method for manufacturing high corrosion resistance and high strength stainless steel of the present invention is, in weight percent, C: 0.01 to 0.1%, N: 0.01 to 0.1%, Si: 0.01 to 1.0%, Mn: 0.01 to 3.0%, Cr: 10.0 to 20.0%. , Al: 0.001 ⁇ 1.0%, P: 0.05% or less, S: 0.01% or less, reheating the slab containing the remaining Fe and other unavoidable impurities; Hot rolling and hot rolling annealing; It may include cold rolling and cold rolling annealing.
  • a slab having the above-described alloy composition may have a value of equation (1) of 10 or more.
  • Equation (1) 420C+470N+23Ni+10Mn+180-(11.5Cr+11.5Si+52Al)
  • C, N, Ni, Mn, Cr, Si, and Al represent the weight percent of each element.
  • the austenite phase stability is low and the austenite phase does not actively occur, so the phase transformation to martensite may not occur. Therefore, it can be controlled to 10 or more, and preferably to 30 or more to form an austenite phase at high temperature and then to smoothly transform the martensite phase during cooling.
  • a slab having the above-described alloy composition can be reheated to 1050 to 1250°C and hot rolled.
  • the finish rolling temperature can be 700 to 950°C.
  • hot rolling annealing can be performed at 750°C to 900°C, which is directly below the Ac1 temperature, which is the ferrite single phase region, and more preferably, hot rolling annealing heat treatment is performed at 800°C to 850°C to form a soft ferrite single phase. .
  • a hot-rolled sheet composed of a single phase of soft ferrite can be cold-rolled at room temperature. After completing cold rolling, cold rolling can be annealed. Cold rolling annealing can be performed at 950 to 1100°C. Strength can be improved by heat treating above 950°C, which is the temperature above 900°C where the austenite phase is formed, to induce martensite phase transformation during cooling. However, when annealed at a temperature exceeding 1100°C, formability may be reduced due to coarsening of ferrite grains, or orange peel phenomenon due to coarsening of grains may appear on the surface of the bent part in severely bent parts. It is preferable to heat treat at the following temperature.
  • the method for producing high-corrosion-resistant, high-strength stainless steel of the present invention can cause the M 23 C 6 type carbides precipitated on the ferrite phase to be dissolved in the matrix by heat treating the cold rolling annealing temperature at a temperature at which the austenite phase is generated. there is.
  • the method for producing high-corrosion-resistant, high-strength stainless steel of the present invention involves cold rolling annealing heat treatment at a temperature at which an austenite phase is formed, so that carbides are dissolved in the matrix, and the distribution of carbides with a diameter of 0.5 ⁇ m or more is 7 per unit area / 100 ⁇ m 2 or less. You can.
  • the hardness of the martensite phase after cold rolling annealing may be 400 Hv or more. Carbon decomposed from carbides increases the stability of the austenite phase, forming an austenite phase, and when cooled, a martensite phase with high hardness can be formed with a BCT structure.
  • the martensite phase may be 20% or more in area ratio after cold rolling annealing.
  • cold rolling annealing heat treatment is performed at a temperature at which the austenite phase is generated, the area ratio of the martensite phase increases as the temperature increases, and the yield strength and tensile strength may increase accordingly.
  • Stainless steel manufactured according to the method for manufacturing high corrosion resistance and high strength stainless steel according to an example of the present invention has a pitting potential of 70 mV or more and a yield strength of 350 MPa or more, which can satisfy both corrosion resistance and strength.
  • the stainless steel manufactured according to the method for manufacturing high corrosion resistance and high strength stainless steel according to an example of the present invention may have a tensile strength of 500 MPa or more and a hardness of the steel may be 200 Hv or more.
  • the stainless steel manufactured according to the method for manufacturing high-corrosion-resistant, high-strength stainless steel according to an example of the present invention satisfies the aspect ratio of ferrite grains expressed in equation (2) of 2.0 or less, so that the molding quality of the final product can also be excellent.
  • a cold-rolled annealed material was manufactured through the process of reheating the slab containing Fe and other inevitable impurities in the temperature range of the present invention - hot rolling - finishing rolling - hot rolling annealing - cold rolling - cold rolling annealing.
  • the cold rolling annealing heat treatment temperature was varied as shown in Table 1 below.
  • Table 1 shows the fraction of martensite phase in examples according to cold rolling annealing heat treatment temperature.
  • Figures 1 and 2 are photographs showing the microstructure of examples according to cold rolling annealing heat treatment temperature. Changes in microstructure were observed using an SEM electron microscope. It can be confirmed that Comparative Examples 1 to 4 were composed of a ferrite phase. In Invention Examples 1 to 4, in Figure 2, the white upper part corresponds to the ferrite phase, and the black upper part corresponds to the martensite phase. It can be seen from Table 1, Figures 1 and 2 that the fraction of martensite phase in the ferrite matrix increases as the cold rolling annealing heat treatment temperature increases.
  • Comparative Examples 1 to 4 in which the cold rolling annealing heat treatment temperature does not fall within the range of the present invention, consist only of a ferrite phase, and as the temperature rises, a martensite phase may exist, but only in such a trace amount that it cannot be measured. .
  • Inventive Examples 1 to 4 which fall within the scope of the present invention, have a cold rolling annealing heat treatment temperature of 950°C or higher, making it possible to secure a fraction of martensite phase of 20% or more in the ferrite matrix.
  • Table 2 below shows the number of M 23 C 6 type carbides per unit area according to the cold rolling annealing heat treatment temperature.
  • Figures 3 and 4 are photographs showing the microstructure of the example according to the cold rolling annealing heat treatment temperature and the number of carbides of the M 23 C 6 type (piece/100 ⁇ m 2 ). Changes in microstructure and carbide were observed using an SEM electron microscope.
  • the martensite phase is expressed as M
  • the ferrite phase is expressed as F.
  • Comparative Example 1 and Comparative Example 3 it can be confirmed that a large amount of carbides are present when the hot rolling annealing temperature is less than 950°C.
  • the cold rolling annealing heat treatment temperature does not fall within the range of the present invention, it can be confirmed that the number of carbides per unit area exceeds 7. On the other hand, it can be confirmed that in the invention examples falling within the scope of the present invention, the cold rolling annealing heat treatment temperature is 950°C or higher, and the number of carbides per unit area is reduced to 7 or less.
  • Table 3 shows the formal dislocation, yield strength, tensile strength, elongation, and hardness of the examples.
  • Comparative Examples 2 to 4 in which a very small amount of martensite begins to be generated as the cold rolling annealing temperature increases, the yield strength and tensile strength can be seen to increase compared to Comparative Example 1, and correspond to the cold rolling annealing temperature or higher within the range of the present invention. It can be seen that in Invention Examples 1 to 4, as the martensite fraction increases to 20% or more, excellent strength can be secured with a yield strength of 350 MPa or more and a tensile strength of 500 MPa or more.
  • the pitting potential value is less than 70 mV, which means that the cold rolling annealing temperature corresponds to a temperature at which carbides are precipitated without being dissolved in solid solution, so the pitting potential is lowered by consuming Cr due to carbide precipitation.
  • the pitting potential value corresponds to 70 mV or more, but it can be confirmed that the yield strength is low and the strength is not secured even though corrosion resistance is secured.
  • the hardness of the steel was expressed as the average value measured 10 times with a load of 1 kg using a micro Vickers hardness tester.
  • the hardness value was measured at around 140 Hv, confirming that the hardness was inferior.
  • the martensite phase is present at 20% or more, it can be confirmed that high hardness is obtained by measuring 200 Hv or more.
  • the transformation to the martensite phase is performed during the cold rolling annealing process after completing cold rolling, while the temperature at which carbide is dissolved in solid solution, and the cold rolling annealing heat treatment is performed in a temperature range corresponding to the temperature at which the austenite phase is generated, thereby forming the martensite phase during cooling.
  • the number of carbides per unit area is controlled to 7 or less and the martensite phase fraction is secured to 20% or more, thereby providing stainless steel that simultaneously satisfies corrosion resistance and strength.
  • Table 4 shows the hardness values of the martensite phase and the ferrite phase itself.
  • the hardness of the martensite phase and the ferrite phase itself corresponds to the value measured with a micro hardness meter (load: 5g). Through this, it can be confirmed that the hardness of the ferrite phase itself corresponds to about 150 to 160 Hv in the invention example like the comparative example, and that the hardness of the martensite phase itself has a high hardness value of more than 400 Hv. That is, the hardness of the steel itself of the invention examples is determined by cold rolling annealing heat treatment in the austenite region, so that the M 23 C 6 type carbides precipitated on the ferrite phase are dissolved in the matrix, and at this time, the carbon decomposed from the carbides increases the stability of the austenite phase. An austenite phase is formed, and upon cooling, a martensite phase with a high hardness of the BCT structure is formed, thereby achieving high hardness.
  • Table 5 below shows the aspect ratio of ferrite grains.
  • the aspect ratio of ferrite grains according to an example of the present invention may be 2.0 or less.
  • Ar is the aspect ratio of the ferrite grain
  • Dr is the length of the ferrite grain in the rolling direction
  • Dt is the length of the ferrite grain in the thickness direction.
  • the present invention refers to the upper surface of the cross section in the rolling direction of the steel sheet in the thickness direction to determine the aspect ratio of the ferrite grain.
  • the aspect ratio of 1000 ferrite grains in each of the 5 areas was measured, the average value was calculated in each area, and the average value was calculated to calculate the aspect ratio of the entire area. .
  • This is the aspect ratio of the ferrite grains, and it can be controlled to 2.0 or less. It can be confirmed that in one embodiment of the present invention, deterioration in molding quality can be prevented by controlling the aspect ratio of ferrite grains to 2.0 or less.
  • the present invention controls the reheating temperature, finish rolling temperature, hot rolling annealing, and cold rolling annealing temperatures for stainless steel in which the austenite phase is formed, and in particular, cold rolling annealing heat treatment above 950°C where the austenite phase is formed to prevent marten during cooling.
  • Stainless steel and its products that can secure corrosion resistance and strength at the same time by inducing site phase transformation and solid solution of carbides, securing the martensite phase fraction of more than 20%, and controlling the number of carbides per unit area to 7 or less. It can be confirmed that the manufacturing method can be provided.
  • the pitting potential is more than 70mV, which confirms that it is possible to provide a stainless steel and a manufacturing method thereof that simultaneously satisfy high corrosion resistance and high strength due to excellent yield strength, tensile strength, and hardness, while not being inferior in corrosion resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

A high corrosion resistance and high strength stainless steel, according to one example of the present invention, comprises, in wt%, 0.01-0.1% of C, 0.01-0.1% of N, 0.01-1.0% of Si, 0.01-3.0% of Mn, 10.0-20.0% of Cr, 0.001-1.0% of Al, at most 0.05% of P, at most 0.01% of S, and the remainder in Fe and other unavoidable impurities, wherein the distribution of carbides with a diameter of at least 0.5 ㎛ is at most 7/100 ㎛2 per unit area, and the microstructure is dual phase with a martensite phase and a ferrite phase, and the martensite phase is at least 20% in area ratio.

Description

고내식 고강도 스테인리스강 및 이의 제조방법 High-corrosion-resistant, high-strength stainless steel and manufacturing method thereof
본 발명은 냉연소둔 열처리 후 마르텐사이트 및 페라이트 2상(dual phase)로 구성되는 고내식 고강도 스테인리스강 및 이의 제조방법에 관한 것이다.The present invention relates to a highly corrosion-resistant, high-strength stainless steel composed of dual phases of martensite and ferrite after cold rolling annealing heat treatment, and a method of manufacturing the same.
각종 주방용품, 가전 제품 및 자동차용 부품 등에 널리 사용되는 페라이트계 스테인리스 제품은 점차 고강도 경량화와 같은 고기능성을 요구하고 있다. 특히, 고강도화를 통한 두께의 감소로 무게를 감량하여 경량화를 통한 에너지 효율 향상을 비롯해 극한의 원가 절감을 요구하고 있다. 그러나 통상의 페라이트계 스테인리스강에서는 상변태가 동반되지 않아 결정립 미세화를 통한 강도 향상에도 한계가 있다.Ferritic stainless steel products, which are widely used in various kitchen utensils, home appliances, and automobile parts, are increasingly requiring high functionality such as high strength and weight reduction. In particular, there is a demand for extreme cost reduction as well as improved energy efficiency through lightweighting by reducing weight by reducing thickness through increased strength. However, in normal ferritic stainless steels, there is no phase transformation, so there is a limit to improving strength through grain refinement.
이를 해결하기 위하여 마르텐사이트상을 열연소둔 단계에서 형성시켜 냉간압연 공정에서 생성될 수 있는 로핑을 저감시켜 미려한 표면을 갖는 냉연강판을 확보할 수 있으나, 열연소둔 단계에서 마르텐사이트상이 분포되면 강도가 증가하여 냉간 압연시 압연 부하로 압연 중 크랙 또는 강판의 찢어짐 등의 문제가 발생할 수 있다. 이를 해결하기 위하여 냉간압연 시 패스당 압하율을 줄일 수 있으나 이는 패스의 횟수를 증가하여 경제적 손실을 발생시킨다. 내식성을 저하시키지 않으면서도 강도를 확보할 수 있는 스테인리스강이 요구된다.To solve this problem, the martensite phase is formed in the hot rolling annealing step to reduce roffing that may be generated in the cold rolling process, thereby securing a cold rolled steel sheet with an attractive surface. However, when the martensite phase is distributed in the hot rolling annealing step, the strength increases. Therefore, during cold rolling, problems such as cracks or tearing of the steel sheet may occur during rolling due to the rolling load. To solve this problem, the reduction rate per pass can be reduced during cold rolling, but this increases the number of passes and causes economic loss. Stainless steel that can secure strength without reducing corrosion resistance is required.
상술한 문제를 해결하기 위한 본 발명의 목적은 탄화물의 분포를 제어하고, 냉연소둔 단계에서 마르텐사이트상을 형성하여 고내식 고강도 스테인리스강 및 이의 제조방법을 제공하는 것이다.The purpose of the present invention to solve the above-described problems is to provide a high-corrosion-resistant, high-strength stainless steel and a method of manufacturing the same by controlling the distribution of carbides and forming a martensite phase in the cold rolling annealing step.
그러나, 개시된 발명의 실시예들이 해결하고자 하는 과제는 상술한 과제에 한정되지 않고 본 발명에 포함된 기술적 사상의 범위에서 다양하게 확장될 수 있다.However, the problems to be solved by the embodiments of the disclosed invention are not limited to the above-described problems and can be expanded in various ways within the scope of the technical idea included in the present invention.
일 실시예에 따른 고내식 고강도 스테인리스강은, 중량%로, C: 0.01 ~ 0.1%, N: 0.01 ~ 0.1%, Si: 0.01 ~ 1.0%, Mn: 0.01 ~ 3.0%, Cr: 10.0 ~ 20.0%, Al: 0.001 ~ 1.0%, P: 0.05% 이하, S: 0.01% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하고, 직경이 0.5㎛ 이상인 탄화물의 분포가 단위면적당 7개/100㎛2 이하이고, 미세조직이 마르텐사이트상과 페라이트상 2상이며, 상기 마르텐사이트상이 면적률로 20%이상인, 고내식 고강도 스테인리스강일 수 있다.High-corrosion-resistant, high-strength stainless steel according to one embodiment is, in weight percent, C: 0.01 to 0.1%, N: 0.01 to 0.1%, Si: 0.01 to 1.0%, Mn: 0.01 to 3.0%, Cr: 10.0 to 20.0%. , Al: 0.001 ~ 1.0%, P: 0.05% or less, S: 0.01% or less, including the remaining Fe and other inevitable impurities, and the distribution of carbides with a diameter of 0.5 ㎛ or more is 7/100 ㎛ 2 or less per unit area, It may be a high-corrosion-resistant, high-strength stainless steel with a microstructure of two phases, a martensite phase and a ferrite phase, and where the martensite phase has an area ratio of 20% or more.
일 실시예에 따른 고내식 고강도 스테인리스강은, 식(1): 420C+470N+23Ni+10Mn+180-(11.5Cr+11.5Si+52Al) ≥ 10을 만족하는, 고내식 고강도 스테인리스강일 수 있다. 식(1)에서 C, N, Ni, Mn, Cr, Si 및 Al은 각 원소의 중량%를 의미한다.The high-corrosion-resistant, high-strength stainless steel according to one embodiment may be a high-corrosion-resistant, high-strength stainless steel that satisfies Equation (1): 420C+470N+23Ni+10Mn+180-(11.5Cr+11.5Si+52Al) ≥ 10. In formula (1), C, N, Ni, Mn, Cr, Si, and Al represent the weight percent of each element.
일 실시예에 따른 고내식 고강도 스테인리스강은, 공식전위가 70mV 이상이면서, 항복강도가 350MPa이상인, 고내식 고강도 스테인리스강일 수 있다.The high-corrosion-resistant, high-strength stainless steel according to one embodiment may be a high-corrosion-resistant, high-strength stainless steel that has a pitting potential of 70 mV or more and a yield strength of 350 MPa or more.
일 실시예에 따른 고내식 고강도 스테인리스강은, 인장강도가 500MPa이상인, 고내식 고강도 스테인리스강일 수 있다.The highly corrosion-resistant, high-strength stainless steel according to one embodiment may be a highly corrosion-resistant, high-strength stainless steel with a tensile strength of 500 MPa or more.
일 실시예에 따른 고내식 고강도 스테인리스강은, 경도가 200Hv이상인, 고내식 고강도 스테인리스강일 수 있다.The highly corrosion-resistant, high-strength stainless steel according to one embodiment may be a highly corrosion-resistant, high-strength stainless steel with a hardness of 200Hv or more.
일 실시예에 따른 고내식 고강도 스테인리스강은, 마르텐사이트상 자체의 경도가 400Hv이상인, 고내식 고강도 스테인리스강일 수 있다.The high-corrosion-resistant, high-strength stainless steel according to one embodiment may be a high-corrosion-resistant, high-strength stainless steel in which the martensite phase itself has a hardness of 400 Hv or more.
일 실시예에 따른 고내식 고강도 스테인리스강은, 페라이트 결정립의 종횡비가 2.0이하인, 고내식 고강도 스테인리스강일 수 있다.The highly corrosion-resistant, high-strength stainless steel according to one embodiment may be a highly corrosion-resistant, high-strength stainless steel in which the aspect ratio of ferrite grains is 2.0 or less.
일 실시예에 따른 고내식 고강도 스테인리스강의 제조방법은, 중량 %로, C: 0.01 ~ 0.1%, N: 0.01 ~ 0.1%, Si: 0.01 ~ 1.0%, Mn: 0.01 ~ 3.0%, Cr: 10.0 ~ 20.0%, Al: 0.001 ~ 1.0%, P: 0.05% 이하, S: 0.01% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하는 슬라브를 1050 내지 1250℃로 재가열 하는 단계; 열간압연 하고, 열연소둔 하는 단계; 냉간압연 하고, 950 내지 1100℃에서 냉연소둔하는 단계를 포함하고, 하기 식 (1): 420C+470N+23Ni+10Mn+180-(11.5Cr+11.5Si+52Al) ≥ 10을 만족하고, 미세조직이 마르텐사이트상과 페라이트상의 2상인, 고내식 고강도 스테인리스강의 제조방법일 수 있다. 식(1)에서 C, N, Ni, Mn, Cr, Si 및 Al은 각 원소의 중량%를 의미한다.A method of manufacturing high corrosion resistance and high strength stainless steel according to an embodiment includes, in weight %, C: 0.01 ~ 0.1%, N: 0.01 ~ 0.1%, Si: 0.01 ~ 1.0%, Mn: 0.01 ~ 3.0%, Cr: 10.0 ~ Reheating the slab containing 20.0%, Al: 0.001 to 1.0%, P: 0.05% or less, S: 0.01% or less, the remaining Fe and other inevitable impurities to 1050 to 1250°C; Hot rolling and hot rolling annealing; It includes the steps of cold rolling and cold rolling annealing at 950 to 1100°C, satisfies the following equation (1): 420C+470N+23Ni+10Mn+180-(11.5Cr+11.5Si+52Al) ≥ 10, and has a microstructure This may be a method of manufacturing high-corrosion-resistant, high-strength stainless steel, which is a two-phase martensite phase and a ferrite phase. In formula (1), C, N, Ni, Mn, Cr, Si, and Al represent the weight percent of each element.
일 실시예에 따른 고내식 고강도 스테인리스강의 제조방법은, 직경이 0.5㎛ 이상인 탄화물의 분포가 단위면적당 7개/100㎛2 이하인, 고내식 고강도 스테인리스강의 제조방법일 수 있다.A method of manufacturing a highly corrosion-resistant, high-strength stainless steel according to an embodiment may be a method of manufacturing a highly corrosion-resistant, high-strength stainless steel in which the distribution of carbides with a diameter of 0.5 ㎛ or more is 7/100 ㎛ 2 or less per unit area.
일 실시예에 따른 고내식 고강도 스테인리스강의 제조방법은, 열연소둔 하는 단계는 750 내지 900℃ 온도범위인, 고내식 고강도 스테인리스강의 제조방법일 수 있다.The method of manufacturing highly corrosion-resistant, high-strength stainless steel according to an embodiment may be a method of manufacturing highly corrosion-resistant, high-strength stainless steel in which the hot rolling annealing step is performed at a temperature range of 750 to 900°C.
일 실시예에 따른 고내식 고강도 스테인리스강의 제조방법은, 냉연소둔 후 마르텐사이트상이 면적률로 20%이상일 수 있고, 마르텐사이트상의 경도가 400Hv이상일 수 있는, 고내식 고강도 스테인리스강의 제조방법일 수 있다.A method of manufacturing high corrosion resistance and high strength stainless steel according to an embodiment may be a method of manufacturing high corrosion resistance and high strength stainless steel in which the martensite phase may be 20% or more in area ratio after cold rolling annealing, and the hardness of the martensite phase may be 400 Hv or more.
일 실시예에 따른 고내식 고강도 스테인리스강의 제조방법은, 페라이트 결정립의 종횡비가 2.0이하인, 고내식 고강도 스테인리스강의 제조방법일 수 있다.A method of manufacturing highly corrosion-resistant, high-strength stainless steel according to an embodiment may be a method of manufacturing highly corrosion-resistant, high-strength stainless steel in which the aspect ratio of ferrite grains is 2.0 or less.
본 발명의 일 실시예에 따르면 냉연소둔 열처리 후 마르텐사이트와 페라이트 2상(dual phase)을 갖는 고내식 고강도를 동시에 만족하는 스테인리스강 및 이의 제조방법을 제공할 수 있다.According to an embodiment of the present invention, it is possible to provide a stainless steel that simultaneously satisfies high corrosion resistance and high strength having dual phases of martensite and ferrite after cold rolling annealing heat treatment, and a method of manufacturing the same.
도 1은 냉연소둔 온도에 따른 비교예의 미세조직을 나타내는 사진이다.Figure 1 is a photograph showing the microstructure of a comparative example according to cold rolling annealing temperature.
도 2는 냉연소둔 온도에 따른 발명예의 미세조직을 나타내는 사진이다.Figure 2 is a photograph showing the microstructure of the invention example according to the cold rolling annealing temperature.
도 3은 냉연소둔 온도에 따른 비교예의 미세조직 및 탄화물을 나타내는 사진이다.Figure 3 is a photograph showing the microstructure and carbide of a comparative example according to cold rolling annealing temperature.
도 4는 냉연소둔 온도에 따른 발명예의 미세조직 및 탄화물을 나타내는 사진이다.Figure 4 is a photograph showing the microstructure and carbide of the invention example according to the cold rolling annealing temperature.
일 실시예에 따른 고내식 고강도 스테인리스강은, 중량%로, C: 0.01 ~ 0.1%, N: 0.01 ~ 0.1%, Si: 0.01 ~ 1.0%, Mn: 0.01 ~ 3.0%, Cr: 10.0 ~ 20.0%, Al: 0.001 ~ 1.0%, P: 0.05% 이하, S: 0.01% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하고, 직경이 0.5㎛ 이상인 탄화물의 분포가 단위면적당 7개/100㎛2 이하이고, 미세조직이 마르텐사이트상과 페라이트상 2상이며, 상기 마르텐사이트상이 면적률로 20%이상인, 고내식 고강도 스테인리스강일 수 있다.High-corrosion-resistant, high-strength stainless steel according to one embodiment is, in weight percent, C: 0.01 to 0.1%, N: 0.01 to 0.1%, Si: 0.01 to 1.0%, Mn: 0.01 to 3.0%, Cr: 10.0 to 20.0%. , Al: 0.001 ~ 1.0%, P: 0.05% or less, S: 0.01% or less, including the remaining Fe and other inevitable impurities, and the distribution of carbides with a diameter of 0.5 ㎛ or more is 7/100 ㎛ 2 or less per unit area, It may be a high-corrosion-resistant, high-strength stainless steel with a microstructure of two phases, a martensite phase and a ferrite phase, and where the martensite phase has an area ratio of 20% or more.
이하에서는 본 발명의 바람직한 실시형태들을 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 기술사상이 이하에서 설명하는 실시형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, preferred embodiments of the present invention will be described. However, the embodiments of the present invention may be modified into various other forms, and the technical idea of the present invention is not limited to the embodiments described below. Additionally, the embodiments of the present invention are provided to more completely explain the present invention to those with average knowledge in the relevant technical field.
본 출원에서 사용하는 용어는 단지 특정한 예시를 설명하기 위하여 사용되는 것이다. 때문에 가령 단수의 표현은 문맥상 명백하게 단수여야만 하는 것이 아닌 한, 복수의 표현을 포함한다. 덧붙여, 본 출원에서 사용되는 "포함하다" 또는 "구비하다" 등의 용어는 명세서 상에 기재된 특징, 단계, 기능, 구성요소 또는 이들을 조합한 것이 존재함을 명확히 지칭하기 위하여 사용되는 것이지, 다른 특징들이나 단계, 기능, 구성요소 또는 이들을 조합한 것의 존재를 예비적으로 배제하고자 사용되는 것이 아님에 유의해야 한다.The terms used in this application are only used to describe specific examples. Therefore, for example, a singular expression includes a plural expression, unless the context clearly requires it to be singular. In addition, terms such as “comprise” or “comprise” used in the present application are used to clearly indicate the presence of features, steps, functions, components, or combinations thereof described in the specification, and are not used to indicate other features. It should be noted that it is not used to preliminarily rule out the existence of any elements, steps, functions, components, or combinations thereof.
한편, 다르게 정의되지 않는 한, 본 명세서에서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진 것으로 보아야 한다. 따라서, 본 명세서에서 명확하게 정의하지 않는 한, 특정 용어가 과도하게 이상적이거나 형식적인 의미로 해석되어서는 안 된다. Meanwhile, unless otherwise defined, all terms used in this specification should be viewed as having the same meaning as generally understood by those skilled in the art to which the present invention pertains. Therefore, unless clearly defined in this specification, specific terms should not be interpreted in an overly idealistic or formal sense.
또한, 본 명세서의 "약", "실질적으로" 등은 언급한 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본 발명의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.In addition, in this specification, "about", "substantially", etc. are used in the meaning of or close to that value when manufacturing and material tolerances inherent in the stated meaning are presented, and are used accurately to aid understanding of the present invention. It is used to prevent unscrupulous infringers from unfairly exploiting disclosures where absolute figures are mentioned.
본 발명은 페라이트 기지에 오스테나이트상 안정도를 높이고, 오스테나이트상이 생성되는 온도에서 냉연소둔 열처리 하여 냉각 중 마르텐사이트 상변태를 통해 최종 제품에서 페라이트 및 마르텐사이트의 2상(dual phase)으로 구성되도록 하여, 페라이트 기지에 형성되는 마르텐사이트 분율에 따라 강도를 향상시키고자 하였다. 또한, 냉간 압연 단계에서의 부하, 크랙 또는 파단을 우려하여 열연소둔은 페라이트 단상역인 Ac1 직하에서 실시하여 연질의 페라이트 단상으로 구성시키고, 냉간압연 완료 후 냉연 소둔 단계에서 오스테나이트 상이 생성되는 온도로 열처리 하여 냉각중 마르텐사이트 상변태를 유도하여 강도를 향상시키고자 하였다.The present invention increases the stability of the austenite phase in the ferrite matrix, and performs cold rolling annealing heat treatment at a temperature at which the austenite phase is generated, so that the final product consists of a dual phase of ferrite and martensite through martensite phase transformation during cooling. We attempted to improve strength depending on the martensite fraction formed in the ferrite matrix. In addition, due to concerns about load, cracks, or rupture during the cold rolling stage, hot rolling annealing was performed directly below Ac1, which is the ferrite single phase region, to form a soft ferrite single phase, and after completion of cold rolling, heat treatment was performed at a temperature at which an austenite phase is generated in the cold rolling annealing stage. The aim was to improve strength by inducing martensite phase transformation during cooling.
냉연 소둔 단계에서 오스테나이트 상이 생성되는 온도로 열처리 하여 페라이트상 위에 석출되어 있는 M23C6 타입의 탄화물들이 기지(matrix)내로 고용된다. 본 발명에 따르면 이러한 탄화물의 분포를 제어하여 내식성이 열위해 지지 않으면서도 고강도를 확보할 수 있는 스테인리스강 및 이의 제조방법을 제공할 수 있다.In the cold rolling annealing step, heat treatment is performed at a temperature at which the austenite phase is formed, and the M 23 C 6 type carbides precipitated on the ferrite phase are dissolved into the matrix. According to the present invention, it is possible to provide a stainless steel and a manufacturing method thereof that can secure high strength without deteriorating corrosion resistance by controlling the distribution of these carbides.
더불어, 페라이트 결정립의 종횡비(aspect ratio)를 제어하여 최종 제품의 성형 품질이 저하되지 않는 스테인리스강 및 이의 제조방법을 제공할 수 있다.In addition, by controlling the aspect ratio of ferrite grains, it is possible to provide stainless steel and a manufacturing method thereof that do not deteriorate the molding quality of the final product.
본 발명의 일 예에 따른 고내식 고강도 스테인리스강은, 중량 %로, C: 0.01 ~ 0.1%, N: 0.01 ~ 0.1%, Si: 0.01 ~ 1.0%, Mn: 0.01 ~ 3.0%, Cr: 10.0 ~ 20.0%, Al: 0.001 ~ 1.0%, P: 0.05% 이하, S: 0.01% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함할 수 있다. 이하에서는 상기 합금조성을 한정한 이유에 대하여 구체적으로 설명한다.The high-corrosion-resistant, high-strength stainless steel according to an example of the present invention has, in weight percent, C: 0.01 ~ 0.1%, N: 0.01 ~ 0.1%, Si: 0.01 ~ 1.0%, Mn: 0.01 ~ 3.0%, Cr: 10.0 ~ 20.0%, Al: 0.001 to 1.0%, P: 0.05% or less, S: 0.01% or less, and may include the remaining Fe and other unavoidable impurities. Below, the reason for limiting the alloy composition will be explained in detail.
C의 함량은 0.01% 내지 0.1% 일 수 있다.The content of C may be 0.01% to 0.1%.
C는 오스테나이트 안정화 원소로, 오스테나이트상 영역을 확대하는 효과가 있어, 냉각시 경한 마르텐사이트를 형성시켜 강의 강도를 향상시킨다. 이들 효과를 얻기 위하여 0.01% 이상의 함유가 필요하다. 소정의 강도를 얻기 위해 오스테나이트 영역을 충분히 확장시키기 위해서 바람직하게는 0.02% 이상이 필요하다. 그러나, C의 함량이 0.1%를 초과하면 강판이 경질화하여 연성이 현저히 저하되며, 마르텐사이트 생성량이 너무 많아지면 성형성이 얻어지지 않는다. 또한, 과도한 C 첨가에 의해 Cr 탄화물이 다량 생성될 경우 Cr 저하에 따른 내식성의 저하가 동반된다. 따라서, C의 함량은 0.01 내지 0.1%의 범위로 한다. 바람직하게는 0.02 내지 0.1%의 범위일 수 있다. C is an austenite stabilizing element and has the effect of expanding the austenite phase area, forming light martensite upon cooling, thereby improving the strength of steel. To obtain these effects, a content of 0.01% or more is required. In order to sufficiently expand the austenite region to obtain the desired strength, preferably 0.02% or more is required. However, if the C content exceeds 0.1%, the steel sheet hardens and ductility significantly decreases, and if the amount of martensite produced is too large, formability cannot be obtained. In addition, when a large amount of Cr carbide is generated due to excessive C addition, corrosion resistance is decreased due to decrease in Cr. Therefore, the C content is in the range of 0.01 to 0.1%. Preferably it may be in the range of 0.02 to 0.1%.
N의 함량은 0.01 내지 0.1% 일 수 있다.The content of N may be 0.01 to 0.1%.
N은, C, Mn과 동일하게 오스테나이트 안정화 원소로 오스테나이트 영역을 확장시키는 효과가 있다. 이 효과를 얻기 위해서는 N의 함량을 0.01% 이상으로 할 필요가 있다. 그러나, N의 함량이 0.1%를 초과하면 N의 고용강화 효과로 연성이 급격히 저하하고, Cr 질화물의 석출로인해 Cr의 저하를 유발시켜, 내식성의 저하가 발생한다. 따라서, N의 함량은 0.01 내지 0.1%의 범위로 한다. 바람직하게는 0.02 내지 0.1%의 범위일 수 있고, 더욱 바람직하게는 0.01 내지 0.07%의 범위일 수 있다.N, like C and Mn, is an austenite stabilizing element and has the effect of expanding the austenite region. To obtain this effect, the N content must be 0.01% or more. However, when the N content exceeds 0.1%, ductility rapidly decreases due to the solid solution strengthening effect of N, and precipitation of Cr nitride causes a decrease in Cr, resulting in a decrease in corrosion resistance. Therefore, the N content is in the range of 0.01 to 0.1%. Preferably it may be in the range of 0.02 to 0.1%, and more preferably in the range of 0.01 to 0.07%.
Si의 함량은 0.01 내지 1.0% 일 수 있다.The Si content may be 0.01 to 1.0%.
Si는 강 용제시에 탈산제로서 작용하는 원소이다. 이 효과를 얻기 위해서는 0.01%이상의 함유가 필요하다. 그러나, Si의 함량이 1.0%를 초과하면, 강판이 경질화하여 열간 압연시의 압연 부하가 증대되고 스티킹(sticking)등의 표면 결함도 유발시킨다. 또한, Si은 페라이트 안정화 원소로 과량의 첨가는 오스테나이트의 안정도를 저하시킨다. 따라서, Si의 함량은 0.01 내지 1.0%의 범위로 한다. 바람직하게는 0.20 내지 0.50%의 범위일 수 있다.Si is an element that acts as a deoxidizing agent when melting steel. To obtain this effect, a content of 0.01% or more is required. However, if the Si content exceeds 1.0%, the steel sheet becomes hard, the rolling load during hot rolling increases, and surface defects such as sticking are caused. In addition, Si is a ferrite stabilizing element, and excessive addition of Si reduces the stability of austenite. Therefore, the Si content is in the range of 0.01 to 1.0%. Preferably, it may be in the range of 0.20 to 0.50%.
Mn의 함량은 0.01 내지 3.0% 일 수 있다.The content of Mn may be 0.01 to 3.0%.
Mn은 C와 동일하게 오스테나이트상 안정화 원소로, 오스테나이트상 영역을 확대하는 효과가 있다. 이 효과를 얻기 위해서는 0.01% 이상의 함유가 필요하다. 그러나, Mn의 함량이 3.0%를 초과하면 MnS의 생성량이 증가하여 내식성이 저하한다. 따라서, Mn의 함량은 0.01 내지 3.0%의 범위로 한다. 바람직하게는 0.2 내지 1.0%일 수 있다.Mn, like C, is an austenite phase stabilizing element and has the effect of expanding the austenite phase area. To obtain this effect, a content of 0.01% or more is required. However, when the Mn content exceeds 3.0%, the amount of MnS produced increases and corrosion resistance deteriorates. Therefore, the Mn content is in the range of 0.01 to 3.0%. Preferably it may be 0.2 to 1.0%.
Cr의 함량은 10.0 내지 20.0% 일 수 있다.The content of Cr may be 10.0 to 20.0%.
Cr은 강판 표면에 부동태 피막을 형성하여 내식성을 향상시키는 효과를 갖는 원소이다. 이 효과는 Cr 함유량이 10.0% 이상에서 나타나고, Cr 함유량이 증가함에 따라서 내식성이 향상한다. 또한, Cr은 페라이트 안정화 원소로, 오스테나이트상이 생성되는 것을 억제하는 효과가 있다. Cr의 함량이 10.0% 미만인 경우 오스테나이트상이 지나치게 많이 생성되어, 소정의 성형성이 얻어지지 않는다. 따라서, Cr의 함량을 10.0% 이상으로 한다. 그러나, Cr의 함량이 20.0%를 초과하면, 오스테나이트상이 생성되지 않아 요구되는 마르텐사이트상의 분율을 확보 할 수 없다. 따라서 Cr 함량은 10.0 내지 20.0%의 범위로 한다. 바람직하게는 12.0 내지 18.0%의 범위일 수 있다.Cr is an element that has the effect of improving corrosion resistance by forming a passive film on the surface of the steel sheet. This effect appears when the Cr content is 10.0% or more, and corrosion resistance improves as the Cr content increases. Additionally, Cr is a ferrite stabilizing element and has the effect of suppressing the formation of an austenite phase. If the Cr content is less than 10.0%, too much austenite phase is generated, and the desired formability cannot be obtained. Therefore, the Cr content is set to 10.0% or more. However, if the Cr content exceeds 20.0%, the austenite phase is not generated and the required martensite phase fraction cannot be secured. Therefore, the Cr content is in the range of 10.0 to 20.0%. Preferably it may be in the range of 12.0 to 18.0%.
Al의 함량은 0.001 내지 1.0% 일 수 있다.The Al content may be 0.001 to 1.0%.
Al은 Si와 동일하게 탈산제로서 작용하는 원소이다. 이 효과를 얻기 위해서는 0.001% 이상의 함유가 필요하다. 그러나, Al의 함량이 1.0%를 초과하면, Al2O3 등의 Al개재물이 증가하여, 표면 성상이 저하되기 쉬워진다. 따라서, Al의 함량은 0.001 내지 1.0%의 범위로 한다. 바람직하게는 0.001 내지 0.1%의 범위일 수 있다.Al is an element that acts as a deoxidizing agent like Si. To obtain this effect, a content of 0.001% or more is required. However, when the Al content exceeds 1.0%, Al inclusions such as Al 2 O 3 increase, and surface properties tend to deteriorate. Therefore, the Al content is in the range of 0.001 to 1.0%. Preferably, it may be in the range of 0.001 to 0.1%.
Ni의 함량은 0.01% 내지 1.0% 일 수 있다.The content of Ni may be 0.01% to 1.0%.
Ni은 대표적인 오스테나이트 안정화 원소이나 고가의 원소로서, 제조원가를 상승시킨다. 또한, 내식성을 향상시키는 효과를 갖는 반면 다량 첨가하게 되면 소재의 불순물이 증가하여 연신율이 떨어지는 문제가 있다. 따라서, 본 발명에서는 선택적으로 Ni을 0.01 내지 1.0%로 더 포함할 수 있다. 바람직하게는 0.5% 이하일 수 있다.Ni is a representative austenite stabilizing element, but is an expensive element, increasing manufacturing costs. In addition, while it has the effect of improving corrosion resistance, when added in large amounts, impurities in the material increase and the elongation rate decreases. Therefore, in the present invention, Ni may optionally be further included in an amount of 0.01 to 1.0%. Preferably it may be 0.5% or less.
P의 함량은 0.05% 이하일 수 있다.The content of P may be 0.05% or less.
P는 입계 편석에 의한 입계 파괴를 조장하는 원소이기 때문에 가능한 낮은 쪽이 바람직한 불가피한 불순물에 해당한다. 따라서, P의 함량은 0.05이하로 한다. 더욱 바람직하게는 0.03% 이하일 수 있다.Since P is an element that promotes grain boundary destruction due to grain boundary segregation, it is an unavoidable impurity that is preferably as low as possible. Therefore, the P content is set to 0.05 or less. More preferably, it may be 0.03% or less.
S의 함량은 0.01% 이하일 수 있다.The S content may be 0.01% or less.
S는 MnS 등의 황화물계 개재물로 되어 존재하여 연성이나 내식성 등을 저하시키는 원소로서, 특히 함유량이 0.01%를 초과한 경우에 그들 악영향이 현저하게 발생한다. 그 때문에 S의 함량은 최대한 낮은 쪽이 바람직한 불가피한 불순물에 해당한다. 따라서, S의 함량은 0.01%이하로 한다. 더욱 바람직하게는 0.005% 이하일 수 있다.S is an element that exists as sulfide-based inclusions such as MnS and reduces ductility and corrosion resistance, and its adverse effects are particularly noticeable when the content exceeds 0.01%. Therefore, the S content is an unavoidable impurity for which it is desirable to keep the content as low as possible. Therefore, the S content is set to 0.01% or less. More preferably, it may be 0.005% or less.
나머지 성분은 철(Fe)이다. 다만, 통상의 제조 과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이 불순물들은 통상의 제조 과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.The remaining ingredient is iron (Fe). However, in the normal manufacturing process, unintended impurities from raw materials or the surrounding environment may inevitably be mixed, so this cannot be ruled out. Since these impurities are known to anyone skilled in the normal manufacturing process, all of them are not specifically mentioned in this specification.
이하에서는 상술한 합금조성을 갖는 본 발명의 일 실시예에 따른 고내식 고강도 스테인리스강에 대하여 설명한다.Hereinafter, a high-corrosion-resistant, high-strength stainless steel according to an embodiment of the present invention having the above-described alloy composition will be described.
본 발명의 일 예에 따른 고내식 고강도 스테인리스강은 직경이 0.5㎛ 이상인 탄화물의 분포가 단위면적당 7개/100㎛2 이하일 수 있다. 탄화물의 분포가 단위면적당 7개/100㎛2를 초과하는 경우 내식성과 고강도를 동시에 확보할 수 없다. In the high-corrosion-resistant, high-strength stainless steel according to an example of the present invention, the distribution of carbides with a diameter of 0.5 ㎛ or more may be 7/100 ㎛ 2 or less per unit area. If the distribution of carbides exceeds 7/ 100㎛2 per unit area, corrosion resistance and high strength cannot be secured at the same time.
본 발명의 일 예에 따른 고내식 고강도 스테인리스강은, 미세조직이 마르텐사이트상과 페라이트상 2상이며, 여기서 마르텐사이트상이 면적률로 20%이상일 수 있다. 마르텐사이트상이 면적률로 20%미만인 경우 고강도를 확보할 수 없다. The high-corrosion-resistant, high-strength stainless steel according to an example of the present invention has a microstructure of two phases, a martensite phase and a ferrite phase, where the martensite phase may have an area ratio of 20% or more. If the martensite phase is less than 20% in terms of area, high strength cannot be secured.
본 발명의 일 예에 따른 고내식 고강도 스테인리스강은 탄화물들이 기지내로 고용되어 직경이 0.5㎛ 이상인 탄화물의 분포가 단위면적당 7개/100㎛2 이하가 되는 경우, 탄화물 석출로 인한 내식성의 저하를 방지할 수 있고, 동시에 마르텐사이트상의 면적률을 20%이상 확보하여 고강도를 확보할 수 있어 고내식 고강도를 동시에 만족하는 스테인리스강일 수 있다.High-corrosion-resistant, high-strength stainless steel according to an example of the present invention prevents a decrease in corrosion resistance due to carbide precipitation when carbides are dissolved in the matrix and the distribution of carbides with a diameter of 0.5 ㎛ or more is less than 7 per unit area / 100 ㎛ 2 . It can be done, and at the same time, high strength can be secured by securing the martensite phase area ratio of 20% or more, so it can be a stainless steel that satisfies high corrosion resistance and high strength at the same time.
본 발명의 일 예에 따른 고내식 고강도 스테인리스강은, 식(1)의 값이 10 이상일 수 있다. In the high-corrosion-resistant, high-strength stainless steel according to an example of the present invention, the value of equation (1) may be 10 or more.
식(1): 420C+470N+23Ni+10Mn+180-(11.5Cr+11.5Si+52Al)Equation (1): 420C+470N+23Ni+10Mn+180-(11.5Cr+11.5Si+52Al)
식(1)에서 C, N, Ni, Mn, Cr, Si 및 Al은 각 원소의 중량%를 의미한다.In formula (1), C, N, Ni, Mn, Cr, Si, and Al represent the weight percent of each element.
식(1)의 값이 10미만인 경우, 오스테나이트 상안정도가 낮아 오스테나이트상의 상변태가 활발히 일어나지 않아 마르텐사이트로 상변태 되지 않을 수 있다. 따라서, 이를 10이상으로 제어하고 바람직하게는 30이상으로 제어한다. 이를 통해 고온에서 오스테나이트상을 형성시킨 뒤 냉각 중 마르텐사이트 상변태가 원활하게 될 수 있어, 마르텐사이트상을 면적률로 20%이상 확보할 수 있다.If the value of equation (1) is less than 10, the austenite phase stability is low and the austenite phase does not actively occur, so the phase transformation to martensite may not occur. Therefore, it is controlled to be 10 or more, and preferably to be 30 or more. Through this, after forming the austenite phase at high temperature, the martensite phase transformation can be smoothed during cooling, and the martensite phase can be secured at an area ratio of 20% or more.
본 발명의 일 예에 따른 고내식 고강도 스테인리스강은, 공식전위가 70mV 이상이면서, 항복강도가 350MPa이상으로 내식성과 강도를 동시에 만족할 수 있다.The high-corrosion-resistant, high-strength stainless steel according to an example of the present invention has a pitting potential of 70 mV or more and a yield strength of 350 MPa or more, thereby satisfying both corrosion resistance and strength.
또한, 본 발명의 일 예에 따른 고내식 고강도 스테인리스강은, 인장강도가 500MPa이상일 수 있으며, 강의 경도가 200Hv이상일 수 있다. 또한, 마르텐사이트상의 경도가 400Hv이상일 수 있다. In addition, the high-corrosion-resistant, high-strength stainless steel according to an example of the present invention may have a tensile strength of 500 MPa or more and a steel hardness of 200 Hv or more. Additionally, the hardness of the martensite phase may be 400 Hv or more.
더불어, 본 발명의 일 예에 따른 고내식 고강도 스테인리스강은, 페라이트 결정립의 종횡비(aspect ratio)가 2.0이하일 수 있다. 페라이트 결정립의 종횡비는 페라이트 결정립의 압연방향 길이를 페라이트 결정립의 두께방향 길이로 나눈 비를 의미한다. 본 발명에서는 이를 식(2)로 표현한다.In addition, the high-corrosion-resistant, high-strength stainless steel according to an example of the present invention may have an aspect ratio of ferrite grains of 2.0 or less. The aspect ratio of ferrite grains refers to the ratio of the length of the ferrite grains in the rolling direction divided by the length of the ferrite grains in the thickness direction. In the present invention, this is expressed as equation (2).
식(2): Ar = Dr / Dt Equation (2): Ar = Dr / Dt
여기서, Ar은 페라이트 결정립의 종횡비, Dr은 페라이트 결정립의 압연방향 길이, Dt는 페라이트 결정립의 두께방향 길이를 의미한다.Here, Ar is the aspect ratio of the ferrite grain, Dr is the rolling direction length of the ferrite grain, and Dt is the thickness direction length of the ferrite grain.
페라이트 결정립은 약 30 ~ 50㎛ 수준을 나타내는데, 압연방향으로 길게 연신된 미재결정된 페라이트 결정립이 분포될 경우 리징등과 같이 성형품질이 열위하게 나타날 가능성이 높다. 따라서, 상변태가 일어나지 않는 페라이트상은 가능한 등축의 재결정립으로 분포되어 최종 제품의 성형 품질이 저하되지 않도록 하는 것이 바람직하다. 이에, 본 발명은 페라이트 결정립의 종횡비를 2.0이하로 제어하여 성형품질 또한 우수하게 할 수 있다.Ferrite grains are about 30 to 50㎛ in size, and if unrecrystallized ferrite grains elongated in the rolling direction are distributed, there is a high possibility that the molding quality will be inferior, such as in ridging. Therefore, it is desirable that the ferrite phase in which phase transformation does not occur is distributed as equiaxed recrystallized grains as much as possible to prevent the molding quality of the final product from deteriorating. Accordingly, the present invention can improve molding quality by controlling the aspect ratio of ferrite grains to 2.0 or less.
이하에서는 상술한 합금조성을 갖는 본 발명의 일 실시예에 따른 고내식 고강도 스테인리스강의 제조방법에 대하여 설명한다.Hereinafter, a method for manufacturing a high-corrosion-resistant, high-strength stainless steel according to an embodiment of the present invention having the above-described alloy composition will be described.
본 발명의 고내식 고강도 스테인리스강은 상술한 합금조성을 가지는 슬라브를 재가열 - 열간압연 - 마무리압연 - 열연소둔 - 냉간압연 - 냉연소둔 하는 과정을 거쳐 제조할 수 있다.The high-corrosion-resistant, high-strength stainless steel of the present invention can be manufactured through the following processes: reheating, hot rolling, finish rolling, hot rolling annealing, cold rolling, and cold rolling annealing of a slab having the above-described alloy composition.
본 발명의 고내식 고강도 스테인리스강의 제조방법은, 중량 %로, C: 0.01 ~ 0.1%, N: 0.01 ~ 0.1%, Si: 0.01 ~ 1.0%, Mn: 0.01 ~ 3.0%, Cr: 10.0 ~ 20.0%, Al: 0.001 ~ 1.0%, P: 0.05% 이하, S: 0.01% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하는 슬라브를 재가열 하는 단계; 열간압연 하고, 열연소둔 하는 단계; 냉간압연 하고, 냉연소둔하는 단계를 포함할 수 있다. The method for manufacturing high corrosion resistance and high strength stainless steel of the present invention is, in weight percent, C: 0.01 to 0.1%, N: 0.01 to 0.1%, Si: 0.01 to 1.0%, Mn: 0.01 to 3.0%, Cr: 10.0 to 20.0%. , Al: 0.001 ~ 1.0%, P: 0.05% or less, S: 0.01% or less, reheating the slab containing the remaining Fe and other unavoidable impurities; Hot rolling and hot rolling annealing; It may include cold rolling and cold rolling annealing.
상술한 합금조성을 갖는 슬라브는 식(1)의 값이 10 이상일 수 있다. A slab having the above-described alloy composition may have a value of equation (1) of 10 or more.
식(1): 420C+470N+23Ni+10Mn+180-(11.5Cr+11.5Si+52Al)Equation (1): 420C+470N+23Ni+10Mn+180-(11.5Cr+11.5Si+52Al)
식(1)에서 C, N, Ni, Mn, Cr, Si 및 Al은 각 원소의 중량%를 의미한다.In formula (1), C, N, Ni, Mn, Cr, Si, and Al represent the weight percent of each element.
식(1)의 값이 10미만인 경우, 오스테나이트 상안정도가 낮아 오스테나이트상의 상변태가 활발히 일어나지 않아 마르텐사이트로 상변태 되지 않을 수 있다. 따라서, 이를 10이상으로 제어하고 바람직하게는 30이상으로 제어하여 고온에서 오스테나이트상을 형성시킨 뒤 냉각 중 마르텐사이트 상변태가 원활하게 될 수 있도록 할 수 있다.If the value of equation (1) is less than 10, the austenite phase stability is low and the austenite phase does not actively occur, so the phase transformation to martensite may not occur. Therefore, it can be controlled to 10 or more, and preferably to 30 or more to form an austenite phase at high temperature and then to smoothly transform the martensite phase during cooling.
상술한 합금조성을 갖는 슬라브를 1050 내지 1250℃로 재가열 하고, 열간압연 할 수 있다. 마무리 압연 온도는 700 내지 950℃로 할 수 있다. A slab having the above-described alloy composition can be reheated to 1050 to 1250°C and hot rolled. The finish rolling temperature can be 700 to 950°C.
또한, 열연소둔은 페라이트 단상역인 Ac1 온도 직하에 해당하는 750℃ 내지 900℃에서 실시할 수 있고, 보다 바람직하게는 800℃ 내지 850℃에서 열연 소둔 열처리를 실시하여 연질의 페라이트 단상으로 구성시킬 수 있다. In addition, hot rolling annealing can be performed at 750°C to 900°C, which is directly below the Ac1 temperature, which is the ferrite single phase region, and more preferably, hot rolling annealing heat treatment is performed at 800°C to 850°C to form a soft ferrite single phase. .
연질의 페라이트 단상으로 구성된 열연판을 상온에서 냉간압연할 수 있다. 냉간 압연을 완료한 후 냉연 소둔 할 수 있다. 냉연소둔은 950 내지 1100℃에서 할 수 있다. 오스테나이트 상이 생성되는 900℃ 이상의 온도인, 950℃이상에서 열처리 하여 냉각중 마르텐사이트 상변태를 유도하여 강도를 향상시킬 수 있다. 그러나, 1100℃를 초과하는 온도에서 소둔할 경우 페라이트 결정립의 조대화에 의해 성형성이 저하되거나 심한 절곡 가공부 등에는 결정립 조대화에 의한 오렌지필 현상등이 절곡부 표면에 발현될 수 있어 1100℃ 이하의 온도에서 열처리하는 것이 바람직하다.A hot-rolled sheet composed of a single phase of soft ferrite can be cold-rolled at room temperature. After completing cold rolling, cold rolling can be annealed. Cold rolling annealing can be performed at 950 to 1100°C. Strength can be improved by heat treating above 950°C, which is the temperature above 900°C where the austenite phase is formed, to induce martensite phase transformation during cooling. However, when annealed at a temperature exceeding 1100℃, formability may be reduced due to coarsening of ferrite grains, or orange peel phenomenon due to coarsening of grains may appear on the surface of the bent part in severely bent parts. It is preferable to heat treat at the following temperature.
또한, 본 발명의 고내식 고강도 스테인리스강의 제조방법은, 냉연소둔 온도를 오스테나이트 상이 생성되는 온도에서 열처리 하여 페라이트상 위에 석출되어 있는 M23C6 타입의 탄화물들이 기지(matrix)내로 고용되게 할 수 있다. In addition, the method for producing high-corrosion-resistant, high-strength stainless steel of the present invention can cause the M 23 C 6 type carbides precipitated on the ferrite phase to be dissolved in the matrix by heat treating the cold rolling annealing temperature at a temperature at which the austenite phase is generated. there is.
본 발명의 고내식 고강도 스테인리스강의 제조방법은, 오스테나이트상이 생성되는 온도에서 냉연소둔 열처리 하여 탄화물들이 기지내로 고용되고, 직경이 0.5㎛ 이상인 탄화물의 분포가 단위면적당 7개/100㎛2 이하로 할 수 있다.The method for producing high-corrosion-resistant, high-strength stainless steel of the present invention involves cold rolling annealing heat treatment at a temperature at which an austenite phase is formed, so that carbides are dissolved in the matrix, and the distribution of carbides with a diameter of 0.5 ㎛ or more is 7 per unit area / 100 ㎛ 2 or less. You can.
본 발명의 고내식 고강도 스테인리스강의 제조방법은, 냉연소둔 후 마르텐사이트상의 경도가 400Hv이상 일 수 있다. 탄화물에서 분해된 탄소가 오스테나이트상 안정도를 높여 오스테나이트상을 형성시키고 냉각 시 BCT 구조로 경도가 높은 마르텐사이트 상을 형성할 수 있는 것이다.In the method for manufacturing high corrosion resistance and high strength stainless steel of the present invention, the hardness of the martensite phase after cold rolling annealing may be 400 Hv or more. Carbon decomposed from carbides increases the stability of the austenite phase, forming an austenite phase, and when cooled, a martensite phase with high hardness can be formed with a BCT structure.
본 발명의 고내식 고강도 스테인리스강의 제조방법은, 냉연소둔 후 마르텐사이트상이 면적률로 20%이상일 수 있다. 오스테나이트 상이 생성되는 온도에서 냉연소둔 열처리할 경우, 온도가 상승할수록 마르텐사이트상의 면적률이 상승하고 이에 따라 항복강도 및 인장강도가 상승할 수 있다.In the method for manufacturing high corrosion resistance and high strength stainless steel of the present invention, the martensite phase may be 20% or more in area ratio after cold rolling annealing. When cold rolling annealing heat treatment is performed at a temperature at which the austenite phase is generated, the area ratio of the martensite phase increases as the temperature increases, and the yield strength and tensile strength may increase accordingly.
탄화물들이 기지내로 고용되어 직경이 0.5㎛ 이상인 탄화물의 분포가 단위면적당 7개/100㎛2 이하가 되는 경우, 탄화물 석출로 인한 내식성의 저하를 방지할 수 있고, 동시에 경도가 높은 마르텐사이트상이 생성되고, 마르텐사이트상의 면적률이 상승하여 강도를 확보할 수 있다.When carbides are dissolved in the matrix and the distribution of carbides with a diameter of 0.5㎛ or more is less than 7 per unit area/ 100㎛2 , a decrease in corrosion resistance due to carbide precipitation can be prevented, and at the same time, a martensite phase with high hardness is generated. , strength can be secured by increasing the area ratio of the martensite phase.
본 발명의 일 예에 따른 고내식 고강도 스테인리스강의 제조방법에 따라 제조된 스테인리스강은 공식전위가 70mV 이상이면서, 항복강도가 350MPa이상으로 내식성과 강도를 동시에 만족할 수 있다.Stainless steel manufactured according to the method for manufacturing high corrosion resistance and high strength stainless steel according to an example of the present invention has a pitting potential of 70 mV or more and a yield strength of 350 MPa or more, which can satisfy both corrosion resistance and strength.
또한, 본 발명의 일 예에 따른 고내식 고강도 스테인리스강의 제조방법에 따라 제조된 스테인리스강은, 인장강도가 500MPa이상일 수 있으며, 강의 경도가 200Hv이상일 수 있다. In addition, the stainless steel manufactured according to the method for manufacturing high corrosion resistance and high strength stainless steel according to an example of the present invention may have a tensile strength of 500 MPa or more and a hardness of the steel may be 200 Hv or more.
더불어, 본 발명의 일 예에 따른 고내식 고강도 스테인리스강의 제조방법에 따라 제조된 스테인리스강은 식(2)로 표현되는 페라이트 결정립의 종횡비가 2.0이하를 만족하여 최종 재품의 성형 품질 또한 우수하게 할 수 있다. 식(2)는 Ar = Dr / Dt 이고, 여기서 Ar은 페라이트 결정립의 종횡비, Dr은 페라이트 결정립의 압연방향 길이, Dt는 페라이트 결정립의 두께방향 길이를 의미한다. In addition, the stainless steel manufactured according to the method for manufacturing high-corrosion-resistant, high-strength stainless steel according to an example of the present invention satisfies the aspect ratio of ferrite grains expressed in equation (2) of 2.0 or less, so that the molding quality of the final product can also be excellent. there is. Equation (2) is Ar = Dr / Dt, where Ar is the aspect ratio of the ferrite grain, Dr is the length of the ferrite grain in the rolling direction, and Dt is the length of the ferrite grain in the thickness direction.
이하, 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이러한 실시예의 기재는 본 발명의 실시를 예시하기 위한 것일 뿐 이러한 실시예의 기재에 의하여 본 발명이 제한되는 것은 아니다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의하여 결정되는 것이기 때문이다.Hereinafter, the present invention will be described in more detail through examples. However, the description of these examples is only for illustrating the implementation of the present invention, and the present invention is not limited by the description of these examples. This is because the scope of rights of the present invention is determined by matters stated in the patent claims and matters reasonably inferred therefrom.
{실시예}{Example}
중량%로, C: 0.035%, N: 0.038%, Si: 0.32%, Mn: 0.5%, Cr: 16.3%, Al: 0.003%, Ni: 0.09%, P: 0.02% 이하, S: 0.004% 이하를 포함하고, 나머지는 Fe 및 기타 불가피한 불순물을 포함하는 슬라브를 본원발명의 온도 범위에서 재가열 - 열간압연 - 마무리압연 - 열연소둔 - 냉간압연 - 냉연소둔 하는 과정을 거쳐 냉연소둔재를 제조하였다. 특히, 본 발명에서 냉연소둔 열처리 온도에 따른 효과를 알아보기 위하여 본 발명의 범위 내에서 제조하되, 냉연소둔 열처리 온도를 하기 표 1과 같이 달리하여 실시하였다.In weight percent, C: 0.035%, N: 0.038%, Si: 0.32%, Mn: 0.5%, Cr: 16.3%, Al: 0.003%, Ni: 0.09%, P: 0.02% or less, S: 0.004% or less A cold-rolled annealed material was manufactured through the process of reheating the slab containing Fe and other inevitable impurities in the temperature range of the present invention - hot rolling - finishing rolling - hot rolling annealing - cold rolling - cold rolling annealing. In particular, in order to determine the effect of the cold rolling annealing heat treatment temperature in the present invention, it was manufactured within the scope of the present invention, but the cold rolling annealing heat treatment temperature was varied as shown in Table 1 below.
아래 표 1은 냉연소둔 열처리 온도에 따른 실시예의 마르텐사이트상의 분율을 나타낸다. Table 1 below shows the fraction of martensite phase in examples according to cold rolling annealing heat treatment temperature.
냉연소둔 온도(℃)Cold rolled annealing temperature (℃) 마르텐사이트상 분율(%)Martensite phase fraction (%)
비교예 1Comparative Example 1 820820 00
비교예 2Comparative Example 2 890890 00
비교예 3Comparative Example 3 910910 00
비교예 4Comparative Example 4 930930 00
발명예 1Invention Example 1 950950 26.526.5
발명예 2Invention Example 2 10001000 37.337.3
발명예 3Invention Example 3 10301030 40.140.1
발명예 4Invention Example 4 10501050 42.542.5
도 1 및 도 2는 냉연소둔 열처리 온도에 따른 실시예의 미세조직을 나타내는 사진이다. 미세조직의 변화는 SEM전자현미경으로 관찰하였다.비교예 1 내지 비교예 4는 페라이트상으로 이루어진 것을 확인할 수 있다. 발명예 1 내지 발명예 4는 도면 2에서 흰색의 상부분은 페라이트상이고, 검은색의 상부분은 마르텐사이트상에 해당한다. 냉연소둔 열처리 온도가 상승할수록 페라이트 기지에 마르텐사이트상의 분율이 증가하는 것을 표 1, 도 1 및 도 2를 통해 확인할 수 있다.Figures 1 and 2 are photographs showing the microstructure of examples according to cold rolling annealing heat treatment temperature. Changes in microstructure were observed using an SEM electron microscope. It can be confirmed that Comparative Examples 1 to 4 were composed of a ferrite phase. In Invention Examples 1 to 4, in Figure 2, the white upper part corresponds to the ferrite phase, and the black upper part corresponds to the martensite phase. It can be seen from Table 1, Figures 1 and 2 that the fraction of martensite phase in the ferrite matrix increases as the cold rolling annealing heat treatment temperature increases.
냉연소둔 열처리 온도가 본원발명의 범위에 미치지 못하는 비교예 1 내지 비교예 4는 페라이트상으로만 이루어져 있고, 온도가 상승할 수록 마르텐사이트상이 존재할 수는 있으나, 이는 측정할 수 없을 만큼 미량이 존재할 뿐이다. 이와 달리, 본원발명의 범위에 해당하는 발명예 1 내지 발명예 4는 냉연소둔 열처리 온도가 950℃이상에 해당하여 페라이트 기지에 마르텐사이트상의 분율을 20% 이상 확보할 수 있는 것을 확인할 수 있다.Comparative Examples 1 to 4, in which the cold rolling annealing heat treatment temperature does not fall within the range of the present invention, consist only of a ferrite phase, and as the temperature rises, a martensite phase may exist, but only in such a trace amount that it cannot be measured. . On the other hand, it can be confirmed that Inventive Examples 1 to 4, which fall within the scope of the present invention, have a cold rolling annealing heat treatment temperature of 950°C or higher, making it possible to secure a fraction of martensite phase of 20% or more in the ferrite matrix.
아래 표 2는 냉연소둔 열처리 온도에 따른 단위 면적당 M23C6 타입의 탄화물의 개수를 나타낸다.Table 2 below shows the number of M 23 C 6 type carbides per unit area according to the cold rolling annealing heat treatment temperature.
냉연소둔 온도(℃)Cold rolled annealing temperature (℃) 탄화물 개수 (개/100㎛2)Number of carbides (piece/ 100㎛2 )
비교예 1Comparative Example 1 820820 10.610.6
비교예 3Comparative Example 3 910910 8.28.2
발명예 1Invention Example 1 950950 6.56.5
발명예 2Invention Example 2 10001000 0.80.8
발명예 4Invention Example 4 10501050 0.30.3
도 3 및 도 4는 냉연소둔 열처리 온도에 따른 실시예의 미세조직과 함께 M23C6 타입의 탄화물 개수 (개/100㎛2)를 나타내는 사진이다. 미세조직 및 탄화물의 변화를 SEM전자현미경으로 관찰하였다. 도 3 및 도 4에서 마르텐사이트상은 M으로, 페라이트상은 F로 표현하였다. 비교예 1 및 비교예 3과 같이 열연소둔 온도가 950℃ 미만인 경우 탄화물이 다량 존재하는 것을 확인할 수 있다. Figures 3 and 4 are photographs showing the microstructure of the example according to the cold rolling annealing heat treatment temperature and the number of carbides of the M 23 C 6 type (piece/100㎛ 2 ). Changes in microstructure and carbide were observed using an SEM electron microscope. In Figures 3 and 4, the martensite phase is expressed as M, and the ferrite phase is expressed as F. As in Comparative Example 1 and Comparative Example 3, it can be confirmed that a large amount of carbides are present when the hot rolling annealing temperature is less than 950°C.
도 4를 통해, 950℃ 이상의 온도에서 마르텐사이트상이 생성되고 있음을 확인할 수 있음은 물론, 탄화물이 고용되어 점차 그 분포가 감소함을 확인할 수 있다. 냉연소둔 열처리 온도가 상승할수록 페라이트 기지에 마르텐사이트상의 분율이 증가하고, 단위면적당 탄화물의 개수가 감소하는 것을 표 2, 도 3 및 도 4를 통해 확인할 수 있다.Through Figure 4, it can be confirmed that the martensite phase is generated at a temperature of 950°C or higher, and it can be confirmed that the carbide is dissolved in solid solution and its distribution gradually decreases. It can be seen from Table 2, Figures 3 and 4 that as the cold rolling annealing heat treatment temperature increases, the fraction of martensite phase in the ferrite matrix increases and the number of carbides per unit area decreases.
냉연소둔 열처리 온도가 본원발명의 범위에 미치지 못하는 비교예들은 단위면적당 탄화물의 개수가 7개를 초과하고 있음을 확인할 수 있다. 이와 달리, 본원발명의 범위에 해당하는 발명예들은 냉연소둔 열처리 온도가 950℃이상에 해당하여 단위면적당 탄화물의 개수가 7개 이하로 감소하고 있는 것을 확인할 수 있다.In comparative examples where the cold rolling annealing heat treatment temperature does not fall within the range of the present invention, it can be confirmed that the number of carbides per unit area exceeds 7. On the other hand, it can be confirmed that in the invention examples falling within the scope of the present invention, the cold rolling annealing heat treatment temperature is 950°C or higher, and the number of carbides per unit area is reduced to 7 or less.
아래 표 3은 실시예의 공식전위, 항복강도, 인장강도, 연신율 및 경도를 나타낸다.Table 3 below shows the formal dislocation, yield strength, tensile strength, elongation, and hardness of the examples.
공식전위(mV/100㎂)Official potential (mV/100㎂) 항복강도
(MPa)
yield strength
(MPa)
인장강도
(MPa)
tensile strength
(MPa)
강의 경도
(Hv)
hardness of steel
(Hv)
비교예 1Comparative Example 1 106.8106.8 305.3305.3 479.0479.0 143.7143.7
비교예 2Comparative Example 2 61.761.7 327.9327.9 478.5478.5 145.5145.5
비교예 3Comparative Example 3 50.350.3 333.4333.4 477.2477.2 148.4148.4
비교예 4Comparative Example 4 58.258.2 338.5338.5 484.0484.0 148.1148.1
발명예 1Invention Example 1 78.178.1 367.5367.5 609.7609.7 204.7204.7
발명예 2Invention Example 2 123.0123.0 391.7391.7 700.4700.4 210.7210.7
발명예 3Invention Example 3 141.4141.4 410.7410.7 723.6723.6 219.8219.8
발명예 4Invention Example 4 93.393.3 451.8451.8 736.0736.0 255.1255.1
표 3을 통해, 본원발명의 냉연소둔 열처리 온도를 만족하여 마르텐사이트상의 면적분율이 20% 이상이고, 단위면적당 탄화물의 개수가 7개 이하인 경우, 공식전위가 70mV 이상을 만족하면서도, 항복강도가 350MPa 이상을 만족하여 내식성의 저하를 방지하면서도 고강도를 만족하는 스테인리스강을 확보할 수 있음을 알 수 있다.공식전위는 30℃온도의 3.5% NaCl 용액에서 0.333mV/sec로 하여 측정하였다. Through Table 3, when the cold rolling annealing heat treatment temperature of the present invention is satisfied and the area fraction of the martensite phase is 20% or more and the number of carbides per unit area is 7 or less, the pitting potential satisfies 70 mV or more and the yield strength is 350 MPa. By satisfying the above requirements, it can be seen that it is possible to secure stainless steel that satisfies high strength while preventing a decrease in corrosion resistance. The pitting potential was measured at 0.333 mV/sec in a 3.5% NaCl solution at a temperature of 30°C.
냉연소둔 온도가 상승하여 극 미량의 마르텐사이트가 생성되기 시작하는 비교예 2 내지 4는 비교예 1보다 항복강도 및 인장강도가 상승하는 것을 볼 수 있고, 본원발명의 범위 내의 냉연소둔 온도 이상에 해당하는 발명예 1 내지 4는 마르텐사이트 분율이 20% 이상으로 증가하면서 이에 따라 항복강도가 350MPa 이상 및 인장강도 500MPa이상으로 우수한 강도를 확보할 수 있음을 확인할 수 있다. In Comparative Examples 2 to 4, in which a very small amount of martensite begins to be generated as the cold rolling annealing temperature increases, the yield strength and tensile strength can be seen to increase compared to Comparative Example 1, and correspond to the cold rolling annealing temperature or higher within the range of the present invention. It can be seen that in Invention Examples 1 to 4, as the martensite fraction increases to 20% or more, excellent strength can be secured with a yield strength of 350 MPa or more and a tensile strength of 500 MPa or more.
또한, 냉연소둔 온도가 950℃이상에 해당하는 발명예 1 내지 4의 경우 탄화물이 고용되는 온도에 해당하므로, 페라이트 기지에 단위면적당 탄화물의 개수가 7개 이하에 해당하여, 탄화물 석출에 따른 Cr의 소모에 의한 공식 전위값의 저하를 방지할 수 있음을 확인할 수 있다. 이에 따라 공식전위가 공식전위가 70mV 이상으로 우수한 내식성을 확보할 수 있음을 확인할 수 있다.In addition, in the case of Invention Examples 1 to 4 where the cold rolling annealing temperature is 950°C or higher, it corresponds to the temperature at which carbides are dissolved in solid solution, so the number of carbides per unit area in the ferrite matrix is 7 or less, and Cr due to precipitation of carbides It can be confirmed that the decline in the formal potential value due to consumption can be prevented. Accordingly, it can be confirmed that excellent corrosion resistance can be secured with a pitting potential of 70 mV or more.
비교예 2 내지 4의 경우 공식전위값이 70mV미만에 해당하는데, 이는 냉연소둔 온도가 탄화물이 고용되지 않고 석출되는 온도에 해당하여 탄화물 석출에 따른 Cr을 소모하여 공식전위가 저하된 것에 해당한다. In Comparative Examples 2 to 4, the pitting potential value is less than 70 mV, which means that the cold rolling annealing temperature corresponds to a temperature at which carbides are precipitated without being dissolved in solid solution, so the pitting potential is lowered by consuming Cr due to carbide precipitation.
다만, 비교예 1의 경우, 공식전위 값이 70mV 이상에 해당하나, 항복강도가 낮아 내식성은 확보하더라도 강도를 확보하지 못함을 확인할 수 있다. However, in the case of Comparative Example 1, the pitting potential value corresponds to 70 mV or more, but it can be confirmed that the yield strength is low and the strength is not secured even though corrosion resistance is secured.
또한, 강의 경도를 마이크로 비커스 경도기로 1kg의 하중으로 10회 측정한 평균값으로 나타내었다. 마르텐사이트 상이 존재하지 않는 비교예 1 내지 4의 경우 경도값이 약 140Hv 내외로 측정되어 경도가 열위한 것을 확인할 수 있다. 이와 달리, 마르텐사이트 상이 20% 이상 존재하는 발명예 1 내지 4의 경우 200Hv 이상으로 측정되어 높은 경도를 얻는 것을 확인할 수 있다.In addition, the hardness of the steel was expressed as the average value measured 10 times with a load of 1 kg using a micro Vickers hardness tester. In the case of Comparative Examples 1 to 4 in which the martensite phase does not exist, the hardness value was measured at around 140 Hv, confirming that the hardness was inferior. On the other hand, in the case of Invention Examples 1 to 4 in which the martensite phase is present at 20% or more, it can be confirmed that high hardness is obtained by measuring 200 Hv or more.
본원발명은 탄화물이 고용되는 온도에 해당하면서도, 마르텐사이트상으로의 변태를 냉간압연 완료 후 냉연소둔 과정에서 수행하고 오스테나이트상이 생성되는 온도에 해당하는 온도범위에서 냉연소둔 열처리 하여 냉각 중 마르텐사이트상으로의 변태를 유도함으로써, 단위면적당 탄화물의 개수를 7개 이하로 제어하고, 마르텐사이트상의 분율을 20%이상 확보하여, 내식성 및 강도를 동시에 만족하는 스테인리스강을 제공할 수 있다.In the present invention, the transformation to the martensite phase is performed during the cold rolling annealing process after completing cold rolling, while the temperature at which carbide is dissolved in solid solution, and the cold rolling annealing heat treatment is performed in a temperature range corresponding to the temperature at which the austenite phase is generated, thereby forming the martensite phase during cooling. By inducing the transformation, the number of carbides per unit area is controlled to 7 or less and the martensite phase fraction is secured to 20% or more, thereby providing stainless steel that simultaneously satisfies corrosion resistance and strength.
하기 표 4는 마르텐사이트상과 페라이트상 자체의 경도값을 나타낸다.Table 4 below shows the hardness values of the martensite phase and the ferrite phase itself.
마르텐사이트상의 경도(Hv)Hardness of martensite phase (Hv) 페라이트상의 경도(Hv)Hardness of ferrite phase (Hv)
비교예 1Comparative Example 1 xx 154.0154.0
비교예 3Comparative Example 3 xx 155.0155.0
발명예 1Invention Example 1 428.7428.7 157.6157.6
발명예 2Invention Example 2 535.7535.7 164.4164.4
발명예 4Invention Example 4 546.7546.7 159.9159.9
마르텐사이트상과 페라이트상 자체의 경도를 미소 경도 측정기(load: 5g)로 측정한 값에 해당한다. 이를 통해 페라이트상 자체의 경도는 발명예는 비교예와 같이 약 150 ~ 160Hv에 해당하고, 마르텐사이트상 자체의 경도는 400Hv이상으로 높은 경도값을 갖는 것을 확인할 수 있다. 즉, 발명예들의 강 자체의 경도는 오스테나이트 영역에서 냉연소둔 열처리 함으로써 페라이트상 위에 석출되어 있는 M23C6 타입의 탄화물들이 기지내로 고용되고, 이때 탄화물에서 분해된 탄소가 오스테나이트상 안정도를 높여 오스테나이트상을 형성시키고, 냉각 시 BCT 구조의 경도가 높은 마르텐사이트 상이 형성되어, 높은 경도를 얻을 수 있는 것이다.The hardness of the martensite phase and the ferrite phase itself corresponds to the value measured with a micro hardness meter (load: 5g). Through this, it can be confirmed that the hardness of the ferrite phase itself corresponds to about 150 to 160 Hv in the invention example like the comparative example, and that the hardness of the martensite phase itself has a high hardness value of more than 400 Hv. That is, the hardness of the steel itself of the invention examples is determined by cold rolling annealing heat treatment in the austenite region, so that the M 23 C 6 type carbides precipitated on the ferrite phase are dissolved in the matrix, and at this time, the carbon decomposed from the carbides increases the stability of the austenite phase. An austenite phase is formed, and upon cooling, a martensite phase with a high hardness of the BCT structure is formed, thereby achieving high hardness.
하기 표 5는 페라이트 결정립의 종횡비를 나타낸다.Table 5 below shows the aspect ratio of ferrite grains.
영역area 각 영역의 페라이트 결정립의 종횡비(aspect ratio) 평균Average aspect ratio of ferrite grains in each region 전체 영역의 페라이트 결정립의 종횡비(aspect ratio) 평균Average aspect ratio of ferrite grains over the entire area
비교예 1Comparative Example 1 1 (1t/5)1 (1t/5) 1.5621.562 2.0662.066
2 (2t/5)2 (2t/5) 1.8921.892
3 (3t/5)3 (3t/5) 2.1362.136
4 (4t/5)4 (4t/5) 2.1082.108
5 (5t/5)5 (5t/5) 1.6321.632
발명예 2Invention Example 2 1 (1t/5)1 (1t/5) 1.4851.485 1.4901.490
2 (2t/5)2 (2t/5) 1.4801.480
3 (3t/5)3 (3t/5) 1.4931.493
4 (4t/5)4 (4t/5) 1.5081.508
5 (5t/5)5 (5t/5) 1.4831.483
발명예 3Invention Example 3 1 (1t/5)1 (1t/5) 1.5231.523 1.5561.556
2 (2t/5)2 (2t/5) 1.5761.576
3 (3t/5)3 (3t/5) 1.5621.562
4 (4t/5)4 (4t/5) 1.5821.582
5 (5t/5)5 (5t/5) 1.5371.537
발명예 4Invention Example 4 1 (1t/5)1 (1t/5) 1.5641.564 1.5591.559
2 (2t/5)2 (2t/5) 1.5431.543
3 (3t/5)3 (3t/5) 1.5361.536
4 (4t/5)4 (4t/5) 1.5321.532
5 (5t/5)5 (5t/5) 1.6191.619
본 발명의 일예에 따른 페라이트 결정립의 종횡비(aspect ratio)가 2.0이하일 수 있다. 페라이트 결정립의 종횡비는 페라이트 결정립의 압연방향 길이를 페라이트 결정립의 두께방향 길이로 나눈 비를 의미한다. 본 발명에서는 이를 식(2)로 표현하고, Ar = Dr / Dt 로 나타낸다. 여기서, Ar은 페라이트 결정립의 종횡비, Dr은 페라이트 결정립의 압연방향 길이, Dt는 페라이트 결정립의 두께방향 길이를 의미한다.본 발명은 페라이트 결정립의 종횡비를 알아보기 위하여 강판의 압연방향 단면 두께 방향으로 상면 표층부터 반대쪽 하면 표층까지 총 5개의 영역으로 분할한 뒤, 5개 영역에서 각 1000개씩 페라이트 결정립의 종횡비를 측정하여 각 영역에서 평균값을 계산하고, 이에 대한 평균값을 계산하여 전체영역의 종횡비를 계산하였다. 이를 페라이트 결정립의 종횡비로 하고, 이를 2.0이하로 제어할 수 있다. 본 발명의 일 실시예는 페라이트 결정립의 종횡비를 2.0이하로 제어함으로써 성형 품질의 저하를 방지할 수 있음을 확인할 수 있다.The aspect ratio of ferrite grains according to an example of the present invention may be 2.0 or less. The aspect ratio of ferrite grains refers to the ratio of the length of the ferrite grains in the rolling direction divided by the length of the ferrite grains in the thickness direction. In the present invention, this is expressed as equation (2) and Ar = Dr / Dt. Here, Ar is the aspect ratio of the ferrite grain, Dr is the length of the ferrite grain in the rolling direction, and Dt is the length of the ferrite grain in the thickness direction. The present invention refers to the upper surface of the cross section in the rolling direction of the steel sheet in the thickness direction to determine the aspect ratio of the ferrite grain. After dividing into a total of 5 areas from the surface layer to the surface layer on the opposite side, the aspect ratio of 1000 ferrite grains in each of the 5 areas was measured, the average value was calculated in each area, and the average value was calculated to calculate the aspect ratio of the entire area. . This is the aspect ratio of the ferrite grains, and it can be controlled to 2.0 or less. It can be confirmed that in one embodiment of the present invention, deterioration in molding quality can be prevented by controlling the aspect ratio of ferrite grains to 2.0 or less.
결과적으로, 본 발명은 오스테나이트상이 형성되는 스테인리스강에 대하여 재가열 온도, 마무리 압연온도, 열연소둔, 냉연소둔의 온도를 제어하되, 특히 오스테나이트 상이 생성되는 950℃이상에서 냉연소둔 열처리하여 냉각 중 마르텐사이트 상변태를 유도하고, 탄화물의 고용을 유도하여, 마르텐사이트상의 분율을 20%이상 확보하고, 단위면적당 탄화물의 개수를 7개 이하로 제어하여, 내식성 및 강도를 동시에 확보할 수 있는 스테인리스강 및 이의 제조방법을 제공할 수 있음을 확인할 수 있다.As a result, the present invention controls the reheating temperature, finish rolling temperature, hot rolling annealing, and cold rolling annealing temperatures for stainless steel in which the austenite phase is formed, and in particular, cold rolling annealing heat treatment above 950°C where the austenite phase is formed to prevent marten during cooling. Stainless steel and its products that can secure corrosion resistance and strength at the same time by inducing site phase transformation and solid solution of carbides, securing the martensite phase fraction of more than 20%, and controlling the number of carbides per unit area to 7 or less. It can be confirmed that the manufacturing method can be provided.
공식전위는 70mV이상으로 내식성이 열위하지 않으면서도, 항복강도, 인장강도 및 경도가 우수하여 고내식 고강도를 동시에 만족하는 스테인리스강 및 이의 제조방법을 제공할 수 있음을 확인할 수 있다.The pitting potential is more than 70mV, which confirms that it is possible to provide a stainless steel and a manufacturing method thereof that simultaneously satisfy high corrosion resistance and high strength due to excellent yield strength, tensile strength, and hardness, while not being inferior in corrosion resistance.
더불어, 페라이트 결정립의 종횡비를 2.0이하로 제어하여 성형품질의 저하를 방지하는 효과도 얻을 수 있음을 확인할 수 있다.In addition, it can be confirmed that the effect of preventing deterioration of molding quality can be obtained by controlling the aspect ratio of ferrite grains to 2.0 or less.
상술한 바에 있어서, 본 발명의 예시적인 실시예들을 설명하였지만, 본 발명은 이에 한정되지 않으며 해당 기술 분야에서 통상의 지식을 가진 자라면 다음에 기재하는 청구범위의 개념과 범위를 벗어나지 않는 범위 내에서 다양한 변경 및 변형이 가능함을 이해할 수 있을 것이다.In the foregoing, exemplary embodiments of the present invention have been described, but the present invention is not limited thereto, and a person skilled in the art will recognize the present invention within the scope and spirit of the following claims. You will understand that various changes and modifications are possible.
본 발명의 일 실시예에 따르면 냉연소둔 열처리 후 마르텐사이트와 페라이트 2상(dual phase)을 갖는 고내식 고강도를 동시에 만족하는 스테인리스강 및 이의 제조방법을 제공할 수 있는 바, 산업상 이용가능성이 인정된다.According to one embodiment of the present invention, it is possible to provide a stainless steel that simultaneously satisfies high corrosion resistance and high strength with dual phases of martensite and ferrite after cold rolling annealing heat treatment, and a manufacturing method thereof, and its industrial applicability is recognized. do.

Claims (13)

  1. 중량 %로, C: 0.01 ~ 0.1%, N: 0.01 ~ 0.1%, Si: 0.01 ~ 1.0%, Mn: 0.01 ~ 3.0%, Cr: 10.0 ~ 20.0%, Al: 0.001 ~ 1.0%, P: 0.05% 이하, S: 0.01% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하고, By weight %, C: 0.01 to 0.1%, N: 0.01 to 0.1%, Si: 0.01 to 1.0%, Mn: 0.01 to 3.0%, Cr: 10.0 to 20.0%, Al: 0.001 to 1.0%, P: 0.05% Hereinafter, S: 0.01% or less, including the remaining Fe and other inevitable impurities,
    직경이 0.5㎛ 이상인 탄화물의 분포가 단위면적당 7개/100㎛2 이하이고,The distribution of carbides with a diameter of 0.5㎛ or more is 7/100㎛2 or less per unit area,
    미세조직이 마르텐사이트상과 페라이트상 2상이며,The microstructure is in two phases: martensite phase and ferrite phase.
    상기 마르텐사이트상이 면적률로 20%이상인, 고내식 고강도 스테인리스강.A high-corrosion-resistant, high-strength stainless steel in which the martensite phase has an area ratio of 20% or more.
  2. 청구항 1에 있어서,In claim 1,
    하기 식(1)을 만족하는, 고내식 고강도 스테인리스강.Highly corrosion-resistant, high-strength stainless steel that satisfies the following formula (1).
    식(1): 420C+470N+23Ni+10Mn+180-(11.5Cr+11.5Si+52Al) ≥ 10 Equation (1): 420C+470N+23Ni+10Mn+180-(11.5Cr+11.5Si+52Al) ≥ 10
    (식(1)에서 C, N, Ni, Mn, Cr, Si 및 Al은 각 원소의 중량%를 의미한다)(In equation (1), C, N, Ni, Mn, Cr, Si and Al refer to the weight percent of each element)
  3. 청구항 1에 있어서,In claim 1,
    공식전위가 70mV 이상이면서, 항복강도가 350MPa이상인, 고내식 고강도 스테인리스강.High-corrosion-resistant, high-strength stainless steel with a pitting potential of 70 mV or more and a yield strength of 350 MPa or more.
  4. 청구항 1에 있어서, In claim 1,
    인장강도가 500MPa이상인, 고내식 고강도 스테인리스강.High-corrosion-resistant, high-strength stainless steel with a tensile strength of 500 MPa or more.
  5. 청구항 1에 있어서,In claim 1,
    경도가 200Hv이상인, 고내식 고강도 스테인리스강.High-corrosion-resistant, high-strength stainless steel with a hardness of 200Hv or more.
  6. 청구항 1에 있어서,In claim 1,
    상기 마르텐사이트상의 경도가 400Hv이상인, 고내식 고강도 스테인리스강.A high-corrosion-resistant, high-strength stainless steel having a hardness of 400 Hv or more in the martensite phase.
  7. 청구항 1에 있어서,In claim 1,
    페라이트 결정립의 종횡비가 2.0이하인, 고내식 고강도 스테인리스강.High-corrosion-resistant, high-strength stainless steel with an aspect ratio of ferrite grains of 2.0 or less.
  8. 중량 %로, C: 0.01 ~ 0.1%, N: 0.01 ~ 0.1%, Si: 0.01 ~ 1.0%, Mn: 0.01 ~ 3.0%, Cr: 10.0 ~ 20.0%, Al: 0.001 ~ 1.0%, P: 0.05% 이하, S: 0.01% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하는 슬라브를 1050 내지 1250℃로 재가열 하는 단계; By weight %, C: 0.01 to 0.1%, N: 0.01 to 0.1%, Si: 0.01 to 1.0%, Mn: 0.01 to 3.0%, Cr: 10.0 to 20.0%, Al: 0.001 to 1.0%, P: 0.05% Hereinafter, reheating the slab containing S: 0.01% or less, the remaining Fe and other unavoidable impurities to 1050 to 1250°C;
    열간압연 하고, 열연소둔하는 단계; 및Hot rolling and hot rolling annealing; and
    냉간압연 하고, 950 내지 1100℃에서 냉연소둔하는 단계를 포함하고, It includes cold rolling and cold rolling annealing at 950 to 1100°C,
    하기 식(1)을 만족하고, 미세조직이 마르텐사이트상과 페라이트상의 2상인, 고내식 고강도 스테인리스강의 제조방법.A method of manufacturing a highly corrosion-resistant, high-strength stainless steel that satisfies the following equation (1) and has a microstructure of two phases: a martensite phase and a ferrite phase.
    식(1): 420C+470N+23Ni+10Mn+180-(11.5Cr+11.5Si+52Al) ≥ 10 Equation (1): 420C+470N+23Ni+10Mn+180-(11.5Cr+11.5Si+52Al) ≥ 10
    (식(1)에서 C, N, Ni, Mn, Cr, Si 및 Al은 각 원소의 중량%를 의미한다)(In equation (1), C, N, Ni, Mn, Cr, Si and Al refer to the weight percent of each element)
  9. 청구항 8에 있어서, In claim 8,
    직경이 0.5㎛ 이상인 탄화물의 분포가 단위면적당 7개/100㎛2 이하인, 고내식 고강도 스테인리스강의 제조방법.A method of manufacturing highly corrosion-resistant, high-strength stainless steel in which the distribution of carbides with a diameter of 0.5 ㎛ or more is 7/100 ㎛ 2 or less per unit area.
  10. 청구항 8에 있어서,In claim 8,
    상기 열연소둔 하는 단계는 750 내지 900℃ 에서 수행되는, 고내식 고강도 스테인리스강의 제조방법.A method of manufacturing high corrosion resistance and high strength stainless steel, wherein the hot rolling annealing step is performed at 750 to 900°C.
  11. 청구항 8에 있어서,In claim 8,
    상기 냉연소둔 후 상기 마르텐사이트상이 면적률로 20%이상인, 고내식 고강도 스테인리스강의 제조방법.A method of manufacturing high corrosion resistance and high strength stainless steel, wherein the martensite phase is 20% or more in area ratio after the cold rolling annealing.
  12. 청구항 8에 있어서, In claim 8,
    상기 냉연소둔 후 상기 마르텐사이트상의 경도가 400Hv이상인, 고내식 고강도 스테인리스강의 제조방법.A method of manufacturing high corrosion resistance and high strength stainless steel, wherein the martensite phase has a hardness of 400 Hv or more after the cold rolling annealing.
  13. 청구항 8에 있어서, In claim 8,
    페라이트 결정립의 종횡비가 2.0이하인, 고내식 고강도 스테인리스강의 제조방법.A method of manufacturing highly corrosion-resistant, high-strength stainless steel with an aspect ratio of ferrite grains of 2.0 or less.
PCT/KR2023/003277 2022-08-04 2023-03-10 High corrosion resistance and high strength stainless steel and method for manufacturing same WO2024029679A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220097172A KR20240019488A (en) 2022-08-04 2022-08-04 High corrosion resistance and high strength stainless steel and method for manufacturing same
KR10-2022-0097172 2022-08-04

Publications (1)

Publication Number Publication Date
WO2024029679A1 true WO2024029679A1 (en) 2024-02-08

Family

ID=89849059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/003277 WO2024029679A1 (en) 2022-08-04 2023-03-10 High corrosion resistance and high strength stainless steel and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR20240019488A (en)
WO (1) WO2024029679A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000109957A (en) * 1998-10-05 2000-04-18 Sumitomo Metal Ind Ltd Stainless steel for gasket and its production
JP2000282147A (en) * 1999-03-30 2000-10-10 Nisshin Steel Co Ltd Manufacture of high strength dual-phase stainless steel strip excellent in resistance to stress corrosion crack sensitivity, and steel strip
KR20160113179A (en) * 2014-01-24 2016-09-28 제이에프이 스틸 가부시키가이샤 Material for cold-rolled stainless steel sheet and method for producing same
US20200270718A1 (en) * 2017-11-03 2020-08-27 Aperam Martensitic stainless steel and method for producing the same
WO2021205876A1 (en) * 2020-04-10 2021-10-14 日鉄ステンレス株式会社 Ferritic stainless steel, and method for manufacturing ferritic stainless steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000109957A (en) * 1998-10-05 2000-04-18 Sumitomo Metal Ind Ltd Stainless steel for gasket and its production
JP2000282147A (en) * 1999-03-30 2000-10-10 Nisshin Steel Co Ltd Manufacture of high strength dual-phase stainless steel strip excellent in resistance to stress corrosion crack sensitivity, and steel strip
KR20160113179A (en) * 2014-01-24 2016-09-28 제이에프이 스틸 가부시키가이샤 Material for cold-rolled stainless steel sheet and method for producing same
US20200270718A1 (en) * 2017-11-03 2020-08-27 Aperam Martensitic stainless steel and method for producing the same
WO2021205876A1 (en) * 2020-04-10 2021-10-14 日鉄ステンレス株式会社 Ferritic stainless steel, and method for manufacturing ferritic stainless steel

Also Published As

Publication number Publication date
KR20240019488A (en) 2024-02-14

Similar Documents

Publication Publication Date Title
WO2017111290A1 (en) Steel sheet having excellent pwht resistance for low-temperature pressure vessel and method for manufacturing same
WO2018110853A1 (en) High strength dual phase steel having excellent low temperature range burring properties, and method for producing same
WO2017222159A1 (en) High-strength cold-rolled steel sheet with excellent workability and manufacturing method therefor
WO2012043984A2 (en) Steel plate for line pipe, having excellent hydrogen induced crack resistance, and preparation method thereof
WO2018080108A1 (en) High-strength and high-manganese steel having excellent low-temperature toughness and manufacturing method therefor
WO2022050635A1 (en) Austenitic stainless steel and manufacturing method thereof
WO2021085800A1 (en) Austenitic stainless steel having increased yield ratio and manufacturing method thereof
WO2021010599A2 (en) Austenitic stainless steel having improved strength, and method for manufacturing same
WO2018117606A1 (en) Hot dip coated steel having excellent processability, and manufacturing method therefor
WO2020111857A1 (en) Chromium-molybdenum steel plate having excellent creep strength and method for manufacturing same
WO2024029679A1 (en) High corrosion resistance and high strength stainless steel and method for manufacturing same
WO2019117432A1 (en) Ferrite-based stainless steel having excellent impact toughness, and method for producing same
WO2011081236A1 (en) Quenched steel sheet having excellent hot press formability, and method for manufacturing same
WO2016064226A1 (en) High strength and high ductility ferritic stainless steel sheet and method for producing same
WO2019088552A1 (en) Ultra-high strength cold-rolled steel sheet having excellent cold rolling property, and method for manufacturing same
WO2015099214A1 (en) Quenched steel sheet having excellent strength and ductility and method for manufacturing same
WO2021125564A1 (en) High-strength ferritic stainless steel for clamp, and manufacturing method therefor
WO2021261884A1 (en) High-strength austenitic stainless steel with excellent productivity and cost reduction effect and method for producing same
WO2021125724A2 (en) Cold-rolled steel sheet having excellent thermal-resistance and moldability, and method for manufacturing same
WO2020085687A1 (en) High-strength ferritic stainless steel for clamp and method for manufacturing same
WO2021125471A1 (en) Wire rod for ultra-high strength spring, steel wire and manufacturing method thereof
WO2019039774A1 (en) Ferritic stainless steel having enhanced low-temperature impact toughness and method for producing same
WO2021025248A1 (en) Ferritic stainless steel with improved high temperature creep resistance and manufacturing method therefor
WO2020130614A2 (en) High strength hot-rolled steel sheet having excellent hole expansion ratio and manufacturing method for same
WO2018110866A1 (en) Ferrite-based stainless steel having improved impact toughness, and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23850192

Country of ref document: EP

Kind code of ref document: A1