WO2024029561A1 - Tumor-bearing immunodeficient nonhuman animal, and method for evaluating cancer immune response regarding test substance using same - Google Patents

Tumor-bearing immunodeficient nonhuman animal, and method for evaluating cancer immune response regarding test substance using same Download PDF

Info

Publication number
WO2024029561A1
WO2024029561A1 PCT/JP2023/028264 JP2023028264W WO2024029561A1 WO 2024029561 A1 WO2024029561 A1 WO 2024029561A1 JP 2023028264 W JP2023028264 W JP 2023028264W WO 2024029561 A1 WO2024029561 A1 WO 2024029561A1
Authority
WO
WIPO (PCT)
Prior art keywords
human
cells
cancer
human animal
bearing
Prior art date
Application number
PCT/JP2023/028264
Other languages
French (fr)
Japanese (ja)
Inventor
美恵 亀谷
亮治 伊藤
Original Assignee
学校法人東海大学
公益財団法人実験動物中央研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人東海大学, 公益財団法人実験動物中央研究所 filed Critical 学校法人東海大学
Publication of WO2024029561A1 publication Critical patent/WO2024029561A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/027New breeds of vertebrates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/54Interleukins [IL]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms

Definitions

  • the present invention relates to a cancer-bearing, immunodeficient non-human animal obtained by transplanting cancer cells and/or cancer tissues into an immunodeficient non-human animal, a method for evaluating cancer immune response regarding a test substance using the same, and/or Or relates to a cancer immune response evaluation kit.
  • Immunodeficient non-human animals typified by immunodeficient mice, are characterized by loss or decline in the function of one or more immune components such as B cells, T cells, and NK cells. For this reason, cells and tissues from foreign organisms such as humans can be transplanted into immunodeficient non-human animals, and immunodeficient non-human animals are used extensively in research fields such as immunology, infectious diseases, oncology, and stem cell biology. plays an important role in
  • NOD- which is capable of engrafting human cells, lacks both functional T cells and B cells, and exhibits a decrease in complement activity, macrophage function, and natural killer (NK) cell activity, etc.
  • IL2R ⁇ KO mice By backcrossing scid mice with mice in which the IL-2 receptor ⁇ chain gene, which is a common domain of cytokine receptors, is knocked out (IL2R ⁇ KO mice), NK cells disappear, macrophage function declines, and dendritic cell function is reduced.
  • NOG mice also referred to as ⁇ NOD . (For example, see Patent Document 1). NOG mice are considered to be immunodeficient mice with extremely high engraftment of human cells and tissues.
  • NSG mice also expressed as "NOD.Cg-Prkdc scid Il2rg tm1Wjl /SzJ"
  • NOD.Cg-Prkdc scid Il2rg tm1Wjl /SzJ which have similar characteristics to NOG mice
  • mice As a typical example of an immunodeficient non-human animal, severe immunodeficient mice such as those mentioned above have lost or decreased functions of T, B, NK cells, macrophages, dendritic cells, and complement, and therefore are not capable of human hematopoiesis.
  • HSC stem cells
  • PBMC peripheral blood mononuclear cells
  • CDX human tumor cell line-derived xenografts
  • PDX tumor patient-derived xenografts
  • Non-Patent Documents 1 and 2 point out that when HSCs and cancer cells are transplanted into NOG mice, it is impossible to engraft normally differentiated mature human T cells and B cells. This also applies to NSG mice and other severely immunodeficient mice.
  • Non-Patent Document 3 discloses that graft-versus-host disease (GVHD) develops when PBMCs are transplanted into NOG mice.
  • GVHD graft-versus-host disease
  • NSG mice develop graft-versus-host disease (GVHD) when PBMCs are transplanted
  • Non-Patent Document 5 when human peripheral blood mononuclear cells and cancer cells were transplanted into NOG mice with double knockout of major histocompatibility complex class I/II, GVHD was avoided, but B. It is disclosed that B cell responses cannot be detected because cell engraftment is not possible.
  • NOG mice expressing the human IL-4 gene under the control of the human cytomegalovirus promoter (CMV promoter) ("mouse NOG-hIL-4Tg" or "NOD.Cg-Prkdc scid Il2rg") tm1Sug Tg (CMV-IL4)/Jic") is known (Non-Patent Document 6).
  • CMV promoter human cytomegalovirus promoter
  • Mouse NOG-hIL-4Tg systemically expresses the human IL-4 gene, and when human PBMCs are transferred, a large amount of human T cells engraft and GVHD does not occur, making long-term experiments possible. have.
  • Non-Patent Document 7 analyzes the relationship between human lymphocyte subsets and glucocorticoid receptor (GR) expression levels and discloses humoral immunity when human PBMCs are transplanted. has been done. Furthermore, regarding mouse NOG-hIL-4Tg, see Non-Patent Document 8, PBMCs derived from breast cancer patients were transplanted, immunized with human epidermal growth factor receptor 2 (HER2) peptide, and the humoral immunity of breast cancer patients was analyzed. It is disclosed that what has happened.
  • HER2 human epidermal growth factor receptor 2
  • the present invention aims to provide a cancer-bearing, immune-immunized non-human animal that can suppress the onset of graft-versus-host disease (GVHD) and allow T cells and/or B cells to engraft.
  • the purpose of the present invention is to provide a cancer immune response evaluation method and/or a cancer immune response evaluation kit for test substances.
  • the present inventors conducted intensive studies and found that human The present invention was completed based on the discovery that when peripheral blood mononuclear cells (PBMCs) are transplanted, the onset of graft-versus-host disease (GVHD) can be suppressed and T cells and/or B cells can be engrafted. I ended up doing it.
  • PBMCs peripheral blood mononuclear cells
  • GVHD graft-versus-host disease
  • the present invention includes the following.
  • a mutation is introduced into the IL-2 receptor ⁇ chain gene, resulting in a deficiency of the IL-2 receptor ⁇ chain, and mutations in genes involved in the rearrangement of antigen receptor genes in T cells and B cells are biallelic.
  • a tumor-bearing immune system in which cancer cells and/or cancer tissues and human peripheral blood mononuclear cells are transplanted into an immunodeficient non-human animal that is present in the human IL-4 gene and has been introduced with the human IL-4 gene. Insufficient non-human animals.
  • the tumor-bearing and immunodeficient non-human animal according to (1) wherein the human IL-4 gene is expressed under the control of a human cytomegalovirus promoter.
  • the cancer-bearing, immunodeficient non-human animal according to (1) wherein the mutation in a gene involved in rearrangement of antigen receptor genes of T cells and B cells is a SCID mutation or a RAG mutation.
  • the immunodeficient non-human animal described above lacks both functional T cells and B cells, has decreased macrophage function, has lost NK cells or NK activity, and has decreased dendritic cell function.
  • the tumor-bearing immunodeficient non-human animal according to (1) which is characterized by having excellent adhesion to different types of cells.
  • the immunodeficient non-human animal is produced by backcrossing the following non-human animal A with the non-human animal B; Immunocompromised non-human animals.
  • A C. to NOD/Shi non-human animals.
  • the above immunodeficient non-human animal is NOG (NOD/ The tumor-bearing immunodeficient non-human animal according to (1), which is a Shi-scid, IL-2R ⁇ KO) mouse.
  • the cancer-bearing, immunodeficient non-human animal according to (1) wherein the cancer cells and/or cancer tissues are human breast cancer cells and/or human breast cancer tissues.
  • the cancer-bearing, immunodeficient non-human animal according to (1) wherein the number of transplanted human peripheral blood mononuclear cells is 1 to 5 ⁇ 10 6 cells.
  • the cancer-bearing, immunodeficient non-human animal according to (1) characterized in that human CD19-positive human B cells are engrafted therein.
  • a method for evaluating a cancer immune response regarding a test substance comprising: (12) The above test substance is an immune checkpoint inhibitor or a candidate substance for an immune checkpoint inhibitor, and it is possible to compare T cells and/or B cells among lymphocytes before and after administration of the above test substance.
  • a cancer immune response evaluation kit comprising the cancer-bearing immunodeficient non-human animal according to any one of (1) to (10) above and a cell surface marker analysis reagent for peripheral blood mononuclear cells.
  • This specification includes the disclosure content of Japanese Patent Application No. 2022-123595, which is the basis of the priority of this application.
  • the cancer-bearing immunodeficient non-human animal according to the present invention is transplanted with cancer cells and/or cancer tissues and human peripheral blood mononuclear cells, and the onset of graft-versus-host disease (GVHD) is suppressed, and , T cells and/or B cells engraft. Therefore, the cancer-bearing immunodeficient non-human animal according to the present invention can be used in research on cancer immunotherapy and the like.
  • GVHD graft-versus-host disease
  • the cancer immune response evaluation method and cancer immune response evaluation kit regarding the test substance according to the present invention the onset of graft-versus-host disease (GVHD) is suppressed, and T cells and/or B cells Because it uses cancer-bearing, immunodeficient non-human animals with engrafted cancer, the immune response to cancer can be evaluated with high precision.
  • GVHD graft-versus-host disease
  • FIG. 2 is a characteristic diagram showing the relationship between plasma IL-4 concentration and the number of engrafted B cells in NOG mice into which the human IL-4 gene has been introduced.
  • Characteristic diagram showing the results of lymphocyte measurement after transplantation of human PBMC for NOG mice introduced with the human IL-4 gene expressed by the CMV promoter and NOG mice introduced with the human IL-4 gene expressed by the CAG promoter. It is.
  • FIG. 3 is a characteristic diagram showing the results of measuring the tumor diameters of the PBS administration group and the atezolizumab administration group after breast cancer cell lines were transplanted into NOG mice into which the human IL-4 gene expressed by the CMV promoter was introduced.
  • FIG. 2 is a photograph showing the results of histochemical staining of tumor tissue in a PBS administration group and an atezolizumab administration group in NOG mice into which a human IL-4 gene expressed by a CMV promoter has been introduced and which has been transplanted with a breast cancer cell line.
  • Cancer-bearing immunodeficient non-human animals have a mutation introduced into the IL-2 receptor ⁇ chain gene and are deficient in the IL-2 receptor ⁇ chain, resulting in rearrangement of the antigen receptor genes of T cells and B cells. It is produced using an immunodeficient non-human animal in which the relevant gene mutations are present at both allelic loci and the human IL-4 gene has been introduced.
  • the cancer-bearing immunodeficient non-human animal according to the present invention can be produced by transplanting cancer cells and/or cancer tissues and human peripheral blood mononuclear cells into this immunodeficient non-human animal. can.
  • non-human animal is not particularly limited as long as it is an animal other than human, but preferably means a mammal other than human.
  • non-human animals include non-human primates (monkeys, chimpanzees, gorillas, etc.), rodents (mice, rats, guinea pigs, etc.), dogs, cats, rabbits, cows, pigs, horses, goats, sheep, etc. These include, but are not limited to: Among these, as the non-human animal, rodents are preferred, and mice are more preferred.
  • the cancer-bearing immunodeficient non-human animal according to the present invention can particularly be a cancer-bearing immunodeficient non-human mammal, and is preferably a tumor-bearing immunodeficient rodent animal. , more preferably tumor-bearing immunodeficient mice.
  • a tumor-bearing immunodeficient mouse will be described in detail as an example of a tumor-bearing immunodeficient non-human animal, but the technical scope of the present invention is not limited to a tumor-bearing immunodeficient mouse. It is not intended to be limited to.
  • the present invention is not limited to tumor-bearing immunodeficient mice, but can be applied to cancer-bearing, immunodeficient non-human animals as described above.
  • tumor-bearing immunodeficient mice have a mutation introduced into the IL-2 receptor ⁇ chain gene, resulting in deletion of the IL-2 receptor ⁇ chain, and the human IL-4 gene is introduced.
  • This immunodeficient mouse has a wild-type gene base sequence that encodes a protein that controls specific immune functions, including substitution of one or more bases with other bases, deletion of one or more bases, and deletion of one or more bases. or a mouse in which the immune function exerted by the wild-type gene does not function due to genetic modification that introduces genetic mutations such as insertion of two or more bases, out-of-frame reading frame shift of amino acids, and/or combinations of these.
  • the above-mentioned wild type can include mice that have the most common allele or polymorphism found in a population and have not been genetically modified by mutation or artificial manipulation.
  • the IL-2 receptor is composed of three types of proteins called alpha ( ⁇ ) chain, beta ( ⁇ ) chain, and gamma ( ⁇ ) chain.
  • the above IL-2 receptor ⁇ chain does not have the ability to bind to IL-2 when the ⁇ chain alone has the ability to bind to IL-2, but the heterodimer of the ⁇ chain and the ⁇ chain serves as a medium affinity receptor for IL-2.
  • a heterotrimer of ⁇ , ⁇ , and ⁇ chains becomes a high-affinity receptor for IL-2.
  • the above-mentioned IL-2 is a type of cytokine, and the action of IL-2 is to transmit IL-2 signals from the cytoplasm into the nucleus by binding to the IL-2 receptor present on the cell surface. Examples include inducing proliferation of T cells and B cells and activation of NK cells. Therefore, when the IL-2 receptor ⁇ chain is not functionally expressed, the IL-2 receptor loses its ability to bind to IL-2 due to a mutation introduced into the IL-2 receptor ⁇ chain gene. cases in which signal transduction occurs, or cases in which signal transduction does not occur.
  • human IL-4 gene is a gene encoding human IL4 protein.
  • the term "gene” refers to a polynucleotide that includes at least one open reading frame that encodes a specific protein, and may have a structure consisting only of exons or a structure containing both exons and introns.
  • the introduction of the human IL-4 gene means that the human IL-4 protein is expressed in the body of the cancer-immunodeficient mouse.
  • the expression of human IL-4 protein means that in the body of cancer-immunodeficient mice, B cells derived from transplanted human peripheral blood mononuclear cells engraft, and helper T cells and killer T cells are balanced. This means that it is expressed in a way that allows for good engraftment.
  • the engraftment of B cells, helper T cells, and killer T cells is determined by, for example, the profile of lymphocytes engrafted in the spleen of cancer-immunodeficient mice, that is, CD19-positive cells (B cells) among CD45-positive cells, Evaluation can be made by detecting CD4-positive cells (helper T cells) and CD8-positive cells (killer T cells).
  • the plasma concentration of human IL-4 protein is within a predetermined range. Specifically, when the plasma concentration of introduced human IL-4 protein is 100 to 500 pg/ml, B cells derived from transplanted human peripheral blood mononuclear cells will engraft, and helper T cells and Killer T cells can engraft in a well-balanced manner.
  • the concentration of protein in plasma may vary depending on the measurement method and the calibration curve used (particularly, in this case, the type of anti-human IL-4 antibody used).
  • the plasma concentration of the introduced human IL-4 protein as defined herein is determined by using BD OptEIA Set Human IL-4 (manufactured by BD Biosciences, catalog number: 555194, rod number: 9189127). -4 using a calibration curve created from standard samples with concentrations of 500 pg/ml, 250 pg/ml, 125 pg/ml, 62.5 pg/ml, 31.3 pg/ml, 15.6 pg/ml, and 7.8 pg/ml. Calculate. Further, IL-4 contained in the standard sample or sample is measured at absorbance at 450 nm using Human IL-4 ELISA Set BD OptEIATM (manufactured by BD Biosciences).
  • the plasma concentration of human IL-4 protein can be regulated by the transcription control region introduced together with the human IL-4 gene.
  • transcription control regions include promoters. That is, by changing the promoter operably linked to the human IL-4 gene, the plasma concentration of human IL-4 protein can be regulated.
  • CMV promoter human cytomegalovirus promoter
  • transplanted human peripheral blood mononuclear B cells derived from the bulb will engraft, and helper T cells and killer T cells will also engraft in a well-balanced manner.
  • the plasma concentration of human IL-4 protein in cancer-immunodeficient mice can be reduced to 100-500 pg/ ml.
  • promoters are not limited to the above CMV, but include, for example, SV40 promoter, PGK promoter, SR ⁇ promoter, retrovirus LTR promoter, RSV (Rous sarcoma virus) promoter, and HSV-TK (herpes simplex virus thymidine kinase). Promoters include EF1 ⁇ promoter, metallothionein promoter, heat shock promoter, and the like. For example, as described in PLOS ONE 2010, e10611, it is preferable to use a promoter known to moderately regulate the expression of a downstream gene in mammals, such as the CMV promoter.
  • promoters that highly enhance expression such as the CAG promoter (consisting of the chicken ⁇ -actin promoter hybridized with the CMV enhancer sequence).
  • CAG promoter Consisting of the chicken ⁇ -actin promoter hybridized with the CMV enhancer sequence.
  • sequence identity refers to the insertion and deletion of two amino acid sequences or base sequences in such a way that the corresponding amino acids or bases match the most. It is determined as the ratio of matched amino acids or bases to the entire amino acid sequence or base sequence excluding the gaps in the resulting alignment.
  • Sequence identity between amino acid sequences or base sequences can be determined using various homology search software known in the technical field. For example, the sequence identity value of an amino acid sequence can be obtained by calculation based on an alignment obtained using the known homology search software BLASTP, and the sequence identity value of a base sequence can be obtained by calculation based on the alignment obtained using the known homology search software BLASTP. It can be obtained by calculation based on the alignment obtained by the software BLASTN.
  • stringent conditions refer to, for example, Molecular Cloning-A LABORATORY MANUAL THIRD EDITION (Sambrook et al., Cold Spring Harbor Laboratory Examples include the method described in Press). Stringent conditions include, for example, 6x SSC (composition of 20x SSC: 3M sodium chloride, 0.3M citric acid solution, pH 7.0), 5x Denhardt's solution (composition of 100x Denhardt's solution: 2% by mass). Bovine serum albumin, 2 wt% Ficoll, 2 wt% polyvinylpyrrolidone), 0.5 wt% SDS, 0.1 mg/mL salmon sperm DNA, and 50% formamide at 42-70°C.
  • Conditions for hybridization include incubation for several hours to overnight.
  • the washing buffer used for washing after incubation is preferably a 1 ⁇ SSC solution containing 0.1% by mass of SDS, more preferably a 0.1 ⁇ SSC solution containing 0.1% by mass of SDS.
  • operably linked with respect to polynucleotides means that a first base sequence is located sufficiently close to a second base sequence, and the first base sequence is located close enough to the second base sequence or This means that it can affect the region under the control of the second base sequence.
  • a polynucleotide being "operably linked to a promoter” means that the polynucleotide is linked such that it is expressed under the control of the promoter.
  • linked in a functional manner means that the gene (polynucleotide) inserted downstream of the promoter can be expressed in the cells of the target non-human animal.
  • an expressible state means that the polynucleotide is in a state in which it can be transcribed within a cell into which the polynucleotide has been introduced.
  • expression vector refers to a vector that contains a polynucleotide of interest and is equipped with a system that enables expression of the polynucleotide of interest in cells into which the vector has been introduced.
  • Human IL-4 will be explained.
  • Human IL4 is human interleukin 4.
  • IL-4 is classified into the hematopoietin family, which is involved in hematopoiesis, etc., and is a soluble protein composed of 129 amino acids.
  • IL-4 is an anti-inflammatory glycoprotein produced in a variety of cells such as Th2 cells, mast cells, and basophils.
  • IL-4 is known to promote class switching to IgE via the type I IL-4 receptor on hematopoietic cells, and is also involved in the differentiation of naive helper T cells into Th2 cells.
  • human IL-4 The gene sequence and amino acid sequence of human IL-4 are known, and their sequence information can be obtained from known databases such as GenBank.
  • GenBank the gene sequence and amino acid sequence of human IL-4 are listed in GenBank as Accession No. Examples include sequences registered as NM_000589.4, NM_001354990.2, and NM_172348.3. Note that these NM_000589.4, NM_001354990.2, and NM_172348.3 are sequences registered as transcriptional variants in human IL-4.
  • human IL-4 is not limited to those having these sequences, but includes homologs (orthologs, paralogs) and variants thereof.
  • the human IL-4 gene is listed in GenBank with accession No. Consists of an amino acid sequence that has 80% or more sequence identity to the amino acid sequences registered in NM_000589.4, NM_001354990.2, and NM_172348.3, and encodes a polypeptide that has human IL-4 activity. It's okay to have one.
  • sequence identity is not particularly limited as long as it is 80% or more and the resulting polypeptide has human IL-4 activity.
  • the sequence identity is particularly preferably 85% or more, more preferably 90% or more, even more preferably 95% or more, and particularly preferably 97% or more.
  • the human IL-4 gene is listed in GenBank with accession No. Consists of an amino acid sequence in which one or more amino acids are deleted, substituted, added, or inserted from the amino acid sequences registered in NM_000589.4, NM_001354990.2, and NM_172348.3, and has human IL-4 activity. It may also encode a polynucleotide encoding a polypeptide having the following. Note that the number of amino acids to be deleted, substituted, added, or inserted is not particularly limited as long as the resulting polypeptide has human IL-4 activity. The number of amino acids to be deleted, substituted, added, or inserted can be, for example, 1 to 15, preferably 1 to 13, more preferably 1 to 10, 1 to 8, and 1 to 7. Examples include 1 to 6, 1 to 5, 1 to 4, 1 to 3, 1 or 2.
  • An immunodeficient mouse in which a mutation has been introduced into the IL-2 receptor ⁇ chain gene defined as above, resulting in a deficiency in the IL-2 receptor ⁇ chain and in which the human IL-4 gene has been introduced is, for example, By introducing the human IL-4 gene into immunodeficient mice such as NOG mice (NOD.Cg-Prkdc scid Il2rg tm1Sug /ShiJic), NSG mice (NOD.Cg-Prkdc scid Il2rg tm1Wjl /SzJ), and NOD/ShiJcl mice. It can be made. Note that the immunodeficient mouse into which the human IL-4 gene is introduced is not limited to these, and any of these commercially available immunodeficient mice can be used without any particular restriction.
  • the NOG mouse (NOD.Cg-Prkdc scid Il2rg tm1Sug /ShiJic) is a mouse named NOD (Non Obese Diabetes) because its pathology is similar to human type 1 diabetes (insulin-dependent diabetes).
  • NOD Non Obese Diabetes
  • SCID mice which lack T cell and B cell function and exhibit severe immunodeficiency due to mutations in the DNA-dependent protein kinase (Prkdc) gene.
  • NOD/scid mice were combined with NOD/scid mice, and mice in which the IL-2 receptor ⁇ chain was knocked out (IL-2R ⁇ KO), which is the causative gene for the immunodeficiency disease mouse) (Ohbo K et al., Blood 1996) using the Cross Intercross method (Inbred Strains in Biomedical Research, M.FW. Festing, 1979, The Macmillan Press, London and Basingstoke). Specifically, it can be produced by referring to Japanese Patent No. 3753321, and is also available from the Central Research Institute for Experimental Animals, a public interest incorporated foundation.
  • an immunodeficient non-human animal that can be used in the present invention can be produced as follows. That is, an immunodeficient non-human animal can be produced by backcrossing the following non-human animal A with the non-human animal B. A: C. to NOD/Shi non-human animals.
  • NOD/Shi in the non-human animal of A is applied to the non-human animal.
  • B-17-scid non-human animals can be backcrossed using methods known to those skilled in the art, such as the Cross Intercross method (Inbred Strains in Biomedical Research, M.FW. Festing, 1979). ISBN 0-333- 23809-5, The Macmillan Press, London and Basingstoke), C.
  • B-17-scid non-human animals are crossed with NOD/Shi non-human animals, and the F1 non-human animals are further crossed with each other, and the amount of immunoglobulin in the serum of the F2 non-human animals obtained is measured and cannot be detected.
  • Select non-human animals This non-human animal is bred again with a NOD/Shi non-human animal. This operation can be carried out by repeating this operation nine times or more (cross/intercross method).
  • knockout of the interleukin 2 receptor ⁇ chain (IL-2R ⁇ ) gene in a non-human animal in B can be performed using methods known to those skilled in the art, such as homologous recombination using non-human animal ES cells (Capecchi, M.R., Altering the genome by homologous recombination, Science, (1989) 244, 1288-1292), a specific gene derived from a non-human animal and, for example, neomycin. homologous genes including drug resistance genes such as After the stage replacement, the ES cells can be injected into fertilized eggs.
  • IL-2R ⁇ interleukin 2 receptor ⁇ chain
  • Methods of introducing the human IL-4 gene into an immunodeficient non-human animal include, for example, a method of introducing the human IL-4 gene into an immunodeficient non-human animal, a method of introducing the human IL-4 gene into an immunodeficient non-human animal, and a method of introducing the human IL-4 gene into an immunodeficient non-human animal. Examples include a method of transferring the immunoid to an immunodeficient non-human animal.
  • an immunodeficient non-human animal has the human IL-4 gene in its body can be determined by collecting plasma from the immunodeficient non-human animal and measuring the human IL-4 concentration in the plasma. It can be confirmed.
  • the method for measuring the human IL-4 concentration in plasma is not particularly limited, but includes an immunochemical method using an anti-human IL-4 antibody. Examples of such methods include ELISA, EIA, RIA, and Western blotting.
  • ELISA EIA
  • RIA RIA
  • Western blotting Western blotting.
  • a commercially available ELISA kit for measuring human IL-4 or the like may be used.
  • human IL-4 when introducing the human IL-4 gene into an immunodeficient non-human animal, human IL-4 is preferably operably linked downstream of the above-mentioned promoter.
  • the human IL-4 gene is introduced into a non-human animal in an expressible state, for example, in the form of an expression vector.
  • the expression vector preferably has control sequences such as an enhancer, a polyA addition signal, and a terminator, and a marker gene such as a drug resistance gene.
  • the type of vector is not particularly limited, and commonly used expression vectors can be used without particular restrictions.
  • the vector may be linear or circular, and may be a non-viral vector such as a plasmid, a viral vector (for example, a retroviral vector such as a lentivirus vector), or a transposon-based vector.
  • the method for introducing the human IL-4 gene into a non-human animal is not particularly limited, and methods commonly used for producing transgenic animals can be applied.
  • a method for introducing the human IL-4 gene into a non-human animal for example, a method of introducing an expression vector containing the human IL-4 gene and the above-mentioned promoter into a fertilized egg of a non-human animal to be introduced by microinjection or the like. etc.
  • the non-human animal is a mouse
  • an example of the fertilized egg is a fertilized egg obtained by mating a NOG mouse (NOD.Cg-Prkdc scid Il2rg tm1Sug /ShiJic) with a NOD/ShiJcl mouse.
  • NOG mouse NOD.Cg-Prkdc scid Il2rg tm1Sug /ShiJic
  • the fertilized eggs into which the human IL-4 gene has been introduced are cultured at 37°C for approximately 18 to 24 hours, and then transplanted and implanted into the uterus of a foster parent to give birth to an immunodeficient egg that has the human IL-4 gene.
  • Non-human animals can be obtained.
  • the immunodeficient non-human animal obtained as described above has the human IL-4 gene can be determined by extracting genomic DNA from a sample collected from the non-human animal and performing PCR, etc. , can be confirmed.
  • whether or not the immunodeficient non-human animal expresses the human IL-4 gene can be determined by extracting RNA from a sample collected from the non-human animal and performing RT-PCR, etc. This can be confirmed by performing in situ hybridization using a tissue sample collected from a non-human animal. Alternatively, by detecting human IL-4 in a sample collected from the non-human animal using an anti-human IL-4 antibody (for example, ELISA method, EIA method, RIA method, Western blotting method, EIA method, (RIA method, immunohistological staining, etc.).
  • an anti-human IL-4 antibody for example, ELISA method, EIA method, RIA method, Western blotting method, EIA method, (RIA method, immunohistological staining, etc.
  • Immunodeficient non-human animals into which the human IL-4 gene has been introduced secrete human IL-4, resulting in the engraftment of transplanted human peripheral blood mononuclear cell-derived B cells and helper T cells. and killer T cells can engraft in a well-balanced manner.
  • an immunodeficient non-human animal secretes human IL-4
  • body fluids blood, tissue fluid, lymph, etc.
  • the method for measuring human IL-4 concentration in plasma is as described above.
  • the cells in which the human IL-4 gene is expressed are transferred to an immunodeficient non-human animal
  • the cells in which the human IL-4 gene is expressed are Examples include cells derived from human organs and blood, cancer cells, and the like.
  • Examples of cells derived from the human organ include cells derived from the spleen, thymus, liver, small intestine, large intestine, prostate, lung, heart, brain, kidney, testis, uterus, and the like.
  • Examples of the cells derived from human blood include blood cells contained in the peripheral blood mononuclear cell fraction.
  • cells expressing the human IL-4 gene can be selected from cell lines established from these human cells and transferred to an immunodeficient non-human animal.
  • cells of an immunized non-human animal into which the human IL-4 gene has been introduced may be used as cells in which the human IL-4 gene is expressed.
  • the cells of the immunodeficient non-human animal are preferably those of an immunodeficient non-human animal belonging to the same species as the immunodeficient non-human animal to which the cells are transferred.
  • the immunodeficient non-human animal to which the cells are transferred is a mouse
  • the cells into which the human IL-4 gene is introduced are preferably mouse cells.
  • the cells of an immunodeficient non-human animal into which the human IL-4 gene is introduced are not particularly limited, and include, for example, cells derived from organs or blood, or cell lines thereof, hematopoietic stem cells, cancer cells, and the like.
  • Examples of cells derived from the organs and blood of immunodeficient non-human animals include cells of non-human animals derived from the same organs and blood fractions as exemplified in the cells expressing the human IL-4 gene. It will be done.
  • the human IL-4 gene is introduced into non-human animal cells in an expressible state, for example, in the form of an expression vector.
  • the method for introducing the human IL-4 gene into non-human animal cells is not particularly limited, and methods commonly used for gene introduction can be applied. Examples of such methods include virus infection method, lipofection method, microinjection method, calcium phosphate method, DEAE-dextran method, electroporation method, method using transposon, particle gun method, etc. but not limited to.
  • Whether cells expressing the human IL-4 gene secrete human IL-4 can be confirmed by measuring the IL-4 concentration in the culture medium of the cells.
  • the method for measuring human IL-4 concentration is as described above.
  • the method for transferring cells expressing the human IL-4 gene into an immunodeficient non-human animal is not particularly limited, and methods commonly used for transferring cells into immunodeficient non-human animals can be applied.
  • a method for transferring cells expressing the human IL-4 gene into an immunodeficient non-human animal for example, depending on the type of cells used, the human IL-4 gene may be introduced into the spleen, liver, subcutaneously, intravenously, etc. Examples include a method of administering cells expressing the expression.
  • the immunodeficient non-human animal into which cells expressing the human IL-4 gene have been transferred secretes human IL-4, and as a result, the transplanted B cells derived from human peripheral blood mononuclear cells engraft. , helper T cells and killer T cells can be engrafted in a well-balanced manner.
  • an immunodeficient non-human animal secretes human IL-4
  • body fluids blood, tissue fluid, lymph, etc.
  • the method for measuring human IL-4 concentration in plasma is as described above.
  • SCID mutation is a DNA-dependent protein kinase (protein kinase, DNA activated, catalytic) found in mice exhibiting severe combined immunodeficiency (SCID). This is a mutation in the polypeptide (Prkdc) gene.
  • RAG mutations include mutations in the Rag (Recombination activating gene)-1 gene or the Rag-2 gene. These two genes are genes expressed in immature lymphocytes, have essential effects on the reconstitution of immunoglobulin genes and T cell receptors, and are essential for the maturation of T cells and B cells. .
  • Immunodeficient non-human animals that have mutations in genes involved in rearrangement of T cell and B cell antigen receptor genes, including the above SCID mutation and/or RAG mutation, at both allelic loci, have T cells due to abnormal DNA repair. This is a mutation in which T cells and B cells do not reach the maturation stage because gene rearrangement of cells and B cells is not possible, resulting in a loss of T cell and B cell function. All such mutations in immunodeficient non-human animals are at biallelic loci.
  • the cancer-bearing immunodeficient non-human animal according to the present invention is obtained by transplanting cancer cells or cancer tissues and human peripheral blood mononuclear cells into the above-described immunodeficient non-human animal.
  • an immunodeficient mouse as an immunodeficient non-human animal to which cancer cells or cancer tissues and human peripheral blood mononuclear cells are to be transplanted, it is preferable to use an adult (e.g., 7 weeks of age or older) immunodeficient mouse. .
  • the cancer cells and cancer tissues are preferably derived from mammals.
  • Mammals include, for example, rodents such as mice, rats, hamsters, and guinea pigs; lagomorphs such as rabbits; ungulates such as pigs, cows, goats, horses, and sheep; feline animals such as dogs and cats; and humans.
  • Examples include primates such as monkeys, rhesus monkeys, cynomolgus monkeys, marmosets, orangutans, and chimpanzees.
  • the mammal is preferably a rodent (such as a mouse) or a primate, more preferably a human.
  • cancers include, but are not limited to, stomach cancer, esophageal cancer, colorectal cancer, colon cancer, rectal cancer, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, Epithelial cell carcinoma, basal cell carcinoma, adenocarcinoma, bone marrow cancer, renal cell carcinoma, ureteral cancer, liver cancer, bile duct cancer, cervical cancer, endometrial cancer, testicular cancer , small cell lung cancer, non-small cell lung cancer, bladder cancer, epithelial cancer, craniopharyngeal cancer, laryngeal cancer, tongue cancer, fibrosarcoma, mucosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma , angiosarcoma, lymphangiosarcoma, intralymphatic sarcoma, synovioma, mesothelioma, Ewing tumor, leiomyosarcoma, rhabdomy
  • the cancer cells may be cancer cells (primary culture) isolated using enzymes or the like from cancer tissues collected from cancer patients, or may be established cancer cell lines.
  • cancer cell lines include, but are not limited to, human breast cancer cell lines such as HBC-4, BSY-1, BSY-2, MCF-7, MCF-7/ADR RES, HS578T, and MDA.
  • cell lines include, but are not limited to, HEK293 (human embryonic kidney cells), MDCK, MDBK, BHK, C-33A, AE-1, 3D9, Ns0/1, NIH3T3, PC12, S2 , Sf9, Sf21, High Five (registered trademark), Vero, etc.
  • the cancer cells are preferably cancer cells that have the ability to form solid tumors when engrafted in vivo.
  • Cancer cells that have the ability to form solid tumors include gastric cancer, esophageal cancer, colorectal cancer, colon cancer, rectal cancer, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, and squamous cell cancer.
  • the cancer cells may be syngenic, allogenic, or xenogenic to the immunodeficient non-human animal to be transferred.
  • Transfer of cancer cells into an immunodeficient non-human animal usually involves suspending the cancer cells in a physiological aqueous composition and transferring the resulting suspension into the body of the non-human mammal.
  • Cancer cells can be treated with proteins such as trypsin or chelating agents such as EDTA and dispersed into single cells, then suspended in a physiological aqueous composition and introduced into the body, or they can be introduced into the body in the form of spheroids. It may also be suspended in an aqueous composition and introduced into the body. Cancer tissue formation tends to be more accelerated when cells are transferred in the form of spheroids, while cancer cells tend to be more sensitive to anticancer drugs when transferred in the form of single cells.
  • Physiological aqueous compositions include physiological aqueous solutions and physiological aqueous gels.
  • physiological aqueous solution include physiological buffers such as phosphate buffer, carbonate buffer, citrate buffer, Tris buffer, and borate buffer, and medium for cell culture.
  • physiological buffers such as phosphate buffer, carbonate buffer, citrate buffer, Tris buffer, and borate buffer
  • medium for cell culture As an aqueous gel, extracellular matrix constituent factors (proteoglycans such as aggrecan; glycosaminoglycans such as hyaluronic acid; protein fibers such as collagen and elastin; or mixtures thereof (e.g., basement membrane preparations), etc.), polysaccharides (eg, agarose).
  • a basement membrane preparation has the ability to control cell morphology, differentiation, proliferation, movement, functional expression, etc.
  • a basement membrane when desired cells of the same or different type that have the ability to form a basement membrane are seeded and cultured thereon.
  • a basement membrane For example, cells that have the ability to form a basement membrane that have adhered to the support via the basement membrane are removed from the support using a solution that has the ability to dissolve lipids in the cells, an alkaline solution, etc. It can be made by Basement membrane preparations may include Matrigel. By using an aqueous gel, it is possible to suppress the dispersion of transplanted cancer cells in vivo.
  • human peripheral blood mononuclear cells can be obtained according to a standard method or using a commercially available kit.
  • the cancer-bearing, immunodeficient non-human animal according to the present invention may be one in which human peripheral blood mononuclear cells derived from a healthy individual are transplanted, or human peripheral blood mononuclear cells derived from a cancer patient are transplanted into the cancer-bearing immunodeficient non-human animal. It may be a transplanted one.
  • the human peripheral blood of the cancer patient may be transplanted.
  • the method for transplanting human peripheral blood mononuclear cells is not particularly limited, but may include a method in which the cells are adjusted to a predetermined cell number and then transplanted from the tail vein.
  • the number of human peripheral blood mononuclear cells to be transplanted is not particularly limited, but can be 1 to 5 x 10 6 or more. Most preferably, the number is 5 ⁇ 10 6 . If the number of human peripheral blood mononuclear cells is less than this range, there is a risk that the engraftment ability of B cells will be low and that it will be difficult to engraft sufficient lymphocytes to evaluate the antitumor effect. Furthermore, if the number of human peripheral blood mononuclear cells exceeds this range, there is a possibility that the human clinical specimen will be wasted.
  • cancer-bearing cancer immune response evaluation method and kit using immunodeficient non-human animals The cancer-bearing immunodeficient non-human animal described above lacks both endogenous functional T cells and B cells, diminishes macrophage function, loses NK cells or NK activity, and has dendritic Cell function is reduced, and it has excellent heterogeneous cell adhesion.
  • cancer-bearing, immunodeficient non-human animals may develop graft-versus-host disease (GVHD) despite transplantation of cancer cells, cancer tissues, and human peripheral blood mononuclear cells. Instead, cancer cells, cancer tissues, B cells, and T cells engraft.
  • cancer-bearing immunodeficient non-human animals exhibit characteristics such as similar proportions of B cells and T cells as in cancer patients from which the engrafted cancer cells and cancer tissues are derived.
  • cancer-bearing and immunodeficient non-human animals can simulate the immune response to cancer in cancer patients, so they are useful for tests related to immune responses to cancer and cancer immunotherapy. It can be used for.
  • adoptive immune cell therapy is cancer immunotherapy that enhances anti-tumor immunity by administering immune cells; it includes peptides that serve as cancer antigens, nucleic acids that encode the peptides, or dendritic cells that carry cancer antigens.
  • Cancer vaccine therapy using cancer vaccines mediated by antibody-dependent cellular cytotoxicity (ADCC) activity, in which the Fc portion of antibodies binds to Fc receptors expressed on immune cells such as monocytes and NK cells, and complement fixation.
  • ADCC antibody-dependent cellular cytotoxicity
  • Antibody therapy whose mechanism of action is complement-dependent cytotoxicity (CDC) activity; therapy based on the immune response to cancer, such as therapy using inhibitors of immune checkpoints (immune checkpoint inhibitors) that suppress the immune system Cancer-bearing and immunodeficient non-human animals can be effectively used for various therapies.
  • CDC complement-dependent cytotoxicity
  • a cancer-bearing immunodeficient non-human animal can be applied to a method of evaluating cancer immune response to a test substance.
  • the test substance may be any known compound or a new compound.
  • test substances include nucleic acids, carbohydrates, lipids, proteins, peptides, organic low-molecular compounds, compound libraries prepared using combinatorial chemistry techniques, random peptide libraries, random nucleic acid libraries, or microorganisms, animals and plants.
  • natural ingredients derived from marine organisms and the like can be mentioned.
  • a test substance is administered to the above-mentioned cancer-bearing and immunodeficient non-human animal.
  • Administration methods include, but are not particularly limited to, oral, subcutaneous, intraperitoneal, intravenous, intraportal vein, and the like.
  • the test substance is administered for a period sufficient to evaluate its effects, and is usually 3 days or more, preferably 7 days or more, more preferably 14 days or more, and still more preferably 21 days or more.
  • lymphocytes in the cancer-bearing immunodeficient non-human animal are measured, and the lymphocytes before and after administration of the test substance are compared.
  • Measuring lymphocytes means, for example, measuring B cells, helper T cells, killer T cells, NK cells, and monocytes contained in engrafted human peripheral blood mononuclear cells using a cell expression antigen test using flow cytometry. It means to measure.
  • lymphocytes a spleen or the like collected from a cancer-bearing, immunodeficient non-human animal can be used.
  • human CD45-positive white blood cells human CD19-positive B cells, and human CD3-positive T cells in engrafted human peripheral blood mononuclear cells
  • human CD4-positive helper T cells and human CD8-positive killer T cells can also be measured.
  • human CD56-positive NK cells may be measured.
  • human CD2, human CD5, human CD7, and human TCR may be measured as cell surface antigens for the T cell system.
  • human CD10, human CD20, human CD22, human CD79a, and human ⁇ / ⁇ may be measured as cell surface antigens for B cell lines. Cell surface antigens are not limited to these representative examples, and human CD16, human CD57, human CD13, human CD33, human CD34, and human MPO (myeloperoxidase) can also be measured.
  • cancer immune responses can be evaluated for test substances.
  • Evaluating cancer immune response means selecting a test substance as an effective candidate substance for adoptive immune cell therapy; selecting it as an effective candidate substance for cancer vaccine therapy; selecting it as an effective candidate substance for antibody therapy. ; This meaning includes selection as an effective candidate substance for immune checkpoint inhibitors.
  • immune checkpoint inhibitors or immune checkpoint inhibition can be determined.
  • Candidate substances for agents can be selected. Changes in the proportion of B cells and T cells when a known immune checkpoint inhibitor is applied to a specific cancer patient, and the prescribed test substance is administered to the cancer-bearing immunodeficient non-human animal. Compare the changes in the proportions of B cells and T cells when doing so, and if the latter proportion change is similar to the former proportion change, select the test substance as the known immune checkpoint inhibitor or its candidate substance. I can do it.
  • Atezolizumab can be mentioned as an example of an immune checkpoint inhibitor.
  • Atezolizumab is an anti-PD-L1 antibody drug that inhibits programmed cell death-1 (PD-1) and its ligand PD-L1 (PD-L2) pathway. It has been shown that administration of atezolizumab causes reactivation of T cells, induces a cancer-specific immune response, and exhibits antitumor effects. It has been shown that in breast cancer patients, the proportion of T cells among CD45-positive cells decreases compared to healthy subjects, and the proportion of B cells increases.
  • PD-1 programmed cell death-1
  • PD-L2 ligand PD-L1
  • test substance can be selected as an immune checkpoint inhibitor of the PD-1/PD-L1 pathway or a candidate thereof.
  • immune checkpoint inhibitors are not limited to immune checkpoint inhibitors of the PD-1/PD-L1 pathway, but include cytotoxic T lymphocyte antigen 4 (CTLA-4) receptors expressed on T cells. It may also inhibit the B7/CTLA4 pathway between B7 (B7-1:CD80, B7-2:CD86) molecules expressed on antigen-presenting cells.
  • CTL-4 cytotoxic T lymphocyte antigen 4
  • Such immune checkpoint inhibitors include ipilimumab.
  • the size of tumor tissue in immunodeficient non-human animals may be measured. Compare the size of tumor tissue in a tumor-bearing-immunodeficient non-human animal to which the test substance was administered with the size of tumor tissue in a control tumor-bearing-immunodeficient non-human animal to which the test substance was not administered. do. By considering the comparative results of tumor tissue size in addition to the above-mentioned lymphocyte measurement results, it is possible to evaluate the cancer immune response and determine the antitumor effect of the test substance.
  • tumor-infiltrating lymphocytes In addition to measuring the size of tumor tissue in cancer-bearing, immunodeficient non-human animals as described above, it is also possible to measure the degree of lymphocyte infiltration into the tumor (density of tumor-infiltrating lymphocytes). good. The density of tumor-infiltrating lymphocytes in tumor-bearing-immunodeficient non-human animals administered with the test substance was compared with that of tumor-infiltrating lymphocytes in control tumor-bearing-immunodeficient non-human animals to which the test substance was not administered. Compare with density.
  • the cancer immune response of the test substance is evaluated and the antitumor effect is further determined. be able to.
  • a cancer immune response evaluation kit can be provided to carry out the cancer immune response evaluation method described above.
  • the cancer immune response evaluation kit according to the present invention includes the above-described cancer-bearing immunodeficient non-human animal and a cell surface marker analysis reagent for peripheral blood mononuclear cells.
  • the cell surface marker analysis reagent for peripheral blood mononuclear cells is used to detect lymphocytes contained in engrafted human peripheral blood mononuclear cells using a cell expression antigen test using flow cytometry, as described above.
  • this kit contains an anti-CD45 antibody for detecting human CD45-positive leukocytes, an anti-CD19 antibody for detecting human CD19-positive B cells, and a human CD3-positive T cell.
  • An anti-CD3 antibody for detection can be provided.
  • this kit can include an anti-CD4 antibody for detecting human CD4-positive helper T cells and an anti-CD8 antibody for detecting human CD8-positive killer T cells.
  • this kit can also include an anti-CD56 antibody for detecting human CD56-positive NK cells.
  • antibodies against human CD2, human CD5, human CD7, and human TCR (T-Cell Receptor) as cell surface antigens can be provided for detection of T cell lines.
  • antibodies against human CD10, human CD20, human CD22, human CD79a, human CD38, CD27, Ig heavy chain, IgM, IgG subset, IgA subset, IgD, IgE, Ig light chain ⁇ , ⁇ were used as cell surface antigens in B cells. Provision may also be made for system detection. Furthermore, as antibodies against cell surface antigens, antibodies against human CD16, human CD57, human CD13, human CD33, human CD34, and human MPO (myeloperoxidase) can also be provided. Furthermore, antibodies such as various activation/exhaustion markers such as PD-1, PD-L1, CD25, and CTLA-4, and ligands for immune checkpoint antibodies can be provided.
  • this kit can also contain the above-mentioned test substance. That is, this kit can be used as test substances such as nucleic acids, carbohydrates, lipids, proteins, peptides, small organic compounds, compound libraries prepared using combinatorial chemistry technology, random peptide libraries, and random nucleic acid libraries. It can contain natural components derived from lye or microorganisms, animals, plants, or marine organisms.
  • Tumor cells and mice The breast cancer cell line MDA-MB231 was stored at the Department of Molecular Life Science, School of Basic Medicine, Tokai University School of Medicine, and was incubated at 37°C using Leibovitz L-15 medium and 15% FCS. Cultured in CO 2 free. NOG mice were purchased from INVIVO Science. CMV-NOG-hIL-4-Tg mice and CAG-NOG-hIL-4-Tg mice were produced by the Central Research Institute for Experimental Animals and maintained in an isolator at the Experimental Animal Facility, Tokai University School of Medicine, or the Central Laboratory for Experimental Animals. The one maintained at the research institute was used. The human IL-4 concentration was measured by DNA typing and ELISA and used for transplantation.
  • CMV-NOG-hIL-4-Tg mice are transgenic NOG mice into which an expression vector containing a CMV promoter, human IL-4 cDNA, and SV40poly(A) has been introduced.
  • CAG-NOG-hIL-4-Tg mice are transgenic NOG mice into which an expression vector containing a CAG promoter, human IL-4 cDNA, and SV40poly(A) has been introduced.
  • the wells were then washed with PBS-Tween (0.05% v/v) and incubated with 3% BSA-PBS for 2 hours at room temperature. After washing with PBS-Tween three times, mouse plasma was added in a 10-fold dilution series and allowed to react at room temperature for 2 hours. The plate was washed three times, and biotin-conjugated mouse anti-human IgG mAb (manufactured by BD Pharmingen) (1:3,000) was added. After the plate was reacted for 2 hours at 37°C, it was washed three times and streptavidin-horseradish peroxidase (1:50,000 v/v; manufactured by BD Pharmingen) was added.
  • mice Two weeks later, the mice were anesthetized, heparinized blood was collected, and euthanized. After collecting cells from various lymphoid tissues, red blood cells were removed using hemolysis buffer to prepare a cell suspension. After counting these cells, flow cytometry (FCM) analysis was performed on the human leukocyte fraction. Tumor, lung, and liver tissues were used for immunohistochemical staining.
  • FCM flow cytometry
  • the cells were reacted with an appropriate amount of various fluorescently labeled antibodies for 15 minutes at 4°C, and then washed with PBS containing 1% BSA. These cells were analyzed using FACS Fortessa or Verse (manufactured by BD Biosciences). After gating on live cells, human CD45-positive cells were further gated to obtain a human leukocyte fraction. These cells were further divided into lymphocyte subsets using cell surface markers. FlowJo (BD) was used for data analysis.
  • hIL-4-Tg with a CMV promoter reproduces the human immune environment that maintains a balance of Th, Tc, and B cells by PBMC transplantation, whereas hIL-4-Tg with a CAG-promoter has a predominance of Th cells. It becomes an immune environment.
  • the white dots indicate the results of measuring the plasma IL-4 concentration of CMV-NOG-hIL-4-Tg using the method described in [Materials and Methods] (2) ELISA above, and the black dots indicate the results of measuring the plasma IL-4 concentration of CMV-NOG-hIL-4-Tg using the same method.
  • the results of measuring the plasma IL-4 concentration of CAG-NOG-hIL-4-Tg are shown.
  • Figure 2 shows the results of measuring the plasma IL-4 concentration of CMV-NOG-hIL-4-Tg using
  • NOG mice transfected with human IL-4 are able to engraft B cells derived from human PBMC, and especially when the human IL-4 concentration in plasma is 100 to 500 pg/ml, B cells can be engrafted. It became clear that the cell survival rate was excellent.
  • CD3-positive T cells, CD19-positive B cells, CD4-positive helper T cells, and CD8-positive The results of measuring killer T cells are shown in Figure 2.
  • FIG. 2 it was found that CD4-positive helper T cells and CD8-positive killer T cells were engrafted in a well-balanced manner in CMV-NOG-hIL-4-Tg mice.
  • CAG-NOG-hIL-4-Tg mice most of the cells were CD4-positive helper T cells, and almost no CD8-positive killer cells were detected.
  • CMV-NOG-hIL-4-Tg mice individuals with low plasma IL-4 concentrations had low B cell engraftment ability, resulting in a CD8-dominated GVHD-like profile.
  • immunodeficient mice in which the human IL-4 gene was introduced into NOG mice, especially immunodeficient mice with plasma IL-4 concentrations of approximately 100-500 pg/ml (approximately 100-1000 pg/ml depending on the measurement method).
  • plasma IL-4 concentrations approximately 100-500 pg/ml (approximately 100-1000 pg/ml depending on the measurement method).
  • the human breast cancer cell line MDA-MB-231 engrafts on CMV-PBMC-NOG-hIL-4-Tg, mimicking the patient's immune environment, and tumor growth suppression by atezolizumab is observed.
  • FIG. 3 shows the results of measuring tumor diameters for the PBS administration group and the atezolizumab administration group.
  • PBS or atezolizumab was administered to CMV-NOG-hIL-4-Tg mice transplanted with breast cancer cell line MDA-MB231 and CMV-NOG-hIL-4-Tg mice not transplanted with breast cancer cell line MDA-MB231.
  • Figure 4 shows the results of measuring the lymphocyte profile when administered.
  • CMV-NOG-hIL-4-Tg mice transplanted with breast cancer cell line MDA-MB231 are described as "tumor-bearing mice," and CMV-NOG-hIL-4-Tg mice that are not transplanted with breast cancer cell line MDA-MB231 are referred to as “tumor-bearing mice.”
  • -4-Tg mice were described as "non-tumor-bearing mice.”
  • CMV-NOG-hIL-4-Tg mice transplanted with MDA-MB231 mimic the immune status of human breast cancer, and further show the antitumor effect of atezolizumab, an immune checkpoint inhibitor, on human breast cancer patients. It became clear that it was possible to reproduce. All publications, patents, and patent applications cited herein are incorporated by reference in their entirety.

Abstract

Provided is a tumor-bearing immune nonhuman animal that enables suppression of the onset of graft-versus-host disease (GVHD) and engraftment of T cells and/or B cells. Human peripheral blood monocytes are transplanted into a tumor-bearing immunodeficient nonhuman animal based on an immunodeficient nonhuman animal into which human IL-4 gene has been introduced.

Description

担がん-免疫不全非ヒト動物、これを用いた供試物質に関するがん免疫応答評価方法Cancer-bearing immunodeficient non-human animals, and cancer immune response evaluation methods for test substances using them
 本発明は、がん細胞及び/又はがん組織を免疫不全非ヒト動物に移植してなる担がん-免疫不全非ヒト動物、これを用いた供試物質に関するがん免疫応答評価方法及び/又はがん免疫応答評価キットに関する。 The present invention relates to a cancer-bearing, immunodeficient non-human animal obtained by transplanting cancer cells and/or cancer tissues into an immunodeficient non-human animal, a method for evaluating cancer immune response regarding a test substance using the same, and/or Or relates to a cancer immune response evaluation kit.
 免疫不全マウスに代表される免疫不全非ヒト動物は、B細胞やT細胞、NK細胞といった1以上の免疫成分の機能が消失或いは減退しているという特徴を有する。このため、ヒトなどの異種生物の細胞や組織を免疫不全非ヒト動物に移植することができ、免疫学、伝染病学、腫瘍学、幹細胞生物学等の研究分野において免疫不全非ヒト動物が非常に重要な役割を果たしている。 Immunodeficient non-human animals, typified by immunodeficient mice, are characterized by loss or decline in the function of one or more immune components such as B cells, T cells, and NK cells. For this reason, cells and tissues from foreign organisms such as humans can be transplanted into immunodeficient non-human animals, and immunodeficient non-human animals are used extensively in research fields such as immunology, infectious diseases, oncology, and stem cell biology. plays an important role in
 例えば、ヒト細胞の生着が可能であり、機能的なT細胞及びB細胞を共に欠失し、補体活性、マクロファージ機能の減退やナチュラルキラー(NK)細胞活性の減退等がみられるNOD-scidマウスに、サイトカインレセプター共通ドメインであるIL-2受容体γ鎖遺伝子をノックアウトしたマウス(IL2RγKOマウス)を戻し交配することにより、NK細胞が消失し、マクロファージ機能が減退し、かつ樹状細胞機能が減退しており、優れた異種細胞生着性を有するNOGマウス(「NOD.Cg-PrkdcscidIl2rgtm1Sug/ShiJic」,「NOD-scid,il2rgnull」等とも表示される)が知られている(例えば、特許文献1参照)。NOGマウスは、ヒトの細胞や組織の生着性が非常に高い免疫不全マウスとされている。また、NOD-scidマウスとIL-2受容体γ鎖遺伝子欠損マウスとを交配することで、NOGマウスと同様な性質を有するNSGマウス(「NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ」とも表示される)も知られている。 For example, NOD-, which is capable of engrafting human cells, lacks both functional T cells and B cells, and exhibits a decrease in complement activity, macrophage function, and natural killer (NK) cell activity, etc. By backcrossing scid mice with mice in which the IL-2 receptor γ chain gene, which is a common domain of cytokine receptors, is knocked out (IL2RγKO mice), NK cells disappear, macrophage function declines, and dendritic cell function is reduced. NOG mice (also referred to as `` NOD . (For example, see Patent Document 1). NOG mice are considered to be immunodeficient mice with extremely high engraftment of human cells and tissues. In addition, by crossing NOD-scid mice with IL-2 receptor γ chain gene-deficient mice, NSG mice (also expressed as "NOD.Cg-Prkdc scid Il2rg tm1Wjl /SzJ"), which have similar characteristics to NOG mice ) is also known.
 免疫不全非ヒト動物の代表的な例として、上述のような重度免疫不全マウスは、T、B、NK細胞、マクロファージ、樹状細胞、補体の機能が消失或いは減退しているため、ヒト造血幹細胞(HSC)、ヒト末梢血単核球(PBMC)、ヒト腫瘍細胞株由来の異種移植片(CDX)、腫瘍患者由来異種移植片(PDX)又は他の成体幹細胞と組織を高効率に埋め込むことができ、ヒト化マウスの作製に広く応用されている。 As a typical example of an immunodeficient non-human animal, severe immunodeficient mice such as those mentioned above have lost or decreased functions of T, B, NK cells, macrophages, dendritic cells, and complement, and therefore are not capable of human hematopoiesis. Highly efficient implantation of stem cells (HSC), human peripheral blood mononuclear cells (PBMC), human tumor cell line-derived xenografts (CDX), tumor patient-derived xenografts (PDX) or other adult stem cells and tissues. It has been widely applied to create humanized mice.
 しかしながら、非特許文献1及び2には、NOGマウスへHSCやがん細胞を移植した場合に正常に分化した成熟ヒトT細胞およびB細胞の生着が不可能であることが指摘されている。これはNSGマウスや他の重度免疫不全マウスにおいても同様である。 However, Non-Patent Documents 1 and 2 point out that when HSCs and cancer cells are transplanted into NOG mice, it is impossible to engraft normally differentiated mature human T cells and B cells. This also applies to NSG mice and other severely immunodeficient mice.
 また、非特許文献3には、NOGマウスへPBMCを移植したときに、移植片対宿主病(GVHD)を発症することが開示されている。同様に、NSGマウスに関してもPBMCを移植したときに、移植片対宿主病(GVHD)を発症することが開示されている(非特許文献4)。また、非特許文献5には、主要組織適合遺伝子複合体クラスI/IIをダブルノックアウトしたNOGマウスに対してヒト末梢血単核球とがん細胞を移植したところ、GVHDは回避するが、B細胞の生着が不可能なため、B細胞の反応が検出できないことが開示されている。 Additionally, Non-Patent Document 3 discloses that graft-versus-host disease (GVHD) develops when PBMCs are transplanted into NOG mice. Similarly, it has been disclosed that NSG mice develop graft-versus-host disease (GVHD) when PBMCs are transplanted (Non-Patent Document 4). Furthermore, in Non-Patent Document 5, when human peripheral blood mononuclear cells and cancer cells were transplanted into NOG mice with double knockout of major histocompatibility complex class I/II, GVHD was avoided, but B. It is disclosed that B cell responses cannot be detected because cell engraftment is not possible.
 ところで、上述したNOGマウスを用いたヒト化マウスでは観察できないヒト細胞の分化、生着、機能の向上あるいはヒト疾患モデルの確立を目指し、NOGマウスへのヒト遺伝子導入又はマウス遺伝子除去を行った改良型NOGマウス(次世代ヒト化マウス)が種々開発されている。一例として、NOGマウスに対して、ヒトサイトメガロウイルスプロモーター(CMVプロモーター)の制御下にヒトIL-4遺伝子を発現するNOGマウス(「マウスNOG-hIL-4Tg」又は「NOD.Cg-PrkdcscidIl2rgtm1SugTg(CMV-IL4)/Jic」と呼称される)が知られている(非特許文献6)。マウスNOG-hIL-4Tgは、ヒトIL-4遺伝子を全身性に発現し、ヒトPBMCを移入すると、多量のヒトT細胞が生着し、GVHDが起こらないため、長期実験が可能であるという特徴を有している。 By the way, improvements in which human genes are introduced into NOG mice or mouse genes are removed are aimed at improving the differentiation, engraftment, and functions of human cells that cannot be observed in humanized mice using NOG mice, or establishing human disease models. Various types of NOG mice (next generation humanized mice) have been developed. As an example, NOG mice expressing the human IL-4 gene under the control of the human cytomegalovirus promoter (CMV promoter) ("mouse NOG-hIL-4Tg" or "NOD.Cg-Prkdc scid Il2rg") tm1Sug Tg (CMV-IL4)/Jic") is known (Non-Patent Document 6). Mouse NOG-hIL-4Tg systemically expresses the human IL-4 gene, and when human PBMCs are transferred, a large amount of human T cells engraft and GVHD does not occur, making long-term experiments possible. have.
 また、マウスNOG-hIL-4Tgに関しては、非特許文献7に、ヒトリンパ球サブセットとグルココルチコイド受容体(GR)の発現レベルとの関係を分析し、ヒトPBMCを移植したときの体液性免疫について開示されている。さらに、マウスNOG-hIL-4Tgに関しては、非特許文献8に、乳がん患者由来のPBMCを移植し、ヒト上皮成長因子受容体2(HER2)ペプチドで免疫して、乳がん患者の体液性免疫を分析したことが開示されている。 Regarding mouse NOG-hIL-4Tg, Non-Patent Document 7 analyzes the relationship between human lymphocyte subsets and glucocorticoid receptor (GR) expression levels and discloses humoral immunity when human PBMCs are transplanted. has been done. Furthermore, regarding mouse NOG-hIL-4Tg, see Non-Patent Document 8, PBMCs derived from breast cancer patients were transplanted, immunized with human epidermal growth factor receptor 2 (HER2) peptide, and the humoral immunity of breast cancer patients was analyzed. It is disclosed that what has happened.
特許第3753321号Patent No. 3753321
 ところで、免疫不全非ヒト動物にがん細胞及び/又はがん組織を移植した担がん-免疫非ヒト動物にヒトPBMCをさらに移植した場合、移植片対宿主病(GVHD)の発症や、T細胞及び/又はB細胞の生着ができない。このため、従来、担がん-免疫非ヒト動物を用いて、がんに対する免疫応答を試験、評価することができないといった問題があった。 By the way, when human PBMCs are further transplanted into a tumor-bearing non-human animal that has been transplanted with cancer cells and/or cancer tissue into an immunodeficient non-human animal, the development of graft-versus-host disease (GVHD) and T. Cells and/or B cells cannot engraft. For this reason, there has conventionally been a problem in that it has not been possible to test or evaluate immune responses to cancer using cancer-bearing non-human animals.
 そこで、本発明は、上述した実情に鑑み、移植片対宿主病(GVHD)の発症を抑え、T細胞及び/又はB細胞の生着が可能な担がん-免疫非ヒト動物、これを用いた供試物質に関するがん免疫応答評価方法及び/又はがん免疫応答評価キットを提供することを目的とする。 Therefore, in view of the above-mentioned circumstances, the present invention aims to provide a cancer-bearing, immune-immunized non-human animal that can suppress the onset of graft-versus-host disease (GVHD) and allow T cells and/or B cells to engraft. The purpose of the present invention is to provide a cancer immune response evaluation method and/or a cancer immune response evaluation kit for test substances.
 上述した目的を達成するため、本発明者らが鋭意検討した結果、ヒトIL-4遺伝子が導入された免疫不全非ヒト動物を元にした担がん-免疫不全非ヒト動物に対して、ヒト末梢血単核球(PBMC)を移植した場合には、移植片対宿主病(GVHD)の発症を抑え、T細胞及び/又はB細胞の生着が可能となることを見いだし、本発明を完成するに至った。 In order to achieve the above-mentioned purpose, the present inventors conducted intensive studies and found that human The present invention was completed based on the discovery that when peripheral blood mononuclear cells (PBMCs) are transplanted, the onset of graft-versus-host disease (GVHD) can be suppressed and T cells and/or B cells can be engrafted. I ended up doing it.
 本発明は以下を包含する。
 (1)IL-2受容体γ鎖遺伝子に変異が導入されてIL-2受容体γ鎖が欠損し、T細胞及びB細胞の抗原受容体遺伝子の再構成に関わる遺伝子の変異が両対立遺伝子座位にあり、且つ、ヒトIL-4遺伝子が導入された免疫不全非ヒト動物に対して、がん細胞及び/又はがん組織並びにヒト末梢血単核球が移植された、担がん-免疫不全非ヒト動物。
 (2)上記ヒトIL-4遺伝子がコードするヒトIL-4の血漿中濃度が100~500pg/mlであることを特徴とする(1)記載の担がん-免疫不全非ヒト動物。
 (3)上記ヒトIL-4遺伝子は、ヒトサイトメガロウイルスプロモーターの制御下に発現することを特徴とする(1)記載の担がん-免疫不全非ヒト動物。
 (4)T細胞及びB細胞の抗原受容体遺伝子の再構成に関わる遺伝子の変異が、SCID変異又はRAG変異であることを特徴とする(1)記載の担がん-免疫不全非ヒト動物。
 (5)上記免疫不全非ヒト動物は、機能的なT細胞及びB細胞を共に欠失し、マクロファージ機能が減退し、NK細胞又はNK活性を消失し、且つ、樹状細胞機能が減退しており、優れた異種細胞接着性を有しているものであることを特徴とする(1)記載の担がん-免疫不全非ヒト動物。
 (6)上記免疫不全非ヒト動物は、以下のAの非ヒト動物にBの非ヒト動物を戻し交配することで作出されたものであることを特徴とする(1)記載の担がん-免疫不全非ヒト動物。
A:NOD/Shi非ヒト動物にC.B-17-scid非ヒト動物を戻し交配することにより得られる非ヒト動物
B:インターロイキン2受容体γ鎖遺伝子をノックアウトした非ヒト動物
 (7)上記免疫不全非ヒト動物は、NOG(NOD/Shi-scid,IL-2Rγ KO)マウスであることを特徴とする(1)記載の担がん-免疫不全非ヒト動物。
 (8)上記がん細胞及び/又はがん組織は、ヒト乳がん細胞及び/又はヒト乳がん組織であることを特徴とする(1)記載の担がん-免疫不全非ヒト動物。
 (9)上記ヒト末梢血単核球の移植細胞数を1~5×10個とすることを特徴とする(1)記載の担がん-免疫不全非ヒト動物。
 (10)ヒトCD19陽性のヒトB細胞が生着していることを特徴とする(1)記載の担がん-免疫不全非ヒト動物。
The present invention includes the following.
(1) A mutation is introduced into the IL-2 receptor γ chain gene, resulting in a deficiency of the IL-2 receptor γ chain, and mutations in genes involved in the rearrangement of antigen receptor genes in T cells and B cells are biallelic. A tumor-bearing immune system in which cancer cells and/or cancer tissues and human peripheral blood mononuclear cells are transplanted into an immunodeficient non-human animal that is present in the human IL-4 gene and has been introduced with the human IL-4 gene. Insufficient non-human animals.
(2) The tumor-bearing, immunodeficient non-human animal according to (1), wherein the plasma concentration of human IL-4 encoded by the human IL-4 gene is 100 to 500 pg/ml.
(3) The tumor-bearing and immunodeficient non-human animal according to (1), wherein the human IL-4 gene is expressed under the control of a human cytomegalovirus promoter.
(4) The cancer-bearing, immunodeficient non-human animal according to (1), wherein the mutation in a gene involved in rearrangement of antigen receptor genes of T cells and B cells is a SCID mutation or a RAG mutation.
(5) The immunodeficient non-human animal described above lacks both functional T cells and B cells, has decreased macrophage function, has lost NK cells or NK activity, and has decreased dendritic cell function. The tumor-bearing immunodeficient non-human animal according to (1), which is characterized by having excellent adhesion to different types of cells.
(6) The immunodeficient non-human animal is produced by backcrossing the following non-human animal A with the non-human animal B; Immunocompromised non-human animals.
A: C. to NOD/Shi non-human animals. Non-human animal B obtained by backcrossing B-17-scid non-human animal: non-human animal in which the interleukin 2 receptor γ chain gene has been knocked out (7) The above immunodeficient non-human animal is NOG (NOD/ The tumor-bearing immunodeficient non-human animal according to (1), which is a Shi-scid, IL-2Rγ KO) mouse.
(8) The cancer-bearing, immunodeficient non-human animal according to (1), wherein the cancer cells and/or cancer tissues are human breast cancer cells and/or human breast cancer tissues.
(9) The cancer-bearing, immunodeficient non-human animal according to (1), wherein the number of transplanted human peripheral blood mononuclear cells is 1 to 5×10 6 cells.
(10) The cancer-bearing, immunodeficient non-human animal according to (1), characterized in that human CD19-positive human B cells are engrafted therein.
 (11)上記(1)~(10)いずれか記載の担がん-免疫不全非ヒト動物に対して供試物質を投与する工程と、上記供試物質の投与前後における、リンパ球を比較する工程とを含む、供試物質に関するがん免疫応答評価方法。
 (12)上記供試物質は、免疫チェックポイント阻害剤又は免疫チェックポイント阻害剤の候補物質であり、リンパ球のうちT細胞及び/又はB細胞を上記供試物質の投与前後において比較することを特徴とする(11)記載のがん免疫応答評価方法。
 (13)上記供試物質の投与前と比較して、リンパ球に含まれるヒトCD8陽性キラーT細胞が増加した場合、上記担がん-免疫不全非ヒト動物に移植したがんに対して、当該供試物質が免疫チェックポイント阻害作用を有すると判定することを特徴とする(11)記載のがん免疫応答評価方法。
(11) The step of administering a test substance to the cancer-bearing immunodeficient non-human animal described in any of (1) to (10) above, and comparing the lymphocytes before and after administration of the test substance. A method for evaluating a cancer immune response regarding a test substance, the method comprising:
(12) The above test substance is an immune checkpoint inhibitor or a candidate substance for an immune checkpoint inhibitor, and it is possible to compare T cells and/or B cells among lymphocytes before and after administration of the above test substance. The cancer immune response evaluation method according to feature (11).
(13) If the number of human CD8-positive killer T cells included in the lymphocytes increases compared to before administration of the test substance, the cancer transplanted into the cancer-bearing immunodeficient non-human animal, The cancer immune response evaluation method according to (11), characterized in that the test substance is determined to have an immune checkpoint inhibitory effect.
 (14)上記(1)~(10)いずれか記載の担がん-免疫不全非ヒト動物と、末梢血単核球に関する細胞表面マーカー解析試薬とを含む、がん免疫応答評価キット。
 (15)評価対象の供試物質を更に含むことを特徴とする(14)記載のがん免疫応答評価キット。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2022-123595号の開示内容を包含する。
(14) A cancer immune response evaluation kit comprising the cancer-bearing immunodeficient non-human animal according to any one of (1) to (10) above and a cell surface marker analysis reagent for peripheral blood mononuclear cells.
(15) The cancer immune response evaluation kit according to (14), further comprising a test substance to be evaluated.
This specification includes the disclosure content of Japanese Patent Application No. 2022-123595, which is the basis of the priority of this application.
 本発明に係る担がん-免疫不全非ヒト動物は、がん細胞及び/又はがん組織並びにヒト末梢血単核球が移植され、移植片対宿主病(GVHD)の発症が抑制され、且つ、T細胞及び/又はB細胞が生着するといった特徴を示す。したがって、本発明に係る担がん-免疫不全非ヒト動物は、がんの免疫療法などの研究に利用することができる。 The cancer-bearing immunodeficient non-human animal according to the present invention is transplanted with cancer cells and/or cancer tissues and human peripheral blood mononuclear cells, and the onset of graft-versus-host disease (GVHD) is suppressed, and , T cells and/or B cells engraft. Therefore, the cancer-bearing immunodeficient non-human animal according to the present invention can be used in research on cancer immunotherapy and the like.
 また、本発明に係る供試物質に関するがん免疫応答評価方法及びがん免疫応答評価キットによれば、移植片対宿主病(GVHD)の発症が抑制され、且つ、T細胞及び/又はB細胞が生着した担がん-免疫不全非ヒト動物を使用するため、がんに対する免疫応答を高精度に評価することができる。 Further, according to the cancer immune response evaluation method and cancer immune response evaluation kit regarding the test substance according to the present invention, the onset of graft-versus-host disease (GVHD) is suppressed, and T cells and/or B cells Because it uses cancer-bearing, immunodeficient non-human animals with engrafted cancer, the immune response to cancer can be evaluated with high precision.
ヒトIL-4遺伝子を導入したNOGマウスにおける血漿中IL-4濃度と生着したB細胞数との関係を示す特性図である。FIG. 2 is a characteristic diagram showing the relationship between plasma IL-4 concentration and the number of engrafted B cells in NOG mice into which the human IL-4 gene has been introduced. CMVプロモーターで発現するヒトIL-4遺伝子を導入したNOGマウスと、CAGプロモーターで発現するヒトIL-4遺伝子を導入したNOGマウスについて、ヒトPBMCを移植した後にリンパ球を測定した結果を示す特性図である。Characteristic diagram showing the results of lymphocyte measurement after transplantation of human PBMC for NOG mice introduced with the human IL-4 gene expressed by the CMV promoter and NOG mice introduced with the human IL-4 gene expressed by the CAG promoter. It is. CMVプロモーターで発現するヒトIL-4遺伝子を導入したNOGマウスに対して乳がん細胞株を移植した後の腫瘍径を、PBS投与群とアテゾリズマブ投与群について測定した結果を示す特性図である。FIG. 3 is a characteristic diagram showing the results of measuring the tumor diameters of the PBS administration group and the atezolizumab administration group after breast cancer cell lines were transplanted into NOG mice into which the human IL-4 gene expressed by the CMV promoter was introduced. CMVプロモーターで発現するヒトIL-4遺伝子を導入したNOGマウスと、これに対して乳がん細胞株を移植したマウスとについて、PBS投与群とアテゾリズマブ投与群におけるリンパ球を測定した結果を示す特性図である。This is a characteristic diagram showing the results of measuring lymphocytes in the PBS administration group and atezolizumab administration group for NOG mice into which the human IL-4 gene expressed by the CMV promoter was introduced and mice to which breast cancer cell lines were transplanted. be. 乳がん細胞株を移植した、CMVプロモーターで発現するヒトIL-4遺伝子を導入したNOGマウスについて、PBS投与群とアテゾリズマブ投与群における腫瘍組織に対する組織化学染色の結果を示す写真である。FIG. 2 is a photograph showing the results of histochemical staining of tumor tissue in a PBS administration group and an atezolizumab administration group in NOG mice into which a human IL-4 gene expressed by a CMV promoter has been introduced and which has been transplanted with a breast cancer cell line.
 以下、本発明に係る担がん-免疫不全非ヒト動物、これを用いたがん免疫応答評価方法及びがん免疫応答評価キットについて詳細に説明する。 Hereinafter, the cancer-bearing immunodeficient non-human animal, the cancer immune response evaluation method using the same, and the cancer immune response evaluation kit according to the present invention will be explained in detail.
[担がん-免疫不全非ヒト動物]
 担がん-免疫不全非ヒト動物は、IL-2受容体γ鎖遺伝子に変異が導入されてIL-2受容体γ鎖が欠損し、T細胞及びB細胞の抗原受容体遺伝子の再構成に関わる遺伝子の変異が両対立遺伝子座位にあり、且つ、ヒトIL-4遺伝子が導入された免疫不全非ヒト動物を利用して作製される。この免疫不全非ヒト動物に対して、がん細胞及び/又はがん組織並びにヒト末梢血単核球を移植することで、本発明に係る担がん-免疫不全非ヒト動物を作製することができる。
[Cancer-bearing – immunodeficient non-human animal]
Cancer-bearing immunodeficient non-human animals have a mutation introduced into the IL-2 receptor γ chain gene and are deficient in the IL-2 receptor γ chain, resulting in rearrangement of the antigen receptor genes of T cells and B cells. It is produced using an immunodeficient non-human animal in which the relevant gene mutations are present at both allelic loci and the human IL-4 gene has been introduced. The cancer-bearing immunodeficient non-human animal according to the present invention can be produced by transplanting cancer cells and/or cancer tissues and human peripheral blood mononuclear cells into this immunodeficient non-human animal. can.
 ここで、非ヒト動物とは、ヒト以外の動物であれば特に限定されないが、好ましくはヒト以外の哺乳類を意味する。非ヒト動物としては、例えば、非ヒト霊長類(サル、チンパンジー、ゴリラなど)、げっ歯類(マウス、ラット、モルモットなど)、イヌ、ネコ、ウサギ、ウシ、ブタ、ウマ、ヤギ、ヒツジ等が挙げられるが、これらに限定されない。これらの中でも、非ヒト動物としては、げっ歯類が好ましく、マウスがより好ましい。 Here, the non-human animal is not particularly limited as long as it is an animal other than human, but preferably means a mammal other than human. Examples of non-human animals include non-human primates (monkeys, chimpanzees, gorillas, etc.), rodents (mice, rats, guinea pigs, etc.), dogs, cats, rabbits, cows, pigs, horses, goats, sheep, etc. These include, but are not limited to: Among these, as the non-human animal, rodents are preferred, and mice are more preferred.
 すなわち、本発明に係る担がん-免疫不全非ヒト動物は、特に、担がん-免疫不全非ヒトほ乳類動物とすることができ、担がん-免疫不全げっ歯類動物であることが好ましく、担がん-免疫不全マウスとすることがより好ましい。 That is, the cancer-bearing immunodeficient non-human animal according to the present invention can particularly be a cancer-bearing immunodeficient non-human mammal, and is preferably a tumor-bearing immunodeficient rodent animal. , more preferably tumor-bearing immunodeficient mice.
 実施例を含む以下の説明においては、担がん-免疫不全非ヒト動物の一例として、担がん-免疫不全マウスについて詳述するが、本発明の技術的範囲を担がん-免疫不全マウスに限定することを企図するものではない。本発明は、担がん-免疫不全マウスに限定されず、上述のように、担がん-免疫不全非ヒト動物に適用することができる。 In the following description including Examples, a tumor-bearing immunodeficient mouse will be described in detail as an example of a tumor-bearing immunodeficient non-human animal, but the technical scope of the present invention is not limited to a tumor-bearing immunodeficient mouse. It is not intended to be limited to. The present invention is not limited to tumor-bearing immunodeficient mice, but can be applied to cancer-bearing, immunodeficient non-human animals as described above.
 本発明において、担がん-免疫不全マウスは、IL-2受容体γ鎖遺伝子に変異が導入されて、IL-2受容体γ鎖が欠損し、かつ、ヒトIL-4遺伝子が導入された免疫不全マウスを使用して作製される。この免疫不全マウスは、特定の免疫機能を司るタンパク質をコードする野生型の遺伝子の塩基配列について、一又は二以上の塩基の他の塩基への置換、一又は二以上の塩基の欠失、一又は二以上の塩基の挿入、アミノ酸の読み枠がずれるアウトオブフレーム及び/又はこれらの組合せ等の遺伝子の変異が導入される遺伝子改変により、野生型の遺伝子が奏する免疫作用が機能しないマウスをいう。なお、上記野生型としては、集団においてみられる最も一般的な対立遺伝子又は多型であって、突然変異により又は人為的操作による遺伝子改変がなされていないマウスを挙げることができる。 In the present invention, tumor-bearing immunodeficient mice have a mutation introduced into the IL-2 receptor γ chain gene, resulting in deletion of the IL-2 receptor γ chain, and the human IL-4 gene is introduced. Produced using immunodeficient mice. This immunodeficient mouse has a wild-type gene base sequence that encodes a protein that controls specific immune functions, including substitution of one or more bases with other bases, deletion of one or more bases, and deletion of one or more bases. or a mouse in which the immune function exerted by the wild-type gene does not function due to genetic modification that introduces genetic mutations such as insertion of two or more bases, out-of-frame reading frame shift of amino acids, and/or combinations of these. . Note that the above-mentioned wild type can include mice that have the most common allele or polymorphism found in a population and have not been genetically modified by mutation or artificial manipulation.
 より具体的に、上記IL-2受容体は、アルファ(α)鎖、ベータ(β)鎖及びガンマ(γ)鎖と呼ばれる3種類のタンパク質から構成されることがヒト及びマウスで知られており、上記IL-2受容体γ鎖は、γ鎖単独ではIL-2との結合能を有さないが、β鎖とγ鎖とのヘテロ2量体はIL-2に対する中親和性受容体となり、α鎖とβ鎖とγ鎖とのヘテロ3量体はIL-2に対する高親和性受容体となる。 More specifically, it is known in humans and mice that the IL-2 receptor is composed of three types of proteins called alpha (α) chain, beta (β) chain, and gamma (γ) chain. The above IL-2 receptor γ chain does not have the ability to bind to IL-2 when the γ chain alone has the ability to bind to IL-2, but the heterodimer of the β chain and the γ chain serves as a medium affinity receptor for IL-2. , a heterotrimer of α, β, and γ chains becomes a high-affinity receptor for IL-2.
 上記IL-2は、サイトカインの一種であり、IL-2の作用としては、細胞表面に存在するIL-2受容体と結合することにより、IL-2のシグナルを細胞質から核内へ伝達し、T細胞やB細胞の増殖やNK細胞の活性化への誘導すること等を挙げることができる。したがって、IL-2受容体γ鎖が機能的に発現しない場合としては、IL-2受容体γ鎖遺伝子に変異が導入されることによりIL-2受容体がIL-2との結合能を失っている場合、又はシグナル伝達が起こらない場合を挙げることができる。 The above-mentioned IL-2 is a type of cytokine, and the action of IL-2 is to transmit IL-2 signals from the cytoplasm into the nucleus by binding to the IL-2 receptor present on the cell surface. Examples include inducing proliferation of T cells and B cells and activation of NK cells. Therefore, when the IL-2 receptor γ chain is not functionally expressed, the IL-2 receptor loses its ability to bind to IL-2 due to a mutation introduced into the IL-2 receptor γ chain gene. cases in which signal transduction occurs, or cases in which signal transduction does not occur.
 また、がん-免疫不全マウスは、ヒトIL-4遺伝子が導入されているという特徴を有している。ヒトIL-4遺伝子は、ヒトIL4タンパク質をコードする遺伝子である。「遺伝子」とは、特定のタンパク質をコードする少なくとも1つのオープンリーディングフレームを含むポリヌクレオチドを意味し、エクソンのみからなる構成でも良いし、エクソン及びイントロンの両方を含む構成でも良い。 Additionally, cancer-immunodeficient mice are characterized by the introduction of the human IL-4 gene. The human IL-4 gene is a gene encoding human IL4 protein. The term "gene" refers to a polynucleotide that includes at least one open reading frame that encodes a specific protein, and may have a structure consisting only of exons or a structure containing both exons and introns.
 ここで、ヒトIL-4遺伝子が導入されているとは、がん-免疫不全マウスの体内において、ヒトIL-4タンパク質が発現していることを意味する。特に、ヒトIL-4タンパク質が発現するとは、がん-免疫不全マウスの体内において、移植されたヒト末梢血単核球由来のB細胞が生着するとともに、ヘルパーT細胞及びキラーT細胞がバランス良く生着するように発現することを意味する。なお、B細胞やヘルパーT細胞、キラーT細胞の生着は、例えば、がん-免疫不全マウスの脾臓に生着したリンパ球のプロファイル、すなわちCD45陽性細胞中のCD19陽性細胞(B細胞)、CD4陽性細胞(ヘルパーT細胞)、CD8陽性細胞(キラーT細胞)を検出することで評価することができる。 Here, the introduction of the human IL-4 gene means that the human IL-4 protein is expressed in the body of the cancer-immunodeficient mouse. In particular, the expression of human IL-4 protein means that in the body of cancer-immunodeficient mice, B cells derived from transplanted human peripheral blood mononuclear cells engraft, and helper T cells and killer T cells are balanced. This means that it is expressed in a way that allows for good engraftment. The engraftment of B cells, helper T cells, and killer T cells is determined by, for example, the profile of lymphocytes engrafted in the spleen of cancer-immunodeficient mice, that is, CD19-positive cells (B cells) among CD45-positive cells, Evaluation can be made by detecting CD4-positive cells (helper T cells) and CD8-positive cells (killer T cells).
 また、がん-免疫不全マウスの体内において、移植されたヒト末梢血単核球由来のB細胞が生着するとともに、ヘルパーT細胞及びキラーT細胞がバランス良く生着するためには、導入されたヒトIL-4タンパク質の血漿中濃度が所定の範囲にあることが好ましい。具体的には、導入されたヒトIL-4タンパク質の血漿中濃度が100~500pg/mlである場合、移植されたヒト末梢血単核球由来のB細胞が生着するとともに、ヘルパーT細胞及びキラーT細胞がバランス良く生着することができる。 In addition, in order for the transplanted B cells derived from human peripheral blood mononuclear cells to engraft in the body of cancer-immunodeficient mice, and for the balance of helper T cells and killer T cells to engraft, it is necessary to It is preferable that the plasma concentration of human IL-4 protein is within a predetermined range. Specifically, when the plasma concentration of introduced human IL-4 protein is 100 to 500 pg/ml, B cells derived from transplanted human peripheral blood mononuclear cells will engraft, and helper T cells and Killer T cells can engraft in a well-balanced manner.
 なお、一般に血漿中のタンパク質(この場合、ヒトIL-4タンパク質)の濃度は、測定方法や使用する検量線(特に、この場合、使用する抗ヒトIL-4抗体の種類)により異なる場合がある。本明細書にて規定する、導入されたヒトIL-4タンパク質の血漿中濃度は、BD OptEIA Set Human IL-4(BD Biosciences社製、カタログ番号:555194、ロッド番号:9189127)を使用し、IL-4濃度が500pg/ml、250pg/ml、125pg/ml、62.5pg/ml、31.3pg/ml、15.6pg/ml及び7.8pg/mlの標準試料から作成した検量線を使用して算出する。また、標準試料や試料中に含まれるIL-4は、Human IL-4 ELISA Set BD OptEIATM(BD Biosciences社製)を用いて450nmの吸光度で測定する。 In general, the concentration of protein in plasma (in this case, human IL-4 protein) may vary depending on the measurement method and the calibration curve used (particularly, in this case, the type of anti-human IL-4 antibody used). . The plasma concentration of the introduced human IL-4 protein as defined herein is determined by using BD OptEIA Set Human IL-4 (manufactured by BD Biosciences, catalog number: 555194, rod number: 9189127). -4 using a calibration curve created from standard samples with concentrations of 500 pg/ml, 250 pg/ml, 125 pg/ml, 62.5 pg/ml, 31.3 pg/ml, 15.6 pg/ml, and 7.8 pg/ml. Calculate. Further, IL-4 contained in the standard sample or sample is measured at absorbance at 450 nm using Human IL-4 ELISA Set BD OptEIATM (manufactured by BD Biosciences).
 ヒトIL-4タンパク質の血漿中濃度は、ヒトIL-4遺伝子とともに導入される転写制御領域により調節することができる。転写制御領域としてはプロモーターを挙げることができる。すなわち、ヒトIL-4遺伝子に機能するかたちで連結されたプロモーターを代えることで、ヒトIL-4タンパク質の血漿中濃度を調節することができる。例えば、特に限定されるものではないが、ヒトサイトメガロウイルスプロモーター(CMVプロモーター)を使用することで、ヒトIL-4遺伝子を導入したがん-免疫不全マウスにおいて、移植されたヒト末梢血単核球由来のB細胞が生着するとともに、ヘルパーT細胞及びキラーT細胞がバランス良く生着することとなる。例えば、CMVプロモーターの下流にヒトIL-4遺伝子を配したかたちでがん-免疫不全マウスに導入することで、がん-免疫不全マウスにおけるヒトIL-4タンパク質の血漿中濃度を100~500pg/mlとすることができる。 The plasma concentration of human IL-4 protein can be regulated by the transcription control region introduced together with the human IL-4 gene. Examples of transcription control regions include promoters. That is, by changing the promoter operably linked to the human IL-4 gene, the plasma concentration of human IL-4 protein can be regulated. For example, but not limited to, by using the human cytomegalovirus promoter (CMV promoter), transplanted human peripheral blood mononuclear B cells derived from the bulb will engraft, and helper T cells and killer T cells will also engraft in a well-balanced manner. For example, by introducing the human IL-4 gene downstream of the CMV promoter into cancer-immunodeficient mice, the plasma concentration of human IL-4 protein in cancer-immunodeficient mice can be reduced to 100-500 pg/ ml.
 なお、使用可能なプロモーターとしては、上記CMVに限定されず、例えばSV40プロモーター、PGKプロモーター、SRαプロモーター、レトロウィルスのLTRプロモーター、RSV(ラウス肉腫ウィルス)プロモーター、HSV-TK(単純ヘルペスウィルスチミジンキナーゼ)プロモーター、EF1αプロモーター、メタロチオネインプロモーター及びヒートショックプロモーター等を挙げることができる。例えば、PLOS ONE 2010,e10611に記載されるように、CMVプロモーター等、下流に配された遺伝子が哺乳動物で中程度に発現制御するものとして公知のプロモーターを使用することが好ましい。ただし、公知のプロモーターのうち、高度に発現を亢進するプロモーター、例えばCAGプロモーター(CMVエンハンサー配列とハイブリダイズさせたニワトリβアクチンプロモーターからなる)を使用することは好ましくない。これら高度に発現を亢進するプロモーターを使用した場合、ヒトIL-4タンパク質の血漿中濃度が500pg/mlを超える虞がある。 Note that usable promoters are not limited to the above CMV, but include, for example, SV40 promoter, PGK promoter, SRα promoter, retrovirus LTR promoter, RSV (Rous sarcoma virus) promoter, and HSV-TK (herpes simplex virus thymidine kinase). Promoters include EF1α promoter, metallothionein promoter, heat shock promoter, and the like. For example, as described in PLOS ONE 2010, e10611, it is preferable to use a promoter known to moderately regulate the expression of a downstream gene in mammals, such as the CMV promoter. However, among known promoters, it is not preferable to use promoters that highly enhance expression, such as the CAG promoter (consisting of the chicken β-actin promoter hybridized with the CMV enhancer sequence). When these promoters that highly enhance expression are used, there is a possibility that the plasma concentration of human IL-4 protein exceeds 500 pg/ml.
 本明細書において、アミノ酸配列又は塩基配列どうしの配列同一性(又は相同性)は、2つのアミノ酸配列又は塩基配列を、対応するアミノ酸又は塩基が最も多く一致するように、挿入及び欠失に当たる部分にギャップを入れながら並置し、得られたアラインメント中のギャップを除くアミノ酸配列全体又は塩基配列全体に対する一致したアミノ酸又は塩基の割合として求められる。アミノ酸配列同士又は塩基配列同士の配列同一性は、当該技術分野で公知の各種相同性検索ソフトウェアを用いて求めることができる。例えば、アミノ酸配列の配列同一性の値は、公知の相同性検索ソフトウェアBLASTPにより得られたアライメントを元にした計算によって得ることができ、塩基配列の配列同一性の値は、公知の相同性検索ソフトウェアBLASTNにより得られたアライメントを元にした計算によって得ることができる。 As used herein, sequence identity (or homology) between amino acid sequences or base sequences refers to the insertion and deletion of two amino acid sequences or base sequences in such a way that the corresponding amino acids or bases match the most. It is determined as the ratio of matched amino acids or bases to the entire amino acid sequence or base sequence excluding the gaps in the resulting alignment. Sequence identity between amino acid sequences or base sequences can be determined using various homology search software known in the technical field. For example, the sequence identity value of an amino acid sequence can be obtained by calculation based on an alignment obtained using the known homology search software BLASTP, and the sequence identity value of a base sequence can be obtained by calculation based on the alignment obtained using the known homology search software BLASTP. It can be obtained by calculation based on the alignment obtained by the software BLASTN.
 本明細書において、「ストリンジェントな条件」とは、例えば、Molecular  Cloning-A  LABORATORY  MANUAL  THIRD  EDITION(Sambrookら、Cold Spring Harbor Laboratory Press)に記載の方法が挙げられる。ストリンジェントな条件としては、例えば、6×SSC(20×SSCの組成:3M塩化ナトリウム、0.3Mクエン酸溶液、pH7.0)、5×デンハルト溶液(100×デンハルト溶液の組成:2質量%ウシ血清アルブミン、2質量%フィコール、2質量%ポリビニルピロリドン)、0.5質量%のSDS、0.1mg/mLサケ精子DNA、及び50%フォルムアミドからなるハイブリダイゼーションバッファー中で、42~70℃で数時間から一晩インキュベーションを行うことによりハイブリダイズさせる条件が挙げられる。インキュベーション後の洗浄の際に用いる洗浄バッファーとしては、好ましくは0.1質量%SDS含有1×SSC溶液、より好ましくは0.1質量%SDS含有0.1×SSC溶液が挙げられる。 As used herein, "stringent conditions" refer to, for example, Molecular Cloning-A LABORATORY MANUAL THIRD EDITION (Sambrook et al., Cold Spring Harbor Laboratory Examples include the method described in Press). Stringent conditions include, for example, 6x SSC (composition of 20x SSC: 3M sodium chloride, 0.3M citric acid solution, pH 7.0), 5x Denhardt's solution (composition of 100x Denhardt's solution: 2% by mass). Bovine serum albumin, 2 wt% Ficoll, 2 wt% polyvinylpyrrolidone), 0.5 wt% SDS, 0.1 mg/mL salmon sperm DNA, and 50% formamide at 42-70°C. Conditions for hybridization include incubation for several hours to overnight. The washing buffer used for washing after incubation is preferably a 1×SSC solution containing 0.1% by mass of SDS, more preferably a 0.1×SSC solution containing 0.1% by mass of SDS.
 本明細書において、ポリヌクレオチドに関して用いる「作動可能に連結」という用語は、第一の塩基配列が第二の塩基配列に十分に近くに配置され、第一の塩基配列が第二の塩基配列又は第二の塩基配列の制御下の領域に影響を及ぼしうることを意味する。例えば、ポリヌクレオチドが「プロモーターに作動可能に連結」するとは、当該ポリヌクレオチドが、当該プロモーターの制御下で発現するように連結されていることを意味する。 As used herein, the term "operably linked" with respect to polynucleotides means that a first base sequence is located sufficiently close to a second base sequence, and the first base sequence is located close enough to the second base sequence or This means that it can affect the region under the control of the second base sequence. For example, a polynucleotide being "operably linked to a promoter" means that the polynucleotide is linked such that it is expressed under the control of the promoter.
 本明細書において、「機能するかたちで連結された」とは、対象の非ヒト動物の細胞内において、当該プロモーターの下流に入れた遺伝子(ポリヌクレオチド)を発現させることができることを意味する。本明細書において、「発現可能な状態」とは、ポリヌクレオチドが導入された細胞内で、該ポリヌクレオチドが転写され得る状態にあることを意味する。 As used herein, "linked in a functional manner" means that the gene (polynucleotide) inserted downstream of the promoter can be expressed in the cells of the target non-human animal. As used herein, "an expressible state" means that the polynucleotide is in a state in which it can be transcribed within a cell into which the polynucleotide has been introduced.
 本明細書において、「発現ベクター」とは、対象ポリヌクレオチドを含むベクターであって、該ベクターを導入した細胞内で、対象ポリヌクレオチドを発現可能な状態にするシステムを備えたベクターを意味する。 As used herein, the term "expression vector" refers to a vector that contains a polynucleotide of interest and is equipped with a system that enables expression of the polynucleotide of interest in cells into which the vector has been introduced.
 ヒトIL-4について説明する。ヒトIL4は、ヒトのインターロイキン4(Interleukin4)である。IL-4は、インターロイキンの中でも造血などに関与するヘマトポエチンファミリーに分類され、129個のアミノ酸から構成される可溶性タンパク質である。IL-4は、Th2細胞、マスト細胞、好塩基球などの多様な細胞において産生される、抗炎症性糖タンパク質である。IL-4は、造血細胞上のI型IL-4受容体を介して、IgEへのクラススイッチを促進し、ナイーブヘルパーT細胞のTh2細胞への分化にも関与することが知られている。 Human IL-4 will be explained. Human IL4 is human interleukin 4. Among interleukins, IL-4 is classified into the hematopoietin family, which is involved in hematopoiesis, etc., and is a soluble protein composed of 129 amino acids. IL-4 is an anti-inflammatory glycoprotein produced in a variety of cells such as Th2 cells, mast cells, and basophils. IL-4 is known to promote class switching to IgE via the type I IL-4 receptor on hematopoietic cells, and is also involved in the differentiation of naive helper T cells into Th2 cells.
 ヒトのIL-4の遺伝子配列及びアミノ酸配列は公知であり、それらの配列情報は、GenBank等の公知のデータベースから取得することができる。例えば、ヒトのIL-4の遺伝子配列およびアミノ酸配列としては、GenBankにアクセッションNo.NM_000589.4、NM_001354990.2及びNM_172348.3で登録された配列等が挙げられる。なお、これらNM_000589.4、NM_001354990.2及びNM_172348.3は、ヒトIL-4における転写バリアントとして登録された配列である。また、ヒトIL-4は、これら配列を有するものに限定されず、それらのホモログ(オーソログ、パラログ)、及びそれらの変異体を包含する。 The gene sequence and amino acid sequence of human IL-4 are known, and their sequence information can be obtained from known databases such as GenBank. For example, the gene sequence and amino acid sequence of human IL-4 are listed in GenBank as Accession No. Examples include sequences registered as NM_000589.4, NM_001354990.2, and NM_172348.3. Note that these NM_000589.4, NM_001354990.2, and NM_172348.3 are sequences registered as transcriptional variants in human IL-4. Furthermore, human IL-4 is not limited to those having these sequences, but includes homologs (orthologs, paralogs) and variants thereof.
 すなわち、ヒトのIL-4遺伝子は、GenBankにアクセッションNo.NM_000589.4、NM_001354990.2及びNM_172348.3で登録されたアミノ酸配列に対して、80%以上の配列同一性を有するアミノ酸配列からなり、且つヒトIL-4活性を有するポリペプチドをコードするものであっても良い。なお、配列同一性は、80%以上であり、結果として生じるポリペプチドがヒトIL-4活性を有する限り、特に限定されない。配列同一性は、特に85%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることがさらに好ましく、97%以上であることが特に好ましい。 That is, the human IL-4 gene is listed in GenBank with accession No. Consists of an amino acid sequence that has 80% or more sequence identity to the amino acid sequences registered in NM_000589.4, NM_001354990.2, and NM_172348.3, and encodes a polypeptide that has human IL-4 activity. It's okay to have one. Note that the sequence identity is not particularly limited as long as it is 80% or more and the resulting polypeptide has human IL-4 activity. The sequence identity is particularly preferably 85% or more, more preferably 90% or more, even more preferably 95% or more, and particularly preferably 97% or more.
 また、ヒトのIL-4遺伝子は、GenBankにアクセッションNo.NM_000589.4、NM_001354990.2及びNM_172348.3で登録されたアミノ酸配列に対して、1又は複数個のアミノ酸が欠失、置換、付加、又は挿入されたアミノ酸配列からなり、且つヒトIL-4活性を有するポリペプチドをコードするポリヌクレオチドをコードするものであっても良い。なお、欠失、置換、付加、又は挿入されるアミノ酸の数は、結果として生じるポリペプチドがヒトIL-4活性を有する限り、特に限定されない。欠失、置換、付加、又は挿入されるアミノ酸の数は、例えば1~15個であることができ、1~13個が好ましく、1~10個がより好ましく、1~8個、1~7個、1~6個、1~5個、1~4個、1~3個、1個又は2個等が例示される。 In addition, the human IL-4 gene is listed in GenBank with accession No. Consists of an amino acid sequence in which one or more amino acids are deleted, substituted, added, or inserted from the amino acid sequences registered in NM_000589.4, NM_001354990.2, and NM_172348.3, and has human IL-4 activity. It may also encode a polynucleotide encoding a polypeptide having the following. Note that the number of amino acids to be deleted, substituted, added, or inserted is not particularly limited as long as the resulting polypeptide has human IL-4 activity. The number of amino acids to be deleted, substituted, added, or inserted can be, for example, 1 to 15, preferably 1 to 13, more preferably 1 to 10, 1 to 8, and 1 to 7. Examples include 1 to 6, 1 to 5, 1 to 4, 1 to 3, 1 or 2.
 以上のように規定したIL-2受容体γ鎖遺伝子に変異が導入されて、IL-2受容体γ鎖が欠損し、かつ、ヒトIL-4遺伝子が導入された免疫不全マウスは、例えば、NOGマウス(NOD.Cg-PrkdcscidIl2rgtm1Sug/ShiJic)、NSGマウス(NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ)、NOD/ShiJclマウス等の免疫不全マウスにヒトIL-4遺伝子を導入することで作製できる。なお、ヒトIL-4遺伝子を導入する免疫不全マウスは、これらに限定されず、これら市販の免疫不全マウスを特に制限なく用いることができる。 An immunodeficient mouse in which a mutation has been introduced into the IL-2 receptor γ chain gene defined as above, resulting in a deficiency in the IL-2 receptor γ chain and in which the human IL-4 gene has been introduced, is, for example, By introducing the human IL-4 gene into immunodeficient mice such as NOG mice (NOD.Cg-Prkdc scid Il2rg tm1Sug /ShiJic), NSG mice (NOD.Cg-Prkdc scid Il2rg tm1Wjl /SzJ), and NOD/ShiJcl mice. It can be made. Note that the immunodeficient mouse into which the human IL-4 gene is introduced is not limited to these, and any of these commercially available immunodeficient mice can be used without any particular restriction.
 一例として、NOGマウス(NOD.Cg-PrkdcscidIl2rgtm1Sug/ShiJic)は、ヒトの1型糖尿病(インスリン依存型糖尿病)の病態に類似することから、NOD(Non Obese Diabetes)と命名されたマウス(例えば、Jikken Dobutsu. 29:1-13, 1980参照)と、DNA依存性プロテインキナーゼ(Prkdc)遺伝子の変異により、T細胞及びB細胞の機能が欠失し、重度の免疫不全を呈するSCIDマウスとを組み合わせたNOD/scidマウスに、免疫不全症XSCID(X-linked severe combined immunodeficiency)の原因遺伝子であり、数種のサイトカインレセプター共通ドメインであるIL-2レセプターγ鎖をノックアウトしたマウス(IL-2RγKOマウス)(Ohbo K et al., Blood 1996)を、Cross Intercross法(Inbred Strains in Biomedical Research, M.F.W.Festing, 1979, The Macmillan Press, London and Basingstoke)にしたがって戻し交配する方法により作出されたマウスであり、具体的には、特許第3753321号公報を参照することにより作出することができ、また、公益財団法人実験動物中央研究所より入手可能である。 As an example, the NOG mouse (NOD.Cg-Prkdc scid Il2rg tm1Sug /ShiJic) is a mouse named NOD (Non Obese Diabetes) because its pathology is similar to human type 1 diabetes (insulin-dependent diabetes). For example, see Jikken Dobutsu. 29:1-13, 1980) and SCID mice, which lack T cell and B cell function and exhibit severe immunodeficiency due to mutations in the DNA-dependent protein kinase (Prkdc) gene. NOD/scid mice were combined with NOD/scid mice, and mice in which the IL-2 receptor γ chain was knocked out (IL-2RγKO), which is the causative gene for the immunodeficiency disease mouse) (Ohbo K et al., Blood 1996) using the Cross Intercross method (Inbred Strains in Biomedical Research, M.FW. Festing, 1979, The Macmillan Press, London and Basingstoke). Specifically, it can be produced by referring to Japanese Patent No. 3753321, and is also available from the Central Research Institute for Experimental Animals, a public interest incorporated foundation.
 このようなNOGマウスの例に倣って、以下のようにして、本発明で使用できる免疫不全非ヒト動物を作製することができる。すなわち、免疫不全非ヒト動物は、以下のAの非ヒト動物にBの非ヒト動物を戻し交配することで作製することができる。
A:NOD/Shi非ヒト動物にC.B-17-scid非ヒト動物を戻し交配することにより得られる非ヒト動物
B:インターロイキン2受容体γ鎖遺伝子をノックアウトした非ヒト動物
Following the example of NOG mice, an immunodeficient non-human animal that can be used in the present invention can be produced as follows. That is, an immunodeficient non-human animal can be produced by backcrossing the following non-human animal A with the non-human animal B.
A: C. to NOD/Shi non-human animals. Non-human animal B obtained by backcrossing B-17-scid non-human animal: non-human animal in which the interleukin 2 receptor γ chain gene has been knocked out
 ここで、Aの非ヒト動物におけるNOD/Shi非ヒト動物へのC.B-17-scid非ヒト動物の戻し交配は、当業者に公知の手法、例えば、Cross Intercross法による戻し交配(Inbred Strains in Biomedical Research, M.F.W.Festing, 1979, ISBN 0-333-23809-5, The Macmillan Press, London and Basingstoke)に従い、C.B-17-scid非ヒト動物とNOD/Shi非ヒト動物とを交配し、そのF1非ヒト動物同士を更に交配して得たF2非ヒト動物の血清中の免疫グロブリン量を測定し、検出できない非ヒト動物を選別する。この非ヒト動物を再びNOD/Shi非ヒト動物と交配する。この操作を9回以上繰り返し(Cross Intercross法)行うことによって実施できる。 Here, NOD/Shi in the non-human animal of A is applied to the non-human animal. B-17-scid non-human animals can be backcrossed using methods known to those skilled in the art, such as the Cross Intercross method (Inbred Strains in Biomedical Research, M.FW. Festing, 1979). ISBN 0-333- 23809-5, The Macmillan Press, London and Basingstoke), C. B-17-scid non-human animals are crossed with NOD/Shi non-human animals, and the F1 non-human animals are further crossed with each other, and the amount of immunoglobulin in the serum of the F2 non-human animals obtained is measured and cannot be detected. Select non-human animals. This non-human animal is bred again with a NOD/Shi non-human animal. This operation can be carried out by repeating this operation nine times or more (cross/intercross method).
 また、Bの非ヒト動物におけるインターロイキン2受容体γ鎖(IL-2Rγ)遺伝子のノックアウトは、当業者に公知の手法、例えば、非ヒト動物ES細胞を用いた相同組換えの手法(Capecchi, M. R., Altering the genome by homologous recombination, Science, (1989) 244, 1288-1292)に従い、非ヒト動物由来の特定の遺伝子と例えばネオマイシン等の薬剤耐性遺伝子を含む相同遺伝子とをES細胞の段階で置き換えた後、該ES細胞を受精卵に注入することにより実施できる。 In addition, knockout of the interleukin 2 receptor γ chain (IL-2Rγ) gene in a non-human animal in B can be performed using methods known to those skilled in the art, such as homologous recombination using non-human animal ES cells (Capecchi, M.R., Altering the genome by homologous recombination, Science, (1989) 244, 1288-1292), a specific gene derived from a non-human animal and, for example, neomycin. homologous genes including drug resistance genes such as After the stage replacement, the ES cells can be injected into fertilized eggs.
 このように免疫不全非ヒト動物に対してヒトIL-4遺伝子を導入する方法としては、例えば、ヒトIL-4遺伝子を免疫不全非ヒト動物に導入する方法、ヒトIL-4遺伝子が発現する細胞を免疫不全非ヒト動物に移入する方法等が挙げられる。 Methods of introducing the human IL-4 gene into an immunodeficient non-human animal include, for example, a method of introducing the human IL-4 gene into an immunodeficient non-human animal, a method of introducing the human IL-4 gene into an immunodeficient non-human animal, and a method of introducing the human IL-4 gene into an immunodeficient non-human animal. Examples include a method of transferring the immunoid to an immunodeficient non-human animal.
 免疫不全非ヒト動物が、体内にヒトIL-4遺伝子を有しているか否かは、当該免疫不全非ヒト動物の血漿を採取し、当該血漿中のヒトIL-4濃度を測定することにより、確認することができる。血漿中のヒトIL-4濃度の測定方法は、特に限定されないが、抗ヒトIL-4抗体を用いた免疫化学的方法が挙げられる。そのような方法としては、例えば、ELISA法、EIA法、RIA法、ウェスタンブロット法等が挙げられる。血漿中のヒトIL-4の測定には、市販のヒトIL-4測定用ELISAキット等を用いてもよい。 Whether or not an immunodeficient non-human animal has the human IL-4 gene in its body can be determined by collecting plasma from the immunodeficient non-human animal and measuring the human IL-4 concentration in the plasma. It can be confirmed. The method for measuring the human IL-4 concentration in plasma is not particularly limited, but includes an immunochemical method using an anti-human IL-4 antibody. Examples of such methods include ELISA, EIA, RIA, and Western blotting. For measuring human IL-4 in plasma, a commercially available ELISA kit for measuring human IL-4 or the like may be used.
 具体的に、ヒトIL-4遺伝子を免疫不全非ヒト動物に導入する場合、ヒトIL-4は、上述したプロモーターの下流に作動可能に連結されることが好ましい。ヒトIL-4遺伝子は、発現可能な状態で非ヒト動物に導入され、例えば、発現ベクターの形態で非ヒト動物に導入される。発現ベクターは、ヒトIL-4遺伝子及び上述したプロモーターに加えて、エンハンサー、ポリA付加シグナル、ターミネーター等の制御配列、薬剤耐性遺伝子等のマーカー遺伝子を有していることが好ましい。 Specifically, when introducing the human IL-4 gene into an immunodeficient non-human animal, human IL-4 is preferably operably linked downstream of the above-mentioned promoter. The human IL-4 gene is introduced into a non-human animal in an expressible state, for example, in the form of an expression vector. In addition to the human IL-4 gene and the above-mentioned promoter, the expression vector preferably has control sequences such as an enhancer, a polyA addition signal, and a terminator, and a marker gene such as a drug resistance gene.
 ベクターの種類は特に限定されず、一般的に使用される発現ベクターを特に制限なく使用することができる。ベクターは、直鎖状でも環状でもよく、プラスミドなどの非ウィルスベクターでも、ウィルスベクター(例えば、レンチウィルスベクターなどのレトロウィルスベクター)でも、トランスポゾンによるベクターでもよい。 The type of vector is not particularly limited, and commonly used expression vectors can be used without particular restrictions. The vector may be linear or circular, and may be a non-viral vector such as a plasmid, a viral vector (for example, a retroviral vector such as a lentivirus vector), or a transposon-based vector.
 ヒトIL-4遺伝子の非ヒト動物への導入方法は、特に限定されず、トランスジェニック動物の作製に一般的に用いられる方法を適用することができる。ヒトIL-4遺伝子の非ヒト動物への導入方法としては、例えば、ヒトIL-4遺伝子及び上述したプロモーターを含む発現ベクターを、導入対象の非ヒト動物の受精卵にマイクロインジェクション等により導入する方法等が挙げられる。非ヒト動物がマウスである場合、受精卵としては、例えば、NOGマウス(NOD.Cg-PrkdcscidIl2rgtm1Sug/ShiJic)とNOD/ShiJclマウスとを交配させて得られた受精卵等が例示されるが、これに限定されない。 The method for introducing the human IL-4 gene into a non-human animal is not particularly limited, and methods commonly used for producing transgenic animals can be applied. As a method for introducing the human IL-4 gene into a non-human animal, for example, a method of introducing an expression vector containing the human IL-4 gene and the above-mentioned promoter into a fertilized egg of a non-human animal to be introduced by microinjection or the like. etc. When the non-human animal is a mouse, an example of the fertilized egg is a fertilized egg obtained by mating a NOG mouse (NOD.Cg-Prkdc scid Il2rg tm1Sug /ShiJic) with a NOD/ShiJcl mouse. However, it is not limited to this.
 ヒトIL-4遺伝子を導入した受精卵は、37℃で18~24時間程度培養した後、仮親の子宮に移植・着床させ、仔を誕生させることにより、ヒトIL-4遺伝子を有する免疫不全非ヒト動物を得ることができる。 The fertilized eggs into which the human IL-4 gene has been introduced are cultured at 37°C for approximately 18 to 24 hours, and then transplanted and implanted into the uterus of a foster parent to give birth to an immunodeficient egg that has the human IL-4 gene. Non-human animals can be obtained.
 上記のように得られた免疫不全非ヒト動物が、ヒトIL-4遺伝子を有しているか否かは、当該非ヒト動物から採取した試料からゲノムDNAを抽出してPCR法等を行うことにより、確認することができる。 Whether or not the immunodeficient non-human animal obtained as described above has the human IL-4 gene can be determined by extracting genomic DNA from a sample collected from the non-human animal and performing PCR, etc. , can be confirmed.
 また、当該免疫不全非ヒト動物が、ヒトIL-4遺伝子を発現しているか否かは、当該非ヒト動物から採取した試料からRNAを抽出してRT-PCR法等を行うことにより、又は当該非ヒト動物から採取した組織試料を用いてin situハイブリダイゼーションを行うこと等により、確認することができる。あるいは、抗ヒトIL-4抗体を用いて、当該非ヒト動物から採取した試料中のヒトIL-4を検出することにより(例えば、ELISA法、EIA法、RIA法、ウェスタンブロット法、EIA法、RIA法、免疫組織染色など)、確認することができる。 In addition, whether or not the immunodeficient non-human animal expresses the human IL-4 gene can be determined by extracting RNA from a sample collected from the non-human animal and performing RT-PCR, etc. This can be confirmed by performing in situ hybridization using a tissue sample collected from a non-human animal. Alternatively, by detecting human IL-4 in a sample collected from the non-human animal using an anti-human IL-4 antibody (for example, ELISA method, EIA method, RIA method, Western blotting method, EIA method, (RIA method, immunohistological staining, etc.).
 ヒトIL-4遺伝子を導入した免疫不全非ヒト動物では、ヒトIL-4を分泌しており、その結果、移植されたヒト末梢血単核球由来のB細胞が生着するとともに、ヘルパーT細胞及びキラーT細胞がバランス良く生着することができる。ここで、免疫不全非ヒト動物がヒトIL-4を分泌するとは、主に、当該免疫不全非ヒト動物の細胞から体液(血液、組織液、リンパ等)中にヒトIL-4が放出されることを指す。免疫不全非ヒト動物が、ヒトIL-4を分泌しているか否かは、当該免疫不全非ヒト動物から採取した血漿において、当該血漿中のヒトIL-4濃度を測定することにより、確認することができる。血漿中のヒトIL-4濃度の測定方法は、上述した通りである。 Immunodeficient non-human animals into which the human IL-4 gene has been introduced secrete human IL-4, resulting in the engraftment of transplanted human peripheral blood mononuclear cell-derived B cells and helper T cells. and killer T cells can engraft in a well-balanced manner. Here, when an immunodeficient non-human animal secretes human IL-4, it mainly means that human IL-4 is released into body fluids (blood, tissue fluid, lymph, etc.) from the cells of the immunodeficient non-human animal. refers to Whether or not an immunodeficient non-human animal secretes human IL-4 should be confirmed by measuring the human IL-4 concentration in plasma collected from the immunodeficient non-human animal. I can do it. The method for measuring human IL-4 concentration in plasma is as described above.
 ヒトIL-4遺伝子を有し、ヒトIL-4を分泌する細胞(ヒトIL-4遺伝子が発現する細胞)を免疫不全非ヒト動物に移入する場合、ヒトIL-4遺伝子が発現する細胞としては、例えば、ヒト臓器や血液に由来する細胞、がん細胞等が挙げられる。前記ヒト臓器に由来する細胞としては、例えば、脾臓、胸腺、肝臓、小腸、大腸、前立腺、肺、心臓、脳、腎臓、精巣、子宮等に由来する細胞等が挙げられる。前記ヒト血液に由来する細胞としては、例えば、末梢血単核細胞画分に含まれる血球細胞等が挙げられる。例えば、それらのヒト細胞から樹立された細胞株から、ヒトIL-4遺伝子が発現する細胞を選択し、免疫不全非ヒト動物に移入することができる。あるいは、ヒトIL-4遺伝子を導入した免疫非ヒト動物の細胞を、ヒトIL-4遺伝子が発現する細胞として用いてもよい。当該免疫不全非ヒト動物の細胞は、細胞の移入対象である免疫不全非ヒト動物と同種に属する免疫不全非ヒト動物の細胞であることが好ましい。例えば、細胞の移入対象である免疫不全非ヒト動物がマウスであれば、ヒトIL-4遺伝子を導入する細胞はマウスの細胞であることが好ましい。ヒトIL-4遺伝子を導入する免疫不全非ヒト動物の細胞は、特に限定されないが、例えば、臓器や血液に由来する細胞もしくはその細胞株、造血幹細胞やがん細胞等が挙げられる。前記の免疫不全非ヒト動物の臓器や血液に由来する細胞としては、上記ヒトIL-4遺伝子が発現する細胞において例示したものと同様の臓器や血液画分に由来する非ヒト動物の細胞が挙げられる。ヒトIL-4遺伝子は、上記と同様に、発現可能な状態で非ヒト動物細胞に導入され、例えば、発現ベクターの形態で非ヒト動物細胞に導入される。ヒトIL-4遺伝子の非ヒト動物細胞への導入方法は、特に限定されず、遺伝子導入法として一般的に用いられる方法を適用することができる。そのような方法としては、例えば、ウィルス感染法、リポフェクション法、マイクロインジェクション法、カルシウムリン酸法、DEAE-デキストラン法、エレクトロポーレーション法、トランスポゾンを用いる方法、パーティクルガン法等を挙げられるが、これらに限定されない。 When cells that have the human IL-4 gene and secrete human IL-4 (cells in which the human IL-4 gene is expressed) are transferred to an immunodeficient non-human animal, the cells in which the human IL-4 gene is expressed are Examples include cells derived from human organs and blood, cancer cells, and the like. Examples of cells derived from the human organ include cells derived from the spleen, thymus, liver, small intestine, large intestine, prostate, lung, heart, brain, kidney, testis, uterus, and the like. Examples of the cells derived from human blood include blood cells contained in the peripheral blood mononuclear cell fraction. For example, cells expressing the human IL-4 gene can be selected from cell lines established from these human cells and transferred to an immunodeficient non-human animal. Alternatively, cells of an immunized non-human animal into which the human IL-4 gene has been introduced may be used as cells in which the human IL-4 gene is expressed. The cells of the immunodeficient non-human animal are preferably those of an immunodeficient non-human animal belonging to the same species as the immunodeficient non-human animal to which the cells are transferred. For example, if the immunodeficient non-human animal to which the cells are transferred is a mouse, the cells into which the human IL-4 gene is introduced are preferably mouse cells. The cells of an immunodeficient non-human animal into which the human IL-4 gene is introduced are not particularly limited, and include, for example, cells derived from organs or blood, or cell lines thereof, hematopoietic stem cells, cancer cells, and the like. Examples of cells derived from the organs and blood of immunodeficient non-human animals include cells of non-human animals derived from the same organs and blood fractions as exemplified in the cells expressing the human IL-4 gene. It will be done. Similarly to the above, the human IL-4 gene is introduced into non-human animal cells in an expressible state, for example, in the form of an expression vector. The method for introducing the human IL-4 gene into non-human animal cells is not particularly limited, and methods commonly used for gene introduction can be applied. Examples of such methods include virus infection method, lipofection method, microinjection method, calcium phosphate method, DEAE-dextran method, electroporation method, method using transposon, particle gun method, etc. but not limited to.
 ヒトIL-4遺伝子が発現する細胞がヒトIL-4を分泌しているか否かは、当該細胞の培養液中のIL-4濃度を測定することにより、確認することができる、培養液中のヒトIL-4濃度の測定方法は、上述した通りである。 Whether cells expressing the human IL-4 gene secrete human IL-4 can be confirmed by measuring the IL-4 concentration in the culture medium of the cells. The method for measuring human IL-4 concentration is as described above.
 ヒトIL-4遺伝子が発現する細胞の免疫不全非ヒト動物への移入方法は、特に限定されず、免疫不全非ヒト動物への細胞の移入に一般的に用いられる方法を適用することができる。ヒトIL-4遺伝子が発現する細胞の免疫不全非ヒト動物への移入方法としては、例えば、用いた細胞の種類に応じて、脾臓内、肝臓内、皮下又は静脈内等にヒトIL-4遺伝子が発現する細胞を投与する方法等が挙げられる。 The method for transferring cells expressing the human IL-4 gene into an immunodeficient non-human animal is not particularly limited, and methods commonly used for transferring cells into immunodeficient non-human animals can be applied. As a method for transferring cells expressing the human IL-4 gene into an immunodeficient non-human animal, for example, depending on the type of cells used, the human IL-4 gene may be introduced into the spleen, liver, subcutaneously, intravenously, etc. Examples include a method of administering cells expressing the expression.
 ヒトIL-4遺伝子が発現する細胞を移入した免疫不全非ヒト動物は、ヒトIL-4を分泌しており、その結果、移植されたヒト末梢血単核球由来のB細胞が生着するとともに、ヘルパーT細胞及びキラーT細胞がバランス良く生着することができる。ここで、免疫不全非ヒト動物がヒトIL-4を分泌するとは、主に、当該免疫不全非ヒト動物の細胞から体液(血液、組織液、リンパ等)中にヒトIL-4が放出されることを指す。免疫不全非ヒト動物が、ヒトIL-4を分泌しているか否かは、当該免疫不全非ヒト動物から採取した血漿において、当該血漿中のヒトIL-4濃度を測定することにより、確認することができる。血漿中のヒトIL-4濃度の測定方法は、上述した通りである。 The immunodeficient non-human animal into which cells expressing the human IL-4 gene have been transferred secretes human IL-4, and as a result, the transplanted B cells derived from human peripheral blood mononuclear cells engraft. , helper T cells and killer T cells can be engrafted in a well-balanced manner. Here, when an immunodeficient non-human animal secretes human IL-4, it mainly means that human IL-4 is released into body fluids (blood, tissue fluid, lymph, etc.) from the cells of the immunodeficient non-human animal. refers to Whether or not an immunodeficient non-human animal secretes human IL-4 should be confirmed by measuring the human IL-4 concentration in plasma collected from the immunodeficient non-human animal. I can do it. The method for measuring human IL-4 concentration in plasma is as described above.
 また、本発明で使用できる免疫不全非ヒト動物においては、さらにT細胞及びB細胞の抗原受容体遺伝子の再構成に関わる遺伝子の変異が両対立遺伝子座位にあり、例えば、当該変異としてSCID変異又はRAG変異を挙げることができる。上記SCID変異は、重度複合免疫不全(Severe Combined Immuno-Deficiency:SCID)を呈するマウスにおいて見いだされた、DNA依存性プロテインキナーゼ(Protein kinase, DNA activated, catalytic polypeptide:Prkdc)遺伝子の変異である。 Furthermore, in the immunodeficient non-human animal that can be used in the present invention, mutations in genes involved in rearrangement of antigen receptor genes of T cells and B cells are present at biallelic loci, such as SCID mutation or RAG mutations can be mentioned. The above SCID mutation is a DNA-dependent protein kinase (protein kinase, DNA activated, catalytic) found in mice exhibiting severe combined immunodeficiency (SCID). This is a mutation in the polypeptide (Prkdc) gene.
 上記RAG変異としては、Rag(Recombination activating gene)-1遺伝子又はRag-2遺伝子における変異を挙げることができる。かかる2つの遺伝子は、未熟なリンパ球に発現する遺伝子であって、免疫グロブリン遺伝子及びT細胞受容体の再構成に必須の作用を有し、T細胞やB細胞の成熟に不可欠の遺伝子である。 Examples of the above RAG mutations include mutations in the Rag (Recombination activating gene)-1 gene or the Rag-2 gene. These two genes are genes expressed in immature lymphocytes, have essential effects on the reconstitution of immunoglobulin genes and T cell receptors, and are essential for the maturation of T cells and B cells. .
 上記SCID変異及び/又はRAG変異をはじめとするT細胞及びB細胞の抗原受容体遺伝子の再構成に関わる遺伝子の変異が両対立遺伝子座位に有する免疫不全非ヒト動物は、DNAの修復異常によりT細胞及びB細胞の遺伝子再構成ができないため、T細胞とB細胞とが成熟段階に至らず、T細胞及びB細胞の機能が欠失する変異である。免疫不全非ヒト動物においてかかる変異は、いずれも両対立遺伝子座位にある。 Immunodeficient non-human animals that have mutations in genes involved in rearrangement of T cell and B cell antigen receptor genes, including the above SCID mutation and/or RAG mutation, at both allelic loci, have T cells due to abnormal DNA repair. This is a mutation in which T cells and B cells do not reach the maturation stage because gene rearrangement of cells and B cells is not possible, resulting in a loss of T cell and B cell function. All such mutations in immunodeficient non-human animals are at biallelic loci.
 本発明に係る担がん-免疫不全非ヒト動物は、以上で説明した免疫不全非ヒト動物に対して、がん細胞又はがん組織、並びにヒト末梢血単核球を移植したものである。がん細胞又はがん組織、並びにヒト末梢血単核球を移植する免疫不全非ヒト動物として、免疫不全マウスを使用する場合、成体(例えば7週齢以降)の免疫不全マウスとすることが好ましい。 The cancer-bearing immunodeficient non-human animal according to the present invention is obtained by transplanting cancer cells or cancer tissues and human peripheral blood mononuclear cells into the above-described immunodeficient non-human animal. When using an immunodeficient mouse as an immunodeficient non-human animal to which cancer cells or cancer tissues and human peripheral blood mononuclear cells are to be transplanted, it is preferable to use an adult (e.g., 7 weeks of age or older) immunodeficient mouse. .
 ここで、がん細胞及びがん組織は哺乳動物由来であることが好ましい。哺乳動物としては、例えば、マウス、ラット、ハムスター、モルモット等のげっ歯類、ウサギ等のウサギ目、ブタ、ウシ、ヤギ、ウマ、ヒツジ等の有蹄目、イヌ、ネコ等のネコ目、ヒト、サル、アカゲザル、カニクイザル、マーモセット、オランウータン、チンパンジーなどの霊長類等を挙げることができる。哺乳動物は、好ましくはげっ歯類(マウス等)又は霊長類であり、より好ましくはヒトである。 Here, the cancer cells and cancer tissues are preferably derived from mammals. Mammals include, for example, rodents such as mice, rats, hamsters, and guinea pigs; lagomorphs such as rabbits; ungulates such as pigs, cows, goats, horses, and sheep; feline animals such as dogs and cats; and humans. Examples include primates such as monkeys, rhesus monkeys, cynomolgus monkeys, marmosets, orangutans, and chimpanzees. The mammal is preferably a rodent (such as a mouse) or a primate, more preferably a human.
 がんの例としては、以下に限定されるものではないが、胃がん、食道がん、大腸がん、結腸がん、直腸がん、膵臓がん、乳がん、卵巣がん、前立腺がん、扁平上皮細胞がん、基底細胞がん、腺がん、骨髄がん、腎細胞がん、尿管がん、肝がん、胆管がん、子宮頚がん、子宮内膜がん、精巣がん、小細胞肺がん、非小細胞肺がん、膀胱がん、上皮がん、頭蓋咽頭がん、喉頭がん、舌がん、線維肉腫、粘膜肉腫、脂肪肉腫、軟骨肉腫、骨原性肉腫、脊索腫、血管肉腫、リンパ管肉腫、リンパ管内皮肉腫、滑膜腫、中皮腫、ユーイング腫瘍、平滑筋肉腫、横紋筋肉腫、精上皮腫、ウィルムス腫瘍、神経膠腫、星状細胞腫、骨髄芽腫、髄膜腫、黒色腫、神経芽細胞腫、髄芽腫、網膜芽細胞腫、悪性リンパ腫、がん患者由来の血液等の組織が挙げられる。がん細胞は、がん患者から採取したがん組織から酵素などで単離したがん細胞(初代培養)であってもよいし、株化されたがん細胞株であってもよい。がん細胞株の例としては、以下に限定されるものではないが、ヒト乳がん細胞株としてHBC-4、BSY-1、BSY-2、MCF-7、MCF-7/ADR RES、HS578T、MDA-MB-231、MDA-MB-435、MDA-N、BT-549、T47D、ヒト子宮頸がん細胞株としてHeLa、ヒト肺がん細胞株としてA549、EKVX、HOP-62、HOP-92、NCI-H23、NCI-H226、NCI-H322M、NCI-H460、NCI-H522、DMS273、DMS114、ヒト大腸がん細胞株としてCaco-2、COLO-205、HCC-2998、HCT-15、HCT-116、HT-29、KM-12、SW-620、WiDr、ヒト前立腺がん細胞株としてDU-145、PC-3、LNCaP、ヒト中枢神経系がん細胞株としてU251、SF-295、SF-539、SF-268、SNB-75、SNB-78、SNB-19、ヒト卵巣がん細胞株としてOVCAR-3、OVCAR-4、OVCAR-5、OVCAR-8、SK-OV-3、IGROV-1、ヒト腎がん細胞株としてRXF-631L、ACHN、UO-31、SN-12C、A498、CAKI-1、RXF-393L、786-0、TK-10、ヒト胃がん細胞株としてAGS、MKN45、MKN28、St-4、MKN-1、MKN-7、MKN-74、皮膚がん細胞株としてLOX-IMVI、LOX、MALME-3M、SK-MEL-2、SK-MEL-5、SK-MEL-28、UACC-62、UACC-257、M14、白血病細胞株としてCCRF-CRM、K562、MOLT-4、HL-60TB、RPMI8226、SR、UT7/TPO、Jurkat、ヒト上皮様がん細胞株としてA431、ヒトメラノーマ細胞株としてA375、ヒト骨肉腫細胞株としてHOS、MNMG、MNNG/HOS、ヒト膵臓がん細胞株としてBxPC3、COLO-357HPAC、MIAPaCa-2、Panc-1、ヒト結腸がん細胞株としてLS123等が挙げられる。細胞株の例としては、以下に限定されるものではないが、HEK293(ヒト胎児腎細胞)、MDCK、MDBK、BHK、C-33A、AE-1、3D9、Ns0/1、NIH3T3、PC12、S2、Sf9、Sf21、High Five(登録商標)、Vero等が含まれる。 Examples of cancers include, but are not limited to, stomach cancer, esophageal cancer, colorectal cancer, colon cancer, rectal cancer, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, Epithelial cell carcinoma, basal cell carcinoma, adenocarcinoma, bone marrow cancer, renal cell carcinoma, ureteral cancer, liver cancer, bile duct cancer, cervical cancer, endometrial cancer, testicular cancer , small cell lung cancer, non-small cell lung cancer, bladder cancer, epithelial cancer, craniopharyngeal cancer, laryngeal cancer, tongue cancer, fibrosarcoma, mucosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma , angiosarcoma, lymphangiosarcoma, intralymphatic sarcoma, synovioma, mesothelioma, Ewing tumor, leiomyosarcoma, rhabdomyosarcoma, seminoma, Wilms tumor, glioma, astrocytoma, bone marrow Examples include tissues such as blastoma, meningioma, melanoma, neuroblastoma, medulloblastoma, retinoblastoma, malignant lymphoma, and blood derived from cancer patients. The cancer cells may be cancer cells (primary culture) isolated using enzymes or the like from cancer tissues collected from cancer patients, or may be established cancer cell lines. Examples of cancer cell lines include, but are not limited to, human breast cancer cell lines such as HBC-4, BSY-1, BSY-2, MCF-7, MCF-7/ADR RES, HS578T, and MDA. -MB-231, MDA-MB-435, MDA-N, BT-549, T47D, HeLa as a human cervical cancer cell line, A549, EKVX, HOP-62, HOP-92, NCI- as a human lung cancer cell line H23, NCI-H226, NCI-H322M, NCI-H460, NCI-H522, DMS273, DMS114, human colon cancer cell lines Caco-2, COLO-205, HCC-2998, HCT-15, HCT-116, HT -29, KM-12, SW-620, WiDr, human prostate cancer cell lines DU-145, PC-3, LNCaP, human central nervous system cancer cell lines U251, SF-295, SF-539, SF -268, SNB-75, SNB-78, SNB-19, human ovarian cancer cell lines OVCAR-3, OVCAR-4, OVCAR-5, OVCAR-8, SK-OV-3, IGROV-1, human kidney Cancer cell lines include RXF-631L, ACHN, UO-31, SN-12C, A498, CAKI-1, RXF-393L, 786-0, TK-10; human gastric cancer cell lines include AGS, MKN45, MKN28, St- 4. MKN-1, MKN-7, MKN-74, skin cancer cell lines LOX-IMVI, LOX, MALME-3M, SK-MEL-2, SK-MEL-5, SK-MEL-28, UACC- 62, UACC-257, M14, CCRF-CRM as leukemia cell line, K562, MOLT-4, HL-60TB, RPMI8226, SR, UT7/TPO, Jurkat, A431 as human epithelial cancer cell line, human melanoma cell line Examples include A375 as a human osteosarcoma cell line, HOS, MNMG, MNNG/HOS as a human osteosarcoma cell line, BxPC3, COLO-357HPAC, MIAPaCa-2, Panc-1 as a human pancreatic cancer cell line, and LS123 as a human colon cancer cell line. . Examples of cell lines include, but are not limited to, HEK293 (human embryonic kidney cells), MDCK, MDBK, BHK, C-33A, AE-1, 3D9, Ns0/1, NIH3T3, PC12, S2 , Sf9, Sf21, High Five (registered trademark), Vero, etc.
 がん細胞は、好ましくは、生体内において生着した際に、固形腫瘍を形成する能力を有するがん細胞である。 固形腫瘍を形成する能力を有するがん細胞としては、胃がん、食道がん、大腸がん、結腸がん、直腸がん、膵臓がん、乳がん、卵巣がん、前立腺がん、扁平上皮細胞がん、基底細胞がん、腺がん、腎細胞がん、尿管がん、肝がん、胆管がん、子宮頚がん、子宮内膜がん、精巣がん、小細胞肺がん、非小細胞肺がん、膀胱がん、上皮がん、頭蓋咽頭がん、喉頭がん、舌がん、線維肉腫、粘膜肉腫、脂肪肉腫、軟骨肉腫、骨原性肉腫、脊索腫、血管肉腫、リンパ管肉腫、リンパ管内皮肉腫、滑膜腫、中皮腫、ユーイング腫瘍、平滑筋肉腫、横紋筋肉腫、精上皮腫、ウィルムス腫瘍、神経膠腫、星状細胞腫、髄膜腫、黒色腫、神経芽細胞腫、髄芽腫、網膜芽細胞腫等の細胞が挙げられるが、これらに限定されない。 The cancer cells are preferably cancer cells that have the ability to form solid tumors when engrafted in vivo. Cancer cells that have the ability to form solid tumors include gastric cancer, esophageal cancer, colorectal cancer, colon cancer, rectal cancer, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, and squamous cell cancer. Basal cell carcinoma, adenocarcinoma, renal cell carcinoma, ureteral cancer, liver cancer, bile duct cancer, cervical cancer, endometrial cancer, testicular cancer, small cell lung cancer, non-small Cellular lung cancer, bladder cancer, epithelial cancer, craniopharyngeal cancer, laryngeal cancer, tongue cancer, fibrosarcoma, mucosal sarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, lymphangiosarcoma , intralymphatic sarcoma, synoviomas, mesothelioma, Ewing tumor, leiomyosarcoma, rhabdomyosarcoma, seminoma, Wilms tumor, glioma, astrocytoma, meningioma, melanoma, neuro Examples include, but are not limited to, cells such as blastoma, medulloblastoma, and retinoblastoma.
 がん細胞は、移入する免疫不全非ヒト動物に対して同種同系(syngenic)、同種異系(allogenic)、異種(xenogenic)のいずれであっても良い。 The cancer cells may be syngenic, allogenic, or xenogenic to the immunodeficient non-human animal to be transferred.
 がん細胞の免疫不全非ヒト動物への移入は、通常、がん細胞を生理的水性組成物中に懸濁し、得られた懸濁物を、非ヒト哺乳動物の体内へ移入する方法を採用できる。がん細胞を、トリプシン等のタンパク質やEDTA等のキレート剤で処理して単一細胞に分散した後に生理的水性組成物中に懸濁し、体内へ移入してもよいし、スフェロイドの状態で生理的水性組成物中に懸濁し、体内へ移入してもよい。スフェロイドの状態で移入する方が、がん組織形成がより亢進する傾向がある一方、単一細胞の状態で移入する方ががん細胞の抗がん剤への感受性が高い傾向がある。生理的水性組成物には、生理的水溶液、及び生理的な水性ゲルが包含される。生理的水溶液としては、リン酸緩衝液、炭酸塩緩衝液、クエン酸緩衝液、Tris緩衝液、ホウ酸塩緩衝液の生理的な緩衝液や、細胞培養用の培地等が挙げられる。水性ゲルとしては、細胞外マトリクス構成因子(アグリカン等のプロテオグリカン;ヒアルロン酸等のグリコサミノグリカン;コラーゲン、エラスチン等のタンパク質線維;又はこれらの混合物(例、基底膜調製物)等)、多糖類(アガロース等)を含むゲルを挙げることができる。基底膜調製物とは、基底膜形成能を有する同種又は異種の所望の細胞をその上に播種・培養した場合に、細胞の形態、分化、増殖、運動、機能発現などを制御する機能を有する、単離された基底膜を意味する。基底膜調製物は、例えば基底膜を介して支持体上に接着している基底膜形成能を有する細胞を、該細胞の脂質溶解能を有する溶液やアルカリ溶液などを用いて支持体から除去することで作製することができる。基底膜調製物としては、マトリゲルを挙げることができる。水性ゲルを用いることにより、生体内における移植したがん細胞の分散を抑制することができる。 Transfer of cancer cells into an immunodeficient non-human animal usually involves suspending the cancer cells in a physiological aqueous composition and transferring the resulting suspension into the body of the non-human mammal. can. Cancer cells can be treated with proteins such as trypsin or chelating agents such as EDTA and dispersed into single cells, then suspended in a physiological aqueous composition and introduced into the body, or they can be introduced into the body in the form of spheroids. It may also be suspended in an aqueous composition and introduced into the body. Cancer tissue formation tends to be more accelerated when cells are transferred in the form of spheroids, while cancer cells tend to be more sensitive to anticancer drugs when transferred in the form of single cells. Physiological aqueous compositions include physiological aqueous solutions and physiological aqueous gels. Examples of the physiological aqueous solution include physiological buffers such as phosphate buffer, carbonate buffer, citrate buffer, Tris buffer, and borate buffer, and medium for cell culture. As an aqueous gel, extracellular matrix constituent factors (proteoglycans such as aggrecan; glycosaminoglycans such as hyaluronic acid; protein fibers such as collagen and elastin; or mixtures thereof (e.g., basement membrane preparations), etc.), polysaccharides (eg, agarose). A basement membrane preparation has the ability to control cell morphology, differentiation, proliferation, movement, functional expression, etc. when desired cells of the same or different type that have the ability to form a basement membrane are seeded and cultured thereon. , refers to isolated basement membrane. To prepare a basement membrane, for example, cells that have the ability to form a basement membrane that have adhered to the support via the basement membrane are removed from the support using a solution that has the ability to dissolve lipids in the cells, an alkaline solution, etc. It can be made by Basement membrane preparations may include Matrigel. By using an aqueous gel, it is possible to suppress the dispersion of transplanted cancer cells in vivo.
 一方、ヒト末梢血単核球(ヒトPBMC)は、定法に従って、或いは市販のキットを利用して得ることができる。また、本発明に係る担がん-免疫不全非ヒト動物は、健常者由来のヒト末梢血単核球を移植したものであっても良いし、がん患者由来のヒト末梢血単核球を移植したものであっても良い。例えば、本発明に係る担がん-免疫不全非ヒト動物において、特定のがん患者のがん細胞又はがん組織を移植した場合、当該がん患者のヒト末梢血を移植しても良い。 On the other hand, human peripheral blood mononuclear cells (human PBMC) can be obtained according to a standard method or using a commercially available kit. Furthermore, the cancer-bearing, immunodeficient non-human animal according to the present invention may be one in which human peripheral blood mononuclear cells derived from a healthy individual are transplanted, or human peripheral blood mononuclear cells derived from a cancer patient are transplanted into the cancer-bearing immunodeficient non-human animal. It may be a transplanted one. For example, when cancer cells or cancer tissues from a specific cancer patient are transplanted into the cancer-bearing, immunodeficient non-human animal according to the present invention, the human peripheral blood of the cancer patient may be transplanted.
 ヒト末梢血単核球を移植する方法は、特に限定されないが、所定の細胞数となるように調整した後、尾静脈から移植する方法を挙げることができる。移植するヒト末梢血単核球細胞数は、特に限定されないが、1~5×10個以上とすることができ。5×10個とすることが最も好ましい。ヒト末梢血単核球の細胞数がこの範囲より少ないと、B細胞の生着能が低くなり、かつ抗腫瘍効果を評価するのに十分なリンパ球の生着が困難になる虞があり。また、ヒト末梢血単核球の細胞数がこの範囲以上の場合、ヒト臨床検体が無駄となる可能性がある。 The method for transplanting human peripheral blood mononuclear cells is not particularly limited, but may include a method in which the cells are adjusted to a predetermined cell number and then transplanted from the tail vein. The number of human peripheral blood mononuclear cells to be transplanted is not particularly limited, but can be 1 to 5 x 10 6 or more. Most preferably, the number is 5×10 6 . If the number of human peripheral blood mononuclear cells is less than this range, there is a risk that the engraftment ability of B cells will be low and that it will be difficult to engraft sufficient lymphocytes to evaluate the antitumor effect. Furthermore, if the number of human peripheral blood mononuclear cells exceeds this range, there is a possibility that the human clinical specimen will be wasted.
[担がん-免疫不全非ヒト動物を用いたがん免疫応答評価方法及びキット]
 以上で説明した担がん-免疫不全非ヒト動物は、内在する機能的なT細胞及びB細胞を共に欠失し、マクロファージ機能が減退し、NK細胞又はNK活性を消失し、且つ、樹状細胞機能が減退しており、優れた異種細胞接着性を有している。また、担がん-免疫不全非ヒト動物では、がん細胞やがん組織、及びヒト末梢血単核球を移植しているにも拘わらず、移植片対宿主病(GVHD)を発症することなく、がん細胞やがん組織、B細胞及びT細胞が生着する。さらに、担がん-免疫不全非ヒト動物では、生着したがん細胞やがん組織が由来するがん患者におけるB細胞やT細胞の割合等が類似するといった特徴を示す。
[Cancer-bearing cancer immune response evaluation method and kit using immunodeficient non-human animals]
The cancer-bearing immunodeficient non-human animal described above lacks both endogenous functional T cells and B cells, diminishes macrophage function, loses NK cells or NK activity, and has dendritic Cell function is reduced, and it has excellent heterogeneous cell adhesion. In addition, cancer-bearing, immunodeficient non-human animals may develop graft-versus-host disease (GVHD) despite transplantation of cancer cells, cancer tissues, and human peripheral blood mononuclear cells. Instead, cancer cells, cancer tissues, B cells, and T cells engraft. Furthermore, cancer-bearing immunodeficient non-human animals exhibit characteristics such as similar proportions of B cells and T cells as in cancer patients from which the engrafted cancer cells and cancer tissues are derived.
 このように、担がん-免疫不全非ヒト動物は、がん患者におけるがんに対する免疫応答を擬似的に再現することができるため、がんに対する免疫応答に関する試験や、がん免疫療法に関する試験に使用することができる。すなわち、免疫細胞を投与して抗腫瘍免疫を増強するがん免疫療法である養子免疫細胞療法;がん抗原となるペプチド、当該ペプチドをコードする核酸又はがん抗原をもつ樹状細胞等を含むがんワクチンを用いたがんワクチン療法;単球やNK細胞などの免疫細胞に発現するFc受容体に抗体のFc部分が結合する抗体依存性細胞障害(ADCC)活性や補体の結合を介する補体依存性細胞障害(CDC)活性を作用機序とする抗体療法;免疫システムを抑制する免疫チェックポイントに対する阻害剤(免疫チェックポイント阻害剤)を用いた療法等、がんに対する免疫応答に基づいた各種療法について担がん-免疫不全非ヒト動物を有効に利用することができる。 In this way, cancer-bearing and immunodeficient non-human animals can simulate the immune response to cancer in cancer patients, so they are useful for tests related to immune responses to cancer and cancer immunotherapy. It can be used for. In other words, adoptive immune cell therapy is cancer immunotherapy that enhances anti-tumor immunity by administering immune cells; it includes peptides that serve as cancer antigens, nucleic acids that encode the peptides, or dendritic cells that carry cancer antigens. Cancer vaccine therapy using cancer vaccines; mediated by antibody-dependent cellular cytotoxicity (ADCC) activity, in which the Fc portion of antibodies binds to Fc receptors expressed on immune cells such as monocytes and NK cells, and complement fixation. Antibody therapy whose mechanism of action is complement-dependent cytotoxicity (CDC) activity; therapy based on the immune response to cancer, such as therapy using inhibitors of immune checkpoints (immune checkpoint inhibitors) that suppress the immune system Cancer-bearing and immunodeficient non-human animals can be effectively used for various therapies.
 一例としては、担がん-免疫不全非ヒト動物を、供試物質についてがん免疫応答を評価する方法に適用することができる。供試物質とは、いかなる公知化合物でも良いし、新規化合物であっても良い。供試物質としては、例えば、核酸、糖質、脂質、タンパク質、ペプチド、有機低分子化合物、コンビナトリアルケミストリー技術を用いて作製された化合物ライブラリー、ランダムペプチドライブラリー、ランダム核酸ライブラリー又は微生物、動植物若しくは海洋生物等由来の天然成分等が挙げられる。 As an example, a cancer-bearing immunodeficient non-human animal can be applied to a method of evaluating cancer immune response to a test substance. The test substance may be any known compound or a new compound. Examples of test substances include nucleic acids, carbohydrates, lipids, proteins, peptides, organic low-molecular compounds, compound libraries prepared using combinatorial chemistry techniques, random peptide libraries, random nucleic acid libraries, or microorganisms, animals and plants. Alternatively, natural ingredients derived from marine organisms and the like can be mentioned.
 当該方法では、先ず、上述した担がん-免疫不全非ヒト動物に対して供試物質を投与する。投与方法としては、特に限定されないが、経口、皮下、腹腔内、静脈内、門脈内等が挙げられる。供試物質を投与する期間は、その効果を評価するのに十分な期間であり、通常3日以上、好ましくは7日以上、より好ましくは14日以上、更に好ましくは21日以上とする。 In this method, first, a test substance is administered to the above-mentioned cancer-bearing and immunodeficient non-human animal. Administration methods include, but are not particularly limited to, oral, subcutaneous, intraperitoneal, intravenous, intraportal vein, and the like. The test substance is administered for a period sufficient to evaluate its effects, and is usually 3 days or more, preferably 7 days or more, more preferably 14 days or more, and still more preferably 21 days or more.
 その後、担がん-免疫不全非ヒト動物におけるリンパ球を測定し、供試物質の投与前後におけるリンパ球を比較する。リンパ球を測定するとは、例えば、フローサイトメトリーを用いた細胞表現抗原検査により、生着したヒト末梢血単核球に含まれるB細胞、ヘルパーT細胞、キラーT細胞、NK細胞及び単球を測定することを意味する。リンパ球を測定する際には、担がん-免疫不全非ヒト動物から採取した脾臓等を用いることができる。 Thereafter, lymphocytes in the cancer-bearing immunodeficient non-human animal are measured, and the lymphocytes before and after administration of the test substance are compared. Measuring lymphocytes means, for example, measuring B cells, helper T cells, killer T cells, NK cells, and monocytes contained in engrafted human peripheral blood mononuclear cells using a cell expression antigen test using flow cytometry. It means to measure. When measuring lymphocytes, a spleen or the like collected from a cancer-bearing, immunodeficient non-human animal can be used.
 より具体的には、生着したヒト末梢血単核球におけるヒトCD45陽性の白血球数と、ヒトCD19陽性のB細胞と、ヒトCD3陽性のT細胞を測定することができる。さらに、ヒトCD4陽性のヘルパーT細胞と、ヒトCD8陽性のキラーT細胞を測定することもできる。さらにまた、ヒトCD56陽性のNK細胞を測定しても良い。さらに、細胞表面抗原としてヒトCD2、ヒトCD5、ヒトCD7、ヒトTCR(T-Cell Receptor)をT細胞系のために測定しても良い。さらに、細胞表面抗原としてヒトCD10、ヒトCD20、ヒトCD22、ヒトCD79a、ヒトκ/λをB細胞系のために測定しても良い。細胞表面抗原としては、これらの代表例に限定されず、その他にもヒトCD16、ヒトCD57、ヒトCD13、ヒトCD33、ヒトCD34及びヒトMPO(ミエロペルオキシダーゼ)を測定することもできる。 More specifically, the number of human CD45-positive white blood cells, human CD19-positive B cells, and human CD3-positive T cells in engrafted human peripheral blood mononuclear cells can be measured. Furthermore, human CD4-positive helper T cells and human CD8-positive killer T cells can also be measured. Furthermore, human CD56-positive NK cells may be measured. Furthermore, human CD2, human CD5, human CD7, and human TCR (T-Cell Receptor) may be measured as cell surface antigens for the T cell system. Furthermore, human CD10, human CD20, human CD22, human CD79a, and human κ/λ may be measured as cell surface antigens for B cell lines. Cell surface antigens are not limited to these representative examples, and human CD16, human CD57, human CD13, human CD33, human CD34, and human MPO (myeloperoxidase) can also be measured.
 以上のように担がん-免疫不全非ヒト動物におけるリンパ球を測定した結果に基づいて、供試物質についてがん免疫応答を評価することができる。がん免疫応答を評価するとは、供試物質について、養子免疫細胞療法に有効な候補物質として選択する;がんワクチン療法に有効な候補物質として選択する;抗体療法に有効な候補物質として選択する;免疫チェックポイント阻害剤に有効な候補物質として選択することを含む意味である。 Based on the results of measuring lymphocytes in cancer-bearing immunodeficient non-human animals as described above, cancer immune responses can be evaluated for test substances. Evaluating cancer immune response means selecting a test substance as an effective candidate substance for adoptive immune cell therapy; selecting it as an effective candidate substance for cancer vaccine therapy; selecting it as an effective candidate substance for antibody therapy. ; This meaning includes selection as an effective candidate substance for immune checkpoint inhibitors.
 より具体的に、担がん-免疫不全非ヒト動物におけるリンパ球のうちT細胞及び/又はB細胞を上記供試物質の投与前後において比較することで、免疫チェックポイント阻害剤又は免疫チェックポイント阻害剤の候補物質を選択することができる。ある特定のがん患者に対して既知の免疫チェックポイント阻害剤を作用させたときのB細胞及びT細胞の割合変化と、所定の供試物質を当該担がん-免疫不全非ヒト動物に投与したときのB細胞及びT細胞の割合変化とを比較し、後者の割合変化が前者の割合変化と類似する場合、供試物質を当該既知の免疫チェックポイント阻害剤又はその候補物質として選択することができる。 More specifically, by comparing T cells and/or B cells among lymphocytes in cancer-bearing and immunodeficient non-human animals before and after administration of the above test substance, immune checkpoint inhibitors or immune checkpoint inhibition can be determined. Candidate substances for agents can be selected. Changes in the proportion of B cells and T cells when a known immune checkpoint inhibitor is applied to a specific cancer patient, and the prescribed test substance is administered to the cancer-bearing immunodeficient non-human animal. Compare the changes in the proportions of B cells and T cells when doing so, and if the latter proportion change is similar to the former proportion change, select the test substance as the known immune checkpoint inhibitor or its candidate substance. I can do it.
 免疫チェックポイント阻害剤の一例として、アテゾリズマブ(Atezolizumab)を挙げることができる。アテゾリズマブは、Programmed cell death-1(PD-1)とそのリガンドPD-L1(PD-L2)経路を阻害する抗PD-L1抗体医薬品である。アテゾリズマブの投与によりT細胞の再活性化が生じ、がん特異的免疫反応が誘導され、抗腫瘍効果を認めることが示されている。乳がん患者では、CD45陽性細胞中のT細胞の割合が健常者と比較して低下し、B細胞の割合が増加することが示されている。乳がん細胞株を移植した担がん-免疫不全非ヒト動物においては、アテゾリズマブの投与によりCD45陽性細胞中のT細胞の割合が増加し、B細胞の割合が低下して、健常者に近い状態になる。したがって、乳がん細胞株を移植した担がん-免疫不全非ヒト動物に供試物質を投与して、アテゾリズマブを投与したときと同様に、B細胞の割合が低下し、CD45陽性細胞中のT細胞、特にCD8陽性キラーT細胞の割合が増加した場合、当該供試物質をPD-1/PD-L1経路の免疫チェックポイント阻害剤又はその候補物質として選択することができる。 Atezolizumab can be mentioned as an example of an immune checkpoint inhibitor. Atezolizumab is an anti-PD-L1 antibody drug that inhibits programmed cell death-1 (PD-1) and its ligand PD-L1 (PD-L2) pathway. It has been shown that administration of atezolizumab causes reactivation of T cells, induces a cancer-specific immune response, and exhibits antitumor effects. It has been shown that in breast cancer patients, the proportion of T cells among CD45-positive cells decreases compared to healthy subjects, and the proportion of B cells increases. In cancer-bearing, immunodeficient non-human animals transplanted with breast cancer cell lines, administration of atezolizumab increases the proportion of T cells among CD45-positive cells and decreases the proportion of B cells, resulting in a state similar to that of healthy individuals. Become. Therefore, when a test substance is administered to a tumor-bearing, immunodeficient non-human animal transplanted with a breast cancer cell line, the proportion of B cells decreases, and T cells among CD45-positive cells decrease, similar to when atezolizumab is administered. In particular, when the proportion of CD8-positive killer T cells increases, the test substance can be selected as an immune checkpoint inhibitor of the PD-1/PD-L1 pathway or a candidate thereof.
 なお、免疫チェックポイント阻害剤としては、PD-1/PD-L1経路の免疫チェックポイント阻害剤に限定されず、T細胞上に発現する細胞傷害性Tリンパ球抗原4(CTLA-4)受容体と、抗原提示細胞に発現するB7(B7-1:CD80,B7-2:CD86)分子とのB7/CTLA4経路を阻害するものであってもよい。このような免疫チェックポイント阻害剤としてはイピリムマブを挙げることができる。 Note that immune checkpoint inhibitors are not limited to immune checkpoint inhibitors of the PD-1/PD-L1 pathway, but include cytotoxic T lymphocyte antigen 4 (CTLA-4) receptors expressed on T cells. It may also inhibit the B7/CTLA4 pathway between B7 (B7-1:CD80, B7-2:CD86) molecules expressed on antigen-presenting cells. Such immune checkpoint inhibitors include ipilimumab.
 また、担がん-免疫不全非ヒト動物におけるリンパ球を測定した結果に基づいて、供試物質についてがん免疫応答を評価するに際して、上述のようにリンパ球を測定することに加えて担がん-免疫不全非ヒト動物における腫瘍組織の大きさを測定しても良い。供試物質を投与した担がん-免疫不全非ヒト動物における腫瘍組織の大きさを、当該供試物質を投与していないコントロールの担がん-免疫不全非ヒト動物の腫瘍組織の大きさと比較する。上述したリンパ球の測定結果に加えて腫瘍組織の大きさの比較結果を考慮することで、供試物質についてがん免疫応答を評価するとともに抗腫瘍効果を判断することができる。 In addition, in addition to measuring lymphocytes as described above, when evaluating cancer immune responses for test substances based on the results of measuring lymphocytes in tumor-bearing immunodeficient non-human animals, - The size of tumor tissue in immunodeficient non-human animals may be measured. Compare the size of tumor tissue in a tumor-bearing-immunodeficient non-human animal to which the test substance was administered with the size of tumor tissue in a control tumor-bearing-immunodeficient non-human animal to which the test substance was not administered. do. By considering the comparative results of tumor tissue size in addition to the above-mentioned lymphocyte measurement results, it is possible to evaluate the cancer immune response and determine the antitumor effect of the test substance.
 また、上述のように担がん-免疫不全非ヒト動物における腫瘍組織の大きさの測定に加えて、腫瘍内へのリンパ球の浸潤の程度(腫瘍浸潤リンパ球の密度)を測定しても良い。供試物質を投与した担がん-免疫不全非ヒト動物における腫瘍浸潤リンパ球の密度を、当該供試物質を投与していないコントロールの担がん-免疫不全非ヒト動物における腫瘍浸潤リンパ球の密度と比較する。上述したリンパ球の測定結果・腫瘍組織の大きさに加えて腫瘍浸潤リンパ球の密度を比較結果を考慮することで、供試物質についてがん免疫応答を評価するとともに抗腫瘍効果をさらに判断することができる。 In addition to measuring the size of tumor tissue in cancer-bearing, immunodeficient non-human animals as described above, it is also possible to measure the degree of lymphocyte infiltration into the tumor (density of tumor-infiltrating lymphocytes). good. The density of tumor-infiltrating lymphocytes in tumor-bearing-immunodeficient non-human animals administered with the test substance was compared with that of tumor-infiltrating lymphocytes in control tumor-bearing-immunodeficient non-human animals to which the test substance was not administered. Compare with density. By considering the results of comparing the density of tumor-infiltrating lymphocytes in addition to the above-mentioned lymphocyte measurement results and tumor tissue size, the cancer immune response of the test substance is evaluated and the antitumor effect is further determined. be able to.
 また、以上で説明したがん免疫応答評価方法を実施するため、がん免疫応答評価キットを提供することができる。本発明に係るがん免疫応答評価キットは、上述した担がん-免疫不全非ヒト動物と、末梢血単核球に関する細胞表面マーカー解析試薬とを含む。ここで、末梢血単核球に関する細胞表面マーカー解析試薬とは、上述したように、フローサイトメトリーを用いた細胞表現抗原検査により、生着したヒト末梢血単核球に含まれるリンパ球を検出するための試薬である。具体的には、本キットは、上述したように、ヒトCD45陽性の白血球を検出するための抗CD45抗体、ヒトCD19陽性のB細胞を検出するための抗CD19抗体、ヒトCD3陽性のT細胞を検出するための抗CD3抗体を備えることができる。また、本キットは、ヒトCD4陽性のヘルパーT細胞を検出するための抗CD4抗体と、ヒトCD8陽性のキラーT細胞を検出するための抗CD8抗体を備えることができる。さらにまた、本キットは、ヒトCD56陽性のNK細胞を検出するための抗CD56抗体を備えることもできる。その他、細胞表面抗原としてヒトCD2、ヒトCD5、ヒトCD7、ヒトTCR(T-Cell Receptor)に対する抗体をT細胞系の検出のために備えることができる。さらに、細胞表面抗原としてヒトCD10、ヒトCD20、ヒトCD22、ヒトCD79a、ヒトCD38、CD27、Ig重鎖、IgM、IgGサブセット、IgAサブセット、IgD、IgE、Ig軽鎖κ、λに対する抗体をB細胞系の検出のために備えることもできる。さらにまた、細胞表面抗原に対する抗体として、その他にもヒトCD16、ヒトCD57、ヒトCD13、ヒトCD33、ヒトCD34及びヒトMPO(ミエロペルオキシダーゼ)に対する抗体を備えることもできる。さらにまた、PD-1、PD-L1、CD25、CTLA-4など各種活性化・疲弊マーカー及び免疫チェックポイント抗体のリガンドなどの抗体を備えることもできる。 Furthermore, a cancer immune response evaluation kit can be provided to carry out the cancer immune response evaluation method described above. The cancer immune response evaluation kit according to the present invention includes the above-described cancer-bearing immunodeficient non-human animal and a cell surface marker analysis reagent for peripheral blood mononuclear cells. Here, the cell surface marker analysis reagent for peripheral blood mononuclear cells is used to detect lymphocytes contained in engrafted human peripheral blood mononuclear cells using a cell expression antigen test using flow cytometry, as described above. It is a reagent for Specifically, as described above, this kit contains an anti-CD45 antibody for detecting human CD45-positive leukocytes, an anti-CD19 antibody for detecting human CD19-positive B cells, and a human CD3-positive T cell. An anti-CD3 antibody for detection can be provided. Further, this kit can include an anti-CD4 antibody for detecting human CD4-positive helper T cells and an anti-CD8 antibody for detecting human CD8-positive killer T cells. Furthermore, this kit can also include an anti-CD56 antibody for detecting human CD56-positive NK cells. In addition, antibodies against human CD2, human CD5, human CD7, and human TCR (T-Cell Receptor) as cell surface antigens can be provided for detection of T cell lines. Furthermore, antibodies against human CD10, human CD20, human CD22, human CD79a, human CD38, CD27, Ig heavy chain, IgM, IgG subset, IgA subset, IgD, IgE, Ig light chain κ, λ were used as cell surface antigens in B cells. Provision may also be made for system detection. Furthermore, as antibodies against cell surface antigens, antibodies against human CD16, human CD57, human CD13, human CD33, human CD34, and human MPO (myeloperoxidase) can also be provided. Furthermore, antibodies such as various activation/exhaustion markers such as PD-1, PD-L1, CD25, and CTLA-4, and ligands for immune checkpoint antibodies can be provided.
 また、本キットは、上述した供試物質を含むこともできる。すなわち、本キットは、供試物質として、例えば、核酸、糖質、脂質、タンパク質、ペプチド、有機低分子化合物、コンビナトリアルケミストリー技術を用いて作製された化合物ライブラリー、ランダムペプチドライブラリー、ランダム核酸ライブラリー又は微生物、動植物若しくは海洋生物等由来の天然成分を含むことができる。 Additionally, this kit can also contain the above-mentioned test substance. That is, this kit can be used as test substances such as nucleic acids, carbohydrates, lipids, proteins, peptides, small organic compounds, compound libraries prepared using combinatorial chemistry technology, random peptide libraries, and random nucleic acid libraries. It can contain natural components derived from lye or microorganisms, animals, plants, or marine organisms.
 以下、実施例により本発明を更に詳細に説明するが、本発明の技術的範囲は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be explained in more detail with reference to Examples, but the technical scope of the present invention is not limited to the following Examples.
〔材料と方法〕
(1)腫瘍細胞とマウス
 乳がん細胞株であるMDA-MB231は東海大学医学部基礎医学系分子生命科学領域で保管されていたものを用い、ライボビッツL-15培地、15%FCSを用いて37℃でCO2freeで培養した。NOGマウスはINVIVO Scienceより購入した。CMV-NOG-hIL-4-Tgマウス及びCAG-NOG-hIL-4-Tgマウスは実験動物中央研究所によって作製され、東海大学医学部実験動物施設のアイソレーターにて維持しているものあるいは実験動物中央研究所で維持されているものを用いた。DNA typingおよびELISAにてヒトIL-4濃度を測定した上で移植に用いた。
 CMV-NOG-hIL-4-Tgマウスは、CMVプロモーター、ヒトIL-4のcDNA及びSV40poly(A)を有する発現ベクターを導入した形質転換NOGマウスである。CAG-NOG-hIL-4-Tgマウスは、CAGプロモーター、ヒトIL-4のcDNA及びSV40poly(A)を有する発現ベクターを導入した形質転換NOGマウスである。
[Materials and methods]
(1) Tumor cells and mice The breast cancer cell line MDA-MB231 was stored at the Department of Molecular Life Science, School of Basic Medicine, Tokai University School of Medicine, and was incubated at 37°C using Leibovitz L-15 medium and 15% FCS. Cultured in CO 2 free. NOG mice were purchased from INVIVO Science. CMV-NOG-hIL-4-Tg mice and CAG-NOG-hIL-4-Tg mice were produced by the Central Research Institute for Experimental Animals and maintained in an isolator at the Experimental Animal Facility, Tokai University School of Medicine, or the Central Laboratory for Experimental Animals. The one maintained at the research institute was used. The human IL-4 concentration was measured by DNA typing and ELISA and used for transplantation.
CMV-NOG-hIL-4-Tg mice are transgenic NOG mice into which an expression vector containing a CMV promoter, human IL-4 cDNA, and SV40poly(A) has been introduced. CAG-NOG-hIL-4-Tg mice are transgenic NOG mice into which an expression vector containing a CAG promoter, human IL-4 cDNA, and SV40poly(A) has been introduced.
(2)ELISA
 ヒトIL-4タンパクは、Human IL-4 ELISA Set BD OptEIATM (BD Biosciences社製、カタログ番号:555194、ロッド番号:9189127)を用いて定量した。IgG抗体の定量は以前報告した論文(Kametani Y, et al., Exp Hematol (2006) 34(9): 1240-1248)に準じて行った。microtiter plates (Sumiron社製)のウェルにcarbonate buffer(pH 9.5)で溶解したCH401MAP peptideをコートしovernight 4℃で抗原をプレートに吸着させた。ウェルはその後PBS-Tween (0.05% v/v)で洗浄し、3% BSA-PBSで室温で2時間反応させた。3回のPBS-Tween洗浄ののち、10倍の希釈系列でマウス血漿を添加し、2時間室温で反応させた。プレートを3回洗浄し、biotin-conjugated mouse anti-human IgG mAb (BD Pharmingen社製) (1:3,000)を添加した。プレートを2時間37℃で反応させたのち、3回洗浄し、streptavidin-horseradish peroxidase (1:50,000 v/v; BD Pharmingen社製)を添加した。プレートを1時間室温で反応させたのち、洗浄してEIA substrate kit solution (Bio-Rad Laboratories社製)を添加した。反応は10% HClで停止し、450 nmの吸光度を測定した。なお、定量に際しては、ヒトIL-4濃度が500pg/ml、250pg/ml、125pg/ml、62.5pg/ml、31.3pg/ml、15.6pg/ml及び7.8pg/mlの標準試料から作成した検量線を使用した。
(2) ELISA
Human IL-4 protein was quantified using Human IL-4 ELISA Set BD OptEIATM (manufactured by BD Biosciences, catalog number: 555194, rod number: 9189127). Quantification of IgG antibodies was performed according to a previously reported paper (Kametani Y, et al., Exp Hematol (2006) 34(9): 1240-1248). CH401MAP peptide dissolved in carbonate buffer (pH 9.5) was coated onto the wells of microtiter plates (manufactured by Sumiron), and the antigen was adsorbed onto the plate overnight at 4°C. The wells were then washed with PBS-Tween (0.05% v/v) and incubated with 3% BSA-PBS for 2 hours at room temperature. After washing with PBS-Tween three times, mouse plasma was added in a 10-fold dilution series and allowed to react at room temperature for 2 hours. The plate was washed three times, and biotin-conjugated mouse anti-human IgG mAb (manufactured by BD Pharmingen) (1:3,000) was added. After the plate was reacted for 2 hours at 37°C, it was washed three times and streptavidin-horseradish peroxidase (1:50,000 v/v; manufactured by BD Pharmingen) was added. After reacting the plate for 1 hour at room temperature, it was washed and EIA substrate kit solution (manufactured by Bio-Rad Laboratories) was added. The reaction was stopped with 10% HCl, and absorbance at 450 nm was measured. For quantitative determination, calibration samples prepared from standard samples with human IL-4 concentrations of 500 pg/ml, 250 pg/ml, 125 pg/ml, 62.5 pg/ml, 31.3 pg/ml, 15.6 pg/ml, and 7.8 pg/ml were used. I used a line.
(3)ヒトPBMCの調製
 健常者のドナーよりVacutainer ACD tubes (NIPRO Corporation社製)を用いて30mLのヘパリン加末梢血を採取した。採取した末梢血は直後にFicoll-Hypaque (SIGMA-ALDRICH社製)に上層し、単核球画分を比重遠心分離(500×g、30min、20℃) にて採取した。細胞はPBSで300×g、5 min、4℃の遠心分離を行なって洗浄したのち細胞数を計測して使用した。
(3) Preparation of human PBMC 30 mL of heparinized peripheral blood was collected from a healthy donor using Vacutainer ACD tubes (manufactured by NIPRO Corporation). The collected peripheral blood was immediately layered on Ficoll-Hypaque (manufactured by SIGMA-ALDRICH), and the mononuclear cell fraction was collected by density centrifugation (500 x g, 30 min, 20°C). The cells were washed with PBS by centrifugation at 300 x g, 5 min, 4°C, and the number of cells was counted before use.
(4)PBMC-NOG-hIL-4-Tg マウスへの移植と生着したヒト細胞の解析
 6~ 7週齢NOG-hIL-4-Tgマウス(血中hIL-4濃度100pg/mL以上)の腹側部にMDA-MB231を5×106皮下投与した。腫瘍は1週間後より2日ごとにノギスで腹側と90度の直径を計測し、その積を用いて腫瘍の大きさとした。腫瘍移植2週間後に、担癌マウス及び対照群として非担癌マウスに5×106PBMCを経静脈で移植した。腫瘍径の計測はPBMC移植後も同様に継続した。これらのマウスは2群に分け、PBS投与、あるいはアテゾリズマブ(450ug/head/回/3回(10日ごと))を投与した。
(4) Transplantation into PBMC-NOG-hIL-4-Tg mice and analysis of engrafted human cells. 5×10 6 MDA-MB231 was subcutaneously administered to the ventral region. After one week, the diameter of the tumor at 90 degrees from the ventral side was measured every two days using a caliper, and the product of the measurements was used to determine the tumor size. Two weeks after tumor transplantation, 5×10 6 PBMCs were intravenously transplanted into tumor-bearing mice and non-tumor-bearing mice as a control group. Measurement of tumor diameter continued in the same way after PBMC transplantation. These mice were divided into two groups and administered PBS or atezolizumab (450ug/head/time/3 times (every 10 days)).
 その2週間後、マウスを麻酔し、ヘパリン加血を採取し、安楽死させた。採取した各種リンパ組織より細胞を回収したのち、溶血bufferで赤血球を除去し、細胞懸濁液を調整した。これらの細胞数を計測したのち、ヒト白血球画分についてフローサイトメトリー(FCM)解析を行った。腫瘍及び肺、肝臓組織は免疫組織化学染色に用いた。 Two weeks later, the mice were anesthetized, heparinized blood was collected, and euthanized. After collecting cells from various lymphoid tissues, red blood cells were removed using hemolysis buffer to prepare a cell suspension. After counting these cells, flow cytometry (FCM) analysis was performed on the human leukocyte fraction. Tumor, lung, and liver tissues were used for immunohistochemical staining.
(5)フローサイトメトリー
 ヒト免疫細胞染色には表1に示した抗体を用いた。
(5) Flow cytometry The antibodies shown in Table 1 were used for human immune cell staining.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 細胞は適量の各種蛍光標識抗体で15分4℃で反応させたのち、1%BSAを含むPBSで洗浄した。これらの細胞をFACS FortessaあるいはVerse (BD Biosciences社製)で解析した。生細胞にゲートをかけたのち、ヒトCD45陽性細胞にさらにゲートをかけ、ヒト白血球画分とした。これらの細胞をさらに細胞表面マーカーで分けてリンパ球サブセットとした。データ解析にはFlowJo (BD)を用いた。 The cells were reacted with an appropriate amount of various fluorescently labeled antibodies for 15 minutes at 4°C, and then washed with PBS containing 1% BSA. These cells were analyzed using FACS Fortessa or Verse (manufactured by BD Biosciences). After gating on live cells, human CD45-positive cells were further gated to obtain a human leukocyte fraction. These cells were further divided into lymphocyte subsets using cell surface markers. FlowJo (BD) was used for data analysis.
(6)組織化学染色
 マウスの組織は20% formalin (Wako Pure Chemical Industries社製)にて固定し、パラフィン包埋を行なった。パラフィンブロックを薄切し、脱パラフィン処理を行ったのち、スライドグラスにマウントし、hematoxylinおよびeosin (HE)で染色した。抗ヒトCD45抗体による免疫組織化学染色では、スライドの97℃20分熱処理を行い、0.3% H2O2/MetOHで室温10分間反応させて内在性ペルオキシダーゼ処理を行った。その後、1% goat serumでブロッキングを行い、anti-human CD45(Dako社製)を添加し、4℃ overnight反応させスライドを0.01M PBSで5 min 3回洗浄し、DAB溶液で発色させた。流水3分洗浄ののち、ヘマトキシリンで各染色を行い、脱水・透徹/封入を行った。
(6) Histochemical staining Mouse tissues were fixed with 20% formalin (Wako Pure Chemical Industries) and embedded in paraffin. Paraffin blocks were sliced, deparaffinized, mounted on glass slides, and stained with hematoxylin and eosin (HE). For immunohistochemical staining with anti-human CD45 antibody, slides were heat-treated at 97°C for 20 minutes and treated with endogenous peroxidase by reacting with 0.3% H 2 O 2 /MetOH at room temperature for 10 minutes. Thereafter, blocking was performed with 1% goat serum, anti-human CD45 (manufactured by Dako) was added, and the slides were reacted overnight at 4°C. The slides were washed three times for 5 min with 0.01M PBS, and colored with DAB solution. After washing with running water for 3 minutes, each stain was performed with hematoxylin, followed by dehydration, clearing, and mounting.
(7)統計処理
 統計学的処理はMicrosoft Excel (Microsoft社製)を用いて行なった。データは mean ± SDで表示した。有意差検定は One-way ANOVAあるいはtwo-sided Student’s t-test analysisを用いて行なった。
(7) Statistical processing Statistical processing was performed using Microsoft Excel (manufactured by Microsoft). Data are expressed as mean ± SD. Significant differences were tested using one-way ANOVA or two-sided Student's t-test analysis.
〔結果〕
(1)CMVプロモーターを持つhIL-4-TgはPBMC移植によりTh、Tc及びB細胞をバランスよく維持するヒト免疫環境を再現するが、CAG-プロモーターを持つhIL-4-TgはTh細胞優位の免疫環境となる。
〔result〕
(1) hIL-4-Tg with a CMV promoter reproduces the human immune environment that maintains a balance of Th, Tc, and B cells by PBMC transplantation, whereas hIL-4-Tg with a CAG-promoter has a predominance of Th cells. It becomes an immune environment.
 CMVプロモーターを持つNOG-hIL-4-TgマウスとCAG-プロモーターを持つNOG-hIL-4-Tgマウスについて血漿中IL-4濃度を測定したところ、CAG-NOG-hIL-4-TgマウスではIL-4が平均5倍以上となることが明らかになった。 When plasma IL-4 concentrations were measured in NOG-hIL-4-Tg mice with a CMV promoter and NOG-hIL-4-Tg mice with a CAG-promoter, it was found that in CAG-NOG-hIL-4-Tg mice, IL-4 It was revealed that -4 is more than 5 times more expensive on average.
 これらのマウスにヒトPBMCを移植し、4週間後に脾臓に生着したリンパ球のプロファイルをフローサイトメトリーにて解析した。その結果、CMV-NOG-hIL-4-Tgマウスでは、通常のNOGと比較して、B細胞の生着率が高く、CD45陽性のヒト白血球のうち7割以上のマウスで10%以上となった。一方、CAG-hIL-4-Tgマウスを含む500pg/ml以上の血漿IL-4濃度のマウスには、ほとんどB細胞は生着しなかった(図1参照)。なお、図1において、白点は上記〔材料と方法〕(2)ELISAに記載した方法でCMV-NOG-hIL-4-Tgの血漿IL-4濃度を測定した結果を示し、黒点は同方法によりCAG-NOG-hIL-4-Tgの血漿IL-4濃度を測定した結果を示し、網掛けの点は当該方法と異なる方法(使用した抗hIL-4抗体の違いにより約2倍の濃度で測定される)によりCMV-NOG-hIL-4-Tgの血漿IL-4濃度を測定した結果を示している。 Human PBMC were transplanted into these mice, and 4 weeks later, the profile of lymphocytes that had engrafted in the spleen was analyzed using flow cytometry. As a result, the B cell engraftment rate was higher in CMV-NOG-hIL-4-Tg mice than in normal NOG mice, with over 70% of CD45-positive human leukocytes exceeding 10% in mice. Ta. On the other hand, almost no B cells engrafted in mice with plasma IL-4 concentrations of 500 pg/ml or higher, including CAG-hIL-4-Tg mice (see Figure 1). In Figure 1, the white dots indicate the results of measuring the plasma IL-4 concentration of CMV-NOG-hIL-4-Tg using the method described in [Materials and Methods] (2) ELISA above, and the black dots indicate the results of measuring the plasma IL-4 concentration of CMV-NOG-hIL-4-Tg using the same method. The results of measuring the plasma IL-4 concentration of CAG-NOG-hIL-4-Tg are shown. Figure 2 shows the results of measuring the plasma IL-4 concentration of CMV-NOG-hIL-4-Tg using
 この結果より、ヒトIL-4を導入したNOGマウスでは、ヒトPBMCに由来するB細胞を生着させることができ、特に、血漿中のヒトIL-4濃度が100~500pg/mlの場合にB細胞の生着率が優れること明らかとなった。 From this result, NOG mice transfected with human IL-4 are able to engraft B cells derived from human PBMC, and especially when the human IL-4 concentration in plasma is 100 to 500 pg/ml, B cells can be engrafted. It became clear that the cell survival rate was excellent.
 さらに、コントロールとしてNOGマウス、CMV-NOG-hIL-4-Tgマウス及びCAG-NOG-hIL-4-Tgマウスに生着したCD3陽性T細胞、CD19陽性B細胞、CD4陽性ヘルパーT細胞及びCD8陽性キラーT細胞を測定した結果を図2に示した。図2に示すように、CMV-NOG-hIL-4-Tgマウスでは、CD4陽性ヘルパーT細胞及びCD8陽性キラーT細胞がバランスよく生着していることが判った。一方、CAG-NOG-hIL-4-Tgマウスでは、大部分がCD4陽性ヘルパーT細胞となり、CD8陽性キラー細胞はほとんど検出されなかった。また、CMV-NOG-hIL-4-Tgマウスにおいても、血漿中IL-4濃度が低い個体では、B細胞の生着能は低く、CD8優位のGVHD様のプロファイルとなった。 Furthermore, as controls, CD3-positive T cells, CD19-positive B cells, CD4-positive helper T cells, and CD8-positive The results of measuring killer T cells are shown in Figure 2. As shown in FIG. 2, it was found that CD4-positive helper T cells and CD8-positive killer T cells were engrafted in a well-balanced manner in CMV-NOG-hIL-4-Tg mice. On the other hand, in CAG-NOG-hIL-4-Tg mice, most of the cells were CD4-positive helper T cells, and almost no CD8-positive killer cells were detected. Furthermore, in CMV-NOG-hIL-4-Tg mice, individuals with low plasma IL-4 concentrations had low B cell engraftment ability, resulting in a CD8-dominated GVHD-like profile.
 以上の結果より、NOGマウスにヒトIL-4遺伝子を導入した免疫不全マウス、特に血漿中IL-4濃度が100-500 pg/ml程度(測定方法によっては100~1000pg/ml程度)の免疫不全マウスに対してヒトPBMCを移植することにより、B細胞の生着が確認でき、生理的条件に近いリンパ球プロファイルを得ることができることが明らかとなった。 From the above results, we found that immunodeficient mice in which the human IL-4 gene was introduced into NOG mice, especially immunodeficient mice with plasma IL-4 concentrations of approximately 100-500 pg/ml (approximately 100-1000 pg/ml depending on the measurement method). By transplanting human PBMC into mice, it was possible to confirm the engraftment of B cells and obtain a lymphocyte profile close to physiological conditions.
(2)CMV-PBMC-NOG-hIL-4-Tgにはヒト乳がん細胞株MDA-MB-231が生着して患者免疫環境を模倣し、アテゾリズマブによる腫瘍増殖抑制が観察される。 (2) The human breast cancer cell line MDA-MB-231 engrafts on CMV-PBMC-NOG-hIL-4-Tg, mimicking the patient's immune environment, and tumor growth suppression by atezolizumab is observed.
 CMVプロモーターを持つNOG-hIL-4-Tgに対して、PD-L1を発現するヒトトリプルネガティブ乳がん細胞株MDA-MB231株を移植した。PBS投与群及びアテゾリズマブ投与群について腫瘍径を測定した結果を図3に示した。また、乳がん細胞株MDA-MB231を移植したCMV-NOG-hIL-4-Tgマウス及び乳がん細胞株MDA-MB231を移植していないCMV-NOG-hIL-4-Tgマウスに対して、PBS又はアテゾリズマブを投与したときのリンパ球プロファイルを測定した結果を図4に示した。図4において、乳がん細胞株MDA-MB231を移植したCMV-NOG-hIL-4-Tgマウスを「担がんマウス」と記載し、乳がん細胞株MDA-MB231を移植していないCMV-NOG-hIL-4-Tgマウスを「非担がんマウス」と記載した。 A human triple-negative breast cancer cell line MDA-MB231 expressing PD-L1 was transplanted into NOG-hIL-4-Tg, which has a CMV promoter. Figure 3 shows the results of measuring tumor diameters for the PBS administration group and the atezolizumab administration group. In addition, PBS or atezolizumab was administered to CMV-NOG-hIL-4-Tg mice transplanted with breast cancer cell line MDA-MB231 and CMV-NOG-hIL-4-Tg mice not transplanted with breast cancer cell line MDA-MB231. Figure 4 shows the results of measuring the lymphocyte profile when administered. In Figure 4, CMV-NOG-hIL-4-Tg mice transplanted with breast cancer cell line MDA-MB231 are described as "tumor-bearing mice," and CMV-NOG-hIL-4-Tg mice that are not transplanted with breast cancer cell line MDA-MB231 are referred to as "tumor-bearing mice." -4-Tg mice were described as "non-tumor-bearing mice."
 図3に示すPBS投与群の結果から、腫瘍細胞は生着し、腫瘍塊が経時的に増大することが観察された。この腫瘍塊には、ヒトリンパ球はほとんど浸潤していなかった。また、図4に示す結果のうち、乳がん細胞株MDA-MB231を移植したCMV-NOG-hIL-4-Tgマウスと乳がん細胞株MDA-MB231を移植していないCMV-NOG-hIL-4-TgマウスについてPBS投与した結果から、MDA-MB231株を移植しないマウスと比較して、MDA-MB231を移植したCMV-NOG-hIL-4-Tgマウスでは、CD45陽性細胞中のT細胞の割合が低下し、B細胞の割合が増加することが明らかとなった。この現象は、乳がん患者末梢血単核球中でも観察されており、MDA-MB231を移植したCMV-NOG-hIL-4-Tgマウスは、in vivoの結果を模倣することが示された。 From the results of the PBS administration group shown in Figure 3, it was observed that tumor cells were engrafted and the tumor mass increased over time. Almost no human lymphocytes were infiltrated into this tumor mass. In addition, among the results shown in Figure 4, CMV-NOG-hIL-4-Tg mice transplanted with breast cancer cell line MDA-MB231 and CMV-NOG-hIL-4-Tg mice without transplantation with breast cancer cell line MDA-MB231. Based on the results of PBS administration to mice, the percentage of T cells among CD45-positive cells was lower in CMV-NOG-hIL-4-Tg mice transplanted with MDA-MB231 compared to mice not transplanted with the MDA-MB231 strain. However, it was revealed that the proportion of B cells increased. This phenomenon has also been observed in peripheral blood mononuclear cells of breast cancer patients, and CMV-NOG-hIL-4-Tg mice transplanted with MDA-MB231 were shown to mimic the in vivo results.
 一方、これらのマウスに抗PD-L1抗体であるアテゾリズマブを投与したところ、図3に示すように、腫瘍の増大が抑制傾向となることが示された。また、図4に示すように、MDA-MB231を移植したCMV-NOG-hIL-4-Tgマウスに対するアテゾリズマブ投与により、B細胞の生着が低下し、且つ、T細胞の割合が増加、特にCD8陽性キラーT細胞の割合が増加している。 On the other hand, when the anti-PD-L1 antibody atezolizumab was administered to these mice, it was shown that tumor growth tended to be suppressed, as shown in Figure 3. Furthermore, as shown in Figure 4, administration of atezolizumab to CMV-NOG-hIL-4-Tg mice transplanted with MDA-MB231 decreased B cell engraftment and increased the proportion of T cells, especially CD8. The percentage of positive killer T cells is increasing.
 また、腫瘍組織に対する組織化学染色の結果を図5に示した。図5に示すように、PBS投与群では腫瘍塊に対するリンパ球の浸潤は観察されなかったのに対して、アテゾリズマブ投与群では腫瘍塊に明らかなヒトT細胞の浸潤が観察された。 Additionally, the results of histochemical staining of tumor tissue are shown in FIG. As shown in Figure 5, no infiltration of lymphocytes into the tumor mass was observed in the PBS administration group, whereas clear infiltration of human T cells into the tumor mass was observed in the atezolizumab administration group.
 以上の結果より、MDA-MB231を移植したCMV-NOG-hIL-4-Tgマウスは、ヒト乳がんの免疫状態を模倣し、更に、ヒト乳がん患者に対する免疫チェックポイント阻害剤であるアテゾリズマブによる抗腫瘍効果を再現できることが明らかとなった。
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。
Based on the above results, CMV-NOG-hIL-4-Tg mice transplanted with MDA-MB231 mimic the immune status of human breast cancer, and further show the antitumor effect of atezolizumab, an immune checkpoint inhibitor, on human breast cancer patients. It became clear that it was possible to reproduce.
All publications, patents, and patent applications cited herein are incorporated by reference in their entirety.

Claims (15)

  1.  IL-2受容体γ鎖遺伝子に変異が導入されてIL-2受容体γ鎖が欠損し、T細胞及びB細胞の抗原受容体遺伝子の再構成に関わる遺伝子の変異が両対立遺伝子座位にあり、且つ、ヒトIL-4遺伝子が導入された免疫不全非ヒト動物に対して、がん細胞及び/又はがん組織並びにヒト末梢血単核球が移植された、担がん-免疫不全非ヒト動物。 A mutation has been introduced into the IL-2 receptor γ chain gene, resulting in a deficiency of the IL-2 receptor γ chain, and mutations in genes involved in rearrangement of T cell and B cell antigen receptor genes are present at both allelic loci. , and a cancer-bearing immunodeficient non-human animal into which cancer cells and/or cancer tissues and human peripheral blood mononuclear cells have been transplanted into an immunodeficient non-human animal into which the human IL-4 gene has been introduced. animal.
  2.  上記ヒトIL-4遺伝子がコードするヒトIL-4の血漿中濃度が100~500pg/mlであることを特徴とする請求項1記載の担がん-免疫不全非ヒト動物。 The tumor-bearing immunodeficient non-human animal according to claim 1, wherein the plasma concentration of human IL-4 encoded by the human IL-4 gene is 100 to 500 pg/ml.
  3.  上記ヒトIL-4遺伝子は、ヒトサイトメガロウイルスプロモーターの制御下に発現することを特徴とする請求項1記載の担がん-免疫不全非ヒト動物。 The tumor-bearing and immunodeficient non-human animal according to claim 1, wherein the human IL-4 gene is expressed under the control of a human cytomegalovirus promoter.
  4.  T細胞及びB細胞の抗原受容体遺伝子の再構成に関わる遺伝子の変異が、SCID変異又はRAG変異であることを特徴とする請求項1記載の担がん-免疫不全非ヒト動物。 The tumor-bearing immunodeficient non-human animal according to claim 1, wherein the mutation in a gene involved in rearrangement of antigen receptor genes of T cells and B cells is a SCID mutation or a RAG mutation.
  5.  上記免疫不全非ヒト動物は、機能的なT細胞及びB細胞を共に欠失し、マクロファージ機能が減退し、NK細胞又はNK活性を消失し、且つ、樹状細胞機能が減退しており、優れた異種細胞接着性を有しているものであることを特徴とする請求項1記載の担がん-免疫不全非ヒト動物。 The immunodeficient non-human animal described above lacks both functional T cells and B cells, has decreased macrophage function, has lost NK cells or NK activity, and has decreased dendritic cell function, and has excellent 2. The cancer-bearing immunodeficient non-human animal according to claim 1, which has a property of adhesion to different types of cells.
  6.  上記免疫不全非ヒト動物は、以下のAの非ヒト動物にBの非ヒト動物を戻し交配することで作出されたものであることを特徴とする請求項1記載の担がん-免疫不全非ヒト動物。
    A:NOD/Shi非ヒト動物にC.B-17-scid非ヒト動物を戻し交配することにより得られる非ヒト動物
    B:インターロイキン2受容体γ鎖遺伝子をノックアウトした非ヒト動物
    The cancer-bearing non-immuno-deficient non-human animal according to claim 1, wherein the immuno-deficient non-human animal is produced by backcrossing the following non-human animal A with the non-human animal B. human animal.
    A: C. to NOD/Shi non-human animals. Non-human animal B obtained by backcrossing B-17-scid non-human animal: non-human animal in which the interleukin 2 receptor γ chain gene has been knocked out
  7.  上記免疫不全非ヒト動物は、NOG(NOD/Shi-scid,IL-2Rγ KO)マウスであることを特徴とする請求項1記載の担がん-免疫不全非ヒト動物。 The tumor-bearing immunodeficient non-human animal according to claim 1, wherein the immunodeficient non-human animal is a NOG (NOD/Shi-scid, IL-2Rγ KO) mouse.
  8.  上記がん細胞及び/又はがん組織は、ヒト乳がん細胞及び/又はヒト乳がん組織であることを特徴とする請求項1記載の担がん-免疫不全非ヒト動物。 The cancer-bearing immunodeficient non-human animal according to claim 1, wherein the cancer cells and/or cancer tissues are human breast cancer cells and/or human breast cancer tissues.
  9.  上記ヒト末梢血単核球の移植細胞数を1~5×10個とすることを特徴とする請求項1記載の担がん-免疫不全非ヒト動物。 The tumor-bearing, immunodeficient non-human animal according to claim 1, wherein the number of human peripheral blood mononuclear cells transplanted is 1 to 5×10 6 cells.
  10.  ヒトCD19陽性のヒトB細胞が生着していることを特徴とする請求項1記載の担がん-免疫不全非ヒト動物。 The tumor-bearing immunodeficient non-human animal according to claim 1, wherein human CD19-positive human B cells are engrafted.
  11.  請求項1~10いずれか一項記載の担がん-免疫不全非ヒト動物に対して供試物質を投与する工程と、
     上記供試物質の投与前後における、リンパ球を比較する工程とを含む、供試物質に関するがん免疫応答評価方法。
    A step of administering a test substance to the cancer-bearing immunodeficient non-human animal according to any one of claims 1 to 10;
    A method for evaluating cancer immune response regarding a test substance, comprising the step of comparing lymphocytes before and after administration of the test substance.
  12.  上記供試物質は、免疫チェックポイント阻害剤又は免疫チェックポイント阻害剤の候補物質であり、リンパ球のうちT細胞及び/又はB細胞を上記供試物質の投与前後において比較することを特徴とする請求項11記載のがん免疫応答評価方法。 The test substance is an immune checkpoint inhibitor or a candidate substance for an immune checkpoint inhibitor, and is characterized in that T cells and/or B cells among lymphocytes are compared before and after administration of the test substance. The cancer immune response evaluation method according to claim 11.
  13.  上記供試物質の投与前と比較して、リンパ球に含まれるヒトCD8陽性キラーT細胞が増加した場合、上記担がん-免疫不全非ヒト動物に移植したがんに対して、当該供試物質が免疫チェックポイント阻害作用を有すると判定することを特徴とする請求項11記載のがん免疫応答評価方法。 If the number of human CD8-positive killer T cells included in lymphocytes increases compared to before administration of the test substance, the test substance 12. The cancer immune response evaluation method according to claim 11, wherein the substance is determined to have an immune checkpoint inhibiting effect.
  14.  請求項1~10いずれか一項記載の担がん-免疫不全非ヒト動物と、末梢血単核球に関する細胞表面マーカー解析試薬とを含む、がん免疫応答評価キット。 A cancer immune response evaluation kit comprising the cancer-bearing immunodeficient non-human animal according to any one of claims 1 to 10 and a cell surface marker analysis reagent for peripheral blood mononuclear cells.
  15.  評価対象の供試物質を更に含むことを特徴とする請求項14記載のがん免疫応答評価キット。 The cancer immune response evaluation kit according to claim 14, further comprising a test substance to be evaluated.
PCT/JP2023/028264 2022-08-02 2023-08-02 Tumor-bearing immunodeficient nonhuman animal, and method for evaluating cancer immune response regarding test substance using same WO2024029561A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-123595 2022-08-02
JP2022123595 2022-08-02

Publications (1)

Publication Number Publication Date
WO2024029561A1 true WO2024029561A1 (en) 2024-02-08

Family

ID=89849368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028264 WO2024029561A1 (en) 2022-08-02 2023-08-02 Tumor-bearing immunodeficient nonhuman animal, and method for evaluating cancer immune response regarding test substance using same

Country Status (1)

Country Link
WO (1) WO2024029561A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016189799A1 (en) * 2015-05-27 2016-12-01 公益財団法人実験動物中央研究所 Human il-15-secreting immunodeficient mouse
JP2021500918A (en) * 2017-08-09 2021-01-14 ザ ジャクソン ラボラトリーThe Jackson Laboratory Immunodeficient mice expressing human interleukin 15
WO2022066894A1 (en) * 2020-09-24 2022-03-31 The Jackson Laboratory Humanized mouse models for assessing immune cell therapy
WO2023013700A1 (en) * 2021-08-04 2023-02-09 学校法人東海大学 Companion drug comprising activity regulator for t cell and/or b cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016189799A1 (en) * 2015-05-27 2016-12-01 公益財団法人実験動物中央研究所 Human il-15-secreting immunodeficient mouse
JP2021500918A (en) * 2017-08-09 2021-01-14 ザ ジャクソン ラボラトリーThe Jackson Laboratory Immunodeficient mice expressing human interleukin 15
WO2022066894A1 (en) * 2020-09-24 2022-03-31 The Jackson Laboratory Humanized mouse models for assessing immune cell therapy
WO2023013700A1 (en) * 2021-08-04 2023-02-09 学校法人東海大学 Companion drug comprising activity regulator for t cell and/or b cell

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KAMETANI YOSHIE, ITO RYOJI, OHSHIMA SHINO, MANABE YOSHIYUKI, OHNO YUSUKE, SHIMIZU TOMOKA, YAMADA SOGA, KATANO NAGI, KIRIGAYA DAIKI: "Construction of the systemic anticancer immune environment in tumour-bearing humanized mouse by using liposome-encapsulated anti-programmed death ligand 1 antibody-conjugated progesterone", FRONTIERS IN IMMUNOLOGY, FRONTIERS MEDIA, LAUSANNE, CH, vol. 14, 10 July 2023 (2023-07-10), Lausanne, CH , XP093135759, ISSN: 1664-3224, DOI: 10.3389/fimmu.2023.1173728 *
KAMETANI YOSHIE, KATANO IKUMI, MIYAMOTO ASUKA, KIKUCHI YUSUKE, ITO RYOJI, MUGURUMA YUKARI, TSUDA BANRI, HABU SONOKO, TOKUDA YUTAKA: "NOG-hIL-4-Tg, a new humanized mouse model for producing tumor antigen-specific IgG antibody by peptide vaccination", PLOS ONE, PUBLIC LIBRARY OF SCIENCE, US, vol. 12, no. 6, US , pages e0179239, XP093135756, ISSN: 1932-6203, DOI: 10.1371/journal.pone.0179239 *
OHNO YUSUKE, OHSHIMA SHINO, MIYAMOTO ASUKA, KAMETANI FUYUKI, ITO RYOJI, TSUDA BANRI, KASAMA YUKIE, NAKADA SHUNSUKE, KASHIWAGI HIRO: "HER2-antigen-specific humoral immune response in breast cancer lymphocytes transplanted in hu-PBL hIL-4 NOG mice", SCIENTIFIC REPORTS, NATURE PUBLISHING GROUP, US, vol. 11, no. 1, US , XP093135757, ISSN: 2045-2322, DOI: 10.1038/s41598-021-92311-y *

Similar Documents

Publication Publication Date Title
AU2019204775B2 (en) Genetically modified non-human animals and methods of use thereof
Guerra et al. NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy
KR102480188B1 (en) T cell receptors recognizing mhc class ii-restricted mage-a3
Wu et al. Reduced expression of Bcl-2 in CD8+ T cells deficient in the IL-15 receptor α-chain
US5565321A (en) Detection of mutations in a CD40 ligand gene
US20210051928A1 (en) Genetically modified non-human animal with human or chimeric il15
WO2021136537A1 (en) GENETICALLY MODIFIED IMMUNODEFICIENT NON-HUMAN ANIMAL WITH HUMAN OR CHIMERIC SIRPα/CD47
WO2023226987A1 (en) Genetically modified non-human animal with human or chimeric genes
WO2024029561A1 (en) Tumor-bearing immunodeficient nonhuman animal, and method for evaluating cancer immune response regarding test substance using same
WO2023041035A1 (en) Genetically modified non-human animal with human or chimeric genes
RU2775425C2 (en) Genetically modified animals not related to human race and their application methods
Tsai et al. Reduced Expression of Bcl-2 in CD8+ T Cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23850115

Country of ref document: EP

Kind code of ref document: A1