WO2024029283A1 - Voltage control program and air purifier - Google Patents

Voltage control program and air purifier Download PDF

Info

Publication number
WO2024029283A1
WO2024029283A1 PCT/JP2023/025547 JP2023025547W WO2024029283A1 WO 2024029283 A1 WO2024029283 A1 WO 2024029283A1 JP 2023025547 W JP2023025547 W JP 2023025547W WO 2024029283 A1 WO2024029283 A1 WO 2024029283A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
command value
voltage
cpu
fan
Prior art date
Application number
PCT/JP2023/025547
Other languages
French (fr)
Japanese (ja)
Inventor
政士 濱谷
勝己 犬飼
Original Assignee
ブラザー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブラザー工業株式会社 filed Critical ブラザー工業株式会社
Publication of WO2024029283A1 publication Critical patent/WO2024029283A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors

Definitions

  • the present invention relates to a voltage control program and an air cleaner.
  • the speed control device described in Patent Document 1 performs PI control using the motor speed as a feedback target.
  • the speed control device stores the value of the integral term when the motor is started for the first time.
  • the speed control device performs PI control of the motor based on the stored value of the integral term.
  • the speed control device increases the rotational speed of the motor to a target rotational speed
  • the motor is subjected to PI control based on the value of the integral term. For this reason, it is conceivable that the output voltage to the motor is suddenly switched to a voltage corresponding to the target rotational speed. If the output voltage to the motor is suddenly switched to a voltage corresponding to the target rotational speed, an inrush current may occur, which may have an adverse effect on circuit components and the like.
  • An object of the present invention is to provide a voltage control program and an air cleaner that contribute to the advantage of suppressing the generation of inrush current.
  • the voltage control program is a process for performing PWM control on the voltage control unit in a computer of an air purifier that controls a voltage control unit for driving a motor that rotates a fan.
  • an output process for outputting a PWM control signal indicating a duty ratio to the voltage control unit;
  • a reception process for receiving an instruction to increase the voltage applied to the motor by the voltage control unit to a target voltage;
  • a first setting process of setting a target set value that is the duty ratio according to the target voltage, and a second calculation value is applied to the output until the first calculation value reaches a predetermined value.
  • a second setting process is executed to periodically set the duty command value (n) which is the duty ratio indicated by the PWM control signal outputted this time by the process, and the first calculation value is changed from the previous value by the output process.
  • the second calculated value indicates the result of proportional calculation based on the difference between the command value (n-1) which is the duty ratio indicated by the outputted PWM control signal and the target setting value, and the second calculation value is It is characterized in that the first calculation value is added to or subtracted from the command value (n-1) so that the value (n-1) approaches the target setting value.
  • the voltage control program contributes to the advantage of suppressing the generation of inrush current.
  • An air cleaner includes a fan, a motor for rotating the fan, a voltage control section for driving the motor, and a processor for controlling the voltage control section, and the processor for controlling the voltage control section.
  • a reception process that receives an instruction to increase the voltage to a target voltage; a first setting process that sets a target set value that is the duty ratio according to the target voltage when the instruction is accepted by the reception process; and the output process of the result of proportional calculation based on the difference between the command value (n-1), which is the duty ratio indicated by the PWM control signal output last time, and the target setting value set by the first setting process.
  • the first calculated value is added to or subtracted from the duty command value (n-1) so that the command value (n-1) approaches the target setting value until the first calculated value reaches a predetermined value.
  • a second setting process of periodically setting the second calculated value of the result to the command value (n) which is the duty ratio indicated by the PWM control signal outputted this time by the output process. shall be.
  • the second aspect contributes similar advantages to the first aspect.
  • FIG. 1 is a perspective view of an air cleaner 1.
  • FIG. FIG. 1 is an exploded perspective view of the air cleaner 1.
  • FIG. FIG. 2 is a sectional view taken along the line III-III shown in FIG. 1;
  • FIG. 3 is a bottom view of the air cleaner 1 with the lower wall 31 omitted.
  • 1 is a block diagram showing the electrical configuration of an air cleaner 1.
  • FIG. 9 is a conceptual diagram of a ring buffer 931.
  • FIG. It is a transition diagram of the state of the air cleaner 1. It is a flowchart of main processing. It is a flowchart of main processing. It is a flowchart of fan control processing. It is a flowchart of fan control processing. It is a graph of duty command value D(n) with respect to time. 3 is a graph of fan voltage FV versus time.
  • the air cleaner 1 includes a case 3 and a lid 4.
  • the case 3 has a rectangular parallelepiped shape and is composed of a lower wall 31, an upper wall 32, a front wall 33, a rear wall 34, a left wall 35, and a right wall 36.
  • An opening 325 is formed in the upper wall 32.
  • the opening 325 has a rectangular shape in plan view.
  • the lid 4 has a shape corresponding to the shape of the opening 325 in plan view, and is attached to and detached from the case 3. When the lid 4 is attached to the case 3, the lid 4 closes the opening 325 (see FIG. 1). When the lid 4 is removed from the case 3, the opening 325 is opened upward (see FIG. 2).
  • a recess 351 is formed at the bottom of the left wall 35.
  • the recess 351 is recessed rightward from the left wall 35 and includes walls 352, 353, and 354.
  • the walls 352 and 353 face each other in the front-rear direction.
  • Wall 354 extends in the front-rear direction between the right ends of walls 352 and 353, respectively.
  • the first changeover switch 8 is a push button, and is pressed by the user when the state of the air cleaner 1 is changed. The state of the air cleaner 1 will be described later.
  • the second changeover switch 16 is a non-contact switch, and is operated by the user when the state of the air cleaner 1 is changed. For example, the user operates the second changeover switch 16 by bringing a finger close to the second changeover switch 16. That is, the second changeover switch 16 detects the user's finger located away from the second changeover switch 16 .
  • the light emitting unit 5 is composed of a plurality of LEDs, and emits light of a color depending on the amount of dust, which will be described later, within a predetermined period of time.
  • Suction ports 51, 52, and 53 are formed in the lid 4, front wall 33, and rear wall 34, respectively.
  • the suction ports 51, 52, and 53 are each composed of a plurality of slits.
  • the suction ports 52 and 53 are located above the inner wall 37, which will be described later.
  • Air outlets 55 and 56 are formed in the left wall 35 and right wall 36, respectively.
  • the air outlets 55 and 56 are each openings that have a rectangular shape when viewed from the side.
  • the air outlets 55 and 56 are located above an inner wall 37, which will be described later.
  • Louvers 71 and 72 are fitted into the air outlets 55 and 56, respectively.
  • Each of the louvers 71 and 72 is constructed by arranging a plurality of plates in the vertical direction, and adjusts the direction in which air flows.
  • an inner wall 37 is provided inside the case 3.
  • the middle wall 37 has a rectangular shape in plan view, and is arranged between the lower wall 31 and the upper wall 32 in the vertical direction.
  • the space surrounded by the lower wall 31, the front wall 33, the rear wall 34, the left wall 35, the right wall 36, and the middle wall 37 will be referred to as a "lower space 19" (see FIG. 3).
  • the space surrounded by the upper wall 32, the front wall 33, the rear wall 34, the left wall 35, the right wall 36, and the middle wall 37 is referred to as an "upper space 10."
  • the lower space 19 and the upper space 10 are partitioned from each other by an inner wall 37.
  • a filter 6 and blowers 81 and 82 are arranged in the upper space 10.
  • the filter 6 is attached to the upper space 10 through the opening 325.
  • the shape of the filter 6 when viewed from the left and right with the filter 6 installed in the upper space 10 is a U-shape that opens downward.
  • the upper surface, front surface, and rear surface of the filter 6 face the suction ports 51, 52, and 53, respectively.
  • the filter 6 collects viruses, dirt, dust, etc. and removes them from the air.
  • the blower 81 is located to the left of the filter 6.
  • the blower 82 is located to the right of the filter 6.
  • the blower 81 is an axial fan and includes a casing 811, a fan motor 812, and a fan 813.
  • the casing 811 has a rectangular cylindrical shape and is fixed to the left end of the case 3 within the upper space 10.
  • the fan motor 812 is arranged at the center within the casing 811 and fixed to the casing 811.
  • An output shaft (not shown) of the fan motor 812 extends in the left-right direction.
  • Fan 813 is disposed within casing 811 and fixed to the output shaft of fan motor 812. The axis of the fan 813 extends in the left-right direction.
  • the fan 813 is driven by the fan motor 812 to rotate around its axis. As a result, the fan 813 generates an airflow from the right to the left.
  • the blower 82 has the same structure as the blower 81. That is, the blower 82 includes a casing 821, a fan motor 822, and a fan 823.
  • the support portion 821 corresponds to the casing 811.
  • Fan motor 822 corresponds to fan motor 812.
  • Fan 823 corresponds to fan 813.
  • the fan 823 is driven by the fan motor 822 to rotate around its axis. As a result, the fan 823 generates an airflow from the left to the right.
  • connection terminals 201 are provided on the wall 354.
  • a power cable (not shown) is connected to the connection terminal 201.
  • the connection terminal 201 has a current upper limit value defined by the standard.
  • the connection terminal 201 is a terminal defined by the USB TYPE-C (registered trademark) standard.
  • a suction port 14 is provided in the rear wall 34.
  • the suction port 14 is an opening and is located below the inner wall 37.
  • the right wall 36 is provided with an air outlet 15 .
  • the air outlet 15 is an opening and is located below the inner wall 37.
  • a control board 9 and a pipe 100 are arranged in the lower space 19.
  • the control board 9 is a board for controlling the air cleaner 1.
  • the pipe 100 extends from the inlet 14 to the outlet 15 while being bent.
  • a dust sensor 18 is provided in the middle of the pipe 100. The dust sensor 18 detects dust contained in the air within the pipe 100 without contacting the dust. In other words, the dust sensor 18 detects dust located away from the dust sensor 18.
  • the air purifying operation by the air purifier 1 will be described.
  • fan motors 812 and 822 are driven. This causes the fans 813 and 823 to rotate.
  • air is sucked into the upper space 10 from outside the case 3 through the suction ports 51, 52, and 53.
  • the air sucked into the upper space 10 passes through the filter 6.
  • the filter 6 collects and removes viruses, dirt, dust, etc. from the air sucked into the upper space 10.
  • the air that has passed through the filter 6 branches to the left or right.
  • the air flowing toward the left is blown out from the upper space 10 to the outside of the case 3 through the air outlet 55.
  • the air blown out from the air outlet 55 is guided diagonally downward to the left by the louver 71.
  • the air flowing toward the right is blown out from the upper space 10 to the outside of the case 3 through the air outlet 56.
  • the air blown out from the air outlet 56 is guided diagonally downward to the right by the louver 72.
  • the air blown out from the air outlets 55 and 56 is air from which viruses, dirt, dust, etc. have been removed by the filter 6. Therefore, the air around the air cleaner 1 is purified.
  • the air outlet 15 is located below the air outlet 56. Therefore, as the air blown out from the outlet 56 is guided diagonally downward to the right by the louver 72, an airflow is generated in the pipe 100 from the inlet 14 (see FIG. 4) toward the outlet 15. . As a result, air is sucked into the pipe 100 from outside the case 3 through the suction port 14. The air sucked into the pipe 100 passes through the detection area H by the dust sensor 18. The air that has passed through the detection area H is blown out of the case 3 from inside the pipe 100 through the air outlet 15. During the air cleaning operation, the dust sensor 18 detects dust in the air passing through the detection area H.
  • the control board 9 includes a microcomputer 90, a power supply circuit 20, a fan circuit 60, a drive circuit 163, an AD converter 164, a drive circuit 183, an AD converter 184, and a drive circuit 50.
  • the microcomputer 90 includes a CPU 91, a ROM 92, a RAM 93, and an input/output interface 94, and controls the air cleaner 1.
  • the CPU 91 functions as a processor, and executes, for example, main processing (see FIGS. 8 and 9).
  • the ROM 92 stores in advance a control program for the CPU 91 to execute main processing, information referenced by the CPU 91 when executing the main processing, and the like.
  • the RAM 93 temporarily stores various data used in the control program.
  • the RAM 93 stores information indicating the current state of the air cleaner 1, for example.
  • the first changeover switch 8 is electrically connected to the input/output interface 94 . When the first changeover switch 8 is pressed by the user, it outputs a detection signal indicating that the switch has been pressed to the CPU 91 .
  • the power supply circuit 20, the fan circuit 60, the drive circuit 163, the AD converter 164, the drive circuit 183, the AD converter 184, and the drive circuit 50 are each electrically connected to the input/output interface 94.
  • Power supply circuit 20 is electrically connected to connection terminal 201 .
  • the power supply circuit 20 detects the voltage applied through the connection terminal 201 and outputs a detection signal indicating the detected voltage to the CPU 91.
  • the drive circuit 50 is connected to the light emitting section 5.
  • the drive circuit 50 causes the light emitting section 5 to emit light in a color according to a signal from the CPU 91.
  • the fan circuit 60 is electrically connected to each of the fan motors 812 and 822.
  • the fan circuit 60 is subjected to PWM control by the CPU 91.
  • the fan circuit 60 drives each of the fan motors 812 and 822 based on a PWM control signal indicating the duty ratio from the CPU 91.
  • the fan circuit 60 includes an ON/OFF switch 61, an analog converter 62, and a DC-DC converter 63.
  • the ON/OFF switch 61 is turned on by an activation signal indicating High (hereinafter referred to as "H") from the CPU 91, and becomes energized.
  • the ON/OFF switch 61 is turned off by an activation signal indicating Low (hereinafter referred to as "L”) from the CPU 91, and enters a non-energized state.
  • the analog converter 62 converts the PWM control signal from the CPU 91 into analog, and outputs the PWM control signal as a result of the conversion to the DC-DC converter 63.
  • the DC-DC converter 63 is activated by an enable signal indicating "H” from the CPU 91.
  • the DC-DC converter 63 becomes inactive by an enable signal indicating "L” from the CPU 91.
  • the DC-DC converter 63 boosts, rectifies, and smoothes the voltage input to the fan circuit 60 based on the duty ratio indicated by the PWM control signal from the analog converter 62.
  • the DC-DC converter 63 applies a boosted, rectified, and smoothed voltage to the fan motors 812 and 822.
  • the DC-DC converter 63 applies a larger voltage to the fan motors 812 and 822 as the duty ratio indicated by the PWM control signal from the CPU 91 is smaller.
  • the drive circuit 163 is electrically connected to a light emitting element 161, which will be described later, and controls light emission by the light emitting element 161, which will be described later, based on a signal from the CPU 91.
  • the AD converter 164 is electrically connected to a light-receiving element 162 (described later), converts the amount of received light indicated by a detection signal from the light-receiving element 162 into an AD value (analog-digital conversion value), and outputs it to the CPU 91.
  • the drive circuit 183 is electrically connected to a light emitting element 181, which will be described later, and controls light emission by the light emitting element 181 based on a signal from the CPU 91.
  • the AD converter 184 is electrically connected to a light receiving element 182 (described later), converts the amount of received light indicated by a detection signal from the light receiving element 182 into an AD value, and outputs the AD value to the CPU 91.
  • the second changeover switch 16 is a reflective optical sensor and includes a light emitting element 161 and a light receiving element 162.
  • the light emitting element 161 is, for example, an LED, and emits light forward from the front wall 33 under the control of the drive circuit 163.
  • the light emitted by the light emitting element 161 is reflected by an object located away from the second changeover switch 16.
  • the target object is, for example, a user's finger.
  • the light receiving element 162 is, for example, a phototransistor, and receives light reflected by a user's finger. The amount of light received by the light receiving element 162 corresponds to the distance from the light receiving element 162 to the user's finger.
  • the second changeover switch 16 outputs a detection signal indicating the amount of light received by the light receiving element 162 to the CPU 91 via the AD converter 164.
  • the CPU 91 detects the user's operation on the second changeover switch 16 based on the amount of light received by the light receiving element 162.
  • the RAM 93 is provided with a ring buffer 931 for operation detection.
  • the ring buffer 931 includes a plurality of (11 in this embodiment) storage areas R0 to R10.
  • the storage areas R0 to R10 are arranged in this order in a clockwise direction.
  • FIG. 6 conceptually shows the ring buffer 931 in a ring shape for the sake of explanation
  • a memory address of the RAM 93 is assigned to each of the storage areas R0 to R10.
  • the plurality of storage areas R0 to R10 are sequentially processed so as to be arranged in a ring shape based on the assigned memory addresses. Specifically, in the ring buffer 931, processing is performed sequentially from storage area R0 to storage areas R1, R2, . be done.
  • the second changeover switch 16 outputs a detection signal indicating the amount of light received by the light receiving element 162 to the AD converter 164.
  • the AD converter 164 sequentially converts the amount of received light indicated by the detection signal received from the second changeover switch 16 into an AD value, and sequentially outputs the AD value of the conversion result to the CPU 91.
  • the CPU 91 sequentially acquires AD values from the AD converter 164 at timing A.
  • the time interval TP between temporally adjacent timings A is constant, for example, 10 ms.
  • the CPU 91 sets a plurality of consecutive AD values among the plurality of AD values sequentially acquired from the AD converter 164 as one storage target TS.
  • the plurality of AD values is three or more, for example, five.
  • the CPU 91 removes the minimum value and maximum value from the storage target TS.
  • the CPU 91 calculates the average value of the AD values in the storage target TS from which the minimum value and maximum value have been removed.
  • the CPU 91 stores the calculated average value in the storage area R0.
  • the CPU 91 sequentially calculates average values and stores the calculated average values in each storage area R0 to R10 in clockwise order. Note that, after storing the average value in the storage area R10, the CPU 91 subsequently stores the next average value in the storage area R0.
  • the CPU 91 determines whether the number of average values larger than the ON threshold has reached a first predetermined number among the plurality of average values stored in some or all of the plurality of storage areas R0 to R10. The CPU 91 determines that the first switching instruction has been received when the number of average values greater than the ON threshold reaches a first predetermined number.
  • the first predetermined number is, for example, more than half of the number of storage areas R0 to R10. In this embodiment, the number of the plurality of storage areas R0 to R10 is 11, so the first predetermined number is any one of 6 to 11, and is, for example, 6.
  • average values of 10, 20, 10, 5, 10, 700, 800, 700, 700, 800, and 800 are stored in each of the storage areas R0 to R10.
  • the ON threshold is 600 and the first predetermined number is 6, at the time the average value "800" is stored in the storage area R10, the average values exceeding the ON threshold "600" (700, 800, 700, 700, 800, 800) becomes the first predetermined number "6". Therefore, the CPU 91 detects the user's operation on the second changeover switch 16 at the time when the average value "800" is stored in the storage area R10.
  • the number of average values smaller than the OFF threshold among the plurality of average values stored in some or all of the plurality of storage areas R0 to R10 is determined.
  • the CPU 91 erases the average value from the plurality of storage areas R0 to R10.
  • the OFF threshold is smaller than the ON threshold.
  • the dust sensor 18 is a reflective optical sensor and includes a light emitting element 181 and a light receiving element 182.
  • the light emitting element 181 is, for example, an LED, and emits light toward the detection area H under the control of the drive circuit 183.
  • the light emitted by the light emitting element 181 is reflected by the object.
  • the object is, for example, dust.
  • the light receiving element 182 is, for example, a phototransistor, and receives light reflected by dust.
  • the amount of light received by the light receiving element 182 corresponds to the amount of dust.
  • the dust sensor 18 outputs a detection signal indicating the amount of light received by the light receiving element 182 to the CPU 91 via the AD converter 184.
  • the CPU 91 detects the amount of dust based on the amount of light received by the light receiving element 182.
  • the CPU 91 detects the amount of dust based on the detection signal from the dust sensor 18 .
  • the method by which the CPU 91 detects the amount of dust based on the detection signal from the dust sensor 18 is the same as the method by which the CPU 91 detects the user's operation on the second changeover switch 16 .
  • a ring buffer (not shown) for detecting dust is provided in the RAM 93.
  • the ring buffer for dust detection has the same configuration as the ring buffer 931, or has a different number of storage areas.
  • the CPU 91 stores a plurality of consecutive AD values among the plurality of AD values sequentially acquired from the AD converter 184.
  • the CPU 91 removes the minimum value and maximum value from the storage target.
  • the CPU 91 calculates the average value of the AD values in the storage target from which the minimum value and maximum value have been removed.
  • the CPU 91 stores the calculated average value in the storage area of the ring buffer for dust detection. As described above, the CPU 91 sequentially calculates average values and stores the calculated average values in order in each storage area of the ring buffer for dust detection.
  • the CPU 91 specifies the amount of dust within a predetermined time period based on a plurality of average values stored in a plurality of storage areas at predetermined time intervals.
  • the CPU 91 causes the light emitting unit 5 to emit light in a color corresponding to the amount of dust within the specified predetermined time via the drive circuit 50.
  • the state of the air cleaner 1 will be explained.
  • the voltage applied to the fan motors 812, 822 will be referred to as “fan voltage FV”
  • the target fan voltage FV will be referred to as “target voltage”.
  • Reset ST0 is the state immediately after power is supplied to the air cleaner 1.
  • Off ST1 is a state in which an error condition described below is not satisfied and the target voltage is a predetermined stop voltage.
  • Error ST5 is a state in which the error condition is satisfied and the target voltage becomes the stop voltage.
  • the stop voltage is not limited to a specific value, but is less than 5V in this embodiment. Even when the stop voltage is applied to the fan motors 812, 822, the fan motors 812, 822 remain stopped.
  • Fan small ST2 is a state in which the target voltage is a first voltage higher than the stop voltage.
  • the first voltage is not limited to a specific value as long as it is higher than the stop voltage, it is 14V in this embodiment.
  • the target voltage is a second voltage that is larger than the first voltage.
  • the second voltage is not limited to a specific value as long as it is higher than the first voltage, but is 17V in this embodiment.
  • Large fan ST4 is a state in which the target voltage is a third voltage larger than the second voltage.
  • the third voltage is not limited to a specific value as long as it is higher than the second voltage, but is 20V in this embodiment.
  • the fan motors 812, 822 rotate at a third rotational speed that is greater than the second rotational speed.
  • the instructions for switching to large ST4 are collectively referred to as "first switching instructions.”
  • the first switching instruction is an instruction to change the state of the air cleaner 1 so that the target voltage increases, and is an instruction to increase the fan voltage FV to the target voltage according to the state of the air cleaner 1.
  • the instruction to switch the state of the air purifier 1 from large fan ST4 to off ST1 is referred to as a "second switching instruction.”
  • the second switching instruction is an instruction to change the state of the air cleaner 1 so that the target voltage is lowered, and is an instruction to lower the fan voltage FV to the target voltage according to the state of the air cleaner 1.
  • switching instruction When the first switching instruction and the second switching instruction are collectively referred to as "switching instruction".
  • the user inputs a switching instruction to the air cleaner 1 by operating the first changeover switch 8 or the second changeover switch 16.
  • the state of the air cleaner 1 When power is supplied to the air cleaner 1 from the external power source via the power cable, the state of the air cleaner 1 becomes reset ST0. Thereafter, the state of the air cleaner 1 switches from reset ST0 to off ST1 (see arrow A1). Thereafter, when the first switching instruction is input, the state of the air cleaner 1 is switched from OFF ST1 to fan small ST2 (see arrow A2). After that, when the first switching instruction is further input, the state of the air cleaner 1 is switched from fan small ST2 to fan medium ST3 (see arrow A3). After that, when the first switching instruction is further input, the state of the air cleaner 1 is switched from fan medium ST3 to fan large ST4 (see arrow A4). After that, when the second switching instruction is input, the state of the air cleaner 1 is switched from fan large ST4 to off ST1 (see arrow A5).
  • the state of the air purifier 1 changes from fan small ST2, fan medium ST3, or fan large ST4 to error ST5. (see arrow A6, arrow A7, arrow A8).
  • the user may turn off the power to the air cleaner 1 and restart the air cleaner 1. As a result, the air cleaner 1 recovers from the error ST5.
  • the error condition is that the fan voltage FV becomes below a predetermined error voltage when the fan motors 812 and 822 are driven, and that the voltage is applied via the connection terminal 201 when the state of the air cleaner 1 is other than reset ST0.
  • the voltage applied to the error voltage becomes less than or equal to a predetermined error voltage.
  • the target voltage increases.
  • the fan voltage FV suddenly rises to the changed target voltage, there is a possibility that an inrush current will occur.
  • the CPU 91 contributes to the advantage of suppressing the generation of rush current by executing the main processing described below.
  • the CPU 91 reads the control program from the ROM 92 and executes the main process.
  • the CPU 91 controls the fan voltage FV by outputting a PWM control signal indicating the duty ratio to the fan circuit 60.
  • the CPU 91 controls the rotational speeds of the fan motors 812 and 822.
  • the process in which the CPU 91 performs PWM control on the fan circuit 60 and outputs a PWM control signal indicating the duty ratio to the fan circuit 60 will be referred to as "output process.”
  • the processes of S13 (see FIG. 8), S62, S82 (see FIG. 10), and S102 (see FIG. 9), which will be described later, are output processing.
  • n be a natural number.
  • the duty ratio indicated by the PWM control signal output in the n-th output process is referred to as “duty command value D(n).”
  • the duty ratio indicated by the PWM control signal output in the (n-1)th output process is referred to as “duty command value D(n-1).” In other words, if the nth output process is the current output process, the (n-1)th output process is the previous output process.
  • the CPU 91 sets the duty stop value DST to the duty command value D(n) (S11).
  • the duty stop value DST is a reference duty ratio, and is a duty ratio corresponding to a stop voltage.
  • the CPU 91 sets the duty stop value DST to the duty command value D(n).
  • a graph L10 in which the duty command value D(n) is plotted against the passage of time becomes a straight line indicating the duty stop value DST until a time point T0 when the process of S25, which will be described later, is performed.
  • the CPU 91 sets a timer initial value to a timer counter T for measuring time (S12).
  • the timer counter T is stored in the RAM 93.
  • the timer initial value is not limited to a specific value, it is "0" in this embodiment.
  • the CPU 91 outputs a PWM control signal indicating the duty command value D(n) set in the process of S11 to the fan circuit 60 (S13).
  • the analog converter 62 converts the PWM control signal obtained from the CPU 91 into analog.
  • the DC-DC converter 63 converts the voltage input to the fan circuit 60 into a voltage according to the duty command value D(n) as a result of analog conversion.
  • the DC-DC converter 63 applies the converted voltage to the fan motors 812 and 822 as the fan voltage FV. Note that at the time of the process in S13, the ON/OFF switch 61 is in a non-energized state, so the fan circuit 60 does not apply voltage to the fan motors 812 and 822.
  • the CPU 91 starts measuring time using the timer counter T (S14). Through the above processing, the state of the air cleaner 1 is switched from reset ST0 to off ST1 (see arrow A1 shown in FIG. 7).
  • the CPU 91 determines whether the first changeover instruction has been received (S15). In the process of S15, for example, when the CPU 91 acquires a detection signal from the first changeover switch 8, it determines that the first changeover instruction has been received. When the CPU 91 detects the user's operation on the second changeover switch 16, it determines that the first changeover instruction has been received.
  • the state of the air cleaner 1 remains OFF ST1, so the CPU 91 returns the process to the determination in S15.
  • the CPU 91 receives the first switching instruction (S15: YES)
  • the state of the air cleaner 1 is switched from OFF ST1 to fan small ST2 (see arrow A2 shown in FIG. 7).
  • the CPU 91 determines whether the timer counter T indicates the first standby time or more (S16). Although the length of the first waiting time is not limited to a specific length, in this embodiment, it is 150 ms. If the timer counter T indicates less than 150 ms (S16: NO), the CPU 91 returns the process to the determination in S16. That is, the CPU 91 waits for a first standby time from the time when the state of the air cleaner 1 is switched from reset ST0 to off ST1 until it executes the process from S21 (see FIG. 9) onward. In this embodiment, the air cleaner 1 smoothes the PWM control signal, converts it into an analog value, and operates the DC-DC converter 63. The time required to smooth the PWM control signal corresponds to the first standby time. If the timer counter T indicates 150 ms or more (S16: YES), the CPU 91 advances the process to S21 (see FIG. 9).
  • the CPU 91 outputs an activation signal indicating "H" to the fan circuit 60 (S21).
  • the ON/OFF switch 61 changes from a non-energized state to an energized state. Therefore, the DC-DC converter 63 converts the voltage input to the fan circuit 60 into a voltage according to the duty command value D(n).
  • the DC-DC converter 63 applies the converted voltage to the fan motors 812 and 822 as the fan voltage FV.
  • a graph L20 plotting the fan voltage FV over time is a straight line showing the voltage V0 corresponding to the duty stop value DST (see FIG. 12) until the time T0 when the process of S25, which will be described later, is performed. becomes. Therefore, the fan motors 812 and 822 remain in a stopped state until time T0 when the process of S25, which will be described later, is performed.
  • the CPU 91 sets the timer counter T to the timer initial value "0" (S22).
  • the CPU 91 starts measuring time using the timer counter T (S23).
  • the CPU 91 determines whether the timer counter T indicates a second waiting time or more (S24).
  • the second waiting time is not limited to a specific time, it is 50 ms in this embodiment.
  • the CPU 91 If the timer counter T indicates less than 50 ms (S24: NO), the CPU 91 returns the process to the determination in S24. In other words, the CPU 91 waits for the second standby time from the time when the ON/OFF switch 61 is switched from the de-energized state to the energized state in the process of S21 until it executes the processes from S25 onwards. This prevents the CPU 91 from performing PWM control on the fan circuit 60 in an unstable state immediately after the fan circuit 60 is energized.
  • the CPU 91 If the timer counter T indicates 50 ms or more (S24: YES), the CPU 91 outputs an enable signal indicating "H" to the fan circuit 60 (S25). As a result, the DC-DC converter 63 changes from an inactive state to an active state. The CPU 91 performs fan control processing (S26).
  • the fan control process will be explained with reference to FIGS. 10 and 11.
  • the CPU 91 sets a duty target value to the duty target set value DTGT (S41).
  • the duty target value is a duty ratio corresponding to the fan voltage FV for driving the fan motors 812 and 822 at a rotation speed according to the state of the air cleaner 1.
  • the duty target value is stored in advance in the ROM 92 in association with the state of the air cleaner 1.
  • the duty target value corresponding to the small fan ST2 is the duty ratio corresponding to the first voltage (for example, 14V).
  • the duty target value corresponding to ST3 in the fan is the duty ratio corresponding to the second voltage (for example, 17V).
  • the duty target value corresponding to the large fan ST4 is the duty ratio corresponding to the third voltage (for example, 20V).
  • the CPU 91 determines whether the duty command value D(n) is less than or equal to the duty target setting value DTGT (S42). When the duty command value D(n) is less than or equal to the duty target set value DTGT (S42: YES), there is no need to decrease the duty command value D(n), that is, there is no need to increase the fan voltage FV. In this case, since no rush current is generated, the CPU 91 directly sets the duty target set value DTGT as the duty command value D(n) (S81).
  • the CPU 91 outputs a PWM control signal indicating the duty command value D(n) set in the process of S81 to the fan circuit 60 (S82).
  • the DC-DC converter 63 converts the voltage input to the fan circuit 60 into a voltage corresponding to the duty target set value DTGT as the duty command value D(n) indicated by the PWM control signal.
  • the DC-DC converter 63 outputs the converted voltage to the fan motors 812 and 822 as a fan voltage FV. As a result, the fan voltage FV suddenly drops.
  • the CPU 91 returns the process to the main process.
  • the duty command value D(n) is larger than the duty target setting value DTGT (S42: NO)
  • the CPU 91 gradually brings the fan voltage FV closer to the target voltage by performing the following processing in order to suppress the occurrence of an inrush current.
  • the CPU 91 sets a predetermined control initial value in the control counter DIC (S43).
  • the control counter DIC is stored in the RAM 93, and is referenced by the CPU 91 in the process of S72 (see FIG. 11), which will be described later.
  • the control initial value is not limited to a specific value, it is "0" in this embodiment.
  • the CPU 91 sets the duty command value D(n) to the duty command value D(n-1) (S51).
  • the CPU 91 uses the duty command value D(n-1) set in the process of S51 to calculate the duty change amount DD based on the following equation (1) (S52).
  • DD ⁇ Kp ⁇ (D(n-1)-DTGT) ⁇ /(2 ⁇ Kj)...(1)
  • the duty change amount DD represents the result of proportional calculation based on the difference between the duty command value D(n-1) and the duty target setting value DTGT.
  • Kp is an integration parameter (constant).
  • Kj is an exponential parameter (constant).
  • the CPU 91 determines whether the duty change amount DD calculated in the process of S52 is greater than or equal to a predetermined value (S53).
  • the predetermined value is the minimum unit in which the duty command value D(n) can be changed, and is "1" in this embodiment.
  • the duty change amount DD is relatively large.
  • the duty change amount DD decreases each time the output process is repeated.
  • the CPU 91 subtracts the duty change amount DD from the duty command value D(n-1) to calculate "D(n-1)-DD".
  • the duty command value D(n) is set (S54).
  • the duty command value D(n-1) at the time of processing in S54 is the duty command value D(n) at the time of determination in S42. Therefore, at the time when the process of S54 is performed, the duty command value D(n-1) is larger than the duty target setting value DTGT. Therefore, when the duty change amount DD is subtracted from the duty command value D(n-1), the calculation result approaches the duty target set value DTGT by the duty change amount DD.
  • the CPU 91 sets the calculation result "D(n-1)-DD" to the duty command value D(n), thereby calculating the sum of the fan motors 812 and 822 based on the duty command value D(n).
  • the power consumption [W] of is smaller than the power [W] received by the connection terminal 201.
  • the CPU 91 periodically performs the process of S54 every 50 ms until the duty change amount DD becomes less than "1" in the process of S53.
  • a graph L11 plotting the duty command value D(n) against the passage of time shows that the duty change amount DD is less than "1" in the process of S53 from time T0 when the process of S25 is performed.
  • the curve becomes asymptotic from the duty stop value DST to the duty target set value DTGT until the time point T1 when .
  • the total power consumption [W] of the fan motors 812 and 822 is smaller than the power [W] received by the connection terminal 201, and that the duty change amount DD changes along an asymptotic curve over time.
  • Kp and Kj in equation (1) are constants, Kp/2 ⁇ Kj is a constant. Furthermore, it is set so that Kp/2 ⁇ Kj ⁇ 1.
  • the duty change amount DD is proportional to the difference between the duty command value D(n-1) and the duty target setting value DTGT.
  • Kp ⁇ (D(n-1)-DTGT)/2 ⁇ Kj The value of Kp ⁇ (D(n-1)-DTGT)/2 ⁇ Kj is the largest immediately after the start of control, and as time passes, the value of Kp ⁇ (D(n-1)-DTGT)/2 ⁇ Kj gradually increases. As it gets smaller, it approaches zero. Therefore, the calculation result over time does not change linearly, but changes along an asymptote that approaches the target value from the value at the start of control. In other words, since the voltage supplied to the fan motors 812 and 822 also changes along the asymptote, excessive inrush current is suppressed. Therefore, the CPU 91 can make the total power consumption by the fan motors 812 and 822 smaller than the power received by the connection terminal 201.
  • the CPU 91 determines whether the duty command value D(n) set in the process of S54 is greater than or equal to the duty target set value DTGT (S61). Although details will be described later, the duty command value D(n) set in the process of S54 will not change from the duty command value D(n-1) when the duty change amount DD becomes smaller than the predetermined value "1". . Therefore, the duty command value D(n) set in the process of S54 does not reach the duty target set value DTGT.
  • the CPU 91 If the duty command value D(n) is greater than or equal to the duty target set value DTGT (S61: YES), the CPU 91 outputs a PWM control signal indicating the duty command value D(n) set in the process of S54 to the fan circuit 60. (S62).
  • the DC-DC converter 63 converts the voltage input to the fan circuit 60 into a duty command value D(n) indicated by the PWM control signal according to the calculation result "D(n-1)-DD". voltage.
  • the DC-DC converter 63 applies the converted voltage to the fan motors 812 and 822 as the fan voltage FV. As shown in FIG.
  • a graph L21 plotting the fan voltage FV against the passage of time is from time T0 when the process of S25 is performed to time T1 when the duty variation amount DD becomes less than "1" in the process of S53. Until then, the curve becomes asymptotic from the stop voltage (voltage V0) corresponding to the duty stop value DST to the target voltage (voltage V2) corresponding to the duty target set value DTGT.
  • the CPU 91 sets the calculation result "D(n-1)-DD" to the duty command value D(n), so that the duty command value D(n) becomes the duty command value D(n-1). becomes smaller than As a result, in the process of S61, the fan voltage FV based on the duty command value D(n) becomes larger than the fan voltage FV based on the duty command value D(n-1). Therefore, the rotational speeds of fan motors 812, 822 based on duty command value D(n) are higher than the rotational speeds of fan motors 812, 822 based on duty command value D(n-1).
  • the CPU 91 determines whether a switching instruction has been received (S63). If the CPU 91 has not received the switching instruction (S63: NO), the state of the air cleaner 1 has not been changed. In this case, the CPU 91 waits for the third standby time (S64). Although the length of the third waiting time is not limited to a specific length, it is 50 ms in this embodiment. After 50 ms have passed, the CPU 91 returns the process to S51. As a result, the CPU 91 periodically performs the processing of S51, S52, S53: YES, S54, S61: YES, S62, S63: NO every 50 ms.
  • the CPU 91 determines whether the changed state of the air cleaner 1 is OFF ST1 or error ST5 (S65). In the process of S65, when the CPU 91 receives the second switching instruction, the CPU 91 determines that the state of the air cleaner 1 after the change is OFF ST1 (S65: YES) (see arrow A5 shown in FIG. 7). If the error condition is satisfied, the CPU 91 determines that the state of the air cleaner 1 after the change is an error ST5 (S65: YES) (see arrows A6, A7, and A8 shown in FIG. 7).
  • the CPU 91 If the state of the air cleaner 1 is off ST1 or error ST5 (S65: YES), the CPU 91 returns the process to the main process (see FIG. 9).
  • the state of the air cleaner 1 is small fan ST2, medium fan ST3, or large fan ST4 (S65: NO)
  • the CPU 91 returns to the process of S41.
  • the CPU 91 sets the duty target value according to the changed state of the air cleaner 1 as the duty target set value DTGT (S41).
  • the CPU 91 repeats the processing from S42 onwards.
  • the duty change amount DD which is the result of the proportional calculation in the process in S52, gradually becomes smaller.
  • the predetermined value is the minimum unit in which the duty command value D(n) can be changed. Therefore, if the duty change amount DD is less than the predetermined value, even if the duty change amount DD is subtracted from the duty command value D(n-1) in the process of S54, the calculation result will be the duty command value D(n-1). become the same size. Therefore, when the duty change amount DD becomes less than "1" (S53: NO), the CPU 91 performs a calculation different from the calculation in the process of S54 as follows regarding the duty command value D(n).
  • the CPU 91 adds "1" to the control counter DIC (S71).
  • the CPU 91 determines whether the control counter DIC added in the process of S71 indicates a predetermined counter value (S72).
  • the counter value is not limited to a specific value, it is "3" in this embodiment.
  • the CPU 91 sets the duty command value D(n-1) to the duty command value D(n) (S73). In this case, the duty command value D(n) does not approach the duty target set value DTGT. The CPU 91 advances the process to determination in S61.
  • the CPU 91 subtracts the predetermined value "1” from the duty command value D(n-1) to calculate "D(n-1)-1".
  • the duty command value D(n) is set (S74).
  • the duty command value D(n-1) at the time of processing in S74 is the duty command value D(n) at the time of determination in S42. Therefore, at the time when the process of S74 is performed, the duty command value D(n-1) is larger than the duty target setting value DTGT. Therefore, when the predetermined value "1" is subtracted from the duty command value D(n-1), the calculation result approaches the duty target set value DTGT by the predetermined value "1".
  • the CPU 91 sets a control initial value "0" to the control counter DIC (S75). The CPU 91 advances the process to determination in S61.
  • the CPU 91 sets the duty command value D(n-1) or the calculation result "D(n-1)-1" to the duty command value D(n).
  • a graph L12 in which the duty command value D(n) is plotted against the passage of time changes from time T1 when the duty change amount DD becomes less than "1" in the process of S53 to S61.
  • the duty command value D1 approaches the duty target set value DTGT in a straight line until the duty command value D(n) becomes less than the duty target set value DTGT.
  • the CPU 91 executes the process of S74 once every time it executes the process of S73 twice.
  • the duty command value D(n) does not approach the duty target setting value DTGT, so the slope of the graph L12 becomes gentler due to the process of S73.
  • the CPU 91 makes the determination in S61 described above based on the duty command value D(n) set in the process of S73 or the process of S74. If the duty command value D(n) set in the process of S73 or the process of S74 is greater than or equal to the duty target setting value DTGT, the PWM indicating the duty command value D(n) set in the process of S73 or the process of S74 A control signal is output to the fan circuit 60 (S62).
  • the DC-DC converter 63 converts the voltage input to the fan circuit 60 into the duty command value D(n-1) or the calculation result "D" as the duty command value D(n) indicated by the PWM control signal. (n-1)-1".
  • the DC-DC converter 63 applies the converted voltage to the fan motors 812 and 822 as the fan voltage FV.
  • a graph L22 in which the fan voltage FV is plotted against the passage of time shows that from time T1 when the duty change amount DD becomes less than "1" in the process of S53, to the duty command value D in the process of S61.
  • time T2 when (n) becomes less than the duty target set value DTGT the voltage V1 becomes linear approaching the target voltage (voltage V2) corresponding to the duty target set value DTGT.
  • the CPU 91 performs the process of S64 described above.
  • the CPU 91 performs the processes of S51 and S52 described above based on the duty command value D(n) set in the process of S73 or S74.
  • the duty command value D(n) becomes less than the duty target setting value DTGT in the process of S61 (S61: NO).
  • the CPU 91 sets the duty target setting value DTGT to the duty command value D(n) (S81).
  • the CPU 91 sets the duty target set value DTGT to the duty command value D(n).
  • the graph L13 plotting the duty command value D(n) against the passage of time shows that the duty command value D(n) became less than the duty target setting value DTGT in the process of S61. From time T2, a straight line indicates the duty target setting value DTGT.
  • the CPU 91 outputs a PWM control signal indicating the duty command value D(n) set in the process of S81 to the fan circuit 60 (S82).
  • the CPU 91 returns the process to the main process.
  • the DC-DC converter 63 converts the voltage input to the fan circuit 60 into a voltage corresponding to the duty target set value DTGT as the duty command value D(n) indicated by the PWM control signal. target voltage).
  • the DC-DC converter 63 outputs the converted voltage (target voltage) to the fan motors 812 and 822 as the fan voltage FV.
  • a graph L23 plotting the fan voltage FV against the passage of time shows that the duty target setting starts from the time T2 when the duty command value D(n) becomes less than the duty target setting value DTGT in the process of S61.
  • a straight line indicates the target voltage (voltage V2) corresponding to the value DTGT. That is, from the time T2 when the duty command value D(n) becomes less than the duty target set value DTGT in the process of S61, the fan voltage FV is fixed to the target voltage (voltage V2). Therefore, the fan motors 812 and 822 each maintain a state of being driven at a rotational speed according to the target voltage.
  • the CPU 91 determines whether the state of the air cleaner 1 is off ST1 or error ST5 (S91). When the state of the air cleaner 1 is small fan ST2, medium fan ST3, or large fan ST4 (S91: NO), the CPU 91 determines whether the first change instruction has been received (S92). If the CPU 91 has not received the first change instruction (S92: NO), the state of the air cleaner 1 has not been changed. In this case, the CPU 91 returns the process to the determination in S91.
  • the CPU 91 receives the first change instruction (S92: YES), the state of the air cleaner 1 is changed (see arrows A2, A3, and A4 shown in FIG. 7). In this case, the CPU 91 changes the duty target value to be set as the duty target set value DTGT according to the changed state of the air cleaner 1 (S93). The CPU 91 returns the process to S26. Thereby, as shown in FIG. 10, the CPU 91 sets the changed duty target value to the duty target set value DTGT (S41), and performs the processes from S42 onwards.
  • the CPU 91 sets the duty stop value DST to the duty command value D(n) (S101).
  • the CPU 91 outputs a PWM control signal indicating the duty command value D(n) set in the process of S101 to the fan circuit 60 (S102).
  • the DC-DC converter 63 converts the voltage input to the fan circuit 60 into a voltage corresponding to the duty stop value DST as the duty command value D(n) indicated by the PWM control signal.
  • the DC-DC converter 63 applies the converted voltage to the fan motors 812 and 822 as the fan voltage FV. As a result, the fan voltage FV suddenly drops to the stop voltage. Therefore, the drive of fan motors 812 and 822 is stopped.
  • the CPU 91 outputs an enable signal indicating "L” to the fan circuit 60 (S103). As a result, the DC-DC converter 63 changes from an active state to an inactive state. The CPU 91 outputs an activation signal indicating "L” to the fan circuit 60 (S104). As a result, the ON/OFF switch 61 changes from the energized state to the de-energized state. The CPU 91 returns the process to S12.
  • the CPU 91 changes the calculation result "D(n-1)-DD" to the duty command value D(n) in the process of S54 until the duty variation amount DD reaches the predetermined value "1".
  • the duty change amount DD indicates the result of proportional calculation based on the difference between the duty command value D(n-1) and the duty target set value DTGT.
  • the calculation result "D(n-1)-DD” means that the duty change amount DD is calculated with respect to the duty command value D(n-1) so that the duty command value D(n-1) approaches the duty target setting value DTGT. Shows the subtracted result. According to this, the duty command value D(n) is unlikely to drop suddenly, so the fan voltage FV is unlikely to rise suddenly. Therefore, the CPU 91 contributes to the advantage of suppressing the generation of rush current.
  • a method of controlling the fan voltage FV As a method of controlling the fan voltage FV, a method of controlling the fan voltage FV using PI (proportional/integral) control may be considered. In this case, the control load on the microcomputer 90 due to the calculation of the integral term increases. Therefore, if the computing power of the microcomputer 90 is low, problems may occur in other controls by the microcomputer 90. For this reason, the method of PI (proportional/integral) control of the fan voltage FV may require a microcomputer 90 with high processing capacity. Furthermore, a method of processing the residual deviation using a past integral term is also conceivable. In this case as well, it is necessary for the microcomputer 90 to calculate the integral term. Furthermore, since the calculated integral term is stored, the storage area of the microcomputer 90 may be occupied. Therefore, even with the method of processing the residual deviation using past integral terms, a microcomputer 90 with high processing capacity may be required.
  • the CPU 91 calculates the calculation result "(D(n-1)” in the process of S74 until the duty command value D(n) reaches the duty target set value DTGT. -1)" is periodically set as the duty command value D(n). According to this, the predetermined value is subtracted without calculating the integral term, so the calculation by the CPU 91 is simplified. Therefore, the CPU 91 contributes to the advantage of reducing the control load on the microcomputer 90. Thereby, the CPU 91 contributes to the advantage of reducing the possibility that the microcomputer 90 with high processing capacity is required.
  • a graph L11 in which the duty command value D(n) is plotted against the passage of time shows the duty ratio from time T0 when the process of S25 is performed to time T1 when the duty change amount DD becomes less than "1" in the process of S53.
  • the curve becomes asymptotic from the stop value DST to the duty target set value DTGT. According to this, a sudden rise in fan voltage FV is suppressed. Therefore, the CPU 91 contributes to the advantage of suppressing the generation of rush current.
  • the CPU 91 performs the process of S74 once every time the process of S73 is performed twice.
  • the duty command value D(n) does not change from the duty command value D(n-1). Therefore, the CPU 91 contributes to the advantage of suppressing the generation of rush current due to sudden changes in the duty command value D(n).
  • the connection terminal 201 has a current upper limit value determined by the standard. By suppressing the generation of rush current, the CPU 91 contributes to the advantage of suppressing a current exceeding the current upper limit value from flowing through the connection terminal 201.
  • the fan motors 812 and 822 may be driven in a state where there is a limit to the power supplied from the external power source. In this case, if the total power consumption [W] of the fan motors 812, 822 based on the duty command value D(n) is larger than the power [W] received by the connection terminal 201, the fan motors 812, 822 cannot be driven. Problems may occur. In this embodiment, the total power consumption [W] of the fan motors 812 and 822 based on the duty command value D(n) is smaller than the power [W] received by the connection terminal 201. Therefore, the CPU 91 contributes to the advantage of suppressing irregularities in the drive of the fan motors 812 and 822 even when the fan motors 812 and 822 are driven in a state where the power supplied from the external power source is limited. do.
  • the rotational speed of the fan motors 812, 822 based on the duty command value D(n) is greater than the rotational speed of the fan motors 812, 822 based on the duty command value D(n-1).
  • the CPU 91 outputs a PWM control signal indicating the duty command value D(n) to the fan circuit 60 in the process of S62, the rotational speed of the fan motors 812 and 822 increases continuously. Therefore, the CPU 91 contributes to the advantage of suppressing the generation of gusts of wind from the fans 813, 813 when the first change instruction is input to the air cleaner 1.
  • the CPU 91 receives the first changeover instruction via the first changeover switch 8 or the second changeover switch 16 in the processes of S15, S92, and S63. According to this, the user can change the rotational speed of the fan motors 812 and 822, that is, the strength of the wind blown out from the air outlets 55 and 56.
  • the maximum value or minimum value may be noise.
  • the CPU 91 receives a switching instruction based on the AD value smaller than the maximum value and larger than the minimum value among the three or more AD values forming the storage target TS. According to this, the CPU 91 receives a switching instruction based on the storage target TS from which AD values that may be noise are excluded. Therefore, the CPU 91 contributes to the advantage of accurately detecting the operation of the second changeover switch 16 by the user.
  • the CPU 91 receives a switching instruction if the number of average values that are equal to or greater than the ON threshold value among the plurality of average values stored in the ring buffer 931 is equal to or greater than the first predetermined number. According to this, the operation of the second changeover switch 16 by the user is detected based on the plurality of average values. Therefore, the CPU 91 contributes to the advantage of accurately detecting the operation of the second changeover switch 16 by the user.
  • the fan motors 812 and 822 correspond to the "motor” of the present invention.
  • the fan circuit 60 corresponds to the "voltage control section” of the present invention.
  • the CPU 91 corresponds to the "computer” and “processor” of the present invention.
  • the processes of S13, S62, S82, and S102 correspond to the "output process” of the present invention.
  • the processes of S15, S92, and S63 correspond to the "reception process” of the present invention.
  • the process in S11 corresponds to the "first setting process” of the present invention.
  • the process of S54 corresponds to the "second setting process” of the present invention.
  • the process of S74 corresponds to the "third setting process” of the present invention.
  • the process of S73 corresponds to the "fourth setting process” of the present invention.
  • the connection terminal 201 corresponds to the "terminal” of the present invention.
  • the first changeover switch 8 or the second changeover switch 16 corresponds to the "switch” of the present invention.
  • the processes of S15, S92, and S63 correspond to the "acquisition process” of the present invention.
  • the present invention may be modified in various ways from the above embodiments.
  • the number of fan motors 812 and 822 may be one, or three or more.
  • the configuration of the fan circuit 60 is not limited to the above embodiment.
  • the air purifier 1 changes when the state of the air purifier 1 is changed from off ST1 to fan small ST2, when the state of the air purifier 1 is changed from fan small ST2 to fan medium ST3, etc.
  • the rotational speeds of the fan motors 812 and 822 are increased in stages as the state of the air cleaner 1 changes.
  • the air cleaner 1 may be configured such that the rotational speed of the fan motors 812 and 822 increases continuously.
  • the air cleaner 1 increases the rotational speed of the fan motors 812 and 822 in three stages (small fan ST2, medium fan ST3, and large fan ST4) as the state of the air cleaner 1 changes.
  • the rotational speed of the fan motors 812 and 822 may be provided in only one or two steps, or may be provided in four or more steps.
  • the CPU 91 when the user operates the first changeover switch 8 or the second changeover switch 16, the CPU 91 changes the state of the air purifier 1 from OFF ST1 to fan small ST2, from fan small ST2 to fan medium ST3, etc. do.
  • the CPU 91 may change the state of the air cleaner 1 based on the detection result from the dust sensor 18, for example. More specifically, when the amount of dust detected by the dust sensor 18 exceeds a reference amount, the CPU 91 may change the state of the air cleaner 1 from fan small ST2 to fan medium ST3.
  • the transition of the state of the air cleaner 1 is not limited to the above embodiment.
  • the state of the air purifier 1 may be switched from large fan ST4 to fan medium ST3 or fan small ST2, or may be switched from fan small ST2 or fan medium ST3 to off ST1, or from off ST1 to fan medium You may switch to ST3 or large fan ST4.
  • the second predetermined number does not need to be more than half of the number of the plurality of storage areas R0 to R10, and may be one, for example. That is, when one average value exceeds a threshold value, the CPU 91 may determine that the switching instruction has been received. When determining whether the CPU 91 has received a switching instruction, the ring buffer 931 may not be used. The method by which the CPU 91 detects the amount of dust may be similarly changed.
  • the CPU 91 performs the process of S74 once every time the process of S73 is performed twice. On the other hand, the process of S73 may be omitted. That is, when the duty change amount DD reaches the predetermined value "1", the CPU 91 may repeat S74 without performing the process of S73. The CPU 91 may repeat the process of S74 once or multiple times each time the process of S73 is performed once or three or more times.
  • the CPU 91 may proceed to the process of S81 without proceeding to the process of S71.
  • the DC-DC converter 63 may apply a higher voltage to the fan motors 812 and 822 as the duty ratio indicated by the PWM control signal from the CPU 91 is higher.
  • the CPU 91 sets the duty command value D(n) to the calculation result "D(n-1)+DD" obtained by adding the duty change amount DD from the duty command value D(n-1). good.
  • the CPU 91 sets the duty command value D(n) to the calculation result "D(n-1)+1" obtained by adding a predetermined value "1" to the duty command value D(n-1).
  • a graph L11 in which the duty command value D(n) is plotted against the passage of time shows the duty ratio from time T0 when the process of S25 is performed to time T1 when the duty change amount DD becomes less than "1" in the process of S53.
  • the curve does not have to be asymptotic from the stop value DST to the duty target setting value DTGT.
  • connection terminal 201 does not have to be a terminal defined in the USB TYPE-C (registered trademark) standard, and may be a terminal to which an AC-DC adapter is connected, for example.
  • the connection terminal 201 does not need to have a current upper limit value defined by the standard. Power may be supplied to the air cleaner 1 from a battery.
  • the position where the connection terminal 201 is provided is not limited to the above embodiment.
  • the predetermined value may be larger than the minimum unit in which the duty command value D(n) can be changed. Error conditions are not limited to the above embodiments.
  • the state of the air cleaner 1 may be changed to error ST5 based on the amount of dust detected by the dust sensor 18.
  • the method for recovering from error ST5 is to restart the power supply in this embodiment, but press and hold the first changeover switch 8 while the power is on to turn the air purifier 1 into OFF ST1. is also possible.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Control Of Electric Motors In General (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

Provided are a voltage control program and an air purifier that contribute to minimizing the occurrence of inrush current. A CPU of this air purifier outputs, to a voltage control unit, a PWM control signal indicating a duty ratio (S62). The CPU receives an instruction to increase a voltage applied to a motor by the voltage control unit to a target voltage. The CPU sets a target setting value that is a duty ratio corresponding to the target voltage if the instruction is received (S41). Until a first computation value, which is the result of proportional computation based on the difference between the target setting value and a command value (n−1) that is a duty ratio indicated by the PWM control signal outputted last time, reaches a prescribed value, the CPU periodically sets a second computation value, which is the result of adding/subtracting the first computation value to/from the command value (n−1) such that the command value (n−1) approaches the target setting value, to a command value (n) that is a duty ratio indicated by the PWM control signal to be output this time (S54).

Description

電圧制御プログラムと空気清浄機Voltage control program and air purifier
 本発明は、電圧制御プログラムと空気清浄機に関する。 The present invention relates to a voltage control program and an air cleaner.
 特許文献1に記載の速度制御装置は、モータ速度をフィードバック対象としてPI制御を行う。速度制御装置は、1回目のモータの起動時に、積分項の値を記憶する。2回目のモータの起動時、速度制御装置は、記憶された積分項の値に基づいてモータをPI制御する。 The speed control device described in Patent Document 1 performs PI control using the motor speed as a feedback target. The speed control device stores the value of the integral term when the motor is started for the first time. When starting the motor for the second time, the speed control device performs PI control of the motor based on the stored value of the integral term.
特開昭58-22592号公報Japanese Unexamined Patent Publication No. 58-22592
 上記速度制御装置がモータの回転速度を目的の回転速度まで増大させる場合、積分項の値に基づいてモータがPI制御される。このため、モータへの出力電圧が、目的の回転速度に対応する電圧に急に切り替えられることが考えられる。モータへの出力電圧が、目的の回転速度に対応する電圧に急に切り替えられると、突入電流が発生し、回路部品等に悪影響が生じる可能性がある。 When the speed control device increases the rotational speed of the motor to a target rotational speed, the motor is subjected to PI control based on the value of the integral term. For this reason, it is conceivable that the output voltage to the motor is suddenly switched to a voltage corresponding to the target rotational speed. If the output voltage to the motor is suddenly switched to a voltage corresponding to the target rotational speed, an inrush current may occur, which may have an adverse effect on circuit components and the like.
 本発明の目的は、突入電流の発生を抑制するという利点に貢献する電圧制御プログラムと空気清浄機を提供することである。 An object of the present invention is to provide a voltage control program and an air cleaner that contribute to the advantage of suppressing the generation of inrush current.
 本発明の第一態様に係る電圧制御プログラムは、ファンを回転させるモータを駆動するための電圧制御部を制御する空気清浄機のコンピュータに、前記電圧制御部に対してPWM制御を行う処理であって、デューティ比を示すPWM制御信号を前記電圧制御部に出力する出力処理と、前記電圧制御部によって前記モータに印加される電圧を目標電圧まで上昇させる指示を受け付ける受付処理と、前記受付処理によって前記指示が受け付けられた場合、前記目標電圧に応じた前記デューティ比である目標設定値を設定する第一設定処理と、第一演算値が所定値に達するまで、第二演算値を、前記出力処理によって今回出力される前記PWM制御信号が示す前記デューティ比であるデューティ指令値(n)に周期的に設定する第二設定処理とを実行させ、前記第一演算値は、前記出力処理によって前回出力された前記PWM制御信号が示す前記デューティ比である指令値(n-1)と、前記目標設定値との差分に基づいて比例演算された結果を示し、前記第二演算値は、前記指令値(n-1)が前記目標設定値に近づくように前記指令値(n-1)に対して前記第一演算値が加算または減算された結果を示すことを特徴とする。 The voltage control program according to the first aspect of the present invention is a process for performing PWM control on the voltage control unit in a computer of an air purifier that controls a voltage control unit for driving a motor that rotates a fan. an output process for outputting a PWM control signal indicating a duty ratio to the voltage control unit; a reception process for receiving an instruction to increase the voltage applied to the motor by the voltage control unit to a target voltage; When the instruction is accepted, a first setting process of setting a target set value that is the duty ratio according to the target voltage, and a second calculation value is applied to the output until the first calculation value reaches a predetermined value. A second setting process is executed to periodically set the duty command value (n) which is the duty ratio indicated by the PWM control signal outputted this time by the process, and the first calculation value is changed from the previous value by the output process. The second calculated value indicates the result of proportional calculation based on the difference between the command value (n-1) which is the duty ratio indicated by the outputted PWM control signal and the target setting value, and the second calculation value is It is characterized in that the first calculation value is added to or subtracted from the command value (n-1) so that the value (n-1) approaches the target setting value.
 第一態様によれば、電圧制御プログラムは、突入電流の発生を抑制するという利点に貢献する。 According to the first aspect, the voltage control program contributes to the advantage of suppressing the generation of inrush current.
 本発明の第二態様に係る空気清浄機は、ファンと、前記ファンを回転させるモータと、前記モータを駆動するための電圧制御部と、前記電圧制御部を制御するプロセッサとを備え、前記プロセッサは、前記電圧制御部に対してPWM制御を行う処理であって、デューティ比を示すPWM制御信号を前記電圧制御部に出力する出力処理と、前記電圧制御部によって前記モータに印加される電圧を目標電圧まで上昇させる指示を受け付ける受付処理と、前記受付処理によって前記指示が受け付けられた場合、前記目標電圧に応じた前記デューティ比である目標設定値を設定する第一設定処理と、前記出力処理によって前回出力された前記PWM制御信号が示す前記デューティ比である指令値(n-1)と、前記第一設定処理によって設定された前記目標設定値との差分に基づいて比例演算された結果の第一演算値が所定値に達するまで、前記指令値(n-1)が前記目標設定値に近づくように前記デューティ指令値(n-1)に対して前記第一演算値が加算または減算された結果の第二演算値を、前記出力処理によって今回出力される前記PWM制御信号が示す前記デューティ比である指令値(n)に周期的に設定する第二設定処理とを実行することを特徴とする。 An air cleaner according to a second aspect of the present invention includes a fan, a motor for rotating the fan, a voltage control section for driving the motor, and a processor for controlling the voltage control section, and the processor for controlling the voltage control section. is a process of performing PWM control on the voltage control unit, which includes an output process of outputting a PWM control signal indicating a duty ratio to the voltage control unit, and a process of controlling the voltage applied to the motor by the voltage control unit. a reception process that receives an instruction to increase the voltage to a target voltage; a first setting process that sets a target set value that is the duty ratio according to the target voltage when the instruction is accepted by the reception process; and the output process of the result of proportional calculation based on the difference between the command value (n-1), which is the duty ratio indicated by the PWM control signal output last time, and the target setting value set by the first setting process. The first calculated value is added to or subtracted from the duty command value (n-1) so that the command value (n-1) approaches the target setting value until the first calculated value reaches a predetermined value. and a second setting process of periodically setting the second calculated value of the result to the command value (n) which is the duty ratio indicated by the PWM control signal outputted this time by the output process. shall be.
 第二態様は、第一態様と同様の利点に貢献する。 The second aspect contributes similar advantages to the first aspect.
空気清浄機1の斜視図である。1 is a perspective view of an air cleaner 1. FIG. 空気清浄機1の分解斜視図である。FIG. 1 is an exploded perspective view of the air cleaner 1. FIG. 図1に示すIII-III線矢視方向断面図である。FIG. 2 is a sectional view taken along the line III-III shown in FIG. 1; 下壁31を省略した状態の空気清浄機1の底面図である。FIG. 3 is a bottom view of the air cleaner 1 with the lower wall 31 omitted. 空気清浄機1の電気的構成を示すブロック図である。1 is a block diagram showing the electrical configuration of an air cleaner 1. FIG. リングバッファ931の概念図である。9 is a conceptual diagram of a ring buffer 931. FIG. 空気清浄機1の状態の遷移図である。It is a transition diagram of the state of the air cleaner 1. メイン処理のフローチャートである。It is a flowchart of main processing. メイン処理のフローチャートである。It is a flowchart of main processing. ファン制御処理のフローチャートである。It is a flowchart of fan control processing. ファン制御処理のフローチャートである。It is a flowchart of fan control processing. 時間に対するデューティ指令値D(n)のグラフである。It is a graph of duty command value D(n) with respect to time. 時間に対するファン電圧FVのグラフである。3 is a graph of fan voltage FV versus time.
 本発明の一実施形態を説明する。以下説明では、空気清浄機1の向きについて、図中に示す上下、左右、前後を使用する。 An embodiment of the present invention will be described. In the following description, the orientation of the air cleaner 1 will be used as shown in the figure: up and down, left and right, and front and back.
 図1~図4を参照し、空気清浄機1の機械的構成を説明する。図1、図2に示すように、空気清浄機1はケース3と蓋4を備える。ケース3は直方体状を有し、下壁31と上壁32と前壁33と後壁34と左壁35と右壁36によって構成される。 The mechanical configuration of the air cleaner 1 will be explained with reference to FIGS. 1 to 4. As shown in FIGS. 1 and 2, the air cleaner 1 includes a case 3 and a lid 4. The case 3 has a rectangular parallelepiped shape and is composed of a lower wall 31, an upper wall 32, a front wall 33, a rear wall 34, a left wall 35, and a right wall 36.
 上壁32には開口325が形成される。開口325は平面視で矩形状である。蓋4は平面視で開口325の形状に対応する形状を有し、ケース3に対して着脱される。蓋4がケース3に取り付けられた状態では、蓋4は開口325を閉塞する(図1参照)。蓋4がケース3から取り外された状態では、開口325が上方に開放される(図2参照)。 An opening 325 is formed in the upper wall 32. The opening 325 has a rectangular shape in plan view. The lid 4 has a shape corresponding to the shape of the opening 325 in plan view, and is attached to and detached from the case 3. When the lid 4 is attached to the case 3, the lid 4 closes the opening 325 (see FIG. 1). When the lid 4 is removed from the case 3, the opening 325 is opened upward (see FIG. 2).
 左壁35の下部には凹部351が形成される。凹部351は、左壁35から右方に凹み、壁352、353、354を含む。壁352、353は前後方向において互いに対向する。壁354は壁352、353のそれぞれの右端の間で前後方向に延びる。 A recess 351 is formed at the bottom of the left wall 35. The recess 351 is recessed rightward from the left wall 35 and includes walls 352, 353, and 354. The walls 352 and 353 face each other in the front-rear direction. Wall 354 extends in the front-rear direction between the right ends of walls 352 and 353, respectively.
 前壁33の下部には、第一切替スイッチ8と第二切替スイッチ16と発光部5が設けられる。第一切替スイッチ8は、押しボタンであり、空気清浄機1の状態が切り替えられる場合にユーザによって押下される。空気清浄機1の状態については後述する。 At the lower part of the front wall 33, a first changeover switch 8, a second changeover switch 16, and a light emitting part 5 are provided. The first changeover switch 8 is a push button, and is pressed by the user when the state of the air cleaner 1 is changed. The state of the air cleaner 1 will be described later.
 第二切替スイッチ16は、非接触スイッチであり、空気清浄機1の状態が切り替えられる場合にユーザによって操作される。例えば、ユーザは第二切替スイッチ16に指を近づけることで、第二切替スイッチ16を操作する。つまり、第二切替スイッチ16は第二切替スイッチ16から離れた位置にあるユーザの指を検出する。発光部5は、複数のLEDによって構成され、所定時間内における後述の埃量に応じた色の光を発する。 The second changeover switch 16 is a non-contact switch, and is operated by the user when the state of the air cleaner 1 is changed. For example, the user operates the second changeover switch 16 by bringing a finger close to the second changeover switch 16. That is, the second changeover switch 16 detects the user's finger located away from the second changeover switch 16 . The light emitting unit 5 is composed of a plurality of LEDs, and emits light of a color depending on the amount of dust, which will be described later, within a predetermined period of time.
 蓋4と前壁33と後壁34には、それぞれ、吸込口51、52、53が形成される。吸込口51、52、53は、それぞれ、複数のスリットによって構成される。吸込口52、53は後述の中壁37よりも上方に位置する。 Suction ports 51, 52, and 53 are formed in the lid 4, front wall 33, and rear wall 34, respectively. The suction ports 51, 52, and 53 are each composed of a plurality of slits. The suction ports 52 and 53 are located above the inner wall 37, which will be described later.
 左壁35と右壁36には、それぞれ、吹出口55、56が形成される。吹出口55、56は、それぞれ、側面視で矩形状を有する開口である。吹出口55、56は後述の中壁37よりも上方に位置する。吹出口55、56には、それぞれ、ルーバ71、72が嵌まる。ルーバ71、72は、それぞれ、複数の板を上下方向に並べることで構成され、空気が流れる向きを調整する。 Air outlets 55 and 56 are formed in the left wall 35 and right wall 36, respectively. The air outlets 55 and 56 are each openings that have a rectangular shape when viewed from the side. The air outlets 55 and 56 are located above an inner wall 37, which will be described later. Louvers 71 and 72 are fitted into the air outlets 55 and 56, respectively. Each of the louvers 71 and 72 is constructed by arranging a plurality of plates in the vertical direction, and adjusts the direction in which air flows.
 図2、図3に示すように、ケース3内には中壁37が設けられる。中壁37は平面視で矩形状を有し、上下方向において下壁31と上壁32の間に配置される。以下では、下壁31と前壁33と後壁34と左壁35と右壁36と中壁37とによって囲まれる空間を「下空間19」という(図3参照)。上壁32と前壁33と後壁34と左壁35と右壁36と中壁37とによって囲まれる空間を「上空間10」という。下空間19と上空間10は中壁37によって互いに仕切られる。 As shown in FIGS. 2 and 3, an inner wall 37 is provided inside the case 3. The middle wall 37 has a rectangular shape in plan view, and is arranged between the lower wall 31 and the upper wall 32 in the vertical direction. Below, the space surrounded by the lower wall 31, the front wall 33, the rear wall 34, the left wall 35, the right wall 36, and the middle wall 37 will be referred to as a "lower space 19" (see FIG. 3). The space surrounded by the upper wall 32, the front wall 33, the rear wall 34, the left wall 35, the right wall 36, and the middle wall 37 is referred to as an "upper space 10." The lower space 19 and the upper space 10 are partitioned from each other by an inner wall 37.
 上空間10にはフィルタ6と送風機81、82が配置される。フィルタ6は開口325を介して上空間10に装着される。フィルタ6を上空間10に装着した状態で左右方向から見たフィルタ6の形状は、下方に開口するU字状である。フィルタ6の上面、前面、後面は、それぞれ、吸込口51、52、53と対向する。フィルタ6はウイルス、ゴミ、塵埃等を捕集して空気から取り除く。 A filter 6 and blowers 81 and 82 are arranged in the upper space 10. The filter 6 is attached to the upper space 10 through the opening 325. The shape of the filter 6 when viewed from the left and right with the filter 6 installed in the upper space 10 is a U-shape that opens downward. The upper surface, front surface, and rear surface of the filter 6 face the suction ports 51, 52, and 53, respectively. The filter 6 collects viruses, dirt, dust, etc. and removes them from the air.
 送風機81はフィルタ6よりも左方に位置する。送風機82はフィルタ6よりも右方に位置する。送風機81は軸流ファンであり、ケーシング811、ファンモータ812、ファン813を備える。ケーシング811は四角筒状を有し、上空間10内において、ケース3の左端に固定される。 The blower 81 is located to the left of the filter 6. The blower 82 is located to the right of the filter 6. The blower 81 is an axial fan and includes a casing 811, a fan motor 812, and a fan 813. The casing 811 has a rectangular cylindrical shape and is fixed to the left end of the case 3 within the upper space 10.
 ファンモータ812はケーシング811内の中央に配置され、ケーシング811に固定される。ファンモータ812の出力軸(図示略)は左右方向に延びる。ファン813はケーシング811内に配置され、ファンモータ812の出力軸に固定される。ファン813の軸線は左右方向に延びる。ファン813はファンモータ812の駆動によって軸線周りに回転する。これにより、ファン813は右方から左方に向けて気流を発生させる。 The fan motor 812 is arranged at the center within the casing 811 and fixed to the casing 811. An output shaft (not shown) of the fan motor 812 extends in the left-right direction. Fan 813 is disposed within casing 811 and fixed to the output shaft of fan motor 812. The axis of the fan 813 extends in the left-right direction. The fan 813 is driven by the fan motor 812 to rotate around its axis. As a result, the fan 813 generates an airflow from the right to the left.
 送風機82は送風機81と同じ構造である。すなわち、送風機82はケーシング821、ファンモータ822、ファン823を備える。支持部821はケーシング811に対応する。ファンモータ822はファンモータ812に対応する。ファン823はファン813に対応する。ファン823はファンモータ822の駆動によって軸線周りに回転する。これにより、ファン823は左方から右方に向けて気流を発生させる。 The blower 82 has the same structure as the blower 81. That is, the blower 82 includes a casing 821, a fan motor 822, and a fan 823. The support portion 821 corresponds to the casing 811. Fan motor 822 corresponds to fan motor 812. Fan 823 corresponds to fan 813. The fan 823 is driven by the fan motor 822 to rotate around its axis. As a result, the fan 823 generates an airflow from the left to the right.
 図4に示すように、壁354には接続端子201が設けられる。接続端子201には、電源ケーブル(図示略)が接続される。本実施形態では、接続端子201は、規格によって定められた電流上限値を有する。例えば、接続端子201はUSB TYPE-C(登録商標)の規格によって定められた端子である。接続端子201に電源ケーブルが接続されることで、接続端子201は、外部電源から電源ケーブルを介して空気清浄機1に供給される電力を受ける。 As shown in FIG. 4, connection terminals 201 are provided on the wall 354. A power cable (not shown) is connected to the connection terminal 201. In this embodiment, the connection terminal 201 has a current upper limit value defined by the standard. For example, the connection terminal 201 is a terminal defined by the USB TYPE-C (registered trademark) standard. By connecting the power cable to the connection terminal 201, the connection terminal 201 receives power supplied from the external power source to the air cleaner 1 via the power cable.
 後壁34には吸込口14が設けられる。吸込口14は開口であり、中壁37よりも下方に位置する。右壁36には吹出口15が設けられる。吹出口15は開口であり、中壁37よりも下方に位置する。 A suction port 14 is provided in the rear wall 34. The suction port 14 is an opening and is located below the inner wall 37. The right wall 36 is provided with an air outlet 15 . The air outlet 15 is an opening and is located below the inner wall 37.
 下空間19には制御基板9と管100が配置される。制御基板9は空気清浄機1を制御するための基板である。管100は吸込口14から吹出口15まで屈曲しながら延びる。管100の途中には埃センサ18が設けられる。埃センサ18は、管100内において、空気中に含まれる埃を、埃に対して非接触で検出する。つまり、埃センサ18は埃センサ18から離れた位置にある埃を検出する。 A control board 9 and a pipe 100 are arranged in the lower space 19. The control board 9 is a board for controlling the air cleaner 1. The pipe 100 extends from the inlet 14 to the outlet 15 while being bent. A dust sensor 18 is provided in the middle of the pipe 100. The dust sensor 18 detects dust contained in the air within the pipe 100 without contacting the dust. In other words, the dust sensor 18 detects dust located away from the dust sensor 18.
 図3を参照し、空気清浄機1による空気清浄動作を説明する。空気清浄動作では、ファンモータ812、822が駆動される。これにより、ファン813、823が回転する。ファン813、823が回転することに伴って、ケース3外から吸込口51、52、53を介して上空間10内に空気が吸い込まれる。上空間10内に吸い込まれた空気は、フィルタ6の中を通る。フィルタ6は上空間10内に吸い込まれた空気からウイルス、ゴミ、塵埃等を捕集して取り除く。 With reference to FIG. 3, the air purifying operation by the air purifier 1 will be described. In the air cleaning operation, fan motors 812 and 822 are driven. This causes the fans 813 and 823 to rotate. As the fans 813 and 823 rotate, air is sucked into the upper space 10 from outside the case 3 through the suction ports 51, 52, and 53. The air sucked into the upper space 10 passes through the filter 6. The filter 6 collects and removes viruses, dirt, dust, etc. from the air sucked into the upper space 10.
 フィルタ6の中を通った空気は左方または右方に分岐する。左方に向かって流れた空気は、上空間10内から吹出口55を介してケース3外に吹き出される。この場合、吹出口55から吹き出された空気は、ルーバ71によって左斜め下方に案内される。右方に向かって流れた空気は、上空間10内から吹出口56を介してケース3外に吹き出される。この場合、吹出口56から吹き出された空気は、ルーバ72によって右斜め下方に案内される。吹出口55、56から吹き出された空気は、フィルタ6によってウイルス、ゴミ、塵埃等が取り除かれた空気である。よって、空気清浄機1の周りの空気が清浄される。 The air that has passed through the filter 6 branches to the left or right. The air flowing toward the left is blown out from the upper space 10 to the outside of the case 3 through the air outlet 55. In this case, the air blown out from the air outlet 55 is guided diagonally downward to the left by the louver 71. The air flowing toward the right is blown out from the upper space 10 to the outside of the case 3 through the air outlet 56. In this case, the air blown out from the air outlet 56 is guided diagonally downward to the right by the louver 72. The air blown out from the air outlets 55 and 56 is air from which viruses, dirt, dust, etc. have been removed by the filter 6. Therefore, the air around the air cleaner 1 is purified.
 本実施形態では、吹出口15が吹出口56の下方に位置する。このため、吹出口56から吹き出される空気がルーバ72によって右斜め下方に案内されることに伴って、管100内において吸込口14(図4参照)から吹出口15に向かって気流が発生する。これにより、ケース3外から吸込口14を介して管100内に空気が吸い込まれる。管100内に吸い込まれた空気は、埃センサ18による検出領域Hを通る。検出領域Hを通った空気は、管100内から吹出口15を介してケース3外に吹き出される。空気清浄動作の実行中、埃センサ18は、検出領域Hを通る空気中の埃を検出する。 In this embodiment, the air outlet 15 is located below the air outlet 56. Therefore, as the air blown out from the outlet 56 is guided diagonally downward to the right by the louver 72, an airflow is generated in the pipe 100 from the inlet 14 (see FIG. 4) toward the outlet 15. . As a result, air is sucked into the pipe 100 from outside the case 3 through the suction port 14. The air sucked into the pipe 100 passes through the detection area H by the dust sensor 18. The air that has passed through the detection area H is blown out of the case 3 from inside the pipe 100 through the air outlet 15. During the air cleaning operation, the dust sensor 18 detects dust in the air passing through the detection area H.
 図5を参照し、空気清浄機1の電気的構成を説明する。制御基板9はマイコン90、電源回路20、ファン回路60、駆動回路163、ADコンバータ164、駆動回路183、ADコンバータ184、および駆動回路50を備える。 The electrical configuration of the air cleaner 1 will be explained with reference to FIG. The control board 9 includes a microcomputer 90, a power supply circuit 20, a fan circuit 60, a drive circuit 163, an AD converter 164, a drive circuit 183, an AD converter 184, and a drive circuit 50.
 マイコン90は、CPU91、ROM92、RAM93、および入出力インターフェース94を備え、空気清浄機1を制御する。CPU91はプロセッサとして機能し、例えばメイン処理(図8、図9参照)を実行する。ROM92は、CPU91がメイン処理を実行するための制御プログラム、メイン処理の実行時にCPU91によって参照される情報等をあらかじめ記憶する。RAM93は、制御プログラムで用いられる各種データ等を一時的に記憶する。RAM93は、例えば空気清浄機1の現在の状態を示す情報を記憶する。入出力インターフェース94には、第一切替スイッチ8が電気的に接続される。第一切替スイッチ8は、ユーザによって押下された場合に、押下されたことを示す検出信号をCPU91に出力する。 The microcomputer 90 includes a CPU 91, a ROM 92, a RAM 93, and an input/output interface 94, and controls the air cleaner 1. The CPU 91 functions as a processor, and executes, for example, main processing (see FIGS. 8 and 9). The ROM 92 stores in advance a control program for the CPU 91 to execute main processing, information referenced by the CPU 91 when executing the main processing, and the like. The RAM 93 temporarily stores various data used in the control program. The RAM 93 stores information indicating the current state of the air cleaner 1, for example. The first changeover switch 8 is electrically connected to the input/output interface 94 . When the first changeover switch 8 is pressed by the user, it outputs a detection signal indicating that the switch has been pressed to the CPU 91 .
 電源回路20、ファン回路60、駆動回路163、ADコンバータ164、駆動回路183、ADコンバータ184、および駆動回路50は、それぞれ、入出力インターフェース94に電気的に接続される。電源回路20は接続端子201に電気的に接続される。電源回路20は接続端子201を介して印加される電圧を検出し、検出した電圧を示す検出信号をCPU91に出力する。駆動回路50は発光部5に接続される。駆動回路50は、CPU91からの信号に応じた色で発光部5を発光させる。 The power supply circuit 20, the fan circuit 60, the drive circuit 163, the AD converter 164, the drive circuit 183, the AD converter 184, and the drive circuit 50 are each electrically connected to the input/output interface 94. Power supply circuit 20 is electrically connected to connection terminal 201 . The power supply circuit 20 detects the voltage applied through the connection terminal 201 and outputs a detection signal indicating the detected voltage to the CPU 91. The drive circuit 50 is connected to the light emitting section 5. The drive circuit 50 causes the light emitting section 5 to emit light in a color according to a signal from the CPU 91.
 ファン回路60は、ファンモータ812、822のそれぞれに電気的に接続される。ファン回路60は、CPU91によってPWM制御が行われる。ファン回路60は、CPU91からのデューティ比を示すPWM制御信号に基づいて、ファンモータ812、822のそれぞれを駆動する。 The fan circuit 60 is electrically connected to each of the fan motors 812 and 822. The fan circuit 60 is subjected to PWM control by the CPU 91. The fan circuit 60 drives each of the fan motors 812 and 822 based on a PWM control signal indicating the duty ratio from the CPU 91.
 本実施形態では、ファン回路60は、ON/OFFスイッチ61とアナログ変換部62とDC-DCコンバータ63を含む。ON/OFFスイッチ61は、CPU91からのHigh(以下、「H」という。)を示す起動信号によってONされ、通電状態となる。ON/OFFスイッチ61はCPU91からのLow(以下「L」という。)を示す起動信号によってOFFされ、非通電状態となる。アナログ変換部62は、CPU91からのPWM制御信号をアナログ変換し、変換結果のPWM制御信号をDC-DCコンバータ63に出力する。 In this embodiment, the fan circuit 60 includes an ON/OFF switch 61, an analog converter 62, and a DC-DC converter 63. The ON/OFF switch 61 is turned on by an activation signal indicating High (hereinafter referred to as "H") from the CPU 91, and becomes energized. The ON/OFF switch 61 is turned off by an activation signal indicating Low (hereinafter referred to as "L") from the CPU 91, and enters a non-energized state. The analog converter 62 converts the PWM control signal from the CPU 91 into analog, and outputs the PWM control signal as a result of the conversion to the DC-DC converter 63.
 DC-DCコンバータ63はCPU91からの「H」を示すイネーブル信号によってアクティブとなる。DC-DCコンバータ63はCPU91からの「L」を示すイネーブル信号によってインアクティブとなる。DC-DCコンバータ63は、アクティブな状態において、ファン回路60に入力される電圧を、アナログ変換部62からのPWM制御信号が示すデューティ比に基づいて、昇圧し、整流し、且つ平滑化する。DC-DCコンバータ63は、アクティブな状態において、昇圧し、整流し、且つ平滑化した結果の電圧をファンモータ812、822に印加する。本実施形態では、DC-DCコンバータ63は、CPU91からのPWM制御信号が示すデューティ比が小さいほど、大きい電圧をファンモータ812、822に印加する。 The DC-DC converter 63 is activated by an enable signal indicating "H" from the CPU 91. The DC-DC converter 63 becomes inactive by an enable signal indicating "L" from the CPU 91. In the active state, the DC-DC converter 63 boosts, rectifies, and smoothes the voltage input to the fan circuit 60 based on the duty ratio indicated by the PWM control signal from the analog converter 62. In the active state, the DC-DC converter 63 applies a boosted, rectified, and smoothed voltage to the fan motors 812 and 822. In this embodiment, the DC-DC converter 63 applies a larger voltage to the fan motors 812 and 822 as the duty ratio indicated by the PWM control signal from the CPU 91 is smaller.
 駆動回路163は後述の発光素子161に電気的に接続され、CPU91からの信号に基づいて後述の発光素子161による発光を制御する。ADコンバータ164は後述の受光素子162に電気的に接続され、受光素子162からの検出信号が示す受光量をAD値(アナログ-デジタル変換値)に変換し、CPU91に出力する。駆動回路183は後述の発光素子181に電気的に接続され、CPU91からの信号に基づいて発光素子181による発光を制御する。ADコンバータ184は後述の受光素子182に電気的に接続され、受光素子182からの検出信号が示す受光量をAD値に変換し、CPU91に出力する。 The drive circuit 163 is electrically connected to a light emitting element 161, which will be described later, and controls light emission by the light emitting element 161, which will be described later, based on a signal from the CPU 91. The AD converter 164 is electrically connected to a light-receiving element 162 (described later), converts the amount of received light indicated by a detection signal from the light-receiving element 162 into an AD value (analog-digital conversion value), and outputs it to the CPU 91. The drive circuit 183 is electrically connected to a light emitting element 181, which will be described later, and controls light emission by the light emitting element 181 based on a signal from the CPU 91. The AD converter 184 is electrically connected to a light receiving element 182 (described later), converts the amount of received light indicated by a detection signal from the light receiving element 182 into an AD value, and outputs the AD value to the CPU 91.
 第二切替スイッチ16は反射型の光センサであり、発光素子161と受光素子162を備える。発光素子161は例えばLEDであり、駆動回路163による制御によって前壁33から前方に向けて発光する。発光素子161によって発せられた光は、第二切替スイッチ16から離れた位置にある対象物によって反射される。対象物は例えばユーザの指である。受光素子162は例えばフォトトランジスタであり、ユーザの指によって反射された光を受ける。受光素子162による受光量は、受光素子162からユーザの指までの距離に対応する。第二切替スイッチ16は、受光素子162による受光量を示す検出信号を、ADコンバータ164を介してCPU91に出力する。CPU91は、受光素子162による受光量に基づいて、第二切替スイッチ16に対するユーザによる操作を検出する。 The second changeover switch 16 is a reflective optical sensor and includes a light emitting element 161 and a light receiving element 162. The light emitting element 161 is, for example, an LED, and emits light forward from the front wall 33 under the control of the drive circuit 163. The light emitted by the light emitting element 161 is reflected by an object located away from the second changeover switch 16. The target object is, for example, a user's finger. The light receiving element 162 is, for example, a phototransistor, and receives light reflected by a user's finger. The amount of light received by the light receiving element 162 corresponds to the distance from the light receiving element 162 to the user's finger. The second changeover switch 16 outputs a detection signal indicating the amount of light received by the light receiving element 162 to the CPU 91 via the AD converter 164. The CPU 91 detects the user's operation on the second changeover switch 16 based on the amount of light received by the light receiving element 162.
 図6を参照し、第二切替スイッチ16に対するユーザによる操作をCPU91が検出する方法の一例を説明する。RAM93には、操作検出用のリングバッファ931が設けられる。リングバッファ931は、複数(本実施形態では、11個)の記憶エリアR0~R10を含む。記憶エリアR0~R10は、この順で時計回り方向に並ぶ。 An example of a method by which the CPU 91 detects a user's operation on the second changeover switch 16 will be described with reference to FIG. 6. The RAM 93 is provided with a ring buffer 931 for operation detection. The ring buffer 931 includes a plurality of (11 in this embodiment) storage areas R0 to R10. The storage areas R0 to R10 are arranged in this order in a clockwise direction.
 なお、図6は、説明のために概念的に、リングバッファ931をリング状に示しているが、実際には、記憶エリアR0~R10のそれぞれにRAM93のメモリアドレスが付与されている。リングバッファ931では、複数の記憶エリアR0~R10が、付与されたメモリアドレスに基づいて、リング状に並ぶように、順に処理される。具体的には、リングバッファ931では、記憶エリアR0から順に、記憶エリアR1、R2、・・・、R9、R10まで処理され、記憶エリアR10まで処理された後、記憶エリアR0に戻るように処理される。 Although FIG. 6 conceptually shows the ring buffer 931 in a ring shape for the sake of explanation, in reality, a memory address of the RAM 93 is assigned to each of the storage areas R0 to R10. In the ring buffer 931, the plurality of storage areas R0 to R10 are sequentially processed so as to be arranged in a ring shape based on the assigned memory addresses. Specifically, in the ring buffer 931, processing is performed sequentially from storage area R0 to storage areas R1, R2, . be done.
 上述したように、第二切替スイッチ16は受光素子162による受光量を示す検出信号をADコンバータ164に出力する。ADコンバータ164は第二切替スイッチ16から受信した検出信号が示す受光量をAD値に順次変換し、変換結果のAD値をCPU91に順次出力する。CPU91は、ADコンバータ164からAD値をタイミングAで順次取得する。経時的に隣り合うタイミングAの時間間隔TPは、一定であり、例えば10msである。 As described above, the second changeover switch 16 outputs a detection signal indicating the amount of light received by the light receiving element 162 to the AD converter 164. The AD converter 164 sequentially converts the amount of received light indicated by the detection signal received from the second changeover switch 16 into an AD value, and sequentially outputs the AD value of the conversion result to the CPU 91. The CPU 91 sequentially acquires AD values from the AD converter 164 at timing A. The time interval TP between temporally adjacent timings A is constant, for example, 10 ms.
 CPU91は、ADコンバータ164から順次取得した複数のAD値のうち連続する複数のAD値を1つの記憶対象TSとする。本実施形態では、複数のAD値は3つ以上であり、例えば5つである。CPU91は、記憶対象TSから最小値と最大値を取り除く。CPU91は、最小値と最大値を取り除いた記憶対象TSにおいて、AD値の平均値を算出する。CPU91は、算出した平均値を記憶エリアR0に記憶する。以上のように、CPU91は、平均値を順次算出し、算出した平均値を時計回り方向に順に各記憶エリアR0~R10に記憶する。なお、CPU91は、記憶エリアR10に平均値を記憶した後、引き続き、次の平均値を記憶エリアR0に記憶する。 The CPU 91 sets a plurality of consecutive AD values among the plurality of AD values sequentially acquired from the AD converter 164 as one storage target TS. In this embodiment, the plurality of AD values is three or more, for example, five. The CPU 91 removes the minimum value and maximum value from the storage target TS. The CPU 91 calculates the average value of the AD values in the storage target TS from which the minimum value and maximum value have been removed. The CPU 91 stores the calculated average value in the storage area R0. As described above, the CPU 91 sequentially calculates average values and stores the calculated average values in each storage area R0 to R10 in clockwise order. Note that, after storing the average value in the storage area R10, the CPU 91 subsequently stores the next average value in the storage area R0.
 CPU91は、複数の記憶エリアR0~R10の一部または全部に記憶された複数の平均値のうち、ON閾値よりも大きい平均値の個数が第一所定個数となったかを判断する。CPU91はON閾値よりも大きい平均値の個数が第一所定個数となった場合に、第一切替指示を受け付けたと判断する。第一所定個数は、例えば複数の記憶エリアR0~R10の個数の半数を超える個数である。本実施形態では、複数の記憶エリアR0~R10の個数が11個なので、第一所定個数は6個~11個のいずれかであり、例えば6個である。 The CPU 91 determines whether the number of average values larger than the ON threshold has reached a first predetermined number among the plurality of average values stored in some or all of the plurality of storage areas R0 to R10. The CPU 91 determines that the first switching instruction has been received when the number of average values greater than the ON threshold reaches a first predetermined number. The first predetermined number is, for example, more than half of the number of storage areas R0 to R10. In this embodiment, the number of the plurality of storage areas R0 to R10 is 11, so the first predetermined number is any one of 6 to 11, and is, for example, 6.
 例えば、図6に示す例では、記憶エリアR0~R10のそれぞれに、平均値として10、20、10、5、10、700、800、700、700、800、800が記憶されている。ON閾値を600とし、第一所定個数を6個とした場合、記憶エリアR10に平均値「800」が記憶された時点で、ON閾値「600」を超えた平均値(700、800、700、700、800、800)が第一所定個数「6個」となる。このため、CPU91は、記憶エリアR10に平均値「800」が記憶された時点で、第二切替スイッチ16に対するユーザによる操作を検出する。 For example, in the example shown in FIG. 6, average values of 10, 20, 10, 5, 10, 700, 800, 700, 700, 800, and 800 are stored in each of the storage areas R0 to R10. When the ON threshold is 600 and the first predetermined number is 6, at the time the average value "800" is stored in the storage area R10, the average values exceeding the ON threshold "600" (700, 800, 700, 700, 800, 800) becomes the first predetermined number "6". Therefore, the CPU 91 detects the user's operation on the second changeover switch 16 at the time when the average value "800" is stored in the storage area R10.
 なお、第二切替スイッチ16に対するユーザによる操作が検出された後、複数の記憶エリアR0~R10の一部または全部に記憶された複数の平均値のうち、OFF閾値よりも小さい平均値の個数が第二所定個数となった場合、CPU91は、複数の記憶エリアR0~R10から平均値を消去する。本実施形態では、OFF閾値は、ON閾値よりも小さい。 Note that after the user's operation on the second changeover switch 16 is detected, the number of average values smaller than the OFF threshold among the plurality of average values stored in some or all of the plurality of storage areas R0 to R10 is determined. When the second predetermined number is reached, the CPU 91 erases the average value from the plurality of storage areas R0 to R10. In this embodiment, the OFF threshold is smaller than the ON threshold.
 埃センサ18は反射型の光センサであり、発光素子181と受光素子182を備える。発光素子181は例えばLEDであり、駆動回路183による制御によって検出領域Hに向けて発光する。発光素子181によって発せられた光は、対象物によって反射される。対象物は例えば埃である。受光素子182は例えばフォトトランジスタであり、埃によって反射された光を受ける。受光素子182による受光量は、埃量に対応する。埃センサ18は受光素子182による受光量を示す検出信号を、ADコンバータ184を介してCPU91に出力する。CPU91は、受光素子182による受光量に基づいて、埃量を検出する。 The dust sensor 18 is a reflective optical sensor and includes a light emitting element 181 and a light receiving element 182. The light emitting element 181 is, for example, an LED, and emits light toward the detection area H under the control of the drive circuit 183. The light emitted by the light emitting element 181 is reflected by the object. The object is, for example, dust. The light receiving element 182 is, for example, a phototransistor, and receives light reflected by dust. The amount of light received by the light receiving element 182 corresponds to the amount of dust. The dust sensor 18 outputs a detection signal indicating the amount of light received by the light receiving element 182 to the CPU 91 via the AD converter 184. The CPU 91 detects the amount of dust based on the amount of light received by the light receiving element 182.
 埃センサ18からの検出信号に基づいてCPU91が埃量を検出する方法の一例を説明する。本実施形態では、埃センサ18からの検出信号に基づいてCPU91が埃量を検出する方法は、第二切替スイッチ16に対するユーザによる操作をCPU91が検出する方法と同様である。具体的には、リングバッファ931と同様に、埃検出用のリングバッファ(図示略)がRAM93に設けられる。埃検出用のリングバッファは、リングバッファ931と同じ構成か、または記憶エリアの個数が異なる。 An example of how the CPU 91 detects the amount of dust based on the detection signal from the dust sensor 18 will be described. In this embodiment, the method by which the CPU 91 detects the amount of dust based on the detection signal from the dust sensor 18 is the same as the method by which the CPU 91 detects the user's operation on the second changeover switch 16 . Specifically, like the ring buffer 931, a ring buffer (not shown) for detecting dust is provided in the RAM 93. The ring buffer for dust detection has the same configuration as the ring buffer 931, or has a different number of storage areas.
 CPU91は、ADコンバータ184から順次取得した複数のAD値のうち連続する複数のAD値を1つの記憶対象とする。CPU91は、記憶対象から最小値と最大値を取り除く。CPU91は、最小値と最大値を取り除いた記憶対象において、AD値の平均値を算出する。CPU91は、算出した平均値を、埃検出用のリングバッファの記憶エリアに記憶する。以上のように、CPU91は、平均値を順次算出し、算出した平均値を順に、埃検出用のリングバッファの各記憶エリアに記憶する。 The CPU 91 stores a plurality of consecutive AD values among the plurality of AD values sequentially acquired from the AD converter 184. The CPU 91 removes the minimum value and maximum value from the storage target. The CPU 91 calculates the average value of the AD values in the storage target from which the minimum value and maximum value have been removed. The CPU 91 stores the calculated average value in the storage area of the ring buffer for dust detection. As described above, the CPU 91 sequentially calculates average values and stores the calculated average values in order in each storage area of the ring buffer for dust detection.
 CPU91は、所定時間ごとに、複数の記憶エリアに記憶された複数の平均値に基づいて、所定時間内における埃量を特定する。CPU91は、特定した所定時間内の埃量に応じた色を、駆動回路50を介して発光部5に発光させる。 The CPU 91 specifies the amount of dust within a predetermined time period based on a plurality of average values stored in a plurality of storage areas at predetermined time intervals. The CPU 91 causes the light emitting unit 5 to emit light in a color corresponding to the amount of dust within the specified predetermined time via the drive circuit 50.
 図7を参照し、空気清浄機1の状態を説明する。空気清浄機1の状態には、リセットST0、オフST1、ファン小ST2、ファン中ST3、ファン大ST4、およびエラーST5の6種類がある。以下では、ファンモータ812、822に印加される電圧を「ファン電圧FV」といい、目標となるファン電圧FVを「目標電圧」という。 With reference to FIG. 7, the state of the air cleaner 1 will be explained. There are six states of the air cleaner 1: reset ST0, off ST1, small fan ST2, medium fan ST3, large fan ST4, and error ST5. Hereinafter, the voltage applied to the fan motors 812, 822 will be referred to as "fan voltage FV", and the target fan voltage FV will be referred to as "target voltage".
 リセットST0は、空気清浄機1に電力が供給された直後の状態である。オフST1は、後述のエラー条件が成立しておらず、且つ目標電圧が所定の停止電圧となる状態である。エラーST5は、エラー条件が成立しており、且つ目標電圧が停止電圧となる状態である。停止電圧は、特定の値に限定されないが、本実施形態では5V未満である。停止電圧がファンモータ812、822に印加されても、ファンモータ812、822は、停止した状態を維持する。 Reset ST0 is the state immediately after power is supplied to the air cleaner 1. Off ST1 is a state in which an error condition described below is not satisfied and the target voltage is a predetermined stop voltage. Error ST5 is a state in which the error condition is satisfied and the target voltage becomes the stop voltage. The stop voltage is not limited to a specific value, but is less than 5V in this embodiment. Even when the stop voltage is applied to the fan motors 812, 822, the fan motors 812, 822 remain stopped.
 ファン小ST2は、目標電圧が、停止電圧よりも大きい第一電圧となる状態である。第一電圧は、停止電圧よりも大きければ特定の値に限定されないが、本実施形態では14Vである。第一電圧がファンモータ812、822に印加された場合、ファンモータ812、822は、第一回転速度で回転する。 Fan small ST2 is a state in which the target voltage is a first voltage higher than the stop voltage. Although the first voltage is not limited to a specific value as long as it is higher than the stop voltage, it is 14V in this embodiment. When a first voltage is applied to fan motors 812, 822, fan motors 812, 822 rotate at a first rotational speed.
 ファン中ST3は、目標電圧が、第一電圧よりも大きい第二電圧となる状態である。第二電圧は、第一電圧よりも大きければ特定の値に限定されないが、本実施形態では17Vである。第二電圧がファンモータ812、822に印加された場合、ファンモータ812、822は、第一回転速度よりも大きい第二回転速度で回転する。 During fan ST3, the target voltage is a second voltage that is larger than the first voltage. The second voltage is not limited to a specific value as long as it is higher than the first voltage, but is 17V in this embodiment. When a second voltage is applied to the fan motors 812, 822, the fan motors 812, 822 rotate at a second rotational speed that is greater than the first rotational speed.
 ファン大ST4は、目標電圧が第二電圧よりも大きい第三電圧となる状態である。第三電圧は、第二電圧よりも大きければ特定の値に限定されないが、本実施形態では20Vである。第三電圧がファンモータ812、822に印加された場合、ファンモータ812、822は、第二回転速度よりも大きい第三回転速度で回転する。 Large fan ST4 is a state in which the target voltage is a third voltage larger than the second voltage. The third voltage is not limited to a specific value as long as it is higher than the second voltage, but is 20V in this embodiment. When the third voltage is applied to the fan motors 812, 822, the fan motors 812, 822 rotate at a third rotational speed that is greater than the second rotational speed.
 以下では、空気清浄機1の状態をオフST1からファン小ST2に切り替える指示、空気清浄機1の状態をファン小ST2からファン中ST3に切り替える指示、空気清浄機1の状態をファン中ST3からファン大ST4に切り替える指示を総称して「第一切替指示」という。第一切替指示は、目標電圧が上昇するように空気清浄機1の状態を変更する指示であり、且つファン電圧FVを、空気清浄機1の状態に応じた目標電圧まで上昇させる指示である。 Below, an instruction to switch the state of the air purifier 1 from OFF ST1 to fan small ST2, an instruction to switch the state of the air purifier 1 from fan small ST2 to fan medium ST3, and an instruction to change the state of the air purifier 1 from fan medium ST3 to fan The instructions for switching to large ST4 are collectively referred to as "first switching instructions." The first switching instruction is an instruction to change the state of the air cleaner 1 so that the target voltage increases, and is an instruction to increase the fan voltage FV to the target voltage according to the state of the air cleaner 1.
 空気清浄機1の状態をファン大ST4からオフST1に切り替える指示を「第二切替指示」という。第二切替指示は、目標電圧が低下するように空気清浄機1の状態を変更する指示であり、且つファン電圧FVを、空気清浄機1の状態に応じた目標電圧まで下降させる指示である。 The instruction to switch the state of the air purifier 1 from large fan ST4 to off ST1 is referred to as a "second switching instruction." The second switching instruction is an instruction to change the state of the air cleaner 1 so that the target voltage is lowered, and is an instruction to lower the fan voltage FV to the target voltage according to the state of the air cleaner 1.
 第一切替指示と第二切替指示を総称する場合、「切替指示」という。ユーザは、第一切替スイッチ8または第二切替スイッチ16を操作することで、切替指示を空気清浄機1に入力する。 When the first switching instruction and the second switching instruction are collectively referred to as "switching instruction". The user inputs a switching instruction to the air cleaner 1 by operating the first changeover switch 8 or the second changeover switch 16.
 外部電源から電源ケーブルを介して空気清浄機1に電源が供給されると、空気清浄機1の状態はリセットST0となる。その後、空気清浄機1の状態はリセットST0からオフST1に切り替わる(矢印A1参照)。その後、第一切替指示が入力された場合、空気清浄機1の状態がオフST1からファン小ST2に切り替わる(矢印A2参照)。その後、さらに第一切替指示が入力された場合、空気清浄機1の状態がファン小ST2からファン中ST3に切り替わる(矢印A3参照)。その後、さらに第一切替指示が入力された場合、空気清浄機1の状態がファン中ST3からファン大ST4に切り替わる(矢印A4参照)。その後、第二切替指示が入力された場合、空気清浄機1の状態がファン大ST4からオフST1に切り替わる(矢印A5参照)。 When power is supplied to the air cleaner 1 from the external power source via the power cable, the state of the air cleaner 1 becomes reset ST0. Thereafter, the state of the air cleaner 1 switches from reset ST0 to off ST1 (see arrow A1). Thereafter, when the first switching instruction is input, the state of the air cleaner 1 is switched from OFF ST1 to fan small ST2 (see arrow A2). After that, when the first switching instruction is further input, the state of the air cleaner 1 is switched from fan small ST2 to fan medium ST3 (see arrow A3). After that, when the first switching instruction is further input, the state of the air cleaner 1 is switched from fan medium ST3 to fan large ST4 (see arrow A4). After that, when the second switching instruction is input, the state of the air cleaner 1 is switched from fan large ST4 to off ST1 (see arrow A5).
 空気清浄機1の状態がファン小ST2、ファン中ST3、またはファン大ST4の状態でエラー条件が成立すると、空気清浄機1の状態がファン小ST2、ファン中ST3、またはファン大ST4からエラーST5に切り替わる(矢印A6、矢印A7、矢印A8参照)。その後、ユーザは空気清浄機1の電源を切り、空気清浄機1を再起動させればよい。これにより、空気清浄機1がエラーST5から復帰する。 If the error condition is satisfied when the air purifier 1 is in the state of small fan ST2, medium fan ST3, or large fan ST4, the state of the air purifier 1 changes from fan small ST2, fan medium ST3, or fan large ST4 to error ST5. (see arrow A6, arrow A7, arrow A8). After that, the user may turn off the power to the air cleaner 1 and restart the air cleaner 1. As a result, the air cleaner 1 recovers from the error ST5.
 本実施形態では、エラー条件は、ファンモータ812、822の駆動時にファン電圧FVが所定のエラー電圧以下になること、空気清浄機1の状態がリセットST0以外の場合において接続端子201を介して印加される電圧が所定のエラー電圧以下になること等である。 In this embodiment, the error condition is that the fan voltage FV becomes below a predetermined error voltage when the fan motors 812 and 822 are driven, and that the voltage is applied via the connection terminal 201 when the state of the air cleaner 1 is other than reset ST0. For example, the voltage applied to the error voltage becomes less than or equal to a predetermined error voltage.
 例えば第一切替指示が空気清浄機1に入力された場合、目標電圧が上昇する。この場合、仮にファン電圧FVが変更後の目標電圧まで急上昇すると、突入電流が発生する可能性がある。CPU91は、以下説明するメイン処理を実行することで、突入電流の発生を抑制するという利点に貢献する。 For example, when the first switching instruction is input to the air cleaner 1, the target voltage increases. In this case, if the fan voltage FV suddenly rises to the changed target voltage, there is a possibility that an inrush current will occur. The CPU 91 contributes to the advantage of suppressing the generation of rush current by executing the main processing described below.
 図8、図9を参照し、メイン処理を説明する。空気清浄機1の状態がリセットST0になると、CPU91はROM92から制御プログラムを読み出し、メイン処理を実行する。メイン処理では、CPU91は、デューティ比を示すPWM制御信号をファン回路60に出力することで、ファン電圧FVを制御する。これにより、CPU91は、ファンモータ812、822の回転速度を制御する。 The main processing will be explained with reference to FIGS. 8 and 9. When the state of the air cleaner 1 becomes reset ST0, the CPU 91 reads the control program from the ROM 92 and executes the main process. In the main process, the CPU 91 controls the fan voltage FV by outputting a PWM control signal indicating the duty ratio to the fan circuit 60. Thereby, the CPU 91 controls the rotational speeds of the fan motors 812 and 822.
 以下では、メイン処理において、CPU91がファン回路60に対してPWM制御を行い、デューティ比を示すPWM制御信号をファン回路60に出力する処理を「出力処理」という。本実施形態では、後述のS13(図8参照)、S62、S82(図10参照)、およびS102(図9参照)の処理が出力処理である。 Hereinafter, in the main process, the process in which the CPU 91 performs PWM control on the fan circuit 60 and outputs a PWM control signal indicating the duty ratio to the fan circuit 60 will be referred to as "output process." In this embodiment, the processes of S13 (see FIG. 8), S62, S82 (see FIG. 10), and S102 (see FIG. 9), which will be described later, are output processing.
 「n」を自然数とする。n回目の出力処理で出力されるPWM制御信号が示すデューティ比を「デューティ指令値D(n)」という。(n-1)回目の出力処理で出力されたPWM制御信号が示すデューティ比を「デューティ指令値D(n-1)」という。つまり、n回目の出力処理を今回の出力処理とした場合、(n-1)回目の出力処理は、前回の出力処理となる。 Let "n" be a natural number. The duty ratio indicated by the PWM control signal output in the n-th output process is referred to as "duty command value D(n)." The duty ratio indicated by the PWM control signal output in the (n-1)th output process is referred to as "duty command value D(n-1)." In other words, if the nth output process is the current output process, the (n-1)th output process is the previous output process.
 図8に示すように、メイン処理が開始されると、CPU91は、デューティ停止値DSTをデューティ指令値D(n)に設定する(S11)。デューティ停止値DSTは、基準となるデューティ比であり、停止電圧に対応するデューティ比である。 As shown in FIG. 8, when the main process is started, the CPU 91 sets the duty stop value DST to the duty command value D(n) (S11). The duty stop value DST is a reference duty ratio, and is a duty ratio corresponding to a stop voltage.
 S11の処理において、CPU91がデューティ停止値DSTをデューティ指令値D(n)に設定する。これにより、図12に示すように、時間経過に対してデューティ指令値D(n)をプロットしたグラフL10は、後述のS25の処理が行われる時点T0までデューティ停止値DSTを示す直線となる。 In the process of S11, the CPU 91 sets the duty stop value DST to the duty command value D(n). As a result, as shown in FIG. 12, a graph L10 in which the duty command value D(n) is plotted against the passage of time becomes a straight line indicating the duty stop value DST until a time point T0 when the process of S25, which will be described later, is performed.
 図8に示すように、CPU91は計時するためのタイマカウンタTにタイマ初期値を設定する(S12)。タイマカウンタTはRAM93に記憶される。タイマ初期値は特定の値に限定されないが、本実施形態では「0」である。 As shown in FIG. 8, the CPU 91 sets a timer initial value to a timer counter T for measuring time (S12). The timer counter T is stored in the RAM 93. Although the timer initial value is not limited to a specific value, it is "0" in this embodiment.
 CPU91はS11の処理で設定されたデューティ指令値D(n)を示すPWM制御信号をファン回路60に出力する(S13)。ファン回路60において、アナログ変換部62は、CPU91から取得したPWM制御信号をアナログ変換する。DC-DCコンバータ63は、ファン回路60に入力される電圧を、アナログ変換結果のデューティ指令値D(n)に応じた電圧に変換する。DC-DCコンバータ63は、変換後の電圧をファン電圧FVとしてファンモータ812、822に印加する。なお、S13の処理の時点では、ON/OFFスイッチ61が非通電状態なので、ファン回路60はファンモータ812、822に電圧を印加しない。CPU91はタイマカウンタTによる計時を開始する(S14)。以上の処理によって空気清浄機1の状態がリセットST0からオフST1に切り替わる(図7に示す矢印A1参照)。 The CPU 91 outputs a PWM control signal indicating the duty command value D(n) set in the process of S11 to the fan circuit 60 (S13). In the fan circuit 60, the analog converter 62 converts the PWM control signal obtained from the CPU 91 into analog. The DC-DC converter 63 converts the voltage input to the fan circuit 60 into a voltage according to the duty command value D(n) as a result of analog conversion. The DC-DC converter 63 applies the converted voltage to the fan motors 812 and 822 as the fan voltage FV. Note that at the time of the process in S13, the ON/OFF switch 61 is in a non-energized state, so the fan circuit 60 does not apply voltage to the fan motors 812 and 822. The CPU 91 starts measuring time using the timer counter T (S14). Through the above processing, the state of the air cleaner 1 is switched from reset ST0 to off ST1 (see arrow A1 shown in FIG. 7).
 CPU91は第一切替スイッチ8からの検出信号と第二切替スイッチ16からの検出信号に基づいて、第一切替指示を受け付けたかを判断する(S15)。S15の処理では、CPU91は例えば第一切替スイッチ8から検出信号を取得した場合、第一切替指示を受け付けたと判断する。CPU91は、第二切替スイッチ16に対するユーザによる操作を検出した場合、第一切替指示を受け付けたと判断する。 Based on the detection signal from the first changeover switch 8 and the detection signal from the second changeover switch 16, the CPU 91 determines whether the first changeover instruction has been received (S15). In the process of S15, for example, when the CPU 91 acquires a detection signal from the first changeover switch 8, it determines that the first changeover instruction has been received. When the CPU 91 detects the user's operation on the second changeover switch 16, it determines that the first changeover instruction has been received.
 CPU91は第一切替指示を受け付けていない場合(S15:NO)、空気清浄機1の状態はオフST1を維持するので、CPU91は処理をS15の判断に戻す。CPU91は第一切替指示を受け付けた場合(S15:YES)、空気清浄機1の状態がオフST1からファン小ST2に切り替わる(図7に示す矢印A2参照)。 If the CPU 91 has not received the first switching instruction (S15: NO), the state of the air cleaner 1 remains OFF ST1, so the CPU 91 returns the process to the determination in S15. When the CPU 91 receives the first switching instruction (S15: YES), the state of the air cleaner 1 is switched from OFF ST1 to fan small ST2 (see arrow A2 shown in FIG. 7).
 CPU91はタイマカウンタTが第一待機時間以上を示すかを判断する(S16)。第一待機時間の長さは、特定の長さに限定されないが、本実施形態では150msである。タイマカウンタTが150ms未満を示す場合(S16:NO)、CPU91は処理をS16の判断に戻す。つまり、CPU91は、空気清浄機1の状態がリセットST0からオフST1に切り替わった時点からS21(図9参照)以降の処理を実行するまでに第一待機時間の間待機する。本実施形態では、空気清浄機1はPWM制御信号を平滑してアナログ値に変換してDC-DCコンバータ63を動作させている。PWM制御信号を平滑化するために必要な時間が第一待機時間に相当する。タイマカウンタTが150ms以上を示す場合(S16:YES)、CPU91は処理をS21(図9参照)の処理に進める。 The CPU 91 determines whether the timer counter T indicates the first standby time or more (S16). Although the length of the first waiting time is not limited to a specific length, in this embodiment, it is 150 ms. If the timer counter T indicates less than 150 ms (S16: NO), the CPU 91 returns the process to the determination in S16. That is, the CPU 91 waits for a first standby time from the time when the state of the air cleaner 1 is switched from reset ST0 to off ST1 until it executes the process from S21 (see FIG. 9) onward. In this embodiment, the air cleaner 1 smoothes the PWM control signal, converts it into an analog value, and operates the DC-DC converter 63. The time required to smooth the PWM control signal corresponds to the first standby time. If the timer counter T indicates 150 ms or more (S16: YES), the CPU 91 advances the process to S21 (see FIG. 9).
 図9に示すように、CPU91は「H」を示す起動信号をファン回路60に出力する(S21)。これにより、ON/OFFスイッチ61が非通電状態から通電状態となる。このため、DC-DCコンバータ63は、ファン回路60に入力される電圧を、デューティ指令値D(n)に応じた電圧に変換する。DC-DCコンバータ63は、変換後の電圧をファン電圧FVとしてファンモータ812、822に印加する。図13に示すように、時間経過に対してファン電圧FVをプロットしたグラフL20は、後述のS25の処理が行われる時点T0までデューティ停止値DST(図12参照)に対応する電圧V0を示す直線となる。このため、後述のS25の処理が行われる時点T0までファンモータ812、822は停止した状態を維持する。 As shown in FIG. 9, the CPU 91 outputs an activation signal indicating "H" to the fan circuit 60 (S21). As a result, the ON/OFF switch 61 changes from a non-energized state to an energized state. Therefore, the DC-DC converter 63 converts the voltage input to the fan circuit 60 into a voltage according to the duty command value D(n). The DC-DC converter 63 applies the converted voltage to the fan motors 812 and 822 as the fan voltage FV. As shown in FIG. 13, a graph L20 plotting the fan voltage FV over time is a straight line showing the voltage V0 corresponding to the duty stop value DST (see FIG. 12) until the time T0 when the process of S25, which will be described later, is performed. becomes. Therefore, the fan motors 812 and 822 remain in a stopped state until time T0 when the process of S25, which will be described later, is performed.
 図9に示すように、CPU91はタイマカウンタTにタイマ初期値「0」を設定する(S22)。CPU91はタイマカウンタTによる計時を開始する(S23)。CPU91はタイマカウンタTが第二待機時間以上を示すかを判断する(S24)。第二待機時間は、特定の時間に限定されないが、本実施形態では50msである。 As shown in FIG. 9, the CPU 91 sets the timer counter T to the timer initial value "0" (S22). The CPU 91 starts measuring time using the timer counter T (S23). The CPU 91 determines whether the timer counter T indicates a second waiting time or more (S24). Although the second waiting time is not limited to a specific time, it is 50 ms in this embodiment.
 タイマカウンタTが50ms未満を示す場合(S24:NO)、CPU91は処理をS24の判断に戻す。つまり、CPU91は、S21の処理でON/OFFスイッチ61が非通電状態から通電状態に切り替わった時点からS25以降の処理を実行するまでに第二待機時間の間待機する。これにより、ファン回路60が通電状態となった直後の不安定な状態でファン回路60に対してCPU91によるPWM制御が行われることが抑制される。 If the timer counter T indicates less than 50 ms (S24: NO), the CPU 91 returns the process to the determination in S24. In other words, the CPU 91 waits for the second standby time from the time when the ON/OFF switch 61 is switched from the de-energized state to the energized state in the process of S21 until it executes the processes from S25 onwards. This prevents the CPU 91 from performing PWM control on the fan circuit 60 in an unstable state immediately after the fan circuit 60 is energized.
 タイマカウンタTが50ms以上を示す場合(S24:YES)、CPU91は「H」を示すイネーブル信号をファン回路60に出力する(S25)。これにより、DC-DCコンバータ63がインアクティブな状態からアクティブな状態となる。CPU91はファン制御処理を行う(S26)。 If the timer counter T indicates 50 ms or more (S24: YES), the CPU 91 outputs an enable signal indicating "H" to the fan circuit 60 (S25). As a result, the DC-DC converter 63 changes from an inactive state to an active state. The CPU 91 performs fan control processing (S26).
 図10、図11を参照し、ファン制御処理を説明する。図10に示すように、ファン制御処理が開始されると、CPU91はデューティ目標設定値DTGTにデューティ目標値を設定する(S41)。デューティ目標値は、空気清浄機1の状態に応じた回転速度でファンモータ812、822を駆動するためのファン電圧FVに対応するデューティ比である。デューティ目標値は、空気清浄機1の状態に対応付けられてROM92にあらかじめ記憶される。 The fan control process will be explained with reference to FIGS. 10 and 11. As shown in FIG. 10, when the fan control process is started, the CPU 91 sets a duty target value to the duty target set value DTGT (S41). The duty target value is a duty ratio corresponding to the fan voltage FV for driving the fan motors 812 and 822 at a rotation speed according to the state of the air cleaner 1. The duty target value is stored in advance in the ROM 92 in association with the state of the air cleaner 1.
 具体的には、ファン小ST2に対応するデューティ目標値は、第一電圧(例えば14V)に対応するデューティ比である。ファン中ST3に対応するデューティ目標値は、第二電圧(例えば17V)に対応するデューティ比である。ファン大ST4に対応するデューティ目標値は、第三電圧(例えば20V)に対応するデューティ比である。 Specifically, the duty target value corresponding to the small fan ST2 is the duty ratio corresponding to the first voltage (for example, 14V). The duty target value corresponding to ST3 in the fan is the duty ratio corresponding to the second voltage (for example, 17V). The duty target value corresponding to the large fan ST4 is the duty ratio corresponding to the third voltage (for example, 20V).
 CPU91は、デューティ指令値D(n)がデューティ目標設定値DTGT以下であるかを判断する(S42)。デューティ指令値D(n)がデューティ目標設定値DTGT以下の場合(S42:YES)、デューティ指令値D(n)を低下させる必要がなく、つまりファン電圧FVを上昇させる必要がない。この場合、突入電流が発生しないので、CPU91はデューティ指令値D(n)にそのままデューティ目標設定値DTGTを設定する(S81)。 The CPU 91 determines whether the duty command value D(n) is less than or equal to the duty target setting value DTGT (S42). When the duty command value D(n) is less than or equal to the duty target set value DTGT (S42: YES), there is no need to decrease the duty command value D(n), that is, there is no need to increase the fan voltage FV. In this case, since no rush current is generated, the CPU 91 directly sets the duty target set value DTGT as the duty command value D(n) (S81).
 CPU91はS81の処理で設定されたデューティ指令値D(n)を示すPWM制御信号をファン回路60に出力する(S82)。ファン回路60において、DC-DCコンバータ63は、ファン回路60に入力される電圧を、PWM制御信号が示すデューティ指令値D(n)としてデューティ目標設定値DTGTに応じた電圧に変換する。DC-DCコンバータ63は、変換後の電圧をファン電圧FVとしてファンモータ812、822に出力する。これにより、ファン電圧FVが急降下する。CPU91は処理をメイン処理に戻す。 The CPU 91 outputs a PWM control signal indicating the duty command value D(n) set in the process of S81 to the fan circuit 60 (S82). In the fan circuit 60, the DC-DC converter 63 converts the voltage input to the fan circuit 60 into a voltage corresponding to the duty target set value DTGT as the duty command value D(n) indicated by the PWM control signal. The DC-DC converter 63 outputs the converted voltage to the fan motors 812 and 822 as a fan voltage FV. As a result, the fan voltage FV suddenly drops. The CPU 91 returns the process to the main process.
 デューティ指令値D(n)がデューティ目標設定値DTGTよりも大きい場合(S42:NO)、デューティ指令値D(n)をデューティ目標設定値DTGTまで低下させる必要がある。つまりファン電圧FVを目標電圧まで上昇させる必要がある。この場合、突入電流が発生する可能性があるので、CPU91は、突入電流の発生を抑制するため、以下の処理を行うことで、ファン電圧FVを目標電圧まで徐々に近づける。 If the duty command value D(n) is larger than the duty target setting value DTGT (S42: NO), it is necessary to reduce the duty command value D(n) to the duty target setting value DTGT. In other words, it is necessary to raise the fan voltage FV to the target voltage. In this case, since there is a possibility that an inrush current will occur, the CPU 91 gradually brings the fan voltage FV closer to the target voltage by performing the following processing in order to suppress the occurrence of an inrush current.
 CPU91は制御カウンタDICに所定の制御初期値を設定する(S43)。制御カウンタDICはRAM93に記憶され、後述のS72(図11参照)の処理においてCPU91によって参照される。制御初期値は特定の値に限定されないが、本実施形態では「0」である。 The CPU 91 sets a predetermined control initial value in the control counter DIC (S43). The control counter DIC is stored in the RAM 93, and is referenced by the CPU 91 in the process of S72 (see FIG. 11), which will be described later. Although the control initial value is not limited to a specific value, it is "0" in this embodiment.
 CPU91はデューティ指令値D(n-1)にデューティ指令値D(n)を設定する(S51)。CPU91は、S51の処理で設定されたデューティ指令値D(n-1)を使用し、以下の式(1)に基づいて、デューティ変化量DDを演算する(S52)。DD={Kp×(D(n-1)-DTGT)}/(2^Kj) ・・・(1) The CPU 91 sets the duty command value D(n) to the duty command value D(n-1) (S51). The CPU 91 uses the duty command value D(n-1) set in the process of S51 to calculate the duty change amount DD based on the following equation (1) (S52). DD={Kp×(D(n-1)-DTGT)}/(2^Kj)...(1)
 つまり、デューティ変化量DDは、デューティ指令値D(n-1)とデューティ目標設定値DTGTとの差分に基づいて比例演算された結果を示す。Kpは積算パラメータ(定数)である。Kjは指数パラメータ(定数)である。 In other words, the duty change amount DD represents the result of proportional calculation based on the difference between the duty command value D(n-1) and the duty target setting value DTGT. Kp is an integration parameter (constant). Kj is an exponential parameter (constant).
 CPU91はS52の処理で演算された結果のデューティ変化量DDが所定値以上であるかを判断する(S53)。所定値は、デューティ指令値D(n)を変化させることが可能な最小単位であり、本実施形態では「1」である。CPU91が第一切替指示を取得した直後、デューティ変化量DDは、比較的大きい。デューティ変化量DDは、出力処理が繰り返し行われるたびに減少する。 The CPU 91 determines whether the duty change amount DD calculated in the process of S52 is greater than or equal to a predetermined value (S53). The predetermined value is the minimum unit in which the duty command value D(n) can be changed, and is "1" in this embodiment. Immediately after the CPU 91 obtains the first switching instruction, the duty change amount DD is relatively large. The duty change amount DD decreases each time the output process is repeated.
 デューティ変化量DDが「1」以上の場合(S53:YES)、CPU91は、デューティ指令値D(n-1)からデューティ変化量DDを減算した演算結果「D(n-1)-DD」をデューティ指令値D(n)に設定する(S54)。S54の処理の時点のデューティ指令値D(n-1)は、S42の判断時点のデューティ指令値D(n)である。このため、S54の処理が行われる時点では、デューティ指令値D(n-1)がデューティ目標設定値DTGTよりも大きい。よって、デューティ指令値D(n-1)からデューティ変化量DDが減算されると、演算結果はデューティ目標設定値DTGTにデューティ変化量DD分近づく。 If the duty change amount DD is "1" or more (S53: YES), the CPU 91 subtracts the duty change amount DD from the duty command value D(n-1) to calculate "D(n-1)-DD". The duty command value D(n) is set (S54). The duty command value D(n-1) at the time of processing in S54 is the duty command value D(n) at the time of determination in S42. Therefore, at the time when the process of S54 is performed, the duty command value D(n-1) is larger than the duty target setting value DTGT. Therefore, when the duty change amount DD is subtracted from the duty command value D(n-1), the calculation result approaches the duty target set value DTGT by the duty change amount DD.
 S54の処理において、CPU91が演算結果「D(n-1)-DD」をデューティ指令値D(n)に設定することで、デューティ指令値D(n)に基づくファンモータ812、822での合計の消費電力[W]が、接続端子201が受ける電力[W]よりも小さくなる。 In the process of S54, the CPU 91 sets the calculation result "D(n-1)-DD" to the duty command value D(n), thereby calculating the sum of the fan motors 812 and 822 based on the duty command value D(n). The power consumption [W] of is smaller than the power [W] received by the connection terminal 201.
 詳しくは後述するが、CPU91はS53の処理でデューティ変化量DDが「1」未満になるまで、S54の処理を50ms毎に周期的に行う。図12に示すように、時間経過に対してデューティ指令値D(n)をプロットしたグラフL11は、S25の処理が行われた時点T0から、S53の処理でデューティ変化量DDが「1」未満となる時点T1まで、デューティ停止値DSTからデューティ目標設定値DTGTに漸近する曲線になる。 As will be described in detail later, the CPU 91 periodically performs the process of S54 every 50 ms until the duty change amount DD becomes less than "1" in the process of S53. As shown in FIG. 12, a graph L11 plotting the duty command value D(n) against the passage of time shows that the duty change amount DD is less than "1" in the process of S53 from time T0 when the process of S25 is performed. The curve becomes asymptotic from the duty stop value DST to the duty target set value DTGT until the time point T1 when .
 なお、ファンモータ812、822での合計の消費電力[W]が、接続端子201が受ける電力[W]よりも小さくなる点と、デューティ変化量DDが時間経過に伴って漸近曲線に沿って変化する点の理由は下記の通りである。すなわち、式(1)のKp、Kjは定数であるため、Kp/2^Kjは定数となる。さらには、Kp/2^Kj<1となるように設定される。つまり、デューティ変化量DDはデューティ指令値D(n-1)とデューティ目標設定値DTGTとの差分に比例する。制御開始直後のKp×(D(n-1)-DTGT)/2^Kjの値が最も大きく、時間経過するとKp×(D(n-1)-DTGT)/2^Kjの値が徐々に小さくなりながらゼロに接近していく。よって、時間経過にともなう演算結果は直線的な変化とはならず、制御開始時の値から目標値に漸近する漸近線に沿った変化となる。つまり、ファンモータ812、822に対する供給電圧も漸近線に沿った変化になるため、過大な突入電流は抑制されるのである。このため、CPU91は、ファンモータ812、822での合計の消費電力を、接続端子201が受ける電力よりも小さくできる。 Note that the total power consumption [W] of the fan motors 812 and 822 is smaller than the power [W] received by the connection terminal 201, and that the duty change amount DD changes along an asymptotic curve over time. The reason for this point is as follows. That is, since Kp and Kj in equation (1) are constants, Kp/2^Kj is a constant. Furthermore, it is set so that Kp/2^Kj<1. In other words, the duty change amount DD is proportional to the difference between the duty command value D(n-1) and the duty target setting value DTGT. The value of Kp×(D(n-1)-DTGT)/2^Kj is the largest immediately after the start of control, and as time passes, the value of Kp×(D(n-1)-DTGT)/2^Kj gradually increases. As it gets smaller, it approaches zero. Therefore, the calculation result over time does not change linearly, but changes along an asymptote that approaches the target value from the value at the start of control. In other words, since the voltage supplied to the fan motors 812 and 822 also changes along the asymptote, excessive inrush current is suppressed. Therefore, the CPU 91 can make the total power consumption by the fan motors 812 and 822 smaller than the power received by the connection terminal 201.
 CPU91はS54の処理で設定されたデューティ指令値D(n)がデューティ目標設定値DTGT以上であるかを判断する(S61)。詳しくは後述するが、S54の処理で設定されるデューティ指令値D(n)は、デューティ変化量DDが所定値「1」よりも小さくなると、デューティ指令値D(n-1)から変化しなくなる。このため、S54の処理で設定されるデューティ指令値D(n)はデューティ目標設定値DTGTに達しない。 The CPU 91 determines whether the duty command value D(n) set in the process of S54 is greater than or equal to the duty target set value DTGT (S61). Although details will be described later, the duty command value D(n) set in the process of S54 will not change from the duty command value D(n-1) when the duty change amount DD becomes smaller than the predetermined value "1". . Therefore, the duty command value D(n) set in the process of S54 does not reach the duty target set value DTGT.
 デューティ指令値D(n)がデューティ目標設定値DTGT以上の場合(S61:YES)、CPU91はS54の処理で設定されたデューティ指令値D(n)を示すPWM制御信号をファン回路60に出力する(S62)。ファン回路60において、DC-DCコンバータ63は、ファン回路60に入力される電圧を、PWM制御信号が示すデューティ指令値D(n)として、演算結果「D(n-1)-DD」に応じた電圧に変換する。DC-DCコンバータ63は、変換後の電圧をファン電圧FVとしてファンモータ812、822に印加する。図13に示すように、時間経過に対してファン電圧FVをプロットしたグラフL21は、S25の処理が行われた時点T0から、S53の処理でデューティ変化量DDが「1」未満となる時点T1まで、デューティ停止値DSTに対応する停止電圧(電圧V0)からデューティ目標設定値DTGTに対応する目標電圧(電圧V2)に漸近する曲線になる。 If the duty command value D(n) is greater than or equal to the duty target set value DTGT (S61: YES), the CPU 91 outputs a PWM control signal indicating the duty command value D(n) set in the process of S54 to the fan circuit 60. (S62). In the fan circuit 60, the DC-DC converter 63 converts the voltage input to the fan circuit 60 into a duty command value D(n) indicated by the PWM control signal according to the calculation result "D(n-1)-DD". voltage. The DC-DC converter 63 applies the converted voltage to the fan motors 812 and 822 as the fan voltage FV. As shown in FIG. 13, a graph L21 plotting the fan voltage FV against the passage of time is from time T0 when the process of S25 is performed to time T1 when the duty variation amount DD becomes less than "1" in the process of S53. Until then, the curve becomes asymptotic from the stop voltage (voltage V0) corresponding to the duty stop value DST to the target voltage (voltage V2) corresponding to the duty target set value DTGT.
 S54の処理において、CPU91が演算結果「D(n-1)-DD」をデューティ指令値D(n)に設定することで、デューティ指令値D(n)がデューティ指令値D(n-1)よりも小さくなる。これにより、S61の処理において、デューティ指令値D(n)に基づくファン電圧FVは、デューティ指令値D(n-1)に基づくファン電圧FVよりも大きくなる。よって、デューティ指令値D(n)に基づくファンモータ812、822の回転速度は、デューティ指令値D(n-1)に基づくファンモータ812、822の回転速度よりも大きくなる。 In the process of S54, the CPU 91 sets the calculation result "D(n-1)-DD" to the duty command value D(n), so that the duty command value D(n) becomes the duty command value D(n-1). becomes smaller than As a result, in the process of S61, the fan voltage FV based on the duty command value D(n) becomes larger than the fan voltage FV based on the duty command value D(n-1). Therefore, the rotational speeds of fan motors 812, 822 based on duty command value D(n) are higher than the rotational speeds of fan motors 812, 822 based on duty command value D(n-1).
 図10に示すように、CPU91は切替指示を受け付けたかを判断する(S63)。CPU91が切替指示を受け付けていない場合(S63:NO)、空気清浄機1の状態は変更されていない。この場合、CPU91は第三待機時間の間待機する(S64)。第三待機時間の長さは特定の長さに限定されないが、本実施形態では50msである。50ms経過すると、CPU91は処理をS51の処理に戻す。これにより、CPU91はS51、S52、S53:YES、S54、S61:YES、S62、S63:NOの処理を50ms毎に周期的に行う。 As shown in FIG. 10, the CPU 91 determines whether a switching instruction has been received (S63). If the CPU 91 has not received the switching instruction (S63: NO), the state of the air cleaner 1 has not been changed. In this case, the CPU 91 waits for the third standby time (S64). Although the length of the third waiting time is not limited to a specific length, it is 50 ms in this embodiment. After 50 ms have passed, the CPU 91 returns the process to S51. As a result, the CPU 91 periodically performs the processing of S51, S52, S53: YES, S54, S61: YES, S62, S63: NO every 50 ms.
 CPU91が切替指示を受け付けた場合(S63:YES)、空気清浄機1の状態が変更される。この場合、CPU91は変更後の空気清浄機1の状態がオフST1またはエラーST5かを判断する(S65)。S65の処理では、CPU91は、第二切替指示を受け付けた場合、変更後の空気清浄機1の状態がオフST1であると判断する(S65:YES)(図7に示す矢印A5参照)。CPU91は、エラー条件が成立した場合、変更後の空気清浄機1の状態がエラーST5であると判断する(S65:YES)(図7に示す矢印A6、矢印A7、矢印A8参照)。 If the CPU 91 receives the switching instruction (S63: YES), the state of the air cleaner 1 is changed. In this case, the CPU 91 determines whether the changed state of the air cleaner 1 is OFF ST1 or error ST5 (S65). In the process of S65, when the CPU 91 receives the second switching instruction, the CPU 91 determines that the state of the air cleaner 1 after the change is OFF ST1 (S65: YES) (see arrow A5 shown in FIG. 7). If the error condition is satisfied, the CPU 91 determines that the state of the air cleaner 1 after the change is an error ST5 (S65: YES) (see arrows A6, A7, and A8 shown in FIG. 7).
 空気清浄機1の状態がオフST1またはエラーST5の場合(S65:YES)、CPU91は処理をメイン処理(図9参照)に戻す。空気清浄機1の状態がファン小ST2、ファン中ST3、またはファン大ST4の場合(S65:NO)、CPU91はS41の処理に戻す。この場合、CPU91は変更後の空気清浄機1の状態に応じたデューティ目標値を、デューティ目標設定値DTGTに設定する(S41)。CPU91はS42以降の処理を繰り返す。 If the state of the air cleaner 1 is off ST1 or error ST5 (S65: YES), the CPU 91 returns the process to the main process (see FIG. 9). When the state of the air cleaner 1 is small fan ST2, medium fan ST3, or large fan ST4 (S65: NO), the CPU 91 returns to the process of S41. In this case, the CPU 91 sets the duty target value according to the changed state of the air cleaner 1 as the duty target set value DTGT (S41). The CPU 91 repeats the processing from S42 onwards.
 S53の判断において、S54の処理が行われるたびに、S52の処理で比例演算された結果のデューティ変化量DDが徐々に小さくなる。所定値は、デューティ指令値D(n)を変化させることが可能な最小単位である。従って、デューティ変化量DDが所定値未満の場合、S54の処理でデューティ指令値D(n-1)からデューティ変化量DDが減算されても、演算結果はデューティ指令値D(n-1)と同じ大きさになる。このため、デューティ変化量DDが「1」未満になると(S53:NO)、CPU91は、デューティ指令値D(n)について、以下のようにS54の処理での演算とは異なる演算を行う。 In the determination in S53, each time the process in S54 is performed, the duty change amount DD, which is the result of the proportional calculation in the process in S52, gradually becomes smaller. The predetermined value is the minimum unit in which the duty command value D(n) can be changed. Therefore, if the duty change amount DD is less than the predetermined value, even if the duty change amount DD is subtracted from the duty command value D(n-1) in the process of S54, the calculation result will be the duty command value D(n-1). become the same size. Therefore, when the duty change amount DD becomes less than "1" (S53: NO), the CPU 91 performs a calculation different from the calculation in the process of S54 as follows regarding the duty command value D(n).
 図11に示すように、CPU91は制御カウンタDICに「1」を加算する(S71)。CPU91はS71の処理で加算された制御カウンタDICが所定のカウンタ値を示すかを判断する(S72)。カウンタ値は、特定の値に限定されないが、本実施形態では「3」である。 As shown in FIG. 11, the CPU 91 adds "1" to the control counter DIC (S71). The CPU 91 determines whether the control counter DIC added in the process of S71 indicates a predetermined counter value (S72). Although the counter value is not limited to a specific value, it is "3" in this embodiment.
 制御カウンタDICが「1」または「2」を示す場合(S72:NO)、CPU91はデューティ指令値D(n)にデューティ指令値D(n-1)を設定する(S73)。この場合、デューティ指令値D(n)はデューティ目標設定値DTGTに近づかない。CPU91は処理をS61の判断に進める。 When the control counter DIC indicates "1" or "2" (S72: NO), the CPU 91 sets the duty command value D(n-1) to the duty command value D(n) (S73). In this case, the duty command value D(n) does not approach the duty target set value DTGT. The CPU 91 advances the process to determination in S61.
 制御カウンタDICが「3」を示す場合(S72:YES)、CPU91は、デューティ指令値D(n-1)から所定値「1」を減算した演算結果「D(n-1)-1」をデューティ指令値D(n)に設定する(S74)。S74の処理の時点のデューティ指令値D(n-1)は、S42の判断時点のデューティ指令値D(n)である。このため、S74の処理が行われる時点では、デューティ指令値D(n-1)がデューティ目標設定値DTGTよりも大きい。よって、デューティ指令値D(n-1)から所定値「1」が減算されると、演算結果はデューティ目標設定値DTGTに所定値「1」分近づく。CPU91は制御カウンタDICに制御初期値「0」を設定する(S75)。CPU91は処理をS61の判断に進める。 When the control counter DIC indicates "3" (S72: YES), the CPU 91 subtracts the predetermined value "1" from the duty command value D(n-1) to calculate "D(n-1)-1". The duty command value D(n) is set (S74). The duty command value D(n-1) at the time of processing in S74 is the duty command value D(n) at the time of determination in S42. Therefore, at the time when the process of S74 is performed, the duty command value D(n-1) is larger than the duty target setting value DTGT. Therefore, when the predetermined value "1" is subtracted from the duty command value D(n-1), the calculation result approaches the duty target set value DTGT by the predetermined value "1". The CPU 91 sets a control initial value "0" to the control counter DIC (S75). The CPU 91 advances the process to determination in S61.
 S73またはS74の処理において、CPU91はデューティ指令値D(n-1)または演算結果「D(n-1)-1」をデューティ指令値D(n)に設定する。これにより、図12に示すように、時間経過に対してデューティ指令値D(n)をプロットしたグラフL12は、S53の処理でデューティ変化量DDが「1」未満となった時点T1から、S61の処理でデューティ指令値D(n)がデューティ目標設定値DTGT未満になる時点T2まで、デューティ指令値D1からデューティ目標設定値DTGTに近づく直線状になる。 In the process of S73 or S74, the CPU 91 sets the duty command value D(n-1) or the calculation result "D(n-1)-1" to the duty command value D(n). As a result, as shown in FIG. 12, a graph L12 in which the duty command value D(n) is plotted against the passage of time changes from time T1 when the duty change amount DD becomes less than "1" in the process of S53 to S61. In this process, the duty command value D1 approaches the duty target set value DTGT in a straight line until the duty command value D(n) becomes less than the duty target set value DTGT.
 本実施形態では、CPU91がS73の処理を2回実行するたびにS74の処理を1回実行する。S73の処理では、デューティ指令値D(n)はデューティ目標設定値DTGTに近づかないので、S73の処理の分、グラフL12の傾きが緩やかになる。 In this embodiment, the CPU 91 executes the process of S74 once every time it executes the process of S73 twice. In the process of S73, the duty command value D(n) does not approach the duty target setting value DTGT, so the slope of the graph L12 becomes gentler due to the process of S73.
 図10に示すように、CPU91はS73の処理またはS74の処理で設定されたデューティ指令値D(n)に基づいて、上述したS61の判断を行う。S73の処理またはS74の処理で設定されたデューティ指令値D(n)がデューティ目標設定値DTGT以上であれば、S73の処理またはS74の処理で設定されたデューティ指令値D(n)を示すPWM制御信号をファン回路60に出力する(S62)。ファン回路60において、DC-DCコンバータ63は、ファン回路60に入力される電圧を、PWM制御信号が示すデューティ指令値D(n)として、デューティ指令値D(n-1)または演算結果「D(n-1)-1」に応じた電圧に変換する。DC-DCコンバータ63は、変換後の電圧をファン電圧FVとしてファンモータ812、822に印加する。 As shown in FIG. 10, the CPU 91 makes the determination in S61 described above based on the duty command value D(n) set in the process of S73 or the process of S74. If the duty command value D(n) set in the process of S73 or the process of S74 is greater than or equal to the duty target setting value DTGT, the PWM indicating the duty command value D(n) set in the process of S73 or the process of S74 A control signal is output to the fan circuit 60 (S62). In the fan circuit 60, the DC-DC converter 63 converts the voltage input to the fan circuit 60 into the duty command value D(n-1) or the calculation result "D" as the duty command value D(n) indicated by the PWM control signal. (n-1)-1". The DC-DC converter 63 applies the converted voltage to the fan motors 812 and 822 as the fan voltage FV.
 図13に示すように、時間経過に対してファン電圧FVをプロットしたグラフL22は、S53の処理でデューティ変化量DDが「1」未満となった時点T1から、S61の処理でデューティ指令値D(n)がデューティ目標設定値DTGT未満になる時点T2まで、電圧V1からデューティ目標設定値DTGTに対応する目標電圧(電圧V2)に近づく直線状になる。 As shown in FIG. 13, a graph L22 in which the fan voltage FV is plotted against the passage of time shows that from time T1 when the duty change amount DD becomes less than "1" in the process of S53, to the duty command value D in the process of S61. Until time T2 when (n) becomes less than the duty target set value DTGT, the voltage V1 becomes linear approaching the target voltage (voltage V2) corresponding to the duty target set value DTGT.
 空気清浄機1の状態が変更されていなければ(S63:NO)、CPU91は上述したS64の処理を行う。CPU91はS73の処理またはS74の処理で設定されたデューティ指令値D(n)に基づいて、上述したS51、S52の処理を行う。 If the state of the air cleaner 1 has not been changed (S63: NO), the CPU 91 performs the process of S64 described above. The CPU 91 performs the processes of S51 and S52 described above based on the duty command value D(n) set in the process of S73 or S74.
 S73の処理またはS74の処理が繰り返されると、S61の処理でデューティ指令値D(n)がデューティ目標設定値DTGT未満になる(S61:NO)。この場合、CPU91はデューティ指令値D(n)にデューティ目標設定値DTGTを設定する(S81)。 When the process of S73 or the process of S74 is repeated, the duty command value D(n) becomes less than the duty target setting value DTGT in the process of S61 (S61: NO). In this case, the CPU 91 sets the duty target setting value DTGT to the duty command value D(n) (S81).
 S81の処理において、CPU91はデューティ目標設定値DTGTをデューティ指令値D(n)に設定する。これにより、図12に示すように、時間経過に対してデューティ指令値D(n)をプロットしたグラフL13は、S61の処理でデューティ指令値D(n)がデューティ目標設定値DTGT未満になった時点T2から、デューティ目標設定値DTGTを示す直線となる。 In the process of S81, the CPU 91 sets the duty target set value DTGT to the duty command value D(n). As a result, as shown in FIG. 12, the graph L13 plotting the duty command value D(n) against the passage of time shows that the duty command value D(n) became less than the duty target setting value DTGT in the process of S61. From time T2, a straight line indicates the duty target setting value DTGT.
 図10に示すように、CPU91はS81の処理で設定されたデューティ指令値D(n)を示すPWM制御信号をファン回路60に出力する(S82)。CPU91は処理をメイン処理に戻す。S82の処理によって、ファン回路60において、DC-DCコンバータ63は、ファン回路60に入力される電圧を、PWM制御信号が示すデューティ指令値D(n)としてデューティ目標設定値DTGTに応じた電圧(目標電圧)に変換する。DC-DCコンバータ63は、変換後の電圧(目標電圧)をファン電圧FVとしてファンモータ812、822に出力する。 As shown in FIG. 10, the CPU 91 outputs a PWM control signal indicating the duty command value D(n) set in the process of S81 to the fan circuit 60 (S82). The CPU 91 returns the process to the main process. Through the process of S82, in the fan circuit 60, the DC-DC converter 63 converts the voltage input to the fan circuit 60 into a voltage corresponding to the duty target set value DTGT as the duty command value D(n) indicated by the PWM control signal. target voltage). The DC-DC converter 63 outputs the converted voltage (target voltage) to the fan motors 812 and 822 as the fan voltage FV.
 図13に示すように、時間経過に対してファン電圧FVをプロットしたグラフL23は、S61の処理でデューティ指令値D(n)がデューティ目標設定値DTGT未満になった時点T2から、デューティ目標設定値DTGTに対応する目標電圧(電圧V2)を示す直線となる。つまり、S61の処理でデューティ指令値D(n)がデューティ目標設定値DTGT未満になった時点T2から、ファン電圧FVが目標電圧(電圧V2)に固定される。よって、ファンモータ812、822は、それぞれ、目標電圧に応じた回転速度で駆動する状態を維持する。 As shown in FIG. 13, a graph L23 plotting the fan voltage FV against the passage of time shows that the duty target setting starts from the time T2 when the duty command value D(n) becomes less than the duty target setting value DTGT in the process of S61. A straight line indicates the target voltage (voltage V2) corresponding to the value DTGT. That is, from the time T2 when the duty command value D(n) becomes less than the duty target set value DTGT in the process of S61, the fan voltage FV is fixed to the target voltage (voltage V2). Therefore, the fan motors 812 and 822 each maintain a state of being driven at a rotational speed according to the target voltage.
 図9の説明に戻る。CPU91は空気清浄機1の状態がオフST1またはエラーST5かを判断する(S91)。空気清浄機1の状態がファン小ST2、ファン中ST3、ファン大ST4の場合(S91:NO)、CPU91は第一切替指示を受け付けたかを判断する(S92)。CPU91が第一切替指示を受け付けていない場合(S92:NO)、空気清浄機1の状態は変更されていない。この場合、CPU91は処理をS91の判断に戻す。 Returning to the explanation of FIG. 9. The CPU 91 determines whether the state of the air cleaner 1 is off ST1 or error ST5 (S91). When the state of the air cleaner 1 is small fan ST2, medium fan ST3, or large fan ST4 (S91: NO), the CPU 91 determines whether the first change instruction has been received (S92). If the CPU 91 has not received the first change instruction (S92: NO), the state of the air cleaner 1 has not been changed. In this case, the CPU 91 returns the process to the determination in S91.
 CPU91が第一切替指示を受け付けた場合(S92:YES)、空気清浄機1の状態が変更される(図7に示す矢印A2、矢印A3、矢印A4参照)。この場合、CPU91は、変更後の空気清浄機1の状態に応じて、デューティ目標設定値DTGTに設定するためのデューティ目標値を変更する(S93)。CPU91は処理をS26の処理に戻す。これにより、図10に示すように、CPU91は、変更後のデューティ目標値をデューティ目標設定値DTGTに設定し(S41)、S42以降の処理を行う。 If the CPU 91 receives the first change instruction (S92: YES), the state of the air cleaner 1 is changed (see arrows A2, A3, and A4 shown in FIG. 7). In this case, the CPU 91 changes the duty target value to be set as the duty target set value DTGT according to the changed state of the air cleaner 1 (S93). The CPU 91 returns the process to S26. Thereby, as shown in FIG. 10, the CPU 91 sets the changed duty target value to the duty target set value DTGT (S41), and performs the processes from S42 onwards.
 S91の処理で空気清浄機1の状態がオフST1またはエラーST5の場合(S91:YES)、CPU91はデューティ指令値D(n)にデューティ停止値DSTを設定する(S101)。CPU91はS101の処理で設定されたデューティ指令値D(n)を示すPWM制御信号をファン回路60に出力する(S102)。ファン回路60において、DC-DCコンバータ63は、ファン回路60に入力される電圧を、PWM制御信号が示すデューティ指令値D(n)としてデューティ停止値DSTに応じた電圧に変換する。DC-DCコンバータ63は、変換後の電圧をファン電圧FVとしてファンモータ812、822に印加する。これにより、ファン電圧FVが停止電圧まで急降下する。よって、ファンモータ812、822の駆動が停止する。 If the state of the air cleaner 1 is OFF ST1 or error ST5 in the process of S91 (S91: YES), the CPU 91 sets the duty stop value DST to the duty command value D(n) (S101). The CPU 91 outputs a PWM control signal indicating the duty command value D(n) set in the process of S101 to the fan circuit 60 (S102). In the fan circuit 60, the DC-DC converter 63 converts the voltage input to the fan circuit 60 into a voltage corresponding to the duty stop value DST as the duty command value D(n) indicated by the PWM control signal. The DC-DC converter 63 applies the converted voltage to the fan motors 812 and 822 as the fan voltage FV. As a result, the fan voltage FV suddenly drops to the stop voltage. Therefore, the drive of fan motors 812 and 822 is stopped.
 CPU91は「L」を示すイネーブル信号をファン回路60に出力する(S103)。これにより、DC-DCコンバータ63がアクティブな状態からインアクティブな状態となる。CPU91は「L」を示す起動信号をファン回路60に出力する(S104)。これにより、ON/OFFスイッチ61が通電状態から非通電状態となる。CPU91は処理をS12の処理に戻す。 The CPU 91 outputs an enable signal indicating "L" to the fan circuit 60 (S103). As a result, the DC-DC converter 63 changes from an active state to an inactive state. The CPU 91 outputs an activation signal indicating "L" to the fan circuit 60 (S104). As a result, the ON/OFF switch 61 changes from the energized state to the de-energized state. The CPU 91 returns the process to S12.
 以上説明したように、CPU91は、デューティ変化量DDが所定値「1」に達するまで、S54の処理において、演算結果「D(n-1)-DD」を、デューティ指令値D(n)に周期的に設定する。デューティ変化量DDは、デューティ指令値D(n-1)と、デューティ目標設定値DTGTとの差分に基づいて比例演算された結果を示す。演算結果「D(n-1)-DD」は、デューティ指令値D(n-1)がデューティ目標設定値DTGTに近づくようにデューティ指令値D(n-1)に対してデューティ変化量DDが減算された結果を示す。これによれば、デューティ指令値D(n)が急低下しにくいので、ファン電圧FVが急上昇しにくい。よって、CPU91は、突入電流の発生を抑制するという利点に貢献する。 As explained above, the CPU 91 changes the calculation result "D(n-1)-DD" to the duty command value D(n) in the process of S54 until the duty variation amount DD reaches the predetermined value "1". Set periodically. The duty change amount DD indicates the result of proportional calculation based on the difference between the duty command value D(n-1) and the duty target set value DTGT. The calculation result "D(n-1)-DD" means that the duty change amount DD is calculated with respect to the duty command value D(n-1) so that the duty command value D(n-1) approaches the duty target setting value DTGT. Shows the subtracted result. According to this, the duty command value D(n) is unlikely to drop suddenly, so the fan voltage FV is unlikely to rise suddenly. Therefore, the CPU 91 contributes to the advantage of suppressing the generation of rush current.
 ファン電圧FVの制御として、ファン電圧FVをPI(比例・積分)制御する方法が考えられる。この場合、積分項の演算によるマイコン90の制御負荷が大きくなる。このため、マイコン90の演算能力が低いと、マイコン90による他の制御に不具合が発生する可能性がある。このため、ファン電圧FVをPI(比例・積分)制御する方法では、処理能力の高いマイコン90が要求される可能性がある。さらに、残留偏差分を過去の積分項で処理する方法も考えられる。この場合においても、マイコン90による積分項の演算が必要になる。さらに、演算された積分項を記憶しておくため、マイコン90の記憶領域が圧迫される可能性がある。したがって、残留偏差分を過去の積分項で処理する方法でも、処理能力の高いマイコン90が要求される可能性がある。 As a method of controlling the fan voltage FV, a method of controlling the fan voltage FV using PI (proportional/integral) control may be considered. In this case, the control load on the microcomputer 90 due to the calculation of the integral term increases. Therefore, if the computing power of the microcomputer 90 is low, problems may occur in other controls by the microcomputer 90. For this reason, the method of PI (proportional/integral) control of the fan voltage FV may require a microcomputer 90 with high processing capacity. Furthermore, a method of processing the residual deviation using a past integral term is also conceivable. In this case as well, it is necessary for the microcomputer 90 to calculate the integral term. Furthermore, since the calculated integral term is stored, the storage area of the microcomputer 90 may be occupied. Therefore, even with the method of processing the residual deviation using past integral terms, a microcomputer 90 with high processing capacity may be required.
 CPU91は、デューティ変化量DDが所定値「1」に達した場合、デューティ指令値D(n)がデューティ目標設定値DTGTに達するまで、S74の処理において、演算結果「(D(n-1)-1)」を、デューティ指令値D(n)に周期的に設定する。これによれば、積分項を演算することなく、所定値が減算されるので、CPU91による演算が簡略化される。よって、CPU91は、マイコン90への制御負荷を低減するという利点に貢献する。これにより、CPU91は、処理能力の高いマイコン90が要求される可能性を低減するという利点に貢献する。 When the duty variation amount DD reaches the predetermined value "1", the CPU 91 calculates the calculation result "(D(n-1)" in the process of S74 until the duty command value D(n) reaches the duty target set value DTGT. -1)" is periodically set as the duty command value D(n). According to this, the predetermined value is subtracted without calculating the integral term, so the calculation by the CPU 91 is simplified. Therefore, the CPU 91 contributes to the advantage of reducing the control load on the microcomputer 90. Thereby, the CPU 91 contributes to the advantage of reducing the possibility that the microcomputer 90 with high processing capacity is required.
 時間経過に対してデューティ指令値D(n)をプロットしたグラフL11は、S25の処理が行われた時点T0から、S53の処理でデューティ変化量DDが「1」未満となる時点T1まで、デューティ停止値DSTからデューティ目標設定値DTGTに漸近する曲線になる。これによれば、ファン電圧FVが急上昇することが抑制される。よって、CPU91は、突入電流の発生を抑制するという利点に貢献する。 A graph L11 in which the duty command value D(n) is plotted against the passage of time shows the duty ratio from time T0 when the process of S25 is performed to time T1 when the duty change amount DD becomes less than "1" in the process of S53. The curve becomes asymptotic from the stop value DST to the duty target set value DTGT. According to this, a sudden rise in fan voltage FV is suppressed. Therefore, the CPU 91 contributes to the advantage of suppressing the generation of rush current.
 CPU91は、S73の処理を2回するたびにS74の処理を1回行う。S73の処理では、デューティ指令値D(n)は、デューティ指令値D(n-1)から変化しない。このため、CPU91は、デューティ指令値D(n)の急な変化に伴って突入電流が発生することを抑制するという利点に貢献する。 The CPU 91 performs the process of S74 once every time the process of S73 is performed twice. In the process of S73, the duty command value D(n) does not change from the duty command value D(n-1). Therefore, the CPU 91 contributes to the advantage of suppressing the generation of rush current due to sudden changes in the duty command value D(n).
 接続端子201は、規格によって定められた電流上限値を有する。CPU91は、突入電流の発生を抑制することで、電流上限値を超える電流が接続端子201を介して流れることを抑制するという利点に貢献する。 The connection terminal 201 has a current upper limit value determined by the standard. By suppressing the generation of rush current, the CPU 91 contributes to the advantage of suppressing a current exceeding the current upper limit value from flowing through the connection terminal 201.
 外部電源から供給される電力に制限がある状態でファンモータ812、822が駆動する場合がある。この場合、デューティ指令値D(n)に基づくファンモータ812、822での合計の消費電力[W]が、接続端子201が受ける電力[W]よりも大きいと、ファンモータ812、822の駆動に不具合が生じる可能性がある。本実施形態では、デューティ指令値D(n)に基づくファンモータ812、822での合計の消費電力[W]が、接続端子201が受ける電力[W]よりも小さい。よって、CPU91は、外部電源から供給される電力に制限がある状態でファンモータ812、822が駆動する場合でも、ファンモータ812、822の駆動に不具体が発生することを抑制するという利点に貢献する。 The fan motors 812 and 822 may be driven in a state where there is a limit to the power supplied from the external power source. In this case, if the total power consumption [W] of the fan motors 812, 822 based on the duty command value D(n) is larger than the power [W] received by the connection terminal 201, the fan motors 812, 822 cannot be driven. Problems may occur. In this embodiment, the total power consumption [W] of the fan motors 812 and 822 based on the duty command value D(n) is smaller than the power [W] received by the connection terminal 201. Therefore, the CPU 91 contributes to the advantage of suppressing irregularities in the drive of the fan motors 812 and 822 even when the fan motors 812 and 822 are driven in a state where the power supplied from the external power source is limited. do.
 デューティ指令値D(n)に基づくファンモータ812、822の回転速度は、デューティ指令値D(n-1)に基づくファンモータ812、822の回転速度よりも大きくなる。これにより、CPU91がS62の処理でデューティ指令値D(n)を示すPWM制御信号をファン回路60に出力するたびに、ファンモータ812、822の回転速度が連続的に大きくなる。よって、CPU91は、第一切替指示が空気清浄機1に入力された場合に、ファン813、813から突風が発生することを抑制するという利点に貢献する。 The rotational speed of the fan motors 812, 822 based on the duty command value D(n) is greater than the rotational speed of the fan motors 812, 822 based on the duty command value D(n-1). Thereby, each time the CPU 91 outputs a PWM control signal indicating the duty command value D(n) to the fan circuit 60 in the process of S62, the rotational speed of the fan motors 812 and 822 increases continuously. Therefore, the CPU 91 contributes to the advantage of suppressing the generation of gusts of wind from the fans 813, 813 when the first change instruction is input to the air cleaner 1.
 CPU91は、S15、S92、S63の処理において、第一切替スイッチ8または第二切替スイッチ16を介して第一切替指示を受け付ける。これによれば、ユーザがファンモータ812、822の回転速度、つまり吹出口55、56から吹き出される風の強さを変更できる。 The CPU 91 receives the first changeover instruction via the first changeover switch 8 or the second changeover switch 16 in the processes of S15, S92, and S63. According to this, the user can change the rotational speed of the fan motors 812 and 822, that is, the strength of the wind blown out from the air outlets 55 and 56.
 例えば、記憶対象TSを構成する3つ以上のAD値のうち、最大値または最小値は、ノイズの可能性がある。CPU91は、S15、S92、S63の処理において、記憶対象TSを構成する3つ以上のAD値のうち、最大値よりも小さく且つ最小値よりも大きいAD値に基づいて、切替指示を受け付ける。これによれば、CPU91は、ノイズの可能性があるAD値を排除した記憶対象TSに基づいて、切替指示を受け付ける。よって、CPU91は、ユーザによる第二切替スイッチ16の操作を精度よく検出するという利点に貢献する。 For example, among the three or more AD values that constitute the storage target TS, the maximum value or minimum value may be noise. In the processes of S15, S92, and S63, the CPU 91 receives a switching instruction based on the AD value smaller than the maximum value and larger than the minimum value among the three or more AD values forming the storage target TS. According to this, the CPU 91 receives a switching instruction based on the storage target TS from which AD values that may be noise are excluded. Therefore, the CPU 91 contributes to the advantage of accurately detecting the operation of the second changeover switch 16 by the user.
 CPU91は、S15、S92、S63の処理において、リングバッファ931に記憶された複数の平均値のうち、ON閾値以上となる平均値の個数が第一所定個数以上の場合、切替指示を受け付ける。これによれば、複数の平均値によってユーザによる第二切替スイッチ16の操作が検出される。よって、CPU91は、ユーザによる第二切替スイッチ16の操作を精度よく検出するという利点に貢献する。 In the processing of S15, S92, and S63, the CPU 91 receives a switching instruction if the number of average values that are equal to or greater than the ON threshold value among the plurality of average values stored in the ring buffer 931 is equal to or greater than the first predetermined number. According to this, the operation of the second changeover switch 16 by the user is detected based on the plurality of average values. Therefore, the CPU 91 contributes to the advantage of accurately detecting the operation of the second changeover switch 16 by the user.
 上記実施形態において、ファンモータ812、822が本発明の「モータ」に相当する。ファン回路60が本発明の「電圧制御部」に相当する。CPU91が本発明の「コンピュータ」と「プロセッサ」に相当する。S13、S62、S82、S102の処理が本発明の「出力処理」に相当する。S15、S92、S63の処理が本発明の「受付処理」に相当する。S11の処理が本発明の「第一設定処理」に相当する。S54の処理が本発明の「第二設定処理」に相当する。S74の処理が本発明の「第三設定処理」に相当する。S73の処理が本発明の「第四設定処理」に相当する。接続端子201が本発明の「端子」に相当する。第一切替スイッチ8または第二切替スイッチ16が本発明の「スイッチ」に相当する。S15、S92、S63の処理が本発明の「取得処理」に相当する。 In the above embodiment, the fan motors 812 and 822 correspond to the "motor" of the present invention. The fan circuit 60 corresponds to the "voltage control section" of the present invention. The CPU 91 corresponds to the "computer" and "processor" of the present invention. The processes of S13, S62, S82, and S102 correspond to the "output process" of the present invention. The processes of S15, S92, and S63 correspond to the "reception process" of the present invention. The process in S11 corresponds to the "first setting process" of the present invention. The process of S54 corresponds to the "second setting process" of the present invention. The process of S74 corresponds to the "third setting process" of the present invention. The process of S73 corresponds to the "fourth setting process" of the present invention. The connection terminal 201 corresponds to the "terminal" of the present invention. The first changeover switch 8 or the second changeover switch 16 corresponds to the "switch" of the present invention. The processes of S15, S92, and S63 correspond to the "acquisition process" of the present invention.
 本発明は、上記実施形態から種々変更されてもよい。例えば、ファンモータ812、822の個数は、1個でもよいし、3個以上でもよい。ファン回路60の構成は、上記実施形態に限定されない。上記実施形態では、空気清浄機1は、空気清浄機1の状態がオフST1からファン小ST2に変更された場合、空気清浄機1の状態がファン小ST2からファン中ST3に変更された場合等、空気清浄機1の状態の変更に伴ってファンモータ812、822の回転速度を段階的に増加させる。これに対し、空気清浄機1は、ファンモータ812、822の回転速度が連続的に増加するように構成されてもよい。 The present invention may be modified in various ways from the above embodiments. For example, the number of fan motors 812 and 822 may be one, or three or more. The configuration of the fan circuit 60 is not limited to the above embodiment. In the above embodiment, the air purifier 1 changes when the state of the air purifier 1 is changed from off ST1 to fan small ST2, when the state of the air purifier 1 is changed from fan small ST2 to fan medium ST3, etc. , the rotational speeds of the fan motors 812 and 822 are increased in stages as the state of the air cleaner 1 changes. On the other hand, the air cleaner 1 may be configured such that the rotational speed of the fan motors 812 and 822 increases continuously.
 空気清浄機1は、空気清浄機1の状態の変更に伴ってファンモータ812、822の回転速度を3段階(ファン小ST2、ファン中ST3、ファン大ST4)で増加させる。これに対し、ファンモータ812、822の回転速度は、1段階または2段階のみ設けられてもよいし、4段階以上設けられてもよい。 The air cleaner 1 increases the rotational speed of the fan motors 812 and 822 in three stages (small fan ST2, medium fan ST3, and large fan ST4) as the state of the air cleaner 1 changes. On the other hand, the rotational speed of the fan motors 812 and 822 may be provided in only one or two steps, or may be provided in four or more steps.
 上記実施形態では、ユーザが第一切替スイッチ8または第二切替スイッチ16を操作することで、CPU91は空気清浄機1の状態をオフST1からファン小ST2、ファン小ST2からファン中ST3等に変更する。これに対し、CPU91は、例えば埃センサ18からの検出結果に基づいて、空気清浄機1の状態を変更してもよい。より詳細には、CPU91は、埃センサ18によって検出された埃量が基準量を超えた場合に、空気清浄機1の状態をファン小ST2からファン中ST3に変更してもよい。 In the above embodiment, when the user operates the first changeover switch 8 or the second changeover switch 16, the CPU 91 changes the state of the air purifier 1 from OFF ST1 to fan small ST2, from fan small ST2 to fan medium ST3, etc. do. On the other hand, the CPU 91 may change the state of the air cleaner 1 based on the detection result from the dust sensor 18, for example. More specifically, when the amount of dust detected by the dust sensor 18 exceeds a reference amount, the CPU 91 may change the state of the air cleaner 1 from fan small ST2 to fan medium ST3.
 空気清浄機1の状態の遷移は、上記実施形態に限定されない。例えば、空気清浄機1の状態は、ファン大ST4からファン中ST3またはファン小ST2に切り替わってもよいし、ファン小ST2またはファン中ST3からオフST1に切り替わってもよいし、オフST1からファン中ST3またはファン大ST4に切り替わってもよい。 The transition of the state of the air cleaner 1 is not limited to the above embodiment. For example, the state of the air purifier 1 may be switched from large fan ST4 to fan medium ST3 or fan small ST2, or may be switched from fan small ST2 or fan medium ST3 to off ST1, or from off ST1 to fan medium You may switch to ST3 or large fan ST4.
 上記実施形態において、第二所定個数は、複数の記憶エリアR0~R10の個数の半数を超える個数でなくてもよく、例えば1個でもよい。つまり、1つの平均値が閾値を超えた場合に、CPU91は切替指示を受け付けたと判断してもよい。CPU91が切替指示を受け付けたかを判断する場合に、リングバッファ931が使用されなくてもよい。CPU91が埃量を検出する方法も同様に変更されてもよい。 In the above embodiment, the second predetermined number does not need to be more than half of the number of the plurality of storage areas R0 to R10, and may be one, for example. That is, when one average value exceeds a threshold value, the CPU 91 may determine that the switching instruction has been received. When determining whether the CPU 91 has received a switching instruction, the ring buffer 931 may not be used. The method by which the CPU 91 detects the amount of dust may be similarly changed.
 CPU91は、S73の処理を2回するたびにS74の処理を1回行う。これに対し、S73の処理を省略してもよい。つまり、CPU91は、デューティ変化量DDが所定値「1」に達した場合、S73の処理を行うことなくS74を繰り返してもよい。CPU91はS73の処理を1回または3回以上行うたびにS74の処理を1回または複数回繰り返してもよい。 The CPU 91 performs the process of S74 once every time the process of S73 is performed twice. On the other hand, the process of S73 may be omitted. That is, when the duty change amount DD reaches the predetermined value "1", the CPU 91 may repeat S74 without performing the process of S73. The CPU 91 may repeat the process of S74 once or multiple times each time the process of S73 is performed once or three or more times.
 CPU91は、デューティ変化量DDが所定値に達した場合(S53:NO)、処理をS71の処理に進めることなく、S81の処理に進めてもよい。DC-DCコンバータ63は、CPU91からのPWM制御信号が示すデューティ比が大きいほど、大きい電圧をファンモータ812、822に印加してもよい。この場合、S54の処理では、CPU91はデューティ指令値D(n-1)からデューティ変化量DDを加算した演算結果「D(n-1)+DD」をデューティ指令値D(n)に設定すればよい。さらに、S74の処理では、CPU91は、デューティ指令値D(n-1)から所定値「1」を加算した演算結果「D(n-1)+1」をデューティ指令値D(n)に設定すればよい。 If the duty change amount DD reaches the predetermined value (S53: NO), the CPU 91 may proceed to the process of S81 without proceeding to the process of S71. The DC-DC converter 63 may apply a higher voltage to the fan motors 812 and 822 as the duty ratio indicated by the PWM control signal from the CPU 91 is higher. In this case, in the process of S54, the CPU 91 sets the duty command value D(n) to the calculation result "D(n-1)+DD" obtained by adding the duty change amount DD from the duty command value D(n-1). good. Furthermore, in the process of S74, the CPU 91 sets the duty command value D(n) to the calculation result "D(n-1)+1" obtained by adding a predetermined value "1" to the duty command value D(n-1). Bye.
 時間経過に対してデューティ指令値D(n)をプロットしたグラフL11は、S25の処理が行われた時点T0から、S53の処理でデューティ変化量DDが「1」未満となる時点T1まで、デューティ停止値DSTからデューティ目標設定値DTGTに漸近する曲線にならなくてもよい。 A graph L11 in which the duty command value D(n) is plotted against the passage of time shows the duty ratio from time T0 when the process of S25 is performed to time T1 when the duty change amount DD becomes less than "1" in the process of S53. The curve does not have to be asymptotic from the stop value DST to the duty target setting value DTGT.
 接続端子201は、USB TYPE-C(登録商標)の規格に定められた端子でなくてもよく、例えばAC-DCアダプタが接続される端子であってもよい。接続端子201は、規格によって定められた電流上限値を有しなくてもよい。空気清浄機1にはバッテリから電源が供給されてもよい。接続端子201が設けられる位置は、上記実施形態に限定されない。 The connection terminal 201 does not have to be a terminal defined in the USB TYPE-C (registered trademark) standard, and may be a terminal to which an AC-DC adapter is connected, for example. The connection terminal 201 does not need to have a current upper limit value defined by the standard. Power may be supplied to the air cleaner 1 from a battery. The position where the connection terminal 201 is provided is not limited to the above embodiment.
 所定値は、デューティ指令値D(n)を変化させることが可能な最小単位よりも大きくてもよい。エラー条件は、上記実施形態に限定されない。例えば、埃センサ18によって検出された埃量に基づいて空気清浄機1の状態がエラーST5に変更されてもよい。 The predetermined value may be larger than the minimum unit in which the duty command value D(n) can be changed. Error conditions are not limited to the above embodiments. For example, the state of the air cleaner 1 may be changed to error ST5 based on the amount of dust detected by the dust sensor 18.
 エラーST5からの復帰方法は、本実施形態では電源の再起動で復帰させていたが、電源ONのまま第一切替スイッチ8を長押しして、空気清浄機1の状態をオフST1にすることも可能である。 The method for recovering from error ST5 is to restart the power supply in this embodiment, but press and hold the first changeover switch 8 while the power is on to turn the air purifier 1 into OFF ST1. is also possible.
1  空気清浄機
8  第一切替スイッチ
16  第二切替スイッチ
60  ファン回路
91  CPU
201  接続端子
812、822  ファンモータ
813、823  ファン
1 Air purifier 8 First changeover switch 16 Second changeover switch 60 Fan circuit 91 CPU
201 Connection terminal 812, 822 Fan motor 813, 823 Fan

Claims (11)

  1.  ファンを回転させるモータを駆動するための電圧制御部を制御する空気清浄機のコンピュータに、
     前記電圧制御部に対してPWM制御を行う処理であって、デューティ比を示すPWM制御信号を前記電圧制御部に出力する出力処理と、
     前記電圧制御部によって前記モータに印加される電圧を目標電圧まで上昇させる指示を受け付ける受付処理と、
     前記受付処理によって前記指示が受け付けられた場合、前記目標電圧に応じた前記デューティ比である目標設定値を設定する第一設定処理と、
     第一演算値が所定値に達するまで、第二演算値を、前記出力処理によって今回出力される前記PWM制御信号が示す前記デューティ比である指令値(n)に周期的に設定する第二設定処理と
     を実行させ、
     前記第一演算値は、前記出力処理によって前回出力された前記PWM制御信号が示す前記デューティ比である指令値(n-1)と、前記目標設定値との差分に基づいて比例演算された結果を示し、
     前記第二演算値は、前記指令値(n-1)が前記目標設定値に近づくように前記指令値(n-1)に対して前記第一演算値が加算または減算された結果を示す
    ことを特徴とする電圧制御プログラム。
    The air purifier's computer controls the voltage control unit that drives the motor that rotates the fan.
    A process of performing PWM control on the voltage control unit, the output process of outputting a PWM control signal indicating a duty ratio to the voltage control unit;
    a reception process for receiving an instruction to increase the voltage applied to the motor by the voltage control unit to a target voltage;
    a first setting process of setting a target setting value that is the duty ratio according to the target voltage when the instruction is accepted by the reception process;
    A second setting that periodically sets the second calculated value to the command value (n) that is the duty ratio indicated by the PWM control signal currently output by the output process until the first calculated value reaches a predetermined value. Execute processing and
    The first calculation value is the result of proportional calculation based on the difference between the command value (n-1), which is the duty ratio indicated by the PWM control signal output last time by the output processing, and the target setting value. shows,
    The second calculated value indicates a result of adding or subtracting the first calculated value to the command value (n-1) so that the command value (n-1) approaches the target setting value. A voltage control program featuring:
  2.  前記コンピュータに、
     前記第一演算値が前記所定値に達した場合、前記指令値(n)が前記目標設定値に達するまで、第三演算値を、前記指令値(n)に周期的に設定する第三設定処理を実行させ、
     前記第三演算値は、前記指令値(n-1)が前記目標設定値に近づくように前記指令値(n-1)に対して前記所定値が加算または減算された結果を示す
    ことを特徴とする請求項1に記載の電圧制御プログラム。
    to the computer;
    a third setting in which, when the first calculated value reaches the predetermined value, a third calculated value is periodically set to the command value (n) until the command value (n) reaches the target setting value; execute the process,
    The third calculated value is characterized in that it indicates a result of adding or subtracting the predetermined value to the command value (n-1) so that the command value (n-1) approaches the target setting value. The voltage control program according to claim 1.
  3.  前記第二設定処理は、時間経過に対して前記指令値(n)をプロットしたグラフが、基準となる前記デューティ比から前記目標設定値に漸近する曲線になる前記第二演算値を、前記指令値(n)に周期的に設定することを特徴とする請求項1に記載の電圧制御プログラム。 In the second setting process, the second calculated value is set so that a graph in which the command value (n) is plotted over time becomes a curve that asymptotically approaches the target setting value from the reference duty ratio. 2. The voltage control program according to claim 1, wherein the voltage control program is periodically set to the value (n).
  4.  前記コンピュータに、
     前記第一演算値が前記所定値に達した場合、前記指令値(n)が前記目標設定値に達するまで、前記指令値(n-1)を前記指令値(n)に周期的に設定する第四設定処理を実行させ、
     前記第四設定処理を第一所定回数実行させるたびに前記第三設定処理を第二所定回数実行させることを特徴とする請求項2に記載の電圧制御プログラム。
    to the computer;
    When the first calculated value reaches the predetermined value, the command value (n-1) is periodically set to the command value (n) until the command value (n) reaches the target setting value. Execute the fourth setting process,
    3. The voltage control program according to claim 2, wherein the third setting process is executed a second predetermined number of times each time the fourth setting process is executed a first predetermined number of times.
  5.  ファンと、
     前記ファンを回転させるモータと、
     前記モータを駆動するための電圧制御部と、
     前記電圧制御部を制御するプロセッサと
     を備え、
     前記プロセッサは、
     デューティ比を示すPWM制御信号を前記電圧制御部に出力する出力処理と、
     前記電圧制御部によって前記モータに印加される電圧を目標電圧まで上昇させる指示を受け付ける受付処理と、
     前記受付処理によって前記指示が受け付けられた場合、前記目標電圧に応じた前記デューティ比である目標設定値を設定する第一設定処理と、
     第一演算値が所定値に達するまで、第二演算値を、前記出力処理によって今回出力される前記PWM制御信号が示す前記デューティ比である指令値(n)に周期的に設定する第二設定処理と
     を実行し、
     前記第一演算値は、前記出力処理によって前回出力された前記PWM制御信号が示す前記デューティ比である指令値(n-1)と、前記目標設定値との差分に基づいて比例演算された結果を示し、
     前記第二演算値は、前記指令値(n-1)が前記目標設定値に近づくように前記指令値(n-1)に対して前記第一演算値が加算または減算された結果を示すことを特徴とする空気清浄機。
    with fans,
    a motor that rotates the fan;
    a voltage control unit for driving the motor;
    a processor that controls the voltage control section;
    The processor includes:
    output processing for outputting a PWM control signal indicating a duty ratio to the voltage control section;
    a reception process for receiving an instruction to increase the voltage applied to the motor by the voltage control unit to a target voltage;
    a first setting process of setting a target setting value that is the duty ratio according to the target voltage when the instruction is accepted by the reception process;
    A second setting that periodically sets the second calculated value to the command value (n) that is the duty ratio indicated by the PWM control signal currently output by the output process until the first calculated value reaches a predetermined value. Execute the process and
    The first calculation value is the result of proportional calculation based on the difference between the command value (n-1), which is the duty ratio indicated by the PWM control signal output last time by the output processing, and the target setting value. shows,
    The second calculated value indicates a result of adding or subtracting the first calculated value to the command value (n-1) so that the command value (n-1) approaches the target setting value. An air purifier featuring
  6.  外部電源から供給される電力を受ける端子であって、規格によって定められた電流上限値を有する端子を備え、
     前記電圧制御部は、前記出力処理によって出力される前記PWM制御信号に基づいて、前記端子を介して供給される前記電力を前記モータに供給する
     ことを特徴とする請求項5に記載の空気清浄機。
    A terminal that receives power supplied from an external power source and has a current upper limit value determined by the standard,
    The air cleaner according to claim 5, wherein the voltage control unit supplies the electric power supplied via the terminal to the motor based on the PWM control signal output by the output processing. Machine.
  7.  前記プロセッサは、前記第二設定処理において、前記指令値(n)に基づく消費電力が、前記端子が受ける前記電力よりも小さくなる前記指令値(n)を周期的に設定する ことを特徴とする請求項6に記載の空気清浄機。 The processor is characterized in that, in the second setting process, the processor periodically sets the command value (n) such that power consumption based on the command value (n) is smaller than the power received by the terminal. The air cleaner according to claim 6.
  8.  前記プロセッサは、前記第二設定処理において、前記指令値(n)に基づく前記モータの回転速度が、前記指令値(n-1)に基づく前記モータの回転速度よりも大きくなる前記指令値(n)を周期的に設定する
     ことを特徴とする請求項5から7のいずれかに記載の空気清浄機。
    In the second setting process, the processor sets the command value (n) such that the rotation speed of the motor based on the command value (n) is larger than the rotation speed of the motor based on the command value (n-1). ) is set periodically. The air cleaner according to any one of claims 5 to 7.
  9.  ユーザによる操作によって前記指示が入力されるスイッチを備え、
     前記プロセッサは、前記受付処理において、前記スイッチを介して前記指示を受け付ける
     ことを特徴とする請求項5から7のいずれかに記載の空気清浄機。
    comprising a switch through which the instruction is input by a user's operation;
    The air purifier according to any one of claims 5 to 7, wherein the processor receives the instruction via the switch in the reception process.
  10.  前記スイッチは、前記スイッチから離れて位置する対象物を検出し、且つ前記スイッチから前記対象物までの距離に応じた信号を前記プロセッサに出力する非接触スイッチであり、
     前記プロセッサは、
     前記信号に応じた前記距離を3回以上取得する取得処理を実行し、
     前記受付処理において、前記取得処理によって取得された3回以上の前記信号に応じた3つ以上の前記距離のうち、最大値よりも小さく且つ最小値よりも大きい前記距離に基づいて、前記指示を受け付ける
     ことを特徴とする請求項9に記載の空気清浄機。
    The switch is a non-contact switch that detects an object located away from the switch and outputs a signal to the processor according to the distance from the switch to the object,
    The processor includes:
    Executing an acquisition process to acquire the distance according to the signal three or more times,
    In the reception process, the instruction is given based on the distance that is smaller than the maximum value and larger than the minimum value among the three or more distances that correspond to the signals acquired three or more times in the acquisition process. The air cleaner according to claim 9, characterized in that it accepts.
  11.  前記スイッチは、前記スイッチから離れて位置する対象物を検出し、且つ前記スイッチから前記対象物までの距離に応じた信号を前記プロセッサに出力する非接触スイッチであり、
     前記プロセッサは、
     前記信号に応じた前記距離を複数回取得する取得処理を実行し、
     前記受付処理において、前記取得処理によって複数回取得された前記距離のうち、所定距離以上となる前記距離の個数が所定個数以上の場合、前記指示を受け付ける
     ことを特徴とする請求項9に記載の空気清浄機。
    The switch is a non-contact switch that detects an object located away from the switch and outputs a signal to the processor according to the distance from the switch to the object,
    The processor includes:
    Executing an acquisition process to acquire the distance according to the signal multiple times,
    10. In the reception process, if the number of distances that are equal to or greater than a predetermined distance among the distances obtained multiple times in the acquisition process is equal to or greater than a predetermined number, the instruction is accepted. Air cleaner.
PCT/JP2023/025547 2022-08-02 2023-07-11 Voltage control program and air purifier WO2024029283A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-123425 2022-08-02
JP2022123425A JP2024020888A (en) 2022-08-02 2022-08-02 Voltage control program and air cleaner

Publications (1)

Publication Number Publication Date
WO2024029283A1 true WO2024029283A1 (en) 2024-02-08

Family

ID=89849170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025547 WO2024029283A1 (en) 2022-08-02 2023-07-11 Voltage control program and air purifier

Country Status (2)

Country Link
JP (1) JP2024020888A (en)
WO (1) WO2024029283A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001238490A (en) * 2000-02-21 2001-08-31 Hitachi Ltd Control unit for a plurality of motors, power converter, inverter module and converter module
JP2003087107A (en) * 2001-09-12 2003-03-20 Omron Corp Photoelectric sensor
JP2012191803A (en) * 2011-03-11 2012-10-04 Toshiba Mach Co Ltd Inverter generator
JP2012194617A (en) * 2011-03-15 2012-10-11 Lixil Corp Operation input device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001238490A (en) * 2000-02-21 2001-08-31 Hitachi Ltd Control unit for a plurality of motors, power converter, inverter module and converter module
JP2003087107A (en) * 2001-09-12 2003-03-20 Omron Corp Photoelectric sensor
JP2012191803A (en) * 2011-03-11 2012-10-04 Toshiba Mach Co Ltd Inverter generator
JP2012194617A (en) * 2011-03-15 2012-10-11 Lixil Corp Operation input device

Also Published As

Publication number Publication date
JP2024020888A (en) 2024-02-15

Similar Documents

Publication Publication Date Title
KR101108322B1 (en) Motor Control Apparatus and Electric Appliance using the same
US6490752B2 (en) Inverter control circuit of motor-driven blower for electric vacuum cleaner, drive control circuit using the same, and electric vacuum cleaner using drive control circuit
JP5726022B2 (en) Electric tool
JP3740946B2 (en) Power supply device, electric motor drive device and air conditioner
JP4799512B2 (en) Power converter and air conditioner using the same
JP2008220812A (en) Low-noise and energy-saving vacuum cleaner for controlling power in response to load
WO2024029283A1 (en) Voltage control program and air purifier
CN1830376A (en) Electric vacuum cleaner
JP6912038B2 (en) Motor drive, blower, motor drive method, and recording medium
JP5618755B2 (en) Electronics
US20180145616A1 (en) Dc-brushless-motor control device
US8164290B2 (en) Fan and motor control device
JP2012083089A (en) Air conditioner
JP2006183882A (en) Peltier element driving device and image forming device
JP5537378B2 (en) Air conditioner
JP6051415B2 (en) Brushless motor control device and diagnostic processing method thereof
JP6583640B2 (en) Control device for power conversion circuit
JP2009131116A (en) Dc/dc converter
JP3326126B2 (en) Electric vacuum cleaner
KR20130057472A (en) Motor driving system and motor system
JP5251577B2 (en) Compressor control device
JP2007228672A (en) Battery remaining capacity detector
JP3680583B2 (en) Regenerative power control method for motor control device
WO2021205577A1 (en) Control board and air conditioner
JP5309926B2 (en) Compressor control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849842

Country of ref document: EP

Kind code of ref document: A1