WO2024029230A1 - Switching power supply circuit and switching power supply device - Google Patents

Switching power supply circuit and switching power supply device Download PDF

Info

Publication number
WO2024029230A1
WO2024029230A1 PCT/JP2023/023585 JP2023023585W WO2024029230A1 WO 2024029230 A1 WO2024029230 A1 WO 2024029230A1 JP 2023023585 W JP2023023585 W JP 2023023585W WO 2024029230 A1 WO2024029230 A1 WO 2024029230A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
frequency
switching
current
time
Prior art date
Application number
PCT/JP2023/023585
Other languages
French (fr)
Japanese (ja)
Inventor
慎吾 橋口
瞬 福島
洋祐 福本
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2024029230A1 publication Critical patent/WO2024029230A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present disclosure relates to a switching power supply circuit and a switching power supply device.
  • One type of switching power supply device includes a high-side transistor and a low-side transistor connected in series with each other, and a rectifying and smoothing circuit having a coil and an output capacitor connected to their connection nodes.
  • An input voltage is applied between the high side transistor and the low side transistor.
  • the on-time of the high-side transistor will be considerably short while the on-time of the low-side transistor will be sufficiently long in each cycle of the switching operation. Therefore, by performing a current detection operation that detects the current flowing through the low-side transistor during the on-period of the low-side transistor, the coil current necessary for current mode control is detected.
  • the on-time of the low-side transistor becomes shorter as the duty increases in pulse width modulation, and the time required for the current detection operation may not be secured.
  • the switching frequency it is possible to both secure the time necessary for the current detection operation and increase the maximum duty.
  • the switching frequency is lowered, the interval between current detection operations becomes longer, resulting in unstable control and fluctuations in the output voltage.
  • An object of the present disclosure is to provide a switching power supply circuit and a switching power supply device that contribute to stabilizing the output voltage.
  • a switching power supply circuit is a switching power supply circuit used in a switching power supply device for generating an output voltage through switching of an input voltage.
  • an output stage circuit having a connected high-side transistor and a low-side transistor; a switching control circuit configured to perform a switching operation of alternately turning on and off the high-side transistor and the low-side transistor; and an on-period of the low-side transistor.
  • a current information generating circuit configured to perform a current sensing operation for detecting a current flowing through the low-side transistor in the rectifying and smoothing circuit, wherein a connection node between the high-side transistor and the low-side transistor includes a coil and an output capacitor.
  • the output voltage is generated by rectifying and smoothing the switching voltage generated at the connection node by the switching operation in the rectifier and smoothing circuit, and the switching control circuit generates a voltage corresponding to the output voltage.
  • the switching control circuit performs the switching operation in the switching operation at a first frequency or lower than the first frequency.
  • the current information generating circuit is configured to control the frequency from the most recent current sensing operation to the next current sensing operation.
  • current information of the coil is generated by adding pseudo current information based on the input voltage and the output voltage to the current information detected by the most recent current sensing operation.
  • Another switching power supply circuit is a switching power supply circuit used in a switching power supply device for generating an output voltage through switching of an input voltage.
  • an output stage circuit having a high-side transistor and a low-side transistor connected in series; a switching control circuit configured to perform a switching operation of alternately turning on and off the high-side transistor and the low-side transistor;
  • a current configured to perform a first current sensing operation for detecting a current flowing through the low-side transistor during an on-period, or a second current sensing operation for detecting a current flowing through the high-side transistor during an on-period of the high-side transistor.
  • a connection node between the high side transistor and the low side transistor is connected to a rectification and smoothing circuit including a coil and an output capacitor, and a switching voltage generated at the connection node by the switching operation is connected to the rectification and smoothing circuit.
  • the output voltage is generated by rectification and smoothing in the switching control circuit, and the switching control circuit performs the switching operation based on voltage information corresponding to the output voltage and current information of the coil, and in the switching operation,
  • the switching frequency can be set to a first frequency or a second frequency lower than the first frequency, and when the switching frequency is set to the first frequency, the current information generation circuit performs the first current sensing operation. Current information of the coil is generated, and when the switching frequency is set to the second frequency, the first current sensing operation and the second current sensing operation are used together to generate current information of the coil.
  • FIG. 1 is an overall configuration diagram of a switching power supply device according to a first embodiment of the present disclosure.
  • FIG. 2 is an external perspective view of the power supply IC according to the first embodiment of the present disclosure.
  • FIG. 3 is a configuration diagram of a switching power supply device showing the internal configuration of a power supply IC according to the first embodiment of the present disclosure.
  • FIG. 4 is a relationship diagram between lamp voltage and clock signal according to the first embodiment of the present disclosure.
  • FIG. 5 is a timing chart when the switching frequency is stable at the reference frequency according to the first embodiment of the present disclosure.
  • FIG. 6 is a diagram showing a plurality of time relationships according to the first embodiment of the present disclosure.
  • FIG. 7 is a timing chart of the first virtual operation.
  • FIG. 1 is an overall configuration diagram of a switching power supply device according to a first embodiment of the present disclosure.
  • FIG. 2 is an external perspective view of the power supply IC according to the first embodiment of the present disclosure.
  • FIG. 3 is a configuration diagram of
  • FIG. 8 is a timing chart in the vicinity of the switching frequency according to Example EX1_1 belonging to the first embodiment of the present disclosure.
  • FIG. 9 is a diagram showing a coil current waveform in a reference switching operation and a coil current waveform in a frequency division switching operation, according to Example EX1_1 belonging to the first embodiment of the present disclosure.
  • FIG. 10 is a timing chart in the vicinity of the switching frequency according to Example EX1_2 belonging to the first embodiment of the present disclosure.
  • FIG. 11 is a configuration diagram of a switching power supply device showing the internal configuration of a power supply IC according to Example EX1_3 belonging to the first embodiment of the present disclosure.
  • FIG. 12 is a configuration diagram of a switching power supply device showing the internal configuration of a power supply IC according to a second embodiment of the present disclosure.
  • FIG. 13 is a timing chart when the switching frequency is stable at the reference frequency according to the second embodiment of the present disclosure.
  • FIG. 14 is a timing chart of the second virtual operation.
  • FIG. 15 is a timing chart in the vicinity of the switching frequency according to Example EX2_1 belonging to the second embodiment of the present disclosure.
  • FIG. 16 is an internal configuration diagram of a current information generation circuit according to Example EX2_1 belonging to the second embodiment of the present disclosure.
  • FIG. 17 is an explanatory diagram of the operation of the current information generation circuit of FIG. 16.
  • FIG. 16 is an internal configuration diagram of a current information generation circuit according to Example EX2_1 belonging to the second embodiment of the present disclosure.
  • FIG. 18 is a timing chart in the vicinity of the switching frequency according to Example EX2_2 belonging to the second embodiment of the present disclosure.
  • FIG. 19 is an internal configuration diagram of a current information generation circuit according to Example EX2_3 belonging to the second embodiment of the present disclosure.
  • the ground refers to a reference conductive portion having a reference potential of 0V (zero volts), or refers to the 0V potential itself.
  • the reference conductive part may be formed using a conductor such as metal.
  • the potential of 0V is sometimes referred to as a ground potential.
  • voltages shown without particular reference represent potentials as seen from ground.
  • Level refers to the level of potential, and for any signal or voltage of interest, a high level has a higher potential than a low level.
  • a signal or voltage being at a high level strictly means that the level of the signal or voltage is at a high level, and a signal or voltage being at a low level does not strictly mean that the level of the signal or voltage is at a high level. It means that the signal or voltage level is at low level.
  • any signal or voltage of interest switching from a low level to a high level is called an up edge, and the timing of switching from a low level to a high level is called an up edge timing. You can read up edge as rising edge.
  • switching from a high level to a low level is called a down edge, and the timing of switching from a high level to a low level is called a down edge timing. You can read down edge as falling edge.
  • any transistor configured as a FET (field effect transistor) including a MOSFET an on state refers to a state in which the drain and source of the transistor are electrically connected, and an off state refers to a state in which the drain and source of the transistor are electrically connected. Refers to the state where there is no conduction between the two (blocked state). The same applies to transistors that are not classified as FETs.
  • the MOSFET is understood to be an enhancement type MOSFET unless otherwise specified.
  • MOSFET is an abbreviation for "metal-oxide-semiconductor field-effect transistor.”
  • the back gate of any MOSFET may be considered to be short-circuited to the source.
  • Any switch can be composed of one or more FETs (field effect transistors), and when a switch is on, conduction occurs between both ends of the switch, while when the switch is off, the switch is electrically conductive. There is no conduction between both ends.
  • the on state and off state of any transistor or switch may be simply expressed as on or off.
  • switching from an off state to an on state is expressed as turn-on, and switching from an on state to an off state is expressed as turn-off.
  • a period in which the transistor or switch is in an on state is referred to as an on period, and a period in which the transistor or switch is in an off state is referred to as an off period.
  • the period during which the level of the signal is high level is referred to as a high level period
  • the period during which the level of the signal is at low level is referred to as a low level period. The same applies to any voltage that takes a high or low voltage level.
  • Connections between multiple parts forming a circuit such as arbitrary circuit elements, wiring, nodes, etc., may be understood to refer to electrical connections, unless otherwise specified.
  • FIG. 1 is an overall configuration diagram of a switching power supply device 1 according to a first embodiment of the present disclosure.
  • a switching power supply device 1 in FIG. 1 includes a power supply IC 2 that is a switching power supply circuit (a semiconductor device for a switching power supply), and a plurality of discrete components externally connected to the power supply IC 2. includes a capacitor C1 as an output capacitor, a capacitor C2 as a boot capacitor, resistors R1 and R2 as feedback resistors, and a coil L1.
  • the switching power supply device 1 is configured as a step-down switching power supply device (DC/DC converter) that generates a desired output voltage V OUT from an input voltage V IN supplied from the outside.
  • DC/DC converter step-down switching power supply device
  • An output voltage V OUT is generated at the output terminal OUT. That is, the output terminal OUT is an application terminal for the output voltage V OUT (a terminal to which the output voltage V OUT is applied). The output voltage V OUT is supplied to a load LD connected to the output terminal OUT.
  • the input voltage V IN and the output voltage V OUT are positive DC voltages, and the output voltage V OUT is lower than the input voltage V IN .
  • the output voltage V OUT can be stabilized at a desired target voltage V TG (for example, 5V) below 12V by adjusting the resistance values of the resistors R1 and R2.
  • FIG. 2 shows an external perspective view of the power supply IC 2.
  • the power supply IC 2 includes a semiconductor chip having a semiconductor integrated circuit formed on a semiconductor substrate, a casing (package) that houses the semiconductor chip, and a plurality of external terminals exposed to the outside of the power supply IC 2 from the casing. It is an electronic component equipped with The power supply IC 2 is formed by enclosing a semiconductor chip in a housing (package) made of resin. Note that the number of external terminals of the power supply IC 2 and the type of casing of the power supply IC 2 shown in FIG. 2 are merely examples, and they can be designed arbitrarily.
  • the output stage circuit MM, main control block 3, and rectifier D1 shown in FIG. 1 are included in the semiconductor integrated circuit.
  • FIG. 1 only the input terminal IN, switch terminal SW, feedback terminal FB, output monitoring terminal OS, boot terminal BOOT, and ground terminal GND are shown as some of the plurality of external terminals provided in the power supply IC 2. (Similarly in FIG. 3, which will be described later, etc.), other external terminals (for example, an enable terminal and a power good terminal) may also be provided in the power supply IC 2.
  • An input voltage V IN is supplied to the input terminal IN from outside the power supply IC2.
  • a coil L1 is interposed in series between the switch terminal SW and the output terminal OUT. That is, one end of the coil L1 is connected to the switch terminal SW, and the other end of the coil L1 is connected to the output terminal OUT. Further, the output terminal OUT is connected to ground via a capacitor C1. That is, one end of the capacitor C1 is connected to the output terminal OUT, and the other end of the capacitor C1 is connected to ground. Further, the output terminal OUT is connected to one end of a resistor R1, and the other end of the resistor R1 is connected to ground via a resistor R2.
  • a connection node between resistors R1 and R2 is connected to feedback terminal FB. Further, the output monitoring terminal OS is connected to the output terminal OUT. Therefore, the output voltage V OUT is applied to the output monitoring terminal OS.
  • a ground terminal GND is connected to ground.
  • Capacitor C2 is provided between terminals BOOT and SW. That is, one end of the capacitor C2 is connected to the boot terminal BOOT, and the other end of the capacitor C2 is connected to the switch terminal SW. Note that the current flowing through the coil L1 is referred to as a coil current IL.
  • the power supply IC2 includes an output stage circuit MM, a main control block 3 for controlling the output stage circuit MM, and a rectifier D1.
  • Output stage circuit MM includes transistors M1 and M2.
  • the transistors M1 and M2 are each N-channel type MOSFETs (Metal Oxide Semiconductor Field effect transistors).
  • the transistors M1 and M2 are a pair of switching elements connected in series between the input terminal IN and the ground terminal GND (in other words, the ground), and when they are driven to switch, the input voltage V IN is switched.
  • a rectangular waveform switching voltage V SW appears at the switch terminal SW.
  • the transistor M1 is a high-side transistor provided on the high side
  • the transistor M2 is a low-side transistor provided on the low side.
  • the drain of the transistor M1 is connected to the input terminal IN, which is the terminal to which the input voltage V IN is applied, and the source of the transistor M1 and the drain of the transistor M2 are commonly connected to the switch terminal SW.
  • the source of transistor M2 is connected to ground terminal GND. Note that a current detection resistor (sense resistor) may be inserted between the source of the transistor M2 and the ground.
  • Transistor M1 functions as an output transistor, and transistor M2 functions as a synchronous rectifier transistor.
  • Coil L1 and capacitor C1 constitute a rectifying and smoothing circuit that rectifies and smoothes rectangular wave switching voltage V SW appearing at switch terminal SW to generate output voltage V OUT .
  • Resistors R1 and R2 constitute a voltage divider circuit that divides the output voltage V OUT , and a feedback voltage V FB that is a divided voltage of the output voltage V OUT is generated at a connection node between the resistors R1 and R2.
  • the connection node between the resistors R1 and R2 is connected to the feedback terminal FB, so that the feedback voltage V FB is input to the feedback terminal FB.
  • Gate signals G1 and G2 are supplied to the gates of transistors M1 and M2, respectively.
  • Transistors M1 and M2 are turned on and off according to gate signals G1 and G2.
  • the gate signal G1 is at a high level
  • the transistor M1 is turned on, and when the gate signal G1 is at a low level, the transistor M1 is turned off.
  • the gate signal G2 is at a high level
  • the transistor M2 is turned on, and when the gate signal G2 is at a low level, the transistor M2 is turned off.
  • transistors M1 and M2 are turned on and off alternately, but both transistors M1 and M2 may be turned off.
  • the state of the output stage circuit MM is one of an output high state, an output low state, and a Hi-Z state.
  • transistors M1 and M2 are on and off, respectively.
  • transistors M1 and M2 are in an off state and an on state, respectively.
  • transistors M1 and M2 are off. Both transistors M1 and M2 are never turned on.
  • the main control block 3 is connected to each gate of the transistors M1 and M2, a switch terminal SW, a feedback terminal FB, and an output monitoring terminal OS.
  • the main control block 3 controls the on/off states of the transistors M1 and M2 by controlling the levels of the gate signals G1 and G2 based on the feedback voltage V FB , thereby providing an output to the output terminal OUT according to the feedback voltage V FB. Generates voltage V OUT .
  • the main control block 3 may be provided with an output voltage V OUT .
  • the main control block 3 can perform overvoltage protection etc. based on the output voltage V OUT , and can also generate pseudo current information (details will be described later) by referring to the output voltage V OUT .
  • the power supply IC 2 is provided with an internal power supply circuit (not shown) that generates an internal power supply voltage V REG based on the input voltage V IN .
  • Internal power supply voltage V REG has a predetermined positive DC voltage value.
  • the rectifying element D1 is a diode.
  • the anode is connected to the application terminal of the internal power supply voltage V REG
  • the cathode is connected to the boot terminal BOOT.
  • the rectifying element D1 may be a switching element that is turned on during the on period of the transistor M2.
  • a bootstrap circuit is formed by the rectifying element D1 and the capacitor C2.
  • the voltage applied to the boot terminal BOOT is referred to as a boot voltage V BOOT .
  • the main control block 3 can be driven based on the internal power supply voltage V REG or the boot voltage V BOOT .
  • the capacitor C2 When the output stage circuit MM is in the output low state, the capacitor C2 is charged through the rectifier D1 based on the internal power supply voltage V REG , so that the boot voltage V BOOT is lower than the switching voltage V SW by the voltage across the capacitor C2. It also becomes more expensive. Thereafter, even when the output stage circuit MM is brought into the output high state, the boot voltage V BOOT is maintained higher than the switching voltage V SW by the voltage across the capacitor C2.
  • the gate signal G1 is a signal based on the potential of the switch terminal SW. Specifically, the low-level gate signal G1 has the potential of the switch terminal SW, and the high-level gate signal G1 is higher than the potential of the switch terminal SW by the difference between the voltages V BOOT and V SW .
  • the main control block 3 can generate a high level gate signal G1 based on the boot voltage V BOOT .
  • the gate signal G2 is a signal based on the ground potential. Specifically, the low-level gate signal G2 has a ground potential, and the high-level gate signal G2 is higher than the ground potential by a predetermined voltage (eg, internal power supply voltage V REG ).
  • FIG. 3 shows the configuration of a switching power supply device 1 having a power supply IC 2A.
  • Power supply IC2A is an example of power supply IC2. All the matters described above regarding the power supply IC 2 also apply to the power supply IC 2A unless there is a contradiction.
  • the main control block 3 in the power supply IC 2A includes an error amplifier 11, a phase compensation circuit 12, a differential amplifier 13, a phase compensation circuit 14, a clock generation circuit 15, a lamp voltage generation circuit 16, a comparator 17, and a logic circuit. It includes a circuit 18, a driver 19, and a current information generation circuit 30.
  • the power supply IC 2A performs a switching operation using pulse width modulation. The functions and operations of each part will be explained below.
  • the error amplifier 11 is a current output type transconductance amplifier.
  • the error amplifier 11 includes an inverting input terminal, a non-inverting input terminal, and an output terminal.
  • the output terminal of the error amplifier 11 is connected to the wiring WR1.
  • the inverting input terminal of the error amplifier 11 is connected to the feedback terminal FB and receives the feedback voltage VFB .
  • a predetermined reference voltage V REF is supplied to the non-inverting input terminal of the error amplifier 11 .
  • the reference voltage V REF is a DC voltage having a predetermined positive voltage value, and is generated by a reference voltage generation circuit (not shown) in the power supply IC 2A.
  • the error amplifier 11 outputs a current signal I1 according to the difference between the feedback voltage V FB and the reference voltage V REF from its own output terminal, thereby reducing the error according to the difference between the feedback voltage V FB and the reference voltage V REF .
  • a voltage V ERR is generated on the wiring WR1.
  • Charges generated by the current signal I1 are input to and output from the wiring WR1.
  • the error amplifier 11 outputs a current based on the current signal I1 from the error amplifier 11 to the wiring WR1 so that the potential of the wiring WR1 increases, and the feedback voltage increases.
  • a soft start voltage that gradually increases from 0V to a voltage exceeding the reference voltage V REF may be generated within the power supply IC 2A.
  • the error amplifier 11 compares the lower voltage between the reference voltage V REF and the soft start voltage with the feedback voltage V FB and generates the current signal I1 based on the comparison result.
  • the state after the soft start voltage becomes higher than the reference voltage V REF will be considered, and the existence of the soft start voltage will be ignored below.
  • the phase compensation circuit 12 is provided between the wiring WR1 and the ground, receives the current signal I1, and compensates the phase of the error voltage VERR .
  • the phase compensation circuit 12 includes a series circuit of a resistor 12a and a capacitor 12b. Specifically, one end of the resistor 12a is connected to the wiring WR1, and the other end of the resistor 12a is connected to one end of the capacitor 12b. The other end of capacitor 12b is connected to ground.
  • the differential amplifier 13 is also a current output type transconductance amplifier.
  • the differential amplifier 13 includes an inverting input terminal, a non-inverting input terminal, and an output terminal.
  • the output terminal of the differential amplifier 13 is connected to the wiring WR2.
  • a non-inverting input terminal of the differential amplifier 13 is connected to the wiring WR1 and receives the error voltage V ERR .
  • a voltage V IL is supplied to the inverting input terminal of the differential amplifier 13 .
  • the voltage V IL is coil current information representing the coil current IL.
  • the differential amplifier 13 outputs a current signal I2 corresponding to the difference between the error voltage V ERR and the voltage V IL from its own output terminal, thereby generating a comparison voltage according to the difference between the error voltage V ERR and the voltage V IL .
  • Charges generated by the current signal I2 are input to and output from the wiring WR2.
  • the differential amplifier 13 outputs a current according to the current signal I2 from the differential amplifier 13 to the wiring WR2 so that the potential of the wiring WR2 increases, and the error is reduced.
  • the phase compensation circuit 14 is provided between the wiring WR2 and the ground, receives the current signal I2, and compensates the phase of the comparison voltage V C .
  • the phase compensation circuit 14 includes a series circuit of a resistor 14a and a capacitor 14b. Specifically, one end of the resistor 14a is connected to the wiring WR2, and the other end of the resistor 14a is connected to one end of the capacitor 14b. The other end of capacitor 14b is connected to ground.
  • the clock generation circuit 15 generates and outputs a clock signal CLK.
  • the clock signal CLK is a rectangular wave signal having a predetermined reference frequency f REF and alternately takes low and high signal levels.
  • a clock signal CLK is output from the clock generation circuit 15 to the ramp voltage generation circuit 16 and the logic circuit 18.
  • the ramp voltage generation circuit 16 generates a ramp voltage V RAMP whose voltage value (in other words, signal level) changes periodically.
  • the lamp voltage V RAMP has a voltage waveform of, for example, a triangular wave or a sawtooth wave.
  • the ramp voltage V RAMP depends on the clock signal CLK.
  • FIG. 4 shows the relationship between the ramp voltage V RAMP and the clock signal CLK.
  • a time corresponding to the reciprocal of the reference frequency f REF is referred to as a reference time t REF .
  • an up edge occurs in the clock signal CLK.
  • a down edge occurs in the clock signal CLK when a time (t REF - ⁇ t) elapses after an up edge occurs in the clock signal CLK, and then, when a predetermined minute time ⁇ t elapses, the clock signal CLK A new up edge is generated.
  • the ramp voltage generation circuit 16 sets the value of the ramp voltage V RAMP to a predetermined lower limit voltage value V RAMP_MIN during the low level period of the clock signal CLK, and adjusts the ramp voltage V RAMP linearly over time during the high level period of the clock signal CLK. increase monotonically. Therefore, the ramp voltage generation circuit 16 starts a monotonous rise of the ramp voltage V RAMP from the lower limit voltage value V RAMP_MIN at the rising edge of the clock signal CLK, and starts a monotonous rise of the ramp voltage V RAMP from the lower limit voltage value V RAMP_MIN at the falling edge of the clock signal CLK. Continue until the occurrence of.
  • the ramp voltage generation circuit 16 returns the ramp voltage V RAMP to the lower limit voltage value V RAMP_MIN in response to the down edge of the clock signal CLK.
  • the lower limit voltage value V RAMP_MIN may be referred to as an initial level.
  • the slope of rise of the ramp voltage V RAMP during the high level period of the clock signal CLK is set to be larger as the input voltage V IN is higher (however, it may be set to be constant regardless of the input voltage V IN ).
  • the minute time ⁇ t may be sufficiently smaller than the reference time t REF . In the following, unless it is particularly necessary, the minute time ⁇ t is considered to be sufficiently smaller than the reference time t REF and will be ignored (that is, the minute time ⁇ t will be treated as if it were zero).
  • a non-inverting input terminal of the comparator 17 is connected to the wiring WR2 and receives the comparison voltage V C .
  • the lamp voltage V RAMP from the lamp voltage generation circuit 16 is supplied to the inverting input terminal of the comparator 17 .
  • the comparator 17 compares the comparison voltage V C with the ramp voltage V RAMP and outputs a signal S PWM indicating the comparison result.
  • V C > V RAMP represents that the contrast voltage V C is higher than the lamp voltage V RAMP
  • V C ⁇ V RAMP represents that the contrast voltage V C is lower than the ramp voltage V RAMP
  • the signal S PWM from the comparator 17 is input to the logic circuit 18, and the clock signal CLK from the clock generation circuit 15 is input.
  • Logic circuit 18 controls gate signals G1 and G2 by controlling driver 19 based on signals CLK and SPWM .
  • the driver 19 supplies gate signals G1 and G2 based on the signals CLK and SPWM to the transistors M1 and M2 under the control of the logic circuit 18, thereby causing the output stage circuit MM to perform a switching operation. In the switching operation, transistors M1 and M2 are alternately turned on and off based on signals CLK and SPWM .
  • the error amplifier 11 Since the error amplifier 11 generates the current signal I1 so that the feedback voltage V FB and the reference voltage V REF are equal, the output voltage V OUT is equal to the reference voltage V REF and the resistors R1 and R2 through execution of the switching operation. It is stabilized at a predetermined target voltage V TG according to the voltage division ratio.
  • the logic circuit 18 controls and sets the output stage circuit MM to the output high state by supplying the high level gate signal G1 and the low level gate signal G2 from the driver 19 to the gates of the transistors M1 and M2.
  • the logic circuit 18 controls and sets the output stage circuit MM to an output low state by supplying a low level gate signal G1 and a high level gate signal G2 from the driver 19 to the gates of the transistors M1 and M2.
  • the logic circuit 18 uses the driver 19 to generate an up edge in the gate signal G1 and a down edge in the gate signal G2, thereby switching the state of the output stage circuit MM from the output low state to the output high state.
  • the output stage circuit MM may be switched from the output low state to the output high state via the Hi-Z state. That is, when switching from the output low state to the output high state, a down edge may be generated in the gate signal G2, and then an up edge may be generated in the gate signal G1.
  • the logic circuit 18 uses the driver 19 to generate a down edge in the gate signal G1 and an up edge in the gate signal G2, thereby switching the state of the output stage circuit MM from the output high state to the output low state.
  • the output stage circuit MM may be switched from the output high state to the output low state via the Hi-Z state. That is, when switching from the output high state to the output low state, a down edge may be generated in the gate signal G1 and then an up edge may be generated in the gate signal G2.
  • the logic circuit 18 uses the driver 19 to control on and off of the transistors M1 and M2, but the description of the driver 19 may be omitted below.
  • the coil current IL directed from the switch terminal SW to the output terminal OUT has positive polarity.
  • a positive coil current IL flows during each of the on-periods of the transistor M1 and the on-period of the transistor M2 (assuming operation in a so-called continuous mode).
  • the current information generation circuit 30 executes a current sensing operation to detect the current flowing through the transistor M2 during the on period of the transistor M2, and generates a voltage V IL corresponding to coil current information through the current sensing operation.
  • the current sensing operation can be said to be an operation of detecting the coil current IL by detecting the current flowing through the transistor M2.
  • the current information generation circuit 30 operates so that as the coil current IL increases, a higher voltage V IL is generated. Since the voltage V IL is fed back into the differential amplifier 13, an increase in the error voltage V ERR causes an increase in the coil current IL, and a decrease in the error voltage V ERR causes a decrease in the coil current IL.
  • the current information generation circuit 30 includes a sense resistor 31, an S/H circuit 32, an amplifier circuit 33, a pseudo current generation circuit 34, and an adder 35.
  • the operation of the current information generation circuit 30 may be controlled by the logic circuit 18.
  • the current information generation circuit 30 can detect the current flowing through the transistor M2 (therefore, the coil current IL) by detecting the voltage drop across the sense resistor 31.
  • the sense resistor 31 is inserted in series with the transistor M2 and ground. Specifically, a first end of the sense resistor 31 is connected to the source of the transistor M2, and a second end of the sense resistor 31 is connected to the ground terminal GND. During the ON period of the transistor M2, the coil current IL flows through the sense resistor 31 and the transistor M2, so a voltage drop proportional to the coil current IL occurs in the sense resistor 31.
  • the S/H circuit 32 is a sampling/hold circuit for the voltage drop across the sense resistor 31. That is, the S/H circuit 32 is connected to the first and second ends of the sense resistor 31, and in the current sensing operation, the voltage drop across the sense resistor 31 (that is, the voltage generated between both terminals of the sense resistor 31) is transferred to the logic circuit. The data is sampled and held at the sampling timing set by 18. In the current sensing operation, the amplifier circuit 33 amplifies the voltage currently held in the S/H circuit 32 and outputs the amplified voltage. The output voltage of the amplifier circuit 33 is represented by the symbol "V ISNS ".
  • a current sensor including a sense resistor 31, an S/H circuit 32, and an amplifier circuit 33 detects the value of the coil current IL.
  • the voltage V ISNS corresponds to detected current information representing a detected value (detected current value) of the coil current IL.
  • the detected value of the coil current IL corresponds to the voltage V ISNS divided by the product of the value of the sense resistor 31 and the amplification factor of the amplifier circuit 33.
  • the pseudo current generation circuit 34 generates and outputs a voltage V IPS representing pseudo current information.
  • the voltage V IPS is sometimes taken to be zero.
  • the adder 35 adds the output voltage V IPS of the pseudo current generation circuit 34 to the output voltage V ISNS of the amplifier circuit 33, and outputs the sum voltage (VI SNS +V IPS ) as the voltage V IL .
  • the voltage V IL is coil current information representing the coil current IL.
  • the significance and generation method of the voltage V IPS will be explained in detail later.
  • the switching frequency at which transistors M1 and M2 are alternately turned on and off is called the switching frequency, and is particularly referred to by the symbol “f SW ".
  • the switching frequency f SW is both the switching frequency of the transistor M1 (therefore the frequency of the gate signal G1) and the switching frequency of the transistor M2 (therefore the frequency of the gate signal G2).
  • the switching frequency f SW becomes stable at the reference frequency f REF .
  • FIG. 5 shows a timing chart when the switching frequency f SW is stable at the reference frequency f REF (that is, a timing chart when the switching frequency f SW is maintained at the reference frequency f REF ).
  • the waveforms of the signal S PWM , the lamp voltage V RAMP , the clock signal CLK, the gate signal G1, the gate signal G2, the coil current IL, the voltage V ISNS and the voltage V IL are shown as solid lines, and the comparison voltage V C
  • the waveform of is shown by the dashed line.
  • an up edge occurs in the clock signal CLK at times T11, T12, T13, and T14, which occur sequentially.
  • the logic circuit 18 When an up edge occurs in the clock signal CLK at time T11 when the output stage circuit MM is in the output low state, the logic circuit 18 causes an up edge to occur in the gate signal G1 and a down edge in the gate signal G2. The output stage circuit MM is switched from the output low state to the output high state.
  • the ramp voltage VRAMP starts rising from the initial level ( VRAMP_MIN ) as described above.
  • V C > V RAMP " always holds true, and therefore the signal SPWM is at a high level.
  • the ramp voltage V RAMP reaches the comparison voltage V C during the rising process of the ramp voltage V RAMP , a down edge occurs in the signal S PWM .
  • the lamp voltage V RAMP reaches the comparison voltage V C , it refers to a transition from a state in which “V C >V RAMP ” holds to a state in which “V C ⁇ V RAMP ” holds.
  • the low level signal S PWM functions as a reset signal.
  • issuing a reset signal means that the comparator 17 outputs a low-level signal S PWM , or that a down edge occurs in the signal S PWM .
  • the logic circuit 18 causes the gate signal G1 to generate a down edge and the gate signal G2 to generate an up edge to switch the output stage circuit MM from the output high state to the output low state (however, the reset signal (except where invalidated).
  • the ramp voltage VRAMP is returned to the initial level ( VRAMP_MIN ), and thereby an up edge occurs in the signal SPWM .
  • another up edge occurs in the clock signal CLK at time T12. Thereafter, similar operations are repeated.
  • the logic circuit 18 sets the sampling timing within the on period of the transistor M2 (that is, the period during which the output stage circuit MM is in the output low state).
  • the set sampling timing will be referred to below with the symbol “T SMPL ".
  • One sampling timing T SMPL is set for each on-period of the transistor M2, and a current sensing operation is performed at each sampling timing T SMPL .
  • the S/H circuit 32 samples and holds the voltage drop across the sense resistor 31 at sampling timing TSMPL .
  • the sampling timing T SMPL set between times T11 and T12 is particularly referred to by the symbol “T SMPL1 "
  • the sampling timing T SMPL set between times T12 and T13 is specifically referred to by the symbol “T SMPL2 "
  • the sampling timing T SMPL set between times T13 and T14 is particularly referred to by the symbol "T SMPL3 .”
  • the voltages V ISNS obtained by amplifying the voltages sampled at the sampling timings T SMPL1 , T SMPL2 , and T SMPL3 in the amplifier circuit 33 are referred to by symbols V ISNS1 , V ISNS2 , and V ISNS3 , respectively.
  • the output voltage V ISNS of the amplifier circuit 33 is maintained at the voltage V ISNS1 from sampling timing T SMPL1 to immediately before sampling timing T SMPL2 .
  • the output voltage V ISNS of the amplifier circuit 33 is maintained at the voltage V ISNS2 from sampling timing T SMPL2 to immediately before sampling timing T SMPL3 . The same applies thereafter.
  • any timing during the on period of the transistor M2 may be set as the sampling timing TSMPL .
  • the logic circuit 18 may set the sampling timing T SMPL to a timing when a predetermined period of time has elapsed from the turn-on timing of the transistor M2.
  • the logic circuit 18 may set the sampling timing T SMPL to a timing that is a predetermined time before the turn-off timing of the transistor M2.
  • the central timing of the on period of the transistor M2 is set to the sampling timing T SMPL .
  • FIG. 6 shows the relationship between the reference time t REF and the minimum sense time t MIN_SNS .
  • the minimum sense time t MIN_SNS is shorter than the reference time t REF .
  • the maximum on-time t MAX_ON represents the maximum length of the on-period of the transistor M1 in one cycle of the switching operation.
  • the duty refers to the ratio of the on time of the transistor M1 that occupies one cycle of the switching operation, and the maximum value that the duty can take is the maximum duty.
  • the period between two adjacent up edge timings in the clock signal CLK is referred to as a unit period.
  • the length of the unit period matches the reference time t REF .
  • Each unit period is a composite period of a preceding period and a subsequent period. In each unit period, the latter period is arranged after the former period.
  • the length of the latter period matches the minimum sense time t MIN_SNS .
  • the power supply IC2A is basically suitable for applications where the input voltage V IN is sufficiently higher than the output voltage V OUT .
  • the on-time of transistor M1 is considerably shortened while the on-time of transistor M2 is sufficiently long. Therefore, time for detecting the current flowing through the transistor M2 can be easily and stably secured.
  • V IN > V OUT temporarily, the difference between the voltages V IN and V OUT may become small, or "V IN ⁇ V OUT " may temporarily occur.
  • V IN ⁇ V OUT the difference between the voltages V IN and V OUT may become small, or “V IN ⁇ V OUT " may temporarily occur.
  • the logic circuit 18 can set the switching frequency f SW to the reference frequency f REF or (1/n) times the reference frequency f REF .
  • n is an arbitrary integer of 2 or more.
  • the current sensing operation cannot be performed for a relatively long time, as opposed to being able to obtain a high duty.
  • FIG. 7 shows a timing chart related to the first virtual operation. It is assumed that, unlike the power supply IC 2A according to this embodiment, the voltage V IPS is fixed to zero in the first virtual operation.
  • waveforms 911 to 920 are input voltage V IN , output voltage V OUT , comparison voltage V C , lamp voltage V RAMP , clock signal CLK, gate signal G1, gate signal G2, coil current I L , and voltage
  • the waveform 921 corresponds to an expanded waveform (the waveform 912 expanded in the voltage direction) of the output voltage V OUT .
  • Each white circle shown on the waveform 918 of the coil current IL represents a sampling timing T SMPL .
  • Each white circle shown on the waveform 919 of the voltage V ISNS represents detected current information (V ISNS ) obtained by the current sensing operation at each sampling timing T SMPL .
  • V IPS 0
  • V IL V ISNS
  • the reference switching operation is performed until time T21.
  • the difference between the input voltage V IN and the output voltage V OUT is small, and the duty of the output stage circuit MM approximately matches the maximum duty.
  • the on-time of transistor M2 substantially matches the minimum sense time t MIN_SNS (provided that it is greater than or equal to the minimum sense time t MIN_SNS ).
  • the input voltage V IN has decreased slightly after time T21. Further, an up edge occurs in the clock signal CLK at time T21.
  • Time T23 represents the time when reference time t REF has elapsed from time T21, and therefore, the next up edge occurs in clock signal CLK at time T23.
  • Time T22 represents a time before time T23 by the minimum sense time t MIN_SNS .
  • the logic circuit 18 related to the first virtual operation switches the switching operation to be executed from the reference switching operation to the frequency division switching operation, and keeps the output stage circuit MM in the output high state until a reset signal is issued after time T23. keep.
  • Time T24 is the time when the next up edge occurs in clock signal CLK after time T23.
  • Examples EX1_1 to EX1_4 will be described below as a plurality of examples related to the switching power supply device 1 of the first embodiment. Any two or more of the embodiments EX1_1 to EX1_4 can also be combined with each other.
  • FIG. 8 shows a timing chart according to the embodiment EX1_1. It is assumed that as time passes, times T30 to T36, T41 to T46, T51 to T56, and T61 sequentially occur in this order.
  • waveforms 611 to 621 are input voltage V IN , output voltage V OUT , comparison voltage V C , lamp voltage V RAMP , clock signal CLK, gate signal G1, gate signal G2, coil current I L , and voltage
  • waveform 622 corresponds to an expanded waveform (waveform 612 expanded in the voltage direction) of output voltage V OUT .
  • a broken line waveform 921 shown in FIG. 8 corresponds to the waveform 921 shown in FIG. 7 (the waveform of the output voltage V OUT in the first virtual operation).
  • Each white circle shown on the waveform 618 of the coil current IL represents a sampling timing T SMPL , and the current flowing through the transistor M2 is sampled and detected at each sampling timing T SMPL .
  • Each white circle shown on the waveform 619 of the voltage V ISNS represents detected current information (V ISNS ) obtained by the current sensing operation at each sampling timing T SMPL .
  • the current information generation circuit 30 performs a current sensing operation in each switching cycle before time T31.
  • the pseudo current generation circuit 34 generates and outputs a voltage V IPS greater than zero.
  • Each open triangle shown on the voltage V IPS waveform 620 represents a voltage V IPS greater than zero.
  • Each white triangle shown on the waveform 621 of voltage V IL represents the sum of voltage I SNS and voltage V IPS greater than zero.
  • Each white triangle on the waveform 618 of the coil current IL represents a value (estimated value) of the coil current IL indicated by the voltage V IL .
  • Time T31 is the sampling timing T SMPL of the current sensing operation performed immediately before time T31.
  • Time T31 represents the time when reference time t REF has elapsed from time T31, and therefore, the next up edge occurs in clock signal CLK at time T34.
  • Time T32 represents the time before time T34 by the minimum sense time t MIN_SNS .
  • a reset signal is not issued before time T32 in the switching cycle starting from time T31 (that is, no reset signal is issued during the pre-stage period: see FIG. 6).
  • the logic circuit 18 switches the switching operation to be executed from the reference switching operation to the frequency division switching operation.
  • the logic circuit 18 invalidates the reset signal issued between times T32 and T34, and the logic circuit 18 disables the reset signal issued between times T32 and T34, and the logic circuit 18 disables the reset signal issued between times T32 and T34, regardless of the level relationship between the voltages V C and V RAMP between times T32 and T34.
  • the output stage circuit MM is kept in the output high state during the period.
  • Time T41 represents the time when reference time t REF has elapsed from time T34.
  • the reset signal is issued when the lamp voltage V RAMP reaches the comparison voltage V C at time T35.
  • Time T35 is a time before time T41, and the time difference between time T35 and T41 is greater than the minimum sense time t MIN_SNS . Therefore, at time T35, the logic circuit 18 switches the output stage circuit MM from the output high state to the output low state based on the issued reset signal.
  • the logic circuit 18 sets the sampling timing T SMPL to the time T36, which is the time between the times T35 and T41, and the current information generation circuit 30 performs a current sensing operation at the time T36 according to the setting result.
  • Time T41 At time T41, an up edge occurs in the clock signal CLK, and the state of the output stage circuit MM switches from the output low state to the output high state.
  • Time T44 represents the time when reference time t REF has elapsed from time T41, and therefore, the next up edge occurs in clock signal CLK at time T44.
  • Time T42 represents a time before time T44 by the minimum sense time t MIN_SNS .
  • the decreased state of the input voltage V IN that occurred at time T31 is maintained after time T41.
  • no reset signal is issued before time T42 (that is, no reset signal is issued during the previous period: see FIG. 6).
  • the logic circuit 18 maintains the switching operation to be performed as the frequency division switching operation.
  • the logic circuit 18 invalidates the reset signal issued between times T42 and T44, and the logic circuit 18 disables the reset signal issued between times T42 and T44, regardless of the level relationship between the voltages V C and V RAMP between times T42 and T44.
  • the output stage circuit MM is kept in the output high state between T42 and T44.
  • Time T51 represents the time when reference time t REF has elapsed from time T44.
  • the reset signal is issued when the lamp voltage V RAMP reaches the comparison voltage V C at time T45.
  • Time T45 is a time before time T51, and the time difference between time T45 and T51 is greater than the minimum sense time t MIN_SNS . Therefore, at time T45, the logic circuit 18 switches the output stage circuit MM from the output high state to the output low state based on the issued reset signal.
  • the logic circuit 18 sets time T46, which is the time between time T45 and T51, as the sampling timing T SMPL , and according to the setting result, the current information generation circuit 30 performs a current sensing operation at time T46.
  • Time T51 At time T51, an up edge occurs in the clock signal CLK, and the state of the output stage circuit MM switches from the output low state to the output high state.
  • Time T54 represents the time when reference time t REF has elapsed from time T51, and therefore, the next up edge occurs in clock signal CLK at time T54.
  • Time T52 represents a time before time T54 by the minimum sense time t MIN_SNS .
  • the decreased state of the input voltage V IN that occurred at time T31 is maintained after time T51.
  • no reset signal is issued before time T52 (that is, no reset signal is issued during the previous period: see FIG. 6).
  • the logic circuit 18 maintains the switching operation to be performed as the frequency division switching operation.
  • the logic circuit 18 invalidates the reset signal issued between times T52 and T54, and the logic circuit 18 disables the reset signal issued between times T52 and T54, regardless of the level relationship between the voltages V C and V RAMP between times T52 and T54.
  • the output stage circuit MM is kept in the output high state between T52 and T54.
  • Time T61 represents the time when reference time t REF has elapsed from time T54.
  • the reset signal is issued when the lamp voltage V RAMP reaches the comparison voltage V C at time T55.
  • Time T55 is a time before time T61, and the time difference between time T55 and T61 is greater than the minimum sense time t MIN_SNS . Therefore, at time T55, the logic circuit 18 switches the output stage circuit MM from the output high state to the output low state based on the issued reset signal.
  • the logic circuit 18 sets time T56, which is the time between time T55 and T61, as the sampling timing T SMPL , and according to the setting result, the current information generation circuit 30 performs a current sensing operation at time T56.
  • the sensed current information (ie, voltage V ISNS ) is updated each time a current sensing operation is performed. That is, the detected current information (ie, the voltage VISNS ) obtained by the current sensing operation at time T30 is continuously output from the amplifier circuit 33 between times T30 and T36. Thereafter, the detected current information (ie, the voltage VISNS ) obtained by the current sensing operation at time T36 is continuously outputted from the amplifier circuit 33 between times T36 and T46. Further thereafter, the detected current information (ie, the voltage V ISNS ) obtained by the current sensing operation at time T46 is continuously outputted from the amplifier circuit 33 between times T46 and T56. The same applies thereafter.
  • the voltage V IPS has a positive voltage value V A1 between times T33 and T36.
  • the voltage V IPS has a positive voltage value V A2 between times T43 and T46 and between times T53 and T56.
  • the voltage value V A1 is greater than the voltage value V A2 .
  • Time T33 belongs to the latter period of the unit period starting from time T31 (see FIG. 6).
  • Time T43 belongs to the latter period of the unit period starting from time T41.
  • Time T53 belongs to the latter period of the unit period starting from time T51.
  • the logic circuit 18 monitors whether or not a reset signal has been issued during the previous stage period, and provides the monitoring result to the pseudo current generation circuit 34.
  • the pseudo current generation circuit 34 determines the value of the voltage V IPS based on the above monitoring results.
  • the voltage V IPS is in principle zero.
  • the pseudo current generation circuit 34 generates a current that is greater than zero from the timing during the latter period within the specific unit period until the next current sensing operation is performed. It outputs the voltage V IPS and returns the voltage V IPS to zero when a current sensing operation is performed.
  • a specific unit period refers to a unit period in which the transistor M1 is switched from off to on at the start of the unit period. Therefore, a unit period starting from time T31, T41, or T51 corresponds to a specific unit period, but a unit period starting from time T34, T44, or T54 does not correspond to a specific unit period.
  • the reset signal is not issued during the first stage period within the unit period starting from time T31. Therefore, the voltage V IPS is made to have the voltage value V A1 from the timing (T33) during the latter period in the unit period starting from time T31 to the timing (T36) when the current sensing operation is performed next time. The voltage V IPS is returned to zero after time T36, and the zero voltage V IPS continues until just before time T43. Similarly, no reset signal is issued during the first stage period within the unit period starting from time T41. Therefore, the voltage V IPS is made to have the voltage value V A2 from the timing (T43) during the latter period in the unit period starting from time T41 until the timing (T46) when the current sensing operation is performed next time.
  • the voltage V IPS is returned to zero after time T46, and the zero voltage V IPS continues until just before time T53. Similarly, no reset signal is issued during the first stage period within the unit period starting from time T51. Therefore, the voltage V IPS is made to have the voltage value V A2 from the timing (T53) during the latter period in the unit period starting from time T51 to the timing (T56) when the current sensing operation is performed next time. The voltage V IPS is returned to zero after time T56.
  • the sum of the voltage V ISNS and the voltage V IPS becomes the voltage V IL .
  • the positive voltage V IPS corresponds to the increase in the coil current IL that occurs during the period when the current sensing operation is not performed, converted into voltage, and the estimated increase in the coil current IL is the pseudo current. It is superimposed on the detected coil current IL (detected current information). The method of setting the pseudo current will be explained.
  • Equation (1) The slope ⁇ IL of the coil current IL in the output high state of the output stage circuit MM is expressed by the following equation (1).
  • L1 in equation (1) represents the inductance (value of inductance) of the coil L1 (the same applies to other equations described later). If the slope ⁇ IL of the coil current IL is known, the above-mentioned increase in the coil current IL can be found, and therefore the pseudo current to be superimposed can be found.
  • ⁇ IL (V IN - V OUT )/L1...(1)
  • the inductance (inductance value) of the coil L1 is set to a predetermined value, and that the inductance (inductance value) of the coil L1 in the power supply IC 2A is known. Further, the power supply IC 2A can recognize the input voltage V IN by detecting the voltage at the input terminal IN. In addition, the power supply IC 2A can recognize the output voltage V OUT by detecting the voltage at the output monitoring terminal OS. Alternatively, in the switching power supply device 1, the target of the output voltage V OUT (target voltage V TG ) may be fixed to a constant value. In this case, the constant value is recognized in advance by the power supply IC 2A. At this time, the output monitoring terminal OS may be omitted. In any case, the power supply IC 2A (for example, the current information generation circuit 30) can determine the slope ⁇ IL according to equation (1) based on the input voltage V IN , the output voltage V OUT , and the inductance of the coil L1.
  • the pseudo current to be superimposed is derived by multiplying the slope ⁇ IL by the necessary time information.
  • the pseudo current generation circuit 34 derives and determines the voltage values V A1 and V A2 according to the following equations (2) and (3).
  • “ ⁇ IL ⁇ t REF ” represents the amount of increase in the coil current IL that occurs when the output stage circuit MM is maintained in the output high state for the reference time t REF .
  • the conversion coefficients k A1 and k A2 are coefficients for converting the amount of current into the amount of voltage.
  • the conversion coefficients k A1 and k A2 are set in the pseudo current generation circuit 34 or the logic circuit 18 .
  • “k A1 >k A2 >0" holds true.
  • the conversion coefficient k A1 may have a value obtained by multiplying the conversion coefficient k A2 by a predetermined value larger than 1.
  • the coil current IL does not increase throughout the period between times T30 and T33 in FIG. 8 .
  • the conversion coefficient k A1 may be set according to the time difference between times T30 and T31 and the time difference between times T31 and T33, and thereby a pseudo current close to the ideal may be superimposed.
  • the conversion coefficient k A2 may be set according to the time difference between times T36 and T41 and the time difference between times T41 and T43, thereby superimposing a pseudo current close to the ideal.
  • Superimposition of the pseudo current corresponds to reflecting the current value of the coil current IL on the contrast voltage V C , resulting in a decrease in the contrast voltage V C as shown in FIG. . Therefore, as can be understood from the comparison between FIG. 7 and FIG. 8, excessive increase in duty in the frequency division switching operation is suppressed.
  • Example EX1_1 when the switching operation is switched from the reference switching operation to the frequency division switching operation, fluctuations in the output voltage V OUT can be suppressed to a low level (waveform 622 according to Example EX1_1 and waveform 921 according to the reference operation). ), that is, the output voltage V OUT can be well stabilized.
  • the current information generation circuit 30 does not use the current information until a predetermined time (for example, time (t REF ⁇ t MIN_SNS /2)) has elapsed after the transistor M1 is turned on during the period in which the frequency division switching operation is performed.
  • Detected current information ( VISNS ) by the current sensing operation is generated as coil current information ( VIL ).
  • the current information generating circuit 30 generates current information detected by the most recent current sensing operation until the next current sensing operation is performed after the predetermined time period has elapsed since the transistor M1 was turned on during the frequency division switching operation.
  • V ISNS and pseudo current information
  • V IPS pseudo current information
  • V A1 V A2
  • the logic circuit 18 monitors the time from turning on the transistor M1 until the reset signal is issued each time the transistor M1 is turned on. As can be understood from the above description, the logic circuit 18 performs switching when a reset signal is not issued within a predetermined time period t D after turning on the transistor M1 while performing a reference switching operation. Switches the operation from reference switching operation to frequency division switching operation.
  • the logic circuit 18 returns the switching operation to be performed to the standard switching operation.
  • the input voltage V IN increases, so that the switching operation performed can return to the reference switching operation.
  • Example EX1_2 ⁇ Example EX1_2>> Example EX1_2 will be explained.
  • case CS2 is assumed based on the case shown in FIG. 8 (hereinafter referred to as case CS1).
  • case CS1 the input voltage V IN decreases more greatly than in case CS1 at time T31.
  • the reset signal is not issued in the first period of the unit period 641 starting from time T31, and the reset signal is not issued even in the first period of the unit period 642 starting from time T34.
  • case CS2 it is assumed that a reset signal is then issued at time T41' which belongs to the first period in the unit period 643 starting from time T41 (whether or not the reset signal is issued is not shown in FIG. 10).
  • the unit periods 641 to 643 are three consecutive unit periods, and time T41' is after time T41 and before time T44.
  • the logic circuit 18 switches the output stage circuit MM from the output low state to the output high state at time T31, maintains the output stage circuit MM in the output high state until time T41', and then switches the output stage circuit MM to the output high state until time T41'.
  • the output stage circuit MM is returned to the output low state. Thereafter, a current sensing operation is performed at time T43' belonging to the unit period 643, and further at time T44, the output stage circuit MM switches to the output high state in response to the rising edge of the clock signal CLK.
  • the voltage V IPS is set to zero until time T33, the value of voltage V IPS is set to the above voltage value V A1 between times T33 and T36', and the voltage V IPS is set to zero between times T36' and T43'.
  • the value of IPS is set to the voltage value V A3 .
  • the voltage value V A3 is larger than the voltage value V A1 .
  • the time T33 is a time belonging to the latter period in the unit period 641, and may be, for example, the center timing (center time) of the latter period in the unit period 641.
  • time T36' is a time that belongs to the latter period in the unit period 642, and may be, for example, the center timing (center time) of the latter period in the unit period 642.
  • the switching frequency f SW switches from the reference frequency f REF to the frequency (f REF /3) at time T31, and the coil current IL continues to rise between times T31 and T41'. Therefore, the pseudo current superimposed between times T36' and T43' is made larger than the pseudo current superimposed between times T33 and T36' by the amount of current corresponding to the difference (V A3 - V A1 ).
  • the amount of current here is " ⁇ IL ⁇ t REF ". That is, the difference (V A3 -V A1 ) is the amount of current ( ⁇ IL ⁇ t REF ) converted into voltage.
  • the logic circuit 18 performs the following operations. After turning on the transistor M1, the logic circuit 18 monitors whether a reset signal is issued during the pre-stage period. If a reset signal is issued during the previous stage period in the unit period of interest which is an arbitrary unit period, in response to the issuance of the reset signal, the logic circuit 18 immediately outputs the output stage circuit MM to a high state. Then, the output is switched to a low state, and a current sensing operation is performed during the ON period of the transistor M2 within the unit period of interest.
  • the logic circuit 18 keeps the output stage circuit MM in the output high state throughout the unit period of interest, regardless of the level relationship between the voltages V C and V RAMP .
  • the next unit period is set as a new unit period of interest, and the same operation as described above is performed. Therefore, depending on the degree of decrease in the input voltage V IN , the on-period of the transistor M1 increases without limit (however, an upper limit may be set).
  • FIG. 11 shows the configuration of a switching power supply device 1 having a power supply IC 2B.
  • Power supply IC2B is an example of power supply IC2.
  • a sense resistor 31 is not provided in the current information generation circuit 30 in the power supply IC 2B.
  • the on-resistance of the transistor M2 is used instead of the sense resistor 31 to detect the current flowing through the transistor M2 (ie, the coil current IL) during the on-period of the transistor M2. Therefore, the S/H circuit 32 in the power supply IC2B is connected to the drain and source of the transistor M2, and in the current sensing operation, samples and holds the voltage drop occurring between the drain and source of the transistor M2 at the sampling timing T SMPL . .
  • Example EX1_1 is the same as the example This also applies to EX1_3.
  • the "voltage drop across the sense resistor 31" and “value of the sense resistor 31" in Example EX1_1 are replaced with "voltage drop occurring between the drain and source of transistor M2" and "on-on state of transistor M2" in Example EX1_3. It can be read as "resistance value”.
  • Example EX1_4 >> Example EX1_4 will be explained.
  • the main control block 3 includes a switching control circuit that performs switching operations.
  • the switching control circuit can be considered to be formed by including parts referenced by reference numerals 11 to 19 (see FIG. 3 or FIG. 11).
  • the switching control circuit performs a switching operation based on voltage information corresponding to the output voltage V OUT and coil current information (V IL ).
  • the feedback voltage V FB is an example of voltage information corresponding to the output voltage V OUT .
  • the voltage information may be the output voltage V OUT itself.
  • the switching control circuit includes a contrast voltage generation circuit that generates a contrast voltage V C .
  • the comparison voltage generation circuit can be considered to be formed including the respective parts referenced by numerals 11 to 14 (see FIG. 3 or FIG. 11).
  • each circuit in the power supply IC 2 (2A, 2B) is configured such that a reset signal is issued when the state in which "V C ⁇ V RAMP " is established to the state in which "V C > V RAMP" is established. is transformed appropriately.
  • channels of FETs field effect transistors
  • the channel type of any FET may be varied between P-channel and N-channel.
  • any transistor mentioned above may be any type of transistor as long as no inconvenience occurs.
  • any transistor described above as a MOSFET can be replaced with a junction FET, an IGBT (Insulated Gate Bipolar Transistor), or a bipolar transistor, as long as no inconvenience occurs.
  • Any transistor has a first electrode, a second electrode, and a control electrode.
  • a FET one of the first and second electrodes is the drain, the other is the source, and the control electrode is the gate.
  • an IGBT one of the first and second electrodes is the collector, the other is the emitter, and the control electrode is the gate.
  • a bipolar transistor that does not belong to an IGBT one of the first and second electrodes is the collector, the other is the emitter, and the control electrode is the base.
  • a switching power supply circuit is a switching power supply circuit (2, 2A) used in a switching power supply device (1) for generating an output voltage (V OUT ) through switching of an input voltage (V IN ).
  • 2B an output stage circuit (MM) having a high-side transistor (M1) and a low-side transistor (M2) connected in series between an input terminal (IN) receiving the input voltage and a ground terminal (GND).
  • MM output stage circuit
  • M1 high-side transistor
  • M2 low-side transistor
  • GND ground terminal
  • a switching control circuit 11 to 19 configured to perform a switching operation of alternately turning on and off the high-side transistor and the low-side transistor; and detecting a current flowing through the low-side transistor during an on period of the low-side transistor.
  • a current information generation circuit configured to perform a current sensing operation, wherein a connection node between the high-side transistor and the low-side transistor includes a coil (L1) and an output capacitor (C1).
  • the switching voltage (V SW ) generated at the connection node due to the switching operation is rectified and smoothed by the rectification and smoothing circuit to generate the output voltage, and the switching control circuit generates the output voltage.
  • the switching operation is performed based on voltage information (V FB ) corresponding to the current sensing operation and current information (V IL ) of the coil generated through the current sensing operation, and the switching control circuit controls the switching frequency in the switching operation.
  • configuration P1 When, during a part of the period from performing the most recent current sensing operation to performing the next current sensing operation, the input voltage and the current information ( VISNS ) detected by the most recent current sensing operation are This configuration (hereinafter referred to as configuration P1) generates current information of the coil by adding pseudo current information (V IP ) based on the output voltage.
  • the current information generation circuit has a configuration (hereinafter referred to as configuration P2) that generates the pseudo current information based on the input voltage, the output voltage, and the inductance of the coil. ) may also be used.
  • the current information generation circuit is configured to calculate the input voltage, the output voltage, the inductance of the coil, and the time (t REF ) corresponding to the reciprocal of the first frequency. It may be a configuration (hereinafter referred to as configuration P3) that generates the pseudo current information based on the current information.
  • the current information generation circuit is arranged such that a predetermined period of time elapses after the high-side transistor is turned on during a period in which the switching frequency is set to the second frequency. Until the predetermined time has elapsed, the detected current information from the most recent current sensing operation is generated as current information of the coil, and after the predetermined time has elapsed since the high-side transistor was turned on, the next current sensing operation is performed.
  • a configuration (hereinafter referred to as configuration P4) may be adopted in which the sum of the detected current information from the most recent current sensing operation and the pseudo current information is generated as current information of the coil until an operation is performed.
  • the current information generation circuit is configured to generate a value of the pseudo current information immediately after the switching frequency is switched from the first frequency to the second frequency.
  • V A1 may be set larger than the subsequent value (V A2 ) of the pseudo current information (hereinafter referred to as configuration P5).
  • the output voltage can be quickly stabilized after the switching frequency is switched from the first frequency to the second frequency.
  • the current information generation circuit includes each A configuration (hereinafter referred to as configuration P6) may be adopted in which the current sensing operation is executed during the period, and the detected current information by the current sensing operation is generated as current information of the coil.
  • the switching control circuit is configured to generate a contrast voltage (V C ) based on voltage information corresponding to the output voltage and current information of the coil.
  • circuits (11 to 14), and a lamp voltage generation circuit (16) configured to generate a lamp voltage that monotonically changes from an initial level in a predetermined direction at a period of the reciprocal of the first frequency,
  • a reset signal down edge of S PWM is generated in response to a change in the level relationship between the comparison voltage and the lamp voltage from a first relationship to a second relationship.
  • configuration P7 that switches the switching frequency from the first frequency to the second frequency when the reset signal is not issued before a specified time (t MAX_ON ) shorter than the reciprocal of the first frequency has elapsed. ).
  • the switching control circuit switches the switching frequency from the first frequency to the second frequency
  • the specified time period elapses from the turn-on timing of the high-side transistor.
  • the switching frequency may be configured to return the switching frequency from the second frequency to the first frequency when the reset signal is issued (hereinafter referred to as configuration P8).
  • the switching frequency can be returned to the first frequency.
  • a switching power supply device includes a switching power supply circuit according to any one of the configurations P1 to P8, and a rectifier configured to generate the output voltage by rectifying and smoothing the switching voltage.
  • This is a smoothing circuit and a configuration (hereinafter referred to as configuration P9).
  • FIGS. 1 and 2 The overall configuration diagram and external perspective view of the switching power supply device 1 according to the second embodiment are as shown in FIGS. 1 and 2.
  • a power IC 2C shown in FIG. 12 is used as the power IC 2.
  • FIG. 12 shows the configuration of a switching power supply device 1 having a power supply IC 2C.
  • Power supply IC2C is an example of power supply IC2. All the matters described above regarding the power supply IC 2 also apply to the power supply IC 2C unless there is a contradiction.
  • the main control block 3 in the power supply IC 2C includes an error amplifier 11, a phase compensation circuit 12, a differential amplifier 13, a phase compensation circuit 14, a clock generation circuit 15, a lamp voltage generation circuit 16, a comparator 17, and logic. It includes a circuit 18, a driver 19, and a current information generation circuit 30C.
  • the power supply IC 2C performs a switching operation using pulse width modulation.
  • a power supply IC 2C is obtained by replacing the current information generation circuit 30 of FIG. 3 with a current information generation circuit 30C based on the power supply IC 2A according to the first embodiment. Except for this substitution, the configuration and operation of the power supply IC 2C are similar to those of the power supply IC 2A.
  • the description in the first embodiment may be applied to the second embodiment.
  • the relationship between the ramp voltage V RAMP and the clock signal CLK shown in FIG. 4 also applies to the second embodiment.
  • the description of the second embodiment takes precedence regarding matters that are inconsistent between the first and second embodiments.
  • the current information generation circuit 30C performs a low-side current sensing operation to detect the current flowing through the transistor M2 during the on-period of the transistor M2, and generates a voltage V IL corresponding to coil current information through the low-side current sensing operation.
  • the low-side current sensing operation can be said to be an operation of detecting the coil current IL by detecting the current flowing through the transistor M2.
  • the current information generation circuit 30C may perform a high-side current sensing operation to detect the current flowing through the transistor M1 during the on period of the transistor M1. At this time, a voltage V IL corresponding to coil current information may be generated through a high-side current sensing operation.
  • the high-side current sensing operation can be said to be an operation of detecting the coil current IL by detecting the current flowing through the transistor M1.
  • the current information generation circuit 30C operates so that as the coil current IL increases, a higher voltage V IL is generated. Since the voltage V IL is fed back into the differential amplifier 13, an increase in the error voltage V ERR causes an increase in the coil current IL, and a decrease in the error voltage V ERR causes a decrease in the coil current IL.
  • the current information generation circuit 30C includes a sense resistor 31, an S/H circuit 32, and an amplifier circuit 33.
  • the operation of the current information generation circuit 30C may be controlled by the logic circuit 18.
  • the current information generation circuit 30C can detect the current flowing through the transistor M2 (therefore, the coil current IL) by detecting the voltage drop across the sense resistor 31.
  • FIG. 12 only shows the portions of the configuration of the current information generation circuit 30C that are involved in the low-side current sensing operation. Parts involved in the high-side current sensing operation are shown in other figures.
  • the sense resistor 31 is inserted in series with the transistor M2 and ground. Specifically, a first end of the sense resistor 31 is connected to the source of the transistor M2, and a second end of the sense resistor 31 is connected to the ground terminal GND. During the ON period of the transistor M2, the coil current IL flows through the sense resistor 31 and the transistor M2, so a voltage drop proportional to the coil current IL occurs in the sense resistor 31.
  • the S/H circuit 32 is a sampling/hold circuit for the voltage drop across the sense resistor 31. That is, the S/H circuit 32 is connected to the first and second ends of the sense resistor 31, and in the low-side current sensing operation, the voltage drop across the sense resistor 31 (that is, the voltage generated between both terminals of the sense resistor 31) is controlled by logic. It is sampled and held at the sampling timing set by the circuit 18.
  • the amplifier circuit 33 amplifies the voltage currently held in the S/H circuit 32 and outputs the amplified voltage.
  • the output voltage of the amplifier circuit 33 is outputted as a voltage V IL from the current information generation circuit 30C.
  • Voltage V IL represents a detected value (detected current value) of coil current IL. In the low-side current sensing operation, the detected value of the coil current IL corresponds to the voltage V IL divided by the product of the value of the sense resistor 31 and the amplification factor of the amplifier circuit 33.
  • the switching frequency at which transistors M1 and M2 are alternately turned on and off is called the switching frequency, and is particularly referred to by the symbol “f SW ".
  • the switching frequency f SW is both the switching frequency of the transistor M1 (therefore the frequency of the gate signal G1) and the switching frequency of the transistor M2 (therefore the frequency of the gate signal G2).
  • the switching frequency f SW becomes stable at the reference frequency f REF .
  • FIG. 13 shows a timing chart when the switching frequency f SW is stabilized at the reference frequency f REF (that is, a timing chart when the switching frequency f SW is maintained at the reference frequency f REF ).
  • the current information generation circuit 30C detects the coil current IL and generates the coil current information (V IL ) using only the low-side current sensing operation.
  • the waveforms of the signal SPWM , lamp voltage V RAMP , clock signal CLK, gate signal G1, gate signal G2, coil current IL, and voltage V IL are shown as solid lines, and the waveform of the contrast voltage V C is shown as a broken line. is shown.
  • FIG. 13 shows a timing chart when the switching frequency f SW is stabilized at the reference frequency f REF (that is, a timing chart when the switching frequency f SW is maintained at the reference frequency f REF ).
  • up edges occur in the clock signal CLK at times T11, T12, T13, and T14, which occur sequentially.
  • the logic circuit 18 causes an up edge to occur in the gate signal G1 and a down edge in the gate signal G2.
  • the output stage circuit MM is switched from the output low state to the output high state.
  • the ramp voltage VRAMP starts rising from the initial level ( VRAMP_MIN ) as described above.
  • V C > V RAMP " always holds true, and therefore the signal SPWM is at a high level.
  • the ramp voltage V RAMP reaches the comparison voltage V C during the rising process of the ramp voltage V RAMP , a down edge occurs in the signal S PWM .
  • the lamp voltage V RAMP reaches the comparison voltage V C , it refers to a transition from a state in which “V C >V RAMP ” holds to a state in which “V C ⁇ V RAMP ” holds.
  • the low level signal S PWM functions as a reset signal.
  • issuing a reset signal means that the comparator 17 outputs a low-level signal S PWM , or that a down edge occurs in the signal S PWM .
  • the logic circuit 18 causes the gate signal G1 to generate a down edge and the gate signal G2 to generate an up edge to switch the output stage circuit MM from the output high state to the output low state (however, the reset signal (except where invalidated).
  • the ramp voltage VRAMP is returned to the initial level ( VRAMP_MIN ), and thereby an up edge occurs in the signal SPWM .
  • another up edge occurs in the clock signal CLK at time T12. Thereafter, similar operations are repeated.
  • the logic circuit 18 sets the sampling timing within the on period of the transistor M2 (that is, the period during which the output stage circuit MM is in the output low state).
  • the set sampling timing will be referred to below with the symbol “T SMPL ".
  • One sampling timing T SMPL is set for each on-period of the transistor M2, and a low-side current sensing operation is performed at each sampling timing T SMPL .
  • the S/H circuit 32 samples and holds the voltage drop across the sense resistor 31 at sampling timing T SMPL .
  • the sampling timing T SMPL set between times T11 and T12 is specifically referred to by the symbol “T SMPL1 "
  • the sampling timing T SMPL set between times T12 and T13 is specifically referred to by the symbol “T SMPL2 "
  • the sampling timing T SMPL set between times T13 and T14 is particularly referred to by the symbol "T SMPL3 .”
  • the voltages V IL obtained by amplifying the voltages sampled at the sampling timings T SMPL1 , T SMPL2 , and T SMPL3 in the amplifier circuit 33 are referred to by symbols V IL1 , V IL2 , and V IL3 , respectively.
  • the output voltage V IL of the amplifier circuit 33 is maintained at the voltage V IL1 from sampling timing T SMPL1 to immediately before sampling timing T SMPL2 .
  • the output voltage V IL of the amplifier circuit 33 is maintained at the voltage V IL2 from the sampling timing T SMPL2 to immediately before the sampling timing T SMPL3 . The same applies thereafter.
  • any timing during the on period of the transistor M2 may be set as the sampling timing T SMPL .
  • the logic circuit 18 may set the sampling timing T SMPL to a timing when a predetermined period of time has elapsed from the turn-on timing of the transistor M2.
  • the logic circuit 18 may set the sampling timing T SMPL to a timing that is a predetermined time before the turn-off timing of the transistor M2.
  • the central timing of the on period of the transistor M2 is set to the sampling timing T SMPL .
  • the minimum sensing time t MIN_SNS is understood to refer to the minimum time that should be secured in order to perform a low-side current sensing operation.
  • the relationship between the reference time t REF and the minimum sense time t MIN_SNS is as shown in FIG. 6 .
  • the minimum sense time t MIN_SNS is shorter than the reference time t REF .
  • the maximum on-time t MAX_ON represents the maximum length of the on-period of the transistor M1 in one cycle of the switching operation.
  • the duty refers to the ratio of the on time of the transistor M1 that occupies one cycle of the switching operation, and the maximum value that the duty can take is the maximum duty.
  • the period between two adjacent up edge timings in the clock signal CLK is referred to as a unit period.
  • the length of the unit period matches the reference time t REF .
  • Each unit period is a composite period of a preceding period and a subsequent period. In each unit period, the latter period is arranged after the former period.
  • the length of the latter period matches the minimum sense time t MIN_SNS .
  • the power supply IC2C is basically suitable for applications where the input voltage V IN is sufficiently high compared to the output voltage V OUT .
  • the on-time of transistor M1 is considerably shortened while the on-time of transistor M2 is sufficiently long. Therefore, time for detecting the current flowing through the transistor M2 can be easily and stably secured.
  • V IN > V OUT temporarily, the difference between the voltages V IN and V OUT may become small, or "V IN ⁇ V OUT " may temporarily occur.
  • V IN ⁇ V OUT the difference between the voltages V IN and V OUT may become small, or “V IN ⁇ V OUT " may temporarily occur.
  • the logic circuit 18 can set the switching frequency f SW to the reference frequency f REF or (1/n) times the reference frequency f REF .
  • n is an arbitrary integer of 2 or more.
  • V IL coil current information
  • FIG. 14 shows a timing chart related to the second virtual operation. Unlike the power supply IC 2C according to this embodiment, only the low-side current sensing operation is always executed in the second virtual operation.
  • waveforms 1911 to 1919 are input voltage V IN , output voltage V OUT , comparison voltage V C , lamp voltage V RAMP , clock signal CLK, gate signal G1, gate signal G2, coil current I L and voltage
  • VIL voltage
  • Waveform 1920 corresponds to an expanded waveform (waveform 1912 expanded in the voltage direction) of output voltage V OUT .
  • Each white circle shown on the waveform 1918 of the coil current IL represents the sampling timing T SMPL .
  • Each white circle shown on the waveform 1919 of voltage V IL represents coil current information (V IL ) obtained by low-side current sensing operation at each sampling timing T SMPL .
  • the reference switching operation is performed until time T21.
  • the difference between the input voltage V IN and the output voltage V OUT is small, and the duty of the output stage circuit MM approximately matches the maximum duty.
  • the on-time of transistor M2 substantially matches the minimum sense time t MIN_SNS (provided that it is greater than or equal to the minimum sense time t MIN_SNS ).
  • the input voltage V IN has decreased slightly after time T21. Further, an up edge occurs in the clock signal CLK at time T21.
  • Time T23 represents the time when reference time t REF has elapsed from time T21, and therefore, the next up edge occurs in clock signal CLK at time T23.
  • Time T22 represents a time before time T23 by the minimum sense time t MIN_SNS .
  • the logic circuit 18 related to the second virtual operation switches the switching operation to be executed from the reference switching operation to the frequency division switching operation, and keeps the output stage circuit MM in the output high state until a reset signal is issued after time T23. keep.
  • Time T24 is the time when the next up edge occurs in clock signal CLK after time T23.
  • the low-side current sensing operation is not performed between times T21 and T24. Therefore, the detected current information obtained in the low-side current sensing operation immediately before time T21 is continuously used as coil current information (V IL ) until the low-side current sensing operation is performed after time T24. Then, feedback control is performed in a state where the increase in coil current IL between times T21 and T24 is not reflected in the coil current information (V IL ). Therefore, the contrast voltage V C remains constant until the low-side current sensing operation after time T24 is performed, and as a result, the duty becomes excessively large in the switching operation starting from time T21. Due to an excessive increase in duty, the coil current IL increases more than necessary, causing an overshoot in the output voltage V OUT . Even after that, undesirable fluctuations occur in the coil current IL for a while, and the output voltage V OUT becomes unstable.
  • Examples EX2_1 to EX2_4 will be described below as a plurality of examples related to the switching power supply device 1 of the second embodiment. Any two or more of the embodiments EX2_1 to EX2_4 can also be combined with each other.
  • FIG. 15 shows a timing chart according to the embodiment EX2_1. It is assumed that as time passes, times T30 to T35, T41 to T45, T51 to T55, and T61 sequentially occur in this order.
  • waveforms 1611 to 1619 are input voltage V IN , output voltage V OUT , comparison voltage V C , lamp voltage V RAMP , clock signal CLK, gate signal G1, gate signal G2, coil current I L and voltage
  • VIL VIL
  • Waveform 1620 corresponds to an expanded waveform (waveform 1612 expanded in the voltage direction) of output voltage V OUT .
  • Period HS_D refers to a period during which a high-side current sensing operation is performed.
  • the current information generation circuit 30C performs a low-side current sensing operation.
  • Time T31 is the sampling timing T SMPL of the low-side current sensing operation performed immediately before time T31.
  • Time T31 represents the time when reference time t REF has elapsed from time T31, and therefore, the next up edge occurs in clock signal CLK at time T33.
  • Time T32 represents a time before time T33 by the minimum sense time t MIN_SNS .
  • a reset signal is not issued before time T32 in the switching cycle starting from time T31 (that is, no reset signal is issued during the pre-stage period: see FIG. 6).
  • the logic circuit 18 switches the switching operation to be executed from the reference switching operation to the frequency division switching operation.
  • the logic circuit 18 invalidates the reset signal issued between times T32 and T33, and the logic circuit 18 disables the reset signal issued between times T32 and T33, and the logic circuit 18 disables the reset signal issued between times T32 and T33.
  • the output stage circuit MM is kept in the output high state during the period.
  • Time T41 represents the time when reference time t REF has elapsed from time T33.
  • the reset signal is issued when the lamp voltage V RAMP reaches the comparison voltage V C at time T34.
  • Time T34 is a time before time T41, and the time difference between time T34 and T41 is greater than the minimum sense time t MIN_SNS . Therefore, at time T34, the logic circuit 18 switches the output stage circuit MM from the output high state to the output low state based on the issued reset signal.
  • the logic circuit 18 sets time T35, which is the time between time T34 and T41, as the sampling timing T SMPL , and according to the setting result, the current information generation circuit 30C performs a low-side current sensing operation at time T35.
  • Time T41 At time T41, an up edge occurs in the clock signal CLK, and the state of the output stage circuit MM switches from the output low state to the output high state.
  • Time T43 represents the time when reference time t REF has elapsed from time T41, and therefore, the next up edge occurs in clock signal CLK at time T43.
  • Time T42 represents a time before time T43 by the minimum sense time t MIN_SNS .
  • the decreased state of the input voltage V IN that occurred at time T31 is maintained after time T41.
  • no reset signal is issued before time T42 (that is, no reset signal is issued during the previous period: see FIG. 6).
  • the logic circuit 18 maintains the switching operation to be performed as the frequency division switching operation.
  • the logic circuit 18 invalidates the reset signal issued between times T42 and T43, and the logic circuit 18 disables the reset signal issued between times T42 and T43, regardless of the level relationship between the voltages V C and V RAMP between times T42 and T43.
  • the output stage circuit MM is kept in the output high state between T42 and T43.
  • Time T51 represents the time when reference time t REF has elapsed from time T43.
  • the reset signal is issued when the lamp voltage V RAMP reaches the comparison voltage V C at time T44.
  • Time T44 is a time before time T51, and the time difference between time T44 and T51 is greater than the minimum sense time t MIN_SNS . Therefore, at time T44, the logic circuit 18 switches the output stage circuit MM from the output high state to the output low state based on the issued reset signal.
  • the logic circuit 18 sets time T45, which is the time between time T44 and T51, as the sampling timing T SMPL , and according to the setting result, the current information generation circuit 30C performs a low-side current sensing operation at time T45.
  • Time T51 At time T51, an up edge occurs in the clock signal CLK, and the state of the output stage circuit MM switches from the output low state to the output high state.
  • Time T53 represents the time when reference time t REF has elapsed from time T51, and therefore, the next up edge occurs in clock signal CLK at time T53.
  • Time T52 represents a time before time T53 by the minimum sense time t MIN_SNS .
  • the decreased state of the input voltage V IN that occurred at time T31 is maintained after time T51.
  • no reset signal is issued before time T52 (that is, no reset signal is issued during the previous period: see FIG. 6).
  • the logic circuit 18 maintains the switching operation to be performed as the frequency division switching operation.
  • the logic circuit 18 invalidates the reset signal issued between times T52 and T53, and the logic circuit 18 disables the reset signal issued between times T52 and T53, regardless of the level relationship between the voltages V C and V RAMP between times T52 and T53.
  • the output stage circuit MM is kept in the output high state between T52 and T53.
  • Time T61 represents the time when reference time t REF has elapsed from time T53.
  • the reset signal is issued when the lamp voltage V RAMP reaches the comparison voltage V C at time T54.
  • Time T54 is a time before time T61, and the time difference between time T54 and T61 is greater than the minimum sense time t MIN_SNS . Therefore, at time T54, the logic circuit 18 switches the output stage circuit MM from the output high state to the output low state based on the issued reset signal.
  • the logic circuit 18 sets time T55, which is the time between time T54 and T61, as the sampling timing T SMPL , and according to the setting result, the current information generation circuit 30C performs a low-side current sensing operation at time T55.
  • the current information generation circuit 30C performs a high-side current sensing operation during a part of the on period of the transistor M1.
  • the logic circuit 18 converts the period between times T33 and T34, the period between times T43 and T44, and the period between times T53 and T54 into a high-side current sense operation execution period HS_D.
  • a high-side current sensing operation is performed in each period HS_D.
  • a current value detected by the low-side current sensing operation will be referred to as a low-side detected current value
  • a current value detected by the high-side current sensing operation will be referred to as a high-side detected current value.
  • the low-side detection current value is a detection value of the current flowing through the transistor M2 during the on period of the transistor M2.
  • the high-side detected current value is a detected value of the current flowing through the transistor M1 during the on period of the transistor M1.
  • the current information generation circuit 30C continuously detects (continuously detects) the current flowing through the transistor M1, and generates and outputs a voltage V IL representing the high-side detected current value.
  • the value of voltage V IL is updated in real time according to the current flowing through transistor M1. From the end time of a certain period HS_D to the next sampling timing T SMPL , the voltage V IL has a value that corresponds to the current flowing through the transistor M2 (here, a value that corresponds to the voltage drop across the sense resistor 31).
  • the low-side current sensing operation is performed at the sampling timing T SMPL , the value of the voltage V IL is updated to a value representing the low-side detected current value. Thereafter, the value of voltage V IL is maintained until the next high-side current sensing operation or low-side current sensing operation is performed.
  • the voltage V IL represents the low-side detected current value of the low-side current sense operation with time T30 as the sampling timing T SMPL (that is, the low-side detected current value at time T30). (maintained at the detected current value).
  • the voltage V IL between times T33 and T34 represents the high-side detected current value between times T33 and T34 in real time.
  • voltage V IL has a value that corresponds to the current flowing through transistor M2 (here, a value that corresponds to the voltage drop across sense resistor 31).
  • the value of the voltage V IL may be maintained unchanged at the value of the voltage V IL at time T34 from time T34 to time T35.
  • the voltage V IL is maintained at the low-side current sensing operation with sampling timing T SMPL at time T35 from time T35 until the next low-side or high-side current sensing operation is performed. It represents the low-side detected current value of the current sensing operation (that is, it is maintained at the low-side detected current value at time T35).
  • voltage V IL represents the low-side detected current value of the low-side current sensing operation with time T35 as the sampling timing T SMPL .
  • the voltage V IL between times T43 and T44 represents the high-side detected current value between times T43 and T44 in real time.
  • voltage V IL has a value that corresponds to the current flowing through transistor M2 (here, a value that corresponds to the voltage drop across sense resistor 31).
  • the value of the voltage V IL may be maintained unchanged at the value of the voltage V IL at time T44 from time T44 to time T45.
  • the voltage V IL is the low-side current sensing operation with sampling timing T SMPL at time T45. It represents the low-side detected current value of the current sensing operation (that is, it is maintained at the low-side detected current value at time T45).
  • the logic circuit 18 can switch the current information generation circuit 30C to execute the reference switching operation or the frequency division switching operation by monitoring whether a reset signal was issued during the previous period.
  • FIG. 16 shows a configuration example of the current information generation circuit 30C according to the embodiment EX2_1.
  • the current information generation circuit 30C shown in FIG. 16 includes various parts referenced by 41 to 51. Wirings 52 and 53 and nodes 54 to 46 are also components of current information generation circuit 30C.
  • the S/H circuit 32 includes capacitors 32a and 32b and switches 32c and 32d
  • the amplifier circuit 33 includes a positive input terminal 33a, a negative input terminal 33b, and an output terminal 33c.
  • the amplifier circuit 33 may actually be an amplifier circuit composed of an operational amplifier and a resistor.
  • the amplifier circuit 33 amplifies the voltage at the positive input terminal 33a viewed from the potential at the negative input terminal 33b, and outputs the amplified voltage from the output terminal 33c as a voltage V IL .
  • a capacitor 32a is connected between the positive input terminal 33a and ground. Further, the positive input terminal 33a is connected to one end of the switch 32c, and the other end of the switch 32c is connected to a connection node between the sense resistor 31 and the ground terminal GND.
  • a capacitor 32b is connected between the negative input terminal 33b and ground. Further, the negative input terminal 33b is connected to one end of the switch 32d, and the other end of the switch 32d is connected to a connection node between the source of the transistor M2 and the sense resistor 31.
  • the voltage at the ground terminal GND viewed from the source potential of the transistor M2 is referred to as a voltage Va.
  • One end of the switch 41 is connected to the drain of the transistor M1, and the other end of the switch 41 is connected to the non-inverting input terminal of the operational amplifier 43.
  • One end of the switch 42 is connected to the source of the transistor M1, and the other end of the switch 42 is connected to the wiring 52.
  • the inverting input terminal and output terminal of the operational amplifier 43 are connected to each other.
  • the operational amplifier 43 is driven by receiving the voltage at the wiring 52 as a negative power supply voltage and the boot voltage V BOOT as a positive power supply voltage, and functions as a voltage buffer. Therefore, the operational amplifier 43 outputs the voltage at its non-inverting input terminal from its output terminal with low impedance.
  • Transistors 45 to 47 are P-channel MOSFETs.
  • the sources of transistors 45 and 46 are connected to wiring 53 to which boot voltage V BOOT is applied.
  • the gate and drain of the transistor 45, the gate of the transistor 46, the output terminal of the operational amplifier 43, and one end of the resistor 44 are connected to each other at a node 54.
  • the other end of the resistor 44 is connected to the wiring 52.
  • the voltage drop occurring across the resistor 44 is referred to as voltage Vb.
  • the voltage Vb represents the voltage at the node 54 viewed from the potential of the wiring 52.
  • the drain of transistor 46 is connected to the source of transistor 47.
  • the drain of transistor 47 is connected to one end of resistor 48 at node 55, and the other end of resistor 48 is connected to ground.
  • Internal power supply voltage V REG is applied to the gate of transistor 47.
  • the voltage drop that occurs across the resistor 48 is referred to as voltage Vc.
  • voltage Vc represents the voltage at node 55 viewed from the ground potential.
  • Voltage conversion circuit 49 generates voltage Vd from voltage Vc. In FIG. 16, it is assumed that "Vd ⁇ Vc", and therefore, the voltage conversion circuit 49 includes an operational amplifier 49a forming a voltage follower, and resistors 49b and 49c forming a voltage dividing circuit.
  • the non-inverting input terminal is connected to the node 55, and the output terminal is connected to the inverting input terminal and one end of the resistor 49.
  • the other end of resistor 49b is connected to one end of resistor 49c at node 56, and the other end of resistor 49c is connected to ground.
  • the voltage drop occurring across the resistor 49c is referred to as voltage Vd.
  • the voltage Vd represents the voltage at the node 56 viewed from the ground potential.
  • the current information generation circuit 30C sets the states of the switches 32c, 32d, 41, 42, 50, and 51 as follows under the control of the logic circuit 18 (see FIG. 17). During the on period of the transistor M2, the current information generation circuit 30C maintains all the switches 41, 42, 50, and 51 in the off state. The current information generation circuit 30C keeps the switches 32c and 32d in the on state until the sampling timing T SMPL during the on period of the transistor M2, and keeps the switches 32c and 32d in the off state after the sampling timing T SMPL . The current information generation circuit 30C keeps the switches 32c and 32d in the off state during the on period of the transistor M1.
  • the current information generation circuit 30C keeps all the switches 41, 42, 50, and 51 in the on state only during the execution period HS_D of the high-side current sensing operation during the on period of the transistor M1, and keeps the switch 41 in the on state during other periods. , 42, 50 and 51 are all kept off.
  • the transistors 45 to 47 constitute a level shifter that converts a voltage Vb based on the source potential of the transistor M1 to a voltage Vc based on the ground potential.
  • R ON H the ratio of the on-resistance
  • R SNS the sense resistor
  • the voltage Vd may be generated by amplifying the voltage Vc in the voltage conversion circuit 49.
  • the voltage V IL shown and explained in FIG. 15 can be obtained. That is, for example, when a low-side current sensing operation is performed with sampling timing T SMPL at time T30, the amplified difference between the voltages held in capacitors 32a and 32b at time T30 becomes voltage V IL (low-side detected current value). voltage). After time T30, switches 32c and 32d are maintained off until the next on-period of transistor M2 begins. Therefore, after time T30, the value of voltage V IL remains unchanged until the next low-side or high-side current sensing operation is performed. After time T30, the high-side current sensing operation is started at time T33, so switches 41, 42, 50, and 51 are all turned on.
  • a voltage V IL (a voltage representing the high-side detected current value) corresponding to the voltage Vd is output. Ru. At this time, the voltages Vd and V IL change in real time in response to changes in the current flowing through the transistor M1.
  • the transistor M1 is turned off and the transistor M2 is turned on, so that the switches 41, 42, 50, and 51 are all turned off, while the switches 32c and 32d are turned on. Therefore, the voltage I L varies in conjunction with changes in the current flowing through the transistor M2. Then, at time T35, the voltage Va at that time is sampled and held, and thereafter, the voltage V IL is a value corresponding to the voltage Va at time T35 until the next low-side or high-side current sensing operation is performed. will be maintained.
  • the low-side current sensing operation and the high-side current sensing operation are used together in the frequency division switching operation, so that the value of the coil current IL can be accurately reflected in the comparison voltage V C .
  • the frequency division switching operation is performed, the increase in the coil current IL during a relatively long output high state is fed back to the differential amplifier 13, resulting in a decrease in the contrast voltage V C (see FIG. 15). ).
  • the contrast voltage V C see FIG. 15
  • Example EX2_1 when the switching operation is switched from the reference switching operation to the frequency division switching operation, it is possible to suppress fluctuations in the output voltage V OUT to a low level (waveform 1620 according to Example EX2_1 and waveform 1620 according to the second hypothetical operation). (see waveform 1920), that is, the output voltage V OUT can be well stabilized.
  • the coil current IL increases with a slope according to the inductance of the coil L1. For this reason, when the frequency division switching operation is performed, it is being considered to superimpose pseudo current information based on the design value of the inductance of the coil L1 on the coil current information in the output high state. However, if the inductance value of the coil L1 actually used deviates from the design value, ideal pseudo-current information cannot be superimposed, and as a result, there is a concern that the stability of the output voltage V OUT will decrease. In the method of this embodiment, there is no such concern.
  • the logic circuit 18 monitors the time from turning on the transistor M1 until the reset signal is issued each time the transistor M1 is turned on. As can be understood from the above description, the logic circuit 18 performs switching when a reset signal is not issued within a predetermined time period tD after turning on the transistor M1 while performing a reference switching operation. Switches the operation from reference switching operation to frequency division switching operation.
  • the logic circuit 18 returns the switching operation to be performed to the standard switching operation.
  • the input voltage V IN increases, so that the switching operation performed can return to the reference switching operation.
  • the coil current information (V IL ) represents the low-side detected current value from the most recent low-side current sensing operation from when the transistor M1 is turned on until the sense result holding time t P has elapsed.
  • the period from when the transistor M1 is turned on until the transistor M1 is turned off after the sensing result holding time t P has elapsed is a period HS_D, and during this period HS_D, the coil current information (V IL ) is Represents the high-side detection current value due to operation.
  • the coil current information (V IL ) is updated to information representing the low-side detected current value by the current low-side current sensing operation.
  • the sense result holding time t P may be slightly longer than the reciprocal of the reference frequency f REF (ie, the reference time t REF ). However, the sense result holding time t P is shorter than the time (2 ⁇ t REF ⁇ t MIN_SNS ).
  • Example EX2_2>> Example EX2_2 will be explained.
  • case CSb is assumed based on the case shown in FIG. 15 (hereinafter referred to as case CSa).
  • case CSa the input voltage V IN decreases more greatly than in case CSa at time T31.
  • the reset signal is not issued in the first period of the unit period 1641 starting from time T31, and the reset signal is not issued even in the first period of the unit period 1642 starting from time T33.
  • a reset signal is then issued at time T41' which belongs to the first period in the unit period 1643 starting from time T41 (whether or not the reset signal is issued is not shown in FIG. 18).
  • Unit periods 1641 to 1643 are three consecutive unit periods. It is assumed that times T41' and T42' are times after time T41 and before time T43. Time T42' is a time after time T41'.
  • the logic circuit 18 switches the output stage circuit MM from the output low state to the output high state at time T31, maintains the output stage circuit MM in the output high state until time T41', and then switches the output stage circuit MM to the output high state until time T41'.
  • the output stage circuit MM is returned to the output low state. After that, a low-side current sensing operation is performed with sampling timing T SMPL at time T42' belonging to the unit period 1643, and further, at subsequent time T43, the output stage circuit MM goes into the output high state triggered by the rising edge of the clock signal CLK. Switch.
  • the above-mentioned sense result holding time t P is assumed to be the same as the reciprocal of the reference frequency f REF (ie, the reference time t REF ). Therefore, from the time the transistor M1 is turned on at time T31 to the time T33, the coil current information (V IL ) represents the low-side detected current value by the most recent low-side current sensing operation. From time T33 to time T41' when transistor M1 is turned off, coil current information (V IL ) represents a high-side detected current value by a high-side current sensing operation.
  • the coil current information (V IL ) is changed to the low-side detected current value by the current low-side current sensing operation.
  • the information is updated to represent the information.
  • the switching frequency f SW switches from the reference frequency f REF to the frequency (f REF /3) at time T31.
  • the first to third unit periods are three consecutive unit periods, and the third unit period comes after the first unit period passes through the second unit period. The conditions for returning to the standard switching operation are as shown in Example EX2_1.
  • the logic circuit 18 performs the following operations. After turning on the transistor M1, the logic circuit 18 monitors whether a reset signal is issued during the pre-stage period. If a reset signal is issued during the previous stage period in the unit period of interest which is an arbitrary unit period, in response to the issuance of the reset signal, the logic circuit 18 immediately outputs the output stage circuit MM to a high state. Then, the output is switched to a low state, and a low-side current sensing operation is performed during the ON period of the transistor M2 within the unit period of interest.
  • the logic circuit 18 keeps the output stage circuit MM in the output high state throughout the unit period of interest, regardless of the level relationship between the voltages V C and V RAMP .
  • the same operation as above is performed by setting the next unit period as a new unit period of interest. Therefore, depending on the degree of decrease in the input voltage V IN , the on-period of the transistor M1 increases without limit (however, an upper limit may be set).
  • Example EX2_3>> Example EX2_3 will be explained.
  • the low-side current sensing operation may be performed using the on-resistance of the transistor M2 instead of the sense resistor 31.
  • the current information generation circuit 30m shown in FIG. 19 can be used as the current information generation circuit 30C in FIG.
  • Example EX2_3 the current information generation circuit 30m shown in FIG. 19 is used as the current information generation circuit 30C shown in FIG.
  • the sense resistor 31 is not provided in the current information generation circuit 30m in FIG. In Example EX2_3, the source of transistor M2 is directly connected to the ground terminal GND. Changes to the current information generation circuit 30m in FIG. 19 from the current information generation circuit 30C in FIG. 16 due to the non-installation of the sense resistor 31 are shown below. Regarding matters not particularly described in this embodiment, the current information generation circuit 30m has the same configuration as the current information generation circuit 30C and performs the same operation.
  • the positive input terminal 33a is connected to one end of the switch 32c, and the other end of the switch 32c is connected to the source of the transistor M2.
  • the negative input terminal 33b is connected to one end of the switch 32d, and the other end of the switch 32d is connected to the drain of the transistor M2.
  • voltage Va refers to the voltage at the source of transistor M2 viewed from the drain potential of transistor M2.
  • the voltage Vd may be generated by amplifying the voltage Vc in the voltage conversion circuit 49.
  • the transistors M1 and M2 may be elements having the same structure and the same breakdown voltage.
  • the temperature characteristics of transistor M1 are the same as those of transistor M2 (ignoring errors).
  • the temperature characteristics of the transistor include the temperature characteristics of the on-resistance of the transistor.
  • the amplifier circuit 33 can have a temperature characteristic for canceling the temperature characteristic of the on-resistance of the transistor M2. That is, when the on-resistance of the transistor M2 increases in response to a decrease in the environmental temperature of the power supply IC2C, the voltage Va during the on-period of the transistor M2 increases, but at this time, the amplification factor of the amplifier circuit 33 is reduced.
  • the amplifier circuit 33 is configured in advance. The same applies when the environmental temperature of the power supply IC 2C rises. This reduces the influence of the environmental temperature of the power supply IC 2C on the coil current information (V IL ).
  • the temperature characteristics of the on-resistance of the transistor M1 can also be canceled out by the amplifier circuit 33. That is, a circuit for canceling the temperature characteristics of transistors M1 and M2 can be shared between transistors M1 and M2, leading to a reduction in circuit scale.
  • Example EX2_3 is the same as the power supply IC 2C according to the embodiment EX2_1, The description of Example EX2_1 also applies to Example EX2_3.
  • the "voltage drop across the sense resistor 31" and “value of the sense resistor 31" in Example EX2_1 are replaced with the "voltage drop occurring between the drain and source of transistor M2" and "on-on state of transistor M2" in Example EX2_3. It can be read as "resistance value".
  • Example EX2_4 >> Example EX2_4 will be explained. All the matters described in Example EX1_4 of the first embodiment are also applied to the second embodiment.
  • a switching power supply circuit is a switching power supply circuit (2, 2A) used in a switching power supply device (1) for generating an output voltage (V OUT ) through switching of an input voltage (V IN ).
  • an output stage circuit having a high-side transistor (M1) and a low-side transistor (M2) connected in series between an input terminal (IN) receiving the input voltage and a ground terminal (GND);
  • a switching control circuit (11 to 19) configured to perform a switching operation of alternately turning on and off the high-side transistor and the low-side transistor; and a switching control circuit (11 to 19) configured to perform a switching operation of alternately turning on and off the high-side transistor and the low-side transistor;
  • a current information generation circuit (30C) configured to perform one current sensing operation or a second current sensing operation for detecting a current flowing through the high-side transistor during an on period of the high-side transistor;
  • a connection node between the side transistor and the low-side transistor is connected to a rectification and smooth
  • the output voltage is generated by being rectified and smoothed at the current information generating circuit is capable of setting the switching frequency to a first frequency (f REF ) or a second frequency (f REF /n) lower than the first frequency in the switching operation; is set to the first frequency, current information of the coil is generated by the first current sensing operation, and when the switching frequency is set to the second frequency, the first current sensing operation and the first current sensing operation are performed.
  • configuration Q1 hereinafter referred to as configuration Q1 in which current information of the coil is generated using two current sensing operations.
  • the switching frequency When the switching frequency is set to a relatively low second frequency, the interval between executions of the first current sensing operation becomes longer.
  • feedback control that reflects the coil current becomes possible even during the period in which the first current sensing operation cannot be performed. As a result, the output voltage is stabilized.
  • the current information generation circuit may perform the second current sensing operation during the on period of the high-side transistor when the switching frequency is set to the second frequency. generate current information of the coil during the on-period of the high-side transistor, and generate current information of the coil during the on-period of the low-side transistor by executing the first current sensing operation during the on-period of the low-side transistor.
  • a configuration hereinafter referred to as configuration Q2 may also be used.
  • the current information generation circuit is configured to perform a part of the on-period of the high-side transistor in the second current sensing operation when the switching frequency is set to the second frequency.
  • the current information of the coil is updated by continuously detecting the current flowing through the high-side transistor (for example, between T33 and T34 in FIG. 15), and then the high-side transistor is turned off and the low-side transistor is turned off.
  • the first current sensing operation is performed to detect the current flowing through the low-side transistor at a sampling timing set within the on-period of the low-side transistor (for example, T35 in FIG. 15).
  • It may be a configuration (hereinafter referred to as configuration Q3) that generates current information of the coil during the on-period.
  • the coil when the switching frequency is set to the second frequency, the coil is turned on until a sense result holding time (t P ) elapses after the high-side transistor is turned on.
  • the current information represents the current value detected by the previous first current sensing operation (for example, the detected current value at T30 in FIG. 15), and after the sense result holding time has elapsed since the high-side transistor was turned on, the high-side Until the transistor is turned off (for example, between T33 and T34 in FIG. 15), the current information of the coil represents the current detected value by the second current sense operation, and then the current information of the first current sense at the sampling timing.
  • the current information of the coil is updated to information representing the current value detected by the current first current sensing operation (for example, the current value detected at T35 in FIG. 15). (referred to as Q4).
  • the sense result holding time may be a configuration (hereinafter referred to as configuration Q5) in which the sense result holding time is longer than the reciprocal of the first frequency (t REF ).
  • the current information generation circuit includes each A configuration (hereinafter referred to as configuration Q6) may be used in which the current information of the coil is generated by executing the first current sensing operation during the period.
  • the switching control circuit is configured to generate a contrast voltage (V C ) based on voltage information corresponding to the output voltage and current information of the coil.
  • circuits (11 to 14), and a lamp voltage generation circuit (16) configured to generate a lamp voltage that monotonically changes from an initial level in a predetermined direction at a period of the reciprocal of the first frequency,
  • a reset signal down edge of S PWM is generated in response to a change in the level relationship between the comparison voltage and the lamp voltage from a first relationship to a second relationship.
  • configuration Q7 that switches the switching frequency from the first frequency to the second frequency when the reset signal is not issued before a specified time (t MAX_ON ) shorter than the reciprocal of the first frequency has elapsed. ).
  • the switching control circuit switches the switching frequency from the first frequency to the second frequency until the prescribed time has elapsed from the turn-on timing of the high-side transistor.
  • the switching frequency may be configured to return the switching frequency from the second frequency to the first frequency when the reset signal is issued (hereinafter referred to as configuration Q8).
  • the switching frequency can be returned to the first frequency.
  • a switching power supply device includes a switching power supply circuit according to any one of the configurations Q1 to Q8, and a rectifier configured to generate the output voltage by rectifying and smoothing the switching voltage.
  • This is a smoothing circuit and a configuration (hereinafter referred to as configuration Q9).
  • Switching power supply device 2A, 2B, 2C Power supply IC 3 Main control block L1 Coil C1 Output capacitor C2 Boot capacitor R1, R2 Resistor D1 Rectifier V IN input voltage V OUT output voltage V FB feedback voltage V SW switching voltage IN Input terminal GND Ground terminal OUT Output terminal FB Feedback terminal BOOT Boot terminal OS Output monitoring terminal MM Output stage circuit M1 High side transistor M2 Low side transistor 11 Error amplifier 12 Phase compensation circuit 13 Differential amplifier 14 Phase compensation circuit 15 Clock generation circuit 16 Lamp voltage generation circuit 17 Comparator 18 Logic circuit 19 Driver 30, 30C, 30m Current information generation circuit 31 Sense resistor 32 S/H circuit 33 Amplification circuit 34 Pseudo current generation circuit 35 Adder IL Coil current V ISNS voltage (detection current information) V IPS voltage (pseudo current information) V IL voltage (coil current information) V ERR error voltage V C comparison voltage

Abstract

The present invention obtains an output voltage by rectifying and smoothing a voltage generated by an operation that switches between a high-side transistor and a low-side transistor. The switching operation is performed on the basis of voltage information corresponding to the output voltage and coil current information generated through a current sensing operation. The switching frequency can be set to a first frequency or a second frequency (< the first frequency). For the second frequency, for a portion of the period from when the most recent current sensing operation was performed until the next current sensing operation is performed, coil current information is generated by adding pseudo current information to information about the current detected by the most recent current sensing operation.

Description

スイッチング電源用回路及びスイッチング電源装置Switching power supply circuit and switching power supply device
 本開示は、スイッチング電源用回路及びスイッチング電源装置に関する。 The present disclosure relates to a switching power supply circuit and a switching power supply device.
 スイッチング電源装置の一種は、互いに直列接続されたハイサイドトランジスタ及びローサイドトランジスタと、それらの接続ノードに接続されたコイル及び出力コンデンサを有する整流平滑回路と、備える。ハイサイドトランジスタ及びローサイドトランジスタ間に入力電圧が印加される。ハイサイドトランジスタ及びローサイドトランジスタを交互にオン、オフすることで生じる矩形波状の電圧を、整流平滑回路にて整流及び平滑化することで、入力電圧よりも低い出力電圧が得られる。この際、コイル電流を参照した電流モード制御が行われることがある。 One type of switching power supply device includes a high-side transistor and a low-side transistor connected in series with each other, and a rectifying and smoothing circuit having a coil and an output capacitor connected to their connection nodes. An input voltage is applied between the high side transistor and the low side transistor. By rectifying and smoothing the rectangular wave voltage generated by alternately turning on and off the high-side transistor and the low-side transistor in a rectifying and smoothing circuit, an output voltage lower than the input voltage can be obtained. At this time, current mode control may be performed with reference to the coil current.
特開2019-221099号公報JP 2019-221099 Publication
 出力電圧と比べて入力電圧が十分に高いアプリケーションでは、スイッチング動作の各周期にてハイサイドトランジスタのオン時間が相当に短くなる一方でローサイドトランジスタのオン時間が十分に長くなる。このため、ローサイドトランジスタのオン期間中にローサイドトランジスタに流れる電流を検出する電流検出動作を行うことで、電流モード制御に必要なコイル電流が検出される。 In applications where the input voltage is sufficiently high compared to the output voltage, the on-time of the high-side transistor will be considerably short while the on-time of the low-side transistor will be sufficiently long in each cycle of the switching operation. Therefore, by performing a current detection operation that detects the current flowing through the low-side transistor during the on-period of the low-side transistor, the coil current necessary for current mode control is detected.
 但し、入力電圧が一時的に低下したとき、パルス幅変調におけるデューティの増大に伴ってローサイドトランジスタのオン時間が短くなり、電流検出動作に必要な時間を確保できないことがある。このような場合、スイッチング周波数を低下させることで、電流検出動作に必要な時間の確保と最大デューティの増大を両立させることができる。しかしながら、スイッチング周波数を低下させると電流検出動作の実行間隔が大きくなって、制御が不安定となり出力電圧の変動に繋がる。 However, when the input voltage temporarily decreases, the on-time of the low-side transistor becomes shorter as the duty increases in pulse width modulation, and the time required for the current detection operation may not be secured. In such a case, by lowering the switching frequency, it is possible to both secure the time necessary for the current detection operation and increase the maximum duty. However, when the switching frequency is lowered, the interval between current detection operations becomes longer, resulting in unstable control and fluctuations in the output voltage.
 本開示は、出力電圧の安定化に寄与するスイッチング電源用回路及びスイッチング電源装置を提供することを目的とする。 An object of the present disclosure is to provide a switching power supply circuit and a switching power supply device that contribute to stabilizing the output voltage.
 本開示に係るスイッチング電源用回路は、入力電圧のスイッチングを通じて出力電圧を生成するためのスイッチング電源装置に用いられるスイッチング電源用回路において、前記入力電圧を受ける入力端子とグランド端子との間において互いに直列接続されたハイサイドトランジスタ及びローサイドトランジスタを有する出力段回路と、前記ハイサイドトランジスタ及び前記ローサイドトランジスタを交互にオン、オフするスイッチング動作を行うよう構成されたスイッチング制御回路と、前記ローサイドトランジスタのオン期間において前記ローサイドトランジスタに流れる電流を検出する電流センス動作を行うよう構成された電流情報生成回路と、を備え、前記ハイサイドトランジスタ及び前記ローサイドトランジスタ間の接続ノードがコイル及び出力コンデンサを含む整流平滑回路に接続され、前記スイッチング動作により前記接続ノードに生じるスイッチング電圧が前記整流平滑回路にて整流及び平滑化されることで前記出力電圧が生成され、前記スイッチング制御回路は、前記出力電圧に応じた電圧情報と、前記電流センス動作を通じて生成された前記コイルの電流情報と、に基づき前記スイッチング動作を行い、前記スイッチング制御回路は、前記スイッチング動作においてスイッチング周波数を、第1周波数又は前記第1周波数より低い第2周波数に設定可能であり、前記電流情報生成回路は、前記スイッチング周波数が前記第2周波数に設定されるとき、直近の前記電流センス動作を行ってから次回の前記電流センス動作を行うまでの期間の一部において、前記直近の前記電流センス動作による検出電流情報に対し、前記入力電圧及び前記出力電圧に基づく疑似電流情報を加算することで、前記コイルの電流情報を生成する。
 本開示に係る他のスイッチング電源用回路は、入力電圧のスイッチングを通じて出力電圧を生成するためのスイッチング電源装置に用いられるスイッチング電源用回路において、前記入力電圧を受ける入力端子とグランド端子との間において互いに直列接続されたハイサイドトランジス及びローサイドトランジスタを有する出力段回路と、前記ハイサイドトランジス及び前記ローサイドトランジスタを交互にオン、オフするスイッチング動作を行うよう構成されたスイッチング制御回路と、前記ローサイドトランジスタのオン期間において前記ローサイドトランジスタに流れる電流を検出する第1電流センス動作、又は、前記ハイサイドトランジスタのオン期間において前記ハイサイドトランジスタに流れる電流を検出する第2電流センス動作を行うよう構成された電流情報生成回路と、を備え、前記ハイサイドトランジス及び前記ローサイドトランジスタ間の接続ノードがコイル及び出力コンデンサを含む整流平滑回路に接続され、前記スイッチング動作により前記接続ノードに生じるスイッチング電圧が前記整流平滑回路にて整流及び平滑化されることで前記出力電圧が生成され、前記スイッチング制御回路は、前記出力電圧に応じた電圧情報と前記コイルの電流情報とに基づき前記スイッチング動作を行い、前記スイッチング動作においてスイッチング周波数を第1周波数又は前記第1周波数より低い第2周波数に設定可能であり、前記電流情報生成回路は、前記スイッチング周波数が前記第1周波数に設定されるとき、前記第1電流センス動作により前記コイルの電流情報を生成し、前記スイッチング周波数が前記第2周波数に設定されるとき、前記第1電流センス動作及び前記第2電流センス動作を併用して前記コイルの電流情報を生成する。
A switching power supply circuit according to the present disclosure is a switching power supply circuit used in a switching power supply device for generating an output voltage through switching of an input voltage. an output stage circuit having a connected high-side transistor and a low-side transistor; a switching control circuit configured to perform a switching operation of alternately turning on and off the high-side transistor and the low-side transistor; and an on-period of the low-side transistor. a current information generating circuit configured to perform a current sensing operation for detecting a current flowing through the low-side transistor in the rectifying and smoothing circuit, wherein a connection node between the high-side transistor and the low-side transistor includes a coil and an output capacitor. The output voltage is generated by rectifying and smoothing the switching voltage generated at the connection node by the switching operation in the rectifier and smoothing circuit, and the switching control circuit generates a voltage corresponding to the output voltage. information and current information of the coil generated through the current sensing operation, the switching control circuit performs the switching operation in the switching operation at a first frequency or lower than the first frequency. When the switching frequency is set to the second frequency, the current information generating circuit is configured to control the frequency from the most recent current sensing operation to the next current sensing operation. During a part of the period, current information of the coil is generated by adding pseudo current information based on the input voltage and the output voltage to the current information detected by the most recent current sensing operation.
Another switching power supply circuit according to the present disclosure is a switching power supply circuit used in a switching power supply device for generating an output voltage through switching of an input voltage. an output stage circuit having a high-side transistor and a low-side transistor connected in series; a switching control circuit configured to perform a switching operation of alternately turning on and off the high-side transistor and the low-side transistor; A current configured to perform a first current sensing operation for detecting a current flowing through the low-side transistor during an on-period, or a second current sensing operation for detecting a current flowing through the high-side transistor during an on-period of the high-side transistor. an information generation circuit, a connection node between the high side transistor and the low side transistor is connected to a rectification and smoothing circuit including a coil and an output capacitor, and a switching voltage generated at the connection node by the switching operation is connected to the rectification and smoothing circuit. The output voltage is generated by rectification and smoothing in the switching control circuit, and the switching control circuit performs the switching operation based on voltage information corresponding to the output voltage and current information of the coil, and in the switching operation, The switching frequency can be set to a first frequency or a second frequency lower than the first frequency, and when the switching frequency is set to the first frequency, the current information generation circuit performs the first current sensing operation. Current information of the coil is generated, and when the switching frequency is set to the second frequency, the first current sensing operation and the second current sensing operation are used together to generate current information of the coil.
 本開示によれば、出力電圧の安定化に寄与するスイッチング電源用回路及びスイッチング電源装置を提供することが可能となる。 According to the present disclosure, it is possible to provide a switching power supply circuit and a switching power supply device that contribute to stabilizing the output voltage.
図1は、本開示の第1実施形態に係るスイッチング電源装置の全体構成図である。FIG. 1 is an overall configuration diagram of a switching power supply device according to a first embodiment of the present disclosure. 図2は、本開示の第1実施形態に係る電源ICの外観斜視図である。FIG. 2 is an external perspective view of the power supply IC according to the first embodiment of the present disclosure. 図3は、本開示の第1実施形態に係り、電源ICの内部構成を示したスイッチング電源装置の構成図である。FIG. 3 is a configuration diagram of a switching power supply device showing the internal configuration of a power supply IC according to the first embodiment of the present disclosure. 図4は、本開示の第1実施形態に係り、ランプ電圧とクロック信号との関係図である。FIG. 4 is a relationship diagram between lamp voltage and clock signal according to the first embodiment of the present disclosure. 図5は、本開示の第1実施形態に係り、スイッチング周波数が基準周波数で安定しているときのタイミングチャートである。FIG. 5 is a timing chart when the switching frequency is stable at the reference frequency according to the first embodiment of the present disclosure. 図6は、本開示の第1実施形態に係り、複数の時間の関係を示す図である。FIG. 6 is a diagram showing a plurality of time relationships according to the first embodiment of the present disclosure. 図7は、第1仮想動作のタイミングチャートである。FIG. 7 is a timing chart of the first virtual operation. 図8は、本開示の第1実施形態に属する実施例EX1_1に係り、スイッチング周波数が切り替わる近辺のタイミングチャートである。FIG. 8 is a timing chart in the vicinity of the switching frequency according to Example EX1_1 belonging to the first embodiment of the present disclosure. 図9は、本開示の第1実施形態に属する実施例EX1_1に係り、基準スイッチング動作におけるコイル電流波形と、分周スイッチング動作におけるコイル電流波形と、を示す図である。FIG. 9 is a diagram showing a coil current waveform in a reference switching operation and a coil current waveform in a frequency division switching operation, according to Example EX1_1 belonging to the first embodiment of the present disclosure. 図10は、本開示の第1実施形態に属する実施例EX1_2に係り、スイッチング周波数が切り替わる近辺のタイミングチャートである。FIG. 10 is a timing chart in the vicinity of the switching frequency according to Example EX1_2 belonging to the first embodiment of the present disclosure. 図11は、本開示の第1実施形態に属する実施例EX1_3に係り、電源ICの内部構成を示したスイッチング電源装置の構成図である。FIG. 11 is a configuration diagram of a switching power supply device showing the internal configuration of a power supply IC according to Example EX1_3 belonging to the first embodiment of the present disclosure. 図12は、本開示の第2実施形態に係り、電源ICの内部構成を示したスイッチング電源装置の構成図である。FIG. 12 is a configuration diagram of a switching power supply device showing the internal configuration of a power supply IC according to a second embodiment of the present disclosure. 図13は、本開示の第2実施形態に係り、スイッチング周波数が基準周波数で安定しているときのタイミングチャートである。FIG. 13 is a timing chart when the switching frequency is stable at the reference frequency according to the second embodiment of the present disclosure. 図14は、第2仮想動作のタイミングチャートである。FIG. 14 is a timing chart of the second virtual operation. 図15は、本開示の第2実施形態に属する実施例EX2_1に係り、スイッチング周波数が切り替わる近辺のタイミングチャートである。FIG. 15 is a timing chart in the vicinity of the switching frequency according to Example EX2_1 belonging to the second embodiment of the present disclosure. 図16は、本開示の第2実施形態に属する実施例EX2_1に係り、電流情報生成回路の内部構成図である。FIG. 16 is an internal configuration diagram of a current information generation circuit according to Example EX2_1 belonging to the second embodiment of the present disclosure. 図17は、図16の電流情報生成回路の動作説明図である。FIG. 17 is an explanatory diagram of the operation of the current information generation circuit of FIG. 16. 図18は、本開示の第2実施形態に属する実施例EX2_2に係り、スイッチング周波数が切り替わる近辺のタイミングチャートである。FIG. 18 is a timing chart in the vicinity of the switching frequency according to Example EX2_2 belonging to the second embodiment of the present disclosure. 図19は、本開示の第2実施形態に属する実施例EX2_3に係り、電流情報生成回路の内部構成図である。FIG. 19 is an internal configuration diagram of a current information generation circuit according to Example EX2_3 belonging to the second embodiment of the present disclosure.
 以下、本開示の実施形態の例を、図面を参照して具体的に説明する。参照される各図において、同一の部分には同一の符号を付し、同一の部分に関する重複する説明を原則として省略する。尚、本明細書では、記述の簡略化上、情報、信号、物理量、機能部、回路、素子又は部品等を参照する記号又は符号を記すことによって、該記号又は符号に対応する情報、信号、物理量、機能部、回路、素子又は部品等の名称を省略又は略記することがある。例えば、後述の“VC”によって参照される対比電圧は(図3参照)、対比電圧VCと表記されることもあるし、電圧VCと略記されることもあり得るが、それらは全て同じものを指す。 Examples of embodiments of the present disclosure will be specifically described below with reference to the drawings. In each referenced figure, the same parts are given the same reference numerals, and redundant explanations regarding the same parts will be omitted in principle. In this specification, for the purpose of simplifying the description, symbols or codes that refer to information, signals, physical quantities, functional units, circuits, elements, parts, etc. are shown, and information, signals, or codes corresponding to the symbols or codes are written. Names of physical quantities, functional units, circuits, elements, parts, etc. may be omitted or abbreviated. For example, the contrast voltage referred to by “V C ” (see FIG. 3), which will be described later, may be written as contrast voltage V C or may be abbreviated as voltage V C , but they are all refer to the same thing.
 まず、本開示の実施形態の記述にて用いられる幾つかの用語について説明を設ける。グランドとは、基準となる0V(ゼロボルト)の電位を有する基準導電部を指す又は0Vの電位そのものを指す。基準導電部は金属等の導体を用いて形成されて良い。0Vの電位をグランド電位と称することもある。本開示の実施形態において、特に基準を設けずに示される電圧はグランドから見た電位を表す。 First, some terms used in the description of the embodiments of the present disclosure will be explained. The ground refers to a reference conductive portion having a reference potential of 0V (zero volts), or refers to the 0V potential itself. The reference conductive part may be formed using a conductor such as metal. The potential of 0V is sometimes referred to as a ground potential. In embodiments of the present disclosure, voltages shown without particular reference represent potentials as seen from ground.
 レベルとは電位のレベルを指し、任意の注目した信号又は電圧についてハイレベルはローレベルよりも高い電位を有する。任意の注目した信号又は電圧について、信号又は電圧がハイレベルにあるとは厳密には信号又は電圧のレベルがハイレベルにあることを意味し、信号又は電圧がローレベルにあるとは厳密には信号又は電圧のレベルがローレベルにあることを意味する。 Level refers to the level of potential, and for any signal or voltage of interest, a high level has a higher potential than a low level. For any signal or voltage of interest, a signal or voltage being at a high level strictly means that the level of the signal or voltage is at a high level, and a signal or voltage being at a low level does not strictly mean that the level of the signal or voltage is at a high level. It means that the signal or voltage level is at low level.
 任意の注目した信号又は電圧において、ローレベルからハイレベルへの切り替わりをアップエッジと称し、ローレベルからハイレベルへの切り替わりのタイミングをアップエッジタイミングと称する。アップエッジをライジングエッジに読み替えて良い。同様に、任意の注目した信号又は電圧において、ハイレベルからローレベルへの切り替わりをダウンエッジと称し、ハイレベルからローレベルへの切り替わりのタイミングをダウンエッジタイミングと称する。ダウンエッジをフォーリングエッジに読み替えて良い。 In any signal or voltage of interest, switching from a low level to a high level is called an up edge, and the timing of switching from a low level to a high level is called an up edge timing. You can read up edge as rising edge. Similarly, in any signal or voltage of interest, switching from a high level to a low level is called a down edge, and the timing of switching from a high level to a low level is called a down edge timing. You can read down edge as falling edge.
 MOSFETを含むFET(電界効果トランジスタ)として構成された任意のトランジスタについて、オン状態とは、当該トランジスタのドレイン及びソース間が導通している状態を指し、オフ状態とは、当該トランジスタのドレイン及びソース間が非導通となっている状態(遮断状態)を指す。FETに分類されないトランジスタについても同様である。MOSFETは、特に記述無き限り、エンハンスメント型のMOSFETであると解される。MOSFETは“metal-oxide-semiconductor  field-effect  transistor”の略称である。また、特に記述なき限り、任意のMOSFETにおいて、バックゲートはソースに短絡されていると考えて良い。任意のスイッチを1以上のFET(電界効果トランジスタ)にて構成することができ、或るスイッチがオン状態のときには当該スイッチの両端間が導通する一方で或るスイッチがオフ状態のときには当該スイッチの両端間が非導通となる。 Regarding any transistor configured as a FET (field effect transistor) including a MOSFET, an on state refers to a state in which the drain and source of the transistor are electrically connected, and an off state refers to a state in which the drain and source of the transistor are electrically connected. Refers to the state where there is no conduction between the two (blocked state). The same applies to transistors that are not classified as FETs. The MOSFET is understood to be an enhancement type MOSFET unless otherwise specified. MOSFET is an abbreviation for "metal-oxide-semiconductor field-effect transistor." Furthermore, unless otherwise specified, the back gate of any MOSFET may be considered to be short-circuited to the source. Any switch can be composed of one or more FETs (field effect transistors), and when a switch is on, conduction occurs between both ends of the switch, while when the switch is off, the switch is electrically conductive. There is no conduction between both ends.
 以下、任意のトランジスタ又はスイッチについて、オン状態、オフ状態を、単に、オン、オフと表現することもある。任意のトランジスタ又はスイッチについて、オフ状態からオン状態への切り替わりをターンオンと表現し、オン状態からオフ状態への切り替わりをターンオフと表現する。また、任意のトランジスタ又はスイッチについて、トランジスタ又はスイッチがオン状態となっている期間をオン期間と称し、トランジスタ又はスイッチがオフ状態となっている期間をオフ期間と称する。ハイレベル又はローレベルの信号レベルをとる任意の信号について、当該信号のレベルがハイレベルとなる期間をハイレベル期間と称し、当該信号のレベルがローレベルとなる期間をローレベル期間と称する。ハイレベル又はローレベルの電圧レベルをとる任意の電圧についても同様である。 Hereinafter, the on state and off state of any transistor or switch may be simply expressed as on or off. For any transistor or switch, switching from an off state to an on state is expressed as turn-on, and switching from an on state to an off state is expressed as turn-off. Further, regarding any transistor or switch, a period in which the transistor or switch is in an on state is referred to as an on period, and a period in which the transistor or switch is in an off state is referred to as an off period. Regarding any signal having a signal level of high level or low level, the period during which the level of the signal is high level is referred to as a high level period, and the period during which the level of the signal is at low level is referred to as a low level period. The same applies to any voltage that takes a high or low voltage level.
 任意の回路素子、配線、ノードなど、回路を形成する複数の部位間についての接続とは、特に記述なき限り、電気的な接続を指すと解して良い。 Connections between multiple parts forming a circuit, such as arbitrary circuit elements, wiring, nodes, etc., may be understood to refer to electrical connections, unless otherwise specified.
[第1実施形態]
 本開示の第1実施形態を説明する。図1は本開示の第1実施形態に係るスイッチング電源装置1の全体構成図である。図1のスイッチング電源装置1は、スイッチング電源用回路(スイッチング電源用半導体装置)である電源IC2と、電源IC2に対して外付け接続される複数のディスクリート部品と、を備え、当該複数のディスクリート部品には、出力コンデンサとしてのコンデンサC1と、ブートコンデンサとしてのコンデンサC2と、帰還抵抗としての抵抗R1及びR2と、コイルL1とが含まれる。スイッチング電源装置1は、外部から供給される入力電圧VINより所望の出力電圧VOUTを生成する降圧型のスイッチング電源装置(DC/DCコンバータ)として構成されている。出力端子OUTに出力電圧VOUTが生じる。即ち、出力端子OUTは出力電圧VOUTの印加端(出力電圧VOUTが加わる端子)である。出力電圧VOUTは出力端子OUTに接続された負荷LDに供給される。
[First embodiment]
A first embodiment of the present disclosure will be described. FIG. 1 is an overall configuration diagram of a switching power supply device 1 according to a first embodiment of the present disclosure. A switching power supply device 1 in FIG. 1 includes a power supply IC 2 that is a switching power supply circuit (a semiconductor device for a switching power supply), and a plurality of discrete components externally connected to the power supply IC 2. includes a capacitor C1 as an output capacitor, a capacitor C2 as a boot capacitor, resistors R1 and R2 as feedback resistors, and a coil L1. The switching power supply device 1 is configured as a step-down switching power supply device (DC/DC converter) that generates a desired output voltage V OUT from an input voltage V IN supplied from the outside. An output voltage V OUT is generated at the output terminal OUT. That is, the output terminal OUT is an application terminal for the output voltage V OUT (a terminal to which the output voltage V OUT is applied). The output voltage V OUT is supplied to a load LD connected to the output terminal OUT.
 入力電圧VIN及び出力電圧VOUTは正の直流電圧であって、出力電圧VOUTは入力電圧VINよりも低い。例えば入力電圧VINが12Vであるとき、抵抗R1及びR2の抵抗値を調整することで12V未満の所望の目標電圧VTG(例えば5V)にて出力電圧VOUTを安定化させることができる。 The input voltage V IN and the output voltage V OUT are positive DC voltages, and the output voltage V OUT is lower than the input voltage V IN . For example, when the input voltage V IN is 12V, the output voltage V OUT can be stabilized at a desired target voltage V TG (for example, 5V) below 12V by adjusting the resistance values of the resistors R1 and R2.
 図2に電源IC2の外観斜視図を示す。電源IC2は、半導体基板上に形成された半導体集積回路を有する半導体チップと、半導体チップを収容する筐体(パッケージ)と、筐体から電源IC2の外部に対して露出する複数の外部端子と、を備えた電子部品である。半導体チップを樹脂にて構成された筐体(パッケージ)内に封入することで電源IC2が形成される。尚、図2に示される電源IC2の外部端子の数及び電源IC2の筐体の種類は例示に過ぎず、それらを任意に設計可能である。図1に示される出力段回路MM、主制御ブロック3及び整流素子D1が半導体集積回路に含まれる。 FIG. 2 shows an external perspective view of the power supply IC 2. The power supply IC 2 includes a semiconductor chip having a semiconductor integrated circuit formed on a semiconductor substrate, a casing (package) that houses the semiconductor chip, and a plurality of external terminals exposed to the outside of the power supply IC 2 from the casing. It is an electronic component equipped with The power supply IC 2 is formed by enclosing a semiconductor chip in a housing (package) made of resin. Note that the number of external terminals of the power supply IC 2 and the type of casing of the power supply IC 2 shown in FIG. 2 are merely examples, and they can be designed arbitrarily. The output stage circuit MM, main control block 3, and rectifier D1 shown in FIG. 1 are included in the semiconductor integrated circuit.
 図1では、電源IC2に設けられる複数の外部端子の一部として、入力端子IN、スイッチ端子SW、帰還端子FB、出力監視端子OS、ブート端子BOOT及びグランド端子GNDのみが示されているが(後述の図3等でも同様)、他の外部端子(例えばイネーブル端子及びパワーグッド端子)も電源IC2に設けられ得る。 In FIG. 1, only the input terminal IN, switch terminal SW, feedback terminal FB, output monitoring terminal OS, boot terminal BOOT, and ground terminal GND are shown as some of the plurality of external terminals provided in the power supply IC 2. (Similarly in FIG. 3, which will be described later, etc.), other external terminals (for example, an enable terminal and a power good terminal) may also be provided in the power supply IC 2.
 電源IC2の外部構成について説明する。電源IC2の外部より入力電圧VINが入力端子INに供給される。スイッチ端子SWと出力端子OUTとの間にコイルL1が直列に介在する。即ち、コイルL1の一端はスイッチ端子SWに接続され、コイルL1の他端は出力端子OUTに接続される。また、出力端子OUTはコンデンサC1を介してグランドに接続される。即ち、コンデンサC1の一端は出力端子OUTに接続され、コンデンサC1の他端はグランドに接続される。更に、出力端子OUTは抵抗R1の一端に接続され、抵抗R1の他端は抵抗R2を介してグランドに接続される。抵抗R1及びR2間の接続ノードが帰還端子FBに接続される。また、出力監視端子OSは出力端子OUTに接続される。故に出力監視端子OSには出力電圧VOUTが加わる。グランド端子GNDはグランドに接続される。コンデンサC2は端子BOOT及びSW間に設けられる。即ち、コンデンサC2の一端はブート端子BOOTに接続され、コンデンサC2の他端はスイッチ端子SWに接続される。尚、コイルL1に流れる電流をコイル電流ILと称する。 The external configuration of the power supply IC 2 will be explained. An input voltage V IN is supplied to the input terminal IN from outside the power supply IC2. A coil L1 is interposed in series between the switch terminal SW and the output terminal OUT. That is, one end of the coil L1 is connected to the switch terminal SW, and the other end of the coil L1 is connected to the output terminal OUT. Further, the output terminal OUT is connected to ground via a capacitor C1. That is, one end of the capacitor C1 is connected to the output terminal OUT, and the other end of the capacitor C1 is connected to ground. Further, the output terminal OUT is connected to one end of a resistor R1, and the other end of the resistor R1 is connected to ground via a resistor R2. A connection node between resistors R1 and R2 is connected to feedback terminal FB. Further, the output monitoring terminal OS is connected to the output terminal OUT. Therefore, the output voltage V OUT is applied to the output monitoring terminal OS. A ground terminal GND is connected to ground. Capacitor C2 is provided between terminals BOOT and SW. That is, one end of the capacitor C2 is connected to the boot terminal BOOT, and the other end of the capacitor C2 is connected to the switch terminal SW. Note that the current flowing through the coil L1 is referred to as a coil current IL.
 電源IC2の内部構成について説明する。電源IC2は、出力段回路MMと、出力段回路MMを制御するための主制御ブロック3と、整流素子D1と、を備える。 The internal configuration of the power supply IC 2 will be explained. The power supply IC2 includes an output stage circuit MM, a main control block 3 for controlling the output stage circuit MM, and a rectifier D1.
 出力段回路MMはトランジスタM1及びM2を備える。ここでは、トランジスタM1及びM2は夫々にNチャネル型のMOSFET(Metal  Oxide Semiconductor  Field effect transistor)であるとする。トランジスタM1及びM2は、入力端子INとグランド端子GND(換言すればグランド)との間に直列接続された一対のスイッチング素子であり、それらがスイッチング駆動されることで入力電圧VINがスイッチングされてスイッチ端子SWに矩形波状のスイッチング電圧VSWが現れる。トランジスタM1がハイサイド側に設けられたハイサイドトランジスタであり、トランジスタM2がローサイド側に設けられたローサイドトランジスタである。具体的には、トランジスタM1のドレインは入力電圧VINの印加端である入力端子INに接続され、トランジスタM1のソース及びトランジスタM2のドレインはスイッチ端子SWに共通接続される。トランジスタM2のソースはグランド端子GNDに接続される。尚、トランジスタM2のソースとグランドとの間に電流検出用の抵抗(センス抵抗)が挿入される場合もある。 Output stage circuit MM includes transistors M1 and M2. Here, it is assumed that the transistors M1 and M2 are each N-channel type MOSFETs (Metal Oxide Semiconductor Field effect transistors). The transistors M1 and M2 are a pair of switching elements connected in series between the input terminal IN and the ground terminal GND (in other words, the ground), and when they are driven to switch, the input voltage V IN is switched. A rectangular waveform switching voltage V SW appears at the switch terminal SW. The transistor M1 is a high-side transistor provided on the high side, and the transistor M2 is a low-side transistor provided on the low side. Specifically, the drain of the transistor M1 is connected to the input terminal IN, which is the terminal to which the input voltage V IN is applied, and the source of the transistor M1 and the drain of the transistor M2 are commonly connected to the switch terminal SW. The source of transistor M2 is connected to ground terminal GND. Note that a current detection resistor (sense resistor) may be inserted between the source of the transistor M2 and the ground.
 トランジスタM1は出力トランジスタとして機能し、トランジスタM2は同期整流トランジスタとして機能する。コイルL1及びコンデンサC1は、スイッチ端子SWに現れる矩形波状のスイッチング電圧VSWを整流及び平滑化して出力電圧VOUTを生成する整流平滑回路を構成する。抵抗R1及びR2は出力電圧VOUTを分圧する分圧回路を構成し、抵抗R1及びR2間の接続ノードに出力電圧VOUTの分圧である帰還電圧VFBが生じる。抵抗R1及びR2間の接続ノードが帰還端子FBに接続されることで帰還電圧VFBが帰還端子FBに入力される。 Transistor M1 functions as an output transistor, and transistor M2 functions as a synchronous rectifier transistor. Coil L1 and capacitor C1 constitute a rectifying and smoothing circuit that rectifies and smoothes rectangular wave switching voltage V SW appearing at switch terminal SW to generate output voltage V OUT . Resistors R1 and R2 constitute a voltage divider circuit that divides the output voltage V OUT , and a feedback voltage V FB that is a divided voltage of the output voltage V OUT is generated at a connection node between the resistors R1 and R2. The connection node between the resistors R1 and R2 is connected to the feedback terminal FB, so that the feedback voltage V FB is input to the feedback terminal FB.
 トランジスタM1、M2のゲートには、夫々、ゲート信号G1、G2が供給される。トランジスタM1及びM2はゲート信号G1及びG2に応じてオン、オフされる。ゲート信号G1がハイレベルであるとき、トランジスタM1はオン状態となり、ゲート信号G1がローレベルであるとき、トランジスタM1はオフ状態となる。同様に、ゲート信号G2がハイレベルであるとき、トランジスタM2はオン状態となり、ゲート信号G2がローレベルであるとき、トランジスタM2はオフ状態となる。基本的には、トランジスタM1及びM2が交互にオン、オフされるが、トランジスタM1及びM2が共にオフ状態とされることもある。即ち、出力段回路MMの状態は、出力ハイ状態と、出力ロー状態と、Hi-Z状態の何れかとなる。出力ハイ状態では、トランジスタM1、M2が夫々、オン状態、オフ状態である。出力ロー状態では、トランジスタM1、M2が夫々、オフ状態、オン状態である。Hi-Z状態では、トランジスタM1及びM2が共にオフ状態である。トランジスタM1及びM2が共にオン状態とされることは無い。 Gate signals G1 and G2 are supplied to the gates of transistors M1 and M2, respectively. Transistors M1 and M2 are turned on and off according to gate signals G1 and G2. When the gate signal G1 is at a high level, the transistor M1 is turned on, and when the gate signal G1 is at a low level, the transistor M1 is turned off. Similarly, when the gate signal G2 is at a high level, the transistor M2 is turned on, and when the gate signal G2 is at a low level, the transistor M2 is turned off. Basically, transistors M1 and M2 are turned on and off alternately, but both transistors M1 and M2 may be turned off. That is, the state of the output stage circuit MM is one of an output high state, an output low state, and a Hi-Z state. In the output high state, transistors M1 and M2 are on and off, respectively. In the output low state, transistors M1 and M2 are in an off state and an on state, respectively. In the Hi-Z state, both transistors M1 and M2 are off. Both transistors M1 and M2 are never turned on.
 主制御ブロック3は、トランジスタM1及びM2の各ゲート、スイッチ端子SW、帰還端子FB及び出力監視端子OSに接続される。主制御ブロック3は、帰還電圧VFBに基づきゲート信号G1及びG2のレベル制御を通じてトランジスタM1及びM2の夫々のオン/オフ状態を制御し、これによって出力端子OUTに帰還電圧VFBに応じた出力電圧VOUTを発生させる。また、図1に示す如く、主制御ブロック3には出力電圧VOUTが与えられていても良い。主制御ブロック3は出力電圧VOUTに基づいて過電圧保護等を行いうる他、出力電圧VOUTを参照して後述の疑似電流情報を生成することもできる(詳細は後述)。 The main control block 3 is connected to each gate of the transistors M1 and M2, a switch terminal SW, a feedback terminal FB, and an output monitoring terminal OS. The main control block 3 controls the on/off states of the transistors M1 and M2 by controlling the levels of the gate signals G1 and G2 based on the feedback voltage V FB , thereby providing an output to the output terminal OUT according to the feedback voltage V FB. Generates voltage V OUT . Further, as shown in FIG. 1, the main control block 3 may be provided with an output voltage V OUT . The main control block 3 can perform overvoltage protection etc. based on the output voltage V OUT , and can also generate pseudo current information (details will be described later) by referring to the output voltage V OUT .
 電源IC2には入力電圧VINに基づき内部電源電圧VREGを生成する内部電源回路(不図示)が設けられる。内部電源電圧VREGは所定の正の直流電圧値を有する。図1の例において整流素子D1はダイオードである。この場合、整流素子D1としてのダイオードにおいて、アノードは内部電源電圧VREGの印加端に接続され、カソードはブート端子BOOTに接続される。整流素子D1はトランジスタM2のオン期間においてオンとされるスイッチング素子であっても良い。整流素子D1及びコンデンサC2によりブートストラップ回路が形成される。ブート端子BOOTに加わる電圧をブート電圧VBOOTと称する。主制御ブロック3は内部電源電圧VREG又はブート電圧VBOOTに基づき駆動できる。 The power supply IC 2 is provided with an internal power supply circuit (not shown) that generates an internal power supply voltage V REG based on the input voltage V IN . Internal power supply voltage V REG has a predetermined positive DC voltage value. In the example of FIG. 1, the rectifying element D1 is a diode. In this case, in the diode serving as the rectifying element D1, the anode is connected to the application terminal of the internal power supply voltage V REG , and the cathode is connected to the boot terminal BOOT. The rectifying element D1 may be a switching element that is turned on during the on period of the transistor M2. A bootstrap circuit is formed by the rectifying element D1 and the capacitor C2. The voltage applied to the boot terminal BOOT is referred to as a boot voltage V BOOT . The main control block 3 can be driven based on the internal power supply voltage V REG or the boot voltage V BOOT .
 出力段回路MMが出力ロー状態であるときにおいて、内部電源電圧VREGに基づき整流素子D1を通じてコンデンサC2が充電されることで、ブート電圧VBOOTはコンデンサC2の両端間電圧だけスイッチング電圧VSWよりも高くなる。その後、出力段回路MMが出力ハイ状態とされるときにも、ブート電圧VBOOTはコンデンサC2の両端間電圧だけスイッチング電圧VSWよりも高い状態で維持される。 When the output stage circuit MM is in the output low state, the capacitor C2 is charged through the rectifier D1 based on the internal power supply voltage V REG , so that the boot voltage V BOOT is lower than the switching voltage V SW by the voltage across the capacitor C2. It also becomes more expensive. Thereafter, even when the output stage circuit MM is brought into the output high state, the boot voltage V BOOT is maintained higher than the switching voltage V SW by the voltage across the capacitor C2.
 ゲート信号G1はスイッチ端子SWの電位を基準とする信号である。具体的には、ローレベルのゲート信号G1はスイッチ端子SWの電位を有し、ハイレベルのゲート信号G1はスイッチ端子SWの電位よりも電圧VBOOT及びVSW間の差だけ高い。主制御ブロック3はブート電圧VBOOTに基づいてハイレベルのゲート信号G1を生成できる。一方、ゲート信号G2はグランド電位を基準とする信号である。具体的には、ローレベルのゲート信号G2はグランド電位を有し、ハイレベルのゲート信号G2はグランド電位よりも所定電圧(例えば内部電源電圧VREG)だけ高い。 The gate signal G1 is a signal based on the potential of the switch terminal SW. Specifically, the low-level gate signal G1 has the potential of the switch terminal SW, and the high-level gate signal G1 is higher than the potential of the switch terminal SW by the difference between the voltages V BOOT and V SW . The main control block 3 can generate a high level gate signal G1 based on the boot voltage V BOOT . On the other hand, the gate signal G2 is a signal based on the ground potential. Specifically, the low-level gate signal G2 has a ground potential, and the high-level gate signal G2 is higher than the ground potential by a predetermined voltage (eg, internal power supply voltage V REG ).
 図3に電源IC2Aを有するスイッチング電源装置1の構成を示す。電源IC2Aは電源IC2の例である。電源IC2について上述した事項は、矛盾なき限り全て、電源IC2Aにも適用される。 FIG. 3 shows the configuration of a switching power supply device 1 having a power supply IC 2A. Power supply IC2A is an example of power supply IC2. All the matters described above regarding the power supply IC 2 also apply to the power supply IC 2A unless there is a contradiction.
 電源IC2Aにおける主制御ブロック3は、エラーアンプ11と、位相補償回路12と、差動アンプ13と、位相補償回路14と、クロック生成回路15と、ランプ電圧生成回路16と、コンパレータ17と、ロジック回路18と、ドライバ19と、電流情報生成回路30と、を備える。電源IC2Aではパルス幅変調によるスイッチング動作が行われる。以下、各部位の機能及び動作を説明する。 The main control block 3 in the power supply IC 2A includes an error amplifier 11, a phase compensation circuit 12, a differential amplifier 13, a phase compensation circuit 14, a clock generation circuit 15, a lamp voltage generation circuit 16, a comparator 17, and a logic circuit. It includes a circuit 18, a driver 19, and a current information generation circuit 30. The power supply IC 2A performs a switching operation using pulse width modulation. The functions and operations of each part will be explained below.
 エラーアンプ11は、電流出力型のトランスコンダクタンスアンプである。エラーアンプ11は、反転入力端子、非反転入力端子及び出力端子を備える。エラーアンプ11の出力端子は配線WR1に接続される。エラーアンプ11の反転入力端子は帰還端子FBに接続されて帰還電圧VFBの供給を受ける。エラーアンプ11の非反転入力端子には所定の基準電圧VREFが供給される。基準電圧VREFは、正の所定電圧値を有する直流電圧であり、電源IC2A内の図示されない基準電圧生成回路にて生成される。 The error amplifier 11 is a current output type transconductance amplifier. The error amplifier 11 includes an inverting input terminal, a non-inverting input terminal, and an output terminal. The output terminal of the error amplifier 11 is connected to the wiring WR1. The inverting input terminal of the error amplifier 11 is connected to the feedback terminal FB and receives the feedback voltage VFB . A predetermined reference voltage V REF is supplied to the non-inverting input terminal of the error amplifier 11 . The reference voltage V REF is a DC voltage having a predetermined positive voltage value, and is generated by a reference voltage generation circuit (not shown) in the power supply IC 2A.
 エラーアンプ11は、帰還電圧VFB及び基準電圧VREF間の差分に応じた電流信号I1を自身の出力端子から出力することで、帰還電圧VFB及び基準電圧VREF間の差分に応じた誤差電圧VERRを配線WR1に発生させる。電流信号I1による電荷は配線WR1に対して入出力される。具体的には、エラーアンプ11は、帰還電圧VFBが基準電圧VREFよりも低いときには配線WR1の電位が上がるようエラーアンプ11から配線WR1に向けて電流信号I1による電流を出力し、帰還電圧VFBが基準電圧VREFよりも高いときには配線WR1の電位が下がるよう配線WR1からエラーアンプ11に向けて電流信号I1による電流を引き込む。帰還電圧VFB及び基準電圧VREF間の差分の絶対値が増大するにつれて、電流信号I1による電流の大きさも増大する。 The error amplifier 11 outputs a current signal I1 according to the difference between the feedback voltage V FB and the reference voltage V REF from its own output terminal, thereby reducing the error according to the difference between the feedback voltage V FB and the reference voltage V REF . A voltage V ERR is generated on the wiring WR1. Charges generated by the current signal I1 are input to and output from the wiring WR1. Specifically, when the feedback voltage V FB is lower than the reference voltage V REF , the error amplifier 11 outputs a current based on the current signal I1 from the error amplifier 11 to the wiring WR1 so that the potential of the wiring WR1 increases, and the feedback voltage increases. When V FB is higher than the reference voltage V REF , a current based on the current signal I1 is drawn from the wiring WR1 toward the error amplifier 11 so that the potential of the wiring WR1 is lowered. As the absolute value of the difference between the feedback voltage V FB and the reference voltage V REF increases, the magnitude of the current due to the current signal I1 also increases.
 尚、電源IC2Aの起動時において、0Vから基準電圧VREFを超える電圧に向けて緩やかに上昇するソフトスタート電圧が電源IC2A内で生成されて良い。この場合、エラーアンプ11は、基準電圧VREFとソフトスタート電圧の内、低い方の電圧を帰還電圧VFBと比較して比較結果に基づき電流信号I1を生成する。但し、本実施形態では、ソフトスタート電圧が基準電圧VREFよりも高くなった後の状態を考えるものとし、以下ではソフトスタート電圧の存在を無視する。 Note that when the power supply IC 2A is started, a soft start voltage that gradually increases from 0V to a voltage exceeding the reference voltage V REF may be generated within the power supply IC 2A. In this case, the error amplifier 11 compares the lower voltage between the reference voltage V REF and the soft start voltage with the feedback voltage V FB and generates the current signal I1 based on the comparison result. However, in this embodiment, the state after the soft start voltage becomes higher than the reference voltage V REF will be considered, and the existence of the soft start voltage will be ignored below.
 位相補償回路12は、配線WR1とグランドとの間に設けられ、電流信号I1の入力を受けて誤差電圧VERRの位相を補償する。位相補償回路12は抵抗12a及びコンデンサ12bの直列回路を含む。具体的には抵抗12aの一端が配線WR1に接続され、抵抗12aの他端はコンデンサ12bの一端に接続される。コンデンサ12bの他端はグランドに接続される。抵抗12aの抵抗値及びコンデンサ12bの静電容量値を適切に設定することにより誤差電圧VERRの位相を補償して出力帰還ループの発振を防ぐことができる。 The phase compensation circuit 12 is provided between the wiring WR1 and the ground, receives the current signal I1, and compensates the phase of the error voltage VERR . The phase compensation circuit 12 includes a series circuit of a resistor 12a and a capacitor 12b. Specifically, one end of the resistor 12a is connected to the wiring WR1, and the other end of the resistor 12a is connected to one end of the capacitor 12b. The other end of capacitor 12b is connected to ground. By appropriately setting the resistance value of the resistor 12a and the capacitance value of the capacitor 12b, it is possible to compensate the phase of the error voltage V ERR and prevent oscillation of the output feedback loop.
 差動アンプ13も、エラーアンプ11と同様、電流出力型のトランスコンダクタンスアンプである。差動アンプ13は、反転入力端子、非反転入力端子及び出力端子を備える。差動アンプ13の出力端子は配線WR2に接続される。差動アンプ13の非反転入力端子は配線WR1に接続されて誤差電圧VERRの供給を受ける。差動アンプ13の反転入力端子には電圧VILが供給される。詳細は後述されるが、電圧VILはコイル電流ILを表すコイル電流情報である。 Like the error amplifier 11, the differential amplifier 13 is also a current output type transconductance amplifier. The differential amplifier 13 includes an inverting input terminal, a non-inverting input terminal, and an output terminal. The output terminal of the differential amplifier 13 is connected to the wiring WR2. A non-inverting input terminal of the differential amplifier 13 is connected to the wiring WR1 and receives the error voltage V ERR . A voltage V IL is supplied to the inverting input terminal of the differential amplifier 13 . Although details will be described later, the voltage V IL is coil current information representing the coil current IL.
 差動アンプ13は、誤差電圧VERR及び電圧VIL間の差分に応じた電流信号I2を自身の出力端子から出力することで、誤差電圧VERR及び電圧VIL間の差分に応じた対比電圧VCを配線WR2に発生させる。電流信号I2による電荷は、配線WR2に対して入出力される。具体的には、差動アンプ13は、誤差電圧VERRが電圧VILよりも高いときには配線WR2の電位が上がるよう差動アンプ13から配線WR2に向けて電流信号I2による電流を出力し、誤差電圧VERRが電圧VILよりも低いときには配線WR2の電位が下がるよう配線WR2から差動アンプ13に向けて電流信号I2による電流を引き込む。誤差電圧VERR及び電圧VIL間の差分の絶対値が増大するにつれて、電流信号I2による電流の大きさも増大する。 The differential amplifier 13 outputs a current signal I2 corresponding to the difference between the error voltage V ERR and the voltage V IL from its own output terminal, thereby generating a comparison voltage according to the difference between the error voltage V ERR and the voltage V IL . Generate V C in wiring WR2. Charges generated by the current signal I2 are input to and output from the wiring WR2. Specifically, when the error voltage V ERR is higher than the voltage V IL , the differential amplifier 13 outputs a current according to the current signal I2 from the differential amplifier 13 to the wiring WR2 so that the potential of the wiring WR2 increases, and the error is reduced. When the voltage V ERR is lower than the voltage V IL , a current based on the current signal I2 is drawn from the wiring WR2 toward the differential amplifier 13 so that the potential of the wiring WR2 is lowered. As the absolute value of the difference between error voltage V ERR and voltage V IL increases, the magnitude of the current due to current signal I2 also increases.
 位相補償回路14は、配線WR2とグランドとの間に設けられ、電流信号I2の入力を受けて対比電圧VCの位相を補償する。位相補償回路14は抵抗14a及びコンデンサ14bの直列回路を含む。具体的には抵抗14aの一端が配線WR2に接続され、抵抗14aの他端はコンデンサ14bの一端に接続される。コンデンサ14bの他端はグランドに接続される。抵抗14aの抵抗値及びコンデンサ14bの静電容量値を適切に設定することにより対比電圧VCの位相を補償して出力帰還ループの発振を防ぐことができる。 The phase compensation circuit 14 is provided between the wiring WR2 and the ground, receives the current signal I2, and compensates the phase of the comparison voltage V C . The phase compensation circuit 14 includes a series circuit of a resistor 14a and a capacitor 14b. Specifically, one end of the resistor 14a is connected to the wiring WR2, and the other end of the resistor 14a is connected to one end of the capacitor 14b. The other end of capacitor 14b is connected to ground. By appropriately setting the resistance value of the resistor 14a and the capacitance value of the capacitor 14b, it is possible to compensate the phase of the comparison voltage V C and prevent oscillation of the output feedback loop.
 クロック生成回路15はクロック信号CLKを生成及び出力する。クロック信号CLKは所定の基準周波数fREFを有する矩形波信号であり、ローレベル及びハイレベルの信号レベルを交互にとる。クロック生成回路15からランプ電圧生成回路16及びロジック回路18に対してクロック信号CLKが出力される。 The clock generation circuit 15 generates and outputs a clock signal CLK. The clock signal CLK is a rectangular wave signal having a predetermined reference frequency f REF and alternately takes low and high signal levels. A clock signal CLK is output from the clock generation circuit 15 to the ramp voltage generation circuit 16 and the logic circuit 18.
 ランプ電圧生成回路16は、周期的に電圧値(換言すれば信号レベル)が変化するランプ電圧VRAMPを生成する。ランプ電圧VRAMPは、例えば三角波又はのこぎり波の電圧波形を持つ。ランプ電圧VRAMPはクロック信号CLKに依存する。 The ramp voltage generation circuit 16 generates a ramp voltage V RAMP whose voltage value (in other words, signal level) changes periodically. The lamp voltage V RAMP has a voltage waveform of, for example, a triangular wave or a sawtooth wave. The ramp voltage V RAMP depends on the clock signal CLK.
 図4にランプ電圧VRAMP及びクロック信号CLK間の関係を示す。基準周波数fREFの逆数に相当する時間を基準時間tREFと称する。基準時間tREFが経過するごとにクロック信号CLKにてアップエッジが発生する。詳細には、クロック信号CLKにてアップエッジが生じてから時間(tREF-Δt)が経過するとクロック信号CLKにてダウンエッジが生じ、その後、所定の微小時間Δtが経過するとクロック信号CLKにて新たにアップエッジが生じる。 FIG. 4 shows the relationship between the ramp voltage V RAMP and the clock signal CLK. A time corresponding to the reciprocal of the reference frequency f REF is referred to as a reference time t REF . Every time the reference time t REF elapses, an up edge occurs in the clock signal CLK. Specifically, a down edge occurs in the clock signal CLK when a time (t REF - Δt) elapses after an up edge occurs in the clock signal CLK, and then, when a predetermined minute time Δt elapses, the clock signal CLK A new up edge is generated.
 ランプ電圧生成回路16は、クロック信号CLKのローレベル期間においてランプ電圧VRAMPの値を所定の下限電圧値VRAMP_MINに設定し、クロック信号CLKのハイレベル期間においてランプ電圧VRAMPを時間経過と共に線形的に単調上昇させる。従って、ランプ電圧生成回路16は、クロック信号CLKのアップエッジを契機にランプ電圧VRAMPの下限電圧値VRAMP_MINからの単調上昇を開始し、ランプ電圧VRAMPの単調上昇をクロック信号CLKのダウンエッジの発生まで継続させる。そして、ランプ電圧生成回路16は、クロック信号CLKのダウンエッジを契機にランプ電圧VRAMPを下限電圧値VRAMP_MINに戻す。以下、下限電圧値VRAMP_MINは初期レベルと称されることがある。 The ramp voltage generation circuit 16 sets the value of the ramp voltage V RAMP to a predetermined lower limit voltage value V RAMP_MIN during the low level period of the clock signal CLK, and adjusts the ramp voltage V RAMP linearly over time during the high level period of the clock signal CLK. increase monotonically. Therefore, the ramp voltage generation circuit 16 starts a monotonous rise of the ramp voltage V RAMP from the lower limit voltage value V RAMP_MIN at the rising edge of the clock signal CLK, and starts a monotonous rise of the ramp voltage V RAMP from the lower limit voltage value V RAMP_MIN at the falling edge of the clock signal CLK. Continue until the occurrence of. Then, the ramp voltage generation circuit 16 returns the ramp voltage V RAMP to the lower limit voltage value V RAMP_MIN in response to the down edge of the clock signal CLK. Hereinafter, the lower limit voltage value V RAMP_MIN may be referred to as an initial level.
 クロック信号CLKのハイレベル期間におけるランプ電圧VRAMPの上昇の傾きは、入力電圧VINが高いほど大きく設定される(但し、入力電圧VINに依存せず一定に設定されても良い)。尚、微小時間Δtは基準時間tREFよりも十分に小さくて良い。以下では、特に必要なき限り、微小時間Δtは基準時間tREFによりも十分に小さいとみなして無視する(即ち微小時間Δtがゼロであるかのように取り扱う)。 The slope of rise of the ramp voltage V RAMP during the high level period of the clock signal CLK is set to be larger as the input voltage V IN is higher (however, it may be set to be constant regardless of the input voltage V IN ). Note that the minute time Δt may be sufficiently smaller than the reference time t REF . In the following, unless it is particularly necessary, the minute time Δt is considered to be sufficiently smaller than the reference time t REF and will be ignored (that is, the minute time Δt will be treated as if it were zero).
 図3を再度参照する。コンパレータ17の非反転入力端子は配線WR2に接続されて対比電圧VCの供給を受ける。コンパレータ17の反転入力端子にはランプ電圧生成回路16からのランプ電圧VRAMPが供給される。コンパレータ17は、対比電圧VCをランプ電圧VRAMPと比較して比較結果を示す信号SPWMを出力する。信号SPWMは、“VC>VRAMP”の成立期間においてハイレベルとなり、“VC<VRAMP”の成立期間においてローレベルとなる。“VC=VRAMP”の成立期間において信号SPWMはハイレベル又はローレベルとなる。“VC>VRAMP”は対比電圧VCがランプ電圧VRAMPよりも高いことを表し、“VC<VRAMP”は対比電圧VCがランプ電圧VRAMPよりも低いことを表す。電圧等の物理量を含む他の式についても同様である。 Referring again to FIG. A non-inverting input terminal of the comparator 17 is connected to the wiring WR2 and receives the comparison voltage V C . The lamp voltage V RAMP from the lamp voltage generation circuit 16 is supplied to the inverting input terminal of the comparator 17 . The comparator 17 compares the comparison voltage V C with the ramp voltage V RAMP and outputs a signal S PWM indicating the comparison result. The signal S PWM becomes high level during the period when “V C >V RAMP ” is established, and becomes low level during the period when “V C <V RAMP ” is established. During the period when "V C =V RAMP " is established, the signal SPWM becomes high level or low level. "V C > V RAMP " represents that the contrast voltage V C is higher than the lamp voltage V RAMP , and "V C < V RAMP " represents that the contrast voltage V C is lower than the ramp voltage V RAMP . The same applies to other expressions including physical quantities such as voltage.
 ロジック回路18に対してコンパレータ17からの信号SPWMが入力され、クロック生成回路15からのクロック信号CLKが入力される。ロジック回路18は信号CLK及びSPWMに基づきドライバ19を制御することでゲート信号G1及びG2を制御する。ドライバ19は、ロジック回路18の制御の下、信号CLK及びSPWMに基づくゲート信号G1及びG2をトランジスタM1及びM2に供給し、これによって出力段回路MMにスイッチング動作を行わせる。スイッチング動作では、信号CLK及びSPWMに基づきトランジスタM1及びM2が交互にオン、オフされる。エラーアンプ11は、帰還電圧VFBと基準電圧VREFとが等しくなるように電流信号I1を生成するため、スイッチング動作の実行を通じ、出力電圧VOUTが、基準電圧VREFと抵抗R1及びR2による分圧比とに応じた所定の目標電圧VTGにて安定化される。 The signal S PWM from the comparator 17 is input to the logic circuit 18, and the clock signal CLK from the clock generation circuit 15 is input. Logic circuit 18 controls gate signals G1 and G2 by controlling driver 19 based on signals CLK and SPWM . The driver 19 supplies gate signals G1 and G2 based on the signals CLK and SPWM to the transistors M1 and M2 under the control of the logic circuit 18, thereby causing the output stage circuit MM to perform a switching operation. In the switching operation, transistors M1 and M2 are alternately turned on and off based on signals CLK and SPWM . Since the error amplifier 11 generates the current signal I1 so that the feedback voltage V FB and the reference voltage V REF are equal, the output voltage V OUT is equal to the reference voltage V REF and the resistors R1 and R2 through execution of the switching operation. It is stabilized at a predetermined target voltage V TG according to the voltage division ratio.
 ロジック回路18は、ドライバ19からハイレベルのゲート信号G1及びローレベルのゲート信号G2をトランジスタM1及びM2のゲートに供給させることで出力段回路MMを出力ハイ状態に制御及び設定する。ロジック回路18は、ドライバ19からローレベルのゲート信号G1及びハイレベルのゲート信号G2をトランジスタM1及びM2のゲートに供給させることで出力段回路MMを出力ロー状態に制御及び設定する。 The logic circuit 18 controls and sets the output stage circuit MM to the output high state by supplying the high level gate signal G1 and the low level gate signal G2 from the driver 19 to the gates of the transistors M1 and M2. The logic circuit 18 controls and sets the output stage circuit MM to an output low state by supplying a low level gate signal G1 and a high level gate signal G2 from the driver 19 to the gates of the transistors M1 and M2.
 従って、ロジック回路18は、ドライバ19を用いてゲート信号G1にアップエッジを生じさせ且つゲート信号G2にダウンエッジを生じさせることで出力段回路MMの状態を出力ロー状態から出力ハイ状態に切り替える。但し、この際、貫通電流を抑止するべく、出力段回路MMは出力ロー状態からHi-Z状態を経由して出力ハイ状態に切り替えられて良い。即ち、出力ロー状態から出力ハイ状態への切り替えの際、ゲート信号G2にダウンエッジを生じさせてからゲート信号G1にアップエッジを生じさせて良い。 Therefore, the logic circuit 18 uses the driver 19 to generate an up edge in the gate signal G1 and a down edge in the gate signal G2, thereby switching the state of the output stage circuit MM from the output low state to the output high state. However, in this case, in order to suppress the through current, the output stage circuit MM may be switched from the output low state to the output high state via the Hi-Z state. That is, when switching from the output low state to the output high state, a down edge may be generated in the gate signal G2, and then an up edge may be generated in the gate signal G1.
 同様に、ロジック回路18は、ドライバ19を用いてゲート信号G1にダウンエッジを生じさせ且つゲート信号G2にアップエッジを生じさせることで出力段回路MMの状態を出力ハイ状態から出力ロー状態に切り替える。但し、この際、貫通電流を抑止するべく、出力段回路MMは出力ハイ状態からHi-Z状態を経由して出力ロー状態に切り替えられて良い。即ち、出力ハイ状態から出力ロー状態への切り替えの際、ゲート信号G1にダウンエッジを生じさせてからゲート信号G2にアップエッジを生じさせて良い。 Similarly, the logic circuit 18 uses the driver 19 to generate a down edge in the gate signal G1 and an up edge in the gate signal G2, thereby switching the state of the output stage circuit MM from the output high state to the output low state. . However, in this case, in order to suppress the through current, the output stage circuit MM may be switched from the output high state to the output low state via the Hi-Z state. That is, when switching from the output high state to the output low state, a down edge may be generated in the gate signal G1 and then an up edge may be generated in the gate signal G2.
 このように、ロジック回路18はドライバ19を用いてトランジスタM1及びM2のオン、オフを制御するが、以下では、ドライバ19の記述を省略することがある。 In this way, the logic circuit 18 uses the driver 19 to control on and off of the transistors M1 and M2, but the description of the driver 19 may be omitted below.
 スイッチ端子SWから出力端子OUTに向かう向きのコイル電流ILが正の極性を有する。以下では、トランジスタM1のオン期間及びトランジスタM2のオン期間の夫々にて、正のコイル電流ILが流れることを想定する(いわゆる連続モードでの動作を想定する)。 The coil current IL directed from the switch terminal SW to the output terminal OUT has positive polarity. In the following, it is assumed that a positive coil current IL flows during each of the on-periods of the transistor M1 and the on-period of the transistor M2 (assuming operation in a so-called continuous mode).
 電流情報生成回路30は、トランジスタM2のオン期間においてトランジスタM2に流れる電流を検出する電流センス動作を実行し、当該電流センス動作を通じてコイル電流情報に相当する電圧VILを生成する。トランジスタM2のオン期間においてトランジスタM2に流れる電流はコイルL1を通過する。このため、電流センス動作はトランジスタM2に流れる電流を検出することを通じてコイル電流ILを検出する動作であると言える。電流情報生成回路30は、コイル電流ILが増大するほど、より高い電圧VILが生成されるよう動作する。電圧VILが差動アンプ13に帰還入力されるため、誤差電圧VERRの上昇はコイル電流ILの増大をもたらし、誤差電圧VERRの低下はコイル電流ILの減少をもたらす。 The current information generation circuit 30 executes a current sensing operation to detect the current flowing through the transistor M2 during the on period of the transistor M2, and generates a voltage V IL corresponding to coil current information through the current sensing operation. During the ON period of transistor M2, the current flowing through transistor M2 passes through coil L1. Therefore, the current sensing operation can be said to be an operation of detecting the coil current IL by detecting the current flowing through the transistor M2. The current information generation circuit 30 operates so that as the coil current IL increases, a higher voltage V IL is generated. Since the voltage V IL is fed back into the differential amplifier 13, an increase in the error voltage V ERR causes an increase in the coil current IL, and a decrease in the error voltage V ERR causes a decrease in the coil current IL.
 図3の構成において、電流情報生成回路30は、センス抵抗31、S/H回路32、増幅回路33、疑似電流生成回路34及び加算器35を備える。電流情報生成回路30の動作はロジック回路18により制御されて良い。電流情報生成回路30は、センス抵抗31の電圧降下を検出することでトランジスタM2に流れる電流(従ってコイル電流IL)を検出することができる。 In the configuration of FIG. 3, the current information generation circuit 30 includes a sense resistor 31, an S/H circuit 32, an amplifier circuit 33, a pseudo current generation circuit 34, and an adder 35. The operation of the current information generation circuit 30 may be controlled by the logic circuit 18. The current information generation circuit 30 can detect the current flowing through the transistor M2 (therefore, the coil current IL) by detecting the voltage drop across the sense resistor 31.
 センス抵抗31はトランジスタM2及びグランドに直列に挿入される。具体的には、センス抵抗31の第1端はトランジスタM2のソースに接続され、センス抵抗31の第2端はグランド端子GNDに接続される。トランジスタM2のオン期間において、コイル電流ILがセンス抵抗31及びトランジスタM2を通じて流れるため、センス抵抗31にはコイル電流ILに比例する電圧降下が発生する。 The sense resistor 31 is inserted in series with the transistor M2 and ground. Specifically, a first end of the sense resistor 31 is connected to the source of the transistor M2, and a second end of the sense resistor 31 is connected to the ground terminal GND. During the ON period of the transistor M2, the coil current IL flows through the sense resistor 31 and the transistor M2, so a voltage drop proportional to the coil current IL occurs in the sense resistor 31.
 S/H回路32はセンス抵抗31の電圧降下に対するサンプリング/ホールド回路である。即ち、S/H回路32はセンス抵抗31の第1端及び第2端に接続され、電流センス動作において、センス抵抗31の電圧降下(即ちセンス抵抗31の両端子間に生じる電圧)をロジック回路18により設定されたサンプリングタイミングにてサンプリングして保持する。電流センス動作において、増幅回路33はS/H回路32にて現在保持されている電圧を増幅し、増幅した電圧を出力する。増幅回路33の出力電圧を記号“VISNS”にて表す。センス抵抗31、S/H回路32及び増幅回路33から成る電流センサにてコイル電流ILの値が検出される。電圧VISNSはコイル電流ILの検出値(検出電流値)を表す検出電流情報に相当する。コイル電流ILの検出値は、センス抵抗31の値と増幅回路33の増幅率との積にて電圧VISNSを割ったものに相当する。 The S/H circuit 32 is a sampling/hold circuit for the voltage drop across the sense resistor 31. That is, the S/H circuit 32 is connected to the first and second ends of the sense resistor 31, and in the current sensing operation, the voltage drop across the sense resistor 31 (that is, the voltage generated between both terminals of the sense resistor 31) is transferred to the logic circuit. The data is sampled and held at the sampling timing set by 18. In the current sensing operation, the amplifier circuit 33 amplifies the voltage currently held in the S/H circuit 32 and outputs the amplified voltage. The output voltage of the amplifier circuit 33 is represented by the symbol "V ISNS ". A current sensor including a sense resistor 31, an S/H circuit 32, and an amplifier circuit 33 detects the value of the coil current IL. The voltage V ISNS corresponds to detected current information representing a detected value (detected current value) of the coil current IL. The detected value of the coil current IL corresponds to the voltage V ISNS divided by the product of the value of the sense resistor 31 and the amplification factor of the amplifier circuit 33.
 疑似電流生成回路34は疑似電流情報を表す電圧VIPSを生成及び出力する。電圧VIPSはゼロとされることがある。加算器35は増幅回路33の出力電圧VISNSに対して疑似電流生成回路34の出力電圧VIPSを加算し、それらの和の電圧(VISNS+VIPS)を電圧VILとして出力する。電圧VILはコイル電流ILを表すコイル電流情報である。 The pseudo current generation circuit 34 generates and outputs a voltage V IPS representing pseudo current information. The voltage V IPS is sometimes taken to be zero. The adder 35 adds the output voltage V IPS of the pseudo current generation circuit 34 to the output voltage V ISNS of the amplifier circuit 33, and outputs the sum voltage (VI SNS +V IPS ) as the voltage V IL . The voltage V IL is coil current information representing the coil current IL.
 電流情報生成回路30は、電流センス動作を安定して実行できる期間においては“VIPS=0”とし、電流センス動作により得られる検出電流情報(VISNS)そのものをコイル電流情報(VIL)として生成することができる。電流センス動作を実行できない期間において、電流情報生成回路30は、検出電流情報(VISNS)及び疑似電流情報(VIPS)を用いてコイル電流ILを推定することを通じ、コイル電流情報(VIL)を生成することができる。電圧VIPSの意義及び生成方法は後に詳説される。 The current information generation circuit 30 sets "V IPS = 0" during a period in which the current sense operation can be executed stably, and uses the detected current information (V ISNS ) obtained by the current sense operation as the coil current information (V IL ). can be generated. During the period in which the current sensing operation cannot be performed, the current information generation circuit 30 generates coil current information (V IL ) by estimating the coil current IL using the detected current information (V ISNS ) and the pseudo current information (V IPS ) . can be generated. The significance and generation method of the voltage V IPS will be explained in detail later.
 トランジスタM1及びM2が交互にオン、オフされる周波数をスイッチング周波数と称し、特に記号“fSW”にて参照する。スイッチング周波数fSWはトランジスタM1のスイッチングの周波数(故にゲート信号G1の周波数)でもあるし、トランジスタM2のスイッチングの周波数(故にゲート信号G2の周波数)でもある。入力電圧VINが出力電圧VOUTに対して十分に高い状態が継続しているとき、スイッチング周波数fSWは基準周波数fREFで安定する。 The frequency at which transistors M1 and M2 are alternately turned on and off is called the switching frequency, and is particularly referred to by the symbol "f SW ". The switching frequency f SW is both the switching frequency of the transistor M1 (therefore the frequency of the gate signal G1) and the switching frequency of the transistor M2 (therefore the frequency of the gate signal G2). When the input voltage V IN continues to be sufficiently higher than the output voltage V OUT , the switching frequency f SW becomes stable at the reference frequency f REF .
 図5にスイッチング周波数fSWが基準周波数fREFで安定しているときのタイミングチャート(即ちスイッチング周波数fSWが基準周波数fREFにて維持されているときのタイミングチャート)を示す。図5には、信号SPWM、ランプ電圧VRAMP、クロック信号CLK、ゲート信号G1、ゲート信号G2、コイル電流IL、電圧VISNS及び電圧VILの波形が実線で示されると共に、対比電圧VCの波形が破線で示されている。図5の例では、順次訪れる時刻T11、T12、T13及びT14にて、夫々、クロック信号CLKにアップエッジが生じる。出力段回路MMが出力ロー状態であるときに時刻T11にてクロック信号CLKにアップエッジが生じると、ロジック回路18はゲート信号G1にアップエッジを生じさせ且つゲート信号G2にダウンエッジを生じさせることで出力段回路MMを出力ロー状態から出力ハイ状態に切り替える。 FIG. 5 shows a timing chart when the switching frequency f SW is stable at the reference frequency f REF (that is, a timing chart when the switching frequency f SW is maintained at the reference frequency f REF ). In FIG. 5, the waveforms of the signal S PWM , the lamp voltage V RAMP , the clock signal CLK, the gate signal G1, the gate signal G2, the coil current IL, the voltage V ISNS and the voltage V IL are shown as solid lines, and the comparison voltage V C The waveform of is shown by the dashed line. In the example of FIG. 5, an up edge occurs in the clock signal CLK at times T11, T12, T13, and T14, which occur sequentially. When an up edge occurs in the clock signal CLK at time T11 when the output stage circuit MM is in the output low state, the logic circuit 18 causes an up edge to occur in the gate signal G1 and a down edge in the gate signal G2. The output stage circuit MM is switched from the output low state to the output high state.
 時刻T11におけるクロック信号CLKのアップエッジを契機に上述の如くランプ電圧VRAMPが初期レベル(VRAMP_MIN)から上昇開始する。ランプ電圧VRAMPが初期レベルにあるとき、常に“VC>VRAMP”が成立し、故に信号SPWMはハイレベルである。ランプ電圧VRAMPの上昇過程においてランプ電圧VRAMPが対比電圧VCに達すると信号SPWMにダウンエッジが生じる。ランプ電圧VRAMPが対比電圧VCに達するとは、“VC>VRAMP”の成立状態から“VC<VRAMP”の成立状態へ遷移することを指す。ローレベルの信号SPWMはリセット信号として機能する。以下、リセット信号が発行されるとは、コンパレータ17からローレベルの信号SPWMが出力されること、又は、信号SPWMにダウンエッジが生じることを意味する。 Triggered by the rising edge of the clock signal CLK at time T11, the ramp voltage VRAMP starts rising from the initial level ( VRAMP_MIN ) as described above. When the ramp voltage V RAMP is at the initial level, "V C > V RAMP " always holds true, and therefore the signal SPWM is at a high level. When the ramp voltage V RAMP reaches the comparison voltage V C during the rising process of the ramp voltage V RAMP , a down edge occurs in the signal S PWM . When the lamp voltage V RAMP reaches the comparison voltage V C , it refers to a transition from a state in which “V C >V RAMP ” holds to a state in which “V C <V RAMP ” holds. The low level signal S PWM functions as a reset signal. Hereinafter, issuing a reset signal means that the comparator 17 outputs a low-level signal S PWM , or that a down edge occurs in the signal S PWM .
 ロジック回路18はリセット信号が発行されるとゲート信号G1にダウンエッジを生じさせ且つゲート信号G2にアップエッジを生じさせることで出力段回路MMを出力ハイ状態から出力ロー状態に切り替える(但しリセット信号が無効とされる場合を除く)。その後、クロック信号CLKにダウンエッジが生じるとランプ電圧VRAMPが初期レベル(VRAMP_MIN)に戻され、これによって信号SPWMにアップエッジが生じる。その後、時刻T12にてクロック信号CLKに再度のアップエッジが生じる。以後、同様の動作が繰り返される。 When the reset signal is issued, the logic circuit 18 causes the gate signal G1 to generate a down edge and the gate signal G2 to generate an up edge to switch the output stage circuit MM from the output high state to the output low state (however, the reset signal (except where invalidated). Thereafter, when a down edge occurs in the clock signal CLK, the ramp voltage VRAMP is returned to the initial level ( VRAMP_MIN ), and thereby an up edge occurs in the signal SPWM . Thereafter, another up edge occurs in the clock signal CLK at time T12. Thereafter, similar operations are repeated.
 出力段回路MMの出力ハイ状態において、入力端子INからトランジスタM1及びコイルL1を通じ出力端子OUTに向けて入力電圧VINに基づく電流が流れ、コイル電流ILは徐々に上昇してゆくと共にコイルL1にエネルギが蓄積されてゆく。出力段回路MMの出力ロー状態において、トランジスタM2及びコイルL1を通じコイルL1の蓄積エネルギに基づく電流が流れ、コイル電流ILは徐々に低下してゆく。 In the output high state of the output stage circuit MM, a current based on the input voltage V IN flows from the input terminal IN to the output terminal OUT through the transistor M1 and the coil L1, and the coil current IL gradually increases and flows into the coil L1. Energy is being accumulated. In the output low state of the output stage circuit MM, a current based on the stored energy of the coil L1 flows through the transistor M2 and the coil L1, and the coil current IL gradually decreases.
 ロジック回路18は、トランジスタM2のオン期間(即ち出力段回路MMが出力ロー状態である期間)内にサンプリングタイミングに設定する。設定されたサンプリングタイミングを、以下、記号“TSMPL”にて参照する。トランジスタM2のオン期間ごとに1つのサンプリングタイミングTSMPLが設定され、各サンプリングタイミングTSMPLにて電流センス動作が実行される。 The logic circuit 18 sets the sampling timing within the on period of the transistor M2 (that is, the period during which the output stage circuit MM is in the output low state). The set sampling timing will be referred to below with the symbol "T SMPL ". One sampling timing T SMPL is set for each on-period of the transistor M2, and a current sensing operation is performed at each sampling timing T SMPL .
 S/H回路32はセンス抵抗31の電圧降下をサンプリングタイミングTSMPLにてサンプリングして保持する。時刻T11及びT12間に設定されるサンプリングタイミングTSMPLを特に記号“TSMPL1”にて参照し、時刻T12及びT13間に設定されるサンプリングタイミングTSMPLを特に記号“TSMPL2”にて参照し、時刻T13及びT14間に設定されるサンプリングタイミングTSMPLを特に記号“TSMPL3”にて参照する。 The S/H circuit 32 samples and holds the voltage drop across the sense resistor 31 at sampling timing TSMPL . The sampling timing T SMPL set between times T11 and T12 is particularly referred to by the symbol "T SMPL1 ", and the sampling timing T SMPL set between times T12 and T13 is specifically referred to by the symbol "T SMPL2 ", The sampling timing T SMPL set between times T13 and T14 is particularly referred to by the symbol "T SMPL3 ."
 サンプリングタイミングTSMPL1、TSMPL2、TSMPL3にてサンプリングされた電圧を増幅回路33にて増幅することで得られる電圧VISNSを、夫々、記号VISNS1、VISNS2、VISNS3にて参照する。増幅回路33の出力電圧VISNSはサンプリングタイミングTSMPL1からサンプリングタイミングTSMPL2の直前まで電圧VISNS1で維持される。同様に、増幅回路33の出力電圧VISNSはサンプリングタイミングTSMPL2からサンプリングタイミングTSMPL3の直前まで電圧VISNS2で維持される。以後も同様である。スイッチング周波数fSWが基準周波数fREFで安定している状態において疑似電流情報は生成されず、電圧VIPSはゼロに維持される。即ち、スイッチング周波数fSWが基準周波数fREFで安定している状態においては、常に“VIL=VISNS”である。 The voltages V ISNS obtained by amplifying the voltages sampled at the sampling timings T SMPL1 , T SMPL2 , and T SMPL3 in the amplifier circuit 33 are referred to by symbols V ISNS1 , V ISNS2 , and V ISNS3 , respectively. The output voltage V ISNS of the amplifier circuit 33 is maintained at the voltage V ISNS1 from sampling timing T SMPL1 to immediately before sampling timing T SMPL2 . Similarly, the output voltage V ISNS of the amplifier circuit 33 is maintained at the voltage V ISNS2 from sampling timing T SMPL2 to immediately before sampling timing T SMPL3 . The same applies thereafter. In a state where the switching frequency f SW is stable at the reference frequency f REF , pseudo current information is not generated and the voltage V IPS is maintained at zero. That is, in a state where the switching frequency f SW is stable at the reference frequency f REF , "V IL =V ISNS " is always satisfied.
 トランジスタM2のオン期間中の任意のタイミングがサンプリングタイミングTSMPLに設定されて良い。例えば、ロジック回路18は、トランジスタM2のターンオンタイミングから所定時間が経過したタイミングをサンプリングタイミングTSMPLに設定しても良い。或いは例えば、ロジック回路18は、トランジスタM2のターンオフタイミングから所定時間だけ前のタイミングをサンプリングタイミングTSMPLに設定しても良い。ここでは、トランジスタM2のオン期間における中心のタイミングがサンプリングタイミングTSMPLに設定されるものとする。 Any timing during the on period of the transistor M2 may be set as the sampling timing TSMPL . For example, the logic circuit 18 may set the sampling timing T SMPL to a timing when a predetermined period of time has elapsed from the turn-on timing of the transistor M2. Alternatively, for example, the logic circuit 18 may set the sampling timing T SMPL to a timing that is a predetermined time before the turn-off timing of the transistor M2. Here, it is assumed that the central timing of the on period of the transistor M2 is set to the sampling timing T SMPL .
 電流センス動作には一定の時間が必要であり、電流センス動作を行うために確保すべき最小の時間を最小センス時間tMIN_SNSと称する。図6に基準時間tREFと最小センス時間tMIN_SNSとの関係を示す。基準時間tREFよりも最小センス時間tMIN_SNSの方が短い。時間差(tREF-tMIN_SNS)は、“fSW=fREF”であるときの最大オン時間tMAX_ONに相当する。最大オン時間tMAX_ONは、スイッチング動作の1周期におけるトランジスタM1のオン期間の長さの最大値を表す。例えば、基準周波数fREFが2MHz(メガヘルツ)であって且つ最小センス時間tMIN_SNSが200ナノ秒である場合、“fSW=fREF”であるときの最大オン時間tMAX_ONは300ナノ秒となり、“fSW=fREF”であるときの最大デューティは60%となる。デューティとはスイッチング動作の1周期を占めるトランジスタM1のオン時間の割合を指し、デューティが取り得る最大値が最大デューティである。 A certain amount of time is required for the current sensing operation, and the minimum time that must be secured to perform the current sensing operation is referred to as the minimum sensing time t MIN_SNS . FIG. 6 shows the relationship between the reference time t REF and the minimum sense time t MIN_SNS . The minimum sense time t MIN_SNS is shorter than the reference time t REF . The time difference (t REF - t MIN_SNS ) corresponds to the maximum on-time t MAX_ON when "f SW = f REF ". The maximum on-time t MAX_ON represents the maximum length of the on-period of the transistor M1 in one cycle of the switching operation. For example, if the reference frequency f REF is 2 MHz (megahertz) and the minimum sense time t MIN_SNS is 200 nanoseconds, the maximum on-time t MAX_ON when "f SW = f REF " is 300 nanoseconds, The maximum duty when "f SW = f REF " is 60%. The duty refers to the ratio of the on time of the transistor M1 that occupies one cycle of the switching operation, and the maximum value that the duty can take is the maximum duty.
 尚、クロック信号CLKにおける隣接する2つのアップエッジタイミング間の期間を、単位期間と称する。単位期間の長さは基準時間tREFと一致する。各単位期間は前段期間と後段期間との合成期間である。各単位期間において前段期間の後に後段期間が配置される。後段期間の長さは最小センス時間tMIN_SNSと一致する。前段期間の長さは“fSW=fREF”であるときの最大オン時間tMAX_ONと一致する。 Note that the period between two adjacent up edge timings in the clock signal CLK is referred to as a unit period. The length of the unit period matches the reference time t REF . Each unit period is a composite period of a preceding period and a subsequent period. In each unit period, the latter period is arranged after the former period. The length of the latter period matches the minimum sense time t MIN_SNS . The length of the first stage period matches the maximum on-time t MAX_ON when "f SW = f REF ".
 電源IC2Aは、基本的に、出力電圧VOUTと比べて入力電圧VINが十分に高いアプリケーションに適している。当該アプリケーションにおいては、スイッチング動作の各周期にて、トランジスタM1のオン時間が相当に短くなる一方でトランジスタM2のオン時間が十分に長くなる。このため、トランジスタM2に流れる電流を検出するための時間を容易に且つ安定的に確保できる。 The power supply IC2A is basically suitable for applications where the input voltage V IN is sufficiently higher than the output voltage V OUT . In this application, in each cycle of the switching operation, the on-time of transistor M1 is considerably shortened while the on-time of transistor M2 is sufficiently long. Therefore, time for detecting the current flowing through the transistor M2 can be easily and stably secured.
 但し、スイッチング電源装置1において、一時的に“VIN>VOUT”であるものの電圧VIN及びVOUT間の差が小さくなる、又は、一時的に“VIN<VOUT”となることもあり得る。例えば、車載用途において、自動車等の車両に搭載されたバッテリ(不図示)の出力電圧が入力電圧VINとして利用される場合を想定する。この場合、スタータを用いてエンジンの始動又は再始動させる際、バッテリの出力電圧が一時的に大きく低下することがある。そうすると、一時的に“VIN>VOUT”であるものの電圧VIN及びVOUT間の差が小さくなる、又は、一時的に“VIN<VOUT”となることがある。 However, in the switching power supply device 1, although "V IN > V OUT " temporarily, the difference between the voltages V IN and V OUT may become small, or "V IN < V OUT " may temporarily occur. could be. For example, assume that in in-vehicle applications, the output voltage of a battery (not shown) mounted on a vehicle such as an automobile is used as the input voltage V IN . In this case, when starting or restarting the engine using the starter, the output voltage of the battery may temporarily drop significantly. In this case, the difference between the voltages V IN and V OUT may become small even though “V IN >V OUT ” temporarily, or “V IN <V OUT ” may temporarily occur.
 入力電圧VINが低下している期間においてはデューティをなるだけ高くまで上げられた方が、出力電圧VOUTの維持には有利である。例えば、目標電圧VTGが5Vである場合において、基本的には12Vを有する入力電圧VINが7Vにまで低下したとき、最大デューティが60%であれば“7×0.6=4.2”より出力電圧VOUTを4.2V程度にまでしか上げることができないが、最大デューティが80%であれば“7×0.8=5.6”より出力電圧VOUTを5V近辺に維持することが可能である。 During a period when the input voltage V IN is decreasing, it is advantageous to increase the duty as high as possible in order to maintain the output voltage V OUT . For example, when the target voltage V TG is 5V and the input voltage V IN , which is basically 12V, drops to 7V, if the maximum duty is 60%, "7 x 0.6 = 4.2 ”, the output voltage V OUT can only be raised to about 4.2V, but if the maximum duty is 80%, the output voltage V OUT will be maintained around 5V because “7 x 0.8 = 5.6”. Is possible.
 最小センス時間tMIN_SNSは不変であるので、最大デューティを増大させるにはスイッチング周波数fSWの低下が有効である。例えば、基準周波数fREFが2MHz(メガヘルツ)であって且つ最小センス時間tMIN_SNSが200ナノ秒であるとき、スイッチング周波数fSWを2MHzから1MHzに低下させることで、最大デューティを60%(=(500ns-200ns)/500ns)からから80%(=(1000ns-200ns)/1000ns)に増大させることができる。スイッチング周波数fSWを更に低下させれば最大デューティが更に増大する。 Since the minimum sense time t MIN_SNS remains unchanged, lowering the switching frequency f SW is effective in increasing the maximum duty. For example, when the reference frequency f REF is 2 MHz (megahertz) and the minimum sense time t MIN_SNS is 200 nanoseconds, by lowering the switching frequency f SW from 2 MHz to 1 MHz, the maximum duty can be reduced to 60% (=( 500ns-200ns)/500ns) to 80% (=(1000ns-200ns)/1000ns). If the switching frequency f SW is further lowered, the maximum duty will further increase.
 ロジック回路18は、スイッチング周波数fSWを基準周波数fREFに設定できる又は基準周波数fREFの(1/n)倍に設定することができる。ここで、nは2以上の任意の整数である。“fSW=fREF”であるときのスイッチング動作を特に基準スイッチング動作と称する。これに対し、“fSW=fREF/n”であるときのスイッチング動作を特に分周スイッチング動作と称する。 The logic circuit 18 can set the switching frequency f SW to the reference frequency f REF or (1/n) times the reference frequency f REF . Here, n is an arbitrary integer of 2 or more. The switching operation when "f SW = f REF " is particularly referred to as the reference switching operation. On the other hand, the switching operation when "f SW =f REF /n" is particularly referred to as a frequency division switching operation.
 クロック信号CLKのアップエッジタイミングからリセット信号が発行されるまでの時間は、入力電圧VINの低下に伴って増大し、当該時間の増大はデューティの増大の必要性を意味する。このため、“fSW=fREF”であるときにおいて、トランジスタM1をターンオンした後、“fSW=fREF”であるときの最大オン時間tMAX_ONが経過するまでにリセット信号が発行されないとき、ロジック回路18は、実行されるスイッチング動作を基準スイッチング動作から分周スイッチング動作に遷移させ、これによって最大デューティの増大を図る。 The time from the rising edge timing of the clock signal CLK to the issuance of the reset signal increases as the input voltage V IN decreases, and the increase in the time means the need to increase the duty. Therefore, when "f SW = f REF " and after turning on the transistor M1, if the reset signal is not issued before the maximum on time t MAX_ON when "f SW = f REF " has elapsed, The logic circuit 18 transitions the switching operation to be performed from the reference switching operation to the frequency division switching operation, thereby increasing the maximum duty.
 但し、分周スイッチング動作が行われるとき、高デューティを得ることができる背反として、比較的長い時間、電流センス動作を行うことができない。 However, when the frequency division switching operation is performed, the current sensing operation cannot be performed for a relatively long time, as opposed to being able to obtain a high duty.
 図7に第1仮想動作に係るタイミングチャートを示す。本実施形態に係る電源IC2Aと異なり、第1仮想動作では電圧VIPSがゼロに固定されているとする。図7において、波形911~920は、夫々、入力電圧VIN、出力電圧VOUT、対比電圧VC、ランプ電圧VRAMP、クロック信号CLK、ゲート信号G1、ゲート信号G2、コイル電流IL、電圧VISNS及び電圧VILの波形である。波形921は出力電圧VOUTの拡大波形(波形912を電圧方向に拡大したもの)に相当する。コイル電流ILの波形918上に示された各白丸はサンプリングタイミングTSMPLを表す。電圧VISNSの波形919上に示された各白丸は各サンプリングタイミングTSMPLでの電流センス動作にて得られた検出電流情報(VISNS)を表す。第1仮想動作では、常に“VIPS=0”であるため、“VIL=VISNS”である。 FIG. 7 shows a timing chart related to the first virtual operation. It is assumed that, unlike the power supply IC 2A according to this embodiment, the voltage V IPS is fixed to zero in the first virtual operation. In FIG. 7, waveforms 911 to 920 are input voltage V IN , output voltage V OUT , comparison voltage V C , lamp voltage V RAMP , clock signal CLK, gate signal G1, gate signal G2, coil current I L , and voltage These are the waveforms of V ISNS and voltage V IL . The waveform 921 corresponds to an expanded waveform (the waveform 912 expanded in the voltage direction) of the output voltage V OUT . Each white circle shown on the waveform 918 of the coil current IL represents a sampling timing T SMPL . Each white circle shown on the waveform 919 of the voltage V ISNS represents detected current information (V ISNS ) obtained by the current sensing operation at each sampling timing T SMPL . In the first virtual operation, since "V IPS =0" is always "V IL =V ISNS ".
 図7の例では時刻T21に至るまで基準スイッチング動作が行われている。但し、時刻T21の前において、入力電圧VIN及び出力電圧VOUT間の差が小さく、出力段回路MMのデューティが概ね最大デューティに一致している。換言すれば、時刻T21の前におけるスイッチングの各周期において、トランジスタM2のオン時間は最小センス時間tMIN_SNSとほぼ一致している(但し最小センス時間tMIN_SNS以上)。今、時刻T21を境に入力電圧VINが若干低下したものとする。また時刻T21にてクロック信号CLKにアップエッジが生じる。時刻T23は時刻T21から基準時間tREFが経過した時刻を表し、故に時刻T23にてクロック信号CLKに次のアップエッジが生じる。時刻T22は時刻T23から最小センス時間tMIN_SNSだけ前の時刻を表す。 In the example of FIG. 7, the reference switching operation is performed until time T21. However, before time T21, the difference between the input voltage V IN and the output voltage V OUT is small, and the duty of the output stage circuit MM approximately matches the maximum duty. In other words, in each switching cycle before time T21, the on-time of transistor M2 substantially matches the minimum sense time t MIN_SNS (provided that it is greater than or equal to the minimum sense time t MIN_SNS ). Now, it is assumed that the input voltage V IN has decreased slightly after time T21. Further, an up edge occurs in the clock signal CLK at time T21. Time T23 represents the time when reference time t REF has elapsed from time T21, and therefore, the next up edge occurs in clock signal CLK at time T23. Time T22 represents a time before time T23 by the minimum sense time t MIN_SNS .
 入力電圧VINの低下に伴い、時刻T21から始まるスイッチングの周期において、時刻T22より前にリセット信号が発行されない。このため、第1仮想動作に係るロジック回路18は、実行するスイッチング動作を基準スイッチング動作から分周スイッチング動作に切り替え、時刻T23以降のリセット信号が発行されるまで出力段回路MMを出力ハイ状態に保つ。 As the input voltage V IN decreases, the reset signal is not issued before time T22 in the switching cycle starting from time T21. Therefore, the logic circuit 18 related to the first virtual operation switches the switching operation to be executed from the reference switching operation to the frequency division switching operation, and keeps the output stage circuit MM in the output high state until a reset signal is issued after time T23. keep.
 図7の例では、時刻T23より後の時刻T24において、リセット信号の発行に応答して出力段回路MMの状態が出力ハイ状態から出力ロー状態に切り替えられ、トランジスタM2のオン期間にて電流センス動作が行われる。時刻T25は、クロック信号CLKにおいて時刻T23の次にアップエッジ生じる時刻である。 In the example of FIG. 7, at time T24 after time T23, the state of the output stage circuit MM is switched from the output high state to the output low state in response to the issuance of the reset signal, and the current is sensed during the on period of the transistor M2. An action is taken. Time T25 is the time when the next up edge occurs in clock signal CLK after time T23.
 図7の第1仮想動作では、時刻T21及びT24間で電流センス動作が行われない。このため、時刻T21の直前の電流センス動作で得られた検出電流情報(VISNS)が、時刻T24の後の電流センス動作が行われるまでコイル電流情報(VIL)として継続利用される。そうすると、時刻T21及びT24間におけるコイル電流ILの増加分が、コイル電流情報(VIL)に反映されない状態で帰還制御が行われる。故に、時刻T24の後の電流センス動作が行われるまで対比電圧VCが一定となっており、結果、時刻T21から始まるスイッチング動作においてデューティが過度に大きくなる。デューティの過度の増大によりコイル電流ILが必要以上に高まり、出力電圧VOUTにオーバーシュートが生じる。その後も、暫くの間、望ましくない変動がコイル電流ILに生じて出力電圧VOUTが安定しない。 In the first virtual operation in FIG. 7, no current sensing operation is performed between times T21 and T24. Therefore, the detected current information (V ISNS ) obtained in the current sensing operation immediately before time T21 is continuously used as coil current information (V IL ) until the current sensing operation after time T24 is performed. Then, feedback control is performed in a state where the increase in the coil current IL between times T21 and T24 is not reflected in the coil current information (V IL ). Therefore, the comparison voltage V C remains constant until the current sensing operation after time T24 is performed, and as a result, the duty becomes excessively large in the switching operation starting from time T21. Due to an excessive increase in duty, the coil current IL increases more than necessary, causing an overshoot in the output voltage V OUT . Even after that, undesirable fluctuations occur in the coil current IL for a while, and the output voltage V OUT becomes unstable.
 以下、第1実施形態のスイッチング電源装置1に関わる複数の実施例として実施例EX1_1~EX1_4を説明する。実施例EX1_1~EX1_4の内、任意の2以上の実施例を互いに組み合わせることもできる。 Examples EX1_1 to EX1_4 will be described below as a plurality of examples related to the switching power supply device 1 of the first embodiment. Any two or more of the embodiments EX1_1 to EX1_4 can also be combined with each other.
<<実施例EX1_1>>
 実施例EX1_1を説明する。図8に実施例EX1_1に係るタイミングチャートを示す。時間の経過と共に、時刻T30~T36、T41~T46、T51~T56及びT61が、この順番で順次訪れるものとする。図8において、波形611~621は、夫々、入力電圧VIN、出力電圧VOUT、対比電圧VC、ランプ電圧VRAMP、クロック信号CLK、ゲート信号G1、ゲート信号G2、コイル電流IL、電圧VISNS、電圧VIPS及び電圧VILの波形である。波形622は出力電圧VOUTの拡大波形(波形612を電圧方向に拡大したもの)に相当する。図8に示される破線波形921は図7に示される波形921(第1仮想動作における出力電圧VOUTの波形)に相当する。コイル電流ILの波形618上に示された各白丸はサンプリングタイミングTSMPLを表し、各サンプリングタイミングTSMPLにてトランジスタM2に流れる電流がサンプリング及び検出される。電圧VISNSの波形619上に示された各白丸は各サンプリングタイミングTSMPLでの電流センス動作にて得られた検出電流情報(VISNS)を表す。
<<Example EX1_1>>
Example EX1_1 will be explained. FIG. 8 shows a timing chart according to the embodiment EX1_1. It is assumed that as time passes, times T30 to T36, T41 to T46, T51 to T56, and T61 sequentially occur in this order. In FIG. 8, waveforms 611 to 621 are input voltage V IN , output voltage V OUT , comparison voltage V C , lamp voltage V RAMP , clock signal CLK, gate signal G1, gate signal G2, coil current I L , and voltage These are the waveforms of V ISNS , voltage V IPS and voltage V IL . Waveform 622 corresponds to an expanded waveform (waveform 612 expanded in the voltage direction) of output voltage V OUT . A broken line waveform 921 shown in FIG. 8 corresponds to the waveform 921 shown in FIG. 7 (the waveform of the output voltage V OUT in the first virtual operation). Each white circle shown on the waveform 618 of the coil current IL represents a sampling timing T SMPL , and the current flowing through the transistor M2 is sampled and detected at each sampling timing T SMPL . Each white circle shown on the waveform 619 of the voltage V ISNS represents detected current information (V ISNS ) obtained by the current sensing operation at each sampling timing T SMPL .
 図8の例では時刻T31に至るまで基準スイッチング動作が行われており、従って“fSW=fREF”である。“fSW=fREF”とき、疑似電流生成回路34は電圧VIPSをゼロで維持し、故に“VIL=VISNS”である。時刻T31より前のスイッチングの各周期において電流情報生成回路30は電流センス動作を行う。 In the example of FIG. 8, the reference switching operation is performed until time T31, and therefore "f SW =f REF ". When "f SW =f REF ", the pseudo current generation circuit 34 maintains the voltage V IPS at zero, so "V IL =V ISNS ". The current information generation circuit 30 performs a current sensing operation in each switching cycle before time T31.
 図8の例では、実行されるスイッチング動作が時刻T31にて基準スイッチング動作から“n=2”の分周スイッチング動作に切り替わる。分周スイッチング動作が行われる期間の一部において、疑似電流生成回路34はゼロより大きな電圧VIPSを生成及び出力する。電圧VIPSの波形620上に示される各白三角はゼロより大きな電圧VIPSを表す。電圧VILの波形621上に示される各白三角は電圧ISNSとゼロより大きな電圧VIPSとの和を表す。コイル電流ILの波形618上の各白三角は、電圧VILが指し示すコイル電流ILの値(推定値)を表す。 In the example of FIG. 8, the switching operation to be executed switches from the reference switching operation to the frequency division switching operation of "n=2" at time T31. During part of the period during which the frequency division switching operation is performed, the pseudo current generation circuit 34 generates and outputs a voltage V IPS greater than zero. Each open triangle shown on the voltage V IPS waveform 620 represents a voltage V IPS greater than zero. Each white triangle shown on the waveform 621 of voltage V IL represents the sum of voltage I SNS and voltage V IPS greater than zero. Each white triangle on the waveform 618 of the coil current IL represents a value (estimated value) of the coil current IL indicated by the voltage V IL .
 時刻T31の前において、入力電圧VIN及び出力電圧VOUT間の差が小さく、出力段回路MMのデューティが概ね最大デューティに一致している。換言すれば、時刻T31の前におけるスイッチングの各周期において、トランジスタM2のオン時間は最小センス時間tMIN_SNSとほぼ一致している(但し最小センス時間tMIN_SNS以上)。時刻T30は時刻T31の直前に行われた電流センス動作のサンプリングタイミングTSMPLである。 Before time T31, the difference between the input voltage V IN and the output voltage V OUT is small, and the duty of the output stage circuit MM approximately matches the maximum duty. In other words, in each switching cycle before time T31, the on time of transistor M2 substantially matches the minimum sense time t MIN_SNS (provided that it is greater than or equal to the minimum sense time t MIN_SNS ). Time T30 is the sampling timing T SMPL of the current sensing operation performed immediately before time T31.
 今、時刻T31を境に入力電圧VINが若干低下したものとする。また時刻T31にてクロック信号CLKにアップエッジが生じて出力段回路MMの状態が出力ロー状態から出力ハイ状態に切り替わる。時刻T34は時刻T31から基準時間tREFが経過した時刻を表し、故に時刻T34にてクロック信号CLKに次のアップエッジが生じる。時刻T32は時刻T34から最小センス時間tMIN_SNSだけ前の時刻を表す。 Now, it is assumed that the input voltage V IN has decreased slightly after time T31. Further, at time T31, an up edge occurs in the clock signal CLK, and the state of the output stage circuit MM is switched from the output low state to the output high state. Time T34 represents the time when reference time t REF has elapsed from time T31, and therefore, the next up edge occurs in clock signal CLK at time T34. Time T32 represents the time before time T34 by the minimum sense time t MIN_SNS .
 入力電圧VINの低下に伴い、時刻T31から始まるスイッチングの周期において、時刻T32以前にリセット信号が発行されない(即ち前段期間中にリセット信号が発行されない:図6参照)。時刻T32以前にリセット信号が発行されないことを条件に、ロジック回路18は、実行するスイッチング動作を基準スイッチング動作から分周スイッチング動作に切り替える。当該切り替えが行われると、ロジック回路18は時刻T32及びT34間で発行されるリセット信号を無効とし、時刻T32及びT34間における電圧VC及びVRAMP間の高低関係に依らず、時刻T32及びT34間で出力段回路MMを出力ハイ状態に保つ。 As the input voltage V IN decreases, a reset signal is not issued before time T32 in the switching cycle starting from time T31 (that is, no reset signal is issued during the pre-stage period: see FIG. 6). On the condition that the reset signal is not issued before time T32, the logic circuit 18 switches the switching operation to be executed from the reference switching operation to the frequency division switching operation. When the switching is performed, the logic circuit 18 invalidates the reset signal issued between times T32 and T34, and the logic circuit 18 disables the reset signal issued between times T32 and T34, and the logic circuit 18 disables the reset signal issued between times T32 and T34, regardless of the level relationship between the voltages V C and V RAMP between times T32 and T34. The output stage circuit MM is kept in the output high state during the period.
 時刻T34にてクロック信号CLKにアップエッジが生じるが、この際もロジック回路18は出力段回路MMを出力ハイ状態のままで維持する。時刻T41は時刻T34から基準時間tREFが経過した時刻を表す。図8の例において、時刻T34の後、時刻T35にてランプ電圧VRAMPが対比電圧VCに達することでリセット信号が発行される。時刻T35は時刻T41よりも前の時刻であって、且つ、時刻T35及びT41間の時間差は最小センス時間tMIN_SNSより大きい。このため、時刻T35において、ロジック回路18は、発行されたリセット信号に基づき出力段回路MMを出力ハイ状態から出力ロー状態に切り替える。ロジック回路18は時刻T35及びT41間の時刻である時刻T36をサンプリングタイミングTSMPLに設定し、その設定結果に従い、電流情報生成回路30は時刻T36にて電流センス動作を行う。 An up edge occurs in the clock signal CLK at time T34, but at this time as well, the logic circuit 18 maintains the output stage circuit MM in the output high state. Time T41 represents the time when reference time t REF has elapsed from time T34. In the example of FIG. 8, after time T34, the reset signal is issued when the lamp voltage V RAMP reaches the comparison voltage V C at time T35. Time T35 is a time before time T41, and the time difference between time T35 and T41 is greater than the minimum sense time t MIN_SNS . Therefore, at time T35, the logic circuit 18 switches the output stage circuit MM from the output high state to the output low state based on the issued reset signal. The logic circuit 18 sets the sampling timing T SMPL to the time T36, which is the time between the times T35 and T41, and the current information generation circuit 30 performs a current sensing operation at the time T36 according to the setting result.
 時刻T41にてクロック信号CLKにアップエッジが生じて出力段回路MMの状態が出力ロー状態から出力ハイ状態に切り替わる。時刻T44は時刻T41から基準時間tREFが経過した時刻を表し、故に時刻T44にてクロック信号CLKに次のアップエッジが生じる。時刻T42は時刻T44から最小センス時間tMIN_SNSだけ前の時刻を表す。 At time T41, an up edge occurs in the clock signal CLK, and the state of the output stage circuit MM switches from the output low state to the output high state. Time T44 represents the time when reference time t REF has elapsed from time T41, and therefore, the next up edge occurs in clock signal CLK at time T44. Time T42 represents a time before time T44 by the minimum sense time t MIN_SNS .
 時刻T31で生じた入力電圧VINの低下状態が時刻T41以降も維持される。結果、時刻T41から始まるスイッチングの周期において、時刻T42以前にリセット信号が発行されない(即ち前段期間中にリセット信号が発行されない:図6参照)。時刻T42以前にリセット信号が発行されないことを条件に、ロジック回路18は、実行するスイッチング動作を分周スイッチング動作のままで維持する。分周スイッチング動作が維持されると、ロジック回路18は時刻T42及びT44間で発行されるリセット信号を無効とし、時刻T42及びT44間における電圧VC及びVRAMP間の高低関係に依らず、時刻T42及びT44間で出力段回路MMを出力ハイ状態に保つ。 The decreased state of the input voltage V IN that occurred at time T31 is maintained after time T41. As a result, in the switching cycle starting from time T41, no reset signal is issued before time T42 (that is, no reset signal is issued during the previous period: see FIG. 6). On the condition that the reset signal is not issued before time T42, the logic circuit 18 maintains the switching operation to be performed as the frequency division switching operation. When the frequency division switching operation is maintained, the logic circuit 18 invalidates the reset signal issued between times T42 and T44, and the logic circuit 18 disables the reset signal issued between times T42 and T44, regardless of the level relationship between the voltages V C and V RAMP between times T42 and T44. The output stage circuit MM is kept in the output high state between T42 and T44.
 時刻T44にてクロック信号CLKにアップエッジが生じるが、この際もロジック回路18は出力段回路MMを出力ハイ状態のままで維持する。時刻T51は時刻T44から基準時間tREFが経過した時刻を表す。図8の例において、時刻T44の後、時刻T45にてランプ電圧VRAMPが対比電圧VCに達することでリセット信号が発行される。時刻T45は時刻T51よりも前の時刻であって、且つ、時刻T45及びT51間の時間差は最小センス時間tMIN_SNSより大きい。このため、時刻T45において、ロジック回路18は、発行されたリセット信号に基づき出力段回路MMを出力ハイ状態から出力ロー状態に切り替える。ロジック回路18は時刻T45及びT51間の時刻である時刻T46をサンプリングタイミングTSMPLに設定し、その設定結果に従い、電流情報生成回路30は時刻T46にて電流センス動作を行う。 An up edge occurs in the clock signal CLK at time T44, but at this time as well, the logic circuit 18 maintains the output stage circuit MM in the output high state. Time T51 represents the time when reference time t REF has elapsed from time T44. In the example of FIG. 8, after time T44, the reset signal is issued when the lamp voltage V RAMP reaches the comparison voltage V C at time T45. Time T45 is a time before time T51, and the time difference between time T45 and T51 is greater than the minimum sense time t MIN_SNS . Therefore, at time T45, the logic circuit 18 switches the output stage circuit MM from the output high state to the output low state based on the issued reset signal. The logic circuit 18 sets time T46, which is the time between time T45 and T51, as the sampling timing T SMPL , and according to the setting result, the current information generation circuit 30 performs a current sensing operation at time T46.
 時刻T51にてクロック信号CLKにアップエッジが生じて出力段回路MMの状態が出力ロー状態から出力ハイ状態に切り替わる。時刻T54は時刻T51から基準時間tREFが経過した時刻を表し、故に時刻T54にてクロック信号CLKに次のアップエッジが生じる。時刻T52は時刻T54から最小センス時間tMIN_SNSだけ前の時刻を表す。 At time T51, an up edge occurs in the clock signal CLK, and the state of the output stage circuit MM switches from the output low state to the output high state. Time T54 represents the time when reference time t REF has elapsed from time T51, and therefore, the next up edge occurs in clock signal CLK at time T54. Time T52 represents a time before time T54 by the minimum sense time t MIN_SNS .
 時刻T31で生じた入力電圧VINの低下状態が時刻T51以降も維持される。結果、時刻T51から始まるスイッチングの周期において、時刻T52以前にリセット信号が発行されない(即ち前段期間中にリセット信号が発行されない:図6参照)。時刻T52以前にリセット信号が発行されないことを条件に、ロジック回路18は、実行するスイッチング動作を分周スイッチング動作のままで維持する。分周スイッチング動作が維持されると、ロジック回路18は時刻T52及びT54間で発行されるリセット信号を無効とし、時刻T52及びT54間における電圧VC及びVRAMP間の高低関係に依らず、時刻T52及びT54間で出力段回路MMを出力ハイ状態に保つ。 The decreased state of the input voltage V IN that occurred at time T31 is maintained after time T51. As a result, in the switching cycle starting from time T51, no reset signal is issued before time T52 (that is, no reset signal is issued during the previous period: see FIG. 6). On the condition that the reset signal is not issued before time T52, the logic circuit 18 maintains the switching operation to be performed as the frequency division switching operation. When the frequency division switching operation is maintained, the logic circuit 18 invalidates the reset signal issued between times T52 and T54, and the logic circuit 18 disables the reset signal issued between times T52 and T54, regardless of the level relationship between the voltages V C and V RAMP between times T52 and T54. The output stage circuit MM is kept in the output high state between T52 and T54.
 時刻T54にてクロック信号CLKにアップエッジが生じるが、この際もロジック回路18は出力段回路MMを出力ハイ状態のままで維持する。時刻T61は時刻T54から基準時間tREFが経過した時刻を表す。図8の例において、時刻T54の後、時刻T55にてランプ電圧VRAMPが対比電圧VCに達することでリセット信号が発行される。時刻T55は時刻T61よりも前の時刻であって、且つ、時刻T55及びT61間の時間差は最小センス時間tMIN_SNSより大きい。このため、時刻T55において、ロジック回路18は、発行されたリセット信号に基づき出力段回路MMを出力ハイ状態から出力ロー状態に切り替える。ロジック回路18は時刻T55及びT61間の時刻である時刻T56をサンプリングタイミングTSMPLに設定し、その設定結果に従い、電流情報生成回路30は時刻T56にて電流センス動作を行う。 An up edge occurs in the clock signal CLK at time T54, but at this time as well, the logic circuit 18 maintains the output stage circuit MM in the output high state. Time T61 represents the time when reference time t REF has elapsed from time T54. In the example of FIG. 8, after time T54, the reset signal is issued when the lamp voltage V RAMP reaches the comparison voltage V C at time T55. Time T55 is a time before time T61, and the time difference between time T55 and T61 is greater than the minimum sense time t MIN_SNS . Therefore, at time T55, the logic circuit 18 switches the output stage circuit MM from the output high state to the output low state based on the issued reset signal. The logic circuit 18 sets time T56, which is the time between time T55 and T61, as the sampling timing T SMPL , and according to the setting result, the current information generation circuit 30 performs a current sensing operation at time T56.
 入力電圧VINの低下状態が継続する限り、以後も、同様の“n=2”の分周スイッチング動作が継続される。 As long as the input voltage V IN continues to decrease, the same "n=2" frequency division switching operation continues.
 検出電流情報(即ち電圧VISNS)は電流センス動作が実行されるたびに更新される。つまり、時刻T30での電流センス動作により得られた検出電流情報(即ち電圧VISNS)が時刻T30及びT36間において増幅回路33から継続出力される。その後、時刻T36での電流センス動作により得られた検出電流情報(即ち電圧VISNS)が時刻T36及びT46間において増幅回路33から継続出力される。更にその後、時刻T46での電流センス動作により得られた検出電流情報(即ち電圧VISNS)が時刻T46及びT56間において増幅回路33から継続出力される。以後も同様である。 The sensed current information (ie, voltage V ISNS ) is updated each time a current sensing operation is performed. That is, the detected current information (ie, the voltage VISNS ) obtained by the current sensing operation at time T30 is continuously output from the amplifier circuit 33 between times T30 and T36. Thereafter, the detected current information (ie, the voltage VISNS ) obtained by the current sensing operation at time T36 is continuously outputted from the amplifier circuit 33 between times T36 and T46. Further thereafter, the detected current information (ie, the voltage V ISNS ) obtained by the current sensing operation at time T46 is continuously outputted from the amplifier circuit 33 between times T46 and T56. The same applies thereafter.
 疑似電流情報を表す電圧VIPSは時刻T33より前においてゼロであり、故に時刻T33より前において“VIL=VISNS”である。電圧VIPSは時刻T33及びT36間において正の電圧値VA1を有する。電圧VIPSは時刻T43及びT46間において及び時刻T53及びT56間において正の電圧値VA2を有する。電圧値VA1は電圧値VA2をよりも大きい。 The voltage V IPS representing the pseudo current information is zero before time T33, and therefore “V IL =V ISNS ” before time T33. The voltage V IPS has a positive voltage value V A1 between times T33 and T36. The voltage V IPS has a positive voltage value V A2 between times T43 and T46 and between times T53 and T56. The voltage value V A1 is greater than the voltage value V A2 .
 時刻T31から始まる単位期間中の後段期間内に時刻T33が属する(図6参照)。時刻T41から始まる単位期間中の後段期間内に時刻T43が属する。時刻T51から始まる単位期間中の後段期間内に時刻T53が属する。 Time T33 belongs to the latter period of the unit period starting from time T31 (see FIG. 6). Time T43 belongs to the latter period of the unit period starting from time T41. Time T53 belongs to the latter period of the unit period starting from time T51.
 各単位期間において、ロジック回路18は前段期間中にリセット信号が発行されたか否かを監視し、その監視結果を疑似電流生成回路34に与える。疑似電流生成回路34は上記監視結果に基づき電圧VIPSの値を決定する。電圧VIPSは原則としてゼロである。特定の単位期間において、前段期間中にリセット信号が発行されなかった場合、疑似電流生成回路34は当該特定の単位期間内の後段期間中のタイミングから次回に電流センス動作が行われるまでゼロより大きな電圧VIPSを出力し、電流センス動作が行われると電圧VIPSをゼロに戻す。特定の単位期間とは、当該単位期間の開始時点においてトランジスタM1がオフからオンに切り替えられる単位期間を指す。故に、時刻T31、T41又はT51から始まる単位期間は特定の単位期間に該当するが、時刻T34、T44又はT54から始まる単位期間は特定の単位期間に該当しない。 In each unit period, the logic circuit 18 monitors whether or not a reset signal has been issued during the previous stage period, and provides the monitoring result to the pseudo current generation circuit 34. The pseudo current generation circuit 34 determines the value of the voltage V IPS based on the above monitoring results. The voltage V IPS is in principle zero. In a specific unit period, if a reset signal is not issued during the previous period, the pseudo current generation circuit 34 generates a current that is greater than zero from the timing during the latter period within the specific unit period until the next current sensing operation is performed. It outputs the voltage V IPS and returns the voltage V IPS to zero when a current sensing operation is performed. A specific unit period refers to a unit period in which the transistor M1 is switched from off to on at the start of the unit period. Therefore, a unit period starting from time T31, T41, or T51 corresponds to a specific unit period, but a unit period starting from time T34, T44, or T54 does not correspond to a specific unit period.
 図8の例では、時刻T31から始まる単位期間内の前段期間中にリセット信号が発行されない。このため、時刻T31から始まる単位期間内の後段期間中のタイミング(T33)から次回に電流センス動作が行われるタイミング(T36)まで電圧VIPSに電圧値VA1を持たせる。時刻T36を境に電圧VIPSはゼロに戻され、ゼロの電圧VIPSは時刻T43の直前まで継続する。
 同様に、時刻T41から始まる単位期間内の前段期間中にリセット信号が発行されない。このため、時刻T41から始まる単位期間内の後段期間中のタイミング(T43)から次回に電流センス動作が行われるタイミング(T46)まで電圧VIPSに電圧値VA2を持たせる。時刻T46を境に電圧VIPSはゼロに戻され、ゼロの電圧VIPSは時刻T53の直前まで継続する。
 同様に、時刻T51から始まる単位期間内の前段期間中にリセット信号が発行されない。このため、時刻T51から始まる単位期間内の後段期間中のタイミング(T53)から次回に電流センス動作が行われるタイミング(T56)まで電圧VIPSに電圧値VA2を持たせる。時刻T56を境に電圧VIPSはゼロに戻される。
In the example of FIG. 8, the reset signal is not issued during the first stage period within the unit period starting from time T31. Therefore, the voltage V IPS is made to have the voltage value V A1 from the timing (T33) during the latter period in the unit period starting from time T31 to the timing (T36) when the current sensing operation is performed next time. The voltage V IPS is returned to zero after time T36, and the zero voltage V IPS continues until just before time T43.
Similarly, no reset signal is issued during the first stage period within the unit period starting from time T41. Therefore, the voltage V IPS is made to have the voltage value V A2 from the timing (T43) during the latter period in the unit period starting from time T41 until the timing (T46) when the current sensing operation is performed next time. The voltage V IPS is returned to zero after time T46, and the zero voltage V IPS continues until just before time T53.
Similarly, no reset signal is issued during the first stage period within the unit period starting from time T51. Therefore, the voltage V IPS is made to have the voltage value V A2 from the timing (T53) during the latter period in the unit period starting from time T51 to the timing (T56) when the current sensing operation is performed next time. The voltage V IPS is returned to zero after time T56.
 “VIPS=0”から“VIPS>0”への切り替わりタイミングは、対応する後段期間中のタイミングであれば任意であるが、例えば、対応する後段期間中の中心タイミングであって良い。各時刻において、電圧VISNSと電圧VIPSとの和が電圧VILとなる。 The timing of switching from "V IPS = 0" to "V IPS >0" is arbitrary as long as it is during the corresponding subsequent period, and may be, for example, the central timing during the corresponding subsequent period. At each time, the sum of the voltage V ISNS and the voltage V IPS becomes the voltage V IL .
 正の電圧VIPSは、電流センス動作が行われない期間に生じたコイル電流ILの増加分を電圧に換算したものに相当し、当該コイル電流ILの増加分を推定したものが疑似電流として、検出されたコイル電流IL(検出電流情報)に重畳される。疑似電流の設定方法について説明する。 The positive voltage V IPS corresponds to the increase in the coil current IL that occurs during the period when the current sensing operation is not performed, converted into voltage, and the estimated increase in the coil current IL is the pseudo current. It is superimposed on the detected coil current IL (detected current information). The method of setting the pseudo current will be explained.
 出力段回路MMの出力ハイ状態におけるコイル電流ILの傾きΔILは、下記式(1)にて表される。式(1)におけるL1は、コイルL1のインダクタンス(インダクタンスの値)を表す(後述する他の式においても同様)。コイル電流ILの傾きΔILが分かれば、上述のコイル電流ILの増加分が分かるため、重畳すべき疑似電流が求まる。
 ΔIL=(VIN-VOUT)/L1    ・・・(1)
The slope ΔIL of the coil current IL in the output high state of the output stage circuit MM is expressed by the following equation (1). L1 in equation (1) represents the inductance (value of inductance) of the coil L1 (the same applies to other equations described later). If the slope ΔIL of the coil current IL is known, the above-mentioned increase in the coil current IL can be found, and therefore the pseudo current to be superimposed can be found.
ΔIL=(V IN - V OUT )/L1...(1)
 スイッチング電源装置1においてコイルL1のインダクタンス(インダクタンスの値)は所定値に定められており、電源IC2AにおいてコイルL1のインダクタンス(インダクタンスの値)は既知であるとする。また、電源IC2Aは入力端子INの電圧を検出することで入力電圧VINを認識できる。加えて、電源IC2Aは出力監視端子OSの電圧を検出することで出力電圧VOUTを認識できる。或いは、スイッチング電源装置1において出力電圧VOUTの目標(目標電圧VTG)が一定値に固定されていても良い。この場合、当該一定値が電源IC2Aにて予め認識される。この際、出力監視端子OSは省略され得る。何れにせよ、電源IC2A(例えば電流情報生成回路30)は、入力電圧VINと出力電圧VOUTとコイルL1のインダクタンスとに基づき、式(1)に従って傾きΔILを求めることができる。 It is assumed that in the switching power supply device 1, the inductance (inductance value) of the coil L1 is set to a predetermined value, and that the inductance (inductance value) of the coil L1 in the power supply IC 2A is known. Further, the power supply IC 2A can recognize the input voltage V IN by detecting the voltage at the input terminal IN. In addition, the power supply IC 2A can recognize the output voltage V OUT by detecting the voltage at the output monitoring terminal OS. Alternatively, in the switching power supply device 1, the target of the output voltage V OUT (target voltage V TG ) may be fixed to a constant value. In this case, the constant value is recognized in advance by the power supply IC 2A. At this time, the output monitoring terminal OS may be omitted. In any case, the power supply IC 2A (for example, the current information generation circuit 30) can determine the slope ΔIL according to equation (1) based on the input voltage V IN , the output voltage V OUT , and the inductance of the coil L1.
 傾きΔILに対して必要な時間情報を掛け合わせることで重畳すべき疑似電流が導出される。具体的には、疑似電流生成回路34は、電圧値VA1及びVA2を以下の式(2)及び(3)に従って導出し且つ決定する。
 VA1=ΔIL・tREF・kA1
      =((VIN-VOUT)/L1)・tREF・kA1   ・・・(2)
 VA2=ΔIL・tREF・kA2
      =((VIN-VOUT)/L1)・tREF・kA2   ・・・(3)
The pseudo current to be superimposed is derived by multiplying the slope ΔIL by the necessary time information. Specifically, the pseudo current generation circuit 34 derives and determines the voltage values V A1 and V A2 according to the following equations (2) and (3).
V A1 =ΔIL・t REF・k A1
=((V IN -V OUT )/L1)・t REF・k A1 ...(2)
V A2 =ΔIL・t REF・k A2
= ((V IN - V OUT )/L1)・t REF・k A2 ...(3)
 “ΔIL・tREF”は、出力段回路MMを基準時間tREF分だけ出力ハイ状態に維持したときに生じるコイル電流ILの増加量を表す。変換係数kA1及びkA2は電流量を電圧量に変換するための係数である。疑似電流生成回路34又はロジック回路18にて変換係数kA1及びkA2が設定される。ここで、“kA1>kA2>0”が成立する。例えば、変換係数kA2に対して1より大きな所定値を乗じた値を変換係数kA1に持たせて良い。 “ΔIL·t REF ” represents the amount of increase in the coil current IL that occurs when the output stage circuit MM is maintained in the output high state for the reference time t REF . The conversion coefficients k A1 and k A2 are coefficients for converting the amount of current into the amount of voltage. The conversion coefficients k A1 and k A2 are set in the pseudo current generation circuit 34 or the logic circuit 18 . Here, "k A1 >k A2 >0" holds true. For example, the conversion coefficient k A1 may have a value obtained by multiplying the conversion coefficient k A2 by a predetermined value larger than 1.
 図8の時刻T30及びT33間の全体に亘ってコイル電流ILが増大するわけではない。このため例えば、時刻T30及びT31間の時間差と時刻T31及びT33間の時間差とに応じて変換係数kA1を設定し、これによって理想に近い疑似電流を重畳するようにしても良い。同様に例えば、時刻T36及びT41間の時間差と時刻T41及びT43間の時間差とに応じて変換係数kA2を設定し、これによって理想に近い疑似電流を重畳するようにしても良い。 The coil current IL does not increase throughout the period between times T30 and T33 in FIG. 8 . For this reason, for example, the conversion coefficient k A1 may be set according to the time difference between times T30 and T31 and the time difference between times T31 and T33, and thereby a pseudo current close to the ideal may be superimposed. Similarly, for example, the conversion coefficient k A2 may be set according to the time difference between times T36 and T41 and the time difference between times T41 and T43, thereby superimposing a pseudo current close to the ideal.
 疑似電流の重畳(実際には正の電圧VIPSの重畳)は現在のコイル電流ILの値を対比電圧VCに反映させることに相当し、図8に示す如く対比電圧VCの低下をもたらす。このため、図7と図8の比較からも理解されるよう、分周スイッチング動作においてデューティが過度に増大することが抑制される。結果、実施例EX1_1では、スイッチング動作が基準スイッチング動作から分周スイッチング動作に切り替わったとき、出力電圧VOUTの変動を低く抑えることができる(実施例EX1_1に係る波形622と参考動作に係る波形921とを参照)、即ち出力電圧VOUTを良好に安定化させることができる。 Superimposition of the pseudo current (actually superimposition of the positive voltage V IPS ) corresponds to reflecting the current value of the coil current IL on the contrast voltage V C , resulting in a decrease in the contrast voltage V C as shown in FIG. . Therefore, as can be understood from the comparison between FIG. 7 and FIG. 8, excessive increase in duty in the frequency division switching operation is suppressed. As a result, in Example EX1_1, when the switching operation is switched from the reference switching operation to the frequency division switching operation, fluctuations in the output voltage V OUT can be suppressed to a low level (waveform 622 according to Example EX1_1 and waveform 921 according to the reference operation). ), that is, the output voltage V OUT can be well stabilized.
 “VA1>VA2”とされる理由を、図9を参照して説明する。時刻T31以前では、“fSW=fREF”の下で、コイル電流ILのピーク値IPK1及びボトム値IBTM1間の平均値IAVE1がサンプリングされ、平均値IAVE1に基づき帰還制御が行なわれる。この後、“fSW=fREF/2”に変化すると“fSW=fREF”のときと比べてコイル電流ILのリプルが2倍になる。“fSW=fREF/2”の下で、コイル電流ILのピーク値IPK2及びボトム値IBTM2間の平均値IAVE2がサンプリングされ、平均値IAVE2に基づき帰還制御が行なわれる。図9の右側には、“fSW=fREF/2”へ変化してから十分に時間が経過した安定状態でのコイル電流ILの波形が示されいる。“fSW=fREF”と“fSW=fREF/2”との間においてスイッチング周波数fSW以外の動作条件に差がなければ、平均値IAVE1と平均値IAVE2は等しく、故に“IPK1<IPK2”且つ“IBTM1>IBTM2”が成立する。 The reason for “V A1 >V A2 ” will be explained with reference to FIG. 9. Before time T31, the average value I AVE1 between the peak value I PK1 and the bottom value I BTM1 of the coil current IL is sampled under "f SW = f REF ", and feedback control is performed based on the average value I AVE1 . . Thereafter, when it changes to "f SW = f REF /2", the ripple in the coil current IL becomes twice as much as when "f SW = f REF ". Under "f SW =f REF /2", the average value I AVE2 between the peak value I PK2 and the bottom value I BTM2 of the coil current IL is sampled, and feedback control is performed based on the average value I AVE2 . The right side of FIG. 9 shows the waveform of the coil current IL in a stable state after a sufficient period of time has passed since the change to "f SW = f REF /2". If there is no difference in operating conditions other than the switching frequency f SW between “f SW = f REF ” and “f SW = f REF /2”, the average value I AVE1 and the average value I AVE2 are equal, and therefore “I PK1 <I PK2 ” and “I BTM1 > I BTM2 ” are established.
 “fSW=fREF”においてコイル電流ILの平均値IAVE1に基づき帰還制御を行っていたため、その後の“fSW=fREF/2”においてもコイル電流ILの平均値IAVE2に基づき帰還制御を行うことが出力電圧VOUTの安定化に重要である。但し、“fSW=fREF”から“fSW=fREF/2”の切り替え直後においては、コイル電流ILが、ボトム値IBTM2ではなくボトム値IBTM1(図8では時刻T31におけるコイル電流ILの値に相当)を起点に上昇開始するため、コイル電流ILが理想よりも高くなる。このとき、相対的に大きな疑似電流を重畳すれば(実際には相対的に大きな電圧値VA1を有する電圧VIPSを電圧ISNSに重畳すれば)、対比電圧VCに大きな低下が生じてコイル電流ILが安定状態に早く向かう。 Since feedback control was performed based on the average value I AVE1 of the coil current IL at “f SW = f REF ”, feedback control was performed based on the average value I AVE2 of the coil current IL also at the subsequent “ f SW = f REF /2”. It is important to stabilize the output voltage VOUT . However, immediately after switching from "f SW = f REF " to "f SW = f REF /2", the coil current IL is not the bottom value I BTM2 but the bottom value I BTM1 (in FIG. 8, the coil current IL at time T31 (equivalent to the value of )), the coil current IL becomes higher than ideal. At this time, if a relatively large pseudo current is superimposed (actually, if the voltage V IPS , which has a relatively large voltage value V A1 , is superimposed on the voltage I SNS ), a large drop will occur in the contrast voltage V C. The coil current IL quickly reaches a stable state.
 このように、電流情報生成回路30は、分周スイッチング動作が行われる期間において、トランジスタM1がターンオンされてから所定時間(例えば時間(tREF-tMIN_SNS/2))が経過するまでは、直近の電流センス動作による検出電流情報(VISNS)をコイル電流情報(VIL)として生成する。電流情報生成回路30は、分周スイッチング動作が行われる期間において、トランジスタM1がターンオンされてから上記所定時間が経過した後、次回の電流センサ動作を行うまで、直近の電流センス動作による検出電流情報(VISNS)と疑似電流情報(VIPS)との和をコイル電流情報(VIL)として生成する。 In this way, the current information generation circuit 30 does not use the current information until a predetermined time (for example, time (t REF −t MIN_SNS /2)) has elapsed after the transistor M1 is turned on during the period in which the frequency division switching operation is performed. Detected current information ( VISNS ) by the current sensing operation is generated as coil current information ( VIL ). The current information generating circuit 30 generates current information detected by the most recent current sensing operation until the next current sensing operation is performed after the predetermined time period has elapsed since the transistor M1 was turned on during the frequency division switching operation. (V ISNS ) and pseudo current information (V IPS ) is generated as coil current information (V IL ).
 電流情報生成回路30は、“fSW=fREF”から“fSW=fREF/n”に切り替わったとき、切り替わり直後における疑似電流情報の値(VA1)を、それ以降の疑似電流情報の値(VA2)よりも大きく設定すると良い。より具体的には、“fSW=fREF/n”による分周スイッチング動作において、1周期目における疑似電流情報の値(VA1)を、2周期目以降における疑似電流情報の値(VA2)よりも大きく設定すると良い。これにより、出力電圧VOUTの速やかな安定化が図られる。 When switching from “f SW = f REF ” to “f SW = f REF /n”, the current information generation circuit 30 uses the value (V A1 ) of the pseudo current information immediately after the switch as the value (V A1 ) of the pseudo current information after that. It is better to set it larger than the value (V A2 ). More specifically, in the frequency division switching operation based on "f SW = f REF /n", the value of the pseudo current information (V A1 ) in the first period is changed to the value of the pseudo current information (V A2 ) in the second and subsequent periods. ) is recommended. Thereby, the output voltage V OUT can be quickly stabilized.
 但し、“VA1=VA2”であっても良い。出力電圧VOUTの速やかな安定化には“VA1>VA2”が適しているが、“VA1=VA2”であっても出力電圧VOUTの安定化が可能であることに変わりは無い。 However, "V A1 = V A2 " may be used. Although "V A1 > V A2 " is suitable for quickly stabilizing the output voltage V OUT , it is still possible to stabilize the output voltage V OUT even if "V A1 = V A2 ". None.
 ロジック回路18は、トランジスタM1がターンオンされる度にトランジスタM1のターンオンからリセット信号が発行されるまでの時間を監視する。上述の説明から理解されるよう、ロジック回路18は、基準スイッチング動作を行っている状態において、トランジスタM1をターンオンした後、規定時間tDが経過するまでにリセット信号が発行されないとき、実行するスイッチング動作を基準スイッチング動作から分周スイッチング動作に切り替える。規定時間tDは“fSW=fREF”であるときの最大オン時間tMAX_ONである。 The logic circuit 18 monitors the time from turning on the transistor M1 until the reset signal is issued each time the transistor M1 is turned on. As can be understood from the above description, the logic circuit 18 performs switching when a reset signal is not issued within a predetermined time period t D after turning on the transistor M1 while performing a reference switching operation. Switches the operation from reference switching operation to frequency division switching operation. The specified time t D is the maximum on-time t MAX_ON when "f SW = f REF ".
 その後、トランジスタM1のターンオンタイミングから規定時間tDが経過するまでにリセット信号が発行されたとき、基準スイッチング動作への復帰条件が成立する。基準スイッチング動作への復帰条件が成立すると、ロジック回路18は、実行するスイッチング動作を基準スイッチング動作に戻す。図8の例では、時刻T61の後、入力電圧VINが上昇することで、実行されるスイッチング動作が基準スイッチング動作に戻り得る。より具体的には例えば、時刻T61にて入力電圧VINが十分に上昇した場合、時刻T61にてトランジスタM1がターンオンされてから規定時間tDが経過するまでにリセット信号が発行され、当該リセット信号の発行を受けてロジック回路18は即時に出力段回路MMを出力ハイ状態から出力ロー状態に切り替える。以後、入力電圧VINが十分に高ければ、各単位期間において常に前段期間中にリセット信号が発行されるため、“fSW=fREF”が維持される。 Thereafter, when a reset signal is issued before the specified time t D has elapsed from the turn-on timing of the transistor M1, the condition for returning to the standard switching operation is satisfied. When the conditions for returning to the standard switching operation are satisfied, the logic circuit 18 returns the switching operation to be performed to the standard switching operation. In the example of FIG. 8, after time T61, the input voltage V IN increases, so that the switching operation performed can return to the reference switching operation. More specifically, for example, if the input voltage V IN rises sufficiently at time T61, a reset signal is issued before a predetermined time t D elapses after transistor M1 is turned on at time T61, and the reset signal is Upon receiving the signal, the logic circuit 18 immediately switches the output stage circuit MM from the output high state to the output low state. Thereafter, if the input voltage V IN is sufficiently high, a reset signal is always issued during the preceding period in each unit period, so that "f SW =f REF " is maintained.
<<実施例EX1_2>>
 実施例EX1_2を説明する。実施例EX1_1では“n=2”の分周スイッチング動作について説明したが、入力電圧VINの低下の程度等によっては、“n≧3”の分周スイッチング動作も行われ得る。
<<Example EX1_2>>
Example EX1_2 will be explained. In the embodiment EX1_1, the frequency division switching operation with "n=2" has been described, but depending on the degree of decrease in the input voltage V IN , etc., the frequency division switching operation with "n≧3" can also be performed.
 例えば、図8に示すケース(以下、ケースCS1と称する)を基準に、以下のケースCS2を想定する。図10を参照してケースCS1及びCS2間の相違点を以下に示す。ケースCS2では、時刻T31にてケースCS1よりも入力電圧VINが大きく低下する。その結果、ケースCS2では、時刻T31から始まる単位期間641中の前段期間にてリセット信号が発行されず、時刻T34から始まる単位期間642中の前段期間でもリセット信号が発行されないものとする。ケースCS2では、その後、時刻T41から始まる単位期間643中の前段期間に属する時刻T41’にてリセット信号が発行されるものとする(リセット信号の発行有無は図10に示さず)。単位期間641~643は連続する3つの単位期間であり、時刻T41’は時刻T41より後であって且つ時刻T44より前の時刻である。 For example, the following case CS2 is assumed based on the case shown in FIG. 8 (hereinafter referred to as case CS1). The differences between cases CS1 and CS2 are shown below with reference to FIG. In case CS2, the input voltage V IN decreases more greatly than in case CS1 at time T31. As a result, in case CS2, the reset signal is not issued in the first period of the unit period 641 starting from time T31, and the reset signal is not issued even in the first period of the unit period 642 starting from time T34. In case CS2, it is assumed that a reset signal is then issued at time T41' which belongs to the first period in the unit period 643 starting from time T41 (whether or not the reset signal is issued is not shown in FIG. 10). The unit periods 641 to 643 are three consecutive unit periods, and time T41' is after time T41 and before time T44.
 ケースCS2において、ロジック回路18は時刻T31にて出力段回路MMを出力ロー状態から出力ハイ状態に切り替えた後、時刻T41’まで出力段回路MMを出力ハイ状態に維持し、時刻T41’を境に出力段回路MMを出力ロー状態に戻す。その後、単位期間643に属する時刻T43’にて電流センス動作が行われ、更にその後の時刻T44にてクロック信号CLKのアップエッジを契機に出力段回路MMが出力ハイ状態に切り替わる。 In case CS2, the logic circuit 18 switches the output stage circuit MM from the output low state to the output high state at time T31, maintains the output stage circuit MM in the output high state until time T41', and then switches the output stage circuit MM to the output high state until time T41'. The output stage circuit MM is returned to the output low state. Thereafter, a current sensing operation is performed at time T43' belonging to the unit period 643, and further at time T44, the output stage circuit MM switches to the output high state in response to the rising edge of the clock signal CLK.
 ケースCS2では、時刻T33までは電圧VIPSがゼロに設定され、時刻T33及びT36’間において電圧VIPSの値が上述の電圧値VA1に設定され、時刻T36’及びT43’間において電圧VIPSの値が電圧値VA3に設定される。ここで電圧値VA3は電圧値VA1よりも大きい。時刻T33は単位期間641中の後段期間に属する時刻であり、例えば、単位期間641における後段期間の中心タイミング(中心時刻)であって良い。同様に、時刻T36’は単位期間642中の後段期間に属する時刻であり、例えば、単位期間642における後段期間の中心タイミング(中心時刻)であって良い。ここでは、時刻T36’及びT43’間の差が基準時間tREFと一致するとする。 In case CS2, the voltage V IPS is set to zero until time T33, the value of voltage V IPS is set to the above voltage value V A1 between times T33 and T36', and the voltage V IPS is set to zero between times T36' and T43'. The value of IPS is set to the voltage value V A3 . Here, the voltage value V A3 is larger than the voltage value V A1 . The time T33 is a time belonging to the latter period in the unit period 641, and may be, for example, the center timing (center time) of the latter period in the unit period 641. Similarly, time T36' is a time that belongs to the latter period in the unit period 642, and may be, for example, the center timing (center time) of the latter period in the unit period 642. Here, it is assumed that the difference between times T36' and T43' matches the reference time t REF .
 ケースCS2では、時刻T31にてスイッチング周波数fSWが基準周波数fREFから周波数(fREF/3)と切り替わっており、時刻T31及びT41’間でコイル電流ILが上昇し続ける。このため、時刻T36’及びT43’間において重畳する疑似電流を、時刻T33及びT36’間において重畳する疑似電流よりも、差(VA3-VA1)に相当する電流量だけ大きくする。ここにおける電流量は“ΔIL・tREF”である。即ち、差(VA3-VA1)は電流量(ΔIL・tREF)を電圧に変換したものである。 In case CS2, the switching frequency f SW switches from the reference frequency f REF to the frequency (f REF /3) at time T31, and the coil current IL continues to rise between times T31 and T41'. Therefore, the pseudo current superimposed between times T36' and T43' is made larger than the pseudo current superimposed between times T33 and T36' by the amount of current corresponding to the difference (V A3 - V A1 ). The amount of current here is "ΔIL·t REF ". That is, the difference (V A3 -V A1 ) is the amount of current (ΔIL·t REF ) converted into voltage.
 ケースCS2において、時刻T44以後も、第1単位期間及び第2単位期間の各前段期間でリセット信号が発行されず且つ第3単位期間の前段期間にてリセット信号が発行されるならば、“n=3”の分周スイッチング動作が継続する。ここで、第1~第3単位期間は連続する3つの単位期間であって、第1単位期間の後、第2単位期間を経て第3単位期間が訪れるものとする。基準スイッチング動作への復帰条件は実施例EX1_1にて示した通りである。 In case CS2, even after time T44, if the reset signal is not issued in each of the preceding periods of the first unit period and the second unit period, and the reset signal is issued in the preceding period of the third unit period, "n =3'' frequency division switching operation continues. Here, the first to third unit periods are three consecutive unit periods, and the third unit period comes after the first unit period passes through the second unit period. The conditions for returning to the standard switching operation are as shown in Example EX1_1.
 ロジック回路18は以下のような動作を行うと言える。ロジック回路18は、トランジスタM1をターンオンさせた後、前段期間中にリセット信号が発行されるかを監視する。そして、任意の単位期間である注目単位期間において、前段期間中にリセット信号が発行されたならば、当該リセット信号の発行に応答して、ロジック回路18は即時に出力段回路MMを出力ハイ状態から出力ロー状態に切り替え且つ注目単位期間内のトランジスタM2のオン期間中に電流センス動作を行わせる。注目単位期間の前段期間中にリセット信号が発行されなかったならば、ロジック回路18は電圧VC及びVRAMPの高低関係に依らず注目単位期間の全体に亘り出力段回路MMを出力ハイ状態に維持し、次の単位期間を新たな注目単位期間に設定して上述と同様の動作を行う。このため、入力電圧VINの低下の程度によっては、トランジスタM1のオン期間が際限無く伸びてゆく(但し、上限が設けられても良い)。 It can be said that the logic circuit 18 performs the following operations. After turning on the transistor M1, the logic circuit 18 monitors whether a reset signal is issued during the pre-stage period. If a reset signal is issued during the previous stage period in the unit period of interest which is an arbitrary unit period, in response to the issuance of the reset signal, the logic circuit 18 immediately outputs the output stage circuit MM to a high state. Then, the output is switched to a low state, and a current sensing operation is performed during the ON period of the transistor M2 within the unit period of interest. If the reset signal is not issued during the preceding period of the unit period of interest, the logic circuit 18 keeps the output stage circuit MM in the output high state throughout the unit period of interest, regardless of the level relationship between the voltages V C and V RAMP . The next unit period is set as a new unit period of interest, and the same operation as described above is performed. Therefore, depending on the degree of decrease in the input voltage V IN , the on-period of the transistor M1 increases without limit (however, an upper limit may be set).
<<実施例EX1_3>>
 実施例EX1_3を説明する。図11に電源IC2Bを有するスイッチング電源装置1の構成を示す。電源IC2Bは電源IC2の例である。電源IC2Bにおける電流情報生成回路30にはセンス抵抗31が設けられない。
<<Example EX1_3>>
Example EX1_3 will be explained. FIG. 11 shows the configuration of a switching power supply device 1 having a power supply IC 2B. Power supply IC2B is an example of power supply IC2. A sense resistor 31 is not provided in the current information generation circuit 30 in the power supply IC 2B.
 電源IC2Bでは、センス抵抗31の代わりにトランジスタM2のオン抵抗を用いて、トランジスタM2のオン期間中にトランジスタM2に流れる電流(即ちコイル電流IL)を検出する。このため、電源IC2BにおけるS/H回路32はトランジスタM2のドレイン及びソースに接続され、電流センス動作において、トランジスタM2のドレイン及びソース間に生じる電圧降下をサンプリングタイミングTSMPLにてサンプリングして保持する。 In the power supply IC2B, the on-resistance of the transistor M2 is used instead of the sense resistor 31 to detect the current flowing through the transistor M2 (ie, the coil current IL) during the on-period of the transistor M2. Therefore, the S/H circuit 32 in the power supply IC2B is connected to the drain and source of the transistor M2, and in the current sensing operation, samples and holds the voltage drop occurring between the drain and source of the transistor M2 at the sampling timing T SMPL . .
 センス抵抗31が非設置である点と、センス抵抗31が非設置であることに連動した上記事項を除き、電源IC2Bは図3の電源IC2Aと同じものであり、実施例EX1_1の記載が実施例EX1_3にも適用される。この適用の際、実施例EX1_1における“センス抵抗31の電圧降下”及び“センス抵抗31の値”を、実施例EX1_3では“トランジスタM2のドレイン及びソース間に生じる電圧降下”及び“トランジスタM2のオン抵抗の値”に読み替えれば良い。 Except for the point that the sense resistor 31 is not installed and the above-mentioned matters linked to the fact that the sense resistor 31 is not installed, the power supply IC 2B is the same as the power supply IC 2A in FIG. 3, and the description of Example EX1_1 is the same as the example This also applies to EX1_3. In this application, the "voltage drop across the sense resistor 31" and "value of the sense resistor 31" in Example EX1_1 are replaced with "voltage drop occurring between the drain and source of transistor M2" and "on-on state of transistor M2" in Example EX1_3. It can be read as "resistance value".
<<実施例EX1_4>>
 実施例EX1_4を説明する。
<<Example EX1_4>>
Example EX1_4 will be explained.
 スイッチング動作を行うスイッチング制御回路が主制御ブロック3に含まれる。スイッチング制御回路は符号11~19により参照される各部位を含んで形成されると考えることができる(図3又は図11参照)。スイッチング制御回路は、出力電圧VOUTに応じた電圧情報と、コイル電流情報(VIL)と、に基づき、スイッチング動作を行う。帰還電圧VFBは出力電圧VOUTに応じた電圧情報の例である。当該電圧情報は出力電圧VOUTそのものであっても良い。スイッチング制御回路は対比電圧VCを生成する対比電圧生成回路を備える。対比電圧生成回路は符号11~14により参照される各部位を含んで形成されると考えることができる(図3又は図11参照)。 The main control block 3 includes a switching control circuit that performs switching operations. The switching control circuit can be considered to be formed by including parts referenced by reference numerals 11 to 19 (see FIG. 3 or FIG. 11). The switching control circuit performs a switching operation based on voltage information corresponding to the output voltage V OUT and coil current information (V IL ). The feedback voltage V FB is an example of voltage information corresponding to the output voltage V OUT . The voltage information may be the output voltage V OUT itself. The switching control circuit includes a contrast voltage generation circuit that generates a contrast voltage V C . The comparison voltage generation circuit can be considered to be formed including the respective parts referenced by numerals 11 to 14 (see FIG. 3 or FIG. 11).
 クロック信号CLKのアップエッジタイミング及びダウンエッジタイミング間におけるランプ電圧VRAMPの変化方向が増加方向である例を挙げたが、当該変化方向は低下方向であっても良い。この場合には、“VC<VRAMP”の成立状態から“VC>VRAMP”の成立状態へ遷移したときにリセット信号が発行されるよう、電源IC2(2A、2B)内の各回路が適正に変形される。 Although an example has been given in which the direction of change in the ramp voltage V RAMP between the up edge timing and the down edge timing of the clock signal CLK is an increasing direction, the changing direction may also be a decreasing direction. In this case, each circuit in the power supply IC 2 (2A, 2B) is configured such that a reset signal is issued when the state in which "V C < V RAMP " is established to the state in which "V C > V RAMP" is established. is transformed appropriately.
 任意の信号又は電圧に関して、上述の主旨を損なわない形で、それらのハイレベルとローレベルの関係は上述したものの逆とされ得る。 For any signal or voltage, the relationship between high and low levels may be reversed as described above, without detracting from the spirit of the above.
 各実施形態に示されたFET(電界効果トランジスタ)のチャネルの種類は例示である。上述の主旨を損なわない形で、任意のFETのチャネルの種類はPチャネル型及びNチャネル型間で変更され得る。 The types of channels of FETs (field effect transistors) shown in each embodiment are merely examples. Without detracting from the above, the channel type of any FET may be varied between P-channel and N-channel.
 不都合が生じない限り、上述の任意のトランジスタは、任意の種類のトランジスタであって良い。例えば、MOSFETとして上述された任意のトランジスタを、不都合が生じない限り、接合型FET、IGBT(Insulated  Gate  Bipolar Transistor)又はバイポーラトランジスタに置き換えることも可能である。任意のトランジスタは第1電極、第2電極及び制御電極を有する。FETにおいては、第1及び第2電極の内の一方がドレインで他方がソースであり且つ制御電極がゲートである。IGBTにおいては、第1及び第2電極の内の一方がコレクタで他方がエミッタであり且つ制御電極がゲートである。IGBTに属さないバイポーラトランジスタにおいては、第1及び第2電極の内の一方がコレクタで他方がエミッタであり且つ制御電極がベースである。 Any transistor mentioned above may be any type of transistor as long as no inconvenience occurs. For example, any transistor described above as a MOSFET can be replaced with a junction FET, an IGBT (Insulated Gate Bipolar Transistor), or a bipolar transistor, as long as no inconvenience occurs. Any transistor has a first electrode, a second electrode, and a control electrode. In a FET, one of the first and second electrodes is the drain, the other is the source, and the control electrode is the gate. In an IGBT, one of the first and second electrodes is the collector, the other is the emitter, and the control electrode is the gate. In a bipolar transistor that does not belong to an IGBT, one of the first and second electrodes is the collector, the other is the emitter, and the control electrode is the base.
 本開示の実施形態は、特許請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。以上の実施形態は、あくまでも、本開示の実施形態の例であって、本開示ないし各構成要件の用語の意義は、以上の実施形態に記載されたものに制限されるものではない。上述の説明文中に示した具体的な数値は、単なる例示であって、当然の如く、それらを様々な数値に変更することができる。 The embodiments of the present disclosure can be appropriately modified in various ways within the scope of the technical idea shown in the claims. The above embodiments are merely examples of the embodiments of the present disclosure, and the meanings of the terms of the present disclosure or each component are not limited to those described in the above embodiments. The specific numerical values shown in the above-mentioned explanatory text are merely examples, and it goes without saying that they can be changed to various numerical values.
<<第1付記>>
 上述の第1実施形態にて具体的構成例が示された本開示について付記を設ける。
<<First appendix>>
An additional note will be provided regarding the present disclosure, the specific configuration example of which was shown in the above-described first embodiment.
 本開示の一側面に係るスイッチング電源用回路は、入力電圧(VIN)のスイッチングを通じて出力電圧(VOUT)を生成するためのスイッチング電源装置(1)に用いられるスイッチング電源用回路(2、2A、2B)において、前記入力電圧を受ける入力端子(IN)とグランド端子(GND)との間において互いに直列接続されたハイサイドトランジス(M1)及びローサイドトランジスタ(M2)を有する出力段回路(MM)と、前記ハイサイドトランジスタ及び前記ローサイドトランジスタを交互にオン、オフするスイッチング動作を行うよう構成されたスイッチング制御回路(11~19)と、前記ローサイドトランジスタのオン期間において前記ローサイドトランジスタに流れる電流を検出する電流センス動作を行うよう構成された電流情報生成回路(30)と、を備え、前記ハイサイドトランジスタ及び前記ローサイドトランジスタ間の接続ノードがコイル(L1)及び出力コンデンサ(C1)を含む整流平滑回路に接続され、前記スイッチング動作により前記接続ノードに生じるスイッチング電圧(VSW)が前記整流平滑回路にて整流及び平滑化されることで前記出力電圧が生成され、前記スイッチング制御回路は、前記出力電圧に応じた電圧情報(VFB)と、前記電流センス動作を通じて生成された前記コイルの電流情報(VIL)と、に基づき前記スイッチング動作を行い、前記スイッチング制御回路は、前記スイッチング動作においてスイッチング周波数を、第1周波数(fREF)又は前記第1周波数より低い第2周波数(fREF/n)に設定可能であり、前記電流情報生成回路は、前記スイッチング周波数が前記第2周波数に設定されるとき、直近の前記電流センス動作を行ってから次回の前記電流センス動作を行うまでの期間の一部において、前記直近の前記電流センス動作による検出電流情報(VISNS)に対し、前記入力電圧及び前記出力電圧に基づく疑似電流情報(VIP)を加算することで、前記コイルの電流情報を生成する構成(以下、構成P1と称する)である。 A switching power supply circuit according to one aspect of the present disclosure is a switching power supply circuit (2, 2A) used in a switching power supply device (1) for generating an output voltage (V OUT ) through switching of an input voltage (V IN ). , 2B), an output stage circuit (MM) having a high-side transistor (M1) and a low-side transistor (M2) connected in series between an input terminal (IN) receiving the input voltage and a ground terminal (GND). a switching control circuit (11 to 19) configured to perform a switching operation of alternately turning on and off the high-side transistor and the low-side transistor; and detecting a current flowing through the low-side transistor during an on period of the low-side transistor. a current information generation circuit (30) configured to perform a current sensing operation, wherein a connection node between the high-side transistor and the low-side transistor includes a coil (L1) and an output capacitor (C1). The switching voltage (V SW ) generated at the connection node due to the switching operation is rectified and smoothed by the rectification and smoothing circuit to generate the output voltage, and the switching control circuit generates the output voltage. The switching operation is performed based on voltage information (V FB ) corresponding to the current sensing operation and current information (V IL ) of the coil generated through the current sensing operation, and the switching control circuit controls the switching frequency in the switching operation. can be set to a first frequency (f REF ) or a second frequency (f REF /n) lower than the first frequency, and in the current information generation circuit, the switching frequency is set to the second frequency. When, during a part of the period from performing the most recent current sensing operation to performing the next current sensing operation, the input voltage and the current information ( VISNS ) detected by the most recent current sensing operation are This configuration (hereinafter referred to as configuration P1) generates current information of the coil by adding pseudo current information (V IP ) based on the output voltage.
 これにより、スイッチング周波数が相対的に低い第2周波数に設定されるとき、電流センス動作の実行間隔が長くなるが、疑似電流情報の加算を通じてコイルの電流情報を生成することにより、実際のコイル電流に概ね即した帰還制御が可能となる。結果、出力電圧の安定化が図られる。 As a result, when the switching frequency is set to a relatively low second frequency, the execution interval of the current sensing operation becomes longer, but by generating coil current information through the addition of pseudo current information, the actual coil current This makes it possible to perform feedback control that is generally in accordance with the above. As a result, the output voltage is stabilized.
 上記構成P1に係るスイッチング電源用回路において、前記電流情報生成回路は、前記入力電圧と、前記出力電圧と、前記コイルのインダクタンスと、に基づき、前記疑似電流情報を生成する構成(以下、構成P2と称する)であっても良い。 In the switching power supply circuit according to the configuration P1, the current information generation circuit has a configuration (hereinafter referred to as configuration P2) that generates the pseudo current information based on the input voltage, the output voltage, and the inductance of the coil. ) may also be used.
 これにより、電流センス動作が行われない期間におけるコイル電流の変動を良好に模した疑似電流情報を生成できるため、実際のコイル電流に概ね即した制御が可能となる。結果、出力電圧の安定化が図られる。 As a result, it is possible to generate pseudo current information that closely simulates the fluctuations in the coil current during a period in which the current sensing operation is not performed, so it is possible to perform control that closely matches the actual coil current. As a result, the output voltage is stabilized.
 上記構成P2に係るスイッチング電源用回路において、前記電流情報生成回路は、前記入力電圧と、前記出力電圧と、前記コイルのインダクタンスと、前記第1周波数の逆数分の時間(tREF)と、に基づき、前記疑似電流情報を生成する構成(以下、構成P3と称する)であっても良い。 In the switching power supply circuit according to the configuration P2, the current information generation circuit is configured to calculate the input voltage, the output voltage, the inductance of the coil, and the time (t REF ) corresponding to the reciprocal of the first frequency. It may be a configuration (hereinafter referred to as configuration P3) that generates the pseudo current information based on the current information.
 これにより、電流センス動作が行われない期間におけるコイル電流の変動を良好に模した疑似電流情報を生成できるため、実際のコイル電流に概ね即した制御が可能となる。結果、出力電圧の安定化が図られる。 As a result, it is possible to generate pseudo current information that closely simulates the fluctuations in the coil current during a period in which the current sensing operation is not performed, so it is possible to perform control that closely matches the actual coil current. As a result, the output voltage is stabilized.
 上記構成P1~P3の何れかに係るスイッチング電源用回路に関し、前記電流情報生成回路は、前記スイッチング周波数が前記第2周波数に設定される期間において、前記ハイサイドトランジスがターンオンされてから所定時間が経過するまでは、前記直近の前記電流センス動作による前記検出電流情報を前記コイルの電流情報として生成し、前記ハイサイドトランジスがターンオンされてから前記所定時間が経過した後、前記次回の前記電流センス動作を行うまで、前記直近の前記電流センス動作による前記検出電流情報と前記疑似電流情報との和を前記コイルの電流情報として生成する構成(以下、構成P4と称する)であっても良い。 Regarding the switching power supply circuit according to any one of the configurations P1 to P3, the current information generation circuit is arranged such that a predetermined period of time elapses after the high-side transistor is turned on during a period in which the switching frequency is set to the second frequency. Until the predetermined time has elapsed, the detected current information from the most recent current sensing operation is generated as current information of the coil, and after the predetermined time has elapsed since the high-side transistor was turned on, the next current sensing operation is performed. A configuration (hereinafter referred to as configuration P4) may be adopted in which the sum of the detected current information from the most recent current sensing operation and the pseudo current information is generated as current information of the coil until an operation is performed.
 上記構成P1~P4の何れかに係るスイッチング電源用回路において、前記電流情報生成回路は、前記スイッチング周波数が前記第1周波数から前記第2周波数に切り替わったとき、切り替わり直後における前記疑似電流情報の値(VA1)を、それ以降の前記疑似電流情報の値(VA2)よりも大きく設定する構成(以下、構成P5と称する)であっても良い。 In the switching power supply circuit according to any one of the configurations P1 to P4, the current information generation circuit is configured to generate a value of the pseudo current information immediately after the switching frequency is switched from the first frequency to the second frequency. (V A1 ) may be set larger than the subsequent value (V A2 ) of the pseudo current information (hereinafter referred to as configuration P5).
 これにより、スイッチング周波数が第1周波数から第2周波数に切り替わった後において、出力電圧を速やかに安定化させることができる。 Thereby, the output voltage can be quickly stabilized after the switching frequency is switched from the first frequency to the second frequency.
 上記構成P1~P5の何れかに係るスイッチング電源用回路において、前記電流情報生成回路は、前記スイッチング周波数が前記第1周波数に設定されるとき、前記第1周波数の逆数分の長さを有する各期間において、前記電流センス動作を実行して前記電流センス動作による前記検出電流情報を前記コイルの電流情報として生成する構成(以下、構成P6と称する)であっても良い。 In the switching power supply circuit according to any one of the configurations P1 to P5, when the switching frequency is set to the first frequency, the current information generation circuit includes each A configuration (hereinafter referred to as configuration P6) may be adopted in which the current sensing operation is executed during the period, and the detected current information by the current sensing operation is generated as current information of the coil.
 上記構成P6に係るスイッチング電源用回路において、前記スイッチング制御回路は、前記出力電圧に応じた電圧情報と前記コイルの電流情報とに基づき対比電圧(VC)を生成するよう構成された対比電圧生成回路(11~14)と、前記第1周波数の逆数の周期にて初期レベルから所定の向きへと単調変化するランプ電圧を生成するよう構成されたランプ電圧生成回路(16)と、を備え、前記スイッチング動作において、前記ハイサイドトランジスタをターンオンさせた後、前記対比電圧と前記ランプ電圧の高低関係が第1関係から第2関係に変化したことに応答してリセット信号(SPWMのダウンエッジ)を発行し、前記リセット信号の発行に基づき前記ハイサイドトランジスタをターンオフ且つ前記ローサイドトランジスタをターンオンさせ、前記スイッチング周波数が前記第1周波数に設定された状態おいて、前記ハイサイドトランジスタをターンオンした後、前記第1周波数の逆数より短い規定時間(tMAX_ON)が経過するまでに前記リセット信号が発行されないとき、前記スイッチング周波数を前記第1周波数から前記第2周波数に切り替える構成(以下、構成P7と称する)であっても良い。 In the switching power supply circuit according to the configuration P6, the switching control circuit is configured to generate a contrast voltage (V C ) based on voltage information corresponding to the output voltage and current information of the coil. circuits (11 to 14), and a lamp voltage generation circuit (16) configured to generate a lamp voltage that monotonically changes from an initial level in a predetermined direction at a period of the reciprocal of the first frequency, In the switching operation, after turning on the high-side transistor, a reset signal (down edge of S PWM) is generated in response to a change in the level relationship between the comparison voltage and the lamp voltage from a first relationship to a second relationship. is issued, turns off the high side transistor and turns on the low side transistor based on the issuance of the reset signal, and turns on the high side transistor while the switching frequency is set to the first frequency; A configuration (hereinafter referred to as configuration P7) that switches the switching frequency from the first frequency to the second frequency when the reset signal is not issued before a specified time (t MAX_ON ) shorter than the reciprocal of the first frequency has elapsed. ).
 これにより例えば、入力電圧が一時的に低下した場合において、出力段回路の最大デューティを高めることが可能であり、以って出力電圧を所望値に保ちやすくなる。 As a result, for example, when the input voltage temporarily decreases, it is possible to increase the maximum duty of the output stage circuit, thereby making it easier to maintain the output voltage at a desired value.
 上記構成P7に係るスイッチング電源用回路において、前記スイッチング制御回路は、前記スイッチング周波数を前記第1周波数から前記第2周波数に切り替えた後において、前記ハイサイドトランジスタのターンオンタイミングから前記規定時間が経過するまでに前記リセット信号が発行されたとき、前記スイッチング周波数を前記第2周波数から前記第1周波数に戻す構成(以下、構成P8と称する)であっても良い。 In the switching power supply circuit according to the configuration P7, after the switching control circuit switches the switching frequency from the first frequency to the second frequency, the specified time period elapses from the turn-on timing of the high-side transistor. The switching frequency may be configured to return the switching frequency from the second frequency to the first frequency when the reset signal is issued (hereinafter referred to as configuration P8).
 これにより例えば、入力電圧の低下を経て入力電圧が上昇したときに、スイッチング周波数を第1周波数に戻すことができる。 With this, for example, when the input voltage increases after decreasing, the switching frequency can be returned to the first frequency.
 本開示の一側面に係るスイッチング電源装置は、上記構成P1~P8の何れかに係るスイッチング電源用回路と、前記スイッチング電圧を整流及び平滑化することで前記出力電圧を生成するよう構成された整流平滑回路と、備える構成(以下、構成P9と称する)である。 A switching power supply device according to one aspect of the present disclosure includes a switching power supply circuit according to any one of the configurations P1 to P8, and a rectifier configured to generate the output voltage by rectifying and smoothing the switching voltage. This is a smoothing circuit and a configuration (hereinafter referred to as configuration P9).
[第2実施形態]
 本開示の第2実施形態を説明する。第2実施形態に係るスイッチング電源装置1の全体構成図及び外観斜視図は、図1及び図2に示した通りである。第2実施形態では電源IC2として、図12に示す電源IC2Cが用いられる。
[Second embodiment]
A second embodiment of the present disclosure will be described. The overall configuration diagram and external perspective view of the switching power supply device 1 according to the second embodiment are as shown in FIGS. 1 and 2. In the second embodiment, a power IC 2C shown in FIG. 12 is used as the power IC 2.
 図12に電源IC2Cを有するスイッチング電源装置1の構成を示す。電源IC2Cは電源IC2の例である。電源IC2について上述した事項は、矛盾なき限り全て、電源IC2Cにも適用される。 FIG. 12 shows the configuration of a switching power supply device 1 having a power supply IC 2C. Power supply IC2C is an example of power supply IC2. All the matters described above regarding the power supply IC 2 also apply to the power supply IC 2C unless there is a contradiction.
 電源IC2Cにおける主制御ブロック3は、エラーアンプ11と、位相補償回路12と、差動アンプ13と、位相補償回路14と、クロック生成回路15と、ランプ電圧生成回路16と、コンパレータ17と、ロジック回路18と、ドライバ19と、電流情報生成回路30Cと、を備える。電源IC2Cではパルス幅変調によるスイッチング動作が行われる。第1実施形態に係る電源IC2Aを基準に図3の電流情報生成回路30を電流情報生成回路30Cに置換することで電源IC2Cが得られる。当該置換を除き、電源IC2Cの構成及び動作は電源IC2Aのそれらと同様である。特に記述なき限り且つ矛盾無き限り、第1実施形態における記載が第2実施形態に適用されて良い。図4に示したランプ電圧VRAMP及びクロック信号CLK間の関係も第2実施形態に適用される。第2実施形態の記述を解釈するにあたり、第1及び第2実施形態間で矛盾する事項については第2実施形態の記述が優先される。 The main control block 3 in the power supply IC 2C includes an error amplifier 11, a phase compensation circuit 12, a differential amplifier 13, a phase compensation circuit 14, a clock generation circuit 15, a lamp voltage generation circuit 16, a comparator 17, and logic. It includes a circuit 18, a driver 19, and a current information generation circuit 30C. The power supply IC 2C performs a switching operation using pulse width modulation. A power supply IC 2C is obtained by replacing the current information generation circuit 30 of FIG. 3 with a current information generation circuit 30C based on the power supply IC 2A according to the first embodiment. Except for this substitution, the configuration and operation of the power supply IC 2C are similar to those of the power supply IC 2A. Unless otherwise specified and unless there is a contradiction, the description in the first embodiment may be applied to the second embodiment. The relationship between the ramp voltage V RAMP and the clock signal CLK shown in FIG. 4 also applies to the second embodiment. When interpreting the description of the second embodiment, the description of the second embodiment takes precedence regarding matters that are inconsistent between the first and second embodiments.
 電流情報生成回路30Cは、トランジスタM2のオン期間においてトランジスタM2に流れる電流を検出するローサイド電流センス動作を実行し、当該ローサイド電流センス動作を通じてコイル電流情報に相当する電圧VILを生成する。トランジスタM2のオン期間においてトランジスタM2に流れる電流はコイルL1を通過する。このため、ローサイド電流センス動作はトランジスタM2に流れる電流を検出することを通じてコイル電流ILを検出する動作であると言える。 The current information generation circuit 30C performs a low-side current sensing operation to detect the current flowing through the transistor M2 during the on-period of the transistor M2, and generates a voltage V IL corresponding to coil current information through the low-side current sensing operation. During the ON period of transistor M2, the current flowing through transistor M2 passes through coil L1. Therefore, the low-side current sensing operation can be said to be an operation of detecting the coil current IL by detecting the current flowing through the transistor M2.
 更に、電流情報生成回路30Cは、トランジスタM1のオン期間においてトランジスタM1に流れる電流を検出するハイサイド電流センス動作を実行することがある。この際、ハイサイド電流センス動作を通じてコイル電流情報に相当する電圧VILが生成され得る。トランジスタM1のオン期間においてトランジスタM1に流れる電流はコイルL1を通過する。このため、ハイサイド電流センス動作はトランジスタM1に流れる電流を検出することを通じてコイル電流ILを検出する動作であると言える。 Further, the current information generation circuit 30C may perform a high-side current sensing operation to detect the current flowing through the transistor M1 during the on period of the transistor M1. At this time, a voltage V IL corresponding to coil current information may be generated through a high-side current sensing operation. During the ON period of the transistor M1, the current flowing through the transistor M1 passes through the coil L1. Therefore, the high-side current sensing operation can be said to be an operation of detecting the coil current IL by detecting the current flowing through the transistor M1.
 電流情報生成回路30Cは、コイル電流ILが増大するほど、より高い電圧VILが生成されるよう動作する。電圧VILが差動アンプ13に帰還入力されるため、誤差電圧VERRの上昇はコイル電流ILの増大をもたらし、誤差電圧VERRの低下はコイル電流ILの減少をもたらす。 The current information generation circuit 30C operates so that as the coil current IL increases, a higher voltage V IL is generated. Since the voltage V IL is fed back into the differential amplifier 13, an increase in the error voltage V ERR causes an increase in the coil current IL, and a decrease in the error voltage V ERR causes a decrease in the coil current IL.
 図12の構成において、電流情報生成回路30Cは、センス抵抗31、S/H回路32及び増幅回路33を備える。電流情報生成回路30Cの動作はロジック回路18により制御されて良い。電流情報生成回路30Cは、センス抵抗31の電圧降下を検出することでトランジスタM2に流れる電流(従ってコイル電流IL)を検出することができる。尚、図12には、電流情報生成回路30Cの構成の内、ローサイド電流センス動作に関与する部分しか図示されていない。ハイサイド電流センス動作に関与する部分については他の図面で示される。 In the configuration of FIG. 12, the current information generation circuit 30C includes a sense resistor 31, an S/H circuit 32, and an amplifier circuit 33. The operation of the current information generation circuit 30C may be controlled by the logic circuit 18. The current information generation circuit 30C can detect the current flowing through the transistor M2 (therefore, the coil current IL) by detecting the voltage drop across the sense resistor 31. Note that FIG. 12 only shows the portions of the configuration of the current information generation circuit 30C that are involved in the low-side current sensing operation. Parts involved in the high-side current sensing operation are shown in other figures.
 センス抵抗31はトランジスタM2及びグランドに直列に挿入される。具体的には、センス抵抗31の第1端はトランジスタM2のソースに接続され、センス抵抗31の第2端はグランド端子GNDに接続される。トランジスタM2のオン期間において、コイル電流ILがセンス抵抗31及びトランジスタM2を通じて流れるため、センス抵抗31にはコイル電流ILに比例する電圧降下が発生する。 The sense resistor 31 is inserted in series with the transistor M2 and ground. Specifically, a first end of the sense resistor 31 is connected to the source of the transistor M2, and a second end of the sense resistor 31 is connected to the ground terminal GND. During the ON period of the transistor M2, the coil current IL flows through the sense resistor 31 and the transistor M2, so a voltage drop proportional to the coil current IL occurs in the sense resistor 31.
 S/H回路32はセンス抵抗31の電圧降下に対するサンプリング/ホールド回路である。即ち、S/H回路32はセンス抵抗31の第1端及び第2端に接続され、ローサイド電流センス動作において、センス抵抗31の電圧降下(即ちセンス抵抗31の両端子間に生じる電圧)をロジック回路18により設定されたサンプリングタイミングにてサンプリングして保持する。ローサイド電流センス動作において、増幅回路33はS/H回路32にて現在保持されている電圧を増幅し、増幅した電圧を出力する。増幅回路33の出力電圧が電圧VILとして電流情報生成回路30Cから出力される。電圧VILはコイル電流ILの検出値(検出電流値)を表す。ローサイド電流センス動作において、コイル電流ILの検出値は、センス抵抗31の値と増幅回路33の増幅率との積にて電圧VILを割ったものに相当する。 The S/H circuit 32 is a sampling/hold circuit for the voltage drop across the sense resistor 31. That is, the S/H circuit 32 is connected to the first and second ends of the sense resistor 31, and in the low-side current sensing operation, the voltage drop across the sense resistor 31 (that is, the voltage generated between both terminals of the sense resistor 31) is controlled by logic. It is sampled and held at the sampling timing set by the circuit 18. In the low-side current sensing operation, the amplifier circuit 33 amplifies the voltage currently held in the S/H circuit 32 and outputs the amplified voltage. The output voltage of the amplifier circuit 33 is outputted as a voltage V IL from the current information generation circuit 30C. Voltage V IL represents a detected value (detected current value) of coil current IL. In the low-side current sensing operation, the detected value of the coil current IL corresponds to the voltage V IL divided by the product of the value of the sense resistor 31 and the amplification factor of the amplifier circuit 33.
 トランジスタM1及びM2が交互にオン、オフされる周波数をスイッチング周波数と称し、特に記号“fSW”にて参照する。スイッチング周波数fSWはトランジスタM1のスイッチングの周波数(故にゲート信号G1の周波数)でもあるし、トランジスタM2のスイッチングの周波数(故にゲート信号G2の周波数)でもある。入力電圧VINが出力電圧VOUTに対して十分に高い状態が継続しているとき、スイッチング周波数fSWは基準周波数fREFで安定する。 The frequency at which transistors M1 and M2 are alternately turned on and off is called the switching frequency, and is particularly referred to by the symbol "f SW ". The switching frequency f SW is both the switching frequency of the transistor M1 (therefore the frequency of the gate signal G1) and the switching frequency of the transistor M2 (therefore the frequency of the gate signal G2). When the input voltage V IN continues to be sufficiently higher than the output voltage V OUT , the switching frequency f SW becomes stable at the reference frequency f REF .
 図13にスイッチング周波数fSWが基準周波数fREFで安定しているときのタイミングチャート(即ちスイッチング周波数fSWが基準周波数fREFにて維持されているときのタイミングチャート)を示す。電流情報生成回路30Cは、“fSW=fREF”であるときには、ローサイド電流センス動作のみを用いて、コイル電流ILの検出及びコイル電流情報(VIL)の生成を行う。図13には、信号SPWM、ランプ電圧VRAMP、クロック信号CLK、ゲート信号G1、ゲート信号G2、コイル電流IL及び電圧VILの波形が実線で示されると共に、対比電圧VCの波形が破線で示されている。図13の例では、順次訪れる時刻T11、T12、T13及びT14にて、夫々、クロック信号CLKにアップエッジが生じる。出力段回路MMが出力ロー状態であるときに時刻T11にてクロック信号CLKにアップエッジが生じると、ロジック回路18はゲート信号G1にアップエッジを生じさせ且つゲート信号G2にダウンエッジを生じさせることで出力段回路MMを出力ロー状態から出力ハイ状態に切り替える。 FIG. 13 shows a timing chart when the switching frequency f SW is stabilized at the reference frequency f REF (that is, a timing chart when the switching frequency f SW is maintained at the reference frequency f REF ). When "f SW =f REF ", the current information generation circuit 30C detects the coil current IL and generates the coil current information (V IL ) using only the low-side current sensing operation. In FIG. 13, the waveforms of the signal SPWM , lamp voltage V RAMP , clock signal CLK, gate signal G1, gate signal G2, coil current IL, and voltage V IL are shown as solid lines, and the waveform of the contrast voltage V C is shown as a broken line. is shown. In the example of FIG. 13, up edges occur in the clock signal CLK at times T11, T12, T13, and T14, which occur sequentially. When an up edge occurs in the clock signal CLK at time T11 when the output stage circuit MM is in the output low state, the logic circuit 18 causes an up edge to occur in the gate signal G1 and a down edge in the gate signal G2. The output stage circuit MM is switched from the output low state to the output high state.
 時刻T11におけるクロック信号CLKのアップエッジを契機に上述の如くランプ電圧VRAMPが初期レベル(VRAMP_MIN)から上昇開始する。ランプ電圧VRAMPが初期レベルにあるとき、常に“VC>VRAMP”が成立し、故に信号SPWMはハイレベルである。ランプ電圧VRAMPの上昇過程においてランプ電圧VRAMPが対比電圧VCに達すると信号SPWMにダウンエッジが生じる。ランプ電圧VRAMPが対比電圧VCに達するとは、“VC>VRAMP”の成立状態から“VC<VRAMP”の成立状態へ遷移することを指す。ローレベルの信号SPWMはリセット信号として機能する。以下、リセット信号が発行されるとは、コンパレータ17からローレベルの信号SPWMが出力されること、又は、信号SPWMにダウンエッジが生じることを意味する。 Triggered by the rising edge of the clock signal CLK at time T11, the ramp voltage VRAMP starts rising from the initial level ( VRAMP_MIN ) as described above. When the ramp voltage V RAMP is at the initial level, "V C > V RAMP " always holds true, and therefore the signal SPWM is at a high level. When the ramp voltage V RAMP reaches the comparison voltage V C during the rising process of the ramp voltage V RAMP , a down edge occurs in the signal S PWM . When the lamp voltage V RAMP reaches the comparison voltage V C , it refers to a transition from a state in which “V C >V RAMP ” holds to a state in which “V C <V RAMP ” holds. The low level signal S PWM functions as a reset signal. Hereinafter, issuing a reset signal means that the comparator 17 outputs a low-level signal S PWM , or that a down edge occurs in the signal S PWM .
 ロジック回路18はリセット信号が発行されるとゲート信号G1にダウンエッジを生じさせ且つゲート信号G2にアップエッジを生じさせることで出力段回路MMを出力ハイ状態から出力ロー状態に切り替える(但しリセット信号が無効とされる場合を除く)。その後、クロック信号CLKにダウンエッジが生じるとランプ電圧VRAMPが初期レベル(VRAMP_MIN)に戻され、これによって信号SPWMにアップエッジが生じる。その後、時刻T12にてクロック信号CLKに再度のアップエッジが生じる。以後、同様の動作が繰り返される。 When the reset signal is issued, the logic circuit 18 causes the gate signal G1 to generate a down edge and the gate signal G2 to generate an up edge to switch the output stage circuit MM from the output high state to the output low state (however, the reset signal (except where invalidated). Thereafter, when a down edge occurs in the clock signal CLK, the ramp voltage VRAMP is returned to the initial level ( VRAMP_MIN ), and thereby an up edge occurs in the signal SPWM . Thereafter, another up edge occurs in the clock signal CLK at time T12. Thereafter, similar operations are repeated.
 出力段回路MMの出力ハイ状態において、入力端子INからトランジスタM1及びコイルL1を通じ出力端子OUTに向けて入力電圧VINに基づく電流が流れ、コイル電流ILは徐々に上昇してゆくと共にコイルL1にエネルギが蓄積されてゆく。出力段回路MMの出力ロー状態において、トランジスタM2及びコイルL1を通じコイルL1の蓄積エネルギに基づく電流が流れ、コイル電流ILは徐々に低下してゆく。 In the output high state of the output stage circuit MM, a current based on the input voltage V IN flows from the input terminal IN to the output terminal OUT through the transistor M1 and the coil L1, and the coil current IL gradually increases and flows into the coil L1. Energy is being accumulated. In the output low state of the output stage circuit MM, a current based on the stored energy of the coil L1 flows through the transistor M2 and the coil L1, and the coil current IL gradually decreases.
 ロジック回路18は、トランジスタM2のオン期間(即ち出力段回路MMが出力ロー状態である期間)内にサンプリングタイミングに設定する。設定されたサンプリングタイミングを、以下、記号“TSMPL”にて参照する。トランジスタM2のオン期間ごとに1つのサンプリングタイミングTSMPLが設定され、各サンプリングタイミングTSMPLにてローサイド電流センス動作が実行される。 The logic circuit 18 sets the sampling timing within the on period of the transistor M2 (that is, the period during which the output stage circuit MM is in the output low state). The set sampling timing will be referred to below with the symbol "T SMPL ". One sampling timing T SMPL is set for each on-period of the transistor M2, and a low-side current sensing operation is performed at each sampling timing T SMPL .
 ローサイド電流センス動作においてS/H回路32はセンス抵抗31の電圧降下をサンプリングタイミングTSMPLにてサンプリングして保持する。時刻T11及びT12間に設定されるサンプリングタイミングTSMPLを特に記号“TSMPL1”にて参照し、時刻T12及びT13間に設定されるサンプリングタイミングTSMPLを特に記号“TSMPL2”にて参照し、時刻T13及びT14間に設定されるサンプリングタイミングTSMPLを特に記号“TSMPL3”にて参照する。 In the low-side current sensing operation, the S/H circuit 32 samples and holds the voltage drop across the sense resistor 31 at sampling timing T SMPL . The sampling timing T SMPL set between times T11 and T12 is specifically referred to by the symbol "T SMPL1 ", and the sampling timing T SMPL set between times T12 and T13 is specifically referred to by the symbol "T SMPL2 ", The sampling timing T SMPL set between times T13 and T14 is particularly referred to by the symbol "T SMPL3 ."
 サンプリングタイミングTSMPL1、TSMPL2、TSMPL3にてサンプリングされた電圧を増幅回路33にて増幅することで得られる電圧VILを、夫々、記号VIL1、VIL2、VIL3にて参照する。増幅回路33の出力電圧VILはサンプリングタイミングTSMPL1からサンプリングタイミングTSMPL2の直前まで電圧VIL1で維持される。同様に、増幅回路33の出力電圧VILはサンプリングタイミングTSMPL2からサンプリングタイミングTSMPL3の直前まで電圧VIL2で維持される。以後も同様である。 The voltages V IL obtained by amplifying the voltages sampled at the sampling timings T SMPL1 , T SMPL2 , and T SMPL3 in the amplifier circuit 33 are referred to by symbols V IL1 , V IL2 , and V IL3 , respectively. The output voltage V IL of the amplifier circuit 33 is maintained at the voltage V IL1 from sampling timing T SMPL1 to immediately before sampling timing T SMPL2 . Similarly, the output voltage V IL of the amplifier circuit 33 is maintained at the voltage V IL2 from the sampling timing T SMPL2 to immediately before the sampling timing T SMPL3 . The same applies thereafter.
 トランジスタM2のオン期間中の任意のタイミングがサンプリングタイミングTSMPLに設定されて良い。例えば、ロジック回路18は、トランジスタM2のターンオンタイミングから所定時間が経過したタイミングをサンプリングタイミングTSMPLに設定しても良い。或いは例えば、ロジック回路18は、トランジスタM2のターンオフタイミングから所定時間だけ前のタイミングをサンプリングタイミングTSMPLに設定しても良い。ここでは、トランジスタM2のオン期間における中心のタイミングがサンプリングタイミングTSMPLに設定されるものとする。 Any timing during the on period of the transistor M2 may be set as the sampling timing T SMPL . For example, the logic circuit 18 may set the sampling timing T SMPL to a timing when a predetermined period of time has elapsed from the turn-on timing of the transistor M2. Alternatively, for example, the logic circuit 18 may set the sampling timing T SMPL to a timing that is a predetermined time before the turn-off timing of the transistor M2. Here, it is assumed that the central timing of the on period of the transistor M2 is set to the sampling timing T SMPL .
 ローサイド電流センス動作には一定の時間が必要である。第2実施形態に係る最小センス時間tMIN_SNSは、ローサイド電流センス動作を行うために確保すべき最小の時間を指すと解される。基準時間tREFと最小センス時間tMIN_SNSとの関係は図6に示した通りである。基準時間tREFよりも最小センス時間tMIN_SNSの方が短い。時間差(tREF-tMIN_SNS)は、“fSW=fREF”であるときの最大オン時間tMAX_ONに相当する。最大オン時間tMAX_ONは、スイッチング動作の1周期におけるトランジスタM1のオン期間の長さの最大値を表す。例えば、基準周波数fREFが2MHz(メガヘルツ)であって且つ最小センス時間tMIN_SNSが200ナノ秒である場合、“fSW=fREF”であるときの最大オン時間tMAX_ONは300ナノ秒となり、“fSW=fREF”であるときの最大デューティは60%となる。デューティとはスイッチング動作の1周期を占めるトランジスタM1のオン時間の割合を指し、デューティが取り得る最大値が最大デューティである。 A certain amount of time is required for the low-side current sensing operation. The minimum sensing time t MIN_SNS according to the second embodiment is understood to refer to the minimum time that should be secured in order to perform a low-side current sensing operation. The relationship between the reference time t REF and the minimum sense time t MIN_SNS is as shown in FIG. 6 . The minimum sense time t MIN_SNS is shorter than the reference time t REF . The time difference (t REF - t MIN_SNS ) corresponds to the maximum on-time t MAX_ON when "f SW = f REF ". The maximum on-time t MAX_ON represents the maximum length of the on-period of the transistor M1 in one cycle of the switching operation. For example, if the reference frequency f REF is 2 MHz (megahertz) and the minimum sense time t MIN_SNS is 200 nanoseconds, the maximum on-time t MAX_ON when "f SW = f REF " is 300 nanoseconds, The maximum duty when "f SW = f REF " is 60%. The duty refers to the ratio of the on time of the transistor M1 that occupies one cycle of the switching operation, and the maximum value that the duty can take is the maximum duty.
 第1実施形態と同様、クロック信号CLKにおける隣接する2つのアップエッジタイミング間の期間を、単位期間と称する。単位期間の長さは基準時間tREFと一致する。各単位期間は前段期間と後段期間との合成期間である。各単位期間において前段期間の後に後段期間が配置される。後段期間の長さは最小センス時間tMIN_SNSと一致する。前段期間の長さは“fSW=fREF”であるときの最大オン時間tMAX_ONと一致する。 Similar to the first embodiment, the period between two adjacent up edge timings in the clock signal CLK is referred to as a unit period. The length of the unit period matches the reference time t REF . Each unit period is a composite period of a preceding period and a subsequent period. In each unit period, the latter period is arranged after the former period. The length of the latter period matches the minimum sense time t MIN_SNS . The length of the first stage period matches the maximum on-time t MAX_ON when "f SW = f REF ".
 電源IC2Cは、基本的に、出力電圧VOUTと比べて入力電圧VINが十分に高いアプリケーションに適している。当該アプリケーションにおいては、スイッチング動作の各周期にて、トランジスタM1のオン時間が相当に短くなる一方でトランジスタM2のオン時間が十分に長くなる。このため、トランジスタM2に流れる電流を検出するための時間を容易に且つ安定的に確保できる。 The power supply IC2C is basically suitable for applications where the input voltage V IN is sufficiently high compared to the output voltage V OUT . In this application, in each cycle of the switching operation, the on-time of transistor M1 is considerably shortened while the on-time of transistor M2 is sufficiently long. Therefore, time for detecting the current flowing through the transistor M2 can be easily and stably secured.
 但し、スイッチング電源装置1において、一時的に“VIN>VOUT”であるものの電圧VIN及びVOUT間の差が小さくなる、又は、一時的に“VIN<VOUT”となることもあり得る。例えば、車載用途において、自動車等の車両に搭載されたバッテリ(不図示)の出力電圧が入力電圧VINとして利用される場合を想定する。この場合、スタータを用いてエンジンの始動又は再始動させる際、バッテリの出力電圧が一時的に大きく低下することがある。そうすると、一時的に“VIN>VOUT”であるものの電圧VIN及びVOUT間の差が小さくなる、又は、一時的に“VIN<VOUT”となることがある。 However, in the switching power supply device 1, although "V IN > V OUT " temporarily, the difference between the voltages V IN and V OUT may become small, or "V IN < V OUT " may temporarily occur. could be. For example, assume that in in-vehicle applications, the output voltage of a battery (not shown) mounted on a vehicle such as an automobile is used as the input voltage V IN . In this case, when starting or restarting the engine using the starter, the output voltage of the battery may temporarily drop significantly. In this case, the difference between the voltages V IN and V OUT may become small even though “V IN >V OUT ” temporarily, or “V IN <V OUT ” may temporarily occur.
 入力電圧VINが低下している期間においてはデューティをなるだけ高くまで上げられた方が、出力電圧VOUTの維持には有利である。例えば、目標電圧VTGが5Vである場合において、基本的には12Vを有する入力電圧VINが7Vにまで低下したとき、最大デューティが60%であれば“7×0.6=4.2”より出力電圧VOUTを4.2V程度にまでしか上げることができないが、最大デューティが80%であれば“7×0.8=5.6”より出力電圧VOUTを5V近辺に維持することが可能である。 During a period when the input voltage V IN is decreasing, it is advantageous to increase the duty as high as possible in order to maintain the output voltage V OUT . For example, when the target voltage V TG is 5V and the input voltage V IN , which is basically 12V, drops to 7V, if the maximum duty is 60%, "7 x 0.6 = 4.2 ”, the output voltage V OUT can only be raised to about 4.2V, but if the maximum duty is 80%, the output voltage V OUT will be maintained around 5V because “7 x 0.8 = 5.6”. Is possible.
 最小センス時間tMIN_SNSは不変であるので、最大デューティを増大させるにはスイッチング周波数fSWの低下が有効である。例えば、基準周波数fREFが2MHz(メガヘルツ)であって且つ最小センス時間tMIN_SNSが200ナノ秒であるとき、スイッチング周波数fSWを2MHzから1MHzに低下させることで、最大デューティを60%(=(500ns-200ns)/500ns)からから80%(=(1000ns-200ns)/1000ns)に増大させることができる。スイッチング周波数fSWを更に低下させれば最大デューティが更に増大する。 Since the minimum sense time t MIN_SNS remains unchanged, lowering the switching frequency f SW is effective in increasing the maximum duty. For example, when the reference frequency f REF is 2 MHz (megahertz) and the minimum sense time t MIN_SNS is 200 nanoseconds, by lowering the switching frequency f SW from 2 MHz to 1 MHz, the maximum duty can be reduced to 60% (=( 500ns-200ns)/500ns) to 80% (=(1000ns-200ns)/1000ns). If the switching frequency f SW is further lowered, the maximum duty will further increase.
 ロジック回路18は、スイッチング周波数fSWを基準周波数fREFに設定できる又は基準周波数fREFの(1/n)倍に設定することができる。ここで、nは2以上の任意の整数である。“fSW=fREF”であるときのスイッチング動作を特に基準スイッチング動作と称する。これに対し、“fSW=fREF/n”であるときのスイッチング動作を特に分周スイッチング動作と称する。 The logic circuit 18 can set the switching frequency f SW to the reference frequency f REF or (1/n) times the reference frequency f REF . Here, n is an arbitrary integer of 2 or more. The switching operation when "f SW = f REF " is particularly referred to as the reference switching operation. On the other hand, the switching operation when "f SW =f REF /n" is particularly referred to as a frequency division switching operation.
 クロック信号CLKのアップエッジタイミングからリセット信号が発行されるまでの時間は、入力電圧VINの低下に伴って増大し、当該時間の増大はデューティの増大の必要性を意味する。このため、“fSW=fREF”であるときにおいて、トランジスタM1をターンオンした後、“fSW=fREF”であるときの最大オン時間tMAX_ONが経過するまでにリセット信号が発行されないとき、ロジック回路18は、実行されるスイッチング動作を基準スイッチング動作から分周スイッチング動作に遷移させ、これによって最大デューティの増大を図る。 The time from the rising edge timing of the clock signal CLK to the issuance of the reset signal increases as the input voltage V IN decreases, and the increase in time means the need to increase the duty. Therefore, when "f SW = f REF " and after turning on the transistor M1, if the reset signal is not issued before the maximum on time t MAX_ON when "f SW = f REF " has elapsed, The logic circuit 18 causes the switching operation to be executed to transition from the reference switching operation to the frequency division switching operation, thereby increasing the maximum duty.
 但し、分周スイッチング動作が行われるとき、高デューティを得ることができる背反として、比較的長い時間、ローサイド電流センス動作を行うことができない。本実施形態に係る電源IC2Cでは、分周スイッチング動作が行われるとき、出力ハイ状態にてハイサイド電流センス動作を行うことでコイル電流情報(VIL)を得る。これの詳細な説明の前に第2仮想動作を説明する。 However, when the frequency division switching operation is performed, the low-side current sensing operation cannot be performed for a relatively long time, as opposed to being able to obtain a high duty. In the power supply IC 2C according to the present embodiment, when a frequency division switching operation is performed, coil current information (V IL ) is obtained by performing a high-side current sensing operation in an output high state. Before explaining this in detail, the second virtual operation will be explained.
 図14に第2仮想動作に係るタイミングチャートを示す。本実施形態に係る電源IC2Cと異なり、第2仮想動作では常にローサイド電流センス動作のみが実行される。図14において、波形1911~1919は、夫々、入力電圧VIN、出力電圧VOUT、対比電圧VC、ランプ電圧VRAMP、クロック信号CLK、ゲート信号G1、ゲート信号G2、コイル電流IL及び電圧VILの波形である。波形1920は出力電圧VOUTの拡大波形(波形1912を電圧方向に拡大したもの)に相当する。コイル電流ILの波形1918上に示された各白丸はサンプリングタイミングTSMPLを表す。電圧VILの波形1919上に示された各白丸は各サンプリングタイミングTSMPLでのローサイド電流センス動作にて得られたコイル電流情報(VIL)を表す。 FIG. 14 shows a timing chart related to the second virtual operation. Unlike the power supply IC 2C according to this embodiment, only the low-side current sensing operation is always executed in the second virtual operation. In FIG. 14, waveforms 1911 to 1919 are input voltage V IN , output voltage V OUT , comparison voltage V C , lamp voltage V RAMP , clock signal CLK, gate signal G1, gate signal G2, coil current I L and voltage This is the waveform of VIL . Waveform 1920 corresponds to an expanded waveform (waveform 1912 expanded in the voltage direction) of output voltage V OUT . Each white circle shown on the waveform 1918 of the coil current IL represents the sampling timing T SMPL . Each white circle shown on the waveform 1919 of voltage V IL represents coil current information (V IL ) obtained by low-side current sensing operation at each sampling timing T SMPL .
 図14の例では時刻T21に至るまで基準スイッチング動作が行われている。但し、時刻T21の前において、入力電圧VIN及び出力電圧VOUT間の差が小さく、出力段回路MMのデューティが概ね最大デューティに一致している。換言すれば、時刻T21の前におけるスイッチングの各周期において、トランジスタM2のオン時間は最小センス時間tMIN_SNSとほぼ一致している(但し最小センス時間tMIN_SNS以上)。今、時刻T21を境に入力電圧VINが若干低下したものとする。また時刻T21にてクロック信号CLKにアップエッジが生じる。時刻T23は時刻T21から基準時間tREFが経過した時刻を表し、故に時刻T23にてクロック信号CLKに次のアップエッジが生じる。時刻T22は時刻T23から最小センス時間tMIN_SNSだけ前の時刻を表す。 In the example of FIG. 14, the reference switching operation is performed until time T21. However, before time T21, the difference between the input voltage V IN and the output voltage V OUT is small, and the duty of the output stage circuit MM approximately matches the maximum duty. In other words, in each switching cycle before time T21, the on-time of transistor M2 substantially matches the minimum sense time t MIN_SNS (provided that it is greater than or equal to the minimum sense time t MIN_SNS ). Now, it is assumed that the input voltage V IN has decreased slightly after time T21. Further, an up edge occurs in the clock signal CLK at time T21. Time T23 represents the time when reference time t REF has elapsed from time T21, and therefore, the next up edge occurs in clock signal CLK at time T23. Time T22 represents a time before time T23 by the minimum sense time t MIN_SNS .
 入力電圧VINの低下に伴い、時刻T21から始まるスイッチングの周期において、時刻T22より前にリセット信号が発行されない。このため、第2仮想動作に係るロジック回路18は、実行するスイッチング動作を基準スイッチング動作から分周スイッチング動作に切り替え、時刻T23以降のリセット信号が発行されるまで出力段回路MMを出力ハイ状態に保つ。 As the input voltage V IN decreases, the reset signal is not issued before time T22 in the switching cycle starting from time T21. Therefore, the logic circuit 18 related to the second virtual operation switches the switching operation to be executed from the reference switching operation to the frequency division switching operation, and keeps the output stage circuit MM in the output high state until a reset signal is issued after time T23. keep.
 図14の例では、時刻T23より後の時刻T24において、リセット信号の発行に応答して出力段回路MMの状態が出力ハイ状態から出力ロー状態に切り替えられ、トランジスタM2のオン期間にてローサイド電流センス動作が行われる。時刻T25は、クロック信号CLKにおいて時刻T23の次にアップエッジ生じる時刻である。 In the example of FIG. 14, at time T24 after time T23, the state of the output stage circuit MM is switched from the output high state to the output low state in response to the issuance of the reset signal, and the low-side current flows during the on period of the transistor M2. A sense operation is performed. Time T25 is the time when the next up edge occurs in clock signal CLK after time T23.
 図14の第2仮想動作では、時刻T21及びT24間でローサイド電流センス動作が行われない。このため、時刻T21の直前のローサイド電流センス動作で得られた検出電流情報が、時刻T24の後のローサイド電流センス動作が行われるまでコイル電流情報(VIL)として継続利用される。そうすると、時刻T21及びT24間におけるコイル電流ILの増加分が、コイル電流情報(VIL)に反映されない状態で帰還制御が行われる。故に、時刻T24の後のローサイド電流センス動作が行われるまで対比電圧VCが一定となっており、結果、時刻T21から始まるスイッチング動作においてデューティが過度に大きくなる。デューティの過度の増大によりコイル電流ILが必要以上に高まり、出力電圧VOUTにオーバーシュートが生じる。その後も、暫くの間、望ましくない変動がコイル電流ILに生じて出力電圧VOUTが安定しない。 In the second virtual operation in FIG. 14, the low-side current sensing operation is not performed between times T21 and T24. Therefore, the detected current information obtained in the low-side current sensing operation immediately before time T21 is continuously used as coil current information (V IL ) until the low-side current sensing operation is performed after time T24. Then, feedback control is performed in a state where the increase in coil current IL between times T21 and T24 is not reflected in the coil current information (V IL ). Therefore, the contrast voltage V C remains constant until the low-side current sensing operation after time T24 is performed, and as a result, the duty becomes excessively large in the switching operation starting from time T21. Due to an excessive increase in duty, the coil current IL increases more than necessary, causing an overshoot in the output voltage V OUT . Even after that, undesirable fluctuations occur in the coil current IL for a while, and the output voltage V OUT becomes unstable.
 以下、第2実施形態のスイッチング電源装置1に関わる複数の実施例として実施例EX2_1~EX2_4を説明する。実施例EX2_1~EX2_4の内、任意の2以上の実施例を互いに組み合わせることもできる。 Examples EX2_1 to EX2_4 will be described below as a plurality of examples related to the switching power supply device 1 of the second embodiment. Any two or more of the embodiments EX2_1 to EX2_4 can also be combined with each other.
<<実施例EX2_1>>
 実施例EX2_1を説明する。図15に実施例EX2_1に係るタイミングチャートを示す。時間の経過と共に、時刻T30~T35、T41~T45、T51~T55及びT61が、この順番で順次訪れるものとする。図15において、波形1611~1619は、夫々、入力電圧VIN、出力電圧VOUT、対比電圧VC、ランプ電圧VRAMP、クロック信号CLK、ゲート信号G1、ゲート信号G2、コイル電流IL及び電圧VILの波形である。波形1620は出力電圧VOUTの拡大波形(波形1612を電圧方向に拡大したもの)に相当する。図15に示される破線波形1920は図14に示される波形1920(第2仮想動作における出力電圧VOUTの波形)に相当する。コイル電流ILの波形1618上に示された各白丸はサンプリングタイミングTSMPLを表し、ローサイド電流センス動作により各サンプリングタイミングTSMPLにてトランジスタM2に流れる電流がサンプリング及び検出される。期間HS_Dはハイサイド電流センス動作の実行期間を指す。
<<Example EX2_1>>
Example EX2_1 will be explained. FIG. 15 shows a timing chart according to the embodiment EX2_1. It is assumed that as time passes, times T30 to T35, T41 to T45, T51 to T55, and T61 sequentially occur in this order. In FIG. 15, waveforms 1611 to 1619 are input voltage V IN , output voltage V OUT , comparison voltage V C , lamp voltage V RAMP , clock signal CLK, gate signal G1, gate signal G2, coil current I L and voltage This is the waveform of VIL . Waveform 1620 corresponds to an expanded waveform (waveform 1612 expanded in the voltage direction) of output voltage V OUT . A broken line waveform 1920 shown in FIG. 15 corresponds to the waveform 1920 shown in FIG. 14 (the waveform of the output voltage V OUT in the second virtual operation). Each white circle shown on the waveform 1618 of the coil current IL represents a sampling timing T SMPL , and the current flowing through the transistor M2 is sampled and detected at each sampling timing T SMPL by a low-side current sensing operation. Period HS_D refers to a period during which a high-side current sensing operation is performed.
 図15の例では時刻T31に至るまで基準スイッチング動作が行われており、従って“fSW=fREF”である。時刻T31より前のスイッチングの各周期において電流情報生成回路30Cはローサイド電流センス動作を行う。 In the example of FIG. 15, the reference switching operation is performed until time T31, and therefore "f SW =f REF ". In each switching period before time T31, the current information generation circuit 30C performs a low-side current sensing operation.
 図15の例では、実行されるスイッチング動作が時刻T31にて基準スイッチング動作から“n=2”の分周スイッチング動作に切り替わる。 In the example of FIG. 15, the switching operation to be executed switches from the reference switching operation to the frequency division switching operation of "n=2" at time T31.
 時刻T31の前において、入力電圧VIN及び出力電圧VOUT間の差が小さく、出力段回路MMのデューティが概ね最大デューティに一致している。換言すれば、時刻T31の前におけるスイッチングの各周期において、トランジスタM2のオン時間は最小センス時間tMIN_SNSとほぼ一致している(但し最小センス時間tMIN_SNS以上)。時刻T30は時刻T31の直前に行われたローサイド電流センス動作のサンプリングタイミングTSMPLである。 Before time T31, the difference between the input voltage V IN and the output voltage V OUT is small, and the duty of the output stage circuit MM approximately matches the maximum duty. In other words, in each switching cycle before time T31, the on time of transistor M2 substantially matches the minimum sense time t MIN_SNS (provided that it is greater than or equal to the minimum sense time t MIN_SNS ). Time T30 is the sampling timing T SMPL of the low-side current sensing operation performed immediately before time T31.
 今、時刻T31を境に入力電圧VINが若干低下したものとする。また時刻T31にてクロック信号CLKにアップエッジが生じて出力段回路MMの状態が出力ロー状態から出力ハイ状態に切り替わる。時刻T33は時刻T31から基準時間tREFが経過した時刻を表し、故に時刻T33にてクロック信号CLKに次のアップエッジが生じる。時刻T32は時刻T33から最小センス時間tMIN_SNSだけ前の時刻を表す。 Now, it is assumed that the input voltage V IN has decreased slightly after time T31. Further, at time T31, an up edge occurs in the clock signal CLK, and the state of the output stage circuit MM is switched from the output low state to the output high state. Time T33 represents the time when reference time t REF has elapsed from time T31, and therefore, the next up edge occurs in clock signal CLK at time T33. Time T32 represents a time before time T33 by the minimum sense time t MIN_SNS .
 入力電圧VINの低下に伴い、時刻T31から始まるスイッチングの周期において、時刻T32以前にリセット信号が発行されない(即ち前段期間中にリセット信号が発行されない:図6参照)。時刻T32以前にリセット信号が発行されないことを条件に、ロジック回路18は、実行するスイッチング動作を基準スイッチング動作から分周スイッチング動作に切り替える。当該切り替えが行われると、ロジック回路18は時刻T32及びT33間で発行されるリセット信号を無効とし、時刻T32及びT33間における電圧VC及びVRAMP間の高低関係に依らず、時刻T32及びT33間で出力段回路MMを出力ハイ状態に保つ。 As the input voltage V IN decreases, a reset signal is not issued before time T32 in the switching cycle starting from time T31 (that is, no reset signal is issued during the pre-stage period: see FIG. 6). On the condition that the reset signal is not issued before time T32, the logic circuit 18 switches the switching operation to be executed from the reference switching operation to the frequency division switching operation. When the switching is performed, the logic circuit 18 invalidates the reset signal issued between times T32 and T33, and the logic circuit 18 disables the reset signal issued between times T32 and T33, and the logic circuit 18 disables the reset signal issued between times T32 and T33. The output stage circuit MM is kept in the output high state during the period.
 時刻T33にてクロック信号CLKにアップエッジが生じるが、この際もロジック回路18は出力段回路MMを出力ハイ状態のままで維持する。時刻T41は時刻T33から基準時間tREFが経過した時刻を表す。図15の例において、時刻T33の後、時刻T34にてランプ電圧VRAMPが対比電圧VCに達することでリセット信号が発行される。時刻T34は時刻T41よりも前の時刻であって、且つ、時刻T34及びT41間の時間差は最小センス時間tMIN_SNSより大きい。このため、時刻T34において、ロジック回路18は、発行されたリセット信号に基づき出力段回路MMを出力ハイ状態から出力ロー状態に切り替える。ロジック回路18は時刻T34及びT41間の時刻である時刻T35をサンプリングタイミングTSMPLに設定し、その設定結果に従い、電流情報生成回路30Cは時刻T35にてローサイド電流センス動作を行う。 An up edge occurs in the clock signal CLK at time T33, but at this time as well, the logic circuit 18 maintains the output stage circuit MM in the output high state. Time T41 represents the time when reference time t REF has elapsed from time T33. In the example of FIG. 15, after time T33, the reset signal is issued when the lamp voltage V RAMP reaches the comparison voltage V C at time T34. Time T34 is a time before time T41, and the time difference between time T34 and T41 is greater than the minimum sense time t MIN_SNS . Therefore, at time T34, the logic circuit 18 switches the output stage circuit MM from the output high state to the output low state based on the issued reset signal. The logic circuit 18 sets time T35, which is the time between time T34 and T41, as the sampling timing T SMPL , and according to the setting result, the current information generation circuit 30C performs a low-side current sensing operation at time T35.
 時刻T41にてクロック信号CLKにアップエッジが生じて出力段回路MMの状態が出力ロー状態から出力ハイ状態に切り替わる。時刻T43は時刻T41から基準時間tREFが経過した時刻を表し、故に時刻T43にてクロック信号CLKに次のアップエッジが生じる。時刻T42は時刻T43から最小センス時間tMIN_SNSだけ前の時刻を表す。 At time T41, an up edge occurs in the clock signal CLK, and the state of the output stage circuit MM switches from the output low state to the output high state. Time T43 represents the time when reference time t REF has elapsed from time T41, and therefore, the next up edge occurs in clock signal CLK at time T43. Time T42 represents a time before time T43 by the minimum sense time t MIN_SNS .
 時刻T31で生じた入力電圧VINの低下状態が時刻T41以降も維持される。結果、時刻T41から始まるスイッチングの周期において、時刻T42以前にリセット信号が発行されない(即ち前段期間中にリセット信号が発行されない:図6参照)。時刻T42以前にリセット信号が発行されないことを条件に、ロジック回路18は、実行するスイッチング動作を分周スイッチング動作のままで維持する。分周スイッチング動作が維持されると、ロジック回路18は時刻T42及びT43間で発行されるリセット信号を無効とし、時刻T42及びT43間における電圧VC及びVRAMP間の高低関係に依らず、時刻T42及びT43間で出力段回路MMを出力ハイ状態に保つ。 The decreased state of the input voltage V IN that occurred at time T31 is maintained after time T41. As a result, in the switching cycle starting from time T41, no reset signal is issued before time T42 (that is, no reset signal is issued during the previous period: see FIG. 6). On the condition that the reset signal is not issued before time T42, the logic circuit 18 maintains the switching operation to be performed as the frequency division switching operation. When the frequency division switching operation is maintained, the logic circuit 18 invalidates the reset signal issued between times T42 and T43, and the logic circuit 18 disables the reset signal issued between times T42 and T43, regardless of the level relationship between the voltages V C and V RAMP between times T42 and T43. The output stage circuit MM is kept in the output high state between T42 and T43.
 時刻T43にてクロック信号CLKにアップエッジが生じるが、この際もロジック回路18は出力段回路MMを出力ハイ状態のままで維持する。時刻T51は時刻T43から基準時間tREFが経過した時刻を表す。図15の例において、時刻T43の後、時刻T44にてランプ電圧VRAMPが対比電圧VCに達することでリセット信号が発行される。時刻T44は時刻T51よりも前の時刻であって、且つ、時刻T44及びT51間の時間差は最小センス時間tMIN_SNSより大きい。このため、時刻T44において、ロジック回路18は、発行されたリセット信号に基づき出力段回路MMを出力ハイ状態から出力ロー状態に切り替える。ロジック回路18は時刻T44及びT51間の時刻である時刻T45をサンプリングタイミングTSMPLに設定し、その設定結果に従い、電流情報生成回路30Cは時刻T45にてローサイド電流センス動作を行う。 An up edge occurs in the clock signal CLK at time T43, but at this time as well, the logic circuit 18 maintains the output stage circuit MM in the output high state. Time T51 represents the time when reference time t REF has elapsed from time T43. In the example of FIG. 15, after time T43, the reset signal is issued when the lamp voltage V RAMP reaches the comparison voltage V C at time T44. Time T44 is a time before time T51, and the time difference between time T44 and T51 is greater than the minimum sense time t MIN_SNS . Therefore, at time T44, the logic circuit 18 switches the output stage circuit MM from the output high state to the output low state based on the issued reset signal. The logic circuit 18 sets time T45, which is the time between time T44 and T51, as the sampling timing T SMPL , and according to the setting result, the current information generation circuit 30C performs a low-side current sensing operation at time T45.
 時刻T51にてクロック信号CLKにアップエッジが生じて出力段回路MMの状態が出力ロー状態から出力ハイ状態に切り替わる。時刻T53は時刻T51から基準時間tREFが経過した時刻を表し、故に時刻T53にてクロック信号CLKに次のアップエッジが生じる。時刻T52は時刻T53から最小センス時間tMIN_SNSだけ前の時刻を表す。 At time T51, an up edge occurs in the clock signal CLK, and the state of the output stage circuit MM switches from the output low state to the output high state. Time T53 represents the time when reference time t REF has elapsed from time T51, and therefore, the next up edge occurs in clock signal CLK at time T53. Time T52 represents a time before time T53 by the minimum sense time t MIN_SNS .
 時刻T31で生じた入力電圧VINの低下状態が時刻T51以降も維持される。結果、時刻T51から始まるスイッチングの周期において、時刻T52以前にリセット信号が発行されない(即ち前段期間中にリセット信号が発行されない:図6参照)。時刻T52以前にリセット信号が発行されないことを条件に、ロジック回路18は、実行するスイッチング動作を分周スイッチング動作のままで維持する。分周スイッチング動作が維持されると、ロジック回路18は時刻T52及びT53間で発行されるリセット信号を無効とし、時刻T52及びT53間における電圧VC及びVRAMP間の高低関係に依らず、時刻T52及びT53間で出力段回路MMを出力ハイ状態に保つ。 The decreased state of the input voltage V IN that occurred at time T31 is maintained after time T51. As a result, in the switching cycle starting from time T51, no reset signal is issued before time T52 (that is, no reset signal is issued during the previous period: see FIG. 6). On the condition that the reset signal is not issued before time T52, the logic circuit 18 maintains the switching operation to be performed as the frequency division switching operation. When the frequency division switching operation is maintained, the logic circuit 18 invalidates the reset signal issued between times T52 and T53, and the logic circuit 18 disables the reset signal issued between times T52 and T53, regardless of the level relationship between the voltages V C and V RAMP between times T52 and T53. The output stage circuit MM is kept in the output high state between T52 and T53.
 時刻T53にてクロック信号CLKにアップエッジが生じるが、この際もロジック回路18は出力段回路MMを出力ハイ状態のままで維持する。時刻T61は時刻T53から基準時間tREFが経過した時刻を表す。図15の例において、時刻T53の後、時刻T54にてランプ電圧VRAMPが対比電圧VCに達することでリセット信号が発行される。時刻T54は時刻T61よりも前の時刻であって、且つ、時刻T54及びT61間の時間差は最小センス時間tMIN_SNSより大きい。このため、時刻T54において、ロジック回路18は、発行されたリセット信号に基づき出力段回路MMを出力ハイ状態から出力ロー状態に切り替える。ロジック回路18は時刻T54及びT61間の時刻である時刻T55をサンプリングタイミングTSMPLに設定し、その設定結果に従い、電流情報生成回路30Cは時刻T55にてローサイド電流センス動作を行う。 An up edge occurs in the clock signal CLK at time T53, but at this time as well, the logic circuit 18 maintains the output stage circuit MM in the output high state. Time T61 represents the time when reference time t REF has elapsed from time T53. In the example of FIG. 15, after time T53, the reset signal is issued when the lamp voltage V RAMP reaches the comparison voltage V C at time T54. Time T54 is a time before time T61, and the time difference between time T54 and T61 is greater than the minimum sense time t MIN_SNS . Therefore, at time T54, the logic circuit 18 switches the output stage circuit MM from the output high state to the output low state based on the issued reset signal. The logic circuit 18 sets time T55, which is the time between time T54 and T61, as the sampling timing T SMPL , and according to the setting result, the current information generation circuit 30C performs a low-side current sensing operation at time T55.
 入力電圧VINの低下状態が継続する限り、以後も、同様の“n=2”の分周スイッチング動作が継続される。 As long as the input voltage V IN continues to decrease, the same "n=2" frequency division switching operation continues.
 図15の動作例では、時刻T31から“fSW=fREF/2”での分周スイッチング動作が行われる。分周スイッチング動作が行われるとき、電流情報生成回路30Cは、トランジスタM1のオン期間の一部においてハイサイド電流センス動作を実行する。図15の動作例においては、ロジック回路18は、時刻T33及びT34間の期間、時刻T43及びT44間の期間、並びに、時刻T53及びT54間の期間を、ハイサイド電流センス動作の実行期間HS_Dを設定し、各期間HS_Dにてハイサイド電流センス動作を実行する。 In the operation example shown in FIG. 15, a frequency division switching operation with "f SW =f REF /2" is performed from time T31. When the frequency division switching operation is performed, the current information generation circuit 30C performs a high-side current sensing operation during a part of the on period of the transistor M1. In the operation example of FIG. 15, the logic circuit 18 converts the period between times T33 and T34, the period between times T43 and T44, and the period between times T53 and T54 into a high-side current sense operation execution period HS_D. A high-side current sensing operation is performed in each period HS_D.
 以下、ローサイド電流センス動作による検出電流値をローサイド検出電流値と称し、ハイサイド電流センス動作による検出電流値をハイサイド検出電流値と称する。ローサイド検出電流値は、トランジスタM2のオン期間においてトランジスタM2に流れる電流の検出値である。ハイサイド検出電流値は、トランジスタM1のオン期間においてトランジスタM1に流れる電流の検出値である。 Hereinafter, a current value detected by the low-side current sensing operation will be referred to as a low-side detected current value, and a current value detected by the high-side current sensing operation will be referred to as a high-side detected current value. The low-side detection current value is a detection value of the current flowing through the transistor M2 during the on period of the transistor M2. The high-side detected current value is a detected value of the current flowing through the transistor M1 during the on period of the transistor M1.
 各期間HS_Dにおいて、電流情報生成回路30CはトランジスタM1に流れる電流を継続的に検出し(連続的に検出し)、ハイサイド検出電流値を表す電圧VILを生成及び出力する。各期間HS_Dにおいて、電圧VILの値はトランジスタM1に流れる電流に応じてリアルタイムに更新される。或る期間HS_Dの終了時刻から次のサンプリングタイミングTSMPLまで、電圧VILはトランジスタM2に流れる電流に応じた値(ここではセンス抵抗31の電圧降下に応じた値)を持つ。サンプリングタイミングTSMPLにてローサイド電流センス動作が行われると、電圧VILの値は、ローサイド検出電流値を表す値へと更新される。以後は、次回にハイサイド電流センス動作又はローサイド電流センス動作が行われるまで、電圧VILの値が維持される。 In each period HS_D, the current information generation circuit 30C continuously detects (continuously detects) the current flowing through the transistor M1, and generates and outputs a voltage V IL representing the high-side detected current value. In each period HS_D, the value of voltage V IL is updated in real time according to the current flowing through transistor M1. From the end time of a certain period HS_D to the next sampling timing T SMPL , the voltage V IL has a value that corresponds to the current flowing through the transistor M2 (here, a value that corresponds to the voltage drop across the sense resistor 31). When the low-side current sensing operation is performed at the sampling timing T SMPL , the value of the voltage V IL is updated to a value representing the low-side detected current value. Thereafter, the value of voltage V IL is maintained until the next high-side current sensing operation or low-side current sensing operation is performed.
 従って、図15の動作例において、時刻T30から時刻T33の直前まで、電圧VILは、時刻T30をサンプリングタイミングTSMPLとするローサイド電流センス動作のローサイド検出電流値を表す(即ち、時刻T30のローサイド検出電流値で維持される)。時刻T33及びT34間における電圧VILは、時刻T33及びT34間におけるハイサイド検出電流値をリアルタイムに表す。時刻T34から時刻T35まで、電圧VILはトランジスタM2に流れる電流に応じた値(ここではセンス抵抗31の電圧降下に応じた値)を持つ。但し、時刻T34から時刻T35まで電圧VILの値が、時刻T34における電圧VILの値で不変に保持されるようにしても良い。時刻T35をサンプリングタイミングTSMPLとするローサイド電流センス動作が行われると、時刻T35から次にローサイド又はハイサイド電流センス動作が行われるまで、電圧VILは、時刻T35をサンプリングタイミングTSMPLとするローサイド電流センス動作のローサイド検出電流値を表す(即ち、時刻T35のローサイド検出電流値で維持される)。 Therefore, in the operation example of FIG. 15, from time T30 to just before time T33, the voltage V IL represents the low-side detected current value of the low-side current sense operation with time T30 as the sampling timing T SMPL (that is, the low-side detected current value at time T30). (maintained at the detected current value). The voltage V IL between times T33 and T34 represents the high-side detected current value between times T33 and T34 in real time. From time T34 to time T35, voltage V IL has a value that corresponds to the current flowing through transistor M2 (here, a value that corresponds to the voltage drop across sense resistor 31). However, the value of the voltage V IL may be maintained unchanged at the value of the voltage V IL at time T34 from time T34 to time T35. When a low-side current sensing operation is performed with sampling timing T SMPL at time T35, the voltage V IL is maintained at the low-side current sensing operation with sampling timing T SMPL at time T35 from time T35 until the next low-side or high-side current sensing operation is performed. It represents the low-side detected current value of the current sensing operation (that is, it is maintained at the low-side detected current value at time T35).
 故に、図15の動作例において、時刻T35から時刻T43の直前まで、電圧VILは、時刻T35をサンプリングタイミングTSMPLとするローサイド電流センス動作のローサイド検出電流値を表す。時刻T43及びT44間における電圧VILは、時刻T43及びT44間におけるハイサイド検出電流値をリアルタイムに表す。時刻T44から時刻T45まで、電圧VILはトランジスタM2に流れる電流に応じた値(ここではセンス抵抗31の電圧降下に応じた値)を持つ。但し、時刻T44から時刻T45まで電圧VILの値が、時刻T44における電圧VILの値で不変に保持されるようにしても良い。時刻T45をサンプリングタイミングTSMPLとするローサイド電流センス動作が行われると、時刻T45から次にローサイド又はハイサイド電流センス動作が行われるまで、電圧VILは、時刻T45をサンプリングタイミングTSMPLとするローサイド電流センス動作のローサイド検出電流値を表す(即ち、時刻T45のローサイド検出電流値で維持される)。 Therefore, in the operation example of FIG. 15, from time T35 to just before time T43, voltage V IL represents the low-side detected current value of the low-side current sensing operation with time T35 as the sampling timing T SMPL . The voltage V IL between times T43 and T44 represents the high-side detected current value between times T43 and T44 in real time. From time T44 to time T45, voltage V IL has a value that corresponds to the current flowing through transistor M2 (here, a value that corresponds to the voltage drop across sense resistor 31). However, the value of the voltage V IL may be maintained unchanged at the value of the voltage V IL at time T44 from time T44 to time T45. When a low-side current sensing operation with sampling timing T SMPL at time T45 is performed, from time T45 until the next low-side or high-side current sensing operation is performed, the voltage V IL is the low-side current sensing operation with sampling timing T SMPL at time T45. It represents the low-side detected current value of the current sensing operation (that is, it is maintained at the low-side detected current value at time T45).
 故に、図15の動作例において、時刻T45から時刻T53の直前まで、電圧VILは、時刻T45をサンプリングタイミングTSMPLとするローサイド電流センス動作のローサイド検出電流値を表す。時刻T53以降において“fSW=fREF/2”が維持されるなら、時刻T53以降も同様の動作が繰り返される。 Therefore, in the operation example of FIG. 15, from time T45 to just before time T53, voltage V IL represents the low-side detected current value of the low-side current sense operation with time T45 as the sampling timing T SMPL . If "f SW =f REF /2" is maintained after time T53, the same operation is repeated after time T53.
 各単位期間において、ロジック回路18は前段期間中にリセット信号が発行されたか否かを監視することで基準スイッチング動作又は分周スイッチング動作を電流情報生成回路30Cに切り替え実行させることができる。 In each unit period, the logic circuit 18 can switch the current information generation circuit 30C to execute the reference switching operation or the frequency division switching operation by monitoring whether a reset signal was issued during the previous period.
 図16に実施例EX2_1に係る電流情報生成回路30Cの構成例を示す。図16に示す電流情報生成回路30Cは、上述のセンス抵抗31、S/H回路31及び増幅回路33に加えて、符号41~51によって参照される各部位を備える。配線52及び53並びにノード54~46も電流情報生成回路30Cの構成要素である。図16において、S/H回路32は、コンデンサ32a及び32b並びにスイッチ32c及び32dを備え、増幅回路33は正側入力端子33a、負側入力端子33b及び出力端子33cを備える。増幅回路33は、実際にはオペアンプと抵抗とで構成される増幅回路であって良い。増幅回路33は負側入力端子33bの電位から見た正側入力端子33aの電圧を増幅し、増幅した電圧を出力端子33cから電圧VILとして出力する。 FIG. 16 shows a configuration example of the current information generation circuit 30C according to the embodiment EX2_1. In addition to the above-described sense resistor 31, S/H circuit 31, and amplifier circuit 33, the current information generation circuit 30C shown in FIG. 16 includes various parts referenced by 41 to 51. Wirings 52 and 53 and nodes 54 to 46 are also components of current information generation circuit 30C. In FIG. 16, the S/H circuit 32 includes capacitors 32a and 32b and switches 32c and 32d, and the amplifier circuit 33 includes a positive input terminal 33a, a negative input terminal 33b, and an output terminal 33c. The amplifier circuit 33 may actually be an amplifier circuit composed of an operational amplifier and a resistor. The amplifier circuit 33 amplifies the voltage at the positive input terminal 33a viewed from the potential at the negative input terminal 33b, and outputs the amplified voltage from the output terminal 33c as a voltage V IL .
 正側入力端子33aとグランドとの間にコンデンサ32aが接続される。また、正側入力端子33aはスイッチ32cの一端に接続され、スイッチ32cの他端はセンス抵抗31及びグランド端子GND間の接続ノードに接続される。負側入力端子33bとグランドとの間にコンデンサ32bが接続される。また、負側入力端子33bはスイッチ32dの一端に接続され、スイッチ32dの他端はトランジスタM2のソース及びセンス抵抗31間の接続ノードに接続される。トランジスタM2のソース電位から見たグランド端子GNDの電圧を電圧Vaと称する。またセンス抵抗31の抵抗値を記号“RSNS”で表す。トランジスタM2のオン期間において“Va=RSNS×IL”が成立する。 A capacitor 32a is connected between the positive input terminal 33a and ground. Further, the positive input terminal 33a is connected to one end of the switch 32c, and the other end of the switch 32c is connected to a connection node between the sense resistor 31 and the ground terminal GND. A capacitor 32b is connected between the negative input terminal 33b and ground. Further, the negative input terminal 33b is connected to one end of the switch 32d, and the other end of the switch 32d is connected to a connection node between the source of the transistor M2 and the sense resistor 31. The voltage at the ground terminal GND viewed from the source potential of the transistor M2 is referred to as a voltage Va. Further, the resistance value of the sense resistor 31 is represented by the symbol "R SNS ". “Va=R SNS ×IL” is established during the on-period of the transistor M2.
 スイッチ41の一端はトランジスタM1のドレインに接続され、スイッチ41の他端はオペアンプ43の非反転入力端子に接続される。スイッチ42の一端はトランジスタM1のソースに接続され、スイッチ42の他端は配線52に接続される。オペアンプ43において反転入力端子及び出力端子は互いに接続される。オペアンプ43は配線52における電圧を負側電源電圧として且つブート電圧VBOOTを正側電源電圧として受けて駆動し、ボルテージバッファとして機能する。従ってオペアンプ43は自身の非反転入力端子における電圧を低インピーダンスにて自身の出力端子から出力する。トランジスタ45~47はPチャネル型のMOSFETである。トランジスタ45及び46の各ソースはブート電圧VBOOTが加わる配線53に接続される。トランジスタ45のゲート及びドレインと、トランジスタ46のゲートと、オペアンプ43の出力端子と、抵抗44の一端とがノード54にて互いに接続される。抵抗44の他端は配線52に接続される。抵抗44に発生する電圧降下を電圧Vbと称する。但し、電圧Vbは配線52の電位から見たノード54の電圧を表す。 One end of the switch 41 is connected to the drain of the transistor M1, and the other end of the switch 41 is connected to the non-inverting input terminal of the operational amplifier 43. One end of the switch 42 is connected to the source of the transistor M1, and the other end of the switch 42 is connected to the wiring 52. The inverting input terminal and output terminal of the operational amplifier 43 are connected to each other. The operational amplifier 43 is driven by receiving the voltage at the wiring 52 as a negative power supply voltage and the boot voltage V BOOT as a positive power supply voltage, and functions as a voltage buffer. Therefore, the operational amplifier 43 outputs the voltage at its non-inverting input terminal from its output terminal with low impedance. Transistors 45 to 47 are P-channel MOSFETs. The sources of transistors 45 and 46 are connected to wiring 53 to which boot voltage V BOOT is applied. The gate and drain of the transistor 45, the gate of the transistor 46, the output terminal of the operational amplifier 43, and one end of the resistor 44 are connected to each other at a node 54. The other end of the resistor 44 is connected to the wiring 52. The voltage drop occurring across the resistor 44 is referred to as voltage Vb. However, the voltage Vb represents the voltage at the node 54 viewed from the potential of the wiring 52.
 トランジスタ46のドレインはトランジスタ47のソースに接続される。トランジスタ47のドレインはノード55にて抵抗48の一端に接続され、抵抗48の他端はグランドに接続される。トランジスタ47のゲートには内部電源電圧VREGが加わる。抵抗48に発生する電圧降下を電圧Vcと称する。但し、電圧Vcはグランド電位から見たノード55の電圧を表す。電圧変換回路49は電圧Vcから電圧Vdを生成する。図16では “Vd<Vc”であることが想定されており、故に、電圧変換回路49は、ボルテージフォロアを構成するオペアンプ49aと、分圧回路を構成する抵抗49b及び49cと、を備える。オペアンプ49aにおいて非反転入力端子はノード55に接続され、出力端子は反転入力端子に接続されると共に抵抗49の一端に接続される。抵抗49bの他端がノード56にて抵抗49cの一端に接続され、抵抗49cの他端はグランドに接続される。抵抗49cに発生する電圧降下を電圧Vdと称する。但し、電圧Vdはグランド電位から見たノード56の電圧を表す。 The drain of transistor 46 is connected to the source of transistor 47. The drain of transistor 47 is connected to one end of resistor 48 at node 55, and the other end of resistor 48 is connected to ground. Internal power supply voltage V REG is applied to the gate of transistor 47. The voltage drop that occurs across the resistor 48 is referred to as voltage Vc. However, voltage Vc represents the voltage at node 55 viewed from the ground potential. Voltage conversion circuit 49 generates voltage Vd from voltage Vc. In FIG. 16, it is assumed that "Vd<Vc", and therefore, the voltage conversion circuit 49 includes an operational amplifier 49a forming a voltage follower, and resistors 49b and 49c forming a voltage dividing circuit. In the operational amplifier 49a, the non-inverting input terminal is connected to the node 55, and the output terminal is connected to the inverting input terminal and one end of the resistor 49. The other end of resistor 49b is connected to one end of resistor 49c at node 56, and the other end of resistor 49c is connected to ground. The voltage drop occurring across the resistor 49c is referred to as voltage Vd. However, the voltage Vd represents the voltage at the node 56 viewed from the ground potential.
 電流情報生成回路30Cは、ロジック回路18の制御の下、スイッチ32c、32d、41、42、50及び51の状態を以下のように設定する(図17参照)。トランジスタM2のオン期間において、電流情報生成回路30Cは、スイッチ41、42、50及び51を全てオフ状態に維持する。電流情報生成回路30Cは、トランジスタM2のオン期間においてサンプリングタイミングTSMPLまではスイッチ32c及び32dをオン状態に保ち、サンプリングタイミングTSMPL以降はスイッチ32c及び32dをオフ状態に保つ。
電流情報生成回路30Cは、トランジスタM1のオン期間においてスイッチ32c及び32dをオフ状態に保つ。電流情報生成回路30Cは、トランジスタM1のオン期間の内、ハイサイド電流センス動作の実行期間HS_Dにおいてのみ、スイッチ41、42、50及び51を全てオン状態に維持し、それ以外の期間ではスイッチ41、42、50及び51を全てオフ状態に維持する。
The current information generation circuit 30C sets the states of the switches 32c, 32d, 41, 42, 50, and 51 as follows under the control of the logic circuit 18 (see FIG. 17). During the on period of the transistor M2, the current information generation circuit 30C maintains all the switches 41, 42, 50, and 51 in the off state. The current information generation circuit 30C keeps the switches 32c and 32d in the on state until the sampling timing T SMPL during the on period of the transistor M2, and keeps the switches 32c and 32d in the off state after the sampling timing T SMPL .
The current information generation circuit 30C keeps the switches 32c and 32d in the off state during the on period of the transistor M1. The current information generation circuit 30C keeps all the switches 41, 42, 50, and 51 in the on state only during the execution period HS_D of the high-side current sensing operation during the on period of the transistor M1, and keeps the switch 41 in the on state during other periods. , 42, 50 and 51 are all kept off.
 トランジスタM1のオン抵抗(オン抵抗値)を“RONH”にて表す。そうすると、期間HS_DにおいてトランジスタM1のドレイン及びソース間にコイル電流ILが流れるのであるから、期間HS_Dにおいて“Vb=RONH×IL”となる。トランジスタ45及び46にてカレントミラー回路が形成される。ここでは、トランジスタ45及び46のドレイン電流比が1:1であるとし、且つ、抵抗44及び48の抵抗値が互いに同じであるとする。そうすると、期間HS_Dにおいて、抵抗44に流れる電流と同じ電流値を持つ電流が抵抗48に流れるため、“Vc=RONH×IL”となる。トランジスタ45~47により、トランジスタM1のソース電位を基準とする電圧Vbをグランド電位を基準とする電圧Vcに変換するレベルシフタが構成される。 The on-resistance (on-resistance value) of the transistor M1 is expressed as "R ON H". Then, since the coil current IL flows between the drain and source of the transistor M1 during the period HS_D, "Vb=R ON H×IL" is satisfied during the period HS_D. A current mirror circuit is formed by transistors 45 and 46. Here, it is assumed that the drain current ratio of the transistors 45 and 46 is 1:1, and that the resistance values of the resistors 44 and 48 are the same. Then, during the period HS_D, a current having the same current value as the current flowing through the resistor 44 flows through the resistor 48, so that "Vc=R ON H×IL". The transistors 45 to 47 constitute a level shifter that converts a voltage Vb based on the source potential of the transistor M1 to a voltage Vc based on the ground potential.
 期間HS_Dにおいて“Vd=RSNS×IL”となるよう、オン抵抗RONHとセンス抵抗RSNSとの比に基づき、電圧変換回路49が構成される。図16の構成例では“RONH>RSNS”であることが想定されているため、分圧回路(49b、49c)を用いて“Vd=RSNS×IL”を実現する。但し、“RONH<RSNS”である場合にあっては電圧変換回路49にて電圧Vcを増幅することで電圧Vdを生成すれば良い。また、“RONH=RSNS”である場合にあっては電圧変換回路49は単体のボルテージフォロアであって良い。何れにせよ、期間HS_Dにおいて“Vd=RSNS×IL”となる。 The voltage conversion circuit 49 is configured based on the ratio of the on-resistance R ON H and the sense resistor R SNS so that “Vd=R SNS ×IL” in the period HS_D. In the configuration example of FIG. 16, it is assumed that "R ON H>R SNS ", so "Vd=R SNS ×IL" is realized using the voltage dividing circuit (49b, 49c). However, if "R ON H < R SNS ", the voltage Vd may be generated by amplifying the voltage Vc in the voltage conversion circuit 49. Further, when "R ON H=R SNS ", the voltage conversion circuit 49 may be a single voltage follower. In any case, “Vd=R SNS ×IL” in period HS_D.
 上記の構成及び動作により図15に示して説明した電圧VILが得られる。即ち例えば、時刻T30をサンプリングタイミングTSMPLとするローサイド電流センス動作が行われると、時刻T30にてコンデンサ32a及び32bに保持される電圧の差を増幅したものが電圧VIL(ローサイド検出電流値を表す電圧)として出力される。時刻T30の後、次回のトランジスタM2のオン期間が開始されるまでスイッチ32c及び32dはオフに維持される。このため、時刻T30の後、電圧VILの値は、次回にローサイド又はハイサイド電流センス動作が行われるまで不変に維持される。時刻T30の後、時刻T33にてハイサイド電流センス動作が開始されるため、スイッチ41、42、50及び51が全てオン状態に切り替えられる。故に、時刻T33及びT34間の期間HS_Dにおいて電圧Vdが増幅回路33の入力端子33b及び33a間に加わることで、電圧Vdに応じた電圧VIL(ハイサイド検出電流値を表す電圧)が出力される。この際、トランジスタM1に流れる電流の変化に対して電圧Vd及びVILがリアルタイムに変化する。 With the above configuration and operation, the voltage V IL shown and explained in FIG. 15 can be obtained. That is, for example, when a low-side current sensing operation is performed with sampling timing T SMPL at time T30, the amplified difference between the voltages held in capacitors 32a and 32b at time T30 becomes voltage V IL (low-side detected current value). voltage). After time T30, switches 32c and 32d are maintained off until the next on-period of transistor M2 begins. Therefore, after time T30, the value of voltage V IL remains unchanged until the next low-side or high-side current sensing operation is performed. After time T30, the high-side current sensing operation is started at time T33, so switches 41, 42, 50, and 51 are all turned on. Therefore, by applying the voltage Vd between the input terminals 33b and 33a of the amplifier circuit 33 during the period HS_D between times T33 and T34, a voltage V IL (a voltage representing the high-side detected current value) corresponding to the voltage Vd is output. Ru. At this time, the voltages Vd and V IL change in real time in response to changes in the current flowing through the transistor M1.
 その後、時刻T34にてトランジスタM1がターンオフ且つトランジスタM2がターンオンされるので、スイッチ41、42、50及び51が全てターンオフする一方でスイッチ32c及び32dがターンオンする。故に、電圧ILはトランジスタM2に流れる電流の変化に連動して変動する。そして、時刻T35に至ると、その時点における電圧Vaがサンプリング及び保持され、以後、電圧VILは、次回にローサイド又はハイサイド電流センス動作が行われるまで、時刻T35での電圧Vaに応じた値に維持される。 Thereafter, at time T34, the transistor M1 is turned off and the transistor M2 is turned on, so that the switches 41, 42, 50, and 51 are all turned off, while the switches 32c and 32d are turned on. Therefore, the voltage I L varies in conjunction with changes in the current flowing through the transistor M2. Then, at time T35, the voltage Va at that time is sampled and held, and thereafter, the voltage V IL is a value corresponding to the voltage Va at time T35 until the next low-side or high-side current sensing operation is performed. will be maintained.
 本実施例によれば、分周スイッチング動作においてローサイド電流センス動作とハイサイド電流センス動作とが併用されることでコイル電流ILの値を正しく対比電圧VCに反映させることができる。分周スイッチング動作が実行されるとき、比較的長時間続く出力ハイ状態でのコイル電流ILの上昇が差動アンプ13に帰還されることで、対比電圧VCの低下がもたらされる(図15参照)。結果、図14と図15の比較からも理解されるよう、分周スイッチング動作においてデューティが過度に増大することが抑制される。故に、実施例EX2_1では、スイッチング動作が基準スイッチング動作から分周スイッチング動作に切り替わったとき、出力電圧VOUTの変動を低く抑えることができる(実施例EX2_1に係る波形1620と第2仮想動作に係る波形1920とを参照)、即ち出力電圧VOUTを良好に安定化させることができる。 According to this embodiment, the low-side current sensing operation and the high-side current sensing operation are used together in the frequency division switching operation, so that the value of the coil current IL can be accurately reflected in the comparison voltage V C . When the frequency division switching operation is performed, the increase in the coil current IL during a relatively long output high state is fed back to the differential amplifier 13, resulting in a decrease in the contrast voltage V C (see FIG. 15). ). As a result, as can be understood from the comparison between FIGS. 14 and 15, excessive increase in duty in the frequency division switching operation is suppressed. Therefore, in Example EX2_1, when the switching operation is switched from the reference switching operation to the frequency division switching operation, it is possible to suppress fluctuations in the output voltage V OUT to a low level (waveform 1620 according to Example EX2_1 and waveform 1620 according to the second hypothetical operation). (see waveform 1920), that is, the output voltage V OUT can be well stabilized.
 尚、出力ハイ状態においてはコイルL1のインダクタンスに応じた傾きでコイル電流ILが増加してゆく。このため、分周スイッチング動作が行われるとき、出力ハイ状態において、コイルL1のインダクタンスの設計値に基づく疑似電流情報をコイル電流情報に重畳するといったことが検討される。しかしながら、実際に用いられるコイルL1のインダクタンスの値が設計値からずれると、理想的な疑似電流情報を重畳できず、結果、出力電圧VOUTの安定性が低下する懸念がある。本実施例の方法において、このような懸念は無い。 Note that in the output high state, the coil current IL increases with a slope according to the inductance of the coil L1. For this reason, when the frequency division switching operation is performed, it is being considered to superimpose pseudo current information based on the design value of the inductance of the coil L1 on the coil current information in the output high state. However, if the inductance value of the coil L1 actually used deviates from the design value, ideal pseudo-current information cannot be superimposed, and as a result, there is a concern that the stability of the output voltage V OUT will decrease. In the method of this embodiment, there is no such concern.
 ロジック回路18は、トランジスタM1がターンオンされる度にトランジスタM1のターンオンからリセット信号が発行されるまでの時間を監視する。上述の説明から理解されるよう、ロジック回路18は、基準スイッチング動作を行っている状態において、トランジスタM1をターンオンした後、規定時間tDが経過するまでにリセット信号が発行されないとき、実行するスイッチング動作を基準スイッチング動作から分周スイッチング動作に切り替える。規定時間tDは“fSW=fREF”であるときの最大オン時間tMAX_ONである。 The logic circuit 18 monitors the time from turning on the transistor M1 until the reset signal is issued each time the transistor M1 is turned on. As can be understood from the above description, the logic circuit 18 performs switching when a reset signal is not issued within a predetermined time period tD after turning on the transistor M1 while performing a reference switching operation. Switches the operation from reference switching operation to frequency division switching operation. The specified time t D is the maximum on-time t MAX_ON when "f SW = f REF ".
 その後、トランジスタM1のターンオンタイミングから規定時間tDが経過するまでにリセット信号が発行されたとき、基準スイッチング動作への復帰条件が成立する。基準スイッチング動作への復帰条件が成立すると、ロジック回路18は、実行するスイッチング動作を基準スイッチング動作に戻す。図15の例では、時刻T61の後、入力電圧VINが上昇することで、実行されるスイッチング動作が基準スイッチング動作に戻り得る。より具体的には例えば、時刻T61にて入力電圧VINが十分に上昇した場合、時刻T61にてトランジスタM1がターンオンされてから規定時間tDが経過するまでにリセット信号が発行され、当該リセット信号の発行を受けてロジック回路18は即時に出力段回路MMを出力ハイ状態から出力ロー状態に切り替える。以後、入力電圧VINが十分に高ければ、各単位期間において常に前段期間中にリセット信号が発行されるため、“fSW=fREF”が維持される。 Thereafter, when a reset signal is issued before the specified time t D has elapsed from the turn-on timing of the transistor M1, the condition for returning to the standard switching operation is satisfied. When the conditions for returning to the standard switching operation are satisfied, the logic circuit 18 returns the switching operation to be performed to the standard switching operation. In the example of FIG. 15, after time T61, the input voltage V IN increases, so that the switching operation performed can return to the reference switching operation. More specifically, for example, if the input voltage V IN rises sufficiently at time T61, a reset signal is issued before a predetermined time t D elapses after transistor M1 is turned on at time T61, and the reset signal is Upon receiving the signal, the logic circuit 18 immediately switches the output stage circuit MM from the output high state to the output low state. Thereafter, if the input voltage V IN is sufficiently high, a reset signal is always issued during the preceding period in each unit period, so that "f SW =f REF " is maintained.
 分周スイッチング動作が行われるとき、トランジスタM1がターンオンされてからセンス結果保持時間tPが経過するまで、コイル電流情報(VIL)は直近のローサイド電流センス動作によるローサイド検出電流値を表す。そして、トランジスタM1のターンオンからセンス結果保持時間tPが経過した後、トランジスタM1がターンオフされるまでの期間は期間HS_Dであって、当該期間HS_Dにおいてコイル電流情報(VIL)はハイサイド電流センス動作によるハイサイド検出電流値を表す。その後、次に到来するサンプリングタイミングTSMPLにて今回のローサイド電流センス動作が行われると、コイル電流情報(VIL)は今回のローサイド電流センス動作によるローサイド検出電流値を表す情報へ更新される。 When the frequency division switching operation is performed, the coil current information (V IL ) represents the low-side detected current value from the most recent low-side current sensing operation from when the transistor M1 is turned on until the sense result holding time t P has elapsed. The period from when the transistor M1 is turned on until the transistor M1 is turned off after the sensing result holding time t P has elapsed is a period HS_D, and during this period HS_D, the coil current information (V IL ) is Represents the high-side detection current value due to operation. Thereafter, when the current low-side current sensing operation is performed at the next sampling timing T SMPL , the coil current information (V IL ) is updated to information representing the low-side detected current value by the current low-side current sensing operation.
 図15の例において、センス結果保持時間tPは基準周波数fREFの逆数分の時間と一致する。即ち図15では例えば、時刻T31にてトランジスタM1がターンオンされてからセンス結果保持時間tP(=1/fREF)が経過する時刻T33まで、コイル電流情報(VIL)は前回のローサイド電流センス動作によるローサイド検出電流値(時刻T30での電圧Vaに対応)で維持される。そして、時刻T31でのトランジスタM1のターンオンからセンス結果保持時間tPが経過した後、時刻T34にてトランジスタM1がターンオフされるまではコイル電流情報(VIL)はハイサイド電流センス動作によるハイサイド検出電流値(時刻T33及びT34間の電圧Vdに対応)を表す。その後、次に到来するサンプリングタイミングTSMPL(時刻T35)にて今回のローサイド電流センス動作が行われると、コイル電流情報(VIL)は今回のローサイド電流センス動作によるローサイド検出電流値を表す情報(時刻T35での電圧Vaに対応)へ更新される。 In the example of FIG. 15, the sense result holding time t P matches the reciprocal of the reference frequency f REF . That is, in FIG. 15, for example, from when the transistor M1 is turned on at time T31 until time T33 when the sense result holding time t P (=1/f REF ) has elapsed, the coil current information (V IL ) is based on the previous low-side current sense. It is maintained at the low side detected current value (corresponding to the voltage Va at time T30) due to the operation. After the sense result holding time t P has elapsed since the transistor M1 was turned on at time T31, the coil current information (V IL ) remains on the high side due to the high side current sense operation until the transistor M1 is turned off at time T34. It represents the detected current value (corresponding to the voltage Vd between times T33 and T34). After that, when the current low-side current sensing operation is performed at the next sampling timing T SMPL (time T35), the coil current information (V IL ) is changed to information ( (corresponding to voltage Va at time T35).
 センス結果保持時間tPは基準周波数fREFの逆数分の時間(即ち基準時間tREF)より若干長くても良い。但し、センス結果保持時間tPは時間(2・tREF-tMIN_SNS)よりは短い。 The sense result holding time t P may be slightly longer than the reciprocal of the reference frequency f REF (ie, the reference time t REF ). However, the sense result holding time t P is shorter than the time (2·t REF −t MIN_SNS ).
<<実施例EX2_2>>
 実施例EX2_2を説明する。実施例EX2_1では“n=2”の分周スイッチング動作について説明したが、入力電圧VINの低下の程度等によっては、“n≧3”の分周スイッチング動作も行われ得る。
<<Example EX2_2>>
Example EX2_2 will be explained. In the embodiment EX2_1, the frequency division switching operation with "n=2" has been described, but depending on the degree of decrease in the input voltage V IN , etc., the frequency division switching operation with "n≧3" can also be performed.
 例えば、図15に示すケース(以下、ケースCSaと称する)を基準に、以下のケースCSbを想定する。図18を参照してケースCSa及びCSb間の相違点を以下に示す。ケースCSbでは、時刻T31にてケースCSaよりも入力電圧VINが大きく低下する。その結果、ケースCSbでは、時刻T31から始まる単位期間1641中の前段期間にてリセット信号が発行されず、時刻T33から始まる単位期間1642中の前段期間でもリセット信号が発行されないものとする。ケースCSbでは、その後、時刻T41から始まる単位期間1643中の前段期間に属する時刻T41’にてリセット信号が発行されるものとする(リセット信号の発行有無は図18に示さず)。単位期間1641~1643は連続する3つの単位期間である。時刻T41’及びT42’は時刻T41より後であって且つ時刻T43より前の時刻であるとする。時刻T42’は時刻T41’より後の時刻である。 For example, the following case CSb is assumed based on the case shown in FIG. 15 (hereinafter referred to as case CSa). The differences between cases CSa and CSb are shown below with reference to FIG. In case CSb, the input voltage V IN decreases more greatly than in case CSa at time T31. As a result, in case CSb, the reset signal is not issued in the first period of the unit period 1641 starting from time T31, and the reset signal is not issued even in the first period of the unit period 1642 starting from time T33. In case CSb, it is assumed that a reset signal is then issued at time T41' which belongs to the first period in the unit period 1643 starting from time T41 (whether or not the reset signal is issued is not shown in FIG. 18). Unit periods 1641 to 1643 are three consecutive unit periods. It is assumed that times T41' and T42' are times after time T41 and before time T43. Time T42' is a time after time T41'.
 ケースCSbにおいて、ロジック回路18は時刻T31にて出力段回路MMを出力ロー状態から出力ハイ状態に切り替えた後、時刻T41’まで出力段回路MMを出力ハイ状態に維持し、時刻T41’を境に出力段回路MMを出力ロー状態に戻す。その後、単位期間1643に属する時刻T42’をサンプリングタイミングTSMPLとするローサイド電流センス動作が行われ、更にその後の時刻T43にてクロック信号CLKのアップエッジを契機に出力段回路MMが出力ハイ状態に切り替わる。 In case CSb, the logic circuit 18 switches the output stage circuit MM from the output low state to the output high state at time T31, maintains the output stage circuit MM in the output high state until time T41', and then switches the output stage circuit MM to the output high state until time T41'. The output stage circuit MM is returned to the output low state. After that, a low-side current sensing operation is performed with sampling timing T SMPL at time T42' belonging to the unit period 1643, and further, at subsequent time T43, the output stage circuit MM goes into the output high state triggered by the rising edge of the clock signal CLK. Switch.
 ケースCSbにおいて、上述のセンス結果保持時間tPは基準周波数fREFの逆数分の時間(即ち基準時間tREF)と同じであると想定されている。このため、時刻T31にてトランジスタM1がターンオンされてから時刻T33に至るまで、コイル電流情報(VIL)は直近のローサイド電流センス動作によるローサイド検出電流値を表す。そして、時刻T33から、トランジスタM1がターンオフされる時刻T41’まではコイル電流情報(VIL)はハイサイド電流センス動作によるハイサイド検出電流値を表す。その後、次に到来するサンプリングタイミングTSMPLにて(即ち時刻T42’にて)今回のローサイド電流センス動作が行われると、コイル電流情報(VIL)は今回のローサイド電流センス動作によるローサイド検出電流値を表す情報へ更新される。 In case CSb, the above-mentioned sense result holding time t P is assumed to be the same as the reciprocal of the reference frequency f REF (ie, the reference time t REF ). Therefore, from the time the transistor M1 is turned on at time T31 to the time T33, the coil current information (V IL ) represents the low-side detected current value by the most recent low-side current sensing operation. From time T33 to time T41' when transistor M1 is turned off, coil current information (V IL ) represents a high-side detected current value by a high-side current sensing operation. After that, when the current low-side current sensing operation is performed at the next sampling timing T SMPL (that is, at time T42'), the coil current information (V IL ) is changed to the low-side detected current value by the current low-side current sensing operation. The information is updated to represent the information.
 ケースCSbでは、時刻T31にてスイッチング周波数fSWが基準周波数fREFから周波数(fREF/3)と切り替わることになる。ケースCSbにおいて、時刻T43以後も、第1単位期間及び第2単位期間の各前段期間でリセット信号が発行されず且つ第3単位期間の前段期間にてリセット信号が発行されるならば、“n=3”の分周スイッチング動作が継続する。ここで、第1~第3単位期間は連続する3つの単位期間であって、第1単位期間の後、第2単位期間を経て第3単位期間が訪れるものとする。基準スイッチング動作への復帰条件は実施例EX2_1にて示した通りである。 In case CSb, the switching frequency f SW switches from the reference frequency f REF to the frequency (f REF /3) at time T31. In case CSb, even after time T43, if the reset signal is not issued in each of the preceding periods of the first unit period and the second unit period, and the reset signal is issued in the preceding period of the third unit period, "n =3'' frequency division switching operation continues. Here, the first to third unit periods are three consecutive unit periods, and the third unit period comes after the first unit period passes through the second unit period. The conditions for returning to the standard switching operation are as shown in Example EX2_1.
 ロジック回路18は以下のような動作を行うと言える。ロジック回路18は、トランジスタM1をターンオンさせた後、前段期間中にリセット信号が発行されるかを監視する。そして、任意の単位期間である注目単位期間において、前段期間中にリセット信号が発行されたならば、当該リセット信号の発行に応答して、ロジック回路18は即時に出力段回路MMを出力ハイ状態から出力ロー状態に切り替え且つ注目単位期間内のトランジスタM2のオン期間中にローサイド電流センス動作を行わせる。注目単位期間の前段期間中にリセット信号が発行されなかったならば、ロジック回路18は電圧VC及びVRAMPの高低関係に依らず注目単位期間の全体に亘り出力段回路MMを出力ハイ状態に維持し、次の単位期間を新たな注目単位期間に設定して上述と同様の動作を行う。このため、入力電圧VINの低下の程度によっては、トランジスタM1のオン期間が際限無く伸びてゆく(但し、上限が設けられても良い)。 It can be said that the logic circuit 18 performs the following operations. After turning on the transistor M1, the logic circuit 18 monitors whether a reset signal is issued during the pre-stage period. If a reset signal is issued during the previous stage period in the unit period of interest which is an arbitrary unit period, in response to the issuance of the reset signal, the logic circuit 18 immediately outputs the output stage circuit MM to a high state. Then, the output is switched to a low state, and a low-side current sensing operation is performed during the ON period of the transistor M2 within the unit period of interest. If the reset signal is not issued during the preceding period of the unit period of interest, the logic circuit 18 keeps the output stage circuit MM in the output high state throughout the unit period of interest, regardless of the level relationship between the voltages V C and V RAMP . The same operation as above is performed by setting the next unit period as a new unit period of interest. Therefore, depending on the degree of decrease in the input voltage V IN , the on-period of the transistor M1 increases without limit (however, an upper limit may be set).
<<実施例EX2_3>>
 実施例EX2_3を説明する。センス抵抗31の代わりにトランジスタM2のオン抵抗を用いてローサイド電流センス動作を行うようにしても良い。この場合、図19に示す電流情報生成回路30mを図1の電流情報生成回路30Cとして用いることができる。実施例EX2_3では、図19の電流情報生成回路30mを図1の電流情報生成回路30Cとして用いるものとする。
<<Example EX2_3>>
Example EX2_3 will be explained. The low-side current sensing operation may be performed using the on-resistance of the transistor M2 instead of the sense resistor 31. In this case, the current information generation circuit 30m shown in FIG. 19 can be used as the current information generation circuit 30C in FIG. In Example EX2_3, the current information generation circuit 30m shown in FIG. 19 is used as the current information generation circuit 30C shown in FIG.
 図19の電流情報生成回路30mにはセンス抵抗31が設けられない。実施例EX2_3では、トランジスタM2のソースがグランド端子GNDに直接接続される。センス抵抗31の非設置に伴う、図16の電流情報生成回路30Cから見た図19の電流情報生成回路30mへの変更点を以下に示す。本実施例にて特に述べない事項に関して、電流情報生成回路30mは電流情報生成回路30Cと同様の構成を有し且つ同様の動作を行う。 The sense resistor 31 is not provided in the current information generation circuit 30m in FIG. In Example EX2_3, the source of transistor M2 is directly connected to the ground terminal GND. Changes to the current information generation circuit 30m in FIG. 19 from the current information generation circuit 30C in FIG. 16 due to the non-installation of the sense resistor 31 are shown below. Regarding matters not particularly described in this embodiment, the current information generation circuit 30m has the same configuration as the current information generation circuit 30C and performs the same operation.
 正側入力端子33aはスイッチ32cの一端に接続され、スイッチ32cの他端はトランジスタM2のソースに接続される。負側入力端子33bはスイッチ32dの一端に接続され、スイッチ32dの他端はトランジスタM2のドレインに接続される。実施例EX2_3において、電圧Vaは、トランジスタM2のドレイン電位から見たトランジスタM2のソースの電圧を指す。トランジスタM2のオン抵抗を記号“RONL”で表す。そうすると、トランジスタM2のオン期間において“Va=RONL×IL”が成立する。 The positive input terminal 33a is connected to one end of the switch 32c, and the other end of the switch 32c is connected to the source of the transistor M2. The negative input terminal 33b is connected to one end of the switch 32d, and the other end of the switch 32d is connected to the drain of the transistor M2. In Example EX2_3, voltage Va refers to the voltage at the source of transistor M2 viewed from the drain potential of transistor M2. The on-resistance of transistor M2 is represented by the symbol "R ON L". Then, "Va=R ON L×IL" is established during the on period of the transistor M2.
 期間HS_Dにおいて“Vd=RONL×IL”となるよう、オン抵抗RONH及びRONLの比に基づき、回路30m内の電圧変換回路49が構成される。図19の構成例では“RONH>RONL”であることが想定されているため、分圧回路(49b、49c)を用いて“Vd=RONL×IL”を実現する。但し、“RONH<RONL”である場合にあっては電圧変換回路49にて電圧Vcを増幅することで電圧Vdを生成すれば良い。また、“RONH=RONL”である場合にあっては電圧変換回路49は単体のボルテージフォロアであって良い。何れにせよ、期間HS_Dにおいて“Vd=RONL×IL”となる。 The voltage conversion circuit 49 in the circuit 30m is configured based on the ratio of the on-resistances R ON H and R ON L so that “Vd=R ON L×IL” in the period HS_D. In the configuration example of FIG. 19, since it is assumed that "R ON H>R ON L", "Vd=R ON L×IL" is realized using the voltage dividing circuit (49b, 49c). However, if "R ON H < R ON L", the voltage Vd may be generated by amplifying the voltage Vc in the voltage conversion circuit 49. Further, in the case where "R ON H=R ON L", the voltage conversion circuit 49 may be a single voltage follower. In any case, “Vd=R ON L×IL” in period HS_D.
 基本的に、トランジスタM1及びM2は互いに同じ構造及び同じ耐圧を有する素子であって良い。トランジスタM1及びM2が互いに同じ構造及び同じ耐圧を有する素子であるとき、トランジスタM1の温度特性はトランジスタM2の温度特性と同じとなる(但し誤差を無視)。トランジスタの温度特性はトランジスタのオン抵抗の温度特性を含む。 Basically, the transistors M1 and M2 may be elements having the same structure and the same breakdown voltage. When transistors M1 and M2 are elements having the same structure and the same breakdown voltage, the temperature characteristics of transistor M1 are the same as those of transistor M2 (ignoring errors). The temperature characteristics of the transistor include the temperature characteristics of the on-resistance of the transistor.
 トランジスタM2のオン抵抗の温度特性を打ち消すための温度特性を増幅回路33に持たせておくことができる。即ち、電源IC2Cの環境温度の低下に応じてトランジスタM2のオン抵抗が増加したとき、トランジスタM2のオン期間中の電圧Vaが増加するが、この際、増幅回路33の増幅率が低下するよう、増幅回路33を構成しておく。電源IC2Cの環境温度が上昇した場合も同様である。これにより、コイル電流情報(VIL)に対する電源IC2Cの環境温度の影響が軽減される。そして、トランジスタM1及びM2が互いに同じ構造及び同じ耐圧を有する素子であるとき、トランジスタM1のオン抵抗の温度特性も増幅回路33にて打ち消すことができる。即ち、トランジスタM1及びM2の温度特性を打ち消すための回路をトランジスタM1及びM2間で共用することができ、回路規模削減に繋がる。 The amplifier circuit 33 can have a temperature characteristic for canceling the temperature characteristic of the on-resistance of the transistor M2. That is, when the on-resistance of the transistor M2 increases in response to a decrease in the environmental temperature of the power supply IC2C, the voltage Va during the on-period of the transistor M2 increases, but at this time, the amplification factor of the amplifier circuit 33 is reduced. The amplifier circuit 33 is configured in advance. The same applies when the environmental temperature of the power supply IC 2C rises. This reduces the influence of the environmental temperature of the power supply IC 2C on the coil current information (V IL ). When the transistors M1 and M2 are elements having the same structure and the same breakdown voltage, the temperature characteristics of the on-resistance of the transistor M1 can also be canceled out by the amplifier circuit 33. That is, a circuit for canceling the temperature characteristics of transistors M1 and M2 can be shared between transistors M1 and M2, leading to a reduction in circuit scale.
 センス抵抗31が非設置である点と、センス抵抗31が非設置であることに連動した上記事項を除き、実施例EX2_3に係る電源IC2Cは実施例EX2_1に係る電源IC2Cと同様のものであり、実施例EX2_1の記載が実施例EX2_3にも適用される。この適用の際、実施例EX2_1における“センス抵抗31の電圧降下”及び“センス抵抗31の値”を、実施例EX2_3では“トランジスタM2のドレイン及びソース間に生じる電圧降下”及び“トランジスタM2のオン抵抗の値”に読み替えれば良い。 Except for the point that the sense resistor 31 is not installed and the above-mentioned matters linked to the fact that the sense resistor 31 is not installed, the power supply IC 2C according to the embodiment EX2_3 is the same as the power supply IC 2C according to the embodiment EX2_1, The description of Example EX2_1 also applies to Example EX2_3. In this application, the "voltage drop across the sense resistor 31" and "value of the sense resistor 31" in Example EX2_1 are replaced with the "voltage drop occurring between the drain and source of transistor M2" and "on-on state of transistor M2" in Example EX2_3. It can be read as "resistance value".
<<実施例EX2_4>>
 実施例EX2_4を説明する。第1実施形態の実施例EX1_4にて述べた事項は全て第2実施形態にも適用される。
<<Example EX2_4>>
Example EX2_4 will be explained. All the matters described in Example EX1_4 of the first embodiment are also applied to the second embodiment.
<<第2付記>>
 上述の第2実施形態にて具体的構成例が示された本開示について付記を設ける。
<<Second appendix>>
An additional note will be provided regarding the present disclosure, a specific configuration example of which was shown in the second embodiment described above.
 本開示の一側面に係るスイッチング電源用回路は、入力電圧(VIN)のスイッチングを通じて出力電圧(VOUT)を生成するためのスイッチング電源装置(1)に用いられるスイッチング電源用回路(2、2A)において、前記入力電圧を受ける入力端子(IN)とグランド端子(GND)との間において互いに直列接続されたハイサイドトランジス(M1)及びローサイドトランジスタ(M2)を有する出力段回路(MM)と、前記ハイサイドトランジスタ及び前記ローサイドトランジスタを交互にオン、オフするスイッチング動作を行うよう構成されたスイッチング制御回路(11~19)と、前記ローサイドトランジスタのオン期間において前記ローサイドトランジスタに流れる電流を検出する第1電流センス動作、又は、前記ハイサイドトランジスタのオン期間において前記ハイサイドトランジスタに流れる電流を検出する第2電流センス動作を行うよう構成された電流情報生成回路(30C)と、を備え、前記ハイサイドトランジス及び前記ローサイドトランジスタ間の接続ノードがコイル(L1)及び出力コンデンサ(C1)を含む整流平滑回路に接続され、前記スイッチング動作により前記接続ノードに生じるスイッチング電圧(VSW)が前記整流平滑回路にて整流及び平滑化されることで前記出力電圧が生成され、前記スイッチング制御回路は、前記出力電圧に応じた電圧情報(VFB)と前記コイルの電流情報(VIL)とに基づき前記スイッチング動作を行い、前記スイッチング動作においてスイッチング周波数を第1周波数(fREF)又は前記第1周波数より低い第2周波数(fREF/n)に設定可能であり、前記電流情報生成回路は、前記スイッチング周波数が前記第1周波数に設定されるとき、前記第1電流センス動作により前記コイルの電流情報を生成し、前記スイッチング周波数が前記第2周波数に設定されるとき、前記第1電流センス動作及び前記第2電流センス動作を併用して前記コイルの電流情報を生成する構成(以下、構成Q1と称する)である。 A switching power supply circuit according to one aspect of the present disclosure is a switching power supply circuit (2, 2A) used in a switching power supply device (1) for generating an output voltage (V OUT ) through switching of an input voltage (V IN ). ), an output stage circuit (MM) having a high-side transistor (M1) and a low-side transistor (M2) connected in series between an input terminal (IN) receiving the input voltage and a ground terminal (GND); a switching control circuit (11 to 19) configured to perform a switching operation of alternately turning on and off the high-side transistor and the low-side transistor; and a switching control circuit (11 to 19) configured to perform a switching operation of alternately turning on and off the high-side transistor and the low-side transistor; a current information generation circuit (30C) configured to perform one current sensing operation or a second current sensing operation for detecting a current flowing through the high-side transistor during an on period of the high-side transistor; A connection node between the side transistor and the low-side transistor is connected to a rectification and smoothing circuit including a coil (L1) and an output capacitor (C1), and a switching voltage (V SW ) generated at the connection node due to the switching operation is applied to the rectification and smoothing circuit. The output voltage is generated by being rectified and smoothed at the current information generating circuit is capable of setting the switching frequency to a first frequency (f REF ) or a second frequency (f REF /n) lower than the first frequency in the switching operation; is set to the first frequency, current information of the coil is generated by the first current sensing operation, and when the switching frequency is set to the second frequency, the first current sensing operation and the first current sensing operation are performed. This is a configuration (hereinafter referred to as configuration Q1) in which current information of the coil is generated using two current sensing operations.
 スイッチング周波数が相対的に低い第2周波数に設定されるとき、第1電流センス動作の実行間隔が長くなる。しかしながら、ハイサイドトランジスタのオン期間において第2電流センス動作を行うことにより、第1電流センス動作が行うことができない期間においても、コイル電流を反映した帰還制御が可能となる。結果、出力電圧の安定化が図られる。 When the switching frequency is set to a relatively low second frequency, the interval between executions of the first current sensing operation becomes longer. However, by performing the second current sensing operation during the on-period of the high-side transistor, feedback control that reflects the coil current becomes possible even during the period in which the first current sensing operation cannot be performed. As a result, the output voltage is stabilized.
 上記構成Q1に係るスイッチング電源用回路において、前記電流情報生成回路は、前記スイッチング周波数が前記第2周波数に設定されるとき、前記ハイサイドトランジスタのオン期間において前記第2電流センス動作を実行することで前記ハイサイドトランジスタのオン期間における前記コイルの電流情報を生成し、前記ローサイドトランジスタのオン期間において前記第1電流センス動作を実行することで前記ローサイドトランジスタのオン期間における前記コイルの電流情報を生成する構成(以下、構成Q2と称する)であっても良い。 In the switching power supply circuit according to the configuration Q1, the current information generation circuit may perform the second current sensing operation during the on period of the high-side transistor when the switching frequency is set to the second frequency. generate current information of the coil during the on-period of the high-side transistor, and generate current information of the coil during the on-period of the low-side transistor by executing the first current sensing operation during the on-period of the low-side transistor. A configuration (hereinafter referred to as configuration Q2) may also be used.
 上記構成Q2に係るスイッチング電源用回路において、前記電流情報生成回路は、前記スイッチング周波数が前記第2周波数に設定されるとき、前記第2電流センス動作において、前記ハイサイドトランジスタのオン期間の一部(例えば図15のT33及びT34間)にて前記ハイサイドトランジスタに流れる電流を継続的に検出することで前記コイルの電流情報を更新し、その後、前記ハイサイドトランジスタがターンオフされ且つ前記ローサイドトランジスタがターンオンされると、前記ローサイドトランジスタのオン期間内に設定されたサンプリングタイミング(例えば図15のT35)にて前記ローサイドトランジスタに流れる電流を検出する前記第1電流センス動作を行い、これによって前記ローサイドトランジスタのオン期間における前記コイルの電流情報を生成する構成(以下、構成Q3と称する)であっても良い。 In the switching power supply circuit according to the configuration Q2, the current information generation circuit is configured to perform a part of the on-period of the high-side transistor in the second current sensing operation when the switching frequency is set to the second frequency. The current information of the coil is updated by continuously detecting the current flowing through the high-side transistor (for example, between T33 and T34 in FIG. 15), and then the high-side transistor is turned off and the low-side transistor is turned off. When turned on, the first current sensing operation is performed to detect the current flowing through the low-side transistor at a sampling timing set within the on-period of the low-side transistor (for example, T35 in FIG. 15). It may be a configuration (hereinafter referred to as configuration Q3) that generates current information of the coil during the on-period.
 上記構成Q3に係るスイッチング電源用回路において、前記スイッチング周波数が前記第2周波数に設定されるとき、前記ハイサイドトランジスタがターンオンされてからセンス結果保持時間(tP)が経過するまで、前記コイルの電流情報は前回の前記第1電流センス動作による検出電流値(例えば図15のT30での検出電流値)を表し、前記ハイサイドトランジスタのターンオンから前記センス結果保持時間が経過した後、前記ハイサイドトランジスタがターンオフされるまでは(例えば図15のT33及びT34間では)、前記コイルの電流情報は前記第2電流センス動作による電流検出値を表し、その後、前記サンプリングタイミングにて今回の前記第1電流センス動作が行われると、前記コイルの電流情報は今回の前記第1電流センス動作による検出電流値(例えば図15のT35での検出電流値)を表す情報へ更新される構成(以下、構成Q4と称する)であっても良い。 In the switching power supply circuit according to the configuration Q3, when the switching frequency is set to the second frequency, the coil is turned on until a sense result holding time (t P ) elapses after the high-side transistor is turned on. The current information represents the current value detected by the previous first current sensing operation (for example, the detected current value at T30 in FIG. 15), and after the sense result holding time has elapsed since the high-side transistor was turned on, the high-side Until the transistor is turned off (for example, between T33 and T34 in FIG. 15), the current information of the coil represents the current detected value by the second current sense operation, and then the current information of the first current sense at the sampling timing. When a current sensing operation is performed, the current information of the coil is updated to information representing the current value detected by the current first current sensing operation (for example, the current value detected at T35 in FIG. 15). (referred to as Q4).
 上記構成Q4に係るスイッチング電源用回路において、前記センス結果保持時間は、前記第1周波数の逆数分の時間(tREF)以上である構成(以下、構成Q5と称する)であっても良い。 In the switching power supply circuit according to the configuration Q4, the sense result holding time may be a configuration (hereinafter referred to as configuration Q5) in which the sense result holding time is longer than the reciprocal of the first frequency (t REF ).
 上記構成Q1~Q5の何れかに係るスイッチング電源用回路において、前記電流情報生成回路は、前記スイッチング周波数が前記第1周波数に設定されるとき、前記第1周波数の逆数分の長さを有する各期間において前記第1電流センス動作を実行することで、前記コイルの電流情報を生成する構成(以下、構成Q6と称する)であっても良い。 In the switching power supply circuit according to any one of the configurations Q1 to Q5, when the switching frequency is set to the first frequency, the current information generation circuit includes each A configuration (hereinafter referred to as configuration Q6) may be used in which the current information of the coil is generated by executing the first current sensing operation during the period.
 上記構成Q6に係るスイッチング電源用回路において、前記スイッチング制御回路は、前記出力電圧に応じた電圧情報と前記コイルの電流情報とに基づき対比電圧(VC)を生成するよう構成された対比電圧生成回路(11~14)と、前記第1周波数の逆数の周期にて初期レベルから所定の向きへと単調変化するランプ電圧を生成するよう構成されたランプ電圧生成回路(16)と、を備え、前記スイッチング動作において、前記ハイサイドトランジスタをターンオンさせた後、前記対比電圧と前記ランプ電圧の高低関係が第1関係から第2関係に変化したことに応答してリセット信号(SPWMのダウンエッジ)を発行し、前記リセット信号の発行に基づき前記ハイサイドトランジスタをターンオフ且つ前記ローサイドトランジスタをターンオンさせ、前記スイッチング周波数が前記第1周波数に設定された状態おいて、前記ハイサイドトランジスタをターンオンした後、前記第1周波数の逆数より短い規定時間(tMAX_ON)が経過するまでに前記リセット信号が発行されないとき、前記スイッチング周波数を前記第1周波数から前記第2周波数に切り替える構成(以下、構成Q7と称する)であっても良い。 In the switching power supply circuit according to the configuration Q6, the switching control circuit is configured to generate a contrast voltage (V C ) based on voltage information corresponding to the output voltage and current information of the coil. circuits (11 to 14), and a lamp voltage generation circuit (16) configured to generate a lamp voltage that monotonically changes from an initial level in a predetermined direction at a period of the reciprocal of the first frequency, In the switching operation, after turning on the high-side transistor, a reset signal (down edge of S PWM) is generated in response to a change in the level relationship between the comparison voltage and the lamp voltage from a first relationship to a second relationship. is issued, turns off the high side transistor and turns on the low side transistor based on the issuance of the reset signal, and turns on the high side transistor while the switching frequency is set to the first frequency; A configuration (hereinafter referred to as configuration Q7) that switches the switching frequency from the first frequency to the second frequency when the reset signal is not issued before a specified time (t MAX_ON ) shorter than the reciprocal of the first frequency has elapsed. ).
 これにより例えば、入力電圧が一時的に低下した場合において、出力段回路の最大デューティを高めることが可能であり、以って出力電圧を所望値に保ちやすくなる。 As a result, for example, when the input voltage temporarily decreases, it is possible to increase the maximum duty of the output stage circuit, thereby making it easier to maintain the output voltage at a desired value.
 上記構成Q7に係るスイッチング電源用回路において、前記スイッチング制御回路は、前記スイッチング周波数を前記第1周波数から前記第2周波数に切り替えた後において、前記ハイサイドトランジスタのターンオンタイミングから前記規定時間が経過するまでに前記リセット信号が発行されたとき、前記スイッチング周波数を前記第2周波数から前記第1周波数に戻す構成(以下、構成Q8と称する)であっても良い。 In the switching power supply circuit according to the configuration Q7, the switching control circuit switches the switching frequency from the first frequency to the second frequency until the prescribed time has elapsed from the turn-on timing of the high-side transistor. The switching frequency may be configured to return the switching frequency from the second frequency to the first frequency when the reset signal is issued (hereinafter referred to as configuration Q8).
 これにより例えば、入力電圧の低下を経て入力電圧が上昇したときに、スイッチング周波数を第1周波数に戻すことができる。 With this, for example, when the input voltage increases after decreasing, the switching frequency can be returned to the first frequency.
 本開示の一側面に係るスイッチング電源装置は、上記構成Q1~Q8の何れかに係るスイッチング電源用回路と、前記スイッチング電圧を整流及び平滑化することで前記出力電圧を生成するよう構成された整流平滑回路と、備える構成(以下、構成Q9と称する)である。 A switching power supply device according to one aspect of the present disclosure includes a switching power supply circuit according to any one of the configurations Q1 to Q8, and a rectifier configured to generate the output voltage by rectifying and smoothing the switching voltage. This is a smoothing circuit and a configuration (hereinafter referred to as configuration Q9).
  1 スイッチング電源装置
  2、2A、2B、2C 電源IC
  3 主制御ブロック
 L1 コイル
 C1 出力コンデンサ
 C2 ブートコンデンサ
 R1、R2 抵抗
 D1 整流素子
 VIN 入力電圧
 VOUT 出力電圧
 VFB 帰還電圧
 VSW スイッチング電圧
 IN 入力端子
GND グランド端子
OUT 出力端子
 FB 帰還端子
BOOT ブート端子
 OS 出力監視端子
 MM 出力段回路
 M1 ハイサイドトランジスタ
 M2 ローサイドトランジスタ
 11 エラーアンプ
 12 位相補償回路
 13 差動アンプ
 14 位相補償回路
 15 クロック生成回路
 16 ランプ電圧生成回路
 17 コンパレータ
 18 ロジック回路
 19 ドライバ
 30、30C、30m 電流情報生成回路
 31 センス抵抗
 32 S/H回路
 33 増幅回路
 34 疑似電流生成回路
 35 加算器
 IL コイル電流
 VISNS 電圧(検出電流情報)
 VIPS 電圧(疑似電流情報)
 VIL 電圧(コイル電流情報)
 VERR 誤差電圧
 V対比電圧
1 Switching power supply device 2, 2A, 2B, 2C Power supply IC
3 Main control block L1 Coil C1 Output capacitor C2 Boot capacitor R1, R2 Resistor D1 Rectifier V IN input voltage V OUT output voltage V FB feedback voltage V SW switching voltage IN Input terminal GND Ground terminal OUT Output terminal FB Feedback terminal BOOT Boot terminal OS Output monitoring terminal MM Output stage circuit M1 High side transistor M2 Low side transistor 11 Error amplifier 12 Phase compensation circuit 13 Differential amplifier 14 Phase compensation circuit 15 Clock generation circuit 16 Lamp voltage generation circuit 17 Comparator 18 Logic circuit 19 Driver 30, 30C, 30m Current information generation circuit 31 Sense resistor 32 S/H circuit 33 Amplification circuit 34 Pseudo current generation circuit 35 Adder IL Coil current V ISNS voltage (detection current information)
V IPS voltage (pseudo current information)
V IL voltage (coil current information)
V ERR error voltage V C comparison voltage

Claims (18)

  1.  入力電圧のスイッチングを通じて出力電圧を生成するためのスイッチング電源装置に用いられるスイッチング電源用回路において、
     前記入力電圧を受ける入力端子とグランド端子との間において互いに直列接続されたハイサイドトランジスタ及びローサイドトランジスタを有する出力段回路と、
     前記ハイサイドトランジスタ及び前記ローサイドトランジスタを交互にオン、オフするスイッチング動作を行うよう構成されたスイッチング制御回路と、
     前記ローサイドトランジスタのオン期間において前記ローサイドトランジスタに流れる電流を検出する電流センス動作を行うよう構成された電流情報生成回路と、を備え、
     前記ハイサイドトランジスタ及び前記ローサイドトランジスタ間の接続ノードがコイル及び出力コンデンサを含む整流平滑回路に接続され、前記スイッチング動作により前記接続ノードに生じるスイッチング電圧が前記整流平滑回路にて整流及び平滑化されることで前記出力電圧が生成され、
     前記スイッチング制御回路は、前記出力電圧に応じた電圧情報と、前記電流センス動作を通じて生成された前記コイルの電流情報と、に基づき前記スイッチング動作を行い、
     前記スイッチング制御回路は、前記スイッチング動作においてスイッチング周波数を、第1周波数又は前記第1周波数より低い第2周波数に設定可能であり、
     前記電流情報生成回路は、前記スイッチング周波数が前記第2周波数に設定されるとき、直近の前記電流センス動作を行ってから次回の前記電流センス動作を行うまでの期間の一部において、前記直近の前記電流センス動作による検出電流情報に対し、前記入力電圧及び前記出力電圧に基づく疑似電流情報を加算することで、前記コイルの電流情報を生成する
    、スイッチング電源用回路。
    In a switching power supply circuit used in a switching power supply device for generating an output voltage through switching of an input voltage,
    an output stage circuit having a high-side transistor and a low-side transistor connected in series with each other between an input terminal receiving the input voltage and a ground terminal;
    a switching control circuit configured to perform a switching operation of alternately turning on and off the high-side transistor and the low-side transistor;
    a current information generation circuit configured to perform a current sensing operation to detect a current flowing through the low-side transistor during an on-period of the low-side transistor;
    A connection node between the high-side transistor and the low-side transistor is connected to a rectification and smoothing circuit including a coil and an output capacitor, and a switching voltage generated at the connection node due to the switching operation is rectified and smoothed by the rectification and smoothing circuit. The output voltage is generated by
    The switching control circuit performs the switching operation based on voltage information corresponding to the output voltage and current information of the coil generated through the current sensing operation,
    The switching control circuit is capable of setting a switching frequency in the switching operation to a first frequency or a second frequency lower than the first frequency,
    When the switching frequency is set to the second frequency, the current information generation circuit is configured to detect the current information in the current information generation circuit during a part of the period from performing the most recent current sensing operation to performing the next current sensing operation. A switching power supply circuit that generates current information of the coil by adding pseudo current information based on the input voltage and the output voltage to current information detected by the current sensing operation.
  2.  前記電流情報生成回路は、前記入力電圧と、前記出力電圧と、前記コイルのインダクタンスと、に基づき、前記疑似電流情報を生成する
    、請求項1に記載のスイッチング電源用回路。
    The switching power supply circuit according to claim 1, wherein the current information generation circuit generates the pseudo current information based on the input voltage, the output voltage, and the inductance of the coil.
  3.  前記電流情報生成回路は、前記入力電圧と、前記出力電圧と、前記コイルのインダクタンスと、前記第1周波数の逆数分の時間と、に基づき、前記疑似電流情報を生成する
    、請求項2に記載のスイッチング電源用回路。
    The current information generation circuit generates the pseudo current information based on the input voltage, the output voltage, the inductance of the coil, and a time corresponding to the reciprocal of the first frequency. switching power supply circuit.
  4.  前記電流情報生成回路は、前記スイッチング周波数が前記第2周波数に設定される期間において、
     前記ハイサイドトランジスがターンオンされてから所定時間が経過するまでは、前記直近の前記電流センス動作による前記検出電流情報を前記コイルの電流情報として生成し、
     前記ハイサイドトランジスがターンオンされてから前記所定時間が経過した後、前記次回の前記電流センス動作を行うまで、前記直近の前記電流センス動作による前記検出電流情報と前記疑似電流情報との和を前記コイルの電流情報として生成する
    、請求項1~3の何れかに記載のスイッチング電源用回路。
    The current information generation circuit is configured to: during a period in which the switching frequency is set to the second frequency,
    until a predetermined period of time has elapsed since the high-side transistor was turned on, generating the detected current information from the most recent current sensing operation as current information of the coil;
    After the predetermined time has elapsed since the high-side transistor was turned on, the sum of the detected current information and the pseudo current information from the most recent current sensing operation is calculated until the next current sensing operation is performed. 4. The switching power supply circuit according to claim 1, wherein the circuit generates current information of a coil.
  5.  前記電流情報生成回路は、前記スイッチング周波数が前記第1周波数から前記第2周波数に切り替わったとき、切り替わり直後における前記疑似電流情報の値を、それ以降の前記疑似電流情報の値よりも大きく設定する
    、請求項1~4の何れかに記載のスイッチング電源用回路。
    When the switching frequency switches from the first frequency to the second frequency, the current information generation circuit sets a value of the pseudo current information immediately after the switching to be larger than a value of the pseudo current information thereafter. A switching power supply circuit according to any one of claims 1 to 4.
  6.  前記電流情報生成回路は、前記スイッチング周波数が前記第1周波数に設定されるとき、前記第1周波数の逆数分の長さを有する各期間において、前記電流センス動作を実行して前記電流センス動作による前記検出電流情報を前記コイルの電流情報として生成する
    、請求項1~5の何れかに記載のスイッチング電源用回路。
    When the switching frequency is set to the first frequency, the current information generation circuit executes the current sensing operation in each period having a length equal to the reciprocal of the first frequency, and is configured to perform the current sensing operation according to the current sensing operation. 6. The switching power supply circuit according to claim 1, wherein the detected current information is generated as current information of the coil.
  7.  前記スイッチング制御回路は、
     前記出力電圧に応じた電圧情報と前記コイルの電流情報とに基づき対比電圧を生成するよう構成された対比電圧生成回路と、
     前記第1周波数の逆数の周期にて初期レベルから所定の向きへと単調変化するランプ電圧を生成するよう構成されたランプ電圧生成回路と、を備え、
     前記スイッチング動作において、前記ハイサイドトランジスタをターンオンさせた後、前記対比電圧と前記ランプ電圧の高低関係が第1関係から第2関係に変化したことに応答してリセット信号を発行し、前記リセット信号の発行に基づき前記ハイサイドトランジスタをターンオフ且つ前記ローサイドトランジスタをターンオンさせ、
     前記スイッチング周波数が前記第1周波数に設定された状態おいて、前記ハイサイドトランジスタをターンオンした後、前記第1周波数の逆数より短い規定時間が経過するまでに前記リセット信号が発行されないとき、前記スイッチング周波数を前記第1周波数から前記第2周波数に切り替える
    、請求項6に記載のスイッチング電源用回路。
    The switching control circuit includes:
    a contrast voltage generation circuit configured to generate a contrast voltage based on voltage information corresponding to the output voltage and current information of the coil;
    a lamp voltage generation circuit configured to generate a lamp voltage that monotonically changes from an initial level in a predetermined direction at a period of the reciprocal of the first frequency;
    In the switching operation, after turning on the high-side transistor, a reset signal is issued in response to a change in the level relationship between the comparison voltage and the lamp voltage from a first relationship to a second relationship; Turn off the high side transistor and turn on the low side transistor based on the issuance of the
    In a state where the switching frequency is set to the first frequency, when the reset signal is not issued within a specified time period shorter than the reciprocal of the first frequency after turning on the high-side transistor, the switching frequency is set to the first frequency. The switching power supply circuit according to claim 6, wherein the frequency is switched from the first frequency to the second frequency.
  8.  前記スイッチング制御回路は、前記スイッチング周波数を前記第1周波数から前記第2周波数に切り替えた後において、前記ハイサイドトランジスタのターンオンタイミングから前記規定時間が経過するまでに前記リセット信号が発行されたとき、前記スイッチング周波数を前記第2周波数から前記第1周波数に戻す
    、請求項7に記載のスイッチング電源用回路。
    The switching control circuit, after switching the switching frequency from the first frequency to the second frequency, when the reset signal is issued before the specified time elapses from the turn-on timing of the high-side transistor, The switching power supply circuit according to claim 7, wherein the switching frequency is returned from the second frequency to the first frequency.
  9.  請求項1~8の何れかに記載のスイッチング電源用回路と、
     前記スイッチング電圧を整流及び平滑化することで前記出力電圧を生成するよう構成された整流平滑回路と、備える
    、スイッチング電源装置。
    A switching power supply circuit according to any one of claims 1 to 8,
    A switching power supply device comprising: a rectifying and smoothing circuit configured to generate the output voltage by rectifying and smoothing the switching voltage.
  10.  入力電圧のスイッチングを通じて出力電圧を生成するためのスイッチング電源装置に用いられるスイッチング電源用回路において、
     前記入力電圧を受ける入力端子とグランド端子との間において互いに直列接続されたハイサイドトランジス及びローサイドトランジスタを有する出力段回路と、
     前記ハイサイドトランジス及び前記ローサイドトランジスタを交互にオン、オフするスイッチング動作を行うよう構成されたスイッチング制御回路と、
     前記ローサイドトランジスタのオン期間において前記ローサイドトランジスタに流れる電流を検出する第1電流センス動作、又は、前記ハイサイドトランジスタのオン期間において前記ハイサイドトランジスタに流れる電流を検出する第2電流センス動作を行うよう構成された電流情報生成回路と、を備え、
     前記ハイサイドトランジス及び前記ローサイドトランジスタ間の接続ノードがコイル及び出力コンデンサを含む整流平滑回路に接続され、前記スイッチング動作により前記接続ノードに生じるスイッチング電圧が前記整流平滑回路にて整流及び平滑化されることで前記出力電圧が生成され、
     前記スイッチング制御回路は、前記出力電圧に応じた電圧情報と前記コイルの電流情報とに基づき前記スイッチング動作を行い、前記スイッチング動作においてスイッチング周波数を第1周波数又は前記第1周波数より低い第2周波数に設定可能であり、
     前記電流情報生成回路は、前記スイッチング周波数が前記第1周波数に設定されるとき、前記第1電流センス動作により前記コイルの電流情報を生成し、前記スイッチング周波数が前記第2周波数に設定されるとき、前記第1電流センス動作及び前記第2電流センス動作を併用して前記コイルの電流情報を生成する
    、スイッチング電源用回路。
    In a switching power supply circuit used in a switching power supply device for generating an output voltage through switching of an input voltage,
    an output stage circuit having a high-side transistor and a low-side transistor connected in series between an input terminal receiving the input voltage and a ground terminal;
    a switching control circuit configured to perform a switching operation of alternately turning on and off the high-side transistor and the low-side transistor;
    A first current sensing operation for detecting a current flowing through the low-side transistor during an on-period of the low-side transistor, or a second current sensing operation for detecting a current flowing through the high-side transistor during an on-period of the high-side transistor. comprising a current information generation circuit configured,
    A connection node between the high-side transistor and the low-side transistor is connected to a rectification and smoothing circuit including a coil and an output capacitor, and a switching voltage generated at the connection node due to the switching operation is rectified and smoothed by the rectification and smoothing circuit. The output voltage is generated by
    The switching control circuit performs the switching operation based on voltage information corresponding to the output voltage and current information of the coil, and in the switching operation, sets the switching frequency to a first frequency or a second frequency lower than the first frequency. is configurable and
    The current information generation circuit generates current information of the coil by the first current sensing operation when the switching frequency is set to the first frequency, and when the switching frequency is set to the second frequency. , a switching power supply circuit that generates current information of the coil by using the first current sensing operation and the second current sensing operation in combination.
  11.  前記電流情報生成回路は、前記スイッチング周波数が前記第2周波数に設定されるとき、前記ハイサイドトランジスタのオン期間において前記第2電流センス動作を実行することで前記ハイサイドトランジスタのオン期間における前記コイルの電流情報を生成し、前記ローサイドトランジスタのオン期間において前記第1電流センス動作を実行することで前記ローサイドトランジスタのオン期間における前記コイルの電流情報を生成する
    、請求項10に記載のスイッチング電源用回路。
    The current information generation circuit is configured to perform the second current sensing operation during the on-period of the high-side transistor when the switching frequency is set to the second frequency, thereby increasing the current sensing operation of the coil during the on-period of the high-side transistor. 11. The switching power supply according to claim 10, wherein current information of the coil is generated during the on-period of the low-side transistor by generating current information of the coil during the on-period of the low-side transistor by performing the first current sensing operation during the on-period of the low-side transistor. circuit.
  12.  前記電流情報生成回路は、前記スイッチング周波数が前記第2周波数に設定されるとき、
     前記第2電流センス動作において、前記ハイサイドトランジスタのオン期間の一部にて前記ハイサイドトランジスタに流れる電流を継続的に検出することで前記コイルの電流情報を更新し、
     その後、前記ハイサイドトランジスタがターンオフされ且つ前記ローサイドトランジスタがターンオンされると、前記ローサイドトランジスタのオン期間内に設定されたサンプリングタイミングにて前記ローサイドトランジスタに流れる電流を検出する前記第1電流センス動作を行い、これによって前記ローサイドトランジスタのオン期間における前記コイルの電流情報を生成する
    、請求項11に記載のスイッチング電源用回路。
    The current information generation circuit is configured such that when the switching frequency is set to the second frequency,
    In the second current sensing operation, the current information of the coil is updated by continuously detecting the current flowing through the high-side transistor during a part of the on period of the high-side transistor,
    Thereafter, when the high-side transistor is turned off and the low-side transistor is turned on, the first current sensing operation is performed to detect the current flowing through the low-side transistor at a sampling timing set within the on-period of the low-side transistor. 12. The switching power supply circuit according to claim 11, wherein the switching power supply circuit generates current information of the coil during an on period of the low-side transistor.
  13.  前記スイッチング周波数が前記第2周波数に設定されるとき、
     前記ハイサイドトランジスタがターンオンされてからセンス結果保持時間が経過するまで、前記コイルの電流情報は前回の前記第1電流センス動作による検出電流値を表し、
     前記ハイサイドトランジスタのターンオンから前記センス結果保持時間が経過した後、前記ハイサイドトランジスタがターンオフされるまでは、前記コイルの電流情報は前記第2電流センス動作による電流検出値を表し、
     その後、前記サンプリングタイミングにて今回の前記第1電流センス動作が行われると、前記コイルの電流情報は今回の前記第1電流センス動作による検出電流値を表す情報へ更新される
    、請求項12に記載のスイッチング電源用回路。
    When the switching frequency is set to the second frequency,
    After the high-side transistor is turned on until a sense result holding time elapses, the current information of the coil represents a current value detected by the previous first current sensing operation,
    After the sense result holding time has elapsed since the high-side transistor was turned on and until the high-side transistor is turned off, the current information of the coil represents a current detected value by the second current sensing operation,
    Thereafter, when the current first current sensing operation is performed at the sampling timing, the current information of the coil is updated to information representing a current value detected by the current first current sensing operation. The switching power supply circuit described.
  14.  前記センス結果保持時間は、前記第1周波数の逆数分の時間以上である
    、請求項13に記載のスイッチング電源用回路。
    14. The switching power supply circuit according to claim 13, wherein the sense result holding time is longer than the reciprocal of the first frequency.
  15.  前記電流情報生成回路は、前記スイッチング周波数が前記第1周波数に設定されるとき、前記第1周波数の逆数分の長さを有する各期間において前記第1電流センス動作を実行することで、前記コイルの電流情報を生成する
    、請求項10~14の何れかに記載のスイッチング電源用回路。
    The current information generation circuit is configured to perform the first current sensing operation in each period having a length equal to the reciprocal of the first frequency when the switching frequency is set to the first frequency. The circuit for a switching power supply according to any one of claims 10 to 14, which generates current information of.
  16.  前記スイッチング制御回路は、
     前記出力電圧に応じた電圧情報と前記コイルの電流情報とに基づき対比電圧を生成するよう構成された対比電圧生成回路と、
     前記第1周波数の逆数の周期にて初期レベルから所定の向きへと単調変化するランプ電圧を生成するよう構成されたランプ電圧生成回路と、を備え、
     前記スイッチング動作において、前記ハイサイドトランジスタをターンオンさせた後、前記対比電圧と前記ランプ電圧の高低関係が第1関係から第2関係に変化したことに応答してリセット信号を発行し、前記リセット信号の発行に基づき前記ハイサイドトランジスタをターンオフ且つ前記ローサイドトランジスタをターンオンさせ、
     前記スイッチング周波数が前記第1周波数に設定された状態おいて、前記ハイサイドトランジスタをターンオンした後、前記第1周波数の逆数より短い規定時間が経過するまでに前記リセット信号が発行されないとき、前記スイッチング周波数を前記第1周波数から前記第2周波数に切り替える
    、請求項15に記載のスイッチング電源用回路。
    The switching control circuit includes:
    a contrast voltage generation circuit configured to generate a contrast voltage based on voltage information corresponding to the output voltage and current information of the coil;
    a lamp voltage generation circuit configured to generate a lamp voltage that monotonically changes from an initial level in a predetermined direction at a period of the reciprocal of the first frequency;
    In the switching operation, after turning on the high-side transistor, a reset signal is issued in response to a change in the level relationship between the comparison voltage and the lamp voltage from a first relationship to a second relationship; Turn off the high side transistor and turn on the low side transistor based on the issuance of the
    In a state where the switching frequency is set to the first frequency, when the reset signal is not issued within a specified time period shorter than the reciprocal of the first frequency after turning on the high-side transistor, the switching frequency is set to the first frequency. The circuit for a switching power supply according to claim 15, wherein a frequency is switched from the first frequency to the second frequency.
  17.  前記スイッチング制御回路は、前記スイッチング周波数を前記第1周波数から前記第2周波数に切り替えた後において、前記ハイサイドトランジスタのターンオンタイミングから前記規定時間が経過するまでに前記リセット信号が発行されたとき、前記スイッチング周波数を前記第2周波数から前記第1周波数に戻す
    、請求項16に記載のスイッチング電源用回路。
    The switching control circuit, after switching the switching frequency from the first frequency to the second frequency, when the reset signal is issued before the specified time elapses from the turn-on timing of the high-side transistor, 17. The switching power supply circuit according to claim 16, wherein the switching frequency is returned from the second frequency to the first frequency.
  18.  請求項10~17の何れかに記載のスイッチング電源用回路と、
     前記スイッチング電圧を整流及び平滑化することで前記出力電圧を生成するよう構成された整流平滑回路と、備える
    、スイッチング電源装置。
    A switching power supply circuit according to any one of claims 10 to 17,
    A switching power supply device comprising: a rectifying and smoothing circuit configured to generate the output voltage by rectifying and smoothing the switching voltage.
PCT/JP2023/023585 2022-08-03 2023-06-26 Switching power supply circuit and switching power supply device WO2024029230A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022123734 2022-08-03
JP2022123737 2022-08-03
JP2022-123734 2022-08-03
JP2022-123737 2022-08-03

Publications (1)

Publication Number Publication Date
WO2024029230A1 true WO2024029230A1 (en) 2024-02-08

Family

ID=89848859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023585 WO2024029230A1 (en) 2022-08-03 2023-06-26 Switching power supply circuit and switching power supply device

Country Status (1)

Country Link
WO (1) WO2024029230A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006067792A (en) * 2004-08-25 2006-03-09 Matsushita Electric Ind Co Ltd High-order compensation of inclination in switching regulator in fixed frequency current mode
JP2010063276A (en) * 2008-09-04 2010-03-18 Ricoh Co Ltd Current-mode control type switching regulator
JP2019092356A (en) * 2017-11-17 2019-06-13 株式会社Soken Control arrangement of power conversion equipment
US10637357B1 (en) * 2017-12-20 2020-04-28 Renesas Electronics America Inc. Ramp offset compensation circuit in a buck boost converter
JP2021090272A (en) * 2019-12-03 2021-06-10 ローム株式会社 Power supply control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006067792A (en) * 2004-08-25 2006-03-09 Matsushita Electric Ind Co Ltd High-order compensation of inclination in switching regulator in fixed frequency current mode
JP2010063276A (en) * 2008-09-04 2010-03-18 Ricoh Co Ltd Current-mode control type switching regulator
JP2019092356A (en) * 2017-11-17 2019-06-13 株式会社Soken Control arrangement of power conversion equipment
US10637357B1 (en) * 2017-12-20 2020-04-28 Renesas Electronics America Inc. Ramp offset compensation circuit in a buck boost converter
JP2021090272A (en) * 2019-12-03 2021-06-10 ローム株式会社 Power supply control device

Similar Documents

Publication Publication Date Title
US10075073B2 (en) DC/DC converter and switching power supply having overcurrent protection
US7138786B2 (en) Power supply driver circuit
US7135841B1 (en) Emulated inductor current automatic correction without knowledge of actual inductor current ramp for emulated peak control mode PWM
US11444537B2 (en) Power converters and compensation circuits thereof
US7453287B2 (en) Switching power-supply circuit and semiconductor integrated circuit
CN101252312A (en) Converter circuit
JP2012130137A (en) Switching control circuit
US10892684B2 (en) Circuit for a switching power supply
US9214860B2 (en) Comparator multiplexing LDO and converted output to DC-DC converter circuitry
JP6831713B2 (en) Bootstrap circuit
US20230361672A1 (en) Power supply semiconductor device and switched capacitor converter
WO2024029230A1 (en) Switching power supply circuit and switching power supply device
US11588404B2 (en) Semiconductor device and step-down multi-phase DC/DC converter
US8416591B2 (en) DC-DC converter with soft start circuit
WO2021054027A1 (en) Power supply device
US20230387805A1 (en) Switching power supply circuit and switching power supply device
US20230412077A1 (en) Switching power supply circuit and switching power supply device
WO2022254995A1 (en) Amplification circuit, switching power supply circuit, and switching power supply device
JP7157657B2 (en) Switching power supply device and semiconductor device
JP7399739B2 (en) switching power supply
US20220393596A1 (en) Output feedback control circuit
WO2021140833A1 (en) Switching power supply device
US11637489B2 (en) Isolated DC/DC converter and AC/DC converter
US20230146300A1 (en) Output feedback control circuit and switching power supply
US6642695B1 (en) Voltage mode boost converter using a period-fixed amplitude-modulated pulse control signal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849789

Country of ref document: EP

Kind code of ref document: A1