WO2024028947A1 - Power supply device for railroad vehicle - Google Patents

Power supply device for railroad vehicle Download PDF

Info

Publication number
WO2024028947A1
WO2024028947A1 PCT/JP2022/029502 JP2022029502W WO2024028947A1 WO 2024028947 A1 WO2024028947 A1 WO 2024028947A1 JP 2022029502 W JP2022029502 W JP 2022029502W WO 2024028947 A1 WO2024028947 A1 WO 2024028947A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
transformer
power supply
power
supply device
Prior art date
Application number
PCT/JP2022/029502
Other languages
French (fr)
Japanese (ja)
Inventor
英紀 鈴木
大樹 川本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/029502 priority Critical patent/WO2024028947A1/en
Publication of WO2024028947A1 publication Critical patent/WO2024028947A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/53Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells in combination with an external power supply, e.g. from overhead contact lines

Definitions

  • the present disclosure relates to a power supply device for a railway vehicle mounted on a railway vehicle equipped with a storage battery.
  • Patent Document 1 discloses that DC power supplied from a DC overhead line is converted to AC power by an inverter, insulated by an LC filter consisting of a reactor and a capacitor, and a commercial insulation transformer, and then used for supplementary purposes such as air conditioning equipment, display devices, etc.
  • a power supply device for a railway vehicle that converts 50/60 [Hz] three-phase AC power or single-phase AC power required for a railway vehicle is disclosed.
  • auxiliary equipment is a name used to refer to equipment other than the propulsion motor among equipment mounted on a railway vehicle and supplied with electric power.
  • a power supply device that drives a propulsion motor is called a "main converter” or the like, and is provided separately from a power supply device that supplies power to auxiliary machines.
  • the present disclosure has been made in view of the above, and an object of the present disclosure is to obtain a power supply device for a railway vehicle that can use the power of a storage battery that supplies power to auxiliary equipment as power for emergency running. shall be.
  • a power supply device for a railway vehicle is mounted on a railway vehicle equipped with a storage battery, and includes a transformer that insulates a primary side and a secondary side.
  • a power supply device for a railway vehicle includes a chopper circuit placed on the primary side of a transformer, a first inverter placed between the chopper circuit and the transformer, and a resonance capacitor that connects the first inverter and the transformer.
  • the transformer includes a resonant circuit disposed between the transformer and the DC load, and a second inverter disposed between the transformer and the DC load.
  • the chopper circuit performs a step-down operation when power is supplied from the overhead wire side, and performs a step-up operation when power is supplied from the storage battery side.
  • the first inverter converts the DC voltage applied from the chopper circuit into AC voltage and applies it to the primary side of the transformer, and converts the AC voltage applied from the primary side of the transformer into DC voltage and applies it to the chopper circuit. do.
  • the resonant circuit performs a series resonant operation using a capacitance component and an inductance component of a resonant capacitor.
  • the second inverter converts the AC voltage applied from the secondary side of the transformer into a DC voltage and applies it to a DC load and a storage battery connected in parallel to the DC load, and converts the DC voltage applied from the storage battery into an AC voltage. Convert it to voltage and apply it to the secondary side of the transformer.
  • a power supply device for a railway vehicle is configured to be able to supply power to auxiliary equipment using power from the overhead wires during normal running, and to use power from a storage battery to power the auxiliary equipment and the railway vehicle during emergency running. It is configured to be able to supply power to the main motor.
  • the power supply device for a railway vehicle it is possible to utilize the power of the storage battery that supplies power to the auxiliary equipment as power for emergency running.
  • a diagram showing the configuration of a power supply device according to modification 1 of the embodiment A diagram showing the configuration of a power supply device according to modification 2 of the embodiment
  • a diagram showing the configuration of a power supply device according to modification 3 of the embodiment A diagram showing the configuration of a power supply device according to modification 4 of the embodiment
  • a power supply device for a railway vehicle (hereinafter appropriately abbreviated as “power supply device") according to an embodiment of the present disclosure will be described in detail below with reference to the accompanying drawings.
  • connection includes both cases where components are directly connected to each other and cases where components are indirectly connected through other components. I'm here.
  • FIG. 1 is a diagram showing a configuration example of a railway vehicle system 100 including a power supply device 5 according to an embodiment.
  • the railway vehicle system 100 includes a current collector 2 , a power converter 3 , a main motor 4 , a power supply device 5 , a DC load 6 , and a storage battery 9 . These components are mounted on the railway vehicle 110.
  • the main electric motor 4 is a propulsion motor that provides propulsion to the railway vehicle 110.
  • the current collector 2 collects DC power from the overhead wire 1.
  • the current collector 2 supplies the collected DC power to the power converter 3.
  • the power conversion device 3 converts the DC power supplied from the current collector 2 into AC power to be supplied to the main motor 4 .
  • a VVVF inverter is used that converts an applied DC voltage into an AC voltage of variable voltage and variable frequency.
  • the current collector 2 supplies the collected DC power to the power supply device 5.
  • the power supply device 5 converts the DC power supplied from the current collector 2 into DC power to be supplied to the DC load 6 .
  • the DC load 6 includes an auxiliary machine 8.
  • the auxiliary machine 8 is a load other than the propulsion motor among the loads mounted on the railway vehicle 110.
  • the auxiliary equipment 8 are an in-vehicle lighting device, a door opening/closing device, an air conditioner, a security device, a compressor, a storage battery, and a control power source.
  • the storage battery 9 is a large-capacity power storage device, and is shown separately from the auxiliary device 8 in FIG.
  • the in-vehicle lighting system, door opening/closing system, air conditioner, security equipment, compressor, etc. are loads that operate by receiving alternating current power, and the power supply to these loads is provided by three unillustrated systems. This is done via a phase inverter.
  • small-capacity storage batteries, control power supplies, etc. are loads that receive DC power, and power is supplied to these loads by a charger or a DC (Direct Current)/DC converter (not shown). etc.
  • the power supply device 5 is configured to be able to supply power to the auxiliary equipment 8 using power from the overhead wire 1 during normal driving, and to supply power to the auxiliary equipment 8 using power from the storage battery 9 during emergency driving. and is configured to be able to supply power to the main motor 4. Healthy running means running when power is being supplied from the overhead wire 1, and emergency running means running when power is not being supplied from the overhead wire 1 due to, for example, a power outage.
  • the power supply device 5 may be performed when the power conversion device 3, which is the main conversion device, breaks down. In this case, in the emergency running, the railroad vehicle 110 that has made an emergency stop can be moved to a location where it does not interfere with the operation of other railroad vehicles.
  • FIG. 1 shows an overhead wire as the overhead wire 1 and a pantograph-shaped current collector as the current collector 2, the present invention is not limited to these.
  • the overhead wire 1 may be a third rail used in a subway or the like, and accordingly, the current collector 2 may be a current collector for the third rail.
  • FIG. 1 shows a case where the overhead wire 1 is a DC overhead wire, the overhead wire 1 may be an AC overhead wire.
  • a main transformer for stepping down the received AC voltage is provided downstream of the current collector 2, and an AC voltage outputted from the main transformer is installed downstream of the main transformer.
  • a converter is provided to convert the alternating current voltage to a direct current voltage.
  • FIG. 2 is a diagram showing a configuration example of a power supply main circuit 20, which is a main circuit of the power supply device 5 according to the embodiment. Components that are the same as those in FIG. 1 are designated with the same reference numerals.
  • the power supply main circuit 20 includes a chopper circuit 21, a capacitor C1, a resonant DC/DC converter 22, and a control section 30.
  • the resonant DC/DC converter 22 includes a first inverter 24 , a resonant circuit 25 , a transformer 28 , and a second inverter 26 .
  • the transformer 28 is an isolation transformer having a primary winding 28a and a secondary winding 28b that are magnetically coupled to each other.
  • the side connected to the primary winding 28a is referred to as the "primary side”
  • the side connected to the secondary winding 28b is referred to as the "secondary side”.
  • the chopper circuit 21 is arranged on the primary side of the transformer 28.
  • the chopper circuit 21 includes a first reactor L1, a first switching element Q11, and a second switching element Q12.
  • the first inverter 24 is arranged between the chopper circuit 21 and the transformer 28 on the primary side of the transformer 28.
  • the first inverter 24 includes four third to sixth switching elements Q21 to Q24 connected in a bridge manner.
  • the connection point between the third switching element Q21 and the fifth switching element Q23 is drawn out to form the first DC terminal 24a, and the connection point between the fourth switching element Q22 and the sixth switching element Q24 is drawn out to the outside and constitutes a second DC terminal 24b.
  • one end of the first reactor L1 is connected to the first DC terminal 24a of the first inverter 24.
  • One end of the first switching element Q11 is connected to the other end of the first reactor L1, and the other end is connected to the overhead wire 1 side.
  • the second switching element Q12 has one end connected to the other end of the first reactor L1, and the other end connected to the second DC terminal 24b of the first inverter.
  • the capacitor C1 has its positive side connected to the first DC terminal 24a, and its negative side connected to the second DC terminal 24b.
  • the capacitor C1 connected in this manner is provided to smooth the DC voltage output from the chopper circuit 21 and the DC voltage output from the first inverter 24.
  • the resonant circuit 25 is arranged between the first inverter 24 and the transformer 28.
  • the resonant circuit 25 includes a resonant capacitor C2 and a second reactor L2.
  • the resonant circuit 25 performs series resonant operation with the capacitance component of the resonant capacitor C2 and the inductance component of the second reactor L2. That is, the second reactor L2 acts as an inductance component in the resonance circuit 25.
  • the leakage inductance of the transformer 28 may be used instead of the second reactor L2. In this case, the second reactor L2 can be omitted.
  • the second inverter 26 is arranged between the transformer 28 and the DC load 6 on the secondary side of the transformer 28.
  • the second inverter 26 includes four seventh to tenth switching elements Q31 to Q34 connected in a bridge manner.
  • Examples of the first and second switching elements Q11, Q12, the third to sixth switching elements Q21 to Q24, and the seventh to tenth switching elements Q31 to Q34 are MOSFETs (Metal-Oxide-Semiconductor Field -Effect Transistor), but it may also be an IGBT (Insulated Gate Bipolar Transistor) or a transistor element other than IGBT.
  • MOSFETs Metal-Oxide-Semiconductor Field -Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • the first and second switching elements Q11 and Q12, the third to sixth switching elements Q21 to Q24, and the seventh to tenth switching elements Q31 to Q34 each have diodes connected in antiparallel.
  • Anti-parallel means that the first terminal corresponding to the drain of the MOSFET is connected to the cathode of the diode, and the second terminal corresponding to the source of the MOSFET is connected to the anode of the diode.
  • first and second switching elements Q11, Q12, the third to sixth switching elements Q21 to Q24, and the seventh to tenth switching elements Q31 to Q34 are generally made of silicon (Si). ), but other materials such as silicon carbide (SiC), gallium nitride (GaN), gallium oxide (Ga 2 O 3 ), diamond, etc. It may also be formed using a wide bandgap semiconductor. If each switching element is formed of a wide bandgap semiconductor material, it is possible to achieve low loss and high-speed switching.
  • the control unit 30 generates a switching signal G11 for controlling the first and second switching elements Q11 and Q12 of the chopper circuit 21 based on a detection signal from a sensor (not shown), and outputs it to the chopper circuit 21.
  • the control unit 30 also generates a switching signal G12 for controlling the third to sixth switching elements Q21 to Q24 of the first inverter 24 based on a detection signal from a sensor (not shown), and generates a switching signal G12 for controlling the third to sixth switching elements Q21 to Q24 of the first inverter 24.
  • the control unit 30 generates a switching signal G13 for controlling the seventh to tenth switching elements Q31 to Q34 of the second inverter 26 based on a detection signal from a sensor (not shown). Output to the inverter 26.
  • the power supply device 5 is mounted on a railway vehicle 110 equipped with a storage battery 9, has a primary winding 28a and a secondary winding 28b that are magnetically coupled to each other, and has a primary winding and a secondary winding.
  • This is a power supply device for a railway vehicle equipped with a transformer 28 that insulates the
  • the chopper circuit 21 performs a step-down operation or a through-operation when power is supplied from the overhead wire 1, and performs a step-up operation when power is supplied from the storage battery 9. That is, the chopper circuit 21 performs a step-down operation or a through-operation during normal driving, and performs a step-up operation during emergency driving.
  • the through operation is an operation when the second switching element Q12 is always off, and the voltage of the overhead line 1 is not stepped down but is applied to the capacitor C1 via the first switching element Q11 and the first reactor L1. be done.
  • the antiparallel-connected diodes ensure a current flow path, so the second switching element Q12 does not need to be turned on.
  • synchronous rectification may be performed in which the second switching element Q12 is turned on at the timing when a current flows through the diodes connected in antiparallel. Since the voltage drop due to the on-resistance of the transistor is smaller than the forward voltage drop of the diode, loss in the chopper circuit 21 can be reduced by performing synchronous rectification.
  • the capacitor C1 smoothes and holds the DC voltage output from the chopper circuit 21. Further, the capacitor C1 smoothes and holds the DC voltage output from the first inverter 24.
  • the first inverter 24 converts the DC voltage applied from the chopper circuit 21 into an AC voltage and applies it to the primary side of the transformer 28, and converts the AC voltage applied from the primary side of the transformer 28 into a DC voltage.
  • the voltage is applied to the chopper circuit 21.
  • the first inverter 24 operates as an inverter circuit during healthy running, and operates as a rectifier circuit during emergency running.
  • the third to sixth switching elements Q21 to Q24 provided in the first inverter 24 operate so that the conduction rate of each becomes 50%.
  • the third to sixth switching elements Q21 to Q24 are two switching elements located diagonally to each other, that is, a set of the third and sixth switching elements Q21 and Q24, and a set of the fourth and sixth switching elements Q21 and Q24.
  • the set of fifth switching elements Q22 and Q23 are turned on or off at the same time. Note that during switching control, due to variations in circuit operation, the switching elements of the set of third and fourth switching elements Q21 and Q22 and the set of fifth and sixth switching elements Q23 and Q24 connected in series may Needless to say, a dead time is provided to prevent them from being turned on at the same time.
  • the conductivity rate of 50% described here means the conductivity rate before dead time is provided.
  • a series resonance operation is performed between the capacitance component of the resonance capacitor C2 and the inductance component of the second reactor L2. Due to this series resonance operation, a resonance current flows through the resonance circuit 25.
  • the third to sixth switching elements Q21 to Q24 are controlled so that the conduction rate of each is 50%, so that the ON operation of the set of third and sixth switching elements Q21 and Q24 and the fourth The ON operation of the fifth switching elements Q22 and Q23 can be switched using the zero point where the resonance current becomes zero.
  • This operation is an example of a soft switching method and is called "zero current switching.” Thereby, switching losses in the third to sixth switching elements Q21 to Q24 can be reduced, so that the operation loss of the first inverter 24 can be reduced.
  • the power flow in the first inverter 24 is from the resonant circuit 25 to the chopper circuit 21, and the diodes connected in antiparallel ensure a current flow path.
  • the third to sixth switching elements Q21 to Q24 do not have to be turned on.
  • synchronous rectification may be performed in which a corresponding switching element is turned on at the timing when a current flows through diodes connected in antiparallel. By performing synchronous rectification, loss in the first inverter 24 can be reduced.
  • the voltage applied to the capacitor C1 via the first inverter 24 is controlled by adjusting the boost rate of the chopper circuit 21.
  • the conductivity of the third to sixth switching elements Q21 to Q24 can be maintained at 50%. This makes it possible to reduce switching loss in the first inverter 24 even when adjusting the voltage of the capacitor C1 to a desired voltage.
  • the second inverter 26 converts the AC voltage applied from the secondary side of the transformer 28 into a DC voltage, applies it to the DC load 6 and the storage battery 9 connected in parallel to the DC load 6, and applies the voltage from the storage battery 9 to the DC load 6 and the storage battery 9 connected in parallel to the DC load 6.
  • the DC voltage generated is converted into an AC voltage and applied to the secondary side of the transformer 28.
  • the second inverter 26 operates as a rectifier circuit during healthy running, and operates as an inverter circuit during emergency running.
  • the power supply device 5 is configured to be able to supply power to the auxiliary equipment 8 using the power from the overhead wire 1 during healthy driving, and to supply power from the storage battery 9 during emergency driving. It is configured such that it can be used to supply power to the auxiliary machine 8 and the main motor 4 mounted on the railway vehicle 110. Thereby, the power supply device 5 according to the embodiment can use the power of the storage battery 9 that supplies power to the auxiliary equipment 8 as power for emergency driving.
  • FIG. 3 is a block diagram showing an example of a hardware configuration for realizing the functions of the control unit 30 in the embodiment.
  • the configuration may include an interface 304 that performs.
  • the processor 300 is an example of a calculation means.
  • the processor 300 may be a calculation means called a microprocessor, microcomputer, microcontroller, CPU (Central Processing Unit), or DSP (Digital Signal Processor).
  • the memory 302 also includes nonvolatile or volatile semiconductor memories such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), and EEPROM (registered trademark) (Electrically EPROM); Examples include a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, and a DVD (Digital Versatile Disc).
  • the memory 302 stores a program that executes the functions of the control unit 30 in the embodiment.
  • the processor 300 can perform the above-described processing by exchanging necessary information via the interface 304 and executing a program stored in the memory 302.
  • the results of calculations by processor 300 can be stored in memory 302.
  • FIG. 4 is a block diagram showing another example of the hardware configuration for realizing the functions of the control unit 30 in the embodiment.
  • the processor 300 and memory 302 shown in FIG. 3 are replaced with a processing circuit 303.
  • the processing circuit 303 is a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. Information input to the processing circuit 303 and information output from the processing circuit 303 can be exchanged via the interface 304.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • FIG. 5 is a diagram showing the configuration of a power supply device 5A according to modification example 1 of the embodiment.
  • FIG. 2 the configuration in which the power supply device 5 has one power supply main circuit 20 has been described, but in the power supply device 5A shown in FIG. 5, two power supply main circuits 20 are connected in parallel to the overhead wire 1 and the DC load 6. ing.
  • FIG. 5 is an example, and three or more power supply main circuits 20 may be connected in parallel.
  • interleaving operation is applied to the two power supply main circuits 20.
  • the interleave operation is performed by shifting the phases from each other within one cycle of processing. For example, when the number of main power supply circuits 20 is two, the power supply main circuits 20 are operated with a phase shift of 180 degrees, and when the number of power supply main circuits 20 is four, they are operated with a phase shift of 90 degrees.
  • the main power supply circuit 20 is operated in an interleaved manner, the voltage ripple in the circuit can be reduced, so that the capacitance of the capacitor C1 can be reduced.
  • FIG. 6 is a diagram showing the configuration of a power supply device 5B according to a second modification of the embodiment.
  • the chopper circuit 21, the first inverter 24, the resonance circuit 25, the transformer 28, and the second inverter 26 in the power supply main circuit 20 are all arranged in parallel, but as shown in FIG. Only two inverters 26 may be arranged in parallel. Even with this configuration, interleaving operation is possible, and the same effect as the power supply device 5A according to the first modification can be obtained.
  • FIG. 7 is a diagram showing the configuration of a power supply device 5C according to modification 3 of the embodiment.
  • the second inverter 26 is arranged in parallel, but as shown in FIG. may be configured in parallel. Even with this configuration, interleaving operation is possible, and effects equivalent to those of the power supply device 5A according to the first modification and the power supply device 5B according to the second modification can be obtained.
  • FIG. 8 is a diagram showing the configuration of a power supply device 5D according to a fourth modification of the embodiment.
  • the chopper circuit 21, the first inverter 24, and the resonance circuit 25 are arranged in parallel, but as shown in FIG. 8, only the chopper circuit 21 may be arranged in parallel. Even with this configuration, interleaving operation is possible, and the same effect as the power supply device 5A according to modification example 1, the power supply device 5B according to modification example 2, and the power supply device 5C according to modification example 3 can be obtained. .
  • the power supply device for a railway vehicle is mounted on a railway vehicle equipped with a storage battery, and includes a transformer that insulates the primary side and the secondary side.
  • the power supply device includes a chopper circuit placed on the primary side of the transformer, a first inverter placed between the chopper circuit and the transformer, and a resonant capacitor placed between the first inverter and the transformer. and a second inverter placed between the transformer and the DC load.
  • the chopper circuit performs a step-down operation when power is supplied from the overhead wire side, and performs a step-up operation when power is supplied from the storage battery side.
  • the first inverter converts the DC voltage applied from the chopper circuit into AC voltage and applies it to the primary side of the transformer, and converts the AC voltage applied from the primary side of the transformer into DC voltage and applies it to the chopper circuit. do.
  • the resonant circuit performs a series resonant operation using a capacitance component and an inductance component of a resonant capacitor.
  • the second inverter converts the AC voltage applied from the secondary side of the transformer into a DC voltage and applies it to a DC load and a storage battery connected in parallel to the DC load, and converts the DC voltage applied from the storage battery into an AC voltage. Convert it to voltage and apply it to the secondary side of the transformer.
  • the power supply device for railway vehicles is configured to be able to supply power to auxiliary equipment using power from overhead wires during normal running, and to use power from storage batteries to power auxiliary equipment during emergency running. and is configured to be able to supply power to the main electric motor mounted on the railway vehicle. This makes it possible to obtain a power supply device for a railway vehicle that can utilize the power of the storage battery that supplies power to the auxiliary equipment as power for emergency running.
  • the chopper circuit includes a first reactor having one end connected to the first DC terminal of the first inverter, one end connected to the other end of the first reactor, and the other end connected to the overhead wire. a first switching element connected to the side, and a second switching element whose one end is connected to the other end of the first reactor and whose other end is connected to the second DC terminal of the first inverter.
  • the second switching element can be configured to include diodes connected in antiparallel.
  • the second switching element may perform a synchronous rectification operation in which it is turned on at the timing when a current flows through the antiparallel-connected diodes. In this way, loss in the chopper circuit can be reduced.
  • the third to sixth switching elements provided in the first inverter operate so that each conduction rate becomes 50%, and the two switching elements located diagonally to each other The elements can be operated to turn on or off simultaneously. With this operation, switching losses in the third to sixth switching elements can be reduced, and the loss in the operation of the first inverter can be reduced.
  • a capacitor for smoothing the DC voltage output from the chopper circuit or the DC voltage output from the first inverter may be provided between the chopper circuit and the first inverter. I can do it.
  • the voltage applied to the capacitor via the first inverter is controlled by adjusting the boost rate of the chopper circuit. In this way, even when adjusting the voltage of the capacitor C1 to a desired voltage, the conductivity of the third to sixth switching elements Q21 to Q24 can be maintained at 50%, so that the first inverter 24 can be reduced.
  • the configuration shown in the above embodiments is an example, and it is possible to combine it with another known technology, and a part of the configuration can be omitted or changed without departing from the gist. It is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

This power supply device (5) for a railroad vehicle is mounted onto a railroad vehicle (110) comprising a storage battery (9) and comprises a chopper circuit (21) disposed on the primary side of a transformer (28), a first inverter (24) disposed between the chopper circuit (21) and the transformer (28), a resonance circuit (25) disposed between the first inverter (24) and the transformer (28), and a second inverter (26) disposed between the transformer (28) and a direct current load (6). The chopper circuit (21) performs a step-down operation during a sound travel and performs a step-up operation during an emergency travel. The first inverter (24) converts a direct current voltage applied by the chopper circuit (21) into an alternating current voltage, and converts an alternating current voltage applied from the primary side of the transformer (28) into a direct current voltage. The second inverter (26) converts an alternating current voltage applied from the secondary side of the transformer (28) into a direct current voltage, and converts a direct current voltage applied by the storage battery (9) into an alternating current voltage.

Description

鉄道車両用の電源装置Power supply equipment for railway vehicles
 本開示は、蓄電池を備える鉄道車両に搭載される鉄道車両用の電源装置に関する。 The present disclosure relates to a power supply device for a railway vehicle mounted on a railway vehicle equipped with a storage battery.
 下記特許文献1には、直流架線から供給される直流電力をインバータによって交流電力に変換し、リアクトル及びコンデンサからなるLCフィルタと商用の絶縁トランスとによって絶縁した後、冷暖房装置、表示装置などの補機に必要とされる50/60[Hz]の三相交流電力又は単相交流電力に変換する鉄道車両用の電源装置が開示されている。なお、補機とは、鉄道車両に搭載されて電力が供給される機器のうち、推進モータ以外の機器を指して呼ぶ名称である。また、鉄道車両においては、推進モータを駆動する電源装置は「主変換装置」などと呼ばれ、補機への電力供給を行う電源装置とは、別に設けられている。 Patent Document 1 below discloses that DC power supplied from a DC overhead line is converted to AC power by an inverter, insulated by an LC filter consisting of a reactor and a capacitor, and a commercial insulation transformer, and then used for supplementary purposes such as air conditioning equipment, display devices, etc. A power supply device for a railway vehicle that converts 50/60 [Hz] three-phase AC power or single-phase AC power required for a railway vehicle is disclosed. Note that auxiliary equipment is a name used to refer to equipment other than the propulsion motor among equipment mounted on a railway vehicle and supplied with electric power. Furthermore, in a railway vehicle, a power supply device that drives a propulsion motor is called a "main converter" or the like, and is provided separately from a power supply device that supplies power to auxiliary machines.
 また、最近の技術動向として、蓄電池を搭載し、架線停電などの非常時においては、蓄電池の電力を利用して補機への電力供給を継続できるように構成された鉄道車両システムが存在する。 In addition, as a recent technological trend, there are railway vehicle systems that are equipped with storage batteries and are configured so that in emergencies such as overhead line power outages, the power from the storage batteries can be used to continue supplying power to auxiliary equipment.
特開2017-38424号公報JP2017-38424A
 非常時に補機への電力供給を行う蓄電池の電力を、非常走行用の電力として利用したいというニーズも存在する。しかしながら、補機への電力供給を行う電源装置における電力の流れは、上記特許文献1の電源装置もそうであるように、架線から補機へ向かう一方向性であり、このニーズに応えることができない。 There is also a need to use the power from a storage battery that supplies power to auxiliary equipment in an emergency as power for emergency driving. However, the power flow in the power supply device that supplies power to the auxiliary equipment is unidirectional from the overhead wire to the auxiliary equipment, as is the case with the power supply device of Patent Document 1, and this need cannot be met. Can not.
 本開示は、上記に鑑みてなされたものであって、補機への電力供給を行う蓄電池の電力を、非常走行用の電力として利用することができる鉄道車両用の電源装置を得ることを目的とする。 The present disclosure has been made in view of the above, and an object of the present disclosure is to obtain a power supply device for a railway vehicle that can use the power of a storage battery that supplies power to auxiliary equipment as power for emergency running. shall be.
 上述した課題を解決し、目的を達成するため、本開示に係る鉄道車両用の電源装置は、蓄電池を備える鉄道車両に搭載され、一次側と二次側とを絶縁するトランスを備える。鉄道車両用の電源装置は、トランスの一次側に配置されるチョッパ回路と、チョッパ回路とトランスとの間に配置される第1のインバータと、共振コンデンサを有して第1のインバータとトランスとの間に配置される共振回路と、トランスと直流負荷との間に配置される第2のインバータとを備える。チョッパ回路は、架線側から電力が供給されるときには降圧動作し、蓄電池側から電力が供給されるときには昇圧動作する。第1のインバータは、チョッパ回路から印加される直流電圧を交流電圧に変換してトランスの一次側に印加し、トランスの一次側から印加される交流電圧を直流電圧に変換してチョッパ回路に印加する。共振回路は、共振コンデンサのキャパシタンス成分と、インダクタンス成分とで直列共振動作を行う。第2のインバータは、トランスの二次側から印加される交流電圧を直流電圧に変換して直流負荷、及び直流負荷に並列に接続される蓄電池に印加し、蓄電池から印加される直流電圧を交流電圧に変換してトランスの二次側に印加する。鉄道車両用の電源装置は、健全走行時には架線からの電力を使用して補機への電力供給が可能に構成され、非常走行時には蓄電池からの電力を使用して補機及び鉄道車両に搭載される主電動機への電力供給が可能に構成される。 In order to solve the above-mentioned problems and achieve the objectives, a power supply device for a railway vehicle according to the present disclosure is mounted on a railway vehicle equipped with a storage battery, and includes a transformer that insulates a primary side and a secondary side. A power supply device for a railway vehicle includes a chopper circuit placed on the primary side of a transformer, a first inverter placed between the chopper circuit and the transformer, and a resonance capacitor that connects the first inverter and the transformer. The transformer includes a resonant circuit disposed between the transformer and the DC load, and a second inverter disposed between the transformer and the DC load. The chopper circuit performs a step-down operation when power is supplied from the overhead wire side, and performs a step-up operation when power is supplied from the storage battery side. The first inverter converts the DC voltage applied from the chopper circuit into AC voltage and applies it to the primary side of the transformer, and converts the AC voltage applied from the primary side of the transformer into DC voltage and applies it to the chopper circuit. do. The resonant circuit performs a series resonant operation using a capacitance component and an inductance component of a resonant capacitor. The second inverter converts the AC voltage applied from the secondary side of the transformer into a DC voltage and applies it to a DC load and a storage battery connected in parallel to the DC load, and converts the DC voltage applied from the storage battery into an AC voltage. Convert it to voltage and apply it to the secondary side of the transformer. A power supply device for a railway vehicle is configured to be able to supply power to auxiliary equipment using power from the overhead wires during normal running, and to use power from a storage battery to power the auxiliary equipment and the railway vehicle during emergency running. It is configured to be able to supply power to the main motor.
 本開示に係る鉄道車両用の電源装置によれば、補機への電力供給を行う蓄電池の電力を、非常走行用の電力として利用することができるという効果を奏する。 According to the power supply device for a railway vehicle according to the present disclosure, it is possible to utilize the power of the storage battery that supplies power to the auxiliary equipment as power for emergency running.
実施の形態に係る電源装置を含む鉄道車両システムの構成例を示す図A diagram showing a configuration example of a railway vehicle system including a power supply device according to an embodiment. 実施の形態に係る電源装置の主回路である電源主回路の構成例を示す図A diagram showing a configuration example of a power supply main circuit that is a main circuit of a power supply device according to an embodiment. 実施の形態における制御部の機能を実現するためのハードウェア構成の一例を示すブロック図A block diagram showing an example of a hardware configuration for realizing the functions of a control unit in an embodiment. 実施の形態における制御部の機能を実現するためのハードウェア構成の他の例を示すブロック図A block diagram showing another example of the hardware configuration for realizing the functions of the control unit in the embodiment. 実施の形態の変形例1に係る電源装置の構成を示す図A diagram showing the configuration of a power supply device according to modification 1 of the embodiment 実施の形態の変形例2に係る電源装置の構成を示す図A diagram showing the configuration of a power supply device according to modification 2 of the embodiment 実施の形態の変形例3に係る電源装置の構成を示す図A diagram showing the configuration of a power supply device according to modification 3 of the embodiment 実施の形態の変形例4に係る電源装置の構成を示す図A diagram showing the configuration of a power supply device according to modification 4 of the embodiment
 以下に添付図面を参照し、本開示の実施の形態に係る鉄道車両用の電源装置(以下、適宜「電源装置」と略す)について詳細に説明する。なお、以下の説明において、「接続」という文言は、構成要素同士が直接的に接続される場合と、構成要素同士が他の構成要素を介して間接的に接続される場合との双方を含んでいる。 A power supply device for a railway vehicle (hereinafter appropriately abbreviated as "power supply device") according to an embodiment of the present disclosure will be described in detail below with reference to the accompanying drawings. In the following explanation, the word "connection" includes both cases where components are directly connected to each other and cases where components are indirectly connected through other components. I'm here.
実施の形態.
 図1は、実施の形態に係る電源装置5を含む鉄道車両システム100の構成例を示す図である。実施の形態に係る鉄道車両システム100は、集電装置2と、電力変換装置3と、主電動機4と、電源装置5と、直流負荷6と、蓄電池9とを備える。これらの構成部は、鉄道車両110に搭載される。主電動機4は、鉄道車両110に推進力を与える推進モータである。
Embodiment.
FIG. 1 is a diagram showing a configuration example of a railway vehicle system 100 including a power supply device 5 according to an embodiment. The railway vehicle system 100 according to the embodiment includes a current collector 2 , a power converter 3 , a main motor 4 , a power supply device 5 , a DC load 6 , and a storage battery 9 . These components are mounted on the railway vehicle 110. The main electric motor 4 is a propulsion motor that provides propulsion to the railway vehicle 110.
 集電装置2は、架線1からの直流電力を集電する。集電装置2は、集電した直流電力を電力変換装置3に供給する。電力変換装置3は、集電装置2から供給される直流電力を主電動機4への交流電力に変換する。電力変換装置3としては、印加される直流電圧を可変電圧(Variable Voltage)及び可変周波数(Variable Frequency)の交流電圧に変換するVVVFインバータが用いられる。 The current collector 2 collects DC power from the overhead wire 1. The current collector 2 supplies the collected DC power to the power converter 3. The power conversion device 3 converts the DC power supplied from the current collector 2 into AC power to be supplied to the main motor 4 . As the power converter 3, a VVVF inverter is used that converts an applied DC voltage into an AC voltage of variable voltage and variable frequency.
 また、集電装置2は、集電した直流電力を電源装置5に供給する。電源装置5は、集電装置2から供給される直流電力を直流負荷6への直流電力に変換する。直流負荷6は、補機8を備える。 Further, the current collector 2 supplies the collected DC power to the power supply device 5. The power supply device 5 converts the DC power supplied from the current collector 2 into DC power to be supplied to the DC load 6 . The DC load 6 includes an auxiliary machine 8.
 前述したように、補機8は、鉄道車両110に搭載される負荷のうち、推進モータ以外の負荷である。補機8の例は、車内照明装置、ドア開閉装置、空調装置、保安機器、コンプレッサ、蓄電池、制御電源である。蓄電池9は、大容量の蓄電装置であり、図1では、補機8とは別に示している。補機8のうち、車内照明装置、ドア開閉装置、空調装置、保安機器、コンプレッサなどは、交流電力の供給を受けて動作する負荷であり、これらの負荷への電力供給は、不図示の三相インバータを介して行われる。また、補機8のうち、小容量の蓄電池、制御電源などは直流電力の供給を受ける負荷であり、これらの負荷への電力供給は、不図示の充電器又はDC(Direct Current)/DCコンバータなどを介して行われる。 As described above, the auxiliary machine 8 is a load other than the propulsion motor among the loads mounted on the railway vehicle 110. Examples of the auxiliary equipment 8 are an in-vehicle lighting device, a door opening/closing device, an air conditioner, a security device, a compressor, a storage battery, and a control power source. The storage battery 9 is a large-capacity power storage device, and is shown separately from the auxiliary device 8 in FIG. Among the auxiliary equipment 8, the in-vehicle lighting system, door opening/closing system, air conditioner, security equipment, compressor, etc. are loads that operate by receiving alternating current power, and the power supply to these loads is provided by three unillustrated systems. This is done via a phase inverter. In addition, among the auxiliary equipment 8, small-capacity storage batteries, control power supplies, etc. are loads that receive DC power, and power is supplied to these loads by a charger or a DC (Direct Current)/DC converter (not shown). etc.
 実施の形態に係る電源装置5は、健全走行時には架線1からの電力を使用して補機8への電力供給が可能に構成され、非常走行時には蓄電池9からの電力を使用して補機8及び主電動機4への電力供給が可能に構成される。健全走行とは、架線1からの電力が供給されているときの走行を意味し、非常走行とは、例えば停電等により、架線1からの電力が供給されないときの走行を意味している。 The power supply device 5 according to the embodiment is configured to be able to supply power to the auxiliary equipment 8 using power from the overhead wire 1 during normal driving, and to supply power to the auxiliary equipment 8 using power from the storage battery 9 during emergency driving. and is configured to be able to supply power to the main motor 4. Healthy running means running when power is being supplied from the overhead wire 1, and emergency running means running when power is not being supplied from the overhead wire 1 due to, for example, a power outage.
 健全走行時には、架線1からの電力供給が可能であるため、架線1からの電力を使用して補機8への電力供給が行われる。一方、非常走行時においては、架線1からの電力供給が途絶えるため、蓄電池9に蓄えられた電力で補機8への電力供給を行いつつ、蓄電池9に蓄えられた電力を利用して主電動機4を駆動することで、目的地までの非常走行を実施する。なお、電源装置5による非常走行は、主変換装置である電力変換装置3が故障した場合において、実施してもよい。この場合の非常走行では、非常停止した鉄道車両110を他の鉄道車両の運行の妨げにならない場所に移動させることができる。 During healthy running, power can be supplied from the overhead wire 1, so power is supplied to the auxiliary equipment 8 using the power from the overhead wire 1. On the other hand, during emergency running, since the power supply from the overhead wire 1 is interrupted, the power stored in the storage battery 9 is used to supply power to the auxiliary equipment 8, and the power stored in the storage battery 9 is used to power the main motor. By driving 4, emergency driving to the destination is carried out. Note that the emergency run by the power supply device 5 may be performed when the power conversion device 3, which is the main conversion device, breaks down. In this case, in the emergency running, the railroad vehicle 110 that has made an emergency stop can be moved to a location where it does not interfere with the operation of other railroad vehicles.
 なお、図1では、架線1として架空電線を示し、集電装置2としてパンタグラフ状の集電装置をそれぞれ示しているが、これらに限定されない。架線1としては、地下鉄等で使用されている第三軌条でもよく、これに合わせ、集電装置2は第三軌条用の集電装置を用いてもよい。また、図1では、架線1が直流架線である場合を示しているが、架線1は交流架線でもよい。なお、架線1が交流架線である場合、集電装置2の後段には、受電する交流電圧を降圧するための主変圧器が設けられ、主変圧器の後段には主変圧器から出力される交流電圧を直流電圧に変換するコンバータが設けられる。 Although FIG. 1 shows an overhead wire as the overhead wire 1 and a pantograph-shaped current collector as the current collector 2, the present invention is not limited to these. The overhead wire 1 may be a third rail used in a subway or the like, and accordingly, the current collector 2 may be a current collector for the third rail. Further, although FIG. 1 shows a case where the overhead wire 1 is a DC overhead wire, the overhead wire 1 may be an AC overhead wire. In addition, when the overhead line 1 is an AC overhead line, a main transformer for stepping down the received AC voltage is provided downstream of the current collector 2, and an AC voltage outputted from the main transformer is installed downstream of the main transformer. A converter is provided to convert the alternating current voltage to a direct current voltage.
 次に、実施の形態に係る電源装置5の具体的な回路構成について説明する。図2は、実施の形態に係る電源装置5の主回路である電源主回路20の構成例を示す図である。図1と同一の構成要素には、同一の符号を付して示している。電源主回路20は、図2に示すように、チョッパ回路21と、コンデンサC1と、共振型DC/DCコンバータ22と、制御部30とを備える。共振型DC/DCコンバータ22は、第1のインバータ24と、共振回路25と、トランス28と、第2のインバータ26とを備える。 Next, a specific circuit configuration of the power supply device 5 according to the embodiment will be described. FIG. 2 is a diagram showing a configuration example of a power supply main circuit 20, which is a main circuit of the power supply device 5 according to the embodiment. Components that are the same as those in FIG. 1 are designated with the same reference numerals. As shown in FIG. 2, the power supply main circuit 20 includes a chopper circuit 21, a capacitor C1, a resonant DC/DC converter 22, and a control section 30. The resonant DC/DC converter 22 includes a first inverter 24 , a resonant circuit 25 , a transformer 28 , and a second inverter 26 .
 トランス28は、互いに磁気結合する一次巻線28a及び二次巻線28bを有する絶縁トランスである。本稿では、一次巻線28aに接続される側を「一次側」と呼び、二次巻線28bに接続される側を「二次側」と呼ぶ。 The transformer 28 is an isolation transformer having a primary winding 28a and a secondary winding 28b that are magnetically coupled to each other. In this paper, the side connected to the primary winding 28a is referred to as the "primary side", and the side connected to the secondary winding 28b is referred to as the "secondary side".
 チョッパ回路21は、トランス28の一次側に配置される。チョッパ回路21は、第1のリアクトルL1と、第1のスイッチング素子Q11と、第2のスイッチング素子Q12とを備える。 The chopper circuit 21 is arranged on the primary side of the transformer 28. The chopper circuit 21 includes a first reactor L1, a first switching element Q11, and a second switching element Q12.
 第1のインバータ24は、トランス28の一次側において、チョッパ回路21とトランス28との間に配置される。第1のインバータ24は、ブリッジ接続される4つの第3~第6のスイッチング素子Q21~Q24を備える。第3のスイッチング素子Q21と第5のスイッチング素子Q23との接続点は外部に引き出されて第1の直流端子24aを構成し、第4のスイッチング素子Q22と第6のスイッチング素子Q24との接続点は外部に引き出されて第2の直流端子24bを構成している。 The first inverter 24 is arranged between the chopper circuit 21 and the transformer 28 on the primary side of the transformer 28. The first inverter 24 includes four third to sixth switching elements Q21 to Q24 connected in a bridge manner. The connection point between the third switching element Q21 and the fifth switching element Q23 is drawn out to form the first DC terminal 24a, and the connection point between the fourth switching element Q22 and the sixth switching element Q24 is drawn out to the outside and constitutes a second DC terminal 24b.
 チョッパ回路21において、第1のリアクトルL1は、一端が第1のインバータ24の第1の直流端子24aに接続される。第1のスイッチング素子Q11は、一端が第1のリアクトルL1の他端に接続され、他端が架線1側に接続される。第2のスイッチング素子Q12は、一端が第1のリアクトルL1の他端に接続され、他端が第1のインバータの第2の直流端子24bに接続される。 In the chopper circuit 21, one end of the first reactor L1 is connected to the first DC terminal 24a of the first inverter 24. One end of the first switching element Q11 is connected to the other end of the first reactor L1, and the other end is connected to the overhead wire 1 side. The second switching element Q12 has one end connected to the other end of the first reactor L1, and the other end connected to the second DC terminal 24b of the first inverter.
 コンデンサC1は、チョッパ回路21と第1のインバータ24との間において、正極側が第1の直流端子24aに接続され、負極側が第2の直流端子24bに接続される。このように接続されるコンデンサC1は、チョッパ回路21から出力される直流電圧、及び第1のインバータ24から出力される直流電圧を平滑するために設けられている。 Between the chopper circuit 21 and the first inverter 24, the capacitor C1 has its positive side connected to the first DC terminal 24a, and its negative side connected to the second DC terminal 24b. The capacitor C1 connected in this manner is provided to smooth the DC voltage output from the chopper circuit 21 and the DC voltage output from the first inverter 24.
 共振回路25は、第1のインバータ24とトランス28との間に配置される。共振回路25は、共振コンデンサC2と、第2のリアクトルL2とを有する。共振回路25は、共振コンデンサC2のキャパシタンス成分と、第2のリアクトルL2のインダクタンス成分とで直列共振動作を行う。即ち、第2のリアクトルL2は、共振回路25におけるインダクタンス成分として作用する。なお、第2のリアクトルL2に代えて、トランス28の漏れインダクタンスを利用してもよい。この場合、第2のリアクトルL2を省略することができる。 The resonant circuit 25 is arranged between the first inverter 24 and the transformer 28. The resonant circuit 25 includes a resonant capacitor C2 and a second reactor L2. The resonant circuit 25 performs series resonant operation with the capacitance component of the resonant capacitor C2 and the inductance component of the second reactor L2. That is, the second reactor L2 acts as an inductance component in the resonance circuit 25. Note that the leakage inductance of the transformer 28 may be used instead of the second reactor L2. In this case, the second reactor L2 can be omitted.
 第2のインバータ26は、トランス28の二次側において、トランス28と直流負荷6との間に配置される。第2のインバータ26は、ブリッジ接続される4つの第7~第10のスイッチング素子Q31~Q34を備える。 The second inverter 26 is arranged between the transformer 28 and the DC load 6 on the secondary side of the transformer 28. The second inverter 26 includes four seventh to tenth switching elements Q31 to Q34 connected in a bridge manner.
 第1及び第2のスイッチング素子Q11,Q12、第3~第6のスイッチング素子Q21~Q24、並びに第7~第10のスイッチング素子Q31~Q34の一例は、図示のMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)であるが、IGBT(Insulated Gate Bipolar Transistor)、又はIGBT以外のトランジスタ素子でもよい。 Examples of the first and second switching elements Q11, Q12, the third to sixth switching elements Q21 to Q24, and the seventh to tenth switching elements Q31 to Q34 are MOSFETs (Metal-Oxide-Semiconductor Field -Effect Transistor), but it may also be an IGBT (Insulated Gate Bipolar Transistor) or a transistor element other than IGBT.
 第1及び第2のスイッチング素子Q11,Q12、第3~第6のスイッチング素子Q21~Q24、並びに第7~第10のスイッチング素子Q31~Q34の各々は、逆並列に接続されるダイオードを有する。逆並列とは、MOSFETのドレインに相当する第1端子とダイオードのカソードとが接続され、MOSFETのソースに相当する第2端子とダイオードのアノードとが接続されることを意味する。 The first and second switching elements Q11 and Q12, the third to sixth switching elements Q21 to Q24, and the seventh to tenth switching elements Q31 to Q34 each have diodes connected in antiparallel. Anti-parallel means that the first terminal corresponding to the drain of the MOSFET is connected to the cathode of the diode, and the second terminal corresponding to the source of the MOSFET is connected to the anode of the diode.
 また、第1及び第2のスイッチング素子Q11,Q12、第3~第6のスイッチング素子Q21~Q24、並びに第7~第10のスイッチング素子Q31~Q34としては、一般的には珪素(Si:シリコン)を材料とするSi系半導体を用いて形成するのが主流であるが、炭化珪素(SiC:シリコンカーバイド)、窒化ガリウム(GaN)、酸化ガリウム(Ga)、ダイヤモンドなどを材料とするワイドバンドギャップ半導体を用いて形成してもよい。各々のスイッチング素子をワイドバンドギャップ半導体系の材料で形成すれば、低損失化及び高速スイッチング化を図ることができる。 Furthermore, the first and second switching elements Q11, Q12, the third to sixth switching elements Q21 to Q24, and the seventh to tenth switching elements Q31 to Q34 are generally made of silicon (Si). ), but other materials such as silicon carbide (SiC), gallium nitride (GaN), gallium oxide (Ga 2 O 3 ), diamond, etc. It may also be formed using a wide bandgap semiconductor. If each switching element is formed of a wide bandgap semiconductor material, it is possible to achieve low loss and high-speed switching.
 制御部30は、図示しないセンサからの検出信号に基づいて、チョッパ回路21の第1及び第2のスイッチング素子Q11,Q12を制御するためのスイッチング信号G11を生成してチョッパ回路21に出力する。また、制御部30は、図示しないセンサからの検出信号に基づいて、第1のインバータ24の第3~第6のスイッチング素子Q21~Q24を制御するためのスイッチング信号G12を生成して第2のインバータ26に出力する。更に、制御部30は、図示しないセンサからの検出信号に基づいて、第2のインバータ26の第7~第10のスイッチング素子Q31~Q34を制御するためのスイッチング信号G13を生成して第2のインバータ26に出力する。 The control unit 30 generates a switching signal G11 for controlling the first and second switching elements Q11 and Q12 of the chopper circuit 21 based on a detection signal from a sensor (not shown), and outputs it to the chopper circuit 21. The control unit 30 also generates a switching signal G12 for controlling the third to sixth switching elements Q21 to Q24 of the first inverter 24 based on a detection signal from a sensor (not shown), and generates a switching signal G12 for controlling the third to sixth switching elements Q21 to Q24 of the first inverter 24. Output to the inverter 26. Further, the control unit 30 generates a switching signal G13 for controlling the seventh to tenth switching elements Q31 to Q34 of the second inverter 26 based on a detection signal from a sensor (not shown). Output to the inverter 26.
 以上のように、実施の形態に係る電源装置5は、蓄電池9を備える鉄道車両110に搭載され、互いに磁気結合する一次巻線28a及び二次巻線28bを有して一次側と二次側とを絶縁するトランス28を備えた鉄道車両用の電源装置である。 As described above, the power supply device 5 according to the embodiment is mounted on a railway vehicle 110 equipped with a storage battery 9, has a primary winding 28a and a secondary winding 28b that are magnetically coupled to each other, and has a primary winding and a secondary winding. This is a power supply device for a railway vehicle equipped with a transformer 28 that insulates the
 次に、実施の形態に係る電源装置5の動作について説明する。チョッパ回路21は、架線1から電力が供給されるときには降圧動作又はスルー動作し、蓄電池9から電力が供給されるときには昇圧動作する。即ち、チョッパ回路21は、健全走行時には降圧動作又はスルー動作し、非常走行時には昇圧動作する。スルー動作は、第2のスイッチング素子Q12が常時オフのときの動作であり、架線1の電圧は降圧されずに、第1のスイッチング素子Q11及び第1のリアクトルL1を介して、コンデンサC1に印加される。 Next, the operation of the power supply device 5 according to the embodiment will be described. The chopper circuit 21 performs a step-down operation or a through-operation when power is supplied from the overhead wire 1, and performs a step-up operation when power is supplied from the storage battery 9. That is, the chopper circuit 21 performs a step-down operation or a through-operation during normal driving, and performs a step-up operation during emergency driving. The through operation is an operation when the second switching element Q12 is always off, and the voltage of the overhead line 1 is not stepped down but is applied to the capacitor C1 via the first switching element Q11 and the first reactor L1. be done.
 なお、チョッパ回路21の降圧動作では、逆並列に接続されるダイオードにより、電流の通流経路が確保されるので、第2のスイッチング素子Q12はオン動作しなくてもよい。一方、逆並列に接続されるダイオードに電流が流れるタイミングで第2のスイッチング素子Q12をオン動作させる同期整流を行ってもよい。トランジスタのオン抵抗による電圧降下は、ダイオードの順方向の電圧降下よりも小さいので、同期整流を行うことで、チョッパ回路21での損失を低減することができる。 Note that in the step-down operation of the chopper circuit 21, the antiparallel-connected diodes ensure a current flow path, so the second switching element Q12 does not need to be turned on. On the other hand, synchronous rectification may be performed in which the second switching element Q12 is turned on at the timing when a current flows through the diodes connected in antiparallel. Since the voltage drop due to the on-resistance of the transistor is smaller than the forward voltage drop of the diode, loss in the chopper circuit 21 can be reduced by performing synchronous rectification.
 コンデンサC1は、チョッパ回路21から出力される直流電圧を平滑して保持する。また、コンデンサC1は、第1のインバータ24から出力される直流電圧を平滑して保持する。 The capacitor C1 smoothes and holds the DC voltage output from the chopper circuit 21. Further, the capacitor C1 smoothes and holds the DC voltage output from the first inverter 24.
 第1のインバータ24は、チョッパ回路21から印加される直流電圧を交流電圧に変換してトランス28の一次側に印加し、トランス28の一次側から印加される交流電圧を直流電圧に変換してチョッパ回路21に印加する。第1のインバータ24は、健全走行時には、インバータ回路として動作し、非常走行時には整流回路として動作する。 The first inverter 24 converts the DC voltage applied from the chopper circuit 21 into an AC voltage and applies it to the primary side of the transformer 28, and converts the AC voltage applied from the primary side of the transformer 28 into a DC voltage. The voltage is applied to the chopper circuit 21. The first inverter 24 operates as an inverter circuit during healthy running, and operates as a rectifier circuit during emergency running.
 健全走行時において、第1のインバータ24に備えられる第3から第6のスイッチング素子Q21~Q24は、各々の通流率が50%になるように動作する。この動作の際に、第3から第6のスイッチング素子Q21~Q24は、互いに対角に位置する2つのスイッチング素子同士、即ち第3及び第6のスイッチング素子Q21,Q24の組、及び第4及び第5のスイッチング素子Q22,Q23の組は、同時にオンとなり、又は同時にオフとなる。なお、スイッチング制御に際し、回路動作のばらつきによって、直列に接続される、第3及び第4のスイッチング素子Q21,Q22の組及び第5及び第6のスイッチング素子Q23,Q24の組のスイッチング素子同士が同時にオンになることを防止するためのデッドタイムが設けられることは言うまでも無い。ここで説明する50%という通流率は、デッドタイムが設けられる前の通流率を意味する。 During healthy running, the third to sixth switching elements Q21 to Q24 provided in the first inverter 24 operate so that the conduction rate of each becomes 50%. During this operation, the third to sixth switching elements Q21 to Q24 are two switching elements located diagonally to each other, that is, a set of the third and sixth switching elements Q21 and Q24, and a set of the fourth and sixth switching elements Q21 and Q24. The set of fifth switching elements Q22 and Q23 are turned on or off at the same time. Note that during switching control, due to variations in circuit operation, the switching elements of the set of third and fourth switching elements Q21 and Q22 and the set of fifth and sixth switching elements Q23 and Q24 connected in series may Needless to say, a dead time is provided to prevent them from being turned on at the same time. The conductivity rate of 50% described here means the conductivity rate before dead time is provided.
 前述したように、共振回路25では、共振コンデンサC2のキャパシタンス成分と、第2のリアクトルL2のインダクタンス成分とで直列共振動作が行われる。この直列共振動作によって、共振回路25には、共振電流が流れる。第3から第6のスイッチング素子Q21~Q24は、各々の通流率が50%になるように制御されるので、第3及び第6のスイッチング素子Q21,Q24の組のオン動作と、第4及び第5のスイッチング素子Q22,Q23のオン動作とは、共振電流がゼロとなるゼロ点を利用して切り替えることができる。この動作は、ソフトスイッチング方式の一例であり、「ゼロ電流スイッチング」と呼ばれる。これにより、第3から第6のスイッチング素子Q21~Q24におけるスイッチング損失を低減できるので、第1のインバータ24の動作の低損失化を図ることができる。 As described above, in the resonance circuit 25, a series resonance operation is performed between the capacitance component of the resonance capacitor C2 and the inductance component of the second reactor L2. Due to this series resonance operation, a resonance current flows through the resonance circuit 25. The third to sixth switching elements Q21 to Q24 are controlled so that the conduction rate of each is 50%, so that the ON operation of the set of third and sixth switching elements Q21 and Q24 and the fourth The ON operation of the fifth switching elements Q22 and Q23 can be switched using the zero point where the resonance current becomes zero. This operation is an example of a soft switching method and is called "zero current switching." Thereby, switching losses in the third to sixth switching elements Q21 to Q24 can be reduced, so that the operation loss of the first inverter 24 can be reduced.
 なお、非常走行時において、第1のインバータ24における電力の流れは、共振回路25からチョッパ回路21に向かう方向であり、逆並列に接続されるダイオードにより、電流の通流経路が確保されるので、第3から第6のスイッチング素子Q21~Q24はオン動作しなくてもよい。一方、逆並列に接続されるダイオードに電流が流れるタイミングで、対応するスイッチング素子をオン動作させる同期整流を行ってもよい。同期整流を行うことで、第1のインバータ24での損失を低減することができる。 Note that during emergency running, the power flow in the first inverter 24 is from the resonant circuit 25 to the chopper circuit 21, and the diodes connected in antiparallel ensure a current flow path. , the third to sixth switching elements Q21 to Q24 do not have to be turned on. On the other hand, synchronous rectification may be performed in which a corresponding switching element is turned on at the timing when a current flows through diodes connected in antiparallel. By performing synchronous rectification, loss in the first inverter 24 can be reduced.
 また、非常走行時において、第1のインバータ24を介してコンデンサC1に印加される電圧は、チョッパ回路21の昇圧率を調整することで制御する。このようにすれば、コンデンサC1の電圧を所望の電圧に調整するときでも、第3から第6のスイッチング素子Q21~Q24の通流率を50%に維持することができる。これにより、コンデンサC1の電圧を所望の電圧に調整するときでも、第1のインバータ24におけるスイッチング損失の低減が可能となる。 Furthermore, during emergency running, the voltage applied to the capacitor C1 via the first inverter 24 is controlled by adjusting the boost rate of the chopper circuit 21. In this way, even when adjusting the voltage of the capacitor C1 to a desired voltage, the conductivity of the third to sixth switching elements Q21 to Q24 can be maintained at 50%. This makes it possible to reduce switching loss in the first inverter 24 even when adjusting the voltage of the capacitor C1 to a desired voltage.
 第2のインバータ26は、トランス28の二次側から印加される交流電圧を直流電圧に変換して直流負荷6、及び直流負荷6に並列に接続される蓄電池9に印加し、蓄電池9から印加される直流電圧を交流電圧に変換してトランス28の二次側に印加する。第2のインバータ26は、健全走行時には整流回路として動作し、非常走行時にはインバータ回路として動作する。 The second inverter 26 converts the AC voltage applied from the secondary side of the transformer 28 into a DC voltage, applies it to the DC load 6 and the storage battery 9 connected in parallel to the DC load 6, and applies the voltage from the storage battery 9 to the DC load 6 and the storage battery 9 connected in parallel to the DC load 6. The DC voltage generated is converted into an AC voltage and applied to the secondary side of the transformer 28. The second inverter 26 operates as a rectifier circuit during healthy running, and operates as an inverter circuit during emergency running.
 以上説明したように、実施の形態に係る電源装置5は、健全走行時には架線1からの電力を使用して補機8への電力供給が可能に構成され、非常走行時には蓄電池9からの電力を使用して補機8及び鉄道車両110に搭載される主電動機4への電力供給が可能に構成されている。これにより、実施の形態に係る電源装置5は、補機8への電力供給を行う蓄電池9の電力を、非常走行用の電力として利用することが可能となる。 As explained above, the power supply device 5 according to the embodiment is configured to be able to supply power to the auxiliary equipment 8 using the power from the overhead wire 1 during healthy driving, and to supply power from the storage battery 9 during emergency driving. It is configured such that it can be used to supply power to the auxiliary machine 8 and the main motor 4 mounted on the railway vehicle 110. Thereby, the power supply device 5 according to the embodiment can use the power of the storage battery 9 that supplies power to the auxiliary equipment 8 as power for emergency driving.
 図3は、実施の形態における制御部30の機能を実現するためのハードウェア構成の一例を示すブロック図である。実施の形態における制御部30の機能を実現する場合には、図3に示されるように、演算を行うプロセッサ300、プロセッサ300によって読みとられるプログラムが保存されるメモリ302、及び信号の入出力を行うインタフェース304を含む構成とすることができる。 FIG. 3 is a block diagram showing an example of a hardware configuration for realizing the functions of the control unit 30 in the embodiment. In order to realize the functions of the control unit 30 in the embodiment, as shown in FIG. The configuration may include an interface 304 that performs.
 プロセッサ300は、演算手段の一例である。プロセッサ300は、マイクロプロセッサ、マイクロコンピュータ、マイクロコントローラ、CPU(Central Processing Unit)、又はDSP(Digital Signal Processor)と称される演算手段であってもよい。また、メモリ302には、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)といった不揮発性又は揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)を例示することができる。 The processor 300 is an example of a calculation means. The processor 300 may be a calculation means called a microprocessor, microcomputer, microcontroller, CPU (Central Processing Unit), or DSP (Digital Signal Processor). The memory 302 also includes nonvolatile or volatile semiconductor memories such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), and EEPROM (registered trademark) (Electrically EPROM); Examples include a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, and a DVD (Digital Versatile Disc).
 メモリ302には、実施の形態における制御部30の機能を実行するプログラムが格納されている。プロセッサ300は、インタフェース304を介して必要な情報を授受し、メモリ302に格納されたプログラムをプロセッサ300が実行することにより、上述した処理を行うことができる。プロセッサ300による演算結果は、メモリ302に記憶することができる。 The memory 302 stores a program that executes the functions of the control unit 30 in the embodiment. The processor 300 can perform the above-described processing by exchanging necessary information via the interface 304 and executing a program stored in the memory 302. The results of calculations by processor 300 can be stored in memory 302.
 また、実施の形態における制御部30の機能を実現する場合には、図4に示す構成でもよい。図4は、実施の形態における制御部30の機能を実現するためのハードウェア構成の他の例を示すブロック図である。図4では、図3に示すプロセッサ300及びメモリ302が処理回路303に置き替えられている。処理回路303は、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。処理回路303に入力する情報、及び処理回路303から出力する情報は、インタフェース304を介して授受することができる。 Furthermore, when realizing the functions of the control unit 30 in the embodiment, the configuration shown in FIG. 4 may be used. FIG. 4 is a block diagram showing another example of the hardware configuration for realizing the functions of the control unit 30 in the embodiment. In FIG. 4, the processor 300 and memory 302 shown in FIG. 3 are replaced with a processing circuit 303. The processing circuit 303 is a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. Information input to the processing circuit 303 and information output from the processing circuit 303 can be exchanged via the interface 304.
 次に、実施の形態に係る電源装置5の変形例について説明する。図5は、実施の形態の変形例1に係る電源装置5Aの構成を示す図である。図2では電源装置5が1つの電源主回路20を有する構成について説明したが、図5に示す電源装置5Aでは、2つの電源主回路20が架線1及び直流負荷6に対して並列に接続されている。なお、図5は一例であり、並列に接続される電源主回路20は、3つ以上であってもよい。 Next, a modification of the power supply device 5 according to the embodiment will be described. FIG. 5 is a diagram showing the configuration of a power supply device 5A according to modification example 1 of the embodiment. In FIG. 2, the configuration in which the power supply device 5 has one power supply main circuit 20 has been described, but in the power supply device 5A shown in FIG. 5, two power supply main circuits 20 are connected in parallel to the overhead wire 1 and the DC load 6. ing. Note that FIG. 5 is an example, and three or more power supply main circuits 20 may be connected in parallel.
 図5に示す電源装置5Aの構成では、2つの電源主回路20に対してインタリーブ動作を適用する。インタリーブ動作とは、処理の1周期内で、互いに位相をずらして動作させることを行う。例えば、電源主回路20の数が2である場合には、位相を180度ずらして動作させ、電源主回路20の数が4である場合には、位相を90度ずらして動作させる。電源主回路20をインタリーブ動作させた場合、回路内の電圧のリップルを小さくできるので、コンデンサC1の容量の低減が可能となる。 In the configuration of the power supply device 5A shown in FIG. 5, interleaving operation is applied to the two power supply main circuits 20. The interleave operation is performed by shifting the phases from each other within one cycle of processing. For example, when the number of main power supply circuits 20 is two, the power supply main circuits 20 are operated with a phase shift of 180 degrees, and when the number of power supply main circuits 20 is four, they are operated with a phase shift of 90 degrees. When the main power supply circuit 20 is operated in an interleaved manner, the voltage ripple in the circuit can be reduced, so that the capacitance of the capacitor C1 can be reduced.
 図6は、実施の形態の変形例2に係る電源装置5Bの構成を示す図である。図5では、電源主回路20におけるチョッパ回路21、第1のインバータ24、共振回路25、トランス28及び第2のインバータ26の全てを並列化して構成していたが、図6のように、第2のインバータ26のみを並列化して構成してもよい。このように構成しても、インタリーブ動作は可能であり、変形例1に係る電源装置5Aと同等の効果を得ることができる。 FIG. 6 is a diagram showing the configuration of a power supply device 5B according to a second modification of the embodiment. In FIG. 5, the chopper circuit 21, the first inverter 24, the resonance circuit 25, the transformer 28, and the second inverter 26 in the power supply main circuit 20 are all arranged in parallel, but as shown in FIG. Only two inverters 26 may be arranged in parallel. Even with this configuration, interleaving operation is possible, and the same effect as the power supply device 5A according to the first modification can be obtained.
 また、図7は、実施の形態の変形例3に係る電源装置5Cの構成を示す図である。図6では、第2のインバータ26のみを並列化して構成していたが、図7のように、第2のインバータ26を除く、チョッパ回路21、第1のインバータ24及び共振回路25の3つを並列化して構成してもよい。このように構成しても、インタリーブ動作は可能であり、変形例1に係る電源装置5A、及び変形例2に係る電源装置5Bと同等の効果を得ることができる。 Further, FIG. 7 is a diagram showing the configuration of a power supply device 5C according to modification 3 of the embodiment. In FIG. 6, only the second inverter 26 is arranged in parallel, but as shown in FIG. may be configured in parallel. Even with this configuration, interleaving operation is possible, and effects equivalent to those of the power supply device 5A according to the first modification and the power supply device 5B according to the second modification can be obtained.
 また、図8は、実施の形態の変形例4に係る電源装置5Dの構成を示す図である。図7では、チョッパ回路21、第1のインバータ24及び共振回路25の3つを並列化して構成していたが、図8のように、チョッパ回路21のみを並列化して構成してもよい。このように構成しても、インタリーブ動作は可能であり、変形例1に係る電源装置5A、変形例2に係る電源装置5B及び変形例3に係る電源装置5Cと同等の効果を得ることができる。 Further, FIG. 8 is a diagram showing the configuration of a power supply device 5D according to a fourth modification of the embodiment. In FIG. 7, the chopper circuit 21, the first inverter 24, and the resonance circuit 25 are arranged in parallel, but as shown in FIG. 8, only the chopper circuit 21 may be arranged in parallel. Even with this configuration, interleaving operation is possible, and the same effect as the power supply device 5A according to modification example 1, the power supply device 5B according to modification example 2, and the power supply device 5C according to modification example 3 can be obtained. .
 以上説明したように、実施の形態に係る鉄道車両用の電源装置は、蓄電池を備える鉄道車両に搭載され、一次側と二次側とを絶縁するトランスを備える。電源装置は、トランスの一次側に配置されるチョッパ回路と、チョッパ回路とトランスとの間に配置される第1のインバータと、共振コンデンサを有して第1のインバータとトランスとの間に配置される共振回路と、トランスと直流負荷との間に配置される第2のインバータとを備える。チョッパ回路は、架線側から電力が供給されるときには降圧動作し、蓄電池側から電力が供給されるときには昇圧動作する。第1のインバータは、チョッパ回路から印加される直流電圧を交流電圧に変換してトランスの一次側に印加し、トランスの一次側から印加される交流電圧を直流電圧に変換してチョッパ回路に印加する。共振回路は、共振コンデンサのキャパシタンス成分と、インダクタンス成分とで直列共振動作を行う。第2のインバータは、トランスの二次側から印加される交流電圧を直流電圧に変換して直流負荷、及び直流負荷に並列に接続される蓄電池に印加し、蓄電池から印加される直流電圧を交流電圧に変換してトランスの二次側に印加する。上記の構成要素により、鉄道車両用の電源装置は、健全走行時には架線からの電力を使用して補機への電力供給が可能に構成され、非常走行時には蓄電池からの電力を使用して補機及び鉄道車両に搭載される主電動機への電力供給が可能に構成される。これにより、補機への電力供給を行う蓄電池の電力を、非常走行用の電力として利用することができる鉄道車両用の電源装置を得ることが可能となる。 As described above, the power supply device for a railway vehicle according to the embodiment is mounted on a railway vehicle equipped with a storage battery, and includes a transformer that insulates the primary side and the secondary side. The power supply device includes a chopper circuit placed on the primary side of the transformer, a first inverter placed between the chopper circuit and the transformer, and a resonant capacitor placed between the first inverter and the transformer. and a second inverter placed between the transformer and the DC load. The chopper circuit performs a step-down operation when power is supplied from the overhead wire side, and performs a step-up operation when power is supplied from the storage battery side. The first inverter converts the DC voltage applied from the chopper circuit into AC voltage and applies it to the primary side of the transformer, and converts the AC voltage applied from the primary side of the transformer into DC voltage and applies it to the chopper circuit. do. The resonant circuit performs a series resonant operation using a capacitance component and an inductance component of a resonant capacitor. The second inverter converts the AC voltage applied from the secondary side of the transformer into a DC voltage and applies it to a DC load and a storage battery connected in parallel to the DC load, and converts the DC voltage applied from the storage battery into an AC voltage. Convert it to voltage and apply it to the secondary side of the transformer. With the above-mentioned components, the power supply device for railway vehicles is configured to be able to supply power to auxiliary equipment using power from overhead wires during normal running, and to use power from storage batteries to power auxiliary equipment during emergency running. and is configured to be able to supply power to the main electric motor mounted on the railway vehicle. This makes it possible to obtain a power supply device for a railway vehicle that can utilize the power of the storage battery that supplies power to the auxiliary equipment as power for emergency running.
 なお、上記の構成において、チョッパ回路は、一端が第1のインバータの第1の直流端子に接続される第1のリアクトルと、一端が第1のリアクトルの他端に接続され、他端が架線側に接続される第1のスイッチング素子と、一端が第1のリアクトルの他端に接続され、他端が第1のインバータの第2の直流端子に接続される第2のスイッチング素子とを備えると共に、第2のスイッチング素子が逆並列に接続されるダイオードを備えるように構成することができる。この構成において、第2のスイッチング素子は、チョッパ回路が降圧動作する際には、逆並列に接続されるダイオードに電流が流れるタイミングでオン動作する同期整流動作を行わせてもよい。このようにすれば、チョッパ回路での損失を低減することができる。 In the above configuration, the chopper circuit includes a first reactor having one end connected to the first DC terminal of the first inverter, one end connected to the other end of the first reactor, and the other end connected to the overhead wire. a first switching element connected to the side, and a second switching element whose one end is connected to the other end of the first reactor and whose other end is connected to the second DC terminal of the first inverter. In addition, the second switching element can be configured to include diodes connected in antiparallel. In this configuration, when the chopper circuit performs a step-down operation, the second switching element may perform a synchronous rectification operation in which it is turned on at the timing when a current flows through the antiparallel-connected diodes. In this way, loss in the chopper circuit can be reduced.
 また、上記の構成において、第1のインバータに備えられる第3から第6のスイッチング素子は、各々の通流率が50%になるように動作し、且つ、互いに対角に位置する2つのスイッチング素子同士は、同時にオン又はオフするように動作させることができる。この動作により、第3から第6のスイッチング素子におけるスイッチング損失を低減して、第1のインバータの動作の低損失化を図ることができる。 Further, in the above configuration, the third to sixth switching elements provided in the first inverter operate so that each conduction rate becomes 50%, and the two switching elements located diagonally to each other The elements can be operated to turn on or off simultaneously. With this operation, switching losses in the third to sixth switching elements can be reduced, and the loss in the operation of the first inverter can be reduced.
 また、上記の構成において、チョッパ回路から出力される直流電圧、又は第1のインバータから出力される直流電圧を平滑するコンデンサを、チョッパ回路と第1のインバータとの間に備えるように構成することができる。この構成において、第1のインバータを介してコンデンサに印加される電圧は、チョッパ回路の昇圧率を調整することで制御する。このようにすれば、コンデンサC1の電圧を所望の電圧に調整するときでも、第3から第6のスイッチング素子Q21~Q24の通流率を50%に維持することができるので、第1のインバータ24におけるスイッチング損失を低減することができる。 Further, in the above configuration, a capacitor for smoothing the DC voltage output from the chopper circuit or the DC voltage output from the first inverter may be provided between the chopper circuit and the first inverter. I can do it. In this configuration, the voltage applied to the capacitor via the first inverter is controlled by adjusting the boost rate of the chopper circuit. In this way, even when adjusting the voltage of the capacitor C1 to a desired voltage, the conductivity of the third to sixth switching elements Q21 to Q24 can be maintained at 50%, so that the first inverter 24 can be reduced.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above embodiments is an example, and it is possible to combine it with another known technology, and a part of the configuration can be omitted or changed without departing from the gist. It is possible.
 1 架線、2 集電装置、3 電力変換装置、4 主電動機、5,5A,5B,5C,5D 電源装置、6 直流負荷、8 補機、9 蓄電池、20 電源主回路、21 チョッパ回路、22 共振型DC/DCコンバータ、24 第1のインバータ、24a 第1の直流端子、24b 第2の直流端子、25 共振回路、26 第2のインバータ、28 トランス、28a 一次巻線、28b 二次巻線、30 制御部、100 鉄道車両システム、110 鉄道車両、300 プロセッサ、302 メモリ、303 処理回路、304 インタフェース、C1 コンデンサ、C2 共振コンデンサ、G11~G13 スイッチング信号、L1 第1のリアクトル、L2 第2のリアクトル、Q11 第1のスイッチング素子、Q12 第2のスイッチング素子、Q21 第3のスイッチング素子、Q22 第4のスイッチング素子、Q23 第5のスイッチング素子、Q24 第6のスイッチング素子、Q31 第7のスイッチング素子、Q32 第8のスイッチング素子、Q33 第9のスイッチング素子、Q34 第10のスイッチング素子。 1 Overhead line, 2 Current collector, 3 Power conversion device, 4 Main motor, 5, 5A, 5B, 5C, 5D Power supply device, 6 DC load, 8 Auxiliary equipment, 9 Storage battery, 20 Main power supply circuit, 21 Chopper circuit, 22 Resonant DC/DC converter, 24 first inverter, 24a first DC terminal, 24b second DC terminal, 25 resonance circuit, 26 second inverter, 28 transformer, 28a primary winding, 28b secondary winding , 30 control unit, 100 railway vehicle system, 110 railway vehicle, 300 processor, 302 memory, 303 processing circuit, 304 interface, C1 capacitor, C2 resonant capacitor, G11 to G13 switching signal, L1 first reactor, L2 second Reactor, Q11 first switching element, Q12 second switching element, Q21 third switching element, Q22 fourth switching element, Q23 fifth switching element, Q24 sixth switching element, Q31 seventh switching element , Q32 eighth switching element, Q33 ninth switching element, Q34 tenth switching element.

Claims (8)

  1.  蓄電池を備える鉄道車両に搭載され、一次側と二次側とを絶縁するトランスを備えた鉄道車両用の電源装置であって、
     前記トランスの一次側に配置され、架線側から電力が供給されるときには降圧動作し、蓄電池側から電力が供給されるときには昇圧動作するチョッパ回路と、
     前記チョッパ回路と前記トランスとの間に配置され、前記チョッパ回路から印加される直流電圧を交流電圧に変換して前記トランスの一次側に印加し、前記トランスの一次側から印加される交流電圧を直流電圧に変換して前記チョッパ回路に印加する第1のインバータと、
     共振コンデンサを有して前記第1のインバータと前記トランスとの間に配置され、前記共振コンデンサのキャパシタンス成分と、インダクタンス成分とで直列共振動作を行う共振回路と、
     前記トランスと直流負荷との間に配置され、前記トランスの二次側から印加される交流電圧を直流電圧に変換して前記直流負荷、及び前記直流負荷に並列に接続される前記蓄電池に印加し、前記蓄電池から印加される直流電圧を交流電圧に変換して前記トランスの二次側に印加する第2のインバータと、
     を備え、
     健全走行時には架線からの電力を使用して補機への電力供給が可能に構成され、
     非常走行時には前記蓄電池からの電力を使用して前記補機及び前記鉄道車両に搭載される主電動機への電力供給が可能に構成される
     ことを特徴とする鉄道車両用の電源装置。
    A power supply device for a railway vehicle, which is mounted on a railway vehicle equipped with a storage battery and includes a transformer that insulates a primary side and a secondary side,
    a chopper circuit that is disposed on the primary side of the transformer, performs a step-down operation when power is supplied from the overhead wire side, and performs a step-up operation when power is supplied from the storage battery side;
    It is arranged between the chopper circuit and the transformer, converts the DC voltage applied from the chopper circuit into an AC voltage and applies it to the primary side of the transformer, and converts the AC voltage applied from the primary side of the transformer into an AC voltage. a first inverter that converts the DC voltage into a DC voltage and applies it to the chopper circuit;
    a resonant circuit having a resonant capacitor, disposed between the first inverter and the transformer, and performing series resonant operation with a capacitance component and an inductance component of the resonant capacitor;
    The transformer is disposed between the transformer and the DC load, and converts the AC voltage applied from the secondary side of the transformer into a DC voltage, and applies the DC voltage to the DC load and the storage battery connected in parallel to the DC load. , a second inverter that converts the DC voltage applied from the storage battery into AC voltage and applies it to the secondary side of the transformer;
    Equipped with
    When running in good condition, it is configured to use power from the overhead wires to supply power to auxiliary equipment.
    A power supply device for a railway vehicle, characterized in that, during emergency running, power from the storage battery can be used to supply power to the auxiliary equipment and the main motor mounted on the railway vehicle.
  2.  前記チョッパ回路は、
     健全走行時には降圧動作又はスルー動作し、
     非常走行時には昇圧動作する
     ことを特徴とする請求項1に記載の鉄道車両用の電源装置。
    The chopper circuit is
    During healthy driving, it operates in step-down or through mode,
    The power supply device for a railway vehicle according to claim 1, wherein the power supply device performs a step-up operation during emergency running.
  3.  前記チョッパ回路は、
     一端が前記第1のインバータの第1の直流端子に接続される第1のリアクトルと、
     一端が前記第1のリアクトルの他端に接続され、他端が架線側に接続される第1のスイッチング素子と、
     一端が前記第1のリアクトルの他端に接続され、他端が前記第1のインバータの第2の直流端子に接続される第2のスイッチング素子と、を備え、
     前記第1及び第2のスイッチング素子は、各々が逆並列に接続されるダイオードを備え、
     前記第2のスイッチング素子は、前記チョッパ回路が降圧動作する際には、逆並列に接続されるダイオードに電流が流れるタイミングでオン動作する
     ことを特徴とする請求項1又は2に記載の鉄道車両用の電源装置。
    The chopper circuit is
    a first reactor having one end connected to a first DC terminal of the first inverter;
    a first switching element having one end connected to the other end of the first reactor and the other end connected to the overhead wire side;
    a second switching element, one end of which is connected to the other end of the first reactor, and the other end of which is connected to a second DC terminal of the first inverter,
    The first and second switching elements each include diodes connected in antiparallel,
    The railway vehicle according to claim 1 or 2, wherein the second switching element is turned on at a timing when a current flows through diodes connected in antiparallel when the chopper circuit performs a step-down operation. Power supply for.
  4.  前記第1のインバータと前記トランスとの間に配置される第2のリアクトルを備え、
     前記第2のリアクトルは、前記共振回路における前記インダクタンス成分として作用する
     ことを特徴とする請求項1又は2に記載の鉄道車両用の電源装置。
    comprising a second reactor disposed between the first inverter and the transformer,
    The power supply device for a railway vehicle according to claim 1 or 2, wherein the second reactor acts as the inductance component in the resonant circuit.
  5.  前記第1のインバータは、フルブリッジ接続される第3から第6のスイッチング素子を備え、
     前記第3から第6のスイッチング素子は、各々が逆並列に接続されるダイオードを備え、
     前記第1のインバータは、
     健全走行時にはインバータ回路として動作し、
     非常走行時には整流回路として動作する
     ことを特徴とする請求項1から4の何れか1項に記載の鉄道車両用の電源装置。
    The first inverter includes third to sixth switching elements connected in a full bridge,
    The third to sixth switching elements each include diodes connected in antiparallel,
    The first inverter is
    During healthy driving, it operates as an inverter circuit,
    The power supply device for a railway vehicle according to any one of claims 1 to 4, characterized in that it operates as a rectifier circuit during emergency running.
  6.  前記第3から第6のスイッチング素子は、各々の通流率が50%になるように動作し、且つ、互いに対角に位置する2つのスイッチング素子同士は、同時にオン又はオフする
     ことを特徴とする請求項5に記載の鉄道車両用の電源装置。
    The third to sixth switching elements operate so that each conduction rate becomes 50%, and two switching elements located diagonally to each other are turned on or off at the same time. The power supply device for a railway vehicle according to claim 5.
  7.  前記チョッパ回路と前記第1のインバータとの間に配置され、前記チョッパ回路から出力される直流電圧、又は前記第1のインバータから出力される直流電圧を平滑するコンデンサを備え、
     前記第1のインバータを介して前記コンデンサに印加される電圧は、前記チョッパ回路の昇圧率を調整することで制御される
     ことを特徴とする請求項6に記載の鉄道車両用の電源装置。
    a capacitor disposed between the chopper circuit and the first inverter that smoothes the DC voltage output from the chopper circuit or the DC voltage output from the first inverter;
    The power supply device for a railway vehicle according to claim 6, wherein the voltage applied to the capacitor via the first inverter is controlled by adjusting a step-up rate of the chopper circuit.
  8.  前記第2のインバータは、フルブリッジ接続される第7から第10のスイッチング素子を備え、
     前記第7から第10のスイッチング素子は、各々が逆並列に接続されるダイオードを備え、
     前記第2のインバータは、
     健全走行時には整流回路として動作し、
     非常走行時にはインバータ回路として動作する
     ことを特徴とする請求項1から7の何れか1項に記載の鉄道車両用の電源装置。
    The second inverter includes seventh to tenth switching elements connected in a full bridge,
    The seventh to tenth switching elements each include a diode connected in antiparallel,
    The second inverter is
    Operates as a rectifier circuit during healthy driving,
    The power supply device for a railway vehicle according to any one of claims 1 to 7, characterized in that it operates as an inverter circuit during emergency running.
PCT/JP2022/029502 2022-08-01 2022-08-01 Power supply device for railroad vehicle WO2024028947A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/029502 WO2024028947A1 (en) 2022-08-01 2022-08-01 Power supply device for railroad vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/029502 WO2024028947A1 (en) 2022-08-01 2022-08-01 Power supply device for railroad vehicle

Publications (1)

Publication Number Publication Date
WO2024028947A1 true WO2024028947A1 (en) 2024-02-08

Family

ID=89848686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029502 WO2024028947A1 (en) 2022-08-01 2022-08-01 Power supply device for railroad vehicle

Country Status (1)

Country Link
WO (1) WO2024028947A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003199354A (en) * 2001-12-25 2003-07-11 Toshiba Corp Power converter
WO2017038363A1 (en) * 2015-09-01 2017-03-09 株式会社村田製作所 Energy management system
JP2019067875A (en) * 2017-09-29 2019-04-25 富士電機株式会社 Stationary induction apparatus and electric power conversion system using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003199354A (en) * 2001-12-25 2003-07-11 Toshiba Corp Power converter
WO2017038363A1 (en) * 2015-09-01 2017-03-09 株式会社村田製作所 Energy management system
JP2019067875A (en) * 2017-09-29 2019-04-25 富士電機株式会社 Stationary induction apparatus and electric power conversion system using the same

Similar Documents

Publication Publication Date Title
CN102859858B (en) Power conversion device
US9312692B2 (en) System for charging an energy store, and method for operating the charging system
US9774215B2 (en) Power conversion apparatus
US9331515B2 (en) System for charging an energy store, and method for operating the charging system
JP5783969B2 (en) Vehicle drive device for multi-power supply railway vehicle
CN111082671B (en) Power management in an elevator system
US20130314045A1 (en) Charging an energy store
US20130257355A1 (en) System for charging an energy store, and method for operating the charging system
US20150365038A1 (en) Rotary Electric Machine Driving Device
US10686397B2 (en) Motor system, motor drive device, refrigeration cycle device, and air conditioner
JP2019024283A (en) Power conversion device and control method for power conversion device
US11728802B2 (en) Drive circuit
WO2024028947A1 (en) Power supply device for railroad vehicle
WO2014157374A1 (en) Drive device for rotary electric machine
US20230090386A1 (en) Power conversion apparatus, refrigeration cycle apparatus, and air conditioner
US11811353B2 (en) Load driving device, refrigeration cycle applicable apparatus, and air conditioner
GB2537968A (en) Power converter for railway vehicle and railway vehicle having the same
JP5420080B2 (en) Power converter
JP2016067172A (en) Vehicle power conversion apparatus and railway vehicle equipped with the same
JP7471527B2 (en) Train drive unit
JP7019056B2 (en) Drive control device and drive control method, railway vehicle equipped with the drive control device
WO2021140544A1 (en) Noise suppression device and electric-vehicle control device
WO2021171562A1 (en) Electric motor drive device and air conditioner
EP4030616B1 (en) Motor control system
WO2020049782A1 (en) Power conversion device and power conversion method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953937

Country of ref document: EP

Kind code of ref document: A1