WO2024028942A1 - Optical cross-connect device and method for manufacturing same - Google Patents

Optical cross-connect device and method for manufacturing same Download PDF

Info

Publication number
WO2024028942A1
WO2024028942A1 PCT/JP2022/029474 JP2022029474W WO2024028942A1 WO 2024028942 A1 WO2024028942 A1 WO 2024028942A1 JP 2022029474 W JP2022029474 W JP 2022029474W WO 2024028942 A1 WO2024028942 A1 WO 2024028942A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
core
route
connect device
fiber
Prior art date
Application number
PCT/JP2022/029474
Other languages
French (fr)
Japanese (ja)
Inventor
宜輝 阿部
千里 深井
和典 片山
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/029474 priority Critical patent/WO2024028942A1/en
Publication of WO2024028942A1 publication Critical patent/WO2024028942A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means

Definitions

  • the present invention relates to an optical cross-connect device and a manufacturing method thereof.
  • a multistage loop network configuration has been proposed as one form of optical access network configuration (see Non-Patent Document 1).
  • a multi-stage loop network configuration since the optical access network is configured with a plurality of loops, there is an advantage that redundant paths can be easily secured.
  • a fiber switching function that switches the optical fiber route at the point where multiple loops meet in the multi-stage loop network. has been done.
  • the fiber switching function can be realized by an optical cross-connect device that switches the signal path.
  • an optical cross-connect device that switches the signal path.
  • a configuration in which multiple optical switches that can mechanically switch optical paths without converting optical signals to electrical signals are used, and the optical switches are connected using optical fibers. has been proposed (see Non-Patent Document 2).
  • the fiber switching function needs to be able to mutually switch the connections of the optical fiber cores of a plurality of routes for routes having one or more optical fiber cores.
  • the number of optical fibers connected to optical cross-connect devices increases from each route, the number of optical fibers connecting between optical switches increases, and the number of optical switches connected to each optical fiber of each optical switch increases. Because of the differences, the work involved in wiring optical fibers during manufacturing and maintenance was heavy.
  • the present invention is proposed in view of the above circumstances, and is capable of mutually switching the connections of the optical fibers of a plurality of routes for routes having one or more coated optical fibers, It is an object of the present invention to provide an optical cross-connect device and a method for manufacturing the same that can reduce the burden of optical fiber wiring.
  • an optical cross-connect device connects optical fibers between a plurality of routes having one or more coated optical fibers.
  • An optical cross-connect device for switching which includes an optical switch that connects to each optical fiber on the input side, a multi-fiber optical connector that connects on the input side to the output side of each optical switch via parallel optical fibers, and For multi-fiber optical connectors that are connected to optical fibers in one route via an optical switch, the connection between the output side of the multi-fiber optical connector in one route and the output side of the multi-core optical connector in the other route is The optical switch connects one of the optical fibers in the path to one of the optical paths.
  • the method for manufacturing an optical cross-connect device includes a step of connecting an optical switch to one piece of a multi-fiber optical connector, a step of manufacturing a portion from an optical wiring path to another piece of the multi-fiber optical connector, and The method may also include a step of connecting one piece of the fiber optic connector to the other piece.
  • the present invention for a route having one or more coated optical fibers, it is possible to reduce the burden of wiring optical fibers that can mutually switch the connections of the coated optical fibers of a plurality of routes.
  • FIG. 1 is a diagram showing an optical cross-connect device according to a first embodiment
  • FIG. FIG. 3 is a diagram showing the appearance of the optical wiring path according to the first embodiment. It is a schematic diagram explaining operation of an optical switch.
  • FIG. 3 is a schematic diagram illustrating the operation of the optical cross-connect device.
  • FIG. 7 is a diagram showing an optical cross-connect device according to a second embodiment.
  • FIG. 7 is a diagram showing an optical cross-connect device according to a third embodiment.
  • the optical connector device of this embodiment can mutually switch optical fibers in four directions for a route having two optical fibers at a point where two loops touch in a multi-stage loop network configuration. It is assumed that However, the present invention is not limited to this, and can be applied to an optical cross-connect device that can mutually switch optical fibers of a plurality of routes, for routes having one or more optical fibers.
  • FIG. 1 is a diagram showing the configuration of an optical cross-connect device according to a first embodiment.
  • each of the four routes D1 to D4 has two optical fibers 10 1 to 10 8 , and the optical fibers 10 1 to 10 8 are It is connected to the input side of optical switches 20 1 to 20 8 provided on each optical fiber core 10 1 to 10 8 .
  • NxM optical switches can be provided on NxM optical fibers.
  • the output sides of the optical switches 20 1 to 20 8 are connected to the input sides of multi-core optical connectors 30 1 to 30 8 , respectively, by optical fiber groups 11 1 to 11 8 , respectively.
  • Each of the optical fiber groups 11 1 to 11 8 is composed of six parallel optical fibers.
  • the multi-fiber optical connectors 30 1 to 30 8 are composed of one piece on the input side and the other piece on the output side, and by mechanically connecting or disconnecting one piece and the other piece, the optical fiber group 11 on the input side can be connected.
  • the optical path between the optical fibers 1 to 118 and the output side optical fiber group 12 can be connected or disconnected.
  • the optical fiber group 12 is composed of six parallel optical fibers.
  • the multi-core optical connectors 30 1 to 30 8 of this embodiment use MT connectors, which are also referred to as F12 type multi-core optical fiber connectors.
  • the optical fiber to be attached to the MT connector is adhesively fixed to the optical fiber insertion hole of the MT ferrule, and the connecting end surface of the core wire is polished at a right angle.
  • the optical fibers may be provided in pigtails from optical switches 20 1 - 20 8 or the like.
  • the MT connector is filled with a refractive index matching agent between the end faces, and is connected by inserting the guide pin attached to one MT ferrule into the guide pin hole of the other MT ferrule and fitting the MT ferrules together. There is.
  • MPO connectors also called F13 type multi-fiber optical fiber connectors
  • F13 type multi-fiber optical fiber connectors may be used for the multi-fiber optical connectors 30 1 to 30 8 instead of the MT connectors.
  • the MT ferrule end face is polished obliquely, the MT ferrule is built into the MPO plug housing, and the MPO plug is connected within the MPO adapter.
  • output sides of multi-fiber optical connectors 30 1 to 30 8 connected to optical fibers 10 1 to 10 8 of routes D1 to D4 via optical switches 20 1 to 20 8 , and others are connected to the output sides of the multi-core optical connectors 30 1 to 30 8 by optical fiber groups 12, respectively.
  • the output side of the multi-core optical connector 30 1 connected to the optical fiber core 10 1 of the route D 1 via the optical switch 20 1 is It is connected to the output sides of other multi-core optical connectors 30 3 to 30 8 via optical fiber groups 12, respectively.
  • the output side of the multi-core optical connector 30 2 connected to the optical fiber core 10 2 of the route D1 via the optical switch 20 2 is connected to a cable other than the multi-core optical connectors 30 1 and 30 2 It is connected to the output sides of other multi-core optical connectors 30 3 to 30 8 via optical fiber groups 12, respectively.
  • the optical fiber group 12 connecting the output sides of the multi-core optical connectors 30 1 to 30 8 constitutes an optical wiring path 40 .
  • the optical fiber group 12 includes optical fiber core wires 10 1 to 10 8 of routes D1 to D4 and optical switches 20 1 to 20 8 .
  • Single-mode optical fibers are used that have lower bending loss than the optical fiber groups 11 1 to 11 8 that connect the fiber optics and the multi-core optical connectors 30 1 to 30 8 .
  • FIG. 2 is a diagram showing the appearance of the optical wiring path 40 of the first embodiment.
  • FIG. 2 shows an example of the mode of the optical wiring path 40 configured by the optical fiber group 12 on the board 50, and the optical fiber group 12 is connected to the optical wiring path 40 shown in FIG. It is not a reflection.
  • the optical wiring path 40 is supported along the surface of the substrate 50 except for the ends of the optical fiber group 12 connected to the multi-core optical connectors 30 1 to 30 4 .
  • the optical wiring path 40 is constructed by wiring the optical fiber group 12 on an adhesive sheet attached to a sheet-like substrate 50 made of a resin such as polyimide, and sandwiching the optical fiber group 12 between polyimide sheets with an adhesive sheet attached thereto. There is.
  • the optical fiber group 12 may be embedded in a sheet-like substrate 50 made of resin such as polyimide.
  • the substrate 50 is flexible together with the optical wiring path 40 to which it is fixed.
  • FIG. 3 is a schematic diagram illustrating the operation of the optical switches 20 1 to 20 8 .
  • the optical switch 20 1 connected to the optical fiber core 10 1 of the first route will be explained as an example.
  • the optical switch 201 constitutes a 1 ⁇ 6 optical switch having one port on the input side and six ports on the output side.
  • the optical fiber core 101 of the route D1 is connected to the input port 1
  • the optical fibers connected to the multi-core optical connectors 303 to 308 are connected to the output ports 1-1 to 1-6.
  • Six optical fibers forming group 111 are connected to each other.
  • the number of routes is N and the number of optical fibers in each route is M
  • the optical switch 201 switches and connects the optical path between the input port 1 and any one of the output ports 1-1 to 1-6. That is, the optical fiber core wire 10 1 is connected to any one of the six optical fibers constituting the optical fiber group 11 1 .
  • Such switching of the optical paths may be realized by mechanically butting or separating the optical paths without converting the optical signals into electrical signals. Further, such connection control may be based on a control signal.
  • the optical switch 20 1 has been described here, the same applies to the other optical switches 20 2 to 20 8 .
  • FIG. 4 is a schematic diagram illustrating the operation of the optical cross-connect device.
  • FIG . 4 corresponds to the optical cross -connect device shown in FIG. 1 to 11 8 and multi-core optical connectors 30 1 to 30 8 are omitted.
  • the optical fibers 10 1 and 10 2 of the path D1 are connected to the input ports 1 and 2 of the optical switches 20 1 and 20 2, respectively.
  • the output ports 1-1 to 1-6 and 2-1 to 2-6 of the optical switches 20 1 and 20 2 are connected to other optical switches 20 through optical paths including the optical fiber group 12 constituting the optical wiring path 40. Connected to one of the 3 to 20 8 output ports. The same applies to the other optical switches 20 3 to 20 8 .
  • this optical cross-connect device as a first connection mode, it is possible to connect between the route D1 and the route D2, and between the route D3 and the route D4. At this time, between the route D1 and the route D2, the optical switches 20 1 and 20 2 corresponding to the route D1 and the optical switches 20 3 and 20 4 corresponding to the route D2 are connected through the optical wiring route 40. connected to each other. Therefore, the optical fibers 10 1 and 10 2 in the route D1 and the optical fibers 10 3 and 10 4 in the route D2 are connected to each other.
  • the optical fiber coated wire 101 of the first route D1, the optical fiber coated wire 103 of the second route D2, the optical fiber coated wire 102 of the first route D1, and the light of the second route D2 The fiber coated wire 104 may be connected, or conversely, the optical fiber coated wire 101 of the first route D1 and the optical fiber coated wire 104 of the second route D2 may be connected.
  • the optical fiber coated wire 102 and the optical fiber coated wire 103 of the second route D2 may be connected.
  • the optical switches 20 5 and 20 6 corresponding to the route D3 and the optical switches 20 7 and 20 8 corresponding to the route D4 are connected, and the optical fiber core of the route D3 is connected.
  • the wires 10 5 and 10 6 and the optical fiber core wires 10 7 and 10 8 of the route D4 are connected to each other.
  • the fiber coated wire 108 may be connected, or conversely, the optical fiber coated wire 105 of the third route D3 and the optical fiber coated wire 108 of the fourth route D4 may be connected.
  • the optical fiber coated wire 106 and the optical fiber coated wire 107 of the fourth route D3 may be connected.
  • the optical cross-connect device as a second connection mode, it is possible to connect between the route D1 and the route D3, and between the route D2 and the route D4. Furthermore, as a third connection mode, the route D1 and the route D4 can be connected, and the route D2 and the route D3 can be connected, respectively.
  • the optical switches 20 1 to 20 8 corresponding to the connecting routes D1 to D4 are appropriately connected via the optical wiring path 40.
  • the optical fibers 10 1 to 10 9 of the routes D1 to D4 are appropriately connected.
  • the optical cross-connect device having the above-mentioned configuration includes a process for manufacturing a part of the optical cross-connect device from the optical switches 20 1 to 20 8 to one piece of the multi-core optical connectors 30 1 to 30 8 , and , a process of manufacturing a part from the optical wiring path 40 to the other pieces of the multi-fiber optical connectors 30 1 to 30 8 , and a process of connecting one piece of the multi-fiber optical connectors 30 1 to 30 8 and the other pieces. I can do it.
  • the optical switches 20 1 - 20 8 are connected to one piece of the multi-core optical connectors 30 1 - 30 8 via optical fiber groups 11 1 - 11 8 .
  • An optical wiring path 40 is configured by appropriately arranging the optical fiber group 12 on the substrate 50, and the optical wiring path 40 is connected to the other pieces of the multi-core optical connectors 30 1 to 30 8 .
  • one piece of the multi-core optical connectors 30 1 to 30 8 is connected to the other piece.
  • the optical wiring path 40 is attached to the optical switches 20 1 to 20 8 by the multi-core optical connectors 30 1 to 30 8 so as to be connectable and detachable. It is being Therefore, the optical wiring between the optical wiring path 40 and the optical switches 20 1 to 20 8 is completed simply by connecting the multi-core optical connectors 30 1 to 30 8 , making it easy to manufacture the optical cross-connect device. . It is no longer necessary to carry out complicated wiring of the optical fiber group 12 such as connecting the optical fiber group 12 for each single fiber or wiring the optical fiber group 12 in a crossing manner, and it is possible to manufacture an optical cross-connect device. The burden of work will be reduced.
  • optical fibers are pulled out from optical switch housings to form pigtails, and the optical fibers are connected to each other to provide optical wiring between optical switches.
  • fusion splicing optical fibers destined for different destinations, it is necessary to provide extra length for the optical fibers to be connected by the equipment that performs the fusion splicing.
  • the work of accommodating the excess length of optical fibers has hindered the improvement of the assembly workability of optical cross-connect devices.
  • the optical wiring path 40 can be connected and removed by the multi-core optical connectors 30 1 to 30 8 . There is no need to fusion splice each single fiber or provide extra length for the optical fiber, reducing the manufacturing burden.
  • the optical wiring path 40 can be downsized.
  • single-mode optical fibers with low optical fiber bending loss for the optical fiber group 12 of the optical wiring path 40 it becomes possible to bend the optical fibers with a small radius of curvature, and the optical wiring path 40 can be further miniaturized. I can do it. Since the optical cross-connect device in a multi-stage loop network is installed in an outdoor closure, its miniaturization allows it to be installed in a closure with limited space.
  • the optical wiring path 40 can be removed using the multi-core optical connectors 30 1 to 30 8 , which improves the maintainability of the optical cross-connect device.
  • the optical fiber groups 12 are wired to the optical switches 20 1 to 20 8 by fusion splicing, each optical fiber group 12 of the optical switches 20 1 to 20 8 that has failed is found and fused one by one.
  • work such as cutting off the connected parts is required, in this embodiment, the optical switches 20 1 to 20 8 and the optical fiber group 12 can be removed using the multi-core optical connectors 30 1 to 30, so the work is not necessary. The burden of this will be reduced.
  • FIG. 5 is a diagram showing the configuration of an optical cross-connect device according to the second embodiment.
  • the optical cross-connect device of the second embodiment differs from the optical cross-connect device of the first embodiment in that most of the optical wiring path 40 is constituted by an optical waveguide. Since the other configurations are the same as those of the optical cross-connect device of the first embodiment, corresponding components will be referred to with common reference numerals.
  • each of the four routes D1 to D4 has two optical fibers 10 1 to 10 8 , and the optical fibers 10 1 to 10 8 are It is connected to the input side of optical switches 20 1 to 20 8 provided on each optical fiber core 10 1 to 10 8 .
  • the output sides of the optical switches 20 1 to 20 8 are respectively connected to the input sides of multi-core optical connectors 30 1 to 30 8 by optical fiber groups 11 1 to 11 8 each composed of six parallel optical fibers.
  • the multi-fiber optical connectors 30 1 to 30 8 are composed of one piece on the input side and the other piece on the output side, and by mechanically connecting or disconnecting one piece and the other piece, the optical fiber group 11 on the input side is connected.
  • the optical path can be connected or disconnected between the optical fibers 1 to 118 and the group of six optical fibers 12 on the output side.
  • MPO connectors may also be used.
  • optical waveguide 61 may be formed on the surface of the substrate 60.
  • the substrate 60 may be made of, for example, a crystalline substrate such as silicon dioxide.
  • the optical fiber groups 13 1 to 13 8 are composed of six parallel optical fibers, similar to the optical fiber groups 11 1 to 11 8 connected to the input sides of the multi-core optical connectors 30 1 to 30 8 .
  • the output sides of the optical connectors 30 1 to 30 8 are connected to an optical waveguide 61 formed on the substrate 60.
  • the operation of the optical cross-connect device is similar to that of the optical cross-connect device of the first embodiment. That is, as the first connection mode, it is possible to connect between the route D1 and the route D2, and between the route D3 and the route D4. Further, as a second connection mode, it is possible to connect between the route D1 and the route D3, and between the route D2 and the route D4, and as a third connection mode, the route D1 and the route D4 can be connected. It is possible to connect between the route D2 and the route D3.
  • the optical switches 20 1 to 20 8 corresponding to the routes D1 to D4 correspond to the routes D1 to D4 connected via the optical fiber cores 10 1 to 10 9 .
  • the optical switches 20 1 to 20 8 are suitably connected to the optical switches 20 1 to 20 8 . Therefore, the optical fibers 10 1 to 10 8 of the routes D1 to D4 are appropriately connected to the optical fibers 10 1 to 10 8 of the routes D1 to D4.
  • the optical cross-connect device having the above-mentioned configuration includes a process for manufacturing a part of the optical cross-connect device from the optical switches 20 1 to 20 8 to one piece of the multi-core optical connectors 30 1 to 30 8 , and , a process of manufacturing a part from the optical wiring path 40 to the other pieces of the multi-fiber optical connectors 30 1 to 30 8 , and a process of connecting one piece of the multi-fiber optical connectors 30 1 to 30 8 and the other pieces. I can do it.
  • the optical switches 20 1 to 20 8 are connected to one piece of the multi-core optical connectors 30 1 to 30 8 via the optical fiber groups 11 1 to 11 8 , and the optical waveguide 61 formed on the substrate 60 is connected to the optical fiber groups 11 1 to 11 8. It is connected to the other pieces of the multi-core optical connectors 30 1 to 30 8 via 13 1 to 13 8 . Then, one piece of the multi-core optical connectors 30 1 to 30 8 is connected to the other piece.
  • the optical wiring path 40 is constituted by an optical waveguide formed on the substrate 60. Since the optical waveguide allows high-density wiring, the optical wiring path 40 can be miniaturized. Furthermore, since the optical waveguide is formed integrally with the substrate 60, it is robust.
  • the optical wiring path 40 is connected to the optical switches 20 1 to 20 8 and the multi-core optical connectors 30 1 to 30 8. It is attached so that it can be connected and removed. Therefore, by simply connecting the optical wiring path 40 to the multi-core optical connectors 30 1 to 30 8 , the optical wiring between the optical wiring path 40 and the optical switches 20 1 to 20 8 is completed, and an optical cross-connect device is manufactured. This reduces the burden of work required to do so.
  • the optical wiring path 40 can be downsized, even when space is limited such as in an outdoor closure. It can be installed due to its miniaturization. Furthermore, even when a failure occurs in the optical cross-connect device, the optical wiring path 40 can be removed simply by disconnecting the multi-core optical connectors 30 1 to 30 8 , thereby improving the maintainability of the optical cross-connect device.
  • FIG. 6 is a diagram showing the configuration of an optical cross-connect device according to the third embodiment.
  • the entire optical wiring path 40 is composed of optical waveguides, and the output sides of the multi-core optical connectors 30 1 to 30 8 are connected to the periphery of the substrate 60 on which the optical waveguides are formed.
  • This is different from the optical cross-connect device of the first embodiment in that it is attached. Since the other configurations are the same as those of the optical cross-connect device of the first embodiment, corresponding components will be referred to with common reference numerals.
  • each of the four routes D1 to D4 has two optical fibers 10 1 to 10 8 , and the optical fibers 10 1 to 10 8 are It is connected to the input side of optical switches 20 1 to 20 8 provided on each optical fiber core 10 1 to 10 8 .
  • the output sides of the optical switches 20 1 to 20 8 are respectively connected to the input sides of multi-core optical connectors 30 1 to 30 8 by optical fiber groups 11 1 to 11 8 each composed of six parallel optical fibers.
  • the multi-fiber optical connectors 30 1 to 30 8 are composed of one piece on the input side and the other piece on the output side, and by mechanically connecting or disconnecting one piece and the other piece, the optical fiber group 11 1 on the input side is connected. 118 and the six optical fiber groups 12 connected to the optical wiring path 40 on the output side.
  • MT connectors are used for the multi-core optical connectors 30 1 to 30 8
  • MPO connectors may also be used.
  • optical waveguide 61 may be formed on the surface of the substrate 60.
  • the substrate 60 may be made of, for example, a crystalline substrate such as silicon dioxide.
  • the operation of the optical cross-connect device is similar to that of the optical cross-connect device of the first embodiment. That is, as the first connection mode, the route D1 and the route D2, and the route D3 and the route D4 can be connected, respectively. Further, as a second connection mode, the route D1 and the route D3, and the route D2 and the route D4 can be connected, respectively. As a third connection mode, the route D1 and the route D4, the route D2 and the route D4 can be connected, respectively. The paths D3 can be connected respectively.
  • the optical switches 20 1 to 20 8 corresponding to the routes D1 to D4 correspond to the routes D1 to D4 connected via the optical fiber cores 10 1 to 10 8 .
  • the optical switches 20 1 to 20 8 are suitably connected to the optical switches 20 1 to 20 8 . Therefore, the optical fibers 10 1 to 10 8 of the routes D1 to D4 are appropriately connected to the optical fibers 10 1 to 10 8 of the routes D1 to D4.
  • the optical cross-connect device having the above-mentioned configuration includes a process for manufacturing a part of the optical cross-connect device from the optical switches 20 1 to 20 8 to one piece of the multi-core optical connectors 30 1 to 30 8 , and , a process of manufacturing a part from the optical wiring path 40 to the other pieces of the multi-fiber optical connectors 30 1 to 30 8 , and a process of connecting one piece of the multi-fiber optical connectors 30 1 to 30 8 and the other pieces. I can do it.
  • the optical switches 20 1 to 20 8 are connected to one piece of the multi-core optical connectors 30 1 to 30 8 via the optical fiber groups 11 1 to 11 8 , and the optical waveguide 61 formed on the substrate 60 is It is connected to the other pieces of the connectors 30 1 to 30 8 . Then, one piece of the multi-core optical connectors 30 1 to 30 8 is connected to the other piece.
  • the entire optical wiring path 40 is constituted by an optical waveguide formed on a substrate 60.
  • the optical waveguide allows for high-density wiring, and since the entire optical wiring path 40 is formed of the optical waveguide, further miniaturization of the optical wiring path 40 is possible.
  • the optical waveguide is formed integrally with the substrate 60, and the output sides of the multi-core optical connectors 30 1 to 30 8 are also attached to the periphery of the substrate 60 and are directly connected to the optical waveguide formed on the substrate 60. It is robust.
  • the optical wiring path 40 is connected to the optical switches 20 1 to 20 8 and the multi-core optical connectors 30 1 to 30 8. It is attached so that it can be connected and removed. Therefore, optical wiring between the optical wiring path 40 and the optical switches 20 1 to 20 8 is completed simply by connecting the optical wiring path 40 to the multi-core optical connectors 30 1 to 30 8 , and an optical cross-connect device is manufactured. This reduces the burden of work required to do so.
  • the optical wiring path 40 can be made smaller, and even when space is limited such as in an outdoor closure. It can be installed due to its miniaturization. Furthermore, even when a failure occurs in the optical cross-connect device, the optical wiring path 40 can be removed using the multi-core optical connectors 30 1 to 30 8 , which improves the maintainability of the optical cross-connect device.

Abstract

This optical cross-connect device includes: optical switches 201-208 which switch the connections of optical fiber core wires 101-108 between paths D1-D4 that each have two optical fiber core wires, and which are connected to optical fiber core wires on the input side thereof; multi-core optical connectors 301-308 that are connected to the output sides of the optical switches at the input side through parallel optical fibers; an optical wiring path 40 that is constituted by optical fiber groups 12 that, for each path, connect a multi-core optical connector connected through an optical switch to an optical fiber core wire of the path, to another multi-core optical connector; and a substrate 50 that supports at least a portion of the optical wiring path. The optical switches connect one optical fiber core wire in the path to one optical fiber among the optical fibers connected to a multi-core optical connector and another multi-core optical connector through the optical wiring path.

Description

光クロスコネクト装置及びその製造方法Optical cross-connect device and its manufacturing method
 この発明は、光クロスコネクト装置及びその製造方法に関する。 The present invention relates to an optical cross-connect device and a manufacturing method thereof.
 光アクセス網構成の一形態として多段ループ網構成が提案されている(非特許文献1を参照)。多段ループ網構成においては、光アクセス網は複数のループで構成されているため、冗長経路の確保が容易になるという利益が得られる。多段ループ網構成においては、予測が困難な光ファイバ心線の需要に対応するため、多段ループ網内で複数のループが接する地点に光ファイバの経路を切替える心線切替機能を設置することが提案されている。 A multistage loop network configuration has been proposed as one form of optical access network configuration (see Non-Patent Document 1). In a multi-stage loop network configuration, since the optical access network is configured with a plurality of loops, there is an advantage that redundant paths can be easily secured. In a multi-stage loop network configuration, in order to cope with the difficult-to-predict demand for optical fiber cores, it is proposed to install a fiber switching function that switches the optical fiber route at the point where multiple loops meet in the multi-stage loop network. has been done.
 心線切替機能は、信号の経路を切り替える光クロスコネクト装置によって実現することができる。多段ループ網における光クロスコネクト装置の構成要素として、光信号を電気信号へ変換することなく機械的に光路を切り替えることができる光スイッチを複数台用いて、光スイッチ間を光ファイバで接続した形態が提案されている(非特許文献2を参照)。 The fiber switching function can be realized by an optical cross-connect device that switches the signal path. As a component of an optical cross-connect device in a multi-stage loop network, a configuration in which multiple optical switches that can mechanically switch optical paths without converting optical signals to electrical signals are used, and the optical switches are connected using optical fibers. has been proposed (see Non-Patent Document 2).
 ところで、心線切替機能は、1本以上の光ファイバ心線を有する方路について、複数の方路の光ファイバ心線の接続を相互に切替可能とする必要がある。各方路から光クロスコネクト装置と接続する光ファイバの本数が増加するに従い、光スイッチ間を接続する光ファイバの本数が増えることに加えて、各光スイッチの光ファイバごとに接続する光スイッチが異なるため、製造や保守の際に光ファイバを配線する作業の負担が大きかった。 By the way, the fiber switching function needs to be able to mutually switch the connections of the optical fiber cores of a plurality of routes for routes having one or more optical fiber cores. As the number of optical fibers connected to optical cross-connect devices increases from each route, the number of optical fibers connecting between optical switches increases, and the number of optical switches connected to each optical fiber of each optical switch increases. Because of the differences, the work involved in wiring optical fibers during manufacturing and maintenance was heavy.
 この発明は上記の事情に鑑み提案されるものであって、1本以上の光ファイバ心線を有する方路について、複数の方路の光ファイバ心線の接続を相互に切替可能であって、光ファイバの配線の負担を軽減するような光クロスコネクト装置及びその製造方法を提供することを目的とする。 The present invention is proposed in view of the above circumstances, and is capable of mutually switching the connections of the optical fibers of a plurality of routes for routes having one or more coated optical fibers, It is an object of the present invention to provide an optical cross-connect device and a method for manufacturing the same that can reduce the burden of optical fiber wiring.
 上述の課題を解決するために、本発明の一態様に係る光クロスコネクト装置は、1本以上の光ファイバ心線を有する方路について、複数の方路の間で光ファイバ心線の接続を切り替える光クロスコネクト装置であって、各光ファイバ心線に入力側で接続する光スイッチと、各光スイッチの出力側に並列な光ファイバを介して入力側で接続する多心光コネクタと、方路の光ファイバ心線に光スイッチを介して接続する多心光コネクタについて、一の方路の多心光コネクタの出力側と、他の方路の多心光コネクタの出力側との間をそれぞれ接続する光路から構成された光配線路とを含み、光スイッチは、方路の光ファイバ心線の1本を光路の内の1本に接続するものである。 In order to solve the above-mentioned problems, an optical cross-connect device according to one aspect of the present invention connects optical fibers between a plurality of routes having one or more coated optical fibers. An optical cross-connect device for switching, which includes an optical switch that connects to each optical fiber on the input side, a multi-fiber optical connector that connects on the input side to the output side of each optical switch via parallel optical fibers, and For multi-fiber optical connectors that are connected to optical fibers in one route via an optical switch, the connection between the output side of the multi-fiber optical connector in one route and the output side of the multi-core optical connector in the other route is The optical switch connects one of the optical fibers in the path to one of the optical paths.
 この出願に係る光クロスコネクト装置の製造方法は、光スイッチをから多心光コネクタの一片に接続する工程と、光配線路から多心光コネクタの他片に至る部分を製造する工程と、多心光コネクタの一片及び他片を連結する工程とを含んでもよい。 The method for manufacturing an optical cross-connect device according to this application includes a step of connecting an optical switch to one piece of a multi-fiber optical connector, a step of manufacturing a portion from an optical wiring path to another piece of the multi-fiber optical connector, and The method may also include a step of connecting one piece of the fiber optic connector to the other piece.
 この発明によると、1本以上の光ファイバ心線を有する方路について、複数の方路の光ファイバ心線の接続を相互に切替可能な光ファイバの配線の負担を軽減することができる。 According to the present invention, for a route having one or more coated optical fibers, it is possible to reduce the burden of wiring optical fibers that can mutually switch the connections of the coated optical fibers of a plurality of routes.
第1の実施の形態の光クロスコネクト装置を示す図である。1 is a diagram showing an optical cross-connect device according to a first embodiment; FIG. 第1の実施の形態の光配線路の外観を示す図である。FIG. 3 is a diagram showing the appearance of the optical wiring path according to the first embodiment. 光スイッチの動作を説明する模式図である。It is a schematic diagram explaining operation of an optical switch. 光クロスコネクト装置の動作を説明する模式図である。FIG. 3 is a schematic diagram illustrating the operation of the optical cross-connect device. 第2の実施の形態の光クロスコネクト装置を示す図である。FIG. 7 is a diagram showing an optical cross-connect device according to a second embodiment. 第3の実施の形態の光クロスコネクト装置を示す図である。FIG. 7 is a diagram showing an optical cross-connect device according to a third embodiment.
 以下、光クロスコネクト装置及びその製造方法の実施の形態について、図面を参照して詳細に説明する。本実施の形態の光コネクタ装置は、多段ループ網構成において2個のループが接する地点において、2本の光ファイバ心線を有する方路について、4方路の光ファイバ心線を相互に切替可能であることを想定している。しかしながら、これに限らず、1本以上の光ファイバ心線を有する方路について、複数の方路の光ファイバ心線を相互に切替可能である光クロスコネクト装置に適用することができる。 Hereinafter, embodiments of the optical cross-connect device and its manufacturing method will be described in detail with reference to the drawings. The optical connector device of this embodiment can mutually switch optical fibers in four directions for a route having two optical fibers at a point where two loops touch in a multi-stage loop network configuration. It is assumed that However, the present invention is not limited to this, and can be applied to an optical cross-connect device that can mutually switch optical fibers of a plurality of routes, for routes having one or more optical fibers.
 (第1の実施の形態)
 図1は、第1の実施の形態の光クロスコネクト装置の構成を示す図である。第1の実施の形態の光コネクタ装置において、方路D1~D4の4方路はそれぞれ2本の光ファイバ心線10~10を有し、光ファイバ心線10~10は、各光ファイバ心線10~10に設けられた光スイッチ20~20の入力側に接続されている。なお、一般に、方路の数をN、方路が有する光ファイバ心線の数をM本とすると、N×M本の光ファイバ心線にN×M台の光スイッチを設けることができるが、本実施の形態ではN=4、M=2であるため8本の光ファイバ心線に8台の光スイッチを設けている。
(First embodiment)
FIG. 1 is a diagram showing the configuration of an optical cross-connect device according to a first embodiment. In the optical connector device of the first embodiment, each of the four routes D1 to D4 has two optical fibers 10 1 to 10 8 , and the optical fibers 10 1 to 10 8 are It is connected to the input side of optical switches 20 1 to 20 8 provided on each optical fiber core 10 1 to 10 8 . In general, if the number of routes is N and the number of optical fibers each route has is M, then NxM optical switches can be provided on NxM optical fibers. In this embodiment, since N=4 and M=2, eight optical switches are provided for eight optical fibers.
 光スイッチ20~20の出力側は、それぞれ光ファイバ群11~11によって多心光コネクタ30~30の入力側にそれぞれ接続されている。光ファイバ群11~11のそれぞれは、6本の並列な光ファイバによって構成される。多心光コネクタ30~30は、入力側の一片と出力側の他片とから構成され、一片及び他片を機械的に連結したり取り外したりすることにより、入力側の光ファイバ群11~11と出力側の光ファイバ群12との間の光路を接続したり切り離したりすることができる。光ファイバ群12は、6本の並列な光ファイバによって構成される。なお、一般に、方路の数をN、方路が有する光ファイバ心線の数をM本とすると、多心光コネクタ30~30の入力側及び出力側にそれぞれ接続される光ファイバ群11及び光ファイバ群12はそれぞれ(N-1)×M本になるが、本実施の形態ではN=4、M=2であるため光ファイバ群11及び光ファイバ群12はそれぞれ6本である。 The output sides of the optical switches 20 1 to 20 8 are connected to the input sides of multi-core optical connectors 30 1 to 30 8 , respectively, by optical fiber groups 11 1 to 11 8 , respectively. Each of the optical fiber groups 11 1 to 11 8 is composed of six parallel optical fibers. The multi-fiber optical connectors 30 1 to 30 8 are composed of one piece on the input side and the other piece on the output side, and by mechanically connecting or disconnecting one piece and the other piece, the optical fiber group 11 on the input side can be connected. The optical path between the optical fibers 1 to 118 and the output side optical fiber group 12 can be connected or disconnected. The optical fiber group 12 is composed of six parallel optical fibers. In general, if the number of routes is N and the number of optical fibers each route has is M, then the optical fiber groups connected to the input side and output side of the multi-core optical connectors 30 1 to 30 8 , respectively. 11 and the optical fiber group 12 are each (N-1)×M, but in this embodiment, N=4 and M=2, so the optical fiber group 11 and the optical fiber group 12 are each six. .
 本実施の形態の多心光コネクタ30~30には、F12形多心光ファイバコネクタとも称されるMTコネクタが使用されている。MTコネクタに取り付ける光ファイバはMTフェルールの光ファイバ挿入孔に接着固定され、心線の接続端面は直角に研磨されている。光ファイバは光スイッチ20~20などからピグテイルで与えられていてもよい。MTコネクタは、端面間に屈折率整合剤が満たされ、一方のMTフェルールに取り付けたガイドピンをもう一方のMTフェルールのガイドピン孔に挿入し、MTフェルール同士を嵌合することで接続されている。 The multi-core optical connectors 30 1 to 30 8 of this embodiment use MT connectors, which are also referred to as F12 type multi-core optical fiber connectors. The optical fiber to be attached to the MT connector is adhesively fixed to the optical fiber insertion hole of the MT ferrule, and the connecting end surface of the core wire is polished at a right angle. The optical fibers may be provided in pigtails from optical switches 20 1 - 20 8 or the like. The MT connector is filled with a refractive index matching agent between the end faces, and is connected by inserting the guide pin attached to one MT ferrule into the guide pin hole of the other MT ferrule and fitting the MT ferrules together. There is.
 なお、多心光コネクタ30~30には、MTコネクタに代えて、F13形多心光ファイバコネクタとも称されるMPOコネクタを使用してもよい。この場合には、MTフェルール端面は斜めに研磨され、MTフェルールはMPOプラグハウジングに内蔵され、MPOプラグはMPOアダプタ内で接続される。 Note that MPO connectors, also called F13 type multi-fiber optical fiber connectors, may be used for the multi-fiber optical connectors 30 1 to 30 8 instead of the MT connectors. In this case, the MT ferrule end face is polished obliquely, the MT ferrule is built into the MPO plug housing, and the MPO plug is connected within the MPO adapter.
 方路D1~D4について、方路D1~D4の光ファイバ心線10~10に光スイッチ20~20を介して接続する多心光コネクタ30~30の出力側と、他の多心光コネクタ30~30の出力側との間は、それぞれ光ファイバ群12によって接続されている。例えば、方路D1について、方路D1の有する光ファイバ心線10に光スイッチ20を介して接続する多心光コネクタ30の出力側は、多心光コネクタ30、30以外の他の多心光コネクタ30~30の出力側に光ファイバ群12を介してそれぞれ接続している。また、同じく方路D1について、方路D1の光ファイバ心線10に光スイッチ20を介して接続する多心光コネクタ30の出力側は、多心光コネクタ30、30以外の他の多心光コネクタ30~30の出力側に光ファイバ群12を介してそれぞれ接続している。 For routes D1 to D4, output sides of multi-fiber optical connectors 30 1 to 30 8 connected to optical fibers 10 1 to 10 8 of routes D1 to D4 via optical switches 20 1 to 20 8 , and others are connected to the output sides of the multi-core optical connectors 30 1 to 30 8 by optical fiber groups 12, respectively. For example , regarding the route D1 , the output side of the multi-core optical connector 30 1 connected to the optical fiber core 10 1 of the route D 1 via the optical switch 20 1 is It is connected to the output sides of other multi-core optical connectors 30 3 to 30 8 via optical fiber groups 12, respectively. Similarly, regarding the route D1, the output side of the multi-core optical connector 30 2 connected to the optical fiber core 10 2 of the route D1 via the optical switch 20 2 is connected to a cable other than the multi-core optical connectors 30 1 and 30 2 It is connected to the output sides of other multi-core optical connectors 30 3 to 30 8 via optical fiber groups 12, respectively.
 多心光コネクタ30~30の出力側を接続する光ファイバ群12は、光配線路40を構成している。ここで、光配線路40において光ファイバ群12の曲げ半径を小さくできるように、光ファイバ群12には方路D1~D4の光ファイバ心線10~10及び光スイッチ20~20と多心光コネクタ30~30との間を接続する光ファイバ群11~11よりも曲げ損失が低いシングルモード光ファイバが使用されている。 The optical fiber group 12 connecting the output sides of the multi-core optical connectors 30 1 to 30 8 constitutes an optical wiring path 40 . Here, in order to reduce the bending radius of the optical fiber group 12 in the optical wiring path 40, the optical fiber group 12 includes optical fiber core wires 10 1 to 10 8 of routes D1 to D4 and optical switches 20 1 to 20 8 . Single-mode optical fibers are used that have lower bending loss than the optical fiber groups 11 1 to 11 8 that connect the fiber optics and the multi-core optical connectors 30 1 to 30 8 .
 図2は、第1の実施の形態の光配線路40の外観を示す図である。なお、図2は基板50上で光ファイバ群12により構成された光配線路40の態様の一例を示すものであり、光ファイバ群12は図1に示した光配線路40の接続を正確に反映するものではない。光配線路40は、多心光コネクタ30~30に接続する光ファイバ群12の端部を除いて基板50の表面に沿って支持されている。光配線路40は、ポリイミド等の樹脂を材料としたシート状の基板50に貼り付けた粘着シート上に光ファイバ群12を配線し、その上から粘着シート付のポリイミドシートで挟んで構成されている。これに代わって、ポリイミド等の樹脂を材料としたシート状の基板50の上に光ファイバ群12を埋め込んでもよい。基板50は固定する光配線路40とともに可撓性を有している。 FIG. 2 is a diagram showing the appearance of the optical wiring path 40 of the first embodiment. Note that FIG. 2 shows an example of the mode of the optical wiring path 40 configured by the optical fiber group 12 on the board 50, and the optical fiber group 12 is connected to the optical wiring path 40 shown in FIG. It is not a reflection. The optical wiring path 40 is supported along the surface of the substrate 50 except for the ends of the optical fiber group 12 connected to the multi-core optical connectors 30 1 to 30 4 . The optical wiring path 40 is constructed by wiring the optical fiber group 12 on an adhesive sheet attached to a sheet-like substrate 50 made of a resin such as polyimide, and sandwiching the optical fiber group 12 between polyimide sheets with an adhesive sheet attached thereto. There is. Alternatively, the optical fiber group 12 may be embedded in a sheet-like substrate 50 made of resin such as polyimide. The substrate 50 is flexible together with the optical wiring path 40 to which it is fixed.
 図3は、光スイッチ20~20の動作を説明する模式図である。ここでは、第1方路の光ファイバ心線10に接続された光スイッチ20を例にとって説明する。光スイッチ20は、入力側に1ポート、出力側に6ポートを有する1×6光スイッチを構成している。光スイッチ20においては、入力ポート1に方路D1の光ファイバ心線10が接続され、出力ポート1-1~1-6には多心光コネクタ30~30に接続する光ファイバ群11を構成する6本の光ファイバがそれぞれ接続されている。なお、一般に、方路の数をN、方路が有する光ファイバ心線の数をM本とすると、ポート数は(N-1)×Mになるが、本実施の形態ではN=4、M=2であるためポート数は6個である。 FIG. 3 is a schematic diagram illustrating the operation of the optical switches 20 1 to 20 8 . Here, the optical switch 20 1 connected to the optical fiber core 10 1 of the first route will be explained as an example. The optical switch 201 constitutes a 1×6 optical switch having one port on the input side and six ports on the output side. In the optical switch 201 , the optical fiber core 101 of the route D1 is connected to the input port 1, and the optical fibers connected to the multi-core optical connectors 303 to 308 are connected to the output ports 1-1 to 1-6. Six optical fibers forming group 111 are connected to each other. Generally, if the number of routes is N and the number of optical fibers in each route is M, the number of ports is (N-1)×M, but in this embodiment, N=4, Since M=2, the number of ports is six.
 光スイッチ20においては、入力ポート1と出力ポート1-1~1-6のいずれか1個との間の光路を切り替えて接続する。すなわち、光ファイバ心線10と光ファイバ群11を構成する6本の光ファイバのいずれか1本とを接続する。このような光路の切り替えは、光信号を電気信号に変換することなく、光路を機械的に突き合わせたり離したりすることで実現してもよい。また、このような接続の制御は、制御信号に従うものであってもよい。なお、ここでは光スイッチ20について説明したが、他の光スイッチ20~20についても同様である。 The optical switch 201 switches and connects the optical path between the input port 1 and any one of the output ports 1-1 to 1-6. That is, the optical fiber core wire 10 1 is connected to any one of the six optical fibers constituting the optical fiber group 11 1 . Such switching of the optical paths may be realized by mechanically butting or separating the optical paths without converting the optical signals into electrical signals. Further, such connection control may be based on a control signal. Although the optical switch 20 1 has been described here, the same applies to the other optical switches 20 2 to 20 8 .
 図4は、光クロスコネクト装置の動作を説明する模式図である。図4は、図1に示した光クロスコネクト装置に対応するものであるが、図中では簡単のために光スイッチ20~20と光配線路40との間に介在する光ファイバ群11~11及び多心光コネクタ30~30を省略している。 FIG. 4 is a schematic diagram illustrating the operation of the optical cross-connect device. FIG . 4 corresponds to the optical cross -connect device shown in FIG. 1 to 11 8 and multi-core optical connectors 30 1 to 30 8 are omitted.
 光スイッチ20、20を例にして説明すると、光スイッチ20、20の入力ポート1、2には、それぞれ方路D1の光ファイバ心線10、10が接続している。光スイッチ20、20の出力ポート1-1~1-6、2-1~2-6は、光配線路40を構成する光ファイバ群12を含む光路を通ってそれぞれ他の光スイッチ20~20の出力ポートの一つに接続している。他の光スイッチ20~20についても同様である。 Taking the optical switches 20 1 and 20 2 as an example, the optical fibers 10 1 and 10 2 of the path D1 are connected to the input ports 1 and 2 of the optical switches 20 1 and 20 2, respectively. The output ports 1-1 to 1-6 and 2-1 to 2-6 of the optical switches 20 1 and 20 2 are connected to other optical switches 20 through optical paths including the optical fiber group 12 constituting the optical wiring path 40. Connected to one of the 3 to 20 8 output ports. The same applies to the other optical switches 20 3 to 20 8 .
 この光クロスコネクト装置においては、第1接続態様として、方路D1と方路D2との間、方路D3と方路D4との間をそれぞれ接続することができる。このとき、方路D1と方路D2との間については、方路D1に対応する光スイッチ20、20と方路D2に対応する光スイッチ20、20とが光配線路40を通じて互いに接続される。したがって、方路D1の光ファイバ心線10、10と方路D2の光ファイバ心線10、10とが互いに接続される。ここで、第1方路D1の光ファイバ心線10と第2方路D2の光ファイバ心線10と、第1方路D1の光ファイバ心線10と第2方路D2の光ファイバ心線10とが接続されてもよいし、逆に、第1方路D1の光ファイバ心線10と第2方路D2の光ファイバ心線10と、第1方路D1の光ファイバ心線10と第2方路D2の光ファイバ心線10とが接続されてもよい。 In this optical cross-connect device, as a first connection mode, it is possible to connect between the route D1 and the route D2, and between the route D3 and the route D4. At this time, between the route D1 and the route D2, the optical switches 20 1 and 20 2 corresponding to the route D1 and the optical switches 20 3 and 20 4 corresponding to the route D2 are connected through the optical wiring route 40. connected to each other. Therefore, the optical fibers 10 1 and 10 2 in the route D1 and the optical fibers 10 3 and 10 4 in the route D2 are connected to each other. Here, the optical fiber coated wire 101 of the first route D1, the optical fiber coated wire 103 of the second route D2, the optical fiber coated wire 102 of the first route D1, and the light of the second route D2 The fiber coated wire 104 may be connected, or conversely, the optical fiber coated wire 101 of the first route D1 and the optical fiber coated wire 104 of the second route D2 may be connected. The optical fiber coated wire 102 and the optical fiber coated wire 103 of the second route D2 may be connected.
 また、方路D3及び方路D4については、方路D3に対応する光スイッチ20、20と方路D4に対応する光スイッチ20、20が接続され、方路D3の光ファイバ心線10、10と方路D4の光ファイバ心線10、10とが互いに接続される。ここで、第3方路D3の光ファイバ心線10と第4方路D4の光ファイバ心線10と、第3方路D3の光ファイバ心線10と第2方路D4の光ファイバ心線10とが接続されてもよいし、逆に、第3方路D3の光ファイバ心線10と第4方路D4の光ファイバ心線10と、第3方路D3の光ファイバ心線10と第4方路D3の光ファイバ心線10とが接続されてもよい。 Further, regarding the route D3 and the route D4, the optical switches 20 5 and 20 6 corresponding to the route D3 and the optical switches 20 7 and 20 8 corresponding to the route D4 are connected, and the optical fiber core of the route D3 is connected. The wires 10 5 and 10 6 and the optical fiber core wires 10 7 and 10 8 of the route D4 are connected to each other. Here, the optical fiber coated wire 105 of the third route D3, the optical fiber coated wire 107 of the fourth route D4, the optical fiber coated wire 106 of the third route D3, and the light of the second route D4 The fiber coated wire 108 may be connected, or conversely, the optical fiber coated wire 105 of the third route D3 and the optical fiber coated wire 108 of the fourth route D4 may be connected. The optical fiber coated wire 106 and the optical fiber coated wire 107 of the fourth route D3 may be connected.
 光クロスコネクト装置においては、第2接続態様として、方路D1と方路D3との間、方路D2と方路D4との間をそれぞれ接続することができる。また、第3接続態様として、方路D1と方路D4との間、方路D2と方路D3との間をそれぞれ接続することができる。これら第2及び第3接続態様の場合にも、第1接続態様と同様に、接続する方路D1~D4に対応する光スイッチ20~20が光配線路40を介して適切に接続され、方路D1~D4の光ファイバ心線10~10が適切に接続される。 In the optical cross-connect device, as a second connection mode, it is possible to connect between the route D1 and the route D3, and between the route D2 and the route D4. Furthermore, as a third connection mode, the route D1 and the route D4 can be connected, and the route D2 and the route D3 can be connected, respectively. In the case of these second and third connection modes, similarly to the first connection mode, the optical switches 20 1 to 20 8 corresponding to the connecting routes D1 to D4 are appropriately connected via the optical wiring path 40. , the optical fibers 10 1 to 10 9 of the routes D1 to D4 are appropriately connected.
 上述のような構成を有する光クロスコネクト装置は、光クロスコネクト装置において光スイッチ20~20から多心光コネクタ30~30の一片に至る部分を製造する工程と、光クロスコネクト装置において光配線路40から多心光コネクタ30~30の他片に至る部分を製造する工程と、多心光コネクタ30~30の一片及び他片を連結する工程とによって製造することができる。 The optical cross-connect device having the above-mentioned configuration includes a process for manufacturing a part of the optical cross-connect device from the optical switches 20 1 to 20 8 to one piece of the multi-core optical connectors 30 1 to 30 8 , and , a process of manufacturing a part from the optical wiring path 40 to the other pieces of the multi-fiber optical connectors 30 1 to 30 8 , and a process of connecting one piece of the multi-fiber optical connectors 30 1 to 30 8 and the other pieces. I can do it.
 詳しくは、光スイッチ20~20は、光ファイバ群11~11を介して多心光コネクタ30~30の一片に接続される。基板50上に光ファイバ群12を適切に配置することで光配線路40が構成され、光配線路40は多心光コネクタ30~30の他片に接続される。最後に、多心光コネクタ30~30の一片と他片とが連結される。 Specifically, the optical switches 20 1 - 20 8 are connected to one piece of the multi-core optical connectors 30 1 - 30 8 via optical fiber groups 11 1 - 11 8 . An optical wiring path 40 is configured by appropriately arranging the optical fiber group 12 on the substrate 50, and the optical wiring path 40 is connected to the other pieces of the multi-core optical connectors 30 1 to 30 8 . Finally, one piece of the multi-core optical connectors 30 1 to 30 8 is connected to the other piece.
 上述のように、第1の実施の形態の光クロスコネクト装置において、光配線路40は光スイッチ20~20に多心光コネクタ30~30によって連結及び取り外しが可能なように取り付けられている。このため、多心光コネクタ30~30を連結するだけで光配線路40と光スイッチ20~20との間の光配線が完成するため、光クロスコネクト装置の製造が容易になる。単心ごとに光ファイバ群12を接続したり、光ファイバ群12を交差して配線したりするような光ファイバ群12の複雑な配線を実施する必要がなくなり、光クロスコネクト装置を製造するための作業の負担が軽減される。 As described above, in the optical cross-connect device of the first embodiment, the optical wiring path 40 is attached to the optical switches 20 1 to 20 8 by the multi-core optical connectors 30 1 to 30 8 so as to be connectable and detachable. It is being Therefore, the optical wiring between the optical wiring path 40 and the optical switches 20 1 to 20 8 is completed simply by connecting the multi-core optical connectors 30 1 to 30 8 , making it easy to manufacture the optical cross-connect device. . It is no longer necessary to carry out complicated wiring of the optical fiber group 12 such as connecting the optical fiber group 12 for each single fiber or wiring the optical fiber group 12 in a crossing manner, and it is possible to manufacture an optical cross-connect device. The burden of work will be reduced.
 光クロスコネクト装置の製造においては、光スイッチ筐体から光ファイバが引き出されてピグテイルとなった状態で、この光ファイバ同士を接続して光スイッチ間の光配線を行っていた。行き先の異なる光ファイバを単心ごとに融着接続する場合、融着接続を行う機器で光ファイバを接続するために光ファイバには余長を持たせる必要があり、光クロスコネクト装置内でこの光ファイバ余長を収納する作業が光クロスコネクト装置の組立作業性の向上を阻害していた。しかしながら、第1の実施の形態の光クロスコネクト装置においては、光配線路40は多心光コネクタ30~30によって連結及び取り外しが可能であるため。単心ごとの融着接続や光ファイバに余長を持たせる必要がなくなり、製造の負担が軽減される。 In manufacturing optical cross-connect devices, optical fibers are pulled out from optical switch housings to form pigtails, and the optical fibers are connected to each other to provide optical wiring between optical switches. When fusion splicing optical fibers destined for different destinations, it is necessary to provide extra length for the optical fibers to be connected by the equipment that performs the fusion splicing. The work of accommodating the excess length of optical fibers has hindered the improvement of the assembly workability of optical cross-connect devices. However, in the optical cross-connect device of the first embodiment, the optical wiring path 40 can be connected and removed by the multi-core optical connectors 30 1 to 30 8 . There is no need to fusion splice each single fiber or provide extra length for the optical fiber, reducing the manufacturing burden.
 また、光配線路40の光ファイバ群12を単心ごとに接続して配線する必要がなくなるため、光配線路40を小型化することができる。光配線路40の光ファイバ群12に光ファイバ曲げ損失が低いシングルモード光ファイバを使用することによって、光ファイバを小さい曲率半径で曲げることが可能になり、光配線路40をさらに小型化することができる。多段ループ網における光クロスコネクト装置は屋外のクロージャに設置するため、小型化によりスペースに制限のあるクロージャにも設置することができるようになる。 Moreover, since it is not necessary to connect and wire the optical fiber group 12 of the optical wiring path 40 for each single fiber, the optical wiring path 40 can be downsized. By using single-mode optical fibers with low optical fiber bending loss for the optical fiber group 12 of the optical wiring path 40, it becomes possible to bend the optical fibers with a small radius of curvature, and the optical wiring path 40 can be further miniaturized. I can do it. Since the optical cross-connect device in a multi-stage loop network is installed in an outdoor closure, its miniaturization allows it to be installed in a closure with limited space.
 さらに、光クロスコネクト装置に故障が発生した際にも、多心光コネクタ30~30によって光配線路40を取り外すことができるため、光クロスコネクト装置の保守性が向上する。光スイッチ20~20に光ファイバ群12を単心ごとに融着接続で配線していると、故障した光スイッチ20~20の光ファイバ群12を1本ごとに探し出して融着接続した部位を切断するような作業が必要になるが、本実施の形態では光スイッチ20~20と光ファイバ群12とは多心光コネクタ30~30によって取り外すことができるため、作業の負担が軽減される。 Furthermore, even when a failure occurs in the optical cross-connect device, the optical wiring path 40 can be removed using the multi-core optical connectors 30 1 to 30 8 , which improves the maintainability of the optical cross-connect device. When the optical fiber groups 12 are wired to the optical switches 20 1 to 20 8 by fusion splicing, each optical fiber group 12 of the optical switches 20 1 to 20 8 that has failed is found and fused one by one. Although work such as cutting off the connected parts is required, in this embodiment, the optical switches 20 1 to 20 8 and the optical fiber group 12 can be removed using the multi-core optical connectors 30 1 to 30, so the work is not necessary. The burden of this will be reduced.
 (第2の実施の形態)
 図5は、第2の実施の形態の光クロスコネクト装置の構成を示す図である。第2の実施の形態の光クロスコネクト装置は、光配線路40の大部分が光導波路によって構成されている点が第1の実施の形態の光クロスコネクト装置と相違している。他の構成は、第1の実施の形態の光クロスコネクト装置と同様であるため、対応する構成要素には共通する符号を付して参照することにする。
(Second embodiment)
FIG. 5 is a diagram showing the configuration of an optical cross-connect device according to the second embodiment. The optical cross-connect device of the second embodiment differs from the optical cross-connect device of the first embodiment in that most of the optical wiring path 40 is constituted by an optical waveguide. Since the other configurations are the same as those of the optical cross-connect device of the first embodiment, corresponding components will be referred to with common reference numerals.
 第2の実施の形態の光コネクタ装置において、方路D1~D4の4方路はそれぞれ2本の光ファイバ心線10~10を有し、光ファイバ心線10~10は、各光ファイバ心線10~10に設けられた光スイッチ20~20の入力側に接続されている。 In the optical connector device of the second embodiment, each of the four routes D1 to D4 has two optical fibers 10 1 to 10 8 , and the optical fibers 10 1 to 10 8 are It is connected to the input side of optical switches 20 1 to 20 8 provided on each optical fiber core 10 1 to 10 8 .
 光スイッチ20~20の出力側は、それぞれ6本の並列な光ファイバで構成された光ファイバ群11~11によって多心光コネクタ30~30の入力側にそれぞれ接続されている。多心光コネクタ30~30は、入力側の一片と出力側の他片とから構成され、一片及び他片を機械的に連結したり切り離したりすることにより、入力側の光ファイバ群11~11と出力側の6本の光ファイバ群12との間で光路を接続したり切り離したりすることができる。多心光コネクタ30~30にはMTコネクタが使用されているが、MPOコネクタを使用してもよい。 The output sides of the optical switches 20 1 to 20 8 are respectively connected to the input sides of multi-core optical connectors 30 1 to 30 8 by optical fiber groups 11 1 to 11 8 each composed of six parallel optical fibers. There is. The multi-fiber optical connectors 30 1 to 30 8 are composed of one piece on the input side and the other piece on the output side, and by mechanically connecting or disconnecting one piece and the other piece, the optical fiber group 11 on the input side is connected. The optical path can be connected or disconnected between the optical fibers 1 to 118 and the group of six optical fibers 12 on the output side. Although MT connectors are used for the multi-core optical connectors 30 1 to 30 8 , MPO connectors may also be used.
 方路D1~D4について、方路D1~D4の光ファイバ心線10~10に光スイッチ20~20を介して接続する多心光コネクタ30~30の出力側と、他の多心光コネクタ30~30の出力側との間は、それぞれ光ファイバ群13~13及び光導波路61で構成された光路によって構成された光配線路40によって接続されている。光導波路61は、基板60の表面に形成されていてもよい。基板60は、例えば二酸化シリコン等の結晶基板から構成されていてもよい。光ファイバ群13~13は、多心光コネクタ30~30の入力側に接続された光ファイバ群11~11と同様に6本の並列な光ファイバから構成され、多心光コネクタ30~30の出力側と、基板60に形成された光導波路61とを接続している。 For routes D1 to D4, output sides of multi-fiber optical connectors 30 1 to 30 8 connected to optical fibers 10 1 to 10 8 of routes D1 to D4 via optical switches 20 1 to 20 8 , and others are connected to the output sides of the multi-core optical connectors 30 1 to 30 8 by optical wiring paths 40 constituted by optical paths constituted by optical fiber groups 13 1 to 13 8 and optical waveguides 61, respectively. The optical waveguide 61 may be formed on the surface of the substrate 60. The substrate 60 may be made of, for example, a crystalline substrate such as silicon dioxide. The optical fiber groups 13 1 to 13 8 are composed of six parallel optical fibers, similar to the optical fiber groups 11 1 to 11 8 connected to the input sides of the multi-core optical connectors 30 1 to 30 8 . The output sides of the optical connectors 30 1 to 30 8 are connected to an optical waveguide 61 formed on the substrate 60.
 第2の実施の形態の光クロスコネクト装置においても、光クロスコネクト装置の動作は第1の実施の形態の光クロスコネクト装置と同様である。すなわち、第1接続態様として、方路D1と方路D2との間、方路D3と方路D4との間をそれぞれ接続することができる。また、第2接続態様として、方路D1と方路D3との間、方路D2と方路D4との間をそれぞれ接続することができ、第3接続態様として、方路D1と方路D4との間、方路D2と方路D3との間をそれぞれ接続することができる。これら第1接続態様から第3接続態様において、方路D1~D4に対応する光スイッチ20~20は、光ファイバ心線10~10を介して接続する方路D1~D4の対応する光スイッチ20~20に適切に接続される。したがって、方路D1~D4の光ファイバ心線10~10は、方路D1~D4の光ファイバ心線10~10に適切に接続される。 In the optical cross-connect device of the second embodiment, the operation of the optical cross-connect device is similar to that of the optical cross-connect device of the first embodiment. That is, as the first connection mode, it is possible to connect between the route D1 and the route D2, and between the route D3 and the route D4. Further, as a second connection mode, it is possible to connect between the route D1 and the route D3, and between the route D2 and the route D4, and as a third connection mode, the route D1 and the route D4 can be connected. It is possible to connect between the route D2 and the route D3. In these first to third connection modes, the optical switches 20 1 to 20 8 corresponding to the routes D1 to D4 correspond to the routes D1 to D4 connected via the optical fiber cores 10 1 to 10 9 . The optical switches 20 1 to 20 8 are suitably connected to the optical switches 20 1 to 20 8 . Therefore, the optical fibers 10 1 to 10 8 of the routes D1 to D4 are appropriately connected to the optical fibers 10 1 to 10 8 of the routes D1 to D4.
 上述のような構成を有する光クロスコネクト装置は、光クロスコネクト装置において光スイッチ20~20から多心光コネクタ30~30の一片に至る部分を製造する工程と、光クロスコネクト装置において光配線路40から多心光コネクタ30~30の他片に至る部分を製造する工程と、多心光コネクタ30~30の一片及び他片を連結する工程とによって製造することができる。 The optical cross-connect device having the above-mentioned configuration includes a process for manufacturing a part of the optical cross-connect device from the optical switches 20 1 to 20 8 to one piece of the multi-core optical connectors 30 1 to 30 8 , and , a process of manufacturing a part from the optical wiring path 40 to the other pieces of the multi-fiber optical connectors 30 1 to 30 8 , and a process of connecting one piece of the multi-fiber optical connectors 30 1 to 30 8 and the other pieces. I can do it.
 詳しくは、光スイッチ20~20は光ファイバ群11~11を介して多心光コネクタ30~30の一片に接続され、基板60に形成された光導波路61は光ファイバ群13~13を介して多心光コネクタ30~30の他片に接続される。そして、多心光コネクタ30~30の一片と他片とが連結される。 Specifically, the optical switches 20 1 to 20 8 are connected to one piece of the multi-core optical connectors 30 1 to 30 8 via the optical fiber groups 11 1 to 11 8 , and the optical waveguide 61 formed on the substrate 60 is connected to the optical fiber groups 11 1 to 11 8. It is connected to the other pieces of the multi-core optical connectors 30 1 to 30 8 via 13 1 to 13 8 . Then, one piece of the multi-core optical connectors 30 1 to 30 8 is connected to the other piece.
 第2の実施の形態の光クロスコネクト装置においては、光配線路40の大部分が基板60に形成された光導波路によって構成されている。光導波路は高密度な配線が可能であるため、光配線路40の小型化が可能である。また、光導波路は基板60に一体として形成されているため堅牢である。 In the optical cross-connect device of the second embodiment, most of the optical wiring path 40 is constituted by an optical waveguide formed on the substrate 60. Since the optical waveguide allows high-density wiring, the optical wiring path 40 can be miniaturized. Furthermore, since the optical waveguide is formed integrally with the substrate 60, it is robust.
 第2の実施の形態の光クロスコネクト装置においても第1の実施の形態の光クロスコネクト装置と同様に、光配線路40は光スイッチ20~20に多心光コネクタ30~30によって連結及び取り外しが可能なように取り付けられている。このため、光配線路40を多心光コネクタ30~30を接続するだけで光配線路40と光スイッチ20~20との間の光配線が完成し、光クロスコネクト装置を製造するための作業の負担が軽減される。 In the optical cross-connect device of the second embodiment, similarly to the optical cross-connect device of the first embodiment, the optical wiring path 40 is connected to the optical switches 20 1 to 20 8 and the multi-core optical connectors 30 1 to 30 8. It is attached so that it can be connected and removed. Therefore, by simply connecting the optical wiring path 40 to the multi-core optical connectors 30 1 to 30 8 , the optical wiring between the optical wiring path 40 and the optical switches 20 1 to 20 8 is completed, and an optical cross-connect device is manufactured. This reduces the burden of work required to do so.
 また、光配線路40の光ファイバ群12を単心ごとに接続して配線する必要がなくなり、光配線路40を小型化することができ、屋外のクロージャのようにスペースに制限のあっても小型化により設置することができる。さらに、光クロスコネクト装置に故障が発生した際にも多心光コネクタ30~30を切り離すだけで光配線路40を取り外すことができるため、光クロスコネクト装置の保守性が向上する。 In addition, it is no longer necessary to connect and wire the optical fiber group 12 of the optical wiring path 40 for each single fiber, and the optical wiring path 40 can be downsized, even when space is limited such as in an outdoor closure. It can be installed due to its miniaturization. Furthermore, even when a failure occurs in the optical cross-connect device, the optical wiring path 40 can be removed simply by disconnecting the multi-core optical connectors 30 1 to 30 8 , thereby improving the maintainability of the optical cross-connect device.
 (第3の実施の形態)
 図6は、第3の実施の形態の光クロスコネクト装置の構成を示す図である。第3の実施の形態の光クロスコネクト装置は、光配線路40の全体が光導波路によって構成され、多心光コネクタ30~30の出力側は光導波路が形成された基板60の周縁に取り付けられている点が第1の実施の形態の光クロスコネクト装置と相違している。他の構成は、第1の実施の形態の光クロスコネクト装置と同様であるため、対応する構成要素には共通する符号を付して参照することにする。
(Third embodiment)
FIG. 6 is a diagram showing the configuration of an optical cross-connect device according to the third embodiment. In the optical cross-connect device of the third embodiment, the entire optical wiring path 40 is composed of optical waveguides, and the output sides of the multi-core optical connectors 30 1 to 30 8 are connected to the periphery of the substrate 60 on which the optical waveguides are formed. This is different from the optical cross-connect device of the first embodiment in that it is attached. Since the other configurations are the same as those of the optical cross-connect device of the first embodiment, corresponding components will be referred to with common reference numerals.
 第3の実施の形態の光コネクタ装置において、方路D1~D4の4方路はそれぞれ2本の光ファイバ心線10~10を有し、光ファイバ心線10~10は、各光ファイバ心線10~10に設けられた光スイッチ20~20の入力側に接続されている。 In the optical connector device of the third embodiment, each of the four routes D1 to D4 has two optical fibers 10 1 to 10 8 , and the optical fibers 10 1 to 10 8 are It is connected to the input side of optical switches 20 1 to 20 8 provided on each optical fiber core 10 1 to 10 8 .
 光スイッチ20~20の出力側は、それぞれ6本の並列な光ファイバから構成された光ファイバ群11~11によって多心光コネクタ30~30の入力側にそれぞれ接続されている。多心光コネクタ30~30は、入力側の一片と出力側の他片とから構成され、一片及び他片を機械的に連結したり切り離したりことにより、入力側の光ファイバ群11~11と出力側の光配線路40に接続された6本の光ファイバ群12との間で接続と切り離しとを可能にしている。多心光コネクタ30~30にはMTコネクタが使用されているが、MPOコネクタを使用してもよい。 The output sides of the optical switches 20 1 to 20 8 are respectively connected to the input sides of multi-core optical connectors 30 1 to 30 8 by optical fiber groups 11 1 to 11 8 each composed of six parallel optical fibers. There is. The multi-fiber optical connectors 30 1 to 30 8 are composed of one piece on the input side and the other piece on the output side, and by mechanically connecting or disconnecting one piece and the other piece, the optical fiber group 11 1 on the input side is connected. 118 and the six optical fiber groups 12 connected to the optical wiring path 40 on the output side. Although MT connectors are used for the multi-core optical connectors 30 1 to 30 8 , MPO connectors may also be used.
 方路D1~D4について、方路D1~D4の光ファイバ心線10~10に光スイッチ20~20を介して接続する多心光コネクタ30~30の出力側と、他の多心光コネクタ30~30の出力側との間は、光導波路61で構成された光配線路40によって接続されている。光導波路61は、基板60の表面に形成されていてもよい。基板60は、例えば二酸化シリコン等の結晶基板から構成されていてもよい。 For routes D1 to D4, output sides of multi-fiber optical connectors 30 1 to 30 8 connected to optical fibers 10 1 to 10 8 of routes D1 to D4 via optical switches 20 1 to 20 8 , and others are connected to the output sides of the multi-core optical connectors 30 1 to 30 8 by an optical wiring path 40 constituted by an optical waveguide 61. The optical waveguide 61 may be formed on the surface of the substrate 60. The substrate 60 may be made of, for example, a crystalline substrate such as silicon dioxide.
 第3の実施の形態の光クロスコネクト装置においても、光クロスコネクト装置の動作は第1の実施の形態の光クロスコネクト装置と同様である。すなわち、第1接続態様として、方路D1及び方路D2、方路D3及び方路D4をそれぞれ接続することができる。また、第2接続態様として、方路D1及び方路D3、方路D2及び方路D4をそれぞれ接続することができ、第3接続態様として、方路D1及び方路D4、方路D2及び方路D3をそれぞれ接続することができる。これら第1接続態様から第3接続態様において、方路D1~D4に対応する光スイッチ20~20は、光ファイバ心線10~10を介して接続する方路D1~D4の対応する光スイッチ20~20に適切に接続される。したがって、方路D1~D4の光ファイバ心線10~10は、方路D1~D4の光ファイバ心線10~10に適切に接続される。 In the optical cross-connect device of the third embodiment, the operation of the optical cross-connect device is similar to that of the optical cross-connect device of the first embodiment. That is, as the first connection mode, the route D1 and the route D2, and the route D3 and the route D4 can be connected, respectively. Further, as a second connection mode, the route D1 and the route D3, and the route D2 and the route D4 can be connected, respectively. As a third connection mode, the route D1 and the route D4, the route D2 and the route D4 can be connected, respectively. The paths D3 can be connected respectively. In these first to third connection modes, the optical switches 20 1 to 20 8 corresponding to the routes D1 to D4 correspond to the routes D1 to D4 connected via the optical fiber cores 10 1 to 10 8 . The optical switches 20 1 to 20 8 are suitably connected to the optical switches 20 1 to 20 8 . Therefore, the optical fibers 10 1 to 10 8 of the routes D1 to D4 are appropriately connected to the optical fibers 10 1 to 10 8 of the routes D1 to D4.
 上述のような構成を有する光クロスコネクト装置は、光クロスコネクト装置において光スイッチ20~20から多心光コネクタ30~30の一片に至る部分を製造する工程と、光クロスコネクト装置において光配線路40から多心光コネクタ30~30の他片に至る部分を製造する工程と、多心光コネクタ30~30の一片及び他片を連結する工程とによって製造することができる。 The optical cross-connect device having the above-mentioned configuration includes a process for manufacturing a part of the optical cross-connect device from the optical switches 20 1 to 20 8 to one piece of the multi-core optical connectors 30 1 to 30 8 , and , a process of manufacturing a part from the optical wiring path 40 to the other pieces of the multi-fiber optical connectors 30 1 to 30 8 , and a process of connecting one piece of the multi-fiber optical connectors 30 1 to 30 8 and the other pieces. I can do it.
 詳しくは、光スイッチ20~20は光ファイバ群11~11を介して多心光コネクタ30~30の一片に接続され、基板60に形成された光導波路61は多心光コネクタ30~30の他片に接続される。そして、多心光コネクタ30~30の一片と他片とが連結される。 Specifically, the optical switches 20 1 to 20 8 are connected to one piece of the multi-core optical connectors 30 1 to 30 8 via the optical fiber groups 11 1 to 11 8 , and the optical waveguide 61 formed on the substrate 60 is It is connected to the other pieces of the connectors 30 1 to 30 8 . Then, one piece of the multi-core optical connectors 30 1 to 30 8 is connected to the other piece.
 第3の実施の形態の光クロスコネクト装置においては、光配線路40の全体が基板60に形成された光導波路によって構成されている。光導波路は高密度な配線が可能であり、光配線路40の全体が光導波路によって形成されているため、光配線路40のさらなる小型化が可能である。また、光導波路は基板60に一体として形成され、多心光コネクタ30~30の出力側も基板60の周縁に取り付けられて基板60に形成された光導波路に直接に接続されているため堅牢である。 In the optical cross-connect device of the third embodiment, the entire optical wiring path 40 is constituted by an optical waveguide formed on a substrate 60. The optical waveguide allows for high-density wiring, and since the entire optical wiring path 40 is formed of the optical waveguide, further miniaturization of the optical wiring path 40 is possible. Further, the optical waveguide is formed integrally with the substrate 60, and the output sides of the multi-core optical connectors 30 1 to 30 8 are also attached to the periphery of the substrate 60 and are directly connected to the optical waveguide formed on the substrate 60. It is robust.
 第3の実施の形態の光クロスコネクト装置においても第1の実施の形態の光クロスコネクト装置と同様に、光配線路40は光スイッチ20~20に多心光コネクタ30~30によって連結及び取り外しが可能なように取り付けられている。このため、光配線路40を多心光コネクタ30~30を連結するだけで光配線路40と光スイッチ20~20との間の光配線が完成し、光クロスコネクト装置を製造するための作業の負担が軽減される。 In the optical cross-connect device of the third embodiment, similarly to the optical cross-connect device of the first embodiment, the optical wiring path 40 is connected to the optical switches 20 1 to 20 8 and the multi-core optical connectors 30 1 to 30 8. It is attached so that it can be connected and removed. Therefore, optical wiring between the optical wiring path 40 and the optical switches 20 1 to 20 8 is completed simply by connecting the optical wiring path 40 to the multi-core optical connectors 30 1 to 30 8 , and an optical cross-connect device is manufactured. This reduces the burden of work required to do so.
 また、光配線路40の光ファイバ群12を単心ごとに接続して配線する必要がなくなるため光配線路40を小型化することができ、屋外のクロージャのようにスペースに制限のあっても小型化により設置することができる。さらに、光クロスコネクト装置に故障が発生した際にも多心光コネクタ30~30によって光配線路40を取り外すことができるため、光クロスコネクト装置の保守性が向上する。 Furthermore, since there is no need to connect and wire the optical fiber groups 12 of the optical wiring path 40 for each single fiber, the optical wiring path 40 can be made smaller, and even when space is limited such as in an outdoor closure. It can be installed due to its miniaturization. Furthermore, even when a failure occurs in the optical cross-connect device, the optical wiring path 40 can be removed using the multi-core optical connectors 30 1 to 30 8 , which improves the maintainability of the optical cross-connect device.
 10~10 光ファイバ心線
 11~11 光ファイバ群
 12 光ファイバ群
 20~20 光スイッチ
 30~30 多心光コネクタ
 40 光配線路
 50 基板
10 1 to 10 8 optical fiber core 11 1 to 11 8 optical fiber group 12 Optical fiber group 20 1 to 20 8 optical switch 30 1 to 30 8 multi-core optical connector 40 Optical wiring path 50 Board

Claims (8)

  1.  1本以上の光ファイバ心線を有する方路について、複数の方路の間で光ファイバ心線の接続を切り替える光クロスコネクト装置であって、
     各光ファイバ心線に入力側で接続する光スイッチと、
     前記光スイッチの出力側に並列な光ファイバを介して入力側で接続する多心光コネクタと、
     前記方路の前記光ファイバ心線に前記光スイッチを介して接続する前記多心光コネクタについて、一の前記方路の前記多心光コネクタの出力側と、他の前記方路の前記多心光コネクタの出力側との間をそれぞれ接続する光路から構成された光配線路と
     を含み、
     前記光スイッチは、前記方路の光ファイバ心線の1本を前記光路の内の1本に接続する光クロスコネクト装置。
    An optical cross-connect device for switching connections of optical fibers between a plurality of routes for routes having one or more optical fibers, the device comprising:
    An optical switch connected to each optical fiber on the input side,
    a multi-core optical connector connected on the input side to the output side of the optical switch via parallel optical fibers;
    Regarding the multi-fiber optical connector connected to the optical fiber core wire of the route via the optical switch, the output side of the multi-fiber optical connector of one of the routes and the multi-core optical connector of the other route an optical wiring path consisting of optical paths each connecting to the output side of the optical connector;
    The optical switch is an optical cross-connect device that connects one of the optical fibers of the route to one of the optical paths.
  2.  前記光配線路は光ファイバによって構成され、前記光ファイバは基板によって少なくとも一部が支持された請求項1に記載の光クロスコネクト装置。 The optical cross-connect device according to claim 1, wherein the optical wiring path is constituted by an optical fiber, and the optical fiber is at least partially supported by a substrate.
  3.  前記光配線路を構成する光ファイバは、前記光スイッチと前記多心光コネクタとの間を接続する光ファイバの心線よりも曲げ損失が低い請求項2に記載の光クロスコネクト装置。 The optical cross-connect device according to claim 2, wherein the optical fiber constituting the optical wiring path has a lower bending loss than the core wire of the optical fiber connecting between the optical switch and the multi-core optical connector.
  4.  前記光配線路は基板に形成された光導波路を含む請求項1に記載の光クロスコネクト装置。 The optical cross-connect device according to claim 1, wherein the optical wiring path includes an optical waveguide formed on a substrate.
  5.  前記光配線路と前記多心光コネクタとの間は、光ファイバにより接続された請求項4に記載の光クロスコネクト装置。 The optical cross-connect device according to claim 4, wherein the optical wiring path and the multi-core optical connector are connected by an optical fiber.
  6.  前記多心光コネクタは前記基板の周縁に配置され、前記光導波路に接続する請求項4に記載の光クロスコネクト装置。 The optical cross-connect device according to claim 4, wherein the multi-core optical connector is arranged at the periphery of the substrate and connected to the optical waveguide.
  7.  2本の光ファイバ心線を有する方路について、4方路の間で光ファイバ心線の接続を切り替える請求項1に記載の光クロスコネクト装置。 The optical cross-connect device according to claim 1, wherein for a route having two optical fibers, the connection of the optical fibers is switched between four routes.
  8.  請求項1から7のいずれか1項に記載された光クロスコネクト装置の製造方法であって、
     前記光スイッチを前記多心光コネクタの一片に接続する工程と、
     前記光配線路から前記多心光コネクタの他片に至る部分を製造する工程と、
     前記多心光コネクタの一片及び他片を連結する工程と
     を含む製造方法。
    A method for manufacturing an optical cross-connect device according to any one of claims 1 to 7, comprising:
    connecting the optical switch to one piece of the multi-core optical connector;
    manufacturing a portion from the optical wiring path to the other piece of the multi-core optical connector;
    and a step of connecting one piece of the multi-core optical connector to the other piece.
PCT/JP2022/029474 2022-08-01 2022-08-01 Optical cross-connect device and method for manufacturing same WO2024028942A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/029474 WO2024028942A1 (en) 2022-08-01 2022-08-01 Optical cross-connect device and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/029474 WO2024028942A1 (en) 2022-08-01 2022-08-01 Optical cross-connect device and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2024028942A1 true WO2024028942A1 (en) 2024-02-08

Family

ID=89848685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029474 WO2024028942A1 (en) 2022-08-01 2022-08-01 Optical cross-connect device and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2024028942A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002258081A (en) * 2001-02-28 2002-09-11 Fujitsu Ltd Optical wiring board, manufacturing method of the same, and multi-layer optical wiring
US20040264847A1 (en) * 2000-08-04 2004-12-30 Seungug Koh Micro-opto-electro-mechanical waveguide switches
JP2015184667A (en) * 2014-03-26 2015-10-22 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Optical device, optical connector assembly, and optical connecting method
WO2022009291A1 (en) * 2020-07-06 2022-01-13 日本電信電話株式会社 Wavelength cross-connect device and wavelength cross-connect method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040264847A1 (en) * 2000-08-04 2004-12-30 Seungug Koh Micro-opto-electro-mechanical waveguide switches
JP2002258081A (en) * 2001-02-28 2002-09-11 Fujitsu Ltd Optical wiring board, manufacturing method of the same, and multi-layer optical wiring
JP2015184667A (en) * 2014-03-26 2015-10-22 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Optical device, optical connector assembly, and optical connecting method
WO2022009291A1 (en) * 2020-07-06 2022-01-13 日本電信電話株式会社 Wavelength cross-connect device and wavelength cross-connect method

Similar Documents

Publication Publication Date Title
US7218828B2 (en) Optical fiber power splitter module apparatus
US8295667B2 (en) Hole arranged photonic crystal fiber for low loss, tight fiber bending applications
US5353363A (en) Optical fiber bendable coupler/switch device
US7324728B2 (en) Optical connector with total internal reflection abutting surface
JP2016501383A (en) Polarity scheme for parallel optical data transmission
Hayashi et al. Multi-core fibers for data center applications
JP2015114548A (en) Optical multiplexer/demultiplexer and optical communication system
CN113316731A (en) Optical communication device, optical communication method, and optical communication system
WO2024028942A1 (en) Optical cross-connect device and method for manufacturing same
US20210271032A1 (en) Electrically-controlled fiber-optic switching system
WO2023067772A1 (en) Optical connection module
JP3311040B2 (en) Optical fiber branch component and manufacturing method thereof
US10775566B2 (en) Fiber optic lane changers for use with fiber optic cables having unused optical fibers and related methods
US11550103B2 (en) Optical connection component
WO2024075219A1 (en) Optical cross connect unit, optical cross connect device, and node
CN210803772U (en) Optical waveguide device for micro-electromechanical system optical switch
Asada et al. Next generation multi-fiber ferrule using 165 micron pitch optical fiber
JP2018092053A (en) Optical fiber connection method and connection structure
WO2022157847A1 (en) Optical cross-connect device
JP7400981B2 (en) light switch
JP2023180815A (en) Optical connection device, composite optical connection device, and method for manufacturing optical connection device
JP4062110B2 (en) OPTICAL CONNECTION COMPONENT, OPTICAL CONNECTION METHOD, AND OPTICAL COMMUNICATION DEVICE
US20230171526A1 (en) Optical devices having externally field-configurable splitting ratios and methods of using the same
Kihara Novel MT/MPO Single-Mode Multifiber Connector Technologies for Optical Fiber Communications
NAGASE Technical trends in optical fiber connectors for telecommunication systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953932

Country of ref document: EP

Kind code of ref document: A1