WO2024028522A1 - On-the-go precision dosage system for phytosanitary products and liquid fertilisers for the foliar spraying or misting of vineyards - Google Patents

On-the-go precision dosage system for phytosanitary products and liquid fertilisers for the foliar spraying or misting of vineyards Download PDF

Info

Publication number
WO2024028522A1
WO2024028522A1 PCT/ES2022/070523 ES2022070523W WO2024028522A1 WO 2024028522 A1 WO2024028522 A1 WO 2024028522A1 ES 2022070523 W ES2022070523 W ES 2022070523W WO 2024028522 A1 WO2024028522 A1 WO 2024028522A1
Authority
WO
WIPO (PCT)
Prior art keywords
dose
vine
vineyard
leaf
product
Prior art date
Application number
PCT/ES2022/070523
Other languages
Spanish (es)
French (fr)
Inventor
Juan Carlos SÁENZ-DÍEZ MURO
Manuel Javier TARDÁGUILA LASO
Emilio JIMÉNEZ MACÍAS
Julio BLANCO FERNÁNDEZ
Eduardo MARTÍNEZ CÁMARA
Daniel NIÑO MARTIN
Original Assignee
Altavitis Technologies, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Altavitis Technologies, S.L. filed Critical Altavitis Technologies, S.L.
Priority to PCT/ES2022/070523 priority Critical patent/WO2024028522A1/en
Publication of WO2024028522A1 publication Critical patent/WO2024028522A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • G03B15/03Combinations of cameras with lighting apparatus; Flash units
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration

Definitions

  • the invention particularly refers to a precision dosing system for special application in the field of agricultural machinery, such as sprayers or nebulizers.
  • the application sectors will be those likely to use said invention, such as the viticulture sector.
  • the vineyard is one of the most intensified extensive crops, which requires a large amount of inputs, being a crop very suitable for the application of precision agriculture techniques (Arnó et al., 2012).
  • Arthropods There are numerous species of mites and insects that cause damage to the vine, although it is the phylloxera Dactylosphaera vitifoliae Fitch, a hemipteran insect, that caused the greatest damage to the vine crop (Granett et al., 2001; Powell et al. ., 2013).
  • Virus obligate intracellular parasites.
  • the infectious short internode virus (GFLV) is the most important viral disease of the grapevine (Royal Decree 208, 2003).
  • Phytoplasmas They are single-celled organisms of the class Mullicutes, obligate parasites, that reside in phloem cells. Of the vine phytoplasmosis, “Golden Flavescence” is the best known and has the greatest economic impact (Nazaré-Pereira, nd) since it can kill the vines quickly and spread to other areas. Bacteria. The species of Agrobacterium spp., are very polyphagous, produce the disease known as bacterial tumor, tuberculosis, scab or galls and is characterized by the formation of more or less voluminous protuberances that develop at the base of the plant and roots or at the height of the graft (Abelleira et al., 2009).
  • Nematodes of edaphic origin, cause hypertrophy and lesions in the root system, in addition to facilitating the entry of other pathogens.
  • the species that affect the vineyard belong to the genera Xiphinema and Meloidogyne (Abelleira et al., 2009).
  • Fungi and Oomycetes There are a large number of pathogens that affect this crop, depending on the plant part it affects: aerial “fungi” (mildew and powdery mildew, which attack all the green parts of the plant), vascular, wood or root rot. , mildew, powdery mildew (Abelleira et al., 2009). They are one of the most relevant phytosanitary problems affecting the vineyard today and, therefore, some authors consider them to be the phylloxera of the 21st century. This syndrome includes a total of 7 pathologies that include more than 133 species of fungi.
  • tinder is the most used to refer to them.
  • Escudo ® is available, which is a fungicide composed of 5g/l of flusilazole and 10g/l of carbendazamide from the commercial company DuPont ®, being capable of effectively controlling Phaemoniella chlamydospora and Phaeoacremonium aleophilum is also capable of controlling Eutypa lata (Marquez, 2003).
  • Fungicides are the “most demanding” products; They normally require that the largest possible surface of the leaf be treated and nebulizers are the best there. In general, fungicides are broad spectrum. In any case, these statements are generic as it would also be necessary to consider whether you are treating with a contact or systemic product.
  • Contact fungicides are those that remain on the outside of the plant, covering the leaves. These fungicides are preventive since they prevent fungal spores from germinating and penetrating the crop cells. The main problem with these fungicides is that, since they are on the leaves, they only act where the drop of fungicide falls. Furthermore, with time and rain they will wash away and, therefore, lose effectiveness.
  • Systemic fungicides are absorbed by the plant through the stomata of the leaves or through the roots.
  • the limbic system is responsible for distributing the active compounds of these fungicides throughout the plant, until they reach the stems and leaves.
  • Systemic fungicides are intended as a treatment when the first symptoms of disease are observed in the plant, or when it is detected that the conditions will favor its spread. Through the plant they pass to the pathogenic fungus, causing biochemical damage that kills it. Furthermore, upon entering the interior of the plant they have a long period of permanence within it.
  • Phenology is the science that studies the relationship between climatic factors and the cycles of living beings. Baggiolini (1952) defined 14 phenological stages of the vine. Subsequently, Peterson included 5 more phases to complete leaf fall, being:
  • Phenological stage A winter bud.
  • Phenological state B1 I cry.
  • Phenolic state B2 swollen yolk.
  • Phenological stage K pea-sized grain.
  • Computer vision is a scientific discipline that includes methods to acquire, process and analyze images of the real world in order to produce information that can be processed by artificial intelligence.
  • a spectral image is one that reproduces the figure of an object depending on the wavelength that the object in question is reflecting (or emitting); or, in other words, it is a set of images of the same object each represented with different wavelengths;
  • the number of spectral bands being the main difference between a multispectral image and a hyperspectral image.
  • Multispectral images are made up of relatively few bands (normally between 2 and 10) and are bands that are not necessarily contiguous to each other, while hyperspectral images are normally made up of a greater number of bands (greater than 10) and these are always contiguous. .
  • hyperspectral images we can obtain the intensity values at the discrete wavelengths in which the system captures radiation, while with a hyperspectral image what we obtain is the continuous spectrum or spectral signature of the object of analysis (W01 ).
  • RGB cameras red, green and blue. They are digital cameras that allow you to obtain RGB images.
  • the technical parameters taken into account in this type of device are the light sensitivity of the sensor, spatial resolution or optical focus.
  • pattern recognition Through digital image analysis, applying pattern recognition, one can e.g. For example, identifying diseases in vegetation from RGB images.
  • the difficulty in detection and low precision of this technique is usually the result of low image quality.
  • Multispectral or visible spectrum cameras are frame-type cameras, equipped with spectral filters to be able to filter the electromagnetic emission according to its spectrum. They are multi-CCD and CMOS types, and with a Bayer ® mask it is possible to assign colors in RGB, or directly 3 separate RGB systems. They normally filter 4 different bands: near infrared (757.5-782.5 nm), red (637.5-662.5 nm), green (537.5-562.5 nm) and blue (437.5-462 .5 nm) (Hall et al., 2003). Multispectral images are made up of relatively few bands (usually between 2 and 10) and they are bands that are not necessarily contiguous to each other. Multispectral images are 2 spatial dimensions (X, Y). Multispectral images are very useful when we know the wavelengths that differentiate one material or another. Multispectral imaging cameras can provide data on RGB wave bands and an additional near-infrared band; This technique is called near-infrared spectroscopy (NIRS).
  • NIRS near-
  • Hyperspectral cameras are pushbroom type cameras, which are also capable of filtering electromagnetic emission according to their spectrum. Hyperspectral images are normally made up of a high number of bands (greater than 10) and these are always contiguous. Hyperspectral images have 1 spatial dimension and one spectral dimension (X, Z), which would correspond to the left lateral face of a hyperspectral cube. The process to obtain a hyperspectral cube involves scanning the scene to generate the second spatial dimension and this scanning can be done in two ways: moving the object or moving the hyperspectral camera over the scene or over the object of study. Hyperspectral images offer much more quantitative information and are used as spectral differentiation and classification tools (Hall et al., 2003). For example, it is possible to study the characteristics of the soil through its reflectance at different bands, so that it is possible to correlate this reflectance with various characteristics such as organic matter content or mineral composition (Lee et al., 2010).
  • Thermal imaging cameras allow thermal images to be obtained to know the variability of temperature at the leaf level, which can give an idea of its nutritional state and the detection of diseases, since the implementation of the plant's defense mechanisms against the attack of a pathogen, such as senescence of the attacked part, can cause an increase in leaf temperature (Sankaran et al., 2010). In this type of sensors, radiometric calibration and atmospheric correction are necessary.
  • Fluorescence (of chlorophyll). This is a form of spectroscopy in which fluorescence is studied after the application of a beam of light, usually ultraviolet light; We have two types of fluorescence: blue-green (400-600nm) and chlorophyll fluorescence (650-800nm). (Sankaran et al., 2010); It is necessary to determine the florescence by terrestrial means since the sensor must be in the vegetation, continuously measuring its variability in the different study areas (Diago et al., 2013 and 2016). A disadvantage of this system is that plant preparation must follow a strict protocol, which cannot be done in normal agricultural greenhouses or field environments.
  • LIDAR Laser-Based Radar
  • It is a laser system, which operates in the visible and infrared spectrum, which allows the distance to a certain target to be recorded; It is being used in smart agriculture to improve the precision of vehicles, e.g. e.g., the tractor and avoiding edges or obstacles (Lee et al., 2010).
  • New methods based on sensors are known for the detection, identification and quantification of plant diseases. These sensors evaluate the optical properties of plants within different regions of the electromagnetic spectrum and are capable of using information beyond the visible range. Remote sensing is the use of reflected and emitted energy to measure the physical properties of distant objects and their surroundings. In the field of plant sciences, remote sensing is a method used to obtain information about plants or crops without direct contact or invasive manipulation. These sensors can be installed on multiple platforms e.g. e.g., robots, drones, etc. (Trueba, 2017).
  • Optical techniques such as RGB imaging, multispectral and hyperspectral sensors, thermography or chlorophyll fluorescence are used in automated detection systems for the identification of plant diseases in early times. Optical detection techniques are used to identify foci of primary disease and areas that differ in disease severity across fields. These techniques together with advanced data analysis methods are used for specific pest management programs in sustainable crop production (Mahlein, 2016).
  • Vegetation indices are used, which are combinations of the spectral bands recorded by remote sensing satellites, whose function is to enhance the vegetation based on its spectral response and attenuate the details of other elements such as soil, lighting, water, etc. . These are images calculated from algebraic operations between different spectral bands. The result of these operations allows us to obtain a new image where certain pixels related to plant cover parameters are graphically highlighted. Among all, the Normalized Difference Vegetation Index (ND VI) is the most used vegetation index (W04).
  • the first group includes those that deal with image processing systems for multispectral and hyperspectral analysis in precision agriculture (WO 2017/ 105177 Al, 2015; WO 2017/ 099568 Al, 2015; US20150022656A1, 2013; WO 2009/156542 Al, 2008). None of the previous patents are comparable to the present invention, neither in the systems used, nor in their performance.
  • the second group includes agricultural machinery used in precision agriculture (ES 2722352 B2, 2018; ES 2624178 Bl, 2016; ES 2615080 Bl, 2016).
  • agricultural machinery used in precision agriculture ES 2722352 B2, 2018; ES 2624178 Bl, 2016; ES 2615080 Bl, 2016.
  • the invention is capable of automatically applying the ideal dose of each required phytosanitary product (DF) or liquid fertilizer (DA), dosed by a proportional solenoid valve (1EV) connected to the controller ( 200), based on the real-time identification and quantification of the state of the vineyard.
  • DF phytosanitary product
  • DA liquid fertilizer
  • 1EV proportional solenoid valve
  • the systems known in the state of the art present a technical or problematic limitation, which focuses fundamentally on the following aspects:
  • thermal imaging cameras mounted on an aerial or ground vehicle, that apply thermal analysis techniques.
  • X are also known systems that use digital cameras, mounted on an aerial or land vehicle, which apply artificial vision algorithms for RGB image analysis, allow to identify and quantify the symptoms of wood diseases, both at the strain and strain level leaf within the same plant; but it is not known that these systems are capable of applying the ideal dose of continuous precision treatment (on-the-go) with image taking.
  • the invention fully satisfactorily resolves the aforementioned problems, in each and every one of the different aspects discussed and detailed below:
  • the invention claims a system that uses digital cameras, mounted on a land vehicle, that applies vision algorithms. artificial for the analysis of RGB images, for the identification and quantification in real time of the state of the vineyard: a) phenological state; and b) disease symptoms (e.g., tinder), both at the vine and leaf level within the same plant; being able to apply the ideal dose of an optimal precision treatment continuously (on-the-go).
  • Trailed nebulizer trailer (03) Trailed nebulizer trailer; to process entire rows, e.g. e.g., 2 on both sides. Chassis.
  • OBE Ejector nozzle; that ejects air; Normally each arm (0BD) comprises four nozzles.
  • each nozzle (0BE) comprises a deflector.
  • (100) Robust electronic device This is a robust electronic unit, e.g. e.g., a robust workstation for data acquisition and processing in the field; equipped with SCADA (Supervisory Control And Data Acquisition) software that allows controlling and supervising sensors, actuators and instrumentation).
  • OBD fluid distributor arm
  • SFED Leaf area of the right external part of the vine in m 2 .
  • SFEC Leaf area of the upper external part (canopy) of the strain in m 2 .
  • LAI leaf area index dimensionless.
  • Figure 01 (FIG.01).- Shows a vineyard foliar sprayer or nebulizer system (0), any of the prior art; specifically a hauled nebulizer trailer (03).
  • FIG.02 Shows a perspective view of a fluid distributor arm (OBD), any of the prior art, in which an identification and quantification device (10) has been incorporated, object of the present invention.
  • OBD fluid distributor arm
  • Figure 03 (FIG.03).- Represents schematically using a piping and instrumentation diagram (P&ID), in the case of a single fluid distribution arm (OBD), a continuous precision dosing system (on-the-go), phytosanitary products and liquid fertilizers, for foliar spraying or nebulization of the vineyard (1), object of the present invention.
  • Figure 04 (FIG.04).- Represents schematically using a piping and instrumentation diagram (P&ID), for the case of two fluid distributor arms (OBD), generalizable to “n” arms, a continuous precision dosing system (on-the-go), for phytosanitary products and liquid fertilizers, for foliar spraying or nebulization of the vineyard (1), object of the present invention.
  • P&ID piping and instrumentation diagram
  • Figure 05 (FIG.05) Shows a perspective view of a parallelepiped model of the trellised vineyard.
  • FIG.06 Shows a perspective view of the external surfaces involved in the model.
  • Figure 07 Shows a view of an image of a vine segment, acquired in the field, after processing the image using the artificial vision algorithm.
  • the invention advocates a continuous (on-the-go) precision dosing system for phytosanitary and fertilizer foliar spraying, or misting, of the vineyard.
  • cultivation (1) of the type that incorporates, hooked to a tractor vehicle (02), a trailed nebulizer trailer (03) that has a set of fluid distribution arms (OBD), equipped with a plurality of ejector nozzles (OBE). ), (see FIG.01), and which is characterized because it includes:
  • a robust electronic device (100), (see FIG. 03-4), which is a robust electronic unit; p. e.g., a robust workstation for data acquisition and processing in the field; equipped with SCAD A (Supervisory Control And Data Acquisition) software that allows controlling and supervising sensors, actuators and instrumentation).
  • SCAD A Supervisory Control And Data Acquisition
  • a hollow articulated support arm (see FIG. 02), arranged in each fluid distributor arm (OBD), which allows cables to be arranged through its hollow interior, as well as acting as a tube to conduct air, taken from the arm ( OBD), and in which they are mounted forward an adjustable distance (1DBS), distance projected to the vertical plane of advance of the towing vehicle (02), and at a height of h + (H-h)/2, that is, at the midpoint of the lateral vertical plane of the vineyard, the following elements:
  • a concentric light projecting crown (101), synchronized with the camera trigger by means of a programmable logic controller (200); with the functionality to homogenize the light in the scene and try to minimize the effect of changes produced in the natural environment and, on the other hand, obtain the ability to work at night;
  • a digital camera (102) which has a deflector nozzle crown (103), fed with air taken from the arm (OBD), to cause a curtain of pressurized air, in the shape of a funnel, in order to prevent the nebulized products reach the optics of the camera (102), and whose camera is connected to the robust electronic device (100) and synchronized with the progress of the vehicle through an inductive sensor (201), connected to the controller (200) and mounted on the chassis.
  • OBD deflector nozzle crown
  • the digital camera (102) is a vision camera that captures the image projected on the sensor, through the optical system, in order to transfer the image data at high speed to the robust electronic device (100).
  • it is a Genie Nano-CXP C4900 color camera, with 4096x4096 px resolution and 120 fps shooting speed.
  • all the camera parameters are controlled from the robust electronic device (100); the light-projecting concentric crown (101), preferably of the LED (Light-Emitting Diode) type.
  • a digital RGB image of the lateral vertical plane of the vineyard is automatically taken, at intervals of more than two distances between vines (d) and at a height of h + (Hh)/2, that is, at the point middle of the vertical plane;
  • This operation is initially performed by hydraulically adjusting the fluid distributor arm (OBD).
  • the adjustable distance (1DBS) in which the digital camera (102) is mounted forward, is synchronized with the speed of the tractor vehicle (02) so that the treatment of the vineyard is always within the analyzed segment; Tractor speeds are usually less than 10 km/h.
  • Image processing is carried out using artificial vision, which is a field of artificial intelligence, through an image analysis algorithm using the Mahalanobis distance to classify each pixel of an image based on its color, (see FIG.07).
  • the algorithm uses a known sample of color values to classify an unknown batch of pixels into groups or classes based on a feature vector (i.e., the color values of each pixel).
  • the following four functional classes are defined in the images: - SFEESFED: Leaf surface of the healthy left or right external part of the strain; - SFEIA/SFEDA: Leaf surface of the left or right external part affected by the strain; - SMA: Surface of the wood, in m 2 ; - SRA: Area of the bunches, in m 2 .
  • the area of the indicated surfaces is determined from the resolution of the acquired image and a reference distance measure, preferably the distance between strains (d), in m, which is a known and invariant measure for the entire vineyard.
  • a programmable logic controller 200
  • the robust electronic device 100
  • a touch screen HMI display 202
  • a plurality of phytosanitary product tanks (1DPF), each controlled by a proportional ectr ovalve (1EV) connected to the controller (200); whose functionality is to provide the ideal dose of the required phytosanitary product to the suction circuit of the pump (033);
  • liquid fertilizer tanks (1DFL) each controlled by a proportional solenoid valve (1EV) connected to the controller (200); whose functionality is to provide the ideal dose of the required liquid fertilizer to the suction circuit of the pump (033);
  • the present invention recommends that when the towed nebulizer trailer (03) activates the start-up of the centrifugal turbine (034), with the automatic adjustment of the optimal air flow rate depending on the state.
  • air is captured from the environment and its circulation is forced through the central duct (037), until it reaches the set of ejector nozzles (0BE), arranged inside their corresponding deflectors (0D).
  • the captured air is projected into the environment, producing a “Venturi” effect that causes a pressure difference at the outlet of the deflector (0D) that drags the ambient air around it, and with it, the different chemical products in solution with water sprayed.
  • the set of injectors (01) distributed and arranged in the proximity of the deflectors (0D).
  • FIG 3 shows schematically the present invention for the case of a single fluid distributor arm (0BD) and Figure 4 shows schematically the present invention for the case of n” arms (0BD), but for clarity only two arms have been represented (0BD).
  • a towed nebulizer trailer (03) activates the start-up of the single pump (033)
  • a set of pumps (033) will be started, since the present invention requires, for each fluid distribution arm (OBD), a pump (033). with the purpose of supplying each arm (OBD) with different chemical products in solution with water.
  • each pump (033) sucks water from the tank (032) and simultaneously sucks in phytosanitary products from the set of tanks (1DPF) and liquid fertilizers from the set of tanks (1DFL), each one in a manner proportional, within the range of 0 to 100% with respect to the maximum nominal flow, according to the state prescribed by the programmable logic controller (200) for each proportional solenoid valve (1EV) associated with each tank (1DPF, 1DFL).
  • the aspirated products mixed in solution with the aspirated water are propelled by each pump (033) to its corresponding arm (OBD), to be sprayed, or nebulized, in the set of injectors (01).
  • Optimal spraying, or nebulization is obtained when the phytosanitary product, or liquid fertilizer, is managed to reach the leaf mass without deficit or excess, pursuing a lower risk of phytotoxicity and economic savings.
  • the invention recommends a procedure for automatically calculating the ideal dose, for application in foliar mass, as described below. foliage of the strain based on its dimensions and leaf indexes.
  • the vine arranged on a trellis is characterized by having a geometry that can resemble a “parallelepiped”, see FIG.05-6, whose width is that of the upper part of the “canopy” (a), its height (H), the of the height of the vegetation, and its length (d), the distance between strains; It can be considered that the external dimensions of the parallelepiped are independent of the distance that exists between the strains.
  • Planting density e.g. e.g. of 3000 vines/ha, is a function of two parameters: the separation between lines (D), which represents the width of the lane, and the distance between vines within the line (d).
  • the dimensionless leaf area index is defined by the following equation:
  • the dimensionless external leaf surface index is defined by the following equation:
  • the dimensionless leaf index is defined by the following equation:
  • L ⁇ being an estimator of vegetation density that reflects the degree of crowding of the leaf mass
  • a dosing procedure for precision agriculture (Pl) that uses a device (1) for its implementation is described in detail, by enumerating the steps to be executed according to the indicated order.
  • the invention recommends a dosing procedure for precision agriculture Its the type that interacts with a series of actuation, instrumentation and control elements, which uses a continuous precision dosing system (on-the-go), of phytosanitary products and liquid fertilizers, for the vineyard (1), and which includes at least the following stages: , of the number of fluid distributor arms (0BD), has a single (034) centrifugal turbine (034) powered by a variable speed drive (1 VSD).
  • VSD variable speed drive
  • This stage is implemented in a program block (STAGE “a”), in the robust electronic device (100).
  • Stage “a” comprises at least the following substages: a) Using the identification and quantification device (10), the digital camera (102) obtains an RGB image for each unit of vineyard length, preferably at the distance between vines. (d). a.2) Next, applying artificial vision techniques implemented in software installed on the robust electronic device (100), the phenological state of each unit of vineyard length is obtained.
  • the phenological stages in which phytosanitary treatments for the protection of the vineyard are most effective are:
  • the invention recommends that the dragged nebulizer trailer (03) has a pump (033), powered by a speed variator (1VSD), for each fluid distribution arm (0BD), with the purpose of independently supplying each arm the ideal dose of each contact phytosanitary product (PFC), or liquid fertilizer (FL), required.
  • VSD speed variator
  • PFC contact phytosanitary product
  • FL liquid fertilizer
  • This stage is implemented in a program block (STEP “b”), in the robust electronic device (100).
  • the aim is that the ideal dose of contact phytosanitary product (PFC) acts preventively by depositing itself on the outside of the entire leaf mass. In the same way it Treat the liquid fertilizer (FL) so that it is absorbed by the plant through its leaf mass.
  • PFC contact phytosanitary product
  • Stage “b” includes at least the following substages: identification and quantification (10), the e one of the lateral zone of the vineyard, and using artificial vision techniques, digital measurements of the height of the leaf mass (Hh) and the distance between them in m are made, as well as the measurement of the leaf surface of the in m 2 , for the calculation of the bl1) From the digital measurements of the height of the leaf mass (Hh) and the distance between strains (d), in m, the leaf surface of the upper external part (canopy) of the strain is obtained, in m 2 , using the following equation:
  • the total leaf surface of the vine is the area, in m 2 , to which the product must reach, the present invention claiming its actual calculation according to the growth state at each moment of the leaf mass of the vine.
  • b.2 Calculation of the ideal dose of contact or fertilizer dosed by a solenoid valve connected to the controller b.2.1)
  • the value of the product dose is transferred to the programmable logic controller (200), in L/ha, and the volume of broth (VC), in L/ha, prescribed by the product manufacturer.
  • the invention recommends that the trailed nebulizer trailer (03) has a pump (033), powered by a speed variator (1VSD), for each fluid distribution arm (OBD), with the purpose of independently supplying each arm the ideal dose of each contact phytosanitary product required.
  • VSD speed variator
  • OBD fluid distribution arm
  • This stage is implemented in a program block (STEP “c”), in the robust electronic device (100).
  • Stage “c” comprises at least the following substages: c.l.)
  • the SCADA software installed in the robust electronic device (100) the programmable logic controller (200) is transferred.
  • the invention recommends that the trailed nebulizer trailer (03) has a pump (033), powered by a speed variator (1VSD), for each fluid distribution arm (OBD), with the purpose of independently supplying each arm the ideal dose of each systemic phytosanitary product (SPF) required.
  • VSD speed variator
  • OBD fluid distribution arm
  • This stage is implemented in a program block (STEP “d”), in the robust electronic device (100).
  • PFS systemic phytosanitary product
  • Stage “d” includes at least the following substages: of identification and quantification (10), the iion of an i of the lateral zone of the vineyard is carried out, and using artificial vision techniques, digital measurements of the height of the leaf mass (Hh) and the distance between m , as well as the measurement of the leaf ie of the or right, affected the calculation of the
  • SFTA (m 2 ) — • SFEIA (or SFEDA) Eq. (11) IF detecting the affected surface through the symptoms of the disease, e.g. For example, wood disease or tinder due to the change in leaf color (brown), both at the vine and leaf level within the same plant.
  • the total affected leaf surface of the vine is the area, in m 2 , to which the product must reach, the present invention claiming its real calculation according to the growth state at each moment of the leaf mass of the vine. . d.2) Calculation of the ideal dose of each systemic phytosanitary dosed by a ectr ovalve connected to the controller d.2.1)
  • the value of the product dose is transferred to the programmable logic controller (200), in L/ha, and the volume of broth (VC), in L/ha, prescribed by the product manufacturer.

Abstract

The present invention relates to an on-the-go precision dosage system for phytosanitary products and liquid fertilisers for the foliar spraying or misting of vineyards (or any other woody crop) (1), said system being of the type that incorporates a towed misting trailer (03), hooked to a tractor vehicle (02), which has a set of fluid distribution arms (0BD), equipped with a plurality of jet nozzles (0BE), that through the use of an identification and quantification device (10) for identifying and quantifying the state of the vineyard in real time is capable of applying the ideal dosage of an optimal treatment, by means of a dosage device (20).

Description

Figure imgf000003_0001
, , , , , , de aplicación en la vid (porte del cultivo leñoso), que realiza el diagnóstico y control de las enfermedades de la vid (fitopatología) y, en función del estado fenológico, ser capaz de aplicar un tratamiento foliar óptimo empleando menor cantidad de insumos (productos fitosanitarios, fertilizantes líquidos, mano de obra, etc.), con la finalidad de mejorar la eficiencia productiva del viñedo, la seguridad agroalimentaria y la sostenibilidad con el medio ambiente.
Figure imgf000003_0001
, , , , , , for application on the vine (woody crop growth), which diagnoses and controls vine diseases (phytopathology) and, depending on the phenological state, is able to apply an optimal foliar treatment using smaller amount of inputs (phytosanitary products, liquid fertilizers, labor, etc.), with the aim of improving the productive efficiency of the vineyard, agri-food safety and environmental sustainability.
La invención se refiere particularmente a un sistema dosificador de precisión de especial aplicación en el campo de la maquinaria agrícola, tales como, pulverizadoras o nebulizadoras. The invention particularly refers to a precision dosing system for special application in the field of agricultural machinery, such as sprayers or nebulizers.
Los sectores de aplicación serán los susceptibles de utilizar dicha invención, como son el sector de la viticultura. The application sectors will be those likely to use said invention, such as the viticulture sector.
GENERALIDADES. REVISIÓN DEL ESTADO DEL ARTE GENERALITIES. REVIEW OF THE STATE OF THE ART
En 2020, la Comisión Europea (CE) marcó como objetivo 2030, reducir un 50% el uso de productos fitosanitarios y un 20% el uso de sustancias fertilizantes. Actualmente, se está desarrollando tecnología innovadora para cultivos extensivos, pero en cultivos leñosos no se dispone en el mercado de soluciones operativas debido a su complejidad. Cada vez hay más enfermedades en la vegetación, ya sean cultivos o masas de árboles. Estas enfermedades provocan pérdidas a los agricultores, así como problemas de alimentación. Han aumentado en los últimos años debido a la globalización, el cambio climático y la sobreexplotación de los cultivos. El desarrollo de la tecnología está haciendo que las técnicas utilizadas para la detección de enfermedades de la vegetación cambien. Las imágenes de satélite o las imágenes obtenidas desde drones pueden ser procesadas y analizadas para detectar anomalías en los cultivos, y plantaciones. De esta forma, se puede identificar y establecer el nivel o tipo de daño, y tomar medidas de forma más rápida (Trueba, 2017). In 2020, the European Commission (EC) set the 2030 objective of reducing the use of phytosanitary products by 50% and the use of fertilizer substances by 20%. Currently, innovative technology is being developed for extensive crops, but operational solutions are not available on the market for woody crops due to their complexity. There are more and more diseases in vegetation, whether crops or masses of trees. These diseases cause losses to farmers, as well as feeding problems. They have increased in recent years due to globalization, climate change and overexploitation of crops. The development of technology is causing the techniques used to detect vegetation diseases to change. Satellite images or images obtained from drones can be processed and analyzed to detect anomalies in crops and plantations. In this way, the level or type of damage can be identified and established, and measures taken more quickly (Trueba, 2017).
La viña es uno de los cultivos extensivos más intensificados, que requiere gran cantidad de insumos, siendo un cultivo muy adecuado para la aplicación de técnicas de agricultura de precisión (Arnó et al., 2012). The vineyard is one of the most intensified extensive crops, which requires a large amount of inputs, being a crop very suitable for the application of precision agriculture techniques (Arnó et al., 2012).
Fitopatología de la viña Vineyard phytopathology
Son numerosos los agentes fitopatógenos que afectan a la vid, pudiendo causar la pérdida parcial y total de la vendimia o incluso la muerte de las cepas, siendo los más comunes: There are numerous phytopathogenic agents that affect the vine, and can cause partial and total loss of the harvest or even the death of the vines, the most common being:
Artrópodos. Existen numerosas especies de ácaros e insectos que producen daños en la vid, si bien, es la filoxera Dactylosphaera vitifoliae Fitch, un insecto hemíptero, el que causó mayores estragos en el cultivo de la vid (Granett et al., 2001; Powell et al., 2013). Arthropods. There are numerous species of mites and insects that cause damage to the vine, although it is the phylloxera Dactylosphaera vitifoliae Fitch, a hemipteran insect, that caused the greatest damage to the vine crop (Granett et al., 2001; Powell et al. ., 2013).
Virus. Son parásitos intracelulares obligatorios. El virus del entrenudo corto infeccioso (GFLV), es la enfermedad de origen vírico más importante de la vid (Real Decreto 208, 2003). Virus. They are obligate intracellular parasites. The infectious short internode virus (GFLV) is the most important viral disease of the grapevine (Royal Decree 208, 2003).
Fitoplasmas. Son organismos unicelulares de la clase Mullicutes, parásitos obligados, que se hospedan en las células del floema. De las fitoplasmosis de vid es la “Flavescencia dorada” la más conocida y la de mayor incidencia económica (Nazaré-Pereira, n.d.) ya que puede matar a las cepas rápidamente y propagarse a otras zonas. Bacterias. Las especies de Agrobacterium spp., son muy polífagas, producen la enfermedad conocida como tumor bacteriano, tuberculosis, roña o agallas y se caracteriza por la formación de protuberancias más o menos voluminosas que se desarrollan en la base de la planta y raíces o a la altura del injerto (Abelleira et al., 2009). Phytoplasmas. They are single-celled organisms of the class Mullicutes, obligate parasites, that reside in phloem cells. Of the vine phytoplasmosis, “Golden Flavescence” is the best known and has the greatest economic impact (Nazaré-Pereira, nd) since it can kill the vines quickly and spread to other areas. Bacteria. The species of Agrobacterium spp., are very polyphagous, produce the disease known as bacterial tumor, tuberculosis, scab or galls and is characterized by the formation of more or less voluminous protuberances that develop at the base of the plant and roots or at the height of the graft (Abelleira et al., 2009).
Nemátodos. Los nemátodos, de origen edáfico, causan hipertrofia y lesiones en el sistema radicular, además de facilitar la entrada de otros patógenos. Las especies que afectan a la viña pertenecen a los géneros Xiphinema y Meloidogyne (Abelleira et al., 2009). Nematodes. Nematodes, of edaphic origin, cause hypertrophy and lesions in the root system, in addition to facilitating the entry of other pathogens. The species that affect the vineyard belong to the genera Xiphinema and Meloidogyne (Abelleira et al., 2009).
Hongos y Oomicetos. Hay una gran cantidad de patógenos que afectan a este cultivo, según la parte vegetal a la que afecta: “hongos” aéreos (mildiu y oidio, que atacan a todas las partes verdes de la planta), vasculares, de madera o de pudrición radicular, el mildiu, el oidio (Abelleira et al., 2009).
Figure imgf000005_0001
Son uno de los problemas fitosanitarios más relevantes que afectan al viñedo en la actualidad y, por tanto, algunos autores las consideran coma la filoxera del siglo XXI. Este síndrome integra a un total de 7 patologías que incluye a más de 133 especies de hongos. Hoy en día se sabe que son muchos los hongos que propician estas enfermedades de madera donde el término yesca es el más usado para referirse a ellas. No se conoce, en la actualidad, un producto capaz de controlar esta enfermedad. Hace años, se utilizaba el arsenito sódico, que combatía de forma eficaz la yesca, sin embargo, se tuvo que prohibir debido a su toxicidad, así como los compuestos de cobre, los benzimidazoles o los triazoles, que son cada vez menos efectivos, pero de elevada toxicidad (Bertsch et al., 2013) por lo que la búsqueda de un método eficaz y respetuoso con el medio ambiente es una línea de investigación prioritaria en la lucha contra las EMV (Redondo, 2019).
Fungi and Oomycetes. There are a large number of pathogens that affect this crop, depending on the plant part it affects: aerial “fungi” (mildew and powdery mildew, which attack all the green parts of the plant), vascular, wood or root rot. , mildew, powdery mildew (Abelleira et al., 2009).
Figure imgf000005_0001
They are one of the most relevant phytosanitary problems affecting the vineyard today and, therefore, some authors consider them to be the phylloxera of the 21st century. This syndrome includes a total of 7 pathologies that include more than 133 species of fungi. Nowadays it is known that there are many fungi that cause these wood diseases, where the term tinder is the most used to refer to them. There is currently no known product capable of controlling this disease. Years ago, sodium arsenite was used, which effectively combated tinder, however, it had to be banned due to its toxicity, as well as copper compounds, benzimidazoles or triazoles, which are increasingly less effective, but of high toxicity (Bertsch et al., 2013) so the search for an effective and environmentally friendly method is a priority line of research in the fight against EMV (Redondo, 2019).
Actualmente, p. ej ., se dispone del compuesto comercial Escudo ®, el cual es un fungicida compuesto de 5g/l de flusilazol y 10g/l de carbendazamida de la casa comercial DuPont ®, siendo capaz de controlar de forma eficaz Phaemoniella chlamydospora y Phaeoacremonium aleophilum, así mismo también es capaz de controlar Eutypa lata (Marquez, 2003). Currently, p. For example, the commercial compound Escudo ® is available, which is a fungicide composed of 5g/l of flusilazole and 10g/l of carbendazamide from the commercial company DuPont ®, being capable of effectively controlling Phaemoniella chlamydospora and Phaeoacremonium aleophilum is also capable of controlling Eutypa lata (Marquez, 2003).
Los fungicidas son los productos “más exigentes”; normalmente requieren que se trate la mayor superficie posible de la hoja y ahí los nebulizadores son los mejores. En general, los fungicidas son de amplio espectro. En cualquier caso, estas afirmaciones son genéricas pues también habría que considerar si se está tratando con producto de contacto o sistémico. Fungicides are the “most demanding” products; They normally require that the largest possible surface of the leaf be treated and nebulizers are the best there. In general, fungicides are broad spectrum. In any case, these statements are generic as it would also be necessary to consider whether you are treating with a contact or systemic product.
Los fungicidas de contacto son aquellos que se quedan en el exterior de la planta, recubriendo las hojas. Estos fungicidas son preventivos ya que evitan que las esporas de los hongos germinen y penetren en las células del cultivo. El principal problema de estos fungicidas es que, al estar encima de las hojas, sólo actúan donde cae la gota de fungicida. Además, con el tiempo y la lluvia se irán lavando y, por lo tanto, perderán efectividad. Contact fungicides are those that remain on the outside of the plant, covering the leaves. These fungicides are preventive since they prevent fungal spores from germinating and penetrating the crop cells. The main problem with these fungicides is that, since they are on the leaves, they only act where the drop of fungicide falls. Furthermore, with time and rain they will wash away and, therefore, lose effectiveness.
Los fungicidas sistémicos, en cambio, son absorbidos por la planta a través de los estomas de las hojas o por las raíces. El sistema límbico es el responsable de repartir los compuestos activos de estos fungicidas por toda la planta, hasta llegar a los tallos y hojas. Los fungicidas sistémicos están pensados como tratamiento cuando se observan los primeros síntomas de enfermedad en la planta, o cuando se detecta que las condiciones van a favorecer su propagación. A través de la planta pasan al hongo patógeno produciéndole daños bioquímicos que lo matan. Además, al entrar al interior de la planta tienen un largo período de permanencia dentro de esta. Systemic fungicides, on the other hand, are absorbed by the plant through the stomata of the leaves or through the roots. The limbic system is responsible for distributing the active compounds of these fungicides throughout the plant, until they reach the stems and leaves. Systemic fungicides are intended as a treatment when the first symptoms of disease are observed in the plant, or when it is detected that the conditions will favor its spread. Through the plant they pass to the pathogenic fungus, causing biochemical damage that kills it. Furthermore, upon entering the interior of the plant they have a long period of permanence within it.
Estados fenológicos de la vid Phenological states of the vine
La fenología es la ciencia que estudia la relación entre los factores climáticos y los ciclos de los seres vivos. Baggiolini (1952) definió 14 estados fenológicos de la vid. Posteriormente, Peterson incluyó 5 fases más hasta completar la caída de la hoja, siendo: Phenology is the science that studies the relationship between climatic factors and the cycles of living beings. Baggiolini (1952) defined 14 phenological stages of the vine. Subsequently, Peterson included 5 more phases to complete leaf fall, being:
- Estado fenológico A: yema de invierno. - Estado fenol ógico B1 : lloro. - Phenological stage A: winter bud. - Phenological state B1: I cry.
- Estado fenol ógico B2: yema hinchada. - Phenolic state B2: swollen yolk.
- Estado fenol ógico C: punta verde. - Phenolic state C: green tip.
- Estado fenológico D: hojas incipientes. - Phenological stage D: incipient leaves.
- Estado fenológico E: hojas extendidas. - Phenological state E: extended leaves.
- Estado fenológico F: racimos visibles. - Phenological stage F: visible clusters.
- Estado fenológico G: racimos separados. - Phenological stage G: separated clusters.
- Estado fenológico H: botones florales separados. - Phenological stage H: separated flower buds.
- Estado fenológico II : inicio floración. - Phenological stage II: beginning of flowering.
- Estado fenológico 12: plena floración. - Phenological stage 12: full flowering.
- Estado fenológico J: cuajado. - Phenological stage J: fruit set.
- Estado fenológico K: grano tamaño guisante. - Phenological stage K: pea-sized grain.
- Estado fenológico L: cerramiento del racimo. - Phenological stage L: cluster closure.
- Estado fenológico MI : inicio de envero. - Phenological state MI: beginning of veraison.
- Estado fenológico M2: pleno envero. - Phenological stage M2: full veraison.
- Estado fenológico N: maduración. - Phenological state N: maturation.
- Estado fenológico 01 : inicio de caída de hojas. - Phenological stage 01: beginning of leaf fall.
- Estado fenológico 02: plena caída de hojas.
Figure imgf000007_0001
de precisión en la vid
- Phenological stage 02: full leaf fall.
Figure imgf000007_0001
precision on the vine
El desarrollo de la agricultura de precisión ha sido posible debido al desarrollo de nuevas tecnologías, como son los sensores de teledetección óptica (p.ej., cámaras multiespectrales, hiperespectrales, etc.) y herramientas GIS-GPS (Zhang et al., 2002). La visión artificial es una disciplina científica que incluye métodos para adquirir, procesar y analizar imágenes del mundo real con el fin de producir información que pueda ser tratada por una inteligencia artificial. The development of precision agriculture has been possible due to the development of new technologies, such as optical remote sensing sensors (e.g., multispectral, hyperspectral cameras, etc.) and GIS-GPS tools (Zhang et al., 2002 ). Computer vision is a scientific discipline that includes methods to acquire, process and analyze images of the real world in order to produce information that can be processed by artificial intelligence.
Según el diccionario de la lengua española, actualización 2021, la definición de la palabra es: “reproducción de la figura de un objeto por la combinación de los rayos de luz que proceden de él”, y la de la palabra espectro es: “distribución de la intensidad de una radiación en función de una magnitud característica, como la longitud de onda, la energía o la temperatura”. Por lo tanto, una imagen espectral es aquella que reproduce la figura de un objeto en función de la longitud de onda que esté reflejando (o emitiendo) el objeto en cuestión; o, dicho de otro modo, es un set de imágenes del mismo objeto representadas cada una de ellas con diferentes longitudes de onda; siendo el número de bandas espectrales, la principal diferencia entre una imagen multiespectral y una imagen hiperespectral. Las imágenes multiespectrales están formadas por relativamente pocas bandas (normalmente entre 2 y 10) y son bandas no necesariamente contiguas unas a otras, mientras que las imágenes hiperespectrales normalmente están formadas por un mayor número de bandas (mayor de 10) y éstas siempre son contiguas. En otras palabras, con una imagen multiespectral podemos obtener los valores de intensidad en las longitudes de onda discretas en las que el sistema capte radiación, mientras que con una imagen hiperespectral lo que obtenemos es el espectro continuo o firma espectral del objeto de análisis (W01). According to the dictionary of the Spanish language, 2021 update, the definition of the word is: “reproduction of the figure of an object by the combination of the light rays that come from it”, and that of the word spectrum is: “distribution of the intensity of radiation as a function of a characteristic magnitude, such as wavelength, energy or temperature.” Therefore, a spectral image is one that reproduces the figure of an object depending on the wavelength that the object in question is reflecting (or emitting); or, in other words, it is a set of images of the same object each represented with different wavelengths; The number of spectral bands being the main difference between a multispectral image and a hyperspectral image. Multispectral images are made up of relatively few bands (normally between 2 and 10) and are bands that are not necessarily contiguous to each other, while hyperspectral images are normally made up of a greater number of bands (greater than 10) and these are always contiguous. . In other words, with a multispectral image we can obtain the intensity values at the discrete wavelengths in which the system captures radiation, while with a hyperspectral image what we obtain is the continuous spectrum or spectral signature of the object of analysis (W01 ).
Encontramos distintas tecnologías emergentes no invasivas de visión artificial para la monitorización del viñedo, destacando los sistemas de teledetección, que emplean sensores que miden propiedades de las vides observadas y van montados en vehículos terrestres o aéreos con la finalidad de poder desplazar el sensor, que mediante un Sistema de Posicionamiento Global (Global Positioning System, GPS) de alta precisión, se analiza la ubicación espacial y se organiza la información en capas de visualizaciones mediante un Sistema de gestión de Información Geográfica (Geographic Information System, GIS) para recopilar, gestionar y analizar datos, usando mapas e imágenes (2D y 3D). Sensores de teledetección ó
Figure imgf000009_0001
We find different emerging non-invasive artificial vision technologies for vineyard monitoring, highlighting remote sensing systems, which use sensors that measure properties of the observed vines and are mounted on land or aerial vehicles in order to be able to move the sensor, which by means of Using a high-precision Global Positioning System (GPS), spatial location is analyzed and information is organized into layers of visualizations using a Geographic Information Management System (GIS) to collect, manage and analyze data, using maps and images (2D and 3D). Remote sensing sensors or
Figure imgf000009_0001
La mayor parte de los sensores de visión artificial se basan en el hecho de que las plantas tienen una alta absorción en la banda del espectro visible azul (400-500 nm), lo que se traduce en una baja reflectancia, mientras que en el verde (500-600 nm) la reflectancia se ve incrementada. En el rojo (600-700 nm) también se produce una fuerte absorción. Así mismo hay una fuerte reflectancia y transmitancia en el infrarrojo cercano (NIR- 700- 1500 nm). Esta variabilidad se explica por el comportamiento frente a la radiación de las clorofilas y los carotenos (Aguilar, 2015). Most artificial vision sensors are based on the fact that plants have high absorption in the blue band of the visible spectrum (400-500 nm), which translates into low reflectance, while in the green (500-600 nm) the reflectance is increased. Strong absorption also occurs in the red (600-700 nm). Likewise, there is a strong reflectance and transmittance in the near infrared (NIR- 700- 1500 nm). This variability is explained by the behavior of chlorophylls and carotenes against radiation (Aguilar, 2015).
Encontramos los siguientes tipos de sensores para teledetección óptica: We find the following types of sensors for optical remote sensing:
Cámaras RGB (rojo, verde y azul) . Son cámaras digitales que permiten obtener imágenes RGB. Los parámetros técnicos que se tienen en cuenta en este tipo de dispositivos son la sensibilidad a la luz del sensor, la resolución espacial o el enfoque óptico. Mediante el análisis de imagen digital, aplicando reconocimiento de patrones, se pueden, p. ej., identificar enfermedades en la vegetación a partir de imágenes RGB. La dificultad en la detección y la baja precisión de esta técnica suele ser resultado de una baja calidad de imagen. RGB cameras (red, green and blue). They are digital cameras that allow you to obtain RGB images. The technical parameters taken into account in this type of device are the light sensitivity of the sensor, spatial resolution or optical focus. Through digital image analysis, applying pattern recognition, one can e.g. For example, identifying diseases in vegetation from RGB images. The difficulty in detection and low precision of this technique is usually the result of low image quality.
Cámaras multiespectrales o de espectro visible. Las cámaras multiespectrales son cámaras de tipo frame, dotadas con filtros espectrales para ser capaces de filtrar la emisión electromagnética de acuerdo con su espectro. Son de tipo multi -CCD y CMOS, que con una máscara de Bayer ® es posible asignar los colores en RGB, o directamente 3 sistemas RGB separados. Normalmente filtran 4 bandas distintas: infrarrojo cercano (757,5-782,5 nm), rojo (637,5-662,5 nm), verde (537,5-562,5 nm) y azul (437,5-462,5 nm) (Hall et al., 2003). Las imágenes multiespectrales están formadas por relativamente pocas bandas (normalmente entre 2 y 10) y son bandas no necesariamente contiguas unas a otras. Las imágenes multiespectrales son de 2 dimensiones espaciales (X, Y). Las imágenes multiespectrales son muy útiles cuando conocemos las longitudes de onda que diferencian uno u otro material. Las cámaras de imágenes multiespectrales pueden dar datos en las bandas de ondas RGB y en una banda adicional de infrarrojo cercano; a esta técnica se la denomina espectroscopia en el infrarrojo cercano (Near Infrared Spectroscopy, NIRS). Multispectral or visible spectrum cameras. Multispectral cameras are frame-type cameras, equipped with spectral filters to be able to filter the electromagnetic emission according to its spectrum. They are multi-CCD and CMOS types, and with a Bayer ® mask it is possible to assign colors in RGB, or directly 3 separate RGB systems. They normally filter 4 different bands: near infrared (757.5-782.5 nm), red (637.5-662.5 nm), green (537.5-562.5 nm) and blue (437.5-462 .5 nm) (Hall et al., 2003). Multispectral images are made up of relatively few bands (usually between 2 and 10) and they are bands that are not necessarily contiguous to each other. Multispectral images are 2 spatial dimensions (X, Y). Multispectral images are very useful when we know the wavelengths that differentiate one material or another. Multispectral imaging cameras can provide data on RGB wave bands and an additional near-infrared band; This technique is called near-infrared spectroscopy (NIRS).
Cámaras hiperespectrales. Las cámaras hiperespectrales son cámaras de tipo pushbroom, que también son capaces de filtrar la emisión electromagnética de acuerdo con su espectro. Las imágenes hiperespectrales normalmente están formadas por un número elevado de bandas (mayor de 10) y éstas siempre son contiguas. Las imágenes hiperespectrales son de 1 dimensión espacial y una dimensión espectral (X, Z), que se correspondería con la cara lateral izquierda de un cubo hiperespectral. El proceso para obtener un cubo hiperespectral implica realizar un barrido de la escena para generar la segunda dimensión espacial y ese barrido se puede realizar de dos formas: desplazando el objeto o desplazando la cámara hiperespectral sobre la escena o sobre el objeto de estudio. Las imágenes hiperespectrales ofrecen mucha más información cuantitativa y se emplean como herramientas de diferenciación y clasificación espectral (Hall et al., 2003). P. ej., es posible estudiar las características del suelo mediante su reflectancia a distintas bandas, de forma que es posible correlacionar esta reflectancia con diversas características como son el contenido en materia orgánica o la composición mineral (Lee et al., 2010). Hyperspectral cameras. Hyperspectral cameras are pushbroom type cameras, which are also capable of filtering electromagnetic emission according to their spectrum. Hyperspectral images are normally made up of a high number of bands (greater than 10) and these are always contiguous. Hyperspectral images have 1 spatial dimension and one spectral dimension (X, Z), which would correspond to the left lateral face of a hyperspectral cube. The process to obtain a hyperspectral cube involves scanning the scene to generate the second spatial dimension and this scanning can be done in two ways: moving the object or moving the hyperspectral camera over the scene or over the object of study. Hyperspectral images offer much more quantitative information and are used as spectral differentiation and classification tools (Hall et al., 2003). For example, it is possible to study the characteristics of the soil through its reflectance at different bands, so that it is possible to correlate this reflectance with various characteristics such as organic matter content or mineral composition (Lee et al., 2010).
Cámaras termográficas. Permiten obtener imágenes térmicas para conocer la variabilidad de la temperatura a nivel de hoja, lo cual puede dar idea de su estado nutritivo y de detección de enfermedades, ya que la puesta en marcha de los mecanismos de defensa de la planta ante el ataque de un patógeno, como puede ser la senescencia de la parte atacada, puede provocar un aumento en la temperatura de la hoja (Sankaran et al., 2010). En este tipo de sensores es necesaria la calibración radiométrica y corrección atmosférica. Thermal imaging cameras. They allow thermal images to be obtained to know the variability of temperature at the leaf level, which can give an idea of its nutritional state and the detection of diseases, since the implementation of the plant's defense mechanisms against the attack of a pathogen, such as senescence of the attacked part, can cause an increase in leaf temperature (Sankaran et al., 2010). In this type of sensors, radiometric calibration and atmospheric correction are necessary.
Fluorescencencia (de la clorofila). Se trata de una forma de espectroscopia en la que la se estudia la fluorescencia tras la aplicación de un haz de luz, normalmente luz ultravioleta; tenemos dos tipos de fluorescencia: la azul-verde (400-600nm) y la fluorescencia de la clorofila (650-800nm). (Sankaran et al., 2010); se requiere determinar la florescencia por medios terrestres ya que el sensor debe de estar de la vegetación, midiendo en continuo su variabilidad en las distintas zonas de estudio (Diago et al., 2013 y 2016). Una desventaja de este sistema es que la preparación de las plantas debe seguir un protocolo estricto, cosa que no se puede hacer en invernaderos agrícolas normales ni en entornos de campo. Fluorescence (of chlorophyll). This is a form of spectroscopy in which fluorescence is studied after the application of a beam of light, usually ultraviolet light; We have two types of fluorescence: blue-green (400-600nm) and chlorophyll fluorescence (650-800nm). (Sankaran et al., 2010); It is necessary to determine the florescence by terrestrial means since the sensor must be in the vegetation, continuously measuring its variability in the different study areas (Diago et al., 2013 and 2016). A disadvantage of this system is that plant preparation must follow a strict protocol, which cannot be done in normal agricultural greenhouses or field environments.
Sistemas LIDAR (Laser-Based Radar). Se trata de un sistema láser, que opera en el espectro visible y en el infrarrojo, que permite registrar la distancia hasta un determinado objetivo; se viene empleando en agricultura inteligente para mejorar la precisión de vehículos, p. ej., el tractor y evitar bordes u obstáculos (Lee et al., 2010). LIDAR (Laser-Based Radar) Systems. It is a laser system, which operates in the visible and infrared spectrum, which allows the distance to a certain target to be recorded; It is being used in smart agriculture to improve the precision of vehicles, e.g. e.g., the tractor and avoiding edges or obstacles (Lee et al., 2010).
ANTECEDENTES DE LA INVENCIÓN. REVISIÓN DEL ESTADO DEL ARTE ANTERIOR MÁS CERCANO BACKGROUND OF THE INVENTION. REVIEW OF THE CLOSEST PREVIOUS STATE OF THE ART
Literatura no de patentes Non-patent literature
Se conocen nuevos métodos basados en sensores para la detección, identificación y cuantificación de enfermedades de las plantas. Estos sensores evalúan las propiedades ópticas de las plantas dentro de diferentes regiones del espectro electromagnético y son capaces de utilizar información más allá del rango visible. La teledetección es el uso de energía reflejada y emitida para medir las propiedades físicas de objetos distantes y sus alrededores. En el ámbito de las ciencias vegetales, la teledetección es un método utilizado para obtener información de plantas o cultivos sin contacto directo o manipulación invasiva. Estos sensores se pueden instalar en múltiples plataformas como p. ej., robots, drones, etc. (Trueba, 2017). New methods based on sensors are known for the detection, identification and quantification of plant diseases. These sensors evaluate the optical properties of plants within different regions of the electromagnetic spectrum and are capable of using information beyond the visible range. Remote sensing is the use of reflected and emitted energy to measure the physical properties of distant objects and their surroundings. In the field of plant sciences, remote sensing is a method used to obtain information about plants or crops without direct contact or invasive manipulation. These sensors can be installed on multiple platforms e.g. e.g., robots, drones, etc. (Trueba, 2017).
Las técnicas ópticas como la imagen RGB, sensores multiespectrales, híperespectrales, la termografía o la fluorescencia de la clorofila son usadas en sistemas de detección automatizados para la identificación de enfermedades de las plantas en épocas tempranas. Las técnicas de detección óptica se utilizan para identificar focos de enfermedad primaria y áreas que difieren en la gravedad de la enfermedad en los campos. Estas técnicas junto con métodos avanzados de análisis de datos se utilizan para programas específicos de manejo de plagas en la producción sostenible de cultivos (Mahlein, 2016). Optical techniques such as RGB imaging, multispectral and hyperspectral sensors, thermography or chlorophyll fluorescence are used in automated detection systems for the identification of plant diseases in early times. Optical detection techniques are used to identify foci of primary disease and areas that differ in disease severity across fields. These techniques together with advanced data analysis methods are used for specific pest management programs in sustainable crop production (Mahlein, 2016).
Se emplean los índices de vegetación que son combinaciones de las bandas espectrales registradas por los satélites de teledetección, cuya función es realzar la vegetación en función de su respuesta espectral y atenuar los detalles de otros elementos como el suelo, la iluminación, el agua, etc. Se trata de imágenes calculadas a partir de operaciones algebraicas entre distintas bandas espectrales. El resultado de estas operaciones permite obtener una nueva imagen donde se destacan gráficamente determinados píxeles relacionados con parámetros de las coberturas vegetales. De entre todos, el índice de Vegetación de Diferencia Normalizada (Normalized Difference Vegetation Index, ND VI) es el índice de vegetación más utilizado (W04). Vegetation indices are used, which are combinations of the spectral bands recorded by remote sensing satellites, whose function is to enhance the vegetation based on its spectral response and attenuate the details of other elements such as soil, lighting, water, etc. . These are images calculated from algebraic operations between different spectral bands. The result of these operations allows us to obtain a new image where certain pixels related to plant cover parameters are graphically highlighted. Among all, the Normalized Difference Vegetation Index (ND VI) is the most used vegetation index (W04).
En literatura no de patentes se divulgan distintos tipos de sistemas de inteligencia artificial para agricultura de precisión en la vid, mediante el uso sensores de teledetección óptica y herramientas GIS-GPS. Different types of artificial intelligence systems for precision agriculture in the vine are disclosed in non-patent literature, through the use of optical remote sensing sensors and GIS-GPS tools.
Encontramos el proyecto (RETMAVID15), titulado: “ Aplicación de nuevas tecnologías para la monitorización y prolongación del tiempo de producción del viñedo y el
Figure imgf000012_0001
de madera de vid'. Convocatoria: Retos Colaboración 2015 (innpacto), del Programa Estatal de I+D+I orientado a los retos de la Sociedad. Objetivo técnico específico: conseguir detectar la yesca de forma eficaz a partir de sensores remotos, así como desarrollar un compuesto que actúe de forma eficaz contra la yesca, para posteriormente aplicar el producto únicamente en las cepas afectadas que han sido detectadas a través de medios remotos; con ello no solo se conseguiría un ahorro de producto, sino que además se lograría mejorar la vida útil del producto, puesto que al tratar un número menor de cepas la aparición de resistencias será más lenta o difícil que en el caso de que se tratara la parcela entera (W02, 2015-17). También se encuentra el proyecto (GLOBAL VITI), titulado: “ Solución global para mejorar la producción vitivinícola frente al cambio climático basada en robótica, tecnología IT y en estrategias biotecnológicas y de manejo del viñedo" . Convocatoria: Programa Estratégico de Consorcios de Investigación Empresarial Nacional (CIEN), del CDTI. Objetivo técnico específico: diseñar y desarrollar nuevas estrategias de control y prevención de las enfermedades de madera de vid, desde un punto de vista medioambientalmente respetuoso, sostenible y ecológico, estableciendo las condiciones óptimas de plantación y manejo del viñedo que minimicen los riesgos de infección y decaimiento en planta joven de vid (W03, 2016-20).
We found the project (RETMAVID15), titled: “Application of new technologies for monitoring and prolonging the production time of the vineyard and the
Figure imgf000012_0001
of vine wood. Call: Collaboration Challenges 2015 (innpacto), of the State R&D&I Program aimed at the challenges of Society. Specific technical objective: to be able to detect tinder effectively using remote sensors, as well as to develop a compound that acts effectively against tinder, to subsequently apply the product only to the affected strains that have been detected through remote means. ; This would not only save product, but would also improve the useful life of the product, since by treating a smaller number of strains the appearance of resistance will be slower or more difficult than if the strain were treated. entire plot (W02, 2015-17). There is also the project (GLOBAL VITI), entitled: "Global solution to improve wine production in the face of climate change based on robotics, IT technology and biotechnological and vineyard management strategies". Call: Strategic Program of Business Research Consortia National (CIEN), of the CDTI. Specific technical objective: design and develop new strategies for the control and prevention of vine wood diseases, from an environmentally respectful, sustainable and ecological point of view, establishing the optimal conditions for planting and managing the vineyard that minimize the risks of infection and decay in young vine plants (W03, 2016-20).
Estos sistemas, utilizan técnicas para la detección de enfermedades en el viñedo, empleando imágenes de satélite u obtenidas desde drones. El desarrollo de los drones está facilitando la teledetección, ya que son una buena alternativa en relación calidad-precio para obtener imágenes con un alto detalle espacial. Además, volar a baja altura favorece la obtención de imágenes de calidad, ya que los datos contienen menos ruido, que las imágenes de satélite, al estar menos afectadas por los efectos atmosféricos. These systems use techniques to detect diseases in the vineyard, using satellite images or images obtained from drones. The development of drones is facilitating remote sensing, since they are a good quality-price alternative to obtain images with high spatial detail. Furthermore, flying at low altitude favors obtaining quality images, since the data contains less noise than satellite images, as they are less affected by atmospheric effects.
Literatura de patentes Patent literature
En literatura de patentes encontramos diferentes tipos específicos de procedimientos para realizar “agricultura de precisión”, que: a) utilizan una imagen inicial hiperespectral; b) hacen la digitalización y georreferenciación para poder llevar a cabo el resto del procedimiento; c) dividen la imagen inicial en subimágenes para analizarlas; d) proporcionan información en base al análisis de cada microimagen. In patent literature we find different specific types of procedures to carry out “precision agriculture”, which: a) use an initial hyperspectral image; b) they do the digitization and georeferencing to be able to carry out the rest of the procedure; c) divide the initial image into subimages to analyze them; d) provide information based on the analysis of each microimage.
Se han recopilado para su análisis las patentes en las que se menciona “agricultura de precisión” (152 resultados). Una vez excluidas las patentes menos cercanas con la presente invención, las más relevantes las podemos agrupar en dos grandes grupos: The patents in which “precision agriculture” is mentioned (152 results) have been compiled for analysis. Once the patents that are less related to the present invention have been excluded, the most relevant ones can be grouped into two large groups:
El primer grupo engloba las que tratan de sistemas de procesamiento de imágenes para análisis multiespectral e hiperespectral en agricultura de precisión (WO 2017/ 105177 Al, 2015; WO 2017/ 099568 Al, 2015; US20150022656A1, 2013; WO 2009/156542 Al, 2008). Ninguna de las patentes anteriores es comparable con la presente invención, ni en los sistemas utilizados, ni en su desempeño. The first group includes those that deal with image processing systems for multispectral and hyperspectral analysis in precision agriculture (WO 2017/ 105177 Al, 2015; WO 2017/ 099568 Al, 2015; US20150022656A1, 2013; WO 2009/156542 Al, 2008). None of the previous patents are comparable to the present invention, neither in the systems used, nor in their performance.
El segundo grupo recoge las de maquinaria agrícola empleada en agricultura de precisión (ES 2722352 B2, 2018; ES 2624178 Bl, 2016; ES 2615080 Bl, 2016). Tampoco ninguna de las patentes anteriores es comparable con la presente invención, ni en los sistemas utilizados, ni en su desempeño. The second group includes agricultural machinery used in precision agriculture (ES 2722352 B2, 2018; ES 2624178 Bl, 2016; ES 2615080 Bl, 2016). Nor are any of the previous patents comparable to the present invention, neither in the systems used, nor in their performance.
Conclusión de la revisión del estado del arte anterior más próximo Conclusion of the review of the closest previous state of the art
La principal diferencia entre los documentos del estado de la técnica y la invención, según la reivindicación independiente 1, es que dichos documentos no describen un sistema dosificador de precisión en continuo (on-the-go), de productos fitosanitarios y fertilizantes líquidos, para pulverización, o nebulización, foliar del viñedo, que sea capaz de aplicar de forma automática la dosis idónea de producto fitosanitario o fertilizante líquido. The main difference between the documents of the state of the art and the invention, according to independent claim 1, is that said documents do not describe a continuous precision dosing system (on-the-go), for phytosanitary products and liquid fertilizers, for foliar spraying, or misting, of the vineyard, which is capable of automatically applying the ideal dose of phytosanitary product or liquid fertilizer.
El efecto técnico que subyace de esta diferencia es que la invención es capaz de aplicar de forma automática la dosis idónea de cada producto fitosanitario requerido (DF) o de fertilizante líquido (DA), dosificada por una electroválvula proporcional (1EV) conectada al controlador (200), en función de la identificación y cuantificación en tiempo real del estado del viñedo. The technical effect underlying this difference is that the invention is capable of automatically applying the ideal dose of each required phytosanitary product (DF) or liquid fertilizer (DA), dosed by a proportional solenoid valve (1EV) connected to the controller ( 200), based on the real-time identification and quantification of the state of the vineyard.
El problema técnico que se resuelve gracias a esta diferencia es conseguir aplicar de forma automática la dosis idónea de cada producto fitosanitario requerido (DF) o de fertilizante líquido (DA), dosificada por una electroválvula proporcional (1EV) conectada al controlador (200), en función de la identificación y cuantificación en tiempo real del estado del viñedo. Referencias literatura no de
Figure imgf000015_0001
The technical problem that is solved thanks to this difference is to automatically apply the ideal dose of each required phytosanitary product (DF) or liquid fertilizer (DA), dosed by a proportional solenoid valve (1EV) connected to the controller (200), based on the real-time identification and quantification of the state of the vineyard. Literature references not from
Figure imgf000015_0001
Abelleira Argibay, A., Aguín Casal, O., A., Lema Lestoso, M.J., Mansilla Vázquez, J.P., Pérez Otero, R., Pintos Varela, C. y Salinero Corral, C. (2009). Sanidad de la Vid en Galicia. Diputación Pontevedra, Pontevedra, España. Abelleira Argibay, A., Aguín Casal, O., A., Lema Lestoso, M.J., Mansilla Vázquez, J.P., Pérez Otero, R., Pintos Varela, C. and Salinero Corral, C. (2009). Vine Health in Galicia. Pontevedra Provincial Council, Pontevedra, Spain.
Aguilar Rivera, N. (2015). Percepción remota como herramienta de competitividad de la agricultura. Revista Mexicana de Ciencias Agrícolas, 6(2), 399-405. Aguilar Rivera, N. (2015). Remote sensing as a competitiveness tool for agriculture. Mexican Journal of Agricultural Sciences, 6(2), 399-405.
Mahlein, A-K. (2016). Plant Disease Detection by Imaging Sensors-Parallels and Specific Demands for Precision Agriculture and Plant Phenotyping. Mahlein, A-K. (2016). Plant Disease Detection by Imaging Sensors-Parallels and Specific Demands for Precision Agriculture and Plant Phenotyping.
Bertsch, C., Ramírez-Suero, M., Magnin-Robert, M., Larignon, P., Chong, J., Abou- Mansour, E., ... & Fontaine, F. (2013). Grapevine trunk diseases: complex and still poorly understood. Plant Pathology, 62(2), 243-265. Bertsch, C., Ramírez-Suero, M., Magnin-Robert, M., Larignon, P., Chong, J., Abou-Mansour, E., ... & Fontaine, F. (2013). Grapevine trunk diseases: complex and still poorly understood. Plant Pathology, 62(2), 243-265.
Diago, M. P., Fernandes, A. M., Millan, B., Tardaguila, J., & Melo-Pinto, P. (2013). Identification of grapevine varieties using leaf spectroscopy and partial least squares. Computers and electronics in agriculture, 99, 7-13. Diago, M. P., Fernandes, A. M., Millan, B., Tardaguila, J., & Melo-Pinto, P. (2013). Identification of grapevine varieties using leaf spectroscopy and partial least squares. Computers and electronics in agriculture, 99, 7-13.
Diago, M. P., Rey-Carames, C., Le Moigne, M., Fadaili, E. M., Tardaguila, J., & Cerovic, Z. G. (2016). Calibration of non-invasive fluorescence-based sensors for the manual and on-the-go assessment of grapevine vegetative status in the field. Australian Journal of Grape and Wine Research. Diago, M. P., Rey-Carames, C., Le Moigne, M., Fadaili, E. M., Tardaguila, J., & Cerovic, Z. G. (2016). Calibration of non-invasive fluorescence-based sensors for the manual and on-the-go assessment of grapevine vegetative status in the field. Australian Journal of Grape and Wine Research.
Granett, J., Walker, M.A., Kocsis, L. y Omer, A.D. (2001). Biology and management of grape phylloxera. Annual Review of Entomology 46, 387-412. https://doi.Org/10.1146/annurev.ento.46.l.387 Granett, J., Walker, M.A., Kocsis, L. and Omer, A.D. (2001). Biology and management of grape phylloxera. Annual Review of Entomology 46, 387-412. https://doi.Org/10.1146/annurev.ento.46.l.387
Hall, A., Lamb, D. W., Holzapfel, B., & Louis, J. (2002). Optical remote sensing applications in viticulture-a review. Australian Journal of Grape and Wine Research, 8(1), 36-47. Hall, A., Lamb, D. W., Holzapfel, B., & Louis, J. (2002). Optical remote sensing applications in viticulture-a review. Australian Journal of Grape and Wine Research, 8(1), 36-47.
Hall, A., Louis, J., & Lamb, D. (2003). Characterising and mapping vineyard canopy using high-spatial-resolution aerial multispectral images. Computers & Geosciences, 29(7), 813-822. Hall, A., Louis, J., & Lamb, D. (2003). Characterizing and mapping vineyard canopy using high-spatial-resolution aerial multispectral images. Computers & Geosciences, 29(7), 813-822.
Lee, W. S., Alchanatis, V., Yang, C., Hirafuji, M., Moshou, D., & Li, C. (2010). Sensing technologies for precision specialty crop production. Computers and Electronics in Agriculture, 74(1), 2-33. Nazaré-Pereira, A.M., n.d. Fitoplasmas asociados a la vid. Vinidea.net.Revista técnica del vino 1, 1-9. Lee, W.S., Alchanatis, V., Yang, C., Hirafuji, M., Moshou, D., & Li, C. (2010). Sensing technologies for precision specialty crop production. Computers and Electronics in Agriculture, 74(1), 2-33. Nazaré-Pereira, AM, nd Phytoplasmas associated with the vine. Vinidea.net.Wine technical magazine 1, 1-9.
Powell, K.S., Cooper, P.D. y Fomeck, A. (2013). The biology, physiology and hostplant interactions of grape phylloxera Daktulosphaira vitifoliae. Advances in Insect Physiology 45,159-218. https://doi.org/10.1016/B978-Q-12-417165- 7,00004-0 Powell, K.S., Cooper, P.D. and Fomeck, A. (2013). The biology, physiology and hostplant interactions of grape phylloxera Daktulosphaira vitifoliae. Advances in Insect Physiology 45,159-218. https://doi.org/10.1016/B978-Q-12-417165- 7.00004-0
Redondo, V. (2019). Enfermedades de madera de viña: Identificación, Patogenicidad y Control Biológico de los hongos causantes del Decaimiento por Botryosphaeria. Universidad de Vigo. Redondo, V. (2019). Vine wood diseases: Identification, Pathogenicity and Biological Control of the fungi that cause Botryosphaeria Decay. University of Vigo.
Sankaran, S., Mishra, A., Ehsani, R., & Davis, C. (2010). A review of advanced techniques for detecting plant diseases. Computers and Electronics in Agriculture, 72(1), 1-13. Sankaran, S., Mishra, A., Ehsani, R., & Davis, C. (2010). A review of advanced techniques for detecting plant diseases. Computers and Electronics in Agriculture, 72(1), 1-13.
Trueba, S. (2017). Análisis de imágenes multiespectrales aéreas de vegetación. Trabajo Fin de Grado. Escuela Técnica Superior de Ingenieros Industriales y de Telecomunicación Universidad de Cantabria. https://repositorio.unican.es/xmlui/bitstream/handle/10902/11979/396337.pdf7se quence=l&isAllowed=y (último acceso junio de 2022). Trueba, S. (2017). Analysis of aerial multispectral images of vegetation. Final Degree Project. Higher Technical School of Industrial and Telecommunications Engineers University of Cantabria. https://repositorio.unican.es/xmlui/bitstream/handle/10902/11979/396337.pdf7se quence=l&isAllowed=y (last accessed June 2022).
Zhang, N., Wang, M., & Wang, N. (2002). Precision agriculture - A worldwide overview. Computers and electronics in agriculture, 36(2), 113-132. http://www.grupoalava.com/repositorio/5347/pdf/7468/2/articulo-tecnicomulti-e- hiper.pdf (último acceso junio de 2022). Zhang, N., Wang, M., & Wang, N. (2002). Precision agriculture - A worldwide overview. Computers and electronics in agriculture, 36(2), 113-132. http://www.grupoalava.com/repositorio/5347/pdf/7468/2/articulo-tecnicomulti-e-hiper.pdf (last accessed June 2022).
(W02) http://www.ptvino.com/es/retmavid-un-proyecto-que-persigue-minimizar-la- incidencia-de-enfermedades-de-madera-de-vid/ (último acceso junio de 2022).(W02) http://www.ptvino.com/es/retmavid-un-proyecto-que-persigue-minimizar-la- incidence-de-enfermedades-de-madera-de-vid/ (last access June 2022) .
(W03) http://globalviti.com/ (último acceso junio de 2022). (W03) http://globalviti.com/ (last accessed June 2022).
(W04) https://mappinggis.com/2015/06/ndvi-que-es-y-como-calcularlo-con-saga-desde- qgis/#:~:text=El%20%C3%8Dndice%20de%20Vegetaci%C3%B3n%20de,del% 20espectro%20electromagn%C3%A9tico%20que%201a (último acceso junio de 2022). Problema técnico
Figure imgf000017_0001
(W04) https://mappinggis.com/2015/06/ndvi-que-es-y-como-calcularlo-con-saga-donde- qgis/#:~:text=El%20%C3%8Dndice%20de %20Vegetaci%C3%B3n%20de,del% 20spectro%20electromagn%C3%A9tico%20que%201a (last accessed June 2022). technical problem
Figure imgf000017_0001
Los sistemas conocidos en el estado de la técnica presentan una limitación técnica o problemática, que se centra fundamentalmente en los siguientes aspectos: Los sistemas conocidos que emplean cámaras multiespectrales, montadas en un vehículo aéreo o terrestre, que aplican modelos de análisis de espectroscopia NIRS, no permiten identificar y cuantificar en tiempo real el estado del viñedo, tanto a nivel de cepa como de hoja dentro de la misma planta, y por lo tanto menos aún aplicar la dosis idónea de un tratamiento de precisión en continuo (on-the-go). Se conocen sistemas que emplean cámaras termográficas, montadas en un vehículo aéreo o terrestre, que aplican técnicas de análisis térmico, pueden ser capaces de detectar el evidente aumento de temperatura en hojas secas o marchitas, pero no de identificar la causa concreta; así, el aumento de temperatura podría deberse a las enfermedades de la madera, pero también a un elevado estrés hídrico; por lo tanto, tampoco permiten identificar y cuantificar en tiempo real el estado del viñedo, tanto a nivel de cepa como de hoja dentro de la misma planta, y tampoco aplicar la dosis idónea de un tratamiento de precisión en continuo (on-the-go). The systems known in the state of the art present a technical or problematic limitation, which focuses fundamentally on the following aspects: The known systems that use multispectral cameras, mounted on an aerial or ground vehicle, that apply NIRS spectroscopy analysis models, They do not allow us to identify and quantify the state of the vineyard in real time, both at the vine and leaf level within the same plant, and therefore even less so apply the ideal dose of a continuous precision treatment (on-the-go). ). There are known systems that use thermal imaging cameras, mounted on an aerial or ground vehicle, that apply thermal analysis techniques. They may be able to detect the obvious increase in temperature in dry or withered leaves, but not identify the specific cause; Thus, the increase in temperature could be due to wood diseases, but also to high water stress; Therefore, they do not allow the identification and quantification in real time of the condition of the vineyard, both at the vine and leaf level within the same plant, nor do they allow the ideal dose of a continuous precision treatment to be applied (on-the-go). ).
X También son conocidos sistemas que emplean cámaras digitales, montadas en un vehículo aéreo o terrestre, que aplican algoritmos de visión artificial para el análisis de imágenes RGB, permiten identificar y cuantificar los síntomas de las enfermedades de la madera, tanto a nivel de cepa como de hoja dentro de la misma planta; pero no se conoce que estos sistemas sean capaces de aplicar la dosis idónea de un tratamiento de precisión en continuo (on-the-go) con la toma de imágenes.
Figure imgf000018_0001
X are also known systems that use digital cameras, mounted on an aerial or land vehicle, which apply artificial vision algorithms for RGB image analysis, allow to identify and quantify the symptoms of wood diseases, both at the strain and strain level leaf within the same plant; but it is not known that these systems are capable of applying the ideal dose of continuous precision treatment (on-the-go) with image taking.
Figure imgf000018_0001
La invención resuelve de forma plenamente satisfactoria la problemática anteriormente expuesta, en todos y cada uno de los diferentes aspectos comentados y que se detallan a continuación: La invención reivindica un sistema que emplea cámaras digitales, montadas en un vehículo terrestre, que aplica algoritmos de visión artificial para el análisis de imágenes RGB, para la identificación y cuantificación en tiempo real del estado del viñedo: a) estado fenológico; y b) síntomas de enfermedad (p. ej., yesca), tanto a nivel de cepa como de hoja dentro de la misma planta; siendo capaz de aplicar la dosis idónea de un tratamiento óptimo de precisión en continuo (on-the-go). The invention fully satisfactorily resolves the aforementioned problems, in each and every one of the different aspects discussed and detailed below: The invention claims a system that uses digital cameras, mounted on a land vehicle, that applies vision algorithms. artificial for the analysis of RGB images, for the identification and quantification in real time of the state of the vineyard: a) phenological state; and b) disease symptoms (e.g., tinder), both at the vine and leaf level within the same plant; being able to apply the ideal dose of an optimal precision treatment continuously (on-the-go).
Breve descripción de las figuras Brief description of the figures
Para complementar la descripción y con objeto de ayudar a una mejor comprensión de las características de la invención, se acompaña como parte integrante de dicha descripción, un juego de figuras con carácter ilustrativo y no limitativo, así como un glosario con las referencias empleadas en las figuras acompañado de una descripción de cada referencia. To complement the description and in order to help a better understanding of the characteristics of the invention, a set of figures with an illustrative and non-limiting nature, as well as a glossary with the references used in the invention, is attached as an integral part of said description. figures accompanied by a description of each reference.
Glosario de referencias y descripción de las mismas Glossary of references and description of them
(0) Sistema pulverizador, o nebulizador, foliar del viñedo; cualquiera del estado de la técnica anterior. (0) Vineyard foliar spray or nebulizer system; any of the prior art.
(Olí) Fila izquierda de vid en espaldera. (Olí) Left row of trellis vine.
(Old) Fila derecha de vid en espaldera. (Old) Right row of espaliered vine.
(02) Vehículo tractor. (02) Tractor vehicle.
(03) Remolque nebulizador arrastrado; para tratar filas enteras, p. ej., 2 por ambas caras. Chasis. (03) Trailed nebulizer trailer; to process entire rows, e.g. e.g., 2 on both sides. Chassis.
(ER) Eje de las ruedas. (032) Cuba; depósito de agua. (ER) Wheel axle. (032) Cuba; water tank.
(033) Bomba. (033) Bomb.
(034) Turbina centrífuga. (034) Centrifugal turbine.
(035) Soporte de batería de esparcido; p. ej., como la mostrada en el documento ES 1111081 U. (035) Spreading battery support; p. e.g., as shown in document ES 1111081 U.
(036) Batería de esparcido. (036) Spreading battery.
(OBD) Brazo distribuidor de fluidos; normalmente el sistema (0) comprende cuatro brazos. (OBD) Fluid distributor arm; Normally the system (0) comprises four arms.
(037) Conducto central; conduce el aire procedente de la turbina centrífuga (034).(037) Central duct; It drives the air from the centrifugal turbine (034).
(OBE) Boquilla eyectora; que realiza la eyección del aire; normalmente cada brazo (0BD) comprende cuatro boquillas. (OBE) Ejector nozzle; that ejects air; Normally each arm (0BD) comprises four nozzles.
(0D) Deflector; que realiza la nebulización de la disolución de agua y de los diferentes productos químicos; normalmente cada boquilla (0BE) comprende un deflector.(0D) Deflector; which nebulizes the water solution and the different chemical products; Normally each nozzle (0BE) comprises a deflector.
(038) Conducto lateral; conduce la disolución de agua y de los diferentes productos químicos procedente de la bomba (033). (038) Lateral duct; It drives the dissolution of water and the different chemical products from the pump (033).
(01) Inyector; que realiza la inyección de la disolución de agua y de los diferentes productos químicos; normalmente cada boquilla (0BE), tiene dispuesta en su proximidad un par de inyectores. (01) Injector; which carries out the injection of the water solution and the different chemical products; Normally each nozzle (0BE) has a pair of injectors arranged nearby.
(1) Sistema dosificador de precisión en continuo (on-the-go), de productos fitosanitarios y fertilizantes líquidos, para pulverización, o nebulización, foliar del viñedo; objeto de la invención. (1) Continuous precision dosing system (on-the-go), for phytosanitary products and liquid fertilizers, for foliar spraying or nebulization of the vineyard; object of the invention.
(10) Dispositivo de identificación y cuantificación; en tiempo real del estado del viñedo: a) estado fenológico; b) síntomas de enfermedad (p. ej., yesca), tanto a nivel de cepa como de hoja dentro de la misma planta. (10) Identification and quantification device; in real time of the state of the vineyard: a) phenological state; b) disease symptoms (e.g. tinder), both at the vine and leaf level within the same plant.
(100) Dispositivo electrónico robusto; se trata de una unidad electrónica robusta, p. ej., una estación de trabajo robusta para adquisición y procesado de datos en campo; dotado de un software SCADA (Supervisory Control And Data Acquisition) que permite controlar y supervisar los sensores, actuadores e instrumentación). (IBS) Brazo soporte articulado hueco; preferentemente comprende al menos uno por cada brazo distribuidor de fluido (OBD); permite disponer cables por su interior hueco, así como hacer de tubo para conducir aire. (100) Robust electronic device; This is a robust electronic unit, e.g. e.g., a robust workstation for data acquisition and processing in the field; equipped with SCADA (Supervisory Control And Data Acquisition) software that allows controlling and supervising sensors, actuators and instrumentation). (IBS) Hollow articulated support arm; preferably it comprises at least one for each fluid distributor arm (OBD); It allows cables to be arranged through its hollow interior, as well as making a tube to conduct air.
(101) Corona concéntrica proyectora de luz; de tipo LED (Light-Emitting Diode).(101) Concentric light projecting crown; LED type (Light-Emitting Diode).
(102) Cámara digital, que permite obtener imágenes RGB. (102) Digital camera, which allows obtaining RGB images.
(103) Corona boquilla deflectora. (103) Deflector nozzle crown.
(1DBS) Distancia ajustable del brazo soporte articulado; medida proyectada en el plano vertical de la trayectoria de movimiento. (1DBS) Adjustable distance of the articulated support arm; measurement projected in the vertical plane of the movement path.
(20) Dispositivo dosificador; para dosificar los diferentes productos químicos en disolución con agua. (20) Dispensing device; to dose the different chemical products in solution with water.
(200) Controlador Lógico Programable; PLC. (200) Programmable Logic Controller; PLC.
(201) Sensor inductivo. (201) Inductive sensor.
(202) Display HMI de pantalla táctil.
Figure imgf000020_0001
Variador de velocidad.
(202) Touch screen HMI display.
Figure imgf000020_0001
Speed variator.
(1DPF) Depósito de producto fitosanitario. (1DPF) Plant protection product deposit.
(1DFL) Depósito de fertilizante líquido. (1DFL) Liquid fertilizer tank.
(1EV) Electroválvula proporcional.
Figure imgf000020_0002
geométricas e índices foliares. a Anchura de la parte superior del “canopy”, en m. d Distancia entre cepas, en m. h Altura del pie leñoso de la cepa, en m.
(1EV) Proportional solenoid valve.
Figure imgf000020_0002
geometric and leaf indexes. a Width of the top of the canopy, in m. d Distance between vines, in m. h Height of the woody stem of the vine, in m.
H Altura de la cepa, en m. H Height of the vine, in m.
H-h Altura de la masa foliar, en m. H-h Height of the leaf mass, in m.
SFT Superficie foliar total de la cepa, en m2. SFT Total leaf area of the vine, in m 2 .
SFE Superficie foliar externa de la cepa, en m2. SFE External leaf surface area of the vine, in m 2 .
SFEI Superficie foliar de la parte externa izquierda de la cepa, en m2. SFEI Leaf area of the left external part of the vine, in m 2 .
SFED Superficie foliar de la parte externa derecha de la cepa, en m2. SFEC Superficie foliar de la parte externa superior (canopy) de la cepa, en m2. SFED Leaf area of the right external part of the vine, in m 2 . SFEC Leaf area of the upper external part (canopy) of the strain, in m 2 .
SS Superficie de suelo por cepa, en m2. SS Soil area per vine, in m 2 .
SFTA Superficie foliar total afectada de la cepa, en m2. SFTA Total affected leaf area of the strain, in m 2 .
SFEIA Superficie foliar de la parte externa izquierda afectada de la cepa, en m2. SFEIA Leaf surface area of the affected left external part of the strain, in m 2 .
SFEDA Superficie foliar de la parte externa derecha afectada de la cepa, en m2. SFEDA Leaf surface area of the affected right external part of the strain, in m 2 .
SMA Superficie de la madera, en m2. SMA Surface of the wood, in m 2 .
SRA Superficie de los racimos, en m2. SRA Area of the bunches, in m 2 .
LAI índice de área foliar (Leaf area index), adimensional. LAI leaf area index, dimensionless.
SA índice de superficie foliar externa, adimensional. SA external leaf surface index, dimensionless.
IF índice foliar, adimensional. IF leaf index, dimensionless.
PFC Producto fitosanitario de contacto. PFC Contact phytosanitary product.
PFS Producto fitosanitario sistémico. PFS Systemic phytosanitary product.
FL Fertilizante líquido. FL Liquid fertilizer.
DP Dosis de producto, en L/ha. Volumen de caldo, en L/ha. DP Product dose, in L/ha. Broth volume, in L/ha.
Figura 01 (FIG.01) .- Muestra un sistema pulverizador, o nebulizador, foliar del viñedo (0), cualquiera del estado de la técnica anterior; en concreto un remolque nebulizador arrastrado (03). Figure 01 (FIG.01).- Shows a vineyard foliar sprayer or nebulizer system (0), any of the prior art; specifically a hauled nebulizer trailer (03).
Figura 02 (FIG.02) .- Muestra una vista en perspectiva de un brazo distribuidor de fluidos (OBD), cualquiera del estado de la técnica anterior, en el que se le ha incorporado un dispositivo de identificación y cuantificación (10), objeto de la presente invención. Figure 02 (FIG.02).- Shows a perspective view of a fluid distributor arm (OBD), any of the prior art, in which an identification and quantification device (10) has been incorporated, object of the present invention.
Figura 03 (FIG.03).- Representa de manera esquemática mediante un diagrama de tuberías e instrumentación (Piping and Instrumentation Diagram, P&ID) , para el caso de un único brazo distribuidor de fluidos (OBD), un sistema dosificador de precisión en continuo (on-the-go), de productos fitosanitarios y fertilizantes líquidos, para pulverización, o nebulización, foliar del viñedo (1), objeto de la presente invención. Figura 04 (FIG.04).- Representa de manera esquemática mediante un diagrama de tuberías e instrumentación (Piping and Instrumentation Diagram, P&ID) , para el caso de dos brazos distribuidores de fluidos (OBD), generalizable a “n” brazos, un sistema dosificador de precisión en continuo (on-the-go), de productos fitosanitarios y fertilizantes líquidos, para pulverización, o nebulización, foliar del viñedo (1), objeto de la presente invención. Figure 03 (FIG.03).- Represents schematically using a piping and instrumentation diagram (P&ID), in the case of a single fluid distribution arm (OBD), a continuous precision dosing system (on-the-go), phytosanitary products and liquid fertilizers, for foliar spraying or nebulization of the vineyard (1), object of the present invention. Figure 04 (FIG.04).- Represents schematically using a piping and instrumentation diagram (P&ID), for the case of two fluid distributor arms (OBD), generalizable to “n” arms, a continuous precision dosing system (on-the-go), for phytosanitary products and liquid fertilizers, for foliar spraying or nebulization of the vineyard (1), object of the present invention.
Figura 05 (FIG.05) Muestra una vista en perspectiva de un modelo paralelepipédico del viñedo en espaldera. Figure 05 (FIG.05) Shows a perspective view of a parallelepiped model of the trellised vineyard.
Figura 06 (FIG.06) - Muestra una vista en perspectiva de las superficies externas involucradas en el modelo. Figure 06 (FIG.06) - Shows a perspective view of the external surfaces involved in the model.
Figura 07 (FIG.07).- Muestra una vista de una imagen de un segmento de vid, adquirida en campo, tras el procesamiento de la imagen mediante el algoritmo de visión artificial. Figure 07 (FIG.07).- Shows a view of an image of a vine segment, acquired in the field, after processing the image using the artificial vision algorithm.
Descripción detallada de la invención y exposición detallada de un modo de realización preferente de la invención Detailed description of the invention and detailed presentation of a preferred embodiment of the invention
Se describe detalladamente una realización preferente de la invención, de entre las distintas alternativas posibles, mediante enumeración de sus componentes, así como de su relación funcional en base a referencias a las figuras, que se han incluido, a título ilustrativo y no limitativo, según los principios de las reivindicaciones. A preferred embodiment of the invention is described in detail, among the different possible alternatives, by listing its components, as well as their functional relationship based on references to the figures, which have been included, for illustrative and non-limiting purposes, according to the principles of the claims.
Se hace referencia a las figuras según sea necesario de acuerdo con conseguir una mejor comprensión de lo mostrado en las mismas. Reference is made to the figures as necessary in order to achieve a better understanding of what is shown therein.
En el glosario de referencias se acompaña, en el caso que se requiera, de una descripción detallada de un modo de realización preferente de la invención, por lo que por claridad en la exposición se remite al lector al glosario para facilitar su comprensión. En el apartado siguiente, se describe detalladamente un procedimiento de dosificación de precisión de fitosanitarios y fertilizantes (Pl) que utiliza un dispositivo (1) para su implementación, que describe el funcionamiento y exposición detallada de un modo de realización preferente de la invención. The glossary of references is accompanied, if required, by a detailed description of a preferred embodiment of the invention, so for clarity in the exposition the reader is referred to the glossary to facilitate its understanding. In the following section, a precision dosing procedure for phytosanitary products and fertilizers (Pl) that uses a device (1) for its implementation is described in detail, which describes the operation and detailed presentation of a preferred embodiment of the invention.
La invención preconiza un sistema dosificador de precisión en continuo (on-the-go), de fitosanitarios y fertilizantes ización, o nebulización, foliar del viñedo
Figure imgf000023_0002
del cultivo
Figure imgf000023_0001
(1), del tipo de los que incorporan, enganchado a un vehículo tractor (02), un remolque nebulizador arrastrado (03) que dispone de un conjunto de brazos distribuidores de fluidos (OBD), dotados de una pluralidad de boquillas eyectoras (OBE), (ver FIG.01), y que se caracteriza porque comprende:
The invention advocates a continuous (on-the-go) precision dosing system for phytosanitary and fertilizer foliar spraying, or misting, of the vineyard.
Figure imgf000023_0002
of cultivation
Figure imgf000023_0001
(1), of the type that incorporates, hooked to a tractor vehicle (02), a trailed nebulizer trailer (03) that has a set of fluid distribution arms (OBD), equipped with a plurality of ejector nozzles (OBE). ), (see FIG.01), and which is characterized because it includes:
Un dispositivo de identificación y cuantificación (10) en tiempo real del estado del viñedo: a) estado fenológico; y b) síntomas de enfermedad (p. ej., yesca), tanto a nivel de cepa como de hoja dentro de la misma planta; que contiene los siguientes elementos: A device for identification and quantification (10) in real time of the state of the vineyard: a) phenological state; and b) disease symptoms (e.g., tinder), both at the vine and leaf level within the same plant; which contains the following elements:
- Un dispositivo electrónico robusto (100), (ver FIG.03-4), que se trata de una unidad electrónica robusta; p. ej., una estación de trabajo robusta para adquisición y procesado de datos en campo; dotado de un software SCAD A (Supervisory Control And Data Acquisition) que permite controlar y supervisar los sensores, actuadores e instrumentación). - A robust electronic device (100), (see FIG. 03-4), which is a robust electronic unit; p. e.g., a robust workstation for data acquisition and processing in the field; equipped with SCAD A (Supervisory Control And Data Acquisition) software that allows controlling and supervising sensors, actuators and instrumentation).
- Un brazo soporte articulado hueco (IBS), (ver FIG.02), dispuesto en cada brazo distribuidor de fluidos (OBD), que permite disponer cables por su interior hueco, así como hacer de tubo para conducir aire, tomado del brazo (OBD), y en el que se montan adelantados una distancia ajustable (1DBS), distancia proyectada al plano vertical de avance del vehículo tractor (02), y a una altura de h + (H-h)/2, es decir en el punto medio del plano vertical lateral del viñedo, los siguientes elementos: - A hollow articulated support arm (IBS), (see FIG. 02), arranged in each fluid distributor arm (OBD), which allows cables to be arranged through its hollow interior, as well as acting as a tube to conduct air, taken from the arm ( OBD), and in which they are mounted forward an adjustable distance (1DBS), distance projected to the vertical plane of advance of the towing vehicle (02), and at a height of h + (H-h)/2, that is, at the midpoint of the lateral vertical plane of the vineyard, the following elements:
- una corona concéntrica proyectora de luz (101), sincronizados con el disparo de la cámara mediante un controlador lógico programable (200); con la funcionalidad de homogeneizar la luz en la escena y tratar de minimizar el efecto de los cambios producidos en el entorno natural y, por otro lado, obtener la capacidad para trabajar de noche; - a concentric light projecting crown (101), synchronized with the camera trigger by means of a programmable logic controller (200); with the functionality to homogenize the light in the scene and try to minimize the effect of changes produced in the natural environment and, on the other hand, obtain the ability to work at night;
- una cámara digital (102), que dispone de una corona boquilla deflectora (103), alimentada de aire tomado del brazo (OBD), para provocar una cortina de aire a presión, en forma de embudo, con la finalidad de evitar que los productos nebulizados alcancen la óptica de la cámara (102), y cuya cámara está conectada al dispositivo electrónico robusto (100) y sincronizada con el avance del vehículo mediante un sensor inductivo (201), conectado al controlador (200) y montado en el chasis (031) para detectar el giro de eje de las ruedas (ER) del remolque nebulizador arrastrado (03), que establece la frecuencia de disparo de la cámara, y cuya funcionalidad de la cámara (102) es obtener una fotografía que cubra aproximadamente un segmento de más de dos distancias entre cepas (d), independientemente de la velocidad del vehículo, de esta forma las imágenes capturadas cubren al menos una vid completa sin dejar zonas sin fotografiar ni realizar fotos de la misma zona. - a digital camera (102), which has a deflector nozzle crown (103), fed with air taken from the arm (OBD), to cause a curtain of pressurized air, in the shape of a funnel, in order to prevent the nebulized products reach the optics of the camera (102), and whose camera is connected to the robust electronic device (100) and synchronized with the progress of the vehicle through an inductive sensor (201), connected to the controller (200) and mounted on the chassis. (031) to detect the rotation of the axle of the wheels (ER) of the dragged nebulizer trailer (03), which establishes the shooting frequency of the camera, and whose functionality of the camera (102) is to obtain a photograph that covers approximately a segment of more than two distances between vines (d), regardless of the speed of the vehicle, in this way the captured images cover at least a complete vine without leaving areas without photographing or taking photos of the same area.
La cámara digital (102) es una cámara de visión que captura la imagen proyectada en el sensor, a través del sistema óptico, para poder transferir los datos de imagen a alta velocidad al dispositivo electrónico robusto (100). En un modo de realización preferente de la invención, es una cámara a color Genie Nano-CXP C4900, de 4096x4096 px de resolución y 120 fps de velocidad de disparo. Mediante las librerías software se controlan todos los parámetros de la cámara desde el dispositivo electrónico robusto (100); la corona concéntrica proyectora de luz (101) preferentemente de tipo LED (Light-Emitting Diode). The digital camera (102) is a vision camera that captures the image projected on the sensor, through the optical system, in order to transfer the image data at high speed to the robust electronic device (100). In a preferred embodiment of the invention, it is a Genie Nano-CXP C4900 color camera, with 4096x4096 px resolution and 120 fps shooting speed. Using the software libraries, all the camera parameters are controlled from the robust electronic device (100); the light-projecting concentric crown (101), preferably of the LED (Light-Emitting Diode) type.
Según se ha indicado, se toma de forma automática una imagen RGB digital del plano vertical lateral del viñedo, a intervalos de más de dos distancias entre cepas (d) y a una altura de h + (H-h)/2, es decir en el punto medio del plano vertical; esta operación se realiza inicialmente mediante el ajuste hidráulico del brazo distribuidor de fluidos (OBD). Se sincroniza la distancia ajustable (1DBS), en la que se monta adelantada la cámara digital (102), con la velocidad del vehículo tractor (02) para que el tratamiento del viñedo se encuentre siempre dentro del segmento analizado; habitualmente las velocidades del tractor son inferiores a 10 km/h. As indicated, a digital RGB image of the lateral vertical plane of the vineyard is automatically taken, at intervals of more than two distances between vines (d) and at a height of h + (Hh)/2, that is, at the point middle of the vertical plane; This operation is initially performed by hydraulically adjusting the fluid distributor arm (OBD). The adjustable distance (1DBS), in which the digital camera (102) is mounted forward, is synchronized with the speed of the tractor vehicle (02) so that the treatment of the vineyard is always within the analyzed segment; Tractor speeds are usually less than 10 km/h.
El procesamiento de las imágenes se realiza haciendo uso de la visión artificial, que es un campo de la inteligencia artificial, mediante un algoritmo de análisis de imágenes utilizando la distancia de Mahalanobis para clasificar cada pixel de una imagen en función de su color, (ver FIG.07). El algoritmo utiliza una muestra conocida de valores de color para clasificar un lote desconocido de píxeles en grupos o clases basados en un vector característico (es decir, los valores de color de cada pixel). Se definen las siguientes cuatro clases funcionales en las imágenes: - SFEESFED: Superficie foliar de la parte externa izquierda, o derecha, sana de la cepa; - SFEIA/SFEDA: Superficie foliar de la parte externa izquierda, o derecha, afectada de la cepa; - SMA: Superficie de la madera, en m2; - SRA: Superficie de los racimos, en m2. Por último, se determina el área de las superficies indicadas a partir de la resolución de la imagen adquirida y de una medida de distancia referencial, preferentemente la distancia entre cepas (d), en m, que es una medida conocida e invariable para todo el viñedo. Image processing is carried out using artificial vision, which is a field of artificial intelligence, through an image analysis algorithm using the Mahalanobis distance to classify each pixel of an image based on its color, (see FIG.07). The algorithm uses a known sample of color values to classify an unknown batch of pixels into groups or classes based on a feature vector (i.e., the color values of each pixel). The following four functional classes are defined in the images: - SFEESFED: Leaf surface of the healthy left or right external part of the strain; - SFEIA/SFEDA: Leaf surface of the left or right external part affected by the strain; - SMA: Surface of the wood, in m 2 ; - SRA: Area of the bunches, in m 2 . Finally, the area of the indicated surfaces is determined from the resolution of the acquired image and a reference distance measure, preferably the distance between strains (d), in m, which is a known and invariant measure for the entire vineyard.
Las técnicas descritas preferentemente se desarrollan algorítmicamente en el software Matlab ® con el complemento del Toolbox Image Processing. The techniques described are preferably developed algorithmically in the Matlab ® software with the complement of the Image Processing Toolbox.
Un dispositivo dosificador (20), (ver FIG.03-4), ubicado en el chasis (031) y cuya funcionalidad es controlar la dosificación en cada brazo distribuidor de fluidos (0BD), de forma independiente, de los diferentes productos químicos en disolución con agua, que contiene los siguientes elementos: A dosing device (20), (see FIG. 03-4), located in the chassis (031) and whose functionality is to control the dosage in each fluid distribution arm (0BD), independently, of the different chemical products in dissolution with water, which contains the following elements:
- un controlador lógico programadle (200), conectado al dispositivo electrónico robusto (100) y a un display HMI de pantalla táctil (202); - una pluralidad de depósitos de producto fitosanitario (1DPF), cada uno controlado por una el ectr oválvula proporcional (1EV) conectada al controlador (200); cuya funcionalidad es aportar la dosis idónea del producto fitosanitario requerido al circuito de aspiración de la bomba (033); - a programmable logic controller (200), connected to the robust electronic device (100) and to a touch screen HMI display (202); - a plurality of phytosanitary product tanks (1DPF), each controlled by a proportional ectr ovalve (1EV) connected to the controller (200); whose functionality is to provide the ideal dose of the required phytosanitary product to the suction circuit of the pump (033);
- una pluralidad de depósitos de fertilizante líquido (1DFL), cada uno controlado por una electroválvula proporcional (1EV) conectada al controlador (200); cuya funcionalidad es aportar la dosis idónea del fertilizante líquido requerido al circuito de aspiración de la bomba (033); - a plurality of liquid fertilizer tanks (1DFL), each controlled by a proportional solenoid valve (1EV) connected to the controller (200); whose functionality is to provide the ideal dose of the required liquid fertilizer to the suction circuit of the pump (033);
- un variador de velocidad (1 VSD) para regular la velocidad de la turbina centrífuga (034); - a speed variator (1 VSD) to regulate the speed of the centrifugal turbine (034);
- un variador de velocidad (1 VSD) para regular la velocidad de la bomba (033). - a speed variator (1 VSD) to regulate the speed of the pump (033).
Como se muestra esquemáticamente en la figura 3, la presente invención preconiza que cuando en el remolque nebulizador arrastrado (03) se activa la puesta en marcha de la turbina centrífuga (034), con el ajuste automático del caudal óptimo de aire en función del estado fenológico de la viña, se capta aire del ambiente y se fuerza su circulación por el conducto central (037), hasta llegar al conjunto de boquillas eyectoras (0BE), dispuestas en el interior de sus correspondientes deflectores (0D). Saliendo el aire captado proyectado al ambiente, produciéndose un efecto “Venturi” que provoca una diferencia de presión en la salida del deflector (0D) que arrastra el aire ambiente de su alrededor, y con éste, los diferentes productos químicos en disolución con agua pulverizados, o nebulizados, por el conjunto de inyectores (01), distribuidos y dispuestos en la proximidad de los deflectores (0D). As shown schematically in Figure 3, the present invention recommends that when the towed nebulizer trailer (03) activates the start-up of the centrifugal turbine (034), with the automatic adjustment of the optimal air flow rate depending on the state. phenology of the vineyard, air is captured from the environment and its circulation is forced through the central duct (037), until it reaches the set of ejector nozzles (0BE), arranged inside their corresponding deflectors (0D). The captured air is projected into the environment, producing a “Venturi” effect that causes a pressure difference at the outlet of the deflector (0D) that drags the ambient air around it, and with it, the different chemical products in solution with water sprayed. , or nebulized, by the set of injectors (01), distributed and arranged in the proximity of the deflectors (0D).
En la figura 3 se muestra esquemáticamente la presente invención para el caso de un único brazo distribuidor de fluidos (0BD) y en la figura 4 se muestra esquemáticamente la presente invención para el caso de n” brazos (0BD), pero que por claridad sólo se han representado dos brazos (0BD). Cuando un remolque nebulizador arrastrado (03) active la puesta en marcha de la única bomba (033), según reivindica la presente invención se pondrán en marcha un conjunto de bombas (033), ya que la presente invención requiere, por cada brazo distribuidor de fluidos (OBD) una bomba (033) con la finalidad de suministrar a cada brazo (OBD) diferentes productos químicos en disolución con agua. En la presente invención se preconiza que cada bomba (033) aspira agua de la cuba (032) y simultáneamente aspira los productos fitosanitarios del conjunto de depósitos (1DPF) y de fertilizantes líquidos del conjunto de depósitos (1DFL), de cada uno de forma proporcional, dentro del rango de 0 a 100% respecto del caudal máximo nominal, según el estado prescrito por el controlador lógico programable (200) para cada electroválvula proporcional (1EV) asociada a cada depósito (1DPF, 1DFL). Finalmente, los productos aspirados mezclados en disolución con el agua aspirada son impulsados, por cada bomba (033) hasta su correspondiente brazo (OBD), para ser pulverizados, o nebulizados, en el conjunto de inyectores (01). Figure 3 shows schematically the present invention for the case of a single fluid distributor arm (0BD) and Figure 4 shows schematically the present invention for the case of n” arms (0BD), but for clarity only two arms have been represented (0BD). When a towed nebulizer trailer (03) activates the start-up of the single pump (033), according to the present invention, a set of pumps (033) will be started, since the present invention requires, for each fluid distribution arm (OBD), a pump (033). with the purpose of supplying each arm (OBD) with different chemical products in solution with water. In the present invention, it is recommended that each pump (033) sucks water from the tank (032) and simultaneously sucks in phytosanitary products from the set of tanks (1DPF) and liquid fertilizers from the set of tanks (1DFL), each one in a manner proportional, within the range of 0 to 100% with respect to the maximum nominal flow, according to the state prescribed by the programmable logic controller (200) for each proportional solenoid valve (1EV) associated with each tank (1DPF, 1DFL). Finally, the aspirated products mixed in solution with the aspirated water are propelled by each pump (033) to its corresponding arm (OBD), to be sprayed, or nebulized, in the set of injectors (01).
PROCEDIMIENTO DE DOSIFICACIÓN DE PRECISIÓN EN CONTINUO (ON- THE-GO), DE PRODUCTOS FITOSANITARIOS Y FERTILIZANTES LÍQUIDOS, PARA PULVERIZACIÓN, O NEBULIZACIÓN, FOLIAR DEL VIÑEDO. CONTINUOUS PRECISION DOSING PROCEDURE (ON-THE-GO), OF PHYTOSANITARY PRODUCTS AND LIQUID FERTILIZERS, FOR FOLIAR SPRAYING, OR NEBULIZATION OF THE VINEYARD.
La pulverización, o nebulización, óptima, se obtiene cuando se consigue llevar el producto fitosanitario, o fertilizante líquido, hasta la masa foliar sin déficit o exceso, persiguiendo un menor riesgo de fitotoxicidad y un ahorro económico. Optimal spraying, or nebulization, is obtained when the phytosanitary product, or liquid fertilizer, is managed to reach the leaf mass without deficit or excess, pursuing a lower risk of phytotoxicity and economic savings.
La invención preconiza un procedimiento de cálculo automático de la dosis idónea, de aplicación en masa foliar, según se describe a continuación.
Figure imgf000027_0002
foliar de la cepa a partir de sus dimensiones
Figure imgf000027_0001
e índices foliares.
The invention recommends a procedure for automatically calculating the ideal dose, for application in foliar mass, as described below.
Figure imgf000027_0002
foliage of the strain based on its dimensions
Figure imgf000027_0001
and leaf indexes.
La vid dispuesta en espaldera se caracteriza por tener una geometría que puede asemejarse a un “paralelepípedo”, ver FIG.05-6, cuya anchura es la de la parte superior del “canopy” (a), su altura (H), la de la altura de la vegetación, y su longitud (d), la distancia entre cepas; pudiendo considerarse que las dimensiones externas del paralelepípedo son independientes de la distancia que existe entre las cepas. La densidad de plantación, p. ej. de 3000 cepas/ha, es función de dos parámetros: la separación entre líneas (D), que representa la anchura de la calle, y la distancia entre cepas dentro de la línea (d). The vine arranged on a trellis is characterized by having a geometry that can resemble a “parallelepiped”, see FIG.05-6, whose width is that of the upper part of the “canopy” (a), its height (H), the of the height of the vegetation, and its length (d), the distance between strains; It can be considered that the external dimensions of the parallelepiped are independent of the distance that exists between the strains. Planting density, e.g. e.g. of 3000 vines/ha, is a function of two parameters: the separation between lines (D), which represents the width of the lane, and the distance between vines within the line (d).
Se define el índice de área foliar (Leaf area index), adimensional, por la siguiente ecuación:
Figure imgf000028_0001
The dimensionless leaf area index is defined by the following equation:
Figure imgf000028_0001
Se define el índice de superficie foliar externa, adimensional, por la siguiente ecuación: The dimensionless external leaf surface index is defined by the following equation:
SFESFE
SA = Ec. (2) SA = Eq. (2)
~SS~ ~SS~
Se define el índice foliar, adimensional., adimensional, por la siguiente ecuación: The dimensionless leaf index is defined by the following equation:
SA
Figure imgf000028_0002
Ec. (3)
SA
Figure imgf000028_0002
Eq. (3)
LÁÍ siendo un estimador de la densidad de vegetación que refleja el grado de amontonamiento de la masa foliar; cuanto más bajo es el índice (IF) mayor es el amontonamiento del follaje. LÁÍ being an estimator of vegetation density that reflects the degree of crowding of the leaf mass; The lower the index (IF), the greater the crowding of the foliage.
Se ha descubierto que el valor del índice (IF), para viñedo en espaldera, no se ve afectado significativamente por el régimen hídrico ni por la densidad de plantación, pudiéndose estimar un valor medio, redondeado a un decimal, de IF = 0,5*, así como que la relación entre la anchura de la parte superior del canopy (a) y la altura de la masa foliar responde a la siguiente ecuación: a (m) = 3,2 — 2 • (H — h)**. (*, **) Resultados obtenidos por la UNIVERSIDAD DE LA RIOJA, en una investigación realizada en viñedos en espaldera experimentales, durante las campañas de viticultura experimental de 2017, 2018 y 2019, cv. Tempranillo (Vitis vinífera L.). It has been discovered that the value of the index (IF), for trellised vineyards, is not significantly affected by the water regime or the planting density, and an average value, rounded to one decimal, of IF = 0.5 can be estimated. *, as well as that the relationship between the width of the upper part of the canopy (a) and the height of the leaf mass responds to the following equation: a (m) = 3.2 — 2 • (H — h)** . (*, **) Results obtained by the UNIVERSITY OF LA RIOJA, in a research carried out in experimental trellised vineyards, during the experimental viticulture campaigns of 2017, 2018 and 2019, cv. Tempranillo (Vitis vinifera L.).
Se describe detalladamente un procedimiento de dosificación para agricultura de precisión (Pl) que utiliza un dispositivo (1) para su implementación, mediante la enumeración de las etapas a ejecutar según el orden indicado. A dosing procedure for precision agriculture (Pl) that uses a device (1) for its implementation is described in detail, by enumerating the steps to be executed according to the indicated order.
La invención preconiza un procedimiento de dosificación para agricultura de precisión
Figure imgf000029_0001
su del tipo de los que interactúan con una serie de elementos de actuación, instrumentación y control, que emplea un sistema dosificador de precisión en continuo (on-the-go), de productos fitosanitarios y fertilizantes líquidos, para el viñedo (1), y que comprende al menos las siguientes etapas:
Figure imgf000029_0002
, del número de brazos distribuidores de fluidos (0BD), disponga de una única (034) turbina centrífuga (034) alimentada por un variador de velocidad (1 VSD).
The invention recommends a dosing procedure for precision agriculture
Figure imgf000029_0001
Its the type that interacts with a series of actuation, instrumentation and control elements, which uses a continuous precision dosing system (on-the-go), of phytosanitary products and liquid fertilizers, for the vineyard (1), and which includes at least the following stages:
Figure imgf000029_0002
, of the number of fluid distributor arms (0BD), has a single (034) centrifugal turbine (034) powered by a variable speed drive (1 VSD).
Esta etapa se implementa en un bloque de programa (ETAPA “a”), en el dispositivo electrónico robusto (100). This stage is implemented in a program block (STAGE “a”), in the robust electronic device (100).
La etapa “a”, comprende al menos las siguientes subetapas: a.l) Mediante el dispositivo de identificación y cuantificación (10), la cámara digital (102) obtiene una imagen RGB por cada unidad de longitud de viñedo, preferentemente a la distancia entre cepas (d). a.2) A continuación, aplicando técnicas de visión artificial implementadas en un software instalado en el dispositivo electrónico robusto (100), se obtiene el estado fenológico de cada unidad de longitud de viñedo. Siendo los estados fenológicos en los que resultan más eficaces los tratamientos fitosanitarios para la protección del viñedo: Stage “a” comprises at least the following substages: a) Using the identification and quantification device (10), the digital camera (102) obtains an RGB image for each unit of vineyard length, preferably at the distance between vines. (d). a.2) Next, applying artificial vision techniques implemented in software installed on the robust electronic device (100), the phenological state of each unit of vineyard length is obtained. The phenological stages in which phytosanitary treatments for the protection of the vineyard are most effective are:
- cuando los racimos se hacen visibles (estado fenológico F, teniendo la mayoría de los brotes entre 5 y 10 cm; - when the clusters become visible (phenological stage F, with most of the shoots between 5 and 10 cm;
- al comienzo de la floración (inicio del estado fenológico I); - at the beginning of flowering (beginning of phenological stage I);
- con granos de tamaño guisante o garbanzo (K); - with pea or chickpea size grains (K);
- al principio del envero (MI, 5-10% de los granos cambiando de color). obteniéndose el peso (%) del estado según la siguiente tabla de asignación:
Figure imgf000030_0001
(+) Estados fenológicos en los que resultan más eficaces los tratamientos fitosanitarios para la protección del viñedo. a.3) Mediante el software SCADA instalado en el dispositivo electrónico robusto (100) se le transfiere automáticamente al controlador lógico programadle (200) el valor del peso (%), para suministrar la consigna de velocidad del variador de velocidad (1VSD) que alimenta el motor eléctrico de la turbina centrífuga (034), que suministra el caudal de salida de aire de 0 a 100%. Se calcula el valor del caudal de aire, en 1/min, mediante la siguiente ecuación:
Figure imgf000031_0001
- at the beginning of veraison (MI, 5-10% of the grains changing color). obtaining the weight (%) of the state according to the following allocation table:
Figure imgf000030_0001
( + ) Phenological states in which phytosanitary treatments are most effective for the protection of the vineyard. a.3) Through the SCADA software installed in the robust electronic device (100), the weight value (%) is automatically transferred to the programmable logic controller (200), to supply the speed setpoint of the variable speed drive (1VSD) that It powers the electric motor of the centrifugal turbine (034), which supplies the air outlet flow from 0 to 100%. The value of the air flow rate, in 1/min, is calculated using the following equation:
Figure imgf000031_0001
La invención preconiza que el remolque nebulizador arrastrado (03), disponga de una bomba (033), alimentada por un variador de velocidad (1VSD), por cada brazo distribuidor de fluidos (0BD), con la finalidad de suministrar de forma independiente a cada brazo la dosis idónea de cada producto fitosanitario de contacto (PFC), o de fertilizante líquido (FL), requeridos. The invention recommends that the dragged nebulizer trailer (03) has a pump (033), powered by a speed variator (1VSD), for each fluid distribution arm (0BD), with the purpose of independently supplying each arm the ideal dose of each contact phytosanitary product (PFC), or liquid fertilizer (FL), required.
Esta etapa se implementa en un bloque de programa (ETAPA “b”), en el dispositivo electrónico robusto (100). This stage is implemented in a program block (STEP “b”), in the robust electronic device (100).
Se persigue que la dosis idónea de producto fitosanitario de contacto (PFC), actúe de modo preventivo depositándose en el exterior de toda la masa foliar. De igual modo se trata el fertilizante líquido (FL), para que se absorba por la planta a través de su masa foliar. The aim is that the ideal dose of contact phytosanitary product (PFC) acts preventively by depositing itself on the outside of the entire leaf mass. In the same way it Treat the liquid fertilizer (FL) so that it is absorbed by the plant through its leaf mass.
La etapa “b”, comprende al menos las siguientes subetapas:
Figure imgf000032_0005
identificación y cuantificación (10), se realiza la
Figure imgf000032_0001
e una de la zona lateral del viñedo, y mediante técnicas de visión artificial se realizan las mediciones digitales de la altura de la masa foliar (H-h) y de la distancia entre en m, así como la medición de la superficie foliar de la
Figure imgf000032_0002
en m2, para el cálculo de la
Figure imgf000032_0003
Figure imgf000032_0004
b.l.1) A partir de las mediciones digitales de la altura de la masa foliar (H-h) y de la distancia entre cepas (d), en m, se obtiene la superficie foliar de la parte externa superior (canopy) de la cepa, en m2, mediante la siguiente ecuación:
Stage “b” includes at least the following substages:
Figure imgf000032_0005
identification and quantification (10), the
Figure imgf000032_0001
e one of the lateral zone of the vineyard, and using artificial vision techniques, digital measurements of the height of the leaf mass (Hh) and the distance between them in m are made, as well as the measurement of the leaf surface of the
Figure imgf000032_0002
in m 2 , for the calculation of the
Figure imgf000032_0003
Figure imgf000032_0004
bl1) From the digital measurements of the height of the leaf mass (Hh) and the distance between strains (d), in m, the leaf surface of the upper external part (canopy) of the strain is obtained, in m 2 , using the following equation:
SFEC (m2) = 2d • [(1,6 - (H - h)] Ec. (5) b.l.2) A partir de la medición digital de la superficie foliar de la parte externa, izquierda o derecha (SFEI, SFED), en m2, se obtiene la superficie foliar externa de la cepa, en m2, mediante la siguiente ecuación: SFEC (m 2 ) = 2d • [(1.6 - (H - h)] Eq. (5) bl2) From the digital measurement of the leaf surface of the external part, left or right (SFEI, SFED) , in m 2 , the external leaf surface of the strain, in m 2 , is obtained using the following equation:
SFE (m2) = 2 • SFEI (o SFED) + SFEC Ec. (6) b.l.3) Se calcula la superficie foliar total de la cepa (SFT), en m2, mediante la siguiente ecuación: 1 SFE (m 2 ) = 2 • SFEI (or SFED) + SFEC Eq. (6) bl3) The total leaf area of the strain (SFT), in m 2 , is calculated using the following equation: 1
SFT (m2) = — • SFE Ec. (7) 1F SFT (m 2 ) = — • SFE Eq. (7) 1F
Como se ha descubierto que el valor del índice (IF), para viñedo en espaldera, no se ve afectado significativamente por el régimen hídrico ni por la densidad de plantación, estimamos un valor de IF = 0,5, por lo que tendremos: As it has been discovered that the value of the index (IF), for trellised vineyards, is not significantly affected by the water regime or the plantation density, we estimate a value of IF = 0.5, so we will have:
SFT (m2) = 2 • SFE Ec. (8) SFT (m 2 ) = 2 • SFE Eq. (8)
La superficie foliar total de la cepa (SFT), es el área, en m2, a la que debe llegar el producto, reivindicando la presente invención su cálculo real según el estado de crecimiento en cada instante de la masa foliar de la vid. b.2) Cálculo de la dosis idónea de
Figure imgf000033_0001
de contacto
Figure imgf000033_0002
o fertilizante
Figure imgf000033_0003
dosificada por una electroválvula
Figure imgf000033_0004
conectada al controlador
Figure imgf000033_0005
b.2.1) En función del producto seleccionado de forma automática a dosificar, mediante el software SCADA instalado en el dispositivo electrónico robusto (100) se le transfiere al controlador lógico programable (200) el valor de la dosis de producto (DP), en L/ha, y del volumen de caldo (VC), en L/ha, prescrito por el fabricante del producto.
The total leaf surface of the vine (SFT) is the area, in m 2 , to which the product must reach, the present invention claiming its actual calculation according to the growth state at each moment of the leaf mass of the vine. b.2) Calculation of the ideal dose of
Figure imgf000033_0001
contact
Figure imgf000033_0002
or fertilizer
Figure imgf000033_0003
dosed by a solenoid valve
Figure imgf000033_0004
connected to the controller
Figure imgf000033_0005
b.2.1) Depending on the product selected automatically to be dosed, through the SCADA software installed in the robust electronic device (100) the value of the product dose (DP) is transferred to the programmable logic controller (200), in L/ha, and the volume of broth (VC), in L/ha, prescribed by the product manufacturer.
A partir de la dosis de producto (DP), en L/ha y del volumen de caldo (VC), en L/ha, obtenida la superficie foliar total de la cepa (SFT), en m2, se calcula la dosis idónea de cada producto mediante la siguiente ecuación: Ec. (9)
Figure imgf000033_0006
si el tratamiento se hace por los dos lados de la vid, tendremos: DOSIS (mL por vid) Ec. (9b)
Figure imgf000034_0001
para suministrar la dosis calculada a la electroválvula proporcional (EV), que suministrará la dosis indicada del producto seleccionado del depósito (DPF) o (DFL) al circuito de aspiración de la bomba (033).
From the product dose (DP), in L/ha, and the broth volume (VC), in L/ha, obtained the total leaf area of the strain (SFT), in m 2 , the ideal dose is calculated. of each product using the following equation: Eq. (9)
Figure imgf000033_0006
If the treatment is done on both sides of the vine, we will have: DOSE (mL per vine) Eq. (9b)
Figure imgf000034_0001
to supply the calculated dose to the proportional solenoid valve (EV), which will supply the indicated dose of the selected product from the tank (DPF) or (DFL) to the pump suction circuit (033).
ETAPA “c” AJUSTE AUTOMÁTICO DEL VOLUMEN DE AGUA ÓPTIMO SUMINISTRADO POR LA BOMBA (033), PARA CADA OPERACIÓN DE PULVERIZACIÓN O NEBULIZACIÓN. STAGE “c” AUTOMATIC ADJUSTMENT OF THE OPTIMUM WATER VOLUME SUPPLIED BY THE PUMP (033), FOR EACH SPRAYING OR MISTING OPERATION.
La invención preconiza que el remolque nebulizador arrastrado (03), disponga de una bomba (033), alimentada por un variador de velocidad (1VSD), por cada brazo distribuidor de fluidos (OBD), con la finalidad de suministrar de forma independiente a cada brazo la dosis idónea de cada producto fitosanitario de contacto requerido. The invention recommends that the trailed nebulizer trailer (03) has a pump (033), powered by a speed variator (1VSD), for each fluid distribution arm (OBD), with the purpose of independently supplying each arm the ideal dose of each contact phytosanitary product required.
Esta etapa se implementa en un bloque de programa (ETAPA “c”), en el dispositivo electrónico robusto (100). This stage is implemented in a program block (STEP “c”), in the robust electronic device (100).
La etapa “c”, comprende al menos las siguientes subetapas: c.l.) En función del producto seleccionado de forma automática a dosificar, mediante el software SCADA instalado en el dispositivo electrónico robusto (100) se le transfiere al controlador lógico programable (200) el valor del volumen de caldo (L/ha) prescrito por el fabricante del producto, para suministrar la consigna de velocidad del variador de velocidad (1 VSD) que alimenta el motor eléctrico de la bomba (033), que suministra el caudal de agua obtenido a partir de la siguiente ecuación: Stage “c” comprises at least the following substages: c.l.) Depending on the product automatically selected to be dosed, through the SCADA software installed in the robust electronic device (100) the programmable logic controller (200) is transferred. value of the broth volume (L/ha) prescribed by the product manufacturer, to supply the speed setpoint of the speed variator (1 VSD) that powers the electric motor of the pump (033), which supplies the obtained water flow from the following equation:
SFT(m2) • VC (L/ha) SFT(m 2 ) • VC (L/ha)
VOLUMEN (L por vid) = - ' nn — ~ Ec. (10) 7 10.000 VOLUME (L per vine) = - ' nn — ~ Eq. (10) 7 10,000
Figure imgf000035_0001
Figure imgf000035_0001
La invención preconiza que el remolque nebulizador arrastrado (03), disponga de una bomba (033), alimentada por un variador de velocidad (1VSD), por cada brazo distribuidor de fluidos (OBD), con la finalidad de suministrar de forma independiente a cada brazo la dosis idónea de cada producto fitosanitario sistémico (PFS) requerido. The invention recommends that the trailed nebulizer trailer (03) has a pump (033), powered by a speed variator (1VSD), for each fluid distribution arm (OBD), with the purpose of independently supplying each arm the ideal dose of each systemic phytosanitary product (SPF) required.
Esta etapa se implementa en un bloque de programa (ETAPA “d”), en el dispositivo electrónico robusto (100). This stage is implemented in a program block (STEP “d”), in the robust electronic device (100).
Se persigue que la dosis idónea de producto fitosanitario sistémico (PFS), actúe de modo sistémico depositándose en el exterior de la masa foliar afectada. The aim is that the ideal dose of systemic phytosanitary product (PFS) acts systemically, depositing itself on the outside of the affected leaf mass.
La etapa “d”, comprende al menos las siguientes subetapas:
Figure imgf000035_0002
de identificación y cuantificación (10), se realiza la ición de una i de la zona lateral del viñedo, y mediante técnicas de visión artificial se realizan las mediciones digitales de la altura de la masa foliar (H-h) y de la distancia entre en m, así como la medición de la ie foliar de la
Figure imgf000035_0003
o derecha, afectada
Figure imgf000035_0004
el cálculo de la
Stage “d” includes at least the following substages:
Figure imgf000035_0002
of identification and quantification (10), the iion of an i of the lateral zone of the vineyard is carried out, and using artificial vision techniques, digital measurements of the height of the leaf mass (Hh) and the distance between m , as well as the measurement of the leaf ie of the
Figure imgf000035_0003
or right, affected
Figure imgf000035_0004
the calculation of the
2 ie foliar total afectada de la
Figure imgf000035_0005
en m . d.l.2) A partir de la medición digital de la superficie foliar de la parte externa, izquierda o derecha, afectada de la cepa (SFELA SFEDA), en m2, se obtiene la superficie foliar externa afectada de la cepa, en m2, mediante la siguiente ecuación: 1
2 ie total affected leaf
Figure imgf000035_0005
in m. dl2) From the digital measurement of the leaf surface of the affected external part, left or right, of the vine (SFELA SFEDA), in m 2 , the affected external leaf surface of the vine, in m 2 , is obtained by the following equation: 1
SFTA (m2) = — • SFEIA (o SFEDA) Ec. (11) IF detectándose la superficie afectada a través de los síntomas de la enfermedad, p. ej., la enfermedad de la madera o yesca por el cambio de coloración de la hoja (marrón), tanto a nivel de cepa como de hoja dentro de la misma planta. SFTA (m 2 ) = — • SFEIA (or SFEDA) Eq. (11) IF detecting the affected surface through the symptoms of the disease, e.g. For example, wood disease or tinder due to the change in leaf color (brown), both at the vine and leaf level within the same plant.
Como se ha descubierto que el valor del índice (IF), para viñedo en espaldera, no se ve afectado significativamente por el régimen hídrico ni por la densidad de plantación, estimamos un valor de IF = 0,5, por lo que tendremos: As it has been discovered that the value of the index (IF), for trellised vineyards, is not significantly affected by the water regime or the plantation density, we estimate a value of IF = 0.5, so we will have:
SFTA (m2) = 2 • SFE1A (o SFEDA) Ec. (12) SFTA (m 2 ) = 2 • SFE1A (or SFEDA) Eq. (12)
La superficie foliar total afectada de la cepa (SFTA), es el área, en m2, a la que debe llegar el producto, reivindicando la presente invención su cálculo real según el estado de crecimiento en cada instante de la masa foliar de la vid. d.2) Cálculo de la dosis idónea de cada
Figure imgf000036_0001
fitosanitario sistémico
Figure imgf000036_0002
dosificada por una el ectr oválvula
Figure imgf000036_0003
conectada al controlador
Figure imgf000036_0004
d.2.1) En función del producto seleccionado de forma automática a dosificar, mediante el software SCADA instalado en el dispositivo electrónico robusto (100) se le transfiere al controlador lógico programable (200) el valor de la dosis de producto (DP), en L/ha, y del volumen de caldo (VC), en L/ha, prescrito por el fabricante del producto.
The total affected leaf surface of the vine (SFTA) is the area, in m 2 , to which the product must reach, the present invention claiming its real calculation according to the growth state at each moment of the leaf mass of the vine. . d.2) Calculation of the ideal dose of each
Figure imgf000036_0001
systemic phytosanitary
Figure imgf000036_0002
dosed by a ectr ovalve
Figure imgf000036_0003
connected to the controller
Figure imgf000036_0004
d.2.1) Depending on the product selected automatically to be dosed, through the SCADA software installed in the robust electronic device (100) the value of the product dose (DP) is transferred to the programmable logic controller (200), in L/ha, and the volume of broth (VC), in L/ha, prescribed by the product manufacturer.
A partir de la dosis de producto (DP), en L/ha y del volumen de caldo (VC), en L/ha, obtenida la superficie foliar total afectada de la cepa (SFTA), en m2, se calcula la dosis idónea de cada producto mediante la siguiente ecuación: From the product dose (DP), in L/ha and the broth volume (VC), in L/ha, obtained the total affected leaf area of the strain (SFTA), in m 2 , the dose is calculated. ideal for each product using the following equation:
SFTA(m2) • DP (L/ha) SFTA(m 2 ) • DP (L/ha)
DOSIS (mL por vid) = - — - Ec. (13) para suministrar la dosis calculada a la electroválvula proporcional (EV), que suministrará la dosis indicada del producto seleccionado del depósito (DPF) al circuito de aspiración de la bomba (033). DOSE (mL per vine) = - — - Eq. (13) to supply the calculated dose to the proportional solenoid valve (EV), which will supply the indicated dose of the selected product from the tank (DPF) to the pump suction circuit (033).

Claims

REIVINDICACIONES Sistema dosificador de precisión en continuo, de productos fitosanitarios y fertilizantes líquidos, para pulverización, o nebulización, foliar del viñedo (1), del tipo de los que incorporan, enganchado a un vehículo tractor (02), un remolque nebulizador arrastrado (03) que dispone de un conjunto de brazos distribuidores de fluidos (OBD), dotados de una pluralidad de boquillas eyectoras (OBE), y que se caracteriza porque comprende: CLAIMS Continuous precision dosing system for phytosanitary products and liquid fertilizers, for foliar spraying or nebulization of the vineyard (1), of the type that incorporates, hooked to a tractor vehicle (02), a towed nebulizer trailer (03 ) which has a set of fluid distribution arms (OBD), equipped with a plurality of ejector nozzles (OBE), and which is characterized in that it comprises:
Un dispositivo de identificación y cuantificación (10) en tiempo real del estado del viñedo, tanto a nivel de cepa como de hoja dentro de la misma planta, que contiene los siguientes elementos: A real-time identification and quantification device (10) of the state of the vineyard, both at the vine and leaf level within the same plant, which contains the following elements:
- un dispositivo electrónico robusto (100), que se trata de una unidad electrónica robusta, que permite controlar y supervisar los sensores, actuadores e instrumentación. - a robust electronic device (100), which is a robust electronic unit, which allows controlling and monitoring sensors, actuators and instrumentation.
- un brazo soporte articulado hueco (IBS), dispuesto en cada brazo distribuidor de fluidos (OBD), que permite disponer cables por su interior hueco, así como hacer de tubo para conducir aire, tomado del brazo (OBD), y en el que se montan adelantados una distancia ajustable (1DBS), distancia proyectada al plano vertical de avance del vehículo tractor (02), y a una altura de h + (H-h)/2, es decir en el punto medio del plano vertical lateral del viñedo, los siguientes elementos: - a hollow articulated support arm (IBS), arranged in each fluid distributor arm (OBD), which allows cables to be arranged through its hollow interior, as well as acting as a tube to conduct air, taken from the arm (OBD), and in which They are mounted forward an adjustable distance (1DBS), distance projected to the vertical plane of advance of the tractor vehicle (02), and at a height of h + (H-h)/2, that is, at the midpoint of the lateral vertical plane of the vineyard, the following elements:
- una corona concéntrica proyectora de luz (101), sincronizados con el disparo de la cámara mediante un controlador lógico programable (200); con la funcionalidad de homogeneizar la luz en la escena y tratar de minimizar el efecto de los cambios producidos en el entorno natural y, por otro lado, obtener la capacidad para trabajar de noche; - a concentric light projecting crown (101), synchronized with the camera trigger by means of a programmable logic controller (200); with the functionality of homogenizing the light in the scene and trying to minimize the effect of the changes produced in the natural environment and, on the other hand, obtaining the ability to work at night;
- una cámara digital (102), que dispone de una corona boquilla deflectora (103), alimentada de aire tomado del brazo (OBD), para provocar una cortina de aire a presión, en forma de embudo, con la finalidad de evitar que los productos nebulizados alcancen la óptica de la cámara (102), y cuya cámara está conectada al dispositivo electrónico robusto (100) y sincronizada con el avance del vehículo mediante un sensor inductivo (201), conectado al controlador (200) y montado en el chasis (031) para detectar el giro de eje de las ruedas (ER) del remolque nebulizador arrastrado (03), que establece la frecuencia de disparo de la cámara, y cuya funcionalidad de la cámara (102) es obtener una fotografía que cubra aproximadamente un segmento de más de dos distancias entre cepas (d), independientemente de la velocidad del vehículo, de esta forma las imágenes capturadas cubren al menos una vid completa sin dejar zonas sin fotografiar ni realizar fotos de la misma zona. - a digital camera (102), which has a deflector nozzle crown (103), supplied with air taken from the arm (OBD), to cause a curtain of pressurized air, in the shape of a funnel, with the purpose of preventing the nebulized products from reaching the optics of the camera (102), and whose camera is connected to the robust electronic device (100) and synchronized with the progress of the vehicle by means of a inductive sensor (201), connected to the controller (200) and mounted on the chassis (031) to detect the rotation of the wheel axle (ER) of the trailed nebulizer trailer (03), which sets the camera trigger frequency, and whose functionality of the camera (102) is to obtain a photograph that covers approximately a segment of more than two distances between vines (d), regardless of the speed of the vehicle, in this way the captured images cover at least a complete vine without leaving areas without photographing or taking photos of the same area.
Un dispositivo dosificador (20), ubicado en el chasis (031) y cuya funcionalidad es controlar la dosificación en cada brazo distribuidor de fluidos (0BD), de forma independiente, de los diferentes productos químicos en disolución con agua, que contiene los siguientes elementos: A dosing device (20), located in the chassis (031) and whose functionality is to control the dosing in each fluid distribution arm (0BD), independently, of the different chemical products in solution with water, which contains the following elements :
- un controlador lógico programadle (200), conectado al dispositivo electrónico robusto (100) y a un display HMI de pantalla táctil (202); - a programmable logic controller (200), connected to the robust electronic device (100) and to a touch screen HMI display (202);
- una pluralidad de depósitos de producto fitosanitario (1DPF), cada uno controlado por una el ectr oválvula proporcional (1EV) conectada al controlador (200); cuya funcionalidad es aportar la dosis idónea del producto fitosanitario requerido al circuito de aspiración de la bomba (033); - a plurality of phytosanitary product tanks (1DPF), each controlled by a proportional ectr ovalve (1EV) connected to the controller (200); whose functionality is to provide the ideal dose of the required phytosanitary product to the suction circuit of the pump (033);
- una pluralidad de depósitos de fertilizante líquido (1DFL), cada uno controlado por una electroválvula proporcional (1EV) conectada al controlador (200); cuya funcionalidad es aportar la dosis idónea del fertilizante líquido requerido al circuito de aspiración de la bomba (033); - un variador de velocidad (1 VSD) para regular la velocidad de la turbina centrífuga (034); - a plurality of liquid fertilizer tanks (1DFL), each controlled by a proportional solenoid valve (1EV) connected to the controller (200); whose functionality is to provide the ideal dose of the required liquid fertilizer to the suction circuit of the pump (033); - a speed variator (1 VSD) to regulate the speed of the centrifugal turbine (034);
- un variador de velocidad (1 VSD) para regular la velocidad de la bomba (033). Procedimiento de dosificación para agricultura de precisión (Pl) que utiliza, según la reivindicación 1, un dispositivo (1) para su implementación, del tipo de los que interactúan con una serie de elementos de actuación, instrumentación y control, que comprende al menos las siguientes etapas: - Etapa “a”. Ajuste automático del caudal óptimo de aire suministrado por la turbina centrífuga (034) en función del estado fenológico de la viña, para cada operación de pulverización o nebulización; - Etapa “b”. Ajuste automático de la dosis idónea de cada producto fitosanitario de contacto (PFC), o de fertilizante líquido (FL), requeridos; Etapa “c”. Ajuste automático del volumen de agua óptimo suministrado por la bomba (033), para cada operación de pulverización o nebulización; Etapa “d”. Ajuste automático de la dosis idónea de cada producto fitosanitario sistémico (PFS) requerido, estando caracterizado dicho procedimiento porque comprende al menos las siguientes subetapas: b.l) Mediante el dispositivo de identificación y cuantificación (10), se realiza la adquisición de una imagen digital de la zona lateral del viñedo, y mediante técnicas de visión artificial se realizan las mediciones digitales de la altura de la masa foliar (H-h) y de la distancia entre cepas (d), en m, así como la medición de la superficie foliar de la parte externa, izquierda o derecha (SFEI, SFED), en m2, para el cálculo de la superficie foliar total de la cepa (SFT), en m2, mediante la siguiente ecuación: - a speed variator (1 VSD) to regulate the speed of the pump (033). Dosing procedure for precision agriculture (Pl) that uses, according to claim 1, a device (1) for its implementation, of the type that interacts with a series of actuation, instrumentation and control elements, which comprises at least the following stages: - Stage “a”. Automatic adjustment of the optimal air flow supplied by the centrifugal turbine (034) depending on the phenological state of the vineyard, for each spraying or misting operation; - Stage “b”. Automatic adjustment of the ideal dose of each contact phytosanitary product (PFC), or liquid fertilizer (FL), required; Stage “c”. Automatic adjustment of the optimal water volume supplied by the pump (033), for each spraying or misting operation; Stage “d”. Automatic adjustment of the ideal dose of each systemic phytosanitary product (SPF) required, said procedure being characterized because it comprises at least the following sub-stages: bl) By means of the identification and quantification device (10), the acquisition of a digital image of the lateral zone of the vineyard, and using artificial vision techniques, digital measurements of the height of the leaf mass (Hh) and the distance between vines (d), in m, are made, as well as the measurement of the leaf surface of the external part, left or right (SFEI, SFED), in m 2 , for the calculation of the total leaf area of the strain (SFT), in m 2 , using the following equation:
1 1
SFT (m2) = — • [2 • SFEI (o SFED) + SFEC] 1F donde IF = 0,5 y SFEC (m2) = 2d • [(1,6 - (H - h)]. b.2) Cálculo de la dosis idónea de cada producto fitosanitario de contacto requerido (PFC) o fertilizante líquido requerido (DA), dosificada por una electroválvula proporcional (1EV) conectada al controlador (200). A partir de la dosis de producto (DP), en L/ha, si el tratamiento se hace por los dos lados de la vid, tendremos la dosis (mL por vid), mediante la siguiente ecuación: SFT (m 2 ) = — • [2 • SFEI (or SFED) + SFEC] 1F where IF = 0.5 and SFEC (m 2 ) = 2d • [(1.6 - (H - h)]. b. 2) Calculation of the ideal dose of each required contact phytosanitary product (PFC) or required liquid fertilizer (DA), dosed by a solenoid valve proportional (1EV) connected to the controller (200). From the product dose (DP), in L/ha, if the treatment is done on both sides of the vine, we will have the dose (mL per vine), using the following equation:
SFT(m2) • DP (L/ha) SFT(m 2 ) • DP (L/ha)
DOSIS (mL por vid) = DOSE (mL per vine) =
2 • 10 para suministrar la dosis calculada a la el ectr oválvula proporcional (EV), que suministrará la dosis indicada del producto seleccionado del depósito (DPF) o (DFL) al circuito de aspiración de la bomba (033). c.l.) En función del producto seleccionado de forma automática a dosificar, mediante el software SCADA instalado en el dispositivo electrónico robusto (100) se le transfiere al controlador lógico programable (200) el valor del volumen de caldo (L/ha) prescrito por el fabricante del producto, para suministrar la consigna de velocidad del variador de velocidad (1 VSD) que alimenta el motor eléctrico de la bomba (033), que suministra el caudal de agua obtenido, si el tratamiento se hace por los dos lados de la vid, obtenido a partir de la siguiente ecuación: 2 • 10 to supply the calculated dose to the proportional valve (EV), which will supply the indicated dose of the selected product from the tank (DPF) or (DFL) to the suction circuit of the pump (033). c.l.) Depending on the product automatically selected to be dosed, through the SCADA software installed in the robust electronic device (100) the value of the broth volume (L/ha) prescribed by the programmable logic controller (200) is transferred. manufacturer of the product, to supply the speed setpoint of the variable speed drive (1 VSD) that powers the electric motor of the pump (033), which supplies the water flow obtained, if the treatment is done on both sides of the vine , obtained from the following equation:
SFT(m2) • VC (L/ha) SFT(m 2 ) • VC (L/ha)
VOLUMEN (L por vid) VOLUME (L per vine)
2 • 10.000 para suministrar la consigna de velocidad del variador de velocidad (1VSD) que alimenta el motor eléctrico de la bomba (033), que suministra el caudal de agua obtenido a partir de la ecuación anterior. d.l) Mediante el dispositivo de identificación y cuantificación (10), se realiza la adquisición de una imagen digital de la zona lateral del viñedo, y mediante técnicas de visión artificial se realizan las mediciones digitales de la altura de la masa foliar (H-h) y de la distancia entre cepas (d), en m, así como la medición de la superficie foliar de la parte externa, izquierda o derecha, afectada (SFEIA, SFEDA) en m2, para el cálculo de la superficie foliar total afectada de la cepa (SFTA), en m2, mediante la siguiente ecuación:
Figure imgf000042_0001
donde IF = 0,5. d.2) Cálculo de la dosis idónea de cada producto fitosanitario sistémico requerido (PFS), dosificada por uña el ectr oválvula proporcional (1EV) conectada al controlador (200), mediante la siguiente ecuación: DOSIS (mL por vid)
Figure imgf000042_0002
para suministrar la dosis calculada a la el ectr oválvula proporcional (EV), que suministrará la dosis indicada del producto seleccionado del depósito (DPF) al circuito de aspiración de la bomba (033).
2 • 10,000 to supply the speed setpoint of the variable speed drive (1VSD) that powers the electric motor of the pump (033), which supplies the water flow rate obtained from the previous equation. dl) Using the identification and quantification device (10), a digital image of the lateral area of the vineyard is acquired, and using artificial vision techniques, digital measurements of the height of the leaf mass (Hh) and of the distance between vines (d), in m, as well as the measurement of the leaf surface of the external part, left or right, affected (SFEIA, SFEDA) in m 2 , for the calculation of the total affected leaf area of the strain (SFTA), in m 2 , using the following equation:
Figure imgf000042_0001
where IF = 0.5. d.2) Calculation of the ideal dose of each required systemic phytosanitary product (PFS), dosed by the proportional ectr ovalve (1EV) connected to the controller (200), using the following equation: DOSE (mL per vine)
Figure imgf000042_0002
to supply the calculated dose to the proportional valve (EV), which will supply the indicated dose of the selected product from the tank (DPF) to the suction circuit of the pump (033).
PCT/ES2022/070523 2022-08-03 2022-08-03 On-the-go precision dosage system for phytosanitary products and liquid fertilisers for the foliar spraying or misting of vineyards WO2024028522A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2022/070523 WO2024028522A1 (en) 2022-08-03 2022-08-03 On-the-go precision dosage system for phytosanitary products and liquid fertilisers for the foliar spraying or misting of vineyards

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2022/070523 WO2024028522A1 (en) 2022-08-03 2022-08-03 On-the-go precision dosage system for phytosanitary products and liquid fertilisers for the foliar spraying or misting of vineyards

Publications (1)

Publication Number Publication Date
WO2024028522A1 true WO2024028522A1 (en) 2024-02-08

Family

ID=89848577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2022/070523 WO2024028522A1 (en) 2022-08-03 2022-08-03 On-the-go precision dosage system for phytosanitary products and liquid fertilisers for the foliar spraying or misting of vineyards

Country Status (1)

Country Link
WO (1) WO2024028522A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107646822A (en) * 2017-11-14 2018-02-02 济南大学 A kind of new orchard pesticide applicator
CN110235882A (en) * 2019-06-28 2019-09-17 南京农业大学 A kind of accurate variable chemical application to fruit tree robot based on multisensor
WO2021167470A1 (en) * 2020-02-20 2021-08-26 Cropsy Technologies Limited Tall plant health management system
EP3991557A1 (en) * 2020-10-29 2022-05-04 Caffini S.p.A. Atomizer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107646822A (en) * 2017-11-14 2018-02-02 济南大学 A kind of new orchard pesticide applicator
CN110235882A (en) * 2019-06-28 2019-09-17 南京农业大学 A kind of accurate variable chemical application to fruit tree robot based on multisensor
WO2021167470A1 (en) * 2020-02-20 2021-08-26 Cropsy Technologies Limited Tall plant health management system
EP3991557A1 (en) * 2020-10-29 2022-05-04 Caffini S.p.A. Atomizer

Similar Documents

Publication Publication Date Title
US10993430B2 (en) Robotic plant care systems and methods
Oberti et al. Selective spraying of grapevines for disease control using a modular agricultural robot
US20220117218A1 (en) Autonomous system for light treatment of a plant
Devi et al. Review on application of drones for crop health monitoring and spraying pesticides and fertilizer
US11526997B2 (en) Targeting agricultural objects to apply units of treatment autonomously
CA3068093A1 (en) Method for applying a spray to a field
US20220377970A1 (en) Payload selection to treat multiple plant objects having different attributes
US11963473B2 (en) Multiple emitters to treat agricultural objects from multiple payload sources
US11465162B2 (en) Obscurant emission to assist image formation to automate agricultural management and treatment
US20160205917A1 (en) Weed eradication method and apparatus
US20230083872A1 (en) Pixel projectile delivery system to replicate an image on a surface using pixel projectiles
US20210185942A1 (en) Managing stages of growth of a crop with micro-precision via an agricultural treatment delivery system
Otto et al. Droplets deposition pattern from a prototype of a fixed spraying system in a sloping vineyard
US20210186006A1 (en) Autonomous agricultural treatment delivery
US11653590B2 (en) Calibration of systems to deliver agricultural projectiles
WO2024028522A1 (en) On-the-go precision dosage system for phytosanitary products and liquid fertilisers for the foliar spraying or misting of vineyards
Rehna et al. Impact of autonomous drone pollination in date palms
US20230126714A1 (en) Method of spraying small objects
US20230166283A1 (en) Fluid spraying system for targeting small objects
Pereira et al. Aerial images to monitor grapevine vegetative growth
Abinaya et al. Efficiency of IDRONE Technology in Finding Pest-Free Solutions for Tea Farming-Looper Caterpillar and Tea Leaf Hopper
Balafoutis et al. Advanced Crop Protection Techniques and Technologies
Ranjan Sensing Integrated Automated Solid Set Canopy Delivery System for Crop Loss Management in Deciduous Fruits and Grapevines
Tona Contributions on advanced automation for selective protection treatments on specialty crops
BR102021013431A2 (en) DEVICE AND METHOD FOR OBTAINING AND ANALYZING IMAGES AND INDICES RELATING TO THE STATE AND ANOMALIES IN VEGETATION, VEHICLE OR AGRICULTURAL IMPLEMENT INCLUDING THE SAME

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953894

Country of ref document: EP

Kind code of ref document: A1