WO2024027275A1 - 光纤状态检测方法、光收发组件及网元设备 - Google Patents

光纤状态检测方法、光收发组件及网元设备 Download PDF

Info

Publication number
WO2024027275A1
WO2024027275A1 PCT/CN2023/094345 CN2023094345W WO2024027275A1 WO 2024027275 A1 WO2024027275 A1 WO 2024027275A1 CN 2023094345 W CN2023094345 W CN 2023094345W WO 2024027275 A1 WO2024027275 A1 WO 2024027275A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
mode
otdr
optical fiber
osc
Prior art date
Application number
PCT/CN2023/094345
Other languages
English (en)
French (fr)
Inventor
闫宝罗
周金龙
贾殷秋
吴琼
施鹄
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024027275A1 publication Critical patent/WO2024027275A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/04Mode multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0083Testing; Monitoring

Definitions

  • This application relates to the field of optical communication technology, and in particular to an optical fiber status detection method, optical transceiver components and network element equipment.
  • OSC Optical Supervisory Channel, optical supervisory channel
  • OTDR Optical Time-Domain Reflectometer, optical time domain reflectometer
  • This application provides an optical fiber status detection method, optical transceiver components and network element equipment.
  • embodiments of the present application provide an optical fiber status detection method applied to a first optical transceiver component in an optical fiber communication system.
  • the optical fiber communication system further includes a second optical transceiver component.
  • the first optical transceiver component and The second optical transceiver component is connected through a mode division multiplexing optical fiber; the method includes: combining the OTDR optical carrier of the first optical fiber mode and the OSC optical carrier of the second optical fiber mode into the mode division multiplexing optical fiber, so as to
  • the second optical transceiver component receives the OSC optical carrier and obtains OSC service data according to the OSC optical carrier; receives the OTDR backscattered light of the OTDR optical carrier and obtains the OTDR service according to the OTDR backscattered light.
  • Data wherein the first fiber mode is orthogonal to the second fiber mode.
  • embodiments of the present application provide an optical transceiver component, including a first mode multiplexing and demultiplexer, a second mode multiplexing and demultiplexer, a first optoelectronic signal processing unit and a second optoelectronic signal processing unit,
  • the first mode multiplexing and demultiplexer is used to convert the OTDR optical carrier and the OSC optical carrier from the optical fiber basic mode to the first optical fiber mode and the second optical fiber mode respectively, wherein the first optical fiber mode and the second optical fiber mode The modes are orthogonal, and the first mode multiplexing and demultiplexer is connected to the mode division multiplexing optical fiber, and the OTDR optical carrier of the first optical fiber mode and the OSC optical carrier of the second optical fiber mode can be combined and input to
  • the mode division multiplexing optical fiber, the first mode multiplexing and demultiplexer is also used to separate the OTDR backscattered light of the OTDR optical carrier from the mode division multiplexing optical fiber and transfer the OTDR backscat
  • the second mode multiplexing and demultiplexer is connected to the mode division multiplexing optical fiber, and is used to separate the OSC optical carrier from the mode division multiplexing optical fiber and transfer the The OSC optical carrier is converted into an optical fiber fundamental mode;
  • the first optoelectronic signal processing unit is connected to the first mode multiplexing and demultiplexer, and is used to process the OTDR backscattered light of the optical fiber fundamental mode to Obtain OTDR service data;
  • the second optoelectronic signal processing unit is connected to the second mode multiplexer and demultiplexer, and is used to process the OSC optical carrier of the optical fiber fundamental mode to obtain OSC service data.
  • embodiments of the present application provide an optical transceiver component, including a mode multiplexing and demultiplexer, a first wavelength division multiplexer, a second wavelength division multiplexer, a first optoelectronic signal processing unit and a second optoelectronic signal processing unit.
  • the mode multiplexing and demultiplexing The device is used to convert the OTDR optical carrier of the first wavelength and the OSC optical carrier from the optical fiber fundamental mode to the first optical fiber mode and the second optical fiber mode respectively, wherein the first optical fiber mode is orthogonal to the second optical fiber mode, and
  • the first mode multiplexing and demultiplexer is connected to a mode division multiplexing optical fiber, and can input the OTDR optical carrier of the first optical fiber mode and the OSC optical carrier of the second optical fiber mode into the mode division multiplexing device.
  • the mode division multiplexing optical fiber also transmits the reverse OTDR optical carrier of the first optical fiber mode and the reverse OSC optical carrier of the second optical fiber mode of the second wavelength sent by the opposite end;
  • the mode multiplexing and demultiplexer is also used to separate the OTDR backscattered light of the first fiber mode and the reverse OTDR optical carrier from the mode division multiplexing optical fiber and backscatter the OTDR light.
  • the reverse OTDR optical carrier is converted into the optical fiber fundamental mode, and the mode multiplexing and demultiplexer can separate the OSC backscattered light of the second optical fiber mode and the OSC backscattered light from the mode division multiplexing optical fiber.
  • the reverse OSC optical carrier and convert the OSC backscattered light and the reverse OSC optical carrier into the optical fiber fundamental mode
  • the first wavelength division multiplexer is connected to the mode multiplexer and demultiplexer, used to separate the OTDR backscattered light and the reverse OTDR optical carrier of the optical fiber fundamental mode
  • the second wavelength division multiplexer is connected to the mode multiplexer and demultiplexer, used to separate the optical fiber fundamental mode OSC backscattered light and reverse OSC optical carrier
  • the first optoelectronic signal processing unit is connected to the first wavelength division multiplexer and is used to process the OTDR backscattered light of the optical fiber fundamental mode to Obtain OTDR service data
  • the second optoelectronic signal processing unit is connected to the second wavelength division multiplexer and is used to process the reverse OSC optical carrier of the optical fiber fundamental mode to obtain OSC service data.
  • an embodiment of the present application provides a network element device, including the optical transceiver component provided by the second embodiment of the present application or the optical transceiver component provided by the third embodiment of the present application.
  • Figure 1 is a schematic diagram of signal transmission of an optical fiber communication system provided by an embodiment of the present application.
  • Figure 2 is a step flow chart of an optical fiber status detection method provided by an embodiment of the present application.
  • Figure 3 is a partial step flow chart of an optical fiber status detection method provided by another embodiment of the present application.
  • Figure 4 is a partial step flow chart of an optical fiber status detection method provided by another embodiment of the present application.
  • FIG. 5 is a detailed step flow chart of step S200 in Figure 1;
  • Figure 6 is a flow chart of an optical fiber status detection method provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of an optical transceiver component provided by an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of an optical transceiver component provided by another embodiment of the present application.
  • Figure 9 is a schematic structural diagram of an optical transceiver component provided by another embodiment of the present application.
  • Figure 10 is a schematic structural diagram of an optical transceiver component provided by another embodiment of the present application.
  • Figure 11 is a schematic structural diagram of an optical transceiver component provided by another embodiment of the present application.
  • Figure 12 is a schematic structural diagram of an optical transceiver component provided by another embodiment of the present application.
  • Figure 13 is a schematic structural diagram of an optical transceiver component provided by another embodiment of the present application.
  • Figure 14 is a schematic structural diagram of an optical transceiver component provided by another embodiment of the present application.
  • Figure 15 is an application schematic diagram of an optical fiber detection method provided by an embodiment of the present application.
  • Figure 16 is an application schematic diagram of another optical fiber detection method provided by the embodiment of the present application.
  • Figure 17 is a schematic diagram of the application of an optical fiber detection method provided by another embodiment of the present application.
  • OSC is used to monitor and manage the status of network elements, including services such as protection switching, monitoring and information overhead
  • OTDR is used to monitor optical cable lines.
  • the principle is to inject optical pulses or optical signals into the optical cable.
  • the sequence signal uses the back Rayleigh scattering and Fresnel reflection signals in the optical fiber to obtain the optical fiber line information, so the sending end and receiving end of the OTDR detection signal are on the same side.
  • OSC and OTDR in network configuration, many equipment vendors are committed to integrating the functions of the two on the same single board/same optical module, thereby improving equipment integration, reducing equipment power consumption, and compressing costs. .
  • the two services are integrated, it is difficult to conduct both services in the same optical fiber at the same time due to crosstalk between services.
  • many parameters of light waves such as time, frequency, amplitude, phase, polarization and other parameters, have been stretched to their limits. It is difficult to evaluate the optical fiber communication capacity based on these parameters. Improvement, the current development direction of ultra-large-capacity optical fiber technology is space division multiplexing technology. Space division multiplexing technology can use the spatial dimension of light waves to increase communication capacity, and mode division multiplexing is a type of space division multiplexing.
  • embodiments of the present application provide an optical fiber status detection method, optical transceiver components and network element equipment, which can integrate OSC functions and OTDR functions, and support OTDR online monitoring functions without interrupting OSC services.
  • Figure 1 is a schematic diagram of signal transmission of an optical fiber communication system provided by an embodiment of the present application.
  • Figure 2 is a step flow chart of an optical fiber status detection method provided by an embodiment of the present application.
  • the implementation of the present application An example provides an optical fiber status detection method.
  • the method is applied to the first optical transceiver component in the optical fiber communication system.
  • two adjacent network elements connected by mode division multiplexing optical fiber are respectively configured with the first optical transceiver. component and a second optical transceiver component, and the first fiber mode and the second fiber mode of the mode division multiplexing fiber are orthogonal, the method may include step S100 and step S200.
  • Step S100 Combine the OTDR optical carrier in the first optical fiber mode and the OSC optical carrier in the second optical fiber mode and input them into the mode division multiplexing optical fiber, so that the second optical transceiver component receives the OSC optical carrier and obtains OSC service data based on the OSC optical carrier. ;
  • Step S200 Receive OTDR backscattered light from the OTDR optical carrier and obtain OTDR service data based on the OTDR backscattered light.
  • two adjacent network elements in the optical fiber communication system are respectively configured with a first optical transceiver component and a second optical transceiver component, and the first optical transceiver component and the second optical transceiver component are configured through mode division Multiplexed optical fiber connection
  • the first optical transceiver component can combine and input the OTDR optical carrier of the first optical fiber mode and the OSC optical carrier of the second optical fiber mode into the mode division multiplexing optical fiber, so that the second optical transceiver component receives the second optical fiber mode OSC optical carrier and obtain OSC business data according to the OSC optical carrier, thereby monitoring and managing the network element status
  • the first optical transceiver component can receive the OTDR optical carrier
  • the OTDR can be used to quickly locate the location of the broken fiber; when OTN services are transmitted in the optical cable, the optical cable can also be periodically monitored through the OTDR to achieve timely early warning of the aging of the optical cable, greatly reducing the failure rate. and operation and maintenance costs.
  • the first fiber mode and the second fiber mode are not specifically limited, as long as the first fiber mode and the second fiber mode are two mutually orthogonal fiber modes supported by the mode division multiplexing fiber. That is, they are all within the protection scope of the embodiments of this application.
  • This embodiment does not specifically limit the type of OTDR signal. Either a sequence OTDR or a pulse OTDR can be used. As long as the OTDR service can be performed, both are within the protection scope of this embodiment.
  • the OTDR signal can be a sequential OTDR, such as M sequence, Gray coded sequence, etc., that is, using coded light pulses as the detection pulses of the OTDR, taking full advantage of the fact that the OTDR business and the OSC business do not affect each other, and can By improving the coding gain, increasing the computational complexity and increasing the calculation time, the noise suppression performance is improved, so that large dynamic range monitoring of optical cables can be achieved even when the optical power is limited.
  • a sequential OTDR such as M sequence, Gray coded sequence, etc.
  • Figure 3 is a partial step flow chart of an optical fiber status detection method provided by another embodiment of the present application.
  • Another embodiment of the present application provides an optical fiber status detection method, in which the first optical fiber mode is Before the OTDR optical carrier and the OSC optical carrier of the second optical fiber mode are combined and input into the mode division multiplexing optical fiber, the method may also include step S101 and step S102.
  • Step S101 receive the OTDR baseband signal and the OSC baseband signal from the equipment end, and modulate the OTDR baseband signal and the OSC baseband signal into the OTDR optical carrier and the OSC optical carrier of the optical fiber fundamental mode respectively;
  • Step S102 Convert the OTDR optical carrier from the optical fiber basic mode to the first optical fiber mode, and convert the OSC optical carrier from the optical fiber basic mode to the second optical fiber mode.
  • the first optical transceiver component receives the OTDR baseband signal and the OSC baseband signal from the equipment end, and modulates the OTDR baseband signal and the OSC baseband signal into the OTDR optical carrier and the OSC optical carrier of the optical fiber fundamental mode respectively;
  • the OTDR optical carrier is converted from the optical fiber basic mode to the first optical fiber mode
  • the OSC optical carrier is converted from the optical fiber basic mode to the second optical fiber mode.
  • the first optical fiber mode and the second optical fiber mode are orthogonal, and there are no differences between the orthogonal optical fiber modes.
  • the OTDR optical carrier in the first fiber mode and the optical carrier in the second fiber mode can be transmitted simultaneously in the mode division multiplexing fiber without interfering with each other. It can integrate the OSC function and the OTDR function without interrupting the OSC business. situation, supports OTDR online monitoring function.
  • the equipment end may refer to a single board or any other electronic device capable of sending OTDR baseband signals and OSC baseband signals.
  • Figure 4 is a partial step flow chart of an optical fiber status detection method provided by another embodiment of the present application.
  • the method may also include step S300, step S400 and step S500.
  • Step S300 separate the OSC optical carrier of the second optical fiber mode from the second optical transceiver component from the mode division multiplexing optical fiber;
  • Step S400 convert the OSC optical carrier from the second optical fiber mode to the optical fiber fundamental mode
  • Step S500 Process the OSC optical carrier of the optical fiber fundamental mode to obtain OSC service data.
  • the first optical transceiver component and the second optical transceiver component are equivalent, and the second optical transceiver component can also combine the OTDR optical carrier of the first fiber mode and the OSC optical carrier of the second fiber mode. Input the mode division multiplexing optical fiber.
  • the first optical transceiver component can receive the OSC optical carrier of the second optical fiber mode from the second optical transceiver component, obtain the OSC service data according to the OSC optical carrier, and realize the monitoring and management of the network element status.
  • the first optical transceiver separates the OSC optical carrier of the second optical fiber mode from the second optical transceiver component from the mode division multiplexing optical fiber, converts the OSC optical carrier from the second optical fiber mode to the optical fiber basic mode, and converts the OSC optical carrier of the optical fiber basic mode Process and obtain OSC business data to realize the function of the optical monitoring channel.
  • the first optical transceiver component combines and inputs the OTDR optical carrier of the first optical fiber mode and the OSC optical carrier of the second optical fiber mode into the mode division multiplexing optical fiber, so that the second optical transceiver component receives OSC optical carrier and obtain OSC service data according to the OSC optical carrier, that is, the second optical transceiver component can separate the OSC optical carrier of the second optical fiber mode from the first optical transceiver component from the mode division multiplexing optical fiber, and convert the OSC optical carrier
  • the second optical fiber mode is converted into the optical fiber basic mode, and the OSC optical carrier of the optical fiber basic mode is processed to obtain OSC service data to realize the function of the optical monitoring channel.
  • Step S200 may include step S210, step S220 and step S230.
  • Step S210 separate the OTDR backscattered light of the OTDR optical carrier from the mode division multiplexing fiber
  • Step S220 convert the OTDR backscattered light from the first fiber mode to the fiber fundamental mode
  • Step S230 Process the OTDR backscattered light of the optical fiber fundamental mode to obtain OTDR service data.
  • the first optical transceiver component combines and inputs the OTDR optical carrier of the first optical fiber mode and the OSC optical carrier of the second optical fiber mode into the mode division multiplexing optical fiber, so that the second optical transceiver component receives the OSC optical carrier. carrier and obtain OSC service data according to the OSC optical carrier; and the first optical transceiver component can separate the OTDR backscattered light of the OTDR optical carrier from the mode division multiplexing fiber, and convert the OTDR backscattered light from the first fiber mode to The optical fiber fundamental mode processes the OTDR backscattered light of the optical fiber fundamental mode to obtain OTDR business data to realize the function of the optical time domain reflectometer.
  • Figure 6 is a flow chart of an optical fiber status detection method provided by an embodiment of the present application.
  • the first optical transceiver component receives the OTDR baseband signal from the device end and OSC baseband signal, and modulates the OTDR baseband signal into an OTDR optical carrier of the optical fiber fundamental mode, modulates the OSC baseband signal into an OSC optical carrier of the optical fiber fundamental mode; converts the OTDR optical carrier from the optical fiber fundamental mode to the first optical fiber mode, and The OSC optical carrier is converted from the optical fiber base mode to the second optical fiber mode, and the OTDR optical carrier of the first optical fiber mode and the OSC optical carrier of the second optical fiber mode are combined and input to the mode division multiplexing optical fiber, so that the second optical transceiver component is converted from the mode The OSC optical carrier of the second optical fiber mode from the first optical transceiver component is separated from the multiplexing optical fiber.
  • the second optical transceiver component converts the OSC optical carrier from the second optical fiber mode to the optical fiber basic mode.
  • the OSC of the optical fiber basic mode is The optical carrier is processed to obtain OSC business data to realize the function of the optical monitoring channel;
  • the first optical transceiver component can separate the OTDR backscattered light of the OTDR optical carrier from the mode division multiplexing fiber, and convert the OTDR backscattered light from
  • the first optical fiber mode is converted into the optical fiber fundamental mode, and the OTDR backscattered light of the optical fiber fundamental mode is processed to obtain OTDR business data to realize the function of the optical time domain reflectometer.
  • the first optical fiber mode and the second optical fiber mode are orthogonal to each other.
  • the OSC function and the OTDR function are integrated without interrupting the OSC business. situation, supports OTDR online monitoring function.
  • FIG. 7 is a schematic structural diagram of an optical transceiver component provided by an embodiment of the present application.
  • An optical transceiver component is provided by an embodiment of the present application.
  • the optical transceiver component may include a first mode multiplexing and demultiplexer, a second mode multiplexing and demultiplexer, a first optoelectronic signal processing unit and a second optoelectronic signal processing unit, wherein,
  • the first mode multiplexing and demultiplexer is used to convert the OTDR optical carrier and the OSC optical carrier from the optical fiber basic mode to the first optical fiber mode and the second optical fiber mode respectively.
  • the first optical fiber mode is orthogonal to the second optical fiber mode
  • the first optical fiber mode is orthogonal to the second optical fiber mode.
  • the mode multiplexing and demultiplexer is connected to the mode division multiplexing optical fiber and can input the OTDR optical carrier of the first fiber mode and the OSC optical carrier of the second fiber mode to the mode division multiplexing optical fiber.
  • Optical carriers scatter during optical fiber transmission.
  • the optical time domain reflectometer can use the backward Rayleigh scattering and Fresnel reflection signals in the optical fiber to obtain optical fiber line information.
  • the first mode multiplexer and demultiplexer is a bidirectional device. If the input end is a multi-input port and the output end is a single output port, it is defined as forward.
  • the first mode multiplexer and demultiplexer is a bidirectional device. When the user is used in the forward direction, it serves as a mode multiplexer; if the input port is a single input port and the output port is a multiple output port, it is defined as reverse. When the first mode multiplexer and demultiplexer is used in the reverse direction, it serves as a mode demultiplexer. Utensils.
  • the first mode multiplexing and demultiplexer can also be used as a mode demultiplexer to separate the OTDR backscattered light of the OTDR optical carrier of the first fiber mode from the mode division multiplexing optical fiber and pass the OTDR backscattered light from the first mode multiplexing optical fiber. The fiber mode is converted into the fiber fundamental mode.
  • the configuration of the opposite end can be the same as the local optical transceiver component.
  • the opposite end can send the OSC optical carrier of the second fiber mode to the optical transceiver component.
  • the second mode multiplexing and demultiplexer is a bidirectional device connected to the mode division multiplexing optical fiber.
  • the two-mode multiplexing and demultiplexer When the two-mode multiplexing and demultiplexer is used in reverse, it can separate the OSC optical carrier of the second optical fiber mode from the opposite end from the mode division multiplexing optical fiber and convert the OSC optical carrier from the second optical fiber mode to the optical fiber fundamental mode;
  • the first optoelectronic signal processing unit is connected to the first mode multiplexer and demultiplexer, and is used to process the OTDR backscattered light of the optical fiber fundamental mode to obtain OTDR service data to realize the OTDR function;
  • the second optoelectronic signal processing unit is connected to the first mode multiplexer and demultiplexer.
  • the second mode multiplexing and demultiplexer connection is used to process the OSC optical carrier of the optical fiber fundamental mode to obtain OSC service data to implement the OSC function.
  • This optical transceiver component integrates OTDR function and OSC function, and can support OTDR online monitoring function without interrupting OSC business.
  • the optical cable can also be periodically monitored through OTDR to achieve timely early warning of the aging of the optical cable, which greatly reduces the failure rate and operation and maintenance costs.
  • the first mode multiplexing and demultiplexer works in forward direction, that is, when used as a mode multiplexer, the number of modes N it supports should be included in the number M of modes supported by the mode multiplexing fiber. Within the range, and the mode field distribution of all modes output by it should match the mode field distribution of the corresponding modes supported by the mode division multiplexing fiber.
  • the first mode multiplexing and demultiplexer works in reverse, that is, when used as a mode demultiplexer, the purity of a certain mode it supports should be greater than 30dB in the 1480-1520nm band and OTN service band.
  • the first mode multiplexing and demultiplexer or the second mode multiplexing and demultiplexer may be composed of a mode converter and a mode selection coupler.
  • the first mode multiplexing and demultiplexer can be a photon lantern, a mode selective coupler, a spatial optical mode division multiplexing and demultiplexer, etc.
  • the second mode multiplexing and demultiplexer can also be a photon lantern and a mode selective coupler. , spatial optical mode division multiplexing and demultiplexer, etc.
  • the first mode multiplexing and demultiplexer and the second mode multiplexing and demultiplexer are introduced, and the OTDR function and the OSC function are integrated while the deployment of existing equipment is less affected, which can save costs. , save space, and the device consumes less power.
  • FIG. 8 is a schematic structural diagram of an optical transceiver component provided by another embodiment of the present application.
  • This embodiment of the present application provides an optical transceiver component.
  • the optical transceiver component also includes a modulated information optical loading unit and an optical multiplexer and demultiplexer.
  • the modulated information optical loading unit is used to receive the OTDR baseband signal and the OSC baseband signal from the equipment end and combine the OTDR baseband signal and the OSC baseband signal.
  • the signals are loaded onto the optical carrier of the optical fiber fundamental mode respectively to obtain the OTDR optical carrier and OSC optical carrier of the optical fiber fundamental mode; the optical multiplexer and demultiplexer are used to isolate and convert the OTDR optical signal, and the modulated information optical loading unit communicates with the third optical multiplexer and demultiplexer through the optical multiplexer and demultiplexer.
  • a mode multiplexing and demultiplexer is connected to send the OTDR optical carrier to the first mode multiplexing and demultiplexer, and the first photoelectric signal processing unit is connected to the first mode multiplexing and demultiplexer through the optical multiplexer and demultiplexer, to receive the OTDR backscattered light of the optical fiber fundamental mode from the first mode multiplexing and demultiplexer; the modulation information optical loading unit is also connected to the first mode multiplexing and demultiplexer to directly send the OSC optical carrier to the first mode multiplexer.
  • a mode multiplexer and demultiplexer is connected to send the OTDR optical carrier to the first mode multiplexing and demultiplexer, and the first photoelectric signal processing unit is connected to the first mode multiplexing and demultiplexer through the optical multiplexer and demultiplexer, to receive the OTDR backscattered light of the optical fiber fundamental mode from the first mode multiplexing and demultiplexer; the modulation information optical loading unit is also connected to the first mode multiplexing and demulti
  • the optical combiner and demultiplexer can be an optical circulator, an optical coupler, a beam splitter, etc.
  • This embodiment does not specifically limit the type of the optical combiner and demultiplexer, as long as it can be used to isolate the OTDR optical carrier.
  • the modulation information optical loading unit can send the OTDR optical carrier of the optical fiber fundamental mode to the first mode multiplexing and demultiplexer, and the first mode multiplexing and demultiplexer can send the OTDR backscattered light of the optical fiber fundamental mode to the first mode. signal processing unit.
  • Figure 9 is a schematic structural diagram of an optical transceiver component provided by another embodiment of the present application.
  • the first photoelectric signal processing unit includes a first photoelectric converter and a first signal processing unit.
  • the first photoelectric converter is connected to the first mode multiplexer and demultiplexer through an optical multiplexer and demultiplexer, capable of Receive the OTDR backscattered light of the optical fiber fundamental mode from the first mode multiplexing and demultiplexer, and convert the OTDR backscattered light into an OTDR electrical signal.
  • the first signal processing unit is connected to the first photoelectric converter and can receive The OTDR electrical signal from the first photoelectric converter processes the OTDR electrical signal to obtain OTDR service data;
  • the second photoelectric signal processing unit includes a second photoelectric converter and a second signal processing unit, and the second photoelectric converter and the second The mode multiplexing and demultiplexer is connected, capable of receiving the OSC optical carrier of the optical fiber fundamental mode from the second mode multiplexing and demultiplexer, and converting the OSC optical carrier into an OSC electrical signal.
  • the second signal processing unit is connected to the second optoelectronic signal.
  • the converter is connected and capable of receiving the OSC electrical signal from the second photoelectric converter and processing the OSC electrical signal to obtain OSC service data.
  • Figure 10 is a schematic structural diagram of an optical transceiver component provided by another embodiment of the present application.
  • the modulation information optical loading unit includes a laser, an optical coupler, a first driver, a first modulator, a second driver and a second modulator, and the first driver is connected to the first modulator for Receive the OTDR baseband signal and adjust the voltage of the OTDR baseband signal to match the driving voltage of the first modulator.
  • the second driver is connected to the second modulator and is used to receive the OSC baseband signal and adjust the voltage of the OSC baseband signal to match the second modulator.
  • the driving voltage, the laser is used to output continuous light
  • the optical coupler is connected to the laser, the first modulator and the second modulator respectively, and is used to divide the continuous light into the first path of light and the second path of light, and separate the first path of light.
  • the light and the second light are respectively transmitted to the first modulator and the second modulator.
  • the first modulator is connected to the first mode multiplexer and demultiplexer through the optical multiplexer and is used to load the OTDR baseband signal into the first path light to obtain the OTDR optical carrier of the optical fiber fundamental mode and send the OTDR optical carrier to the first mode multiplexing and demultiplexer
  • the second modulator is connected to the first mode multiplexing and demultiplexer to convert the OSC baseband signal Load the second light to obtain the OSC optical carrier of the optical fiber fundamental mode, and send the OSC optical carrier to the first mode multiplexing and demultiplexer.
  • the OTDR function and the OSC function are integrated, and only one laser is used, which can reduce costs and power consumption.
  • the optical transceiver component can be packaged into an SFP module (Small Form Pluggable Module, Thermal Module).
  • SFP module Small Form Pluggable Module, Thermal Module
  • the integration of OTN equipment is improved, thereby saving space.
  • the OTDR business has no impact on the OSC business, supports OTDR full-scale output, and can also realize OTDR large dynamic range perception under the optical power of the SFP module level.
  • FIG 11 is a schematic structural diagram of an optical transceiver component provided by another embodiment of the present application.
  • This embodiment of the present application provides an optical transceiver component.
  • the optical transceiver component can be applied in a single-fiber bidirectional scenario.
  • the optical transceiver component can include a mode multiplexer and demultiplexer, a first wavelength division multiplexer, and a second wavelength division multiplexer. device, a first optoelectronic signal processing unit and a second optoelectronic signal processing unit, in which the mode multiplexing and demultiplexing device is used in the forward direction.
  • a mode multiplexer it can be used to separate the OTDR optical carrier of the first wavelength and the OSC optical carrier respectively.
  • the optical fiber fundamental mode is converted into a first optical fiber mode and a second optical fiber mode.
  • the first optical fiber mode and the second optical fiber mode are orthogonal, and the first mode multiplexing and demultiplexer is connected to a mode division multiplexing optical fiber, which can convert the first optical fiber mode into a first optical fiber mode and a second optical fiber mode.
  • the OTDR optical carrier in the fiber mode and the OSC optical carrier in the second fiber mode are combined and input to the mode division multiplexing fiber.
  • the mode division multiplexing fiber also transmits the reverse OTDR light of the first fiber mode of the second wavelength sent by the opposite end.
  • the mode multiplexing demultiplexer can also be used in reverse as a mode demultiplexer for separating the first fiber mode OTDR from the mode division multiplexing fiber Backscattered light and reverse OTDR optical carrier and convert OTDR backscattered light and reverse OTDR optical carrier into fiber fundamental mode, and mode multiplexing and demultiplexing
  • the user can separate the OSC backscattered light and reverse OSC optical carrier of the second fiber mode from the mode division multiplexing fiber and convert the OSC backscattered light and reverse OSC optical carrier into the optical fiber fundamental mode; in this implementation
  • the OTDR backscattered light and the OSC backscattered light are the optical signals of the first wavelength
  • the reverse OTDR optical carrier and the reverse OSC optical carrier are the optical signals of the second wavelength.
  • the first wavelength division multiplexer is connected to the mode multiplexer and demultiplexer to separate the OTDR backscattered light and the reverse OTDR optical carrier of the optical fiber fundamental mode;
  • the second wavelength division multiplexer is connected to the mode multiplexer and demultiplexer.
  • the first optoelectronic signal processing unit is connected to the first wavelength division multiplexer and is used to separate the OTDR backscattered light of the optical fiber fundamental mode. Processing is performed to obtain OTDR service data;
  • the second optoelectronic signal processing unit is connected to the second wavelength division multiplexer and is used to process the reverse OSC optical carrier of the optical fiber fundamental mode to obtain OSC service data.
  • the orthogonality can support OTDR online monitoring function without interrupting OSC business.
  • the first wavelength and the second wavelength are not specifically limited, as long as the first wavelength and the second wavelength are different, so that the optical signal of the first wavelength and the optical signal of the second wavelength can be wavelength division multiplexed. It only needs to be separated with a device, which is within the protection scope of the embodiments of the present application.
  • Figure 12 is a schematic structural diagram of an optical transceiver component provided by another embodiment of the present application.
  • This embodiment of the present application provides an optical transceiver component.
  • the optical transceiver component also includes a modulation information optical loading unit, a first optical multiplexer and a second optical multiplexer, and the modulation information optical loading unit is used to receive the OTDR baseband signal and the OSC baseband from the device side.
  • the first optical combiner and demultiplexer is used to perform the OTDR optical signal Isolation switching
  • the modulated information optical loading unit is connected to the mode multiplexer and demultiplexer through the first optical multiplexer and demultiplexer to send the OTDR optical carrier of the optical fiber fundamental mode to the mode multiplexer and demultiplexer, and the first wavelength division multiplexer
  • the device is connected to the mode multiplexer and demultiplexer through the first optical multiplexer and demultiplexer to receive the OTDR backscattered light and reverse OTDR optical carrier of the optical fiber fundamental mode
  • the second optical multiplexer and demultiplexer is used to isolate and switch the OSC optical signal.
  • the modulation information optical loading unit is connected to the mode multiplexing and demultiplexer through the second optical multiplexer and demultiplexer to send the OSC optical carrier of the optical fiber fundamental mode to the mode multiplexer and demultiplexer, and the second wavelength division multiplexer passes
  • the second optical multiplexer and demultiplexer are connected to the mode multiplexer and demultiplexer to receive the OSC backscattered light and the reverse OSC optical carrier of the optical fiber fundamental mode.
  • the first optical multiplexer and demultiplexer are used to isolate and switch the OTDR optical signal, so that the modulation information optical loading unit can send the OTDR optical carrier of the optical fiber fundamental mode to the mode multiplexer and demultiplexer.
  • the multiplexer and demultiplexer can send the OTDR backscattered light of the first wavelength and the reverse OTDR optical carrier of the second wavelength to the first wavelength division multiplexer; the second optical combiner and demultiplexer is used to isolate the OSC optical signal switching, so that the modulation information optical loading unit can send the OSC optical carrier of the optical fiber fundamental mode to the mode multiplexing and demultiplexer, and the mode multiplexing and demultiplexer can backscatter the OSC light of the first wavelength and the OSC of the second wavelength.
  • the reverse OSC optical carrier is sent to the first wavelength division multiplexer.
  • the first optical multiplexer and demultiplexer may be an optical circulator, an optical coupler, a beam splitter, etc.; the second optical multiplexer and demultiplexer may also be an optical circulator, an optical coupler, a beam splitter, etc., this The embodiment does not specifically limit the types of the first optical multiplexer and demultiplexer and the second optical multiplexer and demultiplexer, as long as isolation switching of optical signals can be achieved.
  • Figure 13 is a schematic structural diagram of an optical transceiver component provided by another embodiment of the present application.
  • the modulation information optical loading unit includes a laser, an optical coupler, a first driver, a first modulator, a second driver and a second modulator, and the first driver is connected to the first modulator for Receive the OTDR baseband signal and adjust the voltage of the OTDR baseband signal to match the driving voltage of the first modulator, the second The driver is connected to the second modulator and is used to receive the OSC baseband signal and adjust the voltage of the OSC baseband signal to match the driving voltage of the second modulator.
  • the laser is used to output continuous light.
  • the optical coupler is respectively connected to the laser, the first modulator and the second modulator.
  • the second modulator is connected and used to divide the continuous light into a first path of light and a second path of light, and transmit the first path of light and the second path of light to the first modulator and the second modulator respectively.
  • the first modulator Connected to the mode multiplexer and demultiplexer through the first optical multiplexer and demultiplexer, it is used to load the OTDR baseband signal into the first light to obtain the OTDR optical carrier of the optical fiber basic mode and send the OTDR optical carrier to the mode multiplexer and demultiplexer.
  • the second modulator is connected to the mode multiplexer and demultiplexer through the second optical multiplexer and demultiplexer, and is used to load the OSC baseband signal into the second optical path to obtain the OSC optical carrier of the optical fiber fundamental mode, and convert the OSC optical
  • the carrier is sent to the mode multiplexer and demultiplexer.
  • the modulated information optical loading unit only uses one laser, that is, the OTDR signal and the OSC signal share a laser, which can reduce costs and power consumption. And because the device volume and quantity are small, the optical transceiver component can be packaged in the form of an SFP module, and the OTN equipment can be integrated The degree is improved, thereby saving space.
  • the OTDR business has no impact on the OSC business, supports OTDR full-scale output, and can also realize OTDR large dynamic range perception under the optical power of the SFP module level.
  • Figure 14 is a schematic structural diagram of an optical transceiver component provided by another embodiment of the present application.
  • This embodiment of the present application provides an optical transceiver component.
  • the first photoelectric signal processing unit includes a first photoelectric converter and a first signal processing unit.
  • the first photoelectric converter is connected to the mode multiplexer and demultiplexer through a first optical multiplexer and demultiplexer.
  • the first signal processing unit is connected to the first photoelectric converter for processing the OTDR electrical signal to obtain OTDR business data;
  • the second photoelectric signal processing unit includes a second photoelectric converter. converter and a second signal processing unit.
  • the second photoelectric converter is connected to the mode multiplexer and demultiplexer through the second optical multiplexer and demultiplexer, and is used to convert the reverse OSC optical carrier into an OSC electrical signal.
  • the second signal processing unit Connected to the second photoelectric converter, it is used to process OSC electrical signals to obtain OSC service data.
  • Figure 15 is an application schematic diagram of an optical fiber detection method provided by an embodiment of the present application.
  • the optical transceiver component may include a laser, a first modulator, a second modulator driver, first driver, second driver, optical coupler, optical combiner and demultiplexer, first mode multiplexer and demultiplexer, second mode multiplexer and demultiplexer, first photoelectric converter, second photoelectric converter , a first signal processing unit and a second signal processing unit.
  • the optical combiner and demultiplexer can include three ports, namely port 1, port 2 and port 3. The optical signal can enter from port 1 and output from port 2, or it can enter from port 2 and output from port 3. port output, the optical combiner and demultiplexer can isolate and switch optical signals.
  • the optical transceiver component can integrate the OTDR function and the OSC function based on the LP (Linearly polarized, linear polarization) mode, and the basic mode of the optical fiber is the LP01 mode.
  • the single board sends OSC baseband signal and OTDR baseband signal to the optical transceiver component.
  • the OSC baseband signal adopts 155Mbps rate OOK (On-OFF Keying, on-off keying) modulation;
  • the OTDR baseband signal is an M-sequence OTDR with a chip width of 6000ns.
  • the chip rate is 0.1667Mchips/s, and the sequence order is 15th order.
  • the OTDR baseband signal and the OSC baseband signal are respectively adjusted in signal amplitude by the first driver and the second driver to match the driving voltages of the first modulator and the second modulator respectively.
  • the laser outputs continuous light with a wavelength of 1510nm, the signal peak power is 7dBm, and the extinction ratio is 10dB.
  • the continuous light is divided into two parts through the optical coupler.
  • the first light enters the first modulator and loads the OTDR baseband signal in the optical domain.
  • the second The path light enters the second modulator and loads the OSC baseband signal in the optical domain.
  • the OTDR baseband signal is modulated by the first modulator into an OTDR optical carrier.
  • the OTDR optical carrier passes through port 1 of the optical multiplexer and demultiplexer, is output from port 2 of the optical multiplexer and demultiplexer, and enters the first mode multiplexing and demultiplexing in LP01 mode.
  • the OSC baseband signal is modulated into an OSC optical carrier by the second modulator, and the OSC optical carrier directly enters the first mode multiplexing and demultiplexer in LP01 mode.
  • the first mode multiplexing and demultiplexer can be composed of a mode converter and a mode selection coupler, which works in the 1480-1520nm band and OTN business band, and supports 7 LP spatial modes, namely LP01, LP11a, LP11b, LP21a, LP21b, LP31a, LP31b.
  • the first mode multiplexer and demultiplexer is a bidirectional device.
  • the input end is a multi-input port and the output end is a single output port, it is defined as forward, and the forward direction is used as a mode multiplexer; if the input end is a single input port , the output end is a multi-output port, it is defined as reverse, and the reverse is used as a mode demultiplexer.
  • the first mode multiplexing and demultiplexer works in reverse, that is, when it is used as a mode demultiplexer, the mode purity of the seven spatial modes it supports in the working band needs to be greater than 30dB.
  • the output end of the first mode multiplexer and demultiplexer converts the OTDR optical carrier from the optical fiber basic mode to the LP21a mode, converts the OSC optical carrier from the optical fiber basic mode to the LP31a mode, and combines the OTDR optical carrier of LP21a and the OSC optical carrier of LP31a Output, the output end of the first mode multiplexing and demultiplexer is connected to the mode multiplexing optical fiber.
  • the mode multiplexing optical fiber can be a ring that supports 7 modes: LP01, LP11a, LP11b, LP21a, LP21b, LP31a, and LP31b in the working band.
  • this ring core fiber supports the above 7 spatial modes in the 1480-1520nm band and OTN service band.
  • the two modes LP21a and LP31a are orthogonal.
  • the OTDR optical carrier of LP21a and the OSC optical carrier of LP31a can be multiplexed in this mode. Independently transmitted via optical fiber.
  • the optical signal from the opposite end is decomposed into the OTDR optical carrier of LP21a and the OSC optical carrier of LP31a through the second mode multiplexing and demultiplexer.
  • the second mode multiplexing and demultiplexer then converts both into LP01 mode, and output on two ports respectively.
  • the working state of the second mode multiplexing and demultiplexer is reverse, that is, it is used as a mode demultiplexer, and its other characteristics are consistent with those of the first mode multiplexing and demultiplexer.
  • the OTDR optical carrier of LP01 is left floating after output and is not processed.
  • the OSC optical carrier of LP01 completes photoelectric conversion and electrical analog signal amplification through the second photoelectric converter.
  • the second photoelectric converter has a bandwidth of 150MHz and a receiving sensitivity of -45dBm.
  • the signal processing unit performs filtering, sampling, criterion and other processing on the OSC analog signal output by the second photoelectric converter to restore the OSC business and realize the OSC function.
  • the OTDR backscattered light of LP21a in the fiber channel returns to the first mode multiplexing and demultiplexer.
  • the first mode multiplexing and demultiplexer is in the reverse working state, that is, it is used as mode demultiplexer.
  • the OTDR backscattered light is converted into the LP01 mode through the first mode multiplexer and demultiplexer, and is output to the No. 2 port of the optical combiner and demultiplexer, and is output to the first optoelectronic device through the No. 3 port of the optical combiner and demultiplexer.
  • the bandwidth of the first photoelectric converter is 30MHz
  • the receiving sensitivity is -55dBm
  • the gain k of the first photoelectric converter is 27000V/mW.
  • the first signal processing unit performs filtering and ADC sampling on the OTDR backscattered Rayleigh analog signal. As well as sequence OTDR related operations, etc., to obtain detailed information of the optical fiber link and implement the OTDR function.
  • the first mode multiplexing and demultiplexer and the second mode multiplexing and demultiplexer may be photonic lanterns; the optical combiner and demultiplexer may be an optical circulator.
  • Figure 16 is an application schematic diagram of another optical fiber detection method provided by the embodiment of the present application, in which the optical transceiver component can also be based on OAM (Orbital angular momentum, orbital angular momentum) ) mode integrates OTDR function and OSC function, and the optical fiber base mode is LP01 mode.
  • OAM Organic angular momentum, orbital angular momentum
  • the single board sends OSC baseband signal and OTDR baseband signal to the optical transceiver component.
  • the OSC baseband signal adopts 155Mbps rate OOK modulation;
  • the OTDR baseband signal is an M-sequence OTDR, the chip width is 6000ns, the chip rate is 0.1667Mchips/s, and the sequence The order is 15.
  • the OTDR baseband signal and the OSC baseband signal are respectively adjusted in signal amplitude by the first driver and the second driver to match the driving voltages of the first modulator and the second modulator respectively.
  • the laser outputs continuous light with a wavelength of 1510nm, the signal peak power is 7dBm, and the extinction ratio is 10dB.
  • the continuous light is divided into two parts through the optical coupler.
  • the first light enters the first modulator and loads the OTDR baseband signal in the optical domain.
  • the second The path light enters the second modulator and loads the OSC baseband signal in the optical domain.
  • the OTDR baseband signal is modulated into an OTDR optical carrier by the first modulator.
  • the OTDR optical carrier passes through port 1 of the optical multiplexer and demultiplexer.
  • the port 2 output of the optical combiner and demultiplexer enters the first mode multiplexing and demultiplexer in LP01 mode; the OSC baseband signal is modulated into an OSC optical carrier by the second modulator, and the OSC optical carrier directly enters the first mode multiplexer in LP01 mode.
  • the first mode multiplexing and demultiplexer can be composed of a mode converter and a mode selection coupler. It works in the 1480-1520nm band and the OTN service band, and supports 7 LP spatial modes, namely OAM0, OAM+1, OAM- 1, OAM+2, OAM-2, OAM+3, OAM-3, where “ ⁇ ” represents the positive and negative of the OAM mode topological charge.
  • the first mode multiplexer and demultiplexer is a bidirectional device. If the input end is a multi-input port and the output end is a single output port, it is defined as forward, and the forward direction is used as a mode multiplexer; if the input end is a single input port , the output end is a multi-output port, it is defined as reverse, and the reverse is used as a mode demultiplexer.
  • the first mode multiplexing and demultiplexer works in reverse, that is, when it is used as a mode demultiplexer, the mode purity of the seven spatial modes it supports in the working band needs to be greater than 30dB.
  • the output end of the first mode multiplexer and demultiplexer converts the OTDR optical carrier from the fiber base mode to the OAM+3 mode, converts the OSC optical carrier from the fiber base mode to the OAM-3 mode, and converts the OAM+3 OTDR optical carrier and The OSC optical carriers of OAM-3 are combined and output.
  • the output end of the first mode multiplexing and demultiplexer is connected to the mode multiplexing optical fiber.
  • the mode multiplexing optical fiber can be used to support OAM0, OAM+1, OAM-1, and OAM within the working band. +2, OAM-2, OAM+3, OAM-3, 7 modes of ring-core fiber.
  • the ring-core fiber supports the above 7 spatial modes in the 1480-1520nm band and OTN service band, OAM+3 and OAM- 3
  • the two modes are orthogonal.
  • the OTDR optical carrier of OAM+3 and the OSC optical carrier of OAM-3 can be transmitted independently in this mode division multiplexing fiber.
  • the optical signal from the opposite end is decomposed into the OAM+3 mode OTDR optical carrier and the OAM-3 mode OSC optical carrier through the second mode multiplexing and demultiplexer.
  • the second mode multiplexing and demultiplexer then Convert both to LP01 mode and output them on two ports respectively.
  • the working state of the second mode multiplexing and demultiplexer is reverse, that is, it is used as a mode demultiplexer, and its other characteristics are consistent with those of the first mode multiplexing and demultiplexer.
  • the OTDR optical carrier in LP01 mode is left floating after output and is not processed.
  • the OSC optical carrier in LP01 mode completes photoelectric conversion and electrical analog signal amplification through the second photoelectric converter.
  • the second photoelectric converter has a bandwidth of 150MHz and a receiving sensitivity of -45dBm.
  • the second signal processing unit performs filtering, sampling, criterion and other processing on the OSC analog signal output by the second photoelectric converter to restore the OSC business and realize the OSC function.
  • the OTDR backscattered light of OAM+3 in the optical fiber channel returns to the first mode multiplexing and demultiplexer.
  • the first mode multiplexing and demultiplexer is in the reverse working state, that is, it is used as a mode Demultiplexer
  • the OTDR backscattered light is converted into the LP01 mode through the first mode multiplexer and demultiplexer, and is output to the No. 2 port of the optical combiner and demultiplexer, and is output to the No. 3 port of the optical combiner and demultiplexer.
  • the bandwidth of the first photoelectric converter is 30MHz, the receiving sensitivity is -55dBm, and the gain k of the first photoelectric converter is 27000V/mW.
  • the first signal processing unit performs photoelectric conversion on the OTDR backscattered Rayleigh signal output by the first photoelectric converter.
  • the analog signal is filtered, ADC sampled, and sequence OTDR related operations are performed to obtain detailed information of the optical fiber link and implement the OTDR function.
  • the first mode multiplexing and demultiplexer and the second mode multiplexing and demultiplexer may be photonic lanterns; the optical combiner and demultiplexer may be an optical circulator.
  • Figure 17 is an application schematic diagram of an optical fiber detection method provided by another embodiment of the present application.
  • the optical transceiver component may include a laser, a first modulator, a third Two modulators, a first driver, a second driver, an optical coupler, a first optical multiplexer and demultiplexer, a second optical multiplexer and demultiplexer, a first wavelength division multiplexer, a second wavelength division multiplexer, and a mode multiplexer.
  • the first optical multiplexer and demultiplexer and the second optical multiplexer and demultiplexer may each include three ports, namely port 1, port 2 and port 3.
  • light signal It can enter from port 1 and output from port 2, or it can enter from port 2 and output from port 3.
  • the first optical combiner and demultiplexer is used to isolate and switch the OTDR optical signal
  • the second The optical combiner and demultiplexer is used to isolate and switch OSC optical signals.
  • the optical transceiver component can integrate the OTDR function and the OSC function based on the LP mode, and the basic mode of the optical fiber is the LP01 mode.
  • the single board sends the OSC and OTDR baseband signals to the optical transceiver components.
  • the OSC baseband signal adopts 155Mbps rate OOK modulation;
  • the OTDR baseband signal is an M-sequence OTDR, the chip width is 6000ns, the chip rate is 0.1667Mchips/s, and the sequence order The number is level 15.
  • the OSC baseband signal and the OTDR baseband signal are respectively adjusted in signal amplitude by the first driver and the second driver to match the driving voltages of the first modulator and the second modulator respectively.
  • the laser outputs continuous light with wavelength ⁇ 1 of 1510nm, the signal peak power is 7dBm, and the extinction ratio is 10dB.
  • the optical coupler divides the continuous light into two.
  • the first light enters the first modulator and loads the OTDR baseband signal in the optical domain.
  • the two-channel light enters the second modulator and loads the OSC baseband signal in the optical domain.
  • the OTDR baseband signal is modulated by the first modulator into an OTDR optical carrier.
  • the OTDR optical carrier passes through port 1 of the first optical multiplexer and demultiplexer, is output from port 2 of the first optical multiplexer and demultiplexer, and enters mode multiplexing and demultiplexing in LP01 mode.
  • the OSC baseband signal is modulated by the second modulator into an OSC optical carrier.
  • the OSC optical carrier enters from port 1 of the second optical multiplexer and demultiplexer in LP01 mode and is output from port 2 of the second optical multiplexer and demultiplexer. to the mode multiplexer demultiplexer.
  • the mode multiplexing and demultiplexer consists of a mode converter and a mode selection coupler, which works in the 1480-1520nm band and OTN business band, and supports 7 LP spatial modes, namely LP01, LP11a, LP11b, LP21a, LP21b, LP31a ,LP31b.
  • the mode multiplexer and demultiplexer is a bidirectional device.
  • the input end is a multi-input port and the output end is a single output port, it is defined as forward, and the forward direction is used as a mode multiplexer; if the input end is a single input port, the output If the end is a multi-output port, it is defined as reverse, and the reverse is used as a mode demultiplexer.
  • the mode multiplexer and demultiplexer works in reverse, that is, when used as a mode demultiplexer, the 7 spatial modes it supports must all have a mode purity greater than 30dB in the working band.
  • the output end of the mode multiplexer and demultiplexer converts the OTDR optical carrier from the fiber base mode to the LP21a mode, converts the OSC optical carrier from the fiber base mode to the LP31a mode, and combines the OTDR optical carrier of LP21a and the OSC optical carrier of LP31a for output.
  • the output end of the mode multiplexing and demultiplexer is connected to the mode multiplexing optical fiber.
  • the mode multiplexing optical fiber can be a ring-core optical fiber that supports 7 modes: LP01, LP11a, LP11b, LP21a, LP21b, LP31a, and LP31b in the working band.
  • Ring core fiber supports the above 7 spatial modes in the 1480-1520nm band and OTN service band.
  • the two modes LP21a and LP31a are orthogonal.
  • the OTDR optical carrier of LP21a and the OSC optical carrier of LP31a can be independently used in this mode division multiplexing fiber. transmission.
  • the optical transceiver component at the opposite end has the same configuration as the local optical transceiver component, except that it uses an optical carrier with a wavelength ⁇ 2 of 1491nm.
  • there are four types of services in the optical fiber channel namely ⁇ 1 OSC optical signal, ⁇ 1 OTDR optical signal, ⁇ 2 OSC optical signal, and ⁇ 2 OTDR optical signal.
  • the mode multiplexer and demultiplexer receives the optical signal from the opposite end.
  • the mode multiplexer and demultiplexer is in the reverse working state, that is, it is used as a mode demultiplexer.
  • the OSC backscattered light generated by the forward OSC optical carrier with wavelength ⁇ 1 and the reverse OSC optical carrier with wavelength ⁇ 2 in the opposite end signal are converted to the designated port by the mode multiplexing and demultiplexer in the LP31a mode and converted
  • the LP01 mode is output to port 2 of the second optical combiner and demultiplexer, and output from port 3 of the second optical combiner and demultiplexer, and then separated by wavelength through the second wavelength division multiplexer, and the forward OSC of wavelength ⁇ 1
  • the OSC backscattered light generated by the optical carrier is suspended as noise and is not processed.
  • the opposite end signal contains a reverse OTDR optical carrier with a wavelength of ⁇ 2 and a forward OTDR with a wavelength of ⁇ 1 .
  • the OTDR backscattered light generated by the optical carrier is converted to the designated port by the mode multiplexer and demultiplexer in the LP21a mode and converted into the LP01 mode and output to port 2 of the first optical multiplexer and demultiplexer, and from the first optical multiplexer and demultiplexer
  • the No. 3 port output of the device is then separated according to wavelength through the first wavelength division multiplexer.
  • the reverse OTDR optical carrier with wavelength ⁇ 2 is suspended as noise and is not processed.
  • the OTDR backscattered light generated by the forward OTDR optical carrier with wavelength ⁇ 1 enters the first photoelectric converter.
  • the bandwidth of the first photoelectric converter is 30MHz
  • the receiving sensitivity is -55dBm
  • an OTDR backscattered Rayleigh analog signal is obtained.
  • the first signal processing unit performs photoelectric conversion on the OTDR output by the first photoelectric converter.
  • the back Rayleigh scattering analog signal is filtered, ADC sampled, and sequence OTDR related operations are performed to obtain detailed information of the optical fiber link and implement the OTDR function.
  • the mode multiplexer and demultiplexer may be a photon lantern; the first optical multiplexer and the second optical multiplexer may be optical circulators; the first wavelength division multiplexer and the second wavelength division multiplexer may be optical circulators.
  • the demultiplexer may be a fiber optic wavelength division multiplexer.
  • the OTDR optical carrier is transmitted in the optical fiber channel in the first optical fiber mode
  • the OSC optical carrier is transmitted in the second optical fiber mode in the optical fiber channel.
  • the first optical fiber mode and the second optical fiber mode are not specifically limited. , as long as the first fiber mode and the second fiber mode are orthogonal, and whether in a dual-fiber bidirectional scenario or a single-fiber bidirectional scenario, the fiber status detection method provided by the embodiment of the application can be used in the same fiber.
  • the optical transceiver component integrates OTDR function and OSC function. Only one laser is used, which can reduce cost and power consumption, and the device volume and quantity are small.
  • the optical transceiver component can be packaged into SFP module form, OTN
  • the equipment integration is improved, thereby saving space, and the OTDR business has no impact on the OSC business. It can support OTDR full-scale output and can also achieve large dynamic range monitoring of optical cables under SFP module level optical power.
  • Embodiments of the present application also provide a network element device.
  • the network element device includes the optical transceiver component provided in any of the above embodiments, can integrate the OSC function and the OTDR function, and supports the OTDR online monitoring function without interrupting the OSC service. .
  • the embodiments provided by this application include: optical fiber status detection methods, optical transceiver components and network element equipment.
  • two network elements connected by mode division multiplexing optical fiber are respectively configured with the first An optical transceiver component and a second optical transceiver component.
  • the first optical transceiver component can combine and input the OTDR optical carrier of the first optical fiber mode and the OSC optical carrier of the second optical fiber mode into the mode division multiplexing optical fiber, and receive the OTDR of the OTDR optical carrier.
  • the first optical transceiver component can receive the OSC optical carrier of the second optical fiber mode from the second optical transceiver component and obtain OSC service data based on the OSC optical carrier, where , the first fiber mode is orthogonal to the second fiber mode.
  • Integrating OTDR and OSC services can improve the integration of OTN (Optical Transport Network) equipment, save space, and allocate two mutually orthogonal optical fiber modes for OTDR optical carriers and OSC optical carriers, making use of optical fiber The orthogonality of the modes prevents the two services from interfering with each other, enabling simultaneous OTDR services and OSC services in the same optical fiber.
  • OTN Optical Transport Network

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

本申请公开了一种光纤状态检测方法、光收发组件及网元设备,该方法应用于光纤通信系统中的第一光收发组件,光纤通信系统还包括第二光收发组件,第一光收发组件和第二光收发组件通过模分复用光纤连接;该方法包括:将第一光纤模式的OTDR光载波和第二光纤模式的OSC光载波合并输入至模分复用光纤,以使第二光收发组件接收OSC光载波并根据OSC光载波得到OSC业务数据(S100);接收OTDR光载波的OTDR后向散射光并根据OTDR后向散射光得到OTDR业务数据(S200);其中,第一光纤模式与第二光纤模式正交。

Description

光纤状态检测方法、光收发组件及网元设备
相关申请的交叉引用
本申请基于申请号为202210927825.2、申请日为2022年08月03日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及光通信技术领域,尤其涉及一种光纤状态检测方法、光收发组件及网元设备。
背景技术
目前,OSC(Optical Supervisory Channel,光监控通道)和OTDR(Optical Time-Domain Reflectometer,光时域反射仪)可以集成在同一个单板/同一个光模块上,但是,OSC和OTDR两种业务集成后,由于业务间存在串扰,因此难以在同一光纤中同时进行两种业务。
发明内容
本申请提供一种光纤状态检测方法、光收发组件及网元设备。
第一方面,本申请实施例提供一种光纤状态检测方法,应用于光纤通信系统中的第一光收发组件,所述光纤通信系统还包括第二光收发组件,所述第一光收发组件和所述第二光收发组件通过模分复用光纤连接;所述方法包括:将第一光纤模式的OTDR光载波和第二光纤模式的OSC光载波合并输入至所述模分复用光纤,以使所述第二光收发组件接收所述OSC光载波并根据所述OSC光载波得到OSC业务数据;接收所述OTDR光载波的OTDR后向散射光并根据所述OTDR后向散射光得到OTDR业务数据;其中,所述第一光纤模式与所述第二光纤模式正交。
第二方面,本申请实施例提供一种光收发组件,包括第一模式复用解复用器、第二模式复用解复用器、第一光电信号处理单元和第二光电信号处理单元,所述第一模式复用解复用器用于将OTDR光载波和OSC光载波分别由光纤基模转换为第一光纤模式和第二光纤模式,其中所述第一光纤模式与所述第二光纤模式正交,且所述第一模式复用解复用器与模分复用光纤连接,能够将所述第一光纤模式的OTDR光载波和所述第二光纤模式的OSC光载波合并输入至所述模分复用光纤,所述第一模式复用解复用器还用于从所述模分复用光纤中分离出所述OTDR光载波的OTDR后向散射光并将所述OTDR后向散射光转换为光纤基模;所述第二模式复用解复用器与所述模分复用光纤相连,用于从所述模分复用光纤中分离出所述OSC光载波并将所述OSC光载波转换为光纤基模;所述第一光电信号处理单元与所述第一模式复用解复用器连接,用于对所述光纤基模的OTDR后向散射光进行处理以得到OTDR业务数据;所述第二光电信号处理单元与所述第二模式复用解复用器连接,用于对所述光纤基模的OSC光载波进行处理以得到OSC业务数据。
第三方面,本申请实施例提供一种光收发组件,包括模式复用解复用器、第一波分复用器、第二波分复用器、第一光电信号处理单元和第二光电信号处理单元,所述模式复用解复 用器用于将第一波长的OTDR光载波和OSC光载波分别由光纤基模转换为第一光纤模式和第二光纤模式,其中所述第一光纤模式与所述第二光纤模式正交,且所述第一模式复用解复用器连接有模分复用光纤,能够将所述第一光纤模式的OTDR光载波和所述第二光纤模式的OSC光载波合并输入至所述模分复用光纤,所述模分复用光纤中还传输有对端发送的第二波长的所述第一光纤模式的反向OTDR光载波和所述第二光纤模式的反向OSC光载波;所述模式复用解复用器还用于从所述模分复用光纤中分离出所述第一光纤模式的OTDR后向散射光和所述反向OTDR光载波并将所述OTDR后向散射光和所述反向OTDR光载波转换为光纤基模,且所述模式复用解复用器能够从所述模分复用光纤中分离出所述第二光纤模式的OSC后向散射光和所述反向OSC光载波并将所述OSC后向散射光和所述反向OSC光载波转换为光纤基模;所述第一波分复用器与所述模式复用解复用器连接,用于分离所述光纤基模的OTDR后向散射光和反向OTDR光载波;所述第二波分复用器与所述模式复用解复用器连接,用于分离所述光纤基模的OSC后向散射光和反向OSC光载波;所述第一光电信号处理单元与所述第一波分复用器连接,用于对所述光纤基模的OTDR后向散射光进行处理以得到OTDR业务数据;所述第二光电信号处理单元与所述第二波分复用器连接,用于对所述光纤基模的反向OSC光载波进行处理以得到OSC业务数据。
第四方面,本申请实施例提供一种网元设备,包括本申请第二方面实施例提供的光收发组件或者本申请第三方面实施例提供的光收发组件。
附图说明
图1是本申请实施例提供的一种光纤通信系统的信号传输示意图;
图2是本申请实施例提供的一种光纤状态检测方法的步骤流程图;
图3是本申请另一实施例提供的一种光纤状态检测方法的部分步骤流程图;
图4是本申请另一实施例提供的一种光纤状态检测方法的部分步骤流程图;
图5是图1中步骤S200的细化步骤流程图;
图6是本申请实施例提供的一种光纤状态检测方法的流程图;
图7是本申请实施例提供的一种光收发组件的结构示意图;
图8是本申请另一实施例提供的一种光收发组件的结构示意图;
图9是本申请另一实施例提供的一种光收发组件的结构示意图;
图10是本申请另一实施例提供的一种光收发组件的结构示意图;
图11是本申请另一实施例提供的一种光收发组件的结构示意图;
图12是本申请另一实施例提供的一种光收发组件的结构示意图;
图13是本申请另一实施例提供的一种光收发组件的结构示意图;
图14是本申请另一实施例提供的一种光收发组件的结构示意图;
图15是本申请实施例提供的一种光纤检测方法的应用示意图;
图16是本申请实施例提供的另一种光纤检测方法的应用示意图;
图17是本申请另一实施例提供的一种光纤检测方法的应用示意图。
具体实施方式
本部分将详细描述本申请的具体实施例,本申请的若干实施例在附图中示出,附图的作 用在于用图形补充说明书文字部分的描述,使人能够直观地、形象地理解本申请的每个技术特征和整体技术方案,但其不能理解为对本申请保护范围的限制。
在本申请的描述中,若干的含义是一个或者多个,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本申请的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本申请中的具体含义。
现有技术中,OSC用于实现对网元状态进行监控和管理,包括保护倒换、监控和信息开销等业务;OTDR用于实现对光缆线路监测,其原理是向光缆中打入光脉冲或光序列信号,利用光纤中的后向瑞利散射和菲涅尔反射信号获取光纤线路信息,因此OTDR检测信号的发送端和接收端在同侧。基于OSC和OTDR在组网配置上有很大相似性,众多设备商致力于将二者功能集成在同一个单板/同一个光模块上,从而提高设备集成度、降低设备功耗、压缩成本。但是两种业务集成后,由于业务间的串扰,难以在同一光纤中同时进行两种业务。另外,在目前的光通信技术中,光波的众多参数,例如时间、频率、幅度、相位、偏振等参数,都已经被发挥到接近极限,很难再在这些参数的基础上对光纤通信容量进行提升,现在超大容量光纤技术的发展方向是空分复用技术,空分复用技术能够利用光波的空间维度来提升通信容量,而模分复用是空分复用中的一种。
基于此,本申请实施例提供一种光纤状态检测方法、光收发组件及网元设备,能够集成OSC功能与OTDR功能,且在不中断OSC业务的情况,支持OTDR在线监测功能。
下面结合附图,对本申请实施例作进一步阐述。
参照图1和图2,图1是本申请实施例提供的一种光纤通信系统的信号传输示意图,图2是本申请实施例提供的一种光纤状态检测方法的步骤流程图,本申请的实施例提供一种光纤状态检测方法,该方法应用于光纤通信系统中的第一光收发组件,光纤通信系统中,两个由模分复用光纤连通的相邻网元分别配置有第一光收发组件和第二光收发组件,且模分复用光纤的第一光纤模式与第二光纤模式正交,该方法可以包括步骤S100和步骤S200。
步骤S100,将第一光纤模式的OTDR光载波和第二光纤模式的OSC光载波合并输入至模分复用光纤,以使第二光收发组件接收OSC光载波并根据OSC光载波得到OSC业务数据;
步骤S200,接收OTDR光载波的OTDR后向散射光并根据OTDR后向散射光得到OTDR业务数据。
在一示例性实施例中,光纤通信系统中的两个相邻的网元分别配置有第一光收发组件和第二光收发组件,且第一光收发组件和第二光收发组件通过模分复用光纤连接,第一光收发组件可以将第一光纤模式的OTDR光载波和第二光纤模式的OSC光载波合并输入至模分复用光纤中,以使第二光收发组件接收第二光纤模式的OSC光载波并根据OSC光载波得到OSC业务数据,从而对网元状态进行监控和管理;而光载波在光纤传输的过程中存在散射的现象,第一光收发组件可以接收OTDR光载波的OTDR后向散射光并根据OTDR后向散射光得到OTDR业务数据,从而对光纤线路进行监测;由于第一光纤模式与第二光纤模式正交,而正交的光纤模式之间不存在信号串扰,因此第一光纤模式的OTDR光载波与第二光纤模式的OSC光载波互不干扰,从而能够实现在同一光纤中同时进行OSC业务和OTDR业务。在OTN 业务中断的情况下,可以通过OTDR快速定位断纤位置;在光缆中传输有OTN业务的情况下,也可以通过OTDR对光缆进行周期性监测,实现对光缆老化的及时预警,大大降低了故障率和运维成本。
在本申请的一些实施例中,不对第一光纤模式和第二光纤模式作具体限定,只要第一光纤模式和第二光纤模式是模分复用光纤所支持的两种互相正交的光纤模式即可,都在本申请实施例的保护范围内。
本实施例不对OTDR信号的类型作具体限定,既可以使用序列型OTDR,也可以使用脉冲型OTDR,只要能够进行OTDR业务即可,都在本实施例的保护范围内。
在一可行的实施例中,OTDR信号可以是序列型OTDR,例如M序列、格雷编码序列等,即使用编码光脉冲作为OTDR的探测脉冲,充分利用OTDR业务与OSC业务互不影响的特点,能够通过编码增益、提升运算复杂度和增加计算时间,来提升噪声抑制性能,从而在光功率受限的情况下,也能够实现对光缆的大动态范围监测。
如图3所示,图3是本申请另一实施例提供的一种光纤状态检测方法的部分步骤流程图,本申请另一实施例提供一种光纤状态检测方法,在将第一光纤模式的OTDR光载波和第二光纤模式的OSC光载波合并输入至模分复用光纤之前,该方法还可以包括步骤S101和步骤S102。
步骤S101,接收来自设备端的OTDR基带信号和OSC基带信号,并将OTDR基带信号和OSC基带信号分别调制为光纤基模的OTDR光载波和OSC光载波;
步骤S102,将OTDR光载波由光纤基模转换为第一光纤模式,并将OSC光载波由光纤基模转换为第二光纤模式。
在一示例性实施例中,第一光收发组件接收来自设备端的OTDR基带信号和OSC基带信号,并将OTDR基带信号和OSC基带信号分别调制为光纤基模的OTDR光载波和OSC光载波;将OTDR光载波由光纤基模转换为第一光纤模式,并将OSC光载波由光纤基模转换为第二光纤模式,第一光纤模式与第二光纤模式正交,正交的光纤模式之间不存在信号串扰,第一光纤模式的OTDR光载波和第二光纤模式的光载波能够在模分复用光纤中同时传输且互不干扰,能够实现集成OSC功能与OTDR功能,且在不中断OSC业务的情况,支持OTDR在线监测功能。
在一可行的实施例中,设备端可以是指单板,也可以是其它任何能够发送OTDR基带信号和OSC基带信号的电子设备。
如图4所示,图4是本申请另一实施例提供的一种光纤状态检测方法的部分步骤流程图,该方法还可以包括步骤S300、步骤S400和步骤S500。
步骤S300,从模分复用光纤中分离出来自第二光收发组件的第二光纤模式的OSC光载波;
步骤S400,将该OSC光载波由第二光纤模式转换为光纤基模;
步骤S500,对光纤基模的OSC光载波进行处理,得到OSC业务数据。
在一示例性实施例中,第一光收发组件和第二光收发组件是对等的,第二光收发组件也可以将第一光纤模式的OTDR光载波和第二光纤模式的OSC光载波合并输入模分复用光纤,第一光收发组件可以接收来自第二光收发组件的第二光纤模式的OSC光载波,根据OSC光载波得到OSC业务数据,实现对网元状态的监控和管理,在一示例性实施例中,第一光收发 组件从模分复用光纤中分离出来自第二光收发组件的第二光纤模式的OSC光载波,将该OSC光载波由第二光纤模式转换为光纤基模,对光纤基模的OSC光载波进行处理,得到OSC业务数据,以实现光监控通道的功能。
本领域技术人员可以理解的是,第一光收发组件将第一光纤模式的OTDR光载波和第二光纤模式的OSC光载波合并输入至模分复用光纤中,以使第二光收发组件接收OSC光载波并根据OSC光载波得到OSC业务数据,即第二光收发组件可以从模分复用光纤中分离出来自第一光收发组件的第二光纤模式的OSC光载波,将该OSC光载波由第二光纤模式转换为光纤基模,对光纤基模的OSC光载波进行处理,得到OSC业务数据,以实现光监控通道的功能。
如图5所示,图5是图1中步骤S200的细化步骤流程图,本申请另一实施例提供一种光纤状态检测方法,步骤S200可以包括步骤S210、步骤S220和步骤S230。
步骤S210,从模分复用光纤中分离出OTDR光载波的OTDR后向散射光;
步骤S220,将OTDR后向散射光由第一光纤模式转换为光纤基模;
步骤S230,对光纤基模的OTDR后向散射光进行处理,得到OTDR业务数据。
在一示例性实施例中,第一光收发组件将第一光纤模式的OTDR光载波和第二光纤模式的OSC光载波合并输入至模分复用光纤,以使第二光收发组件接收OSC光载波并根据OSC光载波得到OSC业务数据;而第一光收发组件可以从模分复用光纤中分离出OTDR光载波的OTDR后向散射光,将OTDR后向散射光由第一光纤模式转换为光纤基模,对光纤基模的OTDR后向散射光进行处理,得到OTDR业务数据,以实现光时域反射仪的功能。
参照图6,图6是本申请实施例提供的一种光纤状态检测方法的流程图,本申请另一实施例提供一种光纤状态检测方法,第一光收发组件接收来自设备端的OTDR基带信号和OSC基带信号,并将OTDR基带信号调制为光纤基模的OTDR光载波,将OSC基带信号调制为光纤基模的OSC光载波;将OTDR光载波由光纤基模转换为第一光纤模式,并将OSC光载波由光纤基模转换为第二光纤模式,将第一光纤模式的OTDR光载波和第二光纤模式的OSC光载波合并输入至模分复用光纤,以使第二光收发组件从模分复用光纤中分离出来自第一光收发组件的第二光纤模式的OSC光载波,第二光收发组件将该OSC光载波由第二光纤模式转换为光纤基模,对光纤基模的OSC光载波进行处理,得到OSC业务数据,以实现光监控通道的功能;第一光收发组件可以从模分复用光纤中分离出OTDR光载波的OTDR后向散射光,将OTDR后向散射光由第一光纤模式转换为光纤基模,对光纤基模的OTDR后向散射光进行处理,得到OTDR业务数据,以实现光时域反射仪的功能。第一光纤模式和第二光纤模式互相正交,模式间不存在信号串扰,使得OTDR光载波和OSC光载波能够在同一光纤中同时传输,集成了OSC功能与OTDR功能,且在不中断OSC业务的情况,支持OTDR在线监测功能。
参照图7,图7是本申请实施例提供的一种光收发组件的结构示意图,本申请实施例提供一种光收发组件。在一示例性实施例中,该光收发组件可以包括第一模式复用解复用器、第二模式复用解复用器、第一光电信号处理单元和第二光电信号处理单元,其中,第一模式复用解复用器用于将OTDR光载波和OSC光载波分别由光纤基模转换为第一光纤模式和第二光纤模式,第一光纤模式与第二光纤模式正交,且第一模式复用解复用器与模分复用光纤连接,能够将第一光纤模式的OTDR光载波和第二光纤模式的OSC光载波输入至模分复用 光纤。光载波在光纤传输的过程中存在散射现象,光时域反射仪能够利用光纤中的后向瑞利散射和菲涅尔反射信号获取光纤线路信息。本领域技术人员可以理解的是,第一模式复用解复用器为双向器件,若输入端为多输入口,输出端为单输出口,则定义为正向,第一模式复用解复用器正向使用时作为模式复用器;若输入端为单输入口,输出端为多输出口,则定义为反向,第一模式复用解复用器反向使用时作为模式解复用器。第一模式复用解复用器还可以作为模式解复用器从模分复用光纤中分离出第一光纤模式的OTDR光载波的OTDR后向散射光并将OTDR后向散射光由第一光纤模式转换为光纤基模。对端配置可以与本地光收发组件相同,对端可以向光收发组件发送第二光纤模式的OSC光载波,第二模式复用解复用器是双向器件,与模分复用光纤连接,第二模式复用解复用器反向使用时,可以从模分复用光纤中分离出来自对端的第二光纤模式的OSC光载波并将OSC光载波由第二光纤模式转换为光纤基模;第一光电信号处理单元与第一模式复用解复用器连接,用于对光纤基模的OTDR后向散射光进行处理以得到OTDR业务数据,以实现OTDR功能;第二光电信号处理单元与第二模式复用解复用器连接,用于对光纤基模的OSC光载波进行处理以得到OSC业务数据,以实现OSC功能。该光收发组件集成了OTDR功能和OSC功能,且能够在不中断OSC业务的情况,支持OTDR在线监测功能。在光缆中传输有OTN业务的情况下,也可以通过OTDR对光缆进行周期性监测,实现对光缆老化的及时预警,大大降低了故障率和运维成本。
本领域技术人员可以理解的是,第一模式复用解复用器正向工作时,即用做模式复用器时,其支持的模式数N应当包括在模式复用光纤支持的模式数M以内,且其输出的所有模式的模场分布均应与模分复用光纤支持的相应模式的模场分布匹配。第一模式复用解复用器反向工作时,即用作模式解复用器时,在1480-1520nm波段和OTN业务波段内,其支持的某个模式的纯度应大于30dB。
本领域技术人员还可以理解的是,第一模式复用解复用器或者第二模式复用解复用器可以由模式转换器和模式选择耦合器组成,在本申请的一些实施例中,第一模式复用解复用器可以为光子灯笼、模式选择耦合器、空间光模分复用解复用器等,第二模式复用解复用器也可以为光子灯笼、模式选择耦合器、空间光模分复用解复用器等。
在本实施例中,引入第一模式复用解复用器和第二模式复用解复用器,在对现有设备部署波及较小的情况下,集成OTDR功能和OSC功能,能够节约成本、节省空间,且设备功耗较小。
如图8所示,图8是本申请另一实施例提供的一种光收发组件的结构示意图,本申请实施例提供一种光收发组件。在一示例性实施例中,光收发组件还包括调制信息光加载单元和光合分波器,调制信息光加载单元用于接收来自设备端的OTDR基带信号和OSC基带信号并将OTDR基带信号和OSC基带信号分别加载到光纤基模的光载波上以得到光纤基模的OTDR光载波和OSC光载波;光合分波器用于对OTDR光信号进行隔离转换,调制信息光加载单元通过光合分波器与第一模式复用解复用器连接,以将OTDR光载波发送给第一模式复用解复用器,第一光电信号处理单元通过光合分波器与第一模式复用解复用器连接,以接收来自第一模式复用解复用器的光纤基模的OTDR后向散射光;调制信息光加载单元还与第一模式复用解复用器连接,以将OSC光载波直接发送给第一模式复用解复用器。
在一可行的实施例中,光合分波器可以为光环形器、光耦合器或者分光片等,本实施例不对光合分波器的类型作具体限定,只要能够用于对OTDR光载波进行隔离切换即可,使得 调制信息光加载单元能够将光纤基模的OTDR光载波发送给第一模式复用解复用器,第一模式复用解复用器能够将光纤基模的OTDR后向散射光发送给第一信号处理单元。
如图9所示,图9是本申请另一实施例提供的一种光收发组件的结构示意图,本申请实施例提供一种光收发组件。在一示例性实施例中,第一光电信号处理单元包括第一光电转换器和第一信号处理单元,第一光电转换器通过光合分波器与第一模式复用解复用器相连,能够接收来自第一模式复用解复用器的光纤基模的OTDR后向散射光,并将OTDR后向散射光转换为OTDR电信号,第一信号处理单元与第一光电转换器相连,能够接收来自第一光电转换器的OTDR电信号并对OTDR电信号进行处理以得到OTDR业务数据;第二光电信号处理单元包括第二光电转换器和第二信号处理单元,第二光电转换器与第二模式复用解复用器相连,能够接收来自第二模式复用解复用器的光纤基模的OSC光载波,并将OSC光载波转换为OSC电信号,第二信号处理单元与第二光电转换器相连,能够接收来自第二光电转换器的OSC电信号并对OSC电信号进行处理以得到OSC业务数据。
如图10所示,图10是本申请另一实施例提供的一种光收发组件的结构示意图,本申请实施例提供一种光收发组件。在一示例性实施例中,调制信息光加载单元包括激光器、光耦合器、第一驱动器、第一调制器、第二驱动器和第二调制器,第一驱动器与第一调制器相连,用于接收OTDR基带信号并调整OTDR基带信号的电压以匹配第一调制器的驱动电压,第二驱动器与第二调制器相连,用于接收OSC基带信号并调整OSC基带信号的电压以匹配第二调制器的驱动电压,激光器用于输出连续光,光耦合器分别与激光器、第一调制器和第二调制器相连,用于将连续光分成第一路光和第二路光,并将第一路光和第二路光分别传输给第一调制器和第二调制器,第一调制器通过光合分波器与第一模式复用解复用器相连,用于将OTDR基带信号加载到第一路光以得到光纤基模的OTDR光载波并将OTDR光载波发送给第一模式复用解复用器,第二调制器与第一模式复用解复用器相连,用于将OSC基带信号加载到第二路光以得到光纤基模的OSC光载波,并将OSC光载波发送给第一模式复用解复用器。在本实施例中,集成OTDR功能和OSC功能,仅使用一个激光器,能够降低成本和功耗,且由于器件体积、数量均较少,光收发组件可以封装成SFP模块(Small Form Pluggable Module,热插拔小封装模块)形式,OTN设备集成度得到提高,从而节省空间。且OTDR业务对OSC业务无影响,支持OTDR全幅输出,在SFP模块级别的光功率下,也可以实现OTDR大动态范围感知。
参照图11,图11是本申请另一实施例提供的一种光收发组件的结构示意图,本申请实施例提供一种光收发组件。在一示例性实施例中,该光收发组件可以应用于单纤双向的场景中,该光收发组件可以包括模式复用解复用器、第一波分复用器、第二波分复用器、第一光电信号处理单元和第二光电信号处理单元,其中模式复用解复用器正向使用,作为模式复用器,可以用于将第一波长的OTDR光载波和OSC光载波分别由光纤基模转换为第一光纤模式和第二光纤模式,第一光纤模式与第二光纤模式正交,且第一模式复用解复用器连接有模分复用光纤,能够将第一光纤模式的OTDR光载波和第二光纤模式的OSC光载波合并输入至模分复用光纤,模分复用光纤中还传输有对端发送的第二波长的第一光纤模式的反向OTDR光载波和第二光纤模式的反向OSC光载波;模式复用解复用器还可以反向使用,作为模式解复用器,用于从模分复用光纤中分离出第一光纤模式的OTDR后向散射光和反向OTDR光载波并将OTDR后向散射光和反向OTDR光载波转换为光纤基模,且模式复用解复 用器能够从模分复用光纤中分离出第二光纤模式的OSC后向散射光和反向OSC光载波并将OSC后向散射光和反向OSC光载波转换为光纤基模;在本实施例的模分复用光纤中,OTDR后向散射光和OSC后向散射光为第一波长的光信号,反向OTDR光载波和反向OSC光载波是第二波长的光信号。第一波分复用器与模式复用解复用器连接,用于分离光纤基模的OTDR后向散射光和反向OTDR光载波;第二波分复用器与模式复用解复用器连接,用于分离光纤基模的OSC后向散射光和反向OSC光载波;第一光电信号处理单元与第一波分复用器连接,用于对光纤基模的OTDR后向散射光进行处理以得到OTDR业务数据;第二光电信号处理单元与第二波分复用器连接,用于对光纤基模的反向OSC光载波进行处理以得到OSC业务数据。在现有设备基础上,引入模分复用解复用器、第一波分复用器和第二波分复用器,在单纤双向场景下,集成OTDR功能和OSC功能,利用光纤模式的正交性,能够在不中断OSC业务的情况,支持OTDR在线监测功能。
在本申请的一些实施例中,不对第一波长和第二波长作具体限定,只要第一波长与第二波长不同,使得第一波长的光信号和第二波长的光信号能够被波分复用器分离即可,都在本申请实施例的保护范围内。
如图12所示,图12是本申请另一实施例提供的一种光收发组件的结构示意图,本申请实施例提供一种光收发组件。在一示例性实施例中,光收发组件还包括调制信息光加载单元、第一光合分波器和第二光合分波器,调制信息光加载单元用于接收来自设备端的OTDR基带信号和OSC基带信号并将OTDR基带信号和OSC基带信号分别加载到第一波长的光载波上以得到第一波长的光纤基模的OTDR光载波和OSC光载波;第一光合分波器用于对OTDR光信号进行隔离切换,调制信息光加载单元通过第一光合分波器与模式复用解复用器连接,以将光纤基模的OTDR光载波发送给模式复用解复用器,第一波分复用器通过第一光合分波器与模式复用解复用器连接,以接收光纤基模的OTDR后向散射光和反向OTDR光载波;第二光合分波器用于对OSC光信号进行隔离切换,调制信息光加载单元通过第二光合分波器与模式复用解复用器连接,以将光纤基模的OSC光载波发送给模式复用解复用器,第二波分复用器通过第二光合分波器与模式复用解复用器连接,以接收光纤基模的OSC后向散射光和反向OSC光载波。
本领域技术人员可以理解的是,第一光合分波器用于对OTDR光信号进行隔离切换,使得调制信息光加载单元能够将光纤基模的OTDR光载波发送给模式复用解复用器,模式复用解复用器能够将第一波长的OTDR后向散射光和第二波长的反向OTDR光载波发送给第一波分复用器;第二光合分波器用于对OSC光信号进行隔离切换,使得调制信息光加载单元能够将光纤基模的OSC光载波发送给模式复用解复用器,模式复用解复用器能够将第一波长的OSC后向散射光和第二波长的反向OSC光载波发送给第一波分复用器。
在一可行的实施例中,第一光合分波器可以是光环形器、光耦合器或者分光片等;第二光合分波器也可以是光环形器、光耦合器或者分光片等,本实施例不对第一光合分波器和第二光合分波器的类型作具体限定,只要能够实现对光信号的隔离切换即可。
如图13所示,图13是本申请另一实施例提供的一种光收发组件的结构示意图,本申请实施例提供一种光收发组件。在一示例性实施例中,调制信息光加载单元包括激光器、光耦合器、第一驱动器、第一调制器、第二驱动器和第二调制器,第一驱动器与第一调制器相连,用于接收OTDR基带信号并调整OTDR基带信号的电压以匹配第一调制器的驱动电压,第二 驱动器与第二调制器相连,用于接收OSC基带信号并调整OSC基带信号的电压以匹配第二调制器的驱动电压,激光器用于输出连续光,光耦合器分别与激光器、第一调制器和第二调制器相连,用于将连续光分成第一路光和第二路光,并将第一路光和第二路光分别传输给第一调制器和第二调制器,第一调制器通过第一光合分波器与模式复用解复用器连接,用于将OTDR基带信号加载到第一路光以得到光纤基模的OTDR光载波并将OTDR光载波发送给模式复用解复用器,第二调制器通过第二光合分波器与模式复用解复用器连接,用于将OSC基带信号加载到第二路光以得到光纤基模的OSC光载波,并将OSC光载波发送给模式复用解复用器。调制信息光加载单元仅使用一个激光器,即OTDR信号和OSC信号共用一个激光器,能够降低成本和功耗,且由于器件体积、数量均较少,光收发组件可以封装成SFP模块形式,OTN设备集成度得到提高,从而节省空间。且OTDR业务对OSC业务无影响,支持OTDR全幅输出,在SFP模块级别的光功率下,也可以实现OTDR大动态范围感知。
参照图14,图14是本申请另一实施例提供的一种光收发组件的结构示意图,本申请实施例提供一种光收发组件。在一示例性实施例中,第一光电信号处理单元包括第一光电转换器和第一信号处理单元,第一光电转换器通过第一光合分波器与模式复用解复用器相连,用于将OTDR后向散射光转换为OTDR电信号,第一信号处理单元与第一光电转换器相连,用于对OTDR电信号进行处理以得到OTDR业务数据;第二光电信号处理单元包括第二光电转换器和第二信号处理单元,第二光电转换器过第二光合分波器与模式复用解复用器相连,用于将反向OSC光载波转换为OSC电信号,第二信号处理单元与第二光电转换器相连,用于对OSC电信号进行处理以得到OSC业务数据。
参照图15,图15是本申请实施例提供的一种光纤检测方法的应用示意图,本申请实施例提供一种的光纤检测方法,其中光收发组件可以包括激光器、第一调制器、第二调制器、第一驱动器、第二驱动器、光耦合器、光合分波器、第一模式复用解复用器、第二模式复用解复用器、第一光电转换器、第二光电转换器、第一信号处理单元和第二信号处理单元。其中光合分波器可以包括三个端口,分别为1号端口、2号端口和3号端口,光信号可以从1号端口进入并从2号端口输出,也可以从2号端口进入并从3号端口输出,光合分波器可以对光信号进行隔离切换。
在一示例性实施例中,该光收发组件可以基于LP(Linearly polarized,线偏振)模式集成OTDR功能和OSC功能,光纤基模为LP01模式。单板发送OSC基带信号和OTDR基带信号给光收发组件,其中OSC基带信号采用155Mbps速率OOK(On-OFF Keying,开关键控)调制;OTDR基带信号为M序列型OTDR,码片宽度为6000ns,码片速率为0.1667Mchips/s,序列阶数为15阶。OTDR基带信号和OSC基带信号分别经过第一驱动器和第二驱动器进行信号幅度的调整,以分别匹配第一调制器和第二调制器的驱动电压。激光器输出波长为1510nm的连续光,信号峰值功率为7dBm,消光比为10dB,连续光经过光耦合器一分为二,第一路光进入第一调制器在光域加载OTDR基带信号,第二路光进入第二调制器在光域加载OSC基带信号。OTDR基带信号被第一调制器调制为OTDR光载波,OTDR光载波经过光合分波器的1号端口,从光合分波器的2号端口输出,以LP01模式进入第一模式复用解复用器;OSC基带信号被第二调制器调制为OSC光载波,OSC光载波以LP01模式直接进入第一模式复用解复用器。第一模式复用解复用器可以由模式转换器和模式选择耦合器组成,其在1480-1520nm波段和OTN业务波段工作,并支持7个LP空间模式,即LP01,LP11a, LP11b,LP21a,LP21b,LP31a,LP31b。第一模式复用解复用器为双向器件,若输入端为多输入口,输出端为单输出口,则定义为正向,正向使用为模式复用器;若输入端为单输入口,输出端为多输出口,则定义为反向,反向使用为模式解复用器。第一模式复用解复用器反向工作时,即用作模式解复用器时,其支持的7个空间模式,在工作波段内模式纯度均需要大于30dB。第一模式复用解复用器输出端将OTDR光载波由光纤基模转换成LP21a模式,将OSC光载波由光纤基模转换成LP31a模式,将LP21a的OTDR光载波和LP31a的OSC光载波合并输出,第一模式复用解复用器输出端与模式复用光纤相连,模式复用光纤可以采用在工作波段内支持LP01,LP11a,LP11b,LP21a,LP21b,LP31a,LP31b这7个模式的环芯光纤,该环芯光纤在1480-1520nm波段和OTN业务波段内支持上述7个空间模式,LP21a和LP31a两种模式正交,LP21a的OTDR光载波和LP31a的OSC光载波能够在该模分复用光纤中独立传输。
对于OSC业务,来自对端的光信号经过第二模式复用解复用器被分解为LP21a的OTDR光载波和LP31a的OSC光载波,第二模式复用解复用器再将二者均转换为LP01模式,并分别在两个端口输出。第二模式复用解复用器工作状态为反向,即用作模式解复用器,其他特性与第一模式复用解复用器一致。LP01的OTDR光载波输出后被悬空,不做处理。LP01的OSC光载波经过第二光电转换器完成光电转换和电模拟信号放大,第二光电转换器带宽为150MHz,接收灵敏度为-45dBm,第二光电转换器的增益k=3000V/mW,第二信号处理单元对第二光电转换器输出的OSC模拟信号进行滤波、采样、判据等处理,以恢复出OSC业务,实现OSC功能。
对于OTDR业务,光纤信道中的LP21a的OTDR后向散射光回到第一模式复用解复用器,此时第一模式复用解复用器为反向工作状态,即用作模式解复用器,OTDR后向散射光经过第一模式复用解复用器被转换为LP01模式,并输出到光合分波器的2号端口,经过光合分波器的3号端口输出到第一光电转换器中,第一光电转换器带宽为30MHz,接收灵敏度为-55dBm,第一光电转换器的增益k=27000V/mW。第一光电转换器对OTDR后向散射光进行光电转换和电模拟信号放大后,得到OTDR后向瑞利散射模拟信号,第一信号处理单元对OTDR后向瑞利散射模拟信号进行滤波、ADC采样以及序列OTDR相关的运算等,以得到光纤链路的详细信息,实现OTDR功能。
在一可行的实施例中,第一模式复用解复用器和第二模式复用解复用器可以是光子灯笼;光合分波器可以是光环形器。
在另一示例性实施例中,如图16所示,图16是本申请实施例提供的另一种光纤检测方法的应用示意图,其中光收发组件也可以基于OAM(Orbital angular momentum,轨道角动量)模式集成OTDR功能和OSC功能,光纤基模为LP01模式。单板发送OSC基带信号和OTDR基带信号给光收发组件,其中OSC基带信号采用155Mbps速率OOK调制;OTDR基带信号为M序列型OTDR,码片宽度为6000ns,码片速率为0.1667Mchips/s,序列阶数为15阶。OTDR基带信号和OSC基带信号分别经过第一驱动器和第二驱动器进行信号幅度的调整,以分别匹配第一调制器和第二调制器的驱动电压。激光器输出波长为1510nm的连续光,信号峰值功率为7dBm,消光比为10dB,连续光经过光耦合器一分为二,第一路光进入第一调制器在光域加载OTDR基带信号,第二路光进入第二调制器在光域加载OSC基带信号。OTDR基带信号被第一调制器调制为OTDR光载波,OTDR光载波经过光合分波器的1号端口,从 光合分波器的2号端口输出,以LP01模式进入第一模式复用解复用器;OSC基带信号被第二调制器调制为OSC光载波,OSC光载波以LP01模式直接进入第一模式复用解复用器。第一模式复用解复用器可以由模式转换器和模式选择耦合器组成,其在1480-1520nm波段和OTN业务波段工作,并支持7个LP空间模式,即OAM0,OAM+1,OAM-1,OAM+2,OAM-2,OAM+3,OAM-3,其中“±”表示OAM模式拓扑荷数的正负。第一模式复用解复用器为双向器件,若输入端为多输入口,输出端为单输出口,则定义为正向,正向使用为模式复用器;若输入端为单输入口,输出端为多输出口,则定义为反向,反向使用为模式解复用器。第一模式复用解复用器反向工作时,即用作模式解复用器时,其支持的7个空间模式,在工作波段内模式纯度均需要大于30dB。第一模式复用解复用器输出端将OTDR光载波由光纤基模转换成OAM+3模式,将OSC光载波由光纤基模转换成OAM-3模式,将OAM+3的OTDR光载波和OAM-3的OSC光载波合并输出,第一模式复用解复用器输出端与模式复用光纤相连,模式复用光纤可以采用在工作波段内支持OAM0,OAM+1,OAM-1,OAM+2,OAM-2,OAM+3,OAM-3这7个模式的环芯光纤,该环芯光纤在1480-1520nm波段和OTN业务波段内支持上述7个空间模式,OAM+3和OAM-3两种模式正交,OAM+3的OTDR光载波和OAM-3的OSC光载波能够在该模分复用光纤中独立传输。
对于OSC业务,来自对端的光信号经过第二模式复用解复用器被分解为OAM+3模式的OTDR光载波和OAM-3模式的OSC光载波,第二模式复用解复用器再将二者均转换为LP01模式,并分别在两个端口输出。第二模式复用解复用器工作状态为反向,即用作模式解复用器,其他特性与第一模式复用解复用器一致。LP01模式的OTDR光载波输出后被悬空,不做处理。LP01模式的OSC光载波经过第二光电转换器完成光电转换和电模拟信号放大,第二光电转换器带宽为150MHz,接收灵敏度为-45dBm,第二光电转换器的增益k=3000V/mW,第二信号处理单元对第二光电转换器输出的OSC模拟信号进行滤波、采样、判据等处理,以恢复出OSC业务,实现OSC功能。
对于OTDR业务,光纤信道中的OAM+3的OTDR后向散射光回到第一模式复用解复用器,此时第一模式复用解复用器为反向工作状态,即用作模式解复用器,OTDR后向散射光经过第一模式复用解复用器被转换为LP01模式,并输出到光合分波器的2号端口,经过光合分波器的3号端口输出到第一光电转换器中,第一光电转换器带宽为30MHz,接收灵敏度为-55dBm,第一光电转换器的增益k=27000V/mW。第一光电转换器对OTDR后向散射光进行光电转换和电模拟信号放大后,得到OTDR后向瑞利散射模拟信号,第一信号处理单元对第一光电转换器输出的OTDR后向瑞利散射模拟信号进行滤波、ADC采样以及序列OTDR相关的运算等,以得到光纤链路的详细信息,实现OTDR功能。
在一可行的实施例中,第一模式复用解复用器和第二模式复用解复用器可以是光子灯笼;光合分波器可以是光环形器。
参照图17,图17是本申请另一实施例提供的一种光纤检测方法的应用示意图,本申请实施例提供一种的光纤检测方法,其中光收发组件可以包括激光器、第一调制器、第二调制器、第一驱动器、第二驱动器、光耦合器、第一光合分波器、第二光合分波器、第一波分复用器、第二波分复用器、模式复用解复用器、第一光电转换器、第二光电转换器、第一信号处理单元和第二信号处理单元。其中第一光合分波器和第二光合分波器均可以包括三个端口,分别为1号端口、2号端口和3号端口,对于第一光合分波器或者第二光合分波器,光信号 可以从1号端口进入并从2号端口输出,也可以从2号端口进入并从3号端口输出,在本实施例中,第一光合分波器用于对OTDR光信号进行隔离切换,第二光合分波器用于对OSC光信号进行隔离切换。
在一示例性实施例中,该光收发组件可以基于LP模式集成OTDR功能和OSC功能,光纤基模为LP01模式。单板将OSC和OTDR基带信号发送给光收发组件,其中OSC基带信号采用155Mbps速率OOK调制;OTDR基带信号为M序列型OTDR,码片宽度为6000ns,码片速率为0.1667Mchips/s,序列阶数为15阶。OSC基带信号和OTDR基带信号分别经过第一驱动器和第二驱动器进行信号幅度的调整,以分别匹配第一调制器和第二调制器的驱动电压。激光器输出波长λ1为1510nm的连续光,信号峰值功率为7dBm,消光比为10dB,光耦合器将连续光一分为二,第一路光进入第一调制器在光域加载OTDR基带信号,第二路光进入第二调制器在光域加载OSC基带信号。OTDR基带信号被第一调制器调制为OTDR光载波,OTDR光载波经过第一光合分波器的1号端口,从第一光合分波器的2号端口输出,以LP01模式进入模式复用解复用器;OSC基带信号被第二调制器调制为OSC光载波,OSC光载波以LP01模式从第二光合分波器的1号端口进入,并从第二光合分波器的2号端口输出至模式复用解复用器。模式复用解复用器由模式转换器和模式选择耦合器组成,其在1480-1520nm波段和OTN业务波段工作,并支持7个LP空间模式,即LP01,LP11a,LP11b,LP21a,LP21b,LP31a,LP31b。模式复用解复用器为双向器件,若输入端为多输入口,输出端为单输出口,则定义为正向,正向使用为模式复用器;若输入端为单输入口,输出端为多输出口,则定义为反向,反向使用为模式解复用器。模式复用解复用器反向工作时,即用作模式解复用器时,其支持的7个空间模式,在工作波段内模式纯度需均大于30dB。模式复用解复用器输出端将OTDR光载波由光纤基模转换成LP21a模式,将OSC光载波由光纤基模转换成LP31a模式,将LP21a的OTDR光载波和LP31a的OSC光载波合并输出,模式复用解复用器输出端与模式复用光纤相连,模式复用光纤可以采用在工作波段内支持LP01,LP11a,LP11b,LP21a,LP21b,LP31a,LP31b这7个模式的环芯光纤,该环芯光纤在1480-1520nm波段和OTN业务波段内支持上述7个空间模式,LP21a和LP31a两种模式正交,LP21a的OTDR光载波和LP31a的OSC光载波能够在该模分复用光纤中独立传输。
对端的光收发组件与本地光收发组件配置相同,不同的是采用了波长λ2为1491nm的光载波。正常工作时,光纤信道中的业务类型有4种,即λ1的OSC光信号、λ1的OTDR光信号、λ2的OSC光信号、λ2的OTDR光信号。
对于OSC业务,模式复用解复用器接收来自对端的光信号,此时模式复用解复用器为反向工作状态,即用作模式解复用器。波长为λ1的正向OSC光载波产生的OSC后向散射光和对端信号中波长为λ2的反向OSC光载波在LP31a模式中被模式复用解复用器转换到指定端口并转换为LP01模式输出至第二光合分波器的2号端口,并从第二光合分波器的3号端口输出,再经过第二波分复用器按照波长分离,波长λ1的正向OSC光载波产出的OSC后向散射光为噪声而被悬空,不做处理。波长为λ2的反向OSC光载波进入第二光电转换器,第二光电转换器带宽为150MHz,接收灵敏度为-45dBm,第二光电转换器的增益k=3000V/mW,第二信号处理单元对第二光电转换器输出的OSC模拟信号进行滤波、采样、判据等处理,以恢复出OSC业务,实现OSC功能。
对于OTDR业务,对端信号中波长为λ2的反向OTDR光载波和波长为λ1的正向OTDR 光载波产生的OTDR后向散射光在LP21a模式中被模式复用解复用器转换到指定端口并转换为LP01模式输出至第一光合分波器的2号端口,并从第一光合分波器的3号端口输出,再经过第一波分复用器按照波长分离,波长λ2的反向OTDR光载波为噪声而被悬空,不做处理。波长为λ1的正向OTDR光载波产生的OTDR后向散射光进入第一光电转换器,第一光电转换器带宽为30MHz,接收灵敏度为-55dBm,第一光电转换器的增益k=27000V/mW。第一光电转换器对波长为λ1的OTDR后向散射光进行光电转换和电模拟信号放大后,得到OTDR后向瑞利散射模拟信号,第一信号处理单元对第一光电转换器输出的OTDR后向瑞利散射模拟信号进行滤波、ADC采样以及序列OTDR相关的运算等,以得到光纤链路的详细信息,实现OTDR功能。
在一可行的实施例中,模式复用解复用器可以是光子灯笼;第一光合分波器和第二光合分波器可以是光环形器;第一波分复用器和第二波分复用器可以是光纤波分复用器。
在本申请的一些实施例中,OTDR光载波以第一光纤模式在光纤信道中传输,OSC光载波以第二光纤模式在光纤信道中传输,不对第一光纤模式和第二光纤模式作具体限定,只要第一光纤模式和第二光纤模式正交即可,且无论是在双纤双向场景中,还是单纤双向场景中,都可以使用本申请实施例提供的光纤状态检测方法在同一光纤中同时进行OTDR业务和OSC业务,光收发组件集成OTDR功能和OSC功能,只用一个激光器,能够降低成本和功耗,且器件体积、数量均较少,光收发组件可以封装成SFP模块形式,OTN设备集成度得到提高,从而节省空间,而且OTDR业务对OSC业务无影响,能够支持OTDR全幅输出,在SFP模块级别的光功率下,也能够实现对光缆的大动态范围监测。
本申请实施例还提供一种网元设备,该网元设备包括以上任一实施例提供的光收发组件,能够集成OSC功能与OTDR功能,且在不中断OSC业务的情况,支持OTDR在线监测功能。
本申请提供的实施例包括:光纤状态检测方法、光收发组件及网元设备,根据本申请提供的方案,在光纤通信系统中,两个由模分复用光纤连通的网元分别配置有第一光收发组件和第二光收发组件,第一光收发组件能够将第一光纤模式的OTDR光载波和第二光纤模式的OSC光载波合并输入至模分复用光纤,接收OTDR光载波的OTDR后向散射光并根据OTDR后向散射光得到OTDR业务数据;且第一光收发组件能够接收来自第二光收发组件的第二光纤模式的OSC光载波并根据OSC光载波得到OSC业务数据,其中,第一光纤模式与第二光纤模式正交。集成OTDR和OSC两种业务,能够提高OTN(Optical Transport Network,光传送网)设备的集成度,节约空间,且为OTDR光载波和OSC光载波分配两个互相正交的光纤模式,能够利用光纤模式的正交性,使得两种业务间互不干扰,实现在同一光纤中同时进行OTDR业务与OSC业务。

Claims (13)

  1. 一种光纤状态检测方法,应用于光纤通信系统中的第一光收发组件,所述光纤通信系统还包括第二光收发组件,所述第一光收发组件和所述第二光收发组件通过模分复用光纤连接;所述方法包括:
    将第一光纤模式的OTDR光载波和第二光纤模式的OSC光载波合并输入至所述模分复用光纤,以使所述第二光收发组件接收所述OSC光载波并根据所述OSC光载波得到OSC业务数据;
    接收所述OTDR光载波的OTDR后向散射光并根据所述OTDR后向散射光得到OTDR业务数据;
    其中,所述第一光纤模式与所述第二光纤模式正交。
  2. 根据权利要求1所述的光纤状态检测方法,其中,在将第一光纤模式的OTDR光载波和第二光纤模式的OSC光载波合并输入至所述模分复用光纤之前,所述方法还包括:
    接收来自设备端的OTDR基带信号和OSC基带信号,并将所述OTDR基带信号和所述OSC基带信号分别调制为光纤基模的OTDR光载波和OSC光载波;
    将所述OTDR光载波由所述光纤基模转换为所述第一光纤模式,并将所述OSC光载波由所述光纤基模转换为所述第二光纤模式。
  3. 根据权利要求1所述的光纤状态检测方法,还包括:
    从所述模分复用光纤中分离出来自所述第二光收发组件的第二光纤模式的OSC光载波;
    将所述OSC光载波由所述第二光纤模式转换为光纤基模;
    对所述光纤基模的OSC光载波进行处理,得到所述OSC业务数据。
  4. 根据权利要求1所述的光纤状态检测方法,其中,所述接收所述OTDR光载波的OTDR后向散射光并根据所述OTDR后向散射光得到OTDR业务数据,包括:
    从所述模分复用光纤中分离出所述OTDR光载波的OTDR后向散射光;
    将所述OTDR后向散射光由所述第一光纤模式转换为光纤基模;
    对所述光纤基模的OTDR后向散射光进行处理,得到所述OTDR业务数据。
  5. 一种光收发组件,包括:
    第一模式复用解复用器,用于将OTDR光载波和OSC光载波分别由光纤基模转换为第一光纤模式和第二光纤模式,其中所述第一光纤模式与所述第二光纤模式正交,且所述第一模式复用解复用器与模分复用光纤连接,能够将所述第一光纤模式的OTDR光载波和所述第二光纤模式的OSC光载波合并输入至所述模分复用光纤,所述第一模式复用解复用器还用于从所述模分复用光纤中分离出所述OTDR光载波的OTDR后向散射光并将所述OTDR后向散射光转换为光纤基模;
    第二模式复用解复用器,与所述模分复用光纤相连,用于从所述模分复用光纤中分离出来自对端的第二光纤模式的OSC光载波并将所述OSC光载波转换为光纤基模;
    第一光电信号处理单元,与所述第一模式复用解复用器连接,用于对所述光纤基模的OTDR后向散射光进行处理以得到OTDR业务数据;
    第二光电信号处理单元,与所述第二模式复用解复用器连接,用于对所述光纤基模的OSC光载波进行处理以得到OSC业务数据。
  6. 根据权利要求5所述的光收发组件,其中,所述光收发组件还包括调制信息光加载单元和光合分波器,所述调制信息光加载单元用于接收来自设备端的OTDR基带信号和OSC基带信号并将所述OTDR基带信号和所述OSC基带信号分别加载到光纤基模的光载波上以得到所述光纤基模的OTDR光载波和OSC光载波;所述光合分波器用于对OTDR光信号进行隔离转换,所述调制信息光加载单元通过所述光合分波器与所述第一模式复用解复用器连接,以将所述OTDR光载波发送给所述第一模式复用解复用器,所述第一光电信号处理单元通过所述光合分波器与所述第一模式复用解复用器连接,以接收所述光纤基模的OTDR后向散射光;所述调制信息光加载单元还与所述第一模式复用解复用器连接,以将所述OSC光载波发送给所述第一模式复用解复用器。
  7. 根据权利要求6所述的光收发组件,其中,所述第一光电信号处理单元包括第一光电转换器和第一信号处理单元,所述第一光电转换器通过所述光合分波器与所述第一模式复用解复用器相连,用于将所述OTDR后向散射光转换为OTDR电信号,所述第一信号处理单元与所述第一光电转换器相连,用于对所述OTDR电信号进行处理以得到所述OTDR业务数据;所述第二光电信号处理单元包括第二光电转换器和第二信号处理单元,所述第二光电转换器与所述第二模式复用解复用器相连,用于将所述OSC光载波转换为OSC电信号,所述第二信号处理单元与所述第二光电转换器相连,用于对所述OSC电信号进行处理以得到所述OSC业务数据。
  8. 根据权利要求6所述的光收发组件,其中,所述调制信息光加载单元包括激光器、光耦合器、第一驱动器、第一调制器、第二驱动器和第二调制器,所述第一驱动器与所述第一调制器相连,用于接收所述OTDR基带信号并调整所述OTDR基带信号的电压以匹配所述第一调制器的驱动电压,所述第二驱动器与所述第二调制器相连,用于接收所述OSC基带信号并调整所述OSC基带信号的电压以匹配所述第二调制器的驱动电压,所述激光器用于输出连续光,所述光耦合器分别与所述激光器、所述第一调制器和所述第二调制器相连,用于将所述连续光分成第一路光和第二路光,并将所述第一路光和所述第二路光分别传输给所述第一调制器和所述第二调制器,所述第一调制器通过所述光合分波器与所述第一模式复用解复用器相连,用于将所述OTDR基带信号加载到所述第一路光以得到光纤基模的OTDR光载波并将所述OTDR光载波发送给所述第一模式复用解复用器,所述第二调制器与所述第一模式复用解复用器相连,用于将所述OSC基带信号加载到所述第二路光以得到光纤基模的OSC光载波,并将所述OSC光载波发送给所述第一模式复用解复用器。
  9. 一种光收发组件,包括:
    模式复用解复用器,用于将第一波长的OTDR光载波和OSC光载波分别由光纤基模转换为第一光纤模式和第二光纤模式,其中所述第一光纤模式与所述第二光纤模式正交,且所述第一模式复用解复用器连接有模分复用光纤,能够将所述第一光纤模式的OTDR光载波和所述第二光纤模式的OSC光载波合并输入至所述模分复用光纤,所述模分复用光纤中还传输有对端发送的第二波长的所述第一光纤模式的反向OTDR光载波和所述第二光纤模式的反向OSC光载波;所述模式复用解复用器还用于从所述模分复用光纤中分离出所述第一光纤模式的OTDR后向散射光和所述反向OTDR光载波并将所述OTDR后向散射光和所述反向OTDR光载波转换为光纤基模,且所述模式复用解复用器能够从所述模分复用光纤中分离出所述第二光纤模式的OSC后向散射光和所述反向OSC光载波并将所述OSC后向散射光和所述反向 OSC光载波转换为光纤基模;
    第一波分复用器,与所述模式复用解复用器连接,用于分离所述光纤基模的OTDR后向散射光和反向OTDR光载波;
    第二波分复用器,与所述模式复用解复用器连接,用于分离所述光纤基模的OSC后向散射光和反向OSC光载波;
    第一光电信号处理单元,与所述第一波分复用器连接,用于对所述光纤基模的OTDR后向散射光进行处理以得到OTDR业务数据;
    第二光电信号处理单元,与所述第二波分复用器连接,用于对所述光纤基模的反向OSC光载波进行处理以得到OSC业务数据。
  10. 根据权利要求9所述的光收发组件,其中,所述光收发组件还包括调制信息光加载单元、第一光合分波器和第二光合分波器,所述调制信息光加载单元用于接收来自设备端的OTDR基带信号和OSC基带信号并将所述OTDR基带信号和所述OSC基带信号分别加载到第一波长的光载波上以得到所述第一波长的光纤基模的OTDR光载波和OSC光载波;所述第一光合分波器用于对OTDR光信号进行隔离切换,所述调制信息光加载单元通过所述第一光合分波器与所述模式复用解复用器连接,以将所述光纤基模的OTDR光载波发送给所述模式复用解复用器,所述第一波分复用器通过所述第一光合分波器与所述模式复用解复用器连接,以接收所述光纤基模的OTDR后向散射光和反向OTDR光载波;所述第二光合分波器用于对OSC光信号进行隔离切换,所述调制信息光加载单元通过所述第二光合分波器与所述模式复用解复用器连接,以将所述光纤基模的OSC光载波发送给所述模式复用解复用器,所述第二波分复用器通过所述第二光合分波器与所述模式复用解复用器连接,以接收所述光纤基模的OSC后向散射光和反向OSC光载波。
  11. 根据权利要求10所述的光收发组件,其中,所述调制信息光加载单元包括激光器、光耦合器、第一驱动器、第一调制器、第二驱动器和第二调制器,所述第一驱动器与所述第一调制器相连,用于接收所述OTDR基带信号并调整所述OTDR基带信号的电压以匹配所述第一调制器的驱动电压,所述第二驱动器与所述第二调制器相连,用于接收所述OSC基带信号并调整所述OSC基带信号的电压以匹配所述第二调制器的驱动电压,所述激光器用于输出连续光,所述光耦合器分别与所述激光器、所述第一调制器和所述第二调制器相连,用于将所述连续光分成第一路光和第二路光,并将所述第一路光和所述第二路光分别传输给所述第一调制器和所述第二调制器,所述第一调制器通过所述第一光合分波器与所述模式复用解复用器连接,用于将所述OTDR基带信号加载到所述第一路光以得到光纤基模的OTDR光载波并将所述OTDR光载波发送给所述模式复用解复用器,所述第二调制器通过所述第二光合分波器与所述模式复用解复用器连接,用于将所述OSC基带信号加载到所述第二路光以得到光纤基模的OSC光载波,并将所述OSC光载波发送给所述模式复用解复用器。
  12. 根据权利要求10所述的光收发组件,其中,所述第一光电信号处理单元包括第一光电转换器和第一信号处理单元,所述第一光电转换器通过第一波分复用器、所述第一光合分波器与所述模式复用解复用器相连,用于将所述OTDR后向散射光转换为OTDR电信号,所述第一信号处理单元与所述第一光电转换器相连,用于对所述OTDR电信号进行处理以得到所述OTDR业务数据;所述第二光电信号处理单元包括第二光电转换器和第二信号处理单元,所述第二光电转换器通过第二波分复用器、所述第二光合分波器与所述模式复用解复用器相 连,用于将所述反向OSC光载波转换为OSC电信号,所述第二信号处理单元与所述第二光电转换器相连,用于对所述OSC电信号进行处理以得到所述OSC业务数据。
  13. 一种网元设备,包括如权利要求5至12任一项所述的光收发组件。
PCT/CN2023/094345 2022-08-03 2023-05-15 光纤状态检测方法、光收发组件及网元设备 WO2024027275A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210927825.2 2022-08-03
CN202210927825.2A CN115001572B (zh) 2022-08-03 2022-08-03 光纤状态检测方法、光收发组件及网元设备

Publications (1)

Publication Number Publication Date
WO2024027275A1 true WO2024027275A1 (zh) 2024-02-08

Family

ID=83021407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/094345 WO2024027275A1 (zh) 2022-08-03 2023-05-15 光纤状态检测方法、光收发组件及网元设备

Country Status (2)

Country Link
CN (1) CN115001572B (zh)
WO (1) WO2024027275A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115001572B (zh) * 2022-08-03 2022-11-04 中兴通讯股份有限公司 光纤状态检测方法、光收发组件及网元设备
CN115694643B (zh) * 2022-10-27 2024-05-03 中国联合网络通信集团有限公司 信号的传输方法、装置、设备及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106452568A (zh) * 2016-11-03 2017-02-22 深圳新飞通光电子技术有限公司 具有otdr功能的osc光模块及其实现实时、中断业务检测的方法
WO2017177412A1 (zh) * 2016-04-14 2017-10-19 华为技术有限公司 一种光纤状态检测方法、光监控单元及站点
CN108964769A (zh) * 2017-05-22 2018-12-07 中兴通讯股份有限公司 一种模分复用传输方法、发送设备及接收设备
CN111404611A (zh) * 2020-04-01 2020-07-10 南京信息工程大学 双信号传输光纤及应用该光纤的传输装置和方法
CN112242869A (zh) * 2019-07-16 2021-01-19 中国移动通信集团浙江有限公司 光纤故障检测系统
US20210211193A1 (en) * 2018-05-22 2021-07-08 Ciena Corporation Optical fiber characterization measurement systems and methods
CN114097179A (zh) * 2019-07-12 2022-02-25 华为技术有限公司 用于光收发器的方法和装置
CN115001572A (zh) * 2022-08-03 2022-09-02 中兴通讯股份有限公司 光纤状态检测方法、光收发组件及网元设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106059657A (zh) * 2016-05-20 2016-10-26 烽火通信科技股份有限公司 一种集成光时域反射仪的光线路保护系统
CN107979411B (zh) * 2016-10-21 2022-06-21 中兴通讯股份有限公司 一种光纤链路的监测方法及装置
CN207691810U (zh) * 2017-12-22 2018-08-03 武汉孚晟科技有限公司 一种基于otdr的osc实时监控系统光路结构
CN109756262A (zh) * 2019-02-27 2019-05-14 武汉光迅科技股份有限公司 一种光纤通信线路监控方法、装置及计算机存储介质
CN111970048A (zh) * 2020-09-04 2020-11-20 中国人民解放军63880部队 一种多功能的光监控信道模块及其运行方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017177412A1 (zh) * 2016-04-14 2017-10-19 华为技术有限公司 一种光纤状态检测方法、光监控单元及站点
CN106452568A (zh) * 2016-11-03 2017-02-22 深圳新飞通光电子技术有限公司 具有otdr功能的osc光模块及其实现实时、中断业务检测的方法
CN108964769A (zh) * 2017-05-22 2018-12-07 中兴通讯股份有限公司 一种模分复用传输方法、发送设备及接收设备
US20210211193A1 (en) * 2018-05-22 2021-07-08 Ciena Corporation Optical fiber characterization measurement systems and methods
CN114097179A (zh) * 2019-07-12 2022-02-25 华为技术有限公司 用于光收发器的方法和装置
CN112242869A (zh) * 2019-07-16 2021-01-19 中国移动通信集团浙江有限公司 光纤故障检测系统
CN111404611A (zh) * 2020-04-01 2020-07-10 南京信息工程大学 双信号传输光纤及应用该光纤的传输装置和方法
CN115001572A (zh) * 2022-08-03 2022-09-02 中兴通讯股份有限公司 光纤状态检测方法、光收发组件及网元设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHANGGUAN, YANGGUANG: "Design and Realization of In-service Fiber Link Mornitoring Module and Optimization", INFORMATION SCIENCE AND TECHNOLOGY, CHINESE MASTER’S THESES FULL-TEXT DATABASE, no. 1, 15 January 2022 (2022-01-15) *

Also Published As

Publication number Publication date
CN115001572B (zh) 2022-11-04
CN115001572A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
WO2024027275A1 (zh) 光纤状态检测方法、光收发组件及网元设备
CN110012368B (zh) 一种兼容波分复用信号的硅基集成化片上多模光交换系统
US9479254B2 (en) Distributed base station signal transmission system and communication system
JPH0828680B2 (ja) 双方向光ファイバ通信系の障害点監視方式
Beppu et al. 56-Gbaud PAM4 transmission over 2-km 125-μm-cladding 4-core multicore fibre for data centre communications
TWI493899B (zh) 動態波長分配光路由及應用此光路由的終端裝置
WO2022267170A1 (zh) 单纤双向无源光纤音频传输系统及光纤传输网络
CN108512623B (zh) 量子信道与经典信道的合纤qkd系统及其传输方法
CN219676335U (zh) 多通道有源光缆光子集成芯片及有源光缆
CN111835422A (zh) 基于载波辅助单探测器直接探测的多芯光纤通信系统
CN110324144B (zh) 量子密钥分配发送端芯片,封装结构和设备
CN111211837A (zh) 基于光纤供能的可见光通信系统
WO2024016867A1 (zh) 光网络检测方法、光收发组件、光网络设备及计算机存储介质
CN103001911A (zh) 自相干检测正交频分复用无源光网络系统和传输方法
CN210839596U (zh) 用于cwdm信号传输的波分配系统以及波分复用系统
CN210380876U (zh) 量子密钥分配发送端芯片、封装结构和设备
US7756419B2 (en) Traffic signal node cross scheduling method and system
CN111064513A (zh) 可见光通信供能一体化网络架构
CN212463225U (zh) 光波波分复用装置及系统
CN116015446A (zh) 一种高速激光通信湍流信道传输优化系统和方法
CN113193918B (zh) 将时间和频率传递信号复合到单个100g波分复用信道传输的装置
US8355631B2 (en) Reducing optical service channel interference in phase modulated wavelength division multiplexed (WDM) communication systems
Taga et al. IM-DD long-distance multichannel WDM transmission experiments using Er-doped fiber amplifiers
CN103516433A (zh) 一种光电光中继器、长距盒及对上下行光信号的处理方法
US7016614B1 (en) Optical wavelength division multiplexing transmission suppressing four-wave mixing and SPM-GVD effects

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23848985

Country of ref document: EP

Kind code of ref document: A1