WO2024027256A1 - Communication method and apparatus - Google Patents

Communication method and apparatus Download PDF

Info

Publication number
WO2024027256A1
WO2024027256A1 PCT/CN2023/093134 CN2023093134W WO2024027256A1 WO 2024027256 A1 WO2024027256 A1 WO 2024027256A1 CN 2023093134 W CN2023093134 W CN 2023093134W WO 2024027256 A1 WO2024027256 A1 WO 2024027256A1
Authority
WO
WIPO (PCT)
Prior art keywords
nssai
pdu session
ran
network element
attributes
Prior art date
Application number
PCT/CN2023/093134
Other languages
French (fr)
Chinese (zh)
Inventor
孙海洋
韦庆
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024027256A1 publication Critical patent/WO2024027256A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup

Definitions

  • the present application relates to the field of communication technology, and in particular, to a communication method and device.
  • the fifth generation mobile communication (the 5th-generation, 5G) system introduces network slicing (NS) technology.
  • Network slicing refers to a logical network customized according to different service requirements on physical or virtual network infrastructure.
  • the terminal equipment user equipment, UE
  • PDU protocol data unit
  • the 3rd generation partnership project defines the user route selection policy (UE route selection policy, URSP).
  • URSP is used to determine the PDU session selection parameters required by different applications (applications, APPs), such as Single network slice selection assistance information (S-NSSAI), data network name (DNN) and session service continuity (SSC) mode, etc.
  • S-NSSAI Single network slice selection assistance information
  • DNN data network name
  • SSC session service continuity
  • the UE determines the PDU session selection parameters corresponding to the APP based on the URSP.
  • the UE routes the APP's data packet (packet) to the PDU session. If there is no PDU session that satisfies the PDU session selection parameters corresponding to the APP, The UE will initiate the establishment of a PDU session and establish a PDU session that meets the PDU session selection parameters corresponding to the APP.
  • the UE When the S-NSSAI used by the UE needs to be updated, the UE needs to first release the PDU session in the original S-NSSAI, and then establish a PDU session in the new S-NSSAI. In this way, the service continuity of the UE cannot be maintained.
  • This application provides a communication method and device for maintaining the business continuity of the UE when the S-NSSAI used by the UE needs to be updated.
  • the present application provides a communication method, which can be executed by a communication device.
  • the communication device can be a terminal equipment (UE), or a module in the terminal equipment, such as a chip.
  • the communication method includes: the UE determines M S-NSSAIs, where M is an integer greater than or equal to 2.
  • the UE sends a PDU session establishment request.
  • the PDU session establishment request includes M S-NSSAIs.
  • the PDU session establishment request is used to establish a PDU session with the attributes of N S-NSSAIs.
  • the M S-NSSAIs include N S-NSSAIs.
  • -NSSAI, N is an integer greater than or equal to 2.
  • the UE accesses the radio access network (radio access network, RAN) equipment, and the RAN supports any S-NSSAI among N S-NSSAI.
  • radio access network radio access network, RAN
  • RAN radio access network
  • the RAN when the S-NSSAI used by the UE needs to be updated, as long as the currently accessed RAN supports one or more S-NSSAI among N S-NSSAI, the RAN will not reject the PDU session, so the UE No need Releasing the PDU session helps maintain the business continuity of the UE.
  • M S-NSSAIs are included in the network slice selection assistance information (NSSAI) that is allowed to be used; or M S-NSSAIs are included in the NSSAI of the NSSAI mapping that is allowed to be used. middle. In this way, it is helpful for the UE to successfully request the establishment of the PDU session.
  • NSSAI network slice selection assistance information
  • the UE before the UE determines M S-NSSAI, it also includes: the UE receives URSP rules, and the URSP rules include multi-slice usage instructions; accordingly, the UE sends a PDU session establishment request, including: the UE sends a PDU session establishment request according to the multi-slice usage indication. Slice usage instructions, send PDU session establishment request.
  • the URSP rule includes a route selection descriptor (RSD), and the RSD includes M S-NSSAI and multi-slice usage instructions; or, the URSP rule includes K RSDs and multi-slice usage instructions, and K RSDs. includes M S-NSSAI, and K is a positive integer less than or equal to M.
  • the multi-slice usage instruction can additionally indicate which S-NSSAIs in RSDs to use, for example, by including route selection descriptor precedence (RSD precedence) in the multi-slice usage instruction.
  • a multi-slice usage indication is set in the URSP rule, and the UE requests to establish a PDU session with M S-NSSAI attributes according to the multi-slice usage indication in the URSP rule, so that the S-NSSAI used by the UE needs When updating, it helps to maintain the business continuity of the UE.
  • the method further includes: the UE receives first information, and the first information is used to indicate that the target SMF or target UPF used to establish the PDU session does not support M S-NSSAIs.
  • the first part of S-NSSAI the UE determines, based on the first information, that the PDU session has attributes of N S-NSSAIs, and the N S-NSSAIs include other S-NSSAIs among the M S-NSSAIs except the first part of S-NSSAIs.
  • the UE requests to establish a PDU session with attributes of M S-NSSAI, due to the limitations of the S-NSSAI supported by the target SMF or target UPF, the PDU session finally established supports part of the M S-NSSAI. (That is, N S-NSSAI). In this way, the UE determines that the UE can transmit data to the network side through the N S-NSSAI according to the M S-NSSAI and the first information.
  • the present application provides a communication method, which can be executed by a communication device.
  • the communication device can be an access network equipment (RAN), or a module in the RAN, such as a chip.
  • the communication method includes: when the target RAN determines that the UE needs to be handed over from the source RAN to the target RAN, determine N S-NSSAI associated with the PDU session, where the PDU session is requested and established by the UE when accessing the source RAN, N It is an integer greater than or equal to 2; when the target RAN determines that the target RAN supports any S-NSSAI among N S-NSSAI, it accepts the PDU session.
  • the target RAN when the UE is handed over from the source RAN to the target RAN, as long as the target RAN supports one or more S-NSSAIs among the N S-NSSAI associated with the PDU session, the target RAN will not reject the PDU session. , so the UE does not need to release the PDU session, which helps maintain the UE's business continuity.
  • the present application provides a communication method, which can be executed by a communication device.
  • the communication device can be a terminal equipment (UE), or a module in the terminal equipment, such as a chip.
  • the communication method includes: the UE receives a re-evaluation instruction, and the re-evaluation instruction is used to instruct the UE to re-evaluate the URSP rule corresponding to the first S-NSSAI; accordingly, the UE re-evaluates the URSP rule corresponding to the first S-NSSAI, obtaining Second S-NSSAI; the UE sends a PDU session request, which includes the second S-NSSAI.
  • the PDU session request is used to establish a PDU session with the attributes of the second S-NSSAI, or to modify the established PDU.
  • the first S-NSSAI is the second S-NSSAI.
  • the UE after receiving the re-evaluation instruction, the UE re-evaluates the URSP rule corresponding to the first S-NSSAI to obtain the second S-NSSAI.
  • the UE requests in advance to establish the second S-NSSAI (that is, after the update).
  • S-NSSAI or request to modify the attributes of the established PDU session in which the first S-NSSAI is the second S-NSSAI, without the need to request the establishment of the second S-NSSAI after the PDU session is rejected by the RAN.
  • the PDU session of S-NSSAI attributes helps maintain the business continuity of the UE.
  • the UE re-evaluates the URSP rule corresponding to the first S-NSSAI and obtains the second S-NSSAI. Specifically, the UE receives the candidate S-NSSAI, and the UE receives the candidate S-NSSAI according to the candidate S-NSSAI. The URSP rule corresponding to the first S-NSSAI is re-evaluated to obtain the second S-NSSAI, which is included in the candidate S-NSSAI.
  • the candidate S-NSSAI is the S-NSSAI pre-selected by the network side, and the UE selects the second S-NSSAI from the candidate S-NSSAI.
  • the selected second S-NSSAI is more likely to be received by the network side.
  • the UE is also handed over from the source RAN to the target RAN, where the target RAN supports the PDU session with the second S-NSSAI attribute and does not support the PDU session with the first S-NSSAI attribute.
  • the target RAN does not support the first S-NSSAI, or the first S-NSSAI supported by the target RAN is in a congestion state.
  • the source RAN supports PDU sessions with the first S-NSSAI attribute.
  • the UE after the UE completes the establishment of a PDU session with the attributes of the second S-NSSAI, or modifies the first S-NSSAI in the attributes of the established PDU session to the second S-NSSAI, the UE is sent by the source RAN Switch to the target RAN.
  • the target RAN supports the PDU session with the second S-NSSAI attribute. This helps to maintain the service continuity of the UE.
  • this application provides a communication method, which can be executed by a communication device.
  • the communication device can be an access and mobility management function network element (access mobile function, AMF), or a module in the AMF, such as a chip;
  • AMF access and mobility management function network element
  • the communication device may also be a session management function network element (session management function, SMF), or a module in the SMF, such as a chip.
  • SMF session management function network element
  • SMF session management function
  • the communication method includes: after the first network element determines that there is a PDU session with the attribute of the second S-NSSAI, the first network element triggers a handover execution process for the UE to switch from the source RAN to the target RAN (or, RAN handover). Execution process); wherein, the second S-NSSAI is obtained by re-evaluating the URSP rule corresponding to the first S-NSSAI; the target RAN supports PDU sessions with the second S-NSSAI attribute, and does not support the first S-NSSAI Properties of the PDU session.
  • the target RAN does not support the first S-NSSAI, or the first S-NSSAI supported by the target RAN is in a congestion state.
  • the target RAN supports the PDU session with the second S-NSSAI attribute.
  • the first network element determines that there is a PDU session with the second S-NSSAI attribute between the UE and the DN, the first network element triggers the UE The handover execution process from the source RAN to the target RAN, in this way, the PDU session with the attribute of the second S-NSSAI will be accepted by the target RAN, which helps to maintain the business continuity of the UE.
  • the first network element before the first network element determines that there is a PDU session with the attribute of the second S-NSSAI, the first network element also receives an unavailable indication, where the unavailable indication is used to indicate that the target RAN does not support PDU session with the first S-NSSAI attribute.
  • the first network element during the establishment process of the PDU session, the first network element also sends a business continuity indication to the RAN. The business continuity indication is used to instruct the RAN to send an unavailability indication during the handover preparation process of the RAN. .
  • the RAN in the preparation phase for RAN handover, the RAN sends an unavailability indication to the first network element based on the business continuity indication, and waits for the handover execution instruction from the first network element, and the RAN receives the handover execution instruction from the first network element.
  • the RAN handover execution process is executed only after the unit's handover execution instruction. In this way, when the UE accesses the target RAN, the target RAN rejects the PDU session with the first S-NSSAI attribute, causing the UE to release the PDU session.
  • the first network element before the first network element determines that there is a PDU session with the attribute of the second S-NSSAI, the first network element also sends a re-evaluation indication to the UE, and the re-evaluation indication is used to instruct to re-evaluate the first URSP rules corresponding to S-NSSAI.
  • the first network element before the first network element determines that there is a PDU session with attributes of the second S-NSSAI, the first network element also receives a PDU session request, and the PDU session request includes the second S-NSSAI; A network element establishes a PDU session with the attributes of the second S-NSSAI, or modifies the first S-NSSAI in the attributes of the PDU session to the second S-NSSAI.
  • the first network element instructs the UE to re-evaluate the URSP rules corresponding to the first S-NSSAI to obtain the second S-NSSAI.
  • the UE requests in advance to establish a network with the second S-NSSAI (that is, the updated S-NSSAI).
  • NSSAI NSSAI
  • the PDU session of NSSAI attributes helps to maintain the business continuity of the UE.
  • the first network element before the first network element determines that there is a PDU session with attributes of the second S-NSSAI, the first network element also determines the candidate S-NSSAI, and the first network element sends the candidate S-NSSAI to the UE. ; Among them, the candidate S-NSSAI includes the second S-NSSAI.
  • the first network element indicates the candidate S-NSSAI to the UE.
  • the UE selects the second S-NSSAI from the candidate S-NSSAI.
  • the selected second S-NSSAI is more likely to be received by the network side. , improve the success rate of UE requesting to establish/modify PDU sessions.
  • the first network element before the first network element determines that there is a PDU session with attributes of the second S-NSSAI, the first network element also sends a PDU session modification indication, and the PDU session modification indication is used to modify the established PDU.
  • the first S-NSSAI in the session attributes is the second S-NSSAI.
  • the first network element can also determine the second S-NSSAI by itself and instruct the first S-NSSAI in the attributes of the PDU session to be modified to the second S-NSSAI, which has the attributes of the second S-NSSAI.
  • the PDU session can be accepted by the target RAN, thus helping to maintain the UE's business continuity.
  • the first network element determines that a PDU session with the attribute of the second S-NSSAI exists when it determines that any of the following conditions are met: the first network element receives a completion indication from the UE, and the completion indication is After the PDU session establishment or modification is completed indicating that the attribute of the second S-NSSAI is present; the first network element determines that the duration of sending the re-evaluation indication to the UE reaches the first preset duration; the first network element is the AMF, and the AMF receives the PDU session modification indication: Send PDU session modification indication to the UE.
  • the first network element triggers the handover execution process of the RAN, including: the first network element sends a handover execution instruction to the target RAN, or the first network element sends a handover execution instruction to the source RAN; the handover execution Indicates the handover execution process used to trigger the RAN.
  • embodiments of the present application provide a communication device, which has the function of implementing the UE in the above first aspect or any possible implementation manner of the first aspect.
  • the device may be a UE or a UE in the UE. Chip included.
  • the device has the function of implementing the RAN in the above second aspect or any possible implementation manner of the second aspect.
  • the device may be a RAN or a chip included in the RAN.
  • the communication device may also have the function of implementing the UE in the above third aspect or any possible implementation manner of the third aspect.
  • the device may be a UE or a chip included in the UE.
  • the communication device may also have the function of implementing the first network element in the fourth aspect or any possible implementation manner of the fourth aspect.
  • the device may be an AMF or a chip included in the AMF, or the device It can be SMF or a chip included in SMF.
  • the functions of the above communication device can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units or means corresponding to the above functions.
  • the structure of the device includes a processing module and a transceiver module, wherein the processing module is configured to support the device to perform the corresponding UE in the above-mentioned first aspect or any implementation of the first aspect.
  • the processing module is configured to support the device to perform the corresponding UE in the above-mentioned first aspect or any implementation of the first aspect.
  • the transceiver module is used to support communication between the device and other communication devices. For example, when the device is a UE, the transceiver module is used for the UE to send a PDU session establishment request.
  • the communication device may also include a storage module, which is coupled to the processing module and stores necessary program instructions and data for the device.
  • the processing module can be a processor
  • the communication module can be a transceiver
  • the storage module can be a memory.
  • the memory can be integrated with the processor, or can be provided separately from the processor.
  • the structure of the device includes a processor and may also include a memory.
  • the processor is coupled to the memory and can be used to execute computer program instructions stored in the memory, so that the device executes the above-mentioned first aspect or the method in any possible implementation of the first aspect, or executes the above-mentioned second aspect or the second aspect.
  • the method in any possible implementation of the aspect, or the method in any possible implementation of the third aspect or the third aspect, or the method in any possible implementation of the fourth aspect or the fourth aspect. method in the implementation.
  • the device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication interface may be a transceiver or an input/output interface; when the device is a chip included in the UE or a chip included in the RAN or a chip included in the first network element
  • the communication interface may be the input/output interface of the chip.
  • the transceiver may be a transceiver circuit
  • the input/output interface may be an input/output circuit.
  • embodiments of the present application provide a chip system, including: a processor and a memory.
  • the processor is coupled to the memory.
  • the memory is used to store programs or instructions.
  • the chip system implements The method in the above-mentioned first aspect or any possible implementation of the first aspect, or the method in realizing the above-mentioned second aspect or any possible implementation of the second aspect, or the method in realizing the above-mentioned third aspect or the third aspect A method in any possible implementation of the three aspects, or a method in any possible implementation of the fourth aspect or the fourth aspect.
  • the chip system further includes an interface circuit for communicating code instructions to the processor.
  • processors in the chip system there may be one or more processors in the chip system, and the processor may be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor implemented by reading software code stored in memory.
  • the memory can be integrated with the processor or can be provided separately from the processor.
  • the memory may be a non-transient processor, such as a read-only memory ROM, which may be integrated with the processor on the same chip, or may be separately provided on different chips.
  • embodiments of the present application provide a computer-readable storage medium on which a computer program or instructions are stored.
  • the computer is caused to execute the first aspect or any one of the first aspects.
  • embodiments of the present application provide a computer program product.
  • a computer When a computer reads and executes the computer program product, it causes the computer to execute the method in the above-mentioned first aspect or any possible implementation of the first aspect, or Perform the above second aspect or the method in any possible implementation of the second aspect, or perform the above third aspect or the method in any possible implementation of the third aspect, or implement the above fourth aspect or Methods in any possible implementation of the fourth aspect.
  • Figure 1 is a schematic diagram of a UE selecting a PDU session provided by this application
  • Figure 2 is a schematic flow chart of a UE determining whether to establish a PDU session provided in this application;
  • FIGS. 3A to 3F are schematic architectural diagrams of a communication system provided by this application.
  • FIG. 4 is a schematic diagram of a PDU session establishment process provided by this application.
  • FIG. 5 is a schematic diagram of a RAN handover execution process provided by this application.
  • Figure 6 is a schematic flow chart of a communication method provided by this application.
  • Figure 7 is a schematic flow chart of another communication method provided by this application.
  • Figure 8 is a schematic structural diagram of a communication device provided by this application.
  • Figure 9 is a schematic structural diagram of a communication device provided by this application.
  • 5G supports three major scenarios: enhanced mobile broadband (eMBB), massive machine type communications (mMTC) and ultra-reliable and low latency communications (URLLC).
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communications
  • URLLC ultra-reliable and low latency communications
  • the three scenarios include a variety of Differentiated applications.
  • eMBB used to meet the transmission rate requirements of augmented reality (AR)/virtual reality (VR), high-definition video live broadcast and other applications.
  • AR augmented reality
  • VR virtual reality
  • mMTC With the rapid development of smart cities recently, public facilities such as street lights, manhole covers, and water meters already have network connection capabilities and can be managed remotely. Based on the powerful connection capabilities of the 5G network, public equipment in various industries in the city are connected to the intelligent management platform. These public facilities work together through the 5G network and can be managed uniformly with only a small number of maintenance personnel, greatly improving the city's operational efficiency.
  • uRRLC The most typical application in 5G scenarios is autonomous driving.
  • the most common scenarios for autonomous driving include sudden braking, vehicle-to-vehicle, vehicle-to-person, vehicle-to-infrastructure and other multi-channel communications at the same time, which requires a large amount of data processing in an instant. and make decisions. Therefore, the network needs to have the capabilities of large bandwidth, low latency and high reliability at the same time.
  • Network slicing uses slicing technology to virtualize multiple end-to-end networks based on a common hardware. Each network has different network functions and adapts to different types of service requirements. After purchasing physical resources, operators analyze the needs of various industries for network functions into requirements for network functions such as network bandwidth, number of connections, latency, and reliability, and then divide network slicing into three types based on application scenarios. They are eMBB type slices, mMTC type slices and URLLC type slices.
  • S-NSSAI Single network slice selection assistance information
  • one S-NSSAI can be associated with one or more network slicing instances, and one network slicing instance can be associated with one or more S-NSSAI.
  • S-NSSAI includes two parts: slice/servicetype (SST) and slice differentiator (SD).
  • SST refers to the expected behavior of network slicing in terms of features and services.
  • the standard value range of SST is 1, 2, and 3.
  • the value 1 represents eMBB
  • the value 2 represents URLLC
  • the value 3 represents massive internet of things (MIoT).
  • SD is optional information used to supplement SST to distinguish multiple network slices of the same slice/service type.
  • the two parts SST and SD are combined to represent the slice type and multiple slices of the same slice type.
  • the S-NSSAI values are 0x01000000, 0x02000000, and 0x03000000, which respectively represent eMBB type slices, uRLLC type slices, and MIoT type slices.
  • the S-NSSAI values 0x01000001 and 0x01000002 represent eMBB type slices, serving user group 1 and user group 2 respectively.
  • NSSAI Network slice selection assistance information
  • NSP Network slice selection policy
  • PCF policy control function
  • NSSP uses NSSP as part of the UE route selection policy (URSP) rules and issues it to the UE through the AMF
  • URSP UE route selection policy
  • NSSP is used for UE associated application identification (APP ID) and S-NSSAI.
  • APP ID application identification
  • S-NSSAI S-NSSAI
  • the UE selects an appropriate protocol data unit (PDU) session for the UE's uplink service flow according to the URSP. That is, some uplink services of the UE have certain requirements for the data network name (DNN), slicing, session service continuity mode (SSC mode) of the PDU session used.
  • DNN data network name
  • SSC mode session service continuity mode
  • the UE may trigger the establishment or modification of a PDU session during the execution of URSP. For example, the UE determines the current When there is no PDU session that meets the requirements, the UE will initiate a PDU session establishment process; when the UE determines that a PDU session that meets the requirements currently exists, it may directly use the existing PDU session.
  • the UE when the UE is preparing to send the data of application A, it determines that application A's requirements for the PDU session used are DNN1, S-NSSAI-a, and SSC2. Then the UE can determine that application A transmits data through PDU session 2. .
  • the UE executes URSP, specifically, every time the UE detects a new application, the UE evaluates whether the application matches the traffic descriptor in the URSP rule in the order of rule precedence. When there is a match, the UE selects the route selection descriptor (RSD) in the URSP rule in the order of route selection descriptor precedence (RSD precedence). When the RSD is invalid (valid, or effective) ), jump to the next RSD, otherwise select the RSD.
  • RSD route selection descriptor
  • the RSD of a URSP rule shall be considered valid only if all the following conditions are met: Condition 1, if any S-NSSAI(s) are present, the S-NSSAI(s) are among the NSSAIs allowed in non-roaming situations ; In the case of roaming, S-NSSAI(s) are included in the mapping of allowed NSSAI to HPLMN S-NSSAI(s).
  • Condition 2 if any DNN exists, and the DNN is a local area data network (LADN) DNN, the UE is in the availability area of this LADN.
  • Condition 3 if a time window exists and the time matches the time indicated in the time window.
  • Condition 4 if there is a location criterion and the UE's location matches what is indicated in the location criterion.
  • the UE When there is a PDU session that meets the requirements (the attributes are the same as RSD), the UE will route the data packet of the application to the PDU session (when there are multiple PDU sessions, the UE will select one of them based on configuration, etc.). If there is no PDU session that meets the requirements, If the required PDU session is required, the UE will initiate the establishment of a PDU session and establish a PDU session with this attribute. In short, the UE will first detect whether there is a PDU session that meets the application requirements (DNN, network slicing, etc.). If there is, the current application will be mapped to the session. Otherwise, a PDU session that meets the application requirements will be established. as shown in picture 2.
  • the application requirements DNN, network slicing, etc.
  • the attributes of the PDU session include network slicing, DNN and SSC mode.
  • 3GPP defines URSP to determine the correspondence between applications and network slicing, DNN and SSC modes.
  • URSP includes one or more URSP rules.
  • a URSP rule mainly includes two parts: traffic descriptor and RSD.
  • the traffic descriptor includes the names or identifiers of multiple applications, etc., and the NSSAI corresponding to each application included in the RSD, that is, the NSSAI that is not included in the traffic descriptor and can be used by the application, etc.
  • URSP can be seen in Table 2
  • URSP rules can be seen in Table 3
  • RSD can be seen in Table 4.
  • Embodiments of the present application provide a communication method that can be applied to 5G (fifth generation mobile communication system) systems, such as access networks using new radio access technology (New RAT); cloud wireless access Communication systems such as cloud radio access network (CRAN).
  • 5G next generation mobile communication system
  • the 5G system can be in a non-roaming scenario or a roaming scenario.
  • the 5G system can be used in a service-oriented architecture or an interface-based architecture. There are no specific limitations here. It should be understood that the embodiments of the present application can also be applied to future communications (such as 6G or other networks).
  • the architecture of the communication system applicable to the communication method provided by the embodiments of the present application may include network opening function network elements, policy control function network elements, data management network elements, application function network elements, access and mobility management function network elements, session Manage functional network elements, UEs, access network equipment, user plane functional network elements and data networks.
  • the access and mobility management function network element and the UE can be connected through the N1 interface.
  • the access and mobility management function network element can be connected to the access network equipment through the N2 interface.
  • the access network equipment and the user plane function network can be connected through the N2 interface.
  • the elements can be connected through the N3 interface, the session management function network element and the user plane function network element can be connected through the N4 interface, and the user plane function network element and the data network can be connected through the N6 interface.
  • the interface name is just an example, and the embodiment of this application does not specifically limit it.
  • the network elements in the communication system can be, but are not limited to, the network elements in the 5G architecture.
  • the following uses the network elements in the 5G architecture as an example to describe the functions of each network element in the communication system:
  • UE which can also be called user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • the UE may include a handheld device, a vehicle-mounted device, etc. with a wireless connection function.
  • UE can be: mobile phone (mobile phone), tablet computer, notebook computer, handheld computer, mobile internet device (mobile internet device, MID), wearable device, virtual reality (VR) device, augmented reality (augmented reality (AR) equipment, wireless terminals in industrial control (industrial control), wireless terminals in self-driving (self-driving), wireless terminals in remote medical surgery, and wireless terminals in smart grids Wireless terminals, wireless terminals in transportation safety, wireless terminals in smart cities Wire terminals, or wireless terminals in smart homes, etc.
  • mobile phone mobile phone
  • tablet computer notebook computer
  • handheld computer mobile internet device
  • VR virtual reality
  • AR augmented reality
  • wireless terminals in industrial control industrial control
  • wireless terminals in self-driving self-driving
  • wireless terminals in remote medical surgery and wireless terminals in smart grids
  • Wireless terminals wireless terminals in transportation safety, wireless terminals in smart cities Wire terminals, or wireless terminals in smart homes, etc.
  • the access network device may be an access network (AN), which provides wireless access services to UEs.
  • the access network device is a device in the communication system that connects the UE to the wireless network.
  • Access network equipment is a node in a wireless access network, which can also be called a base station or a radio access network (RAN) node (or device).
  • RAN radio access network
  • access network equipment are: gNB, transmission reception point (TRP), evolved Node B (eNB), radio network controller (radio network controller, RNC), Node B (Node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (base band unit (BBU), or wireless fidelity (wireless fidelity, Wifi) access point (access point, AP), etc.
  • TRP transmission reception point
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station for example, home evolved NodeB, or home Node B, HNB
  • baseband unit base band unit
  • wireless fidelity wireless fidelity
  • Wifi wireless fidelity
  • the data network such as data network (DN) can be the Internet, IP Multi-media Service (IMS) network, regional network (i.e. local network, such as mobile edge computing, MEC) network) etc.
  • the data network includes an application server, which provides business services to the UE through data transmission with the UE.
  • the access and mobility management function network element can be used to manage the access control and mobility of UE. In practical applications, it includes the mobility management entity (mobility management) in the network framework in long term evolution (LTE). Entity, MME) mobility management function, and added the access management function, specifically responsible for UE registration, mobility management, tracking area update process, reachability detection, session management function network element selection, mobility status Conversion management and more.
  • the access and mobility management function network element can be an AMF (access and mobility management function) network element.
  • AMF access and mobility management function
  • the access and mobility management function network elements can still be AMF network elements, or have other names, which are not limited in this application.
  • AMF can provide Namf services.
  • the session management function network element can be used to be responsible for the session management of the UE (including the establishment, modification and release of the session), the selection and reselection of the user plane function network element, the Internet Protocol (IP) address allocation of the UE, and the quality of service. (quality of service, QoS) control, etc.
  • the session management function network element can be an SMF (session management function) network element.
  • SMF session management function
  • future communications such as 6G
  • the session management function network element can still be an SMF network element, or have other names. This application No restrictions.
  • SMF can provide Nsmf services.
  • the policy control function network element can be used to be responsible for policy control decisions, provide functions such as business data flow and application detection, gating control, QoS and flow-based charging control, etc.
  • the policy control function network element can be a PCF (policy control function) network element.
  • the policy control function network element can still be a PCF network element, or have other names. This application No restrictions.
  • the PCF network element can provide Npcf services.
  • the main function of application function network elements is to interact with the 3rd generation partnership project (3GPP) core network to provide services to affect business flow routing, access network capability opening, policy control, etc.
  • 3GPP 3rd generation partnership project
  • the application function network element can be an AF (application function) network element.
  • the application function network element can still be an AF network element, or have other names. This application does not limit it.
  • the AF network element can provide Naf services.
  • the data management network element can be used to manage the UE's subscription data, UE-related registration information, etc.
  • the data management network element can be a unified data management network element (UDM).
  • the data management network element can still be a UDM network element, or have other names, which is not limited in this application.
  • the UDM network element can provide Nudm services.
  • Network open function network elements can be used to enable 3GPP to securely provide network service capabilities to third-party AFs (for example, Service Capability Server (SCS), Application Server (AS), etc.).
  • third-party AFs for example, Service Capability Server (SCS), Application Server (AS), etc.
  • NEF network exposure function
  • network exposure function network elements can still be NEF network elements, or have other names. This application does not limited.
  • the network open function network element is an NEF, the NEF can provide Nnef services to other network function network elements.
  • system architecture can also include other network elements, such as network slice selection function (NSSF), network function storage function (NF repository function, NRF), and authentication server function.
  • NSSF network slice selection function
  • NF repository function NF repository function
  • AUSF authentication server function
  • Each of the above network elements can also be called a functional entity, which can be a network element implemented on dedicated hardware, a software instance running on dedicated hardware, or an instance of virtualized functions on an appropriate platform, for example, the above
  • the virtualization platform can be a cloud platform.
  • FIG. 3A exemplarily shows a possible architectural diagram of a communication system based on service-based interfaces in a non-roaming scenario.
  • Namf is the service-based interface displayed by AMF.
  • Nsmf is a service-based interface exposed by SMF.
  • Nnef is a service-based interface exposed by NEF.
  • Npcf is the service-based interface exposed by PCF.
  • Nudm is a service-based interface exposed by UDM.
  • Naf is a service-based interface exposed by AF.
  • Nnrf is a service-based interface exposed by NRF.
  • Nausf is a service-based interface exposed by AUSF.
  • FIG. 3B illustrates a possible architectural diagram of a reference point-based communication system in a non-roaming scenario.
  • N5 is the reference point between PCF and AF.
  • N7 is the reference point between SMF and PCF.
  • N8 is the reference point between UDM and AMF.
  • N9 is the reference point between the 2 core UPFs.
  • N10 is the reference point between UDM and SMF.
  • N11 is the reference point between AMF and SMF.
  • N12 is the reference point between AMF and AUSF.
  • N14 is the reference point between the 2 AMFs.
  • N15 is the reference point between PCF and AMF.
  • N22 is the reference point between NSSF and AMF.
  • FIG 3C exemplarily shows a possible architectural diagram of a communication system based on service-based interfaces in a local breakout (LB) roaming scenario.
  • the security edge protection proxy SEPP
  • SEPP security edge protection proxy
  • V-SEPP is the roaming domain SEPP
  • H-SEPP is the local domain SEPP
  • N32 is the reference point between V-SEPP and H-SEPP. Namf, Nsmf, Nnef, Npcf, Nudm, Naf, Nnrf and Nausf can be seen in Figure 3A and will not be repeated here.
  • Figure 3D exemplarily shows a possible architectural diagram of a reference point-based communication system in a local breakout roaming scenario.
  • V-PCF is the roaming domain PCF
  • H-PCF is the local domain PCF
  • N24 is the reference point between V-PCF and H-PCF.
  • N5, N7, N8, N9, N10, N11, N12, N14, N15 and N22 can be seen in Figure 3B and will not be repeated here.
  • Figure 3E exemplarily shows a possible architectural diagram of a communication system based on service-based interfaces in a home routed (HR) roaming scenario.
  • V-SEPP is the roaming domain SEPP
  • H-SEPP is the local domain SEPP
  • N32 is the reference point between V-SEPP and H-SEPP.
  • Namf, Nsmf, Nnef, Npcf, Nudm, Naf, Nnrf and Nausf can be seen in Figure 3A and will not be repeated here.
  • Figure 3F exemplarily shows a possible architectural diagram of a reference point-based communication system in a home routed roaming scenario.
  • V-PCF is the roaming domain PCF
  • H-PCF is the local domain PCF
  • N24 is V-PCF and H-PCF.
  • reference points between. N5, N7, N8, N9, N10, N11, N12, N14, N15 and N22 can be seen in Figure 3B and will not be repeated here.
  • FIGS. 3A to 3F may be hardware, functionally divided software, or a combination of the above two.
  • the plurality involved in this application refers to two or more.
  • “And/or” describes the relationship between related objects, indicating that there can be three relationships.
  • a and/or B can mean: A exists alone, A and B exist simultaneously, and B exists alone.
  • the character "/" generally indicates that the related objects are in an "or” relationship.
  • first, second, third, etc. may be used to describe various messages, requests, and network elements in the embodiments of this application, these messages, requests, devices, and core network devices should not be limited to these. the term. These terms are only used to distinguish messages, requests, and network elements from each other.
  • the UE requests to establish a PDU session, where the PDU session established by the request can support the N S-NSSAI, that is, the attributes of the PDU session include the N S-NSSAI, and N is greater than or equal to an integer of 2.
  • the RAN accessed by the UE supports any one of the N S-NSSAIs, it can accept the PDU session, which helps maintain the UE's business continuity.
  • Step 401 The UE determines M S-NSSAIs, where M is an integer greater than or equal to 2.
  • the UE obtains a URSP, where the URSP includes one or more URSP rules, where the URSP rules include M S-NSSAI and multi-slice usage instructions, and the multi-slice usage
  • the indication is used to instruct the UE to request the establishment of a PDU session with M S-NSSAI attributes.
  • the URSP rule includes one or more RSDs, and the RSD includes one or more S-NSSAI.
  • the RSD includes multiple S-NSSAIs
  • the RSD also includes multi-slice usage instructions.
  • URSP rules include RSD1 and RSD2.
  • RSD1 includes S-NSSAI 1, S-NSSAI 2, S-NSSAI 3, and multi-slice usage instructions;
  • RSD2 includes S-NSSAI 4, S-NSSAI 5, and Instructions for using multiple slices.
  • the URSP rule includes one or more RSDs and multi-slice usage instructions, and the RSD includes one or more S-NSSAI.
  • the multiple RSDs each contain different S-NSSAI.
  • URSP rules include RSD1, RSD2 and multi-slice usage instructions.
  • RSD1 includes S-NSSAI 1, S-NSSAI 2, S-NSSAI 3, and
  • RSD2 includes S-NSSAI 4 and S-NSSAI 5.
  • the multi-slice usage instruction can additionally indicate which S-NSSAIs in which RSDs are used, for example, by including RSD precedence in the multi-slice usage instruction.
  • the UE selects the URSP rule to be executed from the URSP, specifically, the UE is in a non-roaming scenario (that is, the UE is in HPLMN). If the UE determines that the S-NSSAI in the URSP rule is included in the allowed NSSAI, then This URSP rule can be used as a URSP rule to be executed; the UE is in a roaming scenario (that is, the UE is in a VPLMN).
  • the UE determines that the S-NSSAI in the URSP rule can be mapped to the allowed NSSAI, or in other words, the URSP rule
  • the S-NSSAI is included in the mapping NSSAI of the allowed NSSAI, and the UE can use the URSP rule as the URSP rule to be executed.
  • the NSSAI that is allowed to be used, or the mapping NSSAI of the NSSAI that is allowed to be used Specifically, the UE may obtain it from the AMF.
  • the mapping NSSAI of the NSSAI allowed to be used specifically, the NSSAI obtained when the NSSAI allowed to be used in the VPLMN is mapped to the HPLMN.
  • the NSSAI allowed by HPLMN includes S-NSSAI A to S-NSSAI H.
  • the S-NSSAI in the URSP rule is S-NSSAI A to S-NSSAI E
  • the UE can Select this URSP rule as the URSP rule to be executed;
  • the UE is in a roaming scenario, and the NSSAI allowed to be used by VPLMN are S-NSSAI a to S-NSSAI h, which are mapped to the S-NSSAI A to S-NSSAI H of HPLMN.
  • the URSP rule The S-NSSAI in are S-NSSAI A to S-NSSAI E
  • the UE can select this URSP rule as the URSP rule to be executed.
  • the M S-NSSAI included in the selected URSP rule need to be included in the NSSAI that is allowed to be used, or in the NSSAI that is mapped to the NSSAI that is allowed to be used.
  • the selected URSP rule contains multiple S-NSSAIs, and M S-NSSAIs among the multiple S-NSSAIs are included in the NSSAIs that are allowed to be used, or are included in the NSSAI mapping that is allowed to be used. in NSSAI. It can be understood that the selected URSP rule includes M S-NSSAI and multi-slice usage instructions.
  • the selected URSP rule includes an RSD, and the RSD includes M S-NSSAI and multi-slice usage instructions. Instructions; alternatively, the selected URSP rule includes K RSDs and multi-slice usage instructions, the K RSDs include M S-NSSAIs, and K is a positive integer less than or equal to M.
  • the UE determines whether the established PDU session meets the requirements.
  • the UE determines that the attributes of a certain PDU session that have been established are the same as the RSD (that is, the multiple S-NSSAI included in the attributes of the PDU session are the same as the M S-NSSAI in the RSD) ), it is determined that the established PDU session meets the requirements; if the UE determines that one or more established PDU sessions do not have the same PDU session as the RSD, it is determined that the established PDU session does not meet the requirements.
  • the UE determines that the multiple S-NSSAI included in the attributes of a certain PDU session that has been established are the same as the M S-NSSAI included in the URSP rule, then the UE determines that the established PDU session The session meets the requirements; if the UE determines that there are no PDU sessions in one or more established PDU sessions in which the multiple S-NSSAI included in the attributes are the same as the M S-NSSAI included in the URSP rule, then the UE determines that the established PDU session The PDU session does not meet the requirements.
  • Step 402 The UE sends a PDU session establishment request to the AMF.
  • the PDU session establishment request includes M S-NSSAI.
  • the AMF receives the PDU session establishment request from the UE.
  • Step 403 AMF selects a target SMF from multiple SMFs. There are two specific examples:
  • Example b-1 AMF determines which SMF among multiple SMFs supports the largest number of S-NSSAIs among the M S-NSSAIs, and then uses the determined SMF as the target SMF. Further, when the target SMF supports part of the M S-NSSAIs, the AMF sends the first information to the UE. Among the M S-NSSAIs included in the first information, the AMF does not support the S-NSSAIs that the target SMF does not support. , to indicate to the UE the S-NSSAI that the target SMF does not support.
  • Example b-2 AMF determines the SMF that supports the M S-NSSAI from multiple SMFs as the target SMF. In this case, if the AMF does not determine an SMF that supports the M S-NSSAIs from multiple SMFs, it may send a response rejecting PDU session establishment to the UE.
  • Step 404 The AMF sends a PDU session establishment request to the target SMF.
  • the PDU session establishment request includes m S-NSSAI, where the m S-NSSAI is M S-NSSAI; or, the m S-NSSAI is the M S-NSSAI excluding the S-NSSAI that is not supported by the target SMF.
  • NSSAI S-NSSAI that is, the S-NSSAI supported by the target SMF among M S-NSSAI.
  • the target SMF receives the PDU session establishment request.
  • Step 405 The target SMF selects a target UPF from multiple UPFs. There are two specific examples:
  • Example b-1 The target SMF determines which UPF among multiple UPFs supports the largest number of S-NSSAIs among the m S-NSSAIs, and then uses the determined UPF as the target UPF. Further, when the target UPF supports some S-NSSAIs among the m S-NSSAIs, the target SMF sends the first information to the UE.
  • the first information includes the S-NSSAIs among the m S-NSSAIs that the target UPF does not support. NSSAI to indicate to the UE that the target UPF does not support S-NSSAI.
  • Example c-1 The target SMF determines the UPF that supports the m S-NSSAI from multiple UPFs as the target UPF. In this case, if the target SMF does not determine a UPF that supports the m S-NSSAIs from multiple UPFs, it may send a response rejecting PDU session establishment to the UE.
  • the PDU session establishment request initiated by the UE includes S-NSSAI 1 to S-NSSAI 5 (that is, the M S-NSSAI are S-NSSAI 1 to S-NSSAI 5).
  • AMF determines that the target SMF supports S-NSSAI 1 to S-NSSAI 4 but does not support S-NSSAI 5 based on S-NSSAI 1 to S-NSSAI 5.
  • the AMF sends S-NSSAI 5 to the UE. In this way, the UE determines The attributes of the established PDU session do not include S-NSSAI 5. Further, the target SMF determines that the target UPF supports S-NSSAI 1 to S-NSSAI 3 based on S-NSSAI 1 to S-NSSAI 4.
  • the target SMF sends S-NSSAI 4 to the UE through the AMF.
  • the UE determines the value of the established PDU session.
  • S-NSSAI 4 is not included in the attributes. That is, the attributes of the PDU session determined by the UE include S-NSSAI 1 to S-NSSAI 3.
  • N S-NSSAI are other S-NSSAI among M S-NSSAI except the first part of S-NSSAI that is not supported by the target SMF and/or target UPF.
  • this application does not rule out that both the target SMF and the target UPF support the M S-NSSAI.
  • the PDU session finally established by the PDU session establishment process supports the M S-NSSAI (ie, N S-NSSAI). That is, the PDU session establishment request is used to establish a PDU session having N attributes of S-NSSAI.
  • M S-NSSAI ie, N S-NSSAI
  • Step 406 The target SMF sends the attributes of the established PDU session to the RAN.
  • the attributes of the PDU session include the N S-NSSAI associated with the PDU session.
  • the RAN supports any one of the N S-NSSAIs, it can be considered that the RAN can provide communication services for the UE based on the PDU session. , or in other words, the RAN supports the PDU session, the RAN accepts (or does not reject, or does not disconnect) the PDU session, etc.
  • the S-NSSAI provided to the RAN is the S-NSSAI with the serving PLMN value (i.e. HPLMN S-NSSAI in the case of non-roaming or home routing, or VPLMN S-NSSAI in the case of locally groomed roaming).
  • Step 501 The UE is handed over from the source RAN to the target RAN. It is explained that during the movement process, the UE moves from the serving cell of the source RAN to the serving cell of the target RAN, and accordingly, the UE accesses the target RAN.
  • the UE detects the strength of signals from multiple RANs during movement. Based on the signal strengths of the multiple RANs, it is determined that the signal strength of a certain RAN (ie, the target RAN) among the multiple RANs is higher than the current level of the UE. Access When the signal strength of the RAN (that is, the source RAN) is determined, handover from the source RAN to the target RAN is determined.
  • the signal strength of the RAN that is, the source RAN
  • Step 502 The target RAN obtains N S-NSSAI associated with the PDU session.
  • the PDU session is the PDU session requested by the UE to be established in the relevant embodiment of Figure 4, and the attributes of the PDU session include N S-NSSAI associated with the PDU session.
  • the target RAN also obtains the N S-NSSAI associated with the PDU from the source RAN.
  • the target RAN requests the N S-NSSAI associated with the PDU from the source RAN, and then the source RAN sends the N S-NSSAI associated with the PDU to the target RAN.
  • -NSSAI Another way is that after the PDU session is established, the source RAN sends the N S-NSSAI associated with the PDU to one or more RANs surrounding the source RAN, where the one or more RANs include the target RAN.
  • Step 503 The target RAN determines that the target RAN supports any one of the N S-NSSAIs.
  • the target RAN determines one or more S-NSSAIs supported by the target RAN, and determines that the target RAN supports the N S-NSSAIs based on the one or more S-NSSAIs supported by the target RAN and the N S-NSSAIs.
  • One or more S-NSSAI in NSSAI can be recorded as target S-NSSAI).
  • the target RAN may determine that the target S-NSSAI supported by the target RAN is in a non-congested state. Or it can be understood that after the target RAN determines that the target RAN supports one or more S-NSSAIs among the N S-NSSAIs, the target RAN selects the target RAN from the one or more S-NSSAIs according to the congestion status of the one or more S-NSSAIs. Select the S-NSSAI in the non-congested state as the target S-NSSAI.
  • Step 504 The target RAN accepts the PDU session.
  • the target RAN supports the PDU session, the target RAN does not reject/do not disconnect the PDU session, the PDU session can be successfully switched to the target RAN, etc.
  • the target RAN when the movement of the UE causes the accessed RAN to change, as long as the currently accessed RAN (i.e., the target RAN) supports one or more S-NSSAIs among the N S-NSSAIs, the target RAN will not reject it. This PDU session, so the UE does not need to release the PDU session, which helps maintain the UE's business continuity.
  • the target RAN rejects the PDU session.
  • the UE initiates a PDU session establishment request or modification request, so that the attributes of the PDU session include the S-NSSAI supported by the target RAN.
  • This application provides another possible communication method.
  • the first network element determines that the S-NSSAI (recorded as the first S-NSSAI) in the UE's PDU session is about to be unavailable, it instructs the UE to initiate PDU session establishment process/PDU session modification process, or the first network element actively initiates the PDU session modification process, so that there is a new PDU session with available S-NSSAI (recorded as the second S-NSSAI) between the UE and the DN,
  • the first network element triggers the execution phase of RAN handover.
  • the first network element may be AMF or SMF.
  • the following description is based on whether the first network element is an AMF or an SMF.
  • the first network element is the AMF.
  • UE movement may also cause AMF handover, and the AMF may be the source AMF or the target AMF.
  • Step 601 AMF sends a re-evaluation indication to the UE.
  • the AMF determines that the first S-NSSAI in the UE's PDU session is about to be unavailable, and then sends a re-evaluation to the UE. instruct.
  • the re-evaluation indication is used to instruct the UE to re-evaluate the URSP rule corresponding to the first S-NSSAI, Get a new available S-NSSAI, that is, the second S-NSSAI.
  • the first S-NSSAI is included in the re-evaluation instruction.
  • Implementation method 1 The target RAN sends an unavailability indication to the AMF. Specifically, there are two examples:
  • the target RAN obtains the PDU session context, and the target RAN determines that the target RAN does not support the first S-NSSAI according to the attributes of the PDU session in the PDU session context (that is, including the first S-NSSAI), or determines that the target RAN does not support the first S-NSSAI.
  • the first S-NSSAI is supported but the current first S-NSSAI is in a congested state.
  • the target RAN sends an unavailability indication to the AMF, where the unavailability indication is used to indicate that the target RAN does not support a PDU session having attributes of the first S-NSSAI.
  • the unavailability indication may be a 1-bit field. For example, when the value of this field is 1, it indicates that the target RAN does not support the PDU session having the attributes of the first S-NSSAI.
  • the target RAN does not support the PDU session with the attributes of the first S-NSSAI. Specifically, the target RAN does not support the first S-NSSAI, or the first S-NSSAI supported by the target RAN is in a congestion state.
  • Example 1-2 The target RAN sends an unavailability indication to the AMF.
  • the unavailability indication is specifically the identification information of the target RAN, such as the tunnel information or RAN identification of the target RAN.
  • the target RAN sends the identification information of the target RAN to the AMF in the RAN handover preparation phase (HO preparation phase).
  • the AMF determines one or more S-NSSAIs supported by the target RAN based on the identification information of the target RAN.
  • the AMF determines the target.
  • the RAN does not support the first S-NSSAI.
  • the AMF determines the congestion conditions corresponding to one or more S-NSSAIs supported by the target RAN and one or more S-NSSAIs supported by the target RAN based on the identification information of the target RAN.
  • the AMF determines that the first S-NSSAI supported by the target RAN is in a congested state in the target RAN. In this way, the AMF determines that the target RAN does not support the PDU session having the attributes of the first S-NSSAI.
  • RAN when RAN establishes/maintains NG links (NG Setup, RAN configuration update), RAN will report one or more S-NSSAI supported by RAN.
  • the AMF determines one or more S-NSSAI supported by the target RAN based on the identification information of the target RAN.
  • Implementation Mode 2 The source RAN sends an unavailability indication to the AMF.
  • Example 2-1 The source RAN sends an unavailability indication to the AMF, where the unavailability indication is specifically the identification information of the target RAN obtained by the source RAN from the target RAN.
  • the identification information of the target RAN is, for example, the tunnel information of the target RAN or the RAN identification. .
  • the source RAN decides to handover the UE to the target RAN.
  • the source RAN sends the identification information of the target RAN to the AMF (for example, through the HO required message to the AMF).
  • the AMF determines that the target RAN does not support the PDU session with the attribute of the first S-NSSAI. Please refer to the description in Example 2 of Implementation Mode 1.
  • Example 2-2 The source RAN sends an unavailability indication to the AMF.
  • the unavailability indication is used to indicate that the target RAN does not support a PDU session with attributes of the first S-NSSAI.
  • the unavailability indication may be a 1-bit field. For example, when the value of this field is 1, it indicates that the target RAN does not support the PDU session having the attributes of the first S-NSSAI.
  • the source RAN obtains one or more S-NSSAI supported by the target RAN from the target RAN, and then determines that the target RAN does not support the first S-NSSAI. .
  • the source RAN also obtains the congestion conditions corresponding to one or more S-NSSAIs supported by the target RAN from the target RAN, and then determines that the first S-NSSAI supported by the target RAN is in a congestion state.
  • the specific determination method The formula is described in Example 1-1.
  • the AMF also determines the candidate S-NSSAI and sends the determined candidate S-NSSAI to the UE.
  • the candidate S-NSSAI refers to the S-NSSAI that can replace the first S-NSSAI, that is, the services associated with the PDU session of the first S-NSSAI can be delivered on the PDU session associated with the candidate S-NSSAI.
  • the candidate S-NSSAI is the S-NSSAI with the serving PLMN value (i.e. HPLMN S-NSSAI in the case of non-roaming or home routing, or VPLMN S-NSSAI in the case of local grooming roaming).
  • the candidate S-NSSAI can also be HPLMN S-NSSAI.
  • the UDM may specifically determine the candidate S-NSSAI according to the UE's subscription information, (for example, both the candidate S-NSSAI and the first S-NSSAI belong to the S-NSSAI subscribed by the UE, Or the supported DNN is the same, etc.), and then the AMF obtains the candidate S-NSSAI from the UDM; or, the PCF determines the candidate S-NSSAI based on the UE's subscription information or URSP (for example, both the candidate S-NSSAI and the first S-NSSAI belong to The S-NSSAI signed by the UE, or the supported DNN is the same, or the supported applications are the same, etc.), and then the AMF obtains the candidate S-NSSAI from the PCF; or, the AMF obtains the UE's subscription information from the UDM or obtains the URSP from the PCF , determine the candidate S-NSSAI according to the UE's
  • Step 602 The UE re-evaluates the URSP rule corresponding to the first S-NSSAI to obtain the second S-NSSAI.
  • the UE After receiving the re-evaluation indication, the UE determines that the first S-NSSAI is about to be unavailable, that is, it considers that the RSD containing the first S-NSSAI is no longer valid. Then, the UE re-evaluates the URSP rule corresponding to the first S-NSSAI.
  • the second S-NSSAI is obtained, where the evaluation method can be found in the above descriptions of professional terms or technical explanations.
  • the UE receives a broadcast message from the target RAN.
  • the broadcast message includes one or more S-NSSAI-related information supported by the target RAN, such as a tracking area (track area, TA) and a supported network slice access group ( network slice as group (NSAG), the UE can determine one or more S-NSSAI related information supported by the target RAN based on the NSAG.
  • the UE re-evaluates the URSP rules corresponding to the pair of first S-NSSAI according to one or more S-NSSAI supported by the target RAN, and obtains the second S-NSSAI.
  • the second S-NSSAI is an S-NSSAI among one or more S-NSSAIs supported by the target RAN, that is, the target RAN supports the second S-NSSAI.
  • the UE can also sense that the first S-NSSAI is about to be unavailable, and then re-evaluate the URSP rule corresponding to the first S-NSSAI to obtain the second S-NSSAI.
  • the UE obtains the S-NSSAI supported by multiple TAs respectively (for example, obtained according to the above-mentioned NSAG).
  • the UE prepares to move from the first TA to the second TA, the UE obtains the S-NSSAI supported by the first TA and the second TA respectively.
  • -NSSAI determine the first S-NSSAI.
  • the attributes of the PDU session used by the UE in the first TA include the first S-NSSAI, and the UE determines that the second TA does not support the first S-NSSAI, so before moving to the second TA, the UE The URSP rule corresponding to the first S-NSSAI is re-evaluated to obtain the second S-NSSAI, in which the second TA supports the second S-NSSAI.
  • the UE also receives the candidate S-NSSAI indicated by the AMF.
  • the UE re-evaluates the URSP rule corresponding to the first S-NSSAI based on one or more S-NSSAI supported by the target RAN and the candidate S-NSSAI indicated by the AMF, and obtains the second S-NSSAI.
  • the target RAN supports the second S-NSSAI
  • the second S-NSSAI is the S-NSSAI among the candidate S-NSSAIs.
  • Step 603 The UE sends a PDU session request to the AMF, where the PDU session request includes the second S-NSSAI.
  • the PDU session request is a PDU session establishment request
  • the PDU session establishment request is used to establish a PDU session with attributes of the second S-NSSAI.
  • the UE sends a PDU session establishment request to the AMF
  • the AMF sends a PDU session establishment request to the SMF
  • the SMF establishes a PDU session with attributes of the second S-NSSAI according to the second S-NSSAI in the PDU session establishment request.
  • the RAN, AMF, and SMF respectively perform respective actions in the PDU session establishment process according to the second S-NSSAI included in the PDU session establishment request to establish a PDU session with attributes of the second S-NSSAI.
  • the UE after the PDU session establishment process ends, the UE also sends a completion indication to the AMF, where the completion indication is used to indicate that the PDU session establishment with the attributes of the second S-NSSAI is completed.
  • the UE when the UE establishes the PDU session associated with the second S-NSSAI, it also carries the identifier (PDU Session ID) of the original PDU session associated with the first S-NSSAI, indicating that the original PDU session is replaced by the now established PDU session. .
  • the PDU session request is a PDU session modification request
  • the PDU session modification request is used to modify the first S-NSSAI in the attributes of the PDU session to the second S-NSSAI.
  • the UE sends a PDU session modification request to the AMF
  • the AMF sends a PDU session modification request to the SMF
  • the SMF modifies the first S-NSSAI in the attributes of the PDU session to the second based on the second S-NSSAI in the PDU session modification request.
  • S-NSSAI S-NSSAI.
  • RAN, AMF, and SMF respectively perform their respective actions in the PDU session modification process according to the second S-NSSAI included in the PDU session modification request to modify the first S-NSSAI in the attributes of the PDU session to the second S-NSSAI.
  • the UE after the PDU session modification process ends, the UE also sends a completion indication to the AMF, where the completion indication is used to indicate that the first S-NSSAI in the attributes of the PDU session is modified to the second S-NSSAI.
  • Step 604 The AMF determines that a PDU session with the attribute of the second S-NSSAI exists between the UE and the DN, and triggers the handover execution process of the RAN.
  • the AMF may determine the existence of a PDU session with attributes of the second S-NSSAI through one of the following methods.
  • Method 1 AMF receives the completion indication from the UE.
  • the completion indication is sent by the UE to the AMF after the PDU session establishment process ends or after the PDU session modification process ends.
  • Method 2 The AMF determines that the time period for sending the re-evaluation indication to the UE reaches the first preset time period. For example, when sending the re-evaluation indication to the UE, the AMF starts a timer. When the timer reaches the first preset duration, the AMF determines that a PDU session with the attribute of the second S-NSSAI exists between the UE and the DN.
  • Method 3 The AMF determines that the PDU session with the attributes of the second S-NSSAI is successfully established, or determines that the first S-NSSAI in the attributes of the PDU session is modified to the second S-NSSAI. It can be understood that AMF is involved in the establishment process or modification process of the PDU session, and the AMF can sense whether the PDU session is established or modified.
  • the AMF may send a handover execution instruction to the target RAN, or send a handover execution instruction to the source RAN, where the handover execution instruction is used to trigger the RAN switching execution process.
  • the AMF sends the S-NSSAI business continuity indication to the RAN.
  • the business continuity indication is used to indicate: S-NSSAI congestion occurs due to UE movement or other reasons or the accessed RAN is no longer available.
  • the source RAN sends an unavailability indication to the AMF based on the business continuity indication, and waits for the handover execution indication from the AMF, and the source RAN performs the RAN handover only after receiving the handover execution indication from the AMF. execution process.
  • the source RAN may also send an available indication to the AMF based on the business continuity indication.
  • the available indication is used to instruct the target RAN to support a PDU session with the attributes of the first S-NSSAI.
  • the AMF triggers the execution process of RAN handover based on the available indication from the source RAN.
  • AMF can obtain business continuity instructions from UDM.
  • the SMF obtains the business continuity indication from the UDM, and then the SMF sends the business continuity indication to the AMF.
  • the business continuity indication may be included in context (such as PDU session context or UE context).
  • context such as PDU session context or UE context.
  • the target RAN or target AMF can obtain the business continuity indication from the context passed by the source RAN or source AMF.
  • the target RAN obtains the business continuity indication from the context (such as PDU session context or UE context) delivered by the source RAN.
  • the context such as PDU session context or UE context
  • Method (2) in N2-based handover, the target RAN obtains the context in the source RAN (such as PDU session context or UE context) via the core network, and then obtains the business continuity indication from the context; where, the target RAN obtains the context
  • the path can include the target AMF and the source AMF in sequence.
  • Method (3) The target AMF obtains the business continuity indication from the UE context delivered by the source AMF, and sends the business continuity indication to the target RAN.
  • the target AMF obtains the UE context from the source AMF, sends the UE context to the target RAN, and the target RAN obtains the business continuity indication from the UE context.
  • the business continuity indication is associated with a PDU session.
  • PDU session 1 is associated with the business continuity indication
  • PDU session 2 is not associated with the business continuity indication, then PDU session 1 needs to maintain the business continuity of the PDU session; PDU session 2 does not need to maintain the PDU Session business continuity.
  • the business continuity indication is associated with S-NSSAI.
  • S-NSSAI 1 is associated with the business continuity indication
  • S-NSSAI 2 is not associated with the business continuity indication, then the S-NSSAI 1 in the PDU session needs to maintain the S-NSSAI 1 Business continuity; S-NSSAI 2 in PDU session, there is no need to maintain business continuity of PDU session.
  • the UE requests to establish a PDU session with the second S-NSSAI attribute, or requests to modify the first S-NSSAI in the PDU session to the second S-NSSAI.
  • the AMF determines that there is a PDU session with the second S-NSSAI attribute, - After the PDU session of the NSSAI attribute, trigger the RAN handover execution process.
  • step 604 can also be understood as, for the PDU session associated with the business continuity indication, or the PDU session corresponding to the S-NSSAI associated with the business continuity indication, the AMF determines that an alternative PDU session is established for the above type of PDU session. Or when the above type of PDU session is modified, the RAN handover execution process is triggered. Optional, when all the above types of PDU sessions are When replacing or modifying, AMF triggers the RAN handover execution process.
  • the target RAN accepts the PDU session with the attribute of the second S-NSSAI, which helps maintain the service continuity of the UE.
  • the first network element is SMF.
  • Step 701 The SMF sends a re-evaluation indication to the UE.
  • the SMF determines that the first S-NSSAI in the UE's PDU session is about to be unavailable, and then sends it to the UE through the AMF.
  • Reassess instructions For the definition of the re-evaluation instruction, please refer to the description in step 601.
  • the AMF when the AMF determines that the first S-NSSAI in the PDU session is about to be unavailable, the AMF sends an unavailability indication to the SMF.
  • the target RAN sends an unavailability indication to the SMF through the AMF, or the source RAN sends an unavailability indication to the SMF through the AMF. Based on the unavailability indication, the SMF determines that the first S-NSSAI in the PDU session is about to be unavailable.
  • the SMF determines that the first S-NSSAI in the PDU session is about to be unavailable.
  • SMF also determines candidate S-NSSAI.
  • AMF determines the candidate S-NSSAI in step 601.
  • Step 702 The UE re-evaluates the URSP rule corresponding to the first S-NSSAI to obtain the second S-NSSAI.
  • the UE re-evaluates the URSP rule corresponding to the first S-NSSAI to obtain the second S-NSSAI.
  • Step 703 The UE sends a PDU session request to the AMF, where the PDU session request includes the second S-NSSAI.
  • the AMF sends the received PDU session request to the SMF, and the SMF establishes/modifies a PDU session with attributes of the second S-NSSAI according to the second S-NSSAI in the PDU session request.
  • the SMF establishes/modifies a PDU session with attributes of the second S-NSSAI according to the second S-NSSAI in the PDU session request.
  • Step 704 The SMF determines that a PDU session with the attribute of the second S-NSSAI exists between the UE and the DN, and triggers the RAN handover execution process.
  • the implementation method of SMF determining that there is a PDU session with the attribute of the second S-NSSAI between the UE and the DN can be understood by referring to the description in the above step 604.
  • the above step “AMF” can be replaced with "SMF”.
  • the AMF may also determine that there is a PDU session with the attribute of the second S-NSSAI between the UE and the DN, triggering the RAN handover execution process.
  • the AMF may also determine that there is a PDU session with the attribute of the second S-NSSAI between the UE and the DN, triggering the RAN handover execution process.
  • the SMF can also initiate a PDU session modification process to modify the first S-NSSAI in the attributes of the PDU session to the second S -NSSAI.
  • the SMF (and corresponding UPF) needs to support the alternative S-NSSAI.
  • the AMF can determine that a PDU session with the attributes of the second S-NSSAI exists between the UE and the DN, thereby triggering the RAN handover execution process.
  • SMF can obtain business continuity instructions from UDM. Then, the SMF sends the business continuity indication to the RAN, or the SMF sends the business continuity indication to the RAN through the AMF. Normally, UE mobility or RAN handover does not cause SMF handover. Therefore, SMF can always retain context (such as PDU session context or UE context). Correspondingly, SMF can send context or services in the context to the target RAN. Continuity indication; Alternatively, the SMF may send the context, or the business continuity indication in the context, to the target RAN via the target AMF.
  • the UE requests to establish a PDU session with the second S-NSSAI attribute, or requests to modify the first S-NSSAI in the PDU session to the second S-NSSAI, or the SMF triggers the modification of the first S-NSSAI in the PDU session.
  • -NSSAI is the second S-NSSAI.
  • the RAN handover execution process is triggered. In this way, when the UE accesses the target RAN, the target RAN accepts the PDU session with the attribute of the second S-NSSAI, which helps maintain the service continuity of the UE.
  • the first S-NSSAI that is not supported by the target RAN or the first S-NSSAI that is congested can be one or more.
  • UE, AMF, Network elements such as the SMF can perform the above method based on each first S-NSSAI to maintain business continuity of the PDU session in each first S-NSSAI.
  • FIG. 8 and FIG. 9 are schematic structural diagrams of possible communication devices provided by the present application. These communication devices can be used to implement the functions of the UE, RAN or the first network element (such as AMF or SMF) in the above method embodiments, and therefore can also achieve the beneficial effects of the above method embodiments.
  • the first network element such as AMF or SMF
  • the communication device may be a UE or RAN or AMF or SMF as shown in FIGS. 3A to 3F , or may be a module (such as a chip) applied in the UE or RAN or AMF or SMF.
  • the communication device 800 includes a processing module 801 and a transceiver module 802 .
  • the processing module 801 is used to determine M S-NSSAI, where M is an integer greater than or equal to 2;
  • the transceiver module 802 is used to send a PDU session establishment request.
  • the PDU session establishment request includes M S-NSSAIs.
  • the PDU session establishment request is used to establish a PDU session with attributes of N S-NSSAIs, wherein the M S-NSSAIs Including N S-NSSAI, N is an integer greater than or equal to 2;
  • the processing module 801 is also used to access the communication device to the RAN.
  • the RAN supports any S-NSSAI among N S-NSSAI.
  • M S-NSSAIs are included in the NSSAI that is allowed to be used; or M S-NSSAIs are included in the NSSAI mapped by the NSSAI that is allowed to be used.
  • the transceiver module 802 is also used to receive URSP rules before the processing module 801 determines M S-NSSAIs.
  • the URSP rules include multi-slice usage instructions; when the transceiver module 802 sends a PDU session establishment request, , specifically used to send a PDU session establishment request according to the multi-slice usage instructions.
  • the URSP rules include RSDs, and the RSDs include M S-NSSAIs and multi-slice usage instructions; or the URSP rules include K RSDs and multi-slice usage instructions, and the K RSDs include M S-NSSAIs.
  • NSSAI, K is a positive integer less than or equal to M.
  • the transceiver module 802 is also configured to receive first information.
  • the first information is used to indicate that the target SMF or target UPF used to establish the PDU session does not support M S - the first part of S-NSSAI in the NSSAI;
  • the processing module 801 is also configured to determine, based on the first information, that the PDU session has the attributes of N S-NSSAI, and the N S-NSSAI includes M S-NSSAI except the first part of S- S-NSSAI other than NSSAI.
  • the processing module 801 is configured to determine N S-NSSAI associated with the PDU session when it is determined that the UE needs to be handed over from the source RAN to the target RAN, where the PDU session is requested and established by the UE when accessing the source RAN, N is an integer greater than or equal to 2; and when it is determined that the target RAN supports any S-NSSAI among N S-NSSAI, accept the PDU session.
  • the transceiver module 802 is configured to receive N S-NSSAI associated with the PDU session from the source RAN.
  • the transceiver module 802 is used to receive a re-evaluation instruction, and the re-evaluation instruction is used to instruct the UE to re-evaluate the URSP rule corresponding to the first S-NSSAI; the processing module 801 is used to re-evaluate the URSP rule corresponding to the first S-NSSAI. Evaluate and obtain the second S-NSSAI; the transceiver module 802 is also used to send a PDU session request, the PDU session request includes the second S-NSSAI, and the PDU session request is used to establish a PDU session with attributes of the second S-NSSAI, Or, the first S-NSSAI is used to modify the attributes of the established PDU session to the second S-NSSAI.
  • the transceiver module 802 is also used to receive candidate S-NSSAI; the processing module 801 is specifically used to re-evaluate the URSP rules corresponding to the first S-NSSAI and obtain the second S-NSSAI. According to the candidate S-NSSAI, the URSP rule corresponding to the first S-NSSAI is re-evaluated to obtain the second S-NSSAI. The second S-NSSAI is included in the candidate S-NSSAI.
  • the processing module 801 is also used to switch the communication device from the source RAN to the target RAN.
  • the target RAN supports the PDU session with the second S-NSSAI attribute and does not support the first S-NSSAI attribute. PDU session.
  • the target RAN does not support the first S-NSSAI, or the first S-NSSAI supported by the target RAN is in a congestion state.
  • the processing module 801 is used to determine that there is a PDU session with the attribute of the second S-NSSAI; and trigger the handover execution process of the UE from the source RAN to the target RAN; wherein the second S-NSSAI is a response to the first S-NSSAI.
  • the corresponding URSP rule is re-evaluated; the target RAN supports PDU sessions with the second S-NSSAI attribute, and does not support PDU sessions with the first S-NSSAI attribute.
  • the target RAN does not support the first S-NSSAI, or the first S-NSSAI supported by the target RAN is in a congestion state.
  • the processing module 801 before determining that there is a PDU session with the attribute of the second S-NSSAI, the processing module 801 is also used to control the transceiver module 802 during the handover preparation process of the UE switching from the source RAN to the target RAN. Receive an unavailable indication, wherein the unavailable indication is used to indicate that the target RAN does not support the PDU session with the first S-NSSAI attribute.
  • the processing module 801 before determining that a PDU session with the attribute of the second S-NSSAI exists, the processing module 801 is also configured to control the transceiver module 802 to send a business continuity indication to the RAN during the establishment process of the PDU session.
  • the business continuity indication is used to instruct the RAN to send an unavailability indication during the handover preparation process.
  • the processing module 801 before determining that there is a PDU session with the attribute of the second S-NSSAI, the processing module 801 is also used to control the transceiver module 802 to send a re-evaluation indication to the UE.
  • the re-evaluation indication is used to indicate re-evaluation.
  • the processing module 801 is also used to determine candidate S-NSSAI before determining that there is a PDU session with attributes of the second S-NSSAI; and, control the transceiver module 802 to send the candidate S-NSSAI to the UE. ;
  • the candidate S-NSSAI includes the second S-NSSAI.
  • the processing module 801 before determining that a PDU session with the attribute of the second S-NSSAI exists, the processing module 801 is also used to control the transceiver module 802 to receive a PDU session request, where the PDU session request includes the second S-NSSAI. ; Establish a PDU session with the attributes of the second S-NSSAI, or modify the first S-NSSAI in the attributes of the established PDU session to the second S-NSSAI.
  • the processing module 801 before determining that there is a PDU session with the attribute of the second S-NSSAI, the processing module 801 is also used to control the transceiver module 802 to send a PDU session modification indication.
  • the PDU session modification indication is used to modify the established
  • the first S-NSSAI in the attributes of the PDU session is the second S-NSSAI.
  • the processing module 801 determines that there is a PDU session with the attribute of the second S-NSSAI when determining that any of the following conditions are met: the transceiver module 802 receives a completion indication from the UE, and the completion indication is used to indicate The establishment or modification of the PDU session with the attributes of the second S-NSSAI is completed; it is determined that the duration of the re-evaluation indication sent by the transceiver module 802 to the UE reaches the first preset duration; the communication device is an AMF, and the transceiver module 802 receives the PDU session modification from the SMF Instruction: Send PDU session modification indication to the UE.
  • the processing module 801 when the processing module 801 triggers the handover execution process of the RAN, it is specifically used to: control the transceiver module 802 to send a handover execution instruction to the target RAN, or to send a handover execution instruction to the source RAN; the handover execution instruction is To trigger the switching execution process.
  • Figure 9 shows a device 900 provided by an embodiment of the present application.
  • the device shown in Figure 9 can be a hardware circuit implementation of the device shown in Figure 8.
  • the device may be adapted to the flow chart shown above to perform the functions of the UE, RAN, or first network element in the above method embodiment.
  • Figure 9 shows only the main components of the device.
  • the device 900 shown in Figure 9 includes a communication interface 910, a processor 920 and a memory 930, where the memory 930 is used to store program instructions and/or data.
  • the processor 920 may cooperate with the memory 930.
  • Processor 920 may execute program instructions stored in memory 930 . When the instructions or programs stored in the memory 930 are executed, the processor 920 is used to perform the operations performed by the processing module 801 in the above embodiment, and the communication interface 910 is used to perform the operations performed by the transceiver module 802 in the above embodiment.
  • Memory 930 and processor 920 are coupled.
  • the coupling in the embodiment of this application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information interaction between devices, units or modules.
  • At least one of the memories 930 may be included in the processor 920 .
  • the communication interface may be a transceiver, a circuit, a bus, a module, or other types of communication interfaces.
  • the transceiver when the communication interface is a transceiver, the transceiver may include an independent receiver or an independent transmitter; it may also be a transceiver with integrated transceiver functions or a communication interface.
  • Apparatus 900 may also include communication lines 940.
  • the communication interface 910, the processor 920 and the memory 930 can be connected to each other through a communication line 940;
  • the communication line 940 can be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (extended industry standard architecture) , referred to as EISA) bus, etc.
  • the communication line 940 can be divided into an address bus, a data bus, a control bus, etc. For ease of presentation, only one thick line is used in Figure 9, but it does not mean that there is only one bus or one type of bus.
  • embodiments of the present application provide a computer-readable storage medium on which a computer program or instructions are stored.
  • the computer program or instructions When executed, the computer is caused to execute the method in the above method embodiment.
  • embodiments of the present application provide a computer program product.
  • a computer reads and executes the computer program product, it causes the computer to execute the method in the above method embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A communication method and apparatus, for maintaining the service continuity of a UE when S-NSSAI used by the UE needs to be updated. In the present application, the method comprises: a UE determines M pieces of S-NSSAI, M being an integer greater than or equal to 2; the UE sends a PDU session establishment request, wherein the PDU session establishment request comprises the M pieces of S-NSSAI, the PDU session establishment request is used for establishing a PDU session having attributes of N pieces of S-NSSAI, and the M pieces of S-NSSAI comprise the N pieces of S-NSSAI, N being an integer greater than or equal to 2; and the UE accesses a RAN, the RAN supporting any S-NSSAI in the N pieces of S-NSSAI.

Description

一种通信方法及装置A communication method and device
相关申请的交叉引用Cross-references to related applications
本申请要求在2022年08月03日提交中国专利局、申请号为202210924329.1、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。This application claims priority to the Chinese patent application filed with the China Patent Office on August 3, 2022, with the application number 202210924329.1 and the application title "A communication method and device", the entire content of which is incorporated into this application by reference.
技术领域Technical field
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。The present application relates to the field of communication technology, and in particular, to a communication method and device.
背景技术Background technique
第五代移动通信(the 5th-generation,5G)系统中引入网络切片(network slice,NS)技术,网络切片是指在物理或者虚拟的网络基础设施上,根据不同的服务需求定制的逻辑网络。终端设备(user equipment,UE)根据网络需求与对应的网络切片建立协议数据单元(protocol data unit,PDU)会话。第三代合作伙伴计划(3rd generation partnership project,3GPP)定义了用户路由选择策略(UE route selection policy,URSP),URSP用于确定不同应用程序(application,APP)所需要的PDU会话选择参数,如单个网络切片选择辅助信息(single network slice selection assistance information,S-NSSAI)、数据网络名称(data network name,DNN)和会话服务连续性(session service continuity,SSC)模式等。The fifth generation mobile communication (the 5th-generation, 5G) system introduces network slicing (NS) technology. Network slicing refers to a logical network customized according to different service requirements on physical or virtual network infrastructure. The terminal equipment (user equipment, UE) establishes a protocol data unit (PDU) session with the corresponding network slice according to the network requirements. The 3rd generation partnership project (3GPP) defines the user route selection policy (UE route selection policy, URSP). URSP is used to determine the PDU session selection parameters required by different applications (applications, APPs), such as Single network slice selection assistance information (S-NSSAI), data network name (DNN) and session service continuity (SSC) mode, etc.
UE根据URSP确定APP对应的PDU会话选择参数。当UE已建立满足该APP对应的PDU会话选择参数的PDU会话时,UE将该APP的数据包(packet)路由到该PDU会话上,若没有满足该APP对应的PDU会话选择参数的PDU会话,UE会发起PDU会话的建立,建立一个满足该APP对应的PDU会话选择参数的PDU会话。The UE determines the PDU session selection parameters corresponding to the APP based on the URSP. When the UE has established a PDU session that satisfies the PDU session selection parameters corresponding to the APP, the UE routes the APP's data packet (packet) to the PDU session. If there is no PDU session that satisfies the PDU session selection parameters corresponding to the APP, The UE will initiate the establishment of a PDU session and establish a PDU session that meets the PDU session selection parameters corresponding to the APP.
在UE使用的S-NSSAI需要更新时,UE需要先释放该原有S-NSSAI中的PDU会话,再在新的S-NSSAI中建立PDU会话。如此,无法保持UE的业务连续性。When the S-NSSAI used by the UE needs to be updated, the UE needs to first release the PDU session in the original S-NSSAI, and then establish a PDU session in the new S-NSSAI. In this way, the service continuity of the UE cannot be maintained.
发明内容Contents of the invention
本申请提供一种通信方法及装置,用于在UE使用的S-NSSAI需要更新时,保持UE的业务连续性。This application provides a communication method and device for maintaining the business continuity of the UE when the S-NSSAI used by the UE needs to be updated.
第一方面,本申请提供一种通信方法,该方法可由通信装置执行,通信装置可以是终端设备(UE),或终端设备中的模块,例如芯片。In a first aspect, the present application provides a communication method, which can be executed by a communication device. The communication device can be a terminal equipment (UE), or a module in the terminal equipment, such as a chip.
通信方法包括:UE确定M个S-NSSAI,M为大于或等于2的整数。UE发送PDU会话建立请求,PDU会话建立请求中包括M个S-NSSAI,PDU会话建立请求用于建立具备N个S-NSSAI的属性的PDU会话,其中,M个S-NSSAI中包括N个S-NSSAI,N为大于或等于2的整数。UE接入至无线接入网(radio access network,RAN)设备,该RAN支持N个S-NSSAI中的任一个S-NSSAI。The communication method includes: the UE determines M S-NSSAIs, where M is an integer greater than or equal to 2. The UE sends a PDU session establishment request. The PDU session establishment request includes M S-NSSAIs. The PDU session establishment request is used to establish a PDU session with the attributes of N S-NSSAIs. The M S-NSSAIs include N S-NSSAIs. -NSSAI, N is an integer greater than or equal to 2. The UE accesses the radio access network (radio access network, RAN) equipment, and the RAN supports any S-NSSAI among N S-NSSAI.
上述技术方案中,当UE使用的S-NSSAI需要更新时,只要当前接入的RAN支持N个S-NSSAI中的一个或多个S-NSSAI,那么该RAN不会拒绝该PDU会话,所以UE无需 释放PDU会话,有助于保持UE的业务连续性。In the above technical solution, when the S-NSSAI used by the UE needs to be updated, as long as the currently accessed RAN supports one or more S-NSSAI among N S-NSSAI, the RAN will not reject the PDU session, so the UE No need Releasing the PDU session helps maintain the business continuity of the UE.
在一种可能的实现方式中,M个S-NSSAI包含于允许使用的网络切片选择辅助信息(network slice selection assistance information,NSSAI)中;或M个S-NSSAI包含于允许使用的NSSAI映射的NSSAI中。如此,有助于UE成功请求该PDU会话的建立。In a possible implementation, M S-NSSAIs are included in the network slice selection assistance information (NSSAI) that is allowed to be used; or M S-NSSAIs are included in the NSSAI of the NSSAI mapping that is allowed to be used. middle. In this way, it is helpful for the UE to successfully request the establishment of the PDU session.
在一种可能的实现方式中,UE确定M个S-NSSAI之前,还包括:UE接收URSP规则,URSP规则中包括多切片使用指示;相应的,UE发送PDU会话建立请求,包括:UE根据多切片使用指示,发送PDU会话建立请求。可选的,URSP规则中包括路径选择描述符(route selection descriptor,RSD),RSD包括M个S-NSSAI和多切片使用指示;或者,URSP规则包括K个RSD和多切片使用指示,K个RSD中包括M个S-NSSAI,K为小于或等于M的正整数。可选的,多切片使用指示还能够额外指示使用哪几个RSD中的S-NSSAI,比如,通过在多切片使用指示中包含路径选择描述符优先(route selection descriptor precedence,RSD precedence)来指示。In a possible implementation, before the UE determines M S-NSSAI, it also includes: the UE receives URSP rules, and the URSP rules include multi-slice usage instructions; accordingly, the UE sends a PDU session establishment request, including: the UE sends a PDU session establishment request according to the multi-slice usage indication. Slice usage instructions, send PDU session establishment request. Optionally, the URSP rule includes a route selection descriptor (RSD), and the RSD includes M S-NSSAI and multi-slice usage instructions; or, the URSP rule includes K RSDs and multi-slice usage instructions, and K RSDs. includes M S-NSSAI, and K is a positive integer less than or equal to M. Optionally, the multi-slice usage instruction can additionally indicate which S-NSSAIs in RSDs to use, for example, by including route selection descriptor precedence (RSD precedence) in the multi-slice usage instruction.
上述技术方案中,在URSP规则中设置多切片使用指示,UE根据该URSP规则中的多切片使用指示,请求建立具备M个S-NSSAI的属性的PDU会话,从而在UE使用的S-NSSAI需要更新时,有助于保持UE的业务连续性。In the above technical solution, a multi-slice usage indication is set in the URSP rule, and the UE requests to establish a PDU session with M S-NSSAI attributes according to the multi-slice usage indication in the URSP rule, so that the S-NSSAI used by the UE needs When updating, it helps to maintain the business continuity of the UE.
在一种可能的实现方式中,UE发送PDU会话建立请求之后,还包括:UE接收第一信息,第一信息用于指示用于建立PDU会话的目标SMF或目标UPF不支持M个S-NSSAI中的第一部分S-NSSAI。相应的,UE根据第一信息,确定PDU会话具备N个S-NSSAI的属性,N个S-NSSAI包括M个S-NSSAI中除第一部分S-NSSAI之外的其他S-NSSAI。In a possible implementation, after the UE sends the PDU session establishment request, the method further includes: the UE receives first information, and the first information is used to indicate that the target SMF or target UPF used to establish the PDU session does not support M S-NSSAIs. The first part of S-NSSAI. Correspondingly, the UE determines, based on the first information, that the PDU session has attributes of N S-NSSAIs, and the N S-NSSAIs include other S-NSSAIs among the M S-NSSAIs except the first part of S-NSSAIs.
上述技术方案中,UE虽然请求建立具备M个S-NSSAI的属性的PDU会话,但是由于目标SMF或目标UPF支持的S-NSSAI的限制,最终建立的PDU会话支持M个S-NSSAI中的部分(即N个S-NSSAI),如此,UE根据M个S-NSSAI和第一信息,确定UE能够通过N个S-NSSAI来向网络侧传输数据。In the above technical solution, although the UE requests to establish a PDU session with attributes of M S-NSSAI, due to the limitations of the S-NSSAI supported by the target SMF or target UPF, the PDU session finally established supports part of the M S-NSSAI. (That is, N S-NSSAI). In this way, the UE determines that the UE can transmit data to the network side through the N S-NSSAI according to the M S-NSSAI and the first information.
第二方面,本申请提供一种通信方法,该方法可由通信装置执行,通信装置可以是接入网设备(RAN),或RAN中的模块,例如芯片。通信方法包括:目标RAN在确定UE需要由源RAN切换到目标RAN时,确定PDU会话关联的N个S-NSSAI,其中,PDU会话是UE在接入至源RAN时发起请求并建立的,N为大于或等于2的整数;目标RAN确定目标RAN支持N个S-NSSAI中任一个S-NSSAI时,接受该PDU会话。In a second aspect, the present application provides a communication method, which can be executed by a communication device. The communication device can be an access network equipment (RAN), or a module in the RAN, such as a chip. The communication method includes: when the target RAN determines that the UE needs to be handed over from the source RAN to the target RAN, determine N S-NSSAI associated with the PDU session, where the PDU session is requested and established by the UE when accessing the source RAN, N It is an integer greater than or equal to 2; when the target RAN determines that the target RAN supports any S-NSSAI among N S-NSSAI, it accepts the PDU session.
上述技术方案中,当UE由源RAN切换到目标RAN时,只要目标RAN支持PDU会话关联的N个S-NSSAI中的一个或多个S-NSSAI,那么,该目标RAN不会拒绝该PDU会话,所以UE无需释放PDU会话,有助于保持UE的业务连续性。In the above technical solution, when the UE is handed over from the source RAN to the target RAN, as long as the target RAN supports one or more S-NSSAIs among the N S-NSSAI associated with the PDU session, the target RAN will not reject the PDU session. , so the UE does not need to release the PDU session, which helps maintain the UE's business continuity.
第三方面,本申请提供一种通信方法,该方法可由通信装置执行,通信装置可以是终端设备(UE),或终端设备中的模块,例如芯片。In a third aspect, the present application provides a communication method, which can be executed by a communication device. The communication device can be a terminal equipment (UE), or a module in the terminal equipment, such as a chip.
通信方法包括:UE接收重新评估指示,重新评估指示用于指示UE对第一S-NSSAI对应的URSP规则进行重新评估;相应的,UE对第一S-NSSAI对应的URSP规则进行重新评估,得到第二S-NSSAI;UE发送PDU会话请求,PDU会话请求中包括第二S-NSSAI,PDU会话请求用于建立具备第二S-NSSAI的属性的PDU会话,或者,用于修改已建立的PDU会话的属性中第一S-NSSAI为第二S-NSSAI。 The communication method includes: the UE receives a re-evaluation instruction, and the re-evaluation instruction is used to instruct the UE to re-evaluate the URSP rule corresponding to the first S-NSSAI; accordingly, the UE re-evaluates the URSP rule corresponding to the first S-NSSAI, obtaining Second S-NSSAI; the UE sends a PDU session request, which includes the second S-NSSAI. The PDU session request is used to establish a PDU session with the attributes of the second S-NSSAI, or to modify the established PDU. In the attributes of the session, the first S-NSSAI is the second S-NSSAI.
上述技术方案中,UE在接收重新评估指示之后,对第一S-NSSAI对应的URSP规则进行重新评估得到第二S-NSSAI,如此,UE预先请求建立具备第二S-NSSAI(即更新之后的S-NSSAI)的属性的PDU会话,或者,请求修改已建立的PDU会话的属性中第一S-NSSAI为第二S-NSSAI,而无需在PDU会话被RAN拒绝之后,再请求建立具备第二S-NSSAI的属性的PDU会话,有助于保持UE的业务连续性。In the above technical solution, after receiving the re-evaluation instruction, the UE re-evaluates the URSP rule corresponding to the first S-NSSAI to obtain the second S-NSSAI. In this way, the UE requests in advance to establish the second S-NSSAI (that is, after the update). S-NSSAI), or request to modify the attributes of the established PDU session in which the first S-NSSAI is the second S-NSSAI, without the need to request the establishment of the second S-NSSAI after the PDU session is rejected by the RAN. The PDU session of S-NSSAI attributes helps maintain the business continuity of the UE.
在一种可能的实现方式中,UE对第一S-NSSAI对应的URSP规则进行重新评估,得到第二S-NSSAI时,具体可以是,UE接收候选S-NSSAI,UE根据候选S-NSSAI,对第一S-NSSAI对应的URSP规则进行重新评估,得到第二S-NSSAI,第二S-NSSAI包含于候选S-NSSAI中。In a possible implementation, the UE re-evaluates the URSP rule corresponding to the first S-NSSAI and obtains the second S-NSSAI. Specifically, the UE receives the candidate S-NSSAI, and the UE receives the candidate S-NSSAI according to the candidate S-NSSAI. The URSP rule corresponding to the first S-NSSAI is re-evaluated to obtain the second S-NSSAI, which is included in the candidate S-NSSAI.
上述技术方案中,候选S-NSSAI是网络侧预先选择的S-NSSAI,UE从该候选S-NSSAI中选择第二S-NSSAI,该选择出的第二S-NSSAI更容易被网络侧接收,提高UE请求建立/修改PDU会话的成功率。In the above technical solution, the candidate S-NSSAI is the S-NSSAI pre-selected by the network side, and the UE selects the second S-NSSAI from the candidate S-NSSAI. The selected second S-NSSAI is more likely to be received by the network side. Improve the success rate of UE requesting to establish/modify PDU sessions.
在一种可能的实现方式中,UE还由源RAN切换至目标RAN,其中,目标RAN支持具备第二S-NSSAI属性的PDU会话,且不支持具备第一S-NSSAI属性的PDU会话。可选的,目标RAN不支持第一S-NSSAI,或者,目标RAN支持的第一S-NSSAI处于拥塞状态。源RAN支持具备第一S-NSSAI属性的PDU会话。In a possible implementation, the UE is also handed over from the source RAN to the target RAN, where the target RAN supports the PDU session with the second S-NSSAI attribute and does not support the PDU session with the first S-NSSAI attribute. Optionally, the target RAN does not support the first S-NSSAI, or the first S-NSSAI supported by the target RAN is in a congestion state. The source RAN supports PDU sessions with the first S-NSSAI attribute.
上述技术方案中,UE在建立完成具备第二S-NSSAI的属性的PDU会话,或者,将已建立的PDU会话的属性中第一S-NSSAI修改为第二S-NSSAI之后,UE由源RAN切换至目标RAN,目标RAN支持具备第二S-NSSAI属性的PDU会话,如此,有助于保持UE的业务连续性。In the above technical solution, after the UE completes the establishment of a PDU session with the attributes of the second S-NSSAI, or modifies the first S-NSSAI in the attributes of the established PDU session to the second S-NSSAI, the UE is sent by the source RAN Switch to the target RAN. The target RAN supports the PDU session with the second S-NSSAI attribute. This helps to maintain the service continuity of the UE.
第四方面,本申请提供一种通信方法,该方法可由通信装置执行,通信装置可以是接入和移动性管理功能网元(access mobile function,AMF),或AMF中的模块,例如芯片;In the fourth aspect, this application provides a communication method, which can be executed by a communication device. The communication device can be an access and mobility management function network element (access mobile function, AMF), or a module in the AMF, such as a chip;
该通信装置还可以是会话管理功能网元(session management function,SMF),或SMF中的模块,例如芯片。The communication device may also be a session management function network element (session management function, SMF), or a module in the SMF, such as a chip.
通信方法包括:第一网元在确定存在具备第二S-NSSAI的属性的PDU会话之后,第一网元触发UE由源RAN切换到目标RAN的切换执行流程(或称为是,RAN的切换执行流程);其中,第二S-NSSAI是对第一S-NSSAI对应的URSP规则重新评估得到的;目标RAN支持具备第二S-NSSAI属性的PDU会话,且不支持具备第一S-NSSAI属性的PDU会话。在一种可能的实现方式中,目标RAN不支持第一S-NSSAI,或者,目标RAN支持的第一S-NSSAI处于拥塞状态。The communication method includes: after the first network element determines that there is a PDU session with the attribute of the second S-NSSAI, the first network element triggers a handover execution process for the UE to switch from the source RAN to the target RAN (or, RAN handover). Execution process); wherein, the second S-NSSAI is obtained by re-evaluating the URSP rule corresponding to the first S-NSSAI; the target RAN supports PDU sessions with the second S-NSSAI attribute, and does not support the first S-NSSAI Properties of the PDU session. In a possible implementation manner, the target RAN does not support the first S-NSSAI, or the first S-NSSAI supported by the target RAN is in a congestion state.
上述技术方案中,目标RAN支持具备第二S-NSSAI属性的PDU会话,第一网元在确定UE与DN之间存在具备第二S-NSSAI的属性的PDU会话之后,第一网元触发UE由源RAN切换到目标RAN的切换执行流程,如此,该具备第二S-NSSAI的属性的PDU会话会被目标RAN接受,有助于保持UE的业务连续性。In the above technical solution, the target RAN supports the PDU session with the second S-NSSAI attribute. After the first network element determines that there is a PDU session with the second S-NSSAI attribute between the UE and the DN, the first network element triggers the UE The handover execution process from the source RAN to the target RAN, in this way, the PDU session with the attribute of the second S-NSSAI will be accepted by the target RAN, which helps to maintain the business continuity of the UE.
在一种可能的实现方式中,第一网元确定存在具备第二S-NSSAI的属性的PDU会话之前,第一网元还接收不可用指示,其中,不可用指示用于指示目标RAN不支持具备第一S-NSSAI属性的PDU会话。在一种可能的实现方式中,在PDU会话的建立流程中,第一网元还向RAN发送业务连续性指示,该业务连续性指示用于指示RAN在RAN的切换准备流程中发送不可用指示。 In a possible implementation, before the first network element determines that there is a PDU session with the attribute of the second S-NSSAI, the first network element also receives an unavailable indication, where the unavailable indication is used to indicate that the target RAN does not support PDU session with the first S-NSSAI attribute. In a possible implementation, during the establishment process of the PDU session, the first network element also sends a business continuity indication to the RAN. The business continuity indication is used to instruct the RAN to send an unavailability indication during the handover preparation process of the RAN. .
上述技术方案中,在RAN切换的准备阶段中,RAN基于业务连续性指示向第一网元发送不可用指示,并等待来自第一网元的切换执行指示,且RAN在接收到来自第一网元的切换执行指示之后才执行RAN切换的执行流程。如此,避免UE在接入至目标RAN时,目标RAN拒绝该具备第一S-NSSAI属性的PDU会话,导致UE释放PDU会话的问题。In the above technical solution, in the preparation phase for RAN handover, the RAN sends an unavailability indication to the first network element based on the business continuity indication, and waits for the handover execution instruction from the first network element, and the RAN receives the handover execution instruction from the first network element. The RAN handover execution process is executed only after the unit's handover execution instruction. In this way, when the UE accesses the target RAN, the target RAN rejects the PDU session with the first S-NSSAI attribute, causing the UE to release the PDU session.
在一种可能的实现方式中,第一网元确定存在具备第二S-NSSAI的属性的PDU会话之前,第一网元还向UE发送重新评估指示,重新评估指示用于指示重新评估第一S-NSSAI对应的URSP规则。在一种可能的实现方式中,第一网元确定存在具备第二S-NSSAI的属性的PDU会话之前,第一网元还接收PDU会话请求,PDU会话请求中包括第二S-NSSAI;第一网元建立具备第二S-NSSAI的属性的PDU会话,或者,修改PDU会话的属性中的第一S-NSSAI为第二S-NSSAI。In a possible implementation, before the first network element determines that there is a PDU session with the attribute of the second S-NSSAI, the first network element also sends a re-evaluation indication to the UE, and the re-evaluation indication is used to instruct to re-evaluate the first URSP rules corresponding to S-NSSAI. In a possible implementation, before the first network element determines that there is a PDU session with attributes of the second S-NSSAI, the first network element also receives a PDU session request, and the PDU session request includes the second S-NSSAI; A network element establishes a PDU session with the attributes of the second S-NSSAI, or modifies the first S-NSSAI in the attributes of the PDU session to the second S-NSSAI.
上述技术方案中,第一网元指示UE重新评估第一S-NSSAI对应的URSP规则,以得到第二S-NSSAI,如此,UE预先请求建立具备第二S-NSSAI(即更新之后的S-NSSAI)的属性的PDU会话,或者,请求修改已建立的PDU会话的属性中第一S-NSSAI为第二S-NSSAI,而无需在PDU会话被RAN拒绝之后,再请求建立具备第二S-NSSAI的属性的PDU会话,有助于保持UE的业务连续性。In the above technical solution, the first network element instructs the UE to re-evaluate the URSP rules corresponding to the first S-NSSAI to obtain the second S-NSSAI. In this way, the UE requests in advance to establish a network with the second S-NSSAI (that is, the updated S-NSSAI). NSSAI) attribute, or request to modify the attributes of the established PDU session in which the first S-NSSAI is the second S-NSSAI, without the need to request the establishment of the second S-NSSAI after the PDU session is rejected by the RAN. The PDU session of NSSAI attributes helps to maintain the business continuity of the UE.
在一种可能的实现方式中,第一网元确定存在具备第二S-NSSAI的属性的PDU会话之前,第一网元还确定候选S-NSSAI,第一网元向UE发送候选S-NSSAI;其中,候选S-NSSAI中包括第二S-NSSAI。In a possible implementation, before the first network element determines that there is a PDU session with attributes of the second S-NSSAI, the first network element also determines the candidate S-NSSAI, and the first network element sends the candidate S-NSSAI to the UE. ; Among them, the candidate S-NSSAI includes the second S-NSSAI.
上述技术方案中,第一网元向UE指示候选S-NSSAI,相应的,UE从该候选S-NSSAI中选择第二S-NSSAI,该选择出的第二S-NSSAI更容易被网络侧接收,提高UE请求建立/修改PDU会话的成功率。In the above technical solution, the first network element indicates the candidate S-NSSAI to the UE. Correspondingly, the UE selects the second S-NSSAI from the candidate S-NSSAI. The selected second S-NSSAI is more likely to be received by the network side. , improve the success rate of UE requesting to establish/modify PDU sessions.
在一种可能的实现方式中,第一网元确定存在具备第二S-NSSAI的属性的PDU会话之前,第一网元还发送PDU会话修改指示,PDU会话修改指示用于修改已建立的PDU会话的属性中的第一S-NSSAI为第二S-NSSAI。In a possible implementation, before the first network element determines that there is a PDU session with attributes of the second S-NSSAI, the first network element also sends a PDU session modification indication, and the PDU session modification indication is used to modify the established PDU. The first S-NSSAI in the session attributes is the second S-NSSAI.
上述技术方案中,第一网元还可以自行确定第二S-NSSAI,并指示修改PDU会话的属性中的第一S-NSSAI为第二S-NSSAI,该具备第二S-NSSAI的属性的PDU会话可以被目标RAN接受,从而有助于保持UE的业务连续性。In the above technical solution, the first network element can also determine the second S-NSSAI by itself and instruct the first S-NSSAI in the attributes of the PDU session to be modified to the second S-NSSAI, which has the attributes of the second S-NSSAI. The PDU session can be accepted by the target RAN, thus helping to maintain the UE's business continuity.
在一种可能的实现方式中,第一网元在确定满足如下任一个条件时,确定存在具备第二S-NSSAI的属性的PDU会话:第一网元接收来自UE的完成指示,完成指示用于指示具备第二S-NSSAI的属性的PDU会话建立或修改完成;第一网元确定向UE发送重新评估指示的时长到达第一预设时长;第一网元是AMF,AMF接收来自SMF的PDU会话修改指示,向UE发送PDU会话修改指示。In a possible implementation, the first network element determines that a PDU session with the attribute of the second S-NSSAI exists when it determines that any of the following conditions are met: the first network element receives a completion indication from the UE, and the completion indication is After the PDU session establishment or modification is completed indicating that the attribute of the second S-NSSAI is present; the first network element determines that the duration of sending the re-evaluation indication to the UE reaches the first preset duration; the first network element is the AMF, and the AMF receives the PDU session modification indication: Send PDU session modification indication to the UE.
在一种可能的实现方式中,第一网元触发RAN的切换执行流程,包括:第一网元向目标RAN发送切换执行指示,或者,第一网元向源RAN发送切换执行指示;切换执行指示用于触发RAN的切换执行流程。In a possible implementation, the first network element triggers the handover execution process of the RAN, including: the first network element sends a handover execution instruction to the target RAN, or the first network element sends a handover execution instruction to the source RAN; the handover execution Indicates the handover execution process used to trigger the RAN.
第五方面,本申请实施例提供一种通信装置,该装置具有实现上述第一方面或第一方面的任一种可能的实现方式中UE的功能,该装置可以为UE,也可以为UE中包括的芯片。In the fifth aspect, embodiments of the present application provide a communication device, which has the function of implementing the UE in the above first aspect or any possible implementation manner of the first aspect. The device may be a UE or a UE in the UE. Chip included.
该装置具有实现上述第二方面或第二方面的任一种可能的实现方式中RAN的功能,该装置可以为RAN,也可以为RAN中包括的芯片。 The device has the function of implementing the RAN in the above second aspect or any possible implementation manner of the second aspect. The device may be a RAN or a chip included in the RAN.
该通信装置也可以具有实现上述第三方面或第三方面的任一种可能的实现方式中UE的功能,该装置可以为UE,也可以为UE中包括的芯片。The communication device may also have the function of implementing the UE in the above third aspect or any possible implementation manner of the third aspect. The device may be a UE or a chip included in the UE.
该通信装置也可以具有实现上述第四方面或第四方面的任一种可能的实现方式中第一网元的功能,该装置可以为AMF,也可以为AMF中包括的芯片,或者,该装置可以为SMF,也可以为SMF中包括的芯片。The communication device may also have the function of implementing the first network element in the fourth aspect or any possible implementation manner of the fourth aspect. The device may be an AMF or a chip included in the AMF, or the device It can be SMF or a chip included in SMF.
上述通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,硬件或软件包括一个或多个与上述功能相对应的模块或单元或手段(means)。The functions of the above communication device can be implemented by hardware, or can be implemented by hardware executing corresponding software. The hardware or software includes one or more modules or units or means corresponding to the above functions.
在一种可能的实现方式中,该装置的结构中包括处理模块和收发模块,其中,处理模块被配置为支持该装置执行上述第一方面或第一方面的任一种实现方式中UE相应的功能,或者执行上述第二方面或第二方面的任一种实现方式中RAN相应的功能,或者执行上述第三方面或第三方面的任一种实现方式中UE相应的功能,或者执行上述第四方面或第四方面的任一种实现方式中第一网元相应的功能。收发模块用于支持该装置与其他通信设备之间的通信,例如该装置为UE时,收发模块用于UE发送PDU会话建立请求。该通信装置还可以包括存储模块,存储模块与处理模块耦合,其保存有装置必要的程序指令和数据。作为一种示例,处理模块可以为处理器,通信模块可以为收发器,存储模块可以为存储器,存储器可以和处理器集成在一起,也可以和处理器分离设置。In a possible implementation, the structure of the device includes a processing module and a transceiver module, wherein the processing module is configured to support the device to perform the corresponding UE in the above-mentioned first aspect or any implementation of the first aspect. Function, or perform the corresponding function of the RAN in the above second aspect or any implementation of the second aspect, or perform the corresponding function of the UE in the above third aspect or any implementation of the third aspect, or perform the above third aspect Corresponding functions of the first network element in any implementation of the fourth aspect or the fourth aspect. The transceiver module is used to support communication between the device and other communication devices. For example, when the device is a UE, the transceiver module is used for the UE to send a PDU session establishment request. The communication device may also include a storage module, which is coupled to the processing module and stores necessary program instructions and data for the device. As an example, the processing module can be a processor, the communication module can be a transceiver, and the storage module can be a memory. The memory can be integrated with the processor, or can be provided separately from the processor.
在另一种可能的实现方式中,该装置的结构中包括处理器,还可以包括存储器。处理器与存储器耦合,可用于执行存储器中存储的计算机程序指令,以使装置执行上述第一方面或第一方面的任一种可能的实现方式中的方法,或者执行上述第二方面或第二方面的任一种可能的实现方式中的方法,或者执行上述第三方面或第三方面的任一种可能的实现方式中的方法,或者执行上述第四方面或第四方面的任一种可能的实现方式中的方法。可选地,该装置还包括通信接口,处理器与通信接口耦合。当装置为UE、RAN或第一网元时,该通信接口可以是收发器或输入/输出接口;当该装置为UE中包含的芯片或RAN中包含的芯片或第一网元中包含的芯片时,该通信接口可以是芯片的输入/输出接口。可选地,收发器可以为收发电路,输入/输出接口可以是输入/输出电路。In another possible implementation, the structure of the device includes a processor and may also include a memory. The processor is coupled to the memory and can be used to execute computer program instructions stored in the memory, so that the device executes the above-mentioned first aspect or the method in any possible implementation of the first aspect, or executes the above-mentioned second aspect or the second aspect. The method in any possible implementation of the aspect, or the method in any possible implementation of the third aspect or the third aspect, or the method in any possible implementation of the fourth aspect or the fourth aspect. method in the implementation. Optionally, the device further includes a communication interface, and the processor is coupled to the communication interface. When the device is a UE, a RAN or a first network element, the communication interface may be a transceiver or an input/output interface; when the device is a chip included in the UE or a chip included in the RAN or a chip included in the first network element When the communication interface is used, the communication interface may be the input/output interface of the chip. Alternatively, the transceiver may be a transceiver circuit, and the input/output interface may be an input/output circuit.
第六方面,本申请实施例提供一种芯片系统,包括:处理器和存储器,处理器与存储器耦合,存储器用于存储程序或指令,当程序或指令被处理器执行时,使得该芯片系统实现上述第一方面或第一方面的任一种可能的实现方式中的方法,或实现上述第二方面或第二方面的任一种可能的实现方式中的方法,或实现上述第三方面或第三方面的任一种可能的实现方式中的方法,或实现上述第四方面或第四方面的任一种可能的实现方式中的方法。In a sixth aspect, embodiments of the present application provide a chip system, including: a processor and a memory. The processor is coupled to the memory. The memory is used to store programs or instructions. When the programs or instructions are executed by the processor, the chip system implements The method in the above-mentioned first aspect or any possible implementation of the first aspect, or the method in realizing the above-mentioned second aspect or any possible implementation of the second aspect, or the method in realizing the above-mentioned third aspect or the third aspect A method in any possible implementation of the three aspects, or a method in any possible implementation of the fourth aspect or the fourth aspect.
可选地,该芯片系统还包括接口电路,该接口电路用于交互代码指令至处理器。Optionally, the chip system further includes an interface circuit for communicating code instructions to the processor.
可选地,该芯片系统中的处理器可以为一个或多个,该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。Optionally, there may be one or more processors in the chip system, and the processor may be implemented by hardware or software. When implemented in hardware, the processor may be a logic circuit, an integrated circuit, or the like. When implemented in software, the processor may be a general-purpose processor implemented by reading software code stored in memory.
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置。示例性的,存储器可以是非瞬时性处理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上。Optionally, there may be one or more memories in the chip system. The memory can be integrated with the processor or can be provided separately from the processor. For example, the memory may be a non-transient processor, such as a read-only memory ROM, which may be integrated with the processor on the same chip, or may be separately provided on different chips.
第七方面,本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序或指令,当该计算机程序或指令被执行时,使得计算机执行上述第一方面或第一方面的任一种 可能的实现方式中的方法,或执行上述第二方面或第二方面的任一种可能的实现方式中的方法,或执行上述第三方面或第三方面的任一种可能的实现方式中的方法,或实现上述第四方面或第四方面的任一种可能的实现方式中的方法。In a seventh aspect, embodiments of the present application provide a computer-readable storage medium on which a computer program or instructions are stored. When the computer program or instructions are executed, the computer is caused to execute the first aspect or any one of the first aspects. kind The method in the possible implementation manner, or perform the above second aspect or the method in any possible implementation manner of the second aspect, or perform the above third aspect or any possible implementation manner of the third aspect method, or a method for realizing the above fourth aspect or any possible implementation manner of the fourth aspect.
第八方面,本申请实施例提供一种计算机程序产品,当计算机读取并执行计算机程序产品时,使得计算机执行上述第一方面或第一方面的任一种可能的实现方式中的方法,或执行上述第二方面或第二方面的任一种可能的实现方式中的方法,或执行上述第三方面或第三方面的任一种可能的实现方式中的方法,或实现上述第四方面或第四方面的任一种可能的实现方式中的方法。In an eighth aspect, embodiments of the present application provide a computer program product. When a computer reads and executes the computer program product, it causes the computer to execute the method in the above-mentioned first aspect or any possible implementation of the first aspect, or Perform the above second aspect or the method in any possible implementation of the second aspect, or perform the above third aspect or the method in any possible implementation of the third aspect, or implement the above fourth aspect or Methods in any possible implementation of the fourth aspect.
上述第二方面至第八方面中任一方面可以达到的技术效果可以参照上述第一方面中有益效果的描述,此处不再重复赘述。The technical effects that can be achieved by any one of the above-mentioned second to eighth aspects can be referred to the description of the beneficial effects in the above-mentioned first aspect, and will not be repeated here.
附图说明Description of the drawings
图1为本申请提供的一种UE选择PDU会话的示意图;Figure 1 is a schematic diagram of a UE selecting a PDU session provided by this application;
图2为本申请提供的一种UE确定是否建立PDU会话的流程示意图;Figure 2 is a schematic flow chart of a UE determining whether to establish a PDU session provided in this application;
图3A至图3F为本申请提供的一种通信系统的架构示意图;Figures 3A to 3F are schematic architectural diagrams of a communication system provided by this application;
图4为本申请提供的一种PDU会话的建立流程的示意图;Figure 4 is a schematic diagram of a PDU session establishment process provided by this application;
图5为本申请提供的一种RAN的切换执行流程的示意图;Figure 5 is a schematic diagram of a RAN handover execution process provided by this application;
图6为本申请提供的一种通信方法的流程示意图;Figure 6 is a schematic flow chart of a communication method provided by this application;
图7为本申请提供的又一种通信方法的流程示意图;Figure 7 is a schematic flow chart of another communication method provided by this application;
图8为本申请提供的一种通信装置的结构示意图;Figure 8 is a schematic structural diagram of a communication device provided by this application;
图9为本申请提供的一种通信装置的结构示意图。Figure 9 is a schematic structural diagram of a communication device provided by this application.
具体实施方式Detailed ways
为更好的解释本申请实施例,先对本申请实施例中的专业术语或技术解释。In order to better explain the embodiments of the present application, the professional terms or technologies used in the embodiments of the present application are first explained.
一、5G网络场景1. 5G network scenario
5G支持增强移动宽带(enhanced mobile broadband,eMBB)、(massive machine type communications,mMTC)和超高可靠低时延通信(ultra reliable and low latency communications,URLLC)三大场景,三大场景中包含了多样化差异化的应用。5G supports three major scenarios: enhanced mobile broadband (eMBB), massive machine type communications (mMTC) and ultra-reliable and low latency communications (URLLC). The three scenarios include a variety of Differentiated applications.
eMBB:用于满足增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)、高清视频直播等应用对传输速率的需求。eMBB: used to meet the transmission rate requirements of augmented reality (AR)/virtual reality (VR), high-definition video live broadcast and other applications.
mMTC:近来智慧城市的快速发展,路灯、井盖、水表等公共设施都已经拥有了网络连接能力,可以进行远程管理。基于5G网络的强大连接能力,把城市各个行业的公共设备都接入智能管理平台。这些公共设施通过5G网络协同工作,只需要少量的维护人员就可以统一管理,大大提升城市的运营效率。mMTC: With the rapid development of smart cities recently, public facilities such as street lights, manhole covers, and water meters already have network connection capabilities and can be managed remotely. Based on the powerful connection capabilities of the 5G network, public equipment in various industries in the city are connected to the intelligent management platform. These public facilities work together through the 5G network and can be managed uniformly with only a small number of maintenance personnel, greatly improving the city's operational efficiency.
uRRLC:在5G场景下最典型的应用就是自动驾驶,自动驾驶最常用的场景如急刹车、车对车、车对人、车对基础设施等多路通信同时进行,需要瞬间进行大量的数据处理并决策。因此需要网络同时具有大带宽、低时延和高可靠性的能力。uRRLC: The most typical application in 5G scenarios is autonomous driving. The most common scenarios for autonomous driving include sudden braking, vehicle-to-vehicle, vehicle-to-person, vehicle-to-infrastructure and other multi-channel communications at the same time, which requires a large amount of data processing in an instant. and make decisions. Therefore, the network needs to have the capabilities of large bandwidth, low latency and high reliability at the same time.
二、网络切片(network slicing) 2. Network slicing
1、网络切片的定义1. Definition of network slicing
网络切片是通过切片技术在一个通用硬件基础上虚拟出多个端到端的网络,每个网络具有不同网络功能,适配不同类型服务需求。运营商在购买物理资源后,将各行各业对网络功能的需求解析成对网络带宽、连接数、时延、可靠性等网络功能的需求,进而将网络切片基于应用场景划分为三种类型,分别是eMBB类型的切片、mMTC类型的切片和URLLC类型的切片。Network slicing uses slicing technology to virtualize multiple end-to-end networks based on a common hardware. Each network has different network functions and adapts to different types of service requirements. After purchasing physical resources, operators analyze the needs of various industries for network functions into requirements for network functions such as network bandwidth, number of connections, latency, and reliability, and then divide network slicing into three types based on application scenarios. They are eMBB type slices, mMTC type slices and URLLC type slices.
2、网络切片的选择2. Choice of network slicing
(1)单网络切片选择辅助信息(single network slice selection assistance information,S-NSSAI),可用来标识一个网络切片。根据运营商的运营或部署需要,一个S-NSSAI可以关联一个或多个网络切片实例,一个网络切片实例可以关联一个或多个S-NSSAI。(1) Single network slice selection assistance information (S-NSSAI), which can be used to identify a network slice. According to the operator's operation or deployment needs, one S-NSSAI can be associated with one or more network slicing instances, and one network slicing instance can be associated with one or more S-NSSAI.
其中,S-NSSAI包括切片/服务类型(slice/servicetype,SST)和切片差异(slice differentiator,SD)两部分。SST是指在特性和服务方面预期的网络切片行为。SST的标准取值范围为1、2、3,取值1表示eMBB,取值2表示URLLC,取值3表示大规模物联网(massive internet of things,MIoT)。SD是一个可选信息,用来补充SST以区分同一个切片/业务类型的多个网络切片。SST和SD两部分结合起来表示切片类型及同一切片类型的多个切片。例如S-NSSAI取值为0x01000000、0x02000000、0x03000000分别表示eMBB类型切片、uRLLC类型切片、MIoT类型切片。而S-NSSAI取值为0x01000001、0x01000002则表示eMBB类型切片,分别服务于用户群1和用户群2。Among them, S-NSSAI includes two parts: slice/servicetype (SST) and slice differentiator (SD). SST refers to the expected behavior of network slicing in terms of features and services. The standard value range of SST is 1, 2, and 3. The value 1 represents eMBB, the value 2 represents URLLC, and the value 3 represents massive internet of things (MIoT). SD is optional information used to supplement SST to distinguish multiple network slices of the same slice/service type. The two parts SST and SD are combined to represent the slice type and multiple slices of the same slice type. For example, the S-NSSAI values are 0x01000000, 0x02000000, and 0x03000000, which respectively represent eMBB type slices, uRLLC type slices, and MIoT type slices. The S-NSSAI values 0x01000001 and 0x01000002 represent eMBB type slices, serving user group 1 and user group 2 respectively.
(2)网络切片选择辅助信息(network slice selection assistance information,NSSAI),是S-NSSNI的集合。5G网络中使用到的NSSAI有表1中的三种类型。(2) Network slice selection assistance information (NSSAI) is a collection of S-NSSNI. There are three types of NSSAI used in 5G networks as shown in Table 1.
表1
Table 1
(3)网络切片选择策略(network slice selection policy,NSSP),策略控制功能(policy control function,PCF)将NSSP作为UE路由选择策略(UE route selection policy,URSP)规则的一部分通过AMF发放给UE,NSSP用于UE关联应用标识(APP ID)和S-NSSAI。(3) Network slice selection policy (NSSP), the policy control function (PCF) uses NSSP as part of the UE route selection policy (URSP) rules and issues it to the UE through the AMF, NSSP is used for UE associated application identification (APP ID) and S-NSSAI.
(4)URSP,UE根据URSP为UE的上行业务流选择一个合适的协议数据单元(protocol data unit,PDU)会话。即UE的某些上行业务对使用的PDU会话的数据网络名称(data network name,DNN)、切片、会话服务连续性模式(session service continuity mode,SSC mode)等具有一定的要求。(4) URSP, the UE selects an appropriate protocol data unit (PDU) session for the UE's uplink service flow according to the URSP. That is, some uplink services of the UE have certain requirements for the data network name (DNN), slicing, session service continuity mode (SSC mode) of the PDU session used.
UE在执行URSP的过程中可能会触发PDU会话的建立或修改。比如,UE确定当前 不存在符合要求的PDU会话时,UE会发起PDU会话建立过程;UE确定当前存在符合要求的PDU会话时,可能直接使用已经存在的PDU会话。结合图1中例子,UE在准备发送应用A的数据时,确定应用A对使用的PDU会话的需求是DNN1、S-NSSAI-a、SSC2,那么UE可确定应用A通过PDU会话2来传输数据。The UE may trigger the establishment or modification of a PDU session during the execution of URSP. For example, the UE determines the current When there is no PDU session that meets the requirements, the UE will initiate a PDU session establishment process; when the UE determines that a PDU session that meets the requirements currently exists, it may directly use the existing PDU session. Combined with the example in Figure 1, when the UE is preparing to send the data of application A, it determines that application A's requirements for the PDU session used are DNN1, S-NSSAI-a, and SSC2. Then the UE can determine that application A transmits data through PDU session 2. .
UE在执行URSP的过程中,具体可以是,UE每检测到新的应用,UE按照规则优先级(rule precedence)的顺序评估该应用是否匹配URSP规则中的流量描述符(traffic descriptor)。当匹配时,UE按照路径选择描述符优先(route selection descriptor precedence,RSD precedence)的顺序选择该URSP规则中的路径选择描述符(route selection descriptor,RSD),当RSD不合法(valid,或称有效),则跳到下一个RSD,否则就选择该RSD。When the UE executes URSP, specifically, every time the UE detects a new application, the UE evaluates whether the application matches the traffic descriptor in the URSP rule in the order of rule precedence. When there is a match, the UE selects the route selection descriptor (RSD) in the URSP rule in the order of route selection descriptor precedence (RSD precedence). When the RSD is invalid (valid, or effective) ), jump to the next RSD, otherwise select the RSD.
只有在满足以下所有条件时,URSP规则的RSD才应被视为有效:条件1,如果存在任何S-NSSAI(s),则S-NSSAI(s)在非漫游情况下的允许使用的NSSAI中;在漫游情况下,S-NSSAI(s)包含于允许使用的NSSAI到HPLMN S-NSSAI(s)的映射中。条件2,如果存在任何DNN,并且DNN是本地数据网络(local area data network,LADN)DNN,则UE处于此LADN的可用性区域。条件3,如果存在时间窗口,并且时间与时间窗口中指示的时间匹配。条件4,如果存在位置标准,并且UE的位置与位置标准中指示的内容匹配。The RSD of a URSP rule shall be considered valid only if all the following conditions are met: Condition 1, if any S-NSSAI(s) are present, the S-NSSAI(s) are among the NSSAIs allowed in non-roaming situations ; In the case of roaming, S-NSSAI(s) are included in the mapping of allowed NSSAI to HPLMN S-NSSAI(s). Condition 2, if any DNN exists, and the DNN is a local area data network (LADN) DNN, the UE is in the availability area of this LADN. Condition 3, if a time window exists and the time matches the time indicated in the time window. Condition 4, if there is a location criterion and the UE's location matches what is indicated in the location criterion.
当有符合要求(属性与RSD相同)的PDU会话存在时,UE将该应用的数据包路由到该PDU会话上(有多个PDU会话时,UE会根据配置等挑选其中一个),若没有符合要求的PDU会话,UE会发起PDU会话的建立,建立一个拥有该属性的PDU会话。简而言之,UE会先检测有没有符合该应用要求(DNN,网络切片等)的PDU会话,若有,则将当前应用映射到该会话上,否则,建立符合该应用要求的PDU会话,如图2所示。When there is a PDU session that meets the requirements (the attributes are the same as RSD), the UE will route the data packet of the application to the PDU session (when there are multiple PDU sessions, the UE will select one of them based on configuration, etc.). If there is no PDU session that meets the requirements, If the required PDU session is required, the UE will initiate the establishment of a PDU session and establish a PDU session with this attribute. In short, the UE will first detect whether there is a PDU session that meets the application requirements (DNN, network slicing, etc.). If there is, the current application will be mapped to the session. Otherwise, a PDU session that meets the application requirements will be established. as shown in picture 2.
其中,PDU会话的属性包括网络切片、DNN和SSC模式等。3GPP定义由URSP来确定应用与网络切片、DNN和SSC模式的对应关系。Among them, the attributes of the PDU session include network slicing, DNN and SSC mode. 3GPP defines URSP to determine the correspondence between applications and network slicing, DNN and SSC modes.
具体的,URSP中包括一条或多条URSP规则(URSP rule),一条URSP规则主要包括流量描述符和RSD两部分。其中,流量描述符包括多个应用的名称或标识等,RSD中包括的每个应用对应的NSSAI,即未包括在流量描述符的、应用可以使用的NSSAI等。其中,URSP可以参阅表2所示,URSP规则可以参阅表3所示,RSD可以参阅表4所示。Specifically, URSP includes one or more URSP rules. A URSP rule mainly includes two parts: traffic descriptor and RSD. Among them, the traffic descriptor includes the names or identifiers of multiple applications, etc., and the NSSAI corresponding to each application included in the RSD, that is, the NSSAI that is not included in the traffic descriptor and can be used by the application, etc. Among them, URSP can be seen in Table 2, URSP rules can be seen in Table 3, and RSD can be seen in Table 4.
表2
Table 2
表3
table 3
表4

Table 4

基于上述对本申请涉及的专业术语和技术的介绍,如下解释本申请中方法。Based on the above introduction to the professional terms and technologies involved in this application, the method in this application is explained as follows.
本申请实施例提供一种通信方法,该方法可以适用于5G(第五代移动通信系统)系统,如采用新型无线接入技术(new radio access technology,New RAT)的接入网;云无线接入网(cloud radio access network,CRAN)等通信系统。其中,5G系统可以为非漫游场景,也可以为漫游场景。5G系统可用于服务化的架构,也可用于基于接口的架构,这里不做具体限定。应理解,本申请实施例也可适用于未来通信(例如6G或者其他的网络中)等。Embodiments of the present application provide a communication method that can be applied to 5G (fifth generation mobile communication system) systems, such as access networks using new radio access technology (New RAT); cloud wireless access Communication systems such as cloud radio access network (CRAN). Among them, the 5G system can be in a non-roaming scenario or a roaming scenario. The 5G system can be used in a service-oriented architecture or an interface-based architecture. There are no specific limitations here. It should be understood that the embodiments of the present application can also be applied to future communications (such as 6G or other networks).
本申请实施例提供的通信方法所适用通信系统的架构中可以包括网络开放功能网元、策略控制功能网元、数据管理网元、应用功能网元、接入和移动性管理功能网元、会话管理功能网元、UE、接入网设备、用户面功能网元和数据网络。The architecture of the communication system applicable to the communication method provided by the embodiments of the present application may include network opening function network elements, policy control function network elements, data management network elements, application function network elements, access and mobility management function network elements, session Manage functional network elements, UEs, access network equipment, user plane functional network elements and data networks.
接入和移动性管理功能网元与UE之间可以通过N1接口相连,接入和移动性管理功能网元与接入网设备之间可以通过N2接口相连,接入网设备与用户面功能网元之间可以通过N3接口相连,会话管理功能网元与用户面功能网元之间可以通过N4接口相连,用户面功能网元与数据网络之间可以通过N6接口相连。接口名称只是一个示例说明,本申请实施例对此不作具体限定。其中,通信系统中的网元可以但不限于是5G架构中的网元。下面以5G架构中的网元为例对通信系统中的各个网元的功能进行描述:The access and mobility management function network element and the UE can be connected through the N1 interface. The access and mobility management function network element can be connected to the access network equipment through the N2 interface. The access network equipment and the user plane function network can be connected through the N2 interface. The elements can be connected through the N3 interface, the session management function network element and the user plane function network element can be connected through the N4 interface, and the user plane function network element and the data network can be connected through the N6 interface. The interface name is just an example, and the embodiment of this application does not specifically limit it. Among them, the network elements in the communication system can be, but are not limited to, the network elements in the 5G architecture. The following uses the network elements in the 5G architecture as an example to describe the functions of each network element in the communication system:
UE,又可以称之为终端设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备。例如,UE可以包括具有无线连接功能的手持式设备、车载设备等。目前,UE可以是:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无 线终端,或智慧家庭(smart home)中的无线终端等。UE, which can also be called user equipment (UE), mobile station (MS), mobile terminal (MT), etc., is a device that provides voice and/or data connectivity to users. . For example, the UE may include a handheld device, a vehicle-mounted device, etc. with a wireless connection function. Currently, UE can be: mobile phone (mobile phone), tablet computer, notebook computer, handheld computer, mobile internet device (mobile internet device, MID), wearable device, virtual reality (VR) device, augmented reality (augmented reality (AR) equipment, wireless terminals in industrial control (industrial control), wireless terminals in self-driving (self-driving), wireless terminals in remote medical surgery, and wireless terminals in smart grids Wireless terminals, wireless terminals in transportation safety, wireless terminals in smart cities Wire terminals, or wireless terminals in smart homes, etc.
接入网设备可以为接入网(access network,AN),向UE提供无线接入服务。接入网设备是通信系统中将UE接入到无线网络的设备。接入网设备为无线接入网中的节点,又可以称为基站,还可以称为无线接入网(radio access network,RAN)节点(或设备)。目前,一些接入网设备的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。The access network device may be an access network (AN), which provides wireless access services to UEs. The access network device is a device in the communication system that connects the UE to the wireless network. Access network equipment is a node in a wireless access network, which can also be called a base station or a radio access network (RAN) node (or device). Currently, some examples of access network equipment are: gNB, transmission reception point (TRP), evolved Node B (eNB), radio network controller (radio network controller, RNC), Node B (Node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (base band unit (BBU), or wireless fidelity (wireless fidelity, Wifi) access point (access point, AP), etc.
数据网络,例如数据网络(data network,DN),可以是因特网(Internet)、IP多媒体业务(IP Multi-media Service,IMS)网络、区域网络(即本地网络,例如移动边缘计算(mobile edge computing,MEC)网络)等。数据网络中包括应用服务器,应用服务器通过与UE进行数据传输,为UE提供业务服务。The data network, such as data network (DN), can be the Internet, IP Multi-media Service (IMS) network, regional network (i.e. local network, such as mobile edge computing, MEC) network) etc. The data network includes an application server, which provides business services to the UE through data transmission with the UE.
接入和移动性管理功能网元,可用于对UE的接入控制和移动性进行管理,在实际应用中,其包括了长期演进(long term evolution,LTE)中网络框架中移动管理实体(mobility management entity,MME)里的移动性管理功能,并加入了接入管理功能,具体可以负责UE的注册、移动性管理、跟踪区更新流程、可达性检测、会话管理功能网元的选择、移动状态转换管理等。例如,在5G中,接入和移动性管理功能网元可以是AMF(access and mobility management function)网元。在未来通信,如6G中,接入和移动性管理功能网元仍可以是AMF网元,或有其它的名称,本申请不做限定。当接入和移动性管理功能网元是AMF网元时,AMF可以提供Namf服务。The access and mobility management function network element can be used to manage the access control and mobility of UE. In practical applications, it includes the mobility management entity (mobility management) in the network framework in long term evolution (LTE). Entity, MME) mobility management function, and added the access management function, specifically responsible for UE registration, mobility management, tracking area update process, reachability detection, session management function network element selection, mobility status Conversion management and more. For example, in 5G, the access and mobility management function network element can be an AMF (access and mobility management function) network element. In future communications, such as 6G, the access and mobility management function network elements can still be AMF network elements, or have other names, which are not limited in this application. When the access and mobility management function network element is an AMF network element, AMF can provide Namf services.
会话管理功能网元,可用于负责UE的会话管理(包括会话的建立、修改和释放),用户面功能网元的选择和重选、UE的互联网协议(internet protocol,IP)地址分配、服务质量(quality of service,QoS)控制等。例如,在5G中,会话管理功能网元可以是SMF(session management function)网元,在未来通信,如6G中,会话管理功能网元仍可以是SMF网元,或有其它的名称,本申请不做限定。当会话管理功能网元时SMF网元时,SMF可以提供Nsmf服务。The session management function network element can be used to be responsible for the session management of the UE (including the establishment, modification and release of the session), the selection and reselection of the user plane function network element, the Internet Protocol (IP) address allocation of the UE, and the quality of service. (quality of service, QoS) control, etc. For example, in 5G, the session management function network element can be an SMF (session management function) network element. In future communications, such as 6G, the session management function network element can still be an SMF network element, or have other names. This application No restrictions. When the session management function network element is an SMF network element, SMF can provide Nsmf services.
策略控制功能网元,可用于负责策略控制决策、提供基于业务数据流和应用检测、门控、QoS和基于流的计费控制等功能等。例如,在5G中,策略控制功能网元可以是PCF(policy control function)网元,在未来通信,如6G中,策略控制功能网元仍可以是PCF网元,或有其它的名称,本申请不做限定。当策略控制功能网元是PCF网元,PCF网元可以提供Npcf服务。The policy control function network element can be used to be responsible for policy control decisions, provide functions such as business data flow and application detection, gating control, QoS and flow-based charging control, etc. For example, in 5G, the policy control function network element can be a PCF (policy control function) network element. In future communications, such as 6G, the policy control function network element can still be a PCF network element, or have other names. This application No restrictions. When the policy control function network element is a PCF network element, the PCF network element can provide Npcf services.
应用功能网元,主要功能是与第三代合作伙伴计划(the 3rd generation partnership project,3GPP)核心网交互来提供服务,来影响业务流路由、接入网能力开放、策略控制等。例如,在5G中,应用功能网元可以是AF(application function)网元,在未来通信,如6G中,应用功能网元仍可以是AF网元,或有其它的名称,本申请不做限定。当应用功能网元是AF网元时,AF网元可以提供Naf服务。The main function of application function network elements is to interact with the 3rd generation partnership project (3GPP) core network to provide services to affect business flow routing, access network capability opening, policy control, etc. For example, in 5G, the application function network element can be an AF (application function) network element. In future communications, such as 6G, the application function network element can still be an AF network element, or have other names. This application does not limit it. . When the application function network element is an AF network element, the AF network element can provide Naf services.
数据管理网元,可用于管理UE的签约数据、与UE相关的注册信息等。例如,在5G中,数据管理网元可以是统一数据管理网元(unified data management,UDM),在未来通 信,如6G中,数据管理网元仍可以是UDM网元,或有其它的名称,本申请不做限定。当数据管理网元是UDM网元时,UDM网元可以提供Nudm服务。The data management network element can be used to manage the UE's subscription data, UE-related registration information, etc. For example, in 5G, the data management network element can be a unified data management network element (UDM). For example, in 6G, the data management network element can still be a UDM network element, or have other names, which is not limited in this application. When the data management network element is a UDM network element, the UDM network element can provide Nudm services.
网络开放功能网元,可用于使3GPP能够安全地向第三方的AF(例如,业务能力服务器(Services Capability Server,SCS)、应用服务器(Application Server,AS)等)提供网络业务能力等。例如,在5G中,网络开放功能网元可以是NEF(network exposure function),在未来通信,如6G中,网络开放功能网元仍可以是NEF网元,或有其它的名称,本申请不做限定。当网络开放功能网元是NEF时,NEF可以向其他网络功能网元提供Nnef服务。Network open function network elements can be used to enable 3GPP to securely provide network service capabilities to third-party AFs (for example, Service Capability Server (SCS), Application Server (AS), etc.). For example, in 5G, network exposure function network elements can be NEF (network exposure function). In future communications, such as 6G, network exposure function network elements can still be NEF network elements, or have other names. This application does not limited. When the network open function network element is an NEF, the NEF can provide Nnef services to other network function network elements.
另外系统架构还可以包括其他网元,如网络切片选择功能网元(network slice selection function,NSSF)、网络功能存储功能网元(NF repository function,NRF)、认证服务器功能网元(authentication server function,AUSF)等等,这里不再一一列举。In addition, the system architecture can also include other network elements, such as network slice selection function (NSSF), network function storage function (NF repository function, NRF), and authentication server function. AUSF) and so on, I will not list them one by one here.
以上各个网元也可以称为功能实体,既可以是在专用硬件上实现的网络元件,也可以是在专用硬件上运行的软件实例,或者是在适当平台上虚拟化功能的实例,例如,上述虚拟化平台可以为云平台。Each of the above network elements can also be called a functional entity, which can be a network element implemented on dedicated hardware, a software instance running on dedicated hardware, or an instance of virtualized functions on an appropriate platform, for example, the above The virtualization platform can be a cloud platform.
图3A示例性示出了在非漫游场景下基于服务化接口的通信系统的一种可能的架构示意图。其中,Namf为AMF展现的基于服务的接口。Nsmf为SMF展现的基于服务的接口。Nnef为NEF展现的基于服务的接口。Npcf为PCF展现的基于服务的接口。Nudm为UDM展现的基于服务的接口。Naf为AF展现的基于服务的接口。Nnrf为NRF展现的基于服务的接口。Nausf为AUSF展现的基于服务的接口。FIG. 3A exemplarily shows a possible architectural diagram of a communication system based on service-based interfaces in a non-roaming scenario. Among them, Namf is the service-based interface displayed by AMF. Nsmf is a service-based interface exposed by SMF. Nnef is a service-based interface exposed by NEF. Npcf is the service-based interface exposed by PCF. Nudm is a service-based interface exposed by UDM. Naf is a service-based interface exposed by AF. Nnrf is a service-based interface exposed by NRF. Nausf is a service-based interface exposed by AUSF.
图3B示例性示出了在非漫游场景下基于参考点的通信系统的一种可能的架构示意图。其中,N5为PCF和AF之间的参考点。N7为SMF和PCF之间的参考点。N8为UDM和AMF之间的参考点。N9为2个核心UPF之间的参考点。N10为UDM和SMF之间的参考点。N11为AMF和SMF之间的参考点。N12为AMF和AUSF之间的参考点。N14为2个AMF之间的参考点。N15为PCF和AMF之间的参考点。N22为NSSF和AMF之间的参考点。FIG. 3B illustrates a possible architectural diagram of a reference point-based communication system in a non-roaming scenario. Among them, N5 is the reference point between PCF and AF. N7 is the reference point between SMF and PCF. N8 is the reference point between UDM and AMF. N9 is the reference point between the 2 core UPFs. N10 is the reference point between UDM and SMF. N11 is the reference point between AMF and SMF. N12 is the reference point between AMF and AUSF. N14 is the reference point between the 2 AMFs. N15 is the reference point between PCF and AMF. N22 is the reference point between NSSF and AMF.
图3C示例性示出了在local breakout(LB)漫游场景下基于服务化接口的通信系统的一种可能的架构示意图。其中,安全边缘保护代理(security edge protection proxy,SEPP)可用于拓扑隐藏、公共陆地移动网络(public land mobile network,PLMN)内控制面接口的信令过滤和策略制定等等。V-SEPP为漫游域SEPP,H-SEPP为本地域SEPP,N32为V-SEPP和H-SEPP之间的参考点。Namf、Nsmf、Nnef、Npcf、Nudm、Naf、Nnrf、Nausf可以参阅图3A所示,这里不再重复赘述。Figure 3C exemplarily shows a possible architectural diagram of a communication system based on service-based interfaces in a local breakout (LB) roaming scenario. Among them, the security edge protection proxy (SEPP) can be used for topology hiding, signaling filtering and policy formulation of the control plane interface within the public land mobile network (public land mobile network, PLMN), etc. V-SEPP is the roaming domain SEPP, H-SEPP is the local domain SEPP, and N32 is the reference point between V-SEPP and H-SEPP. Namf, Nsmf, Nnef, Npcf, Nudm, Naf, Nnrf and Nausf can be seen in Figure 3A and will not be repeated here.
图3D示例性示出了在local breakout漫游场景下基于参考点的通信系统的一种可能的架构示意图。其中,V-PCF为漫游域PCF,H-PCF为本地域PCF,N24为V-PCF和H-PCF之间的参考点。N5、N7、N8、N9、N10、N11、N12、N14、N15、N22可以参阅图3B所示,这里不再重复赘述。Figure 3D exemplarily shows a possible architectural diagram of a reference point-based communication system in a local breakout roaming scenario. Among them, V-PCF is the roaming domain PCF, H-PCF is the local domain PCF, and N24 is the reference point between V-PCF and H-PCF. N5, N7, N8, N9, N10, N11, N12, N14, N15 and N22 can be seen in Figure 3B and will not be repeated here.
图3E示例性示出了在home routed(HR)漫游场景下基于服务化接口的通信系统的一种可能的架构示意图。其中,V-SEPP为漫游域SEPP,H-SEPP为本地域SEPP,N32为V-SEPP和H-SEPP之间的参考点。Namf、Nsmf、Nnef、Npcf、Nudm、Naf、Nnrf、Nausf可以参阅图3A所示,这里不再重复赘述。Figure 3E exemplarily shows a possible architectural diagram of a communication system based on service-based interfaces in a home routed (HR) roaming scenario. Among them, V-SEPP is the roaming domain SEPP, H-SEPP is the local domain SEPP, and N32 is the reference point between V-SEPP and H-SEPP. Namf, Nsmf, Nnef, Npcf, Nudm, Naf, Nnrf and Nausf can be seen in Figure 3A and will not be repeated here.
图3F示例性示出了在home routed漫游场景下基于参考点的通信系统的一种可能的架构示意图。其中,V-PCF为漫游域PCF,H-PCF为本地域PCF,N24为V-PCF和H-PCF 之间的参考点。N5、N7、N8、N9、N10、N11、N12、N14、N15、N22可以参阅图3B所示,这里不再重复赘述。Figure 3F exemplarily shows a possible architectural diagram of a reference point-based communication system in a home routed roaming scenario. Among them, V-PCF is the roaming domain PCF, H-PCF is the local domain PCF, and N24 is V-PCF and H-PCF. reference points between. N5, N7, N8, N9, N10, N11, N12, N14, N15 and N22 can be seen in Figure 3B and will not be repeated here.
应理解,本申请实施例并不限于图3A至图3F所示通信系统,图3A至图3F中所示的网元的名称在这里仅作为一种示例说明,并不作为对本申请的方法适用的通信系统架构中包括的网元的限定。此外,图3A至图3F中的装置可以是硬件,也可以是从功能上划分的软件或者以上二者结合后的结构。It should be understood that the embodiments of the present application are not limited to the communication systems shown in Figures 3A to 3F. The names of the network elements shown in Figures 3A to 3F are only used as examples here and are not applicable to the methods of this application. Limitation of network elements included in the communication system architecture. In addition, the devices in FIGS. 3A to 3F may be hardware, functionally divided software, or a combination of the above two.
需要说明的是,本申请中涉及的多个,是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。同时,应当理解,尽管在本申请实施例中可能采用术语第一、第二、第三等来描述各种消息、请求、网元,但这些消息、请求、设备以及核心网设备不应限于这些术语。这些术语仅用来将消息、请求、网元彼此区分开。It should be noted that the plurality involved in this application refers to two or more. "And/or" describes the relationship between related objects, indicating that there can be three relationships. For example, A and/or B can mean: A exists alone, A and B exist simultaneously, and B exists alone. The character "/" generally indicates that the related objects are in an "or" relationship. At the same time, it should be understood that although the terms first, second, third, etc. may be used to describe various messages, requests, and network elements in the embodiments of this application, these messages, requests, devices, and core network devices should not be limited to these. the term. These terms are only used to distinguish messages, requests, and network elements from each other.
本申请提供一种通信方法,UE请求建立PDU会话,其中该请求建立的PDU会话能够支持该N个S-NSSAI,也即PDU会话的属性中包括该N个S-NSSAI,N为大于或等于2的整数。如此,UE接入的RAN在支持N个S-NSSAI中任一个S-NSSAI时,即可以接受该PDU会话,有助于保持UE的业务连续性。This application provides a communication method. The UE requests to establish a PDU session, where the PDU session established by the request can support the N S-NSSAI, that is, the attributes of the PDU session include the N S-NSSAI, and N is greater than or equal to an integer of 2. In this way, when the RAN accessed by the UE supports any one of the N S-NSSAIs, it can accept the PDU session, which helps maintain the UE's business continuity.
结合图4示例性示出的一种PDU会话的建立流程的示意图,以及图5示例性示出的一种RAN的切换(handover,HO)执行流程的示意图来解释说明。The explanation is explained with reference to the schematic diagram of a PDU session establishment process exemplarily shown in FIG. 4 and the schematic diagram of a RAN handover (HO) execution process exemplarily shown in FIG. 5 .
在图4示出的PDU会话的建立流程中:In the PDU session establishment process shown in Figure 4:
步骤401,UE确定M个S-NSSAI,M为大于或等于2的整数。Step 401: The UE determines M S-NSSAIs, where M is an integer greater than or equal to 2.
预先说明的是,UE在确定M个S-NSSAI之前,UE获取URSP,其中,URSP中包括一个或多个URSP规则,其中URSP规则包括M个S-NSSAI和多切片使用指示,该多切片使用指示用于指示UE请求建立具备M个S-NSSAI的属性的PDU会话。It should be noted in advance that before the UE determines M S-NSSAI, the UE obtains a URSP, where the URSP includes one or more URSP rules, where the URSP rules include M S-NSSAI and multi-slice usage instructions, and the multi-slice usage The indication is used to instruct the UE to request the establishment of a PDU session with M S-NSSAI attributes.
在可能方式1中,URSP规则中包括一个或多个RSD,该RSD中包括一个或多个S-NSSAI。当该RSD中包括多个S-NSSAI时,该RSD中还包括多切片使用指示。举例来说,URSP规则中包括RSD1和RSD2,RSD1中包括S-NSSAI 1、S-NSSAI 2、S-NSSAI 3,以及多切片使用指示;RSD2中包括S-NSSAI 4、S-NSSAI 5,以及多切片使用指示。In possible mode 1, the URSP rule includes one or more RSDs, and the RSD includes one or more S-NSSAI. When the RSD includes multiple S-NSSAIs, the RSD also includes multi-slice usage instructions. For example, URSP rules include RSD1 and RSD2. RSD1 includes S-NSSAI 1, S-NSSAI 2, S-NSSAI 3, and multi-slice usage instructions; RSD2 includes S-NSSAI 4, S-NSSAI 5, and Instructions for using multiple slices.
在可能方式2中,URSP规则中包括一个或多个RSD和多切片使用指示,该RSD中包括一个或多个S-NSSAI。在URSP规则包括多个RSD的情况下,该多个RSD分别包含有不同的S-NSSAI。比如,URSP规则中包括RSD1、RSD2和多切片使用指示,RSD1中包括S-NSSAI 1、S-NSSAI 2、S-NSSAI 3,RSD2中包括S-NSSAI 4、S-NSSAI 5。在这种实现方式中,多切片使用指示还能够额外指示使用哪几个RSD中的S-NSSAI,比如通过在多切片使用指示中包含RSD precedence来指示。In possible mode 2, the URSP rule includes one or more RSDs and multi-slice usage instructions, and the RSD includes one or more S-NSSAI. In the case where the URSP rule includes multiple RSDs, the multiple RSDs each contain different S-NSSAI. For example, URSP rules include RSD1, RSD2 and multi-slice usage instructions. RSD1 includes S-NSSAI 1, S-NSSAI 2, S-NSSAI 3, and RSD2 includes S-NSSAI 4 and S-NSSAI 5. In this implementation, the multi-slice usage instruction can additionally indicate which S-NSSAIs in which RSDs are used, for example, by including RSD precedence in the multi-slice usage instruction.
UE在从URSP中选择待执行的URSP规则时,具体可以是,UE处于非漫游场景中(即UE处于HPLMN中),UE若确定URSP规则中的S-NSSAI包含于允许使用的NSSAI中,则可将该URSP规则作为待执行的URSP规则;UE处于漫游场景中(即UE处于VPLMN中),UE若确定URSP规则中的S-NSSAI能够映射至允许使用的NSSAI中,或者说,URSP规则中的S-NSSAI包含于允许使用的NSSAI的映射NSSAI中,UE可将该URSP规则作为待执行的URSP规则。其中,允许使用的NSSAI,或者允许使用的NSSAI的映射NSSAI 具体可以是UE从AMF中获取的。允许使用的NSSAI的映射NSSAI,具体是,VPLMN中允许使用的NSSAI映射至HPLMN时得到的NSSAI。When the UE selects the URSP rule to be executed from the URSP, specifically, the UE is in a non-roaming scenario (that is, the UE is in HPLMN). If the UE determines that the S-NSSAI in the URSP rule is included in the allowed NSSAI, then This URSP rule can be used as a URSP rule to be executed; the UE is in a roaming scenario (that is, the UE is in a VPLMN). If the UE determines that the S-NSSAI in the URSP rule can be mapped to the allowed NSSAI, or in other words, the URSP rule The S-NSSAI is included in the mapping NSSAI of the allowed NSSAI, and the UE can use the URSP rule as the URSP rule to be executed. Among them, the NSSAI that is allowed to be used, or the mapping NSSAI of the NSSAI that is allowed to be used Specifically, the UE may obtain it from the AMF. The mapping NSSAI of the NSSAI allowed to be used, specifically, the NSSAI obtained when the NSSAI allowed to be used in the VPLMN is mapped to the HPLMN.
举例来说,UE处于非漫游场景中,HPLMN的允许使用的NSSAI比如包括S-NSSAI A至S-NSSAI H,当URSP规则中的S-NSSAI为S-NSSAI A至S-NSSAI E,UE可选择该URSP规则作为待执行的URSP规则;UE处于漫游场景,VPLMN允许使用的NSSAI为S-NSSAI a至S-NSSAI h,其映射到HPLMN的S-NSSAI A至S-NSSAI H,当URSP规则中的S-NSSAI为S-NSSAI A至S-NSSAI E,UE可选择该URSP规则作为待执行的URSP规则。For example, if the UE is in a non-roaming scenario, the NSSAI allowed by HPLMN includes S-NSSAI A to S-NSSAI H. When the S-NSSAI in the URSP rule is S-NSSAI A to S-NSSAI E, the UE can Select this URSP rule as the URSP rule to be executed; the UE is in a roaming scenario, and the NSSAI allowed to be used by VPLMN are S-NSSAI a to S-NSSAI h, which are mapped to the S-NSSAI A to S-NSSAI H of HPLMN. When the URSP rule The S-NSSAI in are S-NSSAI A to S-NSSAI E, and the UE can select this URSP rule as the URSP rule to be executed.
在UE选择URSP规则作为待执行的URSP规则时,该被选择的URSP规则中包含的M个S-NSSAI,需要都包含于允许使用的NSSAI中,或者包含于允许使用的NSSAI映射的NSSAI中。此外,还可以是,该被选择的URSP规则包含有多个S-NSSAI,该多个S-NSSAI中的M个S-NSSAI包含于允许使用的NSSAI中,或者包含于允许使用的NSSAI映射的NSSAI中。可以理解,该被选择的URSP规则中包括有M个S-NSSAI和多切片使用指示,进一步的,该被选择的URSP规则中包括有RSD,该RSD中包括M个S-NSSAI和多切片使用指示;或者,该被选择的URSP规则包括K个RSD和多切片使用指示,K个RSD中包括M个S-NSSAI,K为小于或等于M的正整数。When the UE selects a URSP rule as the URSP rule to be executed, the M S-NSSAI included in the selected URSP rule need to be included in the NSSAI that is allowed to be used, or in the NSSAI that is mapped to the NSSAI that is allowed to be used. In addition, it is also possible that the selected URSP rule contains multiple S-NSSAIs, and M S-NSSAIs among the multiple S-NSSAIs are included in the NSSAIs that are allowed to be used, or are included in the NSSAI mapping that is allowed to be used. in NSSAI. It can be understood that the selected URSP rule includes M S-NSSAI and multi-slice usage instructions. Further, the selected URSP rule includes an RSD, and the RSD includes M S-NSSAI and multi-slice usage instructions. Instructions; alternatively, the selected URSP rule includes K RSDs and multi-slice usage instructions, the K RSDs include M S-NSSAIs, and K is a positive integer less than or equal to M.
UE在执行该URSP规则时,确定已经建立的PDU会话是否满足要求。When executing the URSP rule, the UE determines whether the established PDU session meets the requirements.
具体的,在上述可能方式1中,UE若确定已经建立的某个PDU会话的属性与该RSD相同(即PDU会话的属性中包含的多个S-NSSAI与RSD中的M个S-NSSAI相同),则确定该已经建立的PDU会话满足要求;UE若确定已经建立的一个或多个PDU会话中不存在与该RSD相同的PDU会话,则确定已经建立的PDU会话不满足要求。Specifically, in the above possible method 1, if the UE determines that the attributes of a certain PDU session that have been established are the same as the RSD (that is, the multiple S-NSSAI included in the attributes of the PDU session are the same as the M S-NSSAI in the RSD) ), it is determined that the established PDU session meets the requirements; if the UE determines that one or more established PDU sessions do not have the same PDU session as the RSD, it is determined that the established PDU session does not meet the requirements.
在上述可能方式2中,UE若确定已经建立的某个PDU会话的属性中包括的多个S-NSSAI,与URSP规则中包含的M个S-NSSAI相同时,则UE确定该已经建立的PDU会话满足要求;UE若确定已经建立的一个或多个PDU会话中不存在属性中包括的多个S-NSSAI与URSP规则中包含的M个S-NSSAI相同的PDU会话,则确定该已经建立的PDU会话不满足要求。In the above possible method 2, if the UE determines that the multiple S-NSSAI included in the attributes of a certain PDU session that has been established are the same as the M S-NSSAI included in the URSP rule, then the UE determines that the established PDU session The session meets the requirements; if the UE determines that there are no PDU sessions in one or more established PDU sessions in which the multiple S-NSSAI included in the attributes are the same as the M S-NSSAI included in the URSP rule, then the UE determines that the established PDU session The PDU session does not meet the requirements.
步骤402,UE向AMF发送PDU会话建立请求,PDU会话建立请求中包括M个S-NSSAI,相应的,AMF接收来自UE的PDU会话建立请求。Step 402: The UE sends a PDU session establishment request to the AMF. The PDU session establishment request includes M S-NSSAI. Correspondingly, the AMF receives the PDU session establishment request from the UE.
步骤403,AMF从多个SMF中选择目标SMF。具体可以有如下两种示例:Step 403: AMF selects a target SMF from multiple SMFs. There are two specific examples:
示例b-1,AMF确定多个SMF中哪个SMF支持的M个S-NSSAI中S-NSSAI的数量最多,进而将该确定的SMF作为目标SMF。进一步的,当目标SMF支持M个S-NSSAI中的部分S-NSSAI时,AMF向UE发送第一信息,该第一信息中包括的M个S-NSSAI中、目标SMF不支持的S-NSSAI,以向UE指示该目标SMF不支持的S-NSSAI。Example b-1: AMF determines which SMF among multiple SMFs supports the largest number of S-NSSAIs among the M S-NSSAIs, and then uses the determined SMF as the target SMF. Further, when the target SMF supports part of the M S-NSSAIs, the AMF sends the first information to the UE. Among the M S-NSSAIs included in the first information, the AMF does not support the S-NSSAIs that the target SMF does not support. , to indicate to the UE the S-NSSAI that the target SMF does not support.
示例b-2,AMF从多个SMF中确定支持该M个S-NSSAI的SMF作为目标SMF。在该情况中,若AMF从多个SMF中未确定出支持该M个S-NSSAI的SMF,则可向UE发送拒绝PDU会话建立的响应。Example b-2: AMF determines the SMF that supports the M S-NSSAI from multiple SMFs as the target SMF. In this case, if the AMF does not determine an SMF that supports the M S-NSSAIs from multiple SMFs, it may send a response rejecting PDU session establishment to the UE.
步骤404,AMF向目标SMF发送PDU会话建立请求。Step 404: The AMF sends a PDU session establishment request to the target SMF.
其中,该PDU会话建立请求中包括m个S-NSSAI,其中m个S-NSSAI是M个S-NSSAI;或者,m个S-NSSAI是M个S-NSSAI中除去目标SMF不支持的S-NSSAI以外的其他 S-NSSAI(即M个S-NSSAI中目标SMF支持的S-NSSAI)。Among them, the PDU session establishment request includes m S-NSSAI, where the m S-NSSAI is M S-NSSAI; or, the m S-NSSAI is the M S-NSSAI excluding the S-NSSAI that is not supported by the target SMF. Other than NSSAI S-NSSAI (that is, the S-NSSAI supported by the target SMF among M S-NSSAI).
相应的,目标SMF接收到该PDU会话建立请求。Correspondingly, the target SMF receives the PDU session establishment request.
步骤405,目标SMF从多个UPF中选择目标UPF。具体可以有如下两种示例:Step 405: The target SMF selects a target UPF from multiple UPFs. There are two specific examples:
示例b-1,目标SMF确定多个UPF中哪个UPF支持的m个S-NSSAI中S-NSSAI的数量最多,进而将该确定的UPF作为目标UPF。进一步的,当目标UPF在支持m个S-NSSAI中的部分S-NSSAI时,目标SMF向UE发送第一信息,该第一信息中包括m个S-NSSAI中、目标UPF不支持的S-NSSAI,以向UE指示该目标UPF不支持的S-NSSAI。Example b-1: The target SMF determines which UPF among multiple UPFs supports the largest number of S-NSSAIs among the m S-NSSAIs, and then uses the determined UPF as the target UPF. Further, when the target UPF supports some S-NSSAIs among the m S-NSSAIs, the target SMF sends the first information to the UE. The first information includes the S-NSSAIs among the m S-NSSAIs that the target UPF does not support. NSSAI to indicate to the UE that the target UPF does not support S-NSSAI.
示例c-1,目标SMF从多个UPF中确定支持该m个S-NSSAI的UPF作为目标UPF。在该情况中,若目标SMF从多个UPF中未确定出支持该m个S-NSSAI的UPF,则可向UE发送拒绝PDU会话建立的响应。Example c-1: The target SMF determines the UPF that supports the m S-NSSAI from multiple UPFs as the target UPF. In this case, if the target SMF does not determine a UPF that supports the m S-NSSAIs from multiple UPFs, it may send a response rejecting PDU session establishment to the UE.
结合上述示例b-1和示例c-1,举例说明UE发起PDU会话的建立流程的实现方式:Combined with the above example b-1 and example c-1, here is an example of how to implement the establishment process of a PDU session initiated by the UE:
UE发起的PDU会话建立请求中包括S-NSSAI 1至S-NSSAI 5(即M个S-NSSAI是S-NSSAI 1至S-NSSAI 5)。相应的,AMF根据S-NSSAI 1至S-NSSAI 5,确定目标SMF支持S-NSSAI 1至S-NSSAI 4,而不支持S-NSSAI 5,AMF向UE发送S-NSSAI 5,如此,UE确定建立的PDU会话的属性中不包括S-NSSAI 5。进一步的,目标SMF根据S-NSSAI1至S-NSSAI 4,确定目标UPF支持S-NSSAI 1至S-NSSAI 3,目标SMF通过AMF向UE发送S-NSSAI 4,如此,UE确定建立的PDU会话的属性中不包括S-NSSAI 4。也即,UE确定建立的PDU会话的属性包括S-NSSAI 1至S-NSSAI 3。The PDU session establishment request initiated by the UE includes S-NSSAI 1 to S-NSSAI 5 (that is, the M S-NSSAI are S-NSSAI 1 to S-NSSAI 5). Correspondingly, AMF determines that the target SMF supports S-NSSAI 1 to S-NSSAI 4 but does not support S-NSSAI 5 based on S-NSSAI 1 to S-NSSAI 5. The AMF sends S-NSSAI 5 to the UE. In this way, the UE determines The attributes of the established PDU session do not include S-NSSAI 5. Further, the target SMF determines that the target UPF supports S-NSSAI 1 to S-NSSAI 3 based on S-NSSAI 1 to S-NSSAI 4. The target SMF sends S-NSSAI 4 to the UE through the AMF. In this way, the UE determines the value of the established PDU session. S-NSSAI 4 is not included in the attributes. That is, the attributes of the PDU session determined by the UE include S-NSSAI 1 to S-NSSAI 3.
上述仅是说明UE请求建立具备M个S-NSSAI的属性的PDU会话的实现方式,而关于UE、SMF、AMF和UPF等如何建立PDU会话,可参见现有技术描述。The above only describes the implementation method of the UE requesting to establish a PDU session with M S-NSSAI attributes. For how the UE, SMF, AMF, UPF, etc. establish a PDU session, please refer to the description of the existing technology.
可以理解,UE虽然请求建立具备M个S-NSSAI的属性的PDU会话,但是由于目标SMF或目标UPF支持的S-NSSAI的限制,最终建立的PDU会话支持M个S-NSSAI中的部分(即N个S-NSSAI),或者说,N个S-NSSAI是M个S-NSSAI中除目标SMF和/或目标UPF不支持的第一部分S-NSSAI以外的其他S-NSSAI。当然,本申请不排除目标SMF和目标UPF均支持该M个S-NSSAI,在该情况中,PDU会话建立流程最终建立的PDU会话支持该M个S-NSSAI(即N个S-NSSAI)。也即,PDU会话建立请求用于建立了具备N个S-NSSAI的属性的PDU会话。It can be understood that although the UE requests to establish a PDU session with attributes of M S-NSSAI, due to the limitations of the S-NSSAI supported by the target SMF or target UPF, the PDU session finally established supports part of the M S-NSSAI (i.e. N S-NSSAI), or in other words, N S-NSSAI are other S-NSSAI among M S-NSSAI except the first part of S-NSSAI that is not supported by the target SMF and/or target UPF. Of course, this application does not rule out that both the target SMF and the target UPF support the M S-NSSAI. In this case, the PDU session finally established by the PDU session establishment process supports the M S-NSSAI (ie, N S-NSSAI). That is, the PDU session establishment request is used to establish a PDU session having N attributes of S-NSSAI.
步骤406,目标SMF向RAN发送已建立的PDU会话的属性。Step 406: The target SMF sends the attributes of the established PDU session to the RAN.
该PDU会话的属性中包括PDU会话关联的N个S-NSSAI,如此,RAN在支持该N个S-NSSAI中的任一个S-NSSAI时,可认为RAN能够基于该PDU会话为UE提供通信服务,或者说,RAN支持该PDU会话、RAN接受(或不拒绝,或不断开)该PDU会话等。提供给RAN的S-NSSAI是具有服务PLMN值的S-NSSAI(即非漫游或归属路由情况下的HPLMN S-NSSAI,或在本地疏导漫游情况下的VPLMN S-NSSAI)。The attributes of the PDU session include the N S-NSSAI associated with the PDU session. In this way, when the RAN supports any one of the N S-NSSAIs, it can be considered that the RAN can provide communication services for the UE based on the PDU session. , or in other words, the RAN supports the PDU session, the RAN accepts (or does not reject, or does not disconnect) the PDU session, etc. The S-NSSAI provided to the RAN is the S-NSSAI with the serving PLMN value (i.e. HPLMN S-NSSAI in the case of non-roaming or home routing, or VPLMN S-NSSAI in the case of locally groomed roaming).
在图5示出的RAN的切换(handover,HO)执行流程中:In the RAN handover (HO) execution flow shown in Figure 5:
步骤501,UE由源RAN切换至目标RAN。解释为,UE在移动过程中,由源RAN的服务小区移动至目标RAN的服务小区,相应的,UE接入至目标RAN。Step 501: The UE is handed over from the source RAN to the target RAN. It is explained that during the movement process, the UE moves from the serving cell of the source RAN to the serving cell of the target RAN, and accordingly, the UE accesses the target RAN.
示例性的,UE在移动过程中检测来自多个RAN的信号的强度,根据多个RAN的信号的强度,在确定多个RAN中的某个RAN(即目标RAN)的信号强度高于UE当前接入 的RAN(即源RAN)的信号强度时,确定由源RAN切换至目标RAN。For example, the UE detects the strength of signals from multiple RANs during movement. Based on the signal strengths of the multiple RANs, it is determined that the signal strength of a certain RAN (ie, the target RAN) among the multiple RANs is higher than the current level of the UE. Access When the signal strength of the RAN (that is, the source RAN) is determined, handover from the source RAN to the target RAN is determined.
步骤502,目标RAN获得PDU会话关联的N个S-NSSAI。Step 502: The target RAN obtains N S-NSSAI associated with the PDU session.
其中,该PDU会话即图4相关实施例中,UE请求建立的PDU会话,该PDU会话的属性中包括PDU会话关联的N个S-NSSAI。The PDU session is the PDU session requested by the UE to be established in the relevant embodiment of Figure 4, and the attributes of the PDU session include N S-NSSAI associated with the PDU session.
进一步的,目标RAN还从源RAN获取PDU关联的N个S-NSSAI。在目标RAN获取PDU关联的N个S-NSSAI的实现中,一种方式是,目标RAN向源RAN请求该PDU关联的N个S-NSSAI,进而源RAN向目标RAN发送PDU关联的N个S-NSSAI。再一种方式是,在PDU会话建立之后,源RAN将PDU关联的N个S-NSSAI发送至源RAN周边的一个或多个RAN中,其中,一个或多个RAN包括目标RAN。Further, the target RAN also obtains the N S-NSSAI associated with the PDU from the source RAN. In the implementation of the target RAN obtaining the N S-NSSAI associated with the PDU, one way is that the target RAN requests the N S-NSSAI associated with the PDU from the source RAN, and then the source RAN sends the N S-NSSAI associated with the PDU to the target RAN. -NSSAI. Another way is that after the PDU session is established, the source RAN sends the N S-NSSAI associated with the PDU to one or more RANs surrounding the source RAN, where the one or more RANs include the target RAN.
步骤503,目标RAN确定目标RAN支持N个S-NSSAI中任一个S-NSSAI。Step 503: The target RAN determines that the target RAN supports any one of the N S-NSSAIs.
可选的,目标RAN确定目标RAN支持的一个或多个S-NSSAI,根据该目标RAN支持的一个或多个S-NSSAI,以及该N个S-NSSAI,确定目标RAN支持该N个S-NSSAI中的一个或多个S-NSSAI(可记为目标S-NSSAI)。Optionally, the target RAN determines one or more S-NSSAIs supported by the target RAN, and determines that the target RAN supports the N S-NSSAIs based on the one or more S-NSSAIs supported by the target RAN and the N S-NSSAIs. One or more S-NSSAI in NSSAI (can be recorded as target S-NSSAI).
进一步的,目标RAN可以确定目标RAN支持的目标S-NSSAI处于非拥塞状态。或者理解,目标RAN在确定目标RAN支持该N个S-NSSAI中的一个或多个S-NSSAI之后,根据该一个或多个S-NSSAI的拥塞状态,从该一个或多个S-NSSAI中选择处于非拥塞状态的S-NSSAI作为目标S-NSSAI。Further, the target RAN may determine that the target S-NSSAI supported by the target RAN is in a non-congested state. Or it can be understood that after the target RAN determines that the target RAN supports one or more S-NSSAIs among the N S-NSSAIs, the target RAN selects the target RAN from the one or more S-NSSAIs according to the congestion status of the one or more S-NSSAIs. Select the S-NSSAI in the non-congested state as the target S-NSSAI.
步骤504,目标RAN接受PDU会话。或者说,目标RAN支持该PDU会话、目标RAN不拒绝/不断开该PDU会话、该PDU会话可以成功被切换至目标RAN等。Step 504: The target RAN accepts the PDU session. In other words, the target RAN supports the PDU session, the target RAN does not reject/do not disconnect the PDU session, the PDU session can be successfully switched to the target RAN, etc.
上述技术方案中,当UE移动导致接入的RAN发生变化时,只要当前接入的RAN(即目标RAN)支持N个S-NSSAI中的一个或多个S-NSSAI,那么目标RAN不会拒绝该PDU会话,所以UE无需释放PDU会话,有助于保持UE的业务连续性。In the above technical solution, when the movement of the UE causes the accessed RAN to change, as long as the currently accessed RAN (i.e., the target RAN) supports one or more S-NSSAIs among the N S-NSSAIs, the target RAN will not reject it. This PDU session, so the UE does not need to release the PDU session, which helps maintain the UE's business continuity.
此外,在目标RAN确定自己不支持N个S-NSSAI中任一个S-NSSAI的情况下,目标RAN拒绝该PDU会话。可选的,UE发起PDU会话的建立请求或修改请求,以使得PDU会话的属性中包括目标RAN支持的S-NSSAI,具体可参见图6或图7相关实施例中描述。In addition, if the target RAN determines that it does not support any one of the N S-NSSAIs, the target RAN rejects the PDU session. Optionally, the UE initiates a PDU session establishment request or modification request, so that the attributes of the PDU session include the S-NSSAI supported by the target RAN. For details, see the description in the relevant embodiments of Figure 6 or Figure 7 .
本申请提供另一种可能的通信方法,第一网元在RAN切换的准备阶段中,若确定UE的PDU会话中的S-NSSAI(记为第一S-NSSAI)即将不可用时,指示UE发起PDU会话建立流程/PDU会话修改流程,或者第一网元主动发起PDU会话修改流程,从而在UE与DN之间存在新的可用S-NSSAI(记为第二S-NSSAI)的PDU会话时,第一网元触发RAN切换的执行阶段。其中,第一网元可以是AMF或SMF。This application provides another possible communication method. In the preparation phase of RAN handover, if the first network element determines that the S-NSSAI (recorded as the first S-NSSAI) in the UE's PDU session is about to be unavailable, it instructs the UE to initiate PDU session establishment process/PDU session modification process, or the first network element actively initiates the PDU session modification process, so that there is a new PDU session with available S-NSSAI (recorded as the second S-NSSAI) between the UE and the DN, The first network element triggers the execution phase of RAN handover. Wherein, the first network element may be AMF or SMF.
为更清楚的描述本申请实施例中,如下基于第一网元是AMF或SMF,分情况描述。In order to describe the embodiment of the present application more clearly, the following description is based on whether the first network element is an AMF or an SMF.
情况一,第一网元是AMF。In case 1, the first network element is the AMF.
进一步的,UE移动还可能导致AMF切换,AMF可以是源AMF或者目标AMF。Furthermore, UE movement may also cause AMF handover, and the AMF may be the source AMF or the target AMF.
通信方法的流程图参见图6所示。The flow chart of the communication method is shown in Figure 6.
步骤601,AMF向UE发送重新评估指示。Step 601: AMF sends a re-evaluation indication to the UE.
可以理解,UE决定由源RAN切换至目标RAN的过程中,或者说,在RAN的切换准备流程中,AMF确定UE的PDU会话中的第一S-NSSAI即将不可用,然后向UE发送重新评估指示。其中,重新评估指示用于指示UE重新评估第一S-NSSAI对应的URSP规则, 得到新的可用S-NSSAI,即第二S-NSSAI。可选的,重新评估指示中包括第一S-NSSAI。It can be understood that when the UE decides to switch from the source RAN to the target RAN, or in the handover preparation process of the RAN, the AMF determines that the first S-NSSAI in the UE's PDU session is about to be unavailable, and then sends a re-evaluation to the UE. instruct. The re-evaluation indication is used to instruct the UE to re-evaluate the URSP rule corresponding to the first S-NSSAI, Get a new available S-NSSAI, that is, the second S-NSSAI. Optionally, the first S-NSSAI is included in the re-evaluation instruction.
如下解释说明AMF确定PDU会话中的第一S-NSSAI即将不可用的实现方式:The following explanation explains how AMF determines that the first S-NSSAI in a PDU session is about to be unavailable:
实现方式1,目标RAN向AMF发送不可用指示。具体可以有如下两个示例:Implementation method 1: The target RAN sends an unavailability indication to the AMF. Specifically, there are two examples:
示例1-1,目标RAN获取PDU会话上下文,目标RAN根据PDU会话上下文中该PDU会话的属性(即包括第一S-NSSAI),确定目标RAN不支持第一S-NSSAI,或者,确定目标RAN支持第一S-NSSAI但当前的第一S-NSSAI处于拥塞状态。目标RAN向AMF发送不可用指示,该不可用指示用于指示目标RAN不支持具备第一S-NSSAI的属性的PDU会话。示例性的,该不可用指示具体可以是1bit的字段,比如当该字段的取值为1时,指示目标RAN不支持具备第一S-NSSAI的属性的PDU会话。Example 1-1, the target RAN obtains the PDU session context, and the target RAN determines that the target RAN does not support the first S-NSSAI according to the attributes of the PDU session in the PDU session context (that is, including the first S-NSSAI), or determines that the target RAN does not support the first S-NSSAI. The first S-NSSAI is supported but the current first S-NSSAI is in a congested state. The target RAN sends an unavailability indication to the AMF, where the unavailability indication is used to indicate that the target RAN does not support a PDU session having attributes of the first S-NSSAI. For example, the unavailability indication may be a 1-bit field. For example, when the value of this field is 1, it indicates that the target RAN does not support the PDU session having the attributes of the first S-NSSAI.
本申请中,目标RAN不支持具备第一S-NSSAI的属性的PDU会话具体包括目标RAN不支持第一S-NSSAI,或者,目标RAN支持的第一S-NSSAI处于拥塞状态。In this application, the target RAN does not support the PDU session with the attributes of the first S-NSSAI. Specifically, the target RAN does not support the first S-NSSAI, or the first S-NSSAI supported by the target RAN is in a congestion state.
示例1-2,目标RAN向AMF发送不可用指示,该不可用指示具体是目标RAN的标识信息,比如是目标RAN的隧道信息或RAN标识。例如,在基于Xn的切换(Xn based HO)或基于N2的切换(N2based HO)中,目标RAN在RAN的切换准备阶段(HO preparation phase)中,把目标RAN的标识信息发给AMF。Example 1-2: The target RAN sends an unavailability indication to the AMF. The unavailability indication is specifically the identification information of the target RAN, such as the tunnel information or RAN identification of the target RAN. For example, in Xn-based handover (Xn based HO) or N2-based handover (N2based HO), the target RAN sends the identification information of the target RAN to the AMF in the RAN handover preparation phase (HO preparation phase).
示例性的,AMF根据目标RAN的标识信息,确定目标RAN支持的一个或多个S-NSSAI,当目标RAN支持的一个或多个S-NSSAI中不包括第一S-NSSAI时,AMF确定目标RAN不支持第一S-NSSAI。再示例性的,AMF根据目标RAN的标识信息,确定目标RAN支持的一个或多个S-NSSAI、目标RAN支持的一个或多个S-NSSAI分别对应的拥塞情况,当目标RAN支持的一个或多个S-NSSAI中包括第一S-NSSAI,但第一S-NSSAI在目标RAN中处于拥塞状态时,AMF确定目标RAN支持的第一S-NSSAI在目标RAN中处于拥塞状态。如此,AMF确定目标RAN不支持具备第一S-NSSAI的属性的PDU会话。Exemplarily, the AMF determines one or more S-NSSAIs supported by the target RAN based on the identification information of the target RAN. When one or more S-NSSAIs supported by the target RAN does not include the first S-NSSAI, the AMF determines the target. The RAN does not support the first S-NSSAI. As another example, the AMF determines the congestion conditions corresponding to one or more S-NSSAIs supported by the target RAN and one or more S-NSSAIs supported by the target RAN based on the identification information of the target RAN. When one or more S-NSSAIs supported by the target RAN When multiple S-NSSAIs include the first S-NSSAI, but the first S-NSSAI is in a congested state in the target RAN, the AMF determines that the first S-NSSAI supported by the target RAN is in a congested state in the target RAN. In this way, the AMF determines that the target RAN does not support the PDU session having the attributes of the first S-NSSAI.
比如,RAN在NG链接建立/维护(NG Setup,RAN configuration update)时,RAN会上报RAN支持的一个或多个S-NSSAI。相应的,AMF根据目标RAN的标识信息,确定到目标RAN支持的一个或多个S-NSSAI。For example, when RAN establishes/maintains NG links (NG Setup, RAN configuration update), RAN will report one or more S-NSSAI supported by RAN. Correspondingly, the AMF determines one or more S-NSSAI supported by the target RAN based on the identification information of the target RAN.
实现方式2,源RAN向AMF发送不可用指示。Implementation Mode 2: The source RAN sends an unavailability indication to the AMF.
示例2-1,源RAN向AMF发送不可用指示,其中该不可用指示具体是源RAN从目标RAN中获取的目标RAN的标识信息,目标RAN的标识信息比如是目标RAN的隧道信息或RAN标识。比如在基于N2的切换中,源RAN决定将UE切换到目标RAN,源RAN在RAN的切换准备阶段中,把目标RAN的标识信息发给AMF(比如通过HO required message发给AMF)。AMF根据目标RAN的标识信息,确定目标RAN不支持具备第一S-NSSAI的属性的PDU会话,可参见实现方式1的示例2中描述。Example 2-1: The source RAN sends an unavailability indication to the AMF, where the unavailability indication is specifically the identification information of the target RAN obtained by the source RAN from the target RAN. The identification information of the target RAN is, for example, the tunnel information of the target RAN or the RAN identification. . For example, in N2-based handover, the source RAN decides to handover the UE to the target RAN. During the handover preparation phase of the RAN, the source RAN sends the identification information of the target RAN to the AMF (for example, through the HO required message to the AMF). According to the identification information of the target RAN, the AMF determines that the target RAN does not support the PDU session with the attribute of the first S-NSSAI. Please refer to the description in Example 2 of Implementation Mode 1.
示例2-2,源RAN向AMF发送不可用指示,该不可用指示用于指示目标RAN不支持具备第一S-NSSAI的属性的PDU会话。示例性的,该不可用指示具体可以是1bit的字段,比如当该字段的取值为1时,指示目标RAN不支持具备第一S-NSSAI的属性的PDU会话。可选的,在XN链接建立/维护(Xn Setup,gNB configuration update)时,源RAN从目标RAN中获取目标RAN支持的一个或多个S-NSSAI,进而确定目标RAN不支持第一S-NSSAI。或者,源RAN还从目标RAN中获取目标RAN支持的一个或多个S-NSSAI分别对应的拥塞情况,进而确定目标RAN支持的第一S-NSSAI处于拥塞状态,具体确定方 式参见示例1-1中描述。Example 2-2: The source RAN sends an unavailability indication to the AMF. The unavailability indication is used to indicate that the target RAN does not support a PDU session with attributes of the first S-NSSAI. For example, the unavailability indication may be a 1-bit field. For example, when the value of this field is 1, it indicates that the target RAN does not support the PDU session having the attributes of the first S-NSSAI. Optionally, during XN link establishment/maintenance (Xn Setup, gNB configuration update), the source RAN obtains one or more S-NSSAI supported by the target RAN from the target RAN, and then determines that the target RAN does not support the first S-NSSAI. . Alternatively, the source RAN also obtains the congestion conditions corresponding to one or more S-NSSAIs supported by the target RAN from the target RAN, and then determines that the first S-NSSAI supported by the target RAN is in a congestion state. The specific determination method The formula is described in Example 1-1.
可选的,AMF还确定候选S-NSSAI,将确定出的候选S-NSSAI发送给UE。其中,候选S-NSSAI指可以替代第一S-NSSAI的S-NSSAI,即关联第一S-NSSAI的PDU会话的业务可以在关联候选S-NSSAI的PDU会话上传递。候选S-NSSAI是具有服务PLMN值的S-NSSAI(即非漫游或归属路由情况下的HPLMN S-NSSAI,或在本地疏导漫游情况下的VPLMN S-NSSAI),候选S-NSSAI也可以是HPLMN的S-NSSAI。Optionally, the AMF also determines the candidate S-NSSAI and sends the determined candidate S-NSSAI to the UE. The candidate S-NSSAI refers to the S-NSSAI that can replace the first S-NSSAI, that is, the services associated with the PDU session of the first S-NSSAI can be delivered on the PDU session associated with the candidate S-NSSAI. The candidate S-NSSAI is the S-NSSAI with the serving PLMN value (i.e. HPLMN S-NSSAI in the case of non-roaming or home routing, or VPLMN S-NSSAI in the case of local grooming roaming). The candidate S-NSSAI can also be HPLMN S-NSSAI.
在AMF确定候选S-NSSAI的实现方式中,具体可以是,UDM根据UE的签约信息,确定候选S-NSSAI,(例如候选S-NSSAI和第一S-NSSAI都属于UE签约的S-NSSAI,或者支持的DNN相同等),随后AMF从UDM中获取该候选S-NSSAI;或者,PCF根据UE的签约信息或URSP,确定候选S-NSSAI(例如候选S-NSSAI和第一S-NSSAI都属于UE签约的S-NSSAI,或者支持的DNN相同,或者支持的应用相同等),随后AMF从PCF中获取该候选S-NSSAI;又或者,AMF从UDM中获取UE的签约信息或从PCF获取URSP,根据UE的签约信息或URSP,确定候选S-NSSAI(例如候选S-NSSAI和第一S-NSSAI都属于UE签约的S-NSSAI,或者支持的DNN相同,或者支持的应用相同等)。In the implementation manner in which the AMF determines the candidate S-NSSAI, the UDM may specifically determine the candidate S-NSSAI according to the UE's subscription information, (for example, both the candidate S-NSSAI and the first S-NSSAI belong to the S-NSSAI subscribed by the UE, Or the supported DNN is the same, etc.), and then the AMF obtains the candidate S-NSSAI from the UDM; or, the PCF determines the candidate S-NSSAI based on the UE's subscription information or URSP (for example, both the candidate S-NSSAI and the first S-NSSAI belong to The S-NSSAI signed by the UE, or the supported DNN is the same, or the supported applications are the same, etc.), and then the AMF obtains the candidate S-NSSAI from the PCF; or, the AMF obtains the UE's subscription information from the UDM or obtains the URSP from the PCF , determine the candidate S-NSSAI according to the UE's subscription information or URSP (for example, the candidate S-NSSAI and the first S-NSSAI both belong to the S-NSSAI subscribed by the UE, or support the same DNN, or support the same application, etc.).
步骤602,UE对第一S-NSSAI对应的URSP规则进行重新评估,得到第二S-NSSAI。Step 602: The UE re-evaluates the URSP rule corresponding to the first S-NSSAI to obtain the second S-NSSAI.
UE在接收到重新评估指示之后,确定第一S-NSSAI即将不可用,即认为包含第一S-NSSAI的RSD不再有效,然后,UE对第一S-NSSAI对应的URSP规则进行重新评估,得到第二S-NSSAI,其中,评估方式可参见上述关于专业术语或技术解释中描述。After receiving the re-evaluation indication, the UE determines that the first S-NSSAI is about to be unavailable, that is, it considers that the RSD containing the first S-NSSAI is no longer valid. Then, the UE re-evaluates the URSP rule corresponding to the first S-NSSAI. The second S-NSSAI is obtained, where the evaluation method can be found in the above descriptions of professional terms or technical explanations.
可选的,UE接收目标RAN的广播消息,该广播消息中包括目标RAN支持的一个或多个S-NSSAI相关的信息,如跟踪区域(track area,TA)以及支持的网络切片接入组(network slice as group,NSAG),UE可以根据NSAG确定目标RAN支持的一个或多个S-NSSAI相关的信息。UE根据目标RAN支持的一个或多个S-NSSAI,对该对第一S-NSSAI对应的URSP规则进行重新评估,得到第二S-NSSAI。可以理解,第二S-NSSAI是目标RAN支持的一个或多个S-NSSAI中的S-NSSAI,即目标RAN支持第二S-NSSAI。Optionally, the UE receives a broadcast message from the target RAN. The broadcast message includes one or more S-NSSAI-related information supported by the target RAN, such as a tracking area (track area, TA) and a supported network slice access group ( network slice as group (NSAG), the UE can determine one or more S-NSSAI related information supported by the target RAN based on the NSAG. The UE re-evaluates the URSP rules corresponding to the pair of first S-NSSAI according to one or more S-NSSAI supported by the target RAN, and obtains the second S-NSSAI. It can be understood that the second S-NSSAI is an S-NSSAI among one or more S-NSSAIs supported by the target RAN, that is, the target RAN supports the second S-NSSAI.
此外,UE还能够自己感知第一S-NSSAI即将不可用,进而对第一S-NSSAI对应的URSP规则进行重新评估,以得到第二S-NSSAI。示例性的,UE获取多个TA分别支持的S-NSSAI(比如根据上述NSAG获取),当UE准备从第一TA移动至第二TA时,UE根据第一TA和第二TA分别支持的S-NSSAI,确定第一S-NSSAI。具体的,UE在第一TA中使用的PDU会话具备的属性中包括第一S-NSSAI,而UE确定第二TA并不支持该第一S-NSSAI,于是UE在移动至第二TA之前,对第一S-NSSAI对应的URSP规则进行重新评估,得到第二S-NSSAI,其中,该第二TA支持第二S-NSSAI。In addition, the UE can also sense that the first S-NSSAI is about to be unavailable, and then re-evaluate the URSP rule corresponding to the first S-NSSAI to obtain the second S-NSSAI. Exemplarily, the UE obtains the S-NSSAI supported by multiple TAs respectively (for example, obtained according to the above-mentioned NSAG). When the UE prepares to move from the first TA to the second TA, the UE obtains the S-NSSAI supported by the first TA and the second TA respectively. -NSSAI, determine the first S-NSSAI. Specifically, the attributes of the PDU session used by the UE in the first TA include the first S-NSSAI, and the UE determines that the second TA does not support the first S-NSSAI, so before moving to the second TA, the UE The URSP rule corresponding to the first S-NSSAI is re-evaluated to obtain the second S-NSSAI, in which the second TA supports the second S-NSSAI.
可选的,UE还接收AMF指示的候选S-NSSAI。UE根据目标RAN支持的一个或多个S-NSSAI、AMF指示的候选S-NSSAI,对该第一S-NSSAI对应的URSP规则进行重新评估,得到第二S-NSSAI。可以理解,目标RAN支持第二S-NSSAI,且第二S-NSSAI是候选S-NSSAI中的S-NSSAI。Optionally, the UE also receives the candidate S-NSSAI indicated by the AMF. The UE re-evaluates the URSP rule corresponding to the first S-NSSAI based on one or more S-NSSAI supported by the target RAN and the candidate S-NSSAI indicated by the AMF, and obtains the second S-NSSAI. It can be understood that the target RAN supports the second S-NSSAI, and the second S-NSSAI is the S-NSSAI among the candidate S-NSSAIs.
步骤603,UE向AMF发送PDU会话请求,PDU会话请求中包括第二S-NSSAI。Step 603: The UE sends a PDU session request to the AMF, where the PDU session request includes the second S-NSSAI.
一个示例中,PDU会话请求是PDU会话建立请求,PDU会话建立请求用于建立具备第二S-NSSAI的属性的PDU会话。 In one example, the PDU session request is a PDU session establishment request, and the PDU session establishment request is used to establish a PDU session with attributes of the second S-NSSAI.
具体的,UE向AMF发送PDU会话建立请求,AMF向SMF发送PDU会话建立请求,SMF根据PDU会话建立请求中的第二S-NSSAI,建立具备第二S-NSSAI的属性的PDU会话。或者理解,RAN、AMF、SMF根据该PDU会话建立请求中包括的第二S-NSSAI,分别执行PDU会话建立流程中各自的动作,以建立具备第二S-NSSAI的属性的PDU会话。Specifically, the UE sends a PDU session establishment request to the AMF, the AMF sends a PDU session establishment request to the SMF, and the SMF establishes a PDU session with attributes of the second S-NSSAI according to the second S-NSSAI in the PDU session establishment request. Or it can be understood that the RAN, AMF, and SMF respectively perform respective actions in the PDU session establishment process according to the second S-NSSAI included in the PDU session establishment request to establish a PDU session with attributes of the second S-NSSAI.
可选的,在PDU会话建立流程结束之后,UE还向AMF发送完成指示,该完成指示用于指示具备第二S-NSSAI的属性的PDU会话建立完成。可选的,UE在建立第二S-NSSAI关联的PDU会话时,同时携带原来第一S-NSSAI关联的PDU会话的标识(PDU Session ID),表示原来的PDU会话被现在建立的PDU会话替代。Optionally, after the PDU session establishment process ends, the UE also sends a completion indication to the AMF, where the completion indication is used to indicate that the PDU session establishment with the attributes of the second S-NSSAI is completed. Optionally, when the UE establishes the PDU session associated with the second S-NSSAI, it also carries the identifier (PDU Session ID) of the original PDU session associated with the first S-NSSAI, indicating that the original PDU session is replaced by the now established PDU session. .
再一个示例中,PDU会话请求是PDU会话修改请求,PDU会话修改请求用于修改PDU会话的属性中的第一S-NSSAI为第二S-NSSAI。In another example, the PDU session request is a PDU session modification request, and the PDU session modification request is used to modify the first S-NSSAI in the attributes of the PDU session to the second S-NSSAI.
具体的,UE向AMF发送PDU会话修改请求,AMF向SMF发送PDU会话修改请求,SMF根据PDU会话修改请求中的第二S-NSSAI,修改PDU会话的属性中的第一S-NSSAI为第二S-NSSAI。或者理解,RAN、AMF、SMF根据该PDU会话修改请求中包括的第二S-NSSAI,分别执行PDU会话修改流程中各自的动作,以修改PDU会话的属性中的第一S-NSSAI为第二S-NSSAI。Specifically, the UE sends a PDU session modification request to the AMF, the AMF sends a PDU session modification request to the SMF, and the SMF modifies the first S-NSSAI in the attributes of the PDU session to the second based on the second S-NSSAI in the PDU session modification request. S-NSSAI. Or it can be understood that RAN, AMF, and SMF respectively perform their respective actions in the PDU session modification process according to the second S-NSSAI included in the PDU session modification request to modify the first S-NSSAI in the attributes of the PDU session to the second S-NSSAI.
可选的,在PDU会话修改流程结束之后,UE还向AMF发送完成指示,该完成指示用于指示PDU会话的属性中的第一S-NSSAI被修改为第二S-NSSAI。Optionally, after the PDU session modification process ends, the UE also sends a completion indication to the AMF, where the completion indication is used to indicate that the first S-NSSAI in the attributes of the PDU session is modified to the second S-NSSAI.
步骤604,AMF确定UE与DN之间存在具备第二S-NSSAI的属性的PDU会话,触发RAN的切换执行流程。Step 604: The AMF determines that a PDU session with the attribute of the second S-NSSAI exists between the UE and the DN, and triggers the handover execution process of the RAN.
AMF可通过如下方式中一个,来确定存在具备第二S-NSSAI的属性的PDU会话。The AMF may determine the existence of a PDU session with attributes of the second S-NSSAI through one of the following methods.
方式1,AMF接收来自UE的完成指示。其中,该完成指示即在PDU会话建立流程结束之后,或者在PDU会话修改流程结束之后,UE向AMF发送的。Method 1: AMF receives the completion indication from the UE. The completion indication is sent by the UE to the AMF after the PDU session establishment process ends or after the PDU session modification process ends.
方式2,AMF确定向UE发送重新评估指示的时长到达第一预设时长。示例性的,AMF在向UE发送重新评估指示时,启动计时器,当计时器达到第一预设时长时,AMF确定UE与DN之间存在具备第二S-NSSAI的属性的PDU会话。Method 2: The AMF determines that the time period for sending the re-evaluation indication to the UE reaches the first preset time period. For example, when sending the re-evaluation indication to the UE, the AMF starts a timer. When the timer reaches the first preset duration, the AMF determines that a PDU session with the attribute of the second S-NSSAI exists between the UE and the DN.
方式3,AMF确定具备第二S-NSSAI的属性的PDU会话建立完成,或者,确定PDU会话的属性中的第一S-NSSAI被修改为第二S-NSSAI。可以理解,PDU会话的建立流程或者修改流程中均涉及AMF,AMF能够感知PDU会话是否建立完成,或者修改完成。Method 3: The AMF determines that the PDU session with the attributes of the second S-NSSAI is successfully established, or determines that the first S-NSSAI in the attributes of the PDU session is modified to the second S-NSSAI. It can be understood that AMF is involved in the establishment process or modification process of the PDU session, and the AMF can sense whether the PDU session is established or modified.
AMF在确定UE与DN之间存在具备第二S-NSSAI的属性的PDU会话之后,可向目标RAN发送切换执行指示,或者,向源RAN发送切换执行指示,其中,切换执行指示用于触发RAN的切换执行流程。After determining that a PDU session with the attribute of the second S-NSSAI exists between the UE and the DN, the AMF may send a handover execution instruction to the target RAN, or send a handover execution instruction to the source RAN, where the handover execution instruction is used to trigger the RAN switching execution process.
可选的,在PDU会话建立流程中,AMF向RAN发送S-NSSAI的业务连续性指示,该业务连续性指示用于指示:在UE移动等原因导致S-NSSAI拥塞或接入的RAN不再支持该S-NSSAI时,该PDU会话的业务连续性仍然要得到保证。如此,在RAN切换的准备阶段中,源RAN基于业务连续性指示向AMF发送不可用指示,并等待来自AMF的切换执行指示,且源RAN在接收到来自AMF的切换执行指示之后才执行RAN切换的执行流程。此外,在RAN切换的准备阶段中,源RAN还可基于该业务连续性指示向AMF发送可用指示,该可用指示即用于指示目标RAN支持具备第一S-NSSAI的属性的PDU会话, 相应的,AMF基于来自源RAN的可用指示,触发RAN切换的执行流程。Optionally, during the PDU session establishment process, the AMF sends the S-NSSAI business continuity indication to the RAN. The business continuity indication is used to indicate: S-NSSAI congestion occurs due to UE movement or other reasons or the accessed RAN is no longer available. When the S-NSSAI is supported, the business continuity of the PDU session must still be guaranteed. In this way, in the preparation phase for RAN handover, the source RAN sends an unavailability indication to the AMF based on the business continuity indication, and waits for the handover execution indication from the AMF, and the source RAN performs the RAN handover only after receiving the handover execution indication from the AMF. execution process. In addition, in the preparation phase for RAN handover, the source RAN may also send an available indication to the AMF based on the business continuity indication. The available indication is used to instruct the target RAN to support a PDU session with the attributes of the first S-NSSAI. Correspondingly, the AMF triggers the execution process of RAN handover based on the available indication from the source RAN.
可选的,AMF可以从UDM中获取业务连续性指示。或者SMF从UDM中获取业务连续性指示,然后SMF再将该业务连续性指示发送给AMF。Optionally, AMF can obtain business continuity instructions from UDM. Or the SMF obtains the business continuity indication from the UDM, and then the SMF sends the business continuity indication to the AMF.
可选的,该业务连续性指示可包含于上下文(比如PDU会话上下文或UE上下文)中。如此,在由于UE移动性或RAN切换导致AMF改变的情况下,目标RAN或目标AMF可以从源RAN或源AMF传递的上下文中获取该业务连续性指示。Optionally, the business continuity indication may be included in context (such as PDU session context or UE context). In this way, in the event that the AMF changes due to UE mobility or RAN handover, the target RAN or target AMF can obtain the business continuity indication from the context passed by the source RAN or source AMF.
如下示例性提供目标RAN获取业务连续性指示的多种方式:The following examples provide various ways for the target RAN to obtain business continuity instructions:
方式(1),在基于Xn的切换中,目标RAN从源RAN传递的上下文(比如PDU会话上下文或UE上下文)中获取该业务连续性指示。Method (1), in Xn-based handover, the target RAN obtains the business continuity indication from the context (such as PDU session context or UE context) delivered by the source RAN.
方式(2),在基于N2的切换中,目标RAN经由核心网获取源RAN中的上下文(比如PDU会话上下文或UE上下文),进而从上下文中获取该业务连续性指示;其中,目标RAN获取上下文的路径中可依次包括目标AMF和源AMF。Method (2), in N2-based handover, the target RAN obtains the context in the source RAN (such as PDU session context or UE context) via the core network, and then obtains the business continuity indication from the context; where, the target RAN obtains the context The path can include the target AMF and the source AMF in sequence.
方式(3),目标AMF从源AMF传递的UE上下文中获取该业务连续性指示,向目标RAN发送该业务连续性指示。Method (3): The target AMF obtains the business continuity indication from the UE context delivered by the source AMF, and sends the business continuity indication to the target RAN.
方式(4),目标AMF从源AMF中获取UE上下文,向目标RAN发送该UE上下文,目标RAN进而从UE上下文中获取该业务连续性指示。In method (4), the target AMF obtains the UE context from the source AMF, sends the UE context to the target RAN, and the target RAN obtains the business continuity indication from the UE context.
在一个可能示例中,该业务连续性指示与PDU会话相关联。结合下述表5中例子,PDU会话1与业务连续性指示相关联,PDU会话2未与业务连续性指示相关联,那么PDU会话1需要保持PDU会话的业务连续性;PDU会话2无需保持PDU会话的业务连续性。In one possible example, the business continuity indication is associated with a PDU session. Combined with the example in Table 5 below, PDU session 1 is associated with the business continuity indication, and PDU session 2 is not associated with the business continuity indication, then PDU session 1 needs to maintain the business continuity of the PDU session; PDU session 2 does not need to maintain the PDU Session business continuity.
表5
table 5
在又一个可能示例中,该业务连续性指示与S-NSSAI相关联。结合下述表6中例子,S-NSSAI 1与业务连续性指示相关联,S-NSSAI 2未与业务连续性指示相关联,那么PDU会话中的S-NSSAI 1,需要保持S-NSSAI 1的业务连续性;PDU会话中的S-NSSAI 2,无需保持PDU会话的业务连续性。In yet another possible example, the business continuity indication is associated with S-NSSAI. Combined with the example in Table 6 below, S-NSSAI 1 is associated with the business continuity indication, and S-NSSAI 2 is not associated with the business continuity indication, then the S-NSSAI 1 in the PDU session needs to maintain the S-NSSAI 1 Business continuity; S-NSSAI 2 in PDU session, there is no need to maintain business continuity of PDU session.
表6
Table 6
在该实现方式中,UE请求建立具备第二S-NSSAI属性的PDU会话,或者请求修改PDU会话中的第一S-NSSAI为第二S-NSSAI,进一步的,当AMF确定存在具备第二S-NSSAI属性的PDU会话之后,触发RAN的切换执行过程。此时,步骤604也可以理解为,对于关联业务连续性指示的PDU会话,或者有关联业务连续性指示的S-NSSAI对应的PDU会话,AMF在确定上述类型的PDU会话有替代的PDU会话建立或者上述类型的PDU会话被修改时,触发RAN的切换执行流程。可选的,当所有上述类型的PDU会话被 替代或修改时,AMF触发RAN的切换执行流程。In this implementation, the UE requests to establish a PDU session with the second S-NSSAI attribute, or requests to modify the first S-NSSAI in the PDU session to the second S-NSSAI. Furthermore, when the AMF determines that there is a PDU session with the second S-NSSAI attribute, - After the PDU session of the NSSAI attribute, trigger the RAN handover execution process. At this time, step 604 can also be understood as, for the PDU session associated with the business continuity indication, or the PDU session corresponding to the S-NSSAI associated with the business continuity indication, the AMF determines that an alternative PDU session is established for the above type of PDU session. Or when the above type of PDU session is modified, the RAN handover execution process is triggered. Optional, when all the above types of PDU sessions are When replacing or modifying, AMF triggers the RAN handover execution process.
如此,当UE接入至目标RAN时,目标RAN接受该具备第二S-NSSAI的属性的PDU会话,有助于保持UE的业务连续性。In this way, when the UE accesses the target RAN, the target RAN accepts the PDU session with the attribute of the second S-NSSAI, which helps maintain the service continuity of the UE.
情况二,第一网元是SMF。In case 2, the first network element is SMF.
通信方法的流程图参见图7所示。The flow chart of the communication method is shown in Figure 7.
步骤701,SMF向UE发送重新评估指示。Step 701: The SMF sends a re-evaluation indication to the UE.
可以理解,UE决定由源RAN切换至目标RAN的过程中,或者说,在RAN的切换准备流程中,SMF确定UE的PDU会话中的第一S-NSSAI即将不可用,然后通过AMF向UE发送重新评估指示。其中,重新评估指示的定义可参见步骤601中描述。It can be understood that when the UE decides to switch from the source RAN to the target RAN, or in the handover preparation process of the RAN, the SMF determines that the first S-NSSAI in the UE's PDU session is about to be unavailable, and then sends it to the UE through the AMF. Reassess instructions. For the definition of the re-evaluation instruction, please refer to the description in step 601.
在一种可能方式中,AMF在确定PDU会话中的第一S-NSSAI即将不可用的情况下,向SMF发送不可用指示。在另一种可能方式中,目标RAN通过AMF向SMF发送不可用指示,或者,源RAN通过AMF向SMF发送不可用指示。SMF根据不可用指示,确定PDU会话中的第一S-NSSAI即将不可用。该具体实现方式,可参见上述步骤601中描述。In one possible way, when the AMF determines that the first S-NSSAI in the PDU session is about to be unavailable, the AMF sends an unavailability indication to the SMF. In another possible way, the target RAN sends an unavailability indication to the SMF through the AMF, or the source RAN sends an unavailability indication to the SMF through the AMF. Based on the unavailability indication, the SMF determines that the first S-NSSAI in the PDU session is about to be unavailable. For this specific implementation, please refer to the description in step 601 above.
可选的,SMF还确定候选S-NSSAI。其中,具体实现方式可参见步骤601中AMF确定候选S-NSSAI的方式。Optionally, SMF also determines candidate S-NSSAI. For the specific implementation method, please refer to the method in which the AMF determines the candidate S-NSSAI in step 601.
步骤702,UE对第一S-NSSAI对应的URSP规则进行重新评估,得到第二S-NSSAI。具体实现方式可参见上述步骤602中描述。Step 702: The UE re-evaluates the URSP rule corresponding to the first S-NSSAI to obtain the second S-NSSAI. For specific implementation methods, please refer to the description in step 602 above.
步骤703,UE向AMF发送PDU会话请求,其中,PDU会话请求中包括第二S-NSSAI。相应的,AMF将接收到PDU会话请求发送至SMF,SMF根据PDU会话请求中的第二S-NSSAI,建立/修改得到具备第二S-NSSAI的属性的PDU会话。具体实现方式可参见上述步骤603中描述。Step 703: The UE sends a PDU session request to the AMF, where the PDU session request includes the second S-NSSAI. Correspondingly, the AMF sends the received PDU session request to the SMF, and the SMF establishes/modifies a PDU session with attributes of the second S-NSSAI according to the second S-NSSAI in the PDU session request. For specific implementation methods, please refer to the description in step 603 above.
步骤704,SMF确定UE与DN之间存在具备第二S-NSSAI的属性的PDU会话,触发RAN的切换执行流程。Step 704: The SMF determines that a PDU session with the attribute of the second S-NSSAI exists between the UE and the DN, and triggers the RAN handover execution process.
SMF确定UE与DN之间存在具备第二S-NSSAI的属性的PDU会话的实现方式,可参见上述步骤604中描述,可将上述步骤“AMF”替换为“SMF”来理解。The implementation method of SMF determining that there is a PDU session with the attribute of the second S-NSSAI between the UE and the DN can be understood by referring to the description in the above step 604. The above step "AMF" can be replaced with "SMF".
此外,还可以是AMF确定UE与DN之间存在具备第二S-NSSAI的属性的PDU会话,触发RAN的切换执行流程,具体实现方式也可参见上述步骤604中描述。In addition, the AMF may also determine that there is a PDU session with the attribute of the second S-NSSAI between the UE and the DN, triggering the RAN handover execution process. For specific implementation methods, please refer to the description in step 604 above.
此外,SMF在确定UE的PDU会话中的第一S-NSSAI即将不可用的情况下,SMF也可以发起PDU会话修改流程,从而修改该PDU会话的属性中的第一S-NSSAI为第二S-NSSAI。这种情况下,SMF(以及对应的UPF)要支持替换的S-NSSAI。且在该情况中,AMF可在确定SMF发起PDU会话修改流程之后,确定UE与DN之间存在具备第二S-NSSAI的属性的PDU会话,进而触发RAN的切换执行流程。In addition, when the SMF determines that the first S-NSSAI in the UE's PDU session is about to be unavailable, the SMF can also initiate a PDU session modification process to modify the first S-NSSAI in the attributes of the PDU session to the second S -NSSAI. In this case, the SMF (and corresponding UPF) needs to support the alternative S-NSSAI. And in this case, after determining that the SMF initiates the PDU session modification process, the AMF can determine that a PDU session with the attributes of the second S-NSSAI exists between the UE and the DN, thereby triggering the RAN handover execution process.
还需要补充的是,在PDU会话建立流程中,SMF可从UDM中获取业务连续性指示。然后,SMF将该业务连续性指示发送给RAN,或者,SMF通过AMF将该业务连续性指示发送给RAN。通常情况下UE移动性或RAN切换并不会导致SMF切换,所以,SMF可以一直保留有上下文(比如PDU会话上下文或UE上下文),相应的,SMF可以向目标RAN发送上下文,或者上下文中的业务连续性指示;或者,SMF可经由目标AMF向目标RAN发送上下文,或者上下文中的业务连续性指示。 It should also be added that during the PDU session establishment process, SMF can obtain business continuity instructions from UDM. Then, the SMF sends the business continuity indication to the RAN, or the SMF sends the business continuity indication to the RAN through the AMF. Normally, UE mobility or RAN handover does not cause SMF handover. Therefore, SMF can always retain context (such as PDU session context or UE context). Correspondingly, SMF can send context or services in the context to the target RAN. Continuity indication; Alternatively, the SMF may send the context, or the business continuity indication in the context, to the target RAN via the target AMF.
在该实现方式中,UE请求建立具备第二S-NSSAI属性的PDU会话,或者请求修改PDU会话中的第一S-NSSAI为第二S-NSSAI,或者SMF触发修改PDU会话中的第一S-NSSAI为第二S-NSSAI,进一步的,当AMF/SMF在确定存在具备第二S-NSSAI属性的PDU会话之后,触发RAN的切换执行过程。如此,当UE接入至目标RAN时,目标RAN接受该具备第二S-NSSAI的属性的PDU会话,有助于保持UE的业务连续性。In this implementation, the UE requests to establish a PDU session with the second S-NSSAI attribute, or requests to modify the first S-NSSAI in the PDU session to the second S-NSSAI, or the SMF triggers the modification of the first S-NSSAI in the PDU session. -NSSAI is the second S-NSSAI. Further, after AMF/SMF determines that there is a PDU session with the second S-NSSAI attribute, the RAN handover execution process is triggered. In this way, when the UE accesses the target RAN, the target RAN accepts the PDU session with the attribute of the second S-NSSAI, which helps maintain the service continuity of the UE.
需要补充的是,在图6或图7相关实施例中,目标RAN不支持的第一S-NSSAI,或者存在拥塞的第一S-NSSAI可以是一个或多个,相应的,UE、AMF、SMF等网元可基于每个第一S-NSSAI执行上述方法,以保持每个第一S-NSSAI中PDU会话的业务连续性。It should be added that in the relevant embodiments of Figure 6 or Figure 7, the first S-NSSAI that is not supported by the target RAN or the first S-NSSAI that is congested can be one or more. Correspondingly, UE, AMF, Network elements such as the SMF can perform the above method based on each first S-NSSAI to maintain business continuity of the PDU session in each first S-NSSAI.
还需要补充的是,图6或图7相关实施例不仅适用于UE移动导致的RAN切换流程,还适用于其他的RAN切换流程,比如主备RAN倒换(RAN Initiated QoS Flow Mobility)流程。可以理解,只要涉及到两个RAN之间的切换,且切换之后的RAN不支持具备第一S-NSSAI的属性的PDU会话的情况下,本申请实施例均可适用,并实现UE的业务连续性。It should be added that the relevant embodiments in Figure 6 or Figure 7 are not only applicable to the RAN switching process caused by UE movement, but also to other RAN switching processes, such as the active and backup RAN switching (RAN Initiated QoS Flow Mobility) process. It can be understood that as long as a handover between two RANs is involved, and the RAN after the handover does not support a PDU session with the attributes of the first S-NSSAI, the embodiments of the present application are applicable and realize the service continuity of the UE. sex.
基于上述内容和相同构思,图8和图9为本申请的提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中UE、RAN或第一网元(比如AMF或SMF)的功能,因此也能实现上述方法实施例所具备的有益效果。Based on the above content and the same concept, FIG. 8 and FIG. 9 are schematic structural diagrams of possible communication devices provided by the present application. These communication devices can be used to implement the functions of the UE, RAN or the first network element (such as AMF or SMF) in the above method embodiments, and therefore can also achieve the beneficial effects of the above method embodiments.
在本申请中,该通信装置可以是如图3A至图3F所示的UE或RAN或AMF或SMF,还可以是应用于UE或RAN或AMF或SMF中的模块(如芯片)。In this application, the communication device may be a UE or RAN or AMF or SMF as shown in FIGS. 3A to 3F , or may be a module (such as a chip) applied in the UE or RAN or AMF or SMF.
如图8所示,该通信装置800包括处理模块801和收发模块802。As shown in FIG. 8 , the communication device 800 includes a processing module 801 and a transceiver module 802 .
当通信装置800用于实现上述图4或图5中所示的方法实施例中UE的功能时:When the communication device 800 is used to implement the functions of the UE in the method embodiment shown in Figure 4 or Figure 5 above:
处理模块801,用于确定M个S-NSSAI,M为大于或等于2的整数;The processing module 801 is used to determine M S-NSSAI, where M is an integer greater than or equal to 2;
收发模块802,用于发送PDU会话建立请求,PDU会话建立请求中包括M个S-NSSAI,PDU会话建立请求用于建立具备N个S-NSSAI的属性的PDU会话,其中,M个S-NSSAI包括N个S-NSSAI,N为大于或等于2的整数;The transceiver module 802 is used to send a PDU session establishment request. The PDU session establishment request includes M S-NSSAIs. The PDU session establishment request is used to establish a PDU session with attributes of N S-NSSAIs, wherein the M S-NSSAIs Including N S-NSSAI, N is an integer greater than or equal to 2;
处理模块801,还用于将该通信装置接入至RAN,RAN支持N个S-NSSAI中的任一个S-NSSAI。The processing module 801 is also used to access the communication device to the RAN. The RAN supports any S-NSSAI among N S-NSSAI.
在一种可能的实现方式中,M个S-NSSAI包含于允许使用的NSSAI中;或M个S-NSSAI包含于允许使用的NSSAI映射的NSSAI中。In a possible implementation, M S-NSSAIs are included in the NSSAI that is allowed to be used; or M S-NSSAIs are included in the NSSAI mapped by the NSSAI that is allowed to be used.
在一种可能的实现方式中,收发模块802在处理模块801确定M个S-NSSAI之前,还用于接收URSP规则,URSP规则中包括多切片使用指示;收发模块802在发送PDU会话建立请求时,具体用于根据多切片使用指示,发送PDU会话建立请求。In a possible implementation, the transceiver module 802 is also used to receive URSP rules before the processing module 801 determines M S-NSSAIs. The URSP rules include multi-slice usage instructions; when the transceiver module 802 sends a PDU session establishment request, , specifically used to send a PDU session establishment request according to the multi-slice usage instructions.
在一种可能的实现方式中,URSP规则包括RSD,RSD包括M个S-NSSAI和多切片使用指示;或者,URSP规则包括K个RSD和多切片使用指示,K个RSD中包括M个S-NSSAI,K为小于或等于M的正整数。In a possible implementation, the URSP rules include RSDs, and the RSDs include M S-NSSAIs and multi-slice usage instructions; or the URSP rules include K RSDs and multi-slice usage instructions, and the K RSDs include M S-NSSAIs. NSSAI, K is a positive integer less than or equal to M.
在一种可能的实现方式中,收发模块802在发送PDU会话建立请求之后,还用于接收第一信息,第一信息用于指示用于建立PDU会话的目标SMF或目标UPF不支持M个S-NSSAI中的第一部分S-NSSAI;处理模块801还用于根据第一信息,确定PDU会话具备N个S-NSSAI的属性,N个S-NSSAI包括M个S-NSSAI中除第一部分S-NSSAI之外的其他S-NSSAI。 In a possible implementation, after sending the PDU session establishment request, the transceiver module 802 is also configured to receive first information. The first information is used to indicate that the target SMF or target UPF used to establish the PDU session does not support M S - the first part of S-NSSAI in the NSSAI; the processing module 801 is also configured to determine, based on the first information, that the PDU session has the attributes of N S-NSSAI, and the N S-NSSAI includes M S-NSSAI except the first part of S- S-NSSAI other than NSSAI.
当通信装置800用于实现上述图4或图5中所示的方法实施例中目标RAN的功能时:When the communication device 800 is used to implement the functions of the target RAN in the above method embodiment shown in Figure 4 or Figure 5:
处理模块801,用于在确定UE需要由源RAN切换到目标RAN时,确定PDU会话关联的N个S-NSSAI,其中,PDU会话是UE在接入至源RAN时发起请求并建立的,N为大于或等于2的整数;以及在确定目标RAN支持N个S-NSSAI中任一个S-NSSAI时,接受该PDU会话。收发模块802用于从源RAN处接收PDU会话关联的N个S-NSSAI。The processing module 801 is configured to determine N S-NSSAI associated with the PDU session when it is determined that the UE needs to be handed over from the source RAN to the target RAN, where the PDU session is requested and established by the UE when accessing the source RAN, N is an integer greater than or equal to 2; and when it is determined that the target RAN supports any S-NSSAI among N S-NSSAI, accept the PDU session. The transceiver module 802 is configured to receive N S-NSSAI associated with the PDU session from the source RAN.
当通信装置800用于实现上述图6或图7中所示的方法实施例中UE的功能时:When the communication device 800 is used to implement the functions of the UE in the method embodiment shown in Figure 6 or Figure 7 above:
收发模块802,用于接收重新评估指示,重新评估指示用于指示UE对第一S-NSSAI对应的URSP规则进行重新评估;处理模块801,用于对第一S-NSSAI对应的URSP规则进行重新评估,得到第二S-NSSAI;收发模块802,还用于发送PDU会话请求,PDU会话请求中包括第二S-NSSAI,PDU会话请求用于建立具备第二S-NSSAI的属性的PDU会话,或者,用于修改已建立的PDU会话的属性中第一S-NSSAI为第二S-NSSAI。The transceiver module 802 is used to receive a re-evaluation instruction, and the re-evaluation instruction is used to instruct the UE to re-evaluate the URSP rule corresponding to the first S-NSSAI; the processing module 801 is used to re-evaluate the URSP rule corresponding to the first S-NSSAI. Evaluate and obtain the second S-NSSAI; the transceiver module 802 is also used to send a PDU session request, the PDU session request includes the second S-NSSAI, and the PDU session request is used to establish a PDU session with attributes of the second S-NSSAI, Or, the first S-NSSAI is used to modify the attributes of the established PDU session to the second S-NSSAI.
在一种可能的实现方式中,收发模块802还用于接收候选S-NSSAI;处理模块801在对第一S-NSSAI对应的URSP规则进行重新评估,得到第二S-NSSAI时,具体用于根据候选S-NSSAI,对第一S-NSSAI对应的URSP规则进行重新评估,得到第二S-NSSAI,第二S-NSSAI包含于候选S-NSSAI中。In a possible implementation, the transceiver module 802 is also used to receive candidate S-NSSAI; the processing module 801 is specifically used to re-evaluate the URSP rules corresponding to the first S-NSSAI and obtain the second S-NSSAI. According to the candidate S-NSSAI, the URSP rule corresponding to the first S-NSSAI is re-evaluated to obtain the second S-NSSAI. The second S-NSSAI is included in the candidate S-NSSAI.
在一种可能的实现方式中,处理模块801还用于该通信装置由源RAN切换至目标RAN,目标RAN支持具备第二S-NSSAI属性的PDU会话,且不支持具备第一S-NSSAI属性的PDU会话。在一种可能的实现方式中,目标RAN不支持第一S-NSSAI,或者,目标RAN支持的第一S-NSSAI处于拥塞状态。In a possible implementation, the processing module 801 is also used to switch the communication device from the source RAN to the target RAN. The target RAN supports the PDU session with the second S-NSSAI attribute and does not support the first S-NSSAI attribute. PDU session. In a possible implementation manner, the target RAN does not support the first S-NSSAI, or the first S-NSSAI supported by the target RAN is in a congestion state.
当通信装置800用于实现上述图6或图7中所示的方法实施例中第一网元的功能时:When the communication device 800 is used to implement the function of the first network element in the above method embodiment shown in Figure 6 or Figure 7:
处理模块801,用于确定存在具备第二S-NSSAI的属性的PDU会话;以及,触发UE由源RAN切换到目标RAN的切换执行流程;其中,第二S-NSSAI是对第一S-NSSAI对应的URSP规则重新评估得到的;目标RAN支持具备第二S-NSSAI属性的PDU会话,且不支持具备第一S-NSSAI属性的PDU会话。在一种可能的实现方式中,目标RAN不支持第一S-NSSAI,或者,目标RAN支持的第一S-NSSAI处于拥塞状态。The processing module 801 is used to determine that there is a PDU session with the attribute of the second S-NSSAI; and trigger the handover execution process of the UE from the source RAN to the target RAN; wherein the second S-NSSAI is a response to the first S-NSSAI. The corresponding URSP rule is re-evaluated; the target RAN supports PDU sessions with the second S-NSSAI attribute, and does not support PDU sessions with the first S-NSSAI attribute. In a possible implementation manner, the target RAN does not support the first S-NSSAI, or the first S-NSSAI supported by the target RAN is in a congestion state.
在一种可能的实现方式中,处理模块801在确定存在具备第二S-NSSAI的属性的PDU会话之前,还用于在UE由源RAN切换到目标RAN的切换准备流程中,控制收发模块802接收不可用指示,其中,不可用指示用于指示目标RAN不支持具备第一S-NSSAI属性的PDU会话。In a possible implementation, before determining that there is a PDU session with the attribute of the second S-NSSAI, the processing module 801 is also used to control the transceiver module 802 during the handover preparation process of the UE switching from the source RAN to the target RAN. Receive an unavailable indication, wherein the unavailable indication is used to indicate that the target RAN does not support the PDU session with the first S-NSSAI attribute.
在一种可能的实现方式中,处理模块801在确定存在具备第二S-NSSAI的属性的PDU会话之前,还用于在PDU会话的建立流程中,控制收发模块802向RAN发送业务连续性指示,业务连续性指示用于指示RAN在切换准备流程中发送不可用指示。In a possible implementation, before determining that a PDU session with the attribute of the second S-NSSAI exists, the processing module 801 is also configured to control the transceiver module 802 to send a business continuity indication to the RAN during the establishment process of the PDU session. , the business continuity indication is used to instruct the RAN to send an unavailability indication during the handover preparation process.
在一种可能的实现方式中,处理模块801在确定存在具备第二S-NSSAI的属性的PDU会话之前,还用于控制收发模块802向UE发送重新评估指示,重新评估指示用于指示重新评估第一S-NSSAI对应的URSP规则。In a possible implementation, before determining that there is a PDU session with the attribute of the second S-NSSAI, the processing module 801 is also used to control the transceiver module 802 to send a re-evaluation indication to the UE. The re-evaluation indication is used to indicate re-evaluation. The URSP rule corresponding to the first S-NSSAI.
在一种可能的实现方式中,处理模块801在确定存在具备第二S-NSSAI的属性的PDU会话之前,还用于确定候选S-NSSAI;以及,控制收发模块802向UE发送候选S-NSSAI;其中,候选S-NSSAI中包括第二S-NSSAI。 In a possible implementation, the processing module 801 is also used to determine candidate S-NSSAI before determining that there is a PDU session with attributes of the second S-NSSAI; and, control the transceiver module 802 to send the candidate S-NSSAI to the UE. ; Among them, the candidate S-NSSAI includes the second S-NSSAI.
在一种可能的实现方式中,处理模块801在确定存在具备第二S-NSSAI的属性的PDU会话之前,还用于控制收发模块802接收PDU会话请求,PDU会话请求中包括第二S-NSSAI;建立具备第二S-NSSAI的属性的PDU会话,或者,修改已建立的PDU会话的属性中的第一S-NSSAI为第二S-NSSAI。In a possible implementation, before determining that a PDU session with the attribute of the second S-NSSAI exists, the processing module 801 is also used to control the transceiver module 802 to receive a PDU session request, where the PDU session request includes the second S-NSSAI. ; Establish a PDU session with the attributes of the second S-NSSAI, or modify the first S-NSSAI in the attributes of the established PDU session to the second S-NSSAI.
在一种可能的实现方式中,处理模块801在确定存在具备第二S-NSSAI的属性的PDU会话之前,还用于控制收发模块802发送PDU会话修改指示,PDU会话修改指示用于修改已建立的PDU会话的属性中的第一S-NSSAI为第二S-NSSAI。In a possible implementation, before determining that there is a PDU session with the attribute of the second S-NSSAI, the processing module 801 is also used to control the transceiver module 802 to send a PDU session modification indication. The PDU session modification indication is used to modify the established The first S-NSSAI in the attributes of the PDU session is the second S-NSSAI.
在一种可能的实现方式中,处理模块801在确定满足如下任一个条件时,确定存在具备第二S-NSSAI的属性的PDU会话:收发模块802接收来自UE的完成指示,完成指示用于指示具备第二S-NSSAI的属性的PDU会话建立或修改完成;确定收发模块802向UE发送重新评估指示的时长到达第一预设时长;通信装置是AMF,收发模块802接收来自SMF的PDU会话修改指示,向UE发送PDU会话修改指示。In a possible implementation, the processing module 801 determines that there is a PDU session with the attribute of the second S-NSSAI when determining that any of the following conditions are met: the transceiver module 802 receives a completion indication from the UE, and the completion indication is used to indicate The establishment or modification of the PDU session with the attributes of the second S-NSSAI is completed; it is determined that the duration of the re-evaluation indication sent by the transceiver module 802 to the UE reaches the first preset duration; the communication device is an AMF, and the transceiver module 802 receives the PDU session modification from the SMF Instruction: Send PDU session modification indication to the UE.
在一种可能的实现方式中,处理模块801触发RAN的切换执行流程时,具体用于:控制收发模块802向目标RAN发送切换执行指示,或者,向源RAN发送切换执行指示;切换执行指示用于触发切换执行流程。In a possible implementation, when the processing module 801 triggers the handover execution process of the RAN, it is specifically used to: control the transceiver module 802 to send a handover execution instruction to the target RAN, or to send a handover execution instruction to the source RAN; the handover execution instruction is To trigger the switching execution process.
如图9所示为本申请实施例提供的装置900,图9所示的装置可以为图8所示的装置的一种硬件电路的实现方式。该装置可适用于前面所示出的流程图中,执行上述方法实施例中UE或RAN或第一网元的功能。为了便于说明,图9仅示出了该装置的主要部件。Figure 9 shows a device 900 provided by an embodiment of the present application. The device shown in Figure 9 can be a hardware circuit implementation of the device shown in Figure 8. The device may be adapted to the flow chart shown above to perform the functions of the UE, RAN, or first network element in the above method embodiment. For ease of explanation, Figure 9 shows only the main components of the device.
图9所示的装置900包括通信接口910、处理器920和存储器930,其中存储器930用于存储程序指令和/或数据。处理器920可能和存储器930协同操作。处理器920可能执行存储器930中存储的程序指令。存储器930中存储的指令或程序被执行时,该处理器920用于执行上述实施例中处理模块801执行的操作,通信接口910用于执行上述实施例中收发模块802执行的操作。The device 900 shown in Figure 9 includes a communication interface 910, a processor 920 and a memory 930, where the memory 930 is used to store program instructions and/or data. The processor 920 may cooperate with the memory 930. Processor 920 may execute program instructions stored in memory 930 . When the instructions or programs stored in the memory 930 are executed, the processor 920 is used to perform the operations performed by the processing module 801 in the above embodiment, and the communication interface 910 is used to perform the operations performed by the transceiver module 802 in the above embodiment.
存储器930和处理器920耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。存储器930中的至少一个可以包括于处理器920中。Memory 930 and processor 920 are coupled. The coupling in the embodiment of this application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information interaction between devices, units or modules. At least one of the memories 930 may be included in the processor 920 .
在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。在本申请实施例中,通信接口为收发器时,收发器可以包括独立的接收器、独立的发射器;也可以集成收发功能的收发器、或者是通信接口。In this embodiment of the present application, the communication interface may be a transceiver, a circuit, a bus, a module, or other types of communication interfaces. In this embodiment of the present application, when the communication interface is a transceiver, the transceiver may include an independent receiver or an independent transmitter; it may also be a transceiver with integrated transceiver functions or a communication interface.
装置900还可以包括通信线路940。其中,通信接口910、处理器920以及存储器930可以通过通信线路940相互连接;通信线路940可以是外设部件互连标准(peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry standard architecture,简称EISA)总线等。通信线路940可以分为地址总线、数据总线、控制总线等。为便于表示,图9中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。Apparatus 900 may also include communication lines 940. Among them, the communication interface 910, the processor 920 and the memory 930 can be connected to each other through a communication line 940; the communication line 940 can be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (extended industry standard architecture) , referred to as EISA) bus, etc. The communication line 940 can be divided into an address bus, a data bus, a control bus, etc. For ease of presentation, only one thick line is used in Figure 9, but it does not mean that there is only one bus or one type of bus.
基于上述内容和相同构思,本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序或指令,当该计算机程序或指令被执行时,使得计算机执行上述方法实施例中的方法。Based on the above content and the same concept, embodiments of the present application provide a computer-readable storage medium on which a computer program or instructions are stored. When the computer program or instructions are executed, the computer is caused to execute the method in the above method embodiment.
基于上述内容和相同构思,本申请实施例提供一种计算机程序产品,当计算机读取并执行计算机程序产品时,使得计算机执行上述方法实施例中的方法。 Based on the above content and the same concept, embodiments of the present application provide a computer program product. When a computer reads and executes the computer program product, it causes the computer to execute the method in the above method embodiment.
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。It can be understood that the various numerical numbers involved in the embodiments of the present application are only for convenience of description and are not used to limit the scope of the embodiments of the present application. The size of the serial numbers of the above processes does not mean the order of execution. The execution order of each process should be determined by its function and internal logic.
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。 Obviously, those skilled in the art can make various changes and modifications to the present application without departing from the protection scope of the present application. In this way, if these modifications and variations of the present application fall within the scope of the claims of the present application and equivalent technologies, the present application is also intended to include these modifications and variations.

Claims (22)

  1. 一种通信方法,其特征在于,包括:A communication method, characterized by including:
    终端设备UE确定M个单个网络切片选择辅助信息S-NSSAI,所述M为大于或等于2的整数;The terminal equipment UE determines M pieces of single network slice selection assistance information S-NSSAI, where M is an integer greater than or equal to 2;
    所述UE发送协议数据单元PDU会话建立请求,所述PDU会话建立请求中包括所述M个S-NSSAI,所述PDU会话建立请求用于建立具备N个S-NSSAI的属性的PDU会话,其中,所述M个S-NSSAI包括所述N个S-NSSAI,所述N为大于或等于2的整数;The UE sends a protocol data unit PDU session establishment request, the PDU session establishment request includes the M S-NSSAI, and the PDU session establishment request is used to establish a PDU session with attributes of N S-NSSAI, where , the M S-NSSAI includes the N S-NSSAI, and the N is an integer greater than or equal to 2;
    所述UE接入至无线接入网设备RAN,所述RAN支持所述N个S-NSSAI中的任一个S-NSSAI。The UE accesses a radio access network device RAN, and the RAN supports any one of the N S-NSSAIs.
  2. 如权利要求1所述的方法,其特征在于,所述M个S-NSSAI包含于允许使用的网络切片选择辅助信息NSSAI中;或The method of claim 1, wherein the M S-NSSAIs are included in the network slice selection auxiliary information NSSAI that is allowed to be used; or
    所述M个S-NSSAI包含于所述允许使用的NSSAI映射的NSSAI中。The M S-NSSAIs are included in the NSSAIs of the allowed NSSAI mapping.
  3. 如权利要求1或2所述的方法,其特征在于,The method according to claim 1 or 2, characterized in that,
    所述UE确定M个S-NSSAI之前,还包括:所述UE接收用户路由选择策略URSP规则,所述URSP规则中包括多切片使用指示;Before the UE determines the M S-NSSAI, the method further includes: the UE receives a user routing policy URSP rule, where the URSP rule includes a multi-slice usage indication;
    所述UE发送PDU会话建立请求,包括:所述UE根据所述多切片使用指示,发送所述PDU会话建立请求。The UE sends a PDU session establishment request, including: the UE sends the PDU session establishment request according to the multi-slice usage indication.
  4. 如权利要求3所述的方法,其特征在于,所述URSP规则包括路径选择描述符RSD,所述RSD包括所述M个S-NSSAI和所述多切片使用指示;或者,The method of claim 3, wherein the URSP rule includes a path selection descriptor RSD, and the RSD includes the M S-NSSAI and the multi-slice usage indication; or,
    所述URSP规则包括K个RSD和所述多切片使用指示,所述K个RSD中包括所述M个S-NSSAI,所述K为小于或等于所述M的正整数。The URSP rule includes K RSDs and the multi-slice usage instructions, the K RSDs include the M S-NSSAIs, and the K is a positive integer less than or equal to the M.
  5. 如权利要求1-4中任一项所述的方法,其特征在于,所述UE发送PDU会话建立请求之后,还包括:The method according to any one of claims 1 to 4, characterized in that after the UE sends a PDU session establishment request, it further includes:
    所述UE接收第一信息,所述第一信息用于指示用于建立所述PDU会话的目标SMF或目标UPF不支持所述M个S-NSSAI中的第一部分S-NSSAI;The UE receives first information, the first information is used to indicate that the target SMF or target UPF used to establish the PDU session does not support the first part of the M S-NSSAI;
    所述UE根据所述第一信息,确定所述PDU会话具备所述N个S-NSSAI的属性,所述N个S-NSSAI包括所述M个S-NSSAI中除所述第一部分S-NSSAI之外的其他S-NSSAI。The UE determines that the PDU session has attributes of the N S-NSSAI according to the first information, and the N S-NSSAI includes the M S-NSSAI except the first part of the S-NSSAI. Other than S-NSSAI.
  6. 一种通信方法,其特征在于,包括:A communication method, characterized by including:
    终端设备UE接收重新评估指示,所述重新评估指示用于指示所述UE对第一单个网络切片选择辅助信息S-NSSAI对应的用户路由选择策略URSP规则进行重新评估;The terminal equipment UE receives a re-evaluation indication, which is used to instruct the UE to re-evaluate the user routing policy URSP rule corresponding to the first single network slice selection assistance information S-NSSAI;
    所述UE对所述第一S-NSSAI对应的URSP规则进行重新评估,得到第二S-NSSAI;The UE re-evaluates the URSP rule corresponding to the first S-NSSAI to obtain the second S-NSSAI;
    所述UE发送协议数据单元PDU会话请求,所述PDU会话请求中包括所述第二S-NSSAI,所述PDU会话请求用于建立具备所述第二S-NSSAI的属性的PDU会话,或者,用于修改已建立的PDU会话的属性中所述第一S-NSSAI为所述第二S-NSSAI。The UE sends a protocol data unit PDU session request, the PDU session request includes the second S-NSSAI, and the PDU session request is used to establish a PDU session with attributes of the second S-NSSAI, or, The first S-NSSAI used to modify the attributes of the established PDU session is the second S-NSSAI.
  7. 如权利要求6所述的方法,其特征在于,所述UE对第一S-NSSAI对应的URSP规则进行重新评估,得到第二S-NSSAI,包括:The method of claim 6, wherein the UE re-evaluates the URSP rule corresponding to the first S-NSSAI to obtain the second S-NSSAI, including:
    所述UE接收候选S-NSSAI;The UE receives the candidate S-NSSAI;
    所述UE根据所述候选S-NSSAI,对所述第一S-NSSAI对应的URSP规则进行重新评 估,得到所述第二S-NSSAI,所述第二S-NSSAI包含于所述候选S-NSSAI中。The UE re-evaluates the URSP rule corresponding to the first S-NSSAI based on the candidate S-NSSAI. It is estimated that the second S-NSSAI is obtained, and the second S-NSSAI is included in the candidate S-NSSAI.
  8. 如权利要求6或7所述的方法,其特征在于,还包括:The method of claim 6 or 7, further comprising:
    所述UE由源无线接入网设备RAN切换至目标RAN,所述目标RAN支持具备所述第二S-NSSAI属性的PDU会话,且不支持具备所述第一S-NSSAI属性的PDU会话。The UE is handed over from the source radio access network device RAN to the target RAN, and the target RAN supports the PDU session with the second S-NSSAI attribute and does not support the PDU session with the first S-NSSAI attribute.
  9. 如权利要求8所述的方法,其特征在于,所述目标RAN不支持所述第一S-NSSAI,或者,所述目标RAN支持的所述第一S-NSSAI处于拥塞状态。The method of claim 8, wherein the target RAN does not support the first S-NSSAI, or the first S-NSSAI supported by the target RAN is in a congestion state.
  10. 一种通信方法,其特征在于,包括:A communication method, characterized by including:
    第一网元确定存在具备第二单个网络切片选择辅助信息S-NSSAI的属性的协议数据单元PDU会话;The first network element determines that there is a protocol data unit PDU session having attributes of the second single network slice selection assistance information S-NSSAI;
    所述第一网元触发终端设备UE由源无线接入网设备RAN切换到目标RAN的切换执行流程;The first network element triggers a handover execution process for the terminal equipment UE to switch from the source radio access network equipment RAN to the target RAN;
    其中,所述第二S-NSSAI是对第一S-NSSAI对应的用户路由选择策略URSP规则重新评估得到的;所述目标RAN支持具备所述第二S-NSSAI属性的PDU会话,且不支持具备所述第一S-NSSAI属性的PDU会话。Wherein, the second S-NSSAI is obtained by re-evaluating the user routing policy URSP rule corresponding to the first S-NSSAI; the target RAN supports PDU sessions with the second S-NSSAI attribute, and does not support A PDU session having the first S-NSSAI attribute.
  11. 如权利要求10所述的方法,其特征在于,所述目标RAN不支持所述第一S-NSSAI,或者,所述目标RAN支持的所述第一S-NSSAI处于拥塞状态。The method of claim 10, wherein the target RAN does not support the first S-NSSAI, or the first S-NSSAI supported by the target RAN is in a congestion state.
  12. 如权利要求10或11所述的方法,其特征在于,所述第一网元确定存在具备第二S-NSSAI的属性的PDU会话之前,还包括:The method according to claim 10 or 11, characterized in that before the first network element determines that there is a PDU session with attributes of the second S-NSSAI, it further includes:
    在所述UE由源RAN切换到目标RAN的切换准备流程中,所述第一网元接收不可用指示,其中,所述不可用指示用于指示所述目标RAN不支持具备所述第一S-NSSAI属性的PDU会话。In the handover preparation process for the UE to switch from the source RAN to the target RAN, the first network element receives an unavailability indication, wherein the unavailability indication is used to indicate that the target RAN does not support the first S -NSSAI attribute PDU session.
  13. 如权利要求12所述的方法,其特征在于,所述第一网元确定存在具备第二S-NSSAI的属性的PDU会话之前,还包括:The method of claim 12, wherein before the first network element determines that there is a PDU session with attributes of the second S-NSSAI, it further includes:
    在所述PDU会话的建立流程中,所述第一网元向RAN发送业务连续性指示,所述业务连续性指示用于指示所述RAN在所述切换准备流程中发送所述不可用指示。In the establishment process of the PDU session, the first network element sends a business continuity indication to the RAN, and the business continuity indication is used to instruct the RAN to send the unavailability indication in the handover preparation process.
  14. 如权利要求10-13中任一项所述的方法,其特征在于,所述第一网元确定存在具备第二S-NSSAI的属性的PDU会话之前,还包括:The method according to any one of claims 10 to 13, characterized in that before the first network element determines that there is a PDU session with attributes of the second S-NSSAI, it further includes:
    所述第一网元向所述UE发送重新评估指示,所述重新评估指示用于指示重新评估所述第一S-NSSAI对应的URSP规则。The first network element sends a re-evaluation indication to the UE, where the re-evaluation indication is used to instruct to re-evaluate the URSP rule corresponding to the first S-NSSAI.
  15. 如权利要求10-14中任一项所述的方法,其特征在于,所述第一网元确定存在具备第二S-NSSAI的属性的PDU会话之前,还包括:The method according to any one of claims 10 to 14, characterized in that before the first network element determines that there is a PDU session with attributes of the second S-NSSAI, it further includes:
    所述第一网元确定候选S-NSSAI;The first network element determines the candidate S-NSSAI;
    所述第一网元向所述UE发送所述候选S-NSSAI;The first network element sends the candidate S-NSSAI to the UE;
    其中,所述候选S-NSSAI中包括所述第二S-NSSAI。Wherein, the candidate S-NSSAI includes the second S-NSSAI.
  16. 如权利要求10-15中任一项所述的方法,其特征在于,所述第一网元确定存在具备第二S-NSSAI的属性的PDU会话之前,还包括:The method according to any one of claims 10 to 15, characterized in that before the first network element determines that there is a PDU session with attributes of the second S-NSSAI, it further includes:
    所述第一网元接收PDU会话请求,所述PDU会话请求中包括所述第二S-NSSAI;The first network element receives a PDU session request, where the PDU session request includes the second S-NSSAI;
    所述第一网元建立具备所述第二S-NSSAI的属性的PDU会话,或者,修改已建立的PDU会话的属性中的所述第一S-NSSAI为所述第二S-NSSAI。 The first network element establishes a PDU session with attributes of the second S-NSSAI, or modifies the first S-NSSAI in the attributes of the established PDU session to the second S-NSSAI.
  17. 如权利要求10-13中任一项所述的方法,其特征在于,所述第一网元确定存在具备第二S-NSSAI的属性的PDU会话之前,还包括:The method according to any one of claims 10 to 13, characterized in that before the first network element determines that there is a PDU session with attributes of the second S-NSSAI, it further includes:
    所述第一网元发送PDU会话修改指示,所述PDU会话修改指示用于修改已建立的PDU会话的属性中的所述第一S-NSSAI为所述第二S-NSSAI。The first network element sends a PDU session modification indication, and the PDU session modification indication is used to modify the first S-NSSAI in the attributes of the established PDU session to the second S-NSSAI.
  18. 如权利要求10-16中任一项所述的方法,其特征在于,所述第一网元在确定满足如下任一个条件时,确定存在具备第二S-NSSAI的属性的PDU会话:The method according to any one of claims 10-16, characterized in that, when the first network element determines that any one of the following conditions is met, it determines that there is a PDU session with attributes of the second S-NSSAI:
    所述第一网元接收来自UE的完成指示,所述完成指示用于指示具备所述第二S-NSSAI的属性的PDU会话建立或修改完成;The first network element receives a completion indication from the UE, where the completion indication is used to indicate that the PDU session establishment or modification with the attributes of the second S-NSSAI is completed;
    所述第一网元确定向所述UE发送重新评估指示的时长到达第一预设时长;The first network element determines that the time period for sending the re-evaluation indication to the UE reaches a first preset time period;
    所述第一网元是接入和移动性管理功能网元AMF,所述AMF接收来自会话管理功能网元SMF的PDU会话修改指示,向所述UE发送所述PDU会话修改指示。The first network element is the access and mobility management function network element AMF. The AMF receives the PDU session modification indication from the session management function network element SMF and sends the PDU session modification indication to the UE.
  19. 如权利要求10-18中任一项所述的方法,其特征在于,所述第一网元触发RAN的切换执行流程,包括:The method according to any one of claims 10 to 18, characterized in that the first network element triggers a handover execution process of the RAN, including:
    所述第一网元向所述目标RAN发送切换执行指示,或者,所述第一网元向所述源RAN发送切换执行指示;所述切换执行指示用于触发所述切换执行流程。The first network element sends a handover execution instruction to the target RAN, or the first network element sends a handover execution instruction to the source RAN; the handover execution instruction is used to trigger the handover execution process.
  20. 一种通信装置,其特征在于,包括用于执行如权利要求1至5中的任一项所述方法的模块,或6至9中的任一项所述方法的模块,或10至19中的任一项所述方法的模块。A communication device, characterized in that it includes a module for performing the method according to any one of claims 1 to 5, or a module for the method according to any one of claims 6 to 9, or one of the methods described in claims 10 to 19. module of any of the methods described.
  21. 一种通信装置,其特征在于,包括处理器和通信接口,所述通信接口用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至5中的任一项所述方法,或6至9中的任一项所述方法,或10至19中的任一项所述方法。A communication device, characterized in that it includes a processor and a communication interface. The communication interface is used to receive signals from other communication devices other than the communication device and transmit them to the processor or transfer signals from the processor. The signal is sent to other communication devices other than the communication device, and the processor is used to implement the method according to any one of claims 1 to 5, or 6 to 9 through logical circuits or execution of code instructions. The method described in any one of the above, or the method described in any one of 10 to 19.
  22. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至5中的任一项所述方法,或6至9中的任一项所述方法,或10至19中的任一项所述方法。 A computer-readable storage medium, characterized in that computer programs or instructions are stored in the computer-readable storage medium. When the computer programs or instructions are executed by a communication device, any one of claims 1 to 5 is realized. The method described in one item, or the method described in any one of 6 to 9, or the method described in any one of 10 to 19.
PCT/CN2023/093134 2022-08-03 2023-05-10 Communication method and apparatus WO2024027256A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210924329.1 2022-08-03
CN202210924329.1A CN117560742A (en) 2022-08-03 2022-08-03 Communication method and device

Publications (1)

Publication Number Publication Date
WO2024027256A1 true WO2024027256A1 (en) 2024-02-08

Family

ID=89811582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/093134 WO2024027256A1 (en) 2022-08-03 2023-05-10 Communication method and apparatus

Country Status (2)

Country Link
CN (1) CN117560742A (en)
WO (1) WO2024027256A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109951877A (en) * 2017-12-20 2019-06-28 华为技术有限公司 A kind of slice information update method and device
US20200359295A1 (en) * 2019-05-06 2020-11-12 Mediatek Inc Enhanced ue route selection policy (ursp) rules selection
CN113163390A (en) * 2021-05-11 2021-07-23 中国联合网络通信集团有限公司 Roaming user session establishment method, roaming site AMF and roaming site NSSF
CN114080843A (en) * 2019-06-14 2022-02-22 康维达无线有限责任公司 Apparatus, system, and method for enhancing network slice and policy framework for 5G networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109951877A (en) * 2017-12-20 2019-06-28 华为技术有限公司 A kind of slice information update method and device
US20200359295A1 (en) * 2019-05-06 2020-11-12 Mediatek Inc Enhanced ue route selection policy (ursp) rules selection
CN114080843A (en) * 2019-06-14 2022-02-22 康维达无线有限责任公司 Apparatus, system, and method for enhancing network slice and policy framework for 5G networks
CN113163390A (en) * 2021-05-11 2021-07-23 中国联合网络通信集团有限公司 Roaming user session establishment method, roaming site AMF and roaming site NSSF

Also Published As

Publication number Publication date
CN117560742A (en) 2024-02-13

Similar Documents

Publication Publication Date Title
WO2022007899A1 (en) Upf selection method and apparatus
US10911990B2 (en) Network handover method and related device
WO2020147761A1 (en) Pdu session switching method and apparatus therefor
US12004264B2 (en) Session management method, device, and system
WO2021223507A1 (en) Communication method and apparatus, and chip
KR102469973B1 (en) Communication method and device
WO2020199960A1 (en) Latency acquisition method and apparatus, and optimization method and apparatus
US10123236B2 (en) Mobile communication system, local access server and network controller
US10999768B2 (en) Session context handling method, network element, and terminal device
EP3445081B1 (en) Flow-based bearer management method and device
US11576219B2 (en) User equipment, control apparatus, and communication control method
US11689956B2 (en) Relocation method and apparatus
JP2022521088A (en) Policy management method and equipment
EP3777450A1 (en) Qos and home routed roaming
WO2020155972A1 (en) Mobility management method and apparatus
WO2021097858A1 (en) Communication method and apparatus
WO2020073899A1 (en) Data transmission method and apparatus
CN116916402A (en) Mechanism for coordinating seamless service continuity to edge application servers at relocation
WO2021109095A1 (en) Inter-network interoperation method, apparatus, and system
WO2020200057A1 (en) Communication method and apparatus
WO2021022919A1 (en) Method for performing access control on user equipment, network system, and related device
WO2024027256A1 (en) Communication method and apparatus
WO2023035925A1 (en) Service processing method, apparatus and system
WO2020173146A1 (en) Switching processing method, related device, program product and storage medium
WO2021047443A1 (en) Method and apparatus for forwarding service data packet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23848967

Country of ref document: EP

Kind code of ref document: A1