WO2024027245A1 - 红点瞄准镜 - Google Patents

红点瞄准镜 Download PDF

Info

Publication number
WO2024027245A1
WO2024027245A1 PCT/CN2023/091802 CN2023091802W WO2024027245A1 WO 2024027245 A1 WO2024027245 A1 WO 2024027245A1 CN 2023091802 W CN2023091802 W CN 2023091802W WO 2024027245 A1 WO2024027245 A1 WO 2024027245A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
lens
cavity
hole
source component
Prior art date
Application number
PCT/CN2023/091802
Other languages
English (en)
French (fr)
Inventor
余希平
田济源
杨辉
林达云
何银权
Original Assignee
珠海市敏夫光学仪器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海市敏夫光学仪器有限公司 filed Critical 珠海市敏夫光学仪器有限公司
Publication of WO2024027245A1 publication Critical patent/WO2024027245A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G1/00Sighting devices
    • F41G1/06Rearsights
    • F41G1/14Rearsights with lens
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G1/00Sighting devices
    • F41G1/46Sighting devices for particular applications

Definitions

  • the present application belongs to the technical field of sights, and in particular relates to a red dot sight.
  • red dot sights usually include a light source, a reflector, a collimating objective lens and a beam splitting prism.
  • the light source is used to emit light towards the eye.
  • the light emitted from the light source will first be redirected to the collimating objective lens through the reflector, and then pass through the collimator.
  • the objective lens converts the parallel light into parallel light, which is finally redirected by the dichroic prism and injected into the human eye. Based on this, since the light emitted by the light source is directed toward the eye, the bright spot of the light source will basically not be observed from the object side, thereby reducing the shooter's risk of exposure.
  • the human eye when aiming at a target at a close distance, because the target's light is not parallel light, but divergent light with a certain divergence angle, in order to see the target clearly, the human eye will automatically adjust the lens to make the target image on the retina, and the light source emits After being converted by the collimating objective lens, the light becomes parallel light.
  • the shape of the lens of the human eye has changed, so the light emitted by the light source will be imaged in front of the retina, causing the image of the light emitted by the light source and the image of the target not to be superimposed on the retina. , which will produce parallax.
  • the relative position of the image of the light emitted by the light source and the target image will change, which will affect the accuracy of aiming.
  • the purpose of the embodiments of the present application is to provide a red dot sight to solve the problem that existing red dot sights will have parallax when aiming at a target at a close distance, thereby affecting the aiming accuracy.
  • a red dot sight including:
  • a mirror holder the interior of the mirror holder is provided with a first cavity extending along its axial direction, and one end of the first cavity close to the object direction is connected to the outside;
  • the mirror frame is located on the peripheral side of the mirror holder close to the eye direction.
  • the interior of the mirror frame is provided with a second cavity penetrating along its axial direction, and a through hole connecting the second cavity and the first cavity;
  • a light source component is provided at one end of the first cavity close to the object direction and is used to emit light toward the eye direction.
  • the axial position of the light source component relative to the mirror holder is adjustable;
  • a collimating lens group is located in the first cavity and is located on the side of the light source component close to the eye;
  • a reflector located in the first cavity and corresponding to the opening
  • a dichroic prism is provided in the second cavity.
  • the dichroic prism includes a first prism and a second prism that are glued to each other.
  • a reflective film is provided on the glued surface of the first prism and the second prism.
  • the light source component is threadedly connected to the mirror base.
  • the red dot sight further includes an inner tube located at one end of the first cavity close to the object direction, and a first adjustment mechanism located at one end of the inner tube close to the eye direction.
  • a first ball head is convexly provided on the circumferential side of the inner tube, a first ball socket is recessed in the cavity wall of the first cavity, the first ball head is hinged to the first ball socket, and the first adjustment mechanism It is used to drive the inner tube to rotate; the inside of the inner tube is provided with a third cavity penetrating along its axial direction, the light source component is arranged in the third cavity, and the light source component is positioned relative to the inner tube.
  • the axial position is adjustable.
  • the light source component is threadedly connected to the inner tube.
  • the red dot sight further includes a first spring, the first spring is provided in the third cavity, and the opposite ends of the first spring along the axial direction are respectively connected to the light source component and the The inner tube.
  • the third cavity includes a first mounting hole and a first through hole arranged sequentially from the object side to the eye side;
  • the red dot sight also includes a first adjustment rod and a first pressure ring.
  • the first adjustment rod is rotatably installed in the first mounting hole.
  • the first pressure ring is connected to the inner tube near the object.
  • One end of the first adjusting rod restricts the axial movement of the first adjusting rod along the first mounting hole.
  • An end of the first adjusting rod close to the eye is provided with a first connecting hole extending in the axial direction.
  • One end of the light source member is connected to In the first connecting hole, the other end of the light source component is inserted into the first through hole, and the first adjusting rod can drive the light source component to move axially relative to the first through hole when rotating.
  • the end of the light source component is threadedly connected to the first connection hole, the first through hole is a non-circular hole, and the rotation of the light source component relative to the first through hole is restricted;
  • the end of the light source component is plugged into the first connection hole, the first connection hole is a non-circular hole, and the rotation of the light source component relative to the first connection hole is restricted, and the light source component Threadedly connected to the first through hole.
  • the red dot sight further includes a second spring, the second spring is provided in the first connection hole; the opposite ends of the second spring along the axial direction are respectively connected to the light source member. The opposite ends of the first adjusting rod or the second spring along the axial direction are respectively connected to the light source member and the inner tube.
  • one end of the first cavity close to the object side is provided with a second mounting hole and a second through hole arranged sequentially from the object side to the eye side;
  • the red dot sight also includes a second adjustment rod and a second pressure ring.
  • the second adjustment rod is rotatably installed in the second mounting hole.
  • the second pressure ring is connected to the lens base near the object side.
  • One end of the second adjustment rod restricts the axial movement of the second adjustment rod along the second installation hole, and the second adjustment rod is close to the target.
  • the end is provided with a second connection hole extending in the axial direction, one end of the light source member is connected to the second connection hole, the other end of the light source member is inserted into the second through hole, and the second adjustment rod When rotating, the light source component can be driven to move axially relative to the second through hole.
  • the end of the light source component is threadedly connected to the second connection hole, the second through hole is a non-circular hole, and the rotation of the light source component relative to the second through hole is restricted;
  • the end of the light source component is plugged into the second connection hole, the second connection hole is a non-circular hole, and the rotation of the light source component relative to the second connection hole is restricted, and the light source component Threadedly connected to the second through hole.
  • the red dot sight further includes a third spring, the third spring is provided in the second connection hole; the opposite ends of the third spring along the axial direction are respectively connected to the light source member.
  • the second adjusting rod or the opposite ends of the third spring in the axial direction are respectively connected to the light source part and the mirror base.
  • the collimating lens group includes a first lens, a second lens and a third lens which are arranged in sequence from the object side to the eye side and all have refractive power;
  • the first lens and the second lens are provided between the light source component and the reflector, and the third lens is provided in the through opening;
  • the first lens, the second lens and the third lens are provided between the light source part and the reflector.
  • the red dot sight further includes a battery and/or a solar panel electrically connected to the light source component and used to power the light source component.
  • the purpose of the embodiments of the present application is also to provide a red dot sight, including:
  • a mirror holder the interior of the mirror holder is provided with a first cavity extending along its axial direction;
  • the mirror frame is located on the peripheral side of the mirror holder close to the eye direction.
  • the interior of the mirror frame is provided with a second cavity penetrating along its axial direction, and a through hole connecting the second cavity and the first cavity;
  • a light source component is located at one end of the first cavity close to the object direction and is used to emit light toward the eye direction;
  • a reflector located in the first cavity and corresponding to the opening
  • a dichroic prism is provided in the second cavity, the dichroic prism includes a first prism and a second prism that are glued to each other, and a reflective film is provided on the glued surface of the first prism and the second prism;
  • a collimating lens group is provided in the first cavity.
  • the collimating lens group includes a first lens, a second lens and a third lens that are arranged in sequence and all have refractive power.
  • the first lens and the third lens Two lenses are provided between the light source member and the reflector, the third lens is provided between the second lens and the dichroic prism, and the first lens and the third lens are relative to the The lens holder is fixed, and the axial position of the second lens relative to the lens holder is adjustable.
  • the collimating lens assembly further includes a first lens holder for mounting the first lens, and a second lens holder for mounting the second lens.
  • the first lens holder is fixedly mounted on the The first cavity
  • the second lens holder is slidably installed in the first cavity.
  • a third mounting hole is provided on the peripheral surface of the mirror holder, and a third through hole is provided at the bottom of the third mounting hole that is connected to the first cavity, and the third through hole is along the A waist-shaped hole formed by the axial extension of the mirror holder;
  • the red dot sight also includes a focusing mechanism.
  • the focusing mechanism includes a focusing handwheel and a lever.
  • the focusing handwheel is rotatably installed in the third mounting hole and is limited to move along the third mounting hole.
  • the mounting hole moves axially.
  • the end surface of the focusing handwheel close to the bottom of the third mounting hole is provided with a curved groove.
  • the curved groove extends along the circumferential direction of the focusing handwheel, and the curved groove is formed along the circumferential direction of the focusing handwheel.
  • the center line of the groove gradually approaches the central axis of the focusing handwheel, one end of the lever is slidingly connected to the curved groove, and the other end of the lever One end passes through the third through hole and is connected to the second lens holder.
  • a third connection hole is provided at the bottom of the third mounting hole
  • the focusing mechanism also includes a locking screw.
  • the nail portion of the locking screw is passed through the focusing handwheel and is threadedly connected to the third connection hole.
  • the head of the locking screw presses the focusing handwheel.
  • the focusing handwheel also limits the axial movement of the focusing handwheel along the third mounting hole.
  • the red dot sight further includes a fourth spring elastically resisting between the first lens seat and the second lens seat.
  • a second ball head is convexly provided on the peripheral side of the light source component, a second ball socket is recessed in the cavity wall of the first cavity, and the second ball head is hingedly connected to the second ball.
  • the red dot sight further includes a second adjustment mechanism located at an end of the light source component close to the eye direction, and the second adjustment mechanism is used to drive the light source component to rotate.
  • the red dot sight provided by the embodiments of the present application disposes the light source component, the collimating lens group, and the reflector inside the lens holder, and disposes the dichroic prism inside the lens frame, so as to emit light toward the collimating lens group through the light source component.
  • the collimating lens group refracts the light emitted from the light source, and multiplely reflects the light from the light source to the eye through the reflector and the reflective film provided on the first prism and the second prism. Based on this, it can effectively ensure The concealment of the light source and the light it emits can basically prevent the target from observing bright spots from the object side, thereby effectively reducing the shooter's risk of exposure.
  • the red dot sight provided by the embodiments of the present application can also adjust the distance between the light source component and the collimating lens group by adjusting the axial position of the light source component relative to the lens base according to different aiming distances, or by adjusting the distance between the light source component and the collimating lens group. Adjust the axial position of the second lens of the collimating lens group relative to the lens base to adjust the third lens of the collimating lens group. The distance between the two lenses and the light source component is used to adjust the refraction effect of the collimating lens group on the light emitted from the light source component, thereby making the incident angles of the light from the light source component and the light from the target approximately equal when they enter the eye.
  • Figure 1 is a schematic structural diagram of a red dot sight provided by Embodiment 1 of the present application;
  • Figure 2 is a schematic diagram of the principle of the red dot sight provided in Figure 1 when aiming at a long-distance target;
  • Figure 3 is the second structural diagram of the red dot sight provided in Figure 1;
  • Figure 4 is a schematic diagram of the principle of the red dot sight provided in Figure 3 when aiming at a close target;
  • Figure 5 is a schematic structural diagram of a red dot sight provided by Embodiment 2 of the present application.
  • Figure 6 is a schematic structural diagram of a red dot sight provided in Embodiment 3 of the present application.
  • Figure 7 is a top view of the red dot sight provided in Figure 6;
  • Figure 8 is a schematic structural diagram of a red dot sight provided in Embodiment 6 of the present application.
  • Figure 9 is a schematic structural diagram of a red dot sight provided in Embodiment 9 of the present application.
  • Figure 10 is a schematic diagram of the principle of the red dot sight provided in Figure 9 when aiming at a long-distance target;
  • Figure 11 is a schematic structural diagram of a red dot sight provided in Embodiment 10 of the present application.
  • Figure 12 is a top view of the red dot sight provided in Figure 11;
  • Figure 13 is a partial structural diagram of the red dot sight provided in Figure 11;
  • Figure 14 is a schematic diagram of the cooperation between the focusing handwheel and the lever provided in Embodiment 10 of the present application.
  • each figure in the figure is marked with: 10-Mirror holder, 11-First cavity, 20-Mirror frame, 21-Second cavity, 22-Port, 30-Light source, 31- Light-emitting element, 32-lamp holder, 40-collimating lens group, 41-first lens, 42-second lens, 43-third lens, 50-reflector, 60-beam splitting prism, 61-first prism, 62 -Second prism, 70-reflective film, 80-solar panel; 111-first ball socket, 90-inner tube, 91-first ball head, 92-third cavity, 100-first adjustment mechanism, 101- The first ballistic adjustment pin, 102-the first windage adjustment pin, 110-the first spring; 921-the first installation hole, 922-the first through hole, 120-the first adjustment rod, 121-the first connection hole, 130- The first pressure ring, 140-the second spring; 112-the second installation hole, 113-the second hole, 150-the
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • plurality means two or more than two, unless otherwise explicitly and specifically limited.
  • connection In this application, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements.
  • connection connection
  • fixing and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements.
  • Scopes are often installed on firearms to improve aiming accuracy and reduce shooting difficulty.
  • the “eye side” means the end of the scope that is close to the shooter during actual operation
  • the “object side” means the end of the scope that is close to the target during actual operation, that is, the end away from the shooter.
  • Existing red dot sights usually include a light source, a reflector, a collimating objective lens and a beam splitting prism.
  • the light source is used to emit light towards the eye.
  • the light emitted from the light source will first be redirected to the collimating objective lens through the reflector, and then pass through the collimator.
  • the objective lens converts the parallel light into parallel light, which is finally redirected by the dichroic prism and injected into the human eye. based on Therefore, since the light emitted by the light source is directed toward the eye, the bright spot of the light source will be basically invisible from the object side, thereby reducing the shooter's risk of exposure.
  • the human eye when aiming at a target at a close distance, because the target's light is not parallel light, but divergent light with a certain divergence angle, in order to see the target clearly, the human eye will automatically adjust the lens to make the target image on the retina, and the light source emits After being converted by the collimating objective lens, the light becomes parallel light.
  • the shape of the lens of the human eye has changed, so the light emitted by the light source will be imaged in front of the retina, causing the image of the light emitted by the light source and the image of the target not to be superimposed on the retina. , which will produce parallax.
  • the relative position of the image of the light emitted by the light source and the target image will change, which will affect the accuracy of aiming.
  • the embodiment of the present application provides a new type of red dot sight, which can not only hide the bright spot of the light source to reduce the risk of exposure of the shooter, but also ensure that the parallax is within the allowable range when the aiming distance is different, thereby ensuring and improving aiming accuracy. Spend.
  • an embodiment of the present application provides a red dot sight, which includes a lens base 10 , a lens frame 20 , a light source component 30 , a collimating lens group 40 , a reflector 50 and a dichroic prism 60 .
  • the interior of the mirror holder 10 is provided with a first cavity 11 extending along its axial direction. One end of the first cavity 11 close to the object side is connected to the outside.
  • the mirror frame 20 is provided on the peripheral side of the mirror holder 10 close to the eye side.
  • the interior of the mirror frame 20 It is provided with a second cavity 21 penetrating along its axial direction, and a passage 22 connecting the second cavity 21 and the first cavity 11; the light source part 30 is provided at an end of the first cavity 11 close to the object direction, and is used to face the eye.
  • the axial position of the light source component 30 relative to the mirror base 10 is adjustable; the collimating lens group 40 is located in the first cavity 11 and on the side of the light source component 30 close to the eye; the reflector 50 is located in the first cavity 11
  • the cavity 11 is provided correspondingly to the opening 22;
  • the beam splitting prism 60 is provided at In the second cavity 21, the dichroic prism 60 includes a first prism 61 and a second prism 62 that are glued to each other.
  • a reflective film 70 is provided on the glued surface of the first prism 61 and the second prism 62.
  • the light source component 30, the collimating lens group 40 and the reflector 50 are all accommodated in the first cavity 11 of the mirror holder 10.
  • the mirror holder 10 can face the light source component 30, collimator 30 and the collimator lens set in the first cavity 11.
  • the straight mirror group 40 and the reflective mirror 50 provide reliable protection.
  • the light source component 30 is installed at an end of the first cavity 11 close to the object direction, and is used to emit light toward the collimating lens group 40 . Based on this, since the light emitted from the light source part 30 is directed toward the eye, it can basically prevent the target from observing the bright spot from the object side, thereby reducing the shooter's risk of exposure.
  • the light source component 30 can be forced to move reciprocally along the axial direction of the lens holder 10 to adjust the distance from the light source component 30 to the collimating lens group 40 .
  • the light source component 30 includes a light-emitting element 31 for emitting light toward the collimating lens group 40, and a lamp holder 32 for supporting and fixing the light-emitting element 31.
  • the optical axis of the light-emitting element 31 is consistent with the optical axis of the collimating lens group 40. Alignment, the light-emitting element 31 may be, but is not limited to, an LED (Light-Emitting Diode, light-emitting diode) lamp.
  • LED Light-Emitting Diode, light-emitting diode
  • the collimating lens group 40 is installed in the space from the light source component 30 to the passage 22 of the first cavity 11 .
  • the collimating lens group 40 is used to refract the light emitted from the light source component 30 .
  • the collimating lens group 40 can refract the light emitted from the light source component 30 into approximately parallel light; based on the adjustment distance, the light source can then be driven
  • the refraction effect of the collimating lens group 40 on the light emitted from the light source component 30 can be changed.
  • the collimating lens group 40 refracts the light emitted from the light source part 30 into divergent light.
  • the reflector 50 is disposed corresponding to the through port 22 , and the reflector 50 is inclined to the central axis of the first cavity 11 and to the central axis of the through port 22 .
  • the reflector 50 has no refractive power and is mainly used to reflect and redirect the light propagating along the first cavity 11 to the dichroic prism 60 through the passage 22 .
  • the dichroic prism 60 is limitedly accommodated in the second cavity 21 of the mirror frame 20 , and the mirror frame 20 can reliably protect the dichroic prism 60 provided in the second cavity 21 .
  • the dichroic prism 60 includes a first prism 61 and a second prism 62 that are glued to each other.
  • the bonding surface of the first prism 61 and the second prism 62 is inclined to the central axis of the second cavity 21 and inclined to the central axis of the passage 22, and a reflective film 70 is provided on the bonding surface of the first prism 61 and the second prism 62.
  • the reflective film 70 is used to reflect light of a specific wavelength and allow light of other wavelengths to pass through. Specifically, the reflective film 70 is used to further reflect the light reflected by the reflector 50 to the object direction, and allows the light reflected by the mirror 50 to move closer to the object direction from the second cavity 21 .
  • the target light coming from one end passes through it and shoots towards the eye.
  • the reflective film 70 may be disposed on the gluing surface of the first prism 61 or the gluing surface of the second prism 62 in the form of, but is not limited to, coating.
  • the working principle of the red dot sight is basically as follows: it is pre-adjusted according to the long-distance target when leaving the factory. As shown in Figures 1 and 2, when the red dot sight aims at a long-distance target, the light of the long-distance target will pass through the second cavity 21 and the reflective film 70 as approximately parallel light and enter the eye. At this time, the light source can be maintained The axial position of the component 30 relative to the lens base 10 remains unchanged to ensure that the adjustment distance between the light source component 30 and the collimating lens group 40 is maintained.
  • the light emitted by the light source component 30 can be refracted by the collimating lens group 40 into approximately parallel light, and is reflected to the dichroic prism 60 via the reflector 50, and then reflected to the eye through the reflective film 70 on the bonding surface of the first prism 61 and the second prism 62 of the dichroic prism 60.
  • the human eye In order to be able to see the target clearly, the lens is automatically adjusted so that the target is imaged on the retina. Since the light from the light source component 30 and the light from the distant target are approximately parallel when they enter the eye, the light from the light source component 30 can be aligned with the distant target. The light superimposes the image on the retina, which can effectively eliminate parallax and effectively ensure and improve the accuracy of aiming.
  • the light source component 30 can be driven to move away from or closer to the collimating lens group 40 relative to the lens base 10, so as to adjust the distance between the light source component 30 and the collimating lens group 40, and adjust the relationship between the collimating lens group 40 and the light source component 30.
  • the refraction effect of the emitted light is until "the incident angle when the light emitted from the light source component 30 can be refracted into divergent light by the collimating lens group 40 and multiple-reflected to the eye through the reflective film 70 of the reflector 50 and the dichroic prism 60 "Approximately the same angle as the angle at which light from a close target enters the eye.” Therefore, even if the human eye automatically adjusts the lens in order to see the target clearly so that the target is imaged on the retina, the light from the light source unit 30 is different from the angle of the close target. When light enters the eye, it is divergent light, and the angles entering the human eye are approximately the same. The light from the light source 30 can be superimposed on the retina with the light from the close target, thereby effectively eliminating parallax and effectively Ensure and improve aiming accuracy.
  • the red dot sight provided by the embodiment of the present application disposes the light source component 30, the collimating lens group 40, and the reflector 50 inside the lens base 10, and disposes the dichroic prism 60 inside the lens frame 20 to pass the light source component 30
  • the light emitted toward the collimating lens group 40 is refracted by the collimating lens group 40 and is emitted from the light source through the reflecting mirror 50 and the reflective film 70 provided on the first prism 61 and the second prism 62 .
  • the light from the component 30 is multi-reflected to the eye. Based on this, the concealment of the light source component 30 and the emitted light can be effectively guaranteed, and the target can basically avoid the bright spot from being observed from the object side, thereby effectively reducing the shooter's risk of exposure.
  • the red dot sight provided by the embodiment of the present application can also adjust the axial position of the light source component 30 relative to the lens base 10 to adjust the light source component 30 to the collimating lens group 40 according to different aiming distances. distance, adjust the refraction effect of the collimating lens group 40 on the light emitted from the light source component 30, so that the incident angles of the light from the light source component 30 and the light from the target are approximately equal and basically consistent when they enter the eye.
  • This allows the light from the light source 30 to be superimposed with the target light to form an image on the retina, thereby effectively eliminating parallax, effectively ensuring that the parallax is within the allowable range when aiming at different distances, and effectively ensuring and improving the accuracy of aiming. Therefore, this application
  • the red dot sight provided by the embodiment can be applied to a variety of aiming distance situations and has a wide adaptability range.
  • the existing red dot sight aims at a target at a close distance
  • the human eye will constantly adjust the lens in order to see one of the images clearly. , which will cause eyes to tire easily, resulting in poor aiming comfort of the red dot sight.
  • the red dot sight provided by the embodiment of the present application has different aiming distances, due to the adjustable axial position of the light source component 30 relative to the lens base 10, the light from the light source component 30 can be aligned with the light of the target.
  • the superimposed imaging on the retina can ensure that the human eye can automatically adjust the lens and see clearly the aiming point image and the target image of the red dot sight at the same time, thus effectively ensuring and improving the aiming comfort of the red dot sight and effectively reducing eye fatigue. Spend.
  • existing red dot sights will produce different and larger parallax at different aiming distances.
  • the existing red dot sight is equipped with a magnifying glass on the side close to the eye, the shooter only needs to slightly turn his head to look at the magnifying glass.
  • the aiming point of the red dot sight moves rapidly and is not aligned with the target and has a fixed relative position, which will make it difficult for the shooter to aim.
  • the red dot sight provided by the embodiment of the present application can eliminate parallax due to the adjustable axial position of the light source component 30 relative to the scope base 10 when the aiming distance is different, and can ensure that the parallax is within the allowable range when the aiming distance is different.
  • the red dot sight is equipped with a magnifying glass on the side close to the eye, even if the shooter turns his head to look at the magnifying glass, he can see the red dot sight with a certain magnification, alignment, and fixed relative position in the magnified field of view.
  • the aiming point and target can effectively ensure and improve the shooter's aiming accuracy and aiming comfort. Therefore, the red dot sight provided by the embodiment of the present application is particularly suitable for use with a magnification scope, and its advantages are more prominent.
  • the light source component 30 is threadedly connected to the mirror base 10 .
  • the inner wall of the first cavity 11 of the mirror holder 10 is provided with internal threads
  • the outside of the lamp holder 32 of the light source part 30 is provided with internal threads.
  • the assembly between the light source component 30 and the lens holder 10 can be easily and quickly achieved by threading the light source component 30 to the lens holder 10 . It can also be achieved by rotating the light source component 30 during use. Adjusting the axial position of the light source component 30 relative to the mirror holder 10 is simple and fast, and is conducive to stabilizing and fixing the axial position of the light source component 30 relative to the mirror holder 10 after adjustment.
  • the collimating lens group 40 includes a first lens 41, a second lens 42 and a third lens 43 that are arranged in sequence from the object side to the eye side and all have refractive power;
  • the first lens 41 and the second lens 42 are disposed between the light source component 30 and the reflector 50 , and the third lens 43 is disposed in the passage 22 .
  • the light source component 30 when the light source component 30 emits light toward the collimating lens group 40, the light will first pass through the first lens 41, so that the light will be re-refracted by the first lens 41, and then the light will pass through The second lens 42 refracts the light for a second time. Then, the light will reach the reflector 50 and be reflected by the reflector 50 to the through port 22 . Then, the light will pass through the third refractor provided in the through port 22 . The third lens 43 refracts the light for the third time. At this point, the collimating lens group 40 can complete the refraction of the light emitted from the light source component 30 . By adjusting the distance from the light source component 30 to the first lens 41, the refraction effect of the collimating lens group 40 on the light emitted from the light source component 30 can be changed, as shown in Figures 2 and 4.
  • the arrangement of this embodiment can relatively shorten the length of the red dot sight.
  • the collimating lens group 40 can use other structural solutions to refract the light emitted from the light source unit 30.
  • the collimating lens group 40 can include a collimating objective lens cemented lens. In this embodiment, No restrictions.
  • the red dot sight also includes a light source component 30 electrically connected to the A battery (not shown in the figure) and/or a solar panel 80 is connected and used to power the light source unit 30 .
  • the solar panel 80 is preferably disposed on the top surface of the mirror frame 20 or the mirror base 10. Such arrangement can ensure that the solar panel 80 can receive sunlight to a greater extent, thereby improving the electricity storage performance of the solar panel 80. and power supply performance.
  • the battery is optionally arranged inside the lens holder 10 .
  • the red dot sight when the red dot sight has both the solar panel 80 and the battery, the red dot sight can independently/switch through the control panel to select the solar panel 80 or the battery to power the light source.
  • the red dot sight also includes an inner tube 90 provided at one end of the first cavity 11 near the object direction, and a first adjustment mechanism 100 provided at one end of the inner tube 90 near the object direction.
  • the first ball head 91 is convexly provided on the circumferential side of the inner tube 90
  • the first ball socket 111 is concavely provided on the cavity wall of the first cavity 11
  • the first ball head 91 is hinged to the first ball socket 111
  • the first adjustment mechanism 100 It is used to drive the inner tube 90 to rotate
  • the inner tube 90 is provided with a third cavity 92 penetrating along its axial direction
  • the light source part 30 is arranged in the third cavity 92
  • the axial position of the light source part 30 relative to the inner tube 90 is adjustable.
  • the inner tube 90 is installed in the first cavity 11, and the first ball head 91 of the inner tube 90 is hinged to the first ball socket 111 and is restricted from leaving the first ball socket 111. Based on this, the inner tube 90 When the end of the ball head 90 is stressed, the inner tube 90 can rotate smoothly and reliably around the first ball head 91 to a certain extent.
  • the first adjustment mechanism 100 is installed through the lens base 10 and is provided at one end of the inner tube 90 close to the eye. It can be used to exert force on the end of the inner tube 90 close to the eye to drive the inner tube 90 around the first ball head 91
  • the optical axis of the light source component 30 installed in the third cavity 92 of the inner tube 90 can be adjusted conveniently and controllably to be aligned with the optical axis of the collimating lens group 40. which can effectively eliminate In addition to assembly errors, it can effectively ensure and improve the position accuracy of the aiming point of the red dot sight, and can effectively ensure and improve the aiming accuracy.
  • the first adjustment mechanism 100 includes a first ballistic adjustment nail 101 and a first windage adjustment nail 102.
  • the first ballistic adjustment nail 101 is provided on one side of the inner tube 90 in the vertical direction and can be used for A vertical force is applied to the end of the inner tube 90 close to the eye direction to realize vertical displacement adjustment of the inner tube 90 , the light source part 30 , especially the optical axis of the light source part 30 ; the first windage adjustment nail 102 is provided on One side of the inner tube 90 along the horizontal direction can be used to exert a horizontal force on the end of the inner tube 90 close to the eye, so as to adjust the horizontal displacement of the inner tube 90 , the light source part 30 , especially the optical axis of the light source part 30 . Based on this, the first adjustment mechanism 100 can quickly and conveniently adjust the optical axis of the light source component 30 to be aligned with the optical axis of the collimating lens group 40 .
  • the light source component 30 is installed in the third cavity 92 of the inner tube 90 , and the axial position of the light source component 30 relative to the inner tube 90 is adjustable. Based on this, by adjusting the axial position of the light source component 30 relative to the inner tube 90, the axial position of the light source component 30 relative to the lens holder 10 can be adjusted, the distance between the light source component 30 and the collimating lens group 40 can be adjusted, and the alignment can be adjusted.
  • the refraction effect of the straight lens group 40 on the light emitted from the light source component 30 can thereby promote the light from the light source component 30 to superimpose the image on the retina with the target light, which can effectively eliminate parallax and effectively ensure parallax when aiming at different distances. Within the allowable range, the accuracy of aiming can be effectively guaranteed and improved.
  • the light source component 30 is threadedly connected to the inner tube 90 .
  • the inner wall of the third cavity 92 of the inner tube 90 is provided with internal threads, and the outside of the lamp holder 32 of the light source component 30 is provided with external threads.
  • the lamp holder 32 of the light source component 30 is threadedly connected to the inner tube 90 .
  • the assembly between the light source part 30 and the inner tube 90 can be easily and quickly achieved by threading the light source part 30 to the inner tube 90 . It can also be achieved by rotating the light source part 30 during use. Adjusting the axial position of the light source part 30 relative to the inner tube 90 is easy and fast. It is quick and conducive to stabilizing and fixing the axial position of the light source component 30 relative to the inner tube 90 after adjustment.
  • the thread fit is a clearance fit
  • the red dot sight also includes a first spring 110.
  • the first spring 110 is provided in the third cavity 92.
  • the opposite ends of the first spring 110 along the axial direction are respectively connected to the light source. piece 30 and inner tube 90.
  • the opposite ends of the first spring 110 along the axial direction can elastically resist the light source component 30 and the inner tube 90 respectively. Based on this, the elastic resisting force of the first spring 110 on the light source component 30 can be used.
  • the threads of the external thread of the light source part 30 and the threads of the internal thread of the inner tube 90 are urged to be tight, thereby effectively eliminating the gap between the external thread of the light source part 30 and the internal thread of the inner tube 90, which can effectively ensure and improve
  • the adjustment accuracy of the axial position of the light source part 30 can effectively ensure and improve the accuracy of the red dot sight.
  • the third cavity 92 includes a first mounting hole 921 and a first through hole 922 arranged sequentially from the object side to the eye side.
  • the inner tube 90 is opened at the end surface close to the object side.
  • There is a first mounting hole 921 and a first through hole 922 is opened at the bottom of the first mounting hole 921 .
  • the first mounting hole 921 and the first through hole 922 form a third cavity 92 .
  • the red dot sight also includes a first adjustment rod 120 and a first pressure ring 130.
  • the first adjustment rod 120 is rotatably installed in the first mounting hole 921.
  • the first pressure ring 130 is connected to an end of the inner tube 90 close to the object direction and limits the second
  • An adjusting rod 120 moves axially along the first mounting hole 921.
  • An end of the first adjusting rod 120 close to the eye is provided with a first connecting hole 121 extending in the axial direction.
  • One end of the light source component 30 is connected to the first connecting hole 121.
  • the other end of the light source component 30 passes through the first through hole 922 .
  • first adjustment rod 120 is installed in the first installation hole 921 and can rotate around the central axis of the first adjustment rod 120 in the first installation hole 921 under the action of external force.
  • the first pressing ring 130 can be connected to the end of the inner tube 90 close to the object side by, but is not limited to, threaded connection and/or glue bonding.
  • the first pressing ring 130 presses and resists the first adjusting rod 120, and
  • the first adjusting rod 120 is limited in the first mounting hole 921.
  • the first pressing ring 130 can especially limit the axial movement of the first adjusting rod 120 relative to the first mounting hole 921, and especially can limit the first adjusting rod 120 from coming out of the first mounting hole 921.
  • One mounting hole 921. An end of the first adjusting rod 120 close to the object direction is exposed or protruded from the inner ring of the first pressing ring 130 so that external force can drive the first adjusting rod 120 to rotate.
  • One end of the light source component 30 is connected to the first connection hole 121 of the first adjusting rod 120 , and the other end of the light source component 30 is inserted into the first through hole 922 .
  • the first adjusting lever 120 rotates under the action of an external force, the light source component 30 can Move axially relative to the first through hole 922 to adjust the axial position of the light source component 30 relative to the inner tube 90 and the lens base 10, adjust the distance between the light source component 30 and the collimating lens group 40, and adjust the alignment of the collimating lens group 40.
  • the refraction effect of the light emitted from the light source component 30 can promote the superposition of the light from the light source component 30 and the target light to form an image on the retina, which can effectively eliminate parallax and effectively ensure that When the aiming distance is different, the parallax is within the allowable range, which can effectively ensure and improve the accuracy of aiming.
  • the end of the light source component 30 is threadedly connected to the first connecting hole 121 .
  • the first through hole 922 is a non-circular hole and limits the rotation of the light source component 30 relative to the first through hole 922 .
  • the first through hole 922 is a non-circular hole, specifically a polygonal hole or a special-shaped hole, or the like.
  • the cross-sectional shape of the portion of the light source element 30 that penetrates the first through hole 922 is the same as the shape of the first through hole 922 .
  • the light source part 30 can be driven by the thread of the first connecting hole 121 of the first adjusting rod 120.
  • the lower part moves axially relative to the first through hole 922, thereby adjusting the axial position of the light source part 30 relative to the inner tube 90 and the lens base 10, adjusting the distance between the light source part 30 and the collimating lens group 40, and adjusting the collimating lens group.
  • the refraction effect of the light emitted from the light source component 30 can further promote the superimposition of the light from the light source component 30 with the target light for imaging on the retina, which can effectively eliminate parallax and effectively ensure that the parallax is within the allowable range when the aiming distance is different. within, which can effectively ensure and improve the accuracy of aiming.
  • this embodiment is particularly suitable for the light source part 30 using multi-point LEDs and/or reticle patterns.
  • the multi-point and/or reticle pattern of the light source part 30 is pre-adjusted before the dot sight leaves the factory.
  • the axial position of the light source part 30 is adjusted, the multi-point and/or reticle pattern of the light source part 30 can remain adjusted. Calibration state without rotating, which is more conducive to ensuring and improving aiming accuracy.
  • the dividing pattern can be but It is not limited to dot-type reticle patterns, reticle patterns with horizontal and vertical lines, etc.
  • the red dot sight also includes a second spring 140.
  • the second spring 140 is provided in the first connection hole 121; the opposite ends of the second spring 140 along the axial direction are respectively connected.
  • the light source part 30 and the first adjusting lever 120 By adopting the above solution, the opposite ends of the second spring 140 along the axial direction can elastically resist the light source member 30 and the first adjusting rod 120 respectively. Based on this, the light source member 30 can be elastically resisted by the second spring 140 .
  • the adjustment accuracy of the axial position can effectively ensure and improve the accuracy of the red dot sight.
  • the loosening of the external threads and the corresponding internal threads of the light source component 30 can also be effectively alleviated or even avoided. If there is a loose fit between them, the adjustment accuracy of the axial position of the light source part 30 can be effectively ensured and improved, and the accuracy of use of the red dot sight can be effectively ensured and improved.
  • the end of the light source component 30 is plugged into the first connection hole 121.
  • the first connection hole 121 is a non-circular hole and restricts the rotation of the light source component 30 relative to the first connection hole 121.
  • the light source component 30 is threadedly connected to the first through hole 922 .
  • the light source component 30 is plugged into the first connection hole 121
  • the cross-sectional shape of the portion is the same as the shape of the first connection hole 121 .
  • the first connection hole 121 is a non-circular hole, specifically a polygonal hole or a special-shaped hole, or the like.
  • the light source part 30 when the first adjusting rod 120 rotates under the action of external force, since the light source part 30 is restricted from relative deflection by the first connecting hole 121 of the first adjusting rod 120 , the light source part 30 will be synchronized with the first adjusting rod 120 Rotation, based on this, the light source component 30 can be driven by the thread of the first through hole 922 to move axially relative to the first through hole 922, thereby adjusting the axial position of the light source component 30 relative to the inner tube 90 and the mirror holder 10 , adjust the distance between the light source component 30 and the collimating lens group 40, and adjust the refraction effect of the collimating lens group 40 on the light emitted from the light source component 30, thereby enabling the light from the light source component 30 to overlap with the target light on the retina. Imaging can effectively eliminate parallax, effectively ensure that the parallax is within the allowable range when aiming at different distances, and effectively ensure and improve the accuracy of aiming.
  • the red dot sight also includes a second spring 140.
  • the second spring 140 is provided in the first connection hole 121; the opposite ends of the second spring 140 along the axial direction are respectively connected to the light source member 30. and inner tube 90.
  • the opposite ends of the second spring 140 along the axial direction can elastically resist the light source component 30 and the inner tube 90 respectively.
  • the elastic resisting force of the second spring 140 on the light source component 30 can be used.
  • the threads of the external threads of the light source part 30 are urged to be in contact with the threads of the corresponding internal threads, thereby effectively eliminating the gap between the external threads of the light source part 30 and the corresponding internal threads, and effectively ensuring and improving the axial direction of the light source part 30
  • the position adjustment accuracy can effectively ensure and improve the accuracy of the red dot sight.
  • the failure of the light source part 30 can also be effectively alleviated or even avoided. If there is a loose fit between the external thread and the corresponding internal thread, the adjustment accuracy of the axial position of the light source part 30 can be effectively ensured and improved, and the accuracy of the red dot sight can be effectively ensured and improved.
  • the end of the first cavity 11 close to the object direction is provided with a second mounting hole 112 and a second through hole 113 arranged sequentially from the object side to the eye side.
  • the mirror holder 10 is close to the object side.
  • a second mounting hole 112 is formed on the end surface of the second mounting hole 112
  • a second through hole 113 is formed at the bottom of the second mounting hole 112 .
  • the second mounting hole 112 and the second through hole 113 constitute an end of the first cavity 11 close to the object direction.
  • the red dot sight also includes a second adjustment rod 150 and a second pressure ring 160.
  • the second adjustment rod 150 is rotatably installed in the second mounting hole 112.
  • the second pressure ring 160 is connected to an end of the lens base 10 close to the object direction and limits the second pressure ring 160.
  • the two adjusting rods 150 move axially along the second mounting hole 112.
  • An end of the second adjusting rod 150 close to the eye is provided with a second connecting hole 151 extending in the axial direction.
  • One end of the light source component 30 is connected to the second connecting hole 151.
  • the other end of the light source component 30 passes through the second through hole 113 , and the second adjustment rod 150 can drive the light source component 30 to move axially relative to the second through hole 113 when rotating.
  • the second adjustment rod 150 is installed in the second installation hole 112 and can rotate around the central axis of the second adjustment rod 150 in the second installation hole 112 under the action of external force.
  • the second pressing ring 160 can be connected to the end of the lens holder 10 close to the object side by, but is not limited to, threaded connection and/or glue bonding.
  • the second pressing ring 160 presses and resists the second adjusting rod 150, and
  • the second adjustment rod 150 is limited in the second installation hole 112.
  • the second pressing ring 160 can particularly limit the axial movement of the second adjustment rod 150 relative to the second installation hole 112, and especially can limit the second adjustment rod 150 from coming out of the second installation hole 112.
  • Two mounting holes 112. An end of the second adjusting rod 150 close to the object direction is exposed or protruded from the inner ring of the second pressing ring 160 so that external force can drive the second adjusting rod 150 to rotate.
  • One end of the light source component 30 is connected to the second connection hole 151 of the second adjustment rod 150 , and the other end of the light source component 30 is inserted into the second through hole 113 .
  • the light source component 30 can Move axially relative to the second through hole 113 to adjust the axial position of the light source component 30 relative to the lens base 10, adjust the distance between the light source component 30 and the collimating lens group 40, and adjust the output of the collimating lens group 40 to the light source component 30
  • the refraction effect of the light can then cause the light from the light source 30 to be superimposed with the target light to form an image on the retina, which can effectively eliminate parallax and effectively ensure that the parallax is within the allowable range when the aiming distance is different, and can effectively ensure that the parallax is within the allowable range.
  • Improve aiming accuracy can be used to be used to be a target light to form an image on the retina, which can effectively eliminate parallax and effectively ensure that the parallax is within the allowable range
  • this embodiment rotates the second adjustment rod 150 to drive the light source part 30 to move axially, which not only realizes the adjustment of the axial position of the light source part 30, but also ensures the shooter's position during the adjustment period.
  • the area of the adjustment operation that is, the end of the second adjustment rod 150 close to the object direction
  • the second through hole 113 is a non-circular hole and limits the rotation of the light source component 30 relative to the second through hole 113 .
  • the second through hole 113 is a non-circular hole, specifically a polygonal hole or a special-shaped hole, or the like.
  • the cross-sectional shape of the portion of the light source element 30 that penetrates the second through hole 113 is the same as the shape of the second through hole 113 .
  • the light source part 30 can be driven by the thread of the second connecting hole 151 of the second adjusting rod 150.
  • the lower part moves axially relative to the second through hole 113, thereby adjusting the axial position of the light source component 30 relative to the lens base 10, adjusting the distance between the light source component 30 and the collimating lens group 40, and adjusting the alignment of the collimating lens group 40 with the light source component.
  • the refraction effect of the light emitted from the light source unit 30 can further promote the superimposition of the light from the light source unit 30 and the target light on the retina for imaging, which can effectively eliminate parallax and effectively ensure that the parallax is within the allowable range when the aiming distance is different, which can effectively Ensure and improve aiming accuracy.
  • this embodiment is particularly suitable for the light source part 30 using multi-point LEDs and/or reticle patterns.
  • the multi-point and/or reticle pattern of the light source part 30 is pre-adjusted before the dot sight leaves the factory.
  • the axial position of the light source part 30 is adjusted, the multi-point and/or reticle pattern of the light source part 30 can remain adjusted. Calibration state without rotating, which is more conducive to ensuring and improving aiming accuracy.
  • the reticle pattern may be, but is not limited to, a dotted reticle pattern, a reticle pattern with horizontal lines and vertical lines, etc.
  • the red dot sight also includes a third spring 170.
  • the third spring 170 is provided in the second connection hole 151; the opposite ends of the third spring 170 along the axial direction are connected respectively.
  • the light source part 30 and the second adjusting lever 150 By adopting the above solution, the opposite ends of the third spring 170 along the axial direction can elastically resist the light source member 30 and the second adjustment rod 150 respectively. Based on this, the light source member 30 can be elastically resisted by the third spring 170 .
  • the adjustment accuracy of the axial position can effectively ensure and improve the accuracy of the red dot sight.
  • the loosening of the external threads and the corresponding internal threads of the light source component 30 can also be effectively alleviated or even avoided. If there is a loose fit between them, the adjustment accuracy of the axial position of the light source part 30 can be effectively ensured and improved, and the accuracy of use of the red dot sight can be effectively ensured and improved.
  • the end of the light source component 30 is plugged into the second connection hole 151.
  • the second connection hole 151 is a non-circular hole and restricts the rotation of the light source component 30 relative to the second connection hole 151.
  • the light source component 30 is threadedly connected to the second through hole 113 .
  • the cross-sectional shape of the portion of the light source component 30 that is inserted into the second connection hole 151 is the same as the shape of the second connection hole 151 .
  • the second connection hole 151 is a non-circular hole, specifically a polygonal hole or a special-shaped hole, or the like.
  • the light source part 30 when the second adjusting rod 150 rotates under the action of external force, since the light source part 30 is restricted from relative deflection by the second connecting hole 151 of the second adjusting rod 150 , the light source part 30 will be synchronized with the second adjusting rod 150 Rotation, based on this, the light source component 30 can be driven by the thread of the second through hole 113 to move axially relative to the second through hole 113, thereby adjusting the axial position of the light source component 30 relative to the mirror base 10, and adjusting the light source component 30 to the collimating lens group 40, adjust the refraction effect of the collimating lens group 40 on the light emitted from the light source component 30, thereby promoting the light from the light source component 30 to be superimposed with the target light to form an image on the retina, which can effectively Eliminating parallax can effectively ensure that the parallax is within the allowable range when the aiming distance is different, which can effectively ensure and improve the accuracy of aiming.
  • the red dot sight also includes a third spring 170.
  • the third spring 170 is provided in the second connection hole 151; the opposite ends of the third spring 170 along the axial direction are respectively connected to the light source member 30. and mirror mount 10.
  • the opposite ends of the third spring 170 along the axial direction can respectively elastically resist the light source member 30 and the mirror base 10 .
  • the elasticity of the light source member 30 can be controlled by the third spring 170 .
  • the resisting force urges the threads of the external threads of the light source part 30 to be tightly pressed against the threads of the corresponding internal threads, thereby effectively eliminating the gap between the external threads of the light source part 30 and the corresponding internal threads, and effectively ensuring and improving the light source part.
  • the axial position adjustment accuracy of 30° can effectively ensure and improve the accuracy of the red dot sight.
  • the loosening of the external threads and the corresponding internal threads of the light source component 30 can also be effectively alleviated or even avoided. If there is a loose fit between them, the adjustment accuracy of the axial position of the light source part 30 can be effectively ensured and improved, and the accuracy of use of the red dot sight can be effectively ensured and improved.
  • the collimating lens group 40 includes a first lens 41, a second lens 42 and a third lens 43 that are arranged in sequence from the object side to the eye side and all have refractive power;
  • the first lens 41 , the second lens 42 and the third lens 43 are provided between the light source part 30 and the reflecting mirror 50 .
  • the light source component 30 when the light source component 30 emits light toward the collimating lens group 40, the light will first pass through the first lens 41, so that the light will be re-refracted by the first lens 41, and then the light will pass through The second lens 42 refracts the light for the second time, and then the light passes through the third lens 43 to refract the light for the third time.
  • the collimating lens group 40 can complete the refraction of the light emitted from the light source part 30 before the light reaches the reflector 50 .
  • the refraction effect of the collimating lens group 40 on the light emitted from the light source component 30 can be changed.
  • a red dot sight which includes a lens base 10 , a lens frame 20 , a light source component 30 , a reflector 50 , a beam splitter prism 60 and a collimating lens group 40 .
  • Mirror holder 10 The interior of the mirror frame 20 is provided with a first cavity 11 extending along its axial direction; the mirror frame 20 is located on the peripheral side of the mirror holder 10 close to the eye direction; the interior of the mirror frame 20 is provided with a second cavity 21 that extends along its axial direction, and communicates with the second cavity 11 .
  • the port 22 is provided correspondingly; the dichroic prism 60 is provided in the second cavity 21.
  • the dichroic prism 60 includes a first prism 61 and a second prism 62 that are glued to each other.
  • a reflective film 70 is provided on the glued surface of the first prism 61 and the second prism 62. ;
  • the collimating lens group 40 is provided in the first cavity 11.
  • the collimating lens group 40 includes a first lens 41, a second lens 42 and a third lens 43 which are arranged in sequence and all have refractive power.
  • the first lens 41 and the second lens 40 The lens 42 is provided between the light source component 30 and the reflector 50.
  • the third lens 43 is provided between the second lens 42 and the dichroic prism 60.
  • the first lens 41 and the third lens 43 are fixed relative to the mirror base 10.
  • the second lens 43 is provided between the second lens 42 and the dichroic prism 60.
  • the axial position of 42 relative to the mirror holder 10 is adjustable.
  • the light source component 30, the collimating lens group 40 and the reflector 50 are all accommodated in the first cavity 11 of the mirror holder 10.
  • the mirror holder 10 can face the light source component 30, collimator 30 and the collimator lens set in the first cavity 11.
  • the straight mirror group 40 and the reflective mirror 50 provide reliable protection.
  • the light source component 30 is installed at an end of the first cavity 11 close to the object direction, and is used to emit light toward the collimating lens group 40 . Based on this, since the light emitted from the light source part 30 is directed toward the eye, it can basically prevent the target from observing the bright spot from the object side, thereby reducing the shooter's risk of exposure. Among them, the axial position of the light source component 30 relative to the lens holder 10 is determined and fixed. Among them, the light source component 30 includes a light-emitting element 31 for emitting light toward the collimating lens group 40, and a lamp holder 32 for supporting and fixing the light-emitting element 31. The optical axis of the light-emitting element 31 is consistent with the optical axis of the collimating lens group 40. Aligned, the light-emitting element 31 may be, but is not limited to, an LED lamp.
  • the collimating lens group 40 is installed in the space from the light source component 30 to the passage 22 of the first cavity 11 .
  • the collimating lens group 40 is used to refract the light emitted from the light source component 30 .
  • the collimating lens group 40 includes sequentially arranged and The first lens 41 , the second lens 42 and the third lens 43 all have refractive power.
  • the collimating lens group 40 can use the first lens 41 , the second lens 42 and the third lens 43 to conduct the light emitted from the light source part 30 . Multiple refraction.
  • the first lens 41 and the second lens 42 are provided between the light source part 30 and the reflector 50
  • the third lens 43 is provided at the through hole 22 .
  • the light source component 30 emits light toward the collimating lens group 40
  • the light will first pass through the first lens 41, so that the light is re-refracted by the first lens 41, and then the light will pass through the second lens 42 to The light is re-refracted by the second lens 42 .
  • the light reaches the reflecting mirror 50 and is reflected by the reflecting mirror 50 to the passage 22 .
  • the light passes through the third lens 43 provided at the passage 22 .
  • the third lens 43 refracts the light a third time.
  • the collimating lens group 40 can complete the refraction of the light emitted from the light source component 30 . Please refer to FIG. 9 .
  • the first lens 41 , the second lens 42 and the third lens 43 are provided between the light source component 30 and the reflector 50 . Based on this, when the light source component 30 faces the collimating mirror When the group 40 emits light, the light will first pass through the first lens 41 for the first re-refraction of the light. Then, the light will pass through the second lens 42 for the second re-refraction of the light. After double refraction, the light will then pass through the third lens 43 to refract the light a third time. At this point, the collimating lens group 40 can complete emitting the light source component 30 before the light reaches the reflector 50 refraction of light. Among them, compared with the second embodiment, the first embodiment can relatively shorten the length of the red dot sight.
  • the first lens 41 and the third lens 43 are fixed relative to the lens holder 10, and the axial position of the second lens 42 relative to the lens holder 10 is adjustable.
  • the second lens 42 can cooperate with the first lens 41 and the third lens 43 to multiple-refract the light emitted from the light source component 30 into approximately parallel light; based on the adjustment distance, the second lens 42 can be driven closer to or away from the light source component 30 move in the direction to adjust the distance between the second lens 42 and the light source part 30, you can change
  • the refraction effect of the collimating lens group 40 on the light emitted from the light source component 30 is, for example, multiple refraction of the light emitted from the light source component 30 into divergent light.
  • the reflector 50 is disposed corresponding to the through port 22 , and the reflector 50 is inclined to the central axis of the first cavity 11 and to the central axis of the through port 22 .
  • the reflector 50 has no refractive power and is mainly used to reflect and redirect the light propagating along the first cavity 11 to the dichroic prism 60 through the passage 22 .
  • the dichroic prism 60 is limitedly accommodated in the second cavity 21 of the mirror frame 20 , and the mirror frame 20 can reliably protect the dichroic prism 60 provided in the second cavity 21 .
  • the dichroic prism 60 includes a first prism 61 and a second prism 62 that are glued to each other.
  • the bonding surface of the first prism 61 and the second prism 62 is inclined to the central axis of the second cavity 21 and inclined to the central axis of the passage 22, and a reflective film 70 is provided on the bonding surface of the first prism 61 and the second prism 62.
  • the reflective film 70 is used to reflect light of a specific wavelength and allow light of other wavelengths to pass through. Specifically, the reflective film 70 is used to further reflect the light reflected by the reflector 50 to the object direction, and allows the light reflected by the mirror 50 to move closer to the object direction from the second cavity 21 .
  • the target light coming from one end passes through it and shoots towards the eye.
  • the reflective film 70 may be disposed on the gluing surface of the first prism 61 or the gluing surface of the second prism 62 in the form of, but is not limited to, coating.
  • the working principle of the red dot sight is basically as follows: it is pre-adjusted according to the long-distance target when leaving the factory.
  • the red dot sight is aimed at a long-distance target, the light from the long-distance target will pass through the second cavity 21 and the reflective film 70 as approximately parallel light and enter the eye.
  • the alignment of the second lens 42 relative to the lens base 10 can be maintained.
  • the axial position remains unchanged to ensure that the adjustment distance between the light source component 30 and the second lens 42 is maintained.
  • the light emitted from the light source component 30 can pass through the first lens 41 and the second lens 42 of the collimating lens group 40 It is multiple-refracted by the third lens 43 to form approximately parallel light, and is reflected to the dichroic prism 60 via the reflecting mirror 50 , and then reflected to the eye via the reflective film 70 on the bonding surface of the first prism 61 and the second prism 62 of the dichroic prism 60 , thus, even if the human eye can see the target clearly
  • the automatic adjustment of the lens allows the target to be imaged on the retina. Since the light from the light source 30 and the light from the distant target are approximately parallel when they enter the eye, the light from the light source 30 can be aligned with the light from the distant target on the retina. Superimposed imaging can effectively eliminate parallax, which can effectively ensure and improve the accuracy of aiming.
  • the second lens 42 can be driven Move relative to the lens base 10 in the direction away from or close to the light source component 30 to adjust the distance between the second lens 42 and the light source component 30 and adjust the refraction effect of the collimating lens group 40 on the light emitted from the light source component 30 until "the light source component
  • the light emitted from 30 can be multiple-refracted into divergent light through the first lens 41, the second lens 42 and the third lens 43 of the collimating lens group 40, and multiple-reflected to the object through the reflective film 70 of the reflecting mirror 50 and the dichroic prism 60.
  • the incident angle is approximately equal to the angle at which light from a close target enters the eye. Therefore, even if the human eye automatically adjusts the lens in order to see the target clearly so that the target is imaged on the retina, due to the light from the light source unit 30
  • the light from the close target is divergent light when it enters the eye, and the angle of incidence into the human eye is approximately the same.
  • the light from the light source 30 can be superimposed on the retina with the light from the close target, thereby effectively Eliminating parallax can effectively ensure and improve aiming accuracy.
  • the red dot sight provided by the embodiment of the present application disposes the light source component 30, the collimating lens group 40, and the reflector 50 inside the lens base 10, and disposes the dichroic prism 60 inside the lens frame 20 to pass the light source component 30
  • the light emitted toward the collimating lens group 40 is refracted by the collimating lens group 40 and is emitted from the light source through the reflecting mirror 50 and the reflective film 70 provided on the first prism 61 and the second prism 62 .
  • the light from the component 30 is reflected multiple times to the eye.
  • the concealment of the light source component 30 and the light emitted from it can be effectively ensured, and the target can basically avoid observing the bright spot from the object, and thus can Effectively reduce the risk of shooter exposure.
  • the red dot sight provided by the embodiment of the present application can also adjust the collimation by adjusting the axial position of the second lens 42 of the collimating lens group 40 relative to the lens base 10 according to different aiming distances. The distance between the second lens 42 of the lens assembly 40 and the light source component 30 adjusts the refraction effect of the collimating lens assembly 40 on the light emitted from the light source component 30, thereby promoting the combination of the light from the light source component 30 and the light from the target into the eye.
  • the incident angles of the square are approximately equal and basically consistent, which can cause the light from the light source 30 to superimpose the image on the retina with the light of the target, thereby effectively eliminating parallax and effectively ensuring that the parallax is within the allowable range when the aiming distance is different. , which can effectively ensure and improve the accuracy of aiming. Therefore, the red dot sight provided by the embodiment of the present application can be applied to a variety of aiming distance situations and has a wide adaptability range.
  • the existing red dot sight aims at a target at a close distance
  • the aiming point image and the target image of the red dot sight are not superimposed on the retina
  • the human eye will constantly adjust the lens in order to see one of the images clearly. , which will cause eyes to tire easily, resulting in poor aiming comfort of the red dot sight.
  • the red dot sight when the red dot sight provided by the embodiment of the present application is aimed at different aiming distances, due to the axial position of the second lens 42 of the adjustable collimating lens group 40 relative to the lens base 10 , the red dot sight can cause the light source component 30 to The light can superimpose the image with the target's light on the retina, which can ensure that the human eye can automatically adjust the lens and clearly see the aiming point image and the target image of the red dot sight at the same time, thus effectively ensuring and improving the aiming comfort of the red dot sight. , can effectively reduce eye fatigue.
  • existing red dot sights will produce different and larger parallax at different aiming distances.
  • the existing red dot sight is equipped with a magnifying glass on the side close to the eye, the shooter only needs to slightly turn his head to look at the magnifying glass.
  • the aiming point of the red dot sight moves rapidly and is not aligned with the target and has a fixed relative position, which will make it difficult for the shooter to aim.
  • the red dot sight provided by the embodiment of the present application has different aiming distances
  • due to the second position of the adjustable collimating lens group 40 The axial position of the lens 42 relative to the lens base 10 can eliminate parallax and ensure that the parallax is within the allowable range when the aiming distance is different.
  • a magnification lens is installed on the side of the red dot sight close to the eye, even if the shooter moves his head to look A magnifying glass allows you to see the aiming point and target of a red dot sight with a certain magnification, alignment, and fixed relative position in the magnified field of view, thus effectively ensuring and improving the shooter's aiming accuracy and comfort. Therefore,
  • the red dot sight provided by the embodiment of the present application is particularly suitable for use with a magnifier, and its advantages are more prominent.
  • the collimating lens group 40 also includes a first lens holder 180 for mounting the first lens 41, and a second lens holder 190 for mounting the second lens 42.
  • the first lens holder 180 is fixedly installed in the first cavity 11
  • the second lens holder 190 is slidably installed in the first cavity 11 .
  • the first lens 41 can be installed through the first lens holder 180 to stabilize and fix the installation state of the first lens 41 relative to the first lens holder 180, and then the first lens holder 180 can be fixedly installed on the first lens holder 180.
  • the cavity 11 is used to determine and fix the installation position and state of the first lens 41 relative to the lens holder 10 .
  • the second lens 42 can be installed through the second lens holder 190 to stabilize and fix the installation state of the second lens 42 relative to the second lens holder 190 , and then the second lens holder 190 can be slidably installed on the first lens holder 190 .
  • the cavity 11 is used to stabilize the alignment of the optical axis of the second lens 42 and change the axial position of the second lens 42 relative to the lens holder 10 by sliding the second lens holder 190 .
  • a third mounting hole 12 is provided on the peripheral surface of the mirror holder 10, and a third mounting hole 12 is provided at the bottom of the third mounting hole 12 connected to the first cavity 11.
  • Perforation 13 the third perforation 13 is a waist-shaped hole formed along the axial extension of the lens base 10; the red dot sight also includes a focusing mechanism 200, which includes a focusing handwheel 201 and a lever 202.
  • the handwheel 201 is rotatably installed in the third mounting hole 12 and is restricted from moving axially along the third mounting hole 12.
  • the focusing handwheel 201 is close to the third mounting hole 12.
  • the end surface of the bottom of the mounting hole 12 is provided with a curved groove 2011.
  • the curved groove 2011 extends along the circumferential direction of the focusing handwheel 201, and the center line of the curved groove 2011 gradually approaches the central axis of the focusing handwheel 201.
  • the lever 202 One end of the lever 202 is slidably connected to the curved groove 2011, and the other end of the lever 202 is passed through the third through hole 13 and connected to the second lens holder 190.
  • the focusing handwheel 201 rotates, it can drive the second lens holder 190 in the first cavity. 11 slides.
  • the focusing handwheel 201 is installed in the third mounting hole 12 and is restricted from moving axially along the third mounting hole 12 , and can rotate around the focusing handwheel in the third mounting hole 12 under the action of external force.
  • the central axis of the wheel 201 rotates.
  • One end of the lever 202 is slidably connected to the curved groove 2011 of the focusing handwheel 201.
  • the other end of the lever 202 passes through the third through hole 13 and is fixedly or detachably connected to the second lens holder 190.
  • the lever 202 can Choose to connect with the second lens holder 190 thread.
  • the curved groove 2011 of the focusing handwheel 201 can drive the lever 202 along the curved groove 2011 toward the center of the focusing handwheel 201
  • the third through hole 13 can guide and restrict the movement direction of the lever 202, so that the lever 202 can drive the second lens holder 190 and The second lens 42 moves axially toward the light source part 30 .
  • the curved groove 2011 of the focusing handwheel 201 can drive the lever 202 to slide along the curved groove 2011 to the side away from the central axis of the focusing handwheel 201.
  • the third through hole 13 can guide and restrict the movement direction of the lever 202, so that the lever 202 can drive the second lens holder 190 and the second lens 42 in a direction away from the light source member 30. Perform axial movement. Therefore, the axial position of the second lens 42 relative to the lens holder 10 and the light source part 30 can be adjusted quickly and conveniently through the focusing mechanism 200 .
  • a third connection hole 14 is provided at the bottom of the third mounting hole 12; the focusing mechanism 200 also includes a locking screw 203, and the nail portion of the locking screw 203 is penetrated.
  • the head of the locking screw 203 presses the focus handwheel 201 and restricts the focus handwheel 201 from moving axially along the third mounting hole 12 .
  • the nail part of the locking screw 203 can be connected to the third connection hole 14 in a threaded manner to stabilize its installation position and installation state; on this basis, the head of the locking screw 203 can be Press and resist the focusing handwheel 201 to limit the focusing handwheel 201 in the third mounting hole 12.
  • the locking screw 203 can especially limit the axial direction of the focusing handwheel 201 relative to the third mounting hole 12. Movement, especially the focusing hand wheel 201 can be restricted from escaping from the third mounting hole 12 .
  • the red dot sight further includes a fourth spring 210 that is elastically resisted between the first lens holder 180 and the second lens holder 190 .
  • the opposite ends of the fourth spring 210 along the axial direction can respectively elastically resist the first lens holder 180 and the second lens holder 190 to ensure and improve the position of the second lens holder 190 relative to the lens holder 10 .
  • the smoothness of movement during axial movement ensures and improves the stability of the axial position of the second lens holder 190 relative to the mirror holder 10 after adjustment.
  • the lever 202 When the lever 202 is threadedly connected to the second lens holder 190, since the thread fit is a clearance fit, there is a small gap between the external threads of the lever 202 and the internal threads of the second lens holder 190, causing the focus to be adjusted during adjustment.
  • the wheel 201 first rotates idling to make up for the matching gap between the lever 202 and the second lens holder 190, and then rotates to realize that the lever 202 drives the second lens holder 190 and the second lens 42 relative to the axis of the lens holder 10 and the light source part 30. Move in the direction, but this gap and idling movement will affect the adjustment accuracy.
  • the opposite ends of the fourth spring 210 along the axial direction can elastically resist the first lens holder 180 and the second lens holder 190 respectively, so that the second lens holder can be moved through the fourth spring 210
  • the elastic resistance of 190 causes the internal threads of the second lens holder 190 to be tightly pressed against the external threads of the lever 202, thereby effectively eliminating the gap between the internal threads of the second lens holder 190 and the external threads of the lever 202.
  • the adjustment accuracy of the axial position of the second lens 42 can be effectively ensured and improved, and the use accuracy of the red dot sight can be effectively ensured and improved.
  • the above solution can be used to effectively alleviate the problem. This can even prevent the external thread of the lever 202 from loosening the internal thread of the second lens holder 190, thereby effectively ensuring and improving the adjustment accuracy of the axial position of the second lens 42, and effectively ensuring and improving the red dot. The accuracy of the sight.
  • a second ball head 33 is convexly provided on the circumference of the light source component 30, and a second ball socket 114 is recessed in the cavity wall of the first cavity 11.
  • the second ball head 33 Hinged to the second ball socket 114 , the red dot sight also includes a second adjustment mechanism 220 located at an end of the light source component 30 close to the eye direction. The second adjustment mechanism 220 is used to drive the light source component 30 to rotate.
  • the second ball head 33 of the light source component 30 is hinged to the second ball socket 114 and is restricted from being separated from the second ball socket 114. Based on this, when the end of the light source component 30 is stressed, the light source component 30 Then, the second ball head 33 can rotate smoothly and reliably to a certain extent.
  • the second adjustment mechanism 220 is installed through the lens base 10 and is disposed at the end of the light source member 30 close to the eye direction. It can be used to exert force on the end of the light source member 30 close to the eye direction to drive the light source member 30 around the second ball head 33
  • the optical axis of the light source component 30 can be adjusted conveniently and controllably to be aligned with the optical axis of the collimating lens group 40, thereby effectively eliminating assembly errors and effectively ensuring that the Improving the positional accuracy of the aiming point of the red dot sight can effectively ensure and improve aiming accuracy.
  • the second adjustment mechanism 220 includes a second ballistic adjustment nail 221 and a second windage adjustment nail 222.
  • the second ballistic adjustment nail 221 is provided on one side of the light source member 30 in the vertical direction and can be used to move the light source member 30 closer to the light source member 30.
  • One end of the eye exerts a force in the vertical direction to realize displacement adjustment of the light source component 30, especially the optical axis of the light source component 30, in the vertical direction;
  • the second windage adjustment nail 222 is provided on a horizontal direction of the light source component 30. side, it can be used to exert a horizontal force on the end of the light source part 30 close to the eye, so as to realize the displacement adjustment of the light source part 30, especially the optical axis of the light source part 30, in the horizontal direction.
  • the second adjustment mechanism 220 can quickly and conveniently adjust the optical axis of the light source component 30 to be aligned with the optical axis of the collimating lens group 40 .

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Telescopes (AREA)

Abstract

一种红点瞄准镜,包括镜座(10)、镜框(20)、光源件(30)、准直镜组(40)、反射镜(50)和分光棱镜(60)。镜座(10)的内部设有第一腔(11);镜框(20)设于镜座(10)靠近目方的周侧,镜框(20)的内部设有第二腔(21)以及连通第二腔(21)和第一腔(11)的通口(22);光源件(30)设于第一腔(11)靠近物方的一端,且用于朝目方出射光线;准直镜组(40)设于第一腔(11);反射镜(50)设于第一腔(11),且与通口(22)对应设置;分光棱镜(60)设于第二腔(21)。其中,光源件(30)相对于镜座(10)的轴向位置可调;或,准直镜组(40)包括依次设置且均具有屈光能力的第一透镜(41)、第二透镜(42)和第三透镜(43),第二透镜(42)相对于镜座(10)的轴向位置可调。红点瞄准镜不仅可隐藏光源的亮点以降低射手暴露的风险,且还可在瞄准距离不同时保障视差在允许范围内,进而保障并提高瞄准精准度。

Description

红点瞄准镜 技术领域
本申请属于瞄准镜技术领域,尤其涉及一种红点瞄准镜。
背景技术
目前,红点瞄准镜通常包括光源、反射镜、准直物镜和分光棱镜,其中,光源用于朝目方出射光线,光源出射的光线会先经反射镜转向至准直物镜,再通过准直物镜转换成平行光,最后再经过分光棱镜转向并射入人眼。基于此,由于光源出射的光线朝向目方,从物方将基本观察不到光源的亮点,从而可降低射手暴露的风险。
但是在瞄准近距离的目标时,由于目标的光并非是平行光,而是具有一定发散角度的发散光,人眼为了能够看清目标,会自动调节晶状体来使目标成像于视网膜,而光源出射的光线经过准直物镜转换后却是平行光,此时人眼的晶状体形状已改变,因此光源出射的光线将成像在视网膜前方,导致光源出射的光线的成像与目标的成像没有在视网膜上叠加,进而会产生视差,具体表现为晃动头部时,光源出射的光线的成像与目标成像的相对位置会发生改变,这样就会影响瞄准的精准度。
发明内容
本申请实施例的目的在于提供一种红点瞄准镜,以解决现有红点瞄准镜在瞄准近距离的目标时会存在视差,从而影响瞄准精准度的问题。
为实现上述目的,本申请采用的技术方案是:一种红点瞄准镜,包括:
镜座,所述镜座的内部设有沿其轴向延伸形成的第一腔,所述第一腔靠近物方的一端连通至外部;
镜框,设于所述镜座靠近目方的周侧,所述镜框的内部设有沿其轴向贯通的第二腔,以及连通所述第二腔和所述第一腔的通口;
光源件,设于所述第一腔靠近物方的一端,且用于朝目方出射光线,所述光源件相对于所述镜座的轴向位置可调;
准直镜组,设于所述第一腔,且设于所述光源件靠近目方的一侧;
反射镜,设于所述第一腔,且与所述通口对应设置;
分光棱镜,设于所述第二腔,所述分光棱镜包括相互胶合的第一棱镜和第二棱镜,所述第一棱镜和所述第二棱镜的胶合面上设有反射膜。
在一个实施例中,所述光源件与所述镜座螺纹连接。
在一个实施例中,所述红点瞄准镜还包括设于所述第一腔靠近物方的一端的内管,以及设于所述内管靠近目方的一端的第一调节机构,所述内管的周侧凸设有第一球头,所述第一腔的腔壁凹设有第一球窝,所述第一球头铰接于所述第一球窝,所述第一调节机构用于带动所述内管转动;所述内管的内部设有沿其轴向贯通的第三腔,所述光源件设于所述第三腔,所述光源件相对于所述内管的轴向位置可调。
在一个实施例中,所述光源件与所述内管螺纹连接。
在一个实施例中,所述红点瞄准镜还包括第一弹簧,所述第一弹簧设于所述第三腔,所述第一弹簧沿轴向的相对两端分别连接所述光源件和所述内管。
在一个实施例中,所述第三腔包括从物方到目方依次设置的第一安装孔和第一穿孔;
所述红点瞄准镜还包括第一调节杆和第一压圈,所述第一调节杆转动安装于所述第一安装孔,所述第一压圈连接于所述内管靠近物方的一端并限制所述第一调节杆沿所述第一安装孔轴向移动,所述第一调节杆靠近目方的一端设有沿轴向延伸的第一连接孔,所述光源件的一端连接于所述第一连接孔,所述光源件的另一端穿设于所述第一穿孔,所述第一调节杆在转动时能够带动所述光源件相对于所述第一穿孔轴向移动。
在一个实施例中,所述光源件的端部螺纹连接于所述第一连接孔,所述第一穿孔为非圆孔,并限制所述光源件相对于所述第一穿孔转动;
或,所述光源件的端部插接于所述第一连接孔,所述第一连接孔为非圆孔,并限制所述光源件相对于所述第一连接孔转动,所述光源件与所述第一穿孔螺纹连接。
在一个实施例中,所述红点瞄准镜还包括第二弹簧,所述第二弹簧设于所述第一连接孔;所述第二弹簧沿轴向的相对两端分别连接所述光源件和所述第一调节杆,或所述第二弹簧沿轴向的相对两端分别连接所述光源件和所述内管。
在一个实施例中,所述第一腔靠近物方的一端设有从物方到目方依次设置的第二安装孔和第二穿孔;
所述红点瞄准镜还包括第二调节杆和第二压圈,所述第二调节杆转动安装于所述第二安装孔,所述第二压圈连接于所述镜座靠近物方的一端并限制所述第二调节杆沿所述第二安装孔轴向移动,所述第二调节杆靠近目方的一 端设有沿轴向延伸的第二连接孔,所述光源件的一端连接于所述第二连接孔,所述光源件的另一端穿设于所述第二穿孔,所述第二调节杆在转动时能够带动所述光源件相对于所述第二穿孔轴向移动。
在一个实施例中,所述光源件的端部螺纹连接于所述第二连接孔,所述第二穿孔为非圆孔,并限制所述光源件相对于所述第二穿孔转动;
或,所述光源件的端部插接于所述第二连接孔,所述第二连接孔为非圆孔,并限制所述光源件相对于所述第二连接孔转动,所述光源件与所述第二穿孔螺纹连接。
在一个实施例中,所述红点瞄准镜还包括第三弹簧,所述第三弹簧设于所述第二连接孔;所述第三弹簧沿轴向的相对两端分别连接所述光源件和所述第二调节杆,或所述第三弹簧沿轴向的相对两端分别连接所述光源件和所述镜座。
在一个实施例中,所述准直镜组包括从物方到目方依次设置且均具有屈光能力的第一透镜、第二透镜和第三透镜;
所述第一透镜和所述第二透镜设于所述光源件和所述反射镜之间,所述第三透镜设于所述通口;
或,所述第一透镜、所述第二透镜和所述第三透镜设于所述光源件和所述反射镜之间。
在一个实施例中,所述红点瞄准镜还包括与所述光源件电连接且用于为所述光源件供电的电池和/或太阳能电池板。
本申请实施例的目的还在于提供一种红点瞄准镜,包括:
镜座,所述镜座的内部设有沿其轴向延伸形成的第一腔;
镜框,设于所述镜座靠近目方的周侧,所述镜框的内部设有沿其轴向贯通的第二腔,以及连通所述第二腔和所述第一腔的通口;
光源件,设于所述第一腔靠近物方的一端,且用于朝目方出射光线;
反射镜,设于所述第一腔,且与所述通口对应设置;
分光棱镜,设于所述第二腔,所述分光棱镜包括相互胶合的第一棱镜和第二棱镜,所述第一棱镜和所述第二棱镜的胶合面上设有反射膜;
准直镜组,设于所述第一腔,所述准直镜组包括依次设置且均具有屈光能力的第一透镜、第二透镜和第三透镜,所述第一透镜和所述第二透镜设于所述光源件和所述反射镜之间,所述第三透镜设于所述第二透镜至所述分光棱镜之间,所述第一透镜和所述第三透镜相对于所述镜座固定,所述第二透镜相对于所述镜座的轴向位置可调。
在一个实施例中,所述准直镜组还包括安装所述第一透镜的第一透镜座,以及安装所述第二透镜的第二透镜座,所述第一透镜座固定安装于所述第一腔,所述第二透镜座滑动安装于所述第一腔。
在一个实施例中,所述镜座的周面设有第三安装孔,所述第三安装孔的孔底设有连通至所述第一腔的第三穿孔,所述第三穿孔为沿所述镜座的轴向延伸形成的腰型孔;
所述红点瞄准镜还包括调焦机构,所述调焦机构包括调焦手轮和拨杆,所述调焦手轮转动安装于所述第三安装孔,并被限制沿所述第三安装孔轴向移动,所述调焦手轮靠近所述第三安装孔的孔底的端面设有曲线槽,所述曲线槽沿所述调焦手轮的周向延伸形成,且所述曲线槽的中心线逐渐靠近所述调焦手轮的中轴线,所述拨杆的一端滑动连接于所述曲线槽,所述拨杆的另 一端穿设于所述第三穿孔并与所述第二透镜座连接,所述调焦手轮在转动时能够带动所述第二透镜座于所述第一腔滑动。
在一个实施例中,所述第三安装孔的孔底设有第三连接孔;
所述调焦机构还包括锁紧螺钉,所述锁紧螺钉的钉部穿设于所述调焦手轮并与所述第三连接孔螺纹连接,所述锁紧螺钉的头部压紧所述调焦手轮并限制所述调焦手轮沿所述第三安装孔轴向移动。
在一个实施例中,所述红点瞄准镜还包括弹性抵持于所述第一透镜座和所述第二透镜座之间的第四弹簧。
在一个实施例中,所述光源件的周侧凸设有第二球头,所述第一腔的腔壁凹设有第二球窝,所述第二球头铰接于所述第二球窝,所述红点瞄准镜还包括设于所述光源件靠近目方的一端的第二调节机构,所述第二调节机构用于带动所述光源件转动。
本申请提供的红点瞄准镜的有益效果在于:
本申请实施例提供的红点瞄准镜,通过将光源件、准直镜组、反射镜设置在镜座内部并将分光棱镜设置在镜框内部,以通过光源件朝准直镜组出射光线,通过准直镜组对光源件出射的光线进行折射,通过反射镜和设于第一棱镜和第二棱镜上的反射膜将来源于光源件的光线多重反射至目方,基于此,即可有效保障光源件及其出射的光线的隐蔽性,可基本避免目标从物方观察到亮点,进而可有效降低射手暴露的风险。
在此基础上,本申请实施例提供的红点瞄准镜,还可根据瞄准距离的不同,通过调节光源件相对于镜座的轴向位置以调节光源件至准直镜组的距离,或通过调节准直镜组的第二透镜相对于镜座的轴向位置以调节准直镜组的第 二透镜至光源件的距离,实现调节准直镜组对光源件出射的光线的折射效果,从而可促使来源于光源件的光线与目标的光在射入目方时的入射角度近似相等、基本一致,可促使来源于光源件的光线能够与目标的光在视网膜上叠加成像,进而可有效消除视差,可有效保障在瞄准距离不同时视差在允许范围内,可有效保障并提高瞄准的精准度。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例一提供的红点瞄准镜的结构示意图一;
图2为图1提供的红点瞄准镜在瞄准远距离目标时的原理示意图;
图3为图1提供的红点瞄准镜的结构示意图二;
图4为图3提供的红点瞄准镜在瞄准近距离目标时的原理示意图;
图5为本申请实施例二提供的红点瞄准镜的结构示意图;
图6为本申请实施例三提供的红点瞄准镜的结构示意图;
图7为图6提供的红点瞄准镜的俯视图;
图8为本申请实施例六提供的红点瞄准镜的结构示意图;
图9为本申请实施例九提供的红点瞄准镜的结构示意图;
图10为图9提供的红点瞄准镜在瞄准远距离目标时的原理示意图;
图11为本申请实施例十提供的红点瞄准镜的结构示意图;
图12为图11提供的红点瞄准镜的俯视图;
图13为图11提供的红点瞄准镜的部分结构示意图;
图14为本申请实施例十提供的调焦手轮和拨杆的配合示意图。
其中,图中各附图标记:
10-镜座,11-第一腔,20-镜框,21-第二腔,22-通口,30-光源件,31-
发光元件,32-灯座,40-准直镜组,41-第一透镜,42-第二透镜,43-第三透镜,50-反射镜,60-分光棱镜,61-第一棱镜,62-第二棱镜,70-反射膜,80-太阳能电池板;111-第一球窝,90-内管,91-第一球头,92-第三腔,100-第一调节机构,101-第一弹道调节钉,102-第一风偏调节钉,110-第一弹簧;921-第一安装孔,922-第一穿孔,120-第一调节杆,121-第一连接孔,130-第一压圈,140-第二弹簧;112-第二安装孔,113-第二穿孔,150-第二调节杆,151-第二连接孔,160-第二压圈,170-第三弹簧;180-第一透镜座,190-第二透镜座,12-第三安装孔,13-第三穿孔,14-第三连接孔,200-调焦机构,201-调焦手轮,2011-曲线槽,202-拨杆,203-锁紧螺钉,210-第四弹簧,33-第二球头,114-第二球窝,220-第二调节机构,221-第二弹道调节钉,222-第二风偏调节钉。
具体实施方式
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在本申请的描述中,需要理解的是,术语“长度”、“宽度”、“上”、 “下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
瞄准镜常用于安装在枪械上,以提高瞄准精度、降低射击难度。在本申请中,“目方”的含义为瞄准镜在实际操作过程中靠近射手的一端,“物方”的含义为瞄准镜在实际操作过程中靠近目标的一端,即远离射手的一端。
现有红点瞄准镜通常包括光源、反射镜、准直物镜和分光棱镜,其中,光源用于朝目方出射光线,光源出射的光线会先经反射镜转向至准直物镜,再通过准直物镜转换成平行光,最后再经过分光棱镜转向并射入人眼。基于 此,由于光源出射的光线朝向目方,从物方将基本观察不到光源的亮点,从而可降低射手暴露的风险。
但是在瞄准近距离的目标时,由于目标的光并非是平行光,而是具有一定发散角度的发散光,人眼为了能够看清目标,会自动调节晶状体来使目标成像于视网膜,而光源出射的光线经过准直物镜转换后却是平行光,此时人眼的晶状体形状已改变,因此光源出射的光线将成像在视网膜前方,导致光源出射的光线的成像与目标的成像没有在视网膜上叠加,进而会产生视差,具体表现为晃动头部时,光源出射的光线的成像与目标成像的相对位置会发生改变,这样就会影响瞄准的精准度。
对此,本申请实施例提供了新型的红点瞄准镜,不仅可隐藏光源的亮点以降低射手暴露的风险,且还可在瞄准距离不同时保障视差在允许范围内,进而保障并提高瞄准精准度。
以下结合具体实施例对本申请的具体实现进行更加详细的描述:
实施例一
请参阅图1、图3,本申请实施例提供了一种红点瞄准镜,包括镜座10、镜框20、光源件30、准直镜组40、反射镜50和分光棱镜60。镜座10的内部设有沿其轴向延伸形成的第一腔11,第一腔11靠近物方的一端连通至外部;镜框20设于镜座10靠近目方的周侧,镜框20的内部设有沿其轴向贯通的第二腔21,以及连通第二腔21和第一腔11的通口22;光源件30设于第一腔11靠近物方的一端,且用于朝目方出射光线,光源件30相对于镜座10的轴向位置可调;准直镜组40设于第一腔11,且设于光源件30靠近目方的一侧;反射镜50设于第一腔11,且与通口22对应设置;分光棱镜60设于 第二腔21,分光棱镜60包括相互胶合的第一棱镜61和第二棱镜62,第一棱镜61和第二棱镜62的胶合面上设有反射膜70。
在此需要说明的是,光源件30、准直镜组40和反射镜50均容纳于镜座10的第一腔11内,镜座10可对设于第一腔11的光源件30、准直镜组40和反射镜50进行可靠防护。
光源件30安装在第一腔11靠近物方的一端,且用于朝准直镜组40出射光线。基于此,由于光源件30出射的光线朝向目方,可基本避免目标从物方观察到亮点,进而可降低射手暴露的风险。其中,光源件30可受力沿镜座10的轴向往复移动,以调节其至准直镜组40的距离。其中,光源件30包括用于朝准直镜组40出射光线的发光元件31,以及用于支撑、固定发光元件31的灯座32,发光元件31的光轴与准直镜组40的光轴对准,发光元件31可为但不限于为LED(Light-Emitting Diode,发光二极管)灯。
准直镜组40安装在第一腔11的从光源件30至通口22的空间内,准直镜组40用于对光源件30出射的光线进行折射。具体地,当光源件30至准直镜组40的距离为调校距离时,准直镜组40可将光源件30出射的光线折射成近似平行光;以调校距离为基准,再带动光源件30朝靠近或远离准直镜组40的方向移动,以调节光源件30至准直镜组40的距离,即可改变准直镜组40对光源件30出射的光线的折射效果,例如使准直镜组40将光源件30出射的光线折射成发散光。
反射镜50与通口22对应设置,反射镜50倾斜于第一腔11的中轴线且倾斜于通口22的中轴线。反射镜50不具有屈光能力,主要用于将沿第一腔11传播的光线经由通口22反射、转向至分光棱镜60。
在此还需要说明的是,分光棱镜60限位容纳于镜框20的第二腔21内,镜框20可对设于第二腔21的分光棱镜60进行可靠防护。
分光棱镜60包括相互胶合的第一棱镜61和第二棱镜62。第一棱镜61和第二棱镜62的胶合面倾斜于第二腔21的中轴线且倾斜于通口22的中轴线,第一棱镜61和第二棱镜62的胶合面上设有反射膜70,反射膜70用于反射特定波长的光线并允许其他波长的光线透过,具体地,反射膜70用于将反射镜50反射的光线进一步反射至目方,并允许从第二腔21靠近物方的一端而来的目标光线透过其射向目方。其中,反射膜70可采用但不限于镀膜的方式设置在第一棱镜61的胶合面或第二棱镜62的胶合面上。
综上,本申请实施例提供的红点瞄准镜的工作原理基本为:在出厂时预先按照远距离目标进行调校。如图1、图2所示,当红点瞄准镜瞄准远距离目标时,远距离目标的光将以近似平行光穿过第二腔21和反射膜70射入目方,此时,可保持光源件30相对于镜座10的轴向位置不变,以保障光源件30和准直镜组40之间维持调校距离,这样,光源件30所出射的光线即可经由准直镜组40折射成近似平行光,并经由反射镜50反射至分光棱镜60,再经由分光棱镜60的第一棱镜61和第二棱镜62的胶合面上的反射膜70反射至目方,由此,即使人眼为了能够看清目标而自动调节晶状体使得目标成像于视网膜,由于来源于光源件30的光线与远距离目标的光在射入目方时近似平行,来源于光源件30的光线能够与远距离目标的光在视网膜上叠加成像,进而可有效消除视差,可有效保障并提高瞄准的精准度。
反之,如图3、图4所示,当红点瞄准镜瞄准近距离目标时,近距离目标的光将以具有一定发散角度的发散光穿过第二腔21和反射膜70射入目方, 此时,可带动光源件30相对于镜座10朝远离或靠近准直镜组40的方向移动,以调节光源件30至准直镜组40的距离,调节准直镜组40对光源件30出射的光线的折射效果,直至“光源件30所出射的光线可经由准直镜组40折射成发散光,且经由反射镜50和分光棱镜60的反射膜70多重反射至目方时的入射角度与近距离目标的光射入目方的角度近似相等”,由此,即使人眼为了能够看清目标而自动调节晶状体使得目标成像于视网膜,由于来源于光源件30的光线与近距离目标的光在射入目方时均为发散光,且射入人眼的角度近似相等,来源于光源件30的光线能够与近距离目标的光在视网膜上叠加成像,进而可有效消除视差,可有效保障并提高瞄准的精准度。
因而,本申请实施例提供的红点瞄准镜,通过将光源件30、准直镜组40、反射镜50设置在镜座10内部并将分光棱镜60设置在镜框20内部,以通过光源件30朝准直镜组40出射光线,通过准直镜组40对光源件30出射的光线进行折射,通过反射镜50和设于第一棱镜61和第二棱镜62上的反射膜70将来源于光源件30的光线多重反射至目方,基于此,即可有效保障光源件30及其出射的光线的隐蔽性,可基本避免目标从物方观察到亮点,进而可有效降低射手暴露的风险。在此基础上,本申请实施例提供的红点瞄准镜,还可根据瞄准距离的不同,通过调节光源件30相对于镜座10的轴向位置,以调节光源件30至准直镜组40的距离,调节准直镜组40对光源件30出射的光线的折射效果,从而可促使来源于光源件30的光线与目标的光在射入目方时的入射角度近似相等、基本一致,可促使来源于光源件30的光线能够与目标的光在视网膜上叠加成像,进而可有效消除视差,可有效保障在瞄准距离不同时视差在允许范围内,可有效保障并提高瞄准的精准度。因此,本申 请实施例提供的红点瞄准镜,可以应用于多种瞄准距离的场合,适应范围广。
此外,现有红点瞄准镜在瞄准近距离的目标时,由于红点瞄准镜的瞄准点成像与目标成像没有在视网膜上叠加成像,导致人眼为了能够看清其中之一成像会不断调整晶状体,这样会导致眼睛容易疲劳,导致红点瞄准镜的瞄准舒适性较差。对此,本申请实施例提供的红点瞄准镜在瞄准距离不同时,由于可调节光源件30相对于镜座10的轴向位置、可促使来源于光源件30的光线能够与目标的光在视网膜上叠加成像,可保障人眼能够自动调节晶状体并同时看清红点瞄准镜的瞄准点成像与目标成像,从而可有效保障并提高红点瞄准镜的瞄准舒适性,可有效降低眼睛的疲劳度。
此外,现有红点瞄准镜在瞄准距离不同时会产生不同的、较大的视差,当现有红点瞄准镜靠近目方的一侧安装有倍率镜时,射手只要稍微摆头观看倍率镜,在放大的视场中都可以很明显看到红点瞄准镜的瞄准点快速移动,并非与目标对准、相对位置固定,这样会导致射手难以瞄准。对此,本申请实施例提供的红点瞄准镜在瞄准距离不同时,由于可调节光源件30相对于镜座10的轴向位置、可消除视差、可保障在瞄准距离不同时视差在允许范围内,当红点瞄准镜靠近目方的一侧安装有倍率镜时,即使射手摆头观看倍率镜,在放大的视场中可以看到放大一定倍率、对准、相对位置固定的红点瞄准镜的瞄准点以及目标,从而可有效保障并提高射手的瞄准精度和瞄准舒适性,因此,本申请实施例提供的红点瞄准镜尤其适用于与倍率镜一起使用,优势更凸显。
请参阅图1、图3,在本实施例中,光源件30与镜座10螺纹连接。具体地,镜座10的第一腔11的内壁设有内螺纹,光源件30的灯座32的外侧设 有外螺纹,光源件30的灯座32螺纹连接至镜座10。
通过采用上述方案,可通过将光源件30螺纹连接于镜座10,而简便、快捷地实现光源件30与镜座10之间的组装,还可在使用时,通过旋转光源件30,而实现调节光源件30相对于镜座10的轴向位置,调节操作简便、快捷,且利于稳定、固定光源件30在调节后相对于镜座10的轴向位置。
请参阅图1、图3,在本实施例中,准直镜组40包括从物方到目方依次设置且均具有屈光能力的第一透镜41、第二透镜42和第三透镜43;第一透镜41和第二透镜42设于光源件30和反射镜50之间,第三透镜43设于通口22。
基于本实施例的设置,当光源件30朝准直镜组40出射光线时,光线会先经过第一透镜41,以由第一透镜41对光线进行第一重折射,随后,光线会再经过第二透镜42,以由第二透镜42对光线进行第二重折射,随后,光线会抵达反射镜50并被反射镜50反射至通口22,随后,光线会经过设于通口22的第三透镜43,以由第三透镜43对光线进行第三重折射,至此,准直镜组40可完成对光源件30出射的光线的折射。而通过调节光源件30至第一透镜41的距离,可改变准直镜组40对光源件30出射的光线的折射效果,如图2、图4所示。
并且,相对于实施例九,本实施例的设置可相对缩短红点瞄准镜的长度。
当然,在其他可能的实施方式中,准直镜组40可采用其他结构方案实现对光源件30出射的光线进行折射,例如准直镜组40可包括准直物镜胶合镜,本实施例对此不做限制。
请参阅图1、图3,在本实施例中,红点瞄准镜还包括与光源件30电连 接且用于为光源件30供电的电池(图中未示出)和/或太阳能电池板80。
其中,太阳能电池板80优选设置在镜框20或镜座10的顶侧表面,如此设置,可保障太阳能电池板80可较大程度地接收到太阳光,进而可提高太阳能电池板80的蓄电性能和供电性能。
其中,电池可选设置在镜座10的内部。
其中,当红点瞄准镜同时具有太阳能电池板80和电池时,红点瞄准镜可通过控制板自主/切换选择太阳能电池板80或电池为光源供电。
实施例二
本实施例与实施例一的区别在于:
请参阅图5,在本实施例中,红点瞄准镜还包括设于第一腔11靠近物方的一端的内管90,以及设于内管90靠近目方的一端的第一调节机构100,内管90的周侧凸设有第一球头91,第一腔11的腔壁凹设有第一球窝111,第一球头91铰接于第一球窝111,第一调节机构100用于带动内管90转动;内管90的内部设有沿其轴向贯通的第三腔92,光源件30设于第三腔92,光源件30相对于内管90的轴向位置可调。
在此需要说明的是,内管90安装于第一腔11中,内管90的第一球头91铰接于第一球窝111且被限制脱离第一球窝111,基于此,在内管90的端部受力时,内管90即可绕第一球头91进行一定幅度的平稳、可靠的转动。
第一调节机构100穿设安装于镜座10并设置在内管90靠近目方的一端,可用于对内管90靠近目方的一端施加作用力,以带动内管90绕第一球头91进行可控幅度的转动,基于此,即可便捷、可控地实现将安装于内管90的第三腔92的光源件30的光轴调节至与准直镜组40的光轴对准,进而可有效消 除组装误差,可有效保障并提高红点瞄准镜的瞄准点的位置精度,可有效保障并提高瞄准精准度。其中,请参考图7,第一调节机构100包括第一弹道调节钉101和第一风偏调节钉102,第一弹道调节钉101设于内管90沿竖直方向上的一侧,可用于对内管90靠近目方的一端施加竖直方向的作用力,以实现内管90、光源件30尤其光源件30的光轴在竖直方向的位移调节;第一风偏调节钉102设于内管90沿水平方向上的一侧,可用于对内管90靠近目方的一端施加水平作用力,以实现内管90、光源件30尤其光源件30的光轴在水平方向的位移调节。基于此,第一调节机构100即可快速、便捷地实现将光源件30的光轴调节至与准直镜组40的光轴对准。
光源件30安装于内管90的第三腔92中,光源件30相对于内管90的轴向位置可调。基于此,即可通过调节光源件30相对于内管90的轴向位置,实现调节光源件30相对于镜座10的轴向位置,调节光源件30至准直镜组40的距离,调节准直镜组40对光源件30出射的光线的折射效果,进而可促使来源于光源件30的光线能够与目标的光在视网膜上叠加成像,可有效消除视差,可有效保障在瞄准距离不同时视差在允许范围内,可有效保障并提高瞄准的精准度。
请参阅图5,在本实施例中,光源件30与内管90螺纹连接。具体地,内管90的第三腔92的内壁设有内螺纹,光源件30的灯座32的外侧设有外螺纹,光源件30的灯座32螺纹连接至内管90。
通过采用上述方案,可通过将光源件30螺纹连接于内管90,而简便、快捷地实现光源件30与内管90之间的组装,还可在使用时,通过旋转光源件30,而实现调节光源件30相对于内管90的轴向位置,调节操作简便、快 捷,且利于稳定、固定光源件30在调节后相对于内管90的轴向位置。
由于螺纹配合属于间隙配合,内管90的第三腔92的内螺纹与光源件30的灯座32的外螺纹之间存在较小间隙,导致在调节时需先空转光源件30补足间隙,再旋转光源件30而实现调节光源件30相对于内管90的轴向位置,但这个间隙以及空转的动作,都会影响调节精度。
对此,请参阅图5,在本实施例中,红点瞄准镜还包括第一弹簧110,第一弹簧110设于第三腔92,第一弹簧110沿轴向的相对两端分别连接光源件30和内管90。通过采用上述方案,可通过第一弹簧110沿轴向的相对两端分别弹性抵持光源件30和内管90,基于此,即可经由第一弹簧110对光源件30的弹性抵持力,促使光源件30的外螺纹的螺牙与内管90的内螺纹的螺牙相抵紧,从而可有效消除光源件30的外螺纹与内管90的内螺纹之间的间隙,可有效保障并提高光源件30的轴向位置的调节精度,可有效保障并提高红点瞄准镜的使用精度。
此外,当螺纹加工误差较大,导致光源件30的外螺纹与内管90的内螺纹之间配合较为松动时,基于本实施例的设置,也可有效缓解甚至避免光源件30的外螺纹与内管90的内螺纹之间配合出现松动的情况,进而可有效保障并提高光源件30的轴向位置的调节精度,可有效保障并提高红点瞄准镜的使用精度。
实施例三
本实施例与实施例二的区别在于:
请参阅图6、图7,在本实施例中,第三腔92包括从物方到目方依次设置的第一安装孔921和第一穿孔922,换言之,内管90靠近物方的端面开设 有第一安装孔921,第一安装孔921的孔底开设有第一穿孔922,第一安装孔921和第一穿孔922构成第三腔92。
红点瞄准镜还包括第一调节杆120和第一压圈130,第一调节杆120转动安装于第一安装孔921,第一压圈130连接于内管90靠近物方的一端并限制第一调节杆120沿第一安装孔921轴向移动,第一调节杆120靠近目方的一端设有沿轴向延伸的第一连接孔121,光源件30的一端连接于第一连接孔121,光源件30的另一端穿设于第一穿孔922,第一调节杆120在转动时能够带动光源件30相对于第一穿孔922轴向移动。
在此需要说明的是,第一调节杆120安装于第一安装孔921中,且在外力作用下可于第一安装孔921中绕第一调节杆120的中轴线进行自转。
第一压圈130可采用但不限于采用螺纹连接和/或胶水粘接的方式连接于内管90靠近物方的一端,第一压圈130压紧、抵止于第一调节杆120,并将第一调节杆120限位在第一安装孔921中,第一压圈130尤其可限制第一调节杆120相对于第一安装孔921轴向移动,尤其可限制第一调节杆120脱出第一安装孔921。第一调节杆120靠近物方的一端从第一压圈130的内圈露出或凸出,以便于外力带动第一调节杆120自转。
光源件30的一端连接于第一调节杆120的第一连接孔121,光源件30的另一端穿设于第一穿孔922,当第一调节杆120在外力作用下转动时,光源件30可相对于第一穿孔922轴向移动,而实现调节光源件30相对于内管90和镜座10的轴向位置,调节光源件30至准直镜组40的距离,调节准直镜组40对光源件30出射的光线的折射效果,进而可促使来源于光源件30的光线能够与目标的光在视网膜上叠加成像,可有效消除视差,可有效保障在 瞄准距离不同时视差在允许范围内,可有效保障并提高瞄准的精准度。
由此,相对于实施例二,本实施例通过转动第一调节杆120以带动光源件30轴向移动,不仅可实现光源件30的轴向位置的调节,且还可在调节期间保障供射手调节操作的区域(即第一调节杆120靠近物方的一端)维持轴向位置基本不变,进而可更便于射手进行调节操作。
请参阅图6,在本实施例中,光源件30的端部螺纹连接于第一连接孔121,第一穿孔922为非圆孔,并限制光源件30相对于第一穿孔922转动。其中,第一穿孔922为非圆孔,具体可为多边形孔或异形孔等等。其中,光源件30穿设于第一穿孔922的部分的截面形状相同于第一穿孔922的形状。
通过采用上述方案,当第一调节杆120在外力作用下转动时,由于光源件30被第一穿孔922限制转动,光源件30可在第一调节杆120的第一连接孔121的螺纹的带动下相对于第一穿孔922轴向移动,进而可实现调节光源件30相对于内管90和镜座10的轴向位置,调节光源件30至准直镜组40的距离,调节准直镜组40对光源件30出射的光线的折射效果,进而可促使来源于光源件30的光线能够与目标的光在视网膜上叠加成像,可有效消除视差,可有效保障在瞄准距离不同时视差在允许范围内,可有效保障并提高瞄准的精准度。
由于光源件30仅相对于第一穿孔922轴向移动而不相对于第一穿孔922转动,本实施例尤其适用于采用多点LED和/或分划图案的光源件30,这样,只要在红点瞄准镜出厂前预先将光源件30的多点和/或分划图案调校好,在调节光源件30的轴向位置时,光源件30的多点和/或分划图案即可保持调校状态而不转动,进而更利于保障并提高瞄准精准度。其中,分划图案可为但 不限于为圈点式分划图案、带水平线和竖直线的分划图案等等。
由于螺纹配合属于间隙配合,光源件30的外螺纹与对应内螺纹之间的配合存在较小间隙,导致在调节时需先空转补足间隙,再旋转才能实现调节光源件30相对于内管90和镜座10的轴向位置,但这个间隙以及空转的动作,都会影响调节精度。
对此,请参阅图6,在本实施例中,红点瞄准镜还包括第二弹簧140,第二弹簧140设于第一连接孔121;第二弹簧140沿轴向的相对两端分别连接光源件30和第一调节杆120。通过采用上述方案,可通过第二弹簧140沿轴向的相对两端分别弹性抵持光源件30和第一调节杆120,基于此,即可经由第二弹簧140对光源件30的弹性抵持力,促使光源件30的外螺纹的螺牙与对应内螺纹的螺牙相抵紧,从而可有效消除光源件30的外螺纹与对应内螺纹之间的间隙,可有效保障并提高光源件30的轴向位置的调节精度,可有效保障并提高红点瞄准镜的使用精度。
并且,当螺纹加工误差较大,导致光源件30的外螺纹与对应内螺纹之间配合较为松动时,基于本实施例的设置,也可有效缓解甚至避免光源件30的外螺纹与对应内螺纹之间配合出现松动的情况,进而可有效保障并提高光源件30的轴向位置的调节精度,可有效保障并提高红点瞄准镜的使用精度。
实施例四
本实施例与实施例三的区别在于:
请参考图6,在本实施例中,光源件30的端部插接于第一连接孔121,第一连接孔121为非圆孔,并限制光源件30相对于第一连接孔121转动,光源件30与第一穿孔922螺纹连接。其中,光源件30的插接于第一连接孔121 的部分的截面形状相同于第一连接孔121的形状。其中,第一连接孔121为非圆孔,具体可为多边形孔或异形孔等等。
通过采用上述方案,当第一调节杆120在外力作用下转动时,由于光源件30被第一调节杆120的第一连接孔121限制相对偏转,光源件30将随第一调节杆120发生同步转动,基于此,光源件30即可在第一穿孔922的螺纹的带动下相对于第一穿孔922轴向移动,进而可实现调节光源件30相对于内管90和镜座10的轴向位置,调节光源件30至准直镜组40的距离,调节准直镜组40对光源件30出射的光线的折射效果,进而可促使来源于光源件30的光线能够与目标的光在视网膜上叠加成像,可有效消除视差,可有效保障在瞄准距离不同时视差在允许范围内,可有效保障并提高瞄准的精准度。
实施例五
本实施例与实施例三的区别在于:
请参考图6,在本实施例中,红点瞄准镜还包括第二弹簧140,第二弹簧140设于第一连接孔121;第二弹簧140沿轴向的相对两端分别连接光源件30和内管90。
通过采用上述方案,可通过第二弹簧140沿轴向的相对两端分别弹性抵持光源件30和内管90,基于此,即可经由第二弹簧140对光源件30的弹性抵持力,促使光源件30的外螺纹的螺牙与对应内螺纹的螺牙相抵紧,从而可有效消除光源件30的外螺纹与对应内螺纹之间的间隙,可有效保障并提高光源件30的轴向位置的调节精度,可有效保障并提高红点瞄准镜的使用精度。
并且,当螺纹加工误差较大,导致光源件30的外螺纹与对应内螺纹之间配合较为松动时,基于本实施例的设置,也可有效缓解甚至避免光源件30的 外螺纹与对应内螺纹之间配合出现松动的情况,进而可有效保障并提高光源件30的轴向位置的调节精度,可有效保障并提高红点瞄准镜的使用精度。
实施例六
本实施例与实施例一的区别在于:
请参阅图8,在本实施例中,第一腔11靠近物方的一端设有从物方到目方依次设置的第二安装孔112和第二穿孔113,换言之,镜座10靠近物方的端面开设有第二安装孔112,第二安装孔112的孔底开设有第二穿孔113,第二安装孔112和第二穿孔113构成第一腔11靠近物方的一端。
红点瞄准镜还包括第二调节杆150和第二压圈160,第二调节杆150转动安装于第二安装孔112,第二压圈160连接于镜座10靠近物方的一端并限制第二调节杆150沿第二安装孔112轴向移动,第二调节杆150靠近目方的一端设有沿轴向延伸的第二连接孔151,光源件30的一端连接于第二连接孔151,光源件30的另一端穿设于第二穿孔113,第二调节杆150在转动时能够带动光源件30相对于第二穿孔113轴向移动。
在此需要说明的是,第二调节杆150安装于第二安装孔112中,且在外力作用下可于第二安装孔112中绕第二调节杆150的中轴线进行自转。
第二压圈160可采用但不限于采用螺纹连接和/或胶水粘接的方式连接于镜座10靠近物方的一端,第二压圈160压紧、抵止于第二调节杆150,并将第二调节杆150限位在第二安装孔112中,第二压圈160尤其可限制第二调节杆150相对于第二安装孔112轴向移动,尤其可限制第二调节杆150脱出第二安装孔112。第二调节杆150靠近物方的一端从第二压圈160的内圈露出或凸出,以便于外力带动第二调节杆150自转。
光源件30的一端连接于第二调节杆150的第二连接孔151,光源件30的另一端穿设于第二穿孔113,当第二调节杆150在外力作用下转动时,光源件30可相对于第二穿孔113轴向移动,而实现调节光源件30相对于镜座10的轴向位置,调节光源件30至准直镜组40的距离,调节准直镜组40对光源件30出射的光线的折射效果,进而可促使来源于光源件30的光线能够与目标的光在视网膜上叠加成像,可有效消除视差,可有效保障在瞄准距离不同时视差在允许范围内,可有效保障并提高瞄准的精准度。
由此,相对于实施例一,本实施例通过转动第二调节杆150以带动光源件30轴向移动,不仅可实现光源件30的轴向位置的调节,且还可在调节期间保障供射手调节操作的区域(即第二调节杆150靠近物方的一端)维持轴向位置基本不变,进而可更便于射手进行调节操作。
请参阅图8,在本实施例中,光源件30的端部螺纹连接于第二连接孔151,第二穿孔113为非圆孔,并限制光源件30相对于第二穿孔113转动。其中,第二穿孔113为非圆孔,具体可为多边形孔或异形孔等等。其中,光源件30穿设于第二穿孔113的部分的截面形状相同于第二穿孔113的形状。
通过采用上述方案,当第二调节杆150在外力作用下转动时,由于光源件30被第二穿孔113限制转动,光源件30可在第二调节杆150的第二连接孔151的螺纹的带动下相对于第二穿孔113轴向移动,进而可实现调节光源件30相对于镜座10的轴向位置,调节光源件30至准直镜组40的距离,调节准直镜组40对光源件30出射的光线的折射效果,进而可促使来源于光源件30的光线能够与目标的光在视网膜上叠加成像,可有效消除视差,可有效保障在瞄准距离不同时视差在允许范围内,可有效保障并提高瞄准的精准度。
由于光源件30仅相对于第二穿孔113轴向移动而不相对于第二穿孔113转动,本实施例尤其适用于采用多点LED和/或分划图案的光源件30,这样,只要在红点瞄准镜出厂前预先将光源件30的多点和/或分划图案调校好,在调节光源件30的轴向位置时,光源件30的多点和/或分划图案即可保持调校状态而不转动,进而更利于保障并提高瞄准精准度。其中,分划图案可为但不限于为圈点式分划图案、带水平线和竖直线的分划图案等等。
由于螺纹配合属于间隙配合,光源件30的外螺纹与对应内螺纹之间的配合存在较小间隙,导致在调节时需先空转补足间隙,再旋转才能实现调节光源件30相对于镜座10的轴向位置,但这个间隙以及空转的动作,都会影响调节精度。
对此,请参阅图8,在本实施例中,红点瞄准镜还包括第三弹簧170,第三弹簧170设于第二连接孔151;第三弹簧170沿轴向的相对两端分别连接光源件30和第二调节杆150。通过采用上述方案,可通过第三弹簧170沿轴向的相对两端分别弹性抵持光源件30和第二调节杆150,基于此,即可经由第三弹簧170对光源件30的弹性抵持力,促使光源件30的外螺纹的螺牙与对应内螺纹的螺牙相抵紧,从而可有效消除光源件30的外螺纹与对应内螺纹之间的间隙,可有效保障并提高光源件30的轴向位置的调节精度,可有效保障并提高红点瞄准镜的使用精度。
并且,当螺纹加工误差较大,导致光源件30的外螺纹与对应内螺纹之间配合较为松动时,基于本实施例的设置,也可有效缓解甚至避免光源件30的外螺纹与对应内螺纹之间配合出现松动的情况,进而可有效保障并提高光源件30的轴向位置的调节精度,可有效保障并提高红点瞄准镜的使用精度。
实施例七
本实施例与实施例六的区别在于:
请参考图8,在本实施例中,光源件30的端部插接于第二连接孔151,第二连接孔151为非圆孔,并限制光源件30相对于第二连接孔151转动,光源件30与第二穿孔113螺纹连接。其中,光源件30的插接于第二连接孔151的部分的截面形状相同于第二连接孔151的形状。其中,第二连接孔151为非圆孔,具体可为多边形孔或异形孔等等。
通过采用上述方案,当第二调节杆150在外力作用下转动时,由于光源件30被第二调节杆150的第二连接孔151限制相对偏转,光源件30将随第二调节杆150发生同步转动,基于此,光源件30即可在第二穿孔113的螺纹的带动下相对于第二穿孔113轴向移动,进而可实现调节光源件30相对于镜座10的轴向位置,调节光源件30至准直镜组40的距离,调节准直镜组40对光源件30出射的光线的折射效果,进而可促使来源于光源件30的光线能够与目标的光在视网膜上叠加成像,可有效消除视差,可有效保障在瞄准距离不同时视差在允许范围内,可有效保障并提高瞄准的精准度。
实施例八
本实施例与实施例六的区别在于:
请参考图8,在本实施例中,红点瞄准镜还包括第三弹簧170,第三弹簧170设于第二连接孔151;第三弹簧170沿轴向的相对两端分别连接光源件30和镜座10。
通过采用上述方案,可通过第三弹簧170沿轴向的相对两端分别弹性抵持光源件30和镜座10,基于此,即可经由第三弹簧170对光源件30的弹性 抵持力,促使光源件30的外螺纹的螺牙与对应内螺纹的螺牙相抵紧,从而可有效消除光源件30的外螺纹与对应内螺纹之间的间隙,可有效保障并提高光源件30的轴向位置的调节精度,可有效保障并提高红点瞄准镜的使用精度。
并且,当螺纹加工误差较大,导致光源件30的外螺纹与对应内螺纹之间配合较为松动时,基于本实施例的设置,也可有效缓解甚至避免光源件30的外螺纹与对应内螺纹之间配合出现松动的情况,进而可有效保障并提高光源件30的轴向位置的调节精度,可有效保障并提高红点瞄准镜的使用精度。
实施例九
本实施例与实施例一的区别在于:
请参阅图9、图10,在本实施例中,准直镜组40包括从物方到目方依次设置且均具有屈光能力的第一透镜41、第二透镜42和第三透镜43;第一透镜41、第二透镜42和第三透镜43设于光源件30和反射镜50之间。
基于本实施例的设置,当光源件30朝准直镜组40出射光线时,光线会先经过第一透镜41,以由第一透镜41对光线进行第一重折射,随后,光线会再经过第二透镜42,以由第二透镜42对光线进行第二重折射,随后,光线会再经过第三透镜43,以由第三透镜43对光线进行第三重折射,至此,准直镜组40可在光线抵达反射镜50之前完成对光源件30出射的光线的折射。而通过调节光源件30至第一透镜41的距离,可改变准直镜组40对光源件30出射的光线的折射效果。
实施例十
请参阅图11、图12,本申请实施例还提供一种红点瞄准镜,包括镜座10、镜框20、光源件30、反射镜50、分光棱镜60和准直镜组40。镜座10 的内部设有沿其轴向延伸形成的第一腔11;镜框20设于镜座10靠近目方的周侧,镜框20的内部设有沿其轴向贯通的第二腔21,以及连通第二腔21和第一腔11的通口22;光源件30设于第一腔11靠近物方的一端,且用于朝目方出射光线;反射镜50设于第一腔11,且与通口22对应设置;分光棱镜60设于第二腔21,分光棱镜60包括相互胶合的第一棱镜61和第二棱镜62,第一棱镜61和第二棱镜62的胶合面上设有反射膜70;准直镜组40设于第一腔11,准直镜组40包括依次设置且均具有屈光能力的第一透镜41、第二透镜42和第三透镜43,第一透镜41和第二透镜42设于光源件30和反射镜50之间,第三透镜43设于第二透镜42至分光棱镜60之间,第一透镜41和第三透镜43相对于镜座10固定,第二透镜42相对于镜座10的轴向位置可调。
在此需要说明的是,光源件30、准直镜组40和反射镜50均容纳于镜座10的第一腔11内,镜座10可对设于第一腔11的光源件30、准直镜组40和反射镜50进行可靠防护。
光源件30安装在第一腔11靠近物方的一端,且用于朝准直镜组40出射光线。基于此,由于光源件30出射的光线朝向目方,可基本避免目标从物方观察到亮点,进而可降低射手暴露的风险。其中,光源件30相对于镜座10的轴向位置确定、固定。其中,光源件30包括用于朝准直镜组40出射光线的发光元件31,以及用于支撑、固定发光元件31的灯座32,发光元件31的光轴与准直镜组40的光轴对准,发光元件31可为但不限于为LED灯。
准直镜组40安装在第一腔11的从光源件30至通口22的空间内,准直镜组40用于对光源件30出射的光线进行折射。准直镜组40包括依次设置且 均具有屈光能力的第一透镜41、第二透镜42和第三透镜43,准直镜组40可通过第一透镜41、第二透镜42和第三透镜43对光源件30出射的光线进行多重折射。具体地,如图11所示,在第一种实施方式中,第一透镜41和第二透镜42设于光源件30和反射镜50之间,第三透镜43设于通口22,基于此,当光源件30朝准直镜组40出射光线时,光线会先经过第一透镜41,以由第一透镜41对光线进行第一重折射,随后,光线会再经过第二透镜42,以由第二透镜42对光线进行第二重折射,随后,光线会抵达反射镜50并被反射镜50反射至通口22,随后,光线会经过设于通口22的第三透镜43,以由第三透镜43对光线进行第三重折射,至此,准直镜组40可完成对光源件30出射的光线的折射。请参考图9,在第二种实施方式中,第一透镜41、第二透镜42和第三透镜43设于光源件30和反射镜50之间,基于此,当光源件30朝准直镜组40出射光线时,光线会先经过第一透镜41,以由第一透镜41对光线进行第一重折射,随后,光线会再经过第二透镜42,以由第二透镜42对光线进行第二重折射,随后,光线会再经过第三透镜43,以由第三透镜43对光线进行第三重折射,至此,准直镜组40可在光线抵达反射镜50之前完成对光源件30出射的光线的折射。其中,相对于第二种实施方式,采用第一种实施方式可相对缩短红点瞄准镜的长度。
其中,第一透镜41和第三透镜43相对于镜座10固定,第二透镜42相对于镜座10的轴向位置可调,当第二透镜42至光源件30的距离为调校距离时,第二透镜42可配合第一透镜41和第三透镜43将光源件30出射的光线多重折射成近似平行光;以调校距离为基准,再带动第二透镜42朝靠近或远离光源件30的方向移动,以调节第二透镜42至光源件30的距离,即可改变 准直镜组40对光源件30出射的光线的折射效果,例如将光源件30出射的光线多重折射成发散光。
反射镜50与通口22对应设置,反射镜50倾斜于第一腔11的中轴线且倾斜于通口22的中轴线。反射镜50不具有屈光能力,主要用于将沿第一腔11传播的光线经由通口22反射、转向至分光棱镜60。
在此还需要说明的是,分光棱镜60限位容纳于镜框20的第二腔21内,镜框20可对设于第二腔21的分光棱镜60进行可靠防护。
分光棱镜60包括相互胶合的第一棱镜61和第二棱镜62。第一棱镜61和第二棱镜62的胶合面倾斜于第二腔21的中轴线且倾斜于通口22的中轴线,第一棱镜61和第二棱镜62的胶合面上设有反射膜70,反射膜70用于反射特定波长的光线并允许其他波长的光线透过,具体地,反射膜70用于将反射镜50反射的光线进一步反射至目方,并允许从第二腔21靠近物方的一端而来的目标光线透过其射向目方。其中,反射膜70可采用但不限于镀膜的方式设置在第一棱镜61的胶合面或第二棱镜62的胶合面上。
综上,本申请实施例提供的红点瞄准镜的工作原理基本为:在出厂时预先按照远距离目标进行调校。当红点瞄准镜瞄准远距离目标时,远距离目标的光将以近似平行光穿过第二腔21和反射膜70射入目方,此时,可保持第二透镜42相对于镜座10的轴向位置不变,以保障光源件30和第二透镜42之间维持调校距离,这样,光源件30所出射的光线即可经由准直镜组40的第一透镜41、第二透镜42和第三透镜43多重折射成近似平行光,并经由反射镜50反射至分光棱镜60,再经由分光棱镜60的第一棱镜61和第二棱镜62的胶合面上的反射膜70反射至目方,由此,即使人眼为了能够看清目标 而自动调节晶状体使得目标成像于视网膜,由于来源于光源件30的光线与远距离目标的光在射入目方时近似平行,来源于光源件30的光线能够与远距离目标的光在视网膜上叠加成像,进而可有效消除视差,可有效保障并提高瞄准的精准度。
反之,当红点瞄准镜瞄准近距离目标时,近距离目标的光将以具有一定发散角度的发散光穿过第二腔21和反射膜70射入目方,此时,可带动第二透镜42相对于镜座10朝远离或靠近光源件30的方向移动,以调节第二透镜42至光源件30的距离,调节准直镜组40对光源件30出射的光线的折射效果,直至“光源件30所出射的光线可经由准直镜组40的第一透镜41、第二透镜42和第三透镜43多重折射成发散光,且经由反射镜50和分光棱镜60的反射膜70多重反射至目方时的入射角度与近距离目标的光射入目方的角度近似相等”,由此,即使人眼为了能够看清目标而自动调节晶状体使得目标成像于视网膜,由于来源于光源件30的光线与近距离目标的光在射入目方时均为发散光,且射入人眼的角度近似相等,来源于光源件30的光线能够与近距离目标的光在视网膜上叠加成像,进而可有效消除视差,可有效保障并提高瞄准的精准度。
因而,本申请实施例提供的红点瞄准镜,通过将光源件30、准直镜组40、反射镜50设置在镜座10内部并将分光棱镜60设置在镜框20内部,以通过光源件30朝准直镜组40出射光线,通过准直镜组40对光源件30出射的光线进行折射,通过反射镜50和设于第一棱镜61和第二棱镜62上的反射膜70将来源于光源件30的光线多重反射至目方,基于此,即可有效保障光源件30及其出射的光线的隐蔽性,可基本避免目标从物方观察到亮点,进而可 有效降低射手暴露的风险。在此基础上,本申请实施例提供的红点瞄准镜,还可根据瞄准距离的不同,通过调节准直镜组40的第二透镜42相对于镜座10的轴向位置,以调节准直镜组40的第二透镜42至光源件30的距离,调节准直镜组40对光源件30出射的光线的折射效果,从而可促使来源于光源件30的光线与目标的光在射入目方时的入射角度近似相等、基本一致,可促使来源于光源件30的光线能够与目标的光在视网膜上叠加成像,进而可有效消除视差,可有效保障在瞄准距离不同时视差在允许范围内,可有效保障并提高瞄准的精准度。因此,本申请实施例提供的红点瞄准镜,可以应用于多种瞄准距离的场合,适应范围广。
此外,现有红点瞄准镜在瞄准近距离的目标时,由于红点瞄准镜的瞄准点成像与目标成像没有在视网膜上叠加成像,导致人眼为了能够看清其中之一成像会不断调整晶状体,这样会导致眼睛容易疲劳,导致红点瞄准镜的瞄准舒适性较差。对此,本申请实施例提供的红点瞄准镜在瞄准距离不同时,由于可调节准直镜组40的第二透镜42相对于镜座10的轴向位置、可促使来源于光源件30的光线能够与目标的光在视网膜上叠加成像,可保障人眼能够自动调节晶状体并同时看清红点瞄准镜的瞄准点成像与目标成像,从而可有效保障并提高红点瞄准镜的瞄准舒适性,可有效降低眼睛的疲劳度。
此外,现有红点瞄准镜在瞄准距离不同时会产生不同的、较大的视差,当现有红点瞄准镜靠近目方的一侧安装有倍率镜时,射手只要稍微摆头观看倍率镜,在放大的视场中都可以很明显看到红点瞄准镜的瞄准点快速移动,并非与目标对准、相对位置固定,这样会导致射手难以瞄准。对此,本申请实施例提供的红点瞄准镜在瞄准距离不同时,由于可调节准直镜组40的第二 透镜42相对于镜座10的轴向位置、可消除视差、可保障在瞄准距离不同时视差在允许范围内,当红点瞄准镜靠近目方的一侧安装有倍率镜时,即使射手摆头观看倍率镜,在放大的视场中可以看到放大一定倍率、对准、相对位置固定的红点瞄准镜的瞄准点以及目标,从而可有效保障并提高射手的瞄准精度和瞄准舒适性,因此,本申请实施例提供的红点瞄准镜尤其适用于与倍率镜一起使用,优势更凸显。
请参阅图11、图13,在本实施例中,准直镜组40还包括安装第一透镜41的第一透镜座180,以及安装第二透镜42的第二透镜座190,第一透镜座180固定安装于第一腔11,第二透镜座190滑动安装于第一腔11。
通过采用上述方案,可通过第一透镜座180安装第一透镜41,以稳定、固定第一透镜41相对于第一透镜座180的安装状态,再通过将第一透镜座180固定安装于第一腔11,而确定、固定第一透镜41相对于镜座10的安装位置和状态。
通过采用上述方案,可通过第二透镜座190安装第二透镜42,以稳定、固定第二透镜42相对于第二透镜座190的安装状态,再通过将第二透镜座190滑动安装于第一腔11,而实现在稳定第二透镜42的光轴准直的基础上,通过第二透镜座190的滑动改变第二透镜42相对于镜座10的轴向位置。
请参阅图11、图13、图14,在本实施例中,镜座10的周面设有第三安装孔12,第三安装孔12的孔底设有连通至第一腔11的第三穿孔13,第三穿孔13为沿镜座10的轴向延伸形成的腰型孔;红点瞄准镜还包括调焦机构200,调焦机构200包括调焦手轮201和拨杆202,调焦手轮201转动安装于第三安装孔12,并被限制沿第三安装孔12轴向移动,调焦手轮201靠近第三安 装孔12的孔底的端面设有曲线槽2011,曲线槽2011沿调焦手轮201的周向延伸形成,且曲线槽2011的中心线逐渐靠近调焦手轮201的中轴线,拨杆202的一端滑动连接于曲线槽2011,拨杆202的另一端穿设于第三穿孔13并与第二透镜座190连接,调焦手轮201在转动时能够带动第二透镜座190于第一腔11滑动。
在此需要说明的是,调焦手轮201安装于第三安装孔12中,被限制沿第三安装孔12轴向移动,且在外力作用下可于第三安装孔12中绕调焦手轮201的中轴线进行自转。
拨杆202的一端滑动连接于调焦手轮201的曲线槽2011,拨杆202的另一端穿过第三穿孔13并与第二透镜座190固定连接或可拆卸连接,其中,拨杆202可选与第二透镜座190螺纹连接。基于此,当调焦手轮201正向(与下文的反向为相对概念)转动时,调焦手轮201的曲线槽2011可驱使拨杆202沿曲线槽2011向靠近调焦手轮201的中轴线的一侧滑动,同时由于拨杆202穿设于第三穿孔13,第三穿孔13可对拨杆202的移动方向进行导向、约束,从而使得拨杆202可带动第二透镜座190和第二透镜42朝靠近光源件30的方向进行轴向移动。反之,当调焦手轮201反向转动时,调焦手轮201的曲线槽2011可驱使拨杆202沿曲线槽2011向远离调焦手轮201的中轴线的一侧滑动,同时由于拨杆202穿设于第三穿孔13,第三穿孔13可对拨杆202的移动方向进行导向、约束,从而使得拨杆202可带动第二透镜座190和第二透镜42朝远离光源件30的方向进行轴向移动。由此,即可通过调焦机构200快速、便捷地实现第二透镜42相对于镜座10和光源件30的轴向位置的调节。
请参阅图11、图13,在本实施例中,第三安装孔12的孔底设有第三连接孔14;调焦机构200还包括锁紧螺钉203,锁紧螺钉203的钉部穿设于调焦手轮201并与第三连接孔14螺纹连接,锁紧螺钉203的头部压紧调焦手轮201并限制调焦手轮201沿第三安装孔12轴向移动。
基于本实施例的设置,锁紧螺钉203的钉部可采用螺纹连接的方式连接于第三连接孔14,而稳定其安装位置和安装状态;在此基础上,锁紧螺钉203的头部可压紧、抵止于调焦手轮201,而将调焦手轮201限位在第三安装孔12中,锁紧螺钉203尤其可限制调焦手轮201相对于第三安装孔12轴向移动,尤其可限制调焦手轮201脱出第三安装孔12。
请参阅图11、图13,在本实施例中,红点瞄准镜还包括弹性抵持于第一透镜座180和第二透镜座190之间的第四弹簧210。
通过采用上述方案,可通过第四弹簧210沿轴向的相对两端分别弹性抵持第一透镜座180和第二透镜座190,以保障并提高第二透镜座190在相对于镜座10发生轴向移动时的移动平稳性,保障并提高第二透镜座190在调节后相对于镜座10的轴向位置的稳定性。
当拨杆202与第二透镜座190螺纹连接时,由于螺纹配合属于间隙配合,拨杆202的外螺纹与第二透镜座190的内螺纹之间存在较小间隙,导致在调节时调焦手轮201先空转以补足拨杆202和第二透镜座190之间的配合间隙,再旋转才能实现通过拨杆202带动第二透镜座190和第二透镜42相对于镜座10和光源件30轴向移动,但这个间隙以及空转的动作,都会影响调节精度。对此,通过采用上述方案,可通过第四弹簧210沿轴向的相对两端分别弹性抵持第一透镜座180和第二透镜座190,以经由第四弹簧210对第二透镜座 190的弹性抵持力,促使第二透镜座190的内螺纹与拨杆202的外螺纹相抵紧,从而可有效消除第二透镜座190的内螺纹与拨杆202的外螺纹之间的间隙,可有效保障并提高第二透镜42的轴向位置的调节精度,可有效保障并提高红点瞄准镜的使用精度。
当拨杆202与第二透镜座190螺纹连接,螺纹加工误差较大,导致拨杆202的外螺纹与第二透镜座190的内螺纹之间配合较为松动时,通过采用上述方案,可有效缓解甚至避免拨杆202的外螺纹与第二透镜座190的内螺纹之间配合出现松动的情况,进而可有效保障并提高第二透镜42的轴向位置的调节精度,可有效保障并提高红点瞄准镜的使用精度。
请参阅图11、图12,在本实施例中,光源件30的周侧凸设有第二球头33,第一腔11的腔壁凹设有第二球窝114,第二球头33铰接于第二球窝114,红点瞄准镜还包括设于光源件30靠近目方的一端的第二调节机构220,第二调节机构220用于带动光源件30转动。
在此需要说明的是,光源件30的第二球头33铰接于第二球窝114且被限制脱离第二球窝114,基于此,在光源件30的端部受力时,光源件30即可绕第二球头33进行一定幅度的平稳、可靠的转动。
第二调节机构220穿设安装于镜座10并设置在光源件30靠近目方的一端,可用于对光源件30靠近目方的一端施加作用力,以带动光源件30绕第二球头33进行可控幅度的转动,基于此,即可便捷、可控地实现将光源件30的光轴调节至与准直镜组40的光轴对准,进而可有效消除组装误差,可有效保障并提高红点瞄准镜的瞄准点的位置精度,可有效保障并提高瞄准精准度。
其中,第二调节机构220包括第二弹道调节钉221和第二风偏调节钉222,第二弹道调节钉221设于光源件30沿竖直方向上的一侧,可用于对光源件30靠近目方的一端施加竖直方向的作用力,以实现光源件30尤其光源件30的光轴在竖直方向的位移调节;第二风偏调节钉222设于光源件30沿水平方向上的一侧,可用于对光源件30靠近目方的一端施加水平作用力,以实现光源件30尤其光源件30的光轴在水平方向的位移调节。基于此,第二调节机构220即可快速、便捷地实现将光源件30的光轴调节至与准直镜组40的光轴对准。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换或改进等,均应包含在本申请的保护范围之内。

Claims (19)

  1. 一种红点瞄准镜,其特征在于,包括:
    镜座,所述镜座的内部设有沿其轴向延伸形成的第一腔,所述第一腔靠近物方的一端连通至外部;
    镜框,设于所述镜座靠近目方的周侧,所述镜框的内部设有沿其轴向贯通的第二腔,以及连通所述第二腔和所述第一腔的通口;
    光源件,设于所述第一腔靠近物方的一端,且用于朝目方出射光线,所述光源件相对于所述镜座的轴向位置可调;
    准直镜组,设于所述第一腔,且设于所述光源件靠近目方的一侧;
    反射镜,设于所述第一腔,且与所述通口对应设置;
    分光棱镜,设于所述第二腔,所述分光棱镜包括相互胶合的第一棱镜和第二棱镜,所述第一棱镜和所述第二棱镜的胶合面上设有反射膜。
  2. 如权利要求1所述的红点瞄准镜,其特征在于,所述光源件与所述镜座螺纹连接。
  3. 如权利要求1所述的红点瞄准镜,其特征在于,所述红点瞄准镜还包括设于所述第一腔靠近物方的一端的内管,以及设于所述内管靠近目方的一端的第一调节机构,所述内管的周侧凸设有第一球头,所述第一腔的腔壁凹设有第一球窝,所述第一球头铰接于所述第一球窝,所述第一调节机构用于带动所述内管转动;所述内管的内部设有沿其轴向贯通的第三腔,所述光源件设于所述第三腔,所述光源件相对于所述内管的轴向位置可调。
  4. 如权利要求3所述的红点瞄准镜,其特征在于,所述光源件与所述内管螺纹连接。
  5. 如权利要求4所述的红点瞄准镜,其特征在于,所述红点瞄准镜还包 括第一弹簧,所述第一弹簧设于所述第三腔,所述第一弹簧沿轴向的相对两端分别连接所述光源件和所述内管。
  6. 如权利要求3所述的红点瞄准镜,其特征在于,所述第三腔包括从物方到目方依次设置的第一安装孔和第一穿孔;
    所述红点瞄准镜还包括第一调节杆和第一压圈,所述第一调节杆转动安装于所述第一安装孔,所述第一压圈连接于所述内管靠近物方的一端并限制所述第一调节杆沿所述第一安装孔轴向移动,所述第一调节杆靠近目方的一端设有沿轴向延伸的第一连接孔,所述光源件的一端连接于所述第一连接孔,所述光源件的另一端穿设于所述第一穿孔,所述第一调节杆在转动时能够带动所述光源件相对于所述第一穿孔轴向移动。
  7. 如权利要求6所述的红点瞄准镜,其特征在于,所述光源件的端部螺纹连接于所述第一连接孔,所述第一穿孔为非圆孔,并限制所述光源件相对于所述第一穿孔转动;
    或,所述光源件的端部插接于所述第一连接孔,所述第一连接孔为非圆孔,并限制所述光源件相对于所述第一连接孔转动,所述光源件与所述第一穿孔螺纹连接。
  8. 如权利要求7所述的红点瞄准镜,其特征在于,所述红点瞄准镜还包括第二弹簧,所述第二弹簧设于所述第一连接孔;所述第二弹簧沿轴向的相对两端分别连接所述光源件和所述第一调节杆,或所述第二弹簧沿轴向的相对两端分别连接所述光源件和所述内管。
  9. 如权利要求1所述的红点瞄准镜,其特征在于,所述第一腔靠近物方的一端设有从物方到目方依次设置的第二安装孔和第二穿孔;
    所述红点瞄准镜还包括第二调节杆和第二压圈,所述第二调节杆转动安装于所述第二安装孔,所述第二压圈连接于所述镜座靠近物方的一端并限制所述第二调节杆沿所述第二安装孔轴向移动,所述第二调节杆靠近目方的一端设有沿轴向延伸的第二连接孔,所述光源件的一端连接于所述第二连接孔,所述光源件的另一端穿设于所述第二穿孔,所述第二调节杆在转动时能够带动所述光源件相对于所述第二穿孔轴向移动。
  10. 如权利要求9所述的红点瞄准镜,其特征在于,所述光源件的端部螺纹连接于所述第二连接孔,所述第二穿孔为非圆孔,并限制所述光源件相对于所述第二穿孔转动;
    或,所述光源件的端部插接于所述第二连接孔,所述第二连接孔为非圆孔,并限制所述光源件相对于所述第二连接孔转动,所述光源件与所述第二穿孔螺纹连接。
  11. 如权利要求10所述的红点瞄准镜,其特征在于,所述红点瞄准镜还包括第三弹簧,所述第三弹簧设于所述第二连接孔;所述第三弹簧沿轴向的相对两端分别连接所述光源件和所述第二调节杆,或所述第三弹簧沿轴向的相对两端分别连接所述光源件和所述镜座。
  12. 如权利要求1-11中任一项所述的红点瞄准镜,其特征在于,所述准直镜组包括从物方到目方依次设置且均具有屈光能力的第一透镜、第二透镜和第三透镜;
    所述第一透镜和所述第二透镜设于所述光源件和所述反射镜之间,所述第三透镜设于所述通口;
    或,所述第一透镜、所述第二透镜和所述第三透镜设于所述光源件和所 述反射镜之间。
  13. 如权利要求1-11中任一项所述的红点瞄准镜,其特征在于,所述红点瞄准镜还包括与所述光源件电连接且用于为所述光源件供电的电池和/或太阳能电池板。
  14. 一种红点瞄准镜,其特征在于,包括:
    镜座,所述镜座的内部设有沿其轴向延伸形成的第一腔;
    镜框,设于所述镜座靠近目方的周侧,所述镜框的内部设有沿其轴向贯通的第二腔,以及连通所述第二腔和所述第一腔的通口;
    光源件,设于所述第一腔靠近物方的一端,且用于朝目方出射光线;
    反射镜,设于所述第一腔,且与所述通口对应设置;
    分光棱镜,设于所述第二腔,所述分光棱镜包括相互胶合的第一棱镜和第二棱镜,所述第一棱镜和所述第二棱镜的胶合面上设有反射膜;
    准直镜组,设于所述第一腔,所述准直镜组包括依次设置且均具有屈光能力的第一透镜、第二透镜和第三透镜,所述第一透镜和所述第二透镜设于所述光源件和所述反射镜之间,所述第三透镜设于所述第二透镜至所述分光棱镜之间,所述第一透镜和所述第三透镜相对于所述镜座固定,所述第二透镜相对于所述镜座的轴向位置可调。
  15. 如权利要求14所述的红点瞄准镜,其特征在于,所述准直镜组还包括安装所述第一透镜的第一透镜座,以及安装所述第二透镜的第二透镜座,所述第一透镜座固定安装于所述第一腔,所述第二透镜座滑动安装于所述第一腔。
  16. 如权利要求15所述的红点瞄准镜,其特征在于,所述镜座的周面设 有第三安装孔,所述第三安装孔的孔底设有连通至所述第一腔的第三穿孔,所述第三穿孔为沿所述镜座的轴向延伸形成的腰型孔;
    所述红点瞄准镜还包括调焦机构,所述调焦机构包括调焦手轮和拨杆,所述调焦手轮转动安装于所述第三安装孔,并被限制沿所述第三安装孔轴向移动,所述调焦手轮靠近所述第三安装孔的孔底的端面设有曲线槽,所述曲线槽沿所述调焦手轮的周向延伸形成,且所述曲线槽的中心线逐渐靠近所述调焦手轮的中轴线,所述拨杆的一端滑动连接于所述曲线槽,所述拨杆的另一端穿设于所述第三穿孔并与所述第二透镜座连接,所述调焦手轮在转动时能够带动所述第二透镜座于所述第一腔滑动。
  17. 如权利要求16所述的红点瞄准镜,其特征在于,所述第三安装孔的孔底设有第三连接孔;
    所述调焦机构还包括锁紧螺钉,所述锁紧螺钉的钉部穿设于所述调焦手轮并与所述第三连接孔螺纹连接,所述锁紧螺钉的头部压紧所述调焦手轮并限制所述调焦手轮沿所述第三安装孔轴向移动。
  18. 如权利要求15所述的红点瞄准镜,其特征在于,所述红点瞄准镜还包括弹性抵持于所述第一透镜座和所述第二透镜座之间的第四弹簧。
  19. 如权利要求14-18中任一项所述的红点瞄准镜,其特征在于,所述光源件的周侧凸设有第二球头,所述第一腔的腔壁凹设有第二球窝,所述第二球头铰接于所述第二球窝,所述红点瞄准镜还包括设于所述光源件靠近目方的一端的第二调节机构,所述第二调节机构用于带动所述光源件转动。
PCT/CN2023/091802 2022-08-05 2023-04-28 红点瞄准镜 WO2024027245A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210937032.9 2022-08-05
CN202210937032.9A CN115371493A (zh) 2022-08-05 2022-08-05 红点瞄准镜

Publications (1)

Publication Number Publication Date
WO2024027245A1 true WO2024027245A1 (zh) 2024-02-08

Family

ID=84064640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/091802 WO2024027245A1 (zh) 2022-08-05 2023-04-28 红点瞄准镜

Country Status (2)

Country Link
CN (1) CN115371493A (zh)
WO (1) WO2024027245A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115371493A (zh) * 2022-08-05 2022-11-22 珠海市敏夫光学仪器有限公司 红点瞄准镜
CN117109366A (zh) * 2023-10-17 2023-11-24 珠海市敏夫光学仪器有限公司 一种具有夜视功能的红点枪瞄

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH667150A5 (en) * 1984-03-15 1988-09-15 Mb Microtec Ag Gunsight with light source - uses luminescent material and has mirrors to align image of reticule with target
US6967775B1 (en) * 2004-07-13 2005-11-22 Millett Industries, Inc. Zoom dot sighting system
US20090168057A1 (en) * 2007-12-31 2009-07-02 Karlheinz Gerlach Reflex sight
CN109798806A (zh) * 2019-03-15 2019-05-24 张新华 一种棱镜分光式红点枪用瞄准镜
CN213688067U (zh) * 2020-10-19 2021-07-13 南通巨浪光电科技有限公司 一种准直式可变点红点瞄准镜
CN115371493A (zh) * 2022-08-05 2022-11-22 珠海市敏夫光学仪器有限公司 红点瞄准镜

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH667150A5 (en) * 1984-03-15 1988-09-15 Mb Microtec Ag Gunsight with light source - uses luminescent material and has mirrors to align image of reticule with target
US6967775B1 (en) * 2004-07-13 2005-11-22 Millett Industries, Inc. Zoom dot sighting system
US20090168057A1 (en) * 2007-12-31 2009-07-02 Karlheinz Gerlach Reflex sight
CN109798806A (zh) * 2019-03-15 2019-05-24 张新华 一种棱镜分光式红点枪用瞄准镜
CN213688067U (zh) * 2020-10-19 2021-07-13 南通巨浪光电科技有限公司 一种准直式可变点红点瞄准镜
CN115371493A (zh) * 2022-08-05 2022-11-22 珠海市敏夫光学仪器有限公司 红点瞄准镜

Also Published As

Publication number Publication date
CN115371493A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
WO2024027245A1 (zh) 红点瞄准镜
US8984795B2 (en) Small arm dot sight device
US11788815B2 (en) Open frame reflex pivot mechanics
US7634866B2 (en) Gun site having removable adjustable modules
US7872747B2 (en) Reflex sight
KR101375457B1 (ko) 권총용 도트사이트 장치
US10598463B2 (en) Dot sighting device
JPH0273204A (ja) 可変比率ビームスプリッタ及びビームランチャ
US10655933B2 (en) Dot sight device
US8867129B2 (en) Sighting telescope
US7916290B2 (en) Coaxially arranged, off-axis optical system for a sighting device or aiming device
KR20190076084A (ko) 도트 사이트 장치
CN109798806A (zh) 一种棱镜分光式红点枪用瞄准镜
WO2016074578A1 (zh) 一种双光合一光路系统及含有该光路系统的激光瞄具
CN215261415U (zh) 一种可靠瞄准镜座
CN217980027U (zh) 红点瞄准镜
CN209821477U (zh) 一种望远镜调焦机构
KR101375373B1 (ko) 도트사이트 장착용 권총 슬라이드
CN215297825U (zh) 寻星镜及天文望远镜
CN219370055U (zh) 一种可调光阑的光纤准直装置
CN220153383U (zh) 突击步枪用棱镜转向瞄准镜
CN218627960U (zh) 可调节的红点瞄准装置
TWM578794U (zh) Inner red dot sight
US20230300303A1 (en) Lens module and projection device
CN117192760A (zh) 一种单筒双目微光夜视仪用目镜系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23848956

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023848956

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023848956

Country of ref document: EP

Effective date: 20240329