WO2024027030A1 - 煤矿顶板区域压裂源头防治冲击地压方法 - Google Patents

煤矿顶板区域压裂源头防治冲击地压方法 Download PDF

Info

Publication number
WO2024027030A1
WO2024027030A1 PCT/CN2022/128959 CN2022128959W WO2024027030A1 WO 2024027030 A1 WO2024027030 A1 WO 2024027030A1 CN 2022128959 W CN2022128959 W CN 2022128959W WO 2024027030 A1 WO2024027030 A1 WO 2024027030A1
Authority
WO
WIPO (PCT)
Prior art keywords
roof
fracturing
area
working face
preparation
Prior art date
Application number
PCT/CN2022/128959
Other languages
English (en)
French (fr)
Inventor
潘俊锋
马文涛
张晨阳
高家明
陆闯
Original Assignee
中煤科工开采研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中煤科工开采研究院有限公司 filed Critical 中煤科工开采研究院有限公司
Priority to AU2022446293A priority Critical patent/AU2022446293A1/en
Publication of WO2024027030A1 publication Critical patent/WO2024027030A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C37/00Other methods or devices for dislodging with or without loading
    • E21C37/06Other methods or devices for dislodging with or without loading by making use of hydraulic or pneumatic pressure in a borehole
    • E21C37/12Other methods or devices for dislodging with or without loading by making use of hydraulic or pneumatic pressure in a borehole by injecting into the borehole a liquid, either initially at high pressure or subsequently subjected to high pressure, e.g. by pulses, by explosive cartridges acting on the liquid
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere

Definitions

  • the present disclosure relates to the technical field of coal mining, and specifically to a method for preventing and controlling the source of fracturing in the roof area of a coal mine.
  • rockburst in the mining area may be closely related to the hard roof overlying the coal seam, which provides static load when it is suspended but not collapsed, and dynamic load when it breaks suddenly.
  • Earthbursts often occur during the local pressure relief and prevention process on mining working surfaces. Construction workers are exposed to the dangerous space for impact, and casualties are bound to occur when rockbursts occur. At present, it is difficult to accurately predict and predict the occurrence of rockbursts, but the dynamic and static load sources that induce rockbursts can be accurately spatially positioned.
  • the thick hard roof that provides the source of impact starting force is used as the target, and ground area fracturing is carried out on the roof of the coal seam in the area to be tunneled and mined, involving the entire process of development, preparation, and mining, "press first, then press” “excavation”, “pressure first and then mining”, the artificial liberation layer can reduce the original rock stress and structural stress level in the area where the tunnel is to be tunneled and mined in advance, so that the area of the tunnel to be tunneled and mined is in the pressure relief protection zone, so as to prevent and control the impact of ground pressure at the source. method.
  • existing partial pressure relief measures are difficult to effectively eliminate the problem of impact disasters.
  • the purpose of this disclosure is to provide a method for preventing and controlling rockburst sources in the coal mine roof area to solve the problem of severe rockburst disasters in coal mines and the difficulty in effectively eliminating rockburst disasters through local pressure relief measures.
  • the present disclosure discloses a method for preventing and controlling the source of fracturing in the roof area of a coal mine, which includes:
  • the roof fracturing target layer includes the development road roof of the development road, the preparation road roof of the preparation road and the mining working face roof of the mining working face;
  • determining the target layer and location for roof fracturing includes the following steps:
  • Thick hard roofs are provided above the area for developing the main road and the area for preparing the main road, respectively forming the main road development roof and the main preparation roof.
  • the main development roof and the main preparation roof serve as the roof of the area to be excavated. Fracturing target horizon; and
  • a thick hard roof plate is arranged above the area of the mining working face to form a roof of the mining working face, and the roof of the mining working face serves as the roof fracturing target layer of the working face area.
  • the target layer for roof fracturing in the area to be tunneled is a sandstone layer 40m above the coal seam and 10m thick.
  • the target layer for roof fracturing in the working face area is a sandstone layer 50m above the coal seam and 10m thick.
  • the fracturing and excavation of the roof of the development roadway include the following steps:
  • the preparation for fracturing and excavation of the roadway roof includes the following steps:
  • the roof above the preparation roadway area is subjected to ground hydraulic fracturing until fracturing cracks are generated, and then the preparation roadway is dug within the fracturing range of the preparation roadway roof.
  • the fracturing, excavation and mining of the roof of the mining working face include the following steps:
  • the area of the main road is located below the shaft and transversely across the shaft, and the area of the main road is connected to the area of the mining face through the area of the preparation road.
  • the development alley area includes multiple parallel development alleys, the spacing between adjacent development alleys is 40m, and the design length of each development alley is 4000m.
  • the preparation alley area includes multiple parallel preparation alleys, the spacing between adjacent preparation alleys is 35m, and the design length of each preparation alley is 3000m.
  • the inclination length of the mining working face is 200m and the strike length is 2000m.
  • the present invention discloses a method for preventing and controlling the source of fracturing in the coal mine roof area by using ground hydraulic fracturing to pre-crack the roof area above the area where the development roadway, preparation roadway and mining working face are located, so as to facilitate the tunneling and mining work.
  • the overlying thick hard roof is weakened as a whole, proactively and proactively reducing the original rock stress and tectonic stress levels in the area where the tunnel is to be tunneled and mined from the source. Tunnel tunneling and working face mining can be carried out within the range covered by roof fracturing.
  • Tunnel tunneling and mining During the mining period, the working face is in a low-stress area and is in a protected state, thereby achieving safe tunnel excavation and safe mining of the working face in the low-stress area, involving the entire process of development, preparation, and mining, and preventing and controlling rock bursts at the source.
  • Figure 1 is a schematic diagram of the roof fracturing of the Kaifeng roadway before tunneling according to the present disclosure
  • Figure 2 is a schematic diagram of the roof fracturing of the preparation roadway before the preparation roadway excavation according to the present disclosure
  • Figure 3 is a schematic diagram of fracturing of the roof of the mining working face before mining of the mining working face of the present disclosure.
  • the present disclosure discloses a method for preventing and controlling the source of fracturing in the roof area of a coal mine to prevent and control rock bursts. Since the prevention and control of rock bursts is often in a passive state, in order to solve the problem that coal mine rock burst disasters are severe and local pressure relief measures are difficult to effectively eliminate the rock burst disasters, Ground hydraulic fracturing is performed on the thick hard roofs covering the development lanes, preparation lanes and mining working surfaces, so that the thick hard roofs covering the tunneling tunnels and mining working faces 4 can be weakened as a whole, proactively and proactively reducing the number of tunnels to be tunneled from the source. and the original rock stress and structural stress level in the mining area, making it a low-stress area, thereby achieving safe excavation of the development road 2 and preparation road 3, safe mining of the mining working face 4, and preventing and controlling rock bursts at the source.
  • This application provides a method for preventing and controlling the source of fracturing in the roof area of a coal mine.
  • the method of this application will be described in detail below with reference to Figures 1-3.
  • the method includes the following steps:
  • Step A Determine the target layer and location of the roof fracturing, where the target layer for roof fracturing includes the development roadway roof 51, the preparation roadway roof 52 and the mining working face roof 53.
  • Step A1 Based on the layout of the roadway and working face and the borehole histogram, determine the overlying thick hard roof plate of the development roadway 2, the preparation roadway 3, and the mining working face 4 as the fracturing area.
  • the area of the development alley 2 is located below the wellbore 1 and passes transversely through the wellbore 1.
  • the area of the development alley 2 and the area of the mining face 4 are connected through the area of the preparation alley 3.
  • the area of Kaifu Avenue 2 includes three parallel Kaifu Avenue 2.
  • the distance between adjacent Kaifu Avenue 2 is 40m, and the design length of each Kaituo Avenue 2 is 4000m.
  • the area of preparation streets 3 includes three parallel preparation streets 3.
  • the distance between adjacent preparation streets 3 is 35m, and the design length of each preparation street 3 is 3000m.
  • the area where the main road 2 is developed and the area where the main road 3 is prepared are the areas to be excavated.
  • the inclination length of the mining working face 4 is 200m, and the strike length is 2000m.
  • the area of the mining working face 4 is the area to be mined.
  • Step A2 Set a thick hard roof above the area of the development alley 2 and the area of the preparation alley 3 to form the development alley roof 51 and the preparation alley roof 52 respectively.
  • the development alley roof 51 and the preparation alley 52 The roof 52 is used as the target layer for roof fracturing in the area to be excavated in the tunnel.
  • the target layer for roof fracturing in the area to be excavated is a sandstone layer 40m above the coal seam and 10m thick; a thick hard roof is set above the area to be mined to form a mining operation.
  • Working face roof 53, the mining working face roof 53 serves as the working face roof fracturing target layer, and the working face roof fracturing target layer is a sandstone layer 50m above the coal seam and 10m thick.
  • Step B Exploit fracturing and excavation of the roadway roof 51, as shown in Figure 1.
  • Step B1 Based on the design spacing and length of the development alley 2, determine the layout and direction of the ground horizontal wells on the roof 51 of the development alley.
  • the number of horizontal wells on the ground is determined to be 4, they should be arranged along the direction of Kaifeng Avenue 2.
  • Step B2 Design the fracturing range of the development roadway roof 51 to ensure that the fracturing range of the development roadway roof 51 can cover the excavation area of the development roadway 2 to avoid the existence of pre-cracking blind spots.
  • Step B3 Perform fracturing on the roof above the development roadway 2 area until the fracturing crack 50 is generated, carry out the construction of the shaft 1, and then dig the development roadway 2 within the fracturing range of the development roadway roof 51.
  • Step C Prepare for fracturing and excavation of the roadway roof 52, as shown in Figure 2.
  • Step C1 Based on the design spacing and length of the preparation alley 3, determine the layout and direction of the horizontal wells on the ground of the preparation alley roof 52.
  • the number of horizontal wells on the ground is determined to be 3, they should be arranged along the direction of preparation road 3.
  • Step C2 Design the fracturing range of the preparation roadway roof 52 to ensure that the fracturing range of the preparation roadway roof 52 can cover the excavation area of the preparation roadway 3 to avoid the existence of pre-cracking blind spots.
  • Step C3 Perform fracturing on the roof above the preparation roadway 3 area until the fracturing crack 50 is generated, and then dig the preparation roadway 3 within the fracturing range of the preparation roadway roof 52.
  • Step D Fracturing and mining of the roof 53 of the mining working face, as shown in Figure 3.
  • Step D1 According to the designed trend length and inclination length of the mining working face 4, determine the layout and direction of the ground horizontal wells on the roof 53 of the mining working face.
  • the number of horizontal wells on the surface is determined to be two, they should be arranged along the direction of the mining working face 4.
  • Step D2 Design the fracturing range of the mining working face roof 53 to ensure that the fracturing range of the mining working face roof 53 can cover the mining area of the mining working face 4 to avoid pre-fracturing blind spots.
  • Step D3 fracturing the roof above the area of the mining working face 4 until fracturing cracks 50 are generated, then digging into the mining working face 4 within the fracturing coverage area and carrying out mining.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)
  • Lining And Supports For Tunnels (AREA)

Abstract

公开了一种煤矿顶板区域压裂源头防治冲击地压方法,包括:确定顶板压裂目标层及位置,其中顶板压裂目标层包括开拓大巷(2)的开拓大巷顶板(51)、准备大巷(3)的准备大巷顶板(52)和回采工作面(4)的回采工作面顶板(53);开拓大巷顶板的压裂及掘进;准备大巷顶板的压裂及掘进;回采工作面顶板的压裂、掘进及回采。

Description

煤矿顶板区域压裂源头防治冲击地压方法
相关申请的交叉引用
本申请基于申请号为202210926215.0、申请日为2022年8月3日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及煤矿开采技术领域,具体涉及一种煤矿顶板区域压裂源头防治冲击地压方法。
背景技术
矿区冲击地压的发生可能与煤层上覆的坚硬顶板密切相关,当悬而不垮时提供静载荷,当突然破断时提供动载荷。冲击地压多发生在采掘工作面局部卸压防治过程中,施工人员暴露在冲击危险空间,发生冲击地压时势必造成人员伤亡。目前,冲击地压发生难以实现精准预测、预报,但是诱发冲击地压的动、静载荷源能够做到准确空间定位。
巷道掘进、工作面回采前,以提供冲击启动力源的厚硬顶板为靶点,针对待掘进、回采区域煤层的顶板开展地面区域压裂,涉及开拓、准备、回采全过程,“先压后掘”,“先压后采”,人造解放层,超前降低巷道待掘进、回采区域原岩应力及构造应力水平,使得巷道待掘进、回采区域处于卸压保护带,以实现源头防治冲击地压方法。目前现有局部卸压措施难以有效消除冲击灾害的问题。
发明内容
本公开的目的在于提供一种煤矿顶板区域压裂源头防治冲击地压方法,用以解决煤矿冲击地压灾害形式严峻、局部卸压措施难以有效消除冲击灾害的问题。
本公开公开了一种冲煤矿顶板区域压裂源头防治冲击地压方法,包括:
确定顶板压裂目标层及位置,其中顶板压裂目标层包括开拓大巷的开拓大巷顶板、准备大巷的准备大巷顶板和回采工作面的回采工作面顶板;
开拓大巷顶板的压裂及掘进;
准备大巷顶板的压裂及掘进;和
回采工作面顶板的压裂、掘进及回采。
可选地,所述确定顶板压裂目标层及位置包括以下步骤:
根据巷道、工作面布置情况及钻孔柱状图,确定开拓大巷、准备大巷、回采工作面的上覆厚硬顶板作为压裂区域;
在开拓大巷的区域和准备大巷的区域的上方设置厚硬顶板分别形成开拓大巷顶板和准备大巷顶板,所述开拓大巷顶板和所述准备大巷顶板作为巷道待掘进区域的顶板压裂目标层位;和
在回采工作面的区域的上方设置厚硬顶板形成回采工作面顶板,所述回采工作面顶板作为工作面区域的顶板压裂目标层。
可选地,巷道待掘进区域的顶板压裂目标层位为煤层上方40m、厚度10m的砂岩层。
可选地,工作面区域的顶板压裂目标层位为煤层上方50m、厚度10m的砂岩层。
可选地,所述开拓大巷顶板的压裂及掘进包括以下步骤:
根据开拓大巷的设计间距和长度,确定开拓大巷顶板的地面水平井布置及走向;
设计开拓大巷顶板的压裂范围,确保开拓大巷顶板的压裂范围能够覆盖开拓大巷的掘进区域,以避免存在预裂盲区;
对开拓大巷区域上方的顶板实施地面水力压裂,直至产生压裂裂缝,开展井筒施工,再于开拓大巷顶板的压裂范围掘进开拓大巷。
可选地,所述准备大巷顶板的压裂及掘进包括以下步骤:
根据准备大巷的设计间距和长度,确定准备大巷顶板的地面水平井布置及走向;
设计准备大巷顶板的压裂范围,确保准备大巷顶板的压裂范围能够覆盖准备大巷的掘进区域,以避免存在预裂盲区;
准备大巷区域上方的顶板实施地面水力压裂,直至产生压裂裂缝,再于准备大巷顶板的压裂范围掘进准备大巷。
可选地,所述回采工作面顶板的压裂、掘进及回采包括以下步骤:
根据回采工作面的设计走向长度和倾向长度,确定回采工作面顶板的地面水平井布置及走向;
设计回采工作面顶板的压裂范围,确保回采工作面顶板的压裂范围能够覆盖回采工作面的回采区域,以避免存在预裂盲区。
对回采工作面区域上方的顶板实施地面水力压裂,直至产生压裂裂缝,再于回采工作面顶板的压裂范围掘进回采工作面,并进行回采。
可选地,开拓大巷的区域位于井筒下方并横向穿过井筒,并且开拓大巷的区域与回采工作面的区域通过准备大巷的区域连通。
可选地,开拓大巷的区域包括多条平行的开拓大巷,相邻开拓大巷之间的间距为40m, 每条开拓大巷的设计长度为4000m。
可选地,准备大巷的区域包括多条平行的准备大巷,相邻准备大巷之间的间距为35m,每条准备大巷的设计长度为3000m。
可选地,回采工作面的倾向长度为200m,走向长度2000m。
与现有技术相比,本公开的有益效果是:
本公开一种煤矿顶板区域压裂源头防治冲击地压方法,通过采用地面水力压裂对开拓大巷、准备大巷和回采工作面所在区域上方的顶板区域实施预裂,使掘进巷道和回采工作面上覆的厚硬顶板整体弱化,从源头上主动、超前降低巷道待掘进、回采区域原岩应力及构造应力水平,在顶板压裂能覆盖的范围进行巷道掘进及工作面回采,巷道掘进及工作面回采期间均处于低应力区,属于被保护状态,从而在低应力区域实现巷道安全掘进、工作面安全回采,涉及开拓、准备、回采全过程,实现源头防治冲击地压。
附图说明
图1为本公开的开拓大巷掘进前的开拓大巷顶板压裂的示意图;
图2为本公开的准备大巷掘进前的准备大巷顶板压裂的示意图;
图3为本公开的回采工作面回采前的回采工作面顶板压裂的示意图。
附图标记说明:
1-井筒,2-开拓大巷,3-准备大巷,4-回采工作面,50-压裂裂缝,51-开拓大巷顶板,52-准备大巷顶板,53-回采工作面顶板。
具体实施方式
以下实施例用于说明本公开,但不用来限制本公开的范围。
本公开公开了一种煤矿顶板区域压裂源头防治冲击地压方法,由于冲击地压防治往往处于被动状态,为了解决煤矿冲击地压灾害形式严峻、局部卸压措施难以有效消除冲击灾害的问题,对开拓大巷、准备大巷和回采工作面上覆厚硬顶板实施地面水力压裂,使掘进巷道及回采工作面4上覆厚硬顶板得到整体弱化,从源头上主动、超前降低巷道待掘进和回采区域的原岩应力及构造应力水平,使之成为低应力区域,从而实现开拓大巷2和准备大巷3的安全掘进、回采工作面4的安全回采,实现源头防治冲击地压。
本申请提供一种煤矿顶板区域压裂源头防治冲击地压方法,下面结合图1-3对本申请的方法进行详细说明。该方法包括以下步骤:
步骤A:确定顶板压裂目标层及位置,其中顶板压裂目标层包括开拓大巷顶板51、准备大巷顶板52和回采工作面顶板53。
步骤A1:根据巷道、工作面布置情况及钻孔柱状图,确定开拓大巷2、准备大巷3、回采工作面4的上覆厚硬顶板作为压裂区域。
具体地,参考图1至图3,开拓大巷2的区域位于井筒1下方,并横向穿过井筒1,开拓大巷2的区域与回采工作面4的区域通过准备大巷3的区域连通。
其中,开拓大巷2的区域包括三条平行的开拓大巷2,相邻开拓大巷2之间的间距为40m,每条开拓大巷2设计长度为4000m。
其中,准备大巷3的区域包括三条平行的准备大巷3,相邻准备大巷3之间的间距为35m,每条准备大巷3的设计长度为3000m。
其中,开拓大巷2的区域和准备大巷3的区域为巷道待掘进区域。
其中,回采工作面4的倾向长度200m,走向长度2000m。
其中,回采工作面4的区域为待回采区域。
步骤A2:在开拓大巷2的区域和准备大巷3的区域的上方设置厚硬顶板分别形成开拓大巷顶板51和准备大巷顶板52,所述开拓大巷顶板51和所述准备大巷顶板52作为巷道待掘进区域的顶板压裂目标层位,所述巷道待掘进区域的顶板压裂目标层位为煤层上方40m、厚度10m的砂岩层;在待回采区域上方设置厚硬顶板形成回采工作面顶板53,所述回采工作面顶板53作为工作面顶板压裂目标层,所述工作面顶板压裂目标层位为煤层上方50m、厚度10m的砂岩层。
步骤B:开拓大巷顶板51的压裂及掘进,如图1所示。
步骤B1:根据开拓大巷2的设计间距和长度,确定开拓大巷顶板51的地面水平井布置及走向。
具体地,如确定地面水平井数量为4个,沿开拓大巷2走向方向布置。
步骤B2:设计开拓大巷顶板51的压裂范围,确保开拓大巷顶板51的压裂范围能够覆盖开拓大巷2的掘进区域,以避免存在预裂盲区。
步骤B3:对开拓大巷2区域上方的顶板实施压裂,直至产生压裂裂缝50,开展井筒1施工,再于开拓大巷顶板51的压裂范围掘进开拓大巷2。
步骤C:准备大巷顶板52的压裂及掘进,如图2所示。
步骤C1:根据准备大巷3的设计间距和长度,确定准备大巷顶板52的地面水平井布置及走向。
具体地,如确定地面水平井数量3个,沿准备大巷3走向方向布置。
步骤C2:设计准备大巷顶板52的压裂范围,确保准备大巷顶板52的压裂范围能够覆盖准备大巷3的掘进区域,以避免存在预裂盲区。
步骤C3:对准备大巷3区域上方的顶板实施压裂,直至产生压裂裂缝50,再于准备大巷 顶板52的压裂范围掘进准备大巷3。
步骤D:回采工作面顶板53的压裂及回采,如图3所示。
步骤D1:根据回采工作面4的设计走向长度和倾向长度,确定回采工作面顶板53的地面水平井布置及走向。
具体地,如确定地面水平井数量2个,沿回采工作面4走向方向布置。
步骤D2:设计回采工作面顶板53的压裂范围,确保回采工作面顶板53的压裂范围能够覆盖回采工作面4的回采区域,以避免存在预裂盲区。
步骤D3:对回采工作面4区域上方的顶板实施压裂,直至产生压裂裂缝50,再于压裂覆盖范围掘进回采工作面4,并进行回采。
虽然,上文中已经用一般性说明及具体实施例对本公开作了详尽的描述,但在本公开基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本公开精神的基础上所做的这些修改或改进,均属于本公开要求保护的范围。

Claims (11)

  1. 一种煤矿顶板区域压裂源头防治冲击地压方法,包括:
    确定顶板压裂目标层及位置,其中顶板压裂目标层包括开拓大巷(2)的开拓大巷顶板(51)、准备大巷(3)的准备大巷顶板(52)和回采工作面(4)的回采工作面顶板(53);
    开拓大巷顶板(51)的压裂及掘进;
    准备大巷顶板(52)的压裂及掘进;
    回采工作面顶板(53)的压裂、掘进及回采。
  2. 根据权利要求1所述的方法,其中所述确定顶板压裂目标层及位置包括以下步骤:
    根据巷道、工作面布置情况及钻孔柱状图,确定开拓大巷(2)、准备大巷(3)、回采工作面(4)的上覆厚硬顶板作为压裂区域;
    在开拓大巷(2)的区域和准备大巷(3)的区域的上方设置厚硬顶板分别形成开拓大巷顶板(51)和准备大巷顶板(52),所述开拓大巷顶板(51)和所述准备大巷顶板(52)作为巷道待掘进区域的顶板压裂目标层位;和
    在回采工作面(4)的区域的上方设置厚硬顶板形成回采工作面顶板(53),所述回采工作面顶板(53)作为工作面区域的顶板压裂目标层。
  3. 根据权利要求2所述的方法,其中所述巷道待掘进区域的顶板压裂目标层位为煤层上方40m、厚度10m的砂岩层。
  4. 根据权利要求2或3所述的方法,其中所述工作面区域的顶板压裂目标层位为煤层上方50m、厚度10m的砂岩层。
  5. 根据权利要求1至4中任一项所述的方法,其中所述开拓大巷顶板(51)的压裂及掘进包括以下步骤:
    根据开拓大巷(2)的设计间距和长度,确定开拓大巷顶板(51)的地面水平井布置及走向;
    设计开拓大巷顶板(51)的压裂范围,确保开拓大巷顶板(51)的压裂范围能够覆盖开拓大巷(2)的掘进区域,以避免存在预裂盲区;
    对开拓大巷(2)区域上方的顶板实施地面水力压裂,直至产生压裂裂缝(50),开展井筒(1)施工,再于开拓大巷顶板(51)的压裂范围掘进开拓大巷(2)。
  6. 根据权利要求1至5中任一项所述的方法,其中所述准备大巷顶板(52)的压裂及掘进包括以下步骤:
    根据准备大巷(3)的设计间距和长度,确定准备大巷顶板(52)的地面水平井布置及走向;
    设计准备大巷顶板(52)的压裂范围,确保准备大巷顶板(52)的压裂范围能够覆盖准 备大巷(3)的掘进区域,以避免存在预裂盲区;
    准备大巷(3)区域上方的顶板实施地面水力压裂,直至产生压裂裂缝(50),再于准备大巷顶板(52)的压裂范围掘进准备大巷(3)。
  7. 根据权利要求1至6中任一项所述的方法,其中所述回采工作面顶板(53)的压裂、掘进及回采包括以下步骤:
    根据回采工作面(4)的设计走向长度和倾向长度,确定回采工作面顶板(53)的地面水平井布置及走向;
    设计回采工作面顶板(53)的压裂范围,确保回采工作面顶板(53)的压裂范围能够覆盖回采工作面(4)的回采区域,以避免存在预裂盲区;
    对回采工作面(4)区域上方的顶板实施地面水力压裂,直至产生压裂裂缝(50),再于回采工作面顶板(53)的压裂范围掘进回采工作面(4),并进行回采。
  8. 根据权利要求1至7中任一项所述的方法,其中所述开拓大巷(2)的区域位于井筒(1)下方并横向穿过所述井筒(1),并且开拓大巷(2)的区域与所述回采工作面(4)的区域通过所述准备大巷(2)的区域连通。
  9. 根据权利要求1至8中任一项所述的方法,其中所述开拓大巷(2)的区域包括多条平行的开拓大巷(2),相邻开拓大巷(2)之间的间距为40m,每条开拓大巷(2)的设计长度为4000m。
  10. 根据权利要求1至9中任一项所述的方法,其中所述准备大巷(3)的区域包括多条平行的准备大巷(3),相邻准备大巷(3)之间的间距为35m,每条准备大巷(3)的设计长度为3000m。
  11. 根据权利要求1至10中任一项所述的方法,其中所述回采工作面(4)的倾向长度为200m,走向长度2000m。
PCT/CN2022/128959 2022-08-03 2022-11-01 煤矿顶板区域压裂源头防治冲击地压方法 WO2024027030A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2022446293A AU2022446293A1 (en) 2022-08-03 2022-11-01 Method for preventing and controlling rock burst from source by fracturing roof region of coal mine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210926215.0A CN115288681A (zh) 2022-08-03 2022-08-03 一种煤矿顶板区域压裂源头防治冲击地压方法
CN202210926215.0 2022-08-03

Publications (1)

Publication Number Publication Date
WO2024027030A1 true WO2024027030A1 (zh) 2024-02-08

Family

ID=83826490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128959 WO2024027030A1 (zh) 2022-08-03 2022-11-01 煤矿顶板区域压裂源头防治冲击地压方法

Country Status (3)

Country Link
CN (1) CN115288681A (zh)
AU (1) AU2022446293A1 (zh)
WO (1) WO2024027030A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116049964B (zh) * 2023-02-08 2024-02-13 中煤科工开采研究院有限公司 一种新建矿井人造解放层防冲方法
CN116167223B (zh) * 2023-02-08 2024-02-13 中煤科工开采研究院有限公司 一种人造解放层确定方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU836364A1 (ru) * 1979-07-26 1981-06-07 Институт Горной Механики Им. Г.А.Цулукидзе Ah Грузинской Ccp Способ предотвращени динамических ВлЕНий пРи РАзРАбОТКЕ угОльНыХплАСТОВ
CN109736805A (zh) * 2018-12-12 2019-05-10 天地科技股份有限公司 一种厚层坚硬顶板改性卸压源头治理冲击地压的方法
CN111305876A (zh) * 2020-03-27 2020-06-19 天地科技股份有限公司 深部巷道锚固-劈裂注浆-水力压裂卸压协同控制方法
CN113236360A (zh) * 2021-06-29 2021-08-10 中煤科工开采研究院有限公司 开拓巷道群冲击地压防治方法
CN113404535A (zh) * 2021-07-07 2021-09-17 陕西彬长孟村矿业有限公司 一种煤矿井上下水力压裂防治冲击地压的方法
CN114837662A (zh) * 2022-04-22 2022-08-02 山东科技大学 一种基于煤体卸压和顶板预裂的卸-裂-支协同防冲方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU836364A1 (ru) * 1979-07-26 1981-06-07 Институт Горной Механики Им. Г.А.Цулукидзе Ah Грузинской Ccp Способ предотвращени динамических ВлЕНий пРи РАзРАбОТКЕ угОльНыХплАСТОВ
CN109736805A (zh) * 2018-12-12 2019-05-10 天地科技股份有限公司 一种厚层坚硬顶板改性卸压源头治理冲击地压的方法
CN111305876A (zh) * 2020-03-27 2020-06-19 天地科技股份有限公司 深部巷道锚固-劈裂注浆-水力压裂卸压协同控制方法
CN113236360A (zh) * 2021-06-29 2021-08-10 中煤科工开采研究院有限公司 开拓巷道群冲击地压防治方法
CN113404535A (zh) * 2021-07-07 2021-09-17 陕西彬长孟村矿业有限公司 一种煤矿井上下水力压裂防治冲击地压的方法
CN114837662A (zh) * 2022-04-22 2022-08-02 山东科技大学 一种基于煤体卸压和顶板预裂的卸-裂-支协同防冲方法

Also Published As

Publication number Publication date
AU2022446293A1 (en) 2024-02-22
CN115288681A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
CN110939442B (zh) 一种地面压裂区域卸压源头治理冲击地压的方法
WO2024027030A1 (zh) 煤矿顶板区域压裂源头防治冲击地压方法
CN103821558B (zh) 煤矿采空区充填采矿及沿空留巷充填工艺
Konicek et al. Heavy rockbursts due to longwall mining near protective pillars: a case study
Sharafat et al. Controlled blasting in underground construction: A case study of a tunnel plug demolition in the Neelum Jhelum hydroelectric project
WO2011103620A1 (en) A method of reducing subsidence or windblast impacts from longwall mining
WO2023273091A1 (zh) 开拓巷道群冲击地压防治方法
CN103216264B (zh) 预裂爆破回采巷道基本顶岩层控制围岩变形的方法
AU2021106168A4 (en) High-gas Coal Seam Group Pressure Relief Mining Method Based on Gob-side Entry Retaining in the First Mining Whole Rock Pressure Relief Working Face
CN110344831A (zh) 切顶卸压无煤柱沿空自成巷留巷方法
Zhu et al. Mechanisms of support failure and prevention measures under double-layer room mining gobs–a case study: Shigetai coal mine
CN115680658A (zh) 一种冲击地压源头防治方法
CN115030722A (zh) 一种采空区滞后充填高效保水采煤方法
Li et al. Trial of small gateroad pillar in top coal caving longwall mining of large mining height
Nehrii et al. Analyzing kinetics of deformation of boundary rocks of mine workings
Huang et al. Field experiment of destress hydraulic fracturing for controlling the large deformation of the dynamic pressure entry heading adjacent to the advancing longwall face
RU2109948C1 (ru) Способ оптимизированной ориентации очистных забоев, в частности на каменноугольном месторождении
CN116049964B (zh) 一种新建矿井人造解放层防冲方法
CN116050171B (zh) 一种掘进巷道人造解放层防冲方法
CN116258000A (zh) 一种人造解放层防冲方法
CN115929304A (zh) 一种回采工作面人造解放层防冲方法
Konicek Destressing
CN114575844A (zh) 基于双巷掘进的巷道顶板分段卸压与加固控制方法
RU2755287C1 (ru) Способ разработки тонких и маломощных крутопадающих рудных тел
CN110823031A (zh) 一种浅埋隧道的爆破施工方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022446293

Country of ref document: AU

Date of ref document: 20221101

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953821

Country of ref document: EP

Kind code of ref document: A1