WO2024026698A1 - 一种用户设备接入移动网络的方法及其装置 - Google Patents

一种用户设备接入移动网络的方法及其装置 Download PDF

Info

Publication number
WO2024026698A1
WO2024026698A1 PCT/CN2022/109811 CN2022109811W WO2024026698A1 WO 2024026698 A1 WO2024026698 A1 WO 2024026698A1 CN 2022109811 W CN2022109811 W CN 2022109811W WO 2024026698 A1 WO2024026698 A1 WO 2024026698A1
Authority
WO
WIPO (PCT)
Prior art keywords
access
user equipment
satellite
trusted
network
Prior art date
Application number
PCT/CN2022/109811
Other languages
English (en)
French (fr)
Inventor
沈洋
毛玉欣
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280002733.1A priority Critical patent/CN117813802A/zh
Priority to PCT/CN2022/109811 priority patent/WO2024026698A1/zh
Publication of WO2024026698A1 publication Critical patent/WO2024026698A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems

Definitions

  • the present disclosure relates to the field of communication technology, and in particular, to a method and apparatus for user equipment to access a mobile network.
  • a satellite is a spaceborne vehicle carrying a bent pipe payload or a regenerative payload telecommunications transmitter, usually placed in low orbit (LEO) at an altitude of 300 kilometers to 2,000 kilometers and in an altitude of 8,000 to 20,000 kilometers in the Medium Earth Orbit (MEO), or in the Geostationary Earth Orbit (GEO) at an altitude of 35,786 kilometers.
  • LEO low orbit
  • MEO Medium Earth Orbit
  • GEO Geostationary Earth Orbit
  • satellite NG-RAN Next Generation Radio Access Network
  • NR New Generation Radio Access Network
  • Air interface provides NG-RAN with satellite access to UE (User Equipment).
  • UE should support NR access to 3GPP network through satellite.
  • 5G Fifth Generation Mobile Communication Technology
  • the radio access network is satellite NG-RAN or non-3GPP satellite access. into the network, or both.
  • Embodiments of the present disclosure provide a method and device for user equipment to access a mobile network. Satellite terminals that do not support NR are connected to the mobile network through an untrusted or trusted non-3rd Generation Partnership Project 3GPP access network. network so that mobile networks can provide services to satellite terminals that do not support NR.
  • embodiments of the present disclosure provide a method for user equipment to access a mobile network.
  • the method is executed by the user equipment.
  • the method includes:
  • the user equipment is a satellite terminal that does not support new air interface NR, and the user equipment has satellite access and non-access layer NAS capabilities.
  • satellite terminals that do not support NR are connected to the mobile network through untrusted or trusted non-3GPP access networks, so that the mobile network can provide services for satellite terminals that do not support NR.
  • the user equipment is accessed to the mobile network through an untrusted non-3GPP access network, including:
  • An Internet Security Protocol IPsec tunnel is established with the selected N3IWF, and during the IPsec tunnel establishment process, the user equipment will be authenticated by the 5G core network and attached to the 5G core network.
  • the user equipment is accessed to the mobile network through a trusted non-3GPP access network, including:
  • the link between the user equipment and the trusted non-3GPP access network is a data link that supports EAP encapsulation;
  • the trusted non-3GPP access network includes a trusted non-3GPP access point and Trusted non-3GPP gateway function, the interface between the trusted non-3GPP access point and the trusted non-3GPP gateway function is an AAA interface.
  • connection between the user equipment and the trusted non-3GPP access point is a satellite connection between the user equipment and a satellite.
  • accessing the user equipment to the mobile network through an untrusted or trusted non-3rd Generation Partnership Project 3GPP access network includes: according to the user equipment Pre-configured information in the user equipment is selected to access the mobile network through an untrusted or trusted non-3GPP access network.
  • the non-3GPP access network is a satellite access network; the preconfiguration information includes combination information of the satellite access and 5G core network.
  • embodiments of the present disclosure provide another method for user equipment to access a mobile network.
  • the method is executed by the non-3rd Generation Partnership Project 3GPP interworking function N3IWF.
  • the method includes:
  • the user equipment is a satellite terminal that does not support new air interface NR, and the user equipment has satellite access and non-access layer NAS capabilities.
  • user equipment connected to an untrusted non-3GPP access network (satellite terminals that do not support NR) is connected to the mobile network through N3IWF, so that the mobile network can provide satellite terminals that do not support NR.
  • N3IWF wireless local area network
  • the non-3GPP access network is satellite access.
  • the method further includes: sending a request to the access network in the N2 message. Enter the radio access type RAT type sent by the AMF with the mobility management function.
  • the RAT type includes at least one of the following types:
  • embodiments of the present disclosure provide another method for user equipment to access a mobile network.
  • the method is executed by the access and mobility management function AMF.
  • the method includes:
  • the user equipment is a satellite terminal that does not support new air interface NR, and the user equipment has satellite access and non-access layer NAS capabilities.
  • user equipment (satellite terminals that do not support NR) connected to untrusted or trusted non-3GPP access networks are authenticated through AMF, so that the satellite terminals that do not support NR are accessed through N3IWF to the mobile network so that the mobile network can provide services for satellite terminals that do not support NR.
  • the method further includes: when authenticating a user equipment connected to an untrusted non-3GPP access network, receiving the radio access type RAT type sent by the N3IWF in the N2 message; or
  • the radio access type RAT type sent by the trusted non-3GPP gateway function in the non-3GPP access network in the N2 message is received.
  • the method further includes: when registering with the Unified Data Management UDM, providing the UDM with an access type and a RAT type set as non-3GPP access according to the first RAT type.
  • the access type of the non-3GPP access is satellite access.
  • the first RAT type is the RAT type received by the AMF; or, the first RAT type is configured between an untrusted satellite access network and the AMF. RAT type.
  • the RAT type includes at least one of the following types:
  • embodiments of the present disclosure provide another method for user equipment to access a mobile network.
  • the method is executed by a trusted non-3rd Generation Partnership Project 3GPP access network.
  • the method includes:
  • the user equipment is a satellite terminal that does not support new air interface NR, and the user equipment has satellite access and non-access layer NAS capabilities.
  • satellite terminals that do not support NR are connected to the mobile network through a trusted non-3GPP access network, so that the mobile network can provide services for satellite terminals that do not support NR.
  • the non-3GPP access network is satellite access.
  • the trusted non-3GPP access network includes trusted non-3GPP access point and trusted non-3GPP gateway functions, and the trusted non-3GPP access point and the trusted non-3GPP gateway The interface between functions is the AAA interface.
  • connection between the user equipment and the trusted non-3GPP access point is a satellite connection between the user equipment and a satellite.
  • the method further includes: sending the radio access type RAT type in the N2 message to the access and mobility management function AMF through the trusted non-3GPP gateway function.
  • the RAT type includes at least one of the following types:
  • Untrusted or trusted geostationary satellite Earth orbit GEO satellite access type
  • Untrusted or trusted OTHERSAT satellite access type Untrusted or trusted OTHERSAT satellite access type.
  • embodiments of the present disclosure provide a device for user equipment to access a mobile network.
  • the device is configured on the user equipment.
  • the device includes:
  • a processing unit configured to access the user equipment to the mobile network through an untrusted or trusted non-3rd Generation Partnership Project 3GPP access network;
  • the user equipment is a satellite terminal that does not support new air interface NR, and the user equipment has satellite access and non-access layer NAS capabilities.
  • embodiments of the present disclosure provide another device for user equipment to access a mobile network.
  • the device is configured on the non-3rd Generation Partnership Project 3GPP interworking function N3IWF.
  • the device includes:
  • a processing unit configured to access user equipment connected to an untrusted non-3GPP access network to the mobile network
  • the user equipment is a satellite terminal that does not support new air interface NR, and the user equipment has satellite access and non-access layer NAS capabilities.
  • an embodiment of the present disclosure provides another device for user equipment to access a mobile network.
  • the device is configured on the access and mobility management function AMF.
  • the device includes:
  • a processing unit configured to authenticate user equipment connected to an untrusted non-3rd Generation Partnership Project 3GPP access network to access the user equipment to the mobile network through the non-3GPP interworking function N3IWF; or
  • the user equipment is a satellite terminal that does not support new air interface NR, and the user equipment has satellite access and non-access layer NAS capabilities.
  • an embodiment of the present disclosure provides another device for user equipment to access a mobile network.
  • the device is configured on a trusted non-3rd Generation Partnership Project 3GPP access network.
  • the device includes:
  • a processing unit configured to access the user equipment connected to the trusted non-3GPP access network to the mobile network
  • the user equipment is a satellite terminal that does not support new air interface NR, and the user equipment has satellite access and non-access layer NAS capabilities.
  • embodiments of the present disclosure provide a system for user equipment to access a mobile network.
  • the system includes user equipment, a non-3rd Generation Partnership Project 3GPP interworking function N3IWF, and an access and mobility management function AMF, wherein,
  • the user equipment performs the method described in the foregoing first aspect embodiment
  • the N3IWF performs the method described in the foregoing second aspect embodiment
  • the AMF performs the method described in the foregoing third aspect embodiment.
  • embodiments of the present disclosure provide another system for user equipment to access a mobile network.
  • the system includes user equipment, a trusted non-3rd Generation Partnership Project 3GPP access network, and access and mobility management functions.
  • AMF wherein the user equipment performs the method described in the aforementioned first aspect embodiment, the AMF performs the method described in the aforementioned third aspect embodiment, and the trusted non-3GPP access network performs the aforementioned The method described in the embodiment of the fourth aspect.
  • an embodiment of the present disclosure provides a device for a satellite terminal to access a mobile network.
  • the device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, So that the device performs the method described in the first aspect.
  • an embodiment of the present disclosure provides another device for a satellite terminal to access a mobile network.
  • the device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory. , so that the device performs the method described in the second aspect above.
  • an embodiment of the present disclosure provides another device for a satellite terminal to access a mobile network.
  • the device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory. , so that the device performs the method described in the third aspect.
  • an embodiment of the present disclosure provides another device for a satellite terminal to access a mobile network.
  • the device includes a processor and a memory.
  • a computer program is stored in the memory; the processor executes the computer program stored in the memory. , so that the device performs the method described in the fourth aspect.
  • embodiments of the present disclosure provide a computer-readable storage medium for storing instructions used by the user equipment. When the instructions are executed, the user equipment is caused to execute the method described in the first aspect. method.
  • an embodiment of the present disclosure provides another readable storage medium for storing instructions used for the above-mentioned non-3rd Generation Partnership Project 3GPP interoperability function N3IWF.
  • the N3IWF Perform the method described in the second aspect above.
  • an embodiment of the present disclosure provides another readable storage medium for storing instructions used for the above-mentioned access and mobility management function AMF.
  • the AMF is caused to execute the above-mentioned first methods described in three aspects.
  • an embodiment of the present disclosure provides another readable storage medium for storing instructions used by the above-mentioned trusted non-3rd Generation Partnership Project 3GPP access network, and when the instructions are executed, the The trusted non-3GPP access network executes the method described in the fourth aspect.
  • Figure 1 is a schematic architectural diagram of a system for satellite terminal access to a mobile network provided by an embodiment of the present disclosure
  • Figure 2 is a schematic architectural diagram of another system for satellite terminals to access mobile networks provided by an embodiment of the present disclosure
  • Figure 3 is a schematic flowchart of a method for user equipment to access a mobile network provided by an embodiment of the present disclosure
  • Figure 4 is a schematic flowchart of another method for user equipment to access a mobile network provided by an embodiment of the present disclosure
  • Figure 5 is a schematic flow chart of registration through an untrusted non-3GPP access network provided by an embodiment of the present disclosure
  • Figure 6 is a schematic flowchart of another method for user equipment to access a mobile network provided by an embodiment of the present disclosure
  • Figure 7 is a schematic flow chart of registration through a trusted non-3GPP access network provided by an embodiment of the present disclosure
  • Figure 8 is a flow chart of yet another method for user equipment to access a mobile network provided by an embodiment of the present disclosure
  • Figure 9 is a flow chart of yet another method for user equipment to access a mobile network provided by an embodiment of the present disclosure.
  • Figure 10 is a flow chart of yet another method for user equipment to access a mobile network provided by an embodiment of the present disclosure
  • Figure 11 is a flow chart of yet another method for user equipment to access a mobile network provided by an embodiment of the present disclosure
  • Figure 12 is a schematic structural diagram of a device for user equipment to access a mobile network according to an embodiment of the present disclosure
  • Figure 13 is a schematic structural diagram of another device for user equipment to access a mobile network according to an embodiment of the present disclosure.
  • Satellites are spaceborne vehicles carrying bent tube payloads or regenerative payload telecommunications transmitters, usually placed in low orbit (LEO) at an altitude of 300 km to 2000 km and medium orbit (MEO) at an altitude of 8000 to 20000 km, or A geostationary satellite placed in Earth Orbit (GEO) at an altitude of 35,786 kilometers.
  • LEO low orbit
  • MEO medium orbit
  • GEO Earth Orbit
  • satellite NG-RAN Next Generation Radio Access Network
  • NR New Generation Radio Access Network
  • Air interface provides NG-RAN with satellite access to UE (User Equipment).
  • UE should support NR access to 3GPP network through satellite.
  • 5G Fifth Generation Mobile Communication Technology
  • the radio access network is satellite NG-RAN or non-3GPP satellite access. into the network, or both.
  • this disclosure has the following assumptions: 1) User Equipment (User Equipment, UE) has satellite access and NAS (Non Access Stratum, non-access layer) Capability; 2) There are two types of satellite access for UE access to 5GC (5G core network): trusted and untrusted, based on the combined information of satellite access and 5GC (such as PLMN (Public Land Mobile Network, public land mobile network) ID (identifier, identifier)) is pre-configured and selected in the UE.
  • 5GC 5G core network
  • the present disclosure can access a satellite terminal that does not support NR to the mobile network through an untrusted or trusted non-3GPP access network.
  • an untrusted or trusted non-3GPP access network e.g., a satellite access method used by user equipment to access the 5G core network.
  • the corresponding communication system architecture will also be different. Two communication systems will be given below to correspond to the untrusted satellite access method and the trusted satellite access method respectively.
  • FIG. 1 is a schematic architectural diagram of a system for satellite terminals to access a mobile network according to an embodiment of the present disclosure.
  • This system corresponds to untrusted satellite access methods.
  • the system may include but is not limited to a user equipment 101, an untrusted non-3GPP access network 102, an N3IWF (Non-3GPP InterWorking Function, non-3GPP access network interworking function) 103, and an AMF (Access and Mobility Management) Function, access and mobility management function) 104, an SMF (Session Management Function, session management function) 105, a UPF (User Plane Function, user plane function) 106 and a DN (Data Network, data network) 107.
  • N3IWF Non-3GPP InterWorking Function, non-3GPP access network interworking function
  • AMF Access and Mobility Management
  • SMF Session Management Function, session management function
  • UPF User Plane Function
  • user plane function User Plane Function
  • DN Data Network, data network
  • the number and form of devices shown in Figure 1 are only for examples and do not constitute a limitation on the embodiments of the present disclosure. Practical applications may include two or more user devices, two or more untrusted untrusted devices. 3GPP access network, two or more N3IWFs, two or more AMFs, two or more SMFs, two or more UPFs, and two or more DNs.
  • the system shown in Figure 1 includes a network device 101, an untrusted non-3GPP access network 102, an N3IWF 103, an AMF 104, an SMF 105, a UPF 106 and a DN 107 as an example.
  • the technical solutions of the embodiments of the present disclosure can be applied to various communication systems.
  • the fifth generation (5th generation, 5G) mobile communication system 5G new radio (NR) system, or other future new mobile communication systems.
  • 5G fifth generation
  • NR new radio
  • the untrusted non-3GPP access network 102 in this disclosed embodiment includes satellite (Satellite) and S-AGF (Satellite Access Gateway Function, satellite access gateway function).
  • the user equipment 101 in the embodiment of the present disclosure is an entity on the user side that is used to receive or transmit signals, such as a mobile phone.
  • the user equipment 101 may also be called an enhancing satellite terminal.
  • the user equipment 101 may be a satellite terminal that does not support NR, and the user equipment 101 has satellite access and non-access layer NAS capabilities.
  • the user equipment 101 may be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with wireless transceiver functions, a virtual reality (VR) terminal device, or an augmented reality (augmented reality, AR) terminal equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical surgery, smart grid Wireless terminal equipment in (smart grid), wireless terminal equipment in transportation safety (transportation safety), wireless terminal equipment in smart city (smart city), wireless terminal equipment in smart home (smart home), etc.
  • the embodiments of the present disclosure do not limit the specific technology and specific equipment form used by user equipment.
  • N1 interface between the user equipment 101 and the AMF 104.
  • NWu between the user equipment 101 and the N3IWF 103.
  • N2 interface between N3IWF 103 and AMF 104.
  • N3 interface between N3IWF 103 and UPF 106.
  • N11 interface between AMF 104 and SMF 105.
  • N4 interface between SMF 105 and UPF 106.
  • N6 interface between UPF 106 and DN 107.
  • FIG. 2 is a schematic architectural diagram of another system for satellite terminals to access a mobile network according to an embodiment of the present disclosure.
  • the system corresponds to trusted satellite access methods.
  • the system may include but is not limited to a user equipment 201, a trusted non-3GPP access (Trusted Non-3GPP Access) network 202, an AMF 203, an AUSF (Authentication Server Function) 204, an SMF 205, One UPF206 and one DN207.
  • the number and form of devices shown in Figure 2 are only for examples and do not constitute a limitation on the embodiments of the present disclosure. Practical applications may include two or more user devices and two or more trusted non-3GPP devices.
  • the system shown in Figure 2 includes a network device 201, a trusted non-3GPP access network 202, an AMF 203, an AUSF 204, an SMF 205, a UPF 206 and a DN 207 as an example.
  • the technical solutions of the embodiments of the present disclosure can be applied to various communication systems.
  • the fifth generation (5th generation, 5G) mobile communication system 5G new radio (NR) system, or other future new mobile communication systems.
  • 5G fifth generation
  • NR new radio
  • the trusted non-3GPP access network 202 in this disclosed embodiment may include a trusted non-3GPP access point (TNAP) and a trusted non-3GPP gateway function (TNGF). ).
  • TNAP can be a satellite
  • TNGF can be S-AGF.
  • the user equipment 201 in the embodiment of the present disclosure is an entity on the user side that is used to receive or transmit signals, such as a mobile phone.
  • the user equipment 201 may also be called an enhancing satellite terminal.
  • the user equipment 201 may be a satellite terminal that does not support NR, and the user equipment 201 has satellite access and non-access layer NAS capabilities.
  • the user equipment 201 can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with wireless transceiver functions, a virtual reality (VR) terminal device, or augmented reality (augmented reality, AR) terminal equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical surgery, smart grid Wireless terminal equipment in (smart grid), wireless terminal equipment in transportation safety (transportation safety), wireless terminal equipment in smart city (smart city), wireless terminal equipment in smart home (smart home), etc.
  • the embodiments of the present disclosure do not limit the specific technology and specific equipment form used by user equipment.
  • N1 interface between the user equipment 101 and the AMF 203.
  • NWu interface between the user equipment 201 and TNGF.
  • Ta interface between TNAP and TNGF.
  • N2 interface between TNGF and AMF 203.
  • N11 interface between AMF 203 and SMF 205.
  • N4 interface between SMF 205 and UPF 206.
  • N6 interface between UPF 206 and DN 207.
  • Figure 3 is a schematic flowchart of a method for user equipment to access a mobile network according to an embodiment of the present disclosure. It should be noted that the methods in the embodiments of the present disclosure are executed by user equipment. As shown in Figure 3, the method may include but is not limited to the following steps:
  • step 301 the user equipment is connected to the mobile network through an untrusted or trusted non-3GPP access network.
  • the user equipment may be a satellite terminal that does not support NR, and the user equipment has satellite access and NAS capabilities.
  • the user equipment can be selected to access the mobile network through an untrusted or trusted non-3GPP access network according to pre-configured information in the user equipment.
  • the non-3GPP access network is a satellite access network; the preconfiguration information may include combined information of satellite access and 5G core network.
  • the selection can be pre-configured in the user equipment based on the combined information of satellite access and 5G core network (such as PLMN ID).
  • the combination information of satellite access and 5G core network preconfigured in the user equipment is the first PLMN ID
  • the combination information of satellite access and 5G core network pre-configured in the user equipment is the second PLMN ID
  • satellite terminals that do not support NR can be accessed to the mobile network through untrusted or trusted non-3GPP access networks, so that the mobile network can provide services for satellite terminals that do not support NR.
  • Figure 4 is a schematic flowchart of another method for user equipment to access a mobile network according to an embodiment of the present disclosure. It should be noted that the methods in the embodiments of the present disclosure are executed by user equipment. As shown in Figure 4, the method may include but is not limited to the following steps:
  • step 401 a connection is made to an untrusted non-3GPP access network based on an authentication process.
  • the user equipment connects to an untrusted non-3GPP access network through any appropriate authentication process, and the user equipment is assigned an IP (Internet Protocol) address.
  • IP Internet Protocol
  • non-3GPP authentication methods can be used, such as no authentication (in the case of free WLAN), EAP (Extensible Authentication Protocol, Extensible Authentication Protocol) with pre-shared keys, username/password, etc.
  • step 402 when the user equipment decides to connect to the 5G core network, the non-3GPP interworking function N3IWF is selected in the 5G public land mobile network PLMN.
  • the user equipment when the user equipment decides to connect to the 5G core network, the user equipment can select N3IWF in the 5G PLMN, as described in TS23.501 clause 6.3.6.
  • step 403 an Internet Security Protocol IPsec tunnel is established with the selected N3IWF, and during the IPsec tunnel establishment process, the user device will be authenticated by the 5G core network and attached to the 5G core network.
  • the user equipment can establish an IPsec tunnel with the selected N3IWF, and during the IPsec tunnel establishment process, the user equipment will be authenticated and attached to the 5G core network so that the connection to the untrusted non- The user equipment of the 3GPP access network is connected to the mobile network.
  • step 1a the user equipment connects to the untrusted non-3GPP access network through any appropriate authentication process and the user equipment is assigned an IP address.
  • non-3GPP authentication methods can be used, such as no authentication (in the case of free WLAN), EAP with pre-shared keys, username/password, etc.
  • step 1b when the user equipment decides to connect to the 5GC network, the user equipment selects N3IWF in the 5G PLMN, as described in TS 23.501 clause 6.3.6.
  • step 2 the user device continues to establish an IPsec (Internet Protocol Security) security association (Security Association) with the selected N3IWF by initiating an IKE (Internet Key Exchange, Internet Key Exchange Protocol) initial exchange according to RFC 7296. SA).
  • IPsec Internet Protocol Security
  • IKE Internet Key Exchange, Internet Key Exchange Protocol
  • step 2 corresponds to the IKE SA process.
  • the function of this process is to establish a secure transmission channel under an incomplete network for the subsequent 5G-NAS authentication process to ensure the message transmission of the 5G-NAS authentication process. Security; after this step, all IKE messages are encrypted and integrity protected.
  • the user device should initiate an IKE_AUTH exchange by sending an IKE_AUTH (Internet Authentication for Key Exchange) request message.
  • IKE_AUTH Internet Authentication for Key Exchange
  • the AUTH payload is not included in the IKE_AUTH request message, which indicates that the IKE_AUTH exchange should use EAP signaling (EAP-5G signaling in this case).
  • MOBIKE Mobility and Multihoming Protocol
  • the user device should include the CERTREQ payload in the IKE_AUTH request message to request the N3IWF's certificate.
  • the user equipment can receive the IKE_AUTH response message sent by N3IWF.
  • N3IWF responds with an IKE_AUTH response message, which includes the EAP-Request/5G-Start packet.
  • the EAP-Request/5G-Start packet notifies the user equipment to initiate an EAP-5G session, that is, to start sending NAS messages encapsulated in the EAP-5G packet.
  • N3IWF SHOULD include the CERT payload in the IKE_AUTH response message containing the N3IWF certificate. How user equipment uses N3IWF certificates is specified in TS33.501.
  • the user device should verify the N3IWF certificate and confirm that the N3IWF identity matches the N3IWF selected by the user device. If the user device requests a certificate or identity confirmation is unsuccessful, the lack of N3IWF's certificate will cause the connection to fail.
  • the user equipment should send an IKE_AUTH request that includes an EAP-Response/5G-NAS packet containing access network parameters (AN parameters) and a registration request message.
  • AN parameters contain information used by N3IWF to select AMF in the 5G core network.
  • this information may include GUAMI (Globally Unique Access and Mobility Management Function Identifier), selected PLMNID (or PLMNID and NID, see TS23.501 Section 5.30), requested NSSAI (NetworkSliceSelectionAssistanceInformation, network slice selection assistance Information, also known as the identity of the network slice) and the reason for its creation.
  • the establishment reason provides the reason for requesting the establishment of a signaling connection with the 5G core network. Whether and how the user equipment includes the requested NSSAI as part of the AN parameters depends on the value of the access layer connection establishment NSSAI inclusion mode parameter, as specified in section 5.15.9 of TS23.501.
  • N3IWF does not send an EAP-Identity request because the user device includes its identity in the first IKE_AUTH. This complies with RFC 7296 clause 3.16.
  • the N3IWF shall select an AMF based on the received AN parameters and local policy.
  • the N3IWF shall then forward the registration request received from the user device to the selected AMF within the N2 message.
  • the message contains N2 parameters, including the selected PLMN ID and establishment reason.
  • N3IWF sends the RAT type to AMF in the N2 message.
  • the RAT type may include at least one of the following types:
  • the RAT type can be one of the values shown in Table 1 below:
  • each element in the above-mentioned Table 1 exists independently. These elements are exemplarily listed in the same table, but it does not mean that all elements in the table must be based on the same time as shown in the table. exist. The value of each element does not depend on the value of any other element in Table 1. Therefore, those skilled in the art can understand that the value of each element in Table 1 is an independent embodiment. It should be noted that the embodiments of the present disclosure include multiple tables, and each of them is similar to Table 1. It is a combination of multiple independent embodiments into the same table, and each of these tables is An element should also be considered an independent embodiment.
  • the selected AMF may decide to request SUCI (Subscription User Implicit Identity) by sending a NAS identity request message to the user equipment.
  • SUCI Subscribescription User Implicit Identity
  • the NAS identity request message and all subsequent NAS messages are encapsulated in EAP/5G-NAS packets and sent to the user equipment.
  • the AMF may decide to authenticate the user equipment by calling the AUSF (Authentication Server Function).
  • AMF will select the AUSF based on SUPI (Subscriber Permanent Identification) or SUCI, as specified in TS 23.501 Section 6.3.4.
  • SUPI Subscriber Permanent Identification
  • SUCI Subscriber Permanent Identification
  • AUSF performs certification of user equipment in accordance with TS 33.501.
  • AUSF selects a UDM as described in section 6.3.8 of TS23.501 and obtains authentication data from the UDM.
  • the authentication data packet is encapsulated in the NAS authentication message, and the NAS authentication message is encapsulated in the EAP/5G-NAS packet.
  • the AUSF shall send an anchor key (Security Anchor Function (SEAF) key) to the AMF, which is used by the AMF to derive the NAS security key and the security key of the N3IWF ( N3IWF key).
  • SEAF Security Anchor Function
  • the user device also derives an anchor key (SEAF key) and from this key derives the NAS security key and the N3IWF's security key (N3IWF key).
  • the N3IWF key is used by the user device and the N3IWF to establish the IPsec security association (in step 11).
  • step 8h if the AMF provided SUCI to the AUSF in step 8a, the AUSF shall also include SUPI.
  • EAP-AKA' or 5G-AKA allows authentication of user equipment over non-3GPP access, as described in TS33.501.
  • Figure 5 only shows the authentication flow using EAP-AKA'.
  • user equipment accessing SNPN (independent non-public network) services through PLMN is also allowed to use authentication methods other than EAP-AKA' or 5G-AKA.
  • step 9a the AMF will send a NAS security mode command message to the user equipment to activate NAS security. If EAP-AKA' authentication was performed successfully in step 8, the AMF shall encapsulate the EAP-Success received from the AUSF in the NAS security mode command message.
  • step 9b the N3IWF shall forward the NAS security mode command message to the user equipment in the EAP/5G-NAS packet.
  • step 9c the user equipment completes EAP-AKA' authentication (if initiated in step 8), creates the NAS security context and N3IWF key, and sends the NAS security mode complete message in the EAP/5G-NAS packet.
  • step 9d N3IWF relays the NAS security mode complete message to the AMF.
  • step 10a after the AMF receives the completion of the NAS security mode, the AMF should send an NGAP (Next Generation Application Protocol) initial context setting request message containing the N3IWF key.
  • NGAP Next Generation Application Protocol
  • step 10b this triggers the N3IWF to send EAP-Success to the user equipment, thereby completing the EAP-5G session. EAP-5G packets are no longer exchanged.
  • step 11 an IPsec SA is established between the user equipment and the N3IWF by using the public N3IWF key created in the user equipment in step 9c and received by the N3IWF in step 10a.
  • This IPsecSA is called "Signaling IPsecSA”.
  • the N3IWF After establishing the signaling IPsecSA, the N3IWF notifies the AMF to create the UE context (including security) by sending an NGAP initial context setup response message.
  • the signaling IPsecSA should be configured to operate in tunnel mode and the N3IWF should assign the user device an "internal" IP address.
  • the N3IWF shall include the Notify payload in the IKE_AUTH response message sent in step 11a indicating that MOBIKE should be supported, as specified in RFC4555.
  • All subsequent NAS messages exchanged between the user equipment and the N3IWF shall be sent via signaling IPsecSA and shall be carried over TCP/IP.
  • the user device should send a NAS message within a TCP/IP packet with the source address being the user device's "internal" IP address and the destination address being the NAS_IP_ADDRESS received in step 11a.
  • N3IWF should send a NAS message in a TCP/IP packet with the source address being NAS_IP_ADDRESS and the destination address being the "internal" IP address of the user device.
  • the TCP connection for reliable NAS transport between the user equipment and the N3IWF shall be initiated by the user equipment immediately after establishing the signaling IPsecSA in step 11a.
  • User devices should send TCP connection requests to the TCP port number specified in NAS_IP_ADDRESS and TS24.502.
  • AMF sends a NAS registration accept message to N3IWF.
  • the N2 message includes NSSAI (Network Slice Selection Assistance Information) allowed by the user equipment access type.
  • NSSAI Network Slice Selection Assistance Information
  • N3IWF forwards the NAS registration accept message to the user equipment through the established signaling IPsecSA. If N3IWF receives the NAS Registration Accept message before establishing the IPsecSA, the N3IWF shall store the NAS Registration Accept message and forward the NAS Registration Accept message to the user equipment only after establishing the signaling IPsecSA.
  • the AMF when the AMF registers with the UDM, according to the RAT type received in step 6b, or according to the configuration between the untrusted satellite access network and the AMF, the AMF provides the setting to The access type and RAT type of "Non-3GPP Access".
  • the access type and RAT type of "Non-3GPP Access”.
  • the AMF can provide the UDM with an access type set to "non-3GPP access" based on the received RAT type and The RAT type.
  • the AMF can provide the setting to the UDM based on the configuration between the untrusted satellite access network and the AMF.
  • the access type and RAT type of "Non-3GPP Access".
  • the RAT type may include at least one of the following types:
  • the RAT type may be one of the values shown in Table 1 above.
  • satellite terminals that do not support NR can be accessed to the mobile network through untrusted non-3GPP access networks, so that the mobile network can provide services for satellite terminals that do not support NR.
  • satellite terminals that do not support NR can be accessed to the mobile network through a trusted non-3GPP access network.
  • FIG. 6 is a schematic flowchart of another method for user equipment to access a mobile network according to an embodiment of the present disclosure. It should be noted that the methods in the embodiments of the present disclosure are executed by user equipment. As shown in Figure 6, the method may include but is not limited to the following steps:
  • step 601 connect to a trusted non-3GPP access network (TNAN).
  • TNAN trusted non-3GPP access network
  • step 602 the EAP-based process registers with the 5G core network through the trusted non-3GPP access network.
  • the link between the user equipment and the trusted non-3GPP access network can be any data link (L2) that supports EAP encapsulation, such as PPP (Point-to-Point Protocol, Point-to-point protocol), PANA (Protocol for carrying Authentication for Network Access, Network Access Authentication Information Bearing Protocol), Ethernet, IEEE (Institute of Electrical and Electronics Engineers, Institute of Electrical and Electronics Engineers) 802.3, IEEE 802.11, etc.
  • L2 data link
  • L2 data link that supports EAP encapsulation
  • PPP Point-to-Point Protocol, Point-to-point protocol
  • PANA Protocol for carrying Authentication for Network Access, Network Access Authentication Information Bearing Protocol
  • Ethernet IEEE (Institute of Electrical and Electronics Engineers, Institute of Electrical and Electronics Engineers) 802.3, IEEE 802.11, etc.
  • the trusted non-3GPP access network may include a trusted non-3GPP access point (TNAP) and a trusted non-3GPP gateway function (TNGF).
  • the trusted non-3GPP access point The interface with the trusted non-3GPP gateway function is the AAA interface.
  • the trusted non-3GPP access point may be a satellite, and the trusted non-3GPP gateway function (TNGF) is S-AGF.
  • step 0 the user equipment selects a PLMN and a TNAN to connect to the PLMN by using the trusted non-3GPP access network selection process. During this process, the user equipment discovers the TNAN's PLMN that supports trusted connections (such as "5G connections").
  • an L2 (Layer-2) connection is established between the user equipment and a trusted non-3GPP access point (TNAP), that is, the L2 connection can be a satellite connection between the user equipment and a satellite.
  • TNAP trusted non-3GPP access point
  • EAP messages are encapsulated into L2 data packets, such as IEEE802.3/802.1x data packets, IEEE802.11/802.1x data packets, PPP data packets, etc.
  • the NAI Network Access Identifier
  • This NAI triggers TNAP to send an AAA request to TNGF, which operates as an AAA proxy.
  • TNAP and TNGF EAP packets are encapsulated into AAA messages.
  • the AAA request also includes a TNAP identifier, which can be considered user location information.
  • steps 4 to 10 the EAP-5G process is executed.
  • the specific points for executing the EAP-5G process are as follows:
  • TNGF keys are created in the user device and AMF.
  • the TNGF key is transferred from the AMF to the TNGF.
  • TNGF derives a TNAP key, which is provided to TNAP.
  • the TNAP key depends on the non-3GPP access technology (e.g., in the case of IEEE Std 802.11, the TNAP key is a pairwise master key).
  • the user equipment should include the requested NSSAI in the AN parameters only if trusted non-3GPP access is allowed.
  • the user equipment should also include the UE Id in the AN parameters, for example, if the 5G-GUTI (Fifth Generation Mobile Communications Technology - Globally Unique Temporary Identity) is available from prior registration of the same PLMN, the UE Id can be the 5G-GUTI .
  • 5G-GUTI Frifth Generation Mobile Communications Technology - Globally Unique Temporary Identity
  • the TNGF in the N2 message sent in step 6b, includes the UE location information (ULI), which contains an "empty" IP address (for example, 0.0.0.0) because it has not been assigned to the user yet.
  • the device is assigned an IP address.
  • TNGF will include this IP address in subsequent N2 messages.
  • TNGF sends the RAT type to AMF in the N2 message.
  • the RAT type may include at least one of the following types:
  • Untrusted or trusted geostationary satellite Earth orbit GEO satellite access type
  • Untrusted or trusted OTHERSAT satellite access type Untrusted or trusted OTHERSAT satellite access type.
  • the RAT type can be one of the values shown in Table 1 below:
  • TNGF should send an EAP-Request/5G-Notification containing "TNGFContactInfo (TNGF Contact Information)" to the user equipment. package, which includes the IP address of TNGF.
  • TNGF should send a message containing an EAP-Success (EAP success) packet.
  • the TNAP key is used to establish L2 (Layer-2) security between the user device and the TNAP.
  • L2 Layer-2
  • a 4-way handshake is performed to establish a security context between the satellite and the user equipment for protecting unicast and multicast traffic in the air.
  • step 12 the user equipment receives IP configuration information from a TNAN (trusted non-3GPP access network), for example using DHCP (Dynamic Host Configuration Protocol). At this point, the user equipment has successfully connected to TNAN and obtained IP configuration information.
  • TNAN trusted non-3GPP access network
  • DHCP Dynamic Host Configuration Protocol
  • step 13 the user equipment establishes a secure NWt connection with the TNGF.
  • the user equipment establishes a secure NWt connection with TNGF as follows:
  • the user equipment initiates an IKE_INIT exchange using the IP address of the TNGF received during EAP-5G signaling in step 10b.
  • the user device then initiates an IKE_AUTH exchange and provides its identity.
  • the identity provided by the user equipment in IKEv2 (the second version of IKE) signaling should be the same as the UEId contained in the AN parameter in step 5.
  • This enables TNGF to create a TNGF key for the user device before being positioned during authentication in step 8.
  • TNGF keys are used for mutual authentication. According to the regulations in RFC2410, NULL encryption is negotiated between the user equipment and TNGF.
  • TNGF provides the "internal" IP address, NAS_IP_ADDRESS and TCP port number, and DSCP (Differentiated Services Code Point, sub-service code) value to the UE.
  • IPsecSA is established between the user equipment and TNGF. This is called “Signaling IPsecSA” and operates in tunnel mode. Operation in tunnel mode allows the use of MOBIKE to re-establish the IPsec SA when the user device's IP address changes during a mobility event. All IP packets exchanged via "Signaling IPsecSA" between user equipment and TNGF should be marked with the above DSCP value.
  • the user equipment and TNAP can map the DSCP value to the QoS (Quality of Service, Quality of Service) level supported by the underlying non-3GPP access network (for example, EDCA access level).
  • the user equipment will establish a TCP connection to the TNGF using NAS_IP_ADDRESS and the TCP port number received in step 13c.
  • the user device should send a NAS message in a TCP/IP packet with the source address being the user device's "internal" IP address and the destination address being NAS_IP_ADDRESS.
  • TNGF shall send a NAS message in a TCP/IP packet with the source address being NAS_IP_ADDRESS and the destination address being the UE's "internal" IP address.
  • TNGF responds to the AMF with the N2 initial context setup response message.
  • step 15 the NAS registration accept message is sent by the AMF and forwarded to the user equipment through the established NWt connection.
  • the user equipment can use TNAN to transmit non-seamless offload traffic and establish one or more PDU sessions.
  • the AMF registers with the UDM, it provides the UDM with access set to "non-3GPP access" based on the RAT type received from the TNGF in step 6b, or based on the configuration in the AMF for the trusted satellite access network. type and RAT type.
  • the AMF when the AMF registers with the UDM, the AMF can provide the UDM with the RAT type set to "non-3GPP access" according to the received RAT type.
  • the access type and the RAT type As another example, for the case where the RAT type is not received from the TNGF in step 6b, when the AMF registers with the UDM, the AMF can provide the setting to the UDM according to the configuration of the trusted satellite access network in the AMF.
  • the access type and RAT type of "Non-3GPP access".
  • the RAT type may include at least one of the following types:
  • Untrusted or trusted geostationary satellite Earth orbit GEO satellite access type
  • Untrusted or trusted OTHERSAT satellite access type Untrusted or trusted OTHERSAT satellite access type.
  • the RAT type may be one of the values shown in Table 2 above.
  • satellite terminals that do not support NR can be accessed to the mobile network through a trusted non-3GPP access network, so that the mobile network can provide services for satellite terminals that do not support NR.
  • the above embodiment is an implementation manner of describing the method for the user equipment to access the mobile network in the embodiment of the present disclosure from the user equipment side.
  • the embodiment of the present disclosure also proposes another method for user equipment to access the mobile network. This method is to access the user equipment to the mobile network through an untrusted non-3GPP access network.
  • the implementation of the method for the user equipment to access the mobile network will be described below from the N3IWF side.
  • FIG. 8 is a flow chart of yet another method for user equipment to access a mobile network according to an embodiment of the present disclosure.
  • the method for user equipment to access the mobile network in the embodiment of the present disclosure may be executed by N3IWF, as shown in Figure 8.
  • the method may include but is not limited to the following steps.
  • step 801 the user equipment connected to the untrusted non-3GPP access network is connected to the mobile network.
  • the user equipment is a satellite terminal that does not support new air interface NR, and the user equipment has satellite access and non-access layer NAS capabilities.
  • the non-3GPP access network is satellite access.
  • the N3IWF sends the RAT type to the AMF in the N2 message.
  • the RAT type may include at least one of the following types:
  • the N3IWF may interact with other devices as shown in Figure 1 to access user equipment connected to untrusted non-3GPP access networks to the mobile network.
  • the N3IWF may interact with other devices as shown in Figure 1 to access user equipment connected to untrusted non-3GPP access networks to the mobile network.
  • this implementation process please refer to the implementation method of registration through an untrusted non-3GPP access network shown in Figure 5 above, which will not be described again here.
  • the above embodiment is an implementation manner of describing the method for the user equipment to access the mobile network in the embodiment of the present disclosure from the user equipment and N3IWF sides respectively.
  • the embodiment of the present disclosure also proposes another method for user equipment to access the mobile network. This method is to access the user equipment to the mobile network through an untrusted non-3GPP access network.
  • the implementation of the method for the user equipment to access the mobile network will be described below from the AMF side.
  • FIG. 9 is a flow chart of yet another method for user equipment to access a mobile network according to an embodiment of the present disclosure.
  • the method for user equipment to access the mobile network in the embodiment of the present disclosure may be executed by the AMF, as shown in Figure 9. The method may include but is not limited to the following steps.
  • step 901 the user equipment connected to the untrusted non-3GPP access network is authenticated to access the mobile network through N3IWF.
  • the user equipment is a satellite terminal that does not support new air interface NR, and the user equipment has satellite access and non-access layer NAS capabilities.
  • the access type of the non-3GPP access may be satellite access.
  • the AMF may receive the radio access type RAT type sent by the N3IWF in the N2 message.
  • the AMF when registering with the unified data management UDM, the AMF provides the access type and RAT type set to non-3GPP access to the UDM according to the first RAT type.
  • the first RAT type is the RAT type received by the AMF; or, the first RAT type is the RAT type configured between the untrusted satellite access network and the AMF.
  • the RAT type may include at least one of the following types:
  • the RAT type may be one of the values shown in Table 1 above.
  • the AMF may interact with other devices as shown in Figure 1 to access user equipment connected to untrusted non-3GPP access networks to the mobile network.
  • the AMF may interact with other devices as shown in Figure 1 to access user equipment connected to untrusted non-3GPP access networks to the mobile network.
  • FIG. 5 For this implementation process, please refer to the implementation method of registration through an untrusted non-3GPP access network shown in Figure 5 above, which will not be described again here.
  • embodiments of the present disclosure also provide another method for user equipment to access the mobile network.
  • This method is to access the user equipment to the mobile network through a trusted non-3GPP access network.
  • the implementation of the method for the user equipment to access the mobile network will be described below from the trusted non-3GPP access network (TNAN) side.
  • FIG. 10 is a flow chart of yet another method for user equipment to access a mobile network according to an embodiment of the present disclosure.
  • the method for user equipment to access the mobile network in the embodiment of the present disclosure can be performed by a trusted non-3GPP access network, as shown in Figure 10.
  • the method can include but is not limited to the following steps.
  • step 1001 user equipment connected to the trusted non-3GPP access network is connected to the mobile network.
  • the user equipment is a satellite terminal that does not support new air interface NR, and the user equipment has satellite access and non-access layer NAS capabilities.
  • the non-3GPP access network is satellite access.
  • the trusted non-3GPP access network includes a trusted non-3GPP access point and a trusted non-3GPP gateway function, where the trusted non-3GPP access point and the trusted non-3GPP gateway function The interface between them is the AAA interface.
  • connection between the user equipment and the trusted non-3GPP access point is a satellite connection between the user equipment and the satellite.
  • the radio access type RAT type is sent to the access and mobility management function AMF in the N2 message through the trusted non-3GPP gateway function.
  • the RAT type includes at least one of the following types:
  • Untrusted or trusted OTHERSAT satellite access type Untrusted or trusted OTHERSAT satellite access type.
  • the RAT type may be one of the values shown in Table 2 above.
  • a trusted non-3GPP access network may interact with other devices as shown in Figure 2 to connect user equipment connected to the trusted non-3GPP access network to mobile network.
  • TNAN trusted non-3GPP access network
  • FIG. 7 For this implementation process, please refer to the implementation method of registration through a trusted non-3GPP access network shown in Figure 7 above, which will not be described again here.
  • the above embodiment is an implementation manner of describing the method for the user equipment to access the mobile network in the embodiment of the present disclosure from the user equipment and the trusted non-3GPP access network (TNAN) side respectively.
  • the embodiment of the present disclosure also proposes another method for user equipment to access the mobile network, which method is to access the user equipment to the mobile network through a trusted non-3GPP access network.
  • the implementation of the method for the user equipment to access the mobile network will be described below from the AMF side.
  • Figure 11 is a flow chart of yet another method for user equipment to access a mobile network according to an embodiment of the present disclosure.
  • the method for user equipment to access the mobile network in the embodiment of the present disclosure may be executed by the AMF, as shown in Figure 11.
  • the method may include but is not limited to the following steps.
  • step 1101 the user equipment connected to the trusted non-3rd Generation Partnership Project 3GPP access network is authenticated to access the mobile network.
  • the user equipment is a satellite terminal that does not support new air interface NR, and the user equipment has satellite access and non-access layer NAS capabilities.
  • the access type of non-3GPP access is satellite access.
  • the AMF may receive the radio access type RAT type sent in the N2 message by the trusted non-3GPP gateway function in the non-3GPP access network.
  • the AMF may provide the access type and RAT type set to non-3GPP access to the UDM according to the first RAT type when registering with the unified data management UDM.
  • the first RAT type is the RAT type received by the AMF; or, the first RAT type is the RAT type configured between the untrusted satellite access network and the AMF.
  • the RAT type includes at least one of the following types:
  • Untrusted or trusted OTHERSAT satellite access type Untrusted or trusted OTHERSAT satellite access type.
  • the RAT type may be one of the values shown in Table 2 above.
  • the AMF may interact with other devices as shown in Figure 2 to access user equipment connected to a trusted non-3GPP access network to the mobile network.
  • a trusted non-3GPP access network to the mobile network.
  • the methods provided by the embodiments of the present disclosure are introduced from the perspectives of user equipment, N3IWF, AMF, and trusted non-3GPP access networks.
  • the user equipment, N3IWF, AMF, and trusted non-3GPP access network may include a hardware structure, a software module, or a hardware structure plus software. Modules are used to implement the above functions. A certain function among the above functions can be executed by a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 12 is a schematic structural diagram of an apparatus 120 for user equipment to access a mobile network according to an embodiment of the present disclosure.
  • the device 120 shown in FIG. 12 may include a transceiver unit 1201 and a processing unit 1202.
  • the transceiving unit 1201 may include a sending unit and/or a receiving unit.
  • the sending unit is used to implement the sending function
  • the receiving unit is used to implement the receiving function.
  • the transceiving unit 1201 may implement the sending function and/or the receiving function.
  • the device 120 may be a user equipment, a device in the user equipment, or a device that can be used in conjunction with the user equipment.
  • the device 120 may be an N3IWF network element, a device in the N3IWF network element, or a device that can be used in conjunction with the N3IWF network element.
  • the device 120 may be an AMF network element, a device in an AMF network element, or a device that can be used in conjunction with the AMF network element.
  • the device 120 may be a trusted non-3GPP access network, a device in a trusted non-3GPP access network, or a device that can be used in conjunction with a trusted non-3GPP access network.
  • the device 120 is user equipment: in one implementation, the processing unit 1202 is configured to connect the user equipment to the mobile network through an untrusted or trusted non-3rd Generation Partnership Project 3GPP access network.
  • the user equipment is a satellite terminal that does not support new air interface NR, and the user equipment has satellite access and non-access layer NAS capabilities.
  • the processing unit 1202 connects the user equipment to the mobile network through an untrusted non-3GPP access network as follows: connecting to the untrusted non-3GPP access network based on the authentication process. ; When the user equipment decides to connect to the 5G core network, select the non-3GPP interworking function N3IWF in the 5G public land mobile network PLMN; establish an Internet security protocol IPsec tunnel with the selected N3IWF, and during the IPsec tunnel establishment process, the user equipment will be The core network authenticates and attaches to the 5G core network.
  • the processing unit 1202 connects the user equipment to the mobile network through a trusted non-3GPP access network as follows: connecting to the trusted non-3GPP access network; based on extensible authentication
  • the protocol EAP process is registered to the 5G core network through a trusted non-3GPP access network; the link between the user equipment and the trusted non-3GPP access network is a data link that supports EAP encapsulation; the trusted non-3GPP access network
  • the 3GPP access network includes trusted non-3GPP access points and trusted non-3GPP gateway functions.
  • the interface between the trusted non-3GPP access points and trusted non-3GPP gateway functions is the AAA interface.
  • the connection between the user equipment and the trusted non-3GPP access point is a satellite connection between the user equipment and a satellite.
  • the processing unit 1202 may select to access the user equipment to the mobile network through an untrusted or trusted non-3GPP access network according to pre-configured information in the user equipment.
  • the non-3GPP access network is a satellite access network; the pre-configuration information includes combination information of satellite access and 5G core network.
  • the device 120 is N3IWF: in one implementation, the processing unit 1202 is used to access the user equipment connected to the untrusted non-3GPP access network to the mobile network. ;
  • the user equipment is a satellite terminal that does not support new air interface NR, and the user equipment has satellite access and non-access layer NAS capabilities.
  • the non-3GPP access network is satellite access.
  • the processing unit 1202 sends the radio access type RAT type to the access and mobility management function AMF in the N2 message.
  • the RAT type includes at least one of the following types:
  • the device 120 is an AMF:
  • the processing unit 1202 is used to detect users connected to the untrusted non-3GPP access network.
  • the equipment is authenticated to connect the user equipment to the mobile network through the non-3GPP interworking function N3IWF; the user equipment is a satellite terminal that does not support new air interface NR, and the user equipment has satellite access and non-access layer NAS capabilities.
  • the access type of non-3GPP access is satellite access.
  • the processing unit 1202 is also configured to receive the radio access type RAT type sent by the N3IWF in the N2 message.
  • the processing unit 1202 is also configured to provide the access type and RAT type set to non-3GPP access to the UDM according to the first RAT type when registering with the unified data management UDM.
  • the first RAT type is the RAT type received by the AMF; or, the first RAT type is the RAT type configured between the untrusted satellite access network and the AMF.
  • the RAT type includes at least one of the following types:
  • the device 120 is a trusted non-3GPP access network: in one implementation, the processing unit 1202 is configured to connect user equipment to the trusted non-3GPP access network. Access to the mobile network; the user equipment is a satellite terminal that does not support new air interface NR, and the user equipment has satellite access and non-access layer NAS capabilities. As an example, the non-3GPP access network is satellite access.
  • the trusted non-3GPP access network includes a trusted non-3GPP access point and a trusted non-3GPP gateway function, and the relationship between the trusted non-3GPP access point and the trusted non-3GPP gateway function is The interface is an AAA interface.
  • connection between the user equipment and the trusted non-3GPP access point is a satellite connection between the user equipment and the satellite.
  • the processing unit 1202 is also configured to send the radio access type RAT type in the N2 message to the access and mobility management function AMF through the trusted non-3GPP gateway function.
  • the RAT type includes at least one of the following types:
  • Untrusted or trusted geostationary satellite Earth orbit GEO satellite access type
  • Untrusted or trusted OTHERSAT satellite access type Untrusted or trusted OTHERSAT satellite access type.
  • the device 120 is an AMF: in one implementation, the processing unit 1202 is configured to perform processing on the user equipment connected to the trusted non-3GPP access network. Authentication to connect user equipment to the mobile network; where the user equipment is a satellite terminal that does not support new air interface NR, and the user equipment has satellite access and non-access layer NAS capabilities.
  • the access type of non-3GPP access is satellite access.
  • the processing unit 1202 is also configured to receive the radio access type RAT type sent in the N2 message by the trusted non-3GPP gateway function in the non-3GPP access network.
  • the processing unit 1202 is also configured to provide the access type and RAT type set to non-3GPP access to the UDM according to the first RAT type when registering with the unified data management UDM.
  • the first RAT type is the RAT type received by the AMF; or, the first RAT type is the RAT type configured between the untrusted satellite access network and the AMF.
  • the RAT type includes at least one of the following types:
  • Untrusted or trusted geostationary satellite Earth orbit GEO satellite access type
  • Untrusted or trusted OTHERSAT satellite access type Untrusted or trusted OTHERSAT satellite access type.
  • FIG 13 is a schematic structural diagram of another device 130 for user equipment to access a mobile network according to an embodiment of the present disclosure.
  • the device 130 may be a user equipment, an N3IWF, an AMF, a trusted non-3GPP access network, or a chip, chip system, or processor that supports the user equipment to implement the above method. It may also be It can be a chip, chip system, or processor that supports N3IWF to implement the above method. It can also be a chip, chip system, or processor that supports AMF to implement the above method. It can also be implemented by a trusted non-3GPP access network.
  • the device can be used to implement the method described in the above method embodiment. For details, please refer to the description in the above method embodiment.
  • Apparatus 130 may include one or more processors 1301.
  • the processor 1301 may be a general-purpose processor or a special-purpose processor, or the like.
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data.
  • the central processor can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs. , processing data for computer programs.
  • the device 130 may also include one or more memories 1302, on which a computer program 1304 may be stored.
  • the processor 1301 executes the computer program 1304, so that the device 130 executes the method described in the above method embodiment.
  • the memory 1302 may also store data.
  • the device 130 and the memory 1302 can be provided separately or integrated together.
  • the device 130 may also include a transceiver 1305 and an antenna 1306.
  • the transceiver 1305 may be called a transceiver unit, a transceiver, a transceiver circuit, etc., and is used to implement transceiver functions.
  • the transceiver 1305 may include a receiver and a transmitter.
  • the receiver may be called a receiver or a receiving circuit, etc., used to implement the receiving function;
  • the transmitter may be called a transmitter, a transmitting circuit, etc., used to implement the transmitting function.
  • the device 130 may also include one or more interface circuits 1307.
  • the interface circuit 1307 is used to receive code instructions and transmit them to the processor 1301 .
  • the processor 1301 executes the code instructions to cause the device 130 to perform the method described in the above method embodiment.
  • the processor 1301 may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits used to implement the receiving and transmitting functions can be separate or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing codes/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transfer.
  • the processor 1301 may store a computer program, and the computer program running on the processor 1301 may cause the device 130 to perform the method described in the above method embodiment.
  • the computer program may be solidified in the processor 1301, in which case the processor 1301 may be implemented by hardware.
  • the device 130 may include a circuit, which may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this disclosure may be implemented on integrated circuits (ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board (PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), n-type metal oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS n-type metal oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the device described in the above embodiments may be a network device or a terminal device (such as the first terminal device in the foregoing method embodiment), but the scope of the device described in the present disclosure is not limited thereto, and the structure of the device may not be limited to that shown in the figure. 13 limit.
  • the device may be a stand-alone device or may be part of a larger device.
  • the device may be:
  • the IC collection may also include storage components for storing data and computer programs;
  • Embodiments of the present disclosure also provide a system for user equipment to access a mobile network.
  • the system includes the device as user equipment, the device as N3IWF, and the device as AMF in the embodiment of Figure 12, or the system includes the device of Figure 13
  • the device is used as user equipment, the device is used as N3IWF, and the device is used as AMF.
  • the embodiment of the present disclosure also provides another system for user equipment to access the mobile network.
  • the system includes the device as the user equipment, the device as the trusted non-3GPP access network and the device as the AMF in the aforementioned embodiment of Figure 12.
  • the system includes the device as the user equipment, the device as the trusted non-3GPP access network, and the device as the AMF in the aforementioned embodiment of FIG. 13 .
  • the present disclosure also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any of the above method embodiments are implemented.
  • the present disclosure also provides a computer program product, which, when executed by a computer, implements the functions of any of the above method embodiments.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer programs.
  • the computer program When the computer program is loaded and executed on a computer, the processes or functions described in accordance with the embodiments of the present disclosure are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer program may be stored in or transferred from one computer-readable storage medium to another, for example, the computer program may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the usable media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., high-density digital video discs (DVD)), or semiconductor media (e.g., solid state disks, SSD)) etc.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., high-density digital video discs (DVD)
  • DVD digital video discs
  • semiconductor media e.g., solid state disks, SSD
  • At least one in the present disclosure can also be described as one or more, and the plurality can be two, three, four or more, and the present disclosure is not limited.
  • the technical feature is distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D” etc.
  • the technical features described in “first”, “second”, “third”, “A”, “B”, “C” and “D” are in no particular order or order.
  • each table in this disclosure can be configured or predefined.
  • the values of the information in each table are only examples and can be configured as other values, which is not limited by this disclosure.
  • it is not necessarily required to configure all the correspondences shown in each table.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, etc.
  • the names of the parameters shown in the titles of the above tables may also be other names understandable by the communication device, and the values or expressions of the parameters may also be other values or expressions understandable by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables. wait.
  • Predefinition in this disclosure may be understood as definition, pre-definition, storage, pre-storage, pre-negotiation, pre-configuration, solidification, or pre-burning.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例公开了一种用户设备接入移动网络的方法及其装置,该方法由用户设备执行,该方法包括:用户设备通过不受信任或受信任的非第三代合作伙伴计划3GPP接入网,将该用户设备接入移动网络;其中,该用户设备为不支持新空口NR的卫星终端,且该用户设备具备卫星接入和非接入层NAS能力。通过实施本公开实施例,可以将不支持NR的卫星终端接入到移动网络,以使得移动网络可以为该不支持NR的卫星终端提供服务。

Description

一种用户设备接入移动网络的方法及其装置 技术领域
本公开涉及通信技术领域,尤其涉及一种用户设备接入移动网络的方法及其装置。
背景技术
卫星是搭载弯管有效载荷(bent pipe payload)或再生有效载荷(regenerative payload)电信发射器的星载飞行器,通常放置在300公里至2000公里高度的低轨道(LEO)和在8000至20000公里高度的中轨道(MEO)上,或放置在35786公里高度的地球静止卫星地球轨道(GEO)。
在现有的3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)定义的卫星接入解决方案中,卫星NG-RAN(Next Generation Radio Access Network,下一代无线接入网)是使用NR(新空口)向UE(User Equipment,用户设备)提供卫星接入的NG-RAN。UE应支持NR通过卫星接入3GPP网络。
TS22.261中有一个要求:具有卫星接入的5G(5th Generation Mobile Communication Technology,第五代移动通信技术)系统应支持不同的配置,其中无线电接入网络是卫星NG-RAN或非3GPP卫星接入网络,或两者兼有。
然而,对于不支持NR的卫星终端,目前还没有3GPP网络为这种不支持NR的卫星终端提供服务的解决方案。
发明内容
本公开实施例提供一种用户设备接入移动网络的方法及其装置,通过不受信任或受信任的非第三代合作伙伴计划3GPP接入网,将不支持NR的卫星终端接入到移动网络,以使得移动网络可以为不支持NR的卫星终端提供服务。
第一方面,本公开实施例提供一种用户设备接入移动网络的方法,该方法由所述用户设备执行,所述方法包括:
通过不受信任或受信任的非第三代合作伙伴计划3GPP接入网,将所述用户设备接入所述移动网络;
其中,所述用户设备为不支持新空口NR的卫星终端,且所述用户设备具备卫星接入和非接入层NAS能力。
在该技术方案中,通过不受信任或受信任的非3GPP接入网将不支持NR的卫星终端接入到移动网络,以使得移动网络可以为不支持NR的卫星终端提供服务。
在一种实现方式中,通过不受信任的非3GPP接入网,将所述用户设备接入所述移动网络,包括:
基于认证过程连接至所述不受信任的非3GPP接入网;
在所述用户设备决定连接到5G核心网时,在5G公用陆地移动网络PLMN中选择非3GPP互通功能N3IWF;
与所述选择的N3IWF建立互联网安全协议IPsec隧道,并在所述IPsec隧道建立过程中,所述用户设备将由所述5G核心网进行身份验证并附着到所述5G核心网。
在一种实现方式中,通过受信任的非3GPP接入网,将所述用户设备接入所述移动网络,包括:
连接到所述受信任的非3GPP接入网;
基于可扩展认证协议EAP的过程通过所述受信任的非3GPP接入网注册到所述5G核心网;
其中,所述用户设备与所述受信任的非3GPP接入网之间的链路为支持EAP封装的数据链路;所述受信任的非3GPP接入网包括可信非3GPP接入点和可信非3GPP网关功能,所述可信非3GPP接入点和所述可信非3GPP网关功能之间的接口为AAA接口。
在一种可能的实现方式中,所述用户设备与所述可信非3GPP接入点之间的连接为所述用户设备与卫星之间的卫星连接。
在一种可能的实现方式中,所述通过不受信任或受信任的非第三代合作伙伴计划3GPP接入网,将所述用户设备接入所述移动网络,包括:根据所述用户设备中的预先配置信息,选择通过不受信任或受信任的非3GPP接入网将所述用户设备接入所述移动网络。
在一种可能的实现方式中,所述非3GPP接入网为卫星接入网;所述预先配置信息包括所述卫星接入和5G核心网的组合信息。
第二方面,本公开实施例提供另一种用户设备接入移动网络的方法,所述方法由非第三代合作伙伴计划3GPP互通功能N3IWF执行,所述方法包括:
将连接到不受信任的非3GPP接入网的用户设备接入到所述移动网络;
其中,所述用户设备为不支持新空口NR的卫星终端,且所述用户设备具备卫星接入和非接入层NAS能力。
在该技术方案中,通过N3IWF将连接到不受信任的非3GPP接入网的用户设备(不支持NR的卫星终端)接入到移动网络,以使得移动网络可以为不支持NR的卫星终端提供服务。
在一种实现方式中,所述非3GPP接入网为卫星接入。
在一种可能的实现方式中,在所述将连接到不受信任的非3GPP接入网的用户设备接入到所述移动网络的过程中,所述方法还包括:在N2消息中向接入与移动性管理功能AMF发送无线接入类型RAT类型。
在一种可能的实现方式中,所述RAT类型包括以下类型中的至少一种:
受信任或不受信任的低轨道LEO卫星接入类型;
受信任或不受信任的中轨道MEO卫星接入类型;
受信任或不受信任的地球静止卫星地球轨道GEO卫星接入类型;
受信任或不受信任的其他卫星OTHERSAT卫星接入类型。
第三方面,本公开实施例提供另一种用户设备接入移动网络的方法,所述方法由接入与移动性管理功能AMF执行,所述方法包括:
对连接到不受信任的非第三代合作伙伴计划3GPP接入网的用户设备进行认证,以通过非3GPP互通功能N3IWF将所述用户设备接入所述移动网络;或
对连接到受信任的非3GPP接入网的用户设备进行认证,以将所述用户设备接入所述移动网络;
其中,所述用户设备为不支持新空口NR的卫星终端,且所述用户设备具备卫星接入和非接入层NAS能力。
在该技术方案中,通过AMF对连接到不受信任或受信任的非3GPP接入网的用户设备(不支持NR 的卫星终端)进行认证,以通过N3IWF将该不支持NR的卫星终端接入到移动网络,以使得移动网络可以为不支持NR的卫星终端提供服务。
在一种实现方式中,所述方法还包括:当对连接到不受信任的非3GPP接入网的用户设备进行认证,接收所述N3IWF在N2消息中发送的无线接入类型RAT类型;或
当对连接到受信任的非3GPP接入网的用户设备进行认证,接收所述非3GPP接入网之中可信非3GPP网关功能在N2消息中发送的无线接入类型RAT类型。
在一种实现方式中,所述方法还包括:在向统一数据管理UDM注册时,根据第一RAT类型向所述UDM提供设置为非3GPP接入的接入类型和RAT类型。
在一种可能的实现方式中,所述非3GPP接入的接入类型为卫星接入。
在一种可能的实现方式中,所述第一RAT类型为所述AMF接收到的RAT类型;或者,所述第一RAT类型为不受信任的卫星接入网与所述AMF之间配置的RAT类型。
在一种可能的实现方式中,所述RAT类型包括以下类型中的至少一种:
受信任或不受信任的低轨道LEO卫星接入类型;
受信任或不受信任的中轨道MEO卫星接入类型;
受信任或不受信任的地球静止卫星地球轨道GEO卫星接入类型;
受信任或不受信任的其他OTHERSAT卫星接入类型。
第四方面,本公开实施例提供另一种用户设备接入移动网络的方法,所述方法由受信任的非第三代合作伙伴计划3GPP接入网执行,所述方法包括:
将连接到所述受信任的非3GPP接入网的用户设备接入到所述移动网络;
其中,所述用户设备为不支持新空口NR的卫星终端,且所述用户设备具备卫星接入和非接入层NAS能力。
在该技术方案中,通过受信任的非3GPP接入网将不支持NR的卫星终端接入到移动网络,以使得移动网络可以为不支持NR的卫星终端提供服务。
在一种实现方式中,所述非3GPP接入网为卫星接入。
在一种实现方式中,所述受信任的非3GPP接入网包括可信非3GPP接入点和可信非3GPP网关功能,所述可信非3GPP接入点和所述可信非3GPP网关功能之间的接口为AAA接口。
在一种可能的实现方式中,所述用户设备与所述可信非3GPP接入点之间的连接为所述用户设备与卫星之间的卫星连接。
在一种可能的实现方式中,所述方法还包括:通过可信非3GPP网关功能在N2消息中向接入与移动性管理功能AMF发送无线接入类型RAT类型。
在一种可能的实现方式中,所述RAT类型包括以下类型中的至少一种:
不受信任或受信任的低轨道LEO卫星接入类型;
不受信任或受信任的中轨道MEO卫星接入类型;
不受信任或受信任的地球静止卫星地球轨道GEO卫星接入类型;
不受信任或受信任的其他卫星OTHERSAT卫星接入类型。
第五方面,本公开实施例提供一种用户设备接入移动网络的装置,装置被配置于所述用户设备上, 所述装置包括:
处理单元,用于通过不受信任或受信任的非第三代合作伙伴计划3GPP接入网,将所述用户设备接入所述移动网络;
其中,所述用户设备为不支持新空口NR的卫星终端,且所述用户设备具备卫星接入和非接入层NAS能力。
第六方面,本公开实施例提供另一种用户设备接入移动网络的装置,所述装置被配置于非第三代合作伙伴计划3GPP互通功能N3IWF上,所述装置包括:
处理单元,用于将连接到不受信任的非3GPP接入网的用户设备接入到所述移动网络;
其中,所述用户设备为不支持新空口NR的卫星终端,且所述用户设备具备卫星接入和非接入层NAS能力。
第七方面,本公开实施例提供另一种用户设备接入移动网络的装置,所述装置被配置于接入与移动性管理功能AMF上,所述装置包括:
处理单元,用于对连接到不受信任的非第三代合作伙伴计划3GPP接入网的用户设备进行认证,以通过非3GPP互通功能N3IWF将所述用户设备接入所述移动网络;或
用于对连接到受信任的非第三代合作伙伴计划3GPP接入网的用户设备进行认证,以将所述用户设备接入所述移动网络;
其中,所述用户设备为不支持新空口NR的卫星终端,且所述用户设备具备卫星接入和非接入层NAS能力。
第八方面,本公开实施例提供另一种用户设备接入移动网络的装置,所述装置被配置于受信任的非第三代合作伙伴计划3GPP接入网上,所述装置包括:
处理单元,用于将连接到所述受信任的非3GPP接入网的用户设备接入到所述移动网络;
其中,所述用户设备为不支持新空口NR的卫星终端,且所述用户设备具备卫星接入和非接入层NAS能力。
第九方面,本公开实施例提供一种用户设备接入移动网络的系统,所述系统包括用户设备、非第三代合作伙伴计划3GPP互通功能N3IWF和接入与移动性管理功能AMF,其中,所述用户设备执行如前述第一方面实施例所述的方法,所述N3IWF执行如前述第二方面实施例所述的方法,所述AMF执行如前述第三方面实施例所述的方法。
第十方面,本公开实施例提供另一种用户设备接入移动网络的系统,所述系统包括用户设备、受信任的非第三代合作伙伴计划3GPP接入网和接入与移动性管理功能AMF,其中,所述用户设备执行如前述第一方面实施例所述的方法,所述AMF执行如前述第三方面实施例所述的方法,所述受信任的非3GPP接入网执行如前述第四方面实施例所述的方法。
第十一方面,本公开实施例提供一种卫星终端接入移动网络的装置,该装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该装置执行上述第一方面所述的方法。
第十二方面,本公开实施例提供另一种卫星终端接入移动网络的装置,该装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该装置执行上述第 二方面所述的方法。
第十三方面,本公开实施例提供另一种卫星终端接入移动网络的装置,该装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该装置执行上述第三方面所述的方法。
第十四方面,本公开实施例提供另一种卫星终端接入移动网络的装置,该装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该装置执行上述第四方面所述的方法。
第十五方面,本公开实施例提供一种计算机可读存储介质,用于储存为上述用户设备所用的指令,当所述指令被执行时,使所述用户设备执行上述第一方面所述的方法。
第十六方面,本公开实施例提供另一种可读存储介质,用于储存为上述非第三代合作伙伴计划3GPP互通功能N3IWF所用的指令,当所述指令被执行时,使所述N3IWF执行上述第二方面所述的方法。
第十七方面,本公开实施例提供另一种可读存储介质,用于储存为上述接入与移动性管理功能AMF所用的指令,当所述指令被执行时,使所述AMF执行上述第三方面所述的方法。
第十八方面,本公开实施例提供另一种可读存储介质,用于储存为上述受信任的非第三代合作伙伴计划3GPP接入网所用的指令,当所述指令被执行时,使所述受信任的非3GPP接入网执行上述第四方面所述的方法。
附图说明
为了更清楚地说明本公开实施例或背景技术中的技术方案,下面将对本公开实施例或背景技术中所需要使用的附图进行说明。
图1是本公开实施例提供的一种卫星终端接入移动网络的系统的架构示意图;
图2是本公开实施例提供的另一种卫星终端接入移动网络的系统的架构示意图;
图3是本公开实施例提供的一种用户设备接入移动网络的方法的流程示意图;
图4是本公开实施例提供的另一种用户设备接入移动网络的方法的流程示意图;
图5是本公开实施例提供的通过不受信任的非3GPP接入网进行注册的流程示意图;
图6是本公开实施例提供的另一种用户设备接入移动网络的方法的流程示意图;
图7是本公开实施例提供的通过受信任的非3GPP接入网进行注册的流程示意图;
图8是本公开实施例提供的又一种用户设备接入移动网络的方法的流程图;
图9是本公开实施例提供的又一种用户设备接入移动网络的方法的流程图;
图10是本公开实施例提供的又一种用户设备接入移动网络的方法的流程图;
图11是本公开实施例提供的又一种用户设备接入移动网络的方法的流程图;
图12为本公开实施例提供的一种用户设备接入移动网络的装置的结构示意图;
图13为本公开实施例提供的另一种用户设备接入移动网络的装置的结构示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨 在用于解释本公开,而不能理解为对本公开的限制。其中,在本公开的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
卫星是搭载弯管有效载荷或再生有效载荷电信发射器的星载飞行器,通常放置在300公里至2000公里高度的低轨道(LEO)和在8000至20000公里高度的中轨道(MEO)上,或放置在35786公里高度的地球静止卫星地球轨道(GEO)。
在现有的3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)定义的卫星接入解决方案中,卫星NG-RAN(Next Generation Radio Access Network,下一代无线接入网)是使用NR(新空口)向UE(User Equipment,用户设备)提供卫星接入的NG-RAN。UE应支持NR通过卫星接入3GPP网络。
TS22.261中有一个要求:具有卫星接入的5G(5th Generation Mobile Communication Technology,第五代移动通信技术)系统应支持不同的配置,其中无线电接入网络是卫星NG-RAN或非3GPP卫星接入网络,或两者兼有。
然而,对于不支持NR的卫星终端,目前还没有3GPP网络为这种不支持NR的卫星终端提供服务的解决方案。
为了解决移动网络如何为不支持NR的卫星终端提供服务的技术问题,本公开具有以下假设:1)用户设备(User Equipment,UE)具备卫星接入和NAS(Non Access Stratum,非接入层)能力;2)UE接入5GC(5G核心网)有两种卫星接入:受信任和不受信任,根据卫星接入和5GC的组合信息(如PLMN(Public Land Mobile Network,公用陆地移动网)ID(identifier,标识符))在UE中预先配置选择。
可选地,本公开可以通过不受信任或受信任的非3GPP接入网将不支持NR的卫星终端接入到移动网络。其中,用户设备接入5G核心网的卫星接入方式不同,则对应的通信系统架构也会不同。下面将给出两种通信系统,以分别对应该不受信任的卫星接入方式和受信任的卫星接入方式。
为了更好的理解本公开实施例公开的一种用户设备接入移动网络的方法,下面首先对本公开实施例适用的通信系统进行描述。
请参见图1,图1为本公开实施例提供的一种卫星终端接入移动网络的系统的架构示意图。该系统对应不受信任的卫星接入方式。该系统可包括但不限于一个用户设备101、一个不受信任的非3GPP接入网102、一个N3IWF(Non-3GPP InterWorking Function,非3GPP接入网互通功能)103、一个AMF(Access and Mobility Management Function,接入与移动性管理功能)104、一个SMF(Session Management Function,会话管理功能)105、一个UPF(User Plane Function,用户面功能)106和一个DN(Data Network,数据网络)107。图1所示的设备数量和形态仅用于举例并不构成对本公开实施例的限定,实际应用中可以包括两个或两个以上的用户设备,两个或两个以上的不受信任的非3GPP接入网,两个或两个以上的N3IWF,两个或两个以上的AMF,两个或两个以上的SMF,两个或两个以上的UPF,两个或两个以上的DN。图1所示的系统以包括一个网络设备101、一个不受信任的非3GPP接入网102、一个N3IWF 103、一个AMF 104、一个SMF 105、一个UPF 106和一个DN 107为例。
需要说明的是,本公开实施例的技术方案可以应用于各种通信系统。例如:第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等。
本公开实施例中的不受信任的非3GPP接入网102包括卫星(Satellite)和S-AGF(Satellite Access Gateway Function,卫星接入网关功能)。
本公开实施例中的用户设备101是用户侧的一种用于接收或发射信号的实体,如手机。该用户设备101也可以称为增强卫星终端(enhancing satellite terminal)。该用户设备101可以为不支持NR的卫星终端,且该用户设备101具备卫星接入和非接入层NAS能力。用户设备101可以是具备通信功能的汽 车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本公开的实施例对用户设备所采用的具体技术和具体设备形态不做限定。
需要说明的是,在本公开的实施例中,用户设备101与AMF 104之间具有N1接口。用户设备101与N3IWF 103之间具有NWu接口。N3IWF 103与AMF 104之间具有N2接口。N3IWF 103与UPF 106之间具有N3接口。AMF 104与SMF 105之间具有N11接口。SMF 105与UPF 106之间具有N4接口。UPF 106与DN 107之间具有N6接口。
请参见图2,图2为本公开实施例提供的另一种卫星终端接入移动网络的系统的架构示意图。该系统对应受信任的卫星接入方式。该系统可包括但不限于一个用户设备201、一个受信任的非3GPP接入(Trusted Non-3GPP Access)网202、一个AMF203、一个AUSF(Authentication Server Function,鉴权服务器功能)204、一个SMF205、一个UPF206和一个DN207。图2所示的设备数量和形态仅用于举例并不构成对本公开实施例的限定,实际应用中可以包括两个或两个以上的用户设备,两个或两个以上的受信任的非3GPP接入网、两个或两个以上的AMF、两个或两个以上的AUSF、两个或两个以上的SMF、两个或两个以上的UPF和两个或两个以上的DN。图2所示的系统以包括一个网络设备201、一个受信任的非3GPP接入网202、一个AMF 203、一个AUSF 204、一个SMF 205、一个UPF 206和一个DN 207为例。
需要说明的是,本公开实施例的技术方案可以应用于各种通信系统。例如:第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等。
本公开实施例中的受信任的非3GPP接入网202可以包括可信非3GPP接入点(Trusted Non-3GPP Access Point,TNAP)和可信非3GPP网关功能(Trusted Non-3GPP Gateway Function,TNGF)。其中,TNAP可以是卫星,TNGF可以是S-AGF。
本公开实施例中的用户设备201是用户侧的一种用于接收或发射信号的实体,如手机。该用户设备201也可以称为增强卫星终端(enhancing satellite terminal)。该用户设备201可以为不支持NR的卫星终端,且该用户设备201具备卫星接入和非接入层NAS能力。用户设备201可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本公开的实施例对用户设备所采用的具体技术和具体设备形态不做限定。
需要说明的是,在本公开的实施例中,用户设备101与AMF 203之间具有N1接口。用户设备201与TNGF之间具有NWu接口。TNAP与TNGF之间具有Ta接口。TNGF与AMF 203之间具有N2接口。AMF 203与SMF 205之间具有N11接口。SMF 205与UPF 206之间具有N4接口。UPF 206与DN 207之间具有N6接口。
可以理解的是,本公开实施例描述的卫星终端接入移动网络的系统是为了更加清楚的说明本公开实施例的技术方案,并不构成对于本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图对本公开所提供的用户设备接入移动网络的方法及其装置进行详细地介绍。
请参见图3,图3是本公开实施例提供的一种用户设备接入移动网络的方法的流程示意图。需要说明的是,本公开实施例的方法由用户设备执行。如图3所示,该方法可以包括但不限于如下步骤:
在步骤301中,通过不受信任或受信任的非3GPP接入网,将用户设备接入移动网络。
其中,在本公开的一些实施例中,该用户设备可以为不支持NR的卫星终端,且该用户设备具备卫星接入和NAS能力。
在一种实现方式中,可以根据用户设备中的预先配置信息,选择通过不受信任或受信任的非3GPP接入网将用户设备接入移动网络。可选地,在本公开的一些实施例中,该非3GPP接入网为卫星接入网;该预先配置信息可以包括卫星接入和5G核心网的组合信息。
也就是说,本公开实施例中的用户设备接入5G核心网有两种卫星接入:受信任和不受信任。可以根据卫星接入和5G核心网的组合信息(如PLMN ID)在用户设备中预先配置选择。
例如,在用户设备中预先配置的卫星接入和5G核心网的组合信息为第一PLMN ID,则可以选择通过不受信任的非3GPP接入网将该用户设备接入移动网络。又如,在用户设备中预先配置的卫星接入和5G核心网的组合信息为第二PLMN ID,则可以选择通过受信任的非3GPP接入网将该用户设备接入移动网络。
通过实施本公开实施例,可以通过不受信任或受信任的非3GPP接入网将不支持NR的卫星终端接入到移动网络,以使得移动网络可以为不支持NR的卫星终端提供服务。
在本公开的一些实施例中,可以通过不受信任的非3GPP接入网将不支持NR的卫星终端接入移动网络。可选地,请参见图4,图4是本公开实施例提供的另一种用户设备接入移动网络的方法的流程示意图。需要说明的是,本公开实施例的方法由用户设备执行。如图4所示,该方法可以包括但不限于如下步骤:
在步骤401中,基于认证过程连接至不受信任的非3GPP接入网。
可选地,用户设备通过任何适当的认证过程连接到不受信任的非3GPP接入网,并为该用户设备分配一个IP(Internet Protocol,网际互连协议)地址。例如,可以使用非3GPP认证方法,比如无认证(在免费WLAN的情况下)、具有预共享密钥的EAP(Extensible Authentication Protocol,可扩展认证协议)、用户名/密码等。
在步骤402中,在用户设备决定连接到5G核心网时,在5G公用陆地移动网络PLMN中选择非3GPP互通功能N3IWF。
可选地,当用户设备决定连接到5G核心网时,用户设备可以在5G PLMN中选择N3IWF,如TS23.501第6.3.6条中所述。
在步骤403中,与选择的N3IWF建立互联网安全协议IPsec隧道,并在IPsec隧道建立过程中,用 户设备将由5G核心网进行身份验证并附着到5G核心网。
可选地,用户设备可以与选择的N3IWF建立IPsec隧道,并在IPsec隧道建立过程中,该用户设备将由5G核心网进行身份验证并附着到5G核心网,以使得将连接到不受信任的非3GPP接入网的用户设备接入至移动网络。
为了更好的理解本公开实施例公开的用户设备接入移动网络的方法,下面将结合图5描述通过不受信任的非3GPP接入网进行注册的流程。
如图5所示,在步骤1a中,用户设备通过任何适当的认证过程连接到不受信任的非3GPP接入网,并为该用户设备分配一个IP地址。例如,可以使用非3GPP认证方法,比如无认证(在免费WLAN的情况下)、具有预共享密钥的EAP、用户名/密码等。在步骤1b中,当用户设备决定连接到5GC网络时,用户设备在5G PLMN中选择N3IWF,如TS 23.501第6.3.6条中所述。
在步骤2中,用户设备通过根据RFC 7296发起IKE(Internet Key Exchange,互联网密钥交换协议)初始交换,继续与选择的N3IWF建立IPsec(Internet Protocol Secrutity,互联网协议安全)的安全关联(Security Association,SA)。在步骤2之后,通过使用在此步骤中建立的IKE SA来加密所有后续IKE消息并保护完整性。也就是说,步骤2对应IKE SA流程,这个流程的作用是在不完全的网络下建立一个安全的传输通道,用于后面的5G-NAS鉴权流程,保证5G-NAS鉴权流程消息传输的安全;在这步骤以后,所有的IKE消息都是经过加密和完整性保护的。
在步骤3中,用户设备应通过发送IKE_AUTH(互联网密钥交换认证)请求消息来发起IKE_AUTH交换。AUTH有效载荷不包含在IKE_AUTH请求消息中,其指示IKE_AUTH交换应使用EAP信令(在这种情况下为EAP-5G信令)。如果用户设备支持MOBIKE(移动性和多宿主协议),用户设备应该在IKE_AUTH请求中包含一个Notify有效载荷,如RFC 4555中所规定的,指示支持MOBIKE。此外,如TS 33.501中规定的,如果用户设备提供了N3IWF根证书,则用户设备应在IKE_AUTH请求消息中包含CERTREQ有效负载以请求N3IWF的证书。
在步骤4中,用户设备可以接收到N3IWF发送的IKE_AUTH响应消息。可选地,N3IWF使用IKE_AUTH响应消息进行响应,其中包括EAP-Request/5G-Start分组。EAP-Request/5G-Start分组通知用户设备发起EAP-5G会话,即开始发送封装在EAP-5G分组中的NAS消息。如果N3IWF已从用户设备接收到CERTREQ有效载荷,则N3IWF应在包含N3IWF证书的IKE_AUTH响应消息中包含CERT有效载荷。用户设备如何使用N3IWF的证书在TS33.501中规定。
在步骤5中,用户设备应验证N3IWF证书,并确认N3IWF标识与用户设备选择的N3IWF相匹配。如果用户设备请求证书或身份确认不成功,则缺少N3IWF的证书将导致连接失败。用户设备应发送一个IKE_AUTH请求,该请求包括EAP-Response/5G-NAS分组,该分组包含接入网络参数(AN参数)和一个注册请求消息。AN参数包含由N3IWF用于在5G核心网络中选择AMF的信息。例如,该信息可以包括GUAMI(全球唯一的接入和移动管理功能标识)、选定的PLMNID(或PLMNID和NID,参见TS23.501的第5.30条)、请求的NSSAI(NetworkSliceSelectionAssistanceInformation,网络切片选择辅助信息,也被称为网络切片的标识)和建立原因。该建立原因提供了请求与5G核心网建立信令连接的原因。用户设备是否以及如何包含请求的NSSAI作为AN参数的一部分,取决于接入层连接建立NSSAI包含模式参数的值,如TS23.501的第5.15.9节中的规定。
然而,N3IWF不发送EAP-Identity请求,因为用户设备将其身份包括在第一个IKE_AUTH中。这符合RFC 7296第3.16条款。
在步骤6中,根据TS 23.501第6.3.5条的规定,N3IWF应根据收到的AN参数和本地策略选择AMF。然后,N3IWF应在N2消息内将从用户设备接收到的注册请求转发到所选AMF。该消息包含N2参数,包括所选PLMN ID和建立原因。N3IWF在N2消息中向AMF发送RAT类型。在本公开的一些实施例中,该RAT类型可以包括以下类型中的至少一种:
受信任或不受信任的低轨道LEO卫星接入类型;
受信任或不受信任的中轨道MEO卫星接入类型;
受信任或不受信任的地球静止卫星地球轨道GEO卫星接入类型;
受信任或不受信任的其他卫星OTHERSAT卫星接入类型。
作为一种可能的实现方式中,该RAT类型可以是以下表格1中所示值之一:
表格1 RAT类型的枚举
Figure PCTCN2022109811-appb-000001
可以理解的是,上述的表格1中的每一个元素都是独立存在的,这些元素被示例性的列在同一张表格中,但是并不代表表格中的所有元素必须根据表格中所示的同时存在。其中每一个元素的值,是不依赖于表格1中任何其他元素值。因此本领域内技术人员可以理解,该表格1中的每一个元素的取值都是一个独立的实施例。需要说明的是,本公开实施例中包括多个表格,而其中的每一个表格都与表格1相似的,是将多个独立的实施例合并在了同一张表格中,而这些表格中的每一个元素也应当被认为是一个独立的实施例。
在步骤7a和步骤7b中,所选AMF可以通过向用户设备发送NAS身份请求消息来决定请求SUCI(签约用户隐式标识)。该NAS身份请求消息和所有后续NAS消息都封装在EAP/5G-NAS分组内发送到用户设备。
在步骤8(包括步骤8a至8h)中,AMF可以决定通过调用AUSF(鉴权服务器功能)来认证用户设备。在这种情况下,AMF将根据SUPI(签约用户永久标识)或SUCI选择AUSF,如TS 23.501第6.3.4条中所规定的。AUSF按照TS 33.501的规定执行用户设备的认证。AUSF选择一个UDM,如TS23.501的第6.3.8节所述,并从UDM获取认证数据。认证数据包封装在NAS认证消息中,NAS认证消息封装在EAP/5G-NAS分组中。认证成功后,在步骤8h中,AUSF应将向AMF发送锚密钥(安全锚点功能(SEAF)密钥),该锚密钥由AMF用于导出NAS安全密钥和N3IWF的安全密钥(N3IWF 密钥)。用户设备还导出锚密钥(SEAF密钥),并从该密钥中导出NAS安全密钥和N3IWF的安全密钥(N3IWF密钥)。N3IWF密钥由用户设备和N3IWF用于建立IPsec安全关联(在步骤11中)。
在步骤8h中,如果在步骤8a中AMF向AUSF提供了SUCI,则AUSF还应包括SUPI。
需要说明的是,EAP-AKA'或5G-AKA允许通过非3GPP接入对用户设备进行身份验证,如TS33.501中所述。图5仅显示了使用EAP-AKA'的身份验证流程。如TS33.501附件I中规定的,用户设备通过PLMN接入SNPN(独立非公共网络)服务也允许使用EAP-AKA'或5G-AKA以外的认证方法。
在步骤9a中,AMF将向用户设备发送NAS安全模式命令消息以激活NAS安全。如果在步骤8中成功执行了EAP-AKA'认证,则AMF应将从AUSF接收到的EAP-Success封装在NAS安全模式命令消息中。
在步骤9b中,N3IWF应在EAP/5G-NAS分组中将NAS安全模式命令消息转发给用户设备。
在步骤9c中,用户设备完成EAP-AKA'认证(如果在步骤8中启动),创建NAS安全上下文和N3IWF密钥,并在EAP/5G-NAS分组中发送NAS安全模式完成消息。
在步骤9d中,N3IWF将NAS安全模式完成消息中继到AMF。
在步骤10a中,AMF在接收到NAS安全模式完成后,AMF应发送包含N3IWF密钥的NGAP(Next Generation Application Protocol,下一代应用协议)初始上下文设置请求消息。
在步骤10b中,这会触发N3IWF向用户设备发送EAP-Success,从而完成EAP-5G会话。不再交换EAP-5G分组。
在步骤11(包括步骤11a和步骤11b)中,通过使用在步骤9c中在用户设备中创建并在步骤10a中由N3IWF接收的公共N3IWF密钥,在用户设备和N3IWF之间建立IPsecSA。该IPsecSA称为“信令IPsecSA”。在建立信令IPsecSA之后,N3IWF通知AMF通过发送NGAP初始上下文设置响应消息来创建UE上下文(包括安全性)。信令IPsecSA应配置为在隧道模式下运行,N3IWF应为用户设备分配“内部”IP地址。如果N3IWF已收到用户设备支持MOBIKE的指示(参见步骤3),则N3IWF应在步骤11a中发送的IKE_AUTH响应消息中包括Notify有效载荷,指示应支持MOBIKE,如RFC4555中所规定。
用户设备和N3IWF之间交换的所有后续NAS消息都应通过信令IPsecSA发送,并应通过TCP/IP承载。用户设备应在TCP/IP数据包内发送NAS消息,源地址为用户设备的“内部”IP地址,目标地址为步骤11a中接收的NAS_IP_ADDRESS。N3IWF应在TCP/IP数据包中发送NAS消息,源地址为NAS_IP_ADDRESS,目标地址为用户设备的“内部”IP地址。用于用户设备和N3IWF之间的可靠NAS传输的TCP连接应在步骤11a中建立信令IPsecSA之后由用户设备立即发起。用户设备应将TCP连接请求发送到NAS_IP_ADDRESS和TS24.502中指定的TCP端口号。
在步骤12中,AMF向N3IWF发送NAS注册接受消息。N2消息包括用户设备接入类型允许的NSSAI(Network Slice Selection Assistance Information,网络切片选择支持信息)。
在步骤13中,N3IWF通过建立的信令IPsecSA将NAS注册接受消息转发给用户设备。如果N3IWF在建立IPsecSA之前,接收到NAS注册接受消息,则N3IWF应存储该NAS注册接受消息,并仅在建立信令IPsecSA之后将该NAS注册接受消息转发给用户设备。
在本公开的一些实施例中,AMF在向UDM注册时,根据在步骤6b中接收到的RAT类型,或者 根据不受信任的卫星接入网与AMF之间的配置,向UDM提供设置为“Non-3GPP接入”的接入类型和RAT类型。作为一种示例,对于在步骤6b中接收到RAT类型的情况,AMF在向UDM注册时,AMF可以根据该接收到的RAT类型,向UDM提供设置为“非3GPP接入”的接入类型和该RAT类型。作为另一种示例,对于在步骤6b中未接收到RAT类型的情况,AMF在向UDM注册时,AMF可以根据不受信任的卫星接入网与AMF之间的配置,向UDM提供设置为“Non-3GPP接入”的接入类型和RAT类型。
其中,在本公开的实施例中,该RAT类型可以包括以下类型中的至少一种:
受信任或不受信任的低轨道LEO卫星接入类型;
受信任或不受信任的中轨道MEO卫星接入类型;
受信任或不受信任的地球静止卫星地球轨道GEO卫星接入类型;
受信任或不受信任的其他卫星OTHERSAT卫星接入类型。
作为一种可能的实现方式中,该RAT类型可以是如上表格1中所示值之一。
通过实施本公开实施例,可以通过不受信任的非3GPP接入网将不支持NR的卫星终端接入到移动网络,以使得移动网络可以为不支持NR的卫星终端提供服务。
在本公开的一些实施例中,可以通过受信任的非3GPP接入网将不支持NR的卫星终端接入移动网络。可选地,请参见图6,图6是本公开实施例提供的另一种用户设备接入移动网络的方法的流程示意图。需要说明的是,本公开实施例的方法由用户设备执行。如图6所示,该方法可以包括但不限于如下步骤:
在步骤601中,连接到受信任的非3GPP接入网(TNAN)。
在步骤602中,基于EAP的过程通过受信任的非3GPP接入网注册到5G核心网。
其中,在本公开的实施例中,用户设备与受信任的非3GPP接入网之间的链路可以为支持EAP封装的任何数据链路(L2),例如PPP(Point-to-Point Protocol,点到点协议)、PANA(Protocol for carrying Authentication for Network Access,网络接入认证信息承载协议)、以太网、IEEE(Institute of Electrical and Electronics Engineers,美国电气和电子工程师协会)802.3、IEEE 802.11等。
在本公开的实施例中,该受信任的非3GPP接入网(TNAN)可以包括可信非3GPP接入点(TNAP)和可信非3GPP网关功能(TNGF),可信非3GPP接入点和可信非3GPP网关功能之间的接口为AAA接口。其中,该可信非3GPP接入点(TNAP)可以是卫星,该可信非3GPP网关功能(TNGF)为S-AGF。
为了更好的理解本公开实施例公开的用户设备接入移动网络的方法,下面将结合图7描述通过受信任的非3GPP接入网进行注册的流程。
如图7所示,在步骤0中,用户设备通过使用受信任的非3GPP接入网选择过程来选择一个PLMN和一个TNAN来连接到该PLMN。在此过程中,用户设备发现TNAN支持可信连接(例如“5G连接”)的PLMN。
在步骤1中,用户设备与可信非3GPP接入点(TNAP)之间建立L2(Layer-2)连接,即该L2连接可以为用户设备与卫星之间的卫星连接。
在步骤2至步骤3中,启动EAP程序。EAP消息被封装到L2数据包中,例如被封装到 IEEE802.3/802.1x数据包、被封装到IEEE802.11/802.1x数据包、被封装到PPP数据包等。用户设备提供的NAI(网络接入识别符)指示用户设备请求“5G连接”到特定PLMN,例如NAI="<any_username>@nai.5gc.mnc<MNC>.mcc<MCC>.3gppnetwork.org"。该NAI触发TNAP向TNGF发送AAA请求,TNGF作为AAA代理运行。在TNAP和TNGF之间,EAP数据包被封装成AAA消息。该AAA请求还包括TNAP标识符,可以将该TNAP标识符视为用户位置信息。
在步骤4至步骤10中,执行EAP-5G流程。其中,执行EAP-5G流程的具体要点如下:
成功认证后,在用户设备和AMF中创建TNGF密钥。在步骤10a中(在N2初始上下文设置请求消息内),TNGF密钥从AMF传输到TNGF。TNGF派生一个TNAP密钥,该TNAP密钥提供给TNAP。TNAP密钥取决于非3GPP接入技术(例如,在IEEE Std 802.11的情况下,TNAP密钥是成对的主密钥)。
在步骤5中,仅当允许受信任的非3GPP接入时,用户设备才应将请求的NSSAI包括在AN参数中。用户设备还应在AN参数中包括UE Id,例如,如果可从同一PLMN的事先注册获得5G-GUTI(第五代移动通信技术-全球唯一临时标识),则该UE Id可以为该5G-GUTI。
需要说明的是,在本公开的实施例中,在步骤6b中发送的N2消息中,TNGF包括UE位置信息(ULI),其中包含“空”IP地址(例如0.0.0.0),因为尚未为用户设备分配IP地址。用户设备分配IP地址后,TNGF会将这个IP地址包含在后续的N2消息中。TNGF在N2消息中将RAT类型发送给AMF。在本公开的一些实施例中,该RAT类型可以包括以下类型中的至少一种:
不受信任或受信任的低轨道LEO卫星接入类型;
不受信任或受信任的中轨道MEO卫星接入类型;
不受信任或受信任的地球静止卫星地球轨道GEO卫星接入类型;
不受信任或受信任的其他卫星OTHERSAT卫星接入类型。
作为一种可能的实现方式中,该RAT类型可以是以下表格1中所示值之一:
表格2 RAT类型的枚举
Figure PCTCN2022109811-appb-000002
值得注意的是,在步骤10a中接收到来自AMF的TNGF密钥后,TNGF应向用户设备发送包含“TNGFContactInfo(TNGF联系信息)”的EAP-Request(EAP请求)/5G-Notification(5G通知)包,其中包括TNGF的IP地址。在步骤10d中,TNGF在步骤10c中收到来自用户设备的EAP-Response(EAP响应)/5G-Notification包后,TNGF应发送包含EAP-Success(EAP成功)包的消息。
在步骤11中,TNAP密钥用于在用户设备和TNAP之间建立L2(Layer-2)安全性。在IEEEStd802.11 的情况下,执行4次握手,在卫星和用户设备之间建立一个安全上下文,用于保护空中的单播和多播流量。
在步骤12中,用户设备从TNAN(受信任的非3GPP接入网)接收IP配置信息,例如使用DHCP(Dynamic Host Configuration Protocol,动态主机配置协议)。至此,用户设备已经成功连接到TNAN,并获得了IP配置信息。
在步骤13(包括步骤13a至13c)中,用户设备与TNGF建立安全的NWt连接。其中,该用户设备与TNGF建立安全的NWt连接如下:
用户设备使用在步骤10b中EAP-5G信令期间收到的TNGF的IP地址发起IKE_INIT交换。随后,用户设备发起IKE_AUTH交换并提供其身份。用户设备在IKEv2(IKE的第二个版本)信令中提供的身份应该与步骤5中AN参数中包含的UEId相同。这使得TNGF能够在步骤8的身份验证期间定位之前为该用户设备创建TNGF密钥。TNGF密钥用于相互认证。根据RFC2410中的规定,在用户设备和TNGF之间协商空加密(NULL encryption)。
需要说明的是,在步骤13c中,TNGF向UE提供“内部”IP地址、NAS_IP_ADDRESS和TCP端口号、以及DSCP(Differentiated Services Code Point,分服务编码)值。在此步骤之后,在用户设备和TNGF之间建立IPsecSA。这称为“信令IPsecSA”并在隧道模式下运行。当用户设备的IP地址在移动性事件期间发生变化时,隧道模式下的操作允许使用MOBIKE重新建立IPsecSA。用户设备和TNGF之间通过“信令IPsecSA”交换的所有IP数据包都应标有上述DSCP值。用户设备和TNAP可以将DSCP值映射到底层非3GPP接入网支持的QoS(Quality of Service,服务质量)级别(例如,EDCA接入等级)。
值得注意的是,在“信令IPsecSA”建立之后,用户设备将使用NAS_IP_ADDRESS和在步骤13c中收到的TCP端口号建立与TNGF的TCP连接。用户设备应在TCP/IP数据包中发送NAS消息,源地址为用户设备的“内部”IP地址,目的地址为NAS_IP_ADDRESS。TNGF应在TCP/IP数据包中发送NAS消息,源地址为NAS_IP_ADDRESS,目标地址为UE的“内部”IP地址。
在步骤14中,成功建立NWt连接后,TNGF使用N2初始上下文设置响应消息响应AMF。
在步骤15(包括步骤15a和15b)中,NAS注册接受消息由AMF发送,并通过已建立的NWt连接转发给用户设备。此时,用户设备可以使用TNAN传输非无缝卸载流量,并建立一个或多个PDU会话。AMF在向UDM注册时,根据在步骤6b中从TNGF接收到的RAT类型,或者根据在AMF中为受信任的卫星接入网的配置,向UDM提供设置为“非3GPP接入”的接入类型和RAT类型。作为一种示例,对于在步骤6b中从TNGF接收到的RAT类型的情况下,AMF在向UDM注册时,AMF可以根据该接收到的RAT类型,向UDM提供设置为“非3GPP接入”的接入类型和该RAT类型。作为另一种示例,对于在步骤6b中未从TNGF接收到RAT类型的情况,AMF在向UDM注册时,AMF可以根据在AMF中为受信任的卫星接入网的配置,向UDM提供设置为“Non-3GPP接入”的接入类型和RAT类型。
其中,在本公开的实施例中,该RAT类型可以包括以下类型中的至少一种:
不受信任或受信任的低轨道LEO卫星接入类型;
不受信任或受信任的中轨道MEO卫星接入类型;
不受信任或受信任的地球静止卫星地球轨道GEO卫星接入类型;
不受信任或受信任的其他卫星OTHERSAT卫星接入类型。
作为一种可能的实现方式中,该RAT类型可以是如上表格2中所示值之一。
通过实施本公开实施例,可以通过受信任的非3GPP接入网将不支持NR的卫星终端接入到移动网络,以使得移动网络可以为不支持NR的卫星终端提供服务。
可以理解,上述实施例是从用户设备侧描述本公开实施例的用户设备接入移动网络的方法的实现方式。本公开实施例还提出了另一种用户设备接入移动网络的方法,该方法是通过不受信任的非3GPP接入网将用户设备接入到移动网络。下面将从N3IWF侧描述该用户设备接入移动网络的方法的实现方式。请参见图8,图8是本公开实施例提供的又一种用户设备接入移动网络的方法的流程图。需要说明的是,本公开实施例的用户设备接入移动网络的方法可由N3IWF执行,如图8所示,该方法可以包括但不限于如下步骤。
在步骤801中,将连接到不受信任的非3GPP接入网的用户设备接入到移动网络。
其中,在本公开的实施例中,用户设备为不支持新空口NR的卫星终端,且用户设备具备卫星接入和非接入层NAS能力。
在本公开的一些实施例中,该非3GPP接入网为卫星接入。
在一种实现方式中,在所述将连接到不受信任的非3GPP接入网的用户设备接入到移动网络的过程中,N3IWF在N2消息中向AMF发送RAT类型。其中,在本公开的实施例中,该RAT类型可以包括以下类型中的至少一种:
受信任或不受信任的低轨道LEO卫星接入类型;
受信任或不受信任的中轨道MEO卫星接入类型;
受信任或不受信任的地球静止卫星地球轨道GEO卫星接入类型;
受信任或不受信任的其他卫星OTHERSAT卫星接入类型。
在本公开的实施例中,N3IWF可以与如图1所示中的其他设备交互,以将连接到不受信任的非3GPP接入网的用户设备接入到移动网络。该实现过程可参见上述图5所示的通过不受信任的非3GPP接入网进行注册的实现方式,在此不再赘述。
可以理解,上述实施例是分别从用户设备和N3IWF侧描述本公开实施例的用户设备接入移动网络的方法的实现方式。本公开实施例还提出了另一种用户设备接入移动网络的方法,该方法是通过不受信任的非3GPP接入网将用户设备接入到移动网络。下面将从AMF侧描述该用户设备接入移动网络的方法的实现方式。请参见图9,图9是本公开实施例提供的又一种用户设备接入移动网络的方法的流程图。需要说明的是,本公开实施例的用户设备接入移动网络的方法可由AMF执行,如图9所示,该方法可以包括但不限于如下步骤。
在步骤901中,对连接到不受信任的非3GPP接入网的用户设备进行认证,以通过N3IWF将用户设备接入移动网络。
其中,在本公开的实施例中,该用户设备为不支持新空口NR的卫星终端,且用户设备具备卫星接入和非接入层NAS能力。作为一种实现,该非3GPP接入的接入类型可为卫星接入。
在一种实现方式中,AMF可以接收N3IWF在N2消息中发送的无线接入类型RAT类型。
在一种实现方式中,AMF在向统一数据管理UDM注册时,根据第一RAT类型向UDM提供设置为非3GPP接入的接入类型和RAT类型。
其中,在本公开的实施例中,该第一RAT类型为AMF接收到的RAT类型;或者,第一RAT类型为不受信任的卫星接入网与AMF之间配置的RAT类型。
在本公开的实施例中,该RAT类型可以包括以下类型中的至少一种:
受信任或不受信任的LEO卫星接入类型;
受信任或不受信任的MEO卫星接入类型;
受信任或不受信任的GEO卫星接入类型;
受信任或不受信任的OTHERSAT卫星接入类型。
作为一种可能的实现方式,该RAT类型可以是以上表格1中所示值之一。
在本公开的实施例中,AMF可以与如图1所示中的其他设备交互,以将连接到不受信任的非3GPP接入网的用户设备接入到移动网络。该实现过程可参见上述图5所示的通过不受信任的非3GPP接入网进行注册的实现方式,在此不再赘述。
可以理解,本公开实施例还提出了另一种用户设备接入移动网络的方法,该方法是通过受信任的非3GPP接入网将用户设备接入到移动网络。下面将从受信任的非3GPP接入网(TNAN)侧描述该用户设备接入移动网络的方法的实现方式。请参见图10,图10是本公开实施例提供的又一种用户设备接入移动网络的方法的流程图。需要说明的是,本公开实施例的用户设备接入移动网络的方法可由受信任的非3GPP接入网执行,如图10所示,该方法可以包括但不限于如下步骤。
在步骤1001中,将连接到受信任的非3GPP接入网的用户设备接入到移动网络。
其中,在本公开的实施例中,用户设备为不支持新空口NR的卫星终端,且用户设备具备卫星接入和非接入层NAS能力。作为一种示例,非3GPP接入网为卫星接入。
在本公开的一些实施例中,该受信任的非3GPP接入网包括可信非3GPP接入点和可信非3GPP网关功能,其中,可信非3GPP接入点和可信非3GPP网关功能之间的接口为AAA接口。
在一种实现方式中,用户设备与可信非3GPP接入点之间的连接为用户设备与卫星之间的卫星连接。
在本公开的实施例中,通过可信非3GPP网关功能在N2消息中向接入与移动性管理功能AMF发送无线接入类型RAT类型。其中,在本公开的实施例中,该RAT类型包括以下类型中的至少一种:
不受信任或受信任的LEO卫星接入类型;
不受信任或受信任的MEO卫星接入类型;
不受信任或受信任的GEO卫星接入类型;
不受信任或受信任的OTHERSAT卫星接入类型。
作为一种可能的实现方式,该RAT类型可以是以上表格2中所示值之一。
在本公开的实施例中,受信任的非3GPP接入网(TNAN)可以与如图2所示中的其他设备交互,以将连接到受信任的非3GPP接入网的用户设备接入到移动网络。该实现过程可参见上述图7所示的通过受信任的非3GPP接入网进行注册的实现方式,在此不再赘述。
可以理解,上述实施例是分别从用户设备和受信任的非3GPP接入网(TNAN)侧描述本公开实施 例的用户设备接入移动网络的方法的实现方式。本公开实施例还提出了另一种用户设备接入移动网络的方法,该方法是通过受信任的非3GPP接入网将用户设备接入到移动网络。下面将从AMF侧描述该用户设备接入移动网络的方法的实现方式。请参见图11,图11是本公开实施例提供的又一种用户设备接入移动网络的方法的流程图。需要说明的是,本公开实施例的用户设备接入移动网络的方法可由AMF执行,如图11所示,该方法可以包括但不限于如下步骤。
在步骤1101中,对连接到受信任的非第三代合作伙伴计划3GPP接入网的用户设备进行认证,以将用户设备接入移动网络。
其中,在本公开的实施例中,用户设备为不支持新空口NR的卫星终端,且用户设备具备卫星接入和非接入层NAS能力。作为一种实现,非3GPP接入的接入类型为卫星接入。
在本公开的一些实施例中,AMF可以接收非3GPP接入网之中可信非3GPP网关功能在N2消息中发送的无线接入类型RAT类型。
在本公开的一些实施例中,AMF可以在向统一数据管理UDM注册时,根据第一RAT类型向UDM提供设置为非3GPP接入的接入类型和RAT类型。
其中,在本公开的实施例中,第一RAT类型为AMF接收到的RAT类型;或者,第一RAT类型为不受信任的卫星接入网与AMF之间配置的RAT类型。
其中,在本公开的实施例中,RAT类型包括以下类型中的至少一种:
不受信任或受信任的LEO卫星接入类型;
不受信任或受信任的MEO卫星接入类型;
不受信任或受信任的GEO卫星接入类型;
不受信任或受信任的OTHERSAT卫星接入类型。
作为一种可能的实现方式的示例,该RAT类型可以是以上表格2中所示值之一。
在本公开的实施例中,AMF可以与如图2所示中的其他设备交互,以将连接到受信任的非3GPP接入网的用户设备接入到移动网络。该实现过程可参见上述图7所示的通过受信任的非3GPP接入网进行注册的实现方式,在此不再赘述。
上述本公开提供的实施例中,分别从用户设备、N3IWF、AMF、受信任的非3GPP接入网的角度对本公开实施例提供的方法进行了介绍。为了实现上述本公开实施例提供的方法中的各功能,用户设备、N3IWF、AMF、受信任的非3GPP接入网可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参见图12,为本公开实施例提供的一种用户设备接入移动网络的装置120的结构示意图。图12所示的装置120可包括收发单元1201和处理单元1202。收发单元1201可包括发送单元和/或接收单元,发送单元用于实现发送功能,接收单元用于实现接收功能,收发单元1201可以实现发送功能和/或接收功能。
装置120可以是用户设备,也可以是用户设备中的装置,还可以是能够与用户设备匹配使用的装置。或者,装置120可以是N3IWF网元,也可以是N3IWF网元中的装置,还可以是能够与N3IWF网元匹 配使用的装置。或者,装置120可以是AMF网元,也可以是AMF网元中的装置,还可以是能够与AMF网元匹配使用的装置。或者,装置120可以是受信任的非3GPP接入网,也可以是受信任的非3GPP接入网中的装置,还可以是能够与受信任的非3GPP接入网匹配使用的装置。
装置120为用户设备:在一种实现方式中,处理单元1202用于通过不受信任或受信任的非第三代合作伙伴计划3GPP接入网,将用户设备接入移动网络。其中,用户设备为不支持新空口NR的卫星终端,且用户设备具备卫星接入和非接入层NAS能力。
在一种可能的实现方式中,处理单元1202通过不受信任的非3GPP接入网,将用户设备接入移动网络的实现方式可如下:基于认证过程连接至不受信任的非3GPP接入网;在用户设备决定连接到5G核心网时,在5G公用陆地移动网络PLMN中选择非3GPP互通功能N3IWF;与选择的N3IWF建立互联网安全协议IPsec隧道,并在IPsec隧道建立过程中,用户设备将由5G核心网进行身份验证并附着到5G核心网。
在一种可能的实现方式中,处理单元1202通过受信任的非3GPP接入网,将用户设备接入移动网络的实现方式可如下:连接到受信任的非3GPP接入网;基于可扩展认证协议EAP的过程通过受信任的非3GPP接入网注册到5G核心网;其中,用户设备与受信任的非3GPP接入网之间的链路为支持EAP封装的数据链路;受信任的非3GPP接入网包括可信非3GPP接入点和可信非3GPP网关功能,可信非3GPP接入点和可信非3GPP网关功能之间的接口为AAA接口。
其中,在一种可能的实现方式中,用户设备与可信非3GPP接入点之间的连接为用户设备与卫星之间的卫星连接。
在本公开的实施例中,处理单元1202可以根据用户设备中的预先配置信息,选择通过不受信任或受信任的非3GPP接入网将用户设备接入移动网络。其中,作为一种示例,非3GPP接入网为卫星接入网;预先配置信息包括卫星接入和5G核心网的组合信息。
对于不受信任的非3GPP接入的情况下,装置120为N3IWF:在一种实现方式中,处理单元1202用于将连接到不受信任的非3GPP接入网的用户设备接入到移动网络;其中,用户设备为不支持新空口NR的卫星终端,且用户设备具备卫星接入和非接入层NAS能力。作为一种示例,非3GPP接入网为卫星接入。
在一种可能的实现方式中,处理单元1202在N2消息中向接入与移动性管理功能AMF发送无线接入类型RAT类型。其中,在本公开的实施例中,该RAT类型包括以下类型中的至少一种:
受信任或不受信任的低轨道LEO卫星接入类型;
受信任或不受信任的中轨道MEO卫星接入类型;
受信任或不受信任的地球静止卫星地球轨道GEO卫星接入类型;
受信任或不受信任的其他卫星OTHERSAT卫星接入类型。
对于不受信任的非3GPP接入的情况下,装置120为AMF:在一种实现方式中,处理单元1202用于对连接到不受信任的非第三代合作伙伴计划3GPP接入网的用户设备进行认证,以通过非3GPP互通功能N3IWF将用户设备接入移动网络;其中,用户设备为不支持新空口NR的卫星终端,且用户设备具备卫星接入和非接入层NAS能力。作为一种示例,非3GPP接入的接入类型为卫星接入。
在一种可能的实现方式中,处理单元1202还用于接收N3IWF在N2消息中发送的无线接入类型 RAT类型。
在一种可能的实现方式中,处理单元1202还用于在向统一数据管理UDM注册时,根据第一RAT类型向UDM提供设置为非3GPP接入的接入类型和RAT类型。其中,在本公开的实施例中,第一RAT类型为AMF接收到的RAT类型;或者,第一RAT类型为不受信任的卫星接入网与AMF之间配置的RAT类型。
在本公开的实施例中,该RAT类型包括以下类型中的至少一种:
受信任或不受信任的低轨道LEO卫星接入类型;
受信任或不受信任的中轨道MEO卫星接入类型;
受信任或不受信任的地球静止卫星地球轨道GEO卫星接入类型;
受信任或不受信任的其他OTHERSAT卫星接入类型。
对于受信任的非3GPP接入的情况下,装置120为受信任的非3GPP接入网:在一种实现方式中,处理单元1202用于将连接到受信任的非3GPP接入网的用户设备接入到移动网络;其中,用户设备为不支持新空口NR的卫星终端,且用户设备具备卫星接入和非接入层NAS能力。作为一种示例,非3GPP接入网为卫星接入。
在一种可能的实现方式中,受信任的非3GPP接入网包括可信非3GPP接入点和可信非3GPP网关功能,可信非3GPP接入点和可信非3GPP网关功能之间的接口为AAA接口。
在一种可能的实现方式中,用户设备与可信非3GPP接入点之间的连接为用户设备与卫星之间的卫星连接。
在一种可能的实现方式中,处理单元1202还用于通过可信非3GPP网关功能在N2消息中向接入与移动性管理功能AMF发送无线接入类型RAT类型。其中,在本公开的实施例中,该RAT类型包括以下类型中的至少一种:
不受信任或受信任的低轨道LEO卫星接入类型;
不受信任或受信任的中轨道MEO卫星接入类型;
不受信任或受信任的地球静止卫星地球轨道GEO卫星接入类型;
不受信任或受信任的其他卫星OTHERSAT卫星接入类型。
对于受信任的非3GPP接入的情况下,装置120为AMF:在一种实现方式中,处理单元1202用于对连接到受信任的非第三代合作伙伴计划3GPP接入网的用户设备进行认证,以将用户设备接入移动网络;其中,用户设备为不支持新空口NR的卫星终端,且用户设备具备卫星接入和非接入层NAS能力。作为一种示例,非3GPP接入的接入类型为卫星接入。
在一种可能的实现方式中,处理单元1202还用于接收非3GPP接入网之中可信非3GPP网关功能在N2消息中发送的无线接入类型RAT类型。
在一种可能的实现方式中,处理单元1202还用于在向统一数据管理UDM注册时,根据第一RAT类型向UDM提供设置为非3GPP接入的接入类型和RAT类型。
在本公开的实施例中,第一RAT类型为AMF接收到的RAT类型;或者,第一RAT类型为不受信任的卫星接入网与AMF之间配置的RAT类型。
在一种可能的实现方式中,该RAT类型包括以下类型中的至少一种:
不受信任或受信任的低轨道LEO卫星接入类型;
不受信任或受信任的中轨道MEO卫星接入类型;
不受信任或受信任的地球静止卫星地球轨道GEO卫星接入类型;
不受信任或受信任的其他卫星OTHERSAT卫星接入类型。
关于上述实施例中的装置,其中各个单元执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
请参见图13,图13是本公开实施例提供的另一种用户设备接入移动网络的装置130的结构示意图。装置130可以是用户设备,也可以是N3IWF,也可以是AMF,也可以是受信任的非3GPP接入网,也可以是支持用户设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持N3IWF实现上述方法的芯片、芯片系统、或处理器等,也可以是支持AMF实现上述方法的芯片、芯片系统、或处理器等,也可以是支持受信任的非3GPP接入网实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
装置130可以包括一个或多个处理器1301。处理器1301可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,装置130中还可以包括一个或多个存储器1302,其上可以存有计算机程序1304,处理器1301执行所述计算机程序1304,以使得装置130执行上述方法实施例中描述的方法。可选的,所述存储器1302中还可以存储有数据。装置130和存储器1302可以单独设置,也可以集成在一起。
可选的,装置130还可以包括收发器1305、天线1306。收发器1305可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1305可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,装置130中还可以包括一个或多个接口电路1307。接口电路1307用于接收代码指令并传输至处理器1301。处理器1301运行所述代码指令以使装置130执行上述方法实施例中描述的方法。
在一种实现方式中,处理器1301中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器1301可以存有计算机程序,计算机程序在处理器1301上运行,可使得装置130执行上述方法实施例中描述的方法。计算机程序可能固化在处理器1301中,该种情况下,处理器1301可能由硬件实现。
在一种实现方式中,装置130可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来 制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的装置可以是网络设备或者终端设备(如前述方法实施例中的第一终端设备),但本公开中描述的装置的范围并不限于此,而且装置的结构可以不受图13的限制。装置可以是独立的设备或者可以是较大设备的一部分。例如所述装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本公开实施例保护的范围。
本公开实施例还提供一种用户设备接入移动网络的系统,该系统包括前述图12实施例中作为用户设备的装置、作为N3IWF的装置和作为AMF的装置,或者,该系统包括前述图13实施例中作为用户设备的装置、作为N3IWF的装置和作为AMF的装置。
本公开实施例还提供另一种用户设备接入移动网络的系统,该系统包括前述图12实施例中作为用户设备的装置、作为受信任的非3GPP接入网的装置和作为AMF的装置,或者,该系统包括前述图13实施例中作为用户设备的装置、作为受信任的非3GPP接入网的装置和作为AMF的装置。
本公开还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站 点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开实施例的范围,也表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本公开中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本公开并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本公开中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本公开中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种用户设备接入移动网络的方法,其特征在于,所述方法由所述用户设备执行,所述方法包括:
    通过不受信任或受信任的非第三代合作伙伴计划3GPP接入网,将所述用户设备接入所述移动网络;
    其中,所述用户设备为不支持新空口NR的卫星终端,且所述用户设备具备卫星接入和非接入层NAS能力。
  2. 如权利要求1所述的方法,其特征在于,通过不受信任的非3GPP接入网,将所述用户设备接入所述移动网络,包括:
    基于认证过程连接至所述不受信任的非3GPP接入网;
    在所述用户设备决定连接到5G核心网时,在5G公用陆地移动网络PLMN中选择非3GPP互通功能N3IWF;
    与所述选择的N3IWF建立互联网安全协议IPsec隧道,并在所述IPsec隧道建立过程中,所述用户设备将由所述5G核心网进行身份验证并附着到所述5G核心网。
  3. 如权利要求1所述的方法,其特征在于,通过受信任的非3GPP接入网,将所述用户设备接入所述移动网络,包括:
    连接到所述受信任的非3GPP接入网;
    基于可扩展认证协议EAP的过程通过所述受信任的非3GPP接入网注册到所述5G核心网;
    其中,所述用户设备与所述受信任的非3GPP接入网之间的链路为支持EAP封装的数据链路;所述受信任的非3GPP接入网包括可信非3GPP接入点和可信非3GPP网关功能,所述可信非3GPP接入点和所述可信非3GPP网关功能之间的接口为AAA接口。
  4. 如权利要求3所述的方法,其特征在于,所述用户设备与所述可信非3GPP接入点之间的连接为所述用户设备与卫星之间的卫星连接。
  5. 如权利要求1至4中任一项所述的方法,其特征在于,所述通过不受信任或受信任的非第三代合作伙伴计划3GPP接入网,将所述用户设备接入所述移动网络,包括:
    根据所述用户设备中的预先配置信息,选择通过不受信任或受信任的非3GPP接入网将所述用户设备接入所述移动网络。
  6. 如权利要求5所述的方法,其特征在于,所述非3GPP接入网为卫星接入网;所述预先配置信息包括所述卫星接入和5G核心网的组合信息。
  7. 一种用户设备接入移动网络的方法,其特征在于,所述方法由非第三代合作伙伴计划3GPP互 通功能N3IWF执行,所述方法包括:
    将连接到不受信任的非3GPP接入网的用户设备接入到所述移动网络;
    其中,所述用户设备为不支持新空口NR的卫星终端,且所述用户设备具备卫星接入和非接入层NAS能力。
  8. 如权利要求7所述的方法,其特征在于,所述非3GPP接入网为卫星接入。
  9. 如权利要求7或8所述的方法,其特征在于,在所述将连接到不受信任的非3GPP接入网的用户设备接入到所述移动网络的过程中,所述方法还包括:
    在N2消息中向接入与移动性管理功能AMF发送无线接入类型RAT类型。
  10. 如权利要求9所述的方法,其特征在于,所述RAT类型包括以下类型中的至少一种:
    受信任或不受信任的低轨道LEO卫星接入类型;
    受信任或不受信任的中轨道MEO卫星接入类型;
    受信任或不受信任的地球静止卫星地球轨道GEO卫星接入类型;
    受信任或不受信任的其他卫星OTHERSAT卫星接入类型。
  11. 一种用户设备接入移动网络的方法,其特征在于,所述方法由接入与移动性管理功能AMF执行,所述方法包括:
    对连接到不受信任的非第三代合作伙伴计划3GPP接入网的用户设备进行认证,以通过非3GPP互通功能N3IWF将所述用户设备接入所述移动网络;或
    对连接到受信任的非第三代合作伙伴计划3GPP接入网的用户设备进行认证,以将所述用户设备接入所述移动网络;
    其中,所述用户设备为不支持新空口NR的卫星终端,且所述用户设备具备卫星接入和非接入层NAS能力。
  12. 如权利要求11所述的方法,其特征在于,还包括:
    当对连接到不受信任的非第三代合作伙伴计划3GPP接入网的用户设备进行认证,接收所述N3IWF在N2消息中发送的无线接入类型RAT类型;或
    当对连接到受信任的非第三代合作伙伴计划3GPP接入网的用户设备进行认证,接收所述非3GPP接入网之中可信非3GPP网关功能在N2消息中发送的无线接入类型RAT类型。
  13. 如权利要求11或12所述的方法,其特征在于,还包括:
    在向统一数据管理UDM注册时,根据第一RAT类型向所述UDM提供设置为非3GPP接入的接入类型和RAT类型。
  14. 如权利要求13所述的方法,其特征在于,所述非3GPP接入的接入类型为卫星接入。
  15. 如权利要求14所述的方法,其特征在于,
    所述第一RAT类型为所述AMF接收到的RAT类型;或者,
    所述第一RAT类型为不受信任的卫星接入网与所述AMF之间配置的RAT类型。
  16. 如权利要求12至15中任一项所述的方法,其特征在于,所述RAT类型包括以下类型中的至少一种:
    受信任或不受信任的低轨道LEO卫星接入类型;
    受信任或不受信任的中轨道MEO卫星接入类型;
    受信任或不受信任的地球静止卫星地球轨道GEO卫星接入类型;
    受信任或不受信任的其他OTHERSAT卫星接入类型。
  17. 一种用户设备接入移动网络的方法,其特征在于,所述方法由受信任的非第三代合作伙伴计划3GPP接入网执行,所述方法包括:
    将连接到所述受信任的非3GPP接入网的用户设备接入到所述移动网络;
    其中,所述用户设备为不支持新空口NR的卫星终端,且所述用户设备具备卫星接入和非接入层NAS能力。
  18. 如权利要求17所述的方法,其特征在于,所述非3GPP接入网为卫星接入。
  19. 如权利要求17或18所述的方法,其特征在于,所述受信任的非3GPP接入网包括可信非3GPP接入点和可信非3GPP网关功能,所述可信非3GPP接入点和所述可信非3GPP网关功能之间的接口为AAA接口。
  20. 如权利要求19所述的方法,其特征在于,所述用户设备与所述可信非3GPP接入点之间的连接为所述用户设备与卫星之间的卫星连接。
  21. 如权利要求19或20所述的方法,其特征在于,还包括:
    通过可信非3GPP网关功能在N2消息中向接入与移动性管理功能AMF发送无线接入类型RAT类型。
  22. 如权利要求21所述的方法,其特征在于,所述RAT类型包括以下类型中的至少一种:
    不受信任或受信任的低轨道LEO卫星接入类型;
    不受信任或受信任的中轨道MEO卫星接入类型;
    不受信任或受信任的地球静止卫星地球轨道GEO卫星接入类型;
    不受信任或受信任的其他卫星OTHERSAT卫星接入类型。
  23. 一种用户设备接入移动网络的装置,其特征在于,所述装置被配置于所述用户设备上,所述装置包括:
    处理单元,用于通过不受信任或受信任的非第三代合作伙伴计划3GPP接入网,将所述用户设备接入所述移动网络;
    其中,所述用户设备为不支持新空口NR的卫星终端,且所述用户设备具备卫星接入和非接入层NAS能力。
  24. 一种用户设备接入移动网络的装置,其特征在于,所述装置被配置于非第三代合作伙伴计划3GPP互通功能N3IWF上,所述装置包括:
    处理单元,用于将连接到不受信任的非3GPP接入网的用户设备接入到所述移动网络;
    其中,所述用户设备为不支持新空口NR的卫星终端,且所述用户设备具备卫星接入和非接入层NAS能力。
  25. 一种用户设备接入移动网络的装置,其特征在于,所述装置被配置于接入与移动性管理功能AMF上,所述装置包括:
    处理单元,用于对连接到不受信任的非第三代合作伙伴计划3GPP接入网的用户设备进行认证,以通过非3GPP互通功能N3IWF将所述用户设备接入所述移动网络;或
    用于对连接到受信任的非第三代合作伙伴计划3GPP接入网的用户设备进行认证,以将所述用户设备接入所述移动网络;
    其中,所述用户设备为不支持新空口NR的卫星终端,且所述用户设备具备卫星接入和非接入层NAS能力。
  26. 一种用户设备接入移动网络的装置,其特征在于,所述装置被配置于受信任的非第三代合作伙伴计划3GPP接入网上,所述装置包括:
    处理单元,用于将连接到所述受信任的非3GPP接入网的用户设备接入到所述移动网络;
    其中,所述用户设备为不支持新空口NR的卫星终端,且所述用户设备具备卫星接入和非接入层NAS能力。
  27. 一种用户设备接入移动网络的系统,其特征在于,所述系统包括用户设备、非第三代合作伙伴计划3GPP互通功能N3IWF和接入与移动性管理功能AMF,其中,所述用户设备执行如权利要求1至6中任一项所述的方法,所述N3IWF执行如权利要求7至10中任一项所述的方法,所述AMF执行如权利要求11至16中任一项所述的方法。
  28. 一种用户设备接入移动网络的系统,其特征在于,所述系统包括用户设备、受信任的非第三代 合作伙伴计划3GPP接入网和接入与移动性管理功能AMF,其中,所述用户设备执行如权利要求1至6中任一项所述的方法,所述AMF执行如权利要求11至16中任一项所述的方法,所述受信任的非3GPP接入网执行如权利要求17至22中任一项所述的方法。
  29. 一种卫星终端接入移动网络的装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至6中任一项所述的方法,或者以使所述装置执行如权利要求7至10中任一项所述的方法,或者以使所述装置执行如权利要求11至16中任一项所述的方法,或者以使所述装置执行如权利要求17至22中任一项所述的方法。
  30. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至6中任一项所述的方法被实现,或者使如权利要求7至10中任一项所述的方法被实现,或者使如权利要求11至16中任一项所述的方法被实现,或者使如权利要求17至22中任一项所述的方法被实现。
PCT/CN2022/109811 2022-08-02 2022-08-02 一种用户设备接入移动网络的方法及其装置 WO2024026698A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280002733.1A CN117813802A (zh) 2022-08-02 2022-08-02 一种用户设备接入移动网络的方法及其装置
PCT/CN2022/109811 WO2024026698A1 (zh) 2022-08-02 2022-08-02 一种用户设备接入移动网络的方法及其装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/109811 WO2024026698A1 (zh) 2022-08-02 2022-08-02 一种用户设备接入移动网络的方法及其装置

Publications (1)

Publication Number Publication Date
WO2024026698A1 true WO2024026698A1 (zh) 2024-02-08

Family

ID=89848357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109811 WO2024026698A1 (zh) 2022-08-02 2022-08-02 一种用户设备接入移动网络的方法及其装置

Country Status (2)

Country Link
CN (1) CN117813802A (zh)
WO (1) WO2024026698A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110268734A (zh) * 2017-02-07 2019-09-20 IPCom两合公司 使用不可信网络的互通功能
CN111316683A (zh) * 2017-11-13 2020-06-19 瑞典爱立信有限公司 非3gpp接入中的5g通信网络中的安全认证
CN113852949A (zh) * 2021-09-26 2021-12-28 中国电子科技集团公司第五十四研究所 接入网关及卫星终端通过接入网关接入5g移动网络方法
CN114765805A (zh) * 2021-01-04 2022-07-19 中国移动通信有限公司研究院 一种通信方法、网络设备、基站及计算机可读存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110268734A (zh) * 2017-02-07 2019-09-20 IPCom两合公司 使用不可信网络的互通功能
CN111316683A (zh) * 2017-11-13 2020-06-19 瑞典爱立信有限公司 非3gpp接入中的5g通信网络中的安全认证
CN114765805A (zh) * 2021-01-04 2022-07-19 中国移动通信有限公司研究院 一种通信方法、网络设备、基站及计算机可读存储介质
CN113852949A (zh) * 2021-09-26 2021-12-28 中国电子科技集团公司第五十四研究所 接入网关及卫星终端通过接入网关接入5g移动网络方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHINA MOBILE, NOKIA, NOKIA SHANGHAI BELL, APPLE: "Update the description for satellite access", 3GPP TSG-CT WG1 MEETING #131-E, C1-215133, 26 August 2021 (2021-08-26), XP052042402 *

Also Published As

Publication number Publication date
CN117813802A (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
US20220360634A1 (en) User plane model for non-3gpp access to fifth generation core network
EP1523129A2 (en) Method and apparatus for access control of a wireless terminal device in a communications network
US20070213029A1 (en) System and Method for Provisioning of Emergency Calls in a Shared Resource Network
US20230269797A1 (en) Accessing a 5g network via a non-3gpp access network
WO2019196766A1 (zh) 通信方法和装置
CN113676904B (zh) 切片认证方法及装置
US20240015630A1 (en) Routing Between Networks Based on Identifiers
TWI799064B (zh) 一種金鑰標識的生成方法以及相關裝置
WO2022253083A1 (zh) 一种公私网业务的隔离方法、装置及系统
WO2019242525A1 (zh) 数据传输方法、相关装置及系统
WO2021204277A1 (zh) 通信方法、装置及系统
EP3697119A1 (en) Authentication method and device
WO2023213301A1 (zh) 鉴权方法、通信装置和计算机可读存储介质
WO2023185880A1 (zh) 一种接入网设备的确定方法
CN112567812B (zh) 用于移动设备的位置报告
WO2023016160A1 (zh) 一种会话建立方法和相关装置
WO2024026698A1 (zh) 一种用户设备接入移动网络的方法及其装置
WO2021195816A1 (zh) 一种通信方法、装置及系统
US20230336992A1 (en) Method and apparatus for authenticating user equipment in wireless communication system
WO2023213191A1 (zh) 安全保护方法及通信装置
WO2024065469A1 (zh) 一种直连链路建立方法、设备及存储介质
CN114600487B (zh) 身份认证方法及通信装置
WO2023273790A1 (zh) 一种认证方法及通信装置
US20240155533A1 (en) Anonymous registration with a communication network
WO2023245388A1 (zh) 安全通信方法及装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280002733.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953511

Country of ref document: EP

Kind code of ref document: A1