WO2024024969A1 - Device and method - Google Patents

Device and method Download PDF

Info

Publication number
WO2024024969A1
WO2024024969A1 PCT/JP2023/027846 JP2023027846W WO2024024969A1 WO 2024024969 A1 WO2024024969 A1 WO 2024024969A1 JP 2023027846 W JP2023027846 W JP 2023027846W WO 2024024969 A1 WO2024024969 A1 WO 2024024969A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
bwp
information
user equipment
bandwidth
Prior art date
Application number
PCT/JP2023/027846
Other languages
French (fr)
Japanese (ja)
Inventor
卓宏 古山
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2024024969A1 publication Critical patent/WO2024024969A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate

Definitions

  • the present disclosure relates to apparatus and methods.
  • Non-Patent Document 1 a new study item (SI) called "further NR RedCap UE complexity reduction" has been launched in 3GPP Release 18 (Rel-18).
  • This SI is for defining the functions of Rel-18 RedCap UE, which has capabilities between LPWA (Low Power Wide Area) UE (User Equipment) and Release 17 (Rel-17) RedCap (reduced capability) UE. It is. Specific use cases include industrial sensors, surveillance cameras, and wearable devices. Additionally, the objectives of the SI mentioned above include a reduction in UE bandwidth to 5 MHz in frequency range (FR1) and a reduced UE peak data rate in FR1. As described above, UE technologies are being considered that aim to be widely disseminated in the market by reducing functions and reducing costs.
  • FR1 frequency range
  • Non-Patent Document 2 proposes reducing the bandwidth of the data channel in FR1 in order to reduce the peak data rate of the UE. Furthermore, Non-Patent Document 2 describes that a narrower BWP for Rel-18 RedCap UE is arranged within a bandwidth part (BWP) for Rel-17 RedCap UE.
  • BWP bandwidth part
  • Non-Patent Document 3-6 also proposes content regarding Rel-18 RedCap UE.
  • Non-Patent Document 2 describes that a narrower BWP for Rel-18 RedCap UE is arranged within the BWP for Rel-17 RedCap UE.
  • the inventor believes that in the current 3GPP TS, it is possible to configure a BWP for a Rel-17 RedCap UE by using information elements included in, for example, an RRC (radio resource control) Reconfiguration message; The problem was found that it was not possible to further set a narrow BWP.
  • RRC radio resource control
  • An object of the present disclosure is to provide an apparatus and method that allows further configuration of frequency bands within BWP for RedCap UEs.
  • An apparatus includes an information acquisition unit that acquires an RRC message, and a communication processing unit that transmits the RRC message to a user device, the user device being a RedCap UE, and the RRC message includes first information indicating a bandwidth portion used by the user equipment, and second information indicating the frequency band set within the bandwidth portion and used by the user equipment. Contains information and.
  • a device includes a communication processing unit that receives an RRC message transmitted by a base station, and an information acquisition unit that acquires first information and second information included in the RRC message.
  • the first information indicates a bandwidth portion used by the user equipment
  • the second information is a frequency band set within the bandwidth portion and used by the user equipment. Indicating the frequency band, the user equipment is a RedCap UE.
  • a method performed by a base station includes obtaining an RRC message and transmitting the RRC message to a user equipment, wherein the user equipment is a RedCap UE and the RRC message is transmitted to a user equipment.
  • the message includes first information indicating a bandwidth portion used by the user equipment, and second information indicating a frequency band set within the bandwidth portion and the frequency band used by the user equipment. Contains information on and.
  • FIG. 1 is an explanatory diagram showing an example of a schematic configuration of a system according to an embodiment of the present disclosure.
  • FIG. 2 is an explanatory diagram illustrating an example of a carrier and BWP according to an embodiment of the present disclosure.
  • FIG. 1 is a block diagram illustrating an example of a schematic functional configuration of a base station according to an embodiment of the present disclosure.
  • FIG. 1 is a block diagram illustrating an example of a schematic hardware configuration of a base station according to an embodiment of the present disclosure.
  • FIG. 2 is a block diagram illustrating an example of a schematic functional configuration of a UE according to an embodiment of the present disclosure.
  • FIG. 2 is a block diagram illustrating an example of a schematic hardware configuration of a UE according to an embodiment of the present disclosure.
  • FIG. 1 is an explanatory diagram showing an example of a schematic configuration of a system according to an embodiment of the present disclosure.
  • FIG. 2 is an explanatory diagram illustrating an example of a carrier and BWP according
  • FIG. 2 is an explanatory diagram illustrating an example of BWP and frequency bands according to an embodiment of the present disclosure.
  • FIG. 2 is an explanatory diagram showing an example of a first information element according to an embodiment of the present disclosure.
  • FIG. 7 is an explanatory diagram illustrating an example of a second information element according to an embodiment of the present disclosure.
  • FIG. 7 is an explanatory diagram illustrating an example of a third information element according to an embodiment of the present disclosure.
  • FIG. 7 is an explanatory diagram illustrating an example of a fourth information element according to an embodiment of the present disclosure.
  • FIG. 2 is a sequence diagram for explaining an example of a schematic flow of processing according to an embodiment of the present disclosure.
  • FIG. 7 is an explanatory diagram illustrating an example of frequency band offset and bandwidth according to a second modification of the embodiment of the present disclosure. It is an explanatory view showing an example of the 3rd information element concerning the 2nd modification of the embodiment of this indication. It is an explanatory view showing an example of the 4th information element concerning the 2nd modification of the embodiment of this indication.
  • FIG. 7 is an explanatory diagram showing a first example of frequency band candidates according to third to fifth modified examples of the embodiment of the present disclosure.
  • FIG. 7 is an explanatory diagram showing a second example of frequency band candidates according to third to fifth modified examples of the embodiment of the present disclosure.
  • FIG. 7 is an explanatory diagram showing a third example of frequency band candidates according to third to fifth modified examples of the embodiment of the present disclosure.
  • FIG. 7 is an explanatory diagram showing a fourth example of frequency band candidates according to third to fifth modified examples of the embodiment of the present disclosure. It is an explanatory diagram showing an example of the 3rd information element concerning the 6th modification of the embodiment of this indication. It is an explanatory view showing an example of the 4th information element concerning the 6th modification of the embodiment of this indication.
  • FIG. 12 is a sequence diagram for explaining an example of a schematic flow of processing according to an eighth modification example of the embodiment of the present disclosure.
  • system 1 includes a base station 100, user equipment (UE) 30, UE 40, and UE 200.
  • UE user equipment
  • system 1 is a system compliant with 3GPP TS. More specifically, for example, the system 1 is a system compliant with 5G or NR (New Radio) TS. Naturally, system 1 is not limited to this example.
  • Base station 100 The base station 100 is a node of a radio access network (RAN) and communicates with UEs located within the coverage area 10 of the base station 100. For example, base station 100 communicates with UE30, UE40, and UE200.
  • RAN radio access network
  • the base station 100 communicates with a UE (eg, UE 30, UE 40, or UE 200) using a RAN protocol stack.
  • the protocol stack includes RRC, SDAP (service data adaptation protocol), PDCP (packet data convergence protocol), RLC (radio link control), MAC (medium access control), and physical (PHY) layer protocols. including.
  • the protocol stack may not include all of these protocols, but may include some of these protocols.
  • the base station 100 is a gNB.
  • the gNB is a node that provides NR user plane and control plane protocol terminations to the UE and is connected to the 5GC (5G Core Network) via the NG interface.
  • the base station 100 may be an en-gNB.
  • the en-gNB is a node that provides NR user plane and control plane protocol termination for the UE and operates as a secondary node in EN-DC (E-UTRA-NR Dual Connectivity).
  • the base station 100 may include multiple nodes.
  • the plurality of nodes may include a first node that hosts a higher layer included in the protocol stack and a second node that hosts a lower layer included in the protocol stack. good.
  • the upper layer may include RRC, SDAP, and PDCP, and the lower layer may include RLC, MAC, and PHY layer.
  • the first node may be a CU (central unit), and the second node may be a DU (distributed unit).
  • the plurality of nodes may include a third node that performs processing below the PHY layer, and the second node may perform processing above the PHY layer.
  • the third node may be an RU (radio unit).
  • the base station 100 may be one of the plurality of nodes, or may be connected to another unit among the plurality of nodes.
  • the base station 100 may be an integrated access and backhaul (IAB) donor or an IAB node.
  • IAB integrated access and backhaul
  • Each of UE30, UE40, and UE200 communicates with a base station.
  • each of UE30, UE40, and UE200 communicates with base station 100 when located within coverage area 10 of base station 100.
  • each of UE30, UE40, and UE200 communicates with a base station (for example, base station 100) using the above protocol stack.
  • UE30 is a normal UE that is not a RedCap UE
  • UE40 and UE200 are RedCap UEs.
  • a RedCap UE is a UE with reduced capabilities.
  • UE 40 is a first type of RedCap UE
  • UE 200 is a second type of RedCap UE.
  • the first type of RedCap UE is a UE whose maximum bandwidth is 20 MHz for FR1 and 100 MHz for FR2.
  • FR1 is a frequency range from 450 MHz to 6000 MHz, and FR2 is a frequency range from 24250 MHz to 52600 MHz.
  • the second type of RedCap UE is a UE with further reduced capabilities than the first type of RedCap UE.
  • the peak data rate of the second type of RedCap UE is lower than the peak data rate of the first type of RedCap UE.
  • the second type of RedCap UE communicates with the base station using a narrower band than the first type of RedCap UE.
  • the maximum bandwidth of the second type of RedCap UE is smaller than the maximum bandwidth of the first type of RedCap UE.
  • the maximum bandwidth is, for example, the maximum bandwidth when transmitting and receiving specific information (for example, user data, etc.).
  • the first type of RedCap UE is a Rel-17 RedCap UE
  • the second type of RedCap UE is a Rel-18 RedCap UE.
  • the second type of RedCap UE may be referred to as an eRedCap UE.
  • the UE 200 may perform not only the operations described as the operations of the UE 200 but also the operations described as the operations of the UE 30 and/or the operations described as the operations of the UE 40. .
  • BWP (3-1) Setting BWP The base station 100 sets BWP used by the UE in a carrier having system bandwidth.
  • the bandwidth of the BWP is smaller than the system bandwidth.
  • Such BWP allows the UE to communicate with the base station 100 within the carrier even if the maximum bandwidth of the UE is smaller than the bandwidth of the carrier.
  • System bandwidth which is the bandwidth of a carrier, is also called channel bandwidth.
  • the above BWP includes downlink (DL) BWP and uplink (UL) BWP.
  • the UE receives a signal from the base station 100 using the DL BWP, and transmits a signal to the base station 100 using the UL BWP.
  • the base station 100 sets up BWP15 in the carrier 13, and the UE communicates with the base station 100 using BWP15.
  • the carrier 13 may be a DL carrier, and the BWP 15 may be a DL BWP.
  • the carrier 13 may be a UL carrier, and the BWP 15 may be a UL BWP.
  • the base station 100 sets multiple types of BWPs.
  • base station 100 sets an initial BWP.
  • the initial BWP includes an initial DL BWP and an initial UL BWP.
  • the initial DL BWP may be identified as a DL BWP with an ID value set to 0.
  • the initial UL BWP may be specified as a UL BWP whose ID value is set to 0.
  • the base station 100 transmits SIB1 including information indicating the above-mentioned initial BWP.
  • the information includes initialDownlinkBWP and/or initialUplinkBWP included in ServingCellConfigCommon in SIB1.
  • the base station 100 may set the above-mentioned initial DL BWP using initialDownlinkBWP.
  • the base station 100 may set the above-mentioned initial UL BWP using initialUplinkBWP.
  • the initialDownlinkBWP includes a parameter indicating the position and bandwidth of the initial DL BWP, and a parameter indicating the subcarrier interval of the initial DL BWP.
  • the initialDownlinkBWP may include a parameter indicating the cyclic prefix of the initial DL BWP.
  • the initialUplinkBWP includes a parameter indicating the position and bandwidth of the initial UL BWP, and a parameter indicating the subcarrier interval of the initial UL BWP.
  • the initialUplinkBWP may include a parameter indicating the cyclic prefix of the initial UL BWP.
  • the initialDownlinkBWP may also include a parameter indicating the Search Space Set (SSS) for the SIB1 message.
  • the base station 100 may set Search Space Set #0 (SSS #0) with ID set to 0 in the initial DL BWP of the primary cell as the SSS for the SIB1 message.
  • SSS #0 is also called Type 0-PDCCH CSS Set (type-0 PDCCH common search space set).
  • the SSS for SIB1 messages may be configured for monitoring a physical downlink control channel (PDCCH) for downlink control information (DCI) with a system information radio network temporary identifier (SI-RNTI).
  • the DCI is a DCI format used for PDSCH scheduling, and is, for example, DCI format 1_0. That is, the base station 100 may schedule a PDSCH using DCI with SI-RNTI and transmit the SIB1 message on the PDSCH.
  • the initialDownlinkBWP may include a parameter indicating the SSS for the random access procedure.
  • the SSS for random access procedures is also called Type 1-PDCCH CSS Set.
  • SSS for random access procedures may be configured for monitoring PDCCH for DCI with RA-RNTI (random access radio network temporary identifier).
  • the DCI is a DCI format used for PDSCH scheduling, and is, for example, DCI format 1_0. That is, the base station 100 may schedule a PDSCH using a DCI with RA-RNTI and transmit a random access response on the PDSCH.
  • the initialDownlinkBWP may include a parameter indicating SSS for paging.
  • SSS for paging is also called Type2-PDCCH CSS Set.
  • SSS for paging may be configured for monitoring PDCCH for DCI with P-RNTI (paging radio network temporary identifier).
  • the DCI is a DCI format used for PDSCH scheduling, and is, for example, DCI format 1_0. That is, the base station 100 may schedule a PDSCH using a DCI with P-RNTI and transmit a paging message on the PDSCH.
  • the UE 30, which is a normal UE, receives the SIB1 and acquires the information included in the SIB1.
  • the UE 30 is configured with the initial BWP and communicates with the base station 100 using the initial BWP.
  • the UE 30 specifies the initial DL BWP based on the initialDownlinkBWP.
  • the UE 30 identifies the initial UL BWP based on the initialUplinkBWP.
  • the UE 30 may monitor the PDCCH for DCI with SI-RNTI, RA-RNTI, and/or P-RNTI in the SSS configured using the initialDownlinkBWP.
  • the UE 30 may receive an SIB1 message, a random access response, and/or a paging message on a PDSCH scheduled using a DCI with SI-RNTI, RA-RNTI, and/or P-RNTI. good.
  • the initial DL BWP may be the same as the band of CORESET (control resource set) #0 for scheduling SIB1. That is, the base station 100 does not need to include information indicating the initial DL BWP in the SIB1, and the UE 30 may consider the band of CORESET #0 to be the initial DL BWP if the SIB1 does not include the information.
  • the base station 100 configures the initial BWP for the RedCap UE.
  • the initial BWP for RedCap UE is referred to as RedCap-specific initial BWP.
  • a normal UE that is not a RedCap UE does not use the RedCap-specific initial BWP, and the RedCap UE uses the RedCap-specific initial BWP.
  • the RedCap-specific initial BWP includes an initial DL BWP for RedCap UE and an initial UL BWP for RedCap UE.
  • the initial DL BWP for RedCap UE is called RedCap-specific initial DL BWP
  • the initial UL BWP for RedCap UE is called RedCap-specific initial UL BWP.
  • the base station 100 transmits SIB1 including information indicating the RedCap-specific initial BWP.
  • the information includes initialDownlinkBWP-RedCap-r17 and/or initialUplinkBWP-RedCap-r17 included in ServingCellConfigCommon in SIB1.
  • the base station 100 may set the initial DL BWP specific to the RedCap using the initialDownlinkBWP-RedCap-r17.
  • the base station 100 may set the initial UL BWP specific to the RedCap using the initialUplinkBWP-RedCap-r17.
  • initialDownlinkBWP-RedCap-r17 includes a parameter indicating the position and bandwidth of the initial DL BWP specific to the RedCap, and a parameter indicating the subcarrier interval of the initial DL BWP specific to the RedCap. Further, the initialDownlinkBWP-RedCap-r17 may include a parameter indicating the cyclic prefix of the initial DL BWP specific to the RedCap. Similarly, initialUplinkBWP-RedCap-r17 includes a parameter indicating the position and bandwidth of the initial UL BWP specific to the RedCap, and a parameter indicating the subcarrier interval of the initial UL BWP specific to the RedCap. Further, the initialUplinkBWP-RedCap-r17 may include a parameter indicating the cyclic prefix of the initial UL BWP specific to the RedCap.
  • the initialDownlinkBWP-RedCap-r17 may include a parameter indicating SSS for the SIB1 message.
  • the initialDownlinkBWP may also include a parameter indicating the SSS for the random access procedure.
  • initialDownlinkBWP may include a parameter indicating SSS for paging.
  • the UE 40 which is the first type of RedCap UE, receives the SIB1 and acquires the information included in the SIB1. Then, the UE 40 is set with the RedCap-specific initial BWP, and communicates with the base station 100 using the RedCap-specific initial BWP. For example, the UE 40 identifies the RedCap-specific initial DL BWP based on the initialDownlinkBWP-RedCap-r17. Furthermore, the UE 40 identifies the initial UL BWP specific to the RedCap based on the initialUplinkBWP-RedCap-r17.
  • the UE 40 may monitor the PDCCH for the DCI with the SI-RNTI, RA-RNTI, and/or P-RNTI in the SSS configured using the initialDownlinkBWP-RedCap-r17. Additionally, the UE 40 may receive the SIB1 message, random access response, and/or paging message on the PDSCH scheduled by the DCI with the SI-RNTI, RA-RNTI, and/or P-RNTI.
  • the initial DL BWP specific to RedCap may be specified based on the information indicating the initial DL BWP. Furthermore, when SIB1 does not include information indicating the initial UL BWP specific to RedCap, the initial UL BWP specific to RedCap may be specified based on the information indicating the initial UL BWP. That is, when initialDownlinkBWP-RedCap-r17 is included in SIB1, UE40 may specify the RedCap-specific initial DL BWP based on initialDownlinkBWP-RedCap-r17 instead of initialDownlinkBWP. .
  • the UE 40 may specify the initial UL BWP specific to RedCap based on the initialUplinkBWP-RedCap-r17 instead of the initialUplinkBWP. Further, if the SIB1 does not include the initialDownlinkBWP-RedCap-r17, the UE40 may specify the initial DL BWP (which may be an initial DL BWP specific to RedCap) based on the initialDownlinkBWP.
  • the UE 40 may specify the initial UL BWP (or the initial UL BWP specific to RedCap) based on the initialUplinkBWP-RedCap-r17.
  • the base station 100 sets a BWP that is not the initial BWP.
  • the BWP is a UE-specific BWP and is configured using an RRC message addressed to the UE.
  • the RRC message addressed to the UE is also called a UE-specific RRC message.
  • the BWP is simply referred to as BWP.
  • the BWP may be called RRC Configured BWP, Configured BWP, UE-Specific BWP, or dedicated BWP.
  • the above BWP includes DL BWP and UL BWP.
  • the DL BWP may be identified as a DL BWP whose ID is set to a value other than 0.
  • the UL BWP may be specified as a UL BWP whose ID is set to a value other than 0.
  • the base station 100 transmits an RRC message including information indicating the BWP to the UE.
  • the RRC message is an RRC Reconfiguration message.
  • the information indicating the BWP includes BWP-Downlink and/or BWP-Uplink included in the ServingCellConfig in the RRC message.
  • the base station 100 may set the above DL BWP using BWP-Downlink.
  • the base station 100 may set the above-mentioned UL BWP using BWP-Uplink.
  • BWP-Downlink includes a parameter indicating the position and bandwidth of the DL BWP, and a parameter indicating the subcarrier interval of the DL BWP.
  • BWP-Downlink may include a parameter indicating the cyclic prefix of the DL BWP.
  • the BWP-Uplink includes a parameter indicating the position and bandwidth of the UL BWP, and a parameter indicating the subcarrier interval of the UL BWP.
  • the BWP-Uplink may include a parameter indicating the cyclic prefix of the UL BWP.
  • the BWP-Downlink may include the UE-specific parameters of the DL BWP.
  • the UE-specific parameter of the DL BWP is also called BWP-DownlinkDedicated.
  • the UE-specific parameters include parameters related to SSS of PDCCH.
  • the parameters related to SSS include parameters related to USS (UE-specific search space set) and/or parameters related to CSS.
  • the USS and/or CSS of the PDCCH may be C-RNTI (cell radio network temporary identifier), MCS-C-RNTI (modulation and coding scheme cell radio network temporary identifier), and/or CS-RNTI ( configured for PDCCH monitoring for DCI with configured scheduling radio network temporary identifier).
  • the DCI is a DCI format used for PDSCH scheduling, and is, for example, DCI format 1_0 and/or DCI format 1_1. Further, the DCI is a DCI format used for PUSCH scheduling, and may be, for example, DCI format 0_0 and/or DCI format 0_1.
  • the base station 100 schedules a PDSCH using a C-RNTI, an MCS-C-RNTI, and/or a DCI with a CS-RNTI, and uses downlink data (downlink shared channel (DL-SCH)) on the PDSCH. : Downlink Shared Channel) data) may also be sent. Furthermore, the base station 100 schedules the PUSCH using the C-RNTI, MCS-C-RNTI, and/or DCI with CS-RNTI, and uses the PUSCH to schedule uplink data (uplink shared channel (UL-SCH)). : Uplink Shared Channel) data) may be received.
  • the CSS configured using the UE-specific parameters is also referred to as Type 3-PDCCH CSS Set.
  • the BWP-Uplink may include the UE-specific parameters of the UL BWP.
  • the UE-specific parameter of the DL BWP is also called BWP-UplinkDedicated.
  • the UE-specific parameters include UE-specific PUSCH parameters applied to the UL BWP and/or DMRS (demodulation reference signal) parameters related to PUSCH transmission.
  • the base station 100 may set the UE-specific parameters included in the ServingCellConfig in the RRC message for the initial DL BWP. Furthermore, the base station 100 may set UE-specific parameters included in the ServingCellConfig in the RRC message for the initial UL BWP. For example, parameters regarding SSS for monitoring PDCCH for DCI with C-RNTI, MCS-C-RNTI, and/or CS-RNTI may be set for initial DL BWP. Furthermore, UE-specific PUSCH parameters and/or DMRS-related parameters related to PUSCH transmission may be set for the initial UL BWP.
  • the UE 30 or UE 40 receives the RRC message and acquires the information included in the RRC message. Then, the UE 30 or UE 40 is configured with the above BWP and communicates with the base station 100 using the above BWP. For example, the UE 30 or UE 40 specifies the DL BWP based on the BWP-Downlink. Further, the UE 30 or UE 40 identifies the UL BWP based on the BWP-Uplink. Furthermore, UE 30 or UE 40 may monitor PDCCH for DCI with C-RNTI, MCS-C-RNTI, and/or CS-RNTI in SSS configured using BWP-Downlink.
  • the UE 30 or UE 40 performs C-RNTI, MCS-C-RNTI, etc. in the SSS set based on the UE-specific parameters in the initial DL BWP. , and/or PDCCH for DCI with CS-RNTI may be monitored.
  • the UE 30 or UE 40 may receive downlink data (DL-SCH data) on a PDSCH scheduled by a DCI with C-RNTI, MCS-C-RNTI, and/or CS-RNTI. . Additionally, the UE 30 or UE 40 may transmit uplink data (UL-SCH data) on the PUSCH scheduled by the DCI with C-RNTI, MCS-C-RNTI, and/or CS-RNTI. . Here, the UE 30 or UE 40 may perform uplink data transmission (PUSCH transmission) and/or DMRS transmission related to PUSCH based on the UE-specific parameters included in the BWP-Uplink. . Furthermore, the UE 30 or UE 40 may perform uplink data transmission (PUSCH transmission) and/or DMRS transmission related to the PUSCH in the initial UL BWP based on UE-specific parameters.
  • PUSCH transmission uplink data transmission
  • DMRS transmission DMRS transmission related to the PUSCH in the initial UL BWP based on
  • the base station 100 may configure one or more DL BWPs for one UE in one serving cell.
  • one DL BWP of the one or more DL BWPs is used by the UE as an Active DL BWP.
  • the RRC message includes an information element indicating the first Active DL BWP, and the UE initially uses the DL BWP indicated by the information element as the Active DL BWP.
  • the above information element is firstActiveDownlinkBWP-Id.
  • Active DL BWP can be switched.
  • the base station 100 transmits DCI including information indicating DL BWP to the UE, and the UE switches the Active DL BWP to the DL BWP indicated by the information.
  • the DCI is a DCI (for example, DCI format 1_1) used for PDSCH scheduling, and the information is a Bandwidth Part Indicator.
  • the UE switches Active DL BWP to Default DL BWP.
  • the RRC message includes an information element indicating the Default DL BWP, and the UE uses the DL BWP indicated by the information element as the Default DL BWP.
  • the timer is bwp-InactivityTimer, and the information element is defaultDownlinkBWP-Id. Note that the switching of Active DL BWP may be further controlled by a MAC (Medium Access Control) entity.
  • MAC Medium Access Control
  • the base station 100 may configure one or more UL BWPs for one UE in one serving cell.
  • one UL BWP of the one or more UL BWPs is used by the UE as an Active UL BWP.
  • the RRC message includes an information element indicating the first Active UL BWP, and the UE initially uses the UL BWP indicated by the information element as the Active UL BWP.
  • the above information element is firstActiveUplinkBWP-Id.
  • Active UL BWP can be switched.
  • the base station 100 transmits DCI including information indicating the UL BWP to the UE, and the UE switches the Active UL BWP to the UL BWP indicated by the information.
  • the DCI is a DCI (for example, DCI format 0_1) used for PUSCH scheduling, and the information is a Bandwidth Part Indicator. Note that the switching of Active DL BWP may be further controlled by the MAC entity.
  • the plurality of DL BWPs are a maximum of four DL BWPs.
  • the plurality of UL BWPs are a maximum of four UL BWPs.
  • the base station 100 may configure SSS for each of one or more DL BWPs configured in one serving cell.
  • the one or more DL BWPs include an initial DL BWP and a UE-specific DL BWP.
  • the frequency band used by the RedCap UE is set in the BWP used by the RedCap UE.
  • a DL BWP may be specified based on the BWP-Downlink, and a downlink frequency band may be set within the DL BWP.
  • a downlink frequency band may be set within the DL BWP.
  • the UE-specific parameters of the DL BWP included in the BWP-Downlink include information for setting the frequency band in the downlink
  • the frequency band in the downlink may be set in the DL BWP.
  • a UL BWP may be specified based on the BWP-Uplink, and an uplink frequency band may be set within the UL BWP.
  • the frequency band in the uplink may be set in the UL BWP.
  • the frequency band set within the BWP may also be called BWP.
  • the frequency band in the downlink may also be called DL BWP
  • the frequency band in the uplink may also be called UL BWP.
  • the frequency band in the downlink will be referred to as the DL frequency band
  • the frequency band in the uplink will be referred to as the UL frequency band.
  • the base station 100 includes a wireless communication section 110, a network communication section 120, a storage section 130, and a processing section 140.
  • the wireless communication unit 110 transmits and receives signals wirelessly.
  • the wireless communication unit 110 receives a signal from a UE and transmits a signal to the UE.
  • the network communication unit 120 receives signals from the network and transmits signals to the network.
  • the storage unit 130 stores various information for the base station 100.
  • the processing unit 140 provides various functions of the base station 100.
  • the processing section 140 includes an information acquisition section 141 and a communication processing section 143.
  • the processing unit 140 may further include components other than these components. That is, the processing unit 140 can perform operations other than those of these components. Specific operations of the information acquisition section 141 and the communication processing section 143 will be explained in detail later.
  • the processing unit 140 communicates with the UEs (for example, UE 30, UE 40, and UE 200) via the wireless communication unit 110.
  • the processing unit 140 communicates with the core network node and other base stations via the network communication unit 120.
  • the base station 100 includes an antenna 181, an RF (radio frequency) circuit 183, a network interface 185, a processor 187, a memory 189, and a storage 191.
  • RF radio frequency
  • the antenna 181 converts the signal into radio waves and radiates the radio waves into space. Further, the antenna 181 receives radio waves in space and converts the radio waves into signals.
  • Antenna 181 may include a transmitting antenna and a receiving antenna, or may be a single antenna for transmitting and receiving.
  • Antenna 181 may be a directional antenna and may include multiple antenna elements.
  • the RF circuit 183 performs analog processing of signals transmitted and received via the antenna 181.
  • RF circuit 183 may include a high frequency filter, an amplifier, a modulator, a low pass filter, and the like.
  • the network interface 185 is, for example, a network adapter, and transmits signals to and receives signals from the network.
  • the processor 187 performs digital processing of signals transmitted and received via the antenna 181 and the RF circuit 183.
  • the digital processing includes processing of the RAN protocol stack.
  • Processor 187 also processes signals sent and received via network interface 185.
  • Processor 187 may include multiple processors or may be a single processor.
  • the plurality of processors may include a baseband processor that performs the digital processing and one or more processors that perform other processing.
  • the memory 189 stores programs executed by the processor 187, parameters related to the programs, and various other information.
  • the memory 189 may include at least one of ROM (read only memory), EPROM (erasable programmable read only memory), EEPROM (electrically erasable programmable read only memory), RAM (random access memory), and flash memory. All or part of memory 189 may be included within processor 187.
  • the storage 191 stores various information.
  • the storage 191 may include at least one of an SSD (solid state drive) and an HDD (hard disc drive).
  • the wireless communication unit 110 may be implemented by an antenna 181 and an RF circuit 183.
  • Network communication unit 120 may be implemented by network interface 185.
  • the storage unit 130 may be implemented by a storage 191.
  • Processing unit 140 may be implemented by processor 187 and memory 189
  • Part or all of the processing unit 140 may be virtualized. In other words, part or all of the processing unit 140 may be implemented as a virtual machine. In this case, part or all of the processing unit 140 may operate as a virtual machine on a physical machine (ie, hardware) including a processor, memory, etc., and a hypervisor.
  • a physical machine ie, hardware
  • a processor, memory, etc., and a hypervisor ie, hardware
  • base station 100 may include a memory that stores a program (i.e., memory 189) and one or more processors that can execute the program (i.e., processor 187). , the one or more processors may execute the above program to perform the operations of the processing unit 140.
  • the program may be a program for causing a processor to execute the operations of the processing unit 140.
  • the UE 200 includes a wireless communication section 210, a storage section 220, and a processing section 230.
  • the wireless communication unit 210 transmits and receives signals wirelessly. For example, the wireless communication unit 210 receives a signal from a base station and transmits a signal to the base station.
  • the storage unit 220 stores various information for the UE 200.
  • the processing unit 230 provides various functions of the UE 200.
  • the processing section 230 includes an information acquisition section 231 and a communication processing section 233.
  • the processing unit 230 may further include components other than these components. That is, the processing unit 230 can perform operations other than those of these components. Specific operations of the information acquisition unit 231 and communication processing unit 233 will be explained in detail later.
  • the processing unit 230 communicates with a base station (eg, base station 100) via the wireless communication unit 210.
  • a base station eg, base station 100
  • the UE 200 includes an antenna 281, an RF circuit 283, a processor 285, a memory 287, and a storage 289.
  • the antenna 281 converts the signal into radio waves and radiates the radio waves into space. Further, the antenna 281 receives radio waves in space and converts the radio waves into signals.
  • Antenna 281 may include a transmit antenna and a receive antenna, or may be a single antenna for transmitting and receiving. Antenna 281 may be a directional antenna and may include multiple antenna elements.
  • the RF circuit 283 performs analog processing of signals transmitted and received via the antenna 281.
  • RF circuit 283 may include a high frequency filter, an amplifier, a modulator, a low pass filter, and the like.
  • the processor 285 performs digital processing of signals transmitted and received via the antenna 281 and the RF circuit 283.
  • the digital processing includes processing of the RAN protocol stack.
  • Processor 285 may include multiple processors or may be a single processor.
  • the plurality of processors may include a baseband processor that performs the digital processing and one or more processors that perform other processing.
  • the memory 287 stores programs executed by the processor 285, parameters related to the programs, and various other information.
  • Memory 287 may include at least one of ROM, EPROM, EEPROM, RAM, and flash memory. All or part of memory 287 may be included within processor 285.
  • the storage 289 stores various information.
  • Storage 289 may include at least one of an SSD and an HDD.
  • the wireless communication unit 210 may be implemented by an antenna 281 and an RF circuit 283.
  • Storage unit 220 may be implemented by storage 289.
  • Processing unit 230 may be implemented by processor 285 and memory 287.
  • the processing unit 230 may be implemented by an SoC (System on Chip) including a processor 285 and a memory 287.
  • SoC System on Chip
  • the SoC may include the RF circuit 283, and the wireless communication unit 210 may also be implemented by the SoC.
  • the UE 200 may include a memory that stores a program (i.e., the memory 287) and one or more processors that can execute the program (i.e., the processor 285).
  • One or more processors may execute the above program to perform the operations of the processing unit 230.
  • the program may be a program for causing a processor to execute the operations of the processing unit 230.
  • the base station 100 acquires the RRC message
  • the base station 100 (communication processing unit 143) transmits the RRC message to the UE 200.
  • the UE 200 is a RedCap UE
  • the RRC message includes first information indicating a BWP used by the UE 200, and a frequency band set within the BWP, which is set by the UE 200. and second information indicating the frequency band to be used.
  • the UE 200 (communication processing unit 233) receives the RRC message transmitted by the base station 100, and the UE 200 (information acquisition unit 231) receives the first information and second information included in the RRC message. get.
  • a RedCap UE can communicate with the base station 100 at a low peak data rate using a frequency band within the BWP.
  • the UE 200 (communication processing unit 233) is set with the above BWP and the above frequency band, and communicates with the base station 100 using the above BWP and the above frequency band.
  • RRC message is an RRC Reconfiguration message. That is, the base station 100 (communication processing unit 143) transmits an RRC Reconfiguration message including the first information and the second information to the UE 200.
  • the base station 100 acquires the RRC message by generating the RRC message.
  • BWP and frequency band (2-1) BWP The BWP used by the UE 200 is RRC configured BWP.
  • the frequency band used by the UE 200 is set in the RRC configured BWP.
  • the above frequency band may also be called BWP on the premise that the above frequency band is distinguished from existing BWP.
  • the existing BWPs are RRC Configured BWP, initial BWP, and RedCap-specific initial BWP.
  • the frequency band may be called BWP for Rel-18 RedCap UE.
  • the BWP includes DL BWP used by UE 200 and UL BWP used by UE 200.
  • the frequency band is a DL frequency band set within the DL BWP and includes the DL frequency band used by the UE 200.
  • the frequency band is a UL frequency band set within the UL BWP, and includes the UL frequency band used by the UE 200.
  • the above frequency band is narrower than the above BWP.
  • the frequency band is a frequency band of 5 MHz or less in FR1.
  • FR1 is in the frequency range from 450 MHz to 6000 MHz.
  • the BWP 51 used by the UE 200 is set, and furthermore, the frequency band 53 used by the UE 200 is set within the BWP 51.
  • the bandwidth of the BWP 51 is 20 MHz
  • the bandwidth of the frequency band 53 is 5 MHz.
  • BWP 51 and frequency band 53 may be DL BWP and DL frequency band, or may be UL BWP and UL frequency band.
  • the subcarrier spacing of the above frequency band is the same as the subcarrier spacing of the above BWP. That is, the subcarrier spacing used within the frequency band is the same as the subcarrier spacing used within the BWP.
  • the subcarrier spacing of the DL frequency band is the same as the subcarrier spacing of the DL BWP
  • the subcarrier spacing of the UL frequency band is the same as the subcarrier spacing of the UL BWP.
  • the initial DL BWP is the initial DL BWP used by the RedCap UE for reception of SS/PBCH (synchronization signal/physical broadcast channel) block and CORESET (control resource set) #0.
  • SS/PBCH block is also called SSB.
  • the SS/PBCH block includes a PSS (primary synchronization signal), an SSS (secondary synchronization signal), and/or a PBCH (physical broadcast channel).
  • the SS/PBCH block includes a Cell-Defining SSB (CD-SSB) related to SIB1 and/or a Non Cell-Defining SSB (NCD-SSB) not related to SIB1.
  • CD-SSB Cell-Defining SSB
  • NCD-SSB Non Cell-Defining SSB
  • PBCH is used for transmitting MIB (master information block).
  • the MIB may include information indicating CORESET #0 and/or information indicating SSS #0.
  • SSS#0 is also called Type0-PDCCH CSS Set
  • CORESET#0 is a CORESET for SSS#0.
  • CORESET #0 is a CORESET used to transmit PDCCH for SIB1 scheduling. Therefore, reception of CORESET #0 can also be said to be reception of PDCCH transmitted by CORESET #0.
  • SSS #0 is the SSS used to transmit PDCCH for SIB1 scheduling.
  • the PDCCH includes DCI for SIB1 scheduling.
  • the DCI for SIB1 scheduling is a DCI with SI-RNTI.
  • the UE 200 (communication processing unit 233) monitors a set of PDCCH candidates using one or more CORESETs in the DL BWP in the serving cell in which PDCCH monitoring is configured, according to the corresponding search space set.
  • monitoring may refer to attempting to decode each of the PDCCH candidates according to the monitored DCI (DCI format) (also referred to as blind decoding).
  • the UE 200 (communication processing unit 233) receives the SS/PBCH block using the above-mentioned initial DL BWP, and monitors (receives) the PDCCH with CORESET #0 and/or SSS #0.
  • the above frequency band is a frequency band used by UE 200 for at least one of receiving and transmitting a physical shared channel. That is, the UE 200 (communication processing unit 233) receives or transmits the physical shared channel using the frequency band.
  • the physical shared channels include PDSCH (physical downlink shared channel) and PUSCH (physical uplink shared channel). That is, the DL frequency band included in the frequency band is a DL frequency band used by the UE 200 for receiving the PDSCH, and the UL frequency band included in the frequency band is the DL frequency band used by the UE 200 for receiving the PUSCH. This is the UL frequency band used by PDSCH (physical downlink shared channel) and PUSCH (physical uplink shared channel). That is, the DL frequency band included in the frequency band is a DL frequency band used by the UE 200 for receiving the PDSCH, and the UL frequency band included in the frequency band is the DL frequency band used by the UE 200 for receiving the PUSCH. This is the UL frequency band used by PDSCH (physical downlink shared channel) and PUSCH (physical uplink shared channel). That is, the DL frequency band included in the frequency band is a DL frequency band used by the UE 200 for receiving the PDSCH, and the UL frequency band included in the
  • the physical shared channel may be C-RNTI (cell radio network temporary identifier), MCS-C-RNTI (modulation and coding scheme cell radio network temporary identifier), and/or CS-RNTI (configured scheduling radio network). temporary identifier ) with a physical shared channel scheduled using DCI.
  • C-RNTI cell radio network temporary identifier
  • MCS-C-RNTI modulation and coding scheme cell radio network temporary identifier
  • CS-RNTI configured scheduling radio network. temporary identifier
  • the UE 200 uses the above frequency band to receive or transmit a physical shared channel scheduled using a DCI with C-RNTI, MCS-C-RNTI, or CS-RNTI. .
  • the UE 200 may perform reception on the PDSCH scheduled using the C-RNTI, MCS-C-RNTI, and/or DCI with CS-RNTI in the above DL frequency band. good. Further, the UE 200 (communication processing unit 233) performs transmission on the PUSCH scheduled using the C-RNTI, MCS-C-RNTI, and/or DCI with CS-RNTI in the above UL frequency band. Good too.
  • the UE 200 uses the C-RNTI, the MCS-C-RNTI, and/or the DCI with the CS-RNTI (that is, the DCI used for PDSCH scheduling, and/or , PDCCH (DCI used for PUSCH scheduling) may be performed in the UE-specific DL BWP. That is, the UE 200 (communication processing unit 233) uses the C-RNTI, MCS-C-RNTI, and/or CS- in the SSS (USS and/or CSS) configured for the UE-specific DL BWP. DCI with RNTI may be monitored.
  • the UE 200 (communication processing unit 233) performs reception on the PDSCH scheduled by the DCI with C-RNTI, MCS-C-RNTI, and/or CS-RNTI using the DL frequency band set in the UE-specific DL BWP. It may be executed in In addition, the UE 200 (communication processing unit 233) transmits transmission on the PUSCH scheduled by the DCI with the C-RNTI, MCS-C-RNTI, and/or CS-RNTI using the UL configured in the UE-specific UL BWP. It may also be performed in a frequency band.
  • DCI used for PDSCH scheduling with C-RNTI, MCS-C-RNTI, and/or CS-RNTI may include information indicating frequency domain resource assignment.
  • the information indicating resource allocation in the frequency domain is also called a field indicating resource allocation in the frequency domain.
  • the information indicating resource allocation in the frequency domain indicates PDSCH resource allocation.
  • the number of bits of information indicating resource allocation in the frequency domain may be determined based on the size of the Active DL BWP (i.e., the number of resource blocks of the Active DL BWP, also referred to as the bandwidth of the Active DL BWP). good.
  • a resource block is also called a physical resource block.
  • the UE 200 may determine the number of bits of information indicating resource allocation in the frequency domain based on the size of the Active DL BWP.
  • the size of the Active DL BWP (that is, the initial DL BWP and/or the UE-specific DL BWP) is determined by the parameters indicating the position and bandwidth of the Active DL BWP, and/or the Active DL BWP. may be determined based on a parameter indicating the subcarrier spacing.
  • the number of bits of information indicating resource allocation in the frequency domain included in the DCI used for PDSCH scheduling with C-RNTI, MCS-C-RNTI, and/or CS-RNTI is It may be determined based on the size (i.e., the number of resource blocks in the DL frequency band, also referred to as the bandwidth of the DL frequency band). That is, the UE 200 (communication processing unit 233) may determine the number of bits of information indicating resource allocation in the frequency domain based on the size of the DL frequency band. For example, the size of the DL frequency band may be determined based on parameters indicating the position and bandwidth of the DL frequency band and/or parameters indicating the subcarrier spacing of the DL frequency band.
  • the UE 200 when the DL frequency band is not set, the UE 200 (communication processing unit 233) sets the number of bits of information indicating resource allocation in the frequency domain included in the DCI used for PDSCH scheduling to the Active DL BWP. It may also be determined based on size. Furthermore, when a DL frequency band is set, the UE 200 (communication processing unit 233) may determine the number of bits of information indicating resource allocation in the frequency band based on the size of the DL frequency band. .
  • the UE 200 determines the number of bits of information indicating resource allocation in the frequency domain based on the size of Active DL BWP, or determines the number of bits of information indicating resource allocation in the frequency domain based on the size of Active DL BWP, or It may also be specified whether the decision is made based on the size of the band.
  • the number of bits of information indicating resource allocation in the frequency domain (i.e., PDSCH resource allocation) included in the DCI used for PDSCH scheduling with SI-RNTI, RA-RNTI, and/or CS-RNTI may be determined based on the size of CORESET #0 (that is, the number of resource blocks of CORESET #0, also referred to as the bandwidth of CORESET #0).
  • the number of bits of information indicating resource allocation in the frequency domain included in the DCI used for PDSCH scheduling with SI-RNTI, RA-RNTI, and/or CS-RNTI is based on the size of Active DL BWP. may also be determined.
  • the number of bits of information indicating resource allocation in the frequency domain included in the DCI used for PDSCH scheduling with SI-RNTI, RA-RNTI, and/or CS-RNTI is based on the size of the DL frequency band. may also be determined.
  • the UE 200 (communication processing unit 233) configures reception on the PDSCH scheduled using DCI with SI-RNTI, RA-RNTI, and/or P-RNTI in the DL BWP in the above-mentioned DL frequency band. It may also be performed in the DL frequency band specified. As described above, the UE 200 (communication processing unit 233) may perform monitoring of PDCCH for DCI with SI-RNTI, RA-RNTI, and/or P-RNTI in DL BWP.
  • the DCI used for PUSCH scheduling with the C-RNTI, MCS-C-RNTI, and/or CS-RNTI may include information indicating resource allocation in the frequency domain.
  • the information indicating resource allocation in the frequency domain indicates resource allocation for PUSCH.
  • the number of bits of information indicating resource allocation in the frequency domain may be determined based on the size of the Active UL BWP (that is, the number of resource blocks of the Active UL BWP, also referred to as the bandwidth of the Active UL BWP). good. That is, the UE 200 (communication processing unit 233) may determine the number of bits of information indicating resource allocation in the frequency domain based on the size of the Active UL BWP.
  • the size of the Active UL BWP may be determined based on parameters indicating the position and bandwidth of the Active UL BWP and/or parameters indicating the subcarrier interval of the Active UL BWP.
  • the number of bits of information indicating resource allocation in the frequency domain included in the DCI used for PUSCH scheduling with C-RNTI, MCS-C-RNTI, and/or CS-RNTI is It may be determined based on the size (i.e., the number of resource blocks in the UL frequency band). That is, the UE 200 (communication processing unit 233) may determine the number of bits of information indicating resource allocation in the frequency domain based on the size of the UL frequency band. For example, the size of the UL frequency band may be determined based on parameters indicating the location and bandwidth of the UL frequency band and/or parameters indicating the subcarrier spacing of the UL frequency band.
  • the UE 200 (communication processing unit 233) sets the number of bits of information indicating resource allocation in the frequency domain included in the DCI used for PUSCH scheduling to the size of the Active UL BWP. may be determined based on. Furthermore, when a UL frequency band is set, the UE 200 (communication processing unit 233) may determine the number of bits of information indicating resource allocation in the frequency band based on the size of the UL frequency band.
  • the UE 200 determines the number of bits of information indicating resource allocation in the frequency domain based on the size of the Active UL BWP, or It may also be specified whether the decision is made based on the size of the band.
  • the above BWP is scheduled using DCI with SI-RNTI (system information radio network temporary identifier), P-RNTI (paging radio network temporary identifier), and/or RA-RNTI.
  • SI-RNTI system information radio network temporary identifier
  • P-RNTI paging radio network temporary identifier
  • RA-RNTI paging radio network temporary identifier
  • This is the BWP that is further used by the UE 200 for receiving the PDSCH. That is, the DL BWP included in the BWP is the DL frequency used by the UE 200 to receive the PDSCH scheduled using DCI with SI-RNTI, P-RNTI, and/or RA-RNTI. Bandwidth.
  • the UE 200 uses the above BWP to receive a PDSCH scheduled using SI-RNTI, P-RNTI, and/or DCI with RA-RNTI. That is, the UE 200 (communication processing unit 233) uses the DL BWP included in the BWP to determine the PDSCH scheduled using the SI-RNTI, P-RNTI, and/or DCI with RA-RNTI. receive.
  • the above DL BWP is a DL BWP that is further used by the UE 200 for receiving SIB and paging messages.
  • the UE 200 (communication processing unit 233) receives the SIB and paging message using the DL BWP.
  • the UE 200 may perform reception on the PDSCH scheduled using DCI with SI-RNTI, P-RNTI, and/or RA-RNTI in the DL BWP. That is, the UE 200 (communication processing unit 233) may receive the SIB1 message in the DL BWP using the PDSCH scheduled using the DCI with SI-RNTI. Further, the UE 200 (communication processing unit 233) may receive a random access response in the above DL BWP using a PDSCH scheduled using a DCI with RA-RNTI. Further, the UE 200 (communication processing unit 233) may receive a paging message in the above DL BWP using a PDSCH scheduled using a DCI with P-RNTI.
  • Physical shared channels scheduled using DCI with other RNTIs may also be received or transmitted using either the frequency band or the BWP.
  • the other RNTI may include RA-RNTI (random access radio network temporary identifier).
  • Physical shared channel scheduled using DCI with RNTI refers more specifically to cyclic redundancy (CRC) scrambled by RNTI. check) is a physical shared channel scheduled using DCI with parity bits added.
  • the DCI is transmitted on a PDCCH (physical downlink control channel).
  • the above BWP is a BWP used by the UE 200 for receiving PDCCH. That is, the DL BWP included in the BWP is the DL BWP used by the UE 200 for receiving the PDCCH.
  • the UE 200 receives PDCCH using the above BWP. That is, the UE 200 (communication processing unit 233) receives the PDCCH using the DL BWP included in the BWP.
  • the above BWP is a BWP used by the UE 200 for transmitting a PUCCH (physical uplink control channel). That is, the UL BWP included in the BWP is the UL BWP used by the UE 200 for transmitting the PUCCH.
  • PUCCH physical uplink control channel
  • the UE 200 uses the above BWP to transmit PUCCH. That is, the UE 200 (communication processing unit 233) transmits the PUCCH using the UL BWP included in the BWP.
  • the other signal may include a PRACH (physical random access channel), ie, a random access preamble.
  • the other signals may include an SRS (sounding reference signal).
  • the random access procedure includes a contention-based random access procedure and/or a contention-free random access procedure.
  • Contention-free random access procedures are also called non-contention-based random access procedures.
  • the contention-free random access procedure may be triggered by the frequency resource allocation field included in the DCI with C-RNTI (DCI format 1_0) being set to all 1 (also referred to as PDCCH order).
  • a random access preamble is indicated (also called message 0) using information included in the DCI (DCI format 1_0) with C-RNTI.
  • the random access preamble instructed using the information included in the DCI (DCI format 1_0) accompanied by the C-RNTI is also called a dedicated preamble.
  • the UE 200 may execute the contention-free random access procedure in the DL frequency band and/or the UL frequency band. For example, when a random access procedure (contention-free random access procedure) is instructed using DCI (PDCCH order) with C-RNTI, the UE 200 (communication processing unit 233) uses the DL frequency set in DL BWP. A random access procedure (contention-free random access procedure) may be performed in the band and/or the UL frequency band set in the UL BWP.
  • the UE 200 uses the UL frequency band set in UL BWP.
  • a random access preamble may be sent (also referred to as message 1).
  • the UE 200 may receive a random access response (also referred to as message 2) on the PDSCH in the DL frequency band set in the DL BWP.
  • the UE 200 may perform monitoring of PDCCH for DCI (PDCCH order) with C-RNTI in the UE-specific DL BWP. That is, the UE 200 (communication processing unit 233) may monitor DCI (PDCCH order) accompanied by C-RNTI in the SSS (USS and/or CSS) configured for the UE-specific DL BWP. .
  • the UE 200 may transmit a random access preamble in the initial UL BWP. (Also called message 1). Furthermore, as described above, the UE 200 (communication processing unit 233) may receive a random access response (also referred to as message 2) on the PDSCH in the initial DL BWP. Here, the UE 200 (communication processing unit 233) performs transmission on the PUSCH (transmission on the UL-SCH) in the above-mentioned initial UL BWP based on the uplink grant (also called random access response grant) included in the random access response. may be executed (also referred to as message 3).
  • the UE 200 may receive contention resolution (also referred to as message 4) in the PDSCH in the initial DL BWP in the initial DL BWP. That is, the UE 200 (communication processing unit 233) may execute the random access procedure in the initial DL BWP specified based on the initialDownlinkBWP-RedCap-r17 or the initialDownlinkBWP. Further, the UE 200 (communication processing unit 233) may execute a random access procedure in the initial UL BWP specified based on the initialUplinkBWP-RedCap-r17 or the initialUplinkBWP.
  • the UE 200 when the UE 200 (communication processing unit 233) is instructed to perform a random access procedure (contention-free random access procedure) using DCI (PDCCH order) with C-RNTI, the UE 200 (communication processing unit 233) performs initial DL BWP and/or A random access procedure (contention-free random access procedure) may be executed in the initial UL BWP.
  • a random access procedure contention-free random access procedure
  • DCI PDCCH order
  • C-RNTI C-RNTI
  • the RRC message further includes information indicating multiple types of search spaces for the BWP.
  • At least one search space of the plurality of types of search spaces is a search space that is monitored by the UE 200 for reception of a DCI used to schedule a physical shared channel within the frequency band. .
  • the at least one search space includes a USS (UE-specific search space).
  • USS is a search space monitored by UE 200 for reception of DCI with CRC parity bits scrambled by C-RNTI, MCS-C-RNTI or CS-RNTI.
  • search spaces among the plurality of types of search spaces are search spaces monitored by the UE 200 for reception of other DCIs.
  • the other search spaces include Type0-PDCCH CSS (common search space), Type0A-PDCCH CSS, and Type2-PDCCH CSS.
  • Type0-PDCCH CSS and Type0A-PDCCH CSS are search spaces monitored by UE 200 for reception of DCI with CRC parity bits scrambled by SI-RNTI.
  • Type 2-PDCCH CSS is a search space monitored by UE 200 for reception of DCI with CRC parity bits scrambled by P-RNTI.
  • Each of the Type 1-PDCCH CSS and the Type 3-PDCCH CSS may also be included in the at least one search space or the other search space. Furthermore, each of the Type0B-PDCCH CSS, Type1A-PDCCH CSS, and Type2A-PDCCH CSS may also be included in the at least one search space or the other search space.
  • the BWP includes DL BWP used by UE 200 and UL BWP used by UE 200.
  • the first information includes a first information element indicating the DL BWP and a second information element indicating the UL BWP.
  • the first information includes a parameter indicating the location and bandwidth of the BWP, a parameter indicating a subcarrier interval of the BWP, and a parameter indicating a cyclic prefix of the BWP.
  • the RRC message includes the first information for each of the two or more BWPs used by the UE 200.
  • the first information element is BWP-Downlink included in downlinkBWP-ToAddModList in ServingCellConfig.
  • downlinkBWP-ToAddModList includes BWP-Downlink for each of two or more DL BWPs used by UE 200.
  • BWP-Downlink includes, as generic parameters, locationAndBandwidth indicating the location and bandwidth of the DL BWP, subcarrierSpacing indicating the subcarrier spacing of the DL BWP, and c indicating the cyclic prefix of the DL BWP. yclicPrefix.
  • the second information element is BWP-Uplink included in uplinkBWP-ToAddModList in UplinkConfig.
  • uplinkBWP-ToAddModList includes BWP-Uplink for each of two or more UL BWPs used by UE 200.
  • BWP-Uplink includes, as generic parameters, locationAndBandwidth indicating the location and bandwidth of the UL BWP, subcarrierSpacing indicating the subcarrier spacing of the UL BWP, and cyc indicating the cyclic prefix of the UL BWP. licPrefix.
  • the frequency band is a DL frequency band set within the DL BWP
  • the DL frequency band used by the UE 200 and the DL frequency band set within the UL BWP are The UL frequency band to be set includes the UL frequency band used by the UE 200.
  • the second information includes a third information element indicating the DL frequency band and a fourth information element indicating the UL frequency band.
  • the second information is included in the first information. More specifically, for example, the third information element included in the second information is included in the first information element included in the first information, and is included in the second information. The fourth information element is included in the second information element included in the first information.
  • the second information includes parameters indicating the position and bandwidth of the frequency band. More specifically, for example, the third information element included in the second information includes a parameter indicating the position and bandwidth of the DL frequency band, and the fourth information element included in the second information includes a parameter indicating the position and bandwidth of the DL frequency band.
  • the information element includes parameters indicating the location and bandwidth of the UL frequency band.
  • the first information element is BWP-Downlink included in the downlinkBWP-ToAddModList in ServingCellConfig
  • the third information element is the DownlinkBWP-RedCap- included in the BWP-Downlink. It is r18.
  • DownlinkBWP-RedCap-r18 is locationAndBandwidth indicating the position and bandwidth of the DL frequency band.
  • the second information element is BWP-Uplink included in uplinkBWP-ToAddModList in UplinkConfig
  • the third information element is UplinkBWP-RedCap-r18 included in the BWP-Uplink.
  • UplinkBWP-RedCap-r18 is locationAndBandwidth indicating the position and bandwidth of the UL frequency band.
  • the second information does not include a parameter indicating the subcarrier interval of the frequency band and a parameter indicating the cyclic prefix of the frequency band.
  • Subcarrier spacing and cyclic prefix As described above, for example, the subcarrier spacing of the frequency band is the same as the subcarrier spacing of the BWP. That is, the subcarrier spacing of the DL frequency band is the same as the subcarrier spacing of the DL BWP, and the subcarrier spacing of the UL frequency band is the same as the subcarrier spacing of the UL BWP.
  • the cyclic prefix of the frequency band is the same as the cyclic prefix of the BWP. That is, the cyclic prefix of the DL frequency band is the same as the cyclic prefix of the DL BWP, and the cyclic prefix of the UL frequency band is the same as the cyclic prefix of the UL BWP.
  • the UE 200 uses subcarrier Spacing and cyclicPrefix included in the first information element in the first information not only as the subcarrier spacing and cyclic prefix of the DL BWP, but also as the subcarrier spacing and cyclic prefix of the DL frequency band. May also be used as carrier spacing and cyclic prefix. Further, the UE 200 uses the subcarrier Spacing and cyclicPrefix included in the second information element in the first information not only as the subcarrier spacing and cyclic prefix of the UL BWP, but also as the subcarrier spacing and cyclic prefix of the UL frequency band. May also be used as carrier spacing and cyclic prefix.
  • the subcarrier spacing of the BWP is the subcarrier spacing used within the BWP
  • the subcarrier spacing of the frequency band is the subcarrier spacing used within the frequency band.
  • the cyclic prefix of the BWP is a cyclic prefix used within the BWP
  • the cyclic prefix of the frequency band is a cyclic prefix used within the frequency band. It's a fix.
  • the base station 100 acquires the RRC message (S410).
  • the RRC message includes first information indicating the BWP used by the UE 200 and second information indicating the frequency band set within the BWP and used by the UE 200.
  • the RRC message is an RRC Reconfiguration message.
  • the base station 100 (communication processing unit 143) transmits the above RRC message to the UE 200 (S420).
  • the UE 200 (communication processing unit 233) receives the RRC message transmitted by the base station 100.
  • the UE 200 acquires the first information and the second information included in the RRC message (S430).
  • the UE 200 (communication processing unit 233) is set with the above BWP and the above frequency band, and communicates with the base station 100 using the above BWP and the above frequency band, for example.
  • Second information includes parameters indicating the position and bandwidth of the frequency band. It does not include a parameter indicating the subcarrier interval and a parameter indicating the cyclic prefix of the frequency band.
  • the second information according to the embodiment of the present disclosure is not limited to this example.
  • the second information may further include a parameter indicating a subcarrier interval of the frequency band and a parameter indicating a cyclic prefix of the frequency band.
  • the third information element DownlinkBWP-RedCap-r18 included in the second information includes not only locationAndBandwidth indicating the position and bandwidth of the DL frequency band, but also the subcarrier interval of the DL frequency band. and cyclicPrefix indicating the cyclic prefix of the DL frequency band.
  • DownlinkBWP-RedCap-r18 may be an information element called BWP including locationAndBandwidth, subcarrierSpacing, and cyclicPrefix.
  • the fourth information element UplinkBWP-RedCap-r18 included in the second information includes not only locationAndBandwidth indicating the position and bandwidth of the UL frequency band, but also the subcarrier spacing of the UL frequency band. and cyclicPrefix indicating the cyclic prefix of the UL frequency band.
  • UplinkBWP-RedCap-r18 may be an information element called BWP including locationAndBandwidth, subcarrierSpacing, and cyclicPrefix.
  • the subcarrier spacing of the frequency band may be the same as the subcarrier spacing of the BWP
  • the cyclic prefix of the frequency band may be the same as the subcarrier spacing of the frequency band. It may be the same as the above cyclic prefix of BWP.
  • the base station 100 sets the value of subcarrierSpacing and the value of cyclicPrefix included in the third information element to be the same as the value of subcarrierSpacing and cyclicPrefix included in the first information element. You may.
  • the base station 100 may set the value of subcarrierSpacing and the value of cyclicPrefix included in the fourth information element to be the same as the value of subcarrierSpacing and cyclicPrefix included in the second information element. good.
  • Second Modification Second Information
  • the second information includes a parameter indicating the position and bandwidth of the frequency band.
  • the second information according to the embodiment of the present disclosure is not limited to this example.
  • the second information may indicate an offset of the start position of the frequency band with respect to the start position of the BWP, and a bandwidth of the frequency band.
  • the second information may indicate the offset by the number of resource blocks (RB) included in the offset, and may indicate the bandwidth of the frequency band by the number of RBs included in the frequency band. . Since the width of an RB depends on the subcarrier spacing, the offset and the bandwidth of the frequency band may depend on the subcarrier spacing of the frequency band. A specific example regarding this point will be explained later.
  • RB resource blocks
  • the third information element included in the second information may indicate an offset of the start position of the DL frequency band with respect to the start position of the DL BWP, and a bandwidth of the DL frequency band.
  • the fourth information element included in the second information may indicate an offset of a starting position of the UL frequency band with respect to a starting position of the UL BWP, and a bandwidth of the UL frequency band.
  • the BWP 51 used by the UE 200 and the frequency band 53 used by the UE 200 are shown.
  • the second information may indicate an offset 61 of the start position of the frequency band 53 with respect to the start position of the BWP 51 and a bandwidth 63 of the frequency band 53.
  • BWP 51 and frequency band 53 may be DL BWP and DL frequency band, or may be UL BWP and UL frequency band.
  • the third information element may be DownlinkBWP-RedCap-r18 included in BWP-Downlink.
  • DownlinkBWP-RedCap-r18 may include startRBoffset indicating the offset of the start position of the DL frequency band with respect to the start position of the DL BWP, and sizeofRBs indicating the bandwidth of the DL frequency band.
  • the fourth information element may be UplinkBWP-RedCap-r18 included in BWP-Uplink.
  • UplinkBWP-RedCap-r18 may include startRBoffset indicating the offset of the start position of the UL frequency band with respect to the start position of the UL BWP, and sizeofRBs indicating the bandwidth of the UL frequency band.
  • the offset and the bandwidth indicated by the number of RBs in the second information may be determined based on the maximum bandwidth of the UE 200 and the subcarrier spacing (SCS) of the BWP. .
  • the bandwidth may be expressed by the number of RBs as follows.
  • the maximum bandwidth is, for example, the maximum bandwidth when transmitting and receiving specific information (for example, user data, etc.).
  • the second modification of the embodiment of the present disclosure has been described above. According to the second modification, for example, it is possible to reduce the amount of the second information while enabling flexible setting of the frequency band.
  • the second information includes a parameter indicating the position and bandwidth of the frequency band.
  • the second information according to the embodiment of the present disclosure is not limited to this example.
  • the BWP used by the UE 200 may include two or more frequency band candidates for the UE 200.
  • the second information may indicate one of the two or more frequency band candidates as the frequency band used by the UE 200.
  • the two or more frequency band candidates may be predetermined for the BWP.
  • the BWP may be composed of the two or more frequency band candidates, and the two or more frequency band candidates do not need to overlap with each other. That is, the two or more frequency band candidates may be obtained by dividing the BWP.
  • frequency band candidates 71, 73, 75, and 77 may be predetermined for the BWP 51, and the second information may include one of the frequency band candidates 71, 73, 75, and 77 in the frequency band. It may also be shown as As an example, the bandwidth of the BWP 51 may be 20 MHz, and the bandwidth of each of the frequency band candidates 71, 73, 75, and 77 may be 5 MHz.
  • frequency band candidates 81, 83, 85, 87, 89 may be predetermined for the BWP 51, and the second information may be one of the frequency band candidates 81, 83, 85, 87, 89. may be indicated as the above frequency band.
  • the bandwidth of the BWP 51 may be 20 MHz, and the bandwidth of each of the frequency band candidates 81, 83, 85, 87, and 89 may be 4 MHz.
  • the two or more frequency band candidates may each have different identification information, and the second information may include identification information of one of the two or more frequency band candidates.
  • frequency band candidates 71, 73, 75, and 77 may each have an ID, and the second information is the frequency band candidates 71, 73, 75, and 77. It may include one ID.
  • each of the two or more frequency band candidates has a bandwidth equal to or less than the maximum bandwidth of the UE 200.
  • the two or more frequency band candidates may be determined in advance for each maximum bandwidth. For example, for a maximum bandwidth of 5 MHz, a set of 5 MHz frequency band candidates 71, 73, 75, and 77 as shown in FIG. 16 may be determined in advance. For example, for a maximum bandwidth of 4 MHz, a set of 4 MHz frequency band candidates 81, 83, 85, 87, and 89 as shown in FIG. 17 may be determined in advance.
  • UE 200 may select a set of frequency band candidates corresponding to the maximum bandwidth of UE 200. Note that the maximum bandwidth may be the maximum bandwidth when transmitting and receiving specific information (for example, user data, etc.).
  • the above two or more frequency band candidates do not necessarily have to have the same bandwidth.
  • the two or more frequency band candidates may include one or more frequency band candidates with the same bandwidth and one frequency band candidate with a different bandwidth from the one or more frequency band candidates. good.
  • the BWP 51 used by the UE 200 is shown.
  • the frequency band candidates 90, 91, 92, 93, 94, 95, 96 may be predetermined for the BWP 51, and the second information may include the frequency band candidates 90, 91, 92, 93, 94, One of 95 and 96 may be indicated as the frequency band.
  • the bandwidth of the BWP 51 may be 20 MHz
  • the bandwidth of each of the frequency band candidates 90, 91, 92, 93, 94, and 95 may be 3 MHz
  • the bandwidth of the frequency band candidate 96 may be 2 MHz. .
  • the BWP 55 used by the UE 200 is shown.
  • frequency band candidates 97, 98, and 99 may be predetermined for the BWP 55, and the second information may indicate one of the frequency band candidates 97, 98, and 99 as the frequency band. good.
  • the bandwidth of the BWP 55 may be 10 MHz
  • the bandwidth of each of the frequency band candidates 91 and 93 may be 4 MHz
  • the bandwidth of the frequency band candidate 95 may be 2 MHz.
  • the two or more frequency band candidates may be determined in advance for each set of maximum bandwidth and BWP subcarrier interval. Thereby, the bandwidth of each of the two or more frequency band candidates may be accurately represented by the number of RBs.
  • the third modification of the embodiment of the present disclosure has been described above. According to the third modification, for example, the amount of the second information can be significantly reduced.
  • the two or more frequency band candidates are predetermined for the BWP.
  • frequency band candidates according to embodiments of the present disclosure are not limited to this example.
  • the two or more frequency band candidates may not be determined in advance, but may be determined based on the maximum bandwidth of the UE 200.
  • the UE 200 may determine the two or more frequency band candidates based on the maximum bandwidth of the UE 200.
  • the maximum bandwidth may be the maximum bandwidth when transmitting and receiving specific information (for example, user data, etc.).
  • the two or more frequency band candidates determined may be the frequency band candidates 71, 73, 75, and 77 shown in FIG. 16.
  • the two or more frequency band candidates to be determined are the frequency band candidates 81, 83, 85, 87, and 89 shown in FIG. It's okay.
  • the two or more frequency band candidates may be determined further based on the subcarrier spacing of the BWP. Thereby, the bandwidth of each of the two or more frequency band candidates may be accurately represented by the number of RBs.
  • the BWP may be composed of the two or more frequency band candidates, and the two or more frequency band candidates do not need to overlap with each other. That is, the two or more frequency band candidates may be obtained by dividing the BWP.
  • the explanation regarding this point is the same as the explanation for the third modification, and redundant explanation will be omitted here.
  • the two or more frequency band candidates may each have different identification information, and the second information may include identification information of one of the two or more frequency band candidates.
  • the explanation regarding this point is the same as the explanation for the third modification, and redundant explanation will be omitted here.
  • each of the two or more frequency band candidates has a bandwidth equal to or less than the maximum bandwidth of the UE 200.
  • the explanation regarding this point is the same as the explanation for the third modification, and redundant explanation will be omitted here.
  • the above two or more frequency band candidates do not necessarily have to have the same bandwidth.
  • the two or more frequency band candidates may include one or more frequency band candidates with the same bandwidth and one frequency band candidate with a different bandwidth from the one or more frequency band candidates. good.
  • the two or more frequency band candidates determined are the frequency band candidates 90, 91, and 91 shown in FIG. 92, 93, 94, 95, and 96 may be used.
  • the bandwidth of the BWP is 10 MHz and the maximum bandwidth of the UE 200 is 4 MHz
  • the two or more frequency band candidates determined are the frequency band candidate 97 shown in FIG. It may be 98 or 99.
  • the fourth modification of the embodiment of the present disclosure has been described above. According to the fourth modification, for example, the amount of the second information can be significantly reduced while determining frequency band candidates more flexibly.
  • the two or more frequency band candidates are determined based on the maximum bandwidth of the UE 200.
  • frequency band candidates according to embodiments of the present disclosure are not limited to this example.
  • the two or more frequency band candidates may be determined based on information included in the RRC message instead of the maximum bandwidth of the UE 200.
  • the UE 200 may determine the two or more frequency band candidates based on the information included in the RRC message.
  • the information included in the RRC message may indicate the bandwidth of each of the two or more frequency band candidates.
  • the information included in the RRC message may indicate the number of divisions when dividing the BWP to obtain the two or more frequency band candidates.
  • the information included in the RRC message is not limited to these examples.
  • the fifth modification of the embodiment of the present disclosure has been described above. According to the fifth modification, for example, the amount of the second information can be significantly reduced while determining frequency band candidates more flexibly.
  • two or more frequency bands used by the UE 200 may be set within the BWP used by the UE 200. More specifically, two or more DL frequency bands used by the UE 200 may be set within the above DL BWP used by the UE 200, and two or more UL frequency bands used by the UE 200, It may be set within the above UL BWP used by the UE 200.
  • the RRC message may include the second information for each of the two or more frequency bands set within the BWP.
  • the first information included in the RRC message may include the second information for each of the two or more frequency bands.
  • the first information element included in the first information includes the third information element included in the second information for each of the two or more DL frequency bands. But that's fine.
  • the second information element included in the first information may include the fourth information element included in the second information for each of the two or more UL frequency bands.
  • the RRC message may further include information indicating a frequency band to be activated among the two or more frequency bands.
  • the information may be included in the first information.
  • the RRC message may further include information indicating a default frequency band among the two or more frequency bands.
  • the information may be included in the first information.
  • the first information element included in the first information is BWP-Downlink
  • the third information element included in the second information is BWP-Downlink. It may be included BWP-RedCap-r18.
  • DownlinkBWP-ToAddModList-RedCap-r18 included in BWP-Downlink may include BWP-RedCap-r18 for each of the two or more DL frequency bands set in the DL BWP.
  • BWP-RedCap-r18 may include bwp-Id-RedCap-r18, which is identification information of the DL frequency band, and locationAndBandwidth, which indicates the position and bandwidth of the DL frequency band.
  • BWP-Downlink includes firstActiveDownlinkBWP-Id-RedCap-r18 indicating a DL frequency band to be activated among the two or more DL frequency bands, and/or a It may also include defaultDownlinkBWP-Id-RedCap-r18 indicating the default DL frequency band.
  • the second information element included in the first information is BWP-Uplink
  • the fourth information element included in the second information is BWP-Uplink. It may be included BWP-RedCap-r18.
  • UplinkBWP-ToAddModList-RedCap-r18 included in BWP-Uplink may include BWP-RedCap-r18 for each of the two or more UL frequency bands set in the UL BWP.
  • BWP-RedCap-r18 may include bwp-Id-RedCap-r18, which is identification information of the UL frequency band, and locationAndBandwidth, which indicates the position and bandwidth of the UL frequency band.
  • the BWP-Uplink may include firstActiveUplinkBWP-Id-RedCap-r18 indicating the UL frequency band to be activated among the two or more UL frequency bands.
  • startRBoffset indicating the offset of the start position of the frequency band and the band of the frequency band.
  • sizeofRBs indicating the width
  • the above BWP used by the UE 200 may include two or more frequency band candidates for the UE 200.
  • the two or more frequency band candidates may be set as the two or more frequency bands used by the UE 200. That is, the two or more frequency bands used by the UE 200 may be automatically set according to the settings of the BWP used by the UE 200.
  • the frequency band indicated by the second information may be a frequency band to be activated among the two or more frequency bands.
  • the second information may include identification information of a frequency band to be activated.
  • the RRC message may further include information indicating a default frequency band among the two or more frequency bands.
  • the information may be included in the first information.
  • the base station 100 (information acquisition unit 141) acquires switching information for switching an active frequency band among the two or more frequency bands, and base station 100 (communication processing The unit 143) may transmit the switching information to the UE 200.
  • the UE 200 (communication processing unit 233) may receive the switching information, and the UE 200 (information acquisition unit 231) may acquire the switching information.
  • the UE 200 (communication processing unit 233) may switch the active frequency band based on the switching information.
  • the switching information may indicate a frequency band to be activated among the two or more frequency bands.
  • the above switching information may be included in the DCI. That is, the base station 100 (information acquisition unit 141) may acquire the DCI including the switching information, and the base station 100 (communication processing unit 143) may transmit the DCI to the UE 200.
  • the UE 200 (communication processing unit 233) may receive the DCI, and the UE 200 (information acquisition unit 231) may acquire the switching information included in the DCI.
  • the switching information may be an additional Bandwidth Part Indicator included in the DCI.
  • the above switching information may be included in the RRC message.
  • the base station 100 (information acquisition unit 141) may further acquire an RRC message including the switching information, and the base station 100 (communication processing unit 143) may further transmit the RRC message to the UE 200.
  • the UE 200 (communication processing unit 233) may receive the RRC message, and the UE 200 (information acquisition unit 231) may acquire the switching information included in the RRC message.
  • the RRC message may be an RRC Reconfiguration message.
  • the switching information may be firstActiveDownlinkBWP-Id-RedCap-r18 and firstActiveUplinkBWP-Id-RedCap-r18.
  • the UE 200 After receiving the switching information, the UE 200 (communication processing unit 233) may switch the active frequency band to the frequency band indicated by the switching information.
  • the switching information may indicate a default frequency band among the two or more frequency bands that becomes the active frequency band upon expiration of a timer.
  • the RRC message including the first information and the second information may further include the switching information and timer information indicating the time period of the timer.
  • the switching information may be defaultDownlinkBWP-Id-RedCap-r18.
  • the timer information may be bwp-InactiveTimer-RedCap-r18.
  • the UE 200 (communication processing unit 233) may switch the active frequency band to the default frequency band after the timer expires.
  • the UE 200 can use a frequency band that is more preferable for the UE 200. Therefore, the communication quality of UE 200 can be improved.
  • the sixth modification of the embodiment of the present disclosure may be combined with any one of the first to fifth modifications of the embodiment of the present disclosure.
  • At least some of the signals described as being received or transmitted using the BWP in the above-described examples of embodiments of the present disclosure may be received or transmitted using the frequency band instead of the BWP. Good too.
  • a PDSCH scheduled using SI-RNTI or P-RNTI may be received using the above frequency band instead of the above BWP.
  • At least one of PDCCH and PUCCH may be received using the above frequency band instead of the above BWP.
  • the signals described as being received or transmitted using the frequency band in the above-described examples of embodiments of the present disclosure may be received or transmitted using the BWP rather than the frequency band. May be sent.
  • the seventh modification of the embodiment of the present disclosure may be combined with any one of the first to fifth modifications of the embodiment of the present disclosure. Additionally or alternatively, the seventh variant of the embodiment of the present disclosure may be combined with the sixth variant of the embodiment of the present disclosure.
  • the BWP used by the UE 200 is the BWP used for communication with the base station 100.
  • embodiments of the present disclosure are not limited to this example.
  • the RRC message may be an RRC message for handover of the UE 200 to the target base station, and the BWP indicated by the first information included in the RRC message is It may also be a BWP for communicating with a target base station.
  • the RRC message may be an RRC Reconfiguration message including ReconfigurationWithSync.
  • the RRC message may be an RRC message generated by the target base station and transmitted from the target base station to the base station 100.
  • the base station 100 (communication processing unit 143) that is the source base station transmits a HANDOVER REQUEST message to the base station 500 that is the target base station (S610).
  • the base station 500 receives the HANDOVER REQUEST message.
  • the base station 500 performs admission control and transmits a HANDOVER REQUEST ACKNOWLEDGE message to the base station 100 (S620).
  • the base station 100 (communication processing unit 143) receives the HANDOVER REQUEST ACKNOWLEDGE message.
  • the base station 100 acquires the RRC Reconfiguration message included in the HANDOVER REQUEST ACKNOWLEDGE message. Then, the base station 100 (communication processing unit 143) transmits the RRC Reconfiguration message to the UE 200 (S630). The UE 200 (communication processing unit 233) receives the RRC Reconfiguration message.
  • the RRC Reconfiguration message includes the first information and the second information.
  • the UE 200 acquires information included in the RRC Reconfiguration message. Then, the UE 200 (communication processing unit 233) switches the serving cell to a new cell of the base station 500 based on the information included in the RRC Reconfiguration message (S640). Specifically, the UE 200 (communication processing unit 233) performs a random access procedure and accesses the new cell. Note that the UE 200 (information acquisition unit 231) acquires the first information and the second information included in the RRC Reconfiguration message, and the UE 200 (communication processing unit 233) acquires the information indicated by the first information. The BWP and the frequency band indicated by the second information are set.
  • the UE 200 acquires the RRCReconfigurationComplete message. Then, the UE 200 (communication processing unit 233) transmits the RRCReconfigurationComplete message to the base station 500 (S650). The base station 500 receives the RRCReconfigurationComplete message.
  • the UE 200 (communication processing unit 233) communicates with the base station 500 using the above BWP and the above frequency band.
  • the eighth modification of the embodiment of the present disclosure has been described above. According to the eighth modification, for example, even after handover to the target base station, the UE 200 can communicate with the target base station at a low peak data rate using the frequency band within the BWP.
  • the eighth modification of the embodiment of the present disclosure may be combined with any one of the first to fifth modifications of the embodiment of the present disclosure. Additionally or alternatively, the eighth variation of the embodiment of the present disclosure may be combined with at least one of the sixth variation and the seventh variation of the embodiment of the present disclosure.
  • system 1 is a system compliant with 5G or NR TS.
  • system 1 according to the embodiment of the present disclosure is not limited to this example.
  • the system 1 may be a system compliant with another 3GPP TS.
  • the system 1 may be a system compliant with next generation (eg, 6G) TS.
  • system 1 may be a system that complies with the TS of another standardization organization regarding mobile communications.
  • the ninth modification of the embodiment of the present disclosure may be combined with any one of the first to fifth modifications of the embodiment of the present disclosure. Additionally or alternatively, the ninth variation of the embodiment of the present disclosure may be combined with at least one of the sixth to eighth variations of the embodiment of the present disclosure.
  • steps in the process described in this specification do not necessarily have to be executed in chronological order in the order described in the flowchart or sequence diagram.
  • steps in a process may be performed in a different order than depicted in a flowchart or sequence diagram, or may be performed in parallel.
  • some of the steps in the process may be deleted, and additional steps may be added to the process.
  • a method may be provided that includes operations of one or more components of the apparatus described herein, and a program may be provided that causes a computer to perform the operations of the components. Further, a computer-readable non-transitional physical recording medium may be provided on which the program is recorded.
  • a program may be provided that causes a computer to perform the operations of the components.
  • a computer-readable non-transitional physical recording medium may be provided on which the program is recorded.
  • one or more components of a base station described herein may be included in or provided with a module for the base station. That is, a base station module that performs the base station processing described in this specification may be provided.
  • one or more components of a user equipment (UE) described herein may be included in or provided with a module for the UE. That is, a UE module that performs the UE processing described in this specification may be provided.
  • UE user equipment
  • user equipment may refer to a terminal apparatus, a terminal, a mobile station, a mobile terminal, a mobile device, a mobile unit, a subscriber station, a subscriber terminal, subscriber equipment, subscriber unit, radio station, radio terminal, radio device, radio unit, wireless station, wireless terminal, wireless device, wireless unit, access station, access terminal, access device, access unit, remote station , remote terminal, remote device, or remote unit.
  • the UE may be a mobile phone terminal such as a smartphone, a tablet terminal, a personal computer, a mobile router, or a wearable device.
  • the UE may be a device installed in a mobile body, or may be the mobile body itself.
  • the moving object may be a vehicle such as a car and a train, a flying object such as an airplane or a drone, or another moving object such as a ship.
  • the UE may be other IoT (Internet of Things) devices such as sensors and cameras.
  • IoT Internet of Things
  • a UE may be mobile or fixed.
  • an "information element” may be information defined as an information element (IE) in the 3GPP TS, or may be an individual content (i.e., field) of the IE. Good too.
  • an "information element” may be a set of two or more IEs, a set of two or more fields, or a set of one or more IEs and one or more fields. It's okay.
  • the "information element” may be any other information.
  • the phrase "information element” in the present disclosure may be simply replaced with the phrase "information.”
  • transmit may mean performing at least one layer of processing within a protocol stack used for transmission, or transmitting a signal wirelessly or by wire to a physical It may also mean sending to.
  • transmitting may mean a combination of processing the at least one layer and physically transmitting the signal wirelessly or by wire.
  • recipient may mean processing at least one layer within the protocol stack used for receiving, or physically receiving a signal, wirelessly or by wire. It can also mean that.
  • receiving may mean a combination of processing the at least one layer and physically receiving the signal wirelessly or by wire.
  • the at least one layer may be translated into at least one protocol.
  • “obtain/acquire” may mean obtaining information from among stored information, or obtaining information from among information received from other nodes. It may also mean to obtain the information by generating the information.
  • the RRC message is first information indicating a bandwidth part (51, 55) used by the user equipment; second information indicating a frequency band (53) set within the bandwidth portion and used by the user equipment; including, Apparatus (100).
  • the bandwidth portion includes a downlink bandwidth portion used by the user equipment and an uplink bandwidth portion used by the user equipment;
  • the frequency band is a downlink frequency band configured within the downlink bandwidth portion, the downlink frequency band used by the user equipment and the uplink frequency band configured within the uplink bandwidth portion.
  • a link frequency band comprising an uplink frequency band used by the user equipment; The device according to feature 1 or 2.
  • the first information includes a first information element indicating the downlink bandwidth portion and a second information element indicating the uplink bandwidth portion
  • the second information includes a third information element indicating the downlink frequency band and a fourth information element indicating the uplink frequency band.
  • (Feature 5) 4. The apparatus according to any one of features 1 to 3, wherein the frequency band is a frequency band used by the user equipment for at least one of receiving and transmitting a physical shared channel.
  • Feature 6 The apparatus according to feature 5, wherein the physical shared channel includes a physical downlink shared channel (PDSCH) and a physical uplink shared channel (PUSCH).
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • the physical shared channel is scheduled using C-RNTI (cell radio network temporary identifier), MCS-C-RNTI (modulation and coding scheme cell radio network temporary identifier) or CS-RNTI (configured scheduling radio network temporary identifier). 7.
  • C-RNTI cell radio network temporary identifier
  • MCS-C-RNTI modulation and coding scheme cell radio network temporary identifier
  • CS-RNTI configured scheduling radio network temporary identifier
  • the bandwidth portion is used by the user equipment for reception of a physical downlink shared channel (PDSCH) that is scheduled using an SI-RNTI (system information radio network temporary identifier) or a P-RNTI (paging radio network temporary identifier).
  • PDSCH physical downlink shared channel
  • SI-RNTI system information radio network temporary identifier
  • P-RNTI paging radio network temporary identifier
  • bandwidth portion is a bandwidth portion used by the user equipment for reception of a physical downlink control channel (PDCCH).
  • PDCCH physical downlink control channel
  • bandwidth portion is a bandwidth portion used by the user equipment for transmission of a physical uplink control channel (PUCCH).
  • PUCCH physical uplink control channel
  • the RRC message further includes information indicating multiple types of search spaces for the bandwidth portion; At least one search space of the plurality of types of search spaces is a search space monitored by the user equipment for reception of DCI used for scheduling physical shared channels within the frequency band. , Other search spaces of the plurality of types of search spaces are search spaces monitored by the user equipment for reception of other DCIs; The device according to any one of features 1 to 10.
  • the first information includes a parameter indicating a position and a bandwidth of the bandwidth portion, a parameter indicating a subcarrier interval of the bandwidth portion, and a parameter indicating a cyclic prefix of the bandwidth portion. Apparatus according to any one of features 1 to 15.
  • the first information includes a parameter indicating the position and bandwidth of the bandwidth portion, a parameter indicating a subcarrier interval of the bandwidth portion, and a parameter indicating a cyclic prefix of the bandwidth portion, the subcarrier spacing of the frequency band is the same as the subcarrier spacing of the bandwidth portion; the cyclic prefix of the frequency band is the same as the cyclic prefix of the bandwidth portion; Apparatus according to any one of features 18 to 20.
  • (Feature 23) 23 The apparatus according to feature 22, wherein the second information indicates the offset by the number of resource blocks included in the offset and indicates the bandwidth of the frequency band by the number of resource blocks included in the frequency band.
  • the bandwidth portion includes two or more frequency band candidates that are candidates for the frequency band, the second information indicates one of the two or more frequency band candidates as the frequency band; Apparatus according to any one of features 1 to 17.
  • the bandwidth portion consists of the two or more frequency band candidates, the two or more frequency band candidates do not overlap with each other;
  • the device according to feature 25 The bandwidth portion consists of the two or more frequency band candidates, the two or more frequency band candidates do not overlap with each other;
  • the two or more frequency band candidates each have different identification information
  • the second information includes identification information of one of the two or more frequency band candidates, Apparatus according to feature 25 or 26.
  • (Feature 29) 28 The apparatus of any one of features 25-27, wherein the two or more frequency band candidates are determined based on a maximum bandwidth of the user equipment.
  • (Feature 31) 28 The apparatus according to any one of features 25-27, wherein the two or more frequency band candidates are determined based on information included in the RRC message.
  • each of the two or more frequency band candidates has a bandwidth that is less than or equal to a maximum bandwidth of the user equipment.
  • Feature 33 Feature 32, wherein the two or more frequency band candidates include one or more frequency band candidates having the same bandwidth and one frequency band candidate having a different bandwidth from the one or more frequency band candidates.
  • the RRC message includes the second information for each of the two or more frequency bands configured within the bandwidth portion and used by the user equipment. Apparatus according to any one of features 1 to 24.
  • (Feature 37) 37 The apparatus of feature 35 or 36, wherein the RRC message further includes information indicating a frequency band to be activated of the two or more frequency bands.
  • (Feature 38) two or more frequency bands used by the user equipment are configured within the bandwidth portion;
  • the communication processing unit transmits switching information for switching an active frequency band among the two or more frequency bands to the user equipment. Apparatus according to any one of features 1 to 37.
  • DCI downlink control information
  • the switching information indicates a default frequency band among the two or more frequency bands that becomes an active frequency band upon expiration of a timer;
  • the RRC message further includes the switching information and timer information indicating a period of the timer. Apparatus according to feature 38.
  • the RRC message is an RRC message for handover of the user equipment to a target base station; the bandwidth portion is a bandwidth portion for communicating with the target base station; Apparatus according to any one of features 1 to 43.
  • RedCap UE is a second type of RedCap UE with further reduced capabilities than the first type of RedCap UE with a maximum bandwidth of 20MHz for a frequency range of 450MHz to 6000MHz.
  • the device according to any one of the items.
  • a communication processing unit (233) that receives an RRC (radio resource control) message transmitted by the base station (100); an information acquisition unit (231) that acquires first information and second information included in the RRC message; Equipped with the first information indicates a bandwidth part (51, 55) used by the user equipment (200); The second information indicates a frequency band (53) set within the bandwidth portion and used by the user equipment;
  • the user equipment is a RedCap UE (reduced capability user equipment).
  • (Feature 51) 51 The apparatus of feature 50, wherein the communication processing unit receives or transmits a physical shared channel using the frequency band.
  • Feature 52 52.
  • the physical shared channel includes a physical downlink shared channel (PDSCH) and a physical uplink shared channel (PUSCH).
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • the physical shared channel is scheduled using C-RNTI (cell radio network temporary identifier), MCS-C-RNTI (modulation and coding scheme cell radio network temporary identifier) or CS-RNTI (configured scheduling radio network temporary identifier). 53.
  • C-RNTI cell radio network temporary identifier
  • MCS-C-RNTI modulation and coding scheme cell radio network temporary identifier
  • CS-RNTI configured scheduling radio network temporary identifier
  • the communication processing unit uses the bandwidth portion to create a PDSCH (physical downlink shared channel) scheduled using an SI-RNTI (system information radio network temporary identifier) or a P-RNTI (paging radio network temporary identifier). 54.
  • the user equipment is a RedCap UE (reduced capability user equipment),
  • the RRC message is first information indicating a bandwidth part (51, 55) used by the user equipment; second information indicating a frequency band (53) set within the bandwidth portion and used by the user equipment; including, Method.
  • RRC radio resource control
  • the RRC message is first information indicating a bandwidth part (51, 55) used by the user equipment; second information indicating a frequency band (53) set within the bandwidth portion and used by the user equipment; including, program.
  • (Feature 61) receiving an RRC (radio resource control) message transmitted by a base station (100); obtaining first information and second information included in the RRC message;
  • a program that causes a computer to execute the first information indicates a bandwidth part (51, 55) used by the user equipment (200);
  • the second information indicates a frequency band (53) set within the bandwidth portion and used by the user equipment;
  • the user equipment is a RedCap UE (reduced capability user equipment). program.
  • RRC radio resource control
  • the user equipment is a RedCap UE (reduced capability user equipment)
  • the RRC message is first information indicating a bandwidth part (51, 55) used by the user equipment; second information indicating a frequency band (53) set within the bandwidth portion and used by the user equipment; including, A computer-readable non-transitory physical recording medium.
  • a computer-readable non-transitional physical recording medium that records a program that causes a computer to execute, the first information indicates a bandwidth part (51, 55) used by the user equipment (200); The second information indicates a frequency band (53) set within the bandwidth portion and used by the user equipment; The user equipment is a RedCap UE (reduced capability user equipment).
  • a computer-readable non-transitory physical recording medium that records a program that causes a computer to execute, the first information indicates a bandwidth part (51, 55) used by the user equipment (200); The second information indicates a frequency band (53) set within the bandwidth portion and used by the user equipment; The user equipment is a RedCap UE (reduced capability user equipment).

Abstract

A device according to an aspect of the present disclosure comprises an information acquisition unit that acquires an RRC (radio resource control) message and a communication processing unit that transmits the RRC message to user equipment. The user equipment is RedCap UE, and the RRC message includes first information indicating a bandwidth part used by the user equipment and second information indicating a frequency band set within the bandwidth part and used by the user equipment.

Description

装置および方法Apparatus and method 関連出願の相互参照Cross-reference of related applications
 本出願は、2022年7月29日に出願された日本特許出願番号2022-122257号に基づくものであって、その優先権の利益を主張するものであり、その特許出願のすべての内容が、参照により本明細書に組み入れられる。 This application is based on Japanese Patent Application No. 2022-122257 filed on July 29, 2022, and claims the benefit of priority thereof, and all contents of the patent application are Incorporated herein by reference.
 本開示は、装置および方法に関する。 The present disclosure relates to apparatus and methods.
 3GPP(3rd Generation Partnership Project)(登録商標)において移動体通信技術が提案され、技術仕様(technical specification:TS)に定められている。とりわけ現在では、5G(5th Generation)の技術が提案され、TSに定められている。 Mobile communication technology has been proposed in the 3GPP (3rd Generation Partnership Project) (registered trademark) and is defined in technical specifications (TS). In particular, currently, 5G (5th Generation) technology has been proposed and defined as TS.
 非特許文献1に記載されているとおり、3GPP Release 18(Rel-18)では、“further NR RedCap UE complexity reduction”という新たなスタディアイテム(Study Item:SI)が立ち上げられている。このSIは、LPWA(Low Power Wide Area) UE(User Equipment)とRelease 17(Rel-17) RedCap(reduced capability) UEとの間のケイパビリティをもつRel-18 RedCap UEの機能を策定するためのものである。具体的なユースケースとして、工業用センサ、監視カメラおよびウェアラブルデバイス等が想定されている。また、上記SIの目的(objective)において、FR(frequency range)1における5MHzへのUE帯域幅の低減と、FR1における低減されたUEピークデータレートが挙げられている。以上のように、機能削減とコスト抑制により市場において広く普及されることを目指したUEの技術が検討されている。 As described in Non-Patent Document 1, a new study item (SI) called "further NR RedCap UE complexity reduction" has been launched in 3GPP Release 18 (Rel-18). This SI is for defining the functions of Rel-18 RedCap UE, which has capabilities between LPWA (Low Power Wide Area) UE (User Equipment) and Release 17 (Rel-17) RedCap (reduced capability) UE. It is. Specific use cases include industrial sensors, surveillance cameras, and wearable devices. Additionally, the objectives of the SI mentioned above include a reduction in UE bandwidth to 5 MHz in frequency range (FR1) and a reduced UE peak data rate in FR1. As described above, UE technologies are being considered that aim to be widely disseminated in the market by reducing functions and reducing costs.
 例えば、非特許文献2には、FR1において、UEのピークデータレートを低減するために、データチャネルについての帯域幅の低減が提案されている。さらに、非特許文献2には、Rel-17 RedCap UE用の帯域幅部分(bandwidth part:BWP)内にRel-18 RedCap UE用のより狭いBWPを配置することが記載されている。 For example, Non-Patent Document 2 proposes reducing the bandwidth of the data channel in FR1 in order to reduce the peak data rate of the UE. Furthermore, Non-Patent Document 2 describes that a narrower BWP for Rel-18 RedCap UE is arranged within a bandwidth part (BWP) for Rel-17 RedCap UE.
 例えば、非特許文献3-6にも、Rel-18 RedCap UEに関する内容が提案されている。 For example, Non-Patent Document 3-6 also proposes content regarding Rel-18 RedCap UE.
 上述したように、非特許文献2には、Rel-17 RedCap UE用のBWP内にRel-18 RedCap UE用のより狭いBWPを配置することが記載されている。しかし、発明者は、現在の3GPP TSでは、例えばRRC(radio resource control) Reconfigurationメッセージに含まれる情報要素によってRel-17 RedCap UE用のBWPを設定(configure)することができるが、当該BWP内により狭いBWPをさらに設定するようなことはできない、という課題を見出した。 As mentioned above, Non-Patent Document 2 describes that a narrower BWP for Rel-18 RedCap UE is arranged within the BWP for Rel-17 RedCap UE. However, the inventor believes that in the current 3GPP TS, it is possible to configure a BWP for a Rel-17 RedCap UE by using information elements included in, for example, an RRC (radio resource control) Reconfiguration message; The problem was found that it was not possible to further set a narrow BWP.
 本開示の目的は、RedCap UEのためにBWP内に周波数帯域をさらに設定することを可能にする装置および方法を提供することにある。 An object of the present disclosure is to provide an apparatus and method that allows further configuration of frequency bands within BWP for RedCap UEs.
 本開示の一態様に係る装置は、RRCメッセージを取得する情報取得部と、上記RRCメッセージをユーザ機器へ送信する通信処理部と、を備え、上記ユーザ機器は、RedCap UEであり、上記RRCメッセージは、上記ユーザ機器により使用される帯域幅部分を示す第1の情報と、上記帯域幅部分内に設定される周波数帯域であって、上記ユーザ機器により使用される当該周波数帯域を示す第2の情報と、を含む。 An apparatus according to an aspect of the present disclosure includes an information acquisition unit that acquires an RRC message, and a communication processing unit that transmits the RRC message to a user device, the user device being a RedCap UE, and the RRC message includes first information indicating a bandwidth portion used by the user equipment, and second information indicating the frequency band set within the bandwidth portion and used by the user equipment. Contains information and.
 本開示の一態様に係る装置は、基地局により送信されるRRCメッセージを受信する通信処理部と、上記RRCメッセージに含まれる第1の情報および第2の情報を取得する情報取得部と、を備え、上記第1の情報は、ユーザ機器により使用される帯域幅部分を示し、上記第2の情報は、上記帯域幅部分内に設定される周波数帯域であって、上記ユーザ機器により使用される当該周波数帯域を示し、上記ユーザ機器は、RedCap UEである。 A device according to an aspect of the present disclosure includes a communication processing unit that receives an RRC message transmitted by a base station, and an information acquisition unit that acquires first information and second information included in the RRC message. wherein the first information indicates a bandwidth portion used by the user equipment, and the second information is a frequency band set within the bandwidth portion and used by the user equipment. Indicating the frequency band, the user equipment is a RedCap UE.
 本開示の一態様に係る基地局により行われる方法は、RRCメッセージを取得することと、上記RRCメッセージをユーザ機器へ送信することと、を含み、上記ユーザ機器は、RedCap UEであり、上記RRCメッセージは、上記ユーザ機器により使用される帯域幅部分を示す第1の情報と、上記帯域幅部分内に設定される周波数帯域であって、上記ユーザ機器により使用される当該周波数帯域を示す第2の情報と、を含む。 A method performed by a base station according to an aspect of the present disclosure includes obtaining an RRC message and transmitting the RRC message to a user equipment, wherein the user equipment is a RedCap UE and the RRC message is transmitted to a user equipment. The message includes first information indicating a bandwidth portion used by the user equipment, and second information indicating a frequency band set within the bandwidth portion and the frequency band used by the user equipment. Contains information on and.
 本開示によれば、RedCap UEのためにBWP内に周波数帯域をさらに設定することが可能になる。なお、本開示により、当該効果の代わりに、又は当該効果とともに、他の効果が奏されてもよい。 According to the present disclosure, it becomes possible to further configure frequency bands within BWP for RedCap UE. Note that, according to the present disclosure, other effects may be achieved instead of or in addition to this effect.
本開示の実施形態に係るシステムの概略的な構成の一例を示す説明図である。FIG. 1 is an explanatory diagram showing an example of a schematic configuration of a system according to an embodiment of the present disclosure. 本開示の実施形態に係るキャリアおよびBWPの一例を示す説明図である。FIG. 2 is an explanatory diagram illustrating an example of a carrier and BWP according to an embodiment of the present disclosure. 本開示の実施形態に係る基地局の概略的な機能構成の例を示すブロック図である。FIG. 1 is a block diagram illustrating an example of a schematic functional configuration of a base station according to an embodiment of the present disclosure. 本開示の実施形態に係る基地局の概略的なハードウェア構成の例を示すブロック図である。FIG. 1 is a block diagram illustrating an example of a schematic hardware configuration of a base station according to an embodiment of the present disclosure. 本開示の実施形態に係るUEの概略的な機能構成の例を示すブロック図である。FIG. 2 is a block diagram illustrating an example of a schematic functional configuration of a UE according to an embodiment of the present disclosure. 本開示の実施形態に係るUEの概略的なハードウェア構成の例を示すブロック図である。FIG. 2 is a block diagram illustrating an example of a schematic hardware configuration of a UE according to an embodiment of the present disclosure. 本開示の実施形態に係るBWPおよび周波数帯域の一例を示す説明図である。FIG. 2 is an explanatory diagram illustrating an example of BWP and frequency bands according to an embodiment of the present disclosure. 本開示の実施形態に係る第1の情報要素の一例を示す説明図である。FIG. 2 is an explanatory diagram showing an example of a first information element according to an embodiment of the present disclosure. 本開示の実施形態に係る第2の情報要素の一例を示す説明図である。FIG. 7 is an explanatory diagram illustrating an example of a second information element according to an embodiment of the present disclosure. 本開示の実施形態に係る第3の情報要素の一例を示す説明図である。FIG. 7 is an explanatory diagram illustrating an example of a third information element according to an embodiment of the present disclosure. 本開示の実施形態に係る第4の情報要素の一例を示す説明図である。FIG. 7 is an explanatory diagram illustrating an example of a fourth information element according to an embodiment of the present disclosure. 本開示の実施形態に係る処理の概略的な流れの一例を説明するためのシーケンス図である。FIG. 2 is a sequence diagram for explaining an example of a schematic flow of processing according to an embodiment of the present disclosure. 本開示の実施形態の第2の変形例に係る周波数帯域のオフセットおよび帯域幅の一例を示す説明図である。FIG. 7 is an explanatory diagram illustrating an example of frequency band offset and bandwidth according to a second modification of the embodiment of the present disclosure. 本開示の実施形態の第2の変形例に係る第3の情報要素の一例を示す説明図である。It is an explanatory view showing an example of the 3rd information element concerning the 2nd modification of the embodiment of this indication. 本開示の実施形態の第2の変形例に係る第4の情報要素の一例を示す説明図である。It is an explanatory view showing an example of the 4th information element concerning the 2nd modification of the embodiment of this indication. 本開示の実施形態の第3~第5の変形例に係る周波数帯域候補の第1の例を示す説明図である。FIG. 7 is an explanatory diagram showing a first example of frequency band candidates according to third to fifth modified examples of the embodiment of the present disclosure. 本開示の実施形態の第3~第5の変形例に係る周波数帯域候補の第2の例を示す説明図である。FIG. 7 is an explanatory diagram showing a second example of frequency band candidates according to third to fifth modified examples of the embodiment of the present disclosure. 本開示の実施形態の第3~第5の変形例に係る周波数帯域候補の第3の例を示す説明図である。FIG. 7 is an explanatory diagram showing a third example of frequency band candidates according to third to fifth modified examples of the embodiment of the present disclosure. 本開示の実施形態の第3~第5の変形例に係る周波数帯域候補の第4の例を示す説明図である。FIG. 7 is an explanatory diagram showing a fourth example of frequency band candidates according to third to fifth modified examples of the embodiment of the present disclosure. 本開示の実施形態の第6の変形例に係る第3の情報要素の一例を示す説明図である。It is an explanatory diagram showing an example of the 3rd information element concerning the 6th modification of the embodiment of this indication. 本開示の実施形態の第6の変形例に係る第4の情報要素の一例を示す説明図である。It is an explanatory view showing an example of the 4th information element concerning the 6th modification of the embodiment of this indication. 本開示の実施形態の第8の変形例に係る処理の概略的な流れの一例を説明するためのシーケンス図である。FIG. 12 is a sequence diagram for explaining an example of a schematic flow of processing according to an eighth modification example of the embodiment of the present disclosure.
 以下、添付の図面を参照して本開示の実施形態を詳細に説明する。なお、本明細書及び図面において、同様に説明されることが可能な要素については、同一の符号を付することにより重複説明が省略され得る。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. Note that, in this specification and the drawings, elements that can be explained in the same manner may be designated by the same reference numerals, so that redundant explanation can be omitted.
 説明は、以下の順序で行われる。
 1.システムの構成
 2.基地局の構成
 3.ユーザ機器の構成
 4.動作例
 5.変形例
The explanation will be given in the following order.
1. System configuration 2. Base station configuration 3. Configuration of user equipment 4. Operation example 5. Variant
 <1.システムの構成>
 図1を参照して、本開示の実施形態に係るシステム1の構成の例を説明する。図1を参照すると、システム1は、基地局100、ユーザ機器(user equipment:UE)30、UE40およびUE200を含む。
<1. System configuration>
An example of the configuration of a system 1 according to an embodiment of the present disclosure will be described with reference to FIG. 1. Referring to FIG. 1, system 1 includes a base station 100, user equipment (UE) 30, UE 40, and UE 200.
 例えば、システム1は、3GPP TSに準拠したシステムである。より具体的には、例えば、システム1は、5G又はNR(New Radio)のTSに準拠したシステムである。当然ながら、システム1は、この例に限定されない。 For example, system 1 is a system compliant with 3GPP TS. More specifically, for example, the system 1 is a system compliant with 5G or NR (New Radio) TS. Naturally, system 1 is not limited to this example.
 (1)基地局100
 基地局100は、無線アクセスネットワーク(radio access network:RAN)のノードであり、基地局100のカバレッジエリア10内に位置するUEと通信する。例えば、基地局100は、UE30、UE40およびUE200と通信する。
(1) Base station 100
The base station 100 is a node of a radio access network (RAN) and communicates with UEs located within the coverage area 10 of the base station 100. For example, base station 100 communicates with UE30, UE40, and UE200.
 例えば、基地局100は、RANのプロトコルスタックを使用してUE(例えば、UE30、UE40またはUE200)と通信する。例えば、当該プロトコルスタックは、RRC、SDAP(service data adaptation protocol)、PDCP(packet data convergence protocol)、RLC(radio link control)、MAC(medium access control)、及び、物理(physical:PHY)レイヤのプロトコルを含む。あるいは、上記プロトコルスタックは、これらのプロトコルの全てを含まず、これらのプロトコルの一部を含んでもよい。 For example, the base station 100 communicates with a UE (eg, UE 30, UE 40, or UE 200) using a RAN protocol stack. For example, the protocol stack includes RRC, SDAP (service data adaptation protocol), PDCP (packet data convergence protocol), RLC (radio link control), MAC (medium access control), and physical (PHY) layer protocols. including. Alternatively, the protocol stack may not include all of these protocols, but may include some of these protocols.
 例えば、基地局100は、gNBである。gNBは、UEに対するNRユーザプレーン及び制御プレーンプロトコル終端(NR user plane and control plane protocol terminations towards the UE)を提供し、NGインターフェースを介して5GC(5G Core Network)に接続されるノードである。あるいは、基地局100は、en-gNBであってもよい。en-gNBは、UEに対するNRユーザプレーン及び制御プレーンプロトコル終端を提供し、EN-DC(E-UTRA-NR Dual Connectivity)においてセカンダリノードとして動作するノードである。 For example, the base station 100 is a gNB. The gNB is a node that provides NR user plane and control plane protocol terminations to the UE and is connected to the 5GC (5G Core Network) via the NG interface. Alternatively, the base station 100 may be an en-gNB. The en-gNB is a node that provides NR user plane and control plane protocol termination for the UE and operates as a secondary node in EN-DC (E-UTRA-NR Dual Connectivity).
 基地局100は、複数のノードを含んでもよい。当該複数のノードは、上記プロトコルスタックに含まれる上位レイヤ(higher layer)をホストする第1のノードと、当該プロトコルスタックに含まれる下位レイヤ(lower layer)をホストする第2のノードとを含んでもよい。上記上位レイヤは、RRC、SDAP及びPDCPを含んでもよく、上記下位レイヤは、RLC、MAC、及びPHYレイヤを含んでもよい。上記第1のノードは、CU(central unit)であってもよく、上記第2のノードは、DU(distributed unit)であってもよい。なお、上記複数のノードは、PHYレイヤの下位の処理を行う第3のノードを含んでもよく、上記第2のノードは、PHYレイヤの上位の処理を行ってもよい。当該第3のノードは、RU(radio unit)であってもよい。 The base station 100 may include multiple nodes. The plurality of nodes may include a first node that hosts a higher layer included in the protocol stack and a second node that hosts a lower layer included in the protocol stack. good. The upper layer may include RRC, SDAP, and PDCP, and the lower layer may include RLC, MAC, and PHY layer. The first node may be a CU (central unit), and the second node may be a DU (distributed unit). Note that the plurality of nodes may include a third node that performs processing below the PHY layer, and the second node may perform processing above the PHY layer. The third node may be an RU (radio unit).
 あるいは、基地局100は、上記複数のノードのうちの1つであってもよく、上記複数のノードのうちの他のユニットと接続されていてもよい。 Alternatively, the base station 100 may be one of the plurality of nodes, or may be connected to another unit among the plurality of nodes.
 基地局100は、IAB(integrated access and backhaul)ドナー又はIABノードであってもよい。 The base station 100 may be an integrated access and backhaul (IAB) donor or an IAB node.
 (2)UE30、UE40およびUE200
 UE30、UE40およびUE200の各々は、基地局と通信する。例えば、UE30、UE40およびUE200の各々は、基地局100のカバレッジエリア10内に位置する場合に、基地局100と通信する。
(2) UE30, UE40 and UE200
Each of UE30, UE40, and UE200 communicates with a base station. For example, each of UE30, UE40, and UE200 communicates with base station 100 when located within coverage area 10 of base station 100.
 例えば、UE30、UE40およびUE200の各々は、上記プロトコルスタックを使用して基地局(例えば、基地局100)と通信する。 For example, each of UE30, UE40, and UE200 communicates with a base station (for example, base station 100) using the above protocol stack.
 例えば、UE30は、RedCap UEではない通常のUEであり、UE40およびUE200は、RedCap UEである。RedCap UEは、低減されたケイパビリティ(reduced capability)をもつUEである。さらに、UE40は、第1のタイプのRedCap UEであり、UE200は、第2のタイプのRedCap UEである。上記第1のタイプのRedCap UEは、最大帯域幅がFR1については20MHzであり、FR2については100MHzであるUEである。FR1は、450MHzから6000MHzの周波数レンジであり、FR2は、24250MHzから52600MHzの周波数レンジである。上記第2のタイプのRedCap UEは、上記第1のタイプのRedCap UEよりもさらに低減されたケイパビリティをもつUEである。例えば、上記第2のタイプのRedCap UEのピークデータレートは、上記第1のタイプのRedCap UEのピークデータレートよりも低い。例えば、上記第2のタイプのRedCap UEは、上記第1のタイプのRedCap UEよりも狭い帯域を使用して基地局と通信する。例えば、上記第2のタイプのRedCap UEの最大帯域幅は、上記第1のタイプのRedCap UEの最大帯域幅よりも小さい。当該最大帯域幅は、例えば、特定の情報(例えば、ユーザデータ等)を送受信する際の最大帯域幅である。例えば、上記第1のタイプのRedCap UEは、Rel-17 RedCap UEであり、上記第2のタイプのRedCap UEは、Rel-18 RedCap UEである。上記第2のタイプのRedCap UEは、eRedCap UEと呼ばれてもよい。 For example, UE30 is a normal UE that is not a RedCap UE, and UE40 and UE200 are RedCap UEs. A RedCap UE is a UE with reduced capabilities. Furthermore, UE 40 is a first type of RedCap UE, and UE 200 is a second type of RedCap UE. The first type of RedCap UE is a UE whose maximum bandwidth is 20 MHz for FR1 and 100 MHz for FR2. FR1 is a frequency range from 450 MHz to 6000 MHz, and FR2 is a frequency range from 24250 MHz to 52600 MHz. The second type of RedCap UE is a UE with further reduced capabilities than the first type of RedCap UE. For example, the peak data rate of the second type of RedCap UE is lower than the peak data rate of the first type of RedCap UE. For example, the second type of RedCap UE communicates with the base station using a narrower band than the first type of RedCap UE. For example, the maximum bandwidth of the second type of RedCap UE is smaller than the maximum bandwidth of the first type of RedCap UE. The maximum bandwidth is, for example, the maximum bandwidth when transmitting and receiving specific information (for example, user data, etc.). For example, the first type of RedCap UE is a Rel-17 RedCap UE, and the second type of RedCap UE is a Rel-18 RedCap UE. The second type of RedCap UE may be referred to as an eRedCap UE.
 なお、本開示の実施形態において、UE200は、UE200の動作として記載される動作だけではなく、UE30の動作として記載される動作、および/または、UE40の動作として記載される動作も行ってもよい。 Note that in the embodiment of the present disclosure, the UE 200 may perform not only the operations described as the operations of the UE 200 but also the operations described as the operations of the UE 30 and/or the operations described as the operations of the UE 40. .
 (3)BWP
 (3-1)BWPの設定
 基地局100は、システム帯域幅をもつキャリア内に、UEにより使用されるBWPを設定する。当該BWPの帯域幅は、当該システム帯域幅よりも小さい。このようなBWPにより、UEの最大帯域幅がキャリアの帯域幅よりも小さくても、当該UEは当該キャリア内で基地局100と通信することができる。キャリアの帯域幅であるシステム帯域幅は、チャネル帯域幅とも呼ばれる。
(3) BWP
(3-1) Setting BWP The base station 100 sets BWP used by the UE in a carrier having system bandwidth. The bandwidth of the BWP is smaller than the system bandwidth. Such BWP allows the UE to communicate with the base station 100 within the carrier even if the maximum bandwidth of the UE is smaller than the bandwidth of the carrier. System bandwidth, which is the bandwidth of a carrier, is also called channel bandwidth.
 例えば、上記BWPは、ダウンリンク(downlink:DL) BWPとアップリンク(uplink:UL) BWPとを含む。UEは、当該DL BWPを使用して基地局100からの信号を受信し、当該UL BWPを使用して基地局100へ信号を送信する。 For example, the above BWP includes downlink (DL) BWP and uplink (UL) BWP. The UE receives a signal from the base station 100 using the DL BWP, and transmits a signal to the base station 100 using the UL BWP.
 図2の例を参照すると、基地局100は、キャリア13内にBWP15を設定し、UEは、BWP15を使用して基地局100と通信する。キャリア13は、DLキャリアであってもよく、BWP15は、DL BWPであってもよい。あるいは、キャリア13は、ULキャリアであってもよく、BWP15は、UL BWPであってもよい。 Referring to the example of FIG. 2, the base station 100 sets up BWP15 in the carrier 13, and the UE communicates with the base station 100 using BWP15. The carrier 13 may be a DL carrier, and the BWP 15 may be a DL BWP. Alternatively, the carrier 13 may be a UL carrier, and the BWP 15 may be a UL BWP.
 (3-2)BWPの種類
 基地局100は、複数の種類のBWPを設定する。
(3-2) Types of BWPs The base station 100 sets multiple types of BWPs.
 -初期BWP
 第1に、基地局100は、初期BWPを設定する。当該初期BWPは、初期DL BWPと初期UL BWPを含む。当該初期DL BWPは、IDの値が0にセットされたDL BWPとして特定されてもよい。また、当該初期UL BWPは、IDの値が0にセットされたUL BWPとして特定されてもよい。
-Initial BWP
First, base station 100 sets an initial BWP. The initial BWP includes an initial DL BWP and an initial UL BWP. The initial DL BWP may be identified as a DL BWP with an ID value set to 0. Further, the initial UL BWP may be specified as a UL BWP whose ID value is set to 0.
 例えば、基地局100は、上記初期BWPを示す情報を含むSIB1を送信する。当該情報は、SIB1内のServingCellConfigCommonに含まれるinitialDownlinkBWP、及び/又は、initialUplinkBWPを含む。例えば、基地局100は、initialDownlinkBWPを用いて上記初期DL BWPを設定してもよい。また、基地局100は、initialUplinkBWPを用いて上記初期UL BWPを設定してもよい。initialDownlinkBWPは、上記初期DL BWPの位置および帯域幅を示すパラメータと、上記初期DL BWPのサブキャリア間隔を示すパラメータとを含む。また、initialDownlinkBWPは、上記初期DL BWPのサイクリックプレフィクスを示すパラメータを含んでもよい。同様に、initialUplinkBWPは、上記初期UL BWPの位置および帯域幅を示すパラメータと、上記初期UL BWPのサブキャリア間隔を示すパラメータとを含む。また、initialUplinkBWPは、上記初期UL BWPのサイクリックプレフィクスを示すパラメータを含んでもよい。 For example, the base station 100 transmits SIB1 including information indicating the above-mentioned initial BWP. The information includes initialDownlinkBWP and/or initialUplinkBWP included in ServingCellConfigCommon in SIB1. For example, the base station 100 may set the above-mentioned initial DL BWP using initialDownlinkBWP. Furthermore, the base station 100 may set the above-mentioned initial UL BWP using initialUplinkBWP. The initialDownlinkBWP includes a parameter indicating the position and bandwidth of the initial DL BWP, and a parameter indicating the subcarrier interval of the initial DL BWP. Further, the initialDownlinkBWP may include a parameter indicating the cyclic prefix of the initial DL BWP. Similarly, the initialUplinkBWP includes a parameter indicating the position and bandwidth of the initial UL BWP, and a parameter indicating the subcarrier interval of the initial UL BWP. Further, the initialUplinkBWP may include a parameter indicating the cyclic prefix of the initial UL BWP.
 また、initialDownlinkBWPは、SIB1メッセージのためのSearch Space Set(SSS)を示すパラメータを含んでもよい。例えば、基地局100は、SIB1メッセージのためのSSSとして、プライマリセルの上記初期DL BWPにおいて、IDが0にセットされたSearch Space Set#0(SSS#0)を設定してもよい。SSS#0は、Type0-PDCCH CSS Set(type-0 PDCCH common search space set)とも呼ばれる。例えば、SIB1メッセージのためのSSSは、SI-RNTI(system information radio network temporary identifier)を伴うDCI(downlink control information)のためのPDCCH(physical downlink control channel)のモニタリングに対して設定されてもよい。当該DCIは、PDSCHのスケジューリングに用いられるDCI formatであり、例えば、DCI format 1_0である。すなわち、基地局100は、SI-RNTIを伴うDCIを用いてPDSCHをスケジュールし、当該PDSCHにおいてSIB1メッセージを送信してもよい。 The initialDownlinkBWP may also include a parameter indicating the Search Space Set (SSS) for the SIB1 message. For example, the base station 100 may set Search Space Set #0 (SSS #0) with ID set to 0 in the initial DL BWP of the primary cell as the SSS for the SIB1 message. SSS #0 is also called Type 0-PDCCH CSS Set (type-0 PDCCH common search space set). For example, the SSS for SIB1 messages may be configured for monitoring a physical downlink control channel (PDCCH) for downlink control information (DCI) with a system information radio network temporary identifier (SI-RNTI). The DCI is a DCI format used for PDSCH scheduling, and is, for example, DCI format 1_0. That is, the base station 100 may schedule a PDSCH using DCI with SI-RNTI and transmit the SIB1 message on the PDSCH.
 また、initialDownlinkBWPは、ランダムアクセス手続きのためのSSSを示すパラメータを含んでもよい。ランダムアクセス手続きのためのSSSは、Type1-PDCCH CSS Setとも呼ばれる。例えば、ランダムアクセス手続きのためのSSSは、RA-RNTI(random access radio network temporary identifier)を伴うDCIのためのPDCCHのモニタリングに対して設定されてもよい。当該DCIは、PDSCHのスケジューリングに用いられるDCI formatであり、例えば、DCI format 1_0である。すなわち、基地局100は、RA-RNTIを伴うDCIを用いてPDSCHをスケジュールし、当該PDSCHにおいてランダムアクセスレスポンスを送信してもよい。 Additionally, the initialDownlinkBWP may include a parameter indicating the SSS for the random access procedure. The SSS for random access procedures is also called Type 1-PDCCH CSS Set. For example, SSS for random access procedures may be configured for monitoring PDCCH for DCI with RA-RNTI (random access radio network temporary identifier). The DCI is a DCI format used for PDSCH scheduling, and is, for example, DCI format 1_0. That is, the base station 100 may schedule a PDSCH using a DCI with RA-RNTI and transmit a random access response on the PDSCH.
 また、initialDownlinkBWPは、ページングのためのSSSを示すパラメータを含んでもよい。ページングのためのSSSは、Type2-PDCCH CSS Setとも呼ばれる。例えば、ページングのためのSSSは、P-RNTI(paging radio network temporary identifier)を伴うDCIのためのPDCCHのモニタリングに対して設定されてもよい。当該DCIは、PDSCHのスケジューリングに用いられるDCI formatであり、例えば、DCI format 1_0である。すなわち、基地局100は、P-RNTIを伴うDCIを用いてPDSCHをスケジュールし、当該PDSCHにおいてページングメッセージを送信してもよい。 Additionally, the initialDownlinkBWP may include a parameter indicating SSS for paging. SSS for paging is also called Type2-PDCCH CSS Set. For example, SSS for paging may be configured for monitoring PDCCH for DCI with P-RNTI (paging radio network temporary identifier). The DCI is a DCI format used for PDSCH scheduling, and is, for example, DCI format 1_0. That is, the base station 100 may schedule a PDSCH using a DCI with P-RNTI and transmit a paging message on the PDSCH.
 例えば、通常のUEであるUE30は、上記SIB1を受信し、上記SIB1に含まれる上記情報を取得する。そして、UE30は、上記初期BWPを設定(configured with)され、上記初期BWPを使用して基地局100と通信する。例えば、UE30は、initialDownlinkBWPに基づいて、上記初期DL BWPを特定する。また、UE30は、initialUplinkBWPに基づいて、上記初期UL BWPを特定する。また、UE30は、initialDownlinkBWPを用いて設定されたSSSにおいて、SI-RNTI、RA-RNTI、及び/又は、P-RNTIを伴うDCIのためのPDCCHをモニタしてもよい。また、UE30は、SI-RNTI、RA-RNTI、及び/又は、P-RNTIを伴うDCIを用いてスケジュールされたPDSCHにおいて、SIB1メッセージ、ランダムアクセスレスポンス、及び/又は、ページングメッセージを受信してもよい。 For example, the UE 30, which is a normal UE, receives the SIB1 and acquires the information included in the SIB1. The UE 30 is configured with the initial BWP and communicates with the base station 100 using the initial BWP. For example, the UE 30 specifies the initial DL BWP based on the initialDownlinkBWP. Furthermore, the UE 30 identifies the initial UL BWP based on the initialUplinkBWP. Furthermore, the UE 30 may monitor the PDCCH for DCI with SI-RNTI, RA-RNTI, and/or P-RNTI in the SSS configured using the initialDownlinkBWP. Furthermore, the UE 30 may receive an SIB1 message, a random access response, and/or a paging message on a PDSCH scheduled using a DCI with SI-RNTI, RA-RNTI, and/or P-RNTI. good.
 なお、SIB1が、初期DL BWPを示す情報を含まない場合に、初期DL BWPは、SIB1をスケジューリングするためのCORESET(control resource set) #0の帯域と同じであってもよい。すなわち、基地局100は、初期DL BWPを示す情報をSIB1に含めなくてもよく、UE30は、SIB1に当該情報がない場合に、CORESET #0の帯域を初期DL BWPとみなしてもよい。 Note that if SIB1 does not include information indicating the initial DL BWP, the initial DL BWP may be the same as the band of CORESET (control resource set) #0 for scheduling SIB1. That is, the base station 100 does not need to include information indicating the initial DL BWP in the SIB1, and the UE 30 may consider the band of CORESET #0 to be the initial DL BWP if the SIB1 does not include the information.
 -RedCap固有の初期BWP
 第2に、基地局100は、RedCap UE用の初期BWPを設定する。ここでは、RedCap UE用の当該初期BWPを、RedCap固有(RedCap-Specific)の初期BWPと呼ぶ。RedCap UEではない通常のUEは、当該RedCap固有の初期BWPを使用せず、RedCap UEが、当該RedCap固有の初期BWPを使用する。
-RedCap-specific initial BWP
Second, the base station 100 configures the initial BWP for the RedCap UE. Here, the initial BWP for RedCap UE is referred to as RedCap-specific initial BWP. A normal UE that is not a RedCap UE does not use the RedCap-specific initial BWP, and the RedCap UE uses the RedCap-specific initial BWP.
 上記RedCap固有の初期BWPは、RedCap UE用の初期DL BWPとRedCap UE用の初期UL BWPを含む。ここでは、RedCap UE用の当該初期DL BWPは、RedCap固有の初期DL BWPと呼ばれ、RedCap UE用の当該初期UL BWPは、RedCap固有の初期UL BWPと呼ばれる。 The RedCap-specific initial BWP includes an initial DL BWP for RedCap UE and an initial UL BWP for RedCap UE. Here, the initial DL BWP for RedCap UE is called RedCap-specific initial DL BWP, and the initial UL BWP for RedCap UE is called RedCap-specific initial UL BWP.
 例えば、基地局100は、上記RedCap固有の初期BWPを示す情報を含むSIB1を送信する。当該情報は、SIB1内のServingCellConfigCommonに含まれるinitialDownlinkBWP-RedCap-r17、及び/又は、initialUplinkBWP-RedCap-r17を含む。例えば、基地局100は、initialDownlinkBWP-RedCap-r17を用いて上記RedCap固有の初期DL BWPを設定してもよい。また、基地局100は、initialUplinkBWP-RedCap-r17を用いて上記RedCap固有の初期UL BWPを設定してもよい。initialDownlinkBWP-RedCap-r17は、上記RedCap固有の初期DL BWPの位置および帯域幅を示すパラメータと、上記RedCap固有の初期DL BWPのサブキャリア間隔を示すパラメータとを含む。また、initialDownlinkBWP-RedCap-r17は、上記RedCap固有の初期DL BWPのサイクリックプレフィクスを示すパラメータを含んでもよい。同様に、initialUplinkBWP-RedCap-r17は、上記RedCap固有の初期UL BWPの位置および帯域幅を示すパラメータと、上記RedCap固有の初期UL BWPのサブキャリア間隔を示すパラメータとを含む。また、initialUplinkBWP-RedCap-r17は、上記RedCap固有の初期UL BWPのサイクリックプレフィクスを示すパラメータを含んでもよい。 For example, the base station 100 transmits SIB1 including information indicating the RedCap-specific initial BWP. The information includes initialDownlinkBWP-RedCap-r17 and/or initialUplinkBWP-RedCap-r17 included in ServingCellConfigCommon in SIB1. For example, the base station 100 may set the initial DL BWP specific to the RedCap using the initialDownlinkBWP-RedCap-r17. Furthermore, the base station 100 may set the initial UL BWP specific to the RedCap using the initialUplinkBWP-RedCap-r17. initialDownlinkBWP-RedCap-r17 includes a parameter indicating the position and bandwidth of the initial DL BWP specific to the RedCap, and a parameter indicating the subcarrier interval of the initial DL BWP specific to the RedCap. Further, the initialDownlinkBWP-RedCap-r17 may include a parameter indicating the cyclic prefix of the initial DL BWP specific to the RedCap. Similarly, initialUplinkBWP-RedCap-r17 includes a parameter indicating the position and bandwidth of the initial UL BWP specific to the RedCap, and a parameter indicating the subcarrier interval of the initial UL BWP specific to the RedCap. Further, the initialUplinkBWP-RedCap-r17 may include a parameter indicating the cyclic prefix of the initial UL BWP specific to the RedCap.
 また、initialDownlinkBWP-RedCap-r17は、SIB1メッセージのためのSSSを示すパラメータを含んでもよい。また、initialDownlinkBWPは、ランダムアクセス手続きのためのSSSを示すパラメータを含んでもよい。また、initialDownlinkBWPは、ページングのためのSSSを示すパラメータを含んでもよい。 Additionally, the initialDownlinkBWP-RedCap-r17 may include a parameter indicating SSS for the SIB1 message. The initialDownlinkBWP may also include a parameter indicating the SSS for the random access procedure. Further, initialDownlinkBWP may include a parameter indicating SSS for paging.
 例えば、上記第1のタイプのRedCap UEであるUE40は、上記SIB1を受信し、上記SIB1に含まれる上記情報を取得する。そして、UE40は、上記RedCap固有の初期BWPを設定され、上記RedCap固有の初期BWPを使用して基地局100と通信する。例えば、UE40は、initialDownlinkBWP-RedCap-r17に基づいて、上記RedCap固有の初期DL BWPを特定する。また、UE40は、initialUplinkBWP-RedCap-r17に基づいて、上記RedCap固有の初期UL BWPを特定する。また、UE40は、initialDownlinkBWP-RedCap-r17を用いて設定されたSSSにおいて、SI-RNTI、RA-RNTI、及び/又は、P-RNTIを伴うDCIに対するPDCCHをモニタしてもよい。また、UE40は、SI-RNTI、RA-RNTI、及び/又は、P-RNTIを伴うDCIによってスケジュールされたPDSCHにおいて、SIB1メッセージ、ランダムアクセスレスポンス、及び/又は、ページングメッセージを受信してもよい。 For example, the UE 40, which is the first type of RedCap UE, receives the SIB1 and acquires the information included in the SIB1. Then, the UE 40 is set with the RedCap-specific initial BWP, and communicates with the base station 100 using the RedCap-specific initial BWP. For example, the UE 40 identifies the RedCap-specific initial DL BWP based on the initialDownlinkBWP-RedCap-r17. Furthermore, the UE 40 identifies the initial UL BWP specific to the RedCap based on the initialUplinkBWP-RedCap-r17. Furthermore, the UE 40 may monitor the PDCCH for the DCI with the SI-RNTI, RA-RNTI, and/or P-RNTI in the SSS configured using the initialDownlinkBWP-RedCap-r17. Additionally, the UE 40 may receive the SIB1 message, random access response, and/or paging message on the PDSCH scheduled by the DCI with the SI-RNTI, RA-RNTI, and/or P-RNTI.
 なお、SIB1に上記RedCap固有の初期DL BWPを示す情報が含まれない場合に、上記RedCap固有の初期DL BWPは、上記初期DL BWPを示す情報に基づいて特定されてもよい。また、SIB1に上記RedCap固有の初期UL BWPを示す情報が含まれない場合に、上記RedCap固有の初期UL BWPは、上記初期UL BWPを示す情報に基づいて特定されてもよい。すなわち、UE40は、SIB1にinitialDownlinkBWP-RedCap-r17が含まれる場合、initialDownlinkBWPに代えて、initialDownlinkBWP-RedCap-r17に基づいてRedCap固有の初期DL BWPを特定してもよい。また、UE40は、SIB1にinitialUplinkBWP-RedCap-r17が含まれる場合、initialUplinkBWPに代えて、initialUplinkBWP-RedCap-r17に基づいてRedCap固有の初期UL BWPを特定してもよい。また、UE40は、SIB1にinitialDownlinkBWP-RedCap-r17が含まれない場合、initialDownlinkBWPに基づいて、初期DL BWP(RedCap固有の初期DL BWPでもよい)を特定してもよい。また、UE40は、SIB1にinitialUplinkBWP-RedCap-r17が含まれない場合、initialUplinkBWP-RedCap-r17に基づいて、初期UL BWP(RedCap固有の初期UL BWPでもよい)を特定してもよい。 Note that if SIB1 does not include information indicating the initial DL BWP specific to RedCap, the initial DL BWP specific to RedCap may be specified based on the information indicating the initial DL BWP. Furthermore, when SIB1 does not include information indicating the initial UL BWP specific to RedCap, the initial UL BWP specific to RedCap may be specified based on the information indicating the initial UL BWP. That is, when initialDownlinkBWP-RedCap-r17 is included in SIB1, UE40 may specify the RedCap-specific initial DL BWP based on initialDownlinkBWP-RedCap-r17 instead of initialDownlinkBWP. . Further, when the SIB1 includes initialUplinkBWP-RedCap-r17, the UE 40 may specify the initial UL BWP specific to RedCap based on the initialUplinkBWP-RedCap-r17 instead of the initialUplinkBWP. Further, if the SIB1 does not include the initialDownlinkBWP-RedCap-r17, the UE40 may specify the initial DL BWP (which may be an initial DL BWP specific to RedCap) based on the initialDownlinkBWP. Further, if the SIB1 does not include the initialUplinkBWP-RedCap-r17, the UE 40 may specify the initial UL BWP (or the initial UL BWP specific to RedCap) based on the initialUplinkBWP-RedCap-r17.
 -BWP
 第3に、基地局100は、initial BWPではないBWPを設定する。当該BWPは、UE固有(UE-Specific)のBWPであり、UE宛のRRCメッセージを用いて設定される。当該UE宛のRRCメッセージは、UE固有のRRCメッセージとも呼ばれる。例えば、当該BWPは、単にBWPと呼ばれる。あるいは、当該BWPは、RRC Configured BWP、Configured BWP、UE-Specific BWP、または、dedicated BWPと呼ばれてもよい。上記BWPは、DL BWPとUL BWPを含む。当該DL BWPは、IDが0以外の値にセットされたDL BWPとして特定されてもよい。また、当該UL BWPは、IDが0以外の値にセットされたUL BWPとして特定されてもよい。
-BWP
Thirdly, the base station 100 sets a BWP that is not the initial BWP. The BWP is a UE-specific BWP and is configured using an RRC message addressed to the UE. The RRC message addressed to the UE is also called a UE-specific RRC message. For example, the BWP is simply referred to as BWP. Alternatively, the BWP may be called RRC Configured BWP, Configured BWP, UE-Specific BWP, or dedicated BWP. The above BWP includes DL BWP and UL BWP. The DL BWP may be identified as a DL BWP whose ID is set to a value other than 0. Further, the UL BWP may be specified as a UL BWP whose ID is set to a value other than 0.
 例えば、基地局100は、上記BWPを示す情報を含むRRCメッセージをUEへ送信する。例えば、当該RRCメッセージは、RRC Reconfigurationメッセージである。上記BWPを示す上記情報は、上記RRCメッセージ内のServingCellConfigに含まれるBWP-Downlink、及び/又は、BWP-Uplinkを含む。例えば、基地局100は、BWP-Downlinkを用いて上記DL BWPを設定してもよい。また、基地局100は、BWP-Uplinkを用いて上記UL BWPを設定してもよい。BWP-Downlinkは、上記DL BWPの位置および帯域幅を示すパラメータと、上記DL BWPのサブキャリア間隔を示すパラメータとを含む。また、BWP-Downlinkは、上記DL BWPのサイクリックプレフィクスを示すパラメータを含んでもよい。同様に、BWP-Uplinkは、上記UL BWPの位置および帯域幅を示すパラメータと、上記UL BWPのサブキャリア間隔を示すパラメータとを含む。また、BWP-Uplinkは、上記UL BWPのサイクリックプレフィクスを示すパラメータを含んでもよい。 For example, the base station 100 transmits an RRC message including information indicating the BWP to the UE. For example, the RRC message is an RRC Reconfiguration message. The information indicating the BWP includes BWP-Downlink and/or BWP-Uplink included in the ServingCellConfig in the RRC message. For example, the base station 100 may set the above DL BWP using BWP-Downlink. Furthermore, the base station 100 may set the above-mentioned UL BWP using BWP-Uplink. BWP-Downlink includes a parameter indicating the position and bandwidth of the DL BWP, and a parameter indicating the subcarrier interval of the DL BWP. Further, BWP-Downlink may include a parameter indicating the cyclic prefix of the DL BWP. Similarly, the BWP-Uplink includes a parameter indicating the position and bandwidth of the UL BWP, and a parameter indicating the subcarrier interval of the UL BWP. Further, the BWP-Uplink may include a parameter indicating the cyclic prefix of the UL BWP.
 また、BWP-Downlinkは、上記DL BWPのUE固有のパラメータを含んでもよい。当該DL BWPのUE固有のパラメータは、BWP-DownlinkDedicatedとも呼ばれる。例えば、当該UE固有のパラメータは、PDCCHのSSSに関するパラメータを含む。ここで、SSSに関するパラメータは、USS(UE-specific search space set)に関するパラメータ、及び/又は、CSSに関するパラメータを含む。例えば、当該PDCCHのUSS、及び/又は、CSSは、C-RNTI(cell radio network temporary identifier)、MCS-C-RNTI(modulation and coding scheme cell radio network temporary identifier)、及び/又は、CS-RNTI(configured scheduling radio network temporary identifier)を伴うDCIに対するPDCCHのモニタリングに対して設定される。当該DCIは、PDSCHのスケジューリングに用いられるDCI formatであり、例えば、DCI format 1_0、及び/又は、DCI format 1_1である。また、当該DCIは、PUSCHのスケジューリングに用いられるDCI formatであり、例えば、DCI format 0_0、及び/又は、DCI format 0_1であってもよい。 Additionally, the BWP-Downlink may include the UE-specific parameters of the DL BWP. The UE-specific parameter of the DL BWP is also called BWP-DownlinkDedicated. For example, the UE-specific parameters include parameters related to SSS of PDCCH. Here, the parameters related to SSS include parameters related to USS (UE-specific search space set) and/or parameters related to CSS. For example, the USS and/or CSS of the PDCCH may be C-RNTI (cell radio network temporary identifier), MCS-C-RNTI (modulation and coding scheme cell radio network temporary identifier), and/or CS-RNTI ( configured for PDCCH monitoring for DCI with configured scheduling radio network temporary identifier). The DCI is a DCI format used for PDSCH scheduling, and is, for example, DCI format 1_0 and/or DCI format 1_1. Further, the DCI is a DCI format used for PUSCH scheduling, and may be, for example, DCI format 0_0 and/or DCI format 0_1.
 例えば、基地局100は、C-RNTI、MCS-C-RNTI、及び/又は、CS-RNTIを伴うDCIを用いてPDSCHをスケジュールし、当該PDSCHにおいてダウンリンクデータ(ダウンリンク共用チャネル(DL-SCH: Downlink Shared Channel)のデータとも呼ばれる)を送信してもよい。また、基地局100は、C-RNTI、MCS-C-RNTI、及び/又は、CS-RNTIを伴うDCIを用いてPUSCHをスケジュールし、当該PUSCHにおいてアップリンクデータ(アップリンク共用チャネル(UL-SCH: Uplink Shared Channel)のデータとも呼ばれる)を受信してもよい。ここで、当該UE固有のパラメータを用いて設定されるCSSは、Type3-PDCCH CSS Setとも呼ばれる。 For example, the base station 100 schedules a PDSCH using a C-RNTI, an MCS-C-RNTI, and/or a DCI with a CS-RNTI, and uses downlink data (downlink shared channel (DL-SCH)) on the PDSCH. : Downlink Shared Channel) data) may also be sent. Furthermore, the base station 100 schedules the PUSCH using the C-RNTI, MCS-C-RNTI, and/or DCI with CS-RNTI, and uses the PUSCH to schedule uplink data (uplink shared channel (UL-SCH)). : Uplink Shared Channel) data) may be received. Here, the CSS configured using the UE-specific parameters is also referred to as Type 3-PDCCH CSS Set.
 また、BWP-Uplinkは、上記UL BWPのUE固有のパラメータを含んでもよい。当該DL BWPのUE固有のパラメータは、BWP-UplinkDedicatedとも呼ばれる。例えば、当該UE固有のパラメータは、上記UL BWPに適用されるUE固有のPUSCHのパラメータ、及び/又は、PUSCHの送信に関連するDMRS(demodulation reference signal)のパラメータを含む。 Additionally, the BWP-Uplink may include the UE-specific parameters of the UL BWP. The UE-specific parameter of the DL BWP is also called BWP-UplinkDedicated. For example, the UE-specific parameters include UE-specific PUSCH parameters applied to the UL BWP and/or DMRS (demodulation reference signal) parameters related to PUSCH transmission.
 ここで、基地局100は、上記RRCメッセージ内のServingCellConfigに含まれるUE固有のパラメータを、初期DL BWPに対して設定してもよい。また、基地局100は、上記RRCメッセージ内のServingCellConfigに含まれるUE固有のパラメータを、初期UL BWPに対して設定してもよい。例えば、初期DL BWPに対して、C-RNTI、MCS-C-RNTI、及び/又は、CS-RNTIを伴うDCIに対するPDCCHのモニタリングに対するSSSに関するパラメータが設定されてもよい。また、初期UL BWPに対して、UE固有のPUSCHのパラメータ、及び/又は、PUSCHの送信に関連するDMRSに関するパラメータが設定されてもよい。 Here, the base station 100 may set the UE-specific parameters included in the ServingCellConfig in the RRC message for the initial DL BWP. Furthermore, the base station 100 may set UE-specific parameters included in the ServingCellConfig in the RRC message for the initial UL BWP. For example, parameters regarding SSS for monitoring PDCCH for DCI with C-RNTI, MCS-C-RNTI, and/or CS-RNTI may be set for initial DL BWP. Furthermore, UE-specific PUSCH parameters and/or DMRS-related parameters related to PUSCH transmission may be set for the initial UL BWP.
 例えば、UE30またはUE40は、上記RRCメッセージを受信し、上記RRCメッセージに含まれる上記情報を取得する。そして、UE30またはUE40は、上記BWPを設定され、上記BWPを使用して基地局100と通信する。例えば、UE30またはUE40は、BWP-Downlinkに基づいて、上記DL BWPを特定する。また、UE30またはUE40は、BWP-Uplinkに基づいて、上記UL BWPを特定する。また、UE30またはUE40は、BWP-Downlinkを用いて設定されたSSSにおいて、C-RNTI、MCS-C-RNTI、及び/又は、CS-RNTIを伴うDCIに対するPDCCHをモニタしてもよい。 For example, the UE 30 or UE 40 receives the RRC message and acquires the information included in the RRC message. Then, the UE 30 or UE 40 is configured with the above BWP and communicates with the base station 100 using the above BWP. For example, the UE 30 or UE 40 specifies the DL BWP based on the BWP-Downlink. Further, the UE 30 or UE 40 identifies the UL BWP based on the BWP-Uplink. Furthermore, UE 30 or UE 40 may monitor PDCCH for DCI with C-RNTI, MCS-C-RNTI, and/or CS-RNTI in SSS configured using BWP-Downlink.
 また、UE30またはUE40は、初期DL BWPに対してUE固有のパラメータが設定された場合、初期DL BWPにおいて、UE固有のパラメータに基づいて設定されたSSSにおいて、C-RNTI、MCS-C-RNTI、及び/又は、CS-RNTIを伴うDCIに対するPDCCHをモニタしてもよい。 In addition, when UE-specific parameters are set for the initial DL BWP, the UE 30 or UE 40 performs C-RNTI, MCS-C-RNTI, etc. in the SSS set based on the UE-specific parameters in the initial DL BWP. , and/or PDCCH for DCI with CS-RNTI may be monitored.
 また、UE30またはUE40は、C-RNTI、MCS-C-RNTI、及び/又は、CS-RNTIを伴うDCIによってスケジュールされたPDSCHにおいて、ダウンリンクデータ(DL-SCHのデータ)を受信してもよい。また、UE30またはUE40は、C-RNTI、MCS-C-RNTI、及び/又は、CS-RNTIを伴うDCIによってスケジュールされたPUSCHにおいて、アップリンクデータ(UL-SCHのデータ)を送信してもよい。ここで、UE30またはUE40は、BWP-Uplinkに含まれるUE固有のパラメータに基づいて、アップリンクデータの送信(PUSCHの送信)、及び/又は、PUSCHに関連するDMRSの送信を実行してもよい。また、UE30またはUE40は、初期UL BWPにおいて、UE固有のパラメータに基づいて、アップリンクデータの送信(PUSCHの送信)、及び/又は、PUSCHに関連するDMRSの送信を実行してもよい。 Further, the UE 30 or UE 40 may receive downlink data (DL-SCH data) on a PDSCH scheduled by a DCI with C-RNTI, MCS-C-RNTI, and/or CS-RNTI. . Additionally, the UE 30 or UE 40 may transmit uplink data (UL-SCH data) on the PUSCH scheduled by the DCI with C-RNTI, MCS-C-RNTI, and/or CS-RNTI. . Here, the UE 30 or UE 40 may perform uplink data transmission (PUSCH transmission) and/or DMRS transmission related to PUSCH based on the UE-specific parameters included in the BWP-Uplink. . Furthermore, the UE 30 or UE 40 may perform uplink data transmission (PUSCH transmission) and/or DMRS transmission related to the PUSCH in the initial UL BWP based on UE-specific parameters.
 基地局100は、1つのサービングセルにおいて、1つのUEに1つ又は複数のDL BWPを設定し得る。この場合に、当該1つ又は複数のDL BWPのうちの1つのDL BWPが、Active DL BWPとしてUEにより使用される。例えば、上記RRCメッセージは、最初のActive DL BWPを示す情報要素を含み、UEは、当該情報要素により示されるDL BWPをActive DL BWPとして最初に使用する。上記情報要素は、firstActiveDownlinkBWP-Idである。さらに、Active DL BWPは、切り替えられ得る。例えば、基地局100は、DL BWPを示す情報を含むDCIをUEへ送信し、当該UEは、当該情報により示されるDL BWPにActive DL BWPを切り替える。当該DCIは、PDSCHのスケジューリングに用いられるDCI(例えば、DCI format 1_1)であり、当該情報は、Bandwidth Part Indicatorである。また、例えば、BWPに関するタイマが満了(expire)した場合に、UEは、Default DL BWPにActive DL BWPを切り替える。例えば、上記RRCメッセージは、Default DL BWPを示す情報要素を含み、UEは、当該情報要素により示されるDL BWPをDefault DL BWPとして使用する。上記タイマは、bwp-InactivityTimerであり、上記情報要素は、defaultDownlinkBWP-Idである。なお、Active DL BWPの切替えは、MAC(Medium Access Control)エンティティによってさらに制御されてもよい。 The base station 100 may configure one or more DL BWPs for one UE in one serving cell. In this case, one DL BWP of the one or more DL BWPs is used by the UE as an Active DL BWP. For example, the RRC message includes an information element indicating the first Active DL BWP, and the UE initially uses the DL BWP indicated by the information element as the Active DL BWP. The above information element is firstActiveDownlinkBWP-Id. Furthermore, Active DL BWP can be switched. For example, the base station 100 transmits DCI including information indicating DL BWP to the UE, and the UE switches the Active DL BWP to the DL BWP indicated by the information. The DCI is a DCI (for example, DCI format 1_1) used for PDSCH scheduling, and the information is a Bandwidth Part Indicator. Further, for example, when a timer related to BWP expires, the UE switches Active DL BWP to Default DL BWP. For example, the RRC message includes an information element indicating the Default DL BWP, and the UE uses the DL BWP indicated by the information element as the Default DL BWP. The timer is bwp-InactivityTimer, and the information element is defaultDownlinkBWP-Id. Note that the switching of Active DL BWP may be further controlled by a MAC (Medium Access Control) entity.
 基地局100は、1つのサービングセルにおいて、1つのUEに1つ又は複数のUL BWPを設定し得る。この場合に、当該1つ又は複数のUL BWPのうちの1つのUL BWPが、Active UL BWPとしてUEにより使用される。例えば、上記RRCメッセージは、最初のActive UL BWPを示す情報要素を含み、UEは、当該情報要素により示されるUL BWPをActive UL BWPとして最初に使用する。上記情報要素は、firstActiveUplinkBWP-Idである。さらに、Active UL BWPは、切り替えられ得る。例えば、基地局100は、UL BWPを示す情報を含むDCIをUEへ送信し、当該UEは、当該情報により示されるUL BWPにActive UL BWPを切り替える。当該DCIは、PUSCHのスケジューリングに用いられるDCI(例えば、DCI format 0_1)であり、当該情報は、Bandwidth Part Indicatorである。なお、Active DL BWPの切替えは、MACエンティティによってさらに制御されてもよい。 The base station 100 may configure one or more UL BWPs for one UE in one serving cell. In this case, one UL BWP of the one or more UL BWPs is used by the UE as an Active UL BWP. For example, the RRC message includes an information element indicating the first Active UL BWP, and the UE initially uses the UL BWP indicated by the information element as the Active UL BWP. The above information element is firstActiveUplinkBWP-Id. Furthermore, Active UL BWP can be switched. For example, the base station 100 transmits DCI including information indicating the UL BWP to the UE, and the UE switches the Active UL BWP to the UL BWP indicated by the information. The DCI is a DCI (for example, DCI format 0_1) used for PUSCH scheduling, and the information is a Bandwidth Part Indicator. Note that the switching of Active DL BWP may be further controlled by the MAC entity.
 例えば、上記複数のDL BWPは、最大4つのDL BWPである。例えば、上記複数のUL BWPは、最大4つのUL BWPである。ここで、上述のとおり、基地局100は、1つのサービングセルにおいて設定した1つ又は複数のDL BWPのそれぞれに対してSSSを設定してもよい。ここで、1つ又は複数のDL BWPは、初期DL BWP、及び、UE固有のDL BWPを含む。 For example, the plurality of DL BWPs are a maximum of four DL BWPs. For example, the plurality of UL BWPs are a maximum of four UL BWPs. Here, as described above, the base station 100 may configure SSS for each of one or more DL BWPs configured in one serving cell. Here, the one or more DL BWPs include an initial DL BWP and a UE-specific DL BWP.
 (4)BWP内の周波数帯域
 とりわけ本開示の実施形態では、RedCap UEにより使用されるBWP内に、当該RedCap UEにより使用される周波数帯域が設定される。
(4) Frequency Band in BWP Particularly in the embodiment of the present disclosure, the frequency band used by the RedCap UE is set in the BWP used by the RedCap UE.
 BWP-Downlinkに基づいてDL BWPが特定され、当該DL BWP内にダウンリンクにおける周波数帯域が設定されてもよい。例えば、BWP-Downlinkに含まれるDL BWPのUE固有のパラメータが、ダウンリンクにおける周波数帯域を設定するための情報を含む場合に、当該DL BWP内にダウンリンクにおける周波数帯域が設定されてもよい。また、BWP-Uplinkに基づいてUL BWPが特定され、当該UL BWP内にアップリンクにおける周波数帯域が設定されてもよい。例えば、BWP-Uplinkに含まれるUL BWPのUE固有のパラメータが、アップリンクにおける周波数帯域を設定するための情報を含む場合に、当該UL BWP内にアップリンクにおける周波数帯域が設定されてもよい。 A DL BWP may be specified based on the BWP-Downlink, and a downlink frequency band may be set within the DL BWP. For example, when the UE-specific parameters of the DL BWP included in the BWP-Downlink include information for setting the frequency band in the downlink, the frequency band in the downlink may be set in the DL BWP. Furthermore, a UL BWP may be specified based on the BWP-Uplink, and an uplink frequency band may be set within the UL BWP. For example, when the UE-specific parameters of the UL BWP included in the BWP-Uplink include information for setting the frequency band in the uplink, the frequency band in the uplink may be set in the UL BWP.
 上記BWP内に設定される上記周波数帯域もBWPと呼ばれてもよい。具体的には、ダウンリンクにおける周波数帯域もDL BWPと呼ばれてもよく、アップリンクにおける周波数帯域もUL BWPと呼ばれてもよい。 The frequency band set within the BWP may also be called BWP. Specifically, the frequency band in the downlink may also be called DL BWP, and the frequency band in the uplink may also be called UL BWP.
 以下、ダウンリンクにおける周波数帯域をDL周波数帯域、アップリンクにおける周波数帯域をUL周波数帯域と表記する。 Hereinafter, the frequency band in the downlink will be referred to as the DL frequency band, and the frequency band in the uplink will be referred to as the UL frequency band.
 本開示の実施形態に係る上記周波数帯域に関連する特徴は、後に詳細に説明する。 Features related to the above frequency bands according to the embodiments of the present disclosure will be described in detail later.
 <2.基地局の構成>
 図3及び図4を参照して、本開示の実施形態に係る基地局100の構成の例を説明する。
<2. Base station configuration>
An example of the configuration of base station 100 according to an embodiment of the present disclosure will be described with reference to FIGS. 3 and 4.
 (1)機能構成
 まず、図3を参照して、本開示の実施形態に係る基地局100の機能構成の例を説明する。図3を参照すると、基地局100は、無線通信部110、ネットワーク通信部120、記憶部130及び処理部140を備える。
(1) Functional Configuration First, with reference to FIG. 3, an example of the functional configuration of the base station 100 according to the embodiment of the present disclosure will be described. Referring to FIG. 3, the base station 100 includes a wireless communication section 110, a network communication section 120, a storage section 130, and a processing section 140.
 無線通信部110は、信号を無線で送受信する。例えば、無線通信部110は、UEからの信号を受信し、UEへの信号を送信する。 The wireless communication unit 110 transmits and receives signals wirelessly. For example, the wireless communication unit 110 receives a signal from a UE and transmits a signal to the UE.
 ネットワーク通信部120は、ネットワークから信号を受信し、ネットワークへ信号を送信する。 The network communication unit 120 receives signals from the network and transmits signals to the network.
 記憶部130は、基地局100のために様々な情報を記憶する。 The storage unit 130 stores various information for the base station 100.
 処理部140は、基地局100の様々な機能を提供する。処理部140は、情報取得部141および通信処理部143を含む。なお、処理部140は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部140は、これらの構成要素の動作以外の動作も行い得る。情報取得部141および通信処理部143の具体的な動作は、後に詳細に説明する。 The processing unit 140 provides various functions of the base station 100. The processing section 140 includes an information acquisition section 141 and a communication processing section 143. Note that the processing unit 140 may further include components other than these components. That is, the processing unit 140 can perform operations other than those of these components. Specific operations of the information acquisition section 141 and the communication processing section 143 will be explained in detail later.
 例えば、処理部140(通信処理部143)は、無線通信部110を介してUE(例えば、UE30、UE40およびUE200)と通信する。例えば、処理部140(通信処理部143)は、ネットワーク通信部120を介してコアネットワークノードおよび他の基地局と通信する。 For example, the processing unit 140 (communication processing unit 143) communicates with the UEs (for example, UE 30, UE 40, and UE 200) via the wireless communication unit 110. For example, the processing unit 140 (communication processing unit 143) communicates with the core network node and other base stations via the network communication unit 120.
 (2)ハードウェア構成
 次に、図4を参照して、本開示の実施形態に係る基地局100のハードウェア構成の例を説明する。図4を参照すると、基地局100は、アンテナ181、RF(radio frequency)回路183、ネットワークインターフェース185、プロセッサ187、メモリ189及びストレージ191を備える。
(2) Hardware Configuration Next, with reference to FIG. 4, an example of the hardware configuration of the base station 100 according to the embodiment of the present disclosure will be described. Referring to FIG. 4, the base station 100 includes an antenna 181, an RF (radio frequency) circuit 183, a network interface 185, a processor 187, a memory 189, and a storage 191.
 アンテナ181は、信号を電波に変換し、当該電波を空間に放射する。また、アンテナ181は、空間における電波を受信し、当該電波を信号に変換する。アンテナ181は、送信アンテナ及び受信アンテナを含んでもよく、又は、送受信用の単一のアンテナであってもよい。アンテナ181は、指向性アンテナであってもよく、複数のアンテナ素子を含んでもよい。 The antenna 181 converts the signal into radio waves and radiates the radio waves into space. Further, the antenna 181 receives radio waves in space and converts the radio waves into signals. Antenna 181 may include a transmitting antenna and a receiving antenna, or may be a single antenna for transmitting and receiving. Antenna 181 may be a directional antenna and may include multiple antenna elements.
 RF回路183は、アンテナ181を介して送受信される信号のアナログ処理を行う。RF回路183は、高周波フィルタ、増幅器、変調器及びローパスフィルタ等を含んでもよい。 The RF circuit 183 performs analog processing of signals transmitted and received via the antenna 181. RF circuit 183 may include a high frequency filter, an amplifier, a modulator, a low pass filter, and the like.
 ネットワークインターフェース185は、例えばネットワークアダプタであり、ネットワークへ信号を送信し、ネットワークから信号を受信する。 The network interface 185 is, for example, a network adapter, and transmits signals to and receives signals from the network.
 プロセッサ187は、アンテナ181及びRF回路183を介して送受信される信号のデジタル処理を行う。当該デジタル処理は、RANのプロトコルスタックの処理を含む。プロセッサ187は、ネットワークインターフェース185を介して送受信される信号の処理も行う。プロセッサ187は、複数のプロセッサを含んでもよく、又は、単一のプロセッサであってもよい。当該複数のプロセッサは、上記デジタル処理を行うベースバンドプロセッサと、他の処理を行う1つ以上のプロセッサとを含んでもよい。 The processor 187 performs digital processing of signals transmitted and received via the antenna 181 and the RF circuit 183. The digital processing includes processing of the RAN protocol stack. Processor 187 also processes signals sent and received via network interface 185. Processor 187 may include multiple processors or may be a single processor. The plurality of processors may include a baseband processor that performs the digital processing and one or more processors that perform other processing.
 メモリ189は、プロセッサ187により実行されるプログラム、当該プログラムに関するパラメータ、及び、その他の様々な情報を記憶する。メモリ189は、ROM(read only memory)、EPROM(erasable programmable read only memory)、EEPROM(electrically erasable programmable read only memory)、RAM(random access memory)及びフラッシュメモリの少なくとも1つを含んでもよい。メモリ189の全部又は一部は、プロセッサ187内に含まれていてもよい。 The memory 189 stores programs executed by the processor 187, parameters related to the programs, and various other information. The memory 189 may include at least one of ROM (read only memory), EPROM (erasable programmable read only memory), EEPROM (electrically erasable programmable read only memory), RAM (random access memory), and flash memory. All or part of memory 189 may be included within processor 187.
 ストレージ191は、様々な情報を記憶する。ストレージ191は、SSD(solid state drive)及びHDD(hard disc drive)の少なくとも1つを含んでもよい。 The storage 191 stores various information. The storage 191 may include at least one of an SSD (solid state drive) and an HDD (hard disc drive).
 無線通信部110は、アンテナ181及びRF回路183により実装されてもよい。ネットワーク通信部120は、ネットワークインターフェース185により実装されてもよい。記憶部130は、ストレージ191により実装されてもよい。処理部140は、プロセッサ187及びメモリ189により実装されてもよい The wireless communication unit 110 may be implemented by an antenna 181 and an RF circuit 183. Network communication unit 120 may be implemented by network interface 185. The storage unit 130 may be implemented by a storage 191. Processing unit 140 may be implemented by processor 187 and memory 189
 処理部140の一部又は全部は、仮想化されていてもよい。換言すると、処理部140の一部又は全部は、仮想マシンとして実装されてもよい。この場合に、処理部140の一部又は全部は、プロセッサ及びメモリ等を含む物理マシン(即ち、ハードウェア)及びハイパーバイザ上で仮想マシンとして動作してもよい。 Part or all of the processing unit 140 may be virtualized. In other words, part or all of the processing unit 140 may be implemented as a virtual machine. In this case, part or all of the processing unit 140 may operate as a virtual machine on a physical machine (ie, hardware) including a processor, memory, etc., and a hypervisor.
 以上のハードウェア構成を考慮すると、基地局100は、プログラムを記憶するメモリ(即ち、メモリ189)と、当該プログラムを実行可能な1つ以上のプロセッサ(即ち、プロセッサ187)とを備えてもよく、当該1つ以上のプロセッサは、上記プログラムを実行して、処理部140の動作を行ってもよい。上記プログラムは、処理部140の動作をプロセッサに実行させるためのプログラムであってもよい。 Considering the above hardware configuration, base station 100 may include a memory that stores a program (i.e., memory 189) and one or more processors that can execute the program (i.e., processor 187). , the one or more processors may execute the above program to perform the operations of the processing unit 140. The program may be a program for causing a processor to execute the operations of the processing unit 140.
 <3.ユーザ機器の構成>
 図5及び図6を参照して、本開示の実施形態に係るUE200の構成の例を説明する。
<3. User equipment configuration>
An example of the configuration of the UE 200 according to the embodiment of the present disclosure will be described with reference to FIGS. 5 and 6.
 (1)機能構成
 まず、図5を参照して、本開示の実施形態に係るUE200の機能構成の例を説明する。図5を参照すると、UE200は、無線通信部210、記憶部220及び処理部230を備える。
(1) Functional Configuration First, an example of the functional configuration of the UE 200 according to the embodiment of the present disclosure will be described with reference to FIG. Referring to FIG. 5, the UE 200 includes a wireless communication section 210, a storage section 220, and a processing section 230.
 無線通信部210は、信号を無線で送受信する。例えば、無線通信部210は、基地局からの信号を受信し、基地局への信号を送信する。 The wireless communication unit 210 transmits and receives signals wirelessly. For example, the wireless communication unit 210 receives a signal from a base station and transmits a signal to the base station.
 記憶部220は、UE200のために様々な情報を記憶する。 The storage unit 220 stores various information for the UE 200.
 処理部230は、UE200の様々な機能を提供する。処理部230は、情報取得部231及び通信処理部233を含む。なお、処理部230は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部230は、これらの構成要素の動作以外の動作も行い得る。情報取得部231及び通信処理部233の具体的な動作は、後に詳細に説明する。 The processing unit 230 provides various functions of the UE 200. The processing section 230 includes an information acquisition section 231 and a communication processing section 233. Note that the processing unit 230 may further include components other than these components. That is, the processing unit 230 can perform operations other than those of these components. Specific operations of the information acquisition unit 231 and communication processing unit 233 will be explained in detail later.
 例えば、処理部230(通信処理部233)は、無線通信部210を介して基地局(例えば、基地局100)と通信する。 For example, the processing unit 230 (communication processing unit 233) communicates with a base station (eg, base station 100) via the wireless communication unit 210.
 (2)ハードウェア構成
 次に、図6を参照して、本開示の実施形態に係るUE200のハードウェア構成の例を説明する。図6を参照すると、UE200は、アンテナ281、RF回路283、プロセッサ285、メモリ287及びストレージ289を備える。
(2) Hardware Configuration Next, with reference to FIG. 6, an example of the hardware configuration of the UE 200 according to the embodiment of the present disclosure will be described. Referring to FIG. 6, the UE 200 includes an antenna 281, an RF circuit 283, a processor 285, a memory 287, and a storage 289.
 アンテナ281は、信号を電波に変換し、当該電波を空間に放射する。また、アンテナ281は、空間における電波を受信し、当該電波を信号に変換する。アンテナ281は、送信アンテナ及び受信アンテナを含んでもよく、又は、送受信用の単一のアンテナであってもよい。アンテナ281は、指向性アンテナであってもよく、複数のアンテナ素子を含んでもよい。 The antenna 281 converts the signal into radio waves and radiates the radio waves into space. Further, the antenna 281 receives radio waves in space and converts the radio waves into signals. Antenna 281 may include a transmit antenna and a receive antenna, or may be a single antenna for transmitting and receiving. Antenna 281 may be a directional antenna and may include multiple antenna elements.
 RF回路283は、アンテナ281を介して送受信される信号のアナログ処理を行う。RF回路283は、高周波フィルタ、増幅器、変調器及びローパスフィルタ等を含んでもよい。 The RF circuit 283 performs analog processing of signals transmitted and received via the antenna 281. RF circuit 283 may include a high frequency filter, an amplifier, a modulator, a low pass filter, and the like.
 プロセッサ285は、アンテナ281及びRF回路283を介して送受信される信号のデジタル処理を行う。当該デジタル処理は、RANのプロトコルスタックの処理を含む。プロセッサ285は、複数のプロセッサを含んでもよく、又は、単一のプロセッサであってもよい。当該複数のプロセッサは、上記デジタル処理を行うベースバンドプロセッサと、他の処理を行う1つ以上のプロセッサとを含んでもよい。 The processor 285 performs digital processing of signals transmitted and received via the antenna 281 and the RF circuit 283. The digital processing includes processing of the RAN protocol stack. Processor 285 may include multiple processors or may be a single processor. The plurality of processors may include a baseband processor that performs the digital processing and one or more processors that perform other processing.
 メモリ287は、プロセッサ285により実行されるプログラム、当該プログラムに関するパラメータ、及び、その他の様々な情報を記憶する。メモリ287は、ROM、EPROM、EEPROM、RAM及びフラッシュメモリの少なくとも1つを含んでもよい。メモリ287の全部又は一部は、プロセッサ285内に含まれていてもよい。 The memory 287 stores programs executed by the processor 285, parameters related to the programs, and various other information. Memory 287 may include at least one of ROM, EPROM, EEPROM, RAM, and flash memory. All or part of memory 287 may be included within processor 285.
 ストレージ289は、様々な情報を記憶する。ストレージ289は、SSD及びHDDの少なくとも1つを含んでもよい。 The storage 289 stores various information. Storage 289 may include at least one of an SSD and an HDD.
 無線通信部210は、アンテナ281及びRF回路283により実装されてもよい。記憶部220は、ストレージ289により実装されてもよい。処理部230は、プロセッサ285及びメモリ287により実装されてもよい。 The wireless communication unit 210 may be implemented by an antenna 281 and an RF circuit 283. Storage unit 220 may be implemented by storage 289. Processing unit 230 may be implemented by processor 285 and memory 287.
 処理部230は、プロセッサ285及びメモリ287を含むSoC(System on Chip)により実装されてもよい。当該SoCは、RF回路283を含んでもよく、無線通信部210も、当該SoCにより実装されてもよい。 The processing unit 230 may be implemented by an SoC (System on Chip) including a processor 285 and a memory 287. The SoC may include the RF circuit 283, and the wireless communication unit 210 may also be implemented by the SoC.
 以上のハードウェア構成を考慮すると、UE200は、プログラムを記憶するメモリ(即ち、メモリ287)と、当該プログラムを実行可能な1つ以上のプロセッサ(即ち、プロセッサ285)とを備えてもよく、当該1つ以上のプロセッサは、上記プログラムを実行して、処理部230の動作を行ってもよい。上記プログラムは、処理部230の動作をプロセッサに実行させるためのプログラムであってもよい。 Considering the above hardware configuration, the UE 200 may include a memory that stores a program (i.e., the memory 287) and one or more processors that can execute the program (i.e., the processor 285). One or more processors may execute the above program to perform the operations of the processing unit 230. The program may be a program for causing a processor to execute the operations of the processing unit 230.
 <4.動作例>
 図7~図12を参照して、本開示の実施形態に係る基地局100及びUE200の動作の例を説明する。
<4. Operation example>
Examples of operations of the base station 100 and the UE 200 according to the embodiment of the present disclosure will be described with reference to FIGS. 7 to 12.
 基地局100(情報取得部141)は、RRCメッセージを取得し、基地局100(通信処理部143)は、当該RRCメッセージをUE200へ送信する。とりわけ本開示の実施形態では、UE200は、RedCap UEであり、上記RRCメッセージは、UE200により使用されるBWPを示す第1の情報と、当該BWP内に設定される周波数帯域であって、UE200により使用される当該周波数帯域を示す第2の情報とを含む。 The base station 100 (information acquisition unit 141) acquires the RRC message, and the base station 100 (communication processing unit 143) transmits the RRC message to the UE 200. In particular, in the embodiment of the present disclosure, the UE 200 is a RedCap UE, and the RRC message includes first information indicating a BWP used by the UE 200, and a frequency band set within the BWP, which is set by the UE 200. and second information indicating the frequency band to be used.
 UE200(通信処理部233)は、基地局100により送信される上記RRCメッセージを受信し、UE200(情報取得部231)は、上記RRCメッセージに含まれる上記第1の情報および上記第2の情報を取得する。 The UE 200 (communication processing unit 233) receives the RRC message transmitted by the base station 100, and the UE 200 (information acquisition unit 231) receives the first information and second information included in the RRC message. get.
 これにより、例えば、RedCap UEのためにBWP内に周波数帯域をさらに設定することが可能になる。そのため、例えば、RedCap UEはBWP内の周波数帯域を用いて低いピークデータレートで基地局100と通信することができる。 This allows for example to further configure frequency bands within the BWP for RedCap UEs. Therefore, for example, a RedCap UE can communicate with the base station 100 at a low peak data rate using a frequency band within the BWP.
 例えば、UE200(通信処理部233)は、上記BWPおよび上記周波数帯域を設定され、上記BWPおよび上記周波数帯域を使用して基地局100と通信する。 For example, the UE 200 (communication processing unit 233) is set with the above BWP and the above frequency band, and communicates with the base station 100 using the above BWP and the above frequency band.
 (1)RRCメッセージ
 例えば、上記RRCメッセージは、RRC Reconfigurationメッセージである。すなわち、基地局100(通信処理部143)は、上記第1の情報および上記第2の情報を含むRRC ReconfigurationメッセージをUE200へ送信する。
(1) RRC Message For example, the above RRC message is an RRC Reconfiguration message. That is, the base station 100 (communication processing unit 143) transmits an RRC Reconfiguration message including the first information and the second information to the UE 200.
 例えば、基地局100(情報取得部141)は、上記RRCメッセージを生成することにより、上記RRCメッセージを取得する。 For example, the base station 100 (information acquisition unit 141) acquires the RRC message by generating the RRC message.
 (2)BWPと周波数帯域
 (2-1)BWP
 UE200により使用される上記BWPは、RRC configred BWPである。UE200により使用される上記周波数帯域は、当該RRC configred BWP内に設定される。
(2) BWP and frequency band (2-1) BWP
The BWP used by the UE 200 is RRC configured BWP. The frequency band used by the UE 200 is set in the RRC configured BWP.
 なお、上記周波数帯域が既存のBWPと区別されることを前提として、上記周波数帯域もBWPと呼ばれてもよい。当該既存のBWPは、RRC Configured BWP、初期BWP、およびRedCap固有の初期BWPである。一例として、上記周波数帯域は、Rel-18 RedCap UE用のBWPと呼ばれてもよい。 Note that the above frequency band may also be called BWP on the premise that the above frequency band is distinguished from existing BWP. The existing BWPs are RRC Configured BWP, initial BWP, and RedCap-specific initial BWP. As an example, the frequency band may be called BWP for Rel-18 RedCap UE.
 (2-2)ダウンリンク(DL)とアップリンク(UL)
 例えば、上記BWPは、UE200により使用されるDL BWPと、UE200により使用されるUL BWPを含む。
(2-2) Downlink (DL) and uplink (UL)
For example, the BWP includes DL BWP used by UE 200 and UL BWP used by UE 200.
 例えば、上記周波数帯域は、上記DL BWP内に設定されるDL周波数帯域であって、UE200により使用される当該DL周波数帯域を含む。また、上記周波数帯域は、上記UL BWP内に設定されるUL周波数帯域であって、UE200により使用される当該UL周波数帯域を含む。 For example, the frequency band is a DL frequency band set within the DL BWP and includes the DL frequency band used by the UE 200. Further, the frequency band is a UL frequency band set within the UL BWP, and includes the UL frequency band used by the UE 200.
 (2-3)帯域幅
 上記周波数帯域は、上記BWPよりも狭い。例えば、上記周波数帯域は、FR1における5MHz以下の周波数帯域である。上述したように、FR1は、450MHzから6000MHzの周波数レンジである。
(2-3) Bandwidth The above frequency band is narrower than the above BWP. For example, the frequency band is a frequency band of 5 MHz or less in FR1. As mentioned above, FR1 is in the frequency range from 450 MHz to 6000 MHz.
 図7を参照すると、例えば、UE200により使用されるBWP51が設定され、さらに、UE200により使用される周波数帯域53がBWP51内に設定される。例えば、BWP51の帯域幅は20MHzであり、周波数帯域53の帯域幅は5MHzである。BWP51および周波数帯域53は、DL BWPおよびDL周波数帯域であってもよく、UL BWPおよびUL周波数帯域であってもよい。 Referring to FIG. 7, for example, the BWP 51 used by the UE 200 is set, and furthermore, the frequency band 53 used by the UE 200 is set within the BWP 51. For example, the bandwidth of the BWP 51 is 20 MHz, and the bandwidth of the frequency band 53 is 5 MHz. BWP 51 and frequency band 53 may be DL BWP and DL frequency band, or may be UL BWP and UL frequency band.
 (2-4)サブキャリア間隔
 例えば、前上記周波数帯域のサブキャリア間隔は、上記BWPのサブキャリア間隔と同じである。すなわち、上記周波数帯域内で使用されるサブキャリア間隔は、上記BWP内で使用されるサブキャリア間隔と同じである。
(2-4) Subcarrier spacing For example, the subcarrier spacing of the above frequency band is the same as the subcarrier spacing of the above BWP. That is, the subcarrier spacing used within the frequency band is the same as the subcarrier spacing used within the BWP.
 例えば、上記DL周波数帯域のサブキャリア間隔は、上記DL BWPのサブキャリア間隔と同じであり、上記UL周波数帯域のサブキャリア間隔は、上記UL BWPのサブキャリア間隔と同じである。 For example, the subcarrier spacing of the DL frequency band is the same as the subcarrier spacing of the DL BWP, and the subcarrier spacing of the UL frequency band is the same as the subcarrier spacing of the UL BWP.
 (2-5)用途
  -SSBとCORESET#0
 例えば、上記初期DL BWPは、SS/PBCH(synchronization signal/physical broadcast channel)ブロックおよびCORESET(control resource set)#0の受信のために上記RedCap UEにより使用される初期DL BWPである。SS/PBCHブロックは、SSBとも呼ばれる。SS/PBCHブロックは、PSS(primary synchronization signal)、SSS(secondary synchronization signal)、及び/又は、PBCH(physical broadcast channel)を含む。また、SS/PBCHブロックは、SIB1に関連するCell-Defining SSB(CD-SSB)、及び/又は、SIB1に関連しないNon Cell-Defining SSB(NCD-SSB)を含む。PBCHは、MIB(master information block)の送信に用いられる。MIBは、CORESET#0を示すための情報、及び/又は、SSS#0を示すための情報を含んでもよい。上述のとおり、SSS#0は、Type0-PDCCH CSS Setとも呼ばれ、CORESET#0は、SSS#0に対するCORESETである。
(2-5) Applications -SSB and CORESET#0
For example, the initial DL BWP is the initial DL BWP used by the RedCap UE for reception of SS/PBCH (synchronization signal/physical broadcast channel) block and CORESET (control resource set) #0. SS/PBCH block is also called SSB. The SS/PBCH block includes a PSS (primary synchronization signal), an SSS (secondary synchronization signal), and/or a PBCH (physical broadcast channel). Further, the SS/PBCH block includes a Cell-Defining SSB (CD-SSB) related to SIB1 and/or a Non Cell-Defining SSB (NCD-SSB) not related to SIB1. PBCH is used for transmitting MIB (master information block). The MIB may include information indicating CORESET #0 and/or information indicating SSS #0. As described above, SSS#0 is also called Type0-PDCCH CSS Set, and CORESET#0 is a CORESET for SSS#0.
 CORESET#0は、SIB1のスケジューリングのためのPDCCHを送信するのに使用されるCORESETである。そのため、CORESET#0の受信とは、CORESET#0で送信されるPDCCHの受信とも言える。同様に、SSS#0は、SIB1のスケジューリングのためのPDCCHを送信するのに使用されるSSSである。当該PDCCHは、SIB1のスケジューリングのためのDCIを含む。ここで、SIB1のスケジューリングのためのDCIとは、SI-RNTIを伴うDCIである。 CORESET #0 is a CORESET used to transmit PDCCH for SIB1 scheduling. Therefore, reception of CORESET #0 can also be said to be reception of PDCCH transmitted by CORESET #0. Similarly, SSS #0 is the SSS used to transmit PDCCH for SIB1 scheduling. The PDCCH includes DCI for SIB1 scheduling. Here, the DCI for SIB1 scheduling is a DCI with SI-RNTI.
 UE200(通信処理部233)は、対応するサーチスペースセットに従って、PDCCHのモニタリングが設定されたサービングセルにおけるDL BWPにおいて、1つ又は複数CORESETでPDCCHの候補のセットをモニタする。ここで、モニタとは、モニタされるDCI(DCI format)に従って、PDCCHの候補のそれぞれのデコードを試みることを示してもよい(ブラインドデコーディングとも呼ばれる)。例えば、UE200(通信処理部233)は、上記初期DL BWPを使用して、SS/PBCHブロックを受信し、CORESET#0、及び/又は、SSS#0でPDCCHをモニタ(受信)する。
-物理共有チャネル
  --周波数帯域での受信
 上記周波数帯域は、物理共有チャネルの受信および送信の少なくとも一方のためにUE200により使用される周波数帯域である。すなわち、UE200(通信処理部233)は、上記周波数帯域を使用して、上記物理共有チャネルを受信しまたは送信する。
The UE 200 (communication processing unit 233) monitors a set of PDCCH candidates using one or more CORESETs in the DL BWP in the serving cell in which PDCCH monitoring is configured, according to the corresponding search space set. Here, monitoring may refer to attempting to decode each of the PDCCH candidates according to the monitored DCI (DCI format) (also referred to as blind decoding). For example, the UE 200 (communication processing unit 233) receives the SS/PBCH block using the above-mentioned initial DL BWP, and monitors (receives) the PDCCH with CORESET #0 and/or SSS #0.
- Physical shared channel - Reception in frequency band The above frequency band is a frequency band used by UE 200 for at least one of receiving and transmitting a physical shared channel. That is, the UE 200 (communication processing unit 233) receives or transmits the physical shared channel using the frequency band.
 例えば、上記物理共有チャネルは、PDSCH(physical downlink shared channel)およびPUSCH(physical uplink shared channel)を含む。すなわち、上記周波数帯域に含まれる上記DL周波数帯域は、PDSCHの受信のためにUE200により使用されるDL周波数帯域であり、上記周波数帯域に含まれる上記UL周波数帯域は、PUSCHの受信のためにUE200により使用されるUL周波数帯域である。 For example, the physical shared channels include PDSCH (physical downlink shared channel) and PUSCH (physical uplink shared channel). That is, the DL frequency band included in the frequency band is a DL frequency band used by the UE 200 for receiving the PDSCH, and the UL frequency band included in the frequency band is the DL frequency band used by the UE 200 for receiving the PUSCH. This is the UL frequency band used by
 例えば、上記物理共有チャネルは、C-RNTI(cell radio network temporary identifier)、MCS-C-RNTI(modulation and coding scheme cell radio network temporary identifier)、及び/又は、CS-RNTI(configured scheduling radio network temporary identifier)を伴うDCIを用いてスケジューリングされる物理共有チャネルを含む。 For example, the physical shared channel may be C-RNTI (cell radio network temporary identifier), MCS-C-RNTI (modulation and coding scheme cell radio network temporary identifier), and/or CS-RNTI (configured scheduling radio network). temporary identifier ) with a physical shared channel scheduled using DCI.
 例えば、UE200(通信処理部233)は、上記周波数帯域を使用して、C-RNTI、MCS-C-RNTIまたはCS-RNTIを伴うDCIを用いてスケジューリングされる物理共有チャネルを受信しまたは送信する。 For example, the UE 200 (communication processing unit 233) uses the above frequency band to receive or transmit a physical shared channel scheduled using a DCI with C-RNTI, MCS-C-RNTI, or CS-RNTI. .
 例えば、UE200(通信処理部233)は、C-RNTI、MCS-C-RNTI、及び/又は、CS-RNTIを伴うDCIを用いてスケジュールされたPDSCHにおける受信を上記DL周波数帯域において実行してもよい。また、UE200(通信処理部233)は、C-RNTI、MCS-C-RNTI、及び/又は、CS-RNTIを伴うDCIを用いてスケジュールされたPUSCHにおける送信を上記UL周波数帯域において、実行してもよい。 For example, the UE 200 (communication processing unit 233) may perform reception on the PDSCH scheduled using the C-RNTI, MCS-C-RNTI, and/or DCI with CS-RNTI in the above DL frequency band. good. Further, the UE 200 (communication processing unit 233) performs transmission on the PUSCH scheduled using the C-RNTI, MCS-C-RNTI, and/or DCI with CS-RNTI in the above UL frequency band. Good too.
 ここで、上述のとおり、UE200(通信処理部233)は、C-RNTI、MCS-C-RNTI、及び/又は、CS-RNTIを伴うDCI(すなわち、PDSCHのスケジューリングに用いられるDCI、及び/又は、PUSCHのスケジューリングに用いられるDCI)のためのPDCCHに対するモニタリングを、UE固有のDL BWPにおいて実行してもよい。すなわち、UE200(通信処理部233)は、UE固有のDL BWPに対して設定されたSSS(USS、及び/又は、CSS)において、C-RNTI、MCS-C-RNTI、及び/又は、CS-RNTIを伴うDCIをモニタしてもよい。 Here, as described above, the UE 200 (communication processing unit 233) uses the C-RNTI, the MCS-C-RNTI, and/or the DCI with the CS-RNTI (that is, the DCI used for PDSCH scheduling, and/or , PDCCH (DCI used for PUSCH scheduling) may be performed in the UE-specific DL BWP. That is, the UE 200 (communication processing unit 233) uses the C-RNTI, MCS-C-RNTI, and/or CS- in the SSS (USS and/or CSS) configured for the UE-specific DL BWP. DCI with RNTI may be monitored.
 UE200(通信処理部233)は、C-RNTI、MCS-C-RNTI、及び/又は、CS-RNTIを伴うDCIによってスケジュールされたPDSCHにおける受信を、UE固有のDL BWPにおいて設定されたDL周波数帯域において実行してもよい。また、UE200(通信処理部233)は、C-RNTI、MCS-C-RNTI、及び/又は、CS-RNTIを伴うDCIによってスケジュールされたPUSCHにおける送信を、UE固有のUL BWPにおいて設定されたUL周波数帯域において実行してもよい。 The UE 200 (communication processing unit 233) performs reception on the PDSCH scheduled by the DCI with C-RNTI, MCS-C-RNTI, and/or CS-RNTI using the DL frequency band set in the UE-specific DL BWP. It may be executed in In addition, the UE 200 (communication processing unit 233) transmits transmission on the PUSCH scheduled by the DCI with the C-RNTI, MCS-C-RNTI, and/or CS-RNTI using the UL configured in the UE-specific UL BWP. It may also be performed in a frequency band.
 例えば、C-RNTI、MCS-C-RNTI、及び/又は、CS-RNTIを伴う、PDSCHのスケジューリングに用いられるDCIは、周波数領域におけるリソース割り当て(Frequency domain resource assignment)を示す情報を含んでもよい。当該周波数領域におけるリソース割り当てを示す情報は、周波数領域におけるリソース割り当てを示すフィールドとも呼ばれる。例えば、当該周波数領域におけるリソース割り当てを示す情報は、PDSCHのリソース割り当てを示す。ここで、当該周波数領域におけるリソース割り当てを示す情報のビット数は、Active DL BWPのサイズ(すなわち、Active DL BWPのリソースブロックの数、Active DL BWPの帯域幅とも呼ばれる)に基づいて決定されてもよい。リソースブロックは、物理リソースブロックとも呼ばれる。すなわち、UE200(通信処理部233)は、当該周波数領域におけるリソース割り当てを示す情報のビット数を、Active DL BWPのサイズに基づいて決定してもよい。ここで、上述のとおり、Active DL BWP(すなわち、初期DL BWP、及び/又は、UE固有のDL BWP)のサイズは、Active DL BWPの位置および帯域幅を示すパラメータ、及び/又は、Active DL BWPのサブキャリア間隔を示すパラメータに基づいて決定されてもよい。 For example, DCI used for PDSCH scheduling with C-RNTI, MCS-C-RNTI, and/or CS-RNTI may include information indicating frequency domain resource assignment. The information indicating resource allocation in the frequency domain is also called a field indicating resource allocation in the frequency domain. For example, the information indicating resource allocation in the frequency domain indicates PDSCH resource allocation. Here, the number of bits of information indicating resource allocation in the frequency domain may be determined based on the size of the Active DL BWP (i.e., the number of resource blocks of the Active DL BWP, also referred to as the bandwidth of the Active DL BWP). good. A resource block is also called a physical resource block. That is, the UE 200 (communication processing unit 233) may determine the number of bits of information indicating resource allocation in the frequency domain based on the size of the Active DL BWP. Here, as described above, the size of the Active DL BWP (that is, the initial DL BWP and/or the UE-specific DL BWP) is determined by the parameters indicating the position and bandwidth of the Active DL BWP, and/or the Active DL BWP. may be determined based on a parameter indicating the subcarrier spacing.
 ここで、C-RNTI、MCS-C-RNTI、及び/又は、CS-RNTIを伴う、PDSCHのスケジューリングに用いられるDCIに含まれる周波数領域におけるリソース割り当てを示す情報のビット数は、DL周波数帯域のサイズ(すなわち、DL周波数帯域のリソースブロックの数、DL周波数帯域の帯域幅とも呼ばれる)に基づいて決定されてもよい。すなわち、UE200(通信処理部233)は、当該周波数領域におけるリソース割り当てを示す情報のビット数を、DL周波数帯域のサイズに基づいて決定してもよい。例えば、DL周波数帯域のサイズは、DL周波数帯域の位置および帯域幅を示すパラメータ、及び/又は、DL周波数帯域のサブキャリア間隔を示すパラメータに基づいて決定されてもよい。 Here, the number of bits of information indicating resource allocation in the frequency domain included in the DCI used for PDSCH scheduling with C-RNTI, MCS-C-RNTI, and/or CS-RNTI is It may be determined based on the size (i.e., the number of resource blocks in the DL frequency band, also referred to as the bandwidth of the DL frequency band). That is, the UE 200 (communication processing unit 233) may determine the number of bits of information indicating resource allocation in the frequency domain based on the size of the DL frequency band. For example, the size of the DL frequency band may be determined based on parameters indicating the position and bandwidth of the DL frequency band and/or parameters indicating the subcarrier spacing of the DL frequency band.
 例えば、UE200(通信処理部233)は、DL周波数帯域が設定されていない場合には、PDSCHのスケジューリングに用いられるDCIに含まれる周波数領域におけるリソース割り当てを示す情報のビット数を、Active DL BWPのサイズに基づいて決定してもよい。また、UE200(通信処理部233)は、DL周波数帯域が設定されている場合には、当該周波数領域におけるリソース割り当てを示す情報のビット数を、DL周波数帯域のサイズに基づいて決定してもよい。すなわち、UE200(通信処理部233)は、DL周波数帯域が設定されているかどうかに従って、当該周波数領域におけるリソース割り当てを示す情報のビット数を、Active DL BWPのサイズに基づいて決定するか、DL周波数帯域のサイズに基づいて決定するかを特定してもよい。 For example, when the DL frequency band is not set, the UE 200 (communication processing unit 233) sets the number of bits of information indicating resource allocation in the frequency domain included in the DCI used for PDSCH scheduling to the Active DL BWP. It may also be determined based on size. Furthermore, when a DL frequency band is set, the UE 200 (communication processing unit 233) may determine the number of bits of information indicating resource allocation in the frequency band based on the size of the DL frequency band. . That is, depending on whether a DL frequency band is set, the UE 200 (communication processing unit 233) determines the number of bits of information indicating resource allocation in the frequency domain based on the size of Active DL BWP, or determines the number of bits of information indicating resource allocation in the frequency domain based on the size of Active DL BWP, or It may also be specified whether the decision is made based on the size of the band.
 ここで、SI-RNTI、RA-RNTI、および/または、CS-RNTIを伴う、PDSCHのスケジューリングに用いられるDCIに含まれる周波数領域におけるリソース割り当て(すなわち、PDSCHのリソース割り当て)を示す情報のビット数は、CORESET#0のサイズ(すなわち、CORESET#0のリソースブロックの数、CORESET#0の帯域幅とも呼ばれる)に基づいて決定されてもよい。また、SI-RNTI、RA-RNTI、および/または、CS-RNTIを伴う、PDSCHのスケジューリングに用いられるDCIに含まれる周波数領域におけるリソース割り当てを示す情報のビット数は、Active DL BWPのサイズに基づいて決定されてもよい。また、SI-RNTI、RA-RNTI、および/または、CS-RNTIを伴う、PDSCHのスケジューリングに用いられるDCIに含まれる周波数領域におけるリソース割り当てを示す情報のビット数は、DL周波数帯域のサイズに基づいて決定されてもよい。 Here, the number of bits of information indicating resource allocation in the frequency domain (i.e., PDSCH resource allocation) included in the DCI used for PDSCH scheduling with SI-RNTI, RA-RNTI, and/or CS-RNTI may be determined based on the size of CORESET #0 (that is, the number of resource blocks of CORESET #0, also referred to as the bandwidth of CORESET #0). In addition, the number of bits of information indicating resource allocation in the frequency domain included in the DCI used for PDSCH scheduling with SI-RNTI, RA-RNTI, and/or CS-RNTI is based on the size of Active DL BWP. may also be determined. Furthermore, the number of bits of information indicating resource allocation in the frequency domain included in the DCI used for PDSCH scheduling with SI-RNTI, RA-RNTI, and/or CS-RNTI is based on the size of the DL frequency band. may also be determined.
 すなわち、UE200(通信処理部233)は、上記DL周波数帯域において、SI-RNTI、RA-RNTI、及び/又は、P-RNTIを伴うDCIを用いてスケジュールされたPDSCHにおける受信を、DL BWPにおいて設定されたDL周波数帯域において実行してもよい。上述のとおり、UE200(通信処理部233)は、SI-RNTI、RA-RNTI、及び/又は、P-RNTIを伴うDCIのためのPDCCHに対するモニタリングを、DL BWPにおいて実行してもよい。 That is, the UE 200 (communication processing unit 233) configures reception on the PDSCH scheduled using DCI with SI-RNTI, RA-RNTI, and/or P-RNTI in the DL BWP in the above-mentioned DL frequency band. It may also be performed in the DL frequency band specified. As described above, the UE 200 (communication processing unit 233) may perform monitoring of PDCCH for DCI with SI-RNTI, RA-RNTI, and/or P-RNTI in DL BWP.
 また、C-RNTI、MCS-C-RNTI、及び/又は、CS-RNTIを伴う、PUSCHのスケジューリングに用いられるDCIは、周波数領域におけるリソース割り当てを示す情報を含んでもよい。例えば、当該周波数領域におけるリソース割り当てを示す情報は、PUSCHのリソース割り当てを示す。ここで、当該周波数領域におけるリソース割り当てを示す情報のビット数は、Active UL BWPのサイズ(すなわち、Active UL BWPのリソースブロックの数、Active UL BWPの帯域幅とも呼ばれる)に基づいて決定されてもよい。すなわち、UE200(通信処理部233)は、当該周波数領域におけるリソース割り当てを示す情報のビット数を、Active UL BWPのサイズに基づいて決定してもよい。ここで、上述のとおり、Active UL BWPのサイズは、Active UL BWPの位置および帯域幅を示すパラメータ、および/または、Active UL BWPのサブキャリア間隔を示すパラメータに基づいて決定されてもよい。 Further, the DCI used for PUSCH scheduling with the C-RNTI, MCS-C-RNTI, and/or CS-RNTI may include information indicating resource allocation in the frequency domain. For example, the information indicating resource allocation in the frequency domain indicates resource allocation for PUSCH. Here, the number of bits of information indicating resource allocation in the frequency domain may be determined based on the size of the Active UL BWP (that is, the number of resource blocks of the Active UL BWP, also referred to as the bandwidth of the Active UL BWP). good. That is, the UE 200 (communication processing unit 233) may determine the number of bits of information indicating resource allocation in the frequency domain based on the size of the Active UL BWP. Here, as described above, the size of the Active UL BWP may be determined based on parameters indicating the position and bandwidth of the Active UL BWP and/or parameters indicating the subcarrier interval of the Active UL BWP.
 ここで、C-RNTI、MCS-C-RNTI、及び/又は、CS-RNTIを伴う、PUSCHのスケジューリングに用いられるDCIに含まれる周波数領域におけるリソース割り当てを示す情報のビット数は、UL周波数帯域のサイズ(すなわち、UL周波数帯域のリソースブロックの数)に基づいて決定されてもよい。すなわち、UE200(通信処理部233)は、当該周波数領域におけるリソース割り当てを示す情報のビット数を、UL周波数帯域のサイズに基づいて決定してもよい。例えば、UL周波数帯域のサイズは、UL周波数帯域の位置および帯域幅を示すパラメータ、および/または、UL周波数帯域のサブキャリア間隔を示すパラメータに基づいて決定されてもよい。 Here, the number of bits of information indicating resource allocation in the frequency domain included in the DCI used for PUSCH scheduling with C-RNTI, MCS-C-RNTI, and/or CS-RNTI is It may be determined based on the size (i.e., the number of resource blocks in the UL frequency band). That is, the UE 200 (communication processing unit 233) may determine the number of bits of information indicating resource allocation in the frequency domain based on the size of the UL frequency band. For example, the size of the UL frequency band may be determined based on parameters indicating the location and bandwidth of the UL frequency band and/or parameters indicating the subcarrier spacing of the UL frequency band.
 例えば、UE200(通信処理部233)は、UL周波数帯域が設定されていない場合には、PUSCHのスケジューリングに用いられるDCIに含まれる周波数領域におけるリソース割り当てを示す情報のビット数をActive UL BWPのサイズに基づいて決定してもよい。また、UE200(通信処理部233)は、UL周波数帯域が設定されている場合には、当該周波数領域におけるリソース割り当てを示す情報のビット数をUL周波数帯域のサイズに基づいて決定してもよい。すなわち、UE200(通信処理部233)は、UL周波数帯域が設定されているかどうかに従って、当該周波数領域におけるリソース割り当てを示す情報のビット数を、Active UL BWPのサイズに基づいて決定するか、UL周波数帯域のサイズに基づいて決定するかを特定してもよい。  For example, if the UL frequency band is not set, the UE 200 (communication processing unit 233) sets the number of bits of information indicating resource allocation in the frequency domain included in the DCI used for PUSCH scheduling to the size of the Active UL BWP. may be determined based on. Furthermore, when a UL frequency band is set, the UE 200 (communication processing unit 233) may determine the number of bits of information indicating resource allocation in the frequency band based on the size of the UL frequency band. That is, depending on whether a UL frequency band is set, the UE 200 (communication processing unit 233) determines the number of bits of information indicating resource allocation in the frequency domain based on the size of the Active UL BWP, or It may also be specified whether the decision is made based on the size of the band. 
 これにより、例えば、低いピークデータレートでの物理共有チャネルの受信または送信が可能になる。 This allows for example physical shared channel reception or transmission at low peak data rates.
  --BWPでの受信
 例えば、上記BWPは、SI-RNTI(system information radio network temporary identifier)、P-RNTI(paging radio network temporary identifier)、及び/又は、RA-RNTIを伴うDCIを用いてスケジューリングされるPDSCHの受信のためにUE200によりさらに使用されるBWPである。すなわち、上記BWPに含まれる上記DL BWPは、SI-RNTI、P-RNTI、及び/又は、RA-RNTIを伴うDCIを用いてスケジューリングされる当該PDSCHの受信のためにUE200により使用されるDL周波数帯域である。
--Reception in BWP For example, the above BWP is scheduled using DCI with SI-RNTI (system information radio network temporary identifier), P-RNTI (paging radio network temporary identifier), and/or RA-RNTI. This is the BWP that is further used by the UE 200 for receiving the PDSCH. That is, the DL BWP included in the BWP is the DL frequency used by the UE 200 to receive the PDSCH scheduled using DCI with SI-RNTI, P-RNTI, and/or RA-RNTI. Bandwidth.
 例えば、UE200(通信処理部233)は、上記BWPを使用して、SI-RNTI、P-RNTI、及び/又は、RA-RNTIを伴うDCIを用いてスケジューリングされるPDSCHを受信する。すなわち、UE200(通信処理部233)は、上記BWPに含まれる上記DL BWPを使用して、SI-RNTI、P-RNTI、及び/又は、RA-RNTIを伴うDCIを用いてスケジューリングされる当該PDSCHを受信する。 For example, the UE 200 (communication processing unit 233) uses the above BWP to receive a PDSCH scheduled using SI-RNTI, P-RNTI, and/or DCI with RA-RNTI. That is, the UE 200 (communication processing unit 233) uses the DL BWP included in the BWP to determine the PDSCH scheduled using the SI-RNTI, P-RNTI, and/or DCI with RA-RNTI. receive.
 換言すると、上記DL BWPは、SIBおよびページングメッセージの受信のためにUE200によりさらに使用されるDL BWPである。UE200(通信処理部233)は、上記DL BWPを使用して、SIBおよびページングメッセージを受信する。 In other words, the above DL BWP is a DL BWP that is further used by the UE 200 for receiving SIB and paging messages. The UE 200 (communication processing unit 233) receives the SIB and paging message using the DL BWP.
 例えば、UE200(通信処理部233)は、SI-RNTI、P-RNTI、及び/又は、RA-RNTIを伴うDCIを用いてスケジュールされたPDSCHにおける受信を、上記DL BWPにおいて実行してもよい。すなわち、UE200(通信処理部233)は、SI-RNTIを伴うDCIを用いてスケジュールされたPDSCHを用いて、上記DL BWPにおいて、SIB1メッセージを受信してもよい。また、UE200(通信処理部233)は、RA-RNTIを伴うDCIを用いてスケジュールされたPDSCHを用いて、上記DL BWPにおいて、ランダムアクセスレスポンスを受信してもよい。また、UE200(通信処理部233)は、P-RNTIを伴うDCIを用いてスケジュールされたPDSCHを用いて、上記DL BWPにおいて、ページングメッセージを受信してもよい。 For example, the UE 200 (communication processing unit 233) may perform reception on the PDSCH scheduled using DCI with SI-RNTI, P-RNTI, and/or RA-RNTI in the DL BWP. That is, the UE 200 (communication processing unit 233) may receive the SIB1 message in the DL BWP using the PDSCH scheduled using the DCI with SI-RNTI. Further, the UE 200 (communication processing unit 233) may receive a random access response in the above DL BWP using a PDSCH scheduled using a DCI with RA-RNTI. Further, the UE 200 (communication processing unit 233) may receive a paging message in the above DL BWP using a PDSCH scheduled using a DCI with P-RNTI.
 これにより、例えば、SIBおよびページングメッセージの既存の送信手法を変更なしで使用することができる。 This allows, for example, existing transmission techniques for SIB and paging messages to be used without modification.
  --他のRNTI
 他のRNTIを伴うDCIを用いてスケジューリングされる物理共有チャネルも、上記周波数帯域および上記BWPのいずれか一方を使用して受信されまたは送信されてもよい。上記他のRNTIは、RA-RNTI(random access radio network temporary identifier)を含んでもよい。
--Other RNTIs
Physical shared channels scheduled using DCI with other RNTIs may also be received or transmitted using either the frequency band or the BWP. The other RNTI may include RA-RNTI (random access radio network temporary identifier).
  --RNTIを用いてスケジューリングされる物理共有チャネル
 上述の説明において、「RNTIを伴うDCIを用いてスケジューリングされる物理共有チャネル」とは、より具体的には、RNTIによってスクランブルされたCRC(cyclic redundancy check)パリティビットが付加されたDCIを使用してスケジューリングされる物理共有チャネルである。当該DCIは、PDCCH(physical downlink control channel)で送信される。
--Physical shared channel scheduled using RNTI In the above description, "physical shared channel scheduled using DCI with RNTI" refers more specifically to cyclic redundancy (CRC) scrambled by RNTI. check) is a physical shared channel scheduled using DCI with parity bits added. The DCI is transmitted on a PDCCH (physical downlink control channel).
  -物理制御チャネル
  --PDCCH
 例えば、上記BWPは、PDCCHの受信のためにUE200により使用されるBWPである。すなわち、上記BWPに含まれる上記DL BWPは、PDCCHの受信のためにUE200により使用されるDL BWPである。
- Physical control channel --PDCCH
For example, the above BWP is a BWP used by the UE 200 for receiving PDCCH. That is, the DL BWP included in the BWP is the DL BWP used by the UE 200 for receiving the PDCCH.
 例えば、UE200(通信処理部233)は、上記BWPを使用して、PDCCHを受信する。すなわち、UE200(通信処理部233)は、上記BWPに含まれる上記DL BWPを使用して、PDCCHを受信する。 For example, the UE 200 (communication processing unit 233) receives PDCCH using the above BWP. That is, the UE 200 (communication processing unit 233) receives the PDCCH using the DL BWP included in the BWP.
 これにより、例えば、PDCCHの既存の送信手法を変更なしで使用することができる。 This allows, for example, the existing transmission method of PDCCH to be used without modification.
  --PUCCH
 例えば、上記BWPは、PUCCH(physical uplink control channel)の送信のためにUE200により使用されるBWPである。すなわち、上記BWPに含まれる上記UL BWPは、PUCCHの送信のためにUE200により使用されるUL BWPである。
--PUCCH
For example, the above BWP is a BWP used by the UE 200 for transmitting a PUCCH (physical uplink control channel). That is, the UL BWP included in the BWP is the UL BWP used by the UE 200 for transmitting the PUCCH.
 例えば、UE200(通信処理部233)は、上記BWPを使用して、PUCCHを送信する。すなわち、UE200(通信処理部233)は、上記BWPに含まれる上記UL BWPを使用して、PUCCHを送信する。 For example, the UE 200 (communication processing unit 233) uses the above BWP to transmit PUCCH. That is, the UE 200 (communication processing unit 233) transmits the PUCCH using the UL BWP included in the BWP.
 これにより、例えば、PUCCHの既存の送信手法を変更なしで使用することができる。 This allows, for example, the existing transmission method of PUCCH to be used without modification.
  -その他の信号
 物理共有チャネルおよび物理制御チャネル以外の他の信号も、上記周波数帯域および上記BWPのいずれか一方を使用して受信されまたは送信されてもよい。当該他の信号は、PRACH(physical random access channel)、すなわちランダムアクセスプリアンブルを含んでもよい。上記他の信号は、SRS(sounding reference signal)を含んでもよい。
- Other signals Other signals than the physical shared channel and the physical control channel may also be received or transmitted using either the frequency band or the BWP. The other signal may include a PRACH (physical random access channel), ie, a random access preamble. The other signals may include an SRS (sounding reference signal).
 ここで、ランダムアクセス手続きは、コンテンションベースランダムアクセス手続き、及び/又は、コンテンションフリーランダムアクセス手続きを含む。コンテンションフリーランダムアクセス手続きは、ノンコンテンションベースランダムアクセス手続きとも呼ばれる。例えば、コンテンションフリーランダムアクセス手続きは、C-RNTIを伴うDCI(DCI format 1_0)に含まれる周波数リソース割り当てフィールドが、全て1にセットされることによってトリガされてもよい(PDCCHオーダーとも呼ばれる)。また、コンテンションフリーランダムアクセス手続きにおいて、C-RNTIを伴うDCI(DCI format 1_0)に含まれる情報を用いて、ランダムアクセスプリアンブルが指示される(メッセージ0とも呼ばれる)。ここで、C-RNTIを伴うDCI(DCI format 1_0)に含まれる情報を用いて指示されるランダムアクセスプリアンブルは、dedicatedプリアンブルとも呼ばれる。 Here, the random access procedure includes a contention-based random access procedure and/or a contention-free random access procedure. Contention-free random access procedures are also called non-contention-based random access procedures. For example, the contention-free random access procedure may be triggered by the frequency resource allocation field included in the DCI with C-RNTI (DCI format 1_0) being set to all 1 (also referred to as PDCCH order). Furthermore, in the contention-free random access procedure, a random access preamble is indicated (also called message 0) using information included in the DCI (DCI format 1_0) with C-RNTI. Here, the random access preamble instructed using the information included in the DCI (DCI format 1_0) accompanied by the C-RNTI is also called a dedicated preamble.
 ここで、UE200(通信処理部233)は、コンテンションフリーランダムアクセス手続きを、DL周波数帯域、及び/又は、UL周波数帯域において実行してもよい。例えば、UE200(通信処理部233)は、C-RNTIを伴うDCI(PDCCHオーダー)を用いてランダムアクセス手続き(コンテンションフリーランダムアクセス手続き)が指示された場合に、DL BWPにおいて設定されたDL周波数帯域、及び/又は、UL BWPにおいて設定されたUL周波数帯域において、ランダムアクセス手続き(コンテンションフリーランダムアクセス手続き)を実行してもよい。 Here, the UE 200 (communication processing unit 233) may execute the contention-free random access procedure in the DL frequency band and/or the UL frequency band. For example, when a random access procedure (contention-free random access procedure) is instructed using DCI (PDCCH order) with C-RNTI, the UE 200 (communication processing unit 233) uses the DL frequency set in DL BWP. A random access procedure (contention-free random access procedure) may be performed in the band and/or the UL frequency band set in the UL BWP.
 例えば、C-RNTIを伴うDCI(PDCCHオーダー)を用いてランダムアクセス手続き(コンテンションフリーランダムアクセス手続き)が指示された場合、UE200(通信処理部233)は、UL BWPにおいて設定されたUL周波数帯域において、ランダムアクセスプリアンブルを送信してもよい(メッセージ1とも呼ばれる)。また、UE200(通信処理部233)は、DL BWPおいて設定されたDL周波数帯域におけるPDSCHにおいて、ランダムアクセスレスポンスを受信してもよい(メッセージ2とも呼ばれる)。上述のとおり、UE200(通信処理部233)は、C-RNTIを伴うDCI(PDCCHオーダー)のためのPDCCHに対するモニタリングを、UE固有のDL BWPにおいて実行してもよい。すなわち、UE200(通信処理部233)は、UE固有のDL BWPに対して設定されたSSS(USS、及び/又は、CSS)において、C-RNTIを伴うDCI(PDCCHオーダー)をモニタしてもよい。 For example, when a random access procedure (contention-free random access procedure) is instructed using DCI (PDCCH order) with C-RNTI, the UE 200 (communication processing unit 233) uses the UL frequency band set in UL BWP. A random access preamble may be sent (also referred to as message 1). Further, the UE 200 (communication processing unit 233) may receive a random access response (also referred to as message 2) on the PDSCH in the DL frequency band set in the DL BWP. As described above, the UE 200 (communication processing unit 233) may perform monitoring of PDCCH for DCI (PDCCH order) with C-RNTI in the UE-specific DL BWP. That is, the UE 200 (communication processing unit 233) may monitor DCI (PDCCH order) accompanied by C-RNTI in the SSS (USS and/or CSS) configured for the UE-specific DL BWP. .
 また、ランダムアクセス手続き(コンテンションベースランダムアクセス手続き、及び/又は、コンテンションフリーランダムアクセス手続き)において、UE200(通信処理部233)は、上記初期UL BWPにおいて、ランダムアクセスプリアンブルを送信してもよい(メッセージ1とも呼ばれる)。また、上述のとおり、UE200(通信処理部233)は、上記初期DL BWPにおけるPDSCHにおいて、ランダムアクセスレスポンスを受信してもよい(メッセージ2とも呼ばれる)。ここで、UE200(通信処理部233)は、ランダムアクセスレスポンスに含まれるアップリンクグラント(ランダムアクセスレスポンスグラントとも呼ばれる)に基づいて、上記初期UL BWPにおいて、PUSCHにおける送信(UL-SCHの送信)を実行してもよい(メッセージ3とも呼ばれる)。また、UE200(通信処理部233)は、上記初期DL BWPにおいて、上記初期DL BWPにおけるPDSCHにおいて、コンテンションレゾリューションを受信してもよい(メッセージ4とも呼ばれる)。すなわち、UE200(通信処理部233)は、initialDownlinkBWP-RedCap-r17、又は、initialDownlinkBWPに基づいて特定される初期DL BWPにおいて、ランダムアクセス手続きを実行してもよい。また、UE200(通信処理部233)は、initialUplinkBWP-RedCap-r17、又は、initialUplinkBWPに基づいて特定される初期UL BWPにおいて、ランダムアクセス手続きを実行してもよい。すなわち、UE200(通信処理部233)は、C-RNTIを伴うDCI(PDCCHオーダー)を用いてランダムアクセス手続き(コンテンションフリーランダムアクセス手続き)が指示された場合に、初期DL BWP、及び/又は、初期UL BWPにおいて、ランダムアクセス手続き(コンテンションフリーランダムアクセス手続き)を実行してもよい。 Furthermore, in the random access procedure (contention-based random access procedure and/or contention-free random access procedure), the UE 200 (communication processing unit 233) may transmit a random access preamble in the initial UL BWP. (Also called message 1). Furthermore, as described above, the UE 200 (communication processing unit 233) may receive a random access response (also referred to as message 2) on the PDSCH in the initial DL BWP. Here, the UE 200 (communication processing unit 233) performs transmission on the PUSCH (transmission on the UL-SCH) in the above-mentioned initial UL BWP based on the uplink grant (also called random access response grant) included in the random access response. may be executed (also referred to as message 3). Further, the UE 200 (communication processing unit 233) may receive contention resolution (also referred to as message 4) in the PDSCH in the initial DL BWP in the initial DL BWP. That is, the UE 200 (communication processing unit 233) may execute the random access procedure in the initial DL BWP specified based on the initialDownlinkBWP-RedCap-r17 or the initialDownlinkBWP. Further, the UE 200 (communication processing unit 233) may execute a random access procedure in the initial UL BWP specified based on the initialUplinkBWP-RedCap-r17 or the initialUplinkBWP. That is, when the UE 200 (communication processing unit 233) is instructed to perform a random access procedure (contention-free random access procedure) using DCI (PDCCH order) with C-RNTI, the UE 200 (communication processing unit 233) performs initial DL BWP and/or A random access procedure (contention-free random access procedure) may be executed in the initial UL BWP.
 (2-6)サーチスペース
 例えば、上記RRCメッセージは、上記BWPのための複数のタイプのサーチスペースを示す情報をさらに含む。
(2-6) Search Space For example, the RRC message further includes information indicating multiple types of search spaces for the BWP.
 例えば、上記複数のタイプのサーチスペースのうちの少なくとも1つのサーチスペースは、上記周波数帯域内の物理共有チャネルをスケジューリングするのに使用されるDCIの受信のためにUE200によりモニタされるサーチスペースである。 For example, at least one search space of the plurality of types of search spaces is a search space that is monitored by the UE 200 for reception of a DCI used to schedule a physical shared channel within the frequency band. .
 一例として、上記少なくとも1つのサーチスペースは、USS(UE-specific search space)を含む。USSは、C-RNTI、MCS-C-RNTIまたはCS-RNTIによってスクランブルされたCRCパリティビットをもつDCIの受信のためにUE200によりモニタされるサーチスペースである。 As an example, the at least one search space includes a USS (UE-specific search space). USS is a search space monitored by UE 200 for reception of DCI with CRC parity bits scrambled by C-RNTI, MCS-C-RNTI or CS-RNTI.
 一方、例えば、上記複数のタイプのサーチスペースのうちの他のサーチスペースは、他のDCIの受信のためにUE200によりモニタされるサーチスペースである。 On the other hand, for example, other search spaces among the plurality of types of search spaces are search spaces monitored by the UE 200 for reception of other DCIs.
 一例として、上記他のサーチスペースは、Type0-PDCCH CSS(common search space)、Type0A-PDCCH CSSおよびType2-PDCCH CSSを含む。Type0-PDCCH CSSおよびType0A-PDCCH CSSは、SI-RNTIによってスクランブルされたCRCパリティビットをもつDCIの受信のためにUE200によりモニタされるサーチスペースである。Type2-PDCCH CSSは、P-RNTIによってスクランブルされたCRCパリティビットをもつDCIの受信のためにUE200によりモニタされるサーチスペースである。 As an example, the other search spaces include Type0-PDCCH CSS (common search space), Type0A-PDCCH CSS, and Type2-PDCCH CSS. Type0-PDCCH CSS and Type0A-PDCCH CSS are search spaces monitored by UE 200 for reception of DCI with CRC parity bits scrambled by SI-RNTI. Type 2-PDCCH CSS is a search space monitored by UE 200 for reception of DCI with CRC parity bits scrambled by P-RNTI.
 Type1-PDCCH CSSおよびType3-PDCCH CSSの各々も、上記少なくとも1つのサーチスペースまたは上記他のサーチスペースに含まれてもよい。また、Type0B-PDCCH CSS、Type1A-PDCCH CSSおよびType2A-PDCCH CSSの各々も、上記少なくとも1つのサーチスペースまたは上記他のサーチスペースに含まれてもよい。 Each of the Type 1-PDCCH CSS and the Type 3-PDCCH CSS may also be included in the at least one search space or the other search space. Furthermore, each of the Type0B-PDCCH CSS, Type1A-PDCCH CSS, and Type2A-PDCCH CSS may also be included in the at least one search space or the other search space.
 (3)第1の情報
 上述したように、例えば、上記BWPは、UE200により使用されるDL BWPと、UE200により使用されるUL BWPを含む。例えば、上記第1の情報は、上記DL BWPを示す第1の情報要素と、上記UL BWPを示す第2の情報要素とを含む。
(3) First information As described above, for example, the BWP includes DL BWP used by UE 200 and UL BWP used by UE 200. For example, the first information includes a first information element indicating the DL BWP and a second information element indicating the UL BWP.
 例えば、上記第1の情報は、上記BWPの位置および帯域幅を示すパラメータと、上記BWPのサブキャリア間隔を示すパラメータと、上記BWPのサイクリックプレフィクスを示すパラメータとを含む。 For example, the first information includes a parameter indicating the location and bandwidth of the BWP, a parameter indicating a subcarrier interval of the BWP, and a parameter indicating a cyclic prefix of the BWP.
 例えば、上記RRCメッセージは、UE200により使用される2つ以上のBWPの各々について、上記第1の情報を含む。 For example, the RRC message includes the first information for each of the two or more BWPs used by the UE 200.
 図8を参照すると、例えば、上記第1の情報要素は、ServingCellConfig内のdownlinkBWP-ToAddModListに含まれるBWP-Downlinkである。downlinkBWP-ToAddModListは、UE200により使用される2つ以上のDL BWPの各々について、BWP-Downlinkを含む。BWP-Downlinkは、genericparametersとして、上記DL BWPの位置および帯域幅を示すlocationAndBandwidthと、上記DL BWPのサブキャリア間隔を示すsubcarrierSpacingと、上記DL BWPのサイクリックプレフィクスを示すcyclicPrefixとを含む。 Referring to FIG. 8, for example, the first information element is BWP-Downlink included in downlinkBWP-ToAddModList in ServingCellConfig. downlinkBWP-ToAddModList includes BWP-Downlink for each of two or more DL BWPs used by UE 200. BWP-Downlink includes, as generic parameters, locationAndBandwidth indicating the location and bandwidth of the DL BWP, subcarrierSpacing indicating the subcarrier spacing of the DL BWP, and c indicating the cyclic prefix of the DL BWP. yclicPrefix.
 図9を参照すると、例えば、上記第2の情報要素は、UplinkConfig内のuplinkBWP-ToAddModListに含まれるBWP-Uplinkである。uplinkBWP-ToAddModListは、UE200により使用される2つ以上のUL BWPの各々について、BWP-Uplinkを含む。BWP-Uplinkは、genericparametersとして、上記UL BWPの位置および帯域幅を示すlocationAndBandwidthと、上記UL BWPのサブキャリア間隔を示すsubcarrierSpacingと、上記UL BWPのサイクリックプレフィクスを示すcyclicPrefixとを含む。 Referring to FIG. 9, for example, the second information element is BWP-Uplink included in uplinkBWP-ToAddModList in UplinkConfig. uplinkBWP-ToAddModList includes BWP-Uplink for each of two or more UL BWPs used by UE 200. BWP-Uplink includes, as generic parameters, locationAndBandwidth indicating the location and bandwidth of the UL BWP, subcarrierSpacing indicating the subcarrier spacing of the UL BWP, and cyc indicating the cyclic prefix of the UL BWP. licPrefix.
 (4)第2の情報
 上述したように、例えば、上記周波数帯域は、上記DL BWP内に設定されるDL周波数帯域であって、UE200により使用される当該DL周波数帯域と、上記UL BWP内に設定されるUL周波数帯域であって、UE200により使用される当該UL周波数帯域とを含む。例えば、上記第2の情報は、上記DL周波数帯域を示す第3の情報要素と、上記UL周波数帯域を示す第4の情報要素とを含む。
(4) Second information As described above, for example, the frequency band is a DL frequency band set within the DL BWP, and the DL frequency band used by the UE 200 and the DL frequency band set within the UL BWP are The UL frequency band to be set includes the UL frequency band used by the UE 200. For example, the second information includes a third information element indicating the DL frequency band and a fourth information element indicating the UL frequency band.
 例えば、上記第2の情報は、上記第1の情報に含まれる。より具体的には、例えば、上記第2の情報に含まれる上記第3の情報要素は、上記第1の情報に含まれる上記第1の情報要素に含まれ、上記第2の情報に含まれる上記第4の情報要素は、上記第1の情報に含まれる上記第2の情報要素に含まれる。 For example, the second information is included in the first information. More specifically, for example, the third information element included in the second information is included in the first information element included in the first information, and is included in the second information. The fourth information element is included in the second information element included in the first information.
 例えば、上記第2の情報は、上記周波数帯域の位置および帯域幅を示すパラメータを含む。より具体的には、例えば、上記第2の情報に含まれる上記第3の情報要素は、上記DL周波数帯域の位置および帯域幅を示すパラメータを含み、上記第2の情報に含まれる上記第4の情報要素は、上記UL周波数帯域の位置および帯域幅を示すパラメータを含む。 For example, the second information includes parameters indicating the position and bandwidth of the frequency band. More specifically, for example, the third information element included in the second information includes a parameter indicating the position and bandwidth of the DL frequency band, and the fourth information element included in the second information includes a parameter indicating the position and bandwidth of the DL frequency band. The information element includes parameters indicating the location and bandwidth of the UL frequency band.
 図10を参照すると、例えば、上記第1の情報要素は、ServingCellConfig内のdownlinkBWP-ToAddModListに含まれるBWP-Downlinkであり、上記第3の情報要素は、当該BWP-Downlinkに含まれるDownlinkBWP-RedCap-r18である。DownlinkBWP-RedCap-r18は、上記DL周波数帯域の位置および帯域幅を示すlocationAndBandwidthである。 Referring to FIG. 10, for example, the first information element is BWP-Downlink included in the downlinkBWP-ToAddModList in ServingCellConfig, and the third information element is the DownlinkBWP-RedCap- included in the BWP-Downlink. It is r18. DownlinkBWP-RedCap-r18 is locationAndBandwidth indicating the position and bandwidth of the DL frequency band.
 図11を参照すると、例えば、上記第2の情報要素は、UplinkConfig内のuplinkBWP-ToAddModListに含まれるBWP-Uplinkであり、
上記第3の情報要素は、当該BWP-Uplinkに含まれるUplinkBWP-RedCap-r18である。UplinkBWP-RedCap-r18は、上記UL周波数帯域の位置および帯域幅を示すlocationAndBandwidthである。
Referring to FIG. 11, for example, the second information element is BWP-Uplink included in uplinkBWP-ToAddModList in UplinkConfig,
The third information element is UplinkBWP-RedCap-r18 included in the BWP-Uplink. UplinkBWP-RedCap-r18 is locationAndBandwidth indicating the position and bandwidth of the UL frequency band.
 例えば、上記第2の情報は、上記周波数帯域のサブキャリア間隔を示すパラメータと、上記周波数帯域のサイクリックプレフィクスを示すパラメータとを含まない。 For example, the second information does not include a parameter indicating the subcarrier interval of the frequency band and a parameter indicating the cyclic prefix of the frequency band.
 (5)サブキャリア間隔とサイクリックプレフィクス
 上述のとおり、例えば、上記周波数帯域のサブキャリア間隔は、上記BWPのサブキャリア間隔と同じである。すなわち、上記DL周波数帯域のサブキャリア間隔は、上記DL BWPのサブキャリア間隔と同じであり、上記UL周波数帯域のサブキャリア間隔は、上記UL BWPのサブキャリア間隔と同じである。
(5) Subcarrier spacing and cyclic prefix As described above, for example, the subcarrier spacing of the frequency band is the same as the subcarrier spacing of the BWP. That is, the subcarrier spacing of the DL frequency band is the same as the subcarrier spacing of the DL BWP, and the subcarrier spacing of the UL frequency band is the same as the subcarrier spacing of the UL BWP.
 また、例えば、上記周波数帯域のサイクリックプレフィクスは、上記BWPのサイクリックプレフィクスと同じである。すなわち、上記DL周波数帯域のサイクリックプレフィクスは、上記DL BWPのサイクリックプレフィクスと同じであり、上記UL周波数帯域のサイクリックプレフィクスは、上記UL BWPのサイクリックプレフィクスと同じである。 Also, for example, the cyclic prefix of the frequency band is the same as the cyclic prefix of the BWP. That is, the cyclic prefix of the DL frequency band is the same as the cyclic prefix of the DL BWP, and the cyclic prefix of the UL frequency band is the same as the cyclic prefix of the UL BWP.
 そのため、UE200は、上記第1の情報の中の上記第1の情報要素に含まれるsubcarrierSpacingおよびcyclicPrefixを、上記DL BWPのサブキャリア間隔およびサイクリックプレフィクスとしてだけではなく、上記DL周波数帯域のサブキャリア間隔およびサイクリックプレフィクスとしても使用してもよい。また、UE200は、上記第1の情報の中の上記第2の情報要素に含まれるsubcarrierSpacingおよびcyclicPrefixを、上記UL BWPのサブキャリア間隔およびサイクリックプレフィクスとしてだけではなく、上記UL周波数帯域のサブキャリア間隔およびサイクリックプレフィクスとしても使用してもよい。 Therefore, the UE 200 uses subcarrier Spacing and cyclicPrefix included in the first information element in the first information not only as the subcarrier spacing and cyclic prefix of the DL BWP, but also as the subcarrier spacing and cyclic prefix of the DL frequency band. May also be used as carrier spacing and cyclic prefix. Further, the UE 200 uses the subcarrier Spacing and cyclicPrefix included in the second information element in the first information not only as the subcarrier spacing and cyclic prefix of the UL BWP, but also as the subcarrier spacing and cyclic prefix of the UL frequency band. May also be used as carrier spacing and cyclic prefix.
 なお、上記BWPの上記サブキャリア間隔とは、上記BWP内で使用されるサブキャリア間隔であり、上記周波数帯域の上記サブキャリア間隔とは、上記周波数帯域内で使用されるサブキャリア間隔である。また、上記BWPの上記サイクリックプレフィクスとは、上記BWP内で使用されるサイクリックプレフィクスであり、上記周波数帯域の上記サイクリックプレフィクスとは、上記周波数帯域内で使用されるサイクリックプレフィクスである。 Note that the subcarrier spacing of the BWP is the subcarrier spacing used within the BWP, and the subcarrier spacing of the frequency band is the subcarrier spacing used within the frequency band. Further, the cyclic prefix of the BWP is a cyclic prefix used within the BWP, and the cyclic prefix of the frequency band is a cyclic prefix used within the frequency band. It's a fix.
 (6)処理の流れ
 図12を参照して、本開示の実施形態に係る処理の例を説明する。
(6) Process Flow An example of the process according to the embodiment of the present disclosure will be described with reference to FIG. 12.
 基地局100(情報取得部141)は、RRCメッセージを取得する(S410)。当該RRCメッセージは、UE200により使用されるBWPを示す第1の情報と、当該BWP内に設定される周波数帯域であって、UE200により使用される当該周波数帯域を示す第2の情報とを含む。例えば、当該RRCメッセージは、RRC Reconfigurationメッセージである。 The base station 100 (information acquisition unit 141) acquires the RRC message (S410). The RRC message includes first information indicating the BWP used by the UE 200 and second information indicating the frequency band set within the BWP and used by the UE 200. For example, the RRC message is an RRC Reconfiguration message.
 基地局100(通信処理部143)は、上記RRCメッセージをUE200へ送信する(S420)。UE200(通信処理部233)は、基地局100により送信される上記RRCメッセージを受信する。 The base station 100 (communication processing unit 143) transmits the above RRC message to the UE 200 (S420). The UE 200 (communication processing unit 233) receives the RRC message transmitted by the base station 100.
 UE200(情報取得部231)は、上記RRCメッセージに含まれる上記第1の情報および上記第2の情報を取得する(S430)。 The UE 200 (information acquisition unit 231) acquires the first information and the second information included in the RRC message (S430).
 なお、UE200(通信処理部233)は、上記BWPおよび上記周波数帯域を設定され、例えば、上記BWPおよび上記周波数帯域を使用して基地局100と通信する。 Note that the UE 200 (communication processing unit 233) is set with the above BWP and the above frequency band, and communicates with the base station 100 using the above BWP and the above frequency band, for example.
 <5.変形例>
 図13~図23を参照して、本開示の実施形態に係る第1~第9の変形例を説明する。なお、第1~第9の変形例のうちの2つ以上の変形例が組み合わせされてもよい。
<5. Modified example>
First to ninth modifications according to the embodiment of the present disclosure will be described with reference to FIGS. 13 to 23. Note that two or more of the first to ninth modifications may be combined.
 (1)第1の変形例:第2の情報
 本開示の実施形態の上述した例では、上記第2の情報は、上記周波数帯域の位置および帯域幅を示すパラメータを含むが、上記周波数帯域のサブキャリア間隔を示すパラメータと、上記周波数帯域のサイクリックプレフィクスを示すパラメータとを含まない。しかしながら、本開示の実施形態に係る第2の情報は、この例に限定されない。
(1) First modification: Second information In the above-described example of the embodiment of the present disclosure, the second information includes parameters indicating the position and bandwidth of the frequency band. It does not include a parameter indicating the subcarrier interval and a parameter indicating the cyclic prefix of the frequency band. However, the second information according to the embodiment of the present disclosure is not limited to this example.
 第1の変形例として、上記第2の情報は、上記周波数帯域のサブキャリア間隔を示すパラメータと、上記周波数帯域のサイクリックプレフィクスを示すパラメータとをさらに含んでもよい。 As a first modification, the second information may further include a parameter indicating a subcarrier interval of the frequency band and a parameter indicating a cyclic prefix of the frequency band.
 例えば、上記第2の情報に含まれる上記第3の情報要素であるDownlinkBWP-RedCap-r18は、上記DL周波数帯域の位置および帯域幅を示すlocationAndBandwidthだけではなく、上記DL周波数帯域のサブキャリア間隔を示すsubcarrierSpacingと、上記DL周波数帯域のサイクリックプレフィクスを示すcyclicPrefixとを含んでもよい。この場合に、DownlinkBWP-RedCap-r18は、locationAndBandwidth、subcarrierSpacingおよびcyclicPrefixを含むBWPという情報要素であってもよい。 For example, the third information element DownlinkBWP-RedCap-r18 included in the second information includes not only locationAndBandwidth indicating the position and bandwidth of the DL frequency band, but also the subcarrier interval of the DL frequency band. and cyclicPrefix indicating the cyclic prefix of the DL frequency band. In this case, DownlinkBWP-RedCap-r18 may be an information element called BWP including locationAndBandwidth, subcarrierSpacing, and cyclicPrefix.
 例えば、上記第2の情報に含まれる上記第4の情報要素であるUplinkBWP-RedCap-r18は、上記UL周波数帯域の位置および帯域幅を示すlocationAndBandwidthだけではなく、上記UL周波数帯域のサブキャリア間隔を示すsubcarrierSpacingと、上記UL周波数帯域のサイクリックプレフィクスを示すcyclicPrefixとを含んでもよい。この場合に、UplinkBWP-RedCap-r18は、locationAndBandwidth、subcarrierSpacingおよびcyclicPrefixを含むBWPという情報要素であってもよい。 For example, the fourth information element UplinkBWP-RedCap-r18 included in the second information includes not only locationAndBandwidth indicating the position and bandwidth of the UL frequency band, but also the subcarrier spacing of the UL frequency band. and cyclicPrefix indicating the cyclic prefix of the UL frequency band. In this case, UplinkBWP-RedCap-r18 may be an information element called BWP including locationAndBandwidth, subcarrierSpacing, and cyclicPrefix.
 本開示の実施形態の例として上述したように、上記周波数帯域の上記サブキャリア間隔は、上記BWPの上記サブキャリア間隔と同じであってもよく、上記周波数帯域の上記サイクリックプレフィクスは、上記BWPの上記サイクリックプレフィクスと同じであってもよい。この場合に、基地局100は、上記第3の情報要素に含まれるsubcarrierSpacingの値およびcyclicPrefixの値を、上記第1の情報要素に含まれるsubcarrierSpacingの値およびcyclicPrefixの値と同じになるように設定してもよい。また、基地局100は、上記第4の情報要素に含まれるsubcarrierSpacingの値およびcyclicPrefixの値を、上記第2の情報要素に含まれるsubcarrierSpacing値およびcyclicPrefixの値と同じになるように設定してもよい。 As mentioned above as an example of an embodiment of the present disclosure, the subcarrier spacing of the frequency band may be the same as the subcarrier spacing of the BWP, and the cyclic prefix of the frequency band may be the same as the subcarrier spacing of the frequency band. It may be the same as the above cyclic prefix of BWP. In this case, the base station 100 sets the value of subcarrierSpacing and the value of cyclicPrefix included in the third information element to be the same as the value of subcarrierSpacing and cyclicPrefix included in the first information element. You may. Furthermore, the base station 100 may set the value of subcarrierSpacing and the value of cyclicPrefix included in the fourth information element to be the same as the value of subcarrierSpacing and cyclicPrefix included in the second information element. good.
 (2)第2の変形例:第2の情報
 本開示の実施形態の上述した例では、上記第2の情報は、上記周波数帯域の位置および帯域幅を示すパラメータを含む。しかしながら、本開示の実施形態に係る第2の情報は、この例に限定されない。
(2) Second Modification: Second Information In the above-described example of the embodiment of the present disclosure, the second information includes a parameter indicating the position and bandwidth of the frequency band. However, the second information according to the embodiment of the present disclosure is not limited to this example.
 第2の変形例として、上記第2の情報は、上記BWPの開始位置に対する上記周波数帯域の開始位置のオフセットと、上記周波数帯域の帯域幅とを示してもよい。 As a second modification, the second information may indicate an offset of the start position of the frequency band with respect to the start position of the BWP, and a bandwidth of the frequency band.
 上記第2の情報は、上記オフセットに含まれるリソースブロック(resource block:RB)の数により上記オフセットを示し、上記周波数帯域に含まれるRBの数により上記周波数帯域の上記帯域幅を示してもよい。RBの幅はサブキャリア間隔に依存するので、上記オフセットと、上記周波数帯域の上記帯域幅は、上記周波数帯域のサブキャリア間隔に依存してもよい。この点については後に具体例を説明する。 The second information may indicate the offset by the number of resource blocks (RB) included in the offset, and may indicate the bandwidth of the frequency band by the number of RBs included in the frequency band. . Since the width of an RB depends on the subcarrier spacing, the offset and the bandwidth of the frequency band may depend on the subcarrier spacing of the frequency band. A specific example regarding this point will be explained later.
 上記第2の情報に含まれる上記第3の情報要素は、上記DL BWPの開始位置に対する上記DL周波数帯域の開始位置のオフセットと、上記DL周波数帯域の帯域幅とを示してもよい。上記第2の情報に含まれる上記第4の情報要素は、上記UL BWPの開始位置に対する上記UL周波数帯域の開始位置のオフセットと、上記UL周波数帯域の帯域幅とを示してもよい。 The third information element included in the second information may indicate an offset of the start position of the DL frequency band with respect to the start position of the DL BWP, and a bandwidth of the DL frequency band. The fourth information element included in the second information may indicate an offset of a starting position of the UL frequency band with respect to a starting position of the UL BWP, and a bandwidth of the UL frequency band.
 図13を参照すると、図7と同様に、UE200により使用されるBWP51と、UE200により使用される周波数帯域53とが示されている。例えば、上記第2の情報は、BWP51の開始位置に対する周波数帯域53の開始位置のオフセット61と、周波数帯域53の帯域幅63とを示してもよい。BWP51および周波数帯域53は、DL BWPおよびDL周波数帯域であってもよく、UL BWPおよびUL周波数帯域であってもよい。 Referring to FIG. 13, similarly to FIG. 7, the BWP 51 used by the UE 200 and the frequency band 53 used by the UE 200 are shown. For example, the second information may indicate an offset 61 of the start position of the frequency band 53 with respect to the start position of the BWP 51 and a bandwidth 63 of the frequency band 53. BWP 51 and frequency band 53 may be DL BWP and DL frequency band, or may be UL BWP and UL frequency band.
 図14を参照すると、例えば、上記第3の情報要素は、BWP-Downlinkに含まれるDownlinkBWP-RedCap-r18であってもよい。DownlinkBWP-RedCap-r18は、上記DL BWPの開始位置に対する上記DL周波数帯域の開始位置のオフセットを示すstartRBoffsetと、上記DL周波数帯域の帯域幅を示すsizeofRBsとを含んでもよい。 Referring to FIG. 14, for example, the third information element may be DownlinkBWP-RedCap-r18 included in BWP-Downlink. DownlinkBWP-RedCap-r18 may include startRBoffset indicating the offset of the start position of the DL frequency band with respect to the start position of the DL BWP, and sizeofRBs indicating the bandwidth of the DL frequency band.
 図15を参照すると、例えば、上記第4の情報要素は、BWP-Uplinkに含まれるUplinkBWP-RedCap-r18であってもよい。UplinkBWP-RedCap-r18は、上記UL BWPの開始位置に対する上記UL周波数帯域の開始位置のオフセットを示すstartRBoffsetと、上記UL周波数帯域の帯域幅を示すsizeofRBsとを含んでもよい。 Referring to FIG. 15, for example, the fourth information element may be UplinkBWP-RedCap-r18 included in BWP-Uplink. UplinkBWP-RedCap-r18 may include startRBoffset indicating the offset of the start position of the UL frequency band with respect to the start position of the UL BWP, and sizeofRBs indicating the bandwidth of the UL frequency band.
 なお、上記第2の情報によりRBの数で示される上記オフセットおよび上記帯域幅は、UE200の最大帯域幅と、上記BWPのサブキャリア間隔(subcarrier spacing:SCS)とに基づいて決定されてもよい。具体的な例として、上記帯域幅は、以下のようなRBの数で示されてもよい。
  ・最大帯域幅=3MHz、SCS=15kHzの場合:帯域幅=15RB
  ・最大帯域幅=3MHz、SCS=30kHzの場合:帯域幅=8RB
  ・最大帯域幅=4MHz、SCS=15kHzの場合:帯域幅=20RB
  ・最大帯域幅=4MHz、SCS=30kHzの場合:帯域幅=10RB
  ・最大帯域幅=5MHz、SCS=15kHzの場合:帯域幅=25RB
  ・最大帯域幅=5MHz、SCS=30kHzの場合:帯域幅=12RB
Note that the offset and the bandwidth indicated by the number of RBs in the second information may be determined based on the maximum bandwidth of the UE 200 and the subcarrier spacing (SCS) of the BWP. . As a specific example, the bandwidth may be expressed by the number of RBs as follows.
・When maximum bandwidth = 3MHz, SCS = 15kHz: Bandwidth = 15RB
・When maximum bandwidth = 3MHz, SCS = 30kHz: Bandwidth = 8RB
・When maximum bandwidth = 4MHz, SCS = 15kHz: Bandwidth = 20RB
・When maximum bandwidth = 4MHz, SCS = 30kHz: Bandwidth = 10RB
・When maximum bandwidth = 5MHz, SCS = 15kHz: Bandwidth = 25RB
・When maximum bandwidth = 5MHz, SCS = 30kHz: Bandwidth = 12RB
 なお、上記最大帯域幅は、例えば、特定の情報(例えば、ユーザデータ等)を送受信する際の最大帯域幅である。 Note that the maximum bandwidth is, for example, the maximum bandwidth when transmitting and receiving specific information (for example, user data, etc.).
 以上、本開示の実施形態の第2の変形例を説明した。第2の変形例によれば、例えば、上記周波数帯域の柔軟な設定を可能にしつつ上記第2の情報の情報量を低減することができる。 The second modification of the embodiment of the present disclosure has been described above. According to the second modification, for example, it is possible to reduce the amount of the second information while enabling flexible setting of the frequency band.
 (3)第3の変形例:第2の情報
 本開示の実施形態の上述した例では、上記第2の情報は、上記周波数帯域の位置および帯域幅を示すパラメータを含む。しかしながら、本開示の実施形態に係る第2の情報は、この例に限定されない。
(3) Third Modification: Second Information In the above-described example of the embodiment of the present disclosure, the second information includes a parameter indicating the position and bandwidth of the frequency band. However, the second information according to the embodiment of the present disclosure is not limited to this example.
 第3の変形例として、UE200により使用される上記BWPは、UE200のための2つ以上の周波数帯域候補を含んでもよい。上記第2の情報は、当該2つ以上の周波数帯域候補のうちの1つを、UE200により使用される上記周波数帯域として示してもよい。さらに、当該2つ以上の周波数帯域候補は、上記BWPに対して予め定められていてもよい。 As a third modification, the BWP used by the UE 200 may include two or more frequency band candidates for the UE 200. The second information may indicate one of the two or more frequency band candidates as the frequency band used by the UE 200. Furthermore, the two or more frequency band candidates may be predetermined for the BWP.
 上記BWPは、上記2つ以上の周波数帯域候補からなってもよく、上記2つ以上の周波数帯域候補は、互いに重なっていなくてもよい。すなわち、上記BWPを分割することによって、上記2つ以上の周波数帯域候補が得られてもよい。 The BWP may be composed of the two or more frequency band candidates, and the two or more frequency band candidates do not need to overlap with each other. That is, the two or more frequency band candidates may be obtained by dividing the BWP.
 図16を参照すると、図7と同様に、UE200により使用されるBWP51が示されている。例えば、BWP51に対して周波数帯域候補71、73、75、77が予め定められてもよく、上記第2の情報は、周波数帯域候補71、73、75、77のうちの1つを上記周波数帯域として示してもよい。一例として、BWP51の帯域幅が20MHzであり、周波数帯域候補71、73、75、77の各々の帯域幅が5MHzであってもよい。 Referring to FIG. 16, similar to FIG. 7, the BWP 51 used by the UE 200 is shown. For example, frequency band candidates 71, 73, 75, and 77 may be predetermined for the BWP 51, and the second information may include one of the frequency band candidates 71, 73, 75, and 77 in the frequency band. It may also be shown as As an example, the bandwidth of the BWP 51 may be 20 MHz, and the bandwidth of each of the frequency band candidates 71, 73, 75, and 77 may be 5 MHz.
 図17を参照すると、図7と同様に、UE200により使用されるBWP51が示されている。例えば、BWP51に対して周波数帯域候補81、83、85、87、89が予め定められてもよく、上記第2の情報は、周波数帯域候補81、83、85、87、89のうちの1つを上記周波数帯域として示してもよい。一例として、BWP51の帯域幅が20MHzであり、周波数帯域候補81、83、85、87、89の各々の帯域幅が4MHzであってもよい。 Referring to FIG. 17, similarly to FIG. 7, the BWP 51 used by the UE 200 is shown. For example, frequency band candidates 81, 83, 85, 87, 89 may be predetermined for the BWP 51, and the second information may be one of the frequency band candidates 81, 83, 85, 87, 89. may be indicated as the above frequency band. As an example, the bandwidth of the BWP 51 may be 20 MHz, and the bandwidth of each of the frequency band candidates 81, 83, 85, 87, and 89 may be 4 MHz.
 上記2つ以上の周波数帯域候補は、それぞれ異なる識別情報を有してもよく、上記第2の情報は、上記2つ以上の周波数帯域候補のうちの1つの識別情報を含んでもよい。一例として、図17を参照すると、周波数帯域候補71、73、75、77が、それぞれIDを有してもよく、上記第2の情報は、周波数帯域候補71、73、75、77のうちの1つのIDを含んでもよい。 The two or more frequency band candidates may each have different identification information, and the second information may include identification information of one of the two or more frequency band candidates. As an example, referring to FIG. 17, frequency band candidates 71, 73, 75, and 77 may each have an ID, and the second information is the frequency band candidates 71, 73, 75, and 77. It may include one ID.
 当然ながら、上記2つ以上の周波数帯域候補の各々は、UE200の最大帯域幅以下の帯域幅をもつ。上記2つ以上の周波数帯域候補は、最大帯域幅ごとに予め定められてもよい。例えば、5MHzの最大帯域幅については、図16に示されるような5MHzの周波数帯域候補71、73、75、77のセットが予め定められてもよい。例えば、4MHzの最大帯域幅については、図17に示されるような4MHzの周波数帯域候補81、83、85、87、89のセットが予め定められてもよい。UE200は、UE200の最大帯域幅に対応する周波数帯域候補のセットを選択してもよい。なお、上記最大帯域幅は、特定の情報(例えば、ユーザデータ等)を送受信する際の最大帯域幅であってもよい。 Naturally, each of the two or more frequency band candidates has a bandwidth equal to or less than the maximum bandwidth of the UE 200. The two or more frequency band candidates may be determined in advance for each maximum bandwidth. For example, for a maximum bandwidth of 5 MHz, a set of 5 MHz frequency band candidates 71, 73, 75, and 77 as shown in FIG. 16 may be determined in advance. For example, for a maximum bandwidth of 4 MHz, a set of 4 MHz frequency band candidates 81, 83, 85, 87, and 89 as shown in FIG. 17 may be determined in advance. UE 200 may select a set of frequency band candidates corresponding to the maximum bandwidth of UE 200. Note that the maximum bandwidth may be the maximum bandwidth when transmitting and receiving specific information (for example, user data, etc.).
 上記2つ以上の周波数帯域候補は、必ずしも同じ帯域幅をもたなくてもよい。例えば、上記2つ以上の周波数帯域候補は、同じ帯域幅をもつ1つ以上の周波数帯域候補と、当該1つ以上の周波数帯域候補とは異なる帯域幅をもつ1つの周波数帯域候補とを含んでもよい。 The above two or more frequency band candidates do not necessarily have to have the same bandwidth. For example, the two or more frequency band candidates may include one or more frequency band candidates with the same bandwidth and one frequency band candidate with a different bandwidth from the one or more frequency band candidates. good.
 図18を参照すると、図7と同様に、UE200により使用されるBWP51が示されている。例えば、BWP51に対して周波数帯域候補90、91、92、93、94、95、96が予め定められてもよく、上記第2の情報は、周波数帯域候補90、91、92、93、94、95、96のうちの1つを上記周波数帯域として示してもよい。一例として、BWP51の帯域幅が20MHzであり、周波数帯域候補90、91、92、93、94、95の各々の帯域幅が3MHzであり、周波数帯域候補96の帯域幅が2MHzであってもよい。 Referring to FIG. 18, similar to FIG. 7, the BWP 51 used by the UE 200 is shown. For example, the frequency band candidates 90, 91, 92, 93, 94, 95, 96 may be predetermined for the BWP 51, and the second information may include the frequency band candidates 90, 91, 92, 93, 94, One of 95 and 96 may be indicated as the frequency band. As an example, the bandwidth of the BWP 51 may be 20 MHz, the bandwidth of each of the frequency band candidates 90, 91, 92, 93, 94, and 95 may be 3 MHz, and the bandwidth of the frequency band candidate 96 may be 2 MHz. .
 図19を参照すると、UE200により使用されるBWP55が示されている。例えば、BWP55に対して周波数帯域候補97、98、99が予め定められてもよく、上記第2の情報は、周波数帯域候補97、98、99のうちの1つを上記周波数帯域として示してもよい。一例として、BWP55の帯域幅が10MHzであり、周波数帯域候補91、93の各々の帯域幅が4MHzであり、周波数帯域候補95の帯域幅が2MHzであってもよい。 Referring to FIG. 19, the BWP 55 used by the UE 200 is shown. For example, frequency band candidates 97, 98, and 99 may be predetermined for the BWP 55, and the second information may indicate one of the frequency band candidates 97, 98, and 99 as the frequency band. good. As an example, the bandwidth of the BWP 55 may be 10 MHz, the bandwidth of each of the frequency band candidates 91 and 93 may be 4 MHz, and the bandwidth of the frequency band candidate 95 may be 2 MHz.
 なお、上記2つ以上の周波数帯域候補は、最大帯域幅と、BWPのサブキャリア間隔とのセットごとに、予め定められてもよい。これにより、上記2つ以上の周波数帯域候補の各々の帯域幅がRB数によって正確に表されてもよい。 Note that the two or more frequency band candidates may be determined in advance for each set of maximum bandwidth and BWP subcarrier interval. Thereby, the bandwidth of each of the two or more frequency band candidates may be accurately represented by the number of RBs.
 以上、本開示の実施形態の第3の変形例を説明した。第3の変形例によれば、例えば、上記第2の情報の情報量を大幅に低減することができる。 The third modification of the embodiment of the present disclosure has been described above. According to the third modification, for example, the amount of the second information can be significantly reduced.
 (4)第4の変形例:第2の情報
 本開示の実施形態の第3の変形例では、上記2つ以上の周波数帯域候補は、上記BWPに対して予め定められている。しかしながら、本開示の実施形態に係る周波数帯域候補は、この例に限定されない。
(4) Fourth Modification: Second Information In the third modification of the embodiment of the present disclosure, the two or more frequency band candidates are predetermined for the BWP. However, frequency band candidates according to embodiments of the present disclosure are not limited to this example.
 第4の変形例として、上記2つ以上の周波数帯域候補は、予め定められておらず、UE200の最大帯域幅に基づいて決定されてもよい。UE200は、UE200の最大帯域幅に基づいて、上記2つ以上の周波数帯域候補を決定してもよい。なお、上記最大帯域幅は、特定の情報(例えば、ユーザデータ等)を送受信する際の最大帯域幅であってもよい。 As a fourth modification, the two or more frequency band candidates may not be determined in advance, but may be determined based on the maximum bandwidth of the UE 200. The UE 200 may determine the two or more frequency band candidates based on the maximum bandwidth of the UE 200. Note that the maximum bandwidth may be the maximum bandwidth when transmitting and receiving specific information (for example, user data, etc.).
 一例として、UE200の最大帯域幅が5MHzである場合には、決定される上記2つ以上の周波数帯域候補は、図16に示される周波数帯域候補71、73、75、77であってもよい。 As an example, if the maximum bandwidth of the UE 200 is 5 MHz, the two or more frequency band candidates determined may be the frequency band candidates 71, 73, 75, and 77 shown in FIG. 16.
 別の例として、UE200の最大帯域幅が4MHzである場合には、決定される上記2つ以上の周波数帯域候補は、図17に示される周波数帯域候補81、83、85、87、89であってもよい。 As another example, if the maximum bandwidth of the UE 200 is 4 MHz, the two or more frequency band candidates to be determined are the frequency band candidates 81, 83, 85, 87, and 89 shown in FIG. It's okay.
 上記2つ以上の周波数帯域候補は、上記BWPのサブキャリア間隔にさらに基づいて決定されてもよい。これにより、上記2つ以上の周波数帯域候補の各々の帯域幅がRB数によって正確に表されてもよい。 The two or more frequency band candidates may be determined further based on the subcarrier spacing of the BWP. Thereby, the bandwidth of each of the two or more frequency band candidates may be accurately represented by the number of RBs.
 上記BWPは、上記2つ以上の周波数帯域候補からなってもよく、上記2つ以上の周波数帯域候補は、互いに重なっていなくてもよい。すなわち、上記BWPを分割することによって、上記2つ以上の周波数帯域候補が得られてもよい。この点についての説明は、第3の変形例における説明と同じであり、ここでは重複する説明を省略する。 The BWP may be composed of the two or more frequency band candidates, and the two or more frequency band candidates do not need to overlap with each other. That is, the two or more frequency band candidates may be obtained by dividing the BWP. The explanation regarding this point is the same as the explanation for the third modification, and redundant explanation will be omitted here.
 上記2つ以上の周波数帯域候補は、それぞれ異なる識別情報を有してもよく、上記第2の情報は、上記2つ以上の周波数帯域候補のうちの1つの識別情報を含んでもよい。この点についての説明は、第3の変形例における説明と同じであり、ここでは重複する説明を省略する。 The two or more frequency band candidates may each have different identification information, and the second information may include identification information of one of the two or more frequency band candidates. The explanation regarding this point is the same as the explanation for the third modification, and redundant explanation will be omitted here.
 当然ながら、上記2つ以上の周波数帯域候補の各々は、UE200の最大帯域幅以下の帯域幅をもつ。この点についての説明は、第3の変形例における説明と同じであり、ここでは重複する説明を省略する。 Naturally, each of the two or more frequency band candidates has a bandwidth equal to or less than the maximum bandwidth of the UE 200. The explanation regarding this point is the same as the explanation for the third modification, and redundant explanation will be omitted here.
 上記2つ以上の周波数帯域候補は、必ずしも同じ帯域幅をもたなくてもよい。例えば、上記2つ以上の周波数帯域候補は、同じ帯域幅をもつ1つ以上の周波数帯域候補と、当該1つ以上の周波数帯域候補とは異なる帯域幅をもつ1つの周波数帯域候補とを含んでもよい。 The above two or more frequency band candidates do not necessarily have to have the same bandwidth. For example, the two or more frequency band candidates may include one or more frequency band candidates with the same bandwidth and one frequency band candidate with a different bandwidth from the one or more frequency band candidates. good.
 一例として、上記BWPの帯域幅が20MHzであり、UE200の最大帯域幅が3MHzである場合に、決定される上記2つ以上の周波数帯域候補は、図18に示される周波数帯域候補90、91、92、93、94、95、96であってもよい。別の例として、上記BWPの帯域幅が10MHzであり、UE200の最大帯域幅が4MHzである場合に、決定される上記2つ以上の周波数帯域候補は、図19に示される周波数帯域候補97、98、99であってもよい。 As an example, when the bandwidth of the BWP is 20 MHz and the maximum bandwidth of the UE 200 is 3 MHz, the two or more frequency band candidates determined are the frequency band candidates 90, 91, and 91 shown in FIG. 92, 93, 94, 95, and 96 may be used. As another example, when the bandwidth of the BWP is 10 MHz and the maximum bandwidth of the UE 200 is 4 MHz, the two or more frequency band candidates determined are the frequency band candidate 97 shown in FIG. It may be 98 or 99.
 以上、本開示の実施形態の第4の変形例を説明した。第4の変形例によれば、例えば、周波数帯域候補をより柔軟に決定しつつ、上記第2の情報の情報量を大幅に低減することができる。 The fourth modification of the embodiment of the present disclosure has been described above. According to the fourth modification, for example, the amount of the second information can be significantly reduced while determining frequency band candidates more flexibly.
 (5)第5の変形例:第2の情報
 本開示の実施形態の第4の変形例では、上記2つ以上の周波数帯域候補は、UE200の最大帯域幅に基づいて決定される。しかしながら、本開示の実施形態に係る周波数帯域候補は、この例に限定されない。
(5) Fifth Modification: Second Information In the fourth modification of the embodiment of the present disclosure, the two or more frequency band candidates are determined based on the maximum bandwidth of the UE 200. However, frequency band candidates according to embodiments of the present disclosure are not limited to this example.
 第5の変形例として、上記2つ以上の周波数帯域候補は、UE200の最大帯域幅ではなく、上記RRCメッセージに含まれる情報に基づいて決定されてもよい。UE200は、上記RRCメッセージに含まれる当該情報に基づいて、上記2つ以上の周波数帯域候補を決定してもよい。 As a fifth modification, the two or more frequency band candidates may be determined based on information included in the RRC message instead of the maximum bandwidth of the UE 200. The UE 200 may determine the two or more frequency band candidates based on the information included in the RRC message.
 一例として、上記RRCメッセージに含まれる上記情報は、上記2つ以上の周波数帯域候補の各々の帯域幅を示してもよい。別の例として、上記RRCメッセージに含まれる上記情報は、上記2つ以上の周波数帯域候補を得るために上記BWPを分割する際の分割数を示してもよい。当然ながら、上記RRCメッセージに含まれる上記情報は、これらの例に限定されない。 As an example, the information included in the RRC message may indicate the bandwidth of each of the two or more frequency band candidates. As another example, the information included in the RRC message may indicate the number of divisions when dividing the BWP to obtain the two or more frequency band candidates. Naturally, the information included in the RRC message is not limited to these examples.
 第4の変形例における他の特徴は、第5の変形例にも適用され得る。よって、ここでは重複する説明を省略する。 Other features of the fourth modification may also be applied to the fifth modification. Therefore, redundant explanation will be omitted here.
 以上、本開示の実施形態の第5の変形例を説明した。第5の変形例によれば、例えば、周波数帯域候補をより柔軟に決定しつつ、上記第2の情報の情報量を大幅に低減することができる。 The fifth modification of the embodiment of the present disclosure has been described above. According to the fifth modification, for example, the amount of the second information can be significantly reduced while determining frequency band candidates more flexibly.
 (6)第6の変形例:2つ以上の周波数帯域の設定
 本開示の実施形態の上述した例では、UE200により使用される上記BWP内に、UE200により使用される1つの周波数帯域が設定される。しかしながら、本開示の実施形態はこの例に限定されない。
(6) Sixth modification: Setting of two or more frequency bands In the above-described example of the embodiment of the present disclosure, one frequency band used by the UE 200 is set in the BWP used by the UE 200. Ru. However, embodiments of the present disclosure are not limited to this example.
 第6の変形例として、UE200により使用される2つ以上の周波数帯域が、UE200により使用される上記BWP内に設定されてもよい。より具体的には、UE200により使用される2つ以上のDL周波数帯域が、UE200により使用される上記DL BWP内に設定されてもよく、UE200により使用される2つ以上のUL周波数帯域が、UE200により使用される上記UL BWP内に設定されてもよい。 As a sixth modification, two or more frequency bands used by the UE 200 may be set within the BWP used by the UE 200. More specifically, two or more DL frequency bands used by the UE 200 may be set within the above DL BWP used by the UE 200, and two or more UL frequency bands used by the UE 200, It may be set within the above UL BWP used by the UE 200.
 (6-1)第1の例
 第1の例として、上記RRCメッセージは、上記BWP内に設定される上記2つ以上の周波数帯域の各々について、上記第2の情報を含んでもよい。とりわけ、上記RRCメッセージに含まれる上記第1の情報が、上記2つ以上の周波数帯域各々について上記第2の情報を含んでもよい。
(6-1) First Example As a first example, the RRC message may include the second information for each of the two or more frequency bands set within the BWP. In particular, the first information included in the RRC message may include the second information for each of the two or more frequency bands.
 より具体的には、上記第1の情報に含まれる上記第1の情報要素が、上記2つ以上のDL周波数帯域の各々について、上記第2の情報に含まれる上記第3の情報要素を含んでもよい。上記第1の情報に含まれる上記第2の情報要素が、上記2つ以上のUL周波数帯域の各々について、上記第2の情報に含まれる上記第4の情報要素を含んでもよい。 More specifically, the first information element included in the first information includes the third information element included in the second information for each of the two or more DL frequency bands. But that's fine. The second information element included in the first information may include the fourth information element included in the second information for each of the two or more UL frequency bands.
 上記RRCメッセージは、上記2つ以上の周波数帯域のうちのアクティブ化される周波数帯域を示す情報をさらに含んでもよい。当該情報は、上記第1の情報に含まれてもよい。 The RRC message may further include information indicating a frequency band to be activated among the two or more frequency bands. The information may be included in the first information.
 上記RRCメッセージは、上記2つ以上の周波数帯域のうちのデフォルトの周波数帯域を示す情報をさらに含んでもよい。当該情報は、上記第1の情報に含まれてもよい。 The RRC message may further include information indicating a default frequency band among the two or more frequency bands. The information may be included in the first information.
 図20を参照すると、例えば、上記第1の情報に含まれる上記第1の情報要素は、BWP-Downlinkであり、上記第2の情報に含まれる上記第3の情報要素は、BWP-Downlinkに含まれるBWP-RedCap-r18であってもよい。BWP-Downlinkに含まれるDownlinkBWP-ToAddModList-RedCap-r18は、上記DL BWP内に設定される上記2つ以上のDL周波数帯域の各々について、BWP-RedCap-r18を含んでもよい。BWP-RedCap-r18は、DL周波数帯域の識別情報であるbwp-Id-RedCap-r18と、当該DL周波数帯域の位置および帯域幅を示すlocationAndBandwidthを含んでもよい。さらに、BWP-Downlinkは、上記2つ以上のDL周波数帯域のうちのアクティブ化されるDL周波数帯域を示すfirstActiveDownlinkBWP-Id-RedCap-r18、及び/又は、上記2つ以上のDL周波数帯域のうちのデフォルトのDL周波数帯域を示すdefaultDownlinkBWP-Id-RedCap-r18を含んでもよい。 Referring to FIG. 20, for example, the first information element included in the first information is BWP-Downlink, and the third information element included in the second information is BWP-Downlink. It may be included BWP-RedCap-r18. DownlinkBWP-ToAddModList-RedCap-r18 included in BWP-Downlink may include BWP-RedCap-r18 for each of the two or more DL frequency bands set in the DL BWP. BWP-RedCap-r18 may include bwp-Id-RedCap-r18, which is identification information of the DL frequency band, and locationAndBandwidth, which indicates the position and bandwidth of the DL frequency band. Furthermore, BWP-Downlink includes firstActiveDownlinkBWP-Id-RedCap-r18 indicating a DL frequency band to be activated among the two or more DL frequency bands, and/or a It may also include defaultDownlinkBWP-Id-RedCap-r18 indicating the default DL frequency band.
 図21を参照すると、例えば、上記第1の情報に含まれる上記第2の情報要素は、BWP-Uplinkであり、上記第2の情報に含まれる上記第4の情報要素は、BWP-Uplinkに含まれるBWP-RedCap-r18であってもよい。BWP-Uplinkに含まれるUplinkBWP-ToAddModList-RedCap-r18は、上記UL BWP内に設定される上記2つ以上のUL周波数帯域の各々について、BWP-RedCap-r18を含んでもよい。BWP-RedCap-r18は、UL周波数帯域の識別情報であるbwp-Id-RedCap-r18と、当該UL周波数帯域の位置および帯域幅を示すlocationAndBandwidthを含んでもよい。さらに、BWP-Uplinkは、上記2つ以上のUL周波数帯域のうちのアクティブ化されるUL周波数帯域を示すfirstActiveUplinkBWP-Id-RedCap-r18を含んでもよい。 Referring to FIG. 21, for example, the second information element included in the first information is BWP-Uplink, and the fourth information element included in the second information is BWP-Uplink. It may be included BWP-RedCap-r18. UplinkBWP-ToAddModList-RedCap-r18 included in BWP-Uplink may include BWP-RedCap-r18 for each of the two or more UL frequency bands set in the UL BWP. BWP-RedCap-r18 may include bwp-Id-RedCap-r18, which is identification information of the UL frequency band, and locationAndBandwidth, which indicates the position and bandwidth of the UL frequency band. Further, the BWP-Uplink may include firstActiveUplinkBWP-Id-RedCap-r18 indicating the UL frequency band to be activated among the two or more UL frequency bands.
 なお、本開示の実施形態の第2の変形例と同様に、周波数帯域の位置および帯域幅を示す上記locationAndBandwidthの代わりに、当該周波数帯域の開始位置のオフセットを示すstartRBoffsetと、当該周波数帯域の帯域幅を示すsizeofRBsが含まれてもよい。 Note that, similarly to the second modification of the embodiment of the present disclosure, instead of the above locationAndBandwidth indicating the position and bandwidth of the frequency band, startRBoffset indicating the offset of the start position of the frequency band and the band of the frequency band. sizeofRBs indicating the width may be included.
 (6-2)第2の例
 第2の例として、第3~第5の変形例と同様に、UE200により使用される上記BWPは、UE200のための2つ以上の周波数帯域候補を含んでもよく、当該2つ以上の周波数帯域候補が、UE200により使用される上記2つ以上の周波数帯域として設定されてもよい。すなわち、UE200により使用される上記2つ以上の周波数帯域は、UE200により使用される上記BWPの設定に応じて自動的に設定されてもよい。
(6-2) Second example As a second example, similarly to the third to fifth modified examples, the above BWP used by the UE 200 may include two or more frequency band candidates for the UE 200. Often, the two or more frequency band candidates may be set as the two or more frequency bands used by the UE 200. That is, the two or more frequency bands used by the UE 200 may be automatically set according to the settings of the BWP used by the UE 200.
 この場合に、上記第2の情報により示される上記周波数帯域は、上記2つ以上の周波数帯域のうちのアクティブ化される周波数帯域であってもよい。一例として、上記第2の情報は、アクティブ化される周波数帯域の識別情報を含んでもよい。 In this case, the frequency band indicated by the second information may be a frequency band to be activated among the two or more frequency bands. As an example, the second information may include identification information of a frequency band to be activated.
 上記RRCメッセージは、上記2つ以上の周波数帯域のうちのデフォルトの周波数帯域を示す情報をさらに含んでもよい。当該情報は、上記第1の情報に含まれてもよい。 The RRC message may further include information indicating a default frequency band among the two or more frequency bands. The information may be included in the first information.
 (6-3)周波数帯域の切替え
 基地局100(情報取得部141)は、上記2つ以上の周波数帯域のうちのアクティブな周波数帯域を切り替えるための切替え情報を取得し、基地局100(通信処理部143)は、当該切替え情報をUE200へ送信してもよい。UE200(通信処理部233)は、当該切替え情報を受信し、UE200(情報取得部231)は、当該切替え情報を取得してもよい。UE200(通信処理部233)は、上記切替え情報に基づいて、アクティブな周波数帯域を切り替えてもよい。
(6-3) Frequency band switching The base station 100 (information acquisition unit 141) acquires switching information for switching an active frequency band among the two or more frequency bands, and base station 100 (communication processing The unit 143) may transmit the switching information to the UE 200. The UE 200 (communication processing unit 233) may receive the switching information, and the UE 200 (information acquisition unit 231) may acquire the switching information. The UE 200 (communication processing unit 233) may switch the active frequency band based on the switching information.
  -第1の例
 第1の例として、上記切替え情報は、上記2つ以上の周波数帯域のうちのアクティブ化される周波数帯域を示してもよい。
- First Example As a first example, the switching information may indicate a frequency band to be activated among the two or more frequency bands.
 上記切替え情報は、DCIに含まれてもよい。すなわち、基地局100(情報取得部141)は、上記切替え情報を含むDCIを取得し、基地局100(通信処理部143)は、当該DCIをUE200へ送信してもよい。UE200(通信処理部233)は、当該DCIを受信し、UE200(情報取得部231)は、当該DCIに含まれる上記切替え情報を取得してもよい。上記切替え情報は、上記DCIに含まれる追加のBandwidth Part Indicatorであってもよい。 The above switching information may be included in the DCI. That is, the base station 100 (information acquisition unit 141) may acquire the DCI including the switching information, and the base station 100 (communication processing unit 143) may transmit the DCI to the UE 200. The UE 200 (communication processing unit 233) may receive the DCI, and the UE 200 (information acquisition unit 231) may acquire the switching information included in the DCI. The switching information may be an additional Bandwidth Part Indicator included in the DCI.
 あるいは、上記切替え情報は、RRCメッセージに含まれてもよい。基地局100(情報取得部141)は、上記切替え情報を含むRRCメッセージをさらに取得し、基地局100(通信処理部143)は、当該RRCメッセージをUE200へさらに送信してもよい。UE200(通信処理部233)は、当該RRCメッセージを受信し、UE200(情報取得部231)は、当該RRCメッセージに含まれる上記切替え情報を取得してもよい。当該RRCメッセージは、RRC Reconfigurationメッセージであってもよい。上記切替え情報は、firstActiveDownlinkBWP-Id-RedCap-r18およびfirstActiveUplinkBWP-Id-RedCap-r18であってもよい。 Alternatively, the above switching information may be included in the RRC message. The base station 100 (information acquisition unit 141) may further acquire an RRC message including the switching information, and the base station 100 (communication processing unit 143) may further transmit the RRC message to the UE 200. The UE 200 (communication processing unit 233) may receive the RRC message, and the UE 200 (information acquisition unit 231) may acquire the switching information included in the RRC message. The RRC message may be an RRC Reconfiguration message. The switching information may be firstActiveDownlinkBWP-Id-RedCap-r18 and firstActiveUplinkBWP-Id-RedCap-r18.
 UE200(通信処理部233)は、上記切替え情報の受信後に、上記切替え情報により示される周波数帯域にアクティブな周波数帯域を切り替えてもよい。 After receiving the switching information, the UE 200 (communication processing unit 233) may switch the active frequency band to the frequency band indicated by the switching information.
  -第2の例
 第2の例として、上記切替え情報は、上記2つ以上の周波数帯域のうちの、タイマの満了に応じてアクティブな周波数帯域になるデフォルトの周波数帯域を示してもよい。
- Second Example As a second example, the switching information may indicate a default frequency band among the two or more frequency bands that becomes the active frequency band upon expiration of a timer.
 上記第1の情報および上記第2の情報を含む上記RRCメッセージは、上記切替え情報と、上記タイマの期間を示すタイマ情報とをさらに含んでもよい。図20を再び参照すると、上記切替え情報は、defaultDownlinkBWP-Id-RedCap-r18であってもよい。図20には示されていないが、上記タイマ情報は、bwp-InactiveTimer-RedCap-r18であってもよい。 The RRC message including the first information and the second information may further include the switching information and timer information indicating the time period of the timer. Referring again to FIG. 20, the switching information may be defaultDownlinkBWP-Id-RedCap-r18. Although not shown in FIG. 20, the timer information may be bwp-InactiveTimer-RedCap-r18.
 UE200(通信処理部233)は、上記タイマの満了(expiry)後に、上記デフォルトの周波数帯域にアクティブな周波数帯域を切り替えてもよい。 The UE 200 (communication processing unit 233) may switch the active frequency band to the default frequency band after the timer expires.
 以上、本開示の実施形態の第6の変形例を説明した。第6の変形例によれば、例えば、UE200は、UE200にとってより好ましい周波数帯域を使用することができる。そのため、UE200の通信品質が向上し得る。 The sixth modification of the embodiment of the present disclosure has been described above. According to the sixth modification, for example, the UE 200 can use a frequency band that is more preferable for the UE 200. Therefore, the communication quality of UE 200 can be improved.
 本開示の実施形態の第6の変形例は、本開示の実施形態の第1~第5の変形例のうちのいずれか1つと組み合わせられてもよい。 The sixth modification of the embodiment of the present disclosure may be combined with any one of the first to fifth modifications of the embodiment of the present disclosure.
 (7)第7の変形例:BWPと周波数帯域の用途
 本開示の実施形態の上述した例では、上記BWPと上記周波数帯域の用途を説明した。しかしながら、本開示の実施形態はこの例に限定されない。
(7) Seventh Modification: Application of BWP and Frequency Band In the above-described example of the embodiment of the present disclosure, the application of the BWP and the frequency band has been explained. However, embodiments of the present disclosure are not limited to this example.
 本開示の実施形態の上述した例において上記BWPを使用して受信しまたは送信されると説明した信号のうち少なくとも一部は、上記BWPではなく上記周波数帯域を使用して受信しまたは送信されてもよい。 At least some of the signals described as being received or transmitted using the BWP in the above-described examples of embodiments of the present disclosure may be received or transmitted using the frequency band instead of the BWP. Good too.
 例えば、SI-RNTIまたはP-RNTIを用いてスケジューリングされるPDSCHは、上記BWPではなく上記周波数帯域を使用して受信されてもよい。 For example, a PDSCH scheduled using SI-RNTI or P-RNTI may be received using the above frequency band instead of the above BWP.
 例えば、PDCCHおよびPUCCHの少なくとも一方は、上記BWPではなく上記周波数帯域を使用して受信されてもよい。 For example, at least one of PDCCH and PUCCH may be received using the above frequency band instead of the above BWP.
 また、本開示の実施形態の上述した例において上記周波数帯域を使用して受信しまたは送信されると説明した信号のうち少なくとも一部は、上記周波数帯域ではなく上記BWPを使用して受信しまたは送信されてもよい。 Additionally, at least some of the signals described as being received or transmitted using the frequency band in the above-described examples of embodiments of the present disclosure may be received or transmitted using the BWP rather than the frequency band. May be sent.
 本開示の実施形態の第7の変形例は、本開示の実施形態の第1~第5の変形例のうちのいずれか1つと組み合わせられてもよい。さらに、または、代わりに、本開示の実施形態の第7の変形例は、本開示の実施形態の第6の変形例と組み合わせられてもよい。 The seventh modification of the embodiment of the present disclosure may be combined with any one of the first to fifth modifications of the embodiment of the present disclosure. Additionally or alternatively, the seventh variant of the embodiment of the present disclosure may be combined with the sixth variant of the embodiment of the present disclosure.
 (8)第8の変形例:ハンドオーバ
 本開示の実施形態の上述した例では、UE200により使用される上記BWPは、基地局100との通信に使用されるBWPである。しかしながら、本開示の実施形態はこの例に限定されない。
(8) Eighth Modified Example: Handover In the above-described example of the embodiment of the present disclosure, the BWP used by the UE 200 is the BWP used for communication with the base station 100. However, embodiments of the present disclosure are not limited to this example.
 第8の変形例として、上記RRCメッセージは、ターゲット基地局へのUE200のハンドオーバのためのRRCメッセージであってもよく、上記RRCメッセージに含まれる上記第1の情報により示される上記BWPは、上記ターゲット基地局と通信するためのBWPであってもよい。 As an eighth modification, the RRC message may be an RRC message for handover of the UE 200 to the target base station, and the BWP indicated by the first information included in the RRC message is It may also be a BWP for communicating with a target base station.
 上記RRCメッセージは、ReconfigurationWithSyncを含むRRC Reconfigurationメッセージであってもよい。 The RRC message may be an RRC Reconfiguration message including ReconfigurationWithSync.
 上記RRCメッセージは、上記ターゲット基地局により生成され、上記ターゲット基地局から基地局100へ送信されるRRCメッセージであってもよい。 The RRC message may be an RRC message generated by the target base station and transmitted from the target base station to the base station 100.
 図22を参照して、本開示の実施形態の第8の変形例に係る処理の例を説明する。 An example of processing according to the eighth modification of the embodiment of the present disclosure will be described with reference to FIG. 22.
 ソース基地局である基地局100(通信処理部143)は、ターゲット基地局である基地局500へHANDOVER REQUESTメッセージを送信する(S610)。基地局500は、当該HANDOVER REQUESTメッセージを受信する。 The base station 100 (communication processing unit 143) that is the source base station transmits a HANDOVER REQUEST message to the base station 500 that is the target base station (S610). The base station 500 receives the HANDOVER REQUEST message.
 基地局500は、アドミッションコントロールを行い、HANDOVER REQUEST ACKNOWLEDGEメッセージを基地局100へ送信する(S620)。基地局100(通信処理部143)は、当該HANDOVER REQUEST ACKNOWLEDGEメッセージを受信する。 The base station 500 performs admission control and transmits a HANDOVER REQUEST ACKNOWLEDGE message to the base station 100 (S620). The base station 100 (communication processing unit 143) receives the HANDOVER REQUEST ACKNOWLEDGE message.
 基地局100(情報取得部141)は、上記HANDOVER REQUEST ACKNOWLEDGEメッセージに含まれるRRC Reconfigurationメッセージを取得する。そして、基地局100(通信処理部143)は、当該RRC ReconfigurationメッセージをUE200へ送信する(S630)。UE200(通信処理部233)は、当該RRC Reconfigurationメッセージを受信する。上記RRC Reconfigurationメッセージは、上記第1の情報および上記第2の情報を含む。 The base station 100 (information acquisition unit 141) acquires the RRC Reconfiguration message included in the HANDOVER REQUEST ACKNOWLEDGE message. Then, the base station 100 (communication processing unit 143) transmits the RRC Reconfiguration message to the UE 200 (S630). The UE 200 (communication processing unit 233) receives the RRC Reconfiguration message. The RRC Reconfiguration message includes the first information and the second information.
 UE200(情報取得部231)は、上記RRC Reconfigurationメッセージに含まれる情報を取得する。そして、UE200(通信処理部233)は、上記RRC Reconfigurationメッセージに含まれる当該情報に基づいて、基地局500の新たなセルにサービングセルを切り替える(S640)。具体的には、UE200(通信処理部233)は、ランダムアクセス手続きを行い、当該新たなセルにアクセスする。なお、UE200(情報取得部231)は、上記RRC Reconfigurationメッセージに含まれる上記第1の情報および上記第2の情報を取得し、UE200(通信処理部233)は、上記第1の情報により示される上記BWPと、上記第2の情報により示される上記周波数帯域とを設定される。 The UE 200 (information acquisition unit 231) acquires information included in the RRC Reconfiguration message. Then, the UE 200 (communication processing unit 233) switches the serving cell to a new cell of the base station 500 based on the information included in the RRC Reconfiguration message (S640). Specifically, the UE 200 (communication processing unit 233) performs a random access procedure and accesses the new cell. Note that the UE 200 (information acquisition unit 231) acquires the first information and the second information included in the RRC Reconfiguration message, and the UE 200 (communication processing unit 233) acquires the information indicated by the first information. The BWP and the frequency band indicated by the second information are set.
 UE200(情報取得部231)は、RRCReconfigurationCompleteメッセージを取得する。そして、UE200(通信処理部233)は、当該RRCReconfigurationCompleteメッセージを基地局500へ送信する(S650)。基地局500は、当該RRCReconfigurationCompleteメッセージを受信する。 The UE 200 (information acquisition unit 231) acquires the RRCReconfigurationComplete message. Then, the UE 200 (communication processing unit 233) transmits the RRCReconfigurationComplete message to the base station 500 (S650). The base station 500 receives the RRCReconfigurationComplete message.
 UE200(通信処理部233)は、上記BWPと上記周波数帯域を使用して基地局500と通信する。 The UE 200 (communication processing unit 233) communicates with the base station 500 using the above BWP and the above frequency band.
 以上、本開示の実施形態の第8の変形例を説明した。第8の変形例によれば、例えば、UE200は、ターゲット基地局へのハンドオーバ後も、BWP内の周波数帯域を用いて低いピークデータレートで当該ターゲット基地局と通信することができる。 The eighth modification of the embodiment of the present disclosure has been described above. According to the eighth modification, for example, even after handover to the target base station, the UE 200 can communicate with the target base station at a low peak data rate using the frequency band within the BWP.
 本開示の実施形態の第8の変形例は、本開示の実施形態の第1~第5の変形例のうちのいずれか1つと組み合わせられてもよい。さらに、または、代わりに、本開示の実施形態の第8の変形例は、本開示の実施形態の第6の変形例および第7の変形例のうちの少なくとも1つと組み合わせられてもよい。 The eighth modification of the embodiment of the present disclosure may be combined with any one of the first to fifth modifications of the embodiment of the present disclosure. Additionally or alternatively, the eighth variation of the embodiment of the present disclosure may be combined with at least one of the sixth variation and the seventh variation of the embodiment of the present disclosure.
 (9)第9の変形例:システム
 本開示の実施形態の上述した例では、システム1は、5G又はNRのTSに準拠したシステムである。しかし、本開示の実施形態に係るシステム1は、この例に限定されない。
(9) Ninth Modification: System In the above-described example of the embodiment of the present disclosure, the system 1 is a system compliant with 5G or NR TS. However, the system 1 according to the embodiment of the present disclosure is not limited to this example.
 本開示の実施形態の第9の変形例として、システム1は、3GPPの他のTSに準拠したシステムであってもよい。一例として、システム1は、次世代(例えば、6G)のTSに準拠したシステムであってもよい。 As a ninth modification of the embodiment of the present disclosure, the system 1 may be a system compliant with another 3GPP TS. As an example, the system 1 may be a system compliant with next generation (eg, 6G) TS.
 あるいは、システム1は、移動体通信についての他の標準化団体のTSに準拠したシステムであってもよい。 Alternatively, the system 1 may be a system that complies with the TS of another standardization organization regarding mobile communications.
 本開示の実施形態の第9の変形例は、本開示の実施形態の第1~第5の変形例のうちのいずれか1つと組み合わせられてもよい。さらに、または、代わりに、本開示の実施形態の第9の変形例は、本開示の実施形態の第6~第8の変形例のうちの少なくとも1つと組み合わせられてもよい。 The ninth modification of the embodiment of the present disclosure may be combined with any one of the first to fifth modifications of the embodiment of the present disclosure. Additionally or alternatively, the ninth variation of the embodiment of the present disclosure may be combined with at least one of the sixth to eighth variations of the embodiment of the present disclosure.
 以上、本開示の実施形態を説明したが、本開示は当該実施形態に限定されるものではない。当該実施形態は例示にすぎないということ、及び、本開示のスコープ及び精神から逸脱することなく様々な変形が可能であるということは、当業者に理解されるであろう。 Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to the embodiments. It will be understood by those skilled in the art that the embodiments are exemplary only and that various modifications can be made without departing from the scope and spirit of the disclosure.
 例えば、本明細書に記載されている処理におけるステップは、必ずしもフローチャート又はシーケンス図に記載された順序に沿って時系列に実行されなくてよい。例えば、処理におけるステップは、フローチャート又はシーケンス図として記載した順序と異なる順序で実行されても、並列的に実行されてもよい。また、処理におけるステップの一部が削除されてもよく、さらなるステップが処理に追加されてもよい。 For example, the steps in the process described in this specification do not necessarily have to be executed in chronological order in the order described in the flowchart or sequence diagram. For example, steps in a process may be performed in a different order than depicted in a flowchart or sequence diagram, or may be performed in parallel. Also, some of the steps in the process may be deleted, and additional steps may be added to the process.
 例えば、本明細書において説明した装置の1つ以上の構成要素の動作を含む方法が提供されてもよく、上記構成要素の動作をコンピュータに実行させるためのプログラムが提供されてもよい。また、当該プログラムを記録したコンピュータに読み取り可能な非遷移的実体的記録媒体が提供されてもよい。当然ながら、このような方法、プログラム、及びコンピュータに読み取り可能な非遷移的実体的記録媒体(non-transitory tangible computer-readable storage medium)も、本開示に含まれる。 For example, a method may be provided that includes operations of one or more components of the apparatus described herein, and a program may be provided that causes a computer to perform the operations of the components. Further, a computer-readable non-transitional physical recording medium may be provided on which the program is recorded. Of course, such methods, programs, and non-transitory tangible computer-readable storage media are also included in this disclosure.
 例えば、本明細書において説明した基地局の1つ以上の構成要素は、当該基地局のためのモジュールに含まれてもよく、当該モジュールが提供されてもよい。すなわち、本明細書において説明した基地局の処理を行う基地局用モジュールが提供されてもよい。 For example, one or more components of a base station described herein may be included in or provided with a module for the base station. That is, a base station module that performs the base station processing described in this specification may be provided.
 例えば、本明細書において説明したユーザ機器(UE)の1つ以上の構成要素は、当該UEのためのモジュールに含まれてもよく、当該モジュールが提供されてもよい。すなわち、本明細書において説明したUEの処理を行うUE用モジュールが提供されてもよい。 For example, one or more components of a user equipment (UE) described herein may be included in or provided with a module for the UE. That is, a UE module that performs the UE processing described in this specification may be provided.
 例えば、本開示において、ユーザ機器(UE)は、端末装置(terminal apparatus)、端末、移動局(mobile station)、移動端末、移動装置、移動ユニット、加入者局(subscriber station)、加入者端末、加入者装置、加入者ユニット、無線局(radio station)、無線端末、無線装置、無線ユニット、ワイヤレス局、ワイヤレス端末、ワイヤレス装置、ワイヤレスユニット、アクセス局、アクセス端末、アクセス装置、アクセスユニット、リモート局、リモート端末、リモート装置、又はリモートユニット等の別の名称で呼ばれてもよい。 For example, in the present disclosure, user equipment (UE) may refer to a terminal apparatus, a terminal, a mobile station, a mobile terminal, a mobile device, a mobile unit, a subscriber station, a subscriber terminal, subscriber equipment, subscriber unit, radio station, radio terminal, radio device, radio unit, wireless station, wireless terminal, wireless device, wireless unit, access station, access terminal, access device, access unit, remote station , remote terminal, remote device, or remote unit.
 例えば、本開示において、UEは、スマートフォン等の携帯電話端末、タブレット端末、パーソナルコンピュータ、モバイルルーター、または、ウェアラブルデバイスであってもよい。あるいは、UEは、移動体に設置される装置であってもよく、または、当該移動体そのものであってもよい。当該移動体は、車および電車などの車両であってもよく、飛行機およびドローンなどの飛行体であってもよく、または、船などの他の移動体であってもよい。あるいは、本開示において、UEは、センサおよびカメラ等のその他のIoT(Internet of Things)機器であってもよい。UEは、移動してもよく、または、固定されてもよい。 For example, in the present disclosure, the UE may be a mobile phone terminal such as a smartphone, a tablet terminal, a personal computer, a mobile router, or a wearable device. Alternatively, the UE may be a device installed in a mobile body, or may be the mobile body itself. The moving object may be a vehicle such as a car and a train, a flying object such as an airplane or a drone, or another moving object such as a ship. Alternatively, in the present disclosure, the UE may be other IoT (Internet of Things) devices such as sensors and cameras. A UE may be mobile or fixed.
 例えば、本開示において、「情報要素」とは、3GPP TSに情報要素(information element:IE)として定められている情報であってもよく、当該IEの個々のコンテンツ(すなわち、フィールド)であってもよい。あるいは、「情報要素」とは、2つ以上のIEのセットであってもよく、2つ以上のフィールドのセットであってもよく、1つ以上のIEと1つ以上のフィールドのセットであってもよい。あるいは、「情報要素」とは、その他のいずれかの情報であってもよい。本開示における「情報要素」という文言は単に「情報」という文言に置き換えられてもよい。 For example, in the present disclosure, an "information element" may be information defined as an information element (IE) in the 3GPP TS, or may be an individual content (i.e., field) of the IE. Good too. Alternatively, an "information element" may be a set of two or more IEs, a set of two or more fields, or a set of one or more IEs and one or more fields. It's okay. Alternatively, the "information element" may be any other information. The phrase "information element" in the present disclosure may be simply replaced with the phrase "information."
 例えば、本開示において、「送信する(transmit)」は、送信に使用されるプロトコルスタック内の少なくとも1つのレイヤの処理を行うことを意味してもよく、又は、無線又は有線で信号を物理的に送信することを意味してもよい。あるいは、「送信する」は、上記少なくとも1つのレイヤの処理を行うことと、無線又は有線で信号を物理的に送信することとの組合せを意味してもよい。同様に、「受信する(receive)」は、受信に使用されるプロトコルスタック内の少なくとも1つのレイヤの処理を行うことを意味してもよく、又は、無線又は有線で信号を物理的に受信することを意味してもよい。あるいは、「受信する」は、上記少なくとも1つのレイヤの処理を行うことと、無線又は有線で信号を物理的に受信することとの組合せを意味してもよい。上記少なくとも1つのレイヤは、少なくとも1つのプロトコルと言い換えられてもよい。 For example, in this disclosure, "transmit" may mean performing at least one layer of processing within a protocol stack used for transmission, or transmitting a signal wirelessly or by wire to a physical It may also mean sending to. Alternatively, "transmitting" may mean a combination of processing the at least one layer and physically transmitting the signal wirelessly or by wire. Similarly, "receive" may mean processing at least one layer within the protocol stack used for receiving, or physically receiving a signal, wirelessly or by wire. It can also mean that. Alternatively, "receiving" may mean a combination of processing the at least one layer and physically receiving the signal wirelessly or by wire. The at least one layer may be translated into at least one protocol.
 例えば、本開示において、「取得する(obtain/acquire)」は、記憶されている情報の中から情報を取得することを意味してもよく、他のノードから受信した情報の中から情報を取得することを意味してもよく、又は、情報を生成することにより当該情報を取得することを意味してもよい。 For example, in this disclosure, "obtain/acquire" may mean obtaining information from among stored information, or obtaining information from among information received from other nodes. It may also mean to obtain the information by generating the information.
 例えば、本開示において、「~を含む(include)」及び「~を備える(comprise)」は、列挙する項目のみを含むことを意味せず、列挙する項目のみを含んでもよいし、列挙する項目に加えてさらなる項目を含んでもよいことを意味する。 For example, in this disclosure, "include" and "comprise" do not mean including only the listed items, and may include only the listed items, or may include only the listed items, or This means that it may contain further items in addition to.
 例えば、本開示において、「又は(or)」は、排他的論理和を意味せず、論理和を意味する。 For example, in the present disclosure, "or" does not mean an exclusive OR, but a logical OR.
 なお、上述した実施形態に含まれる技術的特徴は、以下のような特徴として表現されてもよい。当然ながら、本開示は以下のような特徴に限定されない。 Note that the technical features included in the embodiments described above may be expressed as the following features. Of course, the present disclosure is not limited to the following features.
(特徴1)
 RRC(radio resource control)メッセージを取得する情報取得部(141)と、
 前記RRCメッセージをユーザ機器(user equipment)(200)へ送信する通信処理部(143)と、
を備え、
 前記ユーザ機器は、RedCap UE(reduced capability user equipment)であり、
 前記RRCメッセージは、
  前記ユーザ機器により使用される帯域幅部分(bandwidth part)(51、55)を示す第1の情報と、
  前記帯域幅部分内に設定される周波数帯域であって、前記ユーザ機器により使用される当該周波数帯域(53)を示す第2の情報と、
 を含む、
装置(100)。
(Feature 1)
an information acquisition unit (141) that acquires an RRC (radio resource control) message;
a communication processing unit (143) that transmits the RRC message to user equipment (200);
Equipped with
The user equipment is a RedCap UE (reduced capability user equipment),
The RRC message is
first information indicating a bandwidth part (51, 55) used by the user equipment;
second information indicating a frequency band (53) set within the bandwidth portion and used by the user equipment;
including,
Apparatus (100).
(特徴2)
 前記帯域幅部分は、RRC configred BWP(band width part)である、特徴1に記載の装置。
(Feature 2)
The apparatus according to feature 1, wherein the bandwidth part is an RRC configured BWP (band width part).
(特徴3)
 前記帯域幅部分は、前記ユーザ機器により使用されるダウンリンク帯域幅部分と、前記ユーザ機器により使用されるアップリンク帯域幅部分とを含み、
 前記周波数帯域は、前記ダウンリンク帯域幅部分内に設定されるダウンリンク周波数帯域であって、前記ユーザ機器により使用される当該ダウンリンク周波数帯域と、前記アップリンク帯域幅部分内に設定されるアップリンク周波数帯域であって、前記ユーザ機器により使用される当該アップリンク周波数帯域とを含む、
特徴1または2に記載の装置。
(Feature 3)
the bandwidth portion includes a downlink bandwidth portion used by the user equipment and an uplink bandwidth portion used by the user equipment;
The frequency band is a downlink frequency band configured within the downlink bandwidth portion, the downlink frequency band used by the user equipment and the uplink frequency band configured within the uplink bandwidth portion. a link frequency band, comprising an uplink frequency band used by the user equipment;
The device according to feature 1 or 2.
(特徴4)
 前記第1の情報は、前記ダウンリンク帯域幅部分を示す第1の情報要素と、前記アップリンク帯域幅部分を示す第2の情報要素とを含み、
 前記第2の情報は、前記ダウンリンク周波数帯域を示す第3の情報要素と、前記アップリンク周波数帯域を示す第4の情報要素とを含む、
特徴3に記載の装置。
(Feature 4)
The first information includes a first information element indicating the downlink bandwidth portion and a second information element indicating the uplink bandwidth portion,
The second information includes a third information element indicating the downlink frequency band and a fourth information element indicating the uplink frequency band.
The device according to feature 3.
(特徴5)
 前記周波数帯域は、物理共有チャネルの受信および送信の少なくとも一方のために前記ユーザ機器により使用される周波数帯域である、特徴1~3のいずれか1項に記載の装置。
(Feature 5)
4. The apparatus according to any one of features 1 to 3, wherein the frequency band is a frequency band used by the user equipment for at least one of receiving and transmitting a physical shared channel.
(特徴6)
 前記物理共有チャネルは、PDSCH(physical downlink shared channel)およびPUSCH(physical uplink shared channel)を含む、特徴5に記載の装置。
(Feature 6)
The apparatus according to feature 5, wherein the physical shared channel includes a physical downlink shared channel (PDSCH) and a physical uplink shared channel (PUSCH).
(特徴7)
 前記物理共有チャネルは、C-RNTI(cell radio network temporary identifier)、MCS-C-RNTI(modulation and coding scheme cell radio network temporary identifier)またはCS-RNTI(configured scheduling radio network temporary identifier)を用いてスケジューリングされる物理共有チャネルを含む、特徴5または6に記載の装置。
(Feature 7)
The physical shared channel is scheduled using C-RNTI (cell radio network temporary identifier), MCS-C-RNTI (modulation and coding scheme cell radio network temporary identifier) or CS-RNTI (configured scheduling radio network temporary identifier). 7. The apparatus of feature 5 or 6, comprising a physical shared channel.
(特徴8)
 前記帯域幅部分は、SI-RNTI(system information radio network temporary identifier)またはP-RNTI(paging radio network temporary identifier)を用いてスケジューリングされるPDSCH(physical downlink shared channel)の受信のために前記ユーザ機器によりさらに使用される帯域幅部分である、特徴7に記載の装置。
(Feature 8)
The bandwidth portion is used by the user equipment for reception of a physical downlink shared channel (PDSCH) that is scheduled using an SI-RNTI (system information radio network temporary identifier) or a P-RNTI (paging radio network temporary identifier). 8. The apparatus according to feature 7, wherein the bandwidth portion is further used.
(特徴9)
 前記帯域幅部分は、PDCCH(physical downlink control channel)の受信のために前記ユーザ機器により使用される帯域幅部分である、特徴1~8のいずれか1項に記載の装置。
(Feature 9)
The apparatus according to any one of the preceding features, wherein the bandwidth portion is a bandwidth portion used by the user equipment for reception of a physical downlink control channel (PDCCH).
(特徴10)
 前記帯域幅部分は、PUCCH(physical uplink control channel)の送信のために前記ユーザ機器により使用される帯域幅部分である、特徴1~9のいずれか1項に記載の装置。
(Feature 10)
The apparatus according to any one of the preceding features, wherein the bandwidth portion is a bandwidth portion used by the user equipment for transmission of a physical uplink control channel (PUCCH).
(特徴11)
 前記RRCメッセージは、前記帯域幅部分のための複数のタイプのサーチスペースを示す情報をさらに含み、
 前記複数のタイプのサーチスペースのうちの少なくとも1つのサーチスペースは、前記周波数帯域内の物理共有チャネルをスケジューリングするのに使用されるDCIの受信のために前記ユーザ機器によりモニタされるサーチスペースであり、
 前記複数のタイプのサーチスペースのうちの他のサーチスペースは、他のDCIの受信のために前記ユーザ機器によりモニタされるサーチスペースである、
特徴1~10のいずれか1項に記載の装置。
(Feature 11)
The RRC message further includes information indicating multiple types of search spaces for the bandwidth portion;
At least one search space of the plurality of types of search spaces is a search space monitored by the user equipment for reception of DCI used for scheduling physical shared channels within the frequency band. ,
Other search spaces of the plurality of types of search spaces are search spaces monitored by the user equipment for reception of other DCIs;
The device according to any one of features 1 to 10.
(特徴12)
 前記周波数帯域は、前記帯域幅部分よりも狭い、特徴1~11のいずれか1項に記載の装置。
(Feature 12)
12. The apparatus of any one of features 1-11, wherein the frequency band is narrower than the bandwidth portion.
(特徴13)
 前記周波数帯域は、450MHzから6000MHzの周波数レンジにおける5MHz以下の周波数帯域である、特徴12に記載の装置。
(Feature 13)
The device according to feature 12, wherein the frequency band is a frequency band of 5 MHz or less in a frequency range of 450 MHz to 6000 MHz.
(特徴14)
 前記周波数帯域のサブキャリア間隔は、前記帯域幅部分のサブキャリア間隔と同じである、特徴1~13のいずれか1項に記載の装置。
(Feature 14)
14. The apparatus according to any one of features 1 to 13, wherein the subcarrier spacing of the frequency band is the same as the subcarrier spacing of the bandwidth portion.
(特徴15)
 前記第2の情報は、前記第1の情報に含まれる、特徴1~14のいずれか1項に記載の装置。
(Feature 15)
The device according to any one of features 1 to 14, wherein the second information is included in the first information.
(特徴16)
 前記第1の情報は、前記帯域幅部分の位置および帯域幅を示すパラメータと、前記帯域幅部分のサブキャリア間隔を示すパラメータと、前記帯域幅部分のサイクリックプレフィクスを示すパラメータとを含む、特徴1~15のいずれか1項に記載の装置。
(Feature 16)
The first information includes a parameter indicating a position and a bandwidth of the bandwidth portion, a parameter indicating a subcarrier interval of the bandwidth portion, and a parameter indicating a cyclic prefix of the bandwidth portion. Apparatus according to any one of features 1 to 15.
(特徴17)
 前記RRCメッセージは、前記ユーザ機器により使用される2つ以上の帯域幅部分の各々について、前記第1の情報を含む、特徴1~16のいずれか1項に記載の装置。
(Feature 17)
17. The apparatus of any one of features 1-16, wherein the RRC message includes the first information for each of two or more bandwidth portions used by the user equipment.
(特徴18)
 前記第2の情報は、前記周波数帯域の位置および帯域幅を示すパラメータを含む、特徴1~17のいずれか1項に記載の装置。
(Feature 18)
18. The device according to any one of features 1 to 17, wherein the second information includes parameters indicating the position and bandwidth of the frequency band.
(特徴19)
 前記第2の情報は、前記周波数帯域のサブキャリア間隔を示すパラメータと、前記周波数帯域のサイクリックプレフィクスを示すパラメータとを含まない、特徴18に記載の装置。
(Feature 19)
19. The device according to feature 18, wherein the second information does not include a parameter indicating a subcarrier interval of the frequency band and a parameter indicating a cyclic prefix of the frequency band.
(特徴20)
 前記第2の情報は、前記周波数帯域のサブキャリア間隔を示すパラメータと、前記周波数帯域のサイクリックプレフィクスを示すパラメータとをさらに含む、特徴18に記載の装置。
(Feature 20)
19. The device according to feature 18, wherein the second information further includes a parameter indicating a subcarrier interval of the frequency band and a parameter indicating a cyclic prefix of the frequency band.
(特徴21)
 前記第1の情報は、前記帯域幅部分の位置および帯域幅を示すパラメータと、前記帯域幅部分のサブキャリア間隔を示すパラメータと、前記帯域幅部分のサイクリックプレフィクスを示すパラメータとを含み、
 前記周波数帯域の前記サブキャリア間隔は、前記帯域幅部分の前記サブキャリア間隔と同じであり、
 前記周波数帯域の前記サイクリックプレフィクスは、前記帯域幅部分の前記サイクリックプレフィクスと同じである、
特徴18~20のいずれか1項に記載の装置。
(Feature 21)
The first information includes a parameter indicating the position and bandwidth of the bandwidth portion, a parameter indicating a subcarrier interval of the bandwidth portion, and a parameter indicating a cyclic prefix of the bandwidth portion,
the subcarrier spacing of the frequency band is the same as the subcarrier spacing of the bandwidth portion;
the cyclic prefix of the frequency band is the same as the cyclic prefix of the bandwidth portion;
Apparatus according to any one of features 18 to 20.
(特徴22)
 前記第2の情報は、前記帯域幅部分の開始位置に対する前記周波数帯域の開始位置のオフセットと、前記周波数帯域の帯域幅とを示す、特徴1~17のいずれか1項に記載の装置。
(Feature 22)
18. The apparatus according to any one of features 1 to 17, wherein the second information indicates an offset of a starting position of the frequency band with respect to a starting position of the bandwidth portion and a bandwidth of the frequency band.
(特徴23)
 前記第2の情報は、前記オフセットに含まれるリソースブロックの数により前記オフセットを示し、前記周波数帯域に含まれるリソースブロックの数により前記周波数帯域の前記帯域幅を示す、特徴22に記載の装置。
(Feature 23)
23. The apparatus according to feature 22, wherein the second information indicates the offset by the number of resource blocks included in the offset and indicates the bandwidth of the frequency band by the number of resource blocks included in the frequency band.
(特徴24)
 前記オフセットと、前記周波数帯域の前記帯域幅は、前記周波数帯域のサブキャリア間隔に依存する、特徴23に記載の装置。
(Feature 24)
24. The apparatus of feature 23, wherein the offset and the bandwidth of the frequency band depend on subcarrier spacing of the frequency band.
(特徴25)
 前記帯域幅部分は、前記周波数帯域の候補である2つ以上の周波数帯域候補を含み、
 前記第2の情報は、前記2つ以上の周波数帯域候補のうちの1つを前記周波数帯域として示す、
特徴1~17のいずれか1項に記載の装置。
(Feature 25)
The bandwidth portion includes two or more frequency band candidates that are candidates for the frequency band,
the second information indicates one of the two or more frequency band candidates as the frequency band;
Apparatus according to any one of features 1 to 17.
(特徴26)
 前記帯域幅部分は、前記2つ以上の周波数帯域候補からなり、
 前記2つ以上の周波数帯域候補は、互いに重ならない、
特徴25に記載の装置。
(Feature 26)
The bandwidth portion consists of the two or more frequency band candidates,
the two or more frequency band candidates do not overlap with each other;
The device according to feature 25.
(特徴27)
 前記2つ以上の周波数帯域候補は、それぞれ異なる識別情報を有し、
 前記第2の情報は、前記2つ以上の周波数帯域候補のうちの1つの識別情報を含む、
特徴25または26に記載の装置。
(Feature 27)
The two or more frequency band candidates each have different identification information,
The second information includes identification information of one of the two or more frequency band candidates,
Apparatus according to feature 25 or 26.
(特徴28)
 前記2つ以上の周波数帯域候補は、前記帯域幅部分に対して予め定められている、特徴25~27のいずれか1項に記載の装置。
(Feature 28)
28. The apparatus according to any one of features 25-27, wherein the two or more frequency band candidates are predetermined for the bandwidth portion.
(特徴29)
 前記2つ以上の周波数帯域候補は、前記ユーザ機器の最大帯域幅に基づいて決定される、特徴25~27のいずれか1項に記載の装置。
(Feature 29)
28. The apparatus of any one of features 25-27, wherein the two or more frequency band candidates are determined based on a maximum bandwidth of the user equipment.
(特徴30)
 前記2つ以上の周波数帯域候補は、前記帯域幅部分のサブキャリア間隔にさらに基づいて決定される、特徴29に記載の装置。
(Feature 30)
30. The apparatus of feature 29, wherein the two or more frequency band candidates are determined further based on subcarrier spacing of the bandwidth portion.
(特徴31)
 前記2つ以上の周波数帯域候補は、前記RRCメッセージに含まれる情報に基づいて決定される、特徴25~27のいずれか1項に記載の装置。
(Feature 31)
28. The apparatus according to any one of features 25-27, wherein the two or more frequency band candidates are determined based on information included in the RRC message.
(特徴32)
 前記2つ以上の周波数帯域候補の各々は、前記ユーザ機器の最大帯域幅以下の帯域幅をもつ、特徴25~31のいずれか1項に記載の装置。
(Feature 32)
32. The apparatus of any one of features 25-31, wherein each of the two or more frequency band candidates has a bandwidth that is less than or equal to a maximum bandwidth of the user equipment.
(特徴33)
 前記2つ以上の周波数帯域候補は、同じ帯域幅をもつ1つ以上の周波数帯域候補と、当該1つ以上の周波数帯域候補とは異なる帯域幅をもつ1つの周波数帯域候補とを含む、特徴32に記載の装置。
(Feature 33)
Feature 32, wherein the two or more frequency band candidates include one or more frequency band candidates having the same bandwidth and one frequency band candidate having a different bandwidth from the one or more frequency band candidates. The device described in.
(特徴34)
 前記周波数帯域は、アクティブ化される周波数帯域である、特徴25~33のいずれか1項に記載の装置。
(Feature 34)
34. The apparatus according to any one of features 25-33, wherein the frequency band is an activated frequency band.
(特徴35)
 前記RRCメッセージは、前記帯域幅部分内に設定される2つ以上の周波数帯域であって、前記ユーザ機器により使用される当該2つ以上の周波数帯域の各々について、前記第2の情報を含む、特徴1~24のいずれか1項に記載の装置。
(Feature 35)
The RRC message includes the second information for each of the two or more frequency bands configured within the bandwidth portion and used by the user equipment. Apparatus according to any one of features 1 to 24.
(特徴36)
 前記第1の情報は、前記2つ以上の周波数帯域各々について前記第2の情報を含む、特徴35に記載の装置。
(Feature 36)
36. The apparatus of feature 35, wherein the first information includes the second information for each of the two or more frequency bands.
(特徴37)
 前記RRCメッセージは、前記2つ以上の周波数帯域のうちのアクティブ化される周波数帯域を示す情報をさらに含む、特徴35または36に記載の装置。
(Feature 37)
37. The apparatus of feature 35 or 36, wherein the RRC message further includes information indicating a frequency band to be activated of the two or more frequency bands.
(特徴38)
 前記ユーザ機器により使用される2つ以上の周波数帯域が、前記帯域幅部分内に設定され、
 前記通信処理部は、前記2つ以上の周波数帯域のうちのアクティブな周波数帯域を切り替えるための切替え情報を、前記ユーザ機器へ送信する、
特徴1~37のいずれか1項に記載の装置。
(Feature 38)
two or more frequency bands used by the user equipment are configured within the bandwidth portion;
The communication processing unit transmits switching information for switching an active frequency band among the two or more frequency bands to the user equipment.
Apparatus according to any one of features 1 to 37.
(特徴39)
 前記切替え情報は、前記2つ以上の周波数帯域のうちのアクティブ化される周波数帯域を示す、特徴38に記載の装置。
(Feature 39)
39. The apparatus of feature 38, wherein the switching information indicates a frequency band to be activated of the two or more frequency bands.
(特徴40)
 前記通信処理部は、前記切替え情報を含むDCI(downlink control information)を前記ユーザ機器へ送信する、特徴39に記載の装置。
(Feature 40)
The device according to feature 39, wherein the communication processing unit transmits downlink control information (DCI) including the switching information to the user equipment.
(特徴41)
 前記通信処理部は、前記切替え情報を含むRRCメッセージを前記ユーザ機器へさらに送信する、特徴39に記載の装置。
(Feature 41)
40. The apparatus according to feature 39, wherein the communication processing unit further transmits an RRC message including the switching information to the user equipment.
(特徴42)
 前記切替え情報は、前記2つ以上の周波数帯域のうちの、タイマの満了に応じてアクティブな周波数帯域になるデフォルトの周波数帯域を示し、
 前記RRCメッセージは、前記切替え情報と、前記タイマの期間を示すタイマ情報とをさらに含む、
特徴38に記載の装置。
(Feature 42)
The switching information indicates a default frequency band among the two or more frequency bands that becomes an active frequency band upon expiration of a timer;
The RRC message further includes the switching information and timer information indicating a period of the timer.
Apparatus according to feature 38.
(特徴43)
 前記RRCメッセージは、RRC Reconfigurationメッセージである、特徴1~42のいずれか1項に記載の装置。
(Feature 43)
43. The apparatus according to any one of features 1-42, wherein the RRC message is an RRC Reconfiguration message.
(特徴44)
 前記RRCメッセージは、ターゲット基地局への前記ユーザ機器のハンドオーバのためのRRCメッセージであり、
 前記帯域幅部分は、前記ターゲット基地局と通信するための帯域幅部分である、
特徴1~43のいずれか1項に記載の装置。
(Feature 44)
the RRC message is an RRC message for handover of the user equipment to a target base station;
the bandwidth portion is a bandwidth portion for communicating with the target base station;
Apparatus according to any one of features 1 to 43.
(特徴45)
 前記RRCメッセージは、ReconfigurationWithSyncを含むRRC Reconfigurationメッセージである、特徴44に記載の装置。
(Feature 45)
45. The apparatus of feature 44, wherein the RRC message is an RRC Reconfiguration message that includes ReconfigurationWithSync.
(特徴46)
 前記RedCap UEは、450MHzから6000MHzの周波数レンジについて最大帯域幅が20MHzである第1のタイプのRedCap UEよりもさらに低減されたケイパビリティをもつ第2のタイプのRedCap UEである、特徴1~45のいずれか1項に記載の装置。
(Feature 46)
Features 1 to 45, wherein the RedCap UE is a second type of RedCap UE with further reduced capabilities than the first type of RedCap UE with a maximum bandwidth of 20MHz for a frequency range of 450MHz to 6000MHz. The device according to any one of the items.
(特徴47)
 前記第2のタイプのRedCap UEのピークデータレートは、前記第1のタイプのRedCap UEのピークデータレートよりも低い、特徴46に記載の装置。
(Feature 47)
47. The apparatus of feature 46, wherein a peak data rate of the second type of RedCap UE is lower than a peak data rate of the first type of RedCap UE.
(特徴48)
 前記装置は、基地局、または、基地局のためのモジュールである、特徴1~47のいずれか1項に記載の装置。
(Feature 48)
48. The apparatus according to any one of features 1-47, wherein the apparatus is a base station or a module for a base station.
(特徴49)
 基地局(100)により送信されるRRC(radio resource control)メッセージを受信する通信処理部(233)と、
 前記RRCメッセージに含まれる第1の情報および第2の情報を取得する情報取得部(231)と、
を備え、
 前記第1の情報は、ユーザ機器(200)により使用される帯域幅部分(bandwidth part)(51、55)を示し、
 前記第2の情報は、前記帯域幅部分内に設定される周波数帯域であって、前記ユーザ機器により使用される当該周波数帯域(53)を示し、
 前記ユーザ機器は、RedCap UE(reduced capability user equipment)である、
装置(200)。
(Feature 49)
a communication processing unit (233) that receives an RRC (radio resource control) message transmitted by the base station (100);
an information acquisition unit (231) that acquires first information and second information included in the RRC message;
Equipped with
the first information indicates a bandwidth part (51, 55) used by the user equipment (200);
The second information indicates a frequency band (53) set within the bandwidth portion and used by the user equipment;
The user equipment is a RedCap UE (reduced capability user equipment).
Device (200).
(特徴50)
 前記通信処理部は、前記帯域幅部分および前記周波数帯域を使用して前記基地局と通信する、特徴49に記載の装置。
(Feature 50)
50. The apparatus according to feature 49, wherein the communication processing unit communicates with the base station using the bandwidth portion and the frequency band.
(特徴51)
 前記通信処理部は、前記周波数帯域を使用して物理共有チャネルを受信しまたは送信する、特徴50に記載の装置。
(Feature 51)
51. The apparatus of feature 50, wherein the communication processing unit receives or transmits a physical shared channel using the frequency band.
(特徴52)
 前記物理共有チャネルは、PDSCH(physical downlink shared channel)およびPUSCH(physical uplink shared channel)を含む、特徴51に記載の装置。
(Feature 52)
52. The apparatus of feature 51, wherein the physical shared channel includes a physical downlink shared channel (PDSCH) and a physical uplink shared channel (PUSCH).
(特徴53)
 前記物理共有チャネルは、C-RNTI(cell radio network temporary identifier)、MCS-C-RNTI(modulation and coding scheme cell radio network temporary identifier)またはCS-RNTI(configured scheduling radio network temporary identifier)を用いてスケジューリングされる物理共有チャネルを含む、特徴51または52に記載の装置。
(Feature 53)
The physical shared channel is scheduled using C-RNTI (cell radio network temporary identifier), MCS-C-RNTI (modulation and coding scheme cell radio network temporary identifier) or CS-RNTI (configured scheduling radio network temporary identifier). 53. The apparatus of feature 51 or 52, comprising a physical shared channel.
(特徴54)
 前記通信処理部は、前記帯域幅部分を使用して、SI-RNTI(system information radio network temporary identifier)またはP-RNTI(paging radio network temporary identifier)を用いてスケジューリングされるPDSCH(physical downlink shared channel)を受信する、特徴53に記載の装置。
(Feature 54)
The communication processing unit uses the bandwidth portion to create a PDSCH (physical downlink shared channel) scheduled using an SI-RNTI (system information radio network temporary identifier) or a P-RNTI (paging radio network temporary identifier). 54. The apparatus according to feature 53, wherein the apparatus receives:
(特徴55)
 前記通信処理部は、前記帯域幅部分を使用して、PDCCH(physical downlink control channel)を受信する、特徴50~54のいずれか1項に記載の装置。
(Feature 55)
55. The apparatus according to any one of features 50 to 54, wherein the communication processing unit receives a PDCCH (physical downlink control channel) using the bandwidth portion.
(特徴56)
 前記通信処理部は、前記帯域幅部分を使用して、PUCCH(physical uplink control channel)を送信する、特徴50~55のいずれか1項に記載の装置。
(Feature 56)
56. The apparatus according to any one of features 50 to 55, wherein the communication processing unit uses the bandwidth portion to transmit a PUCCH (physical uplink control channel).
(特徴57)
 前記装置は、前記ユーザ機器、または、前記ユーザ機器のためのモジュールである、特徴49~56のいずれか1項に記載の装置。
(Feature 57)
57. The apparatus according to any one of features 49-56, wherein the apparatus is the user equipment or a module for the user equipment.
(特徴58)
 基地局(100)により行われる方法であって、
 RRC(radio resource control)メッセージを取得することと、
 前記RRCメッセージをユーザ機器(user equipment)(200)へ送信することと、
を含み、
 前記ユーザ機器は、RedCap UE(reduced capability user equipment)であり、
 前記RRCメッセージは、
  前記ユーザ機器により使用される帯域幅部分(bandwidth part)(51、55)を示す第1の情報と、
  前記帯域幅部分内に設定される周波数帯域であって、前記ユーザ機器により使用される当該周波数帯域(53)を示す第2の情報と、
 を含む、
方法。
(Feature 58)
A method performed by a base station (100), comprising:
Obtaining an RRC (radio resource control) message;
sending the RRC message to user equipment (200);
including;
The user equipment is a RedCap UE (reduced capability user equipment),
The RRC message is
first information indicating a bandwidth part (51, 55) used by the user equipment;
second information indicating a frequency band (53) set within the bandwidth portion and used by the user equipment;
including,
Method.
(特徴59)
 ユーザ機器(200)により行われる方法であって、
 基地局(100)により送信されるRRC(radio resource control)メッセージを受信することと、
 前記RRCメッセージに含まれる第1の情報および第2の情報を取得することと、
を含み、
 前記第1の情報は、前記ユーザ機器により使用される帯域幅部分(bandwidth part)(51、55)を示し、
 前記第2の情報は、前記帯域幅部分内に設定される周波数帯域であって、前記ユーザ機器により使用される当該周波数帯域(53)を示し、
 前記ユーザ機器は、RedCap UE(reduced capability user equipment)である、
方法。
(Feature 59)
A method performed by user equipment (200), comprising:
receiving an RRC (radio resource control) message transmitted by a base station (100);
obtaining first information and second information included in the RRC message;
including;
the first information indicates a bandwidth part (51, 55) used by the user equipment;
The second information indicates a frequency band (53) set within the bandwidth portion and used by the user equipment;
The user equipment is a RedCap UE (reduced capability user equipment).
Method.
(特徴60)
 RRC(radio resource control)メッセージを取得することと、
 前記RRCメッセージをユーザ機器(user equipment)(200)へ送信することと、
をコンピュータに実行させるプログラムであって、
 前記ユーザ機器は、RedCap UE(reduced capability user equipment)であり、
 前記RRCメッセージは、
  前記ユーザ機器により使用される帯域幅部分(bandwidth part)(51、55)を示す第1の情報と、
  前記帯域幅部分内に設定される周波数帯域であって、前記ユーザ機器により使用される当該周波数帯域(53)を示す第2の情報と、
 を含む、
プログラム。
(Feature 60)
Obtaining an RRC (radio resource control) message;
sending the RRC message to user equipment (200);
A program that causes a computer to execute
The user equipment is a RedCap UE (reduced capability user equipment),
The RRC message is
first information indicating a bandwidth part (51, 55) used by the user equipment;
second information indicating a frequency band (53) set within the bandwidth portion and used by the user equipment;
including,
program.
(特徴61)
 基地局(100)により送信されるRRC(radio resource control)メッセージを受信することと、
 前記RRCメッセージに含まれる第1の情報および第2の情報を取得することと、
をコンピュータに実行させるプログラムであって、
 前記第1の情報は、ユーザ機器(200)により使用される帯域幅部分(bandwidth part)(51、55)を示し、
 前記第2の情報は、前記帯域幅部分内に設定される周波数帯域であって、前記ユーザ機器により使用される当該周波数帯域(53)を示し、
 前記ユーザ機器は、RedCap UE(reduced capability user equipment)である、
プログラム。
(Feature 61)
receiving an RRC (radio resource control) message transmitted by a base station (100);
obtaining first information and second information included in the RRC message;
A program that causes a computer to execute
the first information indicates a bandwidth part (51, 55) used by the user equipment (200);
The second information indicates a frequency band (53) set within the bandwidth portion and used by the user equipment;
The user equipment is a RedCap UE (reduced capability user equipment).
program.
(特徴62)
 RRC(radio resource control)メッセージを取得することと、
 前記RRCメッセージをユーザ機器(user equipment)(200)へ送信することと、
をコンピュータに実行させるプログラムを記録したコンピュータに読み取り可能な非遷移的実体的記録媒体であって、
 前記ユーザ機器は、RedCap UE(reduced capability user equipment)であり、
 前記RRCメッセージは、
  前記ユーザ機器により使用される帯域幅部分(bandwidth part)(51、55)を示す第1の情報と、
  前記帯域幅部分内に設定される周波数帯域であって、前記ユーザ機器により使用される当該周波数帯域(53)を示す第2の情報と、
 を含む、
コンピュータに読み取り可能な非遷移的実体的記録媒体。
(Feature 62)
Obtaining an RRC (radio resource control) message;
sending the RRC message to user equipment (200);
A computer-readable non-transitional physical recording medium that records a program that causes a computer to execute,
The user equipment is a RedCap UE (reduced capability user equipment),
The RRC message is
first information indicating a bandwidth part (51, 55) used by the user equipment;
second information indicating a frequency band (53) set within the bandwidth portion and used by the user equipment;
including,
A computer-readable non-transitory physical recording medium.
(特徴63)
 基地局(100)により送信されるRRC(radio resource control)メッセージを受信することと、
 前記RRCメッセージに含まれる第1の情報および第2の情報を取得することと、
をコンピュータに実行させるプログラムを記録したコンピュータに読み取り可能な非遷移的実体的記録媒体であって、
 前記第1の情報は、ユーザ機器(200)により使用される帯域幅部分(bandwidth part)(51、55)を示し、
 前記第2の情報は、前記帯域幅部分内に設定される周波数帯域であって、前記ユーザ機器により使用される当該周波数帯域(53)を示し、
 前記ユーザ機器は、RedCap UE(reduced capability user equipment)である、
コンピュータに読み取り可能な非遷移的実体的記録媒体。
 
(Feature 63)
receiving an RRC (radio resource control) message transmitted by a base station (100);
obtaining first information and second information included in the RRC message;
A computer-readable non-transitional physical recording medium that records a program that causes a computer to execute,
the first information indicates a bandwidth part (51, 55) used by the user equipment (200);
The second information indicates a frequency band (53) set within the bandwidth portion and used by the user equipment;
The user equipment is a RedCap UE (reduced capability user equipment).
A computer-readable non-transitory physical recording medium.

Claims (15)

  1.  RRC(radio resource control)メッセージを取得する情報取得部(141)と、
     前記RRCメッセージをユーザ機器(user equipment)(200)へ送信する通信処理部(143)と、
    を備え、
     前記ユーザ機器は、RedCap UE(reduced capability user equipment)であり、
     前記RRCメッセージは、
      前記ユーザ機器により使用される帯域幅部分(bandwidth part)(51、55)を示す第1の情報と、
      前記帯域幅部分内に設定される周波数帯域であって、前記ユーザ機器により使用される当該周波数帯域(53)を示す第2の情報と、
     を含む、
    装置(100)。
    an information acquisition unit (141) that acquires an RRC (radio resource control) message;
    a communication processing unit (143) that transmits the RRC message to user equipment (200);
    Equipped with
    The user equipment is a RedCap UE (reduced capability user equipment),
    The RRC message is
    first information indicating a bandwidth part (51, 55) used by the user equipment;
    second information indicating a frequency band (53) set within the bandwidth portion and used by the user equipment;
    including,
    Apparatus (100).
  2.  前記帯域幅部分は、前記ユーザ機器により使用されるダウンリンク帯域幅部分と、前記ユーザ機器により使用されるアップリンク帯域幅部分とを含み、
     前記周波数帯域は、前記ダウンリンク帯域幅部分内に設定されるダウンリンク周波数帯域であって、前記ユーザ機器により使用される当該ダウンリンク周波数帯域と、前記アップリンク帯域幅部分内に設定されるアップリンク周波数帯域であって、前記ユーザ機器により使用される当該アップリンク周波数帯域とを含む、
    請求項1に記載の装置。
    the bandwidth portion includes a downlink bandwidth portion used by the user equipment and an uplink bandwidth portion used by the user equipment;
    The frequency band is a downlink frequency band configured within the downlink bandwidth portion, the downlink frequency band used by the user equipment and the uplink frequency band configured within the uplink bandwidth portion. a link frequency band, comprising an uplink frequency band used by the user equipment;
    The device according to claim 1.
  3.  前記周波数帯域は、物理共有チャネルの受信および送信の少なくとも一方のために前記ユーザ機器により使用される周波数帯域である、請求項1または2に記載の装置。 3. The apparatus of claim 1 or 2, wherein the frequency band is a frequency band used by the user equipment for at least one of receiving and transmitting a physical shared channel.
  4.  前記物理共有チャネルは、C-RNTI(cell radio network temporary identifier)、MCS-C-RNTI(modulation and coding scheme cell radio network temporary identifier)またはCS-RNTI(configured scheduling radio network temporary identifier)を用いてスケジューリングされる物理共有チャネルを含む、請求項3に記載の装置。 The physical shared channel may be C-RNTI (cell radio network temporary identifier), MCS-C-RNTI (modulation and coding scheme cell radio network temporary identifier) or CS-RNTI (configured scheduling radio network temporary identifier). identifier) 4. The apparatus of claim 3, comprising a physical shared channel.
  5.  前記帯域幅部分は、SI-RNTI(system information radio network temporary identifier)またはP-RNTI(paging radio network temporary identifier)を用いてスケジューリングされるPDSCH(physical downlink shared channel)の受信のために前記ユーザ機器によりさらに使用される帯域幅部分である、請求項4に記載の装置。 The bandwidth portion is used by the user equipment for reception of a PDSCH (physical downlink shared channel) scheduled using an SI-RNTI (system information radio network temporary identifier) or a P-RNTI (paging radio network temporary identifier). 5. The apparatus according to claim 4, further comprising a used bandwidth portion.
  6.  前記第2の情報は、前記第1の情報に含まれる、請求項1または2に記載の装置。 The apparatus according to claim 1 or 2, wherein the second information is included in the first information.
  7.  前記第2の情報は、前記周波数帯域の位置および帯域幅を示すパラメータを含む、請求項1または2に記載の装置。 The apparatus according to claim 1 or 2, wherein the second information includes parameters indicating the position and bandwidth of the frequency band.
  8.  前記第2の情報は、前記帯域幅部分の開始位置に対する前記周波数帯域の開始位置のオフセットと、前記周波数帯域の帯域幅とを示す、請求項1または2に記載の装置。 The apparatus according to claim 1 or 2, wherein the second information indicates an offset of a starting position of the frequency band with respect to a starting position of the bandwidth portion and a bandwidth of the frequency band.
  9.  前記帯域幅部分は、前記周波数帯域の候補である2つ以上の周波数帯域候補を含み、
     前記第2の情報は、前記2つ以上の周波数帯域候補のうちの1つを前記周波数帯域として示す、
    請求項1または2に記載の装置。
    The bandwidth portion includes two or more frequency band candidates that are candidates for the frequency band,
    the second information indicates one of the two or more frequency band candidates as the frequency band;
    Apparatus according to claim 1 or 2.
  10.  前記2つ以上の周波数帯域候補は、前記帯域幅部分に対して予め定められている、請求項9に記載の装置。 The apparatus according to claim 9, wherein the two or more frequency band candidates are predetermined for the bandwidth portion.
  11.  前記2つ以上の周波数帯域候補は、前記ユーザ機器の最大帯域幅に基づいて決定される、請求項9に記載の装置。 The apparatus of claim 9, wherein the two or more frequency band candidates are determined based on a maximum bandwidth of the user equipment.
  12.  前記ユーザ機器により使用される2つ以上の周波数帯域が、前記帯域幅部分内に設定され、
     前記通信処理部は、前記2つ以上の周波数帯域のうちのアクティブな周波数帯域を切り替えるための切替え情報を、前記ユーザ機器へ送信する、
    請求項1または2に記載の装置。
    two or more frequency bands used by the user equipment are configured within the bandwidth portion;
    The communication processing unit transmits switching information for switching an active frequency band among the two or more frequency bands to the user equipment.
    Apparatus according to claim 1 or 2.
  13.  前記RRCメッセージは、ターゲット基地局への前記ユーザ機器のハンドオーバのためのRRCメッセージであり、
     前記帯域幅部分は、前記ターゲット基地局と通信するための帯域幅部分である、
    請求項1または2に記載の装置。
    the RRC message is an RRC message for handover of the user equipment to a target base station;
    the bandwidth portion is a bandwidth portion for communicating with the target base station;
    Apparatus according to claim 1 or 2.
  14.  基地局(100)により送信されるRRC(radio resource control)メッセージを受信する通信処理部(233)と、
     前記RRCメッセージに含まれる第1の情報および第2の情報を取得する情報取得部(231)と、
    を備え、
     前記第1の情報は、ユーザ機器(200)により使用される帯域幅部分(bandwidth part)(51、55)を示し、
     前記第2の情報は、前記帯域幅部分内に設定される周波数帯域であって、前記ユーザ機器により使用される当該周波数帯域(53)を示し、
     前記ユーザ機器は、RedCap UE(reduced capability user equipment)である、
    装置(200)。
    a communication processing unit (233) that receives an RRC (radio resource control) message transmitted by the base station (100);
    an information acquisition unit (231) that acquires first information and second information included in the RRC message;
    Equipped with
    the first information indicates a bandwidth part (51, 55) used by the user equipment (200);
    The second information indicates a frequency band (53) set within the bandwidth portion and used by the user equipment,
    The user equipment is a RedCap UE (reduced capability user equipment).
    Device (200).
  15.  基地局(100)により行われる方法であって、
     RRC(radio resource control)メッセージを取得することと、
     前記RRCメッセージをユーザ機器(user equipment)(200)へ送信することと、
    を含み、
     前記ユーザ機器は、RedCap UE(reduced capability user equipment)であり、
     前記RRCメッセージは、
      前記ユーザ機器により使用される帯域幅部分(bandwidth part)(51、55)を示す第1の情報と、
      前記帯域幅部分内に設定される周波数帯域であって、前記ユーザ機器により使用される当該周波数帯域(53)を示す第2の情報と、
     を含む、
    方法。
     
    A method performed by a base station (100), comprising:
    Obtaining an RRC (radio resource control) message;
    sending the RRC message to user equipment (200);
    including;
    The user equipment is a RedCap UE (reduced capability user equipment),
    The RRC message is
    first information indicating a bandwidth part (51, 55) used by the user equipment;
    second information indicating a frequency band (53) set within the bandwidth portion and used by the user equipment;
    including,
    Method.
PCT/JP2023/027846 2022-07-29 2023-07-28 Device and method WO2024024969A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-122257 2022-07-29
JP2022122257 2022-07-29

Publications (1)

Publication Number Publication Date
WO2024024969A1 true WO2024024969A1 (en) 2024-02-01

Family

ID=89706725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027846 WO2024024969A1 (en) 2022-07-29 2023-07-28 Device and method

Country Status (1)

Country Link
WO (1) WO2024024969A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021161622A1 (en) * 2020-02-13 2021-08-19 日本電気株式会社 Ran node, ue, and method for same
WO2022031062A1 (en) * 2020-08-04 2022-02-10 주식회사 윌러스표준기술연구소 Method, apparatus, and system for initial cell access in wireless communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021161622A1 (en) * 2020-02-13 2021-08-19 日本電気株式会社 Ran node, ue, and method for same
WO2022031062A1 (en) * 2020-08-04 2022-02-10 주식회사 윌러스표준기술연구소 Method, apparatus, and system for initial cell access in wireless communication system

Similar Documents

Publication Publication Date Title
US20230164781A1 (en) Method and apparatus for transmitting and receiving signal for wireless communication
EP3893568A1 (en) User equipment and base station involved in paging
CN108289335B (en) Data transmission method and device and terminal
AU2018284889B2 (en) Bandwidth resource configuration method, apparatus, and system
EP3772231A1 (en) User equipment and base station performing transmission and reception operations
WO2012097696A1 (en) Random access method, user equipment and network equipment
CN114175558B (en) User equipment, base station and method
CN114450915A (en) User equipment, base station and method
CN115380599A (en) Terminal device, base station device, and communication method
EP3451720A1 (en) Identification management method, device, and system
WO2017206056A1 (en) Unlicensed band-based communication method, and related device and system
EP3823413A1 (en) User equipment, scheduling node, method for user equipment, and method for scheduling node for determining a target bwp
WO2024024969A1 (en) Device and method
WO2024024968A1 (en) Device and method
US20230023825A1 (en) Terminal apparatus, base station apparatus, and communication method
CN114175562B (en) User equipment, base station apparatus and method
WO2024024970A1 (en) Device and method
CN116057983A (en) Method and apparatus for enhanced recovery protection
WO2019244609A1 (en) Terminal device, base station apparatus, method, and integrated circuit
WO2024070599A1 (en) Terminal and base station
WO2023238686A1 (en) Communication device, base station, and communication method
WO2023238689A1 (en) Communication device, base station, and communication method
WO2023238688A1 (en) Communication device and communication method
WO2024095679A1 (en) Terminal, base station, and communication method
EP4351253A1 (en) Signal transmission and reception method for wireless communication and device therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846699

Country of ref document: EP

Kind code of ref document: A1