WO2024024842A1 - Laminate manufacturing method - Google Patents

Laminate manufacturing method Download PDF

Info

Publication number
WO2024024842A1
WO2024024842A1 PCT/JP2023/027400 JP2023027400W WO2024024842A1 WO 2024024842 A1 WO2024024842 A1 WO 2024024842A1 JP 2023027400 W JP2023027400 W JP 2023027400W WO 2024024842 A1 WO2024024842 A1 WO 2024024842A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
photosensitive layer
layer
meth
mass
Prior art date
Application number
PCT/JP2023/027400
Other languages
French (fr)
Japanese (ja)
Inventor
健太郎 豊岡
正弥 鈴木
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2024024842A1 publication Critical patent/WO2024024842A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/095Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having more than one photosensitive layer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/38Treatment before imagewise removal, e.g. prebaking

Definitions

  • the present invention relates to a method for manufacturing a laminate.
  • Patent Document 1 discloses a micro LED mounting method and a micro LED display using laser lift-off.
  • the present inventors made a laminate in which a plurality of light emitting elements (e.g., micro LED chips) are arranged on a substrate, with reference to the micro LED display of Patent Document 1, and examined its performance. It has been revealed that display performance may deteriorate due to light leakage from light emitting elements. For example, when a pixel is configured with light emitting elements that emit red (R), green (G), and blue (B), color mixing of light may occur due to light leakage from adjacent light emitting elements. This may cause the desired display to fail. Based on the above findings, the present inventors have clarified that there is room to study a method for manufacturing a laminate including a plurality of light emitting elements in which light leakage from adjacent light emitting elements is suppressed. In addition, in the method for manufacturing a laminate, it is usually required that the manufacturing time is short (in other words, it can be manufactured efficiently).
  • the manufacturing time is short (in other words, it can be manufactured efficiently).
  • an object of the present invention is to provide a method for manufacturing a laminate, which can efficiently manufacture a laminate including a plurality of light emitting elements in which light leakage from adjacent light emitting elements is suppressed.
  • a method for manufacturing a laminate comprising a step of peeling off the temporary support between the step 1 and the step 2, or between the step 2 and the step 3.
  • the photosensitive layer in the transfer film has, in order from the temporary support side, a photosensitive light-absorbing layer precursor layer and a photosensitive light-reflecting layer precursor layer, [1] to [ 7]
  • the method for producing a laminate according to any one of [1] to [7] wherein the photosensitive layer in the transfer film is a photosensitive light-absorbing layer precursor layer.
  • the present invention it is possible to provide a method for manufacturing a laminate, which can efficiently manufacture a laminate including a plurality of light emitting elements in which light leakage from adjacent light emitting elements is suppressed.
  • FIG. 2 is a schematic diagram for explaining step (1-1).
  • FIG. 2 is a schematic diagram for explaining step (1-2).
  • FIG. 3 is a schematic diagram for explaining step (1-3). It is a schematic diagram for explaining the structure of a transfer film. It is a schematic diagram for explaining the structure of a transfer film.
  • FIG. 3 is a schematic diagram for explaining step (2-4).
  • a numerical range expressed using " ⁇ " means a range that includes the numerical values written before and after " ⁇ " as lower and upper limits.
  • the upper limit or lower limit of a certain numerical range may be replaced with the upper or lower limit of another numerical range described in stages.
  • the upper limit or lower limit value described in a certain numerical range may be replaced with the value shown in the Examples.
  • process is used not only to refer to an independent process, but also to include it in the term even if the process cannot be clearly distinguished from other processes, as long as the intended purpose of the process is achieved. .
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) refer to columns such as TSKgel GMHxL, TSKgel G4000HxL, or TSKgel G2000HxL (all products manufactured by Tosoh Corporation). (name), THF (tetrahydrofuran) as the eluent, a differential refractometer as the detector, and polystyrene as the standard substance. Values converted using polystyrene as the standard substance, measured with a gel permeation chromatography (GPC) analyzer. It is.
  • GPC gel permeation chromatography
  • the molecular weight of a compound having a molecular weight distribution is a weight average molecular weight (Mw).
  • Mw weight average molecular weight
  • the content of metal elements is a value measured using an inductively coupled plasma (ICP) spectrometer.
  • hue is a value measured using a color difference meter (CR-221, manufactured by Minolta Corporation).
  • (meth)acrylic is a concept that includes both acrylic and methacrylic
  • (meth)acryloyl is a concept that includes both acryloyl and methacryloyl
  • (meth)acrylate is a concept that includes both acryloyl and methacryloyl.
  • is a concept that includes both acrylates and methacrylates.
  • alkali-soluble means that the solubility in 100 g of a 1% by mass sodium carbonate aqueous solution at a liquid temperature of 22° C. is 0.1 g or more. Therefore, for example, an alkali-soluble resin is intended to be a resin that satisfies the above-mentioned solubility conditions.
  • water-soluble means that the solubility in 100 g of water at pH 7.0 and a liquid temperature of 22° C. is 0.1 g or more. Therefore, for example, water-soluble resin is intended to be a resin that satisfies the above-mentioned solubility conditions.
  • solid content of a composition refers to components that form a composition layer formed using the composition, and when the composition contains a solvent (organic solvent, water, etc.), the means all ingredients except.
  • liquid components are also considered solid components as long as they form a composition layer.
  • transparent means that the average transmittance of visible light with a wavelength of 400 to 700 nm is 80% or more, preferably 90% or more. Therefore, the term “transparent layer” means a layer having an average transmittance of 80% or more for visible light with a wavelength of 400 to 700 nm.
  • the average transmittance is measured by measuring straight transmitted light every 1 nm. In this specification, the average transmittance of visible light is a value measured at 25° C. using a spectrophotometer, and can be measured using, for example, a spectrophotometer U-3310 manufactured by Hitachi, Ltd.
  • the thickness of each layer is determined by measuring a cross section cut with a microtome using an SEM (scanning method). This value is the average value of the thicknesses measured at 10 points when observed with an electron microscope) or a TEM (transmission electron microscope). However, those with a thickness of 1 ⁇ m or more were measured using SEM, and those with a thickness of less than 1 ⁇ m were measured using TEM.
  • the refractive index is intended to be the refractive index at a wavelength of 550 nm, measured at 25° C. based on a measuring device based on the ellipsometry method.
  • the method for manufacturing a laminate of the present invention includes: A surface on the light emitting element side of a substrate with a light emitting element that includes a substrate and a plurality of light emitting elements arranged on the substrate, and a side opposite to the temporary support of a transfer film that includes a temporary support and a photosensitive layer.
  • the method includes a step of peeling off the temporary support between the step 1 and the step 2, or between the step 2 and the step 3.
  • a substrate with a light emitting element on which a plurality of light emitting elements are arranged is formed by lithography using a transfer film, and a periphery of each light emitting element on the substrate with a light emitting element. It is possible to efficiently manufacture a laminate including a partition wall layer disposed in the laminate. Since the laminate obtained by the above manufacturing method includes a partition layer around each light emitting element, light leakage from adjacent light emitting elements is suppressed.
  • the method for producing a laminate of the present invention includes forming a partition layer in advance at a position where a light emitting element is to be placed on a substrate (that is, an opening is formed at a position where a light emitting element is to be placed on a substrate), for example, by lithography using a transfer film.
  • a resin pattern is formed (with a resin pattern) and a light emitting element is then placed at a predetermined position
  • the manufacturing time can be significantly shortened.
  • Applications of the laminate obtained by the laminate manufacturing method of the present invention include, for example, micro LED display elements.
  • the laminate obtained by the laminate manufacturing method of the present invention in the laminate obtained by the laminate manufacturing method of the present invention, light leakage from adjacent light emitting elements can be further suppressed, and/or the efficiency of the laminate manufacturing method of the present invention is better. is sometimes referred to as "the effect of the present invention is better".
  • first embodiment of the method for manufacturing a laminate of the present invention includes the following steps (1-1) to (1-3).
  • Step (1-1) (bonding step): The surface of the light emitting element side of the light emitting element-equipped substrate, which includes a substrate and a plurality of light emitting elements arranged on the substrate, the temporary support and the photosensitive layer. A step of laminating the light emitting element-equipped substrate and the transfer film so that the surface of the transfer film opposite to the temporary support faces each other and the light emitting element is covered with the photosensitive layer.
  • Step (1-2) exposure step: Step of exposing the photosensitive layer to pattern light
  • Step (1-3) developing step: Developing the exposed photosensitive layer to form the light emitting element
  • the first embodiment of the present invention includes step (1-1) and step (1-2), or step (1-2) and step The following step (1-A) is included between (1-3).
  • Step (1-A) temporary support peeling step: Step of peeling off the temporary support.
  • Step (1-1) is to transfer the surface of the light-emitting element-equipped substrate, which includes a substrate and a plurality of light-emitting elements arranged on the substrate, on the light-emitting element side, and the transfer film, which includes a temporary support and a photosensitive layer.
  • This is a step of laminating the light-emitting element-equipped substrate and the transfer film so that the surfaces opposite to the temporary support face each other and the light-emitting element is covered with the photosensitive layer.
  • the specific procedure of step (1-1) will be explained with reference to FIG.
  • step (1-1) the light-emitting element-equipped substrate 10 and the transfer film 20 are transferred to the surface of the light-emitting element-equipped substrate 10 opposite to the substrate 12 side (that is, the surface on the side having the light-emitting element 14).
  • the film 20 is laminated so that the surface of the film 20 on the opposite side to the temporary support 22 (that is, the surface on the photosensitive layer 24 side) faces each other.
  • FIG. 1 shows the state after the light emitting element-attached substrate 10 and the transfer film 20 are pasted together.
  • the thickness of the photosensitive layer in the transfer film is greater than the height of the light emitting element in order to make it easier for the light emitting element to be covered with the photosensitive layer in the bonding process and to improve the effects of the present invention. It is preferable.
  • the height of the light-emitting element means the thickness of the light-emitting element in the normal direction of the reference plane, which is the surface of the substrate with the light-emitting element where the light-emitting element is not arranged. . In other words, in the case of the laminate shown in FIG.
  • the height of the light emitting element 14 is the reference plane 12A when the substrate surface 12A at a location where the light emitting element 14 is not arranged on the substrate 10 with a light emitting element is used as a reference plane. means the thickness T1 of the light emitting element 14 in the normal direction.
  • the transfer film has a protective film described below, it is preferable to carry out the bonding step after peeling off the protective film.
  • the surface of the transfer film on the opposite side to the temporary support side and the surface of the light emitting element-attached substrate on the light emitting element side are brought into contact and pressure bonded.
  • pressure bonding methods include known transfer methods and lamination methods, in which the surface of the transfer film on the side opposite to the temporary support side is placed on the surface of the light emitting element side of the substrate with a light emitting element, and pressure is applied using a roll or the like.
  • a heating method is preferred.
  • the bonding method include a method using a known laminator such as a vacuum laminator and an auto-cut laminator.
  • the lamination temperature is preferably 70 to 130°C.
  • a substrate with a light emitting element includes a substrate and a plurality of light emitting elements arranged on the substrate.
  • the substrate include a resin substrate, a glass substrate, a ceramic substrate, and a semiconductor substrate.
  • Materials for the resin substrate include polyethylene terephthalate resin, polynaphthalene terephthalate resin, cycloolefin resin, polyimide resin, polycarbonate resin, polyacrylate resin, polyether sulfone resin, silicone resin, and epoxy resin. etc.
  • the thickness of the resin substrate is preferably 5 to 200 ⁇ m, more preferably 10 to 100 ⁇ m.
  • the substrate is preferably a transparent substrate in consideration of the exposure step (step (1-2)).
  • the transparent substrate examples include a resin substrate (for example, a resin film) and a glass substrate.
  • the resin substrate is preferably a resin substrate that transmits visible light.
  • Preferred components of the resin substrate that transmit visible light include, for example, polyamide resins, polyethylene terephthalate resins, polyethylene naphthalate resins, cycloolefin resins, polyimide resins, and polycarbonate resins.
  • polyamide films, polyethylene terephthalate films, cycloolefin polymers, polyethylene naphthalate films, polyimide films, and polycarbonate films are preferred, and polyethylene terephthalate films are more preferred.
  • the thickness of the transparent substrate is not limited.
  • the thickness of the transparent substrate is preferably 10 to 200 ⁇ m, more preferably 20 to 120 ⁇ m, and even more preferably 20 to 100 ⁇ m.
  • the electrode is preferably composed of a metal oxide film such as ITO (indium tin oxide) and IZO (indium zinc oxide), and a metal thin wire such as a metal mesh or metal nanowire.
  • a metal oxide film such as ITO (indium tin oxide) and IZO (indium zinc oxide)
  • a metal thin wire such as a metal mesh or metal nanowire.
  • the thin metal wire include thin metal wires made of silver and copper, and silver conductive materials such as silver mesh and silver nanowires are preferred.
  • Metal is preferable as the material for the lead wiring.
  • the metal include gold, silver, copper, molybdenum, aluminum, titanium, chromium, zinc, and manganese, and alloys of combinations thereof, with copper, molybdenum, aluminum, or titanium being preferred; Copper is more preferred.
  • the light emitting element a micro LED chip can be mentioned.
  • the substrate with light emitting elements there are no particular restrictions on the arrangement of the plurality of light emitting elements.
  • a plurality of cells for example, one pixel or equivalent to one pixel
  • red (R), green (G), and blue colors are provided in the cell.
  • An example is a configuration in which N light emitting elements each having the emission color of (B) are arranged (eg, one, two, three, etc.).
  • the shape of the cell is not particularly limited, and examples thereof include a lattice shape and the like.
  • each light emitting element within the cell is not particularly limited.
  • R, G, and B are cited as examples of the emitted light color of the light emitting element, the light emitting element is not particularly limited as long as it emits light, and the emitted light color can be selected as appropriate.
  • the light emitting element usually has a terminal for connecting to an external electrode.
  • the type of LED may be an LED with a peak wavelength in the visible light region (hereinafter also referred to as “visible light LED”), or an LED with a peak wavelength in the ultraviolet light region. (hereinafter also referred to as "UV-LED").
  • the exposure step is a step of exposing the photosensitive layer to light in a pattern.
  • Pattern exposure refers to exposure in a pattern, in which there are exposed areas and non-exposed areas. The positional relationship between the exposed part (exposed area) and the unexposed part (unexposed area) in pattern exposure can be adjusted as appropriate.
  • the exposure direction may be from the photosensitive layer side or the side opposite to the photosensitive layer side (substrate side).
  • the exposure process is typically a process of performing pattern exposure through a photomask. In the exposure step, the photomask and the laminate that is the photosensitive object may or may not be in contact with each other.
  • the temporary support obtained in the temporary support peeling process is removed from the substrate side of the laminate. It is preferable to perform an exposure process in which the opposite surface is brought into contact with a photomask and pattern exposure is performed. In other words, the surface of the laminate from which the temporary support has been peeled off is brought into contact with the surface exposed by peeling off the temporary support (such as the surface of the photosensitive layer), and the photosensitive layer is exposed to pattern light. The process is preferred.
  • a curing reaction of components contained in the photosensitive layer may occur in the exposed area (area corresponding to the opening of the photomask) through the exposure process of pattern exposure. .
  • a developing step (step (1-3)) is performed to remove the non-exposed area of the photosensitive layer and form a pattern.
  • a portion corresponding to the position where the light emitting element is placed is left with no opening so that a resin pattern having a predetermined opening at the position corresponding to the light emitting element can be formed after the development process (step (1-3)).
  • the exposure process may be carried out using a photomask having a pattern in which openings are located at positions corresponding to the positions between adjacent light emitting elements (in other words, positions where the partition layer is formed). .
  • the photosensitive layer can be exposed according to the pattern shape of the photomask.
  • FIG. 2 shows a pattern exposure process when the photosensitive layer is a negative type photosensitive layer.
  • a curing reaction of components contained in the photosensitive layer 24 may occur in the opening (exposure region) of the photomask 30.
  • the photosensitive layer in the non-opening portion (non-exposed region) of the photomask 30 is removed by performing a development step (step (1-3)) after exposure.
  • the photosensitive layer is a positive photosensitive layer
  • structural changes of components contained in the photosensitive layer may occur in the exposed region (region corresponding to the opening of the photomask), and the development step ( By performing step (1-3)), the exposed area of the photosensitive layer is removed and a pattern is formed.
  • structural changes in the components contained in the photosensitive layer in the exposed area create a solubility contrast in the developing solution between the exposed area and the non-exposed area, and as a result, the development process after exposure (step (1) -3))
  • the exposed areas of the photosensitive layer are removed to form a pattern.
  • openings are formed in the areas corresponding to the positions where the light emitting elements are arranged so that a resin pattern having predetermined openings at positions corresponding to the light emitting elements can be formed after the development process (step (1-3)).
  • the exposure process may be carried out using a photomask having a pattern in which portions corresponding to the positions between adjacent light emitting elements (in other words, the positions where the partition layer is formed) are non-openings. .
  • the photosensitive layer can be exposed according to the pattern shape of the photomask.
  • the method for manufacturing a laminate of the present invention includes a photomask peeling process of peeling off the photomask used in the exposure process between the exposure process and the development process.
  • Examples of the photomask peeling process include a known peeling process.
  • any light source that can irradiate light in a wavelength range that can harden the photosensitive layer for example, 365 nm and 405 nm
  • the main wavelength of the exposure light for exposure is preferably 365 nm.
  • the dominant wavelength is the wavelength with the highest intensity.
  • the light source examples include various lasers, light emitting diodes (LEDs), ultra-high pressure mercury lamps, high pressure mercury lamps, and metal halide lamps.
  • the exposure amount is preferably 5 to 200 mJ/cm 2 , more preferably 10 to 200 mJ/cm 2 .
  • Preferred aspects of the light source, exposure amount, and exposure method used for exposure are described, for example, in paragraphs [0146] to [0147] of International Publication No. 2018/155193, the contents of which are incorporated herein. It will be done.
  • the resin pattern obtained through the development step (step (1-3)) has a tapered cross section (a cross section perpendicular to the substrate). Moreover, specifically, it is preferable that the resin pattern is formed with an opening whose opening area increases from the substrate side toward the opposite side.
  • the cross-sectional shape of the resin pattern may be made tapered by, for example, introducing a light scattering plate into the exposure machine and applying exposure light from an oblique direction. Can be done.
  • the cross section of the resin pattern is tapered, the angle between the side wall of the opening and the surface of the substrate with a light emitting element on which the light emitting element is not placed (the "taper angle"; specifically, the angle in FIG. 3 (corresponds to ⁇ ) is preferably less than 90°, more preferably 10 to 80°, even more preferably 15 to 80°, particularly preferably 20 to 80°, and most preferably 40 to 60°.
  • a temporary support peeling process is performed between the bonding process and the exposure process, or between the exposure process and the development process. Among these, it is more preferable to include a peeling step between the bonding step and the exposure step.
  • the peeling process is a process of peeling the temporary support from the laminate of the transfer film and the light emitting element-attached substrate. Examples of the method for peeling off the temporary support include known peeling methods. Specifically, the cover film peeling mechanism described in paragraphs [0161] to [0162] of JP-A-2010-072589 can be mentioned.
  • the developing step is a step of developing the exposed photosensitive layer using a developer to form a resin pattern.
  • a developer an alkaline aqueous solution is preferred.
  • alkaline compounds that can be contained in the alkaline aqueous solution include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, tetramethylammonium hydroxide, tetraethylammonium hydroxide, and tetrapropylammonium hydroxy. and choline (2-hydroxyethyltrimethylammonium hydroxide).
  • development methods include paddle development, shower development, spin development, and dip development.
  • Examples of the developer suitably used herein include the developer described in paragraph [0194] of International Publication No. 2015/093271, and examples of the development method suitably used include, for example, the developer described in International Publication No. 2015/093271, paragraph [0194].
  • the development method described in paragraph [0195] of No. 2015/093271 can be mentioned.
  • FIG. 3 shows a schematic cross-sectional view of the laminate 40 after the development step.
  • the laminate 40 is composed of a substrate 10 with a light emitting element and a resin pattern 42.
  • the resin pattern 42 is disposed at a location corresponding to between adjacent light emitting elements 14, and the opening 44 is located at a position corresponding to the light emitting element 14.
  • the resin pattern 42 corresponds to a cured film of the negative photosensitive layer.
  • the first embodiment of the present invention is a step of further exposing the resin pattern obtained by the developing step (step (1-3)) (hereinafter also referred to as “step (1-B)” or “post-exposure step”). ) and/or a heating step (hereinafter also referred to as “step (1-C)" or "post-bake step”).
  • step (1-B) or “post-exposure step”
  • step (1-C) or "post-bake step”
  • the first embodiment of the present invention includes both a post-exposure step and a post-bake step, it is preferable to perform the post-bake step after the post-exposure step.
  • the exposure amount in the post-exposure step is preferably 100 to 5000 mJ/cm 2 , more preferably 200 to 3000 mJ/cm 2 .
  • the post-bake temperature in the post-bake step is preferably 80 to 250°C, more preferably 90 to 160°C.
  • the post-bake time in the post-bake step is preferably 1 to 180 minutes, more preferably 10 to 60 minutes.
  • the structure of the transfer film is not particularly limited as long as it has a temporary support and a photosensitive layer (a layer exhibiting photosensitivity).
  • the photosensitive layer may be either a positive photosensitive layer or a negative photosensitive layer, it is preferably a negative photosensitive layer.
  • the photosensitive layer may be a single layer or may have two or more layers.
  • the transfer film may include a composition layer other than the photosensitive layer (for example, a water-soluble resin layer, etc.).
  • the transfer film may have a protective film.
  • FIG. 4 shows a specific example of the transfer film.
  • the transfer film 20A shown in FIG. 4 includes a temporary support 22, a photosensitive layer 24, and a protective film 50 in this order.
  • the photosensitive layer 24 is a layer exhibiting photosensitivity, and may be either a positive photosensitive layer or a negative photosensitive layer, but a negative photosensitive layer is preferable.
  • the photosensitive layer 24 is a negative type photosensitive layer, the components contained in the layer undergo a curing reaction upon exposure to become a resin layer (cured layer).
  • the transfer film 20A shown in FIG. 4 has a protective film 50 disposed therein, the protective film 50 does not need to be disposed. Further, the transfer film 20A shown in FIG. 4 may have a composition layer other than the photosensitive layer 24.
  • the structure of the transfer film is that in the laminate formed according to the first embodiment of the present invention, the brightness of the light emitting element is better, reflection of external light is more easily suppressed, and/or when the light emitting element is turned on.
  • the following embodiments are also preferable in that they can absorb stray light that occurs unnecessarily during the process.
  • N1 Temporary support/photosensitive light-absorbing layer precursor layer/protective film
  • N2 Temporary support/photosensitive light-reflecting layer precursor layer/protective film
  • N3 Temporary support/photosensitive light-absorbing layer Layer precursor layer/photosensitive light reflective layer precursor layer/protective film
  • the transfer films shown in (N1) to (N3) above have a protective film disposed thereon, but the protective film may not be disposed.
  • a photosensitive light-absorbing layer precursor layer hereinafter abbreviated as "light-absorbing layer precursor layer”
  • a photosensitive light-reflecting layer precursor layer hereinafter abbreviated as “light-reflecting layer precursor layer”
  • light-reflecting layer precursor layer is a layer exhibiting photosensitivity, and is typically a negative photosensitive layer.
  • the transfer film of the embodiments (N1) and (N2) above is a transfer film 20A shown in FIG. 4, when the photosensitive layer 24 is a photosensitive light absorption layer precursor layer.
  • the photosensitive layer 24 is a photosensitive light absorption layer precursor layer.
  • the light absorption layer precursor layer causes a curing reaction at the exposed location in the pattern exposure of step (1-2)
  • a patterned light absorption layer can be formed. That is, the resin pattern can function as a light-absorbing partition layer.
  • a laminate having such a resin pattern as a partition layer easily absorbs external light and stray light.
  • the black density is better when the light emitting element is not lit.
  • the transfer film of the above aspect (N2) when the transfer film of the above aspect (N2) is used, the light reflective layer precursor layer causes a curing reaction at the exposed portion in the pattern exposure of step (1-2), A patterned light reflecting layer can be formed. That is, the resin pattern can function as a light-reflective partition layer.
  • a laminate having such a resin pattern as a partition wall layer has high brightness because light from the light emitting element is easily reflected by the partition wall when the light emitting element is turned on.
  • the transfer film of the embodiment (N3) above has a transfer film 20A shown in FIG. 4, in which the photosensitive layer 24 has a two-layer structure, one of which is a photosensitive light-absorbing layer precursor layer, and the other is a photosensitive light-absorbing layer precursor layer. This applies when it is used as a reflective layer precursor layer.
  • FIG. 5 shows a schematic cross-sectional view of the transfer film of the above embodiment (N3).
  • the transfer film 20A shown in FIG. 5 includes a temporary support 22, a photosensitive layer 24, and a protective film 50 in this order.
  • the photosensitive layer 24 includes a light-absorbing layer precursor layer 26 and a light-reflecting layer precursor layer 28 from the temporary support 22 side toward the protective film 50.
  • the light-absorbing layer precursor layer and the light-reflecting layer precursor are A curing reaction occurs in the layer, and a resin pattern having a light-reflecting layer and a light-absorbing layer can be formed in order from the light-emitting element-equipped substrate side through a developing step (step (1-3)).
  • a resin pattern having a light-reflecting layer and a light-absorbing layer can be formed in order from the light-emitting element-equipped substrate side through a developing step (step (1-3)).
  • a laminate having such a resin pattern as a partition layer external light and stray light are absorbed by the light absorption layer, and as a result, black density is better when the light emitting element is not lit.
  • the light-reflecting layer allows light from the light-emitting element to be easily reflected by the partition walls when the light-emitting element is turned on, increasing brightness.
  • the light-absorbing layer precursor layer corresponds to a negative-type photosensitive layer containing a light-absorbing substance
  • the light-reflecting layer precursor layer corresponds to a negative-type photosensitive layer containing a reflectance modifier.
  • the structure of the transfer film is that in the laminate formed according to the first embodiment of the present invention, the brightness of the light emitting element is better, reflection of external light is more easily suppressed, and/or when the light emitting element is turned on.
  • the following embodiments are also preferable in that they can absorb stray light that occurs unnecessarily during the process.
  • P1 Temporary support/photosensitive light absorption layer/protective film
  • P2 Temporary support/photosensitive light reflection layer/protective film
  • P3 Temporary support/photosensitive light absorption layer/photosensitive light Reflective Layer/Protective Film
  • the transfer films shown in (P1) to (P3) above are embodiments in which a protective film is disposed, but the protective film may not be disposed.
  • the photosensitive light absorption layer and the photosensitive light reflection layer are layers that exhibit photosensitivity, and are typically positive photosensitive layers.
  • the light-absorbing layer corresponds to a positive-type photosensitive layer containing a light-absorbing substance
  • the light-reflecting layer corresponds to a positive-type photosensitive layer containing a reflectance modifier
  • the transfer film has a temporary support.
  • the temporary support is a member that supports the photosensitive layer, and is finally removed by a peeling process.
  • the temporary support may have a single layer structure or a multilayer structure.
  • the temporary support is preferably a film, more preferably a resin film.
  • the temporary support is preferably a film that is flexible and does not undergo significant deformation, shrinkage, or elongation under pressure or under pressure and heat.
  • the film include polyethylene terephthalate film (for example, biaxially oriented polyethylene terephthalate film), polymethyl methacrylate film, cellulose triacetate film, polystyrene film, polyimide film, and polycarbonate film.
  • polyethylene terephthalate film is preferred as the temporary support.
  • the film used as the temporary support is preferably free from deformation such as wrinkles and scratches.
  • the temporary support preferably has high transparency because pattern exposure can be performed through the temporary support, and the transmittance at 365 nm, 405 nm, and 436 nm is preferably 60% or more, more preferably 70% or more, More preferably 80% or more, particularly preferably 90% or more. Preferred values of transmittance include, for example, 87%, 92%, and 98%. From the viewpoints of pattern formation properties during pattern exposure through the temporary support and transparency of the temporary support, it is preferable that the haze of the temporary support is small. Specifically, the haze value of the temporary support is preferably 2% or less, more preferably 0.5% or less, and even more preferably 0.1% or less.
  • the number of fine particles, foreign matter, and defects contained in the temporary support be small.
  • the number of fine particles, foreign matter, and defects with a diameter of 1 ⁇ m or more in the temporary support is preferably 50 pieces/10 mm 2 or less, more preferably 10 pieces/10 mm 2 or less, even more preferably 3 pieces/10 mm 2 or less, and 0. pieces/10 mm 2 is particularly preferred.
  • the thickness of the temporary support is not particularly limited, but is preferably 5 to 200 ⁇ m, more preferably 5 to 150 ⁇ m, even more preferably 5 to 50 ⁇ m, and particularly preferably 5 to 25 ⁇ m from the viewpoint of ease of handling and versatility.
  • the thickness of the temporary support can be calculated as the average value of five arbitrary points measured by cross-sectional observation using a SEM (Scanning Electron Microscope).
  • the surface of the temporary support in contact with the photosensitive layer is exposed to UV (ultraviolet) irradiation.
  • the surface may be modified by corona discharge, plasma, or the like.
  • the exposure amount is preferably 10 to 2000 mJ/cm 2 , more preferably 50 to 1000 mJ/cm 2 .
  • the light sources include low-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, carbon arc lamps, metal halide lamps, xenon lamps, chemical lamps, electrodeless discharge lamps, and light-emitting diodes (which emit light in the wavelength band of 150 to 450 nm). LED), etc. As long as the amount of light irradiation can be within this range, there are no particular restrictions on the lamp output or illuminance.
  • Examples of the temporary support include a 16 ⁇ m thick biaxially stretched polyethylene terephthalate film, a 12 ⁇ m thick biaxially stretched polyethylene terephthalate film, and a 9 ⁇ m thick biaxially stretched polyethylene terephthalate film.
  • the temporary support may be a recycled product.
  • recycled products include those that have been washed and made into chips from used films, etc., and made into films using these as materials.
  • a specific example of a recycled product is Toray's Ecouse series.
  • Preferred forms of the temporary support include, for example, paragraphs [0017] to [0018] of JP2014-085643A, paragraphs [0019] to [0026] of JP2016-027363A, and International Publication No. 2012/ The descriptions are given in paragraphs [0041] to [0057] of No. 081680 and paragraphs [0029] to [0040] of International Publication No. 2018/179370, and the contents of these publications are incorporated herein.
  • a layer containing fine particles may be provided on the surface of the temporary support in order to impart handling properties.
  • the lubricant layer may be provided on one side or both sides of the temporary support.
  • the diameter of the particles contained in the lubricant layer is preferably 0.05 to 0.8 ⁇ m. Further, the thickness of the lubricant layer is preferably 0.05 to 1.0 ⁇ m.
  • Commercially available temporary supports include Lumirror 16KS40, Lumirror 16FB40, Lumirror #38-U48, Lumirror #75-U34, and Lumirror #25T60 (manufactured by Toray Industries, Inc.); Cosmoshine A4100, Cosmoshine A4300, and Cosmoshine. Examples include Cosmoshine A4160, Cosmoshine A4360, and Cosmoshine A8300 (all manufactured by Toyobo Co., Ltd.).
  • the photosensitive layer may be either a positive photosensitive layer or a negative photosensitive layer, but a negative photosensitive layer is preferred.
  • the photosensitive layer preferably contains, for example, at least an alkali-soluble resin, a polymerizable compound, and a photopolymerization initiator.
  • the photosensitive layer may be a light-reflecting layer precursor layer or a light-absorbing layer precursor layer.
  • the photosensitive layer When the photosensitive layer is a light-reflecting layer precursor layer, the photosensitive layer contains the below-mentioned reflectivity modifier, and when the photosensitive layer is a light-absorbing layer precursor layer, the photosensitive layer contains the below-mentioned light-adjusting agent. Contains absorbent materials.
  • the photosensitive layer when the photosensitive layer is a positive photosensitive layer, the photosensitive layer preferably contains, for example, at least a polymer and a photoacid generator. Furthermore, as described above, the photosensitive layer may be a photosensitive light reflecting layer or a photosensitive light absorbing layer. When the photosensitive layer is a photosensitive light reflection layer, the photosensitive layer contains a reflection modifier described below, and when the photosensitive layer is a photosensitive light absorption layer, the photosensitive layer contains a reflection modifier described below. Contains absorbent materials.
  • the photosensitive layer may contain an impurity (hereinafter also referred to as "impurity A") selected from the group consisting of metals and metal ions.
  • impurity A include sodium, potassium, magnesium, calcium, iron, manganese, copper, aluminum, titanium, chromium, cobalt, nickel, zinc, tin, halogen, and ions thereof.
  • halide ions, sodium ions, and potassium ions are likely to be mixed in as impurities, so it is preferable to have the following content.
  • the upper limit of the content of impurity A is preferably 150 mass ppm or less, more preferably 100 mass ppm or less, even more preferably 10 mass ppm or less, particularly 2 mass ppm or less, based on the total mass of the photosensitive layer.
  • the lower limit of the content of impurity A can be 1 mass ppb or more or 0.1 mass ppm or more with respect to the total mass of the photosensitive layer.
  • the upper limit of the content of chloride ions is preferably 100 mass ppm or less, more preferably 50 mass ppm or less, even more preferably 10 mass ppm or less, and 2 mass ppm or less, based on the total mass of the photosensitive layer. Particularly preferred is less than ppm.
  • the lower limit of the content of chloride ions can be 1 mass ppb or more or 0.1 mass ppm or more with respect to the total mass of the photosensitive layer.
  • the method of keeping impurity A within the above range is to select a material with a low content of impurities as the raw material for the photosensitive layer, to prevent the impurity from being mixed in when forming the photosensitive layer, and to remove it by washing. can be mentioned. By such a method, the amount of impurities can be kept within the above range.
  • Impurity A can be quantified by known methods such as ICP (Inductively Coupled Plasma) emission spectroscopy, atomic absorption spectroscopy, and ion chromatography.
  • ICP Inductively Coupled Plasma
  • the content of the organic solvent in the photosensitive layer is preferably as small as possible.
  • the content of the organic solvent is preferably 100 mass ppm or less, more preferably 20 mass ppm or less, and even more preferably 4 mass ppm or less, based on the total mass of the photosensitive layer.
  • the lower limit of the content of the organic solvent may be 10 mass ppb or more based on the total mass of the photosensitive layer.
  • the content of the organic solvent can be determined by known methods such as ICP (Inductively Coupled Plasma) emission spectroscopy, atomic absorption spectroscopy, and ion chromatography.
  • the organic solvent is selected from the group consisting of benzene, formaldehyde, trichloroethylene, 1,3-butadiene, carbon tetrachloride, chloroform, N,N-dimethylformamide, N,N-dimethylacetamide, and hexane. There are many things that can be done.
  • the content of water in the photosensitive layer is preferably 5.0% by mass or less, more preferably 3.0% by mass or less, based on the total mass of the photosensitive layer, from the viewpoint of improving reliability and lamination properties. , more preferably 1.0% by mass or less.
  • the lower limit of the water content in the photosensitive layer is preferably as small as possible, but it may be, for example, 0.01% by mass or more with respect to the total mass of the layer.
  • the photosensitive layer contains an alkali-soluble resin.
  • alkali-soluble resins include (meth)acrylic resins, styrene resins, epoxy resins, amide resins, amide epoxy resins, alkyd resins, phenol resins, ester resins, urethane resins, and reactions between epoxy resins and (meth)acrylic acid. and acid-modified epoxy acrylate resins obtained by reacting an epoxy acrylate resin with an acid anhydride.
  • a (meth)acrylic resin means resin which has a structural unit derived from a (meth)acrylic compound.
  • the content of the structural units derived from the (meth)acrylic compound is preferably 50% by mass or more, more preferably 70% by mass or more, and still more preferably 90% by mass or more, based on all the structural units of the (meth)acrylic resin. .
  • the (meth)acrylic resin may be composed only of structural units derived from a (meth)acrylic compound, or may have structural units derived from a polymerizable monomer other than the (meth)acrylic compound. . That is, the upper limit of the content of the structural units derived from the (meth)acrylic compound is 100% by mass or less based on all the structural units of the (meth)acrylic resin. Further, the content of the structural units derived from the (meth)acrylic compound is preferably 50 mol% or more, more preferably 70 mol% or more, and 90 mol% or more with respect to all the structural units of the (meth)acrylic resin. More preferred.
  • the (meth)acrylic resin may be composed only of structural units derived from a (meth)acrylic compound, or may have structural units derived from a polymerizable monomer other than the (meth)acrylic compound. . That is, the upper limit of the content of the structural units derived from the (meth)acrylic compound is 100 mol% or less based on all the structural units of the (meth)acrylic resin.
  • the above-mentioned “constituent unit” when the content of a "constituent unit” is defined by a molar ratio, the above-mentioned “constituent unit” shall have the same meaning as a “monomer unit.” Moreover, in this specification, the above-mentioned “monomer unit” may be modified after polymerization by a polymer reaction or the like. The same applies to the following.
  • Examples of the (meth)acrylic compound include (meth)acrylic acid, (meth)acrylic acid ester, (meth)acrylamide, and (meth)acrylonitrile.
  • Examples of (meth)acrylic acid ester include (meth)acrylic acid alkyl ester, (meth)acrylic acid tetrahydrofurfuryl ester, (meth)acrylic acid dimethylaminoethyl ester, (meth)acrylic acid diethylaminoethyl ester, (meth)acrylic acid diethylaminoethyl ester, ) Acrylic acid glycidyl ester, (meth)acrylic acid benzyl ester, 2,2,2-trifluoroethyl (meth)acrylate, and 2,2,3,3-tetrafluoropropyl (meth)acrylate, ( Preferred are meth)acrylic acid alkyl esters.
  • Examples of (meth)acrylamide include acrylamide such as diacetone
  • the alkyl group of the (meth)acrylic acid alkyl ester may be linear or branched. Specific examples include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate, ( Heptyl (meth)acrylate, octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, nonyl (meth)acrylate, decyl (meth)acrylate, undecyl (meth)acrylate, and (meth)acrylic acid Examples include (meth)acrylic acid alkyl esters having an alkyl group having 1 to 12 carbon atoms such as dodecyl.
  • the alkyl group of the (meth)acrylic acid alkyl ester may be cyclic.
  • the cyclic alkyl group may be monocyclic or polycyclic. Specific examples include cyclohexyl (meth)acrylate and the like.
  • As the (meth)acrylic ester a (meth)acrylic acid alkyl ester having an alkyl group having 1 to 4 carbon atoms is preferred, and methyl (meth)acrylate or ethyl (meth)acrylate is more preferred.
  • the (meth)acrylic resin may have structural units other than the structural units derived from the (meth)acrylic compound.
  • the polymerizable monomer forming the above structural unit is not particularly limited as long as it is a compound other than a (meth)acrylic compound that can be copolymerized with a (meth)acrylic compound, such as styrene, vinyltoluene, and ⁇ .
  • - Styrene compounds that may have substituents at the ⁇ -position or aromatic ring such as methylstyrene, vinyl alcohol esters such as acrylonitrile and vinyl-n-butyl ether, maleic acid, maleic anhydride, monomethyl maleate, maleic acid
  • maleic acid monoesters such as monoethyl and monoisopropyl maleate, fumaric acid, cinnamic acid, ⁇ -cyanocinnamic acid, itaconic acid, and crotonic acid.
  • These polymerizable monomers may be used alone or in combination of two or more.
  • the (meth)acrylic resin has a structural unit having an acid group in order to improve the alkali developability.
  • the acid group include a carboxy group, a sulfo group, a phosphoric acid group, and a phosphonic acid group.
  • the (meth)acrylic resin more preferably has a structural unit having a carboxy group, and even more preferably has a structural unit derived from the above-mentioned (meth)acrylic acid.
  • the content of structural units having an acid group (preferably structural units derived from (meth)acrylic acid) in the (meth)acrylic resin is determined based on the total structural units of the (meth)acrylic resin in terms of excellent developability. , preferably 10% by mass or more. Further, the upper limit is not particularly limited, but from the viewpoint of excellent alkali resistance, it is preferably 50% by mass or less, and more preferably 40% by mass or less.
  • the content of structural units having an acid group (preferably structural units derived from (meth)acrylic acid) in the (meth)acrylic resin is determined based on the total structural units of the (meth)acrylic resin in terms of excellent developability. , preferably 10 mol% or more. Further, the upper limit is not particularly limited, but from the viewpoint of excellent alkali resistance, it is preferably 50 mol% or less, more preferably 40 mol% or less.
  • the (meth)acrylic resin has a structural unit derived from the above-mentioned (meth)acrylic acid alkyl ester.
  • the content of structural units derived from (meth)acrylic acid alkyl ester in the (meth)acrylic resin is preferably 50 to 90% by mass, and 60 to 90% by mass based on the total structural units of the (meth)acrylic resin. More preferably, 65 to 90% by mass is even more preferred.
  • the content of structural units derived from (meth)acrylic acid alkyl ester in the (meth)acrylic resin is preferably 50 to 90 mol%, and 60 to 90 mol%, based on the total structural units of the (meth)acrylic resin. % is more preferable, and 65 to 90 mol% is even more preferable.
  • the (meth)acrylic resin a resin having both a structural unit derived from (meth)acrylic acid and a structural unit derived from a (meth)acrylic acid alkyl ester is preferable. More preferred is a resin composed only of structural units derived from (meth)acrylic acid alkyl ester. Moreover, as the (meth)acrylic resin, an acrylic resin having a structural unit derived from methacrylic acid, a structural unit derived from methyl methacrylate, and a structural unit derived from ethyl acrylate is also preferable.
  • the (meth)acrylic resin preferably has at least one kind selected from the group consisting of a structural unit derived from methacrylic acid and a structural unit derived from a methacrylic acid alkyl ester, and the structural unit derived from methacrylic acid and It is preferable to have both structural units derived from methacrylic acid alkyl ester.
  • the total content of structural units derived from methacrylic acid and structural units derived from methacrylic acid alkyl ester in the (meth)acrylic resin is preferably 40% by mass or more, and 60% by mass or more based on the total structural units of the (meth)acrylic resin. More preferably, the amount is % by mass or more.
  • the upper limit is not particularly limited and may be 100% by mass or less, preferably 80% by mass or less.
  • the total content of structural units derived from methacrylic acid and structural units derived from methacrylic acid alkyl esters in the (meth)acrylic resin is preferably 40 mol% or more, and 60% by mole or more based on the total structural units of the (meth)acrylic resin. More preferably mol% or more.
  • the upper limit is not particularly limited and may be 100 mol% or less, preferably 80 mol% or less.
  • the (meth)acrylic resin includes at least one kind selected from the group consisting of a structural unit derived from methacrylic acid and a structural unit derived from a methacrylic acid alkyl ester, and a structural unit derived from acrylic acid and an acrylic acid alkyl ester. It is also preferable to have at least one kind selected from the group consisting of structural units derived from.
  • the total content of the structural units derived from methacrylic acid and the structural units derived from methacrylic acid alkyl esters is the mass ratio of the structural units derived from acrylic acid and the structural units derived from acrylic acid alkyl esters. The ratio is preferably 60/40 to 80/20.
  • the (meth)acrylic resin preferably has an ester group at the end, since the photosensitive layer after transfer has excellent developability.
  • the terminal portion of the (meth)acrylic resin is composed of a site derived from the polymerization initiator used in the synthesis.
  • a (meth)acrylic resin having an ester group at the end can be synthesized by using a polymerization initiator that generates a radical having an ester group.
  • alkali-soluble resin examples include an alkali-soluble resin having an acid value of 60 mgKOH/g or more in terms of better developability.
  • alkali-soluble resins resins having a carboxy group with an acid value of 60 mgKOH/g or more (hereinafter referred to as "carboxy group-containing resins") are preferred because they are easily thermally crosslinked with the crosslinking component and form a strong film when heated.
  • a (meth)acrylic resin having a carboxy group with an acid value of 60 mgKOH/g or more (hereinafter also referred to as "carboxy group-containing (meth)acrylic resin") is even more preferred.
  • the alkali-soluble resin is a resin having a carboxyl group
  • the three-dimensional crosslink density can be increased by, for example, adding a thermally crosslinkable compound such as a blocked isocyanate compound and thermally crosslinking the resin.
  • the carboxyl group of the resin having a carboxyl group is anhydrous and made hydrophobic, the resistance to wet heat can be improved.
  • the carboxy group-containing (meth)acrylic resin having an acid value of 60 mgKOH/g or more is not particularly limited as long as it satisfies the above acid value condition, and can be appropriately selected from known (meth)acrylic resins.
  • carboxy group-containing acrylic resins with an acid value of 60 mgKOH/g or more among the polymers described in paragraph [0025] of JP-A-2011-095716, carboxy group-containing acrylic resins with an acid value of 60 mgKOH/g or more, and paragraphs [0033] to [ of JP-A-2010-237589]
  • carboxy group-containing acrylic resins having an acid value of 60 mgKOH/g or more can be preferably used.
  • alkali-soluble resin examples include an alkali-soluble resin having an aromatic ring structure, since it has better developability.
  • an alkali-soluble resin having an aromatic ring structure an alkali-soluble resin having a structural unit having an aromatic ring structure is especially preferable.
  • Monomers forming structural units having an aromatic ring structure include monomers having an aralkyl group, styrene, and polymerizable styrene derivatives (for example, methylstyrene, vinyltoluene, tert-butoxystyrene, acetoxystyrene, 4-vinylbenzoic acid).
  • styrene dimer styrene trimer, etc.
  • monomers having an aralkyl group or styrene are preferred.
  • the aralkyl group include a substituted or unsubstituted phenylalkyl group (excluding a benzyl group), a substituted or unsubstituted benzyl group, and a substituted or unsubstituted benzyl group is preferred.
  • Examples of the monomer having a phenylalkyl group include phenylethyl (meth)acrylate and the like.
  • Examples of monomers having a benzyl group include (meth)acrylates having a benzyl group, such as benzyl (meth)acrylate and chlorobenzyl (meth)acrylate; vinyl monomers having a benzyl group, such as vinylbenzyl chloride; Examples include vinylbenzyl alcohol. Among these, benzyl (meth)acrylate is preferred.
  • the alkali-soluble resin has a structural unit (a structural unit derived from styrene) represented by the following formula (S).
  • the content of the structural unit having an aromatic ring structure is preferably 5 to 90% by mass, and 10 to 80% by mass based on the total structural units of the alkali-soluble resin. %, more preferably 10 to 70% by weight, and particularly preferably 20 to 60% by weight. Further, the content of the structural unit having an aromatic ring structure in the alkali-soluble resin is preferably 5 to 70 mol%, more preferably 10 to 60 mol%, and 20 to 60 mol% based on the total structural units of the alkali-soluble resin. % is more preferable.
  • the content of the structural unit represented by the above formula (S) in the alkali-soluble resin is preferably 5 to 70 mol%, more preferably 10 to 60 mol%, based on the total structural units of the alkali-soluble resin. 20 to 60 mol% is more preferable, and 20 to 50 mol% is particularly preferable.
  • the alkali-soluble resin has an aliphatic hydrocarbon ring structure. That is, it is preferable that the alkali-soluble resin has a structural unit having an aliphatic hydrocarbon ring structure.
  • the aliphatic hydrocarbon ring structure may be monocyclic or polycyclic. Among these, it is more preferable that the alkali-soluble resin has a ring structure in which two or more aliphatic hydrocarbon rings are condensed.
  • Examples of the ring constituting the aliphatic hydrocarbon ring structure in the structural unit having an aliphatic hydrocarbon ring structure include a tricyclodecane ring, a cyclohexane ring, a cyclopentane ring, a norbornane ring, and an isoborone ring.
  • a ring in which two or more aliphatic hydrocarbon rings are condensed is preferable, and a tetrahydrodicyclopentadiene ring (tricyclo[5.2.1.0 2,6 ]decane ring) is more preferable.
  • Monomers forming the structural unit having an aliphatic hydrocarbon ring structure include dicyclopentanyl (meth)acrylate, cyclohexyl (meth)acrylate, and isobornyl (meth)acrylate.
  • the alkali-soluble resin preferably has a structural unit represented by the following formula (Cy), a structural unit represented by the above formula (S), and a structural unit represented by the following formula (Cy). It is more preferable to have.
  • R M represents a hydrogen atom or a methyl group
  • R Cy represents a monovalent group having an aliphatic hydrocarbon ring structure
  • R M in formula (Cy) is preferably a methyl group.
  • R Cy in formula (Cy) is preferably a monovalent group having an aliphatic hydrocarbon ring structure having 5 to 20 carbon atoms, more preferably a monovalent group having an aliphatic hydrocarbon ring structure having 6 to 16 carbon atoms.
  • a monovalent group having an aliphatic hydrocarbon ring structure having 8 to 14 carbon atoms is more preferable.
  • the aliphatic hydrocarbon ring structure in R Cy of formula (Cy) is preferably a cyclopentane ring structure, a cyclohexane ring structure, a tetrahydrodicyclopentadiene ring structure, a norbornane ring structure, or an isoborone ring structure, and a cyclohexane ring structure, Alternatively, a tetrahydrodicyclopentadiene ring structure is more preferable, and a tetrahydrodicyclopentadiene ring structure is even more preferable.
  • the aliphatic hydrocarbon ring structure in R Cy of formula (Cy) is preferably a ring structure in which two or more aliphatic hydrocarbon rings are condensed; A ring is more preferred.
  • the alkali-soluble resin may have one type of structural unit having an aliphatic hydrocarbon ring structure, or may have two or more types of structural units.
  • the content of the constitutional unit having an aliphatic hydrocarbon ring structure is 5 to 90% by mass based on the total constitutional units of the alkali-soluble resin. It is preferably 10 to 80% by weight, more preferably 20 to 70% by weight.
  • the content of the structural unit having an aliphatic hydrocarbon ring structure in the alkali-soluble resin is preferably 5 to 70 mol%, more preferably 10 to 60 mol%, and 20 to 60 mol%, based on the total structural units of the alkali-soluble resin.
  • the content of the structural unit represented by the above formula (Cy) in the alkali-soluble resin is preferably 5 to 70 mol%, more preferably 10 to 60 mol%, based on the total structural units of the alkali-soluble resin. More preferably 20 to 50 mol%.
  • the total content of the constitutional unit having an aromatic ring structure and the constitutional unit having an aliphatic hydrocarbon ring structure is It is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, and even more preferably 40 to 75% by mass, based on the total structural units of the alkali-soluble resin. Further, the total content of structural units having an aromatic ring structure and structural units having an aliphatic hydrocarbon ring structure in the alkali-soluble resin is preferably 10 to 80 mol%, and 20 It is more preferably 70 mol%, and even more preferably 40 to 60 mol%.
  • the total content of the structural units represented by the above formula (S) and the structural units represented by the above formula (Cy) in the alkali-soluble resin is 10 to 80 mol with respect to all the structural units of the alkali-soluble resin. %, more preferably 20 to 70 mol%, even more preferably 40 to 60 mol%.
  • the molar amount nS of the structural unit represented by the above formula (S) and the molar amount nCy of the structural unit represented by the above formula (Cy) in the alkali-soluble resin are as follows from the viewpoint that the effect of the present invention is more excellent. It is preferable that the relationship shown in the formula (SCy) is satisfied, it is more preferable that the following formula (SCy-1) is satisfied, and it is even more preferable that the following formula (SCy-2) is satisfied. 0.2 ⁇ nS/(nS+nCy) ⁇ 0.8 Formula (SCy) 0.30 ⁇ nS/(nS+nCy) ⁇ 0.75 Formula (SCy-1) 0.40 ⁇ nS/(nS+nCy) ⁇ 0.70 Formula (SCy-2)
  • the alkali-soluble resin has a structural unit having an acid group.
  • the acid group include a carboxy group, a sulfo group, a phosphonic acid group, and a phosphoric acid group, with a carboxy group being preferred.
  • the above-mentioned structural unit having an acid group the following structural units derived from (meth)acrylic acid are preferable, and structural units derived from methacrylic acid are more preferable.
  • the alkali-soluble resin may have one type of structural unit having an acid group, or may have two or more types.
  • the content of the structural unit having an acid group is preferably 5 to 50% by mass, and 5 to 40% by mass based on the total constitutional units of the alkali-soluble resin. It is more preferably 10 to 40% by weight, even more preferably 10 to 30% by weight.
  • the content of the structural unit having an acid group in the alkali-soluble resin is preferably 5 to 70 mol%, more preferably 10 to 50 mol%, and 20 to 40 mol% based on the total structural units of the alkali-soluble resin. is even more preferable.
  • the alkali-soluble resin preferably has a reactive group, and more preferably has a structural unit having a reactive group.
  • a reactive group a radically polymerizable group is preferable, and an ethylenically unsaturated group is more preferable.
  • the alkali-soluble resin has an ethylenically unsaturated group, it is preferable that the alkali-soluble resin has a structural unit having an ethylenically unsaturated group in a side chain.
  • the "main chain” refers to the relatively longest bond chain in the molecules of the polymer compound that constitutes the resin
  • the "side chain” refers to the atomic group branching from the main chain. represent.
  • the ethylenically unsaturated group an allyl group or a (meth)acryloyloxy group is more preferable.
  • the structural unit having a reactive group include, but are not limited to, those shown below.
  • the alkali-soluble resin may have one type of structural unit having a reactive group, or may have two or more types of structural units.
  • the content of the constitutional unit having a reactive group is preferably 5 to 70% by mass, and 10 to 50% by mass based on the total constitutional units of the alkali-soluble resin. % is more preferable, and 20 to 40% by mass is even more preferable.
  • the content of the structural unit having a reactive group in the alkali-soluble resin is preferably 5 to 70 mol%, more preferably 10 to 60 mol%, and 10 to 50 mol% based on the total structural units of the alkali-soluble resin. % is more preferable.
  • an epoxy compound As a means of introducing a reactive group into an alkali-soluble resin, an epoxy compound, a block Examples include methods of reacting compounds such as isocyanate compounds, isocyanate compounds, vinyl sulfone compounds, aldehyde compounds, methylol compounds, and carboxylic acid anhydrides.
  • a preferable example of a means for introducing a reactive group into an alkali-soluble resin is to synthesize a polymer having a carboxyl group by a polymerization reaction, and then add glycidyl (meth) to some of the carboxyl groups of the obtained polymer by a polymer reaction. Examples include a method of reacting acrylate to introduce a (meth)acryloxy group into the polymer.
  • an alkali-soluble resin having a (meth)acryloyloxy group in the side chain can be obtained.
  • the above polymerization reaction is preferably carried out at a temperature of 70 to 100°C, more preferably 80 to 90°C.
  • an azo initiator is preferable, and for example, V-601 (trade name) or V-65 (trade name) manufactured by Fuji Film Wako Pure Chemical Industries, Ltd. is more preferable.
  • the above polymer reaction is preferably carried out at a temperature of 80 to 110°C. In the above polymer reaction, it is preferable to use a catalyst such as an ammonium salt.
  • the alkali-soluble resin has a structural unit derived from a (meth)acrylic acid alkyl ester.
  • the structural unit derived from the above-mentioned (meth)acrylic acid alkyl ester include those mentioned above, and among them, methyl (meth)acrylate is preferable.
  • the alkali-soluble resin may have one type of structural unit derived from an alkyl (meth)acrylate ester, or may have two or more types of structural units.
  • the content of the structural unit derived from the (meth)acrylic acid alkyl ester is 1 to 1 with respect to all the structural units of the alkali-soluble resin. It is preferably 10% by weight, more preferably 1 to 5% by weight. Further, the content of structural units derived from (meth)acrylic acid alkyl ester in the alkali-soluble resin is preferably 1 to 10 mol%, more preferably 1 to 5 mol%, based on the total structural units of the alkali-soluble resin. .
  • polymers X1 to X4 As the alkali-soluble resin, polymers X1 to X4 shown below are preferred. Note that the content ratios (a to d) of each structural unit to all structural units and the weight average molecular weight Mw, etc. shown below can be changed as appropriate depending on the purpose, but in particular, in terms of the effects of the present invention, The following configuration is preferable.
  • Polymer X2 a: 20 to 60% by mass, b: 10 to 50% by mass, c: 5.0 to 25% by mass, d: 10 to 50% by mass.
  • Polymer X3 a: 30 to 65% by mass, b: 1.0 to 30% by mass, c: 0.5 to 15% by mass, d: 10 to 50% by mass.
  • Polymer X4 a: 1.0 to 20% by mass, b: 20 to 60% by mass, c: 5.0 to 230% by mass, d: 10 to 50% by mass.
  • the alkali-soluble resin it is preferable to use a polymer having a structural unit having a carboxylic acid anhydride structure (hereinafter also referred to as "polymer X").
  • the carboxylic anhydride structure may be either a chain carboxylic anhydride structure or a cyclic carboxylic anhydride structure, but is preferably a cyclic carboxylic anhydride structure.
  • the ring of the cyclic carboxylic acid anhydride structure is preferably a 5- to 7-membered ring, more preferably a 5- or 6-membered ring, and even more preferably a 5-membered ring.
  • the structural unit having a carboxylic acid anhydride structure is a structural unit containing a divalent group in the main chain obtained by removing two hydrogen atoms from the compound represented by the following formula P-1, or a structural unit having the following formula P-1. It is preferable to use a structural unit in which a monovalent group obtained by removing one hydrogen atom from the represented compound is bonded to the main chain directly or via a divalent linking group.
  • R A1a represents a substituent
  • n 1a R A1a 's may be the same or different
  • Examples of the substituent represented by R A1a include an alkyl group.
  • Z 1a is preferably an alkylene group having 2 to 4 carbon atoms, more preferably an alkylene group having 2 or 3 carbon atoms, and even more preferably an alkylene group having 2 carbon atoms.
  • n 1a represents an integer of 0 or more.
  • Z 1a represents an alkylene group having 2 to 4 carbon atoms
  • n 1a is preferably an integer of 0 to 4, more preferably an integer of 0 to 2, and even more preferably 0.
  • multiple R A1a 's may be the same or different.
  • a plurality of R A1a may be bonded to each other to form a ring, but it is preferable that they are not bonded to each other to form a ring.
  • the structural unit having a carboxylic acid anhydride structure is preferably a structural unit derived from an unsaturated carboxylic anhydride, more preferably a structural unit derived from an unsaturated cyclic carboxylic acid anhydride, and a structural unit derived from an unsaturated aliphatic cyclic carboxylic acid anhydride is more preferable.
  • Structural units derived from acid anhydrides are more preferred, structural units derived from maleic anhydride or itaconic anhydride are particularly preferred, and structural units derived from maleic anhydride are most preferred.
  • Rx represents a hydrogen atom, a methyl group, a CH 2 OH group, or a CF 3 group
  • Me represents a methyl group
  • the number of structural units having a carboxylic acid anhydride structure in the polymer X may be one type alone, or two or more types may be used.
  • the total content of structural units having a carboxylic acid anhydride structure is preferably 0 to 60 mol%, more preferably 5 to 40 mol%, and even more preferably 10 to 35 mol%, based on the total structural units of polymer X. preferable.
  • Polymer X is preferably used in combination with any of the alkali-soluble resins of preferred embodiments 1 to 3 described above.
  • the content of polymer X is preferably 0.1 to 30% by mass, more preferably 0.2 to 20% by mass, based on the total mass of the photosensitive layer More preferably 0.5 to 20% by weight, particularly preferably 1 to 20% by weight.
  • the photosensitive layer may contain only one type of polymer X, or may contain two or more types of polymer X.
  • the weight average molecular weight (Mw) of the alkali-soluble resin is preferably 3,500 or more, more preferably 5,000 or more, even more preferably 10,000 or more, and particularly preferably 20,000 or more.
  • the upper limit is preferably 50,000 or less, more preferably 30,000 or less.
  • the acid value of the alkali-soluble resin is preferably 10 to 200 mgKOH/g, more preferably 60 to 200 mgKOH/g, even more preferably 60 to 150 mgKOH/g, and particularly preferably 70 to 125 mgKOH/g.
  • the acid value of the alkali-soluble resin is a value measured according to the method described in JIS K0070:1992.
  • the degree of dispersion of the alkali-soluble resin is preferably 1.0 to 6.0, more preferably 1.0 to 5.0, even more preferably 1.0 to 4.0, and 1.0 to 6.0. 3.0 is particularly preferred.
  • the photosensitive layer may contain only one kind of alkali-soluble resin, or may contain two or more kinds.
  • the lower limit of the content of the alkali-soluble resin is preferably 10.0% by mass or more, more preferably 15.0% by mass or more, and even more preferably 20.0% by mass or more, based on the total mass of the photosensitive layer. , 30.0% by mass or more is particularly preferred.
  • 90.0 mass % or less is preferable, 80.0 mass % or less is more preferable, and 70.0 mass % or less is still more preferable.
  • the photosensitive layer preferably contains a polymerizable compound.
  • a polymerizable compound is a compound having a polymerizable group. Examples of the polymerizable group include radically polymerizable groups and cationic polymerizable groups, with radically polymerizable groups being preferred.
  • the polymerizable compound preferably includes a radically polymerizable compound having an ethylenically unsaturated group (hereinafter also simply referred to as an "ethylenic unsaturated compound").
  • ethylenic unsaturated compound a radically polymerizable compound having an ethylenically unsaturated group
  • a (meth)acryloyloxy group is preferred.
  • the ethylenically unsaturated compound in this specification is a compound other than the above-mentioned alkali-soluble resin, and preferably has a molecular weight of less than 5,000.
  • One of the preferred embodiments of the polymerizable compound is a compound represented by the following formula (M) (also simply referred to as "compound M”).
  • Q 2 -R 1 -Q 1 formula (M) Q 1 and Q 2 each independently represent a (meth)acryloyloxy group, and R 1 represents a divalent linking group having a chain structure.
  • Q 1 and Q 2 in formula ( M ) are preferably the same group from the viewpoint of ease of synthesis. Furthermore, Q 1 and Q 2 in formula (M) are preferably acryloyloxy groups from the viewpoint of reactivity.
  • R 1 in formula (M) is an alkylene group, an alkyleneoxyalkylene group (-L 1 -O-L 1 -), or a polyalkyleneoxyalkylene group (-(L 1 -O) p -L 1 -) is preferred, a hydrocarbon group having 2 to 20 carbon atoms or a polyalkyleneoxyalkylene group is more preferred, an alkylene group having 4 to 20 carbon atoms is even more preferred, and a straight chain alkylene group having 6 to 18 carbon atoms is particularly preferred.
  • the above-mentioned hydrocarbon group only needs to have a chain structure at least in part, and the part other than the above-mentioned chain structure is not particularly limited.
  • it is branched, cyclic, or has 1 to 1 carbon atoms
  • It may be a linear alkylene group, an arylene group, an ether bond, or a combination thereof as shown in No. 5, and an alkylene group or a group combining two or more alkylene groups and one or more arylene groups is preferable.
  • an alkylene group is more preferable, and a linear alkylene group is even more preferable.
  • each of the above L 1 independently represents an alkylene group, preferably an ethylene group, a propylene group, or a butylene group, and more preferably an ethylene group or a 1,2-propylene group.
  • p represents an integer of 2 or more, preferably an integer of 2 to 10.
  • the number of atoms in the shortest linking chain connecting Q 1 and Q 2 in compound M is preferably 3 to 50, more preferably 4 to 40, even more preferably 6 to 20, and 8 to 50 atoms. Twelve pieces are particularly preferred.
  • the number of atoms in the shortest connecting chain connecting Q 1 and Q 2 refers to the number of atoms in R 1 connecting to Q 1 to the atom in R 1 connecting to Q 2 . This is the shortest number of atoms.
  • compound M examples include 1,3-butanediol di(meth)acrylate, tetramethylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,7-heptanediol di(meth)acrylate, 1,8-octanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, hydrogenated Bisphenol A di(meth)acrylate, hydrogenated bisphenol F di(meth)acrylate, polyethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, poly(ethylene glycol/propylene glycol) di(meth)acrylate , and polybutylene glycol di(meth)acrylate.
  • the above ester monomers can also be used as a mixture.
  • 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, and neopentylglycol di(meth)acrylate, ) acrylate is preferred, and at least one compound selected from the group consisting of 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, and 1,10-decanediol di(meth)acrylate is preferred.
  • At least one compound selected from the group consisting of (meth)acrylates is more preferred, and at least one compound selected from the group consisting of 1,9-nonanediol di(meth)acrylate and 1,10-decanediol di(meth)acrylate. More preferably, at least one compound is used.
  • one of the preferred embodiments of the polymerizable compound includes an ethylenically unsaturated compound having two or more functionalities.
  • the term "bifunctional or more ethylenically unsaturated compound” means a compound having two or more ethylenically unsaturated groups in one molecule.
  • a (meth)acryloyl group is preferable.
  • (meth)acrylate compounds are preferred.
  • the bifunctional ethylenically unsaturated compound can be appropriately selected from known compounds.
  • Examples of bifunctional ethylenically unsaturated compounds other than the above compound M include tricyclodecane dimethanol di(meth)acrylate and 1,4-cyclohexanediol di(meth)acrylate.
  • bifunctional ethylenically unsaturated compounds include tricyclodecane dimethanol diacrylate (trade name: NK ester A-DCP, manufactured by Shin Nakamura Chemical Co., Ltd.), tricyclodecane dimethanol dimethacrylate (trade name: NK Ester A-DCP, manufactured by Shin Nakamura Chemical Co., Ltd.), Product name: NK ester DCP, manufactured by Shin Nakamura Chemical Co., Ltd.), 1,9-nonanediol diacrylate (Product name: NK ester A-NOD-N, manufactured by Shin Nakamura Chemical Co., Ltd.), 1,6 -hexanediol diacrylate (trade name: NK ester A-HD-N, manufactured by Shin-Nakamura Chemical Industry Co., Ltd.).
  • the trifunctional or higher-functional ethylenically unsaturated compound can be appropriately selected from known compounds.
  • trifunctional or more ethylenically unsaturated compounds include dipentaerythritol (tri/tetra/penta/hexa) (meth)acrylate, pentaerythritol (tri/tetra) (meth)acrylate, trimethylolpropane tri(meth)acrylate, Examples include ditrimethylolpropane tetra(meth)acrylate, isocyanuric acid (meth)acrylate, and (meth)acrylate compounds having a glycerin tri(meth)acrylate skeleton.
  • (tri/tetra/penta/hexa)(meth)acrylate is a concept that includes tri(meth)acrylate, tetra(meth)acrylate, penta(meth)acrylate, and hexa(meth)acrylate.
  • (tri/tetra)(meth)acrylate” is a concept that includes tri(meth)acrylate and tetra(meth)acrylate.
  • urethane (meth)acrylate compound One of the preferred embodiments of the polymerizable compound is a urethane (meth)acrylate compound.
  • urethane (meth)acrylates include urethane di(meth)acrylates, such as propylene oxide-modified urethane di(meth)acrylates, and ethylene oxide- and propylene oxide-modified urethane di(meth)acrylates.
  • examples of urethane (meth)acrylates include trifunctional or higher functional urethane (meth)acrylates.
  • the lower limit of the number of functional groups is more preferably 6 functional groups or more, and even more preferably 8 functional groups or more. Note that the upper limit of the number of functional groups is preferably 20 or less functional groups.
  • trifunctional or higher functional urethane (meth)acrylates examples include 8UX-015A (manufactured by Taisei Fine Chemical Co., Ltd.), UA-32P (manufactured by Shin Nakamura Chemical Co., Ltd.), and U-15HA (manufactured by Shin Nakamura Chemical Co., Ltd.). ), UA-1100H (manufactured by Shin-Nakamura Chemical Co., Ltd.), AH-600 (product name) manufactured by Kyoeisha Chemical Co., Ltd., as well as UA-306H, UA-306T, UA-306I, UA-510H , and UX-5000 (all manufactured by Nippon Kayaku Co., Ltd.).
  • One of the preferred embodiments of the polymerizable compound is an ethylenically unsaturated compound having an acid group.
  • acid groups include phosphoric acid groups, sulfo groups, and carboxy groups. Among these, a carboxy group is preferred as the acid group.
  • Examples of ethylenically unsaturated compounds having an acid group include tri- to tetrafunctional ethylenically unsaturated compounds having an acid group [pentaerythritol tri- and tetraacrylate (PETA) with a carboxy group introduced into the skeleton (acid value: 80 ⁇ 120mgKOH/g)], a penta- to hexa-functional ethylenically unsaturated compound having an acid group (dipentaerythritol penta and hexaacrylate (DPHA) with a carboxy group introduced into the skeleton [acid value: 25-70mgKOH/g)] etc.
  • PETA penta- to hexa-functional ethylenically unsaturated compound having an acid group
  • DPHA dipentaerythritol penta and hexaacrylate
  • These trifunctional or higher functional ethylenically unsaturated compounds having an acid group may be used
  • the ethylenically unsaturated compound having an acid group is preferably at least one selected from the group consisting of bifunctional or more ethylenically unsaturated compounds having a carboxy group and their carboxylic acid anhydrides.
  • the ethylenically unsaturated compound having an acid group is at least one selected from the group consisting of bifunctional or more ethylenically unsaturated compounds having a carboxy group and their carboxylic acid anhydrides, developability and film strength are improved. It increases.
  • the bifunctional or more ethylenically unsaturated compound having a carboxy group is not particularly limited, and can be appropriately selected from known compounds.
  • Examples of the bifunctional or more ethylenically unsaturated compound having a carboxyl group include Aronix (registered trademark) TO-2349 (manufactured by Toagosei Co., Ltd.), Aronix (registered trademark) M-520 (manufactured by Toagosei Co., Ltd.), Aronix (registered trademark) M-510 (manufactured by Toagosei Co., Ltd.) is mentioned.
  • the polymerizable compounds having an acid group described in paragraphs [0025] to [0030] of JP-A No. 2004-239942 are preferable, and the contents described in this publication are similar to those described in this publication. Incorporated into the specification.
  • polymerizable compounds examples include compounds obtained by reacting polyhydric alcohols with ⁇ , ⁇ -unsaturated carboxylic acids, compounds obtained by reacting glycidyl group-containing compounds with ⁇ , ⁇ -unsaturated carboxylic acids, and urethane.
  • Urethane monomers such as (meth)acrylate compounds having bonds, ⁇ -chloro- ⁇ -hydroxypropyl- ⁇ '-(meth)acryloyloxyethyl-o-phthalate, ⁇ -hydroxyethyl- ⁇ '-(meth)acryloyloxyethyl
  • phthalic acid compounds such as -o-phthalate and ⁇ -hydroxypropyl- ⁇ '-(meth)acryloyloxyethyl-o-phthalate, and (meth)acrylic acid alkyl esters. These may be used alone or in combination of two or more.
  • Examples of compounds obtained by reacting polyhydric alcohols with ⁇ , ⁇ -unsaturated carboxylic acids include 2,2-bis(4-((meth)acryloxypolyethoxy)phenyl)propane, 2,2-bis Bisphenol A-based (meth)acrylate compounds such as (4-((meth)acryloxypolypropoxy)phenyl)propane and 2,2-bis(4-((meth)acryloxypolyethoxypolypropoxy)phenyl)propane , polyethylene glycol di(meth)acrylate having 2 to 14 ethylene oxide groups, polypropylene glycol di(meth)acrylate having 2 to 14 propylene oxide groups, and polypropylene glycol di(meth)acrylate having 2 to 14 ethylene oxide groups.
  • polyethylene polypropylene glycol di(meth)acrylate trimethylolpropane di(meth)acrylate, trimethylolpropane tri(meth)acrylate, trimethylolpropane ethoxytri(meth)acrylate having 2 to 14 propylene oxide groups.
  • ethylenically unsaturated compounds having a tetramethylolmethane structure or a trimethylolpropane structure are preferable, and tetramethylolmethane tri(meth)acrylate, tetramethylolmethanetetra(meth)acrylate, trimethylolpropane tri(meth)acrylate, or dimethylolmethane tri(meth)acrylate is preferred. (Trimethylolpropane)tetraacrylate is more preferred.
  • Examples of the polymerizable compound include caprolactone-modified compounds of ethylenically unsaturated compounds (for example, KAYARAD (registered trademark) DPCA-20 manufactured by Nippon Kayaku Co., Ltd., A-9300-1CL manufactured by Shin Nakamura Chemical Industry Co., Ltd.), Alkylene oxide modified compounds of ethylenically unsaturated compounds (for example, KAYARAD RP-1040 manufactured by Nippon Kayaku Co., Ltd., ATM-35E and A-9300 manufactured by Shin Nakamura Chemical Co., Ltd., EBECRYL (registered trademark) manufactured by Daicel Allnex Co., Ltd.
  • KAYARAD registered trademark
  • DPCA-20 manufactured by Nippon Kayaku Co., Ltd., A-9300-1CL manufactured by Shin Nakamura Chemical Industry Co., Ltd.
  • Alkylene oxide modified compounds of ethylenically unsaturated compounds for example, KAYARAD RP-1040 manufactured by Nippon Kayaku Co
  • polymerizable compounds particularly ethylenically unsaturated compounds
  • those containing an ester bond are also preferred, since they provide excellent developability of the photosensitive layer after transfer.
  • the ethylenically unsaturated compound containing an ester bond is not particularly limited as long as it contains an ester bond in its molecule, but since the effects of the present invention are excellent, ethylenically unsaturated compounds having a tetramethylolmethane structure or a trimethylolpropane structure are preferred.
  • the ethylenically unsaturated compounds include ethylenically unsaturated compounds having an aliphatic group having 6 to 20 carbon atoms, and ethylenically unsaturated compounds having the above-mentioned tetramethylolmethane structure or trimethylolpropane structure. It is preferable to include a compound.
  • Examples of ethylenically unsaturated compounds having an aliphatic structure having 6 or more carbon atoms include 1,9-nonanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, and tricyclodecane dimethanol di(meth)acrylate. Examples include (meth)acrylates.
  • polymerizable compound is a polymerizable compound having an aliphatic hydrocarbon ring structure (preferably a difunctional ethylenically unsaturated compound).
  • the above-mentioned polymerizable compound is a polymerizable compound having a ring structure in which two or more aliphatic hydrocarbon rings are condensed (preferably a structure selected from the group consisting of a tricyclodecane structure and a tricyclodecene structure).
  • a bifunctional ethylenically unsaturated compound having a ring structure in which two or more aliphatic hydrocarbon rings are condensed is more preferable, and tricyclodecane dimethanol di(meth)acrylate is even more preferable.
  • the aliphatic hydrocarbon ring structure is preferably a cyclopentane structure, a cyclohexane structure, a tricyclodecane structure, a tricyclodecene structure, a norbornane structure, or an isoborone structure.
  • the molecular weight of the polymerizable compound is preferably 200 to 3,000, more preferably 250 to 2,600, even more preferably 280 to 2,200, and particularly preferably 300 to 2,200.
  • the photosensitive layer preferably contains a compound represented by formula (M) and an ethylenically unsaturated compound having an acid group, and 1,9-nonane. More preferably, it contains diol diacrylate and a polyfunctional ethylenically unsaturated compound having a carboxylic acid group.
  • the photosensitive layer is made of a difunctional ethylenically unsaturated compound (preferably a difunctional (meth)acrylate compound) from the viewpoint of development residue suppression and rust prevention properties. ) and a trifunctional or higher functional ethylenically unsaturated compound (preferably a trifunctional or higher functional (meth)acrylate compound).
  • a difunctional ethylenically unsaturated compound preferably a difunctional (meth)acrylate compound
  • a trifunctional or higher functional ethylenically unsaturated compound preferably a trifunctional or higher functional (meth)acrylate compound
  • the mass ratio of the content of the bifunctional ethylenically unsaturated compound and the trifunctional or more functional ethylenically unsaturated compound is 10/90 to 90/10 is preferred, and 30/70 to 70/30 is more preferred.
  • the content of the bifunctional ethylenically unsaturated compound relative to the total amount of all ethylenically unsaturated compounds is preferably 20.0% by mass or more, more preferably 30.0% by mass or more, and 40.0% by mass or more. is even more preferable.
  • the upper limit is not particularly limited, but is, for example, 100% by mass or less, preferably 90.0% by mass or less, and more preferably 80.0% by mass or less.
  • the bifunctional ethylenically unsaturated compound in the photosensitive layer is preferably 5.0 to 60.0% by mass, more preferably 5.0 to 40.0% by mass, and even more preferably 5.0 to 40.0% by mass. preferable.
  • the photosensitive layer may contain a monofunctional ethylenically unsaturated compound as the ethylenically unsaturated compound.
  • the content of the ethylenically unsaturated compound having two or more functionalities is preferably 50 to 100% by mass based on the total content of all ethylenically unsaturated compounds contained in the photosensitive layer.
  • the polymerizable compounds may be used alone or in combination of two or more.
  • the lower limit of the content of polymerizable compounds (especially ethylenically unsaturated compounds) in the photosensitive layer is preferably 10.0% by mass or more, and 15.0% by mass or more based on the total mass of the photosensitive layer. is more preferable.
  • 70.0 mass % or less is preferable, 60.0 mass % or less is more preferable, 50.0 mass % or less is still more preferable, and 40.0 mass % or less is especially preferable.
  • the photosensitive layer contains a photopolymerization initiator.
  • photopolymerization initiator there are no particular limitations on the photopolymerization initiator, and any known photopolymerization initiator can be used.
  • photopolymerization initiators include photopolymerization initiators having an oxime ester structure (hereinafter also referred to as "oxime-based photopolymerization initiators”), and photopolymerization initiators having an ⁇ -aminoalkylphenone structure (hereinafter referred to as " ⁇ - ), a photopolymerization initiator having an ⁇ -hydroxyalkylphenone structure (hereinafter also referred to as an “ ⁇ -hydroxyalkylphenone polymerization initiator”), an acylphosphine oxide structure A photopolymerization initiator having an N-phenylglycine structure (hereinafter also referred to as an "acylphosphine oxide photopolymerization initiator”) and a photopolymerization initiator having an
  • the photopolymerization initiator is selected from the group consisting of oxime photopolymerization initiators, ⁇ -aminoalkylphenone photopolymerization initiators, ⁇ -hydroxyalkylphenone photopolymerization initiators, and N-phenylglycine photopolymerization initiators. It preferably contains at least one kind selected from the group consisting of oxime-based photopolymerization initiators, ⁇ -aminoalkylphenone-based photopolymerization initiators, and N-phenylglycine-based photopolymerization initiators. It is more preferable.
  • photopolymerization initiator for example, those described in paragraphs [0031] to [0042] of JP-A No. 2011-095716 and paragraphs [0064] to [0081] of JP-A No. 2015-014783, A polymerization initiator may also be used.
  • 2,4,5-triarylimidazole dimer and It is preferable to include at least one selected from the group consisting of derivatives thereof.
  • the two 2,4,5-triarylimidazole structures in the 2,4,5-triarylimidazole dimer and its derivatives may be the same or different.
  • Examples of derivatives of 2,4,5-triarylimidazole dimer include 2-(o-chlorophenyl)-4,5-diphenylimidazole dimer and 2-(o-chlorophenyl)-4,5-diphenylimidazole dimer.
  • (methoxyphenyl)imidazole dimer 2-(o-fluorophenyl)-4,5-diphenylimidazole dimer, 2-(o-methoxyphenyl)-4,5-diphenylimidazole dimer, and 2- (p-methoxyphenyl)-4,5-diphenylimidazole dimer is mentioned.
  • Examples of the 2,4,5-triarylimidazole dimer derivative include 2,2'-bis(2-chlorophenyl)-4,4',5,5'-tetraphenyl-1,2'-bis(2-chlorophenyl)-4,4',5,5'-tetraphenyl-1,2'-bis Mention may also be made of imidazoles.
  • Examples of the photoradical polymerization initiator include ethyl dimethylaminobenzoate (DBE, CAS No. 10287-53-3), benzoin methyl ether, anisyl (p,p'-dimethoxybenzyl), and TAZ-110 (trade name: Midori Kagaku Co., Ltd.), benzophenone, 4,4'-bis(diethylamino)benzophenone, TAZ-111 (product name: Midori Kagaku Co., Ltd.), Irgacure OXE01, OXE02, OXE03, OXE04 (BASF Co., Ltd.), Omnirad651 and 369 (product name: Midori Kagaku Co., Ltd.) Name: IGM Resins manufactured by B.V.), and 2,2'-bis(2-chlorophenyl)-4,4',5,5'-tetraphenyl-1,2'-biimidazole (Tokyo Chemical Industry Co., Ltd.) ).
  • photoradical polymerization initiators include, for example, 1-[4-(phenylthio)]-1,2-octanedione-2-(O-benzoyloxime) (trade name: IRGACURE (registered trademark) OXE-01).
  • the photopolymerization initiators may be used alone or in combination of two or more. When two or more types are used in combination, an oxime photopolymerization initiator and at least one selected from ⁇ -aminoalkylphenone photopolymerization initiators and ⁇ -hydroxyalkylphenone polymerization initiators may be used. preferable.
  • the content of the photopolymerization initiator is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, based on the total mass of the photosensitive layer. More preferably, the content is 0.5% by mass or more. Further, the upper limit thereof is preferably 10.0% by mass or less, more preferably 7.0% by mass or less, based on the total mass of the photosensitive layer.
  • the photosensitive layer may contain a heterocyclic compound.
  • the heterocycle possessed by the heterocyclic compound may be either a monocyclic or polycyclic heterocycle.
  • Examples of the heteroatom contained in the heterocyclic compound include a nitrogen atom, an oxygen atom, and a sulfur atom.
  • the heterocyclic compound preferably has at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom, and a sulfur atom, and more preferably a nitrogen atom.
  • heterocyclic compound examples include a triazole compound, a benzotriazole compound, a tetrazole compound, a thiadiazole compound, a triazine compound, a rhodanine compound, a thiazole compound, a benzothiazole compound, a benzimidazole compound, a benzoxazole compound, and a pyrimidine compound.
  • the heterocyclic compound is at least one selected from the group consisting of triazole compounds, benzotriazole compounds, tetrazole compounds, thiadiazole compounds, triazine compounds, rhodanine compounds, thiazole compounds, benzimidazole compounds, and benzoxazole compounds.
  • a type of compound is preferred, and at least one compound selected from the group consisting of a triazole compound, a benzotriazole compound, a tetrazole compound, a thiadiazole compound, a thiazole compound, a benzothiazole compound, a benzimidazole compound, and a benzoxazole compound is more preferred.
  • heterocyclic compound Preferred specific examples of the heterocyclic compound are shown below.
  • examples of the triazole compound and benzotriazole compound include the following compounds.
  • Examples of the tetrazole compound include the following compounds.
  • thiadiazole compounds include the following compounds.
  • triazine compounds include the following compounds.
  • rhodanine compounds include the following compounds.
  • thiazole compounds include the following compounds.
  • benzothiazole compounds include the following compounds.
  • benzimidazole compounds include the following compounds.
  • benzoxazole compounds include the following compounds.
  • the heterocyclic compounds may be used alone or in combination of two or more.
  • the content of the heterocyclic compound is preferably 0.01 to 20.0% by mass, and 0.10 to 10.0% by mass based on the total mass of the photosensitive layer. is more preferable, 0.30 to 8.0% by weight is still more preferable, and 0.50 to 5.0% by weight is particularly preferable.
  • the photosensitive layer may contain an aliphatic thiol compound. Since the photosensitive layer contains an aliphatic thiol compound, the aliphatic thiol compound undergoes an ene-thiol reaction with a radically polymerizable compound having an ethylenically unsaturated group, thereby suppressing curing shrinkage of the formed film. and the stress is relieved.
  • aliphatic thiol compound a monofunctional aliphatic thiol compound or a polyfunctional aliphatic thiol compound (that is, a bifunctional or more functional aliphatic thiol compound) is preferable.
  • polyfunctional aliphatic thiol compounds are preferred from the viewpoint of the adhesion of the formed pattern (particularly the adhesion after exposure).
  • polyfunctional aliphatic thiol compound means an aliphatic compound having two or more thiol groups (also referred to as “mercapto groups”) in the molecule.
  • the polyfunctional aliphatic thiol compound a low molecular compound with a molecular weight of 100 or more is preferable. Specifically, the molecular weight of the polyfunctional aliphatic thiol compound is more preferably 100 to 1,500, and even more preferably 150 to 1,000.
  • the number of functional groups in the polyfunctional aliphatic thiol compound is preferably 2 to 10 functional, more preferably 2 to 8 functional, and even more preferably 2 to 6 functional, from the viewpoint of adhesion of the formed pattern.
  • polyfunctional aliphatic thiol compounds include trimethylolpropane tris(3-mercaptobutyrate), 1,4-bis(3-mercaptobutyryloxy)butane, pentaerythritol tetrakis(3-mercaptobutyrate), 1,3,5-tris(3-mercaptobutyryloxyethyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione, 1,3,5-tris(2- (3-Sulfanylbutanoyloxy)ethyl)-1,3,5-triazinane-2,4,6-trione, trimethylolethane tris(3-mercaptobutyrate), tris[(3-mercaptopropionyloxy)ethyl] Isocyanurate, trimethylolpropane tris (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptopropionat
  • polyfunctional aliphatic thiol compounds include trimethylolpropane tris(3-mercaptobutyrate), 1,4-bis(3-mercaptobutyryloxy)butane, and 1,3,5-tris At least one compound selected from the group consisting of (3-mercaptobutyryloxyethyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione is preferred.
  • Examples of monofunctional aliphatic thiol compounds include 1-octanethiol, 1-dodecanethiol, ⁇ -mercaptopropionic acid, methyl-3-mercaptopropionate, 2-ethylhexyl-3-mercaptopropionate, n- Included are octyl-3-mercaptopropionate, methoxybutyl-3-mercaptopropionate, and stearyl-3-mercaptopropionate.
  • the photosensitive layer may contain one type of aliphatic thiol compound alone, or may contain two or more types of aliphatic thiol compounds.
  • the content of the aliphatic thiol compound is preferably 5% by mass or more, more preferably 5 to 50% by mass, and more preferably 5 to 30% by mass based on the total mass of the photosensitive layer. % by weight is more preferable, and 8 to 20% by weight is particularly preferable.
  • the photosensitive layer contains a thermally crosslinkable compound from the viewpoint of the strength of the resulting cured film and the tackiness of the resulting uncured film.
  • the thermally crosslinkable compound having an ethylenically unsaturated group which will be described later, is not treated as an ethylenically unsaturated compound, but as a thermally crosslinkable compound.
  • thermally crosslinkable compounds include epoxy compounds, oxetane compounds, methylol compounds, and blocked isocyanate compounds. Among these, blocked isocyanate compounds are preferred from the viewpoint of the strength of the cured film obtained and the tackiness of the uncured film obtained.
  • blocked isocyanate compounds react with hydroxy groups and carboxy groups. , the hydrophilicity of the formed film tends to decrease and its function as a protective film tends to be strengthened.
  • the blocked isocyanate compound refers to "a compound having a structure in which the isocyanate group of isocyanate is protected (so-called masked) with a blocking agent.”
  • the dissociation temperature of the blocked isocyanate compound is not particularly limited, but is preferably 100 to 160°C, more preferably 130 to 150°C.
  • the dissociation temperature of the blocked isocyanate means "the temperature of the endothermic peak associated with the deprotection reaction of the blocked isocyanate when measured by DSC (differential scanning calorimetry) analysis using a differential scanning calorimeter.”
  • DSC differential scanning calorimetry
  • a differential scanning calorimeter model: DSC6200 manufactured by Seiko Instruments Inc. can be suitably used.
  • the differential scanning calorimeter is not limited to this.
  • the blocking agent having a dissociation temperature of 100 to 160° C. is preferably at least one selected from oxime compounds, for example, from the viewpoint of storage stability.
  • the blocked isocyanate compound preferably has an isocyanurate structure, for example, from the viewpoint of improving the brittleness of the film and improving the adhesion to the transfer target.
  • a blocked isocyanate compound having an isocyanurate structure can be obtained, for example, by converting hexamethylene diisocyanate into isocyanurate and protecting it.
  • blocked isocyanate compounds having an isocyanurate structure a compound having an oxime structure using an oxime compound as a blocking agent is easier to maintain the dissociation temperature in a preferable range than a compound without an oxime structure, and produces less development residue. This is preferable because it is easy to do.
  • the blocked isocyanate compound may have a polymerizable group.
  • the polymerizable group is not particularly limited, and any known polymerizable group can be used, with radically polymerizable groups being preferred.
  • the polymerizable group include ethylenically unsaturated groups such as a (meth)acryloxy group, (meth)acrylamide group, and styryl group, and groups having an epoxy group such as a glycidyl group.
  • the polymerizable group is preferably an ethylenically unsaturated group, more preferably a (meth)acryloxy group, and even more preferably an acryloxy group.
  • blocked isocyanate compound commercially available products can be used.
  • block isocyanate compounds include Karenz (registered trademark) AOI-BM, Karenz (registered trademark) MOI-BM, Karenz (registered trademark) MOI-BP (all manufactured by Showa Denko K.K.), Block Examples include the Duranate series of molds (eg, Duranate (registered trademark) TPA-B80E, Duranate (registered trademark) WT32-B75P, etc., manufactured by Asahi Kasei Chemicals Co., Ltd.).
  • Thermal crosslinkable compounds may be used alone or in combination of two or more.
  • the content of the thermally crosslinkable compound is preferably 1.0 to 50.0% by mass, and 5.0 to 30.0% by mass based on the total mass of the photosensitive layer.
  • the amount is more preferably 5.0 to 25.0% by weight, and even more preferably 5.0 to 25.0% by weight.
  • the photosensitive layer may contain a surfactant.
  • the surfactant include the surfactants described in paragraph [0017] of Japanese Patent No. 4502784 and paragraphs [0060] to [0071] of JP-A-2009-237362.
  • fluorine-based surfactants or silicone-based surfactants are preferred.
  • Commercially available fluorosurfactants include Megafac F-171, F-172, F-173, F-176, F-177, F-141, F-142, F-143, F-144.
  • fluorine-based surfactants include acrylic compounds that have a molecular structure with a functional group containing a fluorine atom, and when heat is applied, the functional group containing the fluorine atom is severed and the fluorine atom evaporates.
  • fluorine-based surfactants include the Megafac DS series manufactured by DIC Corporation (Kagaku Kogyo Nippo (February 22, 2016), Nikkei Sangyo Shimbun (February 23, 2016)); An example is DS-21.
  • the fluorine-based surfactant it is also preferable to use a polymer of a fluorine atom-containing vinyl ether compound having a fluorinated alkyl group or a fluorinated alkylene ether group and a hydrophilic vinyl ether compound.
  • block polymers can also be used as the fluorosurfactant.
  • the fluorine-based surfactant has a structural unit derived from a (meth)acrylate compound having a fluorine atom and two or more (preferably five or more) alkyleneoxy groups (preferably ethyleneoxy groups, propyleneoxy groups).
  • a fluorine-containing polymer compound containing a structural unit derived from a (meth)acrylate compound can also be preferably used.
  • fluorine-containing surfactant a fluorine-containing polymer having an ethylenically unsaturated bond-containing group in its side chain can also be used.
  • fluorosurfactants are derived from alternative materials for compounds with perfluoroalkyl groups having 7 or more carbon atoms, such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS).
  • nonionic surfactants include glycerol, trimethylolpropane, trimethylolethane, and their ethoxylates and propoxylates (e.g., glycerol propoxylate, glycerol ethoxylate, etc.), polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, Polyoxyethylene oleyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol distearate, sorbitan fatty acid ester, Pluronic (registered trademark) L10, L31, L61, L62, 10R5, 17R2 , 25R2 (manufactured by BASF), Tetronic 304, 701, 704, 901, 904, 150R1 (manufactured by BASF), Solsperse 20000 (manufactured by Japan Lubrizol
  • silicone surfactants include linear polymers consisting of siloxane bonds and modified siloxane polymers with organic groups introduced into side chains or terminals.
  • surfactants include DOWSIL 8032 ADDITIVE, Tore Silicone DC3PA, Tore Silicone SH7PA, Tore Silicone DC11PA, Tore Silicone SH21PA, Tore Silicone SH28PA, Tore Silicone SH29PA, Tore Silicone SH30PA, Tore Silicone SH 8400 (or more, Toray Dow (manufactured by Corning Corporation), X-22-4952, X-22-4272, 643, X-22-6191, X-22-4515, KF-6004, KP-341, KF-6001, KF-6002 (manufactured by Shin-Etsu Silicone Co., Ltd.), F-4440, TSF-4300, TSF-4445 , TSF-4460, TSF-4452 (manufactured by Momentive Performance Materials), BYK307, BYK323, BYK330 (manufactured by BYK Chemie), and the like.
  • the surfactants may be used alone or in combination of two or more.
  • the content of the surfactant is preferably 0.01 to 3.0% by mass, and 0.01 to 1.0% by mass based on the total mass of the photosensitive layer. is more preferable, and even more preferably 0.05 to 0.80% by mass.
  • the photosensitive layer may contain a polymerization inhibitor.
  • a polymerization inhibitor means a compound that has the function of delaying or inhibiting a polymerization reaction.
  • the polymerization inhibitor for example, known compounds used as polymerization inhibitors can be used.
  • polymerization inhibitor examples include phenothiazine compounds such as phenothiazine, bis-(1-dimethylbenzyl)phenothiazine, and 3,7-dioctylphenothiazine; bis[3-(3-tert-butyl-4-hydroxy-5-methyl); phenyl)propionic acid][ethylenebis(oxyethylene)]2,4-bis[(laurylthio)methyl]-o-cresol, 1,3,5-tris(3,5-di-t-butyl-4-hydroxy benzyl), 1,3,5-tris(4-t-butyl-3-hydroxy-2,6-dimethylbenzyl), 2,4-bis-(n-octylthio)-6-(4-hydroxy-3, Hindered phenol compounds such as 5-di-tert-butylanilino)-1,3,5-triazine, and pentaerythritol tetrakis 3-(3,5-di-d
  • the polymerization inhibitor is preferably at least one selected from the group consisting of phenothiazine compounds, nitroso compounds or salts thereof, and hindered phenol compounds; -(3-tert-butyl-4-hydroxy-5-methylphenyl)propionic acid][ethylenebis(oxyethylene)]2,4-bis[(laurylthio)methyl]-o-cresol, 1,3,5- More preferred are tris(3,5-di-t-butyl-4-hydroxybenzyl) and N-nitrosophenylhydroxylamine aluminum salt.
  • the polymerization inhibitors may be used alone or in combination of two or more.
  • the content of the polymerization inhibitor is preferably 0.001 to 5.0% by mass, and 0.01 to 3.0% by mass based on the total mass of the photosensitive layer. is more preferable, and even more preferably 0.02 to 2.0% by mass.
  • the content of the polymerization inhibitor is preferably 0.005 to 5.0% by mass, more preferably 0.01 to 3.0% by mass, and 0.01 to 1.0% by mass based on the total mass of the polymerizable compound. Mass % is more preferred.
  • the photosensitive layer may contain a hydrogen donating compound.
  • the hydrogen-donating compound has effects such as further improving the sensitivity of the photopolymerization initiator to actinic rays and suppressing inhibition of polymerization of the polymerizable compound by oxygen.
  • Examples of hydrogen-donating compounds include amines and amino acid compounds.
  • Examples of amines include M. R. "Journal of Polymer Society” Vol. 10, p. 3173 (1972) by Sander et al. Examples include compounds described in JP-A-60-084305, JP-A-62-018537, JP-A-64-033104, and Research Disclosure 33825. More specifically, 4,4'-bis(diethylamino)benzophenone, tris(4-dimethylaminophenyl)methane (also known as leuco crystal violet), triethanolamine, p-dimethylaminobenzoic acid ethyl ester, p-formyl Dimethylaniline and p-methylthiodimethylaniline are mentioned.
  • the amine is preferably at least one selected from the group consisting of 4,4'-bis(diethylamino)benzophenone and tris(4-dimethylaminophenyl)methane, in that the effects of the present invention are more excellent. .
  • amino acid compound examples include N-phenylglycine, N-methyl-N-phenylglycine, and N-ethyl-N-phenylglycine.
  • N-phenylglycine is preferred as the amino acid compound since it provides better effects of the present invention.
  • hydrogen-donating compounds examples include organometallic compounds (tributyltin acetate, etc.) described in Japanese Patent Publication No. 48-042965, hydrogen donors described in Japanese Patent Publication No. 55-034414, and Sulfur compounds (such as trithiane) described in Japanese Patent No. 308727 may also be mentioned.
  • organometallic compounds tributyltin acetate, etc.
  • hydrogen donors described in Japanese Patent Publication No. 55-034414
  • Sulfur compounds such as trithiane
  • the hydrogen donating compounds may be used alone or in combination of two or more.
  • the content of the hydrogen-donating compound is 0 with respect to the total mass of the photosensitive layer, from the viewpoint of improving the curing rate due to the balance between polymerization growth rate and chain transfer.
  • the content is preferably from .01 to 10.0% by weight, more preferably from 0.01 to 8.0% by weight, even more preferably from 0.03 to 5.0% by weight.
  • the photosensitive layer may contain residual monomers of each structural unit of the alkali-soluble resin described above. From the point of patterning properties and reliability, the content of the residual monomer is preferably 5,000 mass ppm or less, more preferably 2,000 mass ppm or less, and still more preferably 500 mass ppm or less, based on the total mass of the alkali-soluble resin. preferable.
  • the lower limit is not particularly limited, but is preferably at least 1 ppm by mass, more preferably at least 10 ppm by mass.
  • the residual monomer of each structural unit of the alkali-soluble resin is preferably 3,000 mass ppm or less, more preferably 600 mass ppm or less, and 100 mass ppm or less, based on the total mass of the photosensitive layer, from the viewpoint of patterning properties and reliability. More preferably, it is less than ppm. Although the lower limit is not particularly limited, it is preferably 0.1 mass ppm or more, and more preferably 1 mass ppm or more.
  • the amount of residual monomers in the synthesis of the alkali-soluble resin by polymer reaction is within the above range.
  • the content of glycidyl acrylate is preferably within the above range.
  • the amount of residual monomer can be measured by known methods such as liquid chromatography and gas chromatography.
  • the photosensitive layer may contain components other than those described above (hereinafter also referred to as "other components”).
  • Other components include, for example, particles (eg, metal oxide particles), colorants, antioxidants, reflectance modifiers, light-absorbing substances, sensitizers, and chain transfer agents. Further, other components include other additives described in paragraphs [0058] to [0071] of JP-A-2000-310706.
  • metal oxide particles are preferred.
  • Metals in the metal oxide particles also include semimetals such as B, Si, Ge, As, Sb, and Te.
  • the average primary particle diameter of the particles is, for example, preferably 1 to 200 nm, more preferably 3 to 80 nm, from the viewpoint of transparency of the cured film.
  • the average primary particle diameter of the particles is calculated by measuring the particle diameter of 200 arbitrary particles using an electron microscope and taking the arithmetic average of the measurement results. In addition, when the shape of the particle is not spherical, the longest side is taken as the particle diameter.
  • the photosensitive layer may contain trace amounts of colorants (pigments, dyes, etc.).
  • antioxidants include 1-phenyl-3-pyrazolidone (also known as phenidone), 1-phenyl-4,4-dimethyl-3-pyrazolidone, and 1-phenyl-4-methyl-4-hydroxymethyl-3.
  • 3-pyrazolidones such as pyrazolidone; polyhydroxybenzenes such as hydroquinone, catechol, pyrogallol, methylhydroquinone, and chlorohydroquinone; paramethylaminophenol, paraaminophenol, parahydroxyphenylglycine, and paraphenylenediamine.
  • 3-pyrazolidones are preferable as the antioxidant, and 1-phenyl-3-pyrazolidone is more preferable, since the effects of the present invention are more excellent.
  • the photosensitive layer preferably contains one or more reflectivity modifiers selected from the group consisting of white pigments, metal particles, hollow particles, and liquid crystal compounds (particularly pigment particles of cholesteric liquid crystal compounds).
  • the photosensitive layer contains a reflectance modifier, it can be used as a light reflective layer precursor layer.
  • the photosensitive layer contains a reflectivity modifier, the resin pattern of the laminate formed according to the first embodiment of the present invention has even better light reflectivity.
  • the photosensitive layer contains a white pigment or hollow particles, the photosensitive layer is likely to become a white layer, and a light reflecting layer having the characteristic X1 described below is likely to be obtained.
  • the photosensitive layer contains metal particles or a liquid crystal compound (particularly pigment particles of a cholesteric liquid crystal compound), a light reflecting layer having characteristics X2 and X3, which will be described later, can be obtained due to the reflectivity caused by the metal particles or liquid crystal compound.
  • a light reflecting layer having characteristics X2 and X3 which will be described later, can be obtained due to the reflectivity caused by the metal particles or liquid crystal compound.
  • the white pigment examples include titanium oxide, zinc oxide, lithopone, light calcium carbonate, white carbon, aluminum oxide, aluminum hydroxide, barium sulfate, and the like.
  • the white pigment particles that exhibit a higher refractive index than the cured product of the polymerizable compound contained in the photosensitive layer are preferable in that the effects of the present invention are more excellent, and titanium oxide is particularly preferable.
  • rutile type or anatase type titanium oxide is more preferable, and rutile type titanium oxide is particularly preferable.
  • the surface of the white pigment may be subjected to treatments such as silica treatment, alumina treatment, titania treatment, zirconia treatment, and organic substance treatment.
  • the photosensitive layer may further contain a pigment dispersant.
  • the shape of the white pigment is not particularly limited, and examples include spherical, amorphous, plate-like, acicular, and polyhedral shapes.
  • the average primary particle size of the white pigment is not particularly limited, and is preferably, for example, 50 to 1000 nm, more preferably 100 to 500 nm.
  • the average primary particle diameter of the white pigment is a value determined by measuring the diameters of 100 arbitrary particles through observation using a transmission electron microscope (TEM) and taking the arithmetic mean of the 100 diameters.
  • TEM transmission electron microscope
  • the diameter of the white pigment refers to the diameter when an image observed by a transmission electron microscope (TEM) is a circle with the same area.
  • Metal particles-- The type of metal contained in the metal particles is preferably silver, nickel, cobalt, iron, copper, palladium, gold, platinum, tin, zinc, aluminum, tungsten, or titanium in terms of their high reflectivity. , tin, nickel, aluminum, or cobalt are more preferable, and gold, silver, or aluminum is even more preferable in that they exhibit higher reflectivity in the visible light region, and silver is particularly preferable.
  • the metal particles may be single metal particles or metal alloy particles. In addition, when the metal particles are metal alloy particles, it is preferable that the metal alloy particles are alloy particles of two or more of the above-mentioned metal types.
  • the shape of the metal particles is not particularly limited, and examples include spherical, amorphous, plate-like, acicular, and polyhedral shapes.
  • the average primary particle size of the metal particles is not particularly limited, and is preferably, for example, 1 to 5,000 nm, more preferably 5 to 1,000 nm.
  • the average primary particle diameter of the metal particles is a value determined by measuring the diameters of 100 arbitrary particles by observation using a transmission electron microscope (TEM) and calculating the arithmetic mean of the 100 diameters. Further, the diameter of the metal particles refers to the diameter when an image observed by a transmission electron microscope (TEM) is a circle with the same area.
  • Metal particles can be produced, for example, by a method such as reduction of an organometallic compound, as disclosed in JP-A-10-183207.
  • the hollow particles are not particularly limited as long as they have a cavity inside, and examples thereof include hollow inorganic particles and hollow resin particles.
  • the hollow inorganic particles are preferably hollow inorganic particles whose shell portions are made of a metal oxide selected from the group consisting of silica, alumina, zirconia, titanium oxide, and composite oxides thereof.
  • Examples of hollow resin particles include styrene resin, acrylic resin, silicone resin, acrylic-styrene resin, vinyl chloride resin, vinylidene chloride resin, amide resin, urethane resin, phenol resin, and styrene-conjugated diene.
  • Polymers such as acrylic-based resins, acrylic-conjugated diene-based resins, and olefin-based resins, as well as hollow resin particles whose shell portions are made of organic substances such as crosslinked products of these polymers, can be mentioned.
  • the hollow particles may be subjected to physical surface treatments such as plasma discharge treatment and corona discharge treatment, or chemical surface treatments using surfactants, coupling agents, and the like.
  • the shape of the hollow particles is not particularly limited, and examples include spherical, crushed, fibrous, acicular, and scaly shapes.
  • the average primary particle size of the hollow particles is not particularly limited, and is preferably, for example, 50 to 5000 nm, more preferably 100 to 1000 nm.
  • the average primary particle diameter of the hollow particles is a value obtained by measuring the diameters of 100 arbitrary particles by observation using a transmission electron microscope (TEM) and calculating the arithmetic mean of the 100 diameters.
  • the diameter of the hollow particles refers to the diameter when an image observed by a transmission electron microscope (TEM) is a circle with the same area.
  • liquid crystal compound-- examples include compounds having liquid crystal properties.
  • the liquid crystal compound may be fixed in a predetermined alignment state. That is, the photosensitive layer may contain a polymer obtained by polymerizing an oriented polymerizable liquid crystal compound. In the above polymer, the orientation state is fixed.
  • a polymer obtained by polymerizing a polymerizable liquid crystal compound with cholesteric liquid crystal alignment is preferable because it has better reflectivity.
  • a polymer with a fixed cholesteric liquid crystal orientation can be obtained by using a cholesteric liquid crystal composition containing a nematic liquid crystal compound and a chiral agent and curing the liquid crystal composition in a state exhibiting a cholesteric liquid crystal phase.
  • a polymer in which cholesteric liquid crystal alignment is fixed usually has a circularly polarized light selective reflection function that selectively reflects circularly polarized light.
  • the polymer in which the cholesteric liquid crystal alignment is fixed is contained in the photosensitive layer in the form of liquid crystal particles.
  • the photosensitive layer preferably contains liquid crystal particles made of a polymer with fixed cholesteric liquid crystal orientation.
  • the shape of the liquid crystal particles is not particularly limited, flakes are preferable since they have better dispersibility.
  • the average primary particle diameter of the flakes is, for example, preferably 1 to 120 ⁇ m, more preferably 1 to 100 ⁇ m.
  • the average primary particle diameter of the liquid crystal particles is a value determined by measuring the diameters of 100 arbitrary particles through observation using a transmission electron microscope (TEM) and taking the arithmetic mean of the 100 diameters. Further, the diameter of the liquid crystal particles refers to the diameter when an image observed by a transmission electron microscope (TEM) is a circle with the same area.
  • TEM transmission electron microscope
  • liquid crystal particles include, for example, "HELICONE HC Sapphire,” “HELICONE HC Aquarius,” “HELICONE HC Scarabeus,” “HELICONE HC Jade,” and “HELICONE HC Aquarius.”
  • ICONE HC Maple (all manufactured by Asahi Kasei Wacker Silicone Co., Ltd.), etc. can be mentioned.
  • the content of the reflection modifier is preferably 10 to 90% by mass, more preferably 20 to 85% by mass, and 30 to 85% by mass, based on the total mass of the photosensitive layer. 80% by mass is more preferred.
  • the content of the white pigment is preferably 30 to 80% by mass, more preferably 40 to 70% by mass, based on the total mass of the photosensitive layer.
  • the reflectance modifier contains metal particles
  • the content of the metal particles is preferably 20 to 95% by mass, more preferably 30 to 90% by mass, based on the total mass of the photosensitive layer.
  • the content of the hollow particles is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, based on the total mass of the photosensitive layer.
  • the reflectivity modifier contains a liquid crystal compound (preferably liquid crystal particles)
  • the content of the liquid crystal compound is preferably 10 to 90% by mass based on the total mass of the photosensitive layer. More preferably 20 to 80% by weight, even more preferably 30 to 70% by weight.
  • the photosensitive layer contains a light-absorbing substance.
  • a light-absorbing layer precursor layer may be formed.
  • the photosensitive layer contains a light-absorbing substance, the external light reflectivity of the resin pattern of the laminate formed according to the first embodiment of the present invention is reduced, and/or the external light reflectivity is reduced when the light emitting element is turned on. The obtained stray light is easily absorbed, and as a result, the black density is better when the light emitting element is not lit.
  • a light-absorbing layer having characteristics Y1 and/or Y2, which will be described later, is likely to be obtained.
  • the light-absorbing substance is not particularly limited, and examples thereof include black pigments, and specific examples thereof include carbon black, titanium black, titanium carbon, iron oxide, titanium oxide, and graphite, with carbon black being more preferred. preferable.
  • the light-absorbing substance is a black pigment
  • its shape is not particularly limited, and examples include spherical, amorphous, plate-like, needle-like, and polyhedral.
  • the average primary particle size of the light-absorbing substance is not particularly limited, and is preferably, for example, 1 to 1000 nm, more preferably 2 to 500 nm.
  • the average primary particle diameter of the light-absorbing substance is a value determined by measuring the diameters of 100 arbitrary particles through observation using a transmission electron microscope (TEM) and taking the arithmetic mean of the 100 diameters.
  • the diameter of the light-absorbing substance refers to the diameter when an image observed by a transmission electron microscope (TEM) is a circle with the same area.
  • the light-absorbing substance may be subjected to physical surface treatments such as plasma discharge treatment and corona discharge treatment, or chemical surface treatments using surfactants, coupling agents, resins, and the like.
  • light-absorbing substances include compounds that turn black when exposed to light, heated, etc.
  • Examples of compounds that turn black due to the action of exposure, heating, etc. include the following compound (1).
  • the content of the light-absorbing substance is preferably 5 to 80% by mass, more preferably 10 to 70% by mass, and 10 to 70% by mass, based on the total mass of the photosensitive layer. More preferably 60% by weight, particularly preferably 10 to 50% by weight.
  • the thickness of the photosensitive layer is, for example, preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more.
  • the upper limit is not particularly limited, and is preferably, for example, 100 ⁇ m or less, more preferably 50 ⁇ m or less.
  • the photosensitive layer contains a reflectivity modifier, it can be used as a light-reflecting layer precursor layer, and when the photosensitive layer contains a light-absorbing substance, it can be used as a light-absorbing layer precursor layer. can.
  • the light absorption layer precursor layer and the light absorption layer precursor layer will be described.
  • the thickness of the light reflective layer precursor layer is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, even more preferably 10 ⁇ m or more, particularly preferably 16 ⁇ m or more.
  • the upper limit is not particularly limited, and is preferably, for example, 100 ⁇ m or less, more preferably 50 ⁇ m or less.
  • the light reflective layer formed from the light reflective layer precursor layer is a layer that satisfies at least one of the following characteristics X1, X2, and X3. It is preferable that In particular, when the light-emitting element is a visible light LED, the light-reflecting layer is preferably a layer that satisfies at least one of the characteristics X1 and X2, and when the LED in the light-emitting element is a UV-LED, the light-reflecting layer As such, it is preferable that the layer satisfies characteristic X3.
  • the total internal reflection (incident angle: 8°, light source: D-65 (2° field of view)) of the light reflective layer has an L * value of 80 or more in the CIE1976 (L * , a * , b * ) color space. is preferred.
  • L * value in the CIE 1976 (L * , a * , b * ) color space is a value measured using a spectrophotometer at 25° C. for a light reflecting layer with a thickness of 30 ⁇ m.
  • spectrophotometer for example, spectrophotometer V-570 manufactured by JASCO Corporation can be used.
  • the above L * value is more preferably 90 or more.
  • the upper limit is 100 or less.
  • the total reflectance of the light reflecting layer at a wavelength of 550 nm is preferably 60% or more, more preferably 80% or more.
  • the upper limit is 100% or less.
  • the total reflectance at a wavelength of 550 nm is a value measured using a spectrophotometer at 25° C. for a light reflecting layer with a thickness of 30 ⁇ m.
  • spectrophotometer for example, spectrophotometer V-570 manufactured by JASCO Corporation can be used.
  • ⁇ Characteristics X3 ⁇ The total reflectance of the light reflecting layer at a wavelength of 385 nm is preferably 60% or more, more preferably 80% or more. The upper limit is 100% or less.
  • the total reflectance at a wavelength of 385 nm is a value measured using a spectrophotometer at 25° C. for a light reflecting layer with a thickness of 30 ⁇ m.
  • a spectrophotometer for example, spectrophotometer V-570 manufactured by JASCO Corporation can be used.
  • the thickness of the light absorption layer precursor layer is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more.
  • the upper limit is not particularly limited, and is preferably, for example, 10 ⁇ m or less, more preferably 5 ⁇ m or less.
  • Optical density of light absorption layer precursor layer The optical density (OD) of the light absorption layer precursor layer at a wavelength of 550 nm is preferably 0.5 or more, more preferably 1.0 or more, and still more preferably 2.0 or more. Preferably, 3.0 or more is particularly preferable.
  • the upper limit is not particularly limited, and is preferably 6.0 or less, for example.
  • the optical density of the light absorption layer precursor layer can be measured with a Macbeth densitometer (manufactured by Macbeth, TD-904, using a visual filter) or the like.
  • the optical density (OD) of the light absorption layer precursor layer at a wavelength of 385 nm is preferably 0.5 or more, more preferably 1.0 or more, even more preferably 2.0 or more, and particularly preferably 3.0 or more.
  • the upper limit is not particularly limited, and is preferably 6.0 or less, for example.
  • the optical density of the light absorption layer precursor layer at a wavelength of 385 nm can be measured using an ultraviolet spectrophotometer U-3310 (manufactured by Hitachi, Ltd.) or the like.
  • the light absorption layer formed from the light absorption layer precursor layer preferably satisfies the characteristics Y1 and/or the characteristics Y2.
  • the light-absorbing layer is preferably a layer that satisfies characteristic Y1 in that it has better antireflection properties for external light
  • the light-emitting element is a UV-LED
  • the light absorption layer is preferably a layer that satisfies characteristic Y2 in that it has better antireflection properties for external light and better suppressing properties for stray light.
  • the optical density (OD) of the light absorption layer at a wavelength of 550 nm is preferably 0.5 or more, more preferably 1.0 or more, even more preferably 2.0 or more, and particularly preferably 3.0 or more.
  • the upper limit is not particularly limited, and is preferably 6.0 or less, for example.
  • the optical density of the light absorption layer can be measured with a Macbeth densitometer (manufactured by Macbeth, TD-904, using a visual filter) or the like.
  • the optical density (OD) of the light absorption layer at a wavelength of 385 nm is preferably 0.5 or more, more preferably 1.0 or more, even more preferably 2.0 or more, and particularly preferably 3.0 or more.
  • the upper limit is not particularly limited, and is preferably 6.0 or less, for example.
  • the optical density of the light absorption layer at a wavelength of 385 nm can be measured using an ultraviolet spectrophotometer U-3310 (manufactured by Hitachi, Ltd.) or the like.
  • the positive photosensitive layer will be described in detail below.
  • the photosensitive layer include a photosensitive layer containing at least a polymer and a photoacid generator.
  • the above-mentioned polymer is a polymer containing a repeating unit having a group whose hydrophilicity is increased by the action of an acid (for example, an acid-decomposable group in which a polar group is protected by a leaving group that is eliminated by the action of an acid). It is preferable to have one.
  • the photosensitive layer a known positive type photosensitive layer can be used. Note that the photosensitive layer may be a photosensitive light reflection layer or a photosensitive light absorption layer.
  • the photosensitive layer When the photosensitive layer is a photosensitive light-reflecting layer, the photosensitive layer contains a reflection modifier, and when the photosensitive layer is a photosensitive light-absorbing layer, the photosensitive layer contains a light-absorbing substance.
  • the types of the reflectivity modifier and light-absorbing substance, and the respective contents of the reflectivity modifier and light-absorbing substance relative to the total mass of the photosensitive layer are as follows: The types of the photosensitive substances and the respective contents of the reflection modifier and the light-absorbing substance relative to the total mass of the photosensitive layer are the same, and the preferred ranges are also the same.
  • the thickness of the photosensitive layer is, for example, preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more.
  • the upper limit is not particularly limited, and is preferably, for example, 100 ⁇ m or less, more preferably 50 ⁇ m or less.
  • Preferred embodiments of the photosensitive light-reflecting layer and the photosensitive light-absorbing layer Preferred embodiments of the photosensitive light-reflecting layer and the photosensitive light-absorbing layer will be described below.
  • the thickness of the photosensitive light reflective layer is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, even more preferably 10 ⁇ m or more, particularly preferably 16 ⁇ m or more.
  • the upper limit is not particularly limited, and is preferably, for example, 100 ⁇ m or less, more preferably 50 ⁇ m or less.
  • the photosensitive light-reflecting layer is preferably a layer that satisfies at least one of the above characteristics X1, X2, and X3.
  • the photosensitive light-reflecting layer is preferably a layer that satisfies at least one of the characteristics X1 and X2, and when the LED in the light-emitting element is a UV-LED, The photosensitive light-reflecting layer is preferably a layer that satisfies characteristic X3.
  • the thickness of the photosensitive light absorption layer is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more.
  • the upper limit is not particularly limited, and is preferably, for example, 10 ⁇ m or less, more preferably 5 ⁇ m or less.
  • the photosensitive light-absorbing layer preferably satisfies the above-mentioned characteristics Y1 and/or characteristics Y2.
  • the photosensitive light-absorbing layer is preferably a layer that satisfies characteristic Y1 in that it has better antireflection properties for external light
  • the photosensitive light-absorbing layer is preferably a layer that satisfies characteristic Y2 in that it has better antireflection properties for external light and better suppressing properties for stray light.
  • the transfer film may have a protective film.
  • a resin film having heat resistance and solvent resistance can be used, and examples thereof include polyolefin films such as polypropylene films and polyethylene films, polyester films such as polyethylene terephthalate films, polycarbonate films, and polystyrene films. It will be done.
  • a resin film made of the same material as the above-mentioned temporary support may be used as the protective film.
  • the protective film is preferably a polyolefin film, more preferably a polypropylene film or a polyethylene film, and even more preferably a polyethylene film.
  • the thickness of the protective film is preferably 1 to 100 ⁇ m, more preferably 5 to 50 ⁇ m, even more preferably 5 to 40 ⁇ m, and particularly preferably 15 to 30 ⁇ m.
  • the thickness of the protective film can be calculated as the average value of five arbitrary points measured by cross-sectional observation using a SEM (Scanning Electron Microscope).
  • the thickness of the protective film is preferably 1 ⁇ m or more in terms of excellent mechanical strength, and preferably 100 ⁇ m or less in terms of being relatively inexpensive.
  • the number of fish eyes with a diameter of 80 ⁇ m or more contained in the protective film is 5 pieces/m 2 or less.
  • “Fisheye” refers to foreign matter, undissolved matter, oxidized deterioration products, etc. of the material when manufacturing the film by methods such as heat-melting, kneading, extrusion, biaxial stretching, and casting. It was captured in the film.
  • the number of particles with a diameter of 3 ⁇ m or more contained in the protective film is preferably 30 particles/mm 2 or less, more preferably 10 particles/mm 2 or less, and even more preferably 5 particles/mm 2 or less. This makes it possible to suppress defects caused by the transfer of unevenness caused by particles contained in the protective film onto the photosensitive layer.
  • the arithmetic mean roughness Ra of the surface of the protective film opposite to the surface in contact with the photosensitive layer is preferably 0.01 ⁇ m or more, more preferably 0.02 ⁇ m or more, and 0.03 ⁇ m.
  • the above is more preferable.
  • it is preferably less than 0.50 ⁇ m, more preferably 0.40 ⁇ m or less, and even more preferably 0.30 ⁇ m or less.
  • the surface roughness Ra of the surface of the protective film in contact with the photosensitive layer is preferably 0.01 ⁇ m or more, more preferably 0.02 ⁇ m or more, and even more preferably 0.03 ⁇ m or more.
  • the second embodiment of the method for manufacturing a laminate of the present invention includes the following steps (2-1) to (2-4).
  • Step (2-1) (bonding step): The surface of the light emitting element side of the light emitting element-equipped substrate, which includes a substrate and a plurality of light emitting elements arranged on the substrate, the temporary support and the photosensitive layer. A step of laminating the light emitting element-equipped substrate and the transfer film so that the surface of the transfer film opposite to the temporary support faces each other and the light emitting element is covered with the photosensitive layer.
  • Step (2-2) exposure step: A step of exposing the photosensitive layer in a pattern.
  • Step (2-3) developer step: Developing the exposed photosensitive layer to form the light emitting element.
  • the embodiment includes the following step (2-A) between step (2-1) and step (2-2) or between step (2-2) and step (2-3).
  • - Step (2-A) temporary support peeling step: Step of peeling off the temporary support.
  • Steps (2-1) to (2-3), (2-A) to (2-C)> Steps (2-1) to (2-3) and (2-A) in the second embodiment of the present invention are respectively steps (1-1) to (1-3) in the first embodiment of the present invention. , (1-A).
  • step (2-B) or “ (also referred to as "post-exposure step")
  • step (2-C) or "post-bake step”
  • steps (2-B) and (2-C) in the second embodiment of the present invention are the same as those described as steps (1-B) and (1-C) in the first embodiment of the present invention, respectively. It is.
  • Step (2-4) Light reflective film formation step>
  • a light reflecting film is formed on the side wall of the opening in the resin pattern formed on the substrate with a light emitting element.
  • a resin pattern that functions as a partition layer that separates light-emitting elements from each other when a light-reflecting film is disposed on the side wall of the opening, the light from the light-emitting elements is reflected by the light-reflecting film, resulting in better brightness.
  • the laminate 60 includes a substrate 10 with a light emitting element, a resin pattern 42, and a light reflecting film 62 disposed on a side wall of an opening 43 in the resin pattern 42.
  • the light-reflecting film contains metal.
  • the type of metal is not particularly limited, but silver, nickel, cobalt, iron, copper, palladium, gold, platinum, tin, zinc, aluminum, tungsten, or titanium is preferable because of its high reflectivity. , tin, nickel, aluminum, or cobalt are more preferable, and gold, silver, or aluminum is even more preferable in that they exhibit higher reflectivity in the visible light region, and silver is particularly preferable.
  • step (2-4) sputtering method, vapor deposition method, plating method, printing of ink containing metal particles (screen printing, inkjet, etc.), etc. can be applied.
  • it may be formed by patterning using a known method such as wet etching or dry etching so that only necessary portions are left.
  • the thickness of the light reflecting film is preferably 10 nm or more, more preferably 50 nm or more, and even more preferably 250 nm or more.
  • the upper limit is not particularly limited, and for example, is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, even more preferably 10 ⁇ m or less, particularly preferably 1 ⁇ m or less, and most preferably 800 nm or less.
  • the light reflecting film is preferably a film that satisfies at least one of the following characteristics Z1 and Z2.
  • the light-reflecting film preferably satisfies characteristic Z1
  • the light-reflecting film preferably satisfies characteristic Z2.
  • characteristic Z1 characteristic Z1
  • UV-LED characteristic Z2
  • the total reflectance of the light reflecting film at a wavelength of 550 nm is preferably 60% or more, more preferably 80% or more. The upper limit is 100% or less.
  • the total reflectance at a wavelength of 550 nm is a value measured using a spectrophotometer at 25° C. for a light reflecting film with a thickness of 30 ⁇ m.
  • spectrophotometer V-570 manufactured by JASCO Corporation can be used.
  • the total reflectance of the light reflecting film at a wavelength of 385 nm is preferably 60% or more, more preferably 80% or more. The upper limit is 100% or less.
  • the total reflectance of the light reflection film at a wavelength of 385 nm is a value measured using a spectrophotometer at 25° C. for a light reflection film with a thickness of 30 ⁇ m.
  • spectrophotometer V-570 manufactured by JASCO Corporation can be used.
  • the various transfer films shown as the transfer film that can be used in the first embodiment of the present invention can be used.
  • An example of a preferred embodiment of the transfer film that can be used in the second embodiment of the present invention will be shown below.
  • the light-reflecting layer precursor layer, the light-absorbing layer precursor layer, the protective film, and the temporary support are referred to as the light-reflecting layer precursor layer, the light-absorbing layer in the transfer film that can be used in the first embodiment of the present invention. It has the same meaning as a precursor layer, a protective film, and a temporary support, and the preferred embodiments are also the same.
  • the other photosensitive layer means a photosensitive layer that does not fall under either the light-reflecting layer precursor layer or the light-absorbing layer precursor layer.
  • Temporary support/light absorption layer precursor layer/protective film ⁇ (N5) Temporary support/light absorption layer precursor layer/other photosensitive layer/protective film
  • the transfer film (N5) is used in the second embodiment of the present invention, on the side wall of the opening of the resin pattern, at least a position corresponding to the resin layer originating from another photosensitive layer has light reflection. Just place the membrane.
  • composition for forming light-absorbing layer precursor layer [Preparation of composition for forming light-absorbing layer precursor layer]
  • Light absorption layer precursor layer forming compositions (A-1 to A-2) were prepared based on the components and blending amounts shown in Table 1. Note that the unit of the amount of each component shown in Table 1 is parts by mass.
  • Compound (1) A compound having the following structure.
  • compound (1) corresponds to a compound that changes from transparent to black by heat treatment.
  • a composition for forming a light reflective layer precursor layer (B-1) and a photosensitive composition (B-2) were prepared based on the components and blending amounts shown in Table 2. Note that the unit of the amount of each component shown in Table 2 is parts by mass.
  • P-2 solution solid content 36.2% by mass solution of polymer P-2
  • a P-2 solution (a solution of polymer P-2 with a solid content of 36.2% by mass) was prepared by the polymerization step and addition step shown below. 113.5 g of propylene glycol monomethyl ether was charged into a flask and heated to 90° C. under a nitrogen stream.
  • the weight average molecular weight in terms of standard polystyrene in GPC was 18,000, the number average molecular weight was 7,800, the degree of dispersion was 2.3, and the acid value of the polymer was 124 mgKOH/g.
  • the amount of residual monomer measured using gas chromatography was less than 0.1% by mass based on the solid content of the polymer in all monomers.
  • the structure of polymer P-2 is shown below.
  • Polymer P-2 The composition of the structural units in the following structural formula represents the molar ratio. Note that the polymer P-2 corresponds to an alkali-soluble resin.
  • Example 1 [Preparation of transfer film] A polyethylene terephthalate film (Lumirror 16KS40, manufactured by Toray Industries, Inc., thickness: 16 ⁇ m) was prepared as a temporary support.
  • the composition A-1 for forming a light-absorbing layer precursor layer is applied onto the temporary support so that the thickness after drying is 3 ⁇ m, and the light-absorbing layer precursor layer is formed by drying at 100° C. for 1 minute. was formed.
  • the composition B-1 for forming a light-reflecting layer precursor layer is applied so that the thickness after drying is 30 ⁇ m, and the light-reflecting layer precursor layer is dried at 100° C. for 3 minutes. formed a layer.
  • a polyethylene terephthalate film (Lumirror 16KS40, manufactured by Toray Industries, Inc., thickness: 16 ⁇ m) was pressure-bonded onto the light reflective layer precursor layer.
  • a micro LED display element was produced using the transfer film 1 according to the following procedure. Specifically, after the LED chips were bonded to the bonding member on the array substrate, a resin pattern (partition layer) was formed using the transfer film 1. The specific steps are shown below.
  • a substrate with a precursor layer was prepared by laminating a light-reflecting layer precursor layer, a light-absorbing layer precursor layer, and a temporary support in this order. Heating temperature of substrate with chip: 40°C Rubber roller temperature: 110°C Linear pressure: 3N/cm Conveying speed: 2m/min
  • the distance between the surface of the exposure mask (mask having a pattern for forming openings) and the surface of the temporary support was set to 125 ⁇ m.
  • a proximity type exposure machine (Hitachi High-Tech Electronics Engineering Co., Ltd.) equipped with an ultra-high pressure mercury lamp, i-rays were applied at 100 mJ/cm to the light-reflecting layer precursor layer and the light-absorbing layer precursor layer through a temporary support. It was irradiated in a pattern at an exposure dose of 2 .
  • the exposure mask is patterned and positioned so that an opening is formed in the part where the LED chip is mounted so that the taper angle of the partition layer (see taper angle ⁇ in FIG. 3) is as shown in Table 3. adjusted.
  • the temporary support was peeled off, and then the exposed light-reflecting layer precursor layer and light-absorbing layer precursor layer were developed for 60 seconds using a 1% by mass aqueous solution of sodium carbonate at a temperature of 32°C.
  • ultrapure water was sprayed from an ultra-high pressure cleaning nozzle to the laminate obtained after the development treatment to remove the residue, and then air was further sprayed to remove moisture.
  • the pattern in the obtained laminate was exposed to light using a post-exposure machine (manufactured by Ushio Inc.) equipped with a high-pressure mercury lamp at an exposure dose of 1000 mJ/cm 2 (i-line) (post-exposure).
  • a post-bake treatment was performed at 210° C. for 5 minutes.
  • a resin pattern (a partition layer in which a light reflection layer and a light absorption layer were laminated in this order) having openings at the positions of the LED chips was formed on the array substrate.
  • Example 2 [Preparation of transfer film of Example] A polyethylene terephthalate film (Lumirror 16KS40, manufactured by Toray Industries, Inc., thickness: 16 ⁇ m) was prepared as a temporary support.
  • the composition A-1 for forming a light-absorbing layer precursor layer is applied onto the temporary support so that the thickness after drying is 3 ⁇ m, and the light-absorbing layer precursor layer is formed by drying at 100° C. for 1 minute. was formed.
  • Composition B-2 for forming a photosensitive layer is applied onto the light-absorbing layer precursor layer so that the thickness after drying is 30 ⁇ m, and dried at 100°C for 3 minutes to form a photosensitive layer (other photosensitive layers). layer) was formed.
  • a polyethylene terephthalate film (Lumirror 16KS40, manufactured by Toray Industries, Inc., thickness: 16 ⁇ m) was pressure-bonded onto the photosensitive layer.
  • Example 2 [Production of micro LED display element of Example 2] First, an LED chip was mounted on an array substrate in the same manner as in Example 1 [[Mounting of LED chip]]. Next, the LED was formed using the same procedure as [[Formation of resin pattern (partition layer)]] in Example 1 described above, except that the process conditions were adjusted appropriately so that the taper angle of the partition layer was as shown in Table 3. A resin pattern (a partition layer in which a resin layer and a light absorption layer were laminated in this order) having an opening was formed on the array substrate on which the chips were mounted. After the barrier ribs were fabricated, a 300 nm thick silver layer was deposited in the openings of the barrier ribs by a known vapor deposition method. At this time, the light reflecting layer was formed only on the side surface of the opening of the barrier layer by masking the chip and the surface of the barrier layer on the side opposite to the substrate. In this way, the micro LED display element of Example 2 was produced.
  • Example 3 A-2 was used as the light-absorbing layer precursor layer composition and coated to a thickness of 30 ⁇ m after drying, and the light-reflecting layer precursor layer was not laminated, but in the same manner as in Example 1. Transfer film 3 was obtained.
  • Example 3 [Production of micro LED display element of Example 3] First, an LED chip was mounted on an array substrate in the same manner as in Example 1 [[Mounting of LED chip]]. Next, the chip was fabricated using the same procedure as [[Formation of resin pattern (barrier layer)]] in Example 1 above, except that the process conditions were adjusted appropriately so that the taper angle of the barrier layer was as shown in Table 3. A resin pattern (light absorption layer) having openings was formed on the attached array substrate.
  • micro LED display element of Comparative Example 1 A micro LED display element of Comparative Example 1 was produced in the same manner as in Example 1 except that the partition layer was not formed.
  • the size of the LED chip was 20 ⁇ m square and the thickness was 8 ⁇ m. Further, the pitch at which the LED chips were arranged was 400 ⁇ m, the through hole size was 30 ⁇ m square, and the width of the partition between the LED chips was 370 ⁇ m.
  • Table 3 shows the evaluation results for each example.
  • micro LED display element of Comparative Example 2 A barrier rib structure was previously formed on the array substrate before the LED chips were connected using the transfer film 1, and then the LED chips were mounted on the substrate to produce a micro LED display element. At this time, since the array substrate has a partition wall structure with a thickness of 33 ⁇ m, it is difficult to mount multiple micro LED chips on the array substrate at once, as in Example 1 [[Mounting LED chips]]. Therefore, a micro LED display element was manufactured by repeatedly bonding the LED chips to the connecting portion and peeling them from the sapphire substrate for peeling one by one. As a result, in Comparative Example 2, it took 100 times more time to manufacture the micro LED display element than in any of Examples 1 to 3.
  • Substrate with light-emitting element 12 Substrate 12A Substrate surface T1 Height of light-emitting element 14
  • Light-emitting element 20, 20A, 20B Transfer film 22, temporary support 24
  • Photosensitive layer 26 Light-absorbing layer precursor layer 28
  • Light-reflecting layer precursor layer 30 Mask 40, 60 Laminated body 42 Resin pattern 44 Opening 50
  • Protective film 62 Light reflecting film ⁇ Taper angle

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Provided is a laminate manufacturing method that is able to efficiently manufacture a laminate which includes a plurality of light-emitting elements and in which the leakage of light from adjacent light-emitting elements is suppressed. This laminate manufacturing method has: a step 1 in which a substrate equipped with light-emitting elements, which includes a substrate and a plurality of light-emitting elements arranged on the substrate, and a transfer film, which includes a temporary support body and a photosensitive layer, are bonded to each other such that the surface of the substrate on which the light-emitting elements are arranged faces the surface of the transfer film on the opposite side from the temporary support body, and the light-emitting elements are covered by the photosensitive layer; a step 2 in which the photosensitive layer undergoes pattern exposure; a step 3 in which the exposure photosensitive layer is developed, thereby forming a resin pattern having openings at positions corresponding to the light-emitting elements; and, between the step 1 and the step 2 or between the step 2 and the step 3, a step in which the temporary support body is peeled off.

Description

積層体の製造方法Method for manufacturing laminate
 本発明は、積層体の製造方法に関する。 The present invention relates to a method for manufacturing a laminate.
 近年、次世代表示素子として、複数の微小なLEDチップを実装するアレイ基板を備えたマイクロLED表示素子(例えば、マイクロLEDディスプレイ)の開発が進められている。例えば、特許文献1では、レーザーリフトオフを利用したマイクロLEDの実装方法及びマイクロLEDディスプレイを開示している。 In recent years, as a next-generation display element, micro LED display elements (for example, micro LED displays) equipped with an array substrate on which a plurality of minute LED chips are mounted have been developed. For example, Patent Document 1 discloses a micro LED mounting method and a micro LED display using laser lift-off.
特開2021-163945号公報JP2021-163945A
 本発明者らは、特許文献1のマイクロLEDディスプレイを参考にして、基板上に複数の発光素子(例えば、マイクロLEDチップ)を配置してなる積層体を作製しその性能について検討したところ、隣接する発光素子からの光漏れによって表示性能が落ちる場合があることを明らかとした。例えば、赤色(R)、緑色(G)、及び青色(B)の発光色を有する各発光素子で画素を構成した場合には、隣接して配置される発光素子の光漏れによって光の混色が生じ、所望の表示ができない場合がある。
 本発明者らは、上記知見に基づいて、隣接する発光素子からの光漏れが抑制された、複数の発光素子を含む積層体を製造する方法について検討する余地があることを明らかとした。なお、積層体の製造方法では、通常、製造時間が短い(換言すると、効率よく製造可能である)ことも求められている。
The present inventors made a laminate in which a plurality of light emitting elements (e.g., micro LED chips) are arranged on a substrate, with reference to the micro LED display of Patent Document 1, and examined its performance. It has been revealed that display performance may deteriorate due to light leakage from light emitting elements. For example, when a pixel is configured with light emitting elements that emit red (R), green (G), and blue (B), color mixing of light may occur due to light leakage from adjacent light emitting elements. This may cause the desired display to fail.
Based on the above findings, the present inventors have clarified that there is room to study a method for manufacturing a laminate including a plurality of light emitting elements in which light leakage from adjacent light emitting elements is suppressed. In addition, in the method for manufacturing a laminate, it is usually required that the manufacturing time is short (in other words, it can be manufactured efficiently).
 そこで、本発明は、隣接する発光素子からの光漏れが抑制された、複数の発光素子を含む積層体を効率よく製造することができる、積層体の製造方法を提供することを課題とする。 Therefore, an object of the present invention is to provide a method for manufacturing a laminate, which can efficiently manufacture a laminate including a plurality of light emitting elements in which light leakage from adjacent light emitting elements is suppressed.
 本発明者らは、以下の構成により上記課題を解決できることを見出した。 The present inventors have discovered that the above problem can be solved by the following configuration.
 〔1〕 基板と上記基板上に配置された複数の発光素子とを含む発光素子付き基板の上記発光素子側の表面と、仮支持体と感光性層とを含む転写フィルムの上記仮支持体とは反対側の表面とが対向し、上記発光素子が上記感光性層で覆われるように、上記発光素子付き基板と上記転写フィルムとを貼合する工程1と、
 上記感光性層に対してパターン露光を行う工程2と、
 露光された上記感光性層を現像して、上記発光素子に対応する位置に開口部を有する樹脂パターンを形成する工程3とを有し、
 上記工程1と上記工程2との間、又は、上記工程2と上記工程3との間に上記仮支持体を剥離する工程を有する、積層体の製造方法。
 〔2〕 上記転写フィルムにおける上記感光性層の膜厚が上記発光素子の高さよりも大きい、〔1〕に記載の積層体の製造方法。
 〔3〕 上記転写フィルムにおける上記感光性層が、アルカリ可溶樹脂、重合性化合物、及び光重合開始剤を含む、〔1〕又は〔2〕に記載の積層体の製造方法。
 〔4〕 上記転写フィルムにおける上記感光性層が、ポリマー及び光酸発生剤を含む、〔1〕又は〔2〕に記載の積層体の製造方法。
 〔5〕 上記転写フィルムにおける上記感光性層において、水の含有量が、上記感光性層の全質量に対して、5.0質量%以下である、〔1〕~〔4〕のいずれかに記載の積層体の製造方法。
 〔6〕 上記転写フィルムにおける上記感光性層において、有機溶剤の含有量が、上記感光性層の全質量に対して、5.0質量%以下である、〔1〕~〔5〕のいずれかに記載の積層体の製造方法。
 〔7〕 上記転写フィルムにおける上記感光性層において、塩化物イオンの含有量が、上記感光性層の全質量に対して、100質量ppm以下である、〔1〕~〔6〕のいずれかに記載の積層体の製造方法。
 〔8〕 上記転写フィルムにおける上記感光性層が、白色顔料を含む、〔1〕~〔7〕のいずれかに記載の積層体の製造方法。
 〔9〕 上記転写フィルムにおける上記感光性層が、上記仮支持体側から順に、感光性の光吸収層前駆体層と、感光性の光反射性層前駆体層とを有する、〔1〕~〔7〕のいずれかに記載の積層体の製造方法。
 〔10〕 上記転写フィルムにおける上記感光性層が、感光性の光吸収層前駆体層である、〔1〕~〔7〕のいずれかに記載の積層体の製造方法。
 〔11〕 上記工程3の後に、更に、上記開口部の側壁に光反射膜を配置する工程4を有する、〔1〕~〔7〕のいずれかに記載の積層体の製造方法。
[1] The surface on the light emitting element side of a substrate with a light emitting element including a substrate and a plurality of light emitting elements arranged on the substrate, and the temporary support of a transfer film including a temporary support and a photosensitive layer. a step 1 of laminating the light-emitting element-equipped substrate and the transfer film so that the opposite surface faces the light-emitting element and the light-emitting element is covered with the photosensitive layer;
Step 2 of performing pattern exposure on the photosensitive layer;
Step 3 of developing the exposed photosensitive layer to form a resin pattern having openings at positions corresponding to the light emitting elements;
A method for manufacturing a laminate, comprising a step of peeling off the temporary support between the step 1 and the step 2, or between the step 2 and the step 3.
[2] The method for producing a laminate according to [1], wherein the thickness of the photosensitive layer in the transfer film is greater than the height of the light emitting element.
[3] The method for producing a laminate according to [1] or [2], wherein the photosensitive layer in the transfer film contains an alkali-soluble resin, a polymerizable compound, and a photopolymerization initiator.
[4] The method for producing a laminate according to [1] or [2], wherein the photosensitive layer in the transfer film contains a polymer and a photoacid generator.
[5] Any one of [1] to [4], wherein the photosensitive layer in the transfer film has a water content of 5.0% by mass or less based on the total mass of the photosensitive layer. A method of manufacturing the laminate described above.
[6] Any one of [1] to [5], wherein the photosensitive layer in the transfer film has an organic solvent content of 5.0% by mass or less based on the total mass of the photosensitive layer. A method for manufacturing a laminate according to.
[7] Any one of [1] to [6], wherein the photosensitive layer in the transfer film has a chloride ion content of 100 mass ppm or less based on the total mass of the photosensitive layer. A method of manufacturing the laminate described above.
[8] The method for producing a laminate according to any one of [1] to [7], wherein the photosensitive layer in the transfer film contains a white pigment.
[9] The photosensitive layer in the transfer film has, in order from the temporary support side, a photosensitive light-absorbing layer precursor layer and a photosensitive light-reflecting layer precursor layer, [1] to [ 7] The method for producing a laminate according to any one of the above.
[10] The method for producing a laminate according to any one of [1] to [7], wherein the photosensitive layer in the transfer film is a photosensitive light-absorbing layer precursor layer.
[11] The method for producing a laminate according to any one of [1] to [7], further comprising a step 4 of arranging a light reflecting film on the side wall of the opening after the step 3.
 本発明によれば、隣接する発光素子からの光漏れが抑制された、複数の発光素子を含む積層体を効率よく製造することができる、積層体の製造方法を提供できる。 According to the present invention, it is possible to provide a method for manufacturing a laminate, which can efficiently manufacture a laminate including a plurality of light emitting elements in which light leakage from adjacent light emitting elements is suppressed.
工程(1-1)を説明するための模式図である。FIG. 2 is a schematic diagram for explaining step (1-1). 工程(1-2)を説明するための模式図である。FIG. 2 is a schematic diagram for explaining step (1-2). 工程(1-3)を説明するための模式図である。FIG. 3 is a schematic diagram for explaining step (1-3). 転写フィルムの構成を説明するための模式図である。It is a schematic diagram for explaining the structure of a transfer film. 転写フィルムの構成を説明するための模式図である。It is a schematic diagram for explaining the structure of a transfer film. 工程(2-4)を説明するための模式図である。FIG. 3 is a schematic diagram for explaining step (2-4).
 以下、本発明について詳細に説明する。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において、段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
The present invention will be explained in detail below.
In this specification, a numerical range expressed using "~" means a range that includes the numerical values written before and after "~" as lower and upper limits.
In this specification, in numerical ranges described in stages, the upper limit or lower limit of a certain numerical range may be replaced with the upper or lower limit of another numerical range described in stages. . Moreover, in the numerical ranges described in this specification, the upper limit or lower limit value described in a certain numerical range may be replaced with the value shown in the Examples.
 本明細書において、「工程」の用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であっても、その工程の所期の目的が達成されれば本用語に含まれる。 In this specification, the term "process" is used not only to refer to an independent process, but also to include it in the term even if the process cannot be clearly distinguished from other processes, as long as the intended purpose of the process is achieved. .
 本明細書において、特段の断りのない限り、重量平均分子量(Mw)及び数平均分子量(Mn)は、カラムとして、TSKgel GMHxL、TSKgel G4000HxL、若しくは、TSKgel G2000HxL(いずれも東ソー(株)製の商品名)、溶離液としてTHF(テトラヒドロフラン)、検出器として示差屈折計、及び、標準物質としてポリスチレンを使用し、ゲルパーミエーションクロマトグラフィ(GPC)分析装置により測定した標準物質のポリスチレンを用いて換算した値である。
 また、本明細書において、特段の断りがない限り、分子量分布がある化合物の分子量は、重量平均分子量(Mw)である。
 本明細書において、特段の断りがない限り、金属元素の含有量は、誘導結合プラズマ(ICP:Inductively Coupled Plasma)分光分析装置を用いて測定した値である。
 本明細書において、特段の断りがない限り、色相は、色差計(CR-221、ミノルタ株式会社製)を用いて測定した値である。
In this specification, unless otherwise specified, the weight average molecular weight (Mw) and number average molecular weight (Mn) refer to columns such as TSKgel GMHxL, TSKgel G4000HxL, or TSKgel G2000HxL (all products manufactured by Tosoh Corporation). (name), THF (tetrahydrofuran) as the eluent, a differential refractometer as the detector, and polystyrene as the standard substance. Values converted using polystyrene as the standard substance, measured with a gel permeation chromatography (GPC) analyzer. It is.
Further, in this specification, unless otherwise specified, the molecular weight of a compound having a molecular weight distribution is a weight average molecular weight (Mw).
In this specification, unless otherwise specified, the content of metal elements is a value measured using an inductively coupled plasma (ICP) spectrometer.
In this specification, unless otherwise specified, hue is a value measured using a color difference meter (CR-221, manufactured by Minolta Corporation).
 本明細書において、「(メタ)アクリル」は、アクリル及びメタクリルの両方を包含する概念であり、「(メタ)アクリロイル」は、アクリロイル及びメタクリロイルの両方を包含する概念であり、「(メタ)アクリレート」は、アクリレート及びメタクリレートの両方を包含する概念である。 In this specification, "(meth)acrylic" is a concept that includes both acrylic and methacrylic, "(meth)acryloyl" is a concept that includes both acryloyl and methacryloyl, and "(meth)acrylate" is a concept that includes both acryloyl and methacryloyl. ” is a concept that includes both acrylates and methacrylates.
 なお、本明細書において、「アルカリ可溶性」とは、液温が22℃である1質量%炭酸ナトリウム水溶液100gへの溶解度が0.1g以上であることを意味する。したがって、例えば、アルカリ可溶性樹脂とは、上述の溶解度条件を満たす樹脂を意図する。 In this specification, "alkali-soluble" means that the solubility in 100 g of a 1% by mass sodium carbonate aqueous solution at a liquid temperature of 22° C. is 0.1 g or more. Therefore, for example, an alkali-soluble resin is intended to be a resin that satisfies the above-mentioned solubility conditions.
 本明細書において「水溶性」とは、液温が22℃であるpH7.0の水100gへの溶解度が0.1g以上であることを意味する。したがって、例えば、水溶性樹脂とは、上述の溶解度条件を満たす樹脂を意図する。 In this specification, "water-soluble" means that the solubility in 100 g of water at pH 7.0 and a liquid temperature of 22° C. is 0.1 g or more. Therefore, for example, water-soluble resin is intended to be a resin that satisfies the above-mentioned solubility conditions.
 本明細書において、組成物の「固形分」とは、組成物を用いて形成される組成物層を形成する成分を意味し、組成物が溶剤(有機溶剤、水等)を含む場合、溶剤を除いたすべての成分を意味する。また、組成物層を形成する成分であれば、液体状の成分も固形分とみなす。 As used herein, the "solid content" of a composition refers to components that form a composition layer formed using the composition, and when the composition contains a solvent (organic solvent, water, etc.), the means all ingredients except. In addition, liquid components are also considered solid components as long as they form a composition layer.
 本明細書において、「透明」とは、波長400~700nmの可視光の平均透過率が、80%以上であることを意味し、90%以上であるのが好ましい。したがって「透明層」という場合、波長400~700nmの可視光の平均透過率が80%以上である層を意味する。平均透過率は、直進透過光を、1nm毎に測定する。
 本明細書において、可視光の平均透過率は、分光光度計を用いて25℃で測定される値であり、例えば、日立製作所株式会社製の分光光度計U-3310を用いて測定できる。
As used herein, "transparent" means that the average transmittance of visible light with a wavelength of 400 to 700 nm is 80% or more, preferably 90% or more. Therefore, the term "transparent layer" means a layer having an average transmittance of 80% or more for visible light with a wavelength of 400 to 700 nm. The average transmittance is measured by measuring straight transmitted light every 1 nm.
In this specification, the average transmittance of visible light is a value measured at 25° C. using a spectrophotometer, and can be measured using, for example, a spectrophotometer U-3310 manufactured by Hitachi, Ltd.
 また、本明細書において、各層(例えば、感光性層、光反射層前駆体層、及び光吸収層前駆体層)の厚みは、特に断りのない限り、ミクロトームによって切断した断面をSEM(走査型電子顕微鏡)又はTEM(透過型電子顕微鏡)で観察し、10点で計測した厚みの平均値を用いた値である。但し、厚みが1μm以上のものはSEMにて測定し、厚みが1μm未満のものはTEMにて測定している。 In addition, in this specification, unless otherwise specified, the thickness of each layer (for example, a photosensitive layer, a light-reflecting layer precursor layer, and a light-absorbing layer precursor layer) is determined by measuring a cross section cut with a microtome using an SEM (scanning method). This value is the average value of the thicknesses measured at 10 points when observed with an electron microscope) or a TEM (transmission electron microscope). However, those with a thickness of 1 μm or more were measured using SEM, and those with a thickness of less than 1 μm were measured using TEM.
 また、本明細書において、屈折率は、特に断りがない限り、エリプソメトリー法に準拠した測定装置に基づいて25℃にて測定される、波長550nmでの屈折率を意図する。 Furthermore, in this specification, unless otherwise specified, the refractive index is intended to be the refractive index at a wavelength of 550 nm, measured at 25° C. based on a measuring device based on the ellipsometry method.
[積層体の製造方法]
 本発明の積層体の製造方法は、
 基板と上記基板上に配置された複数の発光素子とを含む発光素子付き基板の上記発光素子側の表面と、仮支持体と感光性層とを含む転写フィルムの上記仮支持体とは反対側の表面とが対向し、上記発光素子が上記感光性層で覆われるように、上記発光素子付き基板と上記転写フィルムとを貼合する工程1と、
 上記感光性層に対してパターン露光を行う工程2と、
 露光された上記感光性層を現像して、上記発光素子に対応する位置に開口部を有する樹脂パターンを形成する工程3とを有し、
 上記工程1と上記工程2との間、又は、上記工程2と上記工程3との間に上記仮支持体を剥離する工程を有する。
[Method for manufacturing laminate]
The method for manufacturing a laminate of the present invention includes:
A surface on the light emitting element side of a substrate with a light emitting element that includes a substrate and a plurality of light emitting elements arranged on the substrate, and a side opposite to the temporary support of a transfer film that includes a temporary support and a photosensitive layer. a step 1 of laminating the light emitting element-equipped substrate and the transfer film so that the surfaces thereof face each other and the light emitting element is covered with the photosensitive layer;
Step 2 of performing pattern exposure on the photosensitive layer;
Step 3 of developing the exposed photosensitive layer to form a resin pattern having openings at positions corresponding to the light emitting elements;
The method includes a step of peeling off the temporary support between the step 1 and the step 2, or between the step 2 and the step 3.
 上記構成を有する本発明の積層体の製造方法によれば、転写フィルムを使用したリソグラフィーによって、複数の発光素子が配置された発光素子付き基板と、上記発光素子付き基板上において各発光素子の周囲に配置される隔壁層とを備えてなる積層体を効率よく製造できる。上記製造方法により得られる積層体は、各発光素子の周囲に隔壁層を備えるため、隣接する発光素子の光漏れが抑制される。
 また、本発明の積層体の製造方法は、例えば、転写フィルムを使用したリソグラフィーによって、基板上の発光素子を配置する予定位置に予め隔壁層を形成(つまり、発光素子を配置する予定位置に開口を有する樹脂パターンを形成)して、その後で、所定位置に発光素子を配置する製造方法を比較すると、製造時間を大幅に短縮できる。
 本発明の積層体の製造方法により得られる積層体の用途としては、例えば、マイクロLED表示素子等が挙げられる。
According to the method for producing a laminate of the present invention having the above configuration, a substrate with a light emitting element on which a plurality of light emitting elements are arranged is formed by lithography using a transfer film, and a periphery of each light emitting element on the substrate with a light emitting element. It is possible to efficiently manufacture a laminate including a partition wall layer disposed in the laminate. Since the laminate obtained by the above manufacturing method includes a partition layer around each light emitting element, light leakage from adjacent light emitting elements is suppressed.
In addition, the method for producing a laminate of the present invention includes forming a partition layer in advance at a position where a light emitting element is to be placed on a substrate (that is, an opening is formed at a position where a light emitting element is to be placed on a substrate), for example, by lithography using a transfer film. When compared with a manufacturing method in which a resin pattern is formed (with a resin pattern) and a light emitting element is then placed at a predetermined position, the manufacturing time can be significantly shortened.
Applications of the laminate obtained by the laminate manufacturing method of the present invention include, for example, micro LED display elements.
 なお、以下において、本発明の積層体の製造方法により得られる積層体において、隣接する発光素子の光漏れをより抑制できること、及び/又は、本発明の積層体の製造方法の効率がより優れることを、「本発明の効果がより優れる」ということもある。 In addition, in the following, in the laminate obtained by the laminate manufacturing method of the present invention, light leakage from adjacent light emitting elements can be further suppressed, and/or the efficiency of the laminate manufacturing method of the present invention is better. is sometimes referred to as "the effect of the present invention is better".
 以下、本発明の積層体の製造方法について図面を参照して説明する。
〔第1実施形態〕
 本発明の積層体の製造方法の第1実施形態(以下、単に「本発明の第1実施形態」ともいう。)は、下記工程(1-1)~(1-3)を有する。
Hereinafter, a method for manufacturing a laminate according to the present invention will be explained with reference to the drawings.
[First embodiment]
The first embodiment of the method for manufacturing a laminate of the present invention (hereinafter also simply referred to as "first embodiment of the present invention") includes the following steps (1-1) to (1-3).
・工程(1-1)(貼合工程):基板と上記基板上に配置された複数の発光素子とを含む発光素子付き基板の上記発光素子側の表面と、仮支持体と感光性層とを含む転写フィルムの上記仮支持体とは反対側の表面とが対向し、上記発光素子が上記感光性層で覆われるように、上記発光素子付き基板と上記転写フィルムとを貼合する工程
・工程(1-2)(露光工程):上記感光性層に対してパターン露光を行う工程
・工程(1-3)(現像工程):露光された上記感光性層を現像して、上記発光素子に対応する位置に開口部を有する樹脂パターンを形成する工程
 更に、本発明の第1実施形態は、工程(1-1)と工程(1-2)、又は、工程(1-2)と工程(1-3)との間に、以下の工程(1-A)を有する。
・工程(1-A)(仮支持体剥離工程):仮支持体を剥離する工程。
・Step (1-1) (bonding step): The surface of the light emitting element side of the light emitting element-equipped substrate, which includes a substrate and a plurality of light emitting elements arranged on the substrate, the temporary support and the photosensitive layer. A step of laminating the light emitting element-equipped substrate and the transfer film so that the surface of the transfer film opposite to the temporary support faces each other and the light emitting element is covered with the photosensitive layer. Step (1-2) (exposure step): Step of exposing the photosensitive layer to pattern light Step (1-3) (developing step): Developing the exposed photosensitive layer to form the light emitting element Furthermore, the first embodiment of the present invention includes step (1-1) and step (1-2), or step (1-2) and step The following step (1-A) is included between (1-3).
- Step (1-A) (temporary support peeling step): Step of peeling off the temporary support.
<<工程(1-1)、貼合工程>>
 工程(1-1)は、基板と上記基板上に配置された複数の発光素子とを含む発光素子付き基板の上記発光素子側の表面と、仮支持体と感光性層とを含む転写フィルムの上記仮支持体とは反対側の表面とが対向し、上記発光素子が上記感光性層で覆われるように、上記発光素子付き基板と上記転写フィルムとを貼合する工程である。
 図1を参照して、工程(1-1)の具体的な手順を説明する。
 工程(1-1)では、発光素子付き基板10と転写フィルム20とを、発光素子付き基板10の基板12側とは反対側の表面(つまり、発光素子14を有する側の表面)と、転写フィルム20の仮支持体22とは反対側の表面(つまり、感光性層24側の表面)とが対向するように貼合する。なお、図1は、発光素子付き基板10と転写フィルム20との貼合後の状態を示している。
<<Step (1-1), lamination step>>
Step (1-1) is to transfer the surface of the light-emitting element-equipped substrate, which includes a substrate and a plurality of light-emitting elements arranged on the substrate, on the light-emitting element side, and the transfer film, which includes a temporary support and a photosensitive layer. This is a step of laminating the light-emitting element-equipped substrate and the transfer film so that the surfaces opposite to the temporary support face each other and the light-emitting element is covered with the photosensitive layer.
The specific procedure of step (1-1) will be explained with reference to FIG.
In step (1-1), the light-emitting element-equipped substrate 10 and the transfer film 20 are transferred to the surface of the light-emitting element-equipped substrate 10 opposite to the substrate 12 side (that is, the surface on the side having the light-emitting element 14). The film 20 is laminated so that the surface of the film 20 on the opposite side to the temporary support 22 (that is, the surface on the photosensitive layer 24 side) faces each other. Note that FIG. 1 shows the state after the light emitting element-attached substrate 10 and the transfer film 20 are pasted together.
 また、貼合工程において発光素子が感光性層で覆われ易くする点、及び、本発明の効果がより優れやすくなる点で、転写フィルムにおける感光性層の厚みは、発光素子の高さよりも大きいことが好ましい。ここで、発光素子の高さとは、発光素子付き基板における発光素子の配置されていない箇所での基板表面を基準面としたときの、この基準面の法線方向における発光素子の厚みを意味する。つまり、図1に示す積層体の場合、発光素子14の高さとは、発光素子付き基板10における発光素子14が配置されていない箇所での基板表面12Aを基準面としたときの、基準面12Aの法線方向における発光素子14の厚みT1を意味する。 In addition, the thickness of the photosensitive layer in the transfer film is greater than the height of the light emitting element in order to make it easier for the light emitting element to be covered with the photosensitive layer in the bonding process and to improve the effects of the present invention. It is preferable. Here, the height of the light-emitting element means the thickness of the light-emitting element in the normal direction of the reference plane, which is the surface of the substrate with the light-emitting element where the light-emitting element is not arranged. . In other words, in the case of the laminate shown in FIG. 1, the height of the light emitting element 14 is the reference plane 12A when the substrate surface 12A at a location where the light emitting element 14 is not arranged on the substrate 10 with a light emitting element is used as a reference plane. means the thickness T1 of the light emitting element 14 in the normal direction.
 転写フィルムが後述する保護フィルムを有する場合、保護フィルムを剥離した後に貼合工程を実施することが好ましい。 When the transfer film has a protective film described below, it is preferable to carry out the bonding step after peeling off the protective film.
 貼合においては、転写フィルムの仮支持体側とは反対側の表面と、発光素子付き基板の発光素子側の表面とを接触させて圧着させるのが好ましい。
 圧着方法としては、例えば、公知の転写方法及びラミネート方法が挙げられ、転写フィルムの仮支持体側とは反対側の表面を発光素子付き基板の発光素子側の表面に重ね、ロール等による加圧及び加熱する方法が好ましい。
 貼合方法としては、例えば、真空ラミネーター及びオートカットラミネーター等の公知のラミネーターを用いる方法が挙げられる。
 ラミネート温度としては、70~130℃が好ましい。
In bonding, it is preferable that the surface of the transfer film on the opposite side to the temporary support side and the surface of the light emitting element-attached substrate on the light emitting element side are brought into contact and pressure bonded.
Examples of pressure bonding methods include known transfer methods and lamination methods, in which the surface of the transfer film on the side opposite to the temporary support side is placed on the surface of the light emitting element side of the substrate with a light emitting element, and pressure is applied using a roll or the like. A heating method is preferred.
Examples of the bonding method include a method using a known laminator such as a vacuum laminator and an auto-cut laminator.
The lamination temperature is preferably 70 to 130°C.
<発光素子付き基板>
 発光素子付き基板は、基板と、基板上に配置された複数の発光素子を有する。
 基板としては、例えば、樹脂基板、ガラス基板、セラミック基板、及び半導体基板が挙げられる。
 樹脂基板の材料としては、ポリエチレンテレフタレート系樹脂、ポリナフタレンテレフタレート系樹脂、シクロオレフィン系樹脂、ポリイミド系樹脂、ポリカーボネート系樹脂、ポリアクリレート系樹脂、ポリエーテルスルホン系樹脂、シリコーン系樹脂、及びエポキシ系樹脂等が挙げられる。
 樹脂基板の厚みとしては、5~200μmが好ましく、10~100μmがより好ましい。
 基板としては、露光工程(工程(1-2))を考慮すると、透明基板であるのが好ましい。
 透明基板としては、例えば、樹脂基板(例えば、樹脂フィルム)及びガラス基板が挙げられる。樹脂基板は、可視光を透過する樹脂基板が好ましい。可視光を透過する樹脂基板の好ましい成分としては、例えば、ポリアミド系樹脂、ポリエチレンテレフタレート系樹脂、ポリエチレンナフタレート系樹脂、シクロオレフィン系樹脂、ポリイミド系樹脂、及びポリカーボネート系樹脂が挙げられる。
 透明基板としては、なかでも、ポリアミドフィルム、ポリエチレンテレフタレートフィルム、シクロオレフィンポリマー、ポリエチレンナフタレートフィルム、ポリイミドフィルム、又ポリカーボネートフィルムが好ましく、ポリエチレンテレフタレートフィルムがより好ましい。
 透明基板の厚さは、制限されない。透明基板の厚さは、10~200μmが好ましく、20~120μmがより好ましく、20~100μmが更に好ましい。
<Substrate with light emitting element>
A substrate with a light emitting element includes a substrate and a plurality of light emitting elements arranged on the substrate.
Examples of the substrate include a resin substrate, a glass substrate, a ceramic substrate, and a semiconductor substrate.
Materials for the resin substrate include polyethylene terephthalate resin, polynaphthalene terephthalate resin, cycloolefin resin, polyimide resin, polycarbonate resin, polyacrylate resin, polyether sulfone resin, silicone resin, and epoxy resin. etc.
The thickness of the resin substrate is preferably 5 to 200 μm, more preferably 10 to 100 μm.
The substrate is preferably a transparent substrate in consideration of the exposure step (step (1-2)).
Examples of the transparent substrate include a resin substrate (for example, a resin film) and a glass substrate. The resin substrate is preferably a resin substrate that transmits visible light. Preferred components of the resin substrate that transmit visible light include, for example, polyamide resins, polyethylene terephthalate resins, polyethylene naphthalate resins, cycloolefin resins, polyimide resins, and polycarbonate resins.
Among the transparent substrates, polyamide films, polyethylene terephthalate films, cycloolefin polymers, polyethylene naphthalate films, polyimide films, and polycarbonate films are preferred, and polyethylene terephthalate films are more preferred.
The thickness of the transparent substrate is not limited. The thickness of the transparent substrate is preferably 10 to 200 μm, more preferably 20 to 120 μm, and even more preferably 20 to 100 μm.
 基板としては、電極及び引き出し配線の少なくとも一方を有する基板も好ましい。
 電極は、ITO(酸化インジウムスズ)及びIZO(酸化インジウム亜鉛)等の金属酸化膜、並びに、金属メッシュ及び金属ナノワイヤー等の金属細線により構成されることが好ましい。
 金属細線としては、例えば、銀及び銅等の金属細線が挙げられ、銀メッシュ及び銀ナノワイヤー等の銀導電性材料が好ましい。
As the substrate, a substrate having at least one of an electrode and an extraction wiring is also preferable.
The electrode is preferably composed of a metal oxide film such as ITO (indium tin oxide) and IZO (indium zinc oxide), and a metal thin wire such as a metal mesh or metal nanowire.
Examples of the thin metal wire include thin metal wires made of silver and copper, and silver conductive materials such as silver mesh and silver nanowires are preferred.
 引き出し配線の材質としては、金属が好ましい。
 上記金属としては、例えば、金、銀、銅、モリブデン、アルミニウム、チタン、クロム、亜鉛、及び、マンガン、並びに、これらを組み合わせた合金が挙げられ、銅、モリブデン、アルミニウム、又は、チタンが好ましく、銅がより好ましい。
Metal is preferable as the material for the lead wiring.
Examples of the metal include gold, silver, copper, molybdenum, aluminum, titanium, chromium, zinc, and manganese, and alloys of combinations thereof, with copper, molybdenum, aluminum, or titanium being preferred; Copper is more preferred.
 発光素子としては、マイクロLEDチップが挙げられる。
 発光素子付き基板において、複数の発光素子の配置形態については特に制限されない。複数の発光素子の配置形態としては、例えば、基板上に複数のセル(例えば、1画素又は1ピクセルに相当する。)を設け、このセル内に赤色(R)、緑色(G)、及び青色(B)の発光色を有する各発光素子をN個ずつ配置(例えば、1個ずつ、2個ずつ、3個ずつ配置)する形態が挙げられる。セルの形状としては特に制限されず、例えば、格子状等の形状が挙げられる。また、セル内における各発光素子の配置方法(例えば、リニアアレイ)は特に制限されない。なお、発光素子の発光色との一例としてR、G、Bを挙げたが、発光素子は、発光さえすれば特に制限されず、その発光色は適宜選択できる。
 なお、発光素子は、通常、外部電極と接続するための端子を有している。
As the light emitting element, a micro LED chip can be mentioned.
In the substrate with light emitting elements, there are no particular restrictions on the arrangement of the plurality of light emitting elements. As an arrangement of the plurality of light emitting elements, for example, a plurality of cells (for example, one pixel or equivalent to one pixel) are provided on the substrate, and red (R), green (G), and blue colors are provided in the cell. An example is a configuration in which N light emitting elements each having the emission color of (B) are arranged (eg, one, two, three, etc.). The shape of the cell is not particularly limited, and examples thereof include a lattice shape and the like. Further, the method of arranging each light emitting element within the cell (for example, linear array) is not particularly limited. Although R, G, and B are cited as examples of the emitted light color of the light emitting element, the light emitting element is not particularly limited as long as it emits light, and the emitted light color can be selected as appropriate.
Note that the light emitting element usually has a terminal for connecting to an external electrode.
 発光素子がマイクロLEDチップである場合、LEDの種類としては、可視光領域にピーク波長を有するLED(以下「可視光LED」ともいう。)であってもよいし、紫外光領域にピーク波長を有するLED(以下「UV-LED」ともいう。)であってもよい。 When the light emitting element is a micro LED chip, the type of LED may be an LED with a peak wavelength in the visible light region (hereinafter also referred to as "visible light LED"), or an LED with a peak wavelength in the ultraviolet light region. (hereinafter also referred to as "UV-LED").
<転写フィルム>
 工程(1-1)にて使用し得る転写フィルムとしては、後段部にて説明する。
<Transfer film>
The transfer film that can be used in step (1-1) will be explained in the latter part.
<<工程(1-2)、露光工程>>
 露光工程は、感光性層をパターン露光する工程である。
 「パターン露光」とは、パターン状に露光する形態であり、露光部と非露光部とが存在する形態の露光を意味する。
 パターン露光における露光部(露光領域)と非露光部(非露光領域)との位置関係は、適宜調整できる。
 露光方向は、感光性層側又は感光性層側とは反対側(基板側)から露光してもよい。
 露光工程は、典型的には、フォトマスクを介してパターン露光を行う工程である。露光工程において、フォトマスクと被感光物である積層体とは、接触していてもよいし、接触していなくてもよい。
<<Step (1-2), exposure step>>
The exposure step is a step of exposing the photosensitive layer to light in a pattern.
"Pattern exposure" refers to exposure in a pattern, in which there are exposed areas and non-exposed areas.
The positional relationship between the exposed part (exposed area) and the unexposed part (unexposed area) in pattern exposure can be adjusted as appropriate.
The exposure direction may be from the photosensitive layer side or the side opposite to the photosensitive layer side (substrate side).
The exposure process is typically a process of performing pattern exposure through a photomask. In the exposure step, the photomask and the laminate that is the photosensitive object may or may not be in contact with each other.
 貼合工程と露光工程との間に後述する仮支持体剥離工程を行った場合、露光工程としては、仮支持体剥離工程にて得られた仮支持体が剥離された積層体の基板側とは反対側の表面とフォトマスクとを接触させて、パターン露光する露光工程が好ましい。言い換えれば、仮支持体が剥離された積層体の仮支持体が剥離されることにより露出した表面(感光性層の表面等)とフォトマスクとを接触させて、感光性層にパターン露光する露光工程が好ましい。 When the temporary support peeling process described below is performed between the bonding process and the exposure process, in the exposure process, the temporary support obtained in the temporary support peeling process is removed from the substrate side of the laminate. It is preferable to perform an exposure process in which the opposite surface is brought into contact with a photomask and pattern exposure is performed. In other words, the surface of the laminate from which the temporary support has been peeled off is brought into contact with the surface exposed by peeling off the temporary support (such as the surface of the photosensitive layer), and the photosensitive layer is exposed to pattern light. The process is preferred.
 感光性層がネガ型感光性層である場合、パターン露光する露光工程を経ることで、露光領域(フォトマスクの開口部に相当する領域)において感光性層に含まれる成分の硬化反応が生じ得る。露光後に現像工程(工程(1-3))を実施することで感光性層の非露光領域が除去されて、パターンが形成される。露光工程では、現像工程(工程(1-3))後において発光素子に対応する位置に所定の開口を有する樹脂パターンを形成できるように、発光素子が配置された位置に相当する部分が非開口部であり、隣接する発光素子間に対応する位置(換言すると隔壁層が形成される位置)に相当する部分が開口部となったパターンを有するフォトマスクを使用して露光工程を実施すればよい。上記露光工程により、感光性層をフォトマスクのパターン形状に応じて露光できる。なお、図2では、感光性層がネガ型感光性層である場合のパターン露光工程を示している。図2の積層体では、フォトマスク30の開口部(露光領域)における感光性層24に含まれる成分の硬化反応を生じ得る。一方で、フォトマスク30の非開口部(非露光領域)の感光性層は、露光後に現像工程(工程(1-3))を実施することで除去される。 When the photosensitive layer is a negative type photosensitive layer, a curing reaction of components contained in the photosensitive layer may occur in the exposed area (area corresponding to the opening of the photomask) through the exposure process of pattern exposure. . After exposure, a developing step (step (1-3)) is performed to remove the non-exposed area of the photosensitive layer and form a pattern. In the exposure process, a portion corresponding to the position where the light emitting element is placed is left with no opening so that a resin pattern having a predetermined opening at the position corresponding to the light emitting element can be formed after the development process (step (1-3)). The exposure process may be carried out using a photomask having a pattern in which openings are located at positions corresponding to the positions between adjacent light emitting elements (in other words, positions where the partition layer is formed). . Through the above exposure step, the photosensitive layer can be exposed according to the pattern shape of the photomask. Note that FIG. 2 shows a pattern exposure process when the photosensitive layer is a negative type photosensitive layer. In the laminate shown in FIG. 2, a curing reaction of components contained in the photosensitive layer 24 may occur in the opening (exposure region) of the photomask 30. On the other hand, the photosensitive layer in the non-opening portion (non-exposed region) of the photomask 30 is removed by performing a development step (step (1-3)) after exposure.
 一方で、感光性層がポジ型感光性層である場合、露光領域(フォトマスクの開口部に相当する領域)において感光性層に含まれる成分の構造変化が生じ得て、露光後に現像工程(工程(1-3))を実施することで感光性層の露光領域が除去されて、パターンが形成される。つまり、露光領域において感光性層に含まれる成分が構造変化することで、露光領域と非露光領域との間に現像液に対する溶解コントラストが生じ、この結果として、露光後の現像工程(工程(1-3))によって感光性層の露光領域が除去されて、パターンが形成される。
 露光工程では、現像工程(工程(1-3))後において発光素子に対応する位置に所定の開口を有する樹脂パターンを形成できるように、発光素子が配置された位置に相当する部分が開口部であり、隣接する発光素子間に対応する位置(換言すると隔壁層が形成される位置)に相当する部分が非開口部となったパターンを有するフォトマスクを使用して露光工程を実施すればよい。上記露光工程により、感光性層をフォトマスクのパターン形状に応じて露光できる。
On the other hand, when the photosensitive layer is a positive photosensitive layer, structural changes of components contained in the photosensitive layer may occur in the exposed region (region corresponding to the opening of the photomask), and the development step ( By performing step (1-3)), the exposed area of the photosensitive layer is removed and a pattern is formed. In other words, structural changes in the components contained in the photosensitive layer in the exposed area create a solubility contrast in the developing solution between the exposed area and the non-exposed area, and as a result, the development process after exposure (step (1) -3)) The exposed areas of the photosensitive layer are removed to form a pattern.
In the exposure process, openings are formed in the areas corresponding to the positions where the light emitting elements are arranged so that a resin pattern having predetermined openings at positions corresponding to the light emitting elements can be formed after the development process (step (1-3)). The exposure process may be carried out using a photomask having a pattern in which portions corresponding to the positions between adjacent light emitting elements (in other words, the positions where the partition layer is formed) are non-openings. . Through the above exposure step, the photosensitive layer can be exposed according to the pattern shape of the photomask.
 本発明の積層体の製造方法は、露光工程と現像処理との間で、露光工程で用いたフォトマスクを剥離するフォトマスク剥離工程を有することも好ましい。
 フォトマスク剥離工程としては、例えば、公知の剥離工程が挙げられる。
It is also preferable that the method for manufacturing a laminate of the present invention includes a photomask peeling process of peeling off the photomask used in the exposure process between the exposure process and the development process.
Examples of the photomask peeling process include a known peeling process.
 パターン露光の光源としては、例えば、感光性層を硬化し得る波長域の光(例えば、365nm及び405nm)を照射できるものであれば適宜選定して使用できる。なかでも、露光の露光光の主波長は、365nmが好ましい。なお、主波長とは、最も強度が高い波長である。 As a light source for pattern exposure, for example, any light source that can irradiate light in a wavelength range that can harden the photosensitive layer (for example, 365 nm and 405 nm) can be appropriately selected and used. Among these, the main wavelength of the exposure light for exposure is preferably 365 nm. Note that the dominant wavelength is the wavelength with the highest intensity.
 光源としては、例えば、各種レーザー、発光ダイオード(LED)、超高圧水銀灯、高圧水銀灯及びメタルハライドランプが挙げられる。
 露光量としては、5~200mJ/cmが好ましく、10~200mJ/cmがより好ましい。
 露光に使用する光源、露光量、及び露光方法の好ましい態様としては、例えば、国際公開第2018/155193号の段落[0146]~[0147]に記載があり、これらの内容は本明細書に組み込まれる。
Examples of the light source include various lasers, light emitting diodes (LEDs), ultra-high pressure mercury lamps, high pressure mercury lamps, and metal halide lamps.
The exposure amount is preferably 5 to 200 mJ/cm 2 , more preferably 10 to 200 mJ/cm 2 .
Preferred aspects of the light source, exposure amount, and exposure method used for exposure are described, for example, in paragraphs [0146] to [0147] of International Publication No. 2018/155193, the contents of which are incorporated herein. It will be done.
 また、現像工程(工程(1-3))を経て得られる樹脂パターンの断面(基板に対して垂直な断面)がテーパー状であるのも好ましい。また、樹脂パターンは、具体的に、開口部の開口面積が基板側からその反対側に向かって広がる、開口部が形成されているのが好ましい。
 感光性層がネガ型感光性層である場合、例えば、露光機に光散乱板を導入する、及び、露光光を斜め方向から当てる等の方法によって、樹脂パターンの断面形状をテーパー状とすることができる。
 樹脂パターンの断面がテーパー状である場合、開口部の側壁と発光素子付き基板における発光素子が配置されていない基板面とのなす角度(「テーパー角度」。具体的には、図3中の角度θが相当する。)としては、90°未満が好ましく、10~80°がより好ましく、15~80°が更に好ましく、20~80°が特に好ましく、40~60°が最も好ましい。
It is also preferable that the resin pattern obtained through the development step (step (1-3)) has a tapered cross section (a cross section perpendicular to the substrate). Moreover, specifically, it is preferable that the resin pattern is formed with an opening whose opening area increases from the substrate side toward the opposite side.
When the photosensitive layer is a negative photosensitive layer, the cross-sectional shape of the resin pattern may be made tapered by, for example, introducing a light scattering plate into the exposure machine and applying exposure light from an oblique direction. Can be done.
When the cross section of the resin pattern is tapered, the angle between the side wall of the opening and the surface of the substrate with a light emitting element on which the light emitting element is not placed (the "taper angle"; specifically, the angle in FIG. 3 (corresponds to θ) is preferably less than 90°, more preferably 10 to 80°, even more preferably 15 to 80°, particularly preferably 20 to 80°, and most preferably 40 to 60°.
<<工程(1-A)、仮支持体剥離工程>>
 貼合工程と露光工程との間、又は、露光工程と現像工程との間に、仮支持体剥離工程が行われる。
 中でも、上記貼合工程と上記露光工程のとの間に、剥離工程を有することがより好ましい。
 剥離工程は、転写フィルムと発光素子付き基板との積層体から仮支持体を剥離する工程である。
 仮支持体の剥離方法としては、例えば、公知の剥離方法が挙げられる。具体的には、特開2010-072589号公報の段落[0161]~[0162]に記載されたカバーフィルム剥離機構が挙げられる。
<<Step (1-A), temporary support peeling step>>
A temporary support peeling process is performed between the bonding process and the exposure process, or between the exposure process and the development process.
Among these, it is more preferable to include a peeling step between the bonding step and the exposure step.
The peeling process is a process of peeling the temporary support from the laminate of the transfer film and the light emitting element-attached substrate.
Examples of the method for peeling off the temporary support include known peeling methods. Specifically, the cover film peeling mechanism described in paragraphs [0161] to [0162] of JP-A-2010-072589 can be mentioned.
<<工程(1-3)、現像工程>>
 現像工程は、露光された感光性層を、現像液を用いて現像して樹脂パターンを形成する工程である。
 現像液として、アルカリ性水溶液が好ましい。アルカリ性水溶液に含まれ得るアルカリ性化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、及び、コリン(2-ヒドロキシエチルトリメチルアンモニウムヒドロキシド)が挙げられる。
<<Step (1-3), development step>>
The developing step is a step of developing the exposed photosensitive layer using a developer to form a resin pattern.
As the developer, an alkaline aqueous solution is preferred. Examples of alkaline compounds that can be contained in the alkaline aqueous solution include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, tetramethylammonium hydroxide, tetraethylammonium hydroxide, and tetrapropylammonium hydroxy. and choline (2-hydroxyethyltrimethylammonium hydroxide).
 現像の方式としては、例えば、パドル現像、シャワー現像、スピン現像、及び、ディップ現像等の方式が挙げられる。 Examples of development methods include paddle development, shower development, spin development, and dip development.
 本明細書において好適に用いられる現像液としては、例えば、国際公開第2015/093271号の段落[0194]に記載の現像液が挙げられ、好適に用いられる現像方式としては、例えば、国際公開第2015/093271号の段落[0195]に記載の現像方式が挙げられる。 Examples of the developer suitably used herein include the developer described in paragraph [0194] of International Publication No. 2015/093271, and examples of the development method suitably used include, for example, the developer described in International Publication No. 2015/093271, paragraph [0194]. The development method described in paragraph [0195] of No. 2015/093271 can be mentioned.
 現像後、次の工程に移行する前に、リンス処理を実施するのも好ましい。リンス処理には、水等を使用できる。 After development, it is also preferable to perform rinsing treatment before proceeding to the next step. Water or the like can be used for rinsing.
 現像工程を経ることで、発光素子付き基板上に樹脂パターンを形成できる。樹脂パターンは、隣接し合う発光素子同士の間に相当する箇所に配置され、発光素子に対応する位置が開口部となっている。つまり、各発光素子の周囲に、隣接する発光素子と隔ててその光漏れを抑制するための隔壁層を形成できる。
 図3に、現像工程を実施した後の積層体40の断面模式図を示す。積層体40は、発光素子付き基板10と樹脂パターン42とから構成される。樹脂パターン42は、具体的には、隣接し合う発光素子14同士の間に相当する箇所に配置され、発光素子14に対応する位置が開口部44となっている。なお、図2に示したネガ型感光性層を有する積層体の場合、樹脂パターン42は、ネガ型感光性層の硬化膜に相当する。
Through the development process, a resin pattern can be formed on the light emitting element-attached substrate. The resin pattern is arranged at a position corresponding to between adjacent light emitting elements, and has an opening at a position corresponding to the light emitting element. That is, a partition layer can be formed around each light emitting element to separate it from an adjacent light emitting element and suppress light leakage.
FIG. 3 shows a schematic cross-sectional view of the laminate 40 after the development step. The laminate 40 is composed of a substrate 10 with a light emitting element and a resin pattern 42. Specifically, the resin pattern 42 is disposed at a location corresponding to between adjacent light emitting elements 14, and the opening 44 is located at a position corresponding to the light emitting element 14. In addition, in the case of the laminate having a negative photosensitive layer shown in FIG. 2, the resin pattern 42 corresponds to a cured film of the negative photosensitive layer.
<<工程(1-B)(ポスト露光工程)、及び、工程(1-C)(ポストベーク工程)>>
 本発明の第1実施形態は、現像工程(工程(1-3))により得られた樹脂パターンを、更に、露光する工程(以下、「工程(1-B)」又は「ポスト露光工程」ともいう。)及び/又は加熱する工程(以下、「工程(1-C)」又は「ポストベーク工程」ともいう。)を有していてもよい。
 本発明の第1実施形態がポスト露光工程及びポストベーク工程の両方を有する場合、ポスト露光工程を実施した後に、ポストベーク工程を実施することが好ましい。
 ポスト露光工程における露光量は、100~5000mJ/cmが好ましく、200~3000mJ/cmがより好ましい。
 ポストベーク工程におけるポストベークの温度は、80~250℃が好ましく、90~160℃がより好ましい。
 ポストベーク工程におけるポストベークの時間は、1~180分が好ましく、10~60分がより好ましい。
<<Step (1-B) (post-exposure step) and step (1-C) (post-bake step)>>
The first embodiment of the present invention is a step of further exposing the resin pattern obtained by the developing step (step (1-3)) (hereinafter also referred to as "step (1-B)" or "post-exposure step"). ) and/or a heating step (hereinafter also referred to as "step (1-C)" or "post-bake step").
When the first embodiment of the present invention includes both a post-exposure step and a post-bake step, it is preferable to perform the post-bake step after the post-exposure step.
The exposure amount in the post-exposure step is preferably 100 to 5000 mJ/cm 2 , more preferably 200 to 3000 mJ/cm 2 .
The post-bake temperature in the post-bake step is preferably 80 to 250°C, more preferably 90 to 160°C.
The post-bake time in the post-bake step is preferably 1 to 180 minutes, more preferably 10 to 60 minutes.
<<転写フィルム>>
 以下、本発明の第1実施形態で使用し得る転写フィルムについて説明する。
 転写フィルムの構成としては、仮支持体と感光性層(感光性を示す層)とを有するものであれば特に制限されない。
 感光性層は、ポジ型感光性層及びネガ型感光性層のいずれであってもよいが、ネガ型感光性層であるのが好ましい。
 感光性層は、単層であっても、2層以上であってもよい。
 転写フィルムは、感光性層以外の他の組成物層(例えば、水溶性樹脂層等)を備えていてもよい。
 転写フィルムは、保護フィルムを有していてもよい。
<<Transfer film>>
Hereinafter, a transfer film that can be used in the first embodiment of the present invention will be described.
The structure of the transfer film is not particularly limited as long as it has a temporary support and a photosensitive layer (a layer exhibiting photosensitivity).
Although the photosensitive layer may be either a positive photosensitive layer or a negative photosensitive layer, it is preferably a negative photosensitive layer.
The photosensitive layer may be a single layer or may have two or more layers.
The transfer film may include a composition layer other than the photosensitive layer (for example, a water-soluble resin layer, etc.).
The transfer film may have a protective film.
 図4に、転写フィルムの具体例を示す。図4に示す転写フィルム20Aは、仮支持体22と、感光性層24と、保護フィルム50と、をこの順で有する。感光性層24は、感光性を示す層であり、ポジ型感光性層及びネガ型感光性層のいずれであってもよいが、ネガ型感光性層が好ましい。感光性層24がネガ型感光性層である場合、露光により層に含まれる成分が硬化反応を生じ、樹脂層(硬化層)となる。
 なお、図4で示す転写フィルム20Aは、保護フィルム50を配置した形態であるが、保護フィルム50は、配置されなくてもよい。
 また、図4で示す転写フィルム20Aは、感光性層24以外の他の組成物層を有していてもよい。
FIG. 4 shows a specific example of the transfer film. The transfer film 20A shown in FIG. 4 includes a temporary support 22, a photosensitive layer 24, and a protective film 50 in this order. The photosensitive layer 24 is a layer exhibiting photosensitivity, and may be either a positive photosensitive layer or a negative photosensitive layer, but a negative photosensitive layer is preferable. When the photosensitive layer 24 is a negative type photosensitive layer, the components contained in the layer undergo a curing reaction upon exposure to become a resin layer (cured layer).
Note that although the transfer film 20A shown in FIG. 4 has a protective film 50 disposed therein, the protective film 50 does not need to be disposed.
Further, the transfer film 20A shown in FIG. 4 may have a composition layer other than the photosensitive layer 24.
 転写フィルムの構成としては、本発明の第1実施形態により形成される積層体において、発光素子の輝度がより優れる点、外光反射がより抑制し易い点、及び/又は、発光素子の点灯時の際に不必要に生じる迷光を吸収できる点で、以下の態様であるのも好ましい。
 (N1)仮支持体/感光性の光吸収層前駆体層/保護フィルム
 (N2)仮支持体/感光性の光反射層前駆体層/保護フィルム
 (N3)仮支持体/感光性の光吸収層前駆体層/感光性の光反射層前駆体層/保護フィルム
The structure of the transfer film is that in the laminate formed according to the first embodiment of the present invention, the brightness of the light emitting element is better, reflection of external light is more easily suppressed, and/or when the light emitting element is turned on. The following embodiments are also preferable in that they can absorb stray light that occurs unnecessarily during the process.
(N1) Temporary support/photosensitive light-absorbing layer precursor layer/protective film (N2) Temporary support/photosensitive light-reflecting layer precursor layer/protective film (N3) Temporary support/photosensitive light-absorbing layer Layer precursor layer/photosensitive light reflective layer precursor layer/protective film
 なお、上記(N1)~(N3)で示す転写フィルムは、保護フィルムを配置した態様であるが、保護フィルムは配置されなくてもよい。
 また、感光性の光吸収層前駆体層(以下「光吸収層前駆体層」と略記する。)及び感光性の光反射層前駆体層(以下「光反射層前駆体層」と略記する。)は、感光性を示す層であり、典型的には、ネガ型感光性層である。
Note that the transfer films shown in (N1) to (N3) above have a protective film disposed thereon, but the protective film may not be disposed.
Further, a photosensitive light-absorbing layer precursor layer (hereinafter abbreviated as "light-absorbing layer precursor layer") and a photosensitive light-reflecting layer precursor layer (hereinafter abbreviated as "light-reflecting layer precursor layer"). ) is a layer exhibiting photosensitivity, and is typically a negative photosensitive layer.
 上記(N1)及び(N2)の態様の転写フィルムは、図4に示す転写フィルム20Aにおいて、感光性層24を感光性の光吸収層前駆体層とした場合、感光性層24を感光性の光反射層前駆体層とした場合に、各々該当する。
 なお、本発明の第1実施形態において、上記(N1)の態様の転写フィルムを使用した場合、工程(1-2)のパターン露光における露光箇所において光吸収層前駆体層が硬化反応を生じ、パターン状の光吸収層を形成できる。すなわち、樹脂パターンを光吸収性の隔壁層として機能させることができる。このような樹脂パターンを隔壁層として有する積層体は、外光や迷光が吸収されやすい。この結果として、発光素子の非点灯時において黒締まりがより優れる。
 また、本発明の第1実施形態において、上記(N2)の態様の転写フィルムを使用した場合、工程(1-2)のパターン露光における露光箇所において光反射層前駆体層が硬化反応を生じ、パターン状の光反射層を形成できる。すなわち、樹脂パターンを光反射性の隔壁層として機能させることができる。このような樹脂パターンを隔壁層として有する積層体は、発光素子の点灯時に発光素子からの光が隔壁で反射し易く、輝度が高くなる。
In the transfer film 20A shown in FIG. 4, the transfer film of the embodiments (N1) and (N2) above is a transfer film 20A shown in FIG. 4, when the photosensitive layer 24 is a photosensitive light absorption layer precursor layer. Each of these applies when it is used as a light-reflecting layer precursor layer.
In addition, in the first embodiment of the present invention, when the transfer film of the above aspect (N1) is used, the light absorption layer precursor layer causes a curing reaction at the exposed location in the pattern exposure of step (1-2), A patterned light absorption layer can be formed. That is, the resin pattern can function as a light-absorbing partition layer. A laminate having such a resin pattern as a partition layer easily absorbs external light and stray light. As a result, the black density is better when the light emitting element is not lit.
Further, in the first embodiment of the present invention, when the transfer film of the above aspect (N2) is used, the light reflective layer precursor layer causes a curing reaction at the exposed portion in the pattern exposure of step (1-2), A patterned light reflecting layer can be formed. That is, the resin pattern can function as a light-reflective partition layer. A laminate having such a resin pattern as a partition wall layer has high brightness because light from the light emitting element is easily reflected by the partition wall when the light emitting element is turned on.
 上記(N3)の態様の転写フィルムは、図4に示す転写フィルム20Aにおいて、感光性層24を2層の構成として、一方を感光性の光吸収層前駆体層とし、他方を感光性の光反射層前駆体層とした場合に該当する。
 図5に、上記(N3)の態様の転写フィルムの断面模式図を示す。図5に示す転写フィルム20Aは、仮支持体22と、感光性層24と、保護フィルム50と、をこの順で有する。感光性層24は、仮支持体22側から保護フィルム50に向かって、光吸収層前駆体層26と光反射層前駆体層28とを有する。
The transfer film of the embodiment (N3) above has a transfer film 20A shown in FIG. 4, in which the photosensitive layer 24 has a two-layer structure, one of which is a photosensitive light-absorbing layer precursor layer, and the other is a photosensitive light-absorbing layer precursor layer. This applies when it is used as a reflective layer precursor layer.
FIG. 5 shows a schematic cross-sectional view of the transfer film of the above embodiment (N3). The transfer film 20A shown in FIG. 5 includes a temporary support 22, a photosensitive layer 24, and a protective film 50 in this order. The photosensitive layer 24 includes a light-absorbing layer precursor layer 26 and a light-reflecting layer precursor layer 28 from the temporary support 22 side toward the protective film 50.
 なお、本発明の第1実施形態において、上記(N3)の態様の転写フィルムを使用した場合、工程(1-2)のパターン露光における露光箇所において光吸収層前駆体層及び光反射層前駆体層が硬化反応を生じ、現像工程(工程(1-3))により発光素子付き基板側から順に光反射層と光吸収層とを有する樹脂パターンを形成できる。このような樹脂パターンを隔壁層として有する積層体は、光吸収層によって外光や迷光が吸収され、結果として、発光素子の非点灯時において黒締まりがより優れる。また、光反射層によって、発光素子の点灯時に発光素子からの光が隔壁で反射し易く、輝度が高くなる。 In addition, in the first embodiment of the present invention, when the transfer film of the above aspect (N3) is used, the light-absorbing layer precursor layer and the light-reflecting layer precursor are A curing reaction occurs in the layer, and a resin pattern having a light-reflecting layer and a light-absorbing layer can be formed in order from the light-emitting element-equipped substrate side through a developing step (step (1-3)). In a laminate having such a resin pattern as a partition layer, external light and stray light are absorbed by the light absorption layer, and as a result, black density is better when the light emitting element is not lit. Furthermore, the light-reflecting layer allows light from the light-emitting element to be easily reflected by the partition walls when the light-emitting element is turned on, increasing brightness.
 後述するように光吸収層前駆体層は、光吸収性物質を含むネガ型感光性層が該当し、光反射層前駆体層は、反射性調整剤を含むネガ型感光性層が該当する。 As described below, the light-absorbing layer precursor layer corresponds to a negative-type photosensitive layer containing a light-absorbing substance, and the light-reflecting layer precursor layer corresponds to a negative-type photosensitive layer containing a reflectance modifier.
 転写フィルムの構成としては、本発明の第1実施形態により形成される積層体において、発光素子の輝度がより優れる点、外光反射がより抑制し易い点、及び/又は、発光素子の点灯時の際に不必要に生じる迷光を吸収できる点で、以下の態様であるのも好ましい。
 (P1)仮支持体/感光性の光吸収層/保護フィルム
 (P2)仮支持体/感光性の光反射層/保護フィルム
 (P3)仮支持体/感光性の光吸収層/感光性の光反射層/保護フィルム
 なお、上記(P1)~(P3)で示す転写フィルムは、保護フィルムを配置した態様であるが、保護フィルムは配置されなくてもよい。
 また、感光性の光吸収層及び感光性の光反射層は、感光性を示す層であり、典型的には、ポジ型感光性層である。
The structure of the transfer film is that in the laminate formed according to the first embodiment of the present invention, the brightness of the light emitting element is better, reflection of external light is more easily suppressed, and/or when the light emitting element is turned on. The following embodiments are also preferable in that they can absorb stray light that occurs unnecessarily during the process.
(P1) Temporary support/photosensitive light absorption layer/protective film (P2) Temporary support/photosensitive light reflection layer/protective film (P3) Temporary support/photosensitive light absorption layer/photosensitive light Reflective Layer/Protective Film Note that the transfer films shown in (P1) to (P3) above are embodiments in which a protective film is disposed, but the protective film may not be disposed.
Moreover, the photosensitive light absorption layer and the photosensitive light reflection layer are layers that exhibit photosensitivity, and are typically positive photosensitive layers.
 なお、光吸収層は、光吸収性物質を含むポジ型感光性層が該当し、光反射層は、反射性調整剤を含むポジ型感光性層が該当する。 Note that the light-absorbing layer corresponds to a positive-type photosensitive layer containing a light-absorbing substance, and the light-reflecting layer corresponds to a positive-type photosensitive layer containing a reflectance modifier.
 以下、転写フィルムを構成する各要素について説明する。 Hereinafter, each element constituting the transfer film will be explained.
<仮支持体>
 転写フィルムは、仮支持体を有する。
 仮支持体は、感光性層を支持する部材であり、最終的には剥離処理により除去される。
<Temporary support>
The transfer film has a temporary support.
The temporary support is a member that supports the photosensitive layer, and is finally removed by a peeling process.
 仮支持体は、単層構造であっても、複層構造であってもよい。
 仮支持体は、フィルムが好ましく、樹脂フィルムがより好ましい。仮支持体としては、可撓性を有し、且つ、加圧下、又は、加圧及び加熱下において、著しい変形、収縮、又は伸びを生じないフィルムが好ましい。
 上記フィルムとしては、例えば、ポリエチレンテレフタレートフィルム(例えば、2軸延伸ポリエチレンテレフタレートフィルム)、ポリメチルメタクリレートフィルム、トリ酢酸セルロースフィルム、ポリスチレンフィルム、ポリイミドフィルム、及び、ポリカーボネートフィルムが挙げられる。
 なかでも、仮支持体としては、ポリエチレンテレフタレートフィルムが好ましい。
 また、仮支持体として使用するフィルムには、シワ等の変形、及び、傷等がないことが好ましい。
The temporary support may have a single layer structure or a multilayer structure.
The temporary support is preferably a film, more preferably a resin film. The temporary support is preferably a film that is flexible and does not undergo significant deformation, shrinkage, or elongation under pressure or under pressure and heat.
Examples of the film include polyethylene terephthalate film (for example, biaxially oriented polyethylene terephthalate film), polymethyl methacrylate film, cellulose triacetate film, polystyrene film, polyimide film, and polycarbonate film.
Among these, polyethylene terephthalate film is preferred as the temporary support.
Further, the film used as the temporary support is preferably free from deformation such as wrinkles and scratches.
 仮支持体は、仮支持体を介してパターン露光できるという点から、透明性が高いことが好ましく、365nm、405nm、及び436nmでの透過率は60%以上が好ましく、70%以上がより好ましく、80%以上が更に好ましく、90%以上が特に好ましい。透過率の好ましい値としては、例えば、87%、92%、及び98%等が挙げられる。
 仮支持体を介するパターン露光時のパターン形成性、及び、仮支持体の透明性の点から、仮支持体のヘイズは小さい方が好ましい。具体的には、仮支持体のヘイズ値が、2%以下が好ましく、0.5%以下がより好ましく、0.1%以下が更に好ましい。
 仮支持体を介するパターン露光時のパターン形成性、及び、仮支持体の透明性の点から、仮支持体に含まれる微粒子、異物、及び、欠陥の数は少ない方が好ましい。仮支持体中における直径1μm以上の微粒子、異物、及び、欠陥の数は、50個/10mm以下が好ましく、10個/10mm以下がより好ましく、3個/10mm以下が更に好ましく、0個/10mmが特に好ましい。
The temporary support preferably has high transparency because pattern exposure can be performed through the temporary support, and the transmittance at 365 nm, 405 nm, and 436 nm is preferably 60% or more, more preferably 70% or more, More preferably 80% or more, particularly preferably 90% or more. Preferred values of transmittance include, for example, 87%, 92%, and 98%.
From the viewpoints of pattern formation properties during pattern exposure through the temporary support and transparency of the temporary support, it is preferable that the haze of the temporary support is small. Specifically, the haze value of the temporary support is preferably 2% or less, more preferably 0.5% or less, and even more preferably 0.1% or less.
From the viewpoints of pattern formation during pattern exposure through the temporary support and transparency of the temporary support, it is preferable that the number of fine particles, foreign matter, and defects contained in the temporary support be small. The number of fine particles, foreign matter, and defects with a diameter of 1 μm or more in the temporary support is preferably 50 pieces/10 mm 2 or less, more preferably 10 pieces/10 mm 2 or less, even more preferably 3 pieces/10 mm 2 or less, and 0. pieces/10 mm 2 is particularly preferred.
 仮支持体の厚みは特に制限されないが、5~200μmが好ましく、取り扱いやすさ及び汎用性の点から、5~150μmがより好ましく、5~50μmが更に好ましく、5~25μmが特に好ましい。仮支持体の厚みは、SEM(走査型電子顕微鏡:Scanning Electron Microscope)による断面観察により測定した任意の5点の平均値として算出できる。 The thickness of the temporary support is not particularly limited, but is preferably 5 to 200 μm, more preferably 5 to 150 μm, even more preferably 5 to 50 μm, and particularly preferably 5 to 25 μm from the viewpoint of ease of handling and versatility. The thickness of the temporary support can be calculated as the average value of five arbitrary points measured by cross-sectional observation using a SEM (Scanning Electron Microscope).
 また、仮支持体は、仮支持体と仮支持体上に形成された感光性層との密着性を向上させることを目的として、感光性層と接する側の面が、UV(ultraviolet)照射、コロナ放電、及び、プラズマ等により表面改質されていてもよい。 In addition, in order to improve the adhesion between the temporary support and the photosensitive layer formed on the temporary support, the surface of the temporary support in contact with the photosensitive layer is exposed to UV (ultraviolet) irradiation. The surface may be modified by corona discharge, plasma, or the like.
 仮支持体の表面改質をUV照射によって実施する場合、露光量は10~2000mJ/cmであるのが好ましく、50~1000mJ/cmであるのがより好ましい。なお、光源としては、150~450nm波長帯域の光を発する低圧水銀ランプ、高圧水銀ランプ、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ、ケミカルランプ、無電極放電ランプ、及び、発光ダイオード(LED)等が挙げられる。光照射量がこの範囲にできる限り、ランプ出力や照度は特に制限はない。 When surface modification of the temporary support is carried out by UV irradiation, the exposure amount is preferably 10 to 2000 mJ/cm 2 , more preferably 50 to 1000 mJ/cm 2 . The light sources include low-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, carbon arc lamps, metal halide lamps, xenon lamps, chemical lamps, electrodeless discharge lamps, and light-emitting diodes (which emit light in the wavelength band of 150 to 450 nm). LED), etc. As long as the amount of light irradiation can be within this range, there are no particular restrictions on the lamp output or illuminance.
 仮支持体としては、例えば、厚み16μmの2軸延伸ポリエチレンテレフタレートフィルム、厚み12μmの2軸延伸ポリエチレンテレフタレートフィルム、及び、厚み9μmの2軸延伸ポリエチレンテレフタレートフィルムが挙げられる。 Examples of the temporary support include a 16 μm thick biaxially stretched polyethylene terephthalate film, a 12 μm thick biaxially stretched polyethylene terephthalate film, and a 9 μm thick biaxially stretched polyethylene terephthalate film.
 仮支持体は、リサイクル品であってもよい。リサイクル品としては、使用済みフィルム等を洗浄、チップ化し、これを材料にフィルム化したものが挙げられる。リサイクル品の具体例としては、東レ社のEcouseシリーズが挙げられる。
 仮支持体の好ましい形態としては、例えば、特開2014-085643号公報の段落[0017]~[0018]、特開2016-027363号公報の段落[0019]~[0026]、国際公開第2012/081680号の段落[0041]~[0057]、及び、国際公開第2018/179370号の段落[0029]~[0040]に記載が挙げられ、これらの公報の内容は本明細書に組み込まれる。
The temporary support may be a recycled product. Examples of recycled products include those that have been washed and made into chips from used films, etc., and made into films using these as materials. A specific example of a recycled product is Toray's Ecouse series.
Preferred forms of the temporary support include, for example, paragraphs [0017] to [0018] of JP2014-085643A, paragraphs [0019] to [0026] of JP2016-027363A, and International Publication No. 2012/ The descriptions are given in paragraphs [0041] to [0057] of No. 081680 and paragraphs [0029] to [0040] of International Publication No. 2018/179370, and the contents of these publications are incorporated herein.
 ハンドリング性を付与する点で、仮支持体の表面に、微小な粒子を含む層(滑剤層)を設けてもよい。滑剤層は仮支持体の片面に設けてもよいし、両面に設けてもよい。滑剤層に含まれる粒子の直径は、0.05~0.8μmが好ましい。
 また、滑剤層の厚みは、0.05~1.0μmが好ましい。仮支持体の市販品としては、ルミラー16KS40、ルミラー16FB40、ルミラー#38-U48、ルミラー#75-U34、及びルミラー#25T60(以上、東レ株式会社製);コスモシャインA4100、コスモシャインA4300、コスモシャインA4160、コスモシャインA4360、及びコスモシャインA8300(以上、東洋紡株式会社製)が挙げられる。
A layer containing fine particles (a lubricant layer) may be provided on the surface of the temporary support in order to impart handling properties. The lubricant layer may be provided on one side or both sides of the temporary support. The diameter of the particles contained in the lubricant layer is preferably 0.05 to 0.8 μm.
Further, the thickness of the lubricant layer is preferably 0.05 to 1.0 μm. Commercially available temporary supports include Lumirror 16KS40, Lumirror 16FB40, Lumirror #38-U48, Lumirror #75-U34, and Lumirror #25T60 (manufactured by Toray Industries, Inc.); Cosmoshine A4100, Cosmoshine A4300, and Cosmoshine. Examples include Cosmoshine A4160, Cosmoshine A4360, and Cosmoshine A8300 (all manufactured by Toyobo Co., Ltd.).
<感光性層>
(感光性層の成分)
 感光性層は、ポジ型感光性層及びネガ型感光性層のいずれであってもよいが、ネガ型感光性層が好ましい。
 感光性層がネガ型感光性層である場合、感光性層は、例えば、アルカリ可溶性樹脂、重合性化合物、及び光重合開始剤を少なくとも含む構成であるのが好ましい。また、上述したとおり、感光性層は、光反射層前駆体層及び光吸収層前駆体層であってもよい。感光性層が光反射層前駆体層である場合、感光性層は、後述する反射性調整剤を含み、感光性層が光吸収層前駆体層である場合、感光性層は、後述する光吸収性物質を含む。
<Photosensitive layer>
(Components of photosensitive layer)
The photosensitive layer may be either a positive photosensitive layer or a negative photosensitive layer, but a negative photosensitive layer is preferred.
When the photosensitive layer is a negative photosensitive layer, the photosensitive layer preferably contains, for example, at least an alkali-soluble resin, a polymerizable compound, and a photopolymerization initiator. Furthermore, as described above, the photosensitive layer may be a light-reflecting layer precursor layer or a light-absorbing layer precursor layer. When the photosensitive layer is a light-reflecting layer precursor layer, the photosensitive layer contains the below-mentioned reflectivity modifier, and when the photosensitive layer is a light-absorbing layer precursor layer, the photosensitive layer contains the below-mentioned light-adjusting agent. Contains absorbent materials.
 感光性層がポジ型感光性層である場合、感光性層は、例えば、ポリマー及び光酸発生剤を少なくとも含む構成であるのが好ましい。また、上述したとおり、感光性層は、感光性の光反射層及び感光性の光吸収層であってもよい。感光性層が感光性の光反射層である場合、感光性層は、後述する反射性調整剤を含み、感光性層が感光性の光吸収層である場合、感光性層は、後述する光吸収性物質を含む。 When the photosensitive layer is a positive photosensitive layer, the photosensitive layer preferably contains, for example, at least a polymer and a photoacid generator. Furthermore, as described above, the photosensitive layer may be a photosensitive light reflecting layer or a photosensitive light absorbing layer. When the photosensitive layer is a photosensitive light reflection layer, the photosensitive layer contains a reflection modifier described below, and when the photosensitive layer is a photosensitive light absorption layer, the photosensitive layer contains a reflection modifier described below. Contains absorbent materials.
(感光性層の不純物)
 感光性層は、金属及び金属イオンからなる群から選ばれる不純物(以下「不純物A」ともいう。)を含んでいてもよい。不純物Aの具体例としては、ナトリウム、カリウム、マグネシウム、カルシウム、鉄、マンガン、銅、アルミニウム、チタン、クロム、コバルト、ニッケル、亜鉛、スズ、ハロゲン、及びこれらのイオンが挙げられる。なかでも、ハロゲン化物イオン、ナトリウムイオン、及びカリウムイオンは不純物として混入し易いため、下記の含有量にすることが好ましい。
 不純物Aの含有量の上限値としては、感光性層の全質量に対して、150質量ppm以下が好ましく、100質量ppm以下がより好ましく、10質量ppm以下が更に好ましく、2質量ppm以下が特に好ましい。不純物Aの含有量の下限値としては、感光性層の全質量に対して、1質量ppb以上又は0.1質量ppm以上とすることができる。
 なかでも、塩化物イオンの含有量の上限値としては、感光性層の全質量に対して、100質量ppm以下が好ましく、50質量ppm以下がより好ましく、10質量ppm以下が更に好ましく、2質量ppm以下が特に好ましい。塩化物イオンの含有量の下限値としては、感光性層の全質量に対して、1質量ppb以上又は0.1質量ppm以上とすることができる。
 不純物Aを上記範囲にする方法としては、感光性層の原料として不純物の含有量が少ないものを選択すること、及び、感光性層の形成時に不純物の混入を防ぐこと、洗浄して除去することが挙げられる。このような方法により、不純物量を上記範囲内とすることができる。
(Impurities in photosensitive layer)
The photosensitive layer may contain an impurity (hereinafter also referred to as "impurity A") selected from the group consisting of metals and metal ions. Specific examples of impurity A include sodium, potassium, magnesium, calcium, iron, manganese, copper, aluminum, titanium, chromium, cobalt, nickel, zinc, tin, halogen, and ions thereof. Among these, halide ions, sodium ions, and potassium ions are likely to be mixed in as impurities, so it is preferable to have the following content.
The upper limit of the content of impurity A is preferably 150 mass ppm or less, more preferably 100 mass ppm or less, even more preferably 10 mass ppm or less, particularly 2 mass ppm or less, based on the total mass of the photosensitive layer. preferable. The lower limit of the content of impurity A can be 1 mass ppb or more or 0.1 mass ppm or more with respect to the total mass of the photosensitive layer.
Among these, the upper limit of the content of chloride ions is preferably 100 mass ppm or less, more preferably 50 mass ppm or less, even more preferably 10 mass ppm or less, and 2 mass ppm or less, based on the total mass of the photosensitive layer. Particularly preferred is less than ppm. The lower limit of the content of chloride ions can be 1 mass ppb or more or 0.1 mass ppm or more with respect to the total mass of the photosensitive layer.
The method of keeping impurity A within the above range is to select a material with a low content of impurities as the raw material for the photosensitive layer, to prevent the impurity from being mixed in when forming the photosensitive layer, and to remove it by washing. can be mentioned. By such a method, the amount of impurities can be kept within the above range.
 不純物Aは、例えば、ICP(Inductively Coupled Plasma)発光分光分析法、原子吸光分光法、及びイオンクロマトグラフィー法等の公知の方法で定量できる。 Impurity A can be quantified by known methods such as ICP (Inductively Coupled Plasma) emission spectroscopy, atomic absorption spectroscopy, and ion chromatography.
 また、感光性層中、有機溶剤の含有量は少ない程好ましい。
 有機溶剤の含有量としては、感光性層の全質量に対して、100質量ppm以下が好ましく、20質量ppm以下がより好ましく、4質量ppm以下が更に好ましい。有機溶剤の含有量の下限値としては、感光性層の全質量に対して、10質量ppb以上であってもよい。
 有機溶剤の含有量は、ICP(Inductively Coupled Plasma)発光分光分析法、原子吸光分光法、及びイオンクロマトグラフィー法等の公知の方法で定量できる。
 上記有機溶剤としては、具体的には、ベンゼン、ホルムアルデヒド、トリクロロエチレン、1,3-ブタジエン、四塩化炭素、クロロホルム、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、及びヘキサンからなる群から選ばれるものが挙げられる。
Further, the content of the organic solvent in the photosensitive layer is preferably as small as possible.
The content of the organic solvent is preferably 100 mass ppm or less, more preferably 20 mass ppm or less, and even more preferably 4 mass ppm or less, based on the total mass of the photosensitive layer. The lower limit of the content of the organic solvent may be 10 mass ppb or more based on the total mass of the photosensitive layer.
The content of the organic solvent can be determined by known methods such as ICP (Inductively Coupled Plasma) emission spectroscopy, atomic absorption spectroscopy, and ion chromatography.
Specifically, the organic solvent is selected from the group consisting of benzene, formaldehyde, trichloroethylene, 1,3-butadiene, carbon tetrachloride, chloroform, N,N-dimethylformamide, N,N-dimethylacetamide, and hexane. There are many things that can be done.
 感光性層における水の含有量としては、信頼性及びラミネート性を向上させる点から、感光性層の全質量に対して、5.0質量%以下が好ましく、3.0質量%以下がより好ましく、1.0質量%以下が更に好ましい。なお、感光性層における水の含有量の下限値としては少ない程好ましいが、層の全質量に対して、例えば、0.01質量%以上であってもよい。 The content of water in the photosensitive layer is preferably 5.0% by mass or less, more preferably 3.0% by mass or less, based on the total mass of the photosensitive layer, from the viewpoint of improving reliability and lamination properties. , more preferably 1.0% by mass or less. The lower limit of the water content in the photosensitive layer is preferably as small as possible, but it may be, for example, 0.01% by mass or more with respect to the total mass of the layer.
 以下、ネガ型感光性層及びポジ型感光性層について各々説明する。 Hereinafter, the negative-type photosensitive layer and the positive-type photosensitive layer will be explained respectively.
《ネガ型感光性層》
 以下、ネガ型感光性層に含まれ得る成分について詳述する。
-アルカリ可溶性樹脂-
 感光性層は、アルカリ可溶性樹脂を含むのが好ましい。
 アルカリ可溶性樹脂としては、例えば、(メタ)アクリル樹脂、スチレン樹脂、エポキシ樹脂、アミド樹脂、アミドエポキシ樹脂、アルキド樹脂、フェノール樹脂、エステル樹脂、ウレタン樹脂、エポキシ樹脂と(メタ)アクリル酸との反応で得られるエポキシアクリレート樹脂、及び、エポキシアクリレート樹脂と酸無水物との反応で得られる酸変性エポキシアクリレート樹脂が挙げられる。
《Negative photosensitive layer》
The components that can be included in the negative photosensitive layer will be described in detail below.
-Alkali-soluble resin-
Preferably, the photosensitive layer contains an alkali-soluble resin.
Examples of alkali-soluble resins include (meth)acrylic resins, styrene resins, epoxy resins, amide resins, amide epoxy resins, alkyd resins, phenol resins, ester resins, urethane resins, and reactions between epoxy resins and (meth)acrylic acid. and acid-modified epoxy acrylate resins obtained by reacting an epoxy acrylate resin with an acid anhydride.
(アルカリ可溶性樹脂の好適態様1)
 アルカリ可溶性樹脂の好適態様の一つとして、アルカリ現像性及びフィルム形成性に優れる点で、(メタ)アクリル樹脂が挙げられる。
 なお、本明細書において、(メタ)アクリル樹脂とは、(メタ)アクリル化合物に由来する構成単位を有する樹脂を意味する。
 (メタ)アクリル化合物に由来する構成単位の含有量は、(メタ)アクリル樹脂の全構成単位に対して、50質量%以上が好ましく、70質量%以上がより好ましく、90質量%以上が更に好ましい。(メタ)アクリル樹脂は、(メタ)アクリル化合物に由来する構成単位のみで構成されていてもよく、(メタ)アクリル化合物以外の重合性単量体に由来する構成単位を有していてもよい。すなわち、(メタ)アクリル化合物に由来する構成単位の含有量の上限は、(メタ)アクリル樹脂の全構成単位に対して、100質量%以下である。
 また、(メタ)アクリル化合物に由来する構成単位の含有量は、(メタ)アクリル樹脂の全構成単位に対して、50モル%以上が好ましく、70モル%以上がより好ましく、90モル%以上が更に好ましい。(メタ)アクリル樹脂は、(メタ)アクリル化合物に由来する構成単位のみで構成されていてもよく、(メタ)アクリル化合物以外の重合性単量体に由来する構成単位を有していてもよい。すなわち、(メタ)アクリル化合物に由来する構成単位の含有量の上限は、(メタ)アクリル樹脂の全構成単位に対して、100モル%以下である。
 なお、本明細書において、「構成単位」の含有量をモル比で規定する場合、上記「構成単位」は「モノマー単位」と同義であるものとする。また、本明細書において、上記「モノマー単位」は、高分子反応等により重合後に修飾されていてもよい。以下においても同様である。
(Preferred embodiment 1 of alkali-soluble resin)
One of the preferable embodiments of the alkali-soluble resin is (meth)acrylic resin, since it has excellent alkali developability and film-forming properties.
In addition, in this specification, a (meth)acrylic resin means resin which has a structural unit derived from a (meth)acrylic compound.
The content of the structural units derived from the (meth)acrylic compound is preferably 50% by mass or more, more preferably 70% by mass or more, and still more preferably 90% by mass or more, based on all the structural units of the (meth)acrylic resin. . The (meth)acrylic resin may be composed only of structural units derived from a (meth)acrylic compound, or may have structural units derived from a polymerizable monomer other than the (meth)acrylic compound. . That is, the upper limit of the content of the structural units derived from the (meth)acrylic compound is 100% by mass or less based on all the structural units of the (meth)acrylic resin.
Further, the content of the structural units derived from the (meth)acrylic compound is preferably 50 mol% or more, more preferably 70 mol% or more, and 90 mol% or more with respect to all the structural units of the (meth)acrylic resin. More preferred. The (meth)acrylic resin may be composed only of structural units derived from a (meth)acrylic compound, or may have structural units derived from a polymerizable monomer other than the (meth)acrylic compound. . That is, the upper limit of the content of the structural units derived from the (meth)acrylic compound is 100 mol% or less based on all the structural units of the (meth)acrylic resin.
In addition, in this specification, when the content of a "constituent unit" is defined by a molar ratio, the above-mentioned "constituent unit" shall have the same meaning as a "monomer unit." Moreover, in this specification, the above-mentioned "monomer unit" may be modified after polymerization by a polymer reaction or the like. The same applies to the following.
 (メタ)アクリル化合物としては、例えば、(メタ)アクリル酸、(メタ)アクリル酸エステル、(メタ)アクリルアミド、及び、(メタ)アクリロニトリルが挙げられる。
 (メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸テトラヒドロフルフリルエステル、(メタ)アクリル酸ジメチルアミノエチルエステル、(メタ)アクリル酸ジエチルアミノエチルエステル、(メタ)アクリル酸グリシジルエステル、(メタ)アクリル酸ベンジルエステル、2,2,2-トリフルオロエチル(メタ)アクリレート、及び、2,2,3,3-テトラフルオロプロピル(メタ)アクリレートが挙げられ、(メタ)アクリル酸アルキルエステルが好ましい。
 (メタ)アクリルアミドとしては、例えば、ジアセトンアクリルアミド等のアクリルアミドが挙げられる。
Examples of the (meth)acrylic compound include (meth)acrylic acid, (meth)acrylic acid ester, (meth)acrylamide, and (meth)acrylonitrile.
Examples of (meth)acrylic acid ester include (meth)acrylic acid alkyl ester, (meth)acrylic acid tetrahydrofurfuryl ester, (meth)acrylic acid dimethylaminoethyl ester, (meth)acrylic acid diethylaminoethyl ester, (meth)acrylic acid diethylaminoethyl ester, ) Acrylic acid glycidyl ester, (meth)acrylic acid benzyl ester, 2,2,2-trifluoroethyl (meth)acrylate, and 2,2,3,3-tetrafluoropropyl (meth)acrylate, ( Preferred are meth)acrylic acid alkyl esters.
Examples of (meth)acrylamide include acrylamide such as diacetone acrylamide.
 (メタ)アクリル酸アルキルエステルのアルキル基としては、直鎖状でも分岐を有していてもよい。具体例としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル、及び、(メタ)アクリル酸ドデシル等の炭素数が1~12のアルキル基を有する(メタ)アクリル酸アルキルエステルが挙げられる。
 また、(メタ)アクリル酸アルキルエステルのアルキル基としては、環状であってもよい。環状アルキル基としては、単環でも多環でもよい。具体例としては、(メタ)アクリル酸シクロヘキシル等が挙げられる。
 (メタ)アクリル酸エステルとしては、炭素数1~4のアルキル基を有する(メタ)アクリル酸アルキルエステルが好ましく、(メタ)アクリル酸メチル又は(メタ)アクリル酸エチルがより好ましい。
The alkyl group of the (meth)acrylic acid alkyl ester may be linear or branched. Specific examples include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate, ( Heptyl (meth)acrylate, octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, nonyl (meth)acrylate, decyl (meth)acrylate, undecyl (meth)acrylate, and (meth)acrylic acid Examples include (meth)acrylic acid alkyl esters having an alkyl group having 1 to 12 carbon atoms such as dodecyl.
Further, the alkyl group of the (meth)acrylic acid alkyl ester may be cyclic. The cyclic alkyl group may be monocyclic or polycyclic. Specific examples include cyclohexyl (meth)acrylate and the like.
As the (meth)acrylic ester, a (meth)acrylic acid alkyl ester having an alkyl group having 1 to 4 carbon atoms is preferred, and methyl (meth)acrylate or ethyl (meth)acrylate is more preferred.
 (メタ)アクリル樹脂は、(メタ)アクリル化合物に由来する構成単位以外の構成単位を有していてもよい。
 上記構成単位を形成する重合性単量体としては、(メタ)アクリル化合物と共重合可能な(メタ)アクリル化合物以外の化合物であれば特に制限されず、例えば、スチレン、ビニルトルエン、及び、α-メチルスチレン等のα位又は芳香族環に置換基を有してもよいスチレン化合物、アクリロニトリル及びビニル-n-ブチルエーテル等のビニルアルコールエステル、マレイン酸、マレイン酸無水物、マレイン酸モノメチル、マレイン酸モノエチル、及び、マレイン酸モノイソプロピル等のマレイン酸モノエステル、フマル酸、ケイ皮酸、α-シアノケイ皮酸、イタコン酸、並びに、クロトン酸が挙げられる。
 これらの重合性単量体は、1種単独又は2種以上を組み合わせて用いてもよい。
The (meth)acrylic resin may have structural units other than the structural units derived from the (meth)acrylic compound.
The polymerizable monomer forming the above structural unit is not particularly limited as long as it is a compound other than a (meth)acrylic compound that can be copolymerized with a (meth)acrylic compound, such as styrene, vinyltoluene, and α. - Styrene compounds that may have substituents at the α-position or aromatic ring such as methylstyrene, vinyl alcohol esters such as acrylonitrile and vinyl-n-butyl ether, maleic acid, maleic anhydride, monomethyl maleate, maleic acid Examples include maleic acid monoesters such as monoethyl and monoisopropyl maleate, fumaric acid, cinnamic acid, α-cyanocinnamic acid, itaconic acid, and crotonic acid.
These polymerizable monomers may be used alone or in combination of two or more.
 また、(メタ)アクリル樹脂は、アルカリ現像性をより良好にする点から、酸基を有する構成単位を有することが好ましい。酸基としては、例えば、カルボキシ基、スルホ基、リン酸基、及びホスホン酸基が挙げられる。
 なかでも、(メタ)アクリル樹脂は、カルボキシ基を有する構成単位を有することがより好ましく、上記の(メタ)アクリル酸に由来する構成単位を有することが更に好ましい。
Moreover, it is preferable that the (meth)acrylic resin has a structural unit having an acid group in order to improve the alkali developability. Examples of the acid group include a carboxy group, a sulfo group, a phosphoric acid group, and a phosphonic acid group.
Among these, the (meth)acrylic resin more preferably has a structural unit having a carboxy group, and even more preferably has a structural unit derived from the above-mentioned (meth)acrylic acid.
 (メタ)アクリル樹脂における酸基を有する構成単位(好ましくは(メタ)アクリル酸に由来する構成単位)の含有量は、現像性に優れる点で、(メタ)アクリル樹脂の全構成単位に対して、10質量%以上が好ましい。また、上限値は特に制限されないが、アルカリ耐性に優れる点で、50質量%以下が好ましく、40質量%以下がより好ましい。
 (メタ)アクリル樹脂における酸基を有する構成単位(好ましくは(メタ)アクリル酸に由来する構成単位)の含有量は、現像性に優れる点で、(メタ)アクリル樹脂の全構成単位に対して、10モル%以上が好ましい。また、上限値は特に制限されないが、アルカリ耐性に優れる点で、50モル%以下が好ましく、40モル%以下がより好ましい。
The content of structural units having an acid group (preferably structural units derived from (meth)acrylic acid) in the (meth)acrylic resin is determined based on the total structural units of the (meth)acrylic resin in terms of excellent developability. , preferably 10% by mass or more. Further, the upper limit is not particularly limited, but from the viewpoint of excellent alkali resistance, it is preferably 50% by mass or less, and more preferably 40% by mass or less.
The content of structural units having an acid group (preferably structural units derived from (meth)acrylic acid) in the (meth)acrylic resin is determined based on the total structural units of the (meth)acrylic resin in terms of excellent developability. , preferably 10 mol% or more. Further, the upper limit is not particularly limited, but from the viewpoint of excellent alkali resistance, it is preferably 50 mol% or less, more preferably 40 mol% or less.
 また、(メタ)アクリル樹脂は、上述した(メタ)アクリル酸アルキルエステルに由来する構成単位を有することがより好ましい。
 (メタ)アクリル樹脂における(メタ)アクリル酸アルキルエステルに由来する構成単位の含有量は、(メタ)アクリル樹脂の全構成単位に対して、50~90質量%が好ましく、60~90質量%がより好ましく、65~90質量%が更に好ましい。
 また、(メタ)アクリル樹脂における(メタ)アクリル酸アルキルエステルに由来する構成単位の含有量は、(メタ)アクリル樹脂の全構成単位に対して、50~90モル%が好ましく、60~90モル%がより好ましく、65~90モル%が更に好ましい。
Moreover, it is more preferable that the (meth)acrylic resin has a structural unit derived from the above-mentioned (meth)acrylic acid alkyl ester.
The content of structural units derived from (meth)acrylic acid alkyl ester in the (meth)acrylic resin is preferably 50 to 90% by mass, and 60 to 90% by mass based on the total structural units of the (meth)acrylic resin. More preferably, 65 to 90% by mass is even more preferred.
Further, the content of structural units derived from (meth)acrylic acid alkyl ester in the (meth)acrylic resin is preferably 50 to 90 mol%, and 60 to 90 mol%, based on the total structural units of the (meth)acrylic resin. % is more preferable, and 65 to 90 mol% is even more preferable.
 (メタ)アクリル樹脂としては、(メタ)アクリル酸に由来する構成単位及び(メタ)アクリル酸アルキルエステルに由来する構成単位の両者を有する樹脂が好ましく、(メタ)アクリル酸に由来する構成単位及び(メタ)アクリル酸アルキルエステルに由来する構成単位のみで構成されている樹脂がより好ましい。
 また、(メタ)アクリル樹脂としては、メタクリル酸に由来する構成単位、メタクリル酸メチルに由来する構成単位、及び、アクリル酸エチルに由来する構成単位を有するアクリル樹脂も好ましい。
As the (meth)acrylic resin, a resin having both a structural unit derived from (meth)acrylic acid and a structural unit derived from a (meth)acrylic acid alkyl ester is preferable. More preferred is a resin composed only of structural units derived from (meth)acrylic acid alkyl ester.
Moreover, as the (meth)acrylic resin, an acrylic resin having a structural unit derived from methacrylic acid, a structural unit derived from methyl methacrylate, and a structural unit derived from ethyl acrylate is also preferable.
 また、(メタ)アクリル樹脂は、メタクリル酸に由来する構成単位及びメタクリル酸アルキルエステルに由来する構成単位からなる群より選択される少なくとも1種を有することが好ましく、メタクリル酸に由来する構成単位及びメタクリル酸アルキルエステルに由来する構成単位の両者を有することが好ましい。
 (メタ)アクリル樹脂におけるメタクリル酸に由来する構成単位及びメタクリル酸アルキルエステルに由来する構成単位の合計含有量は、(メタ)アクリル樹脂の全構成単位に対して、40質量%以上が好ましく、60質量%以上がより好ましい。上限は特に制限されず、100質量%以下であってもよく、80質量%以下が好ましい。
 (メタ)アクリル樹脂におけるメタクリル酸に由来する構成単位及びメタクリル酸アルキルエステルに由来する構成単位の合計含有量は、(メタ)アクリル樹脂の全構成単位に対して、40モル%以上が好ましく、60モル%以上がより好ましい。上限は特に制限されず、100モル%以下であってもよく、80モル%以下が好ましい。
Moreover, the (meth)acrylic resin preferably has at least one kind selected from the group consisting of a structural unit derived from methacrylic acid and a structural unit derived from a methacrylic acid alkyl ester, and the structural unit derived from methacrylic acid and It is preferable to have both structural units derived from methacrylic acid alkyl ester.
The total content of structural units derived from methacrylic acid and structural units derived from methacrylic acid alkyl ester in the (meth)acrylic resin is preferably 40% by mass or more, and 60% by mass or more based on the total structural units of the (meth)acrylic resin. More preferably, the amount is % by mass or more. The upper limit is not particularly limited and may be 100% by mass or less, preferably 80% by mass or less.
The total content of structural units derived from methacrylic acid and structural units derived from methacrylic acid alkyl esters in the (meth)acrylic resin is preferably 40 mol% or more, and 60% by mole or more based on the total structural units of the (meth)acrylic resin. More preferably mol% or more. The upper limit is not particularly limited and may be 100 mol% or less, preferably 80 mol% or less.
 また、(メタ)アクリル樹脂は、メタクリル酸に由来する構成単位及びメタクリル酸アルキルエステルに由来する構成単位からなる群より選択される少なくとも1種と、アクリル酸に由来する構成単位及びアクリル酸アルキルエステルに由来する構成単位からなる群より選択される少なくとも1種とを有することも好ましい。
 メタクリル酸に由来する構成単位及びメタクリル酸アルキルエステルに由来する構成単位の合計含有量は、アクリル酸に由来する構成単位及びアクリル酸アルキルエステルに由来する構成単位の合計含有量に対して、質量比で60/40~80/20が好ましい。
In addition, the (meth)acrylic resin includes at least one kind selected from the group consisting of a structural unit derived from methacrylic acid and a structural unit derived from a methacrylic acid alkyl ester, and a structural unit derived from acrylic acid and an acrylic acid alkyl ester. It is also preferable to have at least one kind selected from the group consisting of structural units derived from.
The total content of the structural units derived from methacrylic acid and the structural units derived from methacrylic acid alkyl esters is the mass ratio of the structural units derived from acrylic acid and the structural units derived from acrylic acid alkyl esters. The ratio is preferably 60/40 to 80/20.
 (メタ)アクリル樹脂は、転写後の感光性層の現像性に優れる点で、末端にエステル基を有することが好ましい。
 なお、(メタ)アクリル樹脂の末端部は、合成に用いた重合開始剤に由来する部位により構成される。末端にエステル基を有する(メタ)アクリル樹脂は、エステル基を有するラジカルを発生する重合開始剤を用いることにより合成できる。
The (meth)acrylic resin preferably has an ester group at the end, since the photosensitive layer after transfer has excellent developability.
Note that the terminal portion of the (meth)acrylic resin is composed of a site derived from the polymerization initiator used in the synthesis. A (meth)acrylic resin having an ester group at the end can be synthesized by using a polymerization initiator that generates a radical having an ester group.
(アルカリ可溶性樹脂の好適態様2)
 また、アルカリ可溶性樹脂の他の好適態様としては、現像性がより優れる点で、酸価60mgKOH/g以上のアルカリ可溶性樹脂が挙げられる。このようなアルカリ可溶性樹脂のなかでも、加熱により架橋成分と熱架橋し、強固な膜を形成しやすいという点から、酸価60mgKOH/g以上のカルボキシ基を有する樹脂(以下「カルボキシ基含有樹脂」ともいう。)がより好ましく、酸価60mgKOH/g以上のカルボキシ基を有する(メタ)アクリル樹脂(以下「カルボキシ基含有(メタ)アクリル樹脂」ともいう。)が更に好ましい。アルカリ可溶性樹脂がカルボキシ基を有する樹脂であると、例えば、ブロックイソシアネート化合物等の熱架橋性化合物を添加して熱架橋することで、3次元架橋密度を高めることができる。また、その際、カルボキシ基を有する樹脂のカルボキシ基が無水化され、疎水化すると、湿熱耐性が改善し得る。
(Preferred embodiment 2 of alkali-soluble resin)
Further, other preferred embodiments of the alkali-soluble resin include an alkali-soluble resin having an acid value of 60 mgKOH/g or more in terms of better developability. Among these alkali-soluble resins, resins having a carboxy group with an acid value of 60 mgKOH/g or more (hereinafter referred to as "carboxy group-containing resins") are preferred because they are easily thermally crosslinked with the crosslinking component and form a strong film when heated. ) is more preferred, and a (meth)acrylic resin having a carboxy group with an acid value of 60 mgKOH/g or more (hereinafter also referred to as "carboxy group-containing (meth)acrylic resin") is even more preferred. When the alkali-soluble resin is a resin having a carboxyl group, the three-dimensional crosslink density can be increased by, for example, adding a thermally crosslinkable compound such as a blocked isocyanate compound and thermally crosslinking the resin. Moreover, at that time, when the carboxyl group of the resin having a carboxyl group is anhydrous and made hydrophobic, the resistance to wet heat can be improved.
 酸価60mgKOH/g以上のカルボキシ基含有(メタ)アクリル樹脂としては、上記酸価の条件を満たす限りにおいて、特に制限はなく、公知の(メタ)アクリル樹脂から適宜選択できる。例えば、特開2011-095716号公報の段落[0025]に記載のポリマーのうち、酸価60mgKOH/g以上のカルボキシ基含有アクリル樹脂、及び、特開2010-237589号公報の段落[0033]~[0052]に記載のポリマーのうち、酸価60mgKOH/g以上のカルボキシ基含有アクリル樹脂等を好ましく使用できる。 The carboxy group-containing (meth)acrylic resin having an acid value of 60 mgKOH/g or more is not particularly limited as long as it satisfies the above acid value condition, and can be appropriately selected from known (meth)acrylic resins. For example, among the polymers described in paragraph [0025] of JP-A-2011-095716, carboxy group-containing acrylic resins with an acid value of 60 mgKOH/g or more, and paragraphs [0033] to [ of JP-A-2010-237589] Among the polymers described in [0052], carboxy group-containing acrylic resins having an acid value of 60 mgKOH/g or more can be preferably used.
(アルカリ可溶性樹脂の好適態様3)
 また、アルカリ可溶性樹脂の他の好適態様としては、現像性がより優れる点で、芳香環構造を有するアルカリ可溶性樹脂が挙げられる。芳香環構造を有するアルカリ可溶性樹脂としては、なかでも、芳香環構造を有する構成単位を有するアルカリ可溶性樹脂がより好ましい。
 芳香環構造を有する構成単位を形成するモノマーとしては、アラルキル基を有するモノマー、スチレン、及び重合可能なスチレン誘導体(例えば、メチルスチレン、ビニルトルエン、tert-ブトキシスチレン、アセトキシスチレン、4-ビニル安息香酸、スチレンダイマー、及びスチレントリマー等)が挙げられる。なかでも、アラルキル基を有するモノマー、又はスチレンが好ましい。
 アラルキル基としては、置換又は非置換のフェニルアルキル基(ベンジル基を除く)、及び置換又は非置換のベンジル基等が挙げられ、置換又は非置換のベンジル基が好ましい。
(Preferred embodiment 3 of alkali-soluble resin)
Further, other preferred embodiments of the alkali-soluble resin include an alkali-soluble resin having an aromatic ring structure, since it has better developability. As the alkali-soluble resin having an aromatic ring structure, an alkali-soluble resin having a structural unit having an aromatic ring structure is especially preferable.
Monomers forming structural units having an aromatic ring structure include monomers having an aralkyl group, styrene, and polymerizable styrene derivatives (for example, methylstyrene, vinyltoluene, tert-butoxystyrene, acetoxystyrene, 4-vinylbenzoic acid). , styrene dimer, styrene trimer, etc.). Among these, monomers having an aralkyl group or styrene are preferred.
Examples of the aralkyl group include a substituted or unsubstituted phenylalkyl group (excluding a benzyl group), a substituted or unsubstituted benzyl group, and a substituted or unsubstituted benzyl group is preferred.
 フェニルアルキル基を有する単量体としては、フェニルエチル(メタ)アクリレート等が挙げられる。 Examples of the monomer having a phenylalkyl group include phenylethyl (meth)acrylate and the like.
 ベンジル基を有する単量体としては、ベンジル基を有する(メタ)アクリレート、例えば、ベンジル(メタ)アクリレート、及びクロロベンジル(メタ)アクリレート等;ベンジル基を有するビニルモノマー、例えば、ビニルベンジルクロライド、及びビニルベンジルアルコール等が挙げられる。なかでも、ベンジル(メタ)アクリレートが好ましい。 Examples of monomers having a benzyl group include (meth)acrylates having a benzyl group, such as benzyl (meth)acrylate and chlorobenzyl (meth)acrylate; vinyl monomers having a benzyl group, such as vinylbenzyl chloride; Examples include vinylbenzyl alcohol. Among these, benzyl (meth)acrylate is preferred.
 また、アルカリ可溶性樹脂は、下記式(S)で表される構成単位(スチレンに由来する構成単位)を有することがより好ましい。 Moreover, it is more preferable that the alkali-soluble resin has a structural unit (a structural unit derived from styrene) represented by the following formula (S).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 アルカリ可溶性樹脂が芳香環構造を有する構成単位を有する場合、芳香環構造を有する構成単位の含有量は、アルカリ可溶性樹脂の全構成単位に対して、5~90質量%が好ましく、10~80質量%がより好ましく、10~70質量%が更に好ましく、20~60質量%が特に好ましい。
 また、アルカリ可溶性樹脂における芳香環構造を有する構成単位の含有量は、アルカリ可溶性樹脂の全構成単位に対して、5~70モル%が好ましく、10~60モル%がより好ましく、20~60モル%が更に好ましい。
 更に、アルカリ可溶性樹脂における上記式(S)で表される構成単位の含有量は、アルカリ可溶性樹脂の全構成単位に対して、5~70モル%が好ましく、10~60モル%がより好ましく、20~60モル%が更に好ましく、20~50モル%が特に好ましい。
When the alkali-soluble resin has a structural unit having an aromatic ring structure, the content of the structural unit having an aromatic ring structure is preferably 5 to 90% by mass, and 10 to 80% by mass based on the total structural units of the alkali-soluble resin. %, more preferably 10 to 70% by weight, and particularly preferably 20 to 60% by weight.
Further, the content of the structural unit having an aromatic ring structure in the alkali-soluble resin is preferably 5 to 70 mol%, more preferably 10 to 60 mol%, and 20 to 60 mol% based on the total structural units of the alkali-soluble resin. % is more preferable.
Furthermore, the content of the structural unit represented by the above formula (S) in the alkali-soluble resin is preferably 5 to 70 mol%, more preferably 10 to 60 mol%, based on the total structural units of the alkali-soluble resin. 20 to 60 mol% is more preferable, and 20 to 50 mol% is particularly preferable.
 アルカリ可溶性樹脂は、脂肪族炭化水素環構造を有することが好ましい。つまり、アルカリ可溶性樹脂は、脂肪族炭化水素環構造を有する構成単位を有することが好ましい。脂肪族炭化水素環構造としては単環でも多環でも良い。なかでも、アルカリ可溶性樹脂は、2環以上の脂肪族炭化水素環が縮環した環構造を有することがより好ましい。 It is preferable that the alkali-soluble resin has an aliphatic hydrocarbon ring structure. That is, it is preferable that the alkali-soluble resin has a structural unit having an aliphatic hydrocarbon ring structure. The aliphatic hydrocarbon ring structure may be monocyclic or polycyclic. Among these, it is more preferable that the alkali-soluble resin has a ring structure in which two or more aliphatic hydrocarbon rings are condensed.
 脂肪族炭化水素環構造を有する構成単位における脂肪族炭化水素環構造を構成する環としては、トリシクロデカン環、シクロヘキサン環、シクロペンタン環、ノルボルナン環、及びイソボロン環が挙げられる。
 なかでも、2環以上の脂肪族炭化水素環が縮環した環が好ましく、テトラヒドロジシクロペンタジエン環(トリシクロ[5.2.1.02,6]デカン環)がより好ましい。
 脂肪族炭化水素環構造を有する構成単位を形成するモノマーとしては、ジシクロペンタニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、及び、イソボルニル(メタ)アクリレートが挙げられる。
 また、アルカリ可溶性樹脂は、下記式(Cy)で表される構成単位を有することが好ましく、上記式(S)で表される構成単位、及び、下記式(Cy)で表される構成単位を有することがより好ましい。
Examples of the ring constituting the aliphatic hydrocarbon ring structure in the structural unit having an aliphatic hydrocarbon ring structure include a tricyclodecane ring, a cyclohexane ring, a cyclopentane ring, a norbornane ring, and an isoborone ring.
Among these, a ring in which two or more aliphatic hydrocarbon rings are condensed is preferable, and a tetrahydrodicyclopentadiene ring (tricyclo[5.2.1.0 2,6 ]decane ring) is more preferable.
Monomers forming the structural unit having an aliphatic hydrocarbon ring structure include dicyclopentanyl (meth)acrylate, cyclohexyl (meth)acrylate, and isobornyl (meth)acrylate.
Further, the alkali-soluble resin preferably has a structural unit represented by the following formula (Cy), a structural unit represented by the above formula (S), and a structural unit represented by the following formula (Cy). It is more preferable to have.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(Cy)中、Rは水素原子又はメチル基を表し、RCyは脂肪族炭化水素環構造を有する一価の基を表す。 In formula (Cy), R M represents a hydrogen atom or a methyl group, and R Cy represents a monovalent group having an aliphatic hydrocarbon ring structure.
 式(Cy)におけるRは、メチル基が好ましい。
 式(Cy)におけるRCyは、炭素数5~20の脂肪族炭化水素環構造を有する1価の基が好ましく、炭素数6~16の脂肪族炭化水素環構造を有する1価の基がより好ましく、炭素数8~14の脂肪族炭化水素環構造を有する1価の基が更に好ましい。
 また、式(Cy)のRCyにおける脂肪族炭化水素環構造は、シクロペンタン環構造、シクロヘキサン環構造、テトラヒドロジシクロペンタジエン環構造、ノルボルナン環構造、又は、イソボロン環構造が好ましく、シクロヘキサン環構造、又は、テトラヒドロジシクロペンタジエン環構造であるのがより好ましく、テトラヒドロジシクロペンタジエン環構造が更に好ましい。
 更に、式(Cy)のRCyにおける脂肪族炭化水素環構造は、2環以上の脂肪族炭化水素環が縮環した環構造が好ましく、2~4環の脂肪族炭化水素環が縮環した環がより好ましい。
 更に、式(Cy)におけるRCyは、式(Cy)における-C(=O)O-の酸素原子と脂肪族炭化水素環構造とが直接結合する基、すなわち、脂肪族炭化水素環基が好ましく、シクロヘキシル基、又は、ジシクロペンタニル基がより好ましく、ジシクロペンタニル基が更に好ましい。
R M in formula (Cy) is preferably a methyl group.
R Cy in formula (Cy) is preferably a monovalent group having an aliphatic hydrocarbon ring structure having 5 to 20 carbon atoms, more preferably a monovalent group having an aliphatic hydrocarbon ring structure having 6 to 16 carbon atoms. Preferably, a monovalent group having an aliphatic hydrocarbon ring structure having 8 to 14 carbon atoms is more preferable.
Further, the aliphatic hydrocarbon ring structure in R Cy of formula (Cy) is preferably a cyclopentane ring structure, a cyclohexane ring structure, a tetrahydrodicyclopentadiene ring structure, a norbornane ring structure, or an isoborone ring structure, and a cyclohexane ring structure, Alternatively, a tetrahydrodicyclopentadiene ring structure is more preferable, and a tetrahydrodicyclopentadiene ring structure is even more preferable.
Furthermore, the aliphatic hydrocarbon ring structure in R Cy of formula (Cy) is preferably a ring structure in which two or more aliphatic hydrocarbon rings are condensed; A ring is more preferred.
Furthermore, R Cy in formula (Cy) is a group in which the oxygen atom of -C(=O)O- in formula (Cy) and an aliphatic hydrocarbon ring structure are directly bonded, that is, an aliphatic hydrocarbon ring group is Preferably, a cyclohexyl group or a dicyclopentanyl group is more preferable, and a dicyclopentanyl group is even more preferable.
 アルカリ可溶性樹脂は、脂肪族炭化水素環構造を有する構成単位を1種単独で有していても、2種以上有していてもよい。
 アルカリ可溶性樹脂が脂肪族炭化水素環構造を有する構成単位を有する場合、脂肪族炭化水素環構造を有する構成単位の含有量は、アルカリ可溶性樹脂の全構成単位に対して、5~90質量%が好ましく、10~80質量%がより好ましく、20~70質量%が更に好ましい。
 また、アルカリ可溶性樹脂における脂肪族炭化水素環構造を有する構成単位の含有量は、アルカリ可溶性樹脂の全構成単位に対して、5~70モル%が好ましく、10~60モル%がより好ましく、20~50モル%が更に好ましい。
 更に、アルカリ可溶性樹脂における上記式(Cy)で表される構成単位の含有量は、アルカリ可溶性樹脂の全構成単位に対して、5~70モル%が好ましく、10~60モル%がより好ましく、20~50モル%が更に好ましい。
The alkali-soluble resin may have one type of structural unit having an aliphatic hydrocarbon ring structure, or may have two or more types of structural units.
When the alkali-soluble resin has a constitutional unit having an aliphatic hydrocarbon ring structure, the content of the constitutional unit having an aliphatic hydrocarbon ring structure is 5 to 90% by mass based on the total constitutional units of the alkali-soluble resin. It is preferably 10 to 80% by weight, more preferably 20 to 70% by weight.
Further, the content of the structural unit having an aliphatic hydrocarbon ring structure in the alkali-soluble resin is preferably 5 to 70 mol%, more preferably 10 to 60 mol%, and 20 to 60 mol%, based on the total structural units of the alkali-soluble resin. More preferably 50 mol%.
Furthermore, the content of the structural unit represented by the above formula (Cy) in the alkali-soluble resin is preferably 5 to 70 mol%, more preferably 10 to 60 mol%, based on the total structural units of the alkali-soluble resin. More preferably 20 to 50 mol%.
 アルカリ可溶性樹脂が芳香環構造を有する構成単位及び脂肪族炭化水素環構造を有する構成単位を有する場合、芳香環構造を有する構成単位及び脂肪族炭化水素環構造を有する構成単位の総含有量は、アルカリ可溶性樹脂の全構成単位に対して、10~90質量%が好ましく、20~80質量%がより好ましく、40~75質量%が更に好ましい。
 また、アルカリ可溶性樹脂における芳香環構造を有する構成単位及び脂肪族炭化水素環構造を有する構成単位の総含有量は、アルカリ可溶性樹脂の全構成単位に対して、10~80モル%が好ましく、20~70モル%がより好ましく、40~60モル%が更に好ましい。
 更に、アルカリ可溶性樹脂における上記式(S)で表される構成単位及び上記式(Cy)で表される構成単位の総含有量は、アルカリ可溶性樹脂の全構成単位に対して、10~80モル%が好ましく、20~70モル%がより好ましく、40~60モル%が更に好ましい。
When the alkali-soluble resin has a constitutional unit having an aromatic ring structure and a constitutional unit having an aliphatic hydrocarbon ring structure, the total content of the constitutional unit having an aromatic ring structure and the constitutional unit having an aliphatic hydrocarbon ring structure is It is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, and even more preferably 40 to 75% by mass, based on the total structural units of the alkali-soluble resin.
Further, the total content of structural units having an aromatic ring structure and structural units having an aliphatic hydrocarbon ring structure in the alkali-soluble resin is preferably 10 to 80 mol%, and 20 It is more preferably 70 mol%, and even more preferably 40 to 60 mol%.
Furthermore, the total content of the structural units represented by the above formula (S) and the structural units represented by the above formula (Cy) in the alkali-soluble resin is 10 to 80 mol with respect to all the structural units of the alkali-soluble resin. %, more preferably 20 to 70 mol%, even more preferably 40 to 60 mol%.
 また、アルカリ可溶性樹脂における上記式(S)で表される構成単位のモル量nSと上記式(Cy)で表される構成単位のモル量nCyは、本発明の効果がより優れる点から、下記式(SCy)に示す関係を満たすことが好ましく、下記式(SCy-1)を満たすことがより好ましく、下記式(SCy-2)を満たすことが更に好ましい。
  0.2≦nS/(nS+nCy)≦0.8   式(SCy)
  0.30≦nS/(nS+nCy)≦0.75   式(SCy-1)
  0.40≦nS/(nS+nCy)≦0.70   式(SCy-2)
In addition, the molar amount nS of the structural unit represented by the above formula (S) and the molar amount nCy of the structural unit represented by the above formula (Cy) in the alkali-soluble resin are as follows from the viewpoint that the effect of the present invention is more excellent. It is preferable that the relationship shown in the formula (SCy) is satisfied, it is more preferable that the following formula (SCy-1) is satisfied, and it is even more preferable that the following formula (SCy-2) is satisfied.
0.2≦nS/(nS+nCy)≦0.8 Formula (SCy)
0.30≦nS/(nS+nCy)≦0.75 Formula (SCy-1)
0.40≦nS/(nS+nCy)≦0.70 Formula (SCy-2)
 アルカリ可溶性樹脂は、酸基を有する構成単位を有することも好ましい。
 上記酸基としては、カルボキシ基、スルホ基、ホスホン酸基、及びリン酸基が挙げられ、カルボキシ基が好ましい。
 上記酸基を有する構成単位としては、下記に示す、(メタ)アクリル酸由来の構成単位が好ましく、メタクリル酸由来の構成単位がより好ましい。
It is also preferable that the alkali-soluble resin has a structural unit having an acid group.
Examples of the acid group include a carboxy group, a sulfo group, a phosphonic acid group, and a phosphoric acid group, with a carboxy group being preferred.
As the above-mentioned structural unit having an acid group, the following structural units derived from (meth)acrylic acid are preferable, and structural units derived from methacrylic acid are more preferable.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 アルカリ可溶性樹脂は、酸基を有する構成単位を1種単独で有していても、2種以上有していてもよい。
 アルカリ可溶性樹脂が酸基を有する構成単位を有する場合、酸基を有する構成単位の含有量は、アルカリ可溶性樹脂の全構成単位に対して、5~50質量%が好ましく、5~40質量%がより好ましく、10~40質量%が更に好ましく、10~30質量%が特に好ましい。
 また、アルカリ可溶性樹脂における酸基を有する構成単位の含有量は、アルカリ可溶性樹脂の全構成単位に対して、5~70モル%が好ましく、10~50モル%がより好ましく、20~40モル%が更に好ましい。
The alkali-soluble resin may have one type of structural unit having an acid group, or may have two or more types.
When the alkali-soluble resin has a structural unit having an acid group, the content of the structural unit having an acid group is preferably 5 to 50% by mass, and 5 to 40% by mass based on the total constitutional units of the alkali-soluble resin. It is more preferably 10 to 40% by weight, even more preferably 10 to 30% by weight.
Further, the content of the structural unit having an acid group in the alkali-soluble resin is preferably 5 to 70 mol%, more preferably 10 to 50 mol%, and 20 to 40 mol% based on the total structural units of the alkali-soluble resin. is even more preferable.
 アルカリ可溶性樹脂は、反応性基を有することが好ましく、反応性基を有する構成単位を有することがより好ましい。
 反応性基としては、ラジカル重合性基が好ましく、エチレン性不飽和基がより好ましい。また、アルカリ可溶性樹脂がエチレン性不飽和基を有している場合、アルカリ可溶性樹脂は、側鎖にエチレン性不飽和基を有する構成単位を有することが好ましい。
 本明細書において、「主鎖」とは、樹脂を構成する高分子化合物の分子中で相対的に最も長い結合鎖を表し、「側鎖」とは、主鎖から枝分かれしている原子団を表す。
 エチレン性不飽和基としては、アリル基又は(メタ)アクリロイルオキシ基がより好ましい。
 反応性基を有する構成単位の一例としては、下記に示すものが挙げられるが、これらに限定されない。
The alkali-soluble resin preferably has a reactive group, and more preferably has a structural unit having a reactive group.
As the reactive group, a radically polymerizable group is preferable, and an ethylenically unsaturated group is more preferable. Moreover, when the alkali-soluble resin has an ethylenically unsaturated group, it is preferable that the alkali-soluble resin has a structural unit having an ethylenically unsaturated group in a side chain.
In this specification, the "main chain" refers to the relatively longest bond chain in the molecules of the polymer compound that constitutes the resin, and the "side chain" refers to the atomic group branching from the main chain. represent.
As the ethylenically unsaturated group, an allyl group or a (meth)acryloyloxy group is more preferable.
Examples of the structural unit having a reactive group include, but are not limited to, those shown below.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 アルカリ可溶性樹脂は、反応性基を有する構成単位を1種単独で有していても、2種以上有していてもよい。
 アルカリ可溶性樹脂が反応性基を有する構成単位を有する場合、反応性基を有する構成単位の含有量は、アルカリ可溶性樹脂の全構成単位に対して、5~70質量%が好ましく、10~50質量%がより好ましく、20~40質量%が更に好ましい。
 また、アルカリ可溶性樹脂における反応性基を有する構成単位の含有量は、アルカリ可溶性樹脂の全構成単位に対して、5~70モル%が好ましく、10~60モル%がより好ましく、10~50モル%が更に好ましい。
The alkali-soluble resin may have one type of structural unit having a reactive group, or may have two or more types of structural units.
When the alkali-soluble resin has a constitutional unit having a reactive group, the content of the constitutional unit having a reactive group is preferably 5 to 70% by mass, and 10 to 50% by mass based on the total constitutional units of the alkali-soluble resin. % is more preferable, and 20 to 40% by mass is even more preferable.
Further, the content of the structural unit having a reactive group in the alkali-soluble resin is preferably 5 to 70 mol%, more preferably 10 to 60 mol%, and 10 to 50 mol% based on the total structural units of the alkali-soluble resin. % is more preferable.
 反応性基をアルカリ可溶性樹脂に導入する手段としては、ヒドロキシ基、カルボキシ基、第一級アミノ基、第二級アミノ基、アセトアセチル基、及び、スルホ基等の官能基に、エポキシ化合物、ブロックイソシアネート化合物、イソシアネート化合物、ビニルスルホン化合物、アルデヒド化合物、メチロール化合物、及び、カルボン酸無水物等の化合物を反応させる方法が挙げられる。
 反応性基をアルカリ可溶性樹脂に導入する手段の好ましい例としては、カルボキシ基を有するポリマーを重合反応により合成した後、高分子反応により、得られたポリマーのカルボキシ基の一部にグリシジル(メタ)アクリレートを反応させて、(メタ)アクリロキシ基をポリマーに導入する手段が挙げられる。この手段により、側鎖に(メタ)アクリロイルオキシ基を有するアルカリ可溶性樹脂を得ることができる。
 上記重合反応は、70~100℃の温度条件で行うことが好ましく、80~90℃の温度条件で行うことがより好ましい。上記重合反応に用いる重合開始剤としては、アゾ系開始剤が好ましく、例えば、富士フイルム和光純薬(株)製のV-601(商品名)又はV-65(商品名)がより好ましい。上記高分子反応は、80~110℃の温度条件で行うことが好ましい。上記高分子反応においては、アンモニウム塩等の触媒を用いることが好ましい。
As a means of introducing a reactive group into an alkali-soluble resin, an epoxy compound, a block Examples include methods of reacting compounds such as isocyanate compounds, isocyanate compounds, vinyl sulfone compounds, aldehyde compounds, methylol compounds, and carboxylic acid anhydrides.
A preferable example of a means for introducing a reactive group into an alkali-soluble resin is to synthesize a polymer having a carboxyl group by a polymerization reaction, and then add glycidyl (meth) to some of the carboxyl groups of the obtained polymer by a polymer reaction. Examples include a method of reacting acrylate to introduce a (meth)acryloxy group into the polymer. By this means, an alkali-soluble resin having a (meth)acryloyloxy group in the side chain can be obtained.
The above polymerization reaction is preferably carried out at a temperature of 70 to 100°C, more preferably 80 to 90°C. As the polymerization initiator used in the above polymerization reaction, an azo initiator is preferable, and for example, V-601 (trade name) or V-65 (trade name) manufactured by Fuji Film Wako Pure Chemical Industries, Ltd. is more preferable. The above polymer reaction is preferably carried out at a temperature of 80 to 110°C. In the above polymer reaction, it is preferable to use a catalyst such as an ammonium salt.
 また、アルカリ可溶性樹脂は、(メタ)アクリル酸アルキルエステルに由来する構成単位を有することも好ましい。
 上記(メタ)アクリル酸アルキルエステルに由来する構成単位としては、上述したものが挙げられ、なかでも、(メタ)アクリル酸メチルが好ましい。
 アルカリ可溶性樹脂は、(メタ)アクリル酸アルキルエステルに由来する構成単位を1種単独で有していても、2種以上有していてもよい。
 アルカリ可溶性樹脂が(メタ)アクリル酸アルキルエステルに由来する構成単位を有する場合、(メタ)アクリル酸アルキルエステルに由来する構成単位の含有量は、アルカリ可溶性樹脂の全構成単位に対して、1~10質量%が好ましく、1~5質量%がより好ましい。
 また、アルカリ可溶性樹脂における(メタ)アクリル酸アルキルエステルに由来する構成単位の含有量は、アルカリ可溶性樹脂の全構成単位に対して、1~10モル%が好ましく、1~5モル%がより好ましい。
Moreover, it is also preferable that the alkali-soluble resin has a structural unit derived from a (meth)acrylic acid alkyl ester.
Examples of the structural unit derived from the above-mentioned (meth)acrylic acid alkyl ester include those mentioned above, and among them, methyl (meth)acrylate is preferable.
The alkali-soluble resin may have one type of structural unit derived from an alkyl (meth)acrylate ester, or may have two or more types of structural units.
When the alkali-soluble resin has a structural unit derived from a (meth)acrylic acid alkyl ester, the content of the structural unit derived from the (meth)acrylic acid alkyl ester is 1 to 1 with respect to all the structural units of the alkali-soluble resin. It is preferably 10% by weight, more preferably 1 to 5% by weight.
Further, the content of structural units derived from (meth)acrylic acid alkyl ester in the alkali-soluble resin is preferably 1 to 10 mol%, more preferably 1 to 5 mol%, based on the total structural units of the alkali-soluble resin. .
(好適態様1~3のアルカリ可溶性樹脂の具体的な一例)
 アルカリ可溶性樹脂としては、以下に示すポリマーX1~X4が好ましい。なお、以下に示す、全構成単位に対する各構成単位の含有比率(a~d)及び重量平均分子量Mw等は目的に応じて適宜変更できるが、本発明の効果がより優れる点で、なかでも、以下の構成であるのが好ましい。
 (ポリマーX1) a:20~60質量%、b:10~50質量%、c:5.0~25質量%、d:10~50質量%。
 (ポリマーX2) a:20~60質量%、b:10~50質量%、c:5.0~25質量%、d:10~50質量%。
 (ポリマーX3) a:30~65質量%、b:1.0~30質量%、c:0.5~15質量%、d:10~50質量%。
 (ポリマーX4) a:1.0~20質量%、b:20~60質量%、c:5.0~230質量%、d:10~50質量%。
(Specific example of the alkali-soluble resin of preferred embodiments 1 to 3)
As the alkali-soluble resin, polymers X1 to X4 shown below are preferred. Note that the content ratios (a to d) of each structural unit to all structural units and the weight average molecular weight Mw, etc. shown below can be changed as appropriate depending on the purpose, but in particular, in terms of the effects of the present invention, The following configuration is preferable.
(Polymer X1) a: 20 to 60% by mass, b: 10 to 50% by mass, c: 5.0 to 25% by mass, d: 10 to 50% by mass.
(Polymer X2) a: 20 to 60% by mass, b: 10 to 50% by mass, c: 5.0 to 25% by mass, d: 10 to 50% by mass.
(Polymer X3) a: 30 to 65% by mass, b: 1.0 to 30% by mass, c: 0.5 to 15% by mass, d: 10 to 50% by mass.
(Polymer X4) a: 1.0 to 20% by mass, b: 20 to 60% by mass, c: 5.0 to 230% by mass, d: 10 to 50% by mass.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000008
(アルカリ可溶性樹脂の好適態様4)
 アルカリ可溶性樹脂としては、カルボン酸無水物構造を有する構成単位を有する重合体(以下、「重合体X」ともいう。)を使用するもの好ましい。
 カルボン酸無水物構造は、鎖状カルボン酸無水物構造及び環状カルボン酸無水物構造のいずれであってもよいが、環状カルボン酸無水物構造であるのが好ましい。
 環状カルボン酸無水物構造の環としては、5~7員環が好ましく、5員環又は6員環がより好ましく、5員環が更に好ましい。
(Preferred embodiment 4 of alkali-soluble resin)
As the alkali-soluble resin, it is preferable to use a polymer having a structural unit having a carboxylic acid anhydride structure (hereinafter also referred to as "polymer X").
The carboxylic anhydride structure may be either a chain carboxylic anhydride structure or a cyclic carboxylic anhydride structure, but is preferably a cyclic carboxylic anhydride structure.
The ring of the cyclic carboxylic acid anhydride structure is preferably a 5- to 7-membered ring, more preferably a 5- or 6-membered ring, and even more preferably a 5-membered ring.
 カルボン酸無水物構造を有する構成単位は、下記式P-1で表される化合物から水素原子を2つ除いた2価の基を主鎖中に含む構成単位、又は、下記式P-1で表される化合物から水素原子を1つ除いた1価の基が主鎖に対して直接又は2価の連結基を介して結合している構成単位であるのが好ましい。 The structural unit having a carboxylic acid anhydride structure is a structural unit containing a divalent group in the main chain obtained by removing two hydrogen atoms from the compound represented by the following formula P-1, or a structural unit having the following formula P-1. It is preferable to use a structural unit in which a monovalent group obtained by removing one hydrogen atom from the represented compound is bonded to the main chain directly or via a divalent linking group.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式P-1中、RA1aは、置換基を表し、n1a個のRA1aは、同一でも異なっていてもよく、Z1aは、-C(=O)-O-C(=O)-を含む環を形成する2価の基を表し、n1aは、0以上の整数を表す。 In formula P-1, R A1a represents a substituent, n 1a R A1a 's may be the same or different, and Z 1a is -C(=O)-O-C(=O)- represents a divalent group forming a ring containing n 1a represents an integer of 0 or more.
 RA1aで表される置換基としては、例えば、アルキル基が挙げられる。
 Z1aとしては、炭素数2~4のアルキレン基が好ましく、炭素数2又は3のアルキレン基がより好ましく、炭素数2のアルキレン基が更に好ましい。
 n1aは、0以上の整数を表す。Z1aが炭素数2~4のアルキレン基を表す場合、n1aは、0~4の整数が好ましく、0~2の整数がより好ましく、0が更に好ましい。
 n1aが2以上の整数を表す場合、複数存在するRA1aは、同一でも異なっていてもよい。また、複数存在するRA1aは、互いに結合して環を形成してもよいが、互いに結合して環を形成していないことが好ましい。
Examples of the substituent represented by R A1a include an alkyl group.
Z 1a is preferably an alkylene group having 2 to 4 carbon atoms, more preferably an alkylene group having 2 or 3 carbon atoms, and even more preferably an alkylene group having 2 carbon atoms.
n 1a represents an integer of 0 or more. When Z 1a represents an alkylene group having 2 to 4 carbon atoms, n 1a is preferably an integer of 0 to 4, more preferably an integer of 0 to 2, and even more preferably 0.
When n 1a represents an integer of 2 or more, multiple R A1a 's may be the same or different. Further, a plurality of R A1a may be bonded to each other to form a ring, but it is preferable that they are not bonded to each other to form a ring.
 カルボン酸無水物構造を有する構成単位としては、不飽和カルボン酸無水物に由来する構成単位が好ましく、不飽和環式カルボン酸無水物に由来する構成単位がより好ましく、不飽和脂肪族環式カルボン酸無水物に由来する構成単位が更に好ましく、無水マレイン酸又は無水イタコン酸に由来する構成単位が特に好ましく、無水マレイン酸に由来する構成単位が最も好ましい。 The structural unit having a carboxylic acid anhydride structure is preferably a structural unit derived from an unsaturated carboxylic anhydride, more preferably a structural unit derived from an unsaturated cyclic carboxylic acid anhydride, and a structural unit derived from an unsaturated aliphatic cyclic carboxylic acid anhydride is more preferable. Structural units derived from acid anhydrides are more preferred, structural units derived from maleic anhydride or itaconic anhydride are particularly preferred, and structural units derived from maleic anhydride are most preferred.
 以下、カルボン酸無水物構造を有する構成単位の具体例を挙げるが、カルボン酸無水物構造を有する構成単位は、これらの具体例に限定されるものではない。下記の構成単位中、Rxは、水素原子、メチル基、CHOH基、又はCF基を表し、Meは、メチル基を表す。 Specific examples of the structural unit having a carboxylic anhydride structure are listed below, but the structural unit having a carboxylic anhydride structure is not limited to these specific examples. In the following structural units, Rx represents a hydrogen atom, a methyl group, a CH 2 OH group, or a CF 3 group, and Me represents a methyl group.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 重合体Xにおけるカルボン酸無水物構造を有する構成単位は、1種単独であってもよく、2種以上であってもよい。
 カルボン酸無水物構造を有する構成単位の総含有量は、重合体Xの全構成単位に対して、0~60モル%が好ましく、5~40モル%がより好ましく、10~35モル%が更に好ましい。
The number of structural units having a carboxylic acid anhydride structure in the polymer X may be one type alone, or two or more types may be used.
The total content of structural units having a carboxylic acid anhydride structure is preferably 0 to 60 mol%, more preferably 5 to 40 mol%, and even more preferably 10 to 35 mol%, based on the total structural units of polymer X. preferable.
 重合体Xは、上述した好適態様1~3のいずれかのアルカリ可溶性樹脂と併用して使用されるのが好ましい。
 感光性層が重合体Xを含む場合、重合体Xの含有量は、感光性層の全質量に対して、0.1~30質量%が好ましく、0.2~20質量%がより好ましく、0.5~20質量%が更に好ましく、1~20質量%が特に好ましい。
 感光性層中、重合体Xを1種のみ含んでいてもよく、2種以上含んでいてもよい。
Polymer X is preferably used in combination with any of the alkali-soluble resins of preferred embodiments 1 to 3 described above.
When the photosensitive layer contains polymer X, the content of polymer X is preferably 0.1 to 30% by mass, more preferably 0.2 to 20% by mass, based on the total mass of the photosensitive layer More preferably 0.5 to 20% by weight, particularly preferably 1 to 20% by weight.
The photosensitive layer may contain only one type of polymer X, or may contain two or more types of polymer X.
 アルカリ可溶性樹脂の重量平均分子量(Mw)は、3,500以上が好ましく、5,000以上がより好ましく、10,000以上が更に好ましく、20,000以上が特に好ましい。上限値としては、50,000以下が好ましく、30,000以下がより好ましい。 The weight average molecular weight (Mw) of the alkali-soluble resin is preferably 3,500 or more, more preferably 5,000 or more, even more preferably 10,000 or more, and particularly preferably 20,000 or more. The upper limit is preferably 50,000 or less, more preferably 30,000 or less.
 アルカリ可溶性樹脂の酸価は、10~200mgKOH/gが好ましく、60mg~200mgKOH/gがより好ましく、60~150mgKOH/gが更に好ましく、70~125mgKOH/gが特に好ましい。なお、アルカリ可溶性樹脂の酸価は、JIS K0070:1992に記載の方法に従って、測定される値である。
 アルカリ可溶性樹脂の分散度は、現像性の観点から、1.0~6.0が好ましく、1.0~5.0がより好ましく、1.0~4.0が更に好ましく、1.0~3.0が特に好ましい。
The acid value of the alkali-soluble resin is preferably 10 to 200 mgKOH/g, more preferably 60 to 200 mgKOH/g, even more preferably 60 to 150 mgKOH/g, and particularly preferably 70 to 125 mgKOH/g. Note that the acid value of the alkali-soluble resin is a value measured according to the method described in JIS K0070:1992.
From the viewpoint of developability, the degree of dispersion of the alkali-soluble resin is preferably 1.0 to 6.0, more preferably 1.0 to 5.0, even more preferably 1.0 to 4.0, and 1.0 to 6.0. 3.0 is particularly preferred.
 感光性層は、アルカリ可溶性樹脂を1種のみ含んでいてもよく、2種以上含んでいてもよい。
 アルカリ可溶性樹脂の含有量の下限値としては、感光性層の全質量に対して、10.0質量%以上が好ましく、15.0質量%以上がより好ましく、20.0質量%以上が更に好ましく、30.0質量%以上が特に好ましい。また、上限値としては、90.0質量%以下が好ましく、80.0質量%以下がより好ましく、70.0質量%以下が更に好ましい。
The photosensitive layer may contain only one kind of alkali-soluble resin, or may contain two or more kinds.
The lower limit of the content of the alkali-soluble resin is preferably 10.0% by mass or more, more preferably 15.0% by mass or more, and even more preferably 20.0% by mass or more, based on the total mass of the photosensitive layer. , 30.0% by mass or more is particularly preferred. Moreover, as an upper limit, 90.0 mass % or less is preferable, 80.0 mass % or less is more preferable, and 70.0 mass % or less is still more preferable.
-重合性化合物-
 感光性層は、重合性化合物を含むのが好ましい。
 重合性化合物は、重合性基を有する化合物である。重合性基としては、例えば、ラジカル重合性基及びカチオン重合性基が挙げられ、ラジカル重合性基が好ましい。
-Polymerizable compound-
The photosensitive layer preferably contains a polymerizable compound.
A polymerizable compound is a compound having a polymerizable group. Examples of the polymerizable group include radically polymerizable groups and cationic polymerizable groups, with radically polymerizable groups being preferred.
 重合性化合物は、エチレン性不飽和基を有するラジカル重合性化合物(以下、単に「エチレン性不飽和化合物」ともいう。)を含むことが好ましい。
 エチレン性不飽和基としては、(メタ)アクリロイルオキシ基が好ましい。
 なお、本明細書におけるエチレン性不飽和化合物は、上記アルカリ可溶性樹脂以外の化合物であり、分子量5,000未満であるのが好ましい。
The polymerizable compound preferably includes a radically polymerizable compound having an ethylenically unsaturated group (hereinafter also simply referred to as an "ethylenic unsaturated compound").
As the ethylenically unsaturated group, a (meth)acryloyloxy group is preferred.
Note that the ethylenically unsaturated compound in this specification is a compound other than the above-mentioned alkali-soluble resin, and preferably has a molecular weight of less than 5,000.
 重合性化合物の好適態様の一つとして、下記式(M)で表される化合物(単に、「化合物M」ともいう。)が挙げられる。
  Q-R-Q   式(M)
 式(M)中、Q及びQはそれぞれ独立に、(メタ)アクリロイルオキシ基を表し、Rは鎖状構造を有する二価の連結基を表す。
One of the preferred embodiments of the polymerizable compound is a compound represented by the following formula (M) (also simply referred to as "compound M").
Q 2 -R 1 -Q 1 formula (M)
In formula (M), Q 1 and Q 2 each independently represent a (meth)acryloyloxy group, and R 1 represents a divalent linking group having a chain structure.
 式(M)におけるQ及びQは、合成容易性の点から、Q及びQは同じ基であるのが好ましい。
 また、式(M)におけるQ及びQは、反応性の点から、アクリロイルオキシ基であるのが好ましい。
 式(M)におけるRとしては、アルキレン基、アルキレンオキシアルキレン基(-L-O-L-)、又は、ポリアルキレンオキシアルキレン基(-(L-O)-L-)が好ましく、炭素数2~20の炭化水素基、又は、ポリアルキレンオキシアルキレン基がより好ましく、炭素数4~20のアルキレン基が更に好ましく、炭素数6~18の直鎖アルキレン基が特に好ましい。
 上記炭化水素基は、少なくとも一部に鎖状構造を有していればよく、上記鎖状構造以外の部分としては、特に制限はなく、例えば、分岐鎖状、環状、又は、炭素数1~5の直鎖状アルキレン基、アリーレン基、エーテル結合、及び、それらの組み合わせのいずれであってもよく、アルキレン基、又は、2以上のアルキレン基と1以上のアリーレン基とを組み合わせた基が好ましく、アルキレン基がより好ましく、直鎖アルキレン基が更に好ましい。
 なお、上記Lは、それぞれ独立に、アルキレン基を表し、エチレン基、プロピレン基、又は、ブチレン基が好ましく、エチレン基又は1,2-プロピレン基がより好ましい。pは2以上の整数を表し、2~10の整数であるのが好ましい。
Q 1 and Q 2 in formula ( M ) are preferably the same group from the viewpoint of ease of synthesis.
Furthermore, Q 1 and Q 2 in formula (M) are preferably acryloyloxy groups from the viewpoint of reactivity.
R 1 in formula (M) is an alkylene group, an alkyleneoxyalkylene group (-L 1 -O-L 1 -), or a polyalkyleneoxyalkylene group (-(L 1 -O) p -L 1 -) is preferred, a hydrocarbon group having 2 to 20 carbon atoms or a polyalkyleneoxyalkylene group is more preferred, an alkylene group having 4 to 20 carbon atoms is even more preferred, and a straight chain alkylene group having 6 to 18 carbon atoms is particularly preferred.
The above-mentioned hydrocarbon group only needs to have a chain structure at least in part, and the part other than the above-mentioned chain structure is not particularly limited. For example, it is branched, cyclic, or has 1 to 1 carbon atoms It may be a linear alkylene group, an arylene group, an ether bond, or a combination thereof as shown in No. 5, and an alkylene group or a group combining two or more alkylene groups and one or more arylene groups is preferable. , an alkylene group is more preferable, and a linear alkylene group is even more preferable.
Note that each of the above L 1 independently represents an alkylene group, preferably an ethylene group, a propylene group, or a butylene group, and more preferably an ethylene group or a 1,2-propylene group. p represents an integer of 2 or more, preferably an integer of 2 to 10.
 また、化合物MにおけるQとQとの間を連結する最短の連結鎖の原子数は、3~50個が好ましく、4~40個がより好ましく、6~20個が更に好ましく、8~12個が特に好ましい。
 本明細書において、「QとQの間を連結する最短の連結鎖の原子数」とは、Qに連結するRにおける原子からQに連結するRにおける原子までを連結する最短の原子数である。
Furthermore, the number of atoms in the shortest linking chain connecting Q 1 and Q 2 in compound M is preferably 3 to 50, more preferably 4 to 40, even more preferably 6 to 20, and 8 to 50 atoms. Twelve pieces are particularly preferred.
In this specification, "the number of atoms in the shortest connecting chain connecting Q 1 and Q 2 " refers to the number of atoms in R 1 connecting to Q 1 to the atom in R 1 connecting to Q 2 . This is the shortest number of atoms.
 化合物Mの具体例としては、1,3-ブタンジオールジ(メタ)アクリレート、テトラメチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,7-ヘプタンジオールジ(メタ)アクリレート、1,8-オクタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、水添ビスフェノールAのジ(メタ)アクリレート、水添ビスフェノールFのジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレンレングリコールジ(メタ)アクリレート、ポリ(エチレングリコール/プロピレングリコール)ジ(メタ)アクリレート、及び、ポリブチレングリコールジ(メタ)アクリレートが挙げられる。上記エステルモノマーは混合物としても使用できる。
 上記化合物のなかでも、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、及び、ネオペンチルグリコールジ(メタ)アクリレートからなる群から選ばれた少なくとも1種の化合物が好ましく、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、及び、1,10-デカンジオールジ(メタ)アクリレートからなる群から選ばれた少なくとも1種の化合物がより好ましく、1,9-ノナンジオールジ(メタ)アクリレート、及び、1,10-デカンジオールジ(メタ)アクリレートからなる群から選ばれた少なくとも1種の化合物が更に好ましい。
Specific examples of compound M include 1,3-butanediol di(meth)acrylate, tetramethylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,7-heptanediol di(meth)acrylate, 1,8-octanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, hydrogenated Bisphenol A di(meth)acrylate, hydrogenated bisphenol F di(meth)acrylate, polyethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, poly(ethylene glycol/propylene glycol) di(meth)acrylate , and polybutylene glycol di(meth)acrylate. The above ester monomers can also be used as a mixture.
Among the above compounds, 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, and neopentylglycol di(meth)acrylate, ) acrylate is preferred, and at least one compound selected from the group consisting of 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, and 1,10-decanediol di(meth)acrylate is preferred. At least one compound selected from the group consisting of (meth)acrylates is more preferred, and at least one compound selected from the group consisting of 1,9-nonanediol di(meth)acrylate and 1,10-decanediol di(meth)acrylate. More preferably, at least one compound is used.
 また、重合性化合物の好適態様の一つとして、2官能以上のエチレン性不飽和化合物が挙げられる。
 本明細書において、「2官能以上のエチレン性不飽和化合物」とは、一分子中にエチレン性不飽和基を2つ以上有する化合物を意味する。
 エチレン性不飽和化合物におけるエチレン性不飽和基としては、(メタ)アクリロイル基が好ましい。
 エチレン性不飽和化合物としては、(メタ)アクリレート化合物が好ましい。
Moreover, one of the preferred embodiments of the polymerizable compound includes an ethylenically unsaturated compound having two or more functionalities.
As used herein, the term "bifunctional or more ethylenically unsaturated compound" means a compound having two or more ethylenically unsaturated groups in one molecule.
As the ethylenically unsaturated group in the ethylenically unsaturated compound, a (meth)acryloyl group is preferable.
As the ethylenically unsaturated compound, (meth)acrylate compounds are preferred.
 2官能のエチレン性不飽和化合物としては、公知の化合物の中から適宜選択できる。
 上記化合物M以外の2官能のエチレン性不飽和化合物としては、トリシクロデカンジメタノールジ(メタ)アクリレート、及び、1,4-シクロヘキサンジオールジ(メタ)アクリレートが挙げられる。
The bifunctional ethylenically unsaturated compound can be appropriately selected from known compounds.
Examples of bifunctional ethylenically unsaturated compounds other than the above compound M include tricyclodecane dimethanol di(meth)acrylate and 1,4-cyclohexanediol di(meth)acrylate.
 2官能のエチレン性不飽和化合物の市販品としては、トリシクロデカンジメタノールジアクリレート(商品名:NKエステル A-DCP、新中村化学工業(株)製)、トリシクロデカンジメナノールジメタクリレート(商品名:NKエステル DCP、新中村化学工業(株)製)、1,9-ノナンジオールジアクリレート(商品名:NKエステル A-NOD-N、新中村化学工業(株)製)、1,6-ヘキサンジオールジアクリレート(商品名:NKエステル A-HD-N、新中村化学工業(株)製)が挙げられる。 Commercially available bifunctional ethylenically unsaturated compounds include tricyclodecane dimethanol diacrylate (trade name: NK ester A-DCP, manufactured by Shin Nakamura Chemical Co., Ltd.), tricyclodecane dimethanol dimethacrylate (trade name: NK Ester A-DCP, manufactured by Shin Nakamura Chemical Co., Ltd.), Product name: NK ester DCP, manufactured by Shin Nakamura Chemical Co., Ltd.), 1,9-nonanediol diacrylate (Product name: NK ester A-NOD-N, manufactured by Shin Nakamura Chemical Co., Ltd.), 1,6 -hexanediol diacrylate (trade name: NK ester A-HD-N, manufactured by Shin-Nakamura Chemical Industry Co., Ltd.).
 3官能以上のエチレン性不飽和化合物としては、公知の化合物の中から適宜選択できる。
 3官能以上のエチレン性不飽和化合物としては、ジペンタエリスリトール(トリ/テトラ/ペンタ/ヘキサ)(メタ)アクリレート、ペンタエリスリトール(トリ/テトラ)(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、イソシアヌル酸(メタ)アクリレート、及び、グリセリントリ(メタ)アクリレート骨格の(メタ)アクリレート化合物が挙げられる。
The trifunctional or higher-functional ethylenically unsaturated compound can be appropriately selected from known compounds.
Examples of trifunctional or more ethylenically unsaturated compounds include dipentaerythritol (tri/tetra/penta/hexa) (meth)acrylate, pentaerythritol (tri/tetra) (meth)acrylate, trimethylolpropane tri(meth)acrylate, Examples include ditrimethylolpropane tetra(meth)acrylate, isocyanuric acid (meth)acrylate, and (meth)acrylate compounds having a glycerin tri(meth)acrylate skeleton.
 ここで、「(トリ/テトラ/ペンタ/ヘキサ)(メタ)アクリレート」は、トリ(メタ)アクリレート、テトラ(メタ)アクリレート、ペンタ(メタ)アクリレート、及び、ヘキサ(メタ)アクリレートを包含する概念であり、「(トリ/テトラ)(メタ)アクリレート」は、トリ(メタ)アクリレート及びテトラ(メタ)アクリレートを包含する概念である。 Here, "(tri/tetra/penta/hexa)(meth)acrylate" is a concept that includes tri(meth)acrylate, tetra(meth)acrylate, penta(meth)acrylate, and hexa(meth)acrylate. "(tri/tetra)(meth)acrylate" is a concept that includes tri(meth)acrylate and tetra(meth)acrylate.
 重合性化合物の好適態様の一つとして、ウレタン(メタ)アクリレート化合物も挙げられる。
 ウレタン(メタ)アクリレートとしては、ウレタンジ(メタ)アクリレートが挙げられ、例えば、プロピレンオキサイド変性ウレタンジ(メタ)アクリレート、並びに、エチレンオキサイド及びプロピレンオキサイド変性ウレタンジ(メタ)アクリレートが挙げられる。
 また、ウレタン(メタ)アクリレートとしては、3官能以上のウレタン(メタ)アクリレートも挙げられる。官能基数の下限としては、6官能以上がより好ましく、8官能以上が更に好ましい。なお、官能基数の上限としては、20官能以下が好ましい。3官能以上のウレタン(メタ)アクリレートとしては、例えば、8UX-015A(大成ファインケミカル(株)製)、UA-32P(新中村化学工業(株)製)、U-15HA(新中村化学工業(株)製)、UA-1100H(新中村化学工業(株)製)、共栄社化学(株)製のAH-600(商品名)、並びに、UA-306H、UA-306T、UA-306I、UA-510H、及びUX-5000(いずれも日本化薬(株)製)等が挙げられる。
One of the preferred embodiments of the polymerizable compound is a urethane (meth)acrylate compound.
Examples of urethane (meth)acrylates include urethane di(meth)acrylates, such as propylene oxide-modified urethane di(meth)acrylates, and ethylene oxide- and propylene oxide-modified urethane di(meth)acrylates.
Furthermore, examples of urethane (meth)acrylates include trifunctional or higher functional urethane (meth)acrylates. The lower limit of the number of functional groups is more preferably 6 functional groups or more, and even more preferably 8 functional groups or more. Note that the upper limit of the number of functional groups is preferably 20 or less functional groups. Examples of trifunctional or higher functional urethane (meth)acrylates include 8UX-015A (manufactured by Taisei Fine Chemical Co., Ltd.), UA-32P (manufactured by Shin Nakamura Chemical Co., Ltd.), and U-15HA (manufactured by Shin Nakamura Chemical Co., Ltd.). ), UA-1100H (manufactured by Shin-Nakamura Chemical Co., Ltd.), AH-600 (product name) manufactured by Kyoeisha Chemical Co., Ltd., as well as UA-306H, UA-306T, UA-306I, UA-510H , and UX-5000 (all manufactured by Nippon Kayaku Co., Ltd.).
 重合性化合物の好適態様の一つとして、酸基を有するエチレン性不飽和化合物も挙げられる。
 酸基としては、リン酸基、スルホ基、及び、カルボキシ基が挙げられる。
 これらのなかでも、酸基としては、カルボキシ基が好ましい。
 酸基を有するエチレン性不飽和化合物としては、酸基を有する3~4官能のエチレン性不飽和化合物〔ペンタエリスリトールトリ及びテトラアクリレート(PETA)骨格にカルボキシ基を導入したもの(酸価:80~120mgKOH/g)〕、酸基を有する5~6官能のエチレン性不飽和化合物(ジペンタエリスリトールペンタ及びヘキサアクリレート(DPHA)骨格にカルボキシ基を導入したもの〔酸価:25~70mgKOH/g)〕等が挙げられる。
 これら酸基を有する3官能以上のエチレン性不飽和化合物は、必要に応じ、酸基を有する2官能のエチレン性不飽和化合物と併用してもよい。
One of the preferred embodiments of the polymerizable compound is an ethylenically unsaturated compound having an acid group.
Examples of acid groups include phosphoric acid groups, sulfo groups, and carboxy groups.
Among these, a carboxy group is preferred as the acid group.
Examples of ethylenically unsaturated compounds having an acid group include tri- to tetrafunctional ethylenically unsaturated compounds having an acid group [pentaerythritol tri- and tetraacrylate (PETA) with a carboxy group introduced into the skeleton (acid value: 80~ 120mgKOH/g)], a penta- to hexa-functional ethylenically unsaturated compound having an acid group (dipentaerythritol penta and hexaacrylate (DPHA) with a carboxy group introduced into the skeleton [acid value: 25-70mgKOH/g)] etc.
These trifunctional or higher functional ethylenically unsaturated compounds having an acid group may be used in combination with a bifunctional ethylenically unsaturated compound having an acid group, if necessary.
 酸基を有するエチレン性不飽和化合物としては、カルボキシ基を有する2官能以上のエチレン性不飽和化合物及びそのカルボン酸無水物からなる群から選ばれる少なくとも1種が好ましい。
 酸基を有するエチレン性不飽和化合物が、カルボキシ基を有する2官能以上のエチレン性不飽和化合物及びそのカルボン酸無水物からなる群から選ばれる少なくとも1種であると、現像性及び膜強度がより高まる。
 カルボキシ基を有する2官能以上のエチレン性不飽和化合物は、特に制限されず、公知の化合物の中から適宜選択できる。
 カルボキシ基を有する2官能以上のエチレン性不飽和化合物としては、アロニックス(登録商標)TO-2349(東亞合成(株)製)、アロニックス(登録商標)M-520(東亞合成(株)製)、アロニックス(登録商標)M-510(東亞合成(株)製)が挙げられる。
The ethylenically unsaturated compound having an acid group is preferably at least one selected from the group consisting of bifunctional or more ethylenically unsaturated compounds having a carboxy group and their carboxylic acid anhydrides.
When the ethylenically unsaturated compound having an acid group is at least one selected from the group consisting of bifunctional or more ethylenically unsaturated compounds having a carboxy group and their carboxylic acid anhydrides, developability and film strength are improved. It increases.
The bifunctional or more ethylenically unsaturated compound having a carboxy group is not particularly limited, and can be appropriately selected from known compounds.
Examples of the bifunctional or more ethylenically unsaturated compound having a carboxyl group include Aronix (registered trademark) TO-2349 (manufactured by Toagosei Co., Ltd.), Aronix (registered trademark) M-520 (manufactured by Toagosei Co., Ltd.), Aronix (registered trademark) M-510 (manufactured by Toagosei Co., Ltd.) is mentioned.
 酸基を有するエチレン性不飽和化合物としては、特開2004-239942号公報の段落[0025]~[0030]に記載の酸基を有する重合性化合物が好ましく、この公報に記載の内容は、本明細書に組み込まれる。 As the ethylenically unsaturated compound having an acid group, the polymerizable compounds having an acid group described in paragraphs [0025] to [0030] of JP-A No. 2004-239942 are preferable, and the contents described in this publication are similar to those described in this publication. Incorporated into the specification.
 重合性化合物としては、例えば、多価アルコールにα,β-不飽和カルボン酸を反応させて得られる化合物、グリシジル基含有化合物にα,β-不飽和カルボン酸を反応させて得られる化合物、ウレタン結合を有する(メタ)アクリレート化合物等のウレタンモノマー、γ-クロロ-β-ヒドロキシプロピル-β’-(メタ)アクリロイルオキシエチル-o-フタレート、β-ヒドロキシエチル-β’-(メタ)アクリロイルオキシエチル-o-フタレート、及び、β-ヒドロキシプロピル-β’-(メタ)アクリロイルオキシエチル-o-フタレート等のフタル酸系化合物、並びに、(メタ)アクリル酸アルキルエステルも挙げられる。
 これらは単独で又は2種類以上を組み合わせて使用される。
Examples of polymerizable compounds include compounds obtained by reacting polyhydric alcohols with α,β-unsaturated carboxylic acids, compounds obtained by reacting glycidyl group-containing compounds with α,β-unsaturated carboxylic acids, and urethane. Urethane monomers such as (meth)acrylate compounds having bonds, γ-chloro-β-hydroxypropyl-β'-(meth)acryloyloxyethyl-o-phthalate, β-hydroxyethyl-β'-(meth)acryloyloxyethyl Also included are phthalic acid compounds such as -o-phthalate and β-hydroxypropyl-β'-(meth)acryloyloxyethyl-o-phthalate, and (meth)acrylic acid alkyl esters.
These may be used alone or in combination of two or more.
 多価アルコールにα,β-不飽和カルボン酸を反応させて得られる化合物としては、例えば、2,2-ビス(4-((メタ)アクリロキシポリエトキシ)フェニル)プロパン、2,2-ビス(4-((メタ)アクリロキシポリプロポキシ)フェニル)プロパン、及び、2,2-ビス(4-((メタ)アクリロキシポリエトキシポリプロポキシ)フェニル)プロパン等のビスフェノールA系(メタ)アクリレート化合物、エチレンオキサイド基の数が2~14であるポリエチレングリコールジ(メタ)アクリレート、プロピレンオキサイド基の数が2~14であるポリプロピレングリコールジ(メタ)アクリレート、エチレンオキサイド基の数が2~14であり、且つ、プロピレンオキサイド基の数が2~14であるポリエチレンポリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエトキシトリ(メタ)アクリレート、トリメチロールプロパンジエトキシトリ(メタ)アクリレート、トリメチロールプロパントリエトキシトリ(メタ)アクリレート、トリメチロールプロパンテトラエトキシトリ(メタ)アクリレート、トリメチロールプロパンペンタエトキシトリ(メタ)アクリレート、ジ(トリメチロールプロパン)テトラアクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、並びに、ジペンタエリスリトールヘキサ(メタ)アクリレートが挙げられる。
 なかでも、テトラメチロールメタン構造又はトリメチロールプロパン構造を有するエチレン不飽和化合物が好ましく、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、又はジ(トリメチロールプロパン)テトラアクリレートがより好ましい。
Examples of compounds obtained by reacting polyhydric alcohols with α,β-unsaturated carboxylic acids include 2,2-bis(4-((meth)acryloxypolyethoxy)phenyl)propane, 2,2-bis Bisphenol A-based (meth)acrylate compounds such as (4-((meth)acryloxypolypropoxy)phenyl)propane and 2,2-bis(4-((meth)acryloxypolyethoxypolypropoxy)phenyl)propane , polyethylene glycol di(meth)acrylate having 2 to 14 ethylene oxide groups, polypropylene glycol di(meth)acrylate having 2 to 14 propylene oxide groups, and polypropylene glycol di(meth)acrylate having 2 to 14 ethylene oxide groups. , and polyethylene polypropylene glycol di(meth)acrylate, trimethylolpropane di(meth)acrylate, trimethylolpropane tri(meth)acrylate, trimethylolpropane ethoxytri(meth)acrylate having 2 to 14 propylene oxide groups. , trimethylolpropane diethoxytri(meth)acrylate, trimethylolpropane triethoxytri(meth)acrylate, trimethylolpropane tetraethoxytri(meth)acrylate, trimethylolpropane pentaethoxytri(meth)acrylate, di(trimethylolpropane) ) Tetraacrylate, tetramethylolmethane tri(meth)acrylate, tetramethylolmethanetetra(meth)acrylate, dipentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, and dipentaerythritol hexa(meth)acrylate can be mentioned.
Among these, ethylenically unsaturated compounds having a tetramethylolmethane structure or a trimethylolpropane structure are preferable, and tetramethylolmethane tri(meth)acrylate, tetramethylolmethanetetra(meth)acrylate, trimethylolpropane tri(meth)acrylate, or dimethylolmethane tri(meth)acrylate is preferred. (Trimethylolpropane)tetraacrylate is more preferred.
 重合性化合物としては、エチレン性不飽和化合物のカプロラクトン変性化合物(例えば、日本化薬(株)製KAYARAD(登録商標)DPCA-20、新中村化学工業(株)製A-9300-1CL等)、エチレン性不飽和化合物のアルキレンオキサイド変性化合物(例えば、日本化薬(株)製KAYARAD RP-1040、新中村化学工業(株)製ATM-35E、A-9300、ダイセル・オルネクス社製 EBECRYL(登録商標)135等)、エトキシル化グリセリントリアクリレート(新中村化学工業(株)製A-GLY-9E等)等も挙げられる。
 また、重合性化合物として、ビスアクリル酸(2,2-ジメチルエチレン)(5-エチル-1,3-ジオキサン-2,5-ジイル)メチレン(日本化薬(株)製KAYARAD R-604)等も挙げられる。
Examples of the polymerizable compound include caprolactone-modified compounds of ethylenically unsaturated compounds (for example, KAYARAD (registered trademark) DPCA-20 manufactured by Nippon Kayaku Co., Ltd., A-9300-1CL manufactured by Shin Nakamura Chemical Industry Co., Ltd.), Alkylene oxide modified compounds of ethylenically unsaturated compounds (for example, KAYARAD RP-1040 manufactured by Nippon Kayaku Co., Ltd., ATM-35E and A-9300 manufactured by Shin Nakamura Chemical Co., Ltd., EBECRYL (registered trademark) manufactured by Daicel Allnex Co., Ltd. ) 135, etc.), ethoxylated glycerin triacrylate (A-GLY-9E, manufactured by Shin-Nakamura Chemical Co., Ltd., etc.), and the like.
In addition, as a polymerizable compound, bisacrylic acid (2,2-dimethylethylene)(5-ethyl-1,3-dioxane-2,5-diyl)methylene (KAYARAD R-604 manufactured by Nippon Kayaku Co., Ltd.), etc. can also be mentioned.
 重合性化合物(特に、エチレン性不飽和化合物)としては、転写後の感光性層の現像性に優れる点で、なかでも、エステル結合を含むものも好ましい。
 エステル結合を含むエチレン性不飽和化合物としては、分子内にエステル結合を含むものであれば特に制限されないが、本発明の効果が優れる点で、テトラメチロールメタン構造又はトリメチロールプロパン構造を有するエチレン不飽和化合物が好ましく、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、又はジ(トリメチロールプロパン)テトラアクリレートがより好ましい。
 信頼性付与の点からは、エチレン性不飽和化合物としては、炭素数6~20の脂肪族基を有するエチレン性不飽和化合物と、上記のテトラメチロールメタン構造又はトリメチロールプロパン構造を有するエチレン不飽和化合物と、を含むことが好ましい。
 炭素数6以上の脂肪族構造を有するエチレン性不飽和化合物としては、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、及び、トリシクロデカンジメタノールジ(メタ)アクリレートが挙げられる。
Among the polymerizable compounds (particularly ethylenically unsaturated compounds), those containing an ester bond are also preferred, since they provide excellent developability of the photosensitive layer after transfer.
The ethylenically unsaturated compound containing an ester bond is not particularly limited as long as it contains an ester bond in its molecule, but since the effects of the present invention are excellent, ethylenically unsaturated compounds having a tetramethylolmethane structure or a trimethylolpropane structure are preferred. Saturated compounds are preferred, and tetramethylolmethane tri(meth)acrylate, tetramethylolmethanetetra(meth)acrylate, trimethylolpropane tri(meth)acrylate, or di(trimethylolpropane)tetraacrylate is more preferred.
From the standpoint of imparting reliability, the ethylenically unsaturated compounds include ethylenically unsaturated compounds having an aliphatic group having 6 to 20 carbon atoms, and ethylenically unsaturated compounds having the above-mentioned tetramethylolmethane structure or trimethylolpropane structure. It is preferable to include a compound.
Examples of ethylenically unsaturated compounds having an aliphatic structure having 6 or more carbon atoms include 1,9-nonanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, and tricyclodecane dimethanol di(meth)acrylate. Examples include (meth)acrylates.
 重合性化合物の好適態様の一つとしては、脂肪族炭化水素環構造を有する重合性化合物(好ましくは、2官能エチレン性不飽和化合物)が挙げられる。
 上記重合性化合物としては、2環以上の脂肪族炭化水素環が縮環した環構造(好ましくは、トリシクロデカン構造及びトリシクロデセン構造からなる群から選択される構造)を有する重合性化合物が好ましく、2環以上の脂肪族炭化水素環が縮環した環構造を有する2官能エチレン性不飽和化合物がより好ましく、トリシクロデカンジメタノールジ(メタ)アクリレートが更に好ましい。
 上記脂肪族炭化水素環構造としては、シクロペンタン構造、シクロヘキサン構造、トリシクロデカン構造、トリシクロデセン構造、ノルボルナン構造、又はイソボロン構造が好ましい。
One preferred embodiment of the polymerizable compound is a polymerizable compound having an aliphatic hydrocarbon ring structure (preferably a difunctional ethylenically unsaturated compound).
The above-mentioned polymerizable compound is a polymerizable compound having a ring structure in which two or more aliphatic hydrocarbon rings are condensed (preferably a structure selected from the group consisting of a tricyclodecane structure and a tricyclodecene structure). Preferably, a bifunctional ethylenically unsaturated compound having a ring structure in which two or more aliphatic hydrocarbon rings are condensed is more preferable, and tricyclodecane dimethanol di(meth)acrylate is even more preferable.
The aliphatic hydrocarbon ring structure is preferably a cyclopentane structure, a cyclohexane structure, a tricyclodecane structure, a tricyclodecene structure, a norbornane structure, or an isoborone structure.
 重合性化合物の分子量は、200~3,000が好ましく、250~2,600がより好ましく、280~2,200が更に好ましく、300~2,200が特に好ましい。 The molecular weight of the polymerizable compound is preferably 200 to 3,000, more preferably 250 to 2,600, even more preferably 280 to 2,200, and particularly preferably 300 to 2,200.
 また、感光性層の好適態様の一つとして、感光性層は、式(M)で表される化合物と、酸基を有するエチレン性不飽和化合物とを含むことが好ましく、1,9-ノナンジオールジアクリレートと、カルボン酸基を有する多官能エチレン性不飽和化合物とを含むことがより好ましい。 Further, as one of the preferred embodiments of the photosensitive layer, the photosensitive layer preferably contains a compound represented by formula (M) and an ethylenically unsaturated compound having an acid group, and 1,9-nonane. More preferably, it contains diol diacrylate and a polyfunctional ethylenically unsaturated compound having a carboxylic acid group.
 また、感光性層の好適態様の一つとして、感光性層は、現像残渣抑制性及び防錆性の点から、2官能のエチレン性不飽和化合物(好ましくは、2官能の(メタ)アクリレート化合物)と、3官能以上のエチレン性不飽和化合物(好ましくは、3官能以上の(メタ)アクリレート化合物)と、を含むこと好ましい。
 2官能のエチレン性不飽和化合物と、3官能以上のエチレン性不飽和化合物の含有量の質量比(2官能のエチレン性不飽和化合物の質量/3官能以上のエチレン性不飽和化合物の質量)は10/90~90/10が好ましく、30/70~70/30がより好ましい。
 全てのエチレン性不飽和化合物の合計量に対する、2官能のエチレン性不飽和化合物の含有量は、20.0質量%以上が好ましく、30.0質量%以上がより好ましく、40.0質量%以上が更に好ましい。上限は特に制限されないが、例えば、100質量%以下であり、90.0質量%以下が好ましく、80.0質量%以下がより好ましい。
 感光性層における2官能のエチレン性不飽和化合物は、5.0~60.0質量%が好ましく、5.0~40.0質量%がより好ましく、5.0~40.0質量%が更に好ましい。
In addition, as one of the preferred embodiments of the photosensitive layer, the photosensitive layer is made of a difunctional ethylenically unsaturated compound (preferably a difunctional (meth)acrylate compound) from the viewpoint of development residue suppression and rust prevention properties. ) and a trifunctional or higher functional ethylenically unsaturated compound (preferably a trifunctional or higher functional (meth)acrylate compound).
The mass ratio of the content of the bifunctional ethylenically unsaturated compound and the trifunctional or more functional ethylenically unsaturated compound (mass of the bifunctional ethylenically unsaturated compound/mass of the trifunctional or more functional ethylenically unsaturated compound) is 10/90 to 90/10 is preferred, and 30/70 to 70/30 is more preferred.
The content of the bifunctional ethylenically unsaturated compound relative to the total amount of all ethylenically unsaturated compounds is preferably 20.0% by mass or more, more preferably 30.0% by mass or more, and 40.0% by mass or more. is even more preferable. The upper limit is not particularly limited, but is, for example, 100% by mass or less, preferably 90.0% by mass or less, and more preferably 80.0% by mass or less.
The bifunctional ethylenically unsaturated compound in the photosensitive layer is preferably 5.0 to 60.0% by mass, more preferably 5.0 to 40.0% by mass, and even more preferably 5.0 to 40.0% by mass. preferable.
 感光性層は、エチレン性不飽和化合物として、単官能エチレン性不飽和化合物を含んでいてもよい。
 2官能以上のエチレン性不飽和化合物の含有量は、感光性層に含まれる全てのエチレン性不飽和化合物の総含有量に対し、50~100質量%が好ましい。
The photosensitive layer may contain a monofunctional ethylenically unsaturated compound as the ethylenically unsaturated compound.
The content of the ethylenically unsaturated compound having two or more functionalities is preferably 50 to 100% by mass based on the total content of all ethylenically unsaturated compounds contained in the photosensitive layer.
 重合性化合物(特に、エチレン性不飽和化合物)は、1種単独で使用してもよいし、2種以上を併用することもできる。
 感光性層における重合性化合物(特に、エチレン性不飽和化合物)の含有量の下限値としては、感光性層の全質量に対して、10.0質量%以上が好ましく、15.0質量%以上がより好ましい。また、上限値としては、70.0質量%以下が好ましく、60.0質量%以下がより好ましく、50.0質量%以下が更に好ましく、40.0質量%以下が特に好ましい。
The polymerizable compounds (especially ethylenically unsaturated compounds) may be used alone or in combination of two or more.
The lower limit of the content of polymerizable compounds (especially ethylenically unsaturated compounds) in the photosensitive layer is preferably 10.0% by mass or more, and 15.0% by mass or more based on the total mass of the photosensitive layer. is more preferable. Moreover, as an upper limit, 70.0 mass % or less is preferable, 60.0 mass % or less is more preferable, 50.0 mass % or less is still more preferable, and 40.0 mass % or less is especially preferable.
-光重合開始剤-
 感光性層は、光重合開始剤を含んでいるのが好ましい。
 光重合開始剤としては特に制限はなく、公知の光重合開始剤を使用できる。
 光重合開始剤としては、オキシムエステル構造を有する光重合開始剤(以下、「オキシム系光重合開始剤」ともいう。)、α-アミノアルキルフェノン構造を有する光重合開始剤(以下、「α-アミノアルキルフェノン系光重合開始剤」ともいう。)、α-ヒドロキシアルキルフェノン構造を有する光重合開始剤(以下、「α-ヒドロキシアルキルフェノン系重合開始剤」ともいう。)、アシルフォスフィンオキサイド構造を有する光重合開始剤(以下、「アシルフォスフィンオキサイド系光重合開始剤」ともいう。)、及び、N-フェニルグリシン構造を有する光重合開始剤(以下、「N-フェニルグリシン系光重合開始剤」ともいう。)等が挙げられる。
-Photopolymerization initiator-
Preferably, the photosensitive layer contains a photopolymerization initiator.
There are no particular limitations on the photopolymerization initiator, and any known photopolymerization initiator can be used.
Examples of photopolymerization initiators include photopolymerization initiators having an oxime ester structure (hereinafter also referred to as "oxime-based photopolymerization initiators"), and photopolymerization initiators having an α-aminoalkylphenone structure (hereinafter referred to as "α- ), a photopolymerization initiator having an α-hydroxyalkylphenone structure (hereinafter also referred to as an “α-hydroxyalkylphenone polymerization initiator”), an acylphosphine oxide structure A photopolymerization initiator having an N-phenylglycine structure (hereinafter also referred to as an "acylphosphine oxide photopolymerization initiator") and a photopolymerization initiator having an N-phenylglycine structure (hereinafter also referred to as an "N-phenylglycine photopolymerization initiator"). ), etc.
 光重合開始剤は、オキシム系光重合開始剤、α-アミノアルキルフェノン系光重合開始剤、α-ヒドロキシアルキルフェノン系重合開始剤、及び、N-フェニルグリシン系光重合開始剤よりなる群から選ばれる少なくとも1種を含むことが好ましく、オキシム系光重合開始剤、α-アミノアルキルフェノン系光重合開始剤、及び、N-フェニルグリシン系光重合開始剤よりなる群から選ばれる少なくとも1種を含むことがより好ましい。 The photopolymerization initiator is selected from the group consisting of oxime photopolymerization initiators, α-aminoalkylphenone photopolymerization initiators, α-hydroxyalkylphenone photopolymerization initiators, and N-phenylglycine photopolymerization initiators. It preferably contains at least one kind selected from the group consisting of oxime-based photopolymerization initiators, α-aminoalkylphenone-based photopolymerization initiators, and N-phenylglycine-based photopolymerization initiators. It is more preferable.
 また、光重合開始剤としては、例えば、特開2011-095716号公報の段落[0031]~[0042]、及び、特開2015-014783号公報の段落[0064]~[0081]に記載された重合開始剤を用いてもよい。 Further, as the photopolymerization initiator, for example, those described in paragraphs [0031] to [0042] of JP-A No. 2011-095716 and paragraphs [0064] to [0081] of JP-A No. 2015-014783, A polymerization initiator may also be used.
 また、光重合開始剤としては、感光性、露光部及び非露光部の視認性、及び解像性の観点から、光ラジカル重合開始剤として、2,4,5-トリアリールイミダゾール二量体及びその誘導体からなる群より選択される少なくとも1種を含むことが好ましい。なお、2,4,5-トリアリールイミダゾール二量体及びその誘導体における2つの2,4,5-トリアリールイミダゾール構造は、同一であっても異なっていてもよい。
 2,4,5-トリアリールイミダゾール二量体の誘導体としては、例えば、2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、及び2-(p-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体が挙げられる。
 2,4,5-トリアリールイミダゾール二量体の誘導体としては、例えば、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾールも挙げられる。
In addition, from the viewpoint of photosensitivity, visibility of exposed and unexposed areas, and resolution, as photopolymerization initiators, 2,4,5-triarylimidazole dimer and It is preferable to include at least one selected from the group consisting of derivatives thereof. Note that the two 2,4,5-triarylimidazole structures in the 2,4,5-triarylimidazole dimer and its derivatives may be the same or different.
Examples of derivatives of 2,4,5-triarylimidazole dimer include 2-(o-chlorophenyl)-4,5-diphenylimidazole dimer and 2-(o-chlorophenyl)-4,5-diphenylimidazole dimer. (methoxyphenyl)imidazole dimer, 2-(o-fluorophenyl)-4,5-diphenylimidazole dimer, 2-(o-methoxyphenyl)-4,5-diphenylimidazole dimer, and 2- (p-methoxyphenyl)-4,5-diphenylimidazole dimer is mentioned.
Examples of the 2,4,5-triarylimidazole dimer derivative include 2,2'-bis(2-chlorophenyl)-4,4',5,5'-tetraphenyl-1,2'-bis(2-chlorophenyl)-4,4',5,5'-tetraphenyl-1,2'-bis Mention may also be made of imidazoles.
 光ラジカル重合開始剤としては、例えば、ジメチルアミノ安息香酸エチル(DBE、CAS No.10287-53-3)、ベンゾインメチルエーテル、アニシル(p,p’-ジメトキシベンジル)、TAZ-110(商品名:みどり化学社製)、ベンゾフェノン、4,4′-ビス(ジエチルアミノ)ベンゾフェノン、TAZ-111(商品名:みどり化学社製)、IrgacureOXE01、OXE02、OXE03、OXE04(BASF社製)、Omnirad651及び369(商品名:IGM Resins B.V.社製)、及び2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール(東京化成工業社製)が挙げられる。 Examples of the photoradical polymerization initiator include ethyl dimethylaminobenzoate (DBE, CAS No. 10287-53-3), benzoin methyl ether, anisyl (p,p'-dimethoxybenzyl), and TAZ-110 (trade name: Midori Kagaku Co., Ltd.), benzophenone, 4,4'-bis(diethylamino)benzophenone, TAZ-111 (product name: Midori Kagaku Co., Ltd.), Irgacure OXE01, OXE02, OXE03, OXE04 (BASF Co., Ltd.), Omnirad651 and 369 (product name: Midori Kagaku Co., Ltd.) Name: IGM Resins manufactured by B.V.), and 2,2'-bis(2-chlorophenyl)-4,4',5,5'-tetraphenyl-1,2'-biimidazole (Tokyo Chemical Industry Co., Ltd.) ).
 光ラジカル重合開始剤の市販品としては、例えば、1-[4-(フェニルチオ)]-1,2-オクタンジオン-2-(O-ベンゾイルオキシム)(商品名:IRGACURE(登録商標) OXE-01、BASF社製)、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン-1-(O-アセチルオキシム)(商品名:IRGACURE OXE-02、BASF社製)、IRGACURE OXE-03(BASF社製)、IRGACURE OXE-04(BASF社製)、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルフォリニル)フェニル]-1-ブタノン(商品名:Omnirad 379EG、IGM Resins B.V.製)、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン(商品名:Omnirad 907、IGM Resins B.V.製)、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチルプロピオニル)ベンジル]フェニル}-2-メチルプロパン-1-オン(商品名:Omnirad
 127、IGM Resins B.V.製)、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタノン-1(商品名:Omnirad 369、IGM Resins B.V.製)、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン(商品名:Omnirad 1173、IGM Resins B.V.製)、1-ヒドロキシシクロヘキシルフェニルケトン(商品名:Omnirad 184、IGM Resins B.V.製)、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(商品名:Omnirad 651、IGM Resins B.V.製)、2,4,6-トリメチルベンゾリル-ジフェニルフォスフィンオキサイド(商品名:Omnirad TPO H、IGM Resins B.V.製)、ビス(2,4,6-トリメチルベンゾリル)フェニルフォスフィンオキサイド(商品名:Omnirad 819、IGM Resins B.V.製)、オキシムエステル系の光重合開始剤(商品名:Lunar 6、DKSHジャパン社製)、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラフェニルビスイミダゾール(2-(2-クロロフェニル)-4,5-ジフェニルイミダゾール二量体)(商品名:B-CIM、Hampford社製)、及び2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体(商品名:BCTB、東京化成工業社製)、1-[4-(フェニルチオ)フェニル]-3-シクロペンチルプロパン-1,2-ジオン-2-(O-ベンゾイルオキシム)(商品名:TR-PBG-305、常州強力電子新材料社製)、1,2-プロパンジオン,3-シクロヘキシル-1-[9-エチル-6-(2-フラニルカルボニル)-9H-カルバゾール-3-イル]-,2-(O-アセチルオキシム)(商品名:TR-PBG-326、常州強力電子新材料社製)、及び3-シクロヘキシル-1-(6-(2-(ベンゾイルオキシイミノ)ヘキサノイル)-9-エチル-9H-カルバゾール-3-イル)-プロパン-1,2-ジオン-2-(O-ベンゾイルオキシム)(商品名:TR-PBG-391、常州強力電子新材料社製)が挙げられる。
 また、光ラジカル重合開始剤の市販品としては、商品名「Omnirad 379」(IGM Resins B.V.社製)のアルキルフェノン系化合物が挙げられる。
Commercially available photoradical polymerization initiators include, for example, 1-[4-(phenylthio)]-1,2-octanedione-2-(O-benzoyloxime) (trade name: IRGACURE (registered trademark) OXE-01). , manufactured by BASF), 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]ethanone-1-(O-acetyloxime) (product name: IRGACURE OXE-02, BASF (manufactured by BASF), IRGACURE OXE-03 (manufactured by BASF), IRGACURE OXE-04 (manufactured by BASF), 2-(dimethylamino)-2-[(4-methylphenyl)methyl]-1-[4-(4) -morpholinyl)phenyl]-1-butanone (trade name: Omnirad 379EG, manufactured by IGM Resins B.V.), 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one (trade name) : Omnirad 907, manufactured by IGM Resins B.V.), 2-hydroxy-1-{4-[4-(2-hydroxy-2-methylpropionyl)benzyl]phenyl}-2-methylpropan-1-one (product Name: Omnirad
127, IGM Resins B. V. (manufactured by IGM Resins B.V.), 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)butanone-1 (trade name: Omnirad 369, manufactured by IGM Resins B.V.), 2-hydroxy-2-methyl-1- Phenylpropan-1-one (trade name: Omnirad 1173, manufactured by IGM Resins B.V.), 1-hydroxycyclohexylphenyl ketone (trade name: Omnirad 184, manufactured by IGM Resins B.V.), 2,2-dimethoxy- 1,2-diphenylethan-1-one (product name: Omnirad 651, manufactured by IGM Resins B.V.), 2,4,6-trimethylbenzolyl-diphenylphosphine oxide (product name: Omnirad TPO H, IGM Resins) B.V.), bis(2,4,6-trimethylbenzolyl)phenylphosphine oxide (trade name: Omnirad 819, manufactured by IGM Resins B.V.), oxime ester photopolymerization initiator (trade name) : Lunar 6, manufactured by DKSH Japan), 2,2'-bis(2-chlorophenyl)-4,4',5,5'-tetraphenylbisimidazole (2-(2-chlorophenyl)-4,5-diphenyl) imidazole dimer) (trade name: B-CIM, manufactured by Hampford), and 2-(o-chlorophenyl)-4,5-diphenylimidazole dimer (trade name: BCTB, manufactured by Tokyo Kasei Kogyo Co., Ltd.), 1 -[4-(phenylthio)phenyl]-3-cyclopentylpropane-1,2-dione-2-(O-benzoyloxime) (trade name: TR-PBG-305, manufactured by Changzhou Strong Electronics New Materials Co., Ltd.), 1, 2-Propanedione, 3-cyclohexyl-1-[9-ethyl-6-(2-furanylcarbonyl)-9H-carbazol-3-yl]-,2-(O-acetyloxime) (Product name: TR- PBG-326, manufactured by Changzhou Strong Electronics New Materials Co., Ltd.), and 3-cyclohexyl-1-(6-(2-(benzoyloxyimino)hexanoyl)-9-ethyl-9H-carbazol-3-yl)-propane-1 , 2-dione-2-(O-benzoyloxime) (trade name: TR-PBG-391, manufactured by Changzhou Strong Electronics New Materials Co., Ltd.).
Further, as a commercially available photoradical polymerization initiator, an alkylphenone compound with the trade name "Omnirad 379" (manufactured by IGM Resins B.V.) may be mentioned.
 光重合開始剤は、1種単独で使用してもよいし、2種以上を使用することもできる。
 2種以上を併用する場合は、オキシム系光重合開始剤と、α-アミノアルキルフェノン系光重合開始剤及びα-ヒドロキシアルキルフェノン系重合開始剤から選ばれる少なくとも1種と、を使用することが好ましい。
 感光性層が光重合開始剤を含む場合、光重合開始剤の含有量は、感光性層の全質量に対して、0.01質量%以上が好ましく、0.1質量%以上がより好ましく、0.5質量%以上が更に好ましい。また、その上限値としては、感光性層の全質量に対して、10.0質量%以下が好ましく、7.0質量%以下がより好ましい。
The photopolymerization initiators may be used alone or in combination of two or more.
When two or more types are used in combination, an oxime photopolymerization initiator and at least one selected from α-aminoalkylphenone photopolymerization initiators and α-hydroxyalkylphenone polymerization initiators may be used. preferable.
When the photosensitive layer contains a photopolymerization initiator, the content of the photopolymerization initiator is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, based on the total mass of the photosensitive layer. More preferably, the content is 0.5% by mass or more. Further, the upper limit thereof is preferably 10.0% by mass or less, more preferably 7.0% by mass or less, based on the total mass of the photosensitive layer.
-複素環化合物-
 感光性層は、複素環化合物を含んでいてもよい。
 複素環化合物が有する複素環は、単環及び多環のいずれの複素環でもよい。
 複素環化合物が有するヘテロ原子としては、窒素原子、酸素原子、及び、硫黄原子が挙げられる。複素環化合物は、窒素原子、酸素原子、及び、硫黄原子からなる群より選ばれる少なくとも1種の原子を有することが好ましく、窒素原子を有することがより好ましい。
-Heterocyclic compounds-
The photosensitive layer may contain a heterocyclic compound.
The heterocycle possessed by the heterocyclic compound may be either a monocyclic or polycyclic heterocycle.
Examples of the heteroatom contained in the heterocyclic compound include a nitrogen atom, an oxygen atom, and a sulfur atom. The heterocyclic compound preferably has at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom, and a sulfur atom, and more preferably a nitrogen atom.
 複素環化合物としては、例えば、トリアゾール化合物、ベンゾトリアゾール化合物、テトラゾール化合物、チアジアゾール化合物、トリアジン化合物、ローダニン化合物、チアゾール化合物、ベンゾチアゾール化合物、ベンゾイミダゾール化合物、ベンゾオキサゾール化合物、及び、ピリミジン化合物が挙げられる。
 上記のなかでも、複素環化合物としては、トリアゾール化合物、ベンゾトリアゾール化合物、テトラゾール化合物、チアジアゾール化合物、トリアジン化合物、ローダニン化合物、チアゾール化合物、ベンゾイミダゾール化合物、及び、ベンゾオキサゾール化合物からなる群より選ばれる少なくとも1種の化合物が好ましく、トリアゾール化合物、ベンゾトリアゾール化合物、テトラゾール化合物、チアジアゾール化合物、チアゾール化合物、ベンゾチアゾール化合物、ベンゾイミダゾール化合物、及び、ベンゾオキサゾール化合物からなる群より選ばれる少なくとも1種の化合物がより好ましい。
Examples of the heterocyclic compound include a triazole compound, a benzotriazole compound, a tetrazole compound, a thiadiazole compound, a triazine compound, a rhodanine compound, a thiazole compound, a benzothiazole compound, a benzimidazole compound, a benzoxazole compound, and a pyrimidine compound.
Among the above, the heterocyclic compound is at least one selected from the group consisting of triazole compounds, benzotriazole compounds, tetrazole compounds, thiadiazole compounds, triazine compounds, rhodanine compounds, thiazole compounds, benzimidazole compounds, and benzoxazole compounds. A type of compound is preferred, and at least one compound selected from the group consisting of a triazole compound, a benzotriazole compound, a tetrazole compound, a thiadiazole compound, a thiazole compound, a benzothiazole compound, a benzimidazole compound, and a benzoxazole compound is more preferred.
 複素環化合物の好ましい具体例を以下に示す。トリアゾール化合物及びベンゾトリアゾール化合物としては、以下の化合物が例示できる。 Preferred specific examples of the heterocyclic compound are shown below. Examples of the triazole compound and benzotriazole compound include the following compounds.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 テトラゾール化合物としては、以下の化合物が例示できる。 Examples of the tetrazole compound include the following compounds.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 チアジアゾール化合物としては、以下の化合物が例示できる。 Examples of thiadiazole compounds include the following compounds.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 トリアジン化合物としては、以下の化合物が例示できる。 Examples of triazine compounds include the following compounds.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 ローダニン化合物としては、以下の化合物が例示できる。 Examples of rhodanine compounds include the following compounds.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 チアゾール化合物としては、以下の化合物が例示できる。 Examples of thiazole compounds include the following compounds.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 ベンゾチアゾール化合物としては、以下の化合物が例示できる。 Examples of benzothiazole compounds include the following compounds.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 ベンゾイミダゾール化合物としては、以下の化合物が例示できる。 Examples of benzimidazole compounds include the following compounds.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 ベンゾオキサゾール化合物としては、以下の化合物が例示できる。 Examples of benzoxazole compounds include the following compounds.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 複素環化合物は、1種単独で使用してもよいし、2種以上を併用することもできる。
 感光性層が複素環化合物を含む場合、複素環化合物の含有量は、感光性層の全質量に対して、0.01~20.0質量%が好ましく、0.10~10.0質量%がより好ましく、0.30~8.0質量%が更に好ましく、0.50~5.0質量%が特に好ましい。
The heterocyclic compounds may be used alone or in combination of two or more.
When the photosensitive layer contains a heterocyclic compound, the content of the heterocyclic compound is preferably 0.01 to 20.0% by mass, and 0.10 to 10.0% by mass based on the total mass of the photosensitive layer. is more preferable, 0.30 to 8.0% by weight is still more preferable, and 0.50 to 5.0% by weight is particularly preferable.
-脂肪族チオール化合物-
 感光性層は、脂肪族チオール化合物を含んでいてもよい。
 感光性層が脂肪族チオール化合物を含むことで、脂肪族チオール化合物がエチレン性不飽和基を有するラジカル重合性化合物との間でエン-チオール反応することで、形成される膜の硬化収縮が抑えられ、応力が緩和される。
-Aliphatic thiol compounds-
The photosensitive layer may contain an aliphatic thiol compound.
Since the photosensitive layer contains an aliphatic thiol compound, the aliphatic thiol compound undergoes an ene-thiol reaction with a radically polymerizable compound having an ethylenically unsaturated group, thereby suppressing curing shrinkage of the formed film. and the stress is relieved.
 脂肪族チオール化合物としては、単官能の脂肪族チオール化合物又は多官能の脂肪族チオール化合物(すなわち、2官能以上の脂肪族チオール化合物)が好ましい。 As the aliphatic thiol compound, a monofunctional aliphatic thiol compound or a polyfunctional aliphatic thiol compound (that is, a bifunctional or more functional aliphatic thiol compound) is preferable.
 上記のなかでも、脂肪族チオール化合物としては、形成されるパターンの密着性(特に、露光後における密着性)の点から、多官能の脂肪族チオール化合物が好ましい。 Among the above aliphatic thiol compounds, polyfunctional aliphatic thiol compounds are preferred from the viewpoint of the adhesion of the formed pattern (particularly the adhesion after exposure).
 本明細書において、「多官能の脂肪族チオール化合物」とは、チオール基(「メルカプト基」ともいう。)を分子内に2個以上有する脂肪族化合物を意味する。 As used herein, the term "polyfunctional aliphatic thiol compound" means an aliphatic compound having two or more thiol groups (also referred to as "mercapto groups") in the molecule.
 多官能の脂肪族チオール化合物としては、分子量が100以上の低分子化合物が好ましい。具体的には、多官能の脂肪族チオール化合物の分子量は、100~1,500がより好ましく、150~1,000が更に好ましい。 As the polyfunctional aliphatic thiol compound, a low molecular compound with a molecular weight of 100 or more is preferable. Specifically, the molecular weight of the polyfunctional aliphatic thiol compound is more preferably 100 to 1,500, and even more preferably 150 to 1,000.
 多官能の脂肪族チオール化合物の官能基数としては、例えば、形成されるパターンの密着性の点から、2~10官能が好ましく、2~8官能がより好ましく、2~6官能が更に好ましい。 The number of functional groups in the polyfunctional aliphatic thiol compound is preferably 2 to 10 functional, more preferably 2 to 8 functional, and even more preferably 2 to 6 functional, from the viewpoint of adhesion of the formed pattern.
 多官能の脂肪族チオール化合物としては、例えば、トリメチロールプロパントリス(3-メルカプトブチレート)、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、1,3,5-トリス(3-メルカプトブチリルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、1,3,5-トリス(2-(3-スルファニルブタノイルオキシ)エチル)-1,3,5-トリアジナン-2,4,6-トリオン、トリメチロールエタントリス(3-メルカプトブチレート)、トリス[(3-メルカプトプロピオニルオキシ)エチル]イソシアヌレート、トリメチロールプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、テトラエチレングリコールビス(3-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、エチレングリコールビスチオプロピオネート、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、1,2-エタンジチオール、1,3-プロパンジチオール、1,6-ヘキサメチレンジチオール、2,2’-(エチレンジチオ)ジエタンチオール、meso-2,3-ジメルカプトコハク酸、及び、ジ(メルカプトエチル)エーテルが挙げられる。 Examples of polyfunctional aliphatic thiol compounds include trimethylolpropane tris(3-mercaptobutyrate), 1,4-bis(3-mercaptobutyryloxy)butane, pentaerythritol tetrakis(3-mercaptobutyrate), 1,3,5-tris(3-mercaptobutyryloxyethyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione, 1,3,5-tris(2- (3-Sulfanylbutanoyloxy)ethyl)-1,3,5-triazinane-2,4,6-trione, trimethylolethane tris(3-mercaptobutyrate), tris[(3-mercaptopropionyloxy)ethyl] Isocyanurate, trimethylolpropane tris (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptopropionate), tetraethylene glycol bis(3-mercaptopropionate), dipentaerythritol hexakis (3-mercaptopropionate) propionate), ethylene glycol bisthiopropionate, 1,4-bis(3-mercaptobutyryloxy)butane, 1,2-ethanedithiol, 1,3-propanedithiol, 1,6-hexamethylenedithiol, Examples include 2,2'-(ethylenedithio)diethanethiol, meso-2,3-dimercaptosuccinic acid, and di(mercaptoethyl)ether.
 上記のなかでも、多官能の脂肪族チオール化合物としては、トリメチロールプロパントリス(3-メルカプトブチレート)、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、及び1,3,5-トリス(3-メルカプトブチリルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオンからなる群より選ばれる少なくとも1種の化合物が好ましい。 Among the above, polyfunctional aliphatic thiol compounds include trimethylolpropane tris(3-mercaptobutyrate), 1,4-bis(3-mercaptobutyryloxy)butane, and 1,3,5-tris At least one compound selected from the group consisting of (3-mercaptobutyryloxyethyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione is preferred.
 単官能の脂肪族チオール化合物としては、例えば、1-オクタンチオール、1-ドデカンチオール、β-メルカプトプロピオン酸、メチル-3-メルカプトプロピオネート、2-エチルヘキシル-3-メルカプトプロピオネート、n-オクチル-3-メルカプトプロピオネート、メトキシブチル-3-メルカプトプロピオネート、及びステアリル-3-メルカプトプロピオネートが挙げられる。 Examples of monofunctional aliphatic thiol compounds include 1-octanethiol, 1-dodecanethiol, β-mercaptopropionic acid, methyl-3-mercaptopropionate, 2-ethylhexyl-3-mercaptopropionate, n- Included are octyl-3-mercaptopropionate, methoxybutyl-3-mercaptopropionate, and stearyl-3-mercaptopropionate.
 感光性層は、1種単独の脂肪族チオール化合物を含んでいてもよく、2種以上の脂肪族チオール化合物を含んでいてもよい。 The photosensitive layer may contain one type of aliphatic thiol compound alone, or may contain two or more types of aliphatic thiol compounds.
 感光性層が脂肪族チオール化合物を含む場合、脂肪族チオール化合物の含有量は、感光性層の全質量に対して、5質量%以上が好ましく、5~50質量%がより好ましく、5~30質量%が更に好ましく、8~20質量%が特に好ましい。 When the photosensitive layer contains an aliphatic thiol compound, the content of the aliphatic thiol compound is preferably 5% by mass or more, more preferably 5 to 50% by mass, and more preferably 5 to 30% by mass based on the total mass of the photosensitive layer. % by weight is more preferable, and 8 to 20% by weight is particularly preferable.
-熱架橋性化合物-
 感光性層は、得られる硬化膜の強度、及び、得られる未硬化膜の粘着性の点から、熱架橋性化合物を含むことも好ましい。なお、本明細書においては、後述するエチレン性不飽和基を有する熱架橋性化合物は、エチレン性不飽和化合物としては扱わず、熱架橋性化合物として扱うものとする。
 熱架橋性化合物としては、エポキシ化合物、オキセタン化合物、メチロール化合物、及びブロックイソシアネート化合物が挙げられる。なかでも、得られる硬化膜の強度、及び、得られる未硬化膜の粘着性の点から、ブロックイソシアネート化合物が好ましい。
 ブロックイソシアネート化合物は、ヒドロキシ基及びカルボキシ基と反応するため、例えば、アルカリ可溶性樹脂及びエチレン性不飽和基を有するラジカル重合性化合物の少なくとも一方が、ヒドロキシ基及びカルボキシ基の少なくとも一方を有する場合には、形成される膜の親水性が下がり、保護膜としての機能が強化される傾向がある。
 なお、ブロックイソシアネート化合物とは、「イソシアネートのイソシアネート基をブロック剤で保護(いわゆる、マスク)した構造を有する化合物」を指す。
-Thermal crosslinkable compound-
It is also preferable that the photosensitive layer contains a thermally crosslinkable compound from the viewpoint of the strength of the resulting cured film and the tackiness of the resulting uncured film. In addition, in this specification, the thermally crosslinkable compound having an ethylenically unsaturated group, which will be described later, is not treated as an ethylenically unsaturated compound, but as a thermally crosslinkable compound.
Examples of thermally crosslinkable compounds include epoxy compounds, oxetane compounds, methylol compounds, and blocked isocyanate compounds. Among these, blocked isocyanate compounds are preferred from the viewpoint of the strength of the cured film obtained and the tackiness of the uncured film obtained.
Blocked isocyanate compounds react with hydroxy groups and carboxy groups. , the hydrophilicity of the formed film tends to decrease and its function as a protective film tends to be strengthened.
Note that the blocked isocyanate compound refers to "a compound having a structure in which the isocyanate group of isocyanate is protected (so-called masked) with a blocking agent."
 ブロックイソシアネート化合物の解離温度は、特に制限されないが、100~160℃が好ましく、130~150℃がより好ましい。
 ブロックイソシアネートの解離温度とは、「示差走査熱量計を用いて、DSC(Differential scanning calorimetry)分析にて測定した場合における、ブロックイソシアネートの脱保護反応に伴う吸熱ピークの温度」を意味する。
 示差走査熱量計としては、例えば、セイコーインスツルメンツ(株)製の示差走査熱量計(型式:DSC6200)を好適に使用できる。但し、示差走査熱量計は、これに限定されない。
The dissociation temperature of the blocked isocyanate compound is not particularly limited, but is preferably 100 to 160°C, more preferably 130 to 150°C.
The dissociation temperature of the blocked isocyanate means "the temperature of the endothermic peak associated with the deprotection reaction of the blocked isocyanate when measured by DSC (differential scanning calorimetry) analysis using a differential scanning calorimeter."
As the differential scanning calorimeter, for example, a differential scanning calorimeter (model: DSC6200) manufactured by Seiko Instruments Inc. can be suitably used. However, the differential scanning calorimeter is not limited to this.
 解離温度が100~160℃であるブロック剤としては、活性メチレン化合物〔マロン酸ジエステル(マロン酸ジメチル、マロン酸ジエチル、マロン酸ジn-ブチル、マロン酸ジ2-エチルヘキシル等)〕、オキシム化合物(ホルムアルドオキシム、アセトアルドオキシム、アセトオキシム、メチルエチルケトオキシム、及びシクロヘキサノンオキシム等の分子内に-C(=N-OH)-で表される構造を有する化合物)が挙げられる。
 これらのなかでも、解離温度が100~160℃であるブロック剤としては、例えば、保存安定性の点から、オキシム化合物から選ばれる少なくとも1種が好ましい。
Blocking agents with a dissociation temperature of 100 to 160°C include active methylene compounds [malonate diesters (dimethyl malonate, diethyl malonate, di-n-butyl malonate, di-2-ethylhexyl malonate, etc.)], oxime compounds ( Examples include compounds having a structure represented by -C(=N-OH)- in the molecule, such as formaldoxime, acetaldoxime, acetoxime, methyl ethyl ketoxime, and cyclohexanone oxime.
Among these, the blocking agent having a dissociation temperature of 100 to 160° C. is preferably at least one selected from oxime compounds, for example, from the viewpoint of storage stability.
 ブロックイソシアネート化合物は、例えば、膜の脆性改良、被転写体との密着力向上等の点から、イソシアヌレート構造を有することが好ましい。
 イソシアヌレート構造を有するブロックイソシアネート化合物は、例えば、ヘキサメチレンジイソシアネートをイソシアヌレート化して保護することにより得られる。
 イソシアヌレート構造を有するブロックイソシアネート化合物のなかでも、オキシム化合物をブロック剤として用いたオキシム構造を有する化合物が、オキシム構造を有さない化合物よりも解離温度を好ましい範囲にしやすく、且つ、現像残渣を少なくしやすいという点から好ましい。
The blocked isocyanate compound preferably has an isocyanurate structure, for example, from the viewpoint of improving the brittleness of the film and improving the adhesion to the transfer target.
A blocked isocyanate compound having an isocyanurate structure can be obtained, for example, by converting hexamethylene diisocyanate into isocyanurate and protecting it.
Among blocked isocyanate compounds having an isocyanurate structure, a compound having an oxime structure using an oxime compound as a blocking agent is easier to maintain the dissociation temperature in a preferable range than a compound without an oxime structure, and produces less development residue. This is preferable because it is easy to do.
 ブロックイソシアネート化合物は、重合性基を有していてもよい。
 重合性基としては、特に制限はなく、公知の重合性基を用いることができ、ラジカル重合性基が好ましい。
 重合性基としては、(メタ)アクリロキシ基、(メタ)アクリルアミド基、及びスチリル基等のエチレン性不飽和基、並びに、グリシジル基等のエポキシ基を有する基が挙げられる。
 なかでも、重合性基としては、エチレン性不飽和基が好ましく、(メタ)アクリロキシ基がより好ましく、アクリロキシ基が更に好ましい。
The blocked isocyanate compound may have a polymerizable group.
The polymerizable group is not particularly limited, and any known polymerizable group can be used, with radically polymerizable groups being preferred.
Examples of the polymerizable group include ethylenically unsaturated groups such as a (meth)acryloxy group, (meth)acrylamide group, and styryl group, and groups having an epoxy group such as a glycidyl group.
Among these, the polymerizable group is preferably an ethylenically unsaturated group, more preferably a (meth)acryloxy group, and even more preferably an acryloxy group.
 ブロックイソシアネート化合物としては、市販品を使用できる。
 ブロックイソシアネート化合物の市販品の例としては、カレンズ(登録商標) AOI-BM、カレンズ(登録商標) MOI-BM、カレンズ(登録商標) MOI-BP等(以上、昭和電工(株)製)、ブロック型のデュラネートシリーズ(例えば、デュラネート(登録商標) TPA-B80E、デュラネート(登録商標) WT32-B75P等、旭化成ケミカルズ(株)製)が挙げられる。
As the blocked isocyanate compound, commercially available products can be used.
Examples of commercially available block isocyanate compounds include Karenz (registered trademark) AOI-BM, Karenz (registered trademark) MOI-BM, Karenz (registered trademark) MOI-BP (all manufactured by Showa Denko K.K.), Block Examples include the Duranate series of molds (eg, Duranate (registered trademark) TPA-B80E, Duranate (registered trademark) WT32-B75P, etc., manufactured by Asahi Kasei Chemicals Co., Ltd.).
 熱架橋性化合物は、1種単独で使用してもよいし、2種以上を併用することもできる。
 感光性層が熱架橋性化合物を含む場合、熱架橋性化合物の含有量は、感光性層の全質量に対して、1.0~50.0質量%が好ましく、5.0~30.0質量%がより好ましく、5.0~25.0質量%が更に好ましい。
Thermal crosslinkable compounds may be used alone or in combination of two or more.
When the photosensitive layer contains a thermally crosslinkable compound, the content of the thermally crosslinkable compound is preferably 1.0 to 50.0% by mass, and 5.0 to 30.0% by mass based on the total mass of the photosensitive layer. The amount is more preferably 5.0 to 25.0% by weight, and even more preferably 5.0 to 25.0% by weight.
-界面活性剤-
 感光性層は、界面活性剤を含んでいてもよい。
 界面活性剤としては、例えば、特許第4502784号公報の段落[0017]、及び特開2009-237362号公報の段落[0060]~[0071]に記載の界面活性剤が挙げられる。
-Surfactant-
The photosensitive layer may contain a surfactant.
Examples of the surfactant include the surfactants described in paragraph [0017] of Japanese Patent No. 4502784 and paragraphs [0060] to [0071] of JP-A-2009-237362.
 界面活性剤としては、フッ素系界面活性剤又はシリコーン系界面活性剤が好ましい。
 フッ素系界面活性剤の市販品としては、例えば、メガファック F-171、F-172、F-173、F-176、F-177、F-141、F-142、F-143、F-144、F-437、F-475、F-477、F-479、F-482、F-551-A、F-552、F-554、F-555-A、F-556、F-557、F-558、F-559、F-560、F-561、F-565、F-563、F-568、F-575、F-780、EXP、MFS-330、R-41、R-41-LM、R-01、R-40、R-40-LM、RS-43、TF-1956、RS-90、R-94、RS-72-K、DS-21(以上、DIC株式会社製)、フロラード FC430、FC431、FC171(以上、住友スリーエム(株)製)、サーフロンS-382、SC-101、SC-103、SC-104、SC-105、SC-1068、SC-381、SC-383、S-393、KH-40(以上、AGC(株)製)、PolyFox PF636、PF656、PF6320、PF6520、PF7002(以上、OMNOVA社製)、フタージェント 710FM、710FL、610FM、601AD、601ADH2、602A、215M、245F、251、212M、250、209F、222F、208G、710LA、710FS、730LM、650AC、681(以上、(株)NEOS製)等が挙げられる。
 また、フッ素系界面活性剤としては、フッ素原子を含有する官能基を持つ分子構造を有し、熱を加えるとフッ素原子を含有する官能基の部分が切断されてフッ素原子が揮発するアクリル系化合物も好適に使用できる。このようなフッ素系界面活性剤としては、DIC(株)製のメガファック DSシリーズ(化学工業日報(2016年2月22日)、日経産業新聞(2016年2月23日))、例えばメガファック DS-21が挙げられる。
 また、フッ素系界面活性剤としては、フッ素化アルキル基またはフッ素化アルキレンエーテル基を有するフッ素原子含有ビニルエーテル化合物と、親水性のビニルエーテル化合物との重合体を用いることも好ましい。
 また、フッ素系界面活性剤としては、ブロックポリマーも使用できる。
 また、フッ素系界面活性剤としては、フッ素原子を有する(メタ)アクリレート化合物に由来する構成単位と、アルキレンオキシ基(好ましくはエチレンオキシ基、プロピレンオキシ基)を2以上(好ましくは5以上)有する(メタ)アクリレート化合物に由来する構成単位と、を含む含フッ素高分子化合物も好ましく使用できる。
 また、フッ素系界面活性剤としては、エチレン性不飽和結合含有基を側鎖に有する含フッ素重合体も使用できる。メガファック RS-101、RS-102、RS-718K、RS-72-K(以上、DIC株式会社製)等が挙げられる。
 フッ素界面活性剤としては、環境適性向上の観点から、パーフルオロオクタン酸(PFOA)及びパーフルオロオクタンスルホン酸(PFOS)等の炭素数が7以上のパーフルオロアルキル基を有する化合物の代替材料に由来する界面活性剤であることが好ましい。
 ノニオン系界面活性剤としては、グリセロール、トリメチロールプロパン、トリメチロールエタン並びにそれらのエトキシレート及びプロポキシレート(例えば、グリセロールプロポキシレート、グリセロールエトキシレート等)、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート、ソルビタン脂肪酸エステル、プルロニック(登録商標) L10、L31、L61、L62、10R5、17R2、25R2(以上、BASF社製)、テトロニック 304、701、704、901、904、150R1(以上、BASF社製)、ソルスパース 20000(以上、日本ルーブリゾール(株)製)、NCW-101、NCW-1001、NCW-1002(以上、富士フイルム和光純薬(株)製)、パイオニン D-6112、D-6112-W、D-6315(以上、竹本油脂(株)製)、オルフィンE1010、サーフィノール104、400、440(以上、日信化学工業(株)製)等が挙げられる。
As the surfactant, fluorine-based surfactants or silicone-based surfactants are preferred.
Commercially available fluorosurfactants include Megafac F-171, F-172, F-173, F-176, F-177, F-141, F-142, F-143, F-144. , F-437, F-475, F-477, F-479, F-482, F-551-A, F-552, F-554, F-555-A, F-556, F-557, F -558, F-559, F-560, F-561, F-565, F-563, F-568, F-575, F-780, EXP, MFS-330, R-41, R-41-LM , R-01, R-40, R-40-LM, RS-43, TF-1956, RS-90, R-94, RS-72-K, DS-21 (manufactured by DIC Corporation), Florado FC430, FC431, FC171 (manufactured by Sumitomo 3M Ltd.), Surflon S-382, SC-101, SC-103, SC-104, SC-105, SC-1068, SC-381, SC-383, S -393, KH-40 (manufactured by AGC Corporation), PolyFox PF636, PF656, PF6320, PF6520, PF7002 (manufactured by OMNOVA), Ftergent 710FM, 710FL, 610FM, 601AD, 601ADH2, 602A, 215M, Examples include 245F, 251, 212M, 250, 209F, 222F, 208G, 710LA, 710FS, 730LM, 650AC, and 681 (all manufactured by NEOS Corporation).
In addition, fluorine-based surfactants include acrylic compounds that have a molecular structure with a functional group containing a fluorine atom, and when heat is applied, the functional group containing the fluorine atom is severed and the fluorine atom evaporates. can also be suitably used. Examples of such fluorine-based surfactants include the Megafac DS series manufactured by DIC Corporation (Kagaku Kogyo Nippo (February 22, 2016), Nikkei Sangyo Shimbun (February 23, 2016)); An example is DS-21.
Further, as the fluorine-based surfactant, it is also preferable to use a polymer of a fluorine atom-containing vinyl ether compound having a fluorinated alkyl group or a fluorinated alkylene ether group and a hydrophilic vinyl ether compound.
Furthermore, block polymers can also be used as the fluorosurfactant.
In addition, the fluorine-based surfactant has a structural unit derived from a (meth)acrylate compound having a fluorine atom and two or more (preferably five or more) alkyleneoxy groups (preferably ethyleneoxy groups, propyleneoxy groups). A fluorine-containing polymer compound containing a structural unit derived from a (meth)acrylate compound can also be preferably used.
Furthermore, as the fluorine-containing surfactant, a fluorine-containing polymer having an ethylenically unsaturated bond-containing group in its side chain can also be used. Examples include Megafac RS-101, RS-102, RS-718K, and RS-72-K (manufactured by DIC Corporation).
From the perspective of improving environmental suitability, fluorosurfactants are derived from alternative materials for compounds with perfluoroalkyl groups having 7 or more carbon atoms, such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS). Preferably, it is a surfactant that
Examples of nonionic surfactants include glycerol, trimethylolpropane, trimethylolethane, and their ethoxylates and propoxylates (e.g., glycerol propoxylate, glycerol ethoxylate, etc.), polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, Polyoxyethylene oleyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol distearate, sorbitan fatty acid ester, Pluronic (registered trademark) L10, L31, L61, L62, 10R5, 17R2 , 25R2 (manufactured by BASF), Tetronic 304, 701, 704, 901, 904, 150R1 (manufactured by BASF), Solsperse 20000 (manufactured by Japan Lubrizol Co., Ltd.), NCW-101, NCW -1001, NCW-1002 (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), Pionin D-6112, D-6112-W, D-6315 (manufactured by Takemoto Yushi Co., Ltd.), Orfin E1010, Surfynol 104, 400, 440 (all manufactured by Nissin Chemical Industry Co., Ltd.), and the like.
 シリコーン系界面活性剤としては、シロキサン結合からなる直鎖状ポリマー、及び、側鎖や末端に有機基を導入した変性シロキサンポリマーが挙げられる。 Examples of silicone surfactants include linear polymers consisting of siloxane bonds and modified siloxane polymers with organic groups introduced into side chains or terminals.
 界面活性剤の具体例としては、DOWSIL 8032 ADDITIVE、トーレシリコーンDC3PA、トーレシリコーンSH7PA、トーレシリコーンDC11PA、トーレシリコーンSH21PA、トーレシリコーンSH28PA、トーレシリコーンSH29PA、トーレシリコーンSH30PA、トーレシリコーンSH8400(以上、東レ・ダウコーニング(株)製)並びに、X-22-4952、X-22-4272、X-22-6266、KF-351A、K354L、KF-355A、KF-945、KF-640、KF-642、KF-643、X-22-6191、X-22-4515、KF-6004、KP-341、KF-6001、KF-6002(以上、信越シリコーン株式会社製)、F-4440、TSF-4300、TSF-4445、TSF-4460、TSF-4452(以上、モメンティブ・パフォーマンス・マテリアルズ社製)、BYK307、BYK323、BYK330(以上、ビックケミー社製)等が挙げられる。 Specific examples of surfactants include DOWSIL 8032 ADDITIVE, Tore Silicone DC3PA, Tore Silicone SH7PA, Tore Silicone DC11PA, Tore Silicone SH21PA, Tore Silicone SH28PA, Tore Silicone SH29PA, Tore Silicone SH30PA, Tore Silicone SH 8400 (or more, Toray Dow (manufactured by Corning Corporation), X-22-4952, X-22-4272, 643, X-22-6191, X-22-4515, KF-6004, KP-341, KF-6001, KF-6002 (manufactured by Shin-Etsu Silicone Co., Ltd.), F-4440, TSF-4300, TSF-4445 , TSF-4460, TSF-4452 (manufactured by Momentive Performance Materials), BYK307, BYK323, BYK330 (manufactured by BYK Chemie), and the like.
 界面活性剤は、1種単独で使用してもよいし、2種以上を併用することもできる。
 感光性層が界面活性剤を含む場合、界面活性剤の含有量は、感光性層の全質量に対して、0.01~3.0質量%が好ましく、0.01~1.0質量%がより好ましく、0.05~0.80質量%が更に好ましい。
The surfactants may be used alone or in combination of two or more.
When the photosensitive layer contains a surfactant, the content of the surfactant is preferably 0.01 to 3.0% by mass, and 0.01 to 1.0% by mass based on the total mass of the photosensitive layer. is more preferable, and even more preferably 0.05 to 0.80% by mass.
-重合禁止剤-
 感光性層は、重合禁止剤を含んでいてもよい。
 重合禁止剤とは、重合反応を遅延又は禁止させる機能を有する化合物を意味する。重合禁止剤としては、例えば、重合禁止剤として用いられる公知の化合物を使用できる。
-Polymerization inhibitor-
The photosensitive layer may contain a polymerization inhibitor.
A polymerization inhibitor means a compound that has the function of delaying or inhibiting a polymerization reaction. As the polymerization inhibitor, for example, known compounds used as polymerization inhibitors can be used.
 重合禁止剤としては、例えば、フェノチアジン、ビス-(1-ジメチルベンジル)フェノチアジン、及び3,7-ジオクチルフェノチアジン等のフェノチアジン化合物;ビス[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオン酸][エチレンビス(オキシエチレン)]2,4-ビス〔(ラウリルチオ)メチル〕-o-クレゾール、1,3,5-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、及びペンタエリスリトールテトラキス3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート等のヒンダードフェノール化合物;4-ニトロソフェノール、N-ニトロソジフェニルアミン、N-ニトロソシクロヘキシルヒドロキシルアミン、及びN-ニトロソフェニルヒドロキシルアミン等のニトロソ化合物又はその塩;メチルハイドロキノン、t-ブチルハイドロキノン、2,5-ジ-t-ブチルハイドロキノン、及び4-ベンゾキノン等のキノン化合物;4-メトキシフェノール、4-メトキシ-1-ナフトール、及びt-ブチルカテコール等のフェノール化合物;ジブチルジチオカルバミン酸銅、ジエチルジチオカルバミン酸銅、ジエチルジチオカルバミン酸マンガン、及びジフェニルジチオカルバミン酸マンガン等の金属塩化合物が挙げられる。
 なかでも、本発明の効果がより優れる点で、重合禁止剤としては、フェノチアジン化合物、ニトロソ化合物又はその塩、及びヒンダードフェノール化合物からなる群より選ばれる少なくとも1種が好ましく、フェノチアジン、ビス[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオン酸][エチレンビス(オキシエチレン)]2,4-ビス〔(ラウリルチオ)メチル〕-o-クレゾール、1,3,5-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)、及びN-ニトロソフェニルヒドロキシルアミンアルミニウム塩がより好ましい。
Examples of the polymerization inhibitor include phenothiazine compounds such as phenothiazine, bis-(1-dimethylbenzyl)phenothiazine, and 3,7-dioctylphenothiazine; bis[3-(3-tert-butyl-4-hydroxy-5-methyl); phenyl)propionic acid][ethylenebis(oxyethylene)]2,4-bis[(laurylthio)methyl]-o-cresol, 1,3,5-tris(3,5-di-t-butyl-4-hydroxy benzyl), 1,3,5-tris(4-t-butyl-3-hydroxy-2,6-dimethylbenzyl), 2,4-bis-(n-octylthio)-6-(4-hydroxy-3, Hindered phenol compounds such as 5-di-tert-butylanilino)-1,3,5-triazine, and pentaerythritol tetrakis 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate; 4-nitroso Nitroso compounds or salts thereof such as phenol, N-nitrosodiphenylamine, N-nitrosocyclohexylhydroxylamine, and N-nitrosophenylhydroxylamine; methylhydroquinone, t-butylhydroquinone, 2,5-di-t-butylhydroquinone, and 4 - Quinone compounds such as benzoquinone; phenolic compounds such as 4-methoxyphenol, 4-methoxy-1-naphthol, and t-butylcatechol; copper dibutyldithiocarbamate, copper diethyldithiocarbamate, manganese diethyldithiocarbamate, and manganese diphenyldithiocarbamate Examples include metal salt compounds such as.
Among them, in terms of the superior effects of the present invention, the polymerization inhibitor is preferably at least one selected from the group consisting of phenothiazine compounds, nitroso compounds or salts thereof, and hindered phenol compounds; -(3-tert-butyl-4-hydroxy-5-methylphenyl)propionic acid][ethylenebis(oxyethylene)]2,4-bis[(laurylthio)methyl]-o-cresol, 1,3,5- More preferred are tris(3,5-di-t-butyl-4-hydroxybenzyl) and N-nitrosophenylhydroxylamine aluminum salt.
 重合禁止剤は、1種単独で使用してもよいし、2種以上を併用することもできる。
 感光性層が重合禁止剤を含む場合、重合禁止剤の含有量は、感光性層の全質量に対して、0.001~5.0質量%が好ましく、0.01~3.0質量%がより好ましく、0.02~2.0質量%が更に好ましい。重合禁止剤の含有量は、重合性化合物全質量に対しては、0.005~5.0質量%が好ましく、0.01~3.0質量%がより好ましく、0.01~1.0質量%が更に好ましい。
The polymerization inhibitors may be used alone or in combination of two or more.
When the photosensitive layer contains a polymerization inhibitor, the content of the polymerization inhibitor is preferably 0.001 to 5.0% by mass, and 0.01 to 3.0% by mass based on the total mass of the photosensitive layer. is more preferable, and even more preferably 0.02 to 2.0% by mass. The content of the polymerization inhibitor is preferably 0.005 to 5.0% by mass, more preferably 0.01 to 3.0% by mass, and 0.01 to 1.0% by mass based on the total mass of the polymerizable compound. Mass % is more preferred.
-水素供与性化合物-
 感光性層は、水素供与性化合物を含んでいてもよい。
 水素供与性化合物は、光重合開始剤の活性光線に対する感度を一層向上させる、及び、酸素による重合性化合物の重合阻害を抑制する等の作用を有する。
-Hydrogen donating compound-
The photosensitive layer may contain a hydrogen donating compound.
The hydrogen-donating compound has effects such as further improving the sensitivity of the photopolymerization initiator to actinic rays and suppressing inhibition of polymerization of the polymerizable compound by oxygen.
 水素供与性化合物としては、例えば、アミン類及びアミノ酸化合物が挙げられる。 Examples of hydrogen-donating compounds include amines and amino acid compounds.
 アミン類としては、例えば、M.R.Sanderら著「Journal of Polymer Society」第10巻3173頁(1972)、特公昭44-020189号公報、特開昭51-082102号公報、特開昭52-134692号公報、特開昭59-138205号公報、特開昭60-084305号公報、特開昭62-018537号公報、特開昭64-033104号公報、及びResearch Disclosure 33825号等に記載の化合物が挙げられる。より具体的には、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、トリス(4-ジメチルアミノフェニル)メタン(別名:ロイコクリスタルバイオレット)、トリエタノールアミン、p-ジメチルアミノ安息香酸エチルエステル、p-ホルミルジメチルアニリン、及びp-メチルチオジメチルアニリンが挙げられる。
 なかでも、本発明の効果がより優れる点で、アミン類としては、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、及びトリス(4-ジメチルアミノフェニル)メタンからなる群より選ばれる少なくとも1種が好ましい。
Examples of amines include M. R. "Journal of Polymer Society" Vol. 10, p. 3173 (1972) by Sander et al. Examples include compounds described in JP-A-60-084305, JP-A-62-018537, JP-A-64-033104, and Research Disclosure 33825. More specifically, 4,4'-bis(diethylamino)benzophenone, tris(4-dimethylaminophenyl)methane (also known as leuco crystal violet), triethanolamine, p-dimethylaminobenzoic acid ethyl ester, p-formyl Dimethylaniline and p-methylthiodimethylaniline are mentioned.
Among them, the amine is preferably at least one selected from the group consisting of 4,4'-bis(diethylamino)benzophenone and tris(4-dimethylaminophenyl)methane, in that the effects of the present invention are more excellent. .
 アミノ酸化合物としては、例えば、N-フェニルグリシン、N-メチル-N-フェニルグリシン、N-エチル-N-フェニルグリシンが挙げられる。
 なかでも、本発明の効果がより優れる点で、アミノ酸化合物としては、N-フェニルグリシンが好ましい。
Examples of the amino acid compound include N-phenylglycine, N-methyl-N-phenylglycine, and N-ethyl-N-phenylglycine.
Among these, N-phenylglycine is preferred as the amino acid compound since it provides better effects of the present invention.
 また、水素供与性化合物としては、例えば、特公昭48-042965号公報に記載の有機金属化合物(トリブチル錫アセテート等)、特公昭55-034414号公報に記載の水素供与体、及び特開平6-308727号公報に記載のイオウ化合物(トリチアン等)も挙げられる。 Examples of hydrogen-donating compounds include organometallic compounds (tributyltin acetate, etc.) described in Japanese Patent Publication No. 48-042965, hydrogen donors described in Japanese Patent Publication No. 55-034414, and Sulfur compounds (such as trithiane) described in Japanese Patent No. 308727 may also be mentioned.
 水素供与性化合物は、1種単独で使用してもよいし、2種以上を併用することもできる。
 感光性層が水素供与性化合物を含む場合、水素供与性化合物の含有量は、重合成長速度と連鎖移動のバランスとによる硬化速度の向上の点から、感光性層の全質量に対して、0.01~10.0質量%が好ましく、0.01~8.0質量%がより好ましく、0.03~5.0質量%が更に好ましい。
The hydrogen donating compounds may be used alone or in combination of two or more.
When the photosensitive layer contains a hydrogen-donating compound, the content of the hydrogen-donating compound is 0 with respect to the total mass of the photosensitive layer, from the viewpoint of improving the curing rate due to the balance between polymerization growth rate and chain transfer. The content is preferably from .01 to 10.0% by weight, more preferably from 0.01 to 8.0% by weight, even more preferably from 0.03 to 5.0% by weight.
-残存モノマー-
 感光性層は、上述したアルカリ可溶性樹脂の各構成単位の残存モノマーを含む場合がある。
 残存モノマーの含有量は、パターニング性及び信頼性の点から、アルカリ可溶性樹脂全質量に対して、5,000質量ppm以下が好ましく、2,000質量ppm以下がより好ましく、500質量ppm以下が更に好ましい。下限は特に制限されないが、1質量ppm以上が好ましく、10質量ppm以上がより好ましい。
 アルカリ可溶性樹脂の各構成単位の残存モノマーは、パターニング性及び信頼性の点から、感光性層の全質量に対して、3,000質量ppm以下が好ましく、600質量ppm以下がより好ましく、100質量ppm以下が更に好ましい。下限は特に制限されないが、0.1質量ppm以上が好ましく、1質量ppm以上がより好ましい。
-Residual monomer-
The photosensitive layer may contain residual monomers of each structural unit of the alkali-soluble resin described above.
From the point of patterning properties and reliability, the content of the residual monomer is preferably 5,000 mass ppm or less, more preferably 2,000 mass ppm or less, and still more preferably 500 mass ppm or less, based on the total mass of the alkali-soluble resin. preferable. The lower limit is not particularly limited, but is preferably at least 1 ppm by mass, more preferably at least 10 ppm by mass.
The residual monomer of each structural unit of the alkali-soluble resin is preferably 3,000 mass ppm or less, more preferably 600 mass ppm or less, and 100 mass ppm or less, based on the total mass of the photosensitive layer, from the viewpoint of patterning properties and reliability. More preferably, it is less than ppm. Although the lower limit is not particularly limited, it is preferably 0.1 mass ppm or more, and more preferably 1 mass ppm or more.
 高分子反応でアルカリ可溶性樹脂を合成する際のモノマーの残存モノマー量も、上記範囲とすることが好ましい。例えば、カルボン酸側鎖にアクリル酸グリシジルを反応させてアルカリ可溶性樹脂を合成する場合には、アクリル酸グリシジルの含有量を上記範囲にすることが好ましい。
 残存モノマーの量は、液体クロマトグラフィー及びガスクロマトグラフィー等の公知の方法で測定できる。
It is also preferable that the amount of residual monomers in the synthesis of the alkali-soluble resin by polymer reaction is within the above range. For example, when synthesizing an alkali-soluble resin by reacting glycidyl acrylate with a carboxylic acid side chain, the content of glycidyl acrylate is preferably within the above range.
The amount of residual monomer can be measured by known methods such as liquid chromatography and gas chromatography.
-その他の成分-
 感光性層は、既述の成分以外の成分(以下、「他の成分」ともいう。)を含んでいてもよい。他の成分としては、例えば、粒子(例えば、金属酸化物粒子)、着色剤、酸化防止剤、反射性調整剤、光吸収性物質、増感剤、及び連鎖移動剤が挙げられる。また、他の成分としては、特開2000-310706号公報の段落[0058]~[0071]に記載のその他の添加剤も挙げられる。
-Other ingredients-
The photosensitive layer may contain components other than those described above (hereinafter also referred to as "other components"). Other components include, for example, particles (eg, metal oxide particles), colorants, antioxidants, reflectance modifiers, light-absorbing substances, sensitizers, and chain transfer agents. Further, other components include other additives described in paragraphs [0058] to [0071] of JP-A-2000-310706.
--粒子--
 粒子としては、金属酸化物粒子が好ましい。
 金属酸化物粒子における金属には、B、Si、Ge、As、Sb、及びTe等の半金属も含まれる。
 粒子の平均一次粒子径は、例えば、硬化膜の透明性の点から、1~200nmが好ましく、3~80nmがより好ましい。
 粒子の平均一次粒子径は、電子顕微鏡を用いて任意の粒子200個の粒子径を測定し、測定結果を算術平均することにより算出される。なお、粒子の形状が球形でない場合には、最も長い辺を粒子径とする。
--particle--
As the particles, metal oxide particles are preferred.
Metals in the metal oxide particles also include semimetals such as B, Si, Ge, As, Sb, and Te.
The average primary particle diameter of the particles is, for example, preferably 1 to 200 nm, more preferably 3 to 80 nm, from the viewpoint of transparency of the cured film.
The average primary particle diameter of the particles is calculated by measuring the particle diameter of 200 arbitrary particles using an electron microscope and taking the arithmetic average of the measurement results. In addition, when the shape of the particle is not spherical, the longest side is taken as the particle diameter.
--着色剤--
 感光性層は、微量の着色剤(顔料、染料等)を含んでいてもよい。
--Coloring agent--
The photosensitive layer may contain trace amounts of colorants (pigments, dyes, etc.).
--酸化防止剤--
 酸化防止剤としては、例えば、1-フェニル-3-ピラゾリドン(別名:フェニドン)、1-フェニル-4,4-ジメチル-3-ピラゾリドン、及び1-フェニル-4-メチル-4-ヒドロキシメチル-3-ピラゾリドン等の3-ピラゾリドン類;ハイドロキノン、カテコール、ピロガロール、メチルハイドロキノン、及びクロルハイドロキノン等のポリヒドロキシベンゼン類;パラメチルアミノフェノール、パラアミノフェノール、パラヒドロキシフェニルグリシン、及びパラフェニレンジアミンが挙げられる。
 なかでも、本発明の効果がより優れる点で、酸化防止剤としては、3-ピラゾリドン類が好ましく、1-フェニル-3-ピラゾリドンがより好ましい。
--Antioxidant--
Examples of antioxidants include 1-phenyl-3-pyrazolidone (also known as phenidone), 1-phenyl-4,4-dimethyl-3-pyrazolidone, and 1-phenyl-4-methyl-4-hydroxymethyl-3. - 3-pyrazolidones such as pyrazolidone; polyhydroxybenzenes such as hydroquinone, catechol, pyrogallol, methylhydroquinone, and chlorohydroquinone; paramethylaminophenol, paraaminophenol, parahydroxyphenylglycine, and paraphenylenediamine.
Among these, 3-pyrazolidones are preferable as the antioxidant, and 1-phenyl-3-pyrazolidone is more preferable, since the effects of the present invention are more excellent.
-反射性調整剤-
 感光性層は、白色顔料、金属粒子、中空粒子、及び液晶化合物(特にコレステリック液晶化合物の顔料粒子)からなる群から選ばれる1種以上の反射性調整剤を含むのが好ましい。感光性層が反射性調整剤を含む場合、光反射層前駆体層とすることができる。
 感光性層が反射性調整剤を含む場合、本発明の第1実施形態により形成される積層体の樹脂パターンは、光反射性がより一層優れる。なお、感光性層が白色顔料や中空粒子を含む場合、感光性層が白色層となり易く、後述する特性X1の光反射層が得られやすい。一方で、感光性層が金属粒子又は液晶化合物(特にコレステリック液晶化合物の顔料粒子)を含む場合、金属粒子又は液晶化合物に起因する反射性によって後述する特性X2及び特性X3の光反射層が得られやすい。
-Reflectivity modifier-
The photosensitive layer preferably contains one or more reflectivity modifiers selected from the group consisting of white pigments, metal particles, hollow particles, and liquid crystal compounds (particularly pigment particles of cholesteric liquid crystal compounds). When the photosensitive layer contains a reflectance modifier, it can be used as a light reflective layer precursor layer.
When the photosensitive layer contains a reflectivity modifier, the resin pattern of the laminate formed according to the first embodiment of the present invention has even better light reflectivity. In addition, when the photosensitive layer contains a white pigment or hollow particles, the photosensitive layer is likely to become a white layer, and a light reflecting layer having the characteristic X1 described below is likely to be obtained. On the other hand, when the photosensitive layer contains metal particles or a liquid crystal compound (particularly pigment particles of a cholesteric liquid crystal compound), a light reflecting layer having characteristics X2 and X3, which will be described later, can be obtained due to the reflectivity caused by the metal particles or liquid crystal compound. Cheap.
--白色顔料--
 白色顔料としては、酸化チタン、酸化亜鉛、リトポン、軽質炭酸カルシウム、ホワイトカーボン、酸化アルミニウム、水酸化アルミニウム、及び、硫酸バリウム等が挙げられる。また、白色顔料としては、本発明の効果がより優れる点で、感光性層が含む重合性化合物の硬化物よりも高い屈折率を示す粒子であるのが好ましく、なかでも、酸化チタンがより好ましく、ルチル型又はアナターゼ型の酸化チタンが更に好ましく、ルチル型酸化チタンが特に好ましい。
 白色顔料の表面は、シリカ処理、アルミナ処理、チタニア処理、ジルコニア処理、及び有機物処理等の処理が施されていてもよい。
 また、感光性層が白色顔料を含む場合、感光性層は、更に顔料分散剤を含んでいてもよい。
--White pigment--
Examples of the white pigment include titanium oxide, zinc oxide, lithopone, light calcium carbonate, white carbon, aluminum oxide, aluminum hydroxide, barium sulfate, and the like. In addition, as the white pigment, particles that exhibit a higher refractive index than the cured product of the polymerizable compound contained in the photosensitive layer are preferable in that the effects of the present invention are more excellent, and titanium oxide is particularly preferable. , rutile type or anatase type titanium oxide is more preferable, and rutile type titanium oxide is particularly preferable.
The surface of the white pigment may be subjected to treatments such as silica treatment, alumina treatment, titania treatment, zirconia treatment, and organic substance treatment.
Moreover, when the photosensitive layer contains a white pigment, the photosensitive layer may further contain a pigment dispersant.
 白色顔料の形状としては特に制限されず、例えば、球状、不定形、板状、針状、及び、多面体等が挙げられる。
 白色顔料の平均一次粒径としては特に制限されず、例えば、50~1000nmが好ましく、100~500nmがより好ましい。
 なお、白色顔料の平均一次粒子径は、透過型電子顕微鏡(TEM)による観測で任意の100個の粒子の直径を測定し、100個の直径の算術平均により求められる値である。また、白色顔料の直径とは、透過型電子顕微鏡(TEM)による観測画像を同面積の円としたときの直径をいう。
The shape of the white pigment is not particularly limited, and examples include spherical, amorphous, plate-like, acicular, and polyhedral shapes.
The average primary particle size of the white pigment is not particularly limited, and is preferably, for example, 50 to 1000 nm, more preferably 100 to 500 nm.
Note that the average primary particle diameter of the white pigment is a value determined by measuring the diameters of 100 arbitrary particles through observation using a transmission electron microscope (TEM) and taking the arithmetic mean of the 100 diameters. Further, the diameter of the white pigment refers to the diameter when an image observed by a transmission electron microscope (TEM) is a circle with the same area.
--金属粒子--
 金属粒子が含む金属の種類としては、高い反射性を有する点で、銀、ニッケル、コバルト、鉄、銅、パラジウム、金、白金、スズ、亜鉛、アルミニウム、タングステン、又はチタンが好ましく、銀、金、スズ、ニッケル、アルミニウム、又はコバルトがより好ましく、可視光領域でより高い反射性を示す点で、金、銀、又はアルミニウムが更に好ましく、銀が特に好ましい。
 金属粒子は、金属単体粒子であっても金属合金粒子であってもよい。なお、金属粒子が金属合金粒子である場合、金属合金粒子としては、上述の金属種のうちの2種以上の合金粒子であるのが好ましい。
--Metal particles--
The type of metal contained in the metal particles is preferably silver, nickel, cobalt, iron, copper, palladium, gold, platinum, tin, zinc, aluminum, tungsten, or titanium in terms of their high reflectivity. , tin, nickel, aluminum, or cobalt are more preferable, and gold, silver, or aluminum is even more preferable in that they exhibit higher reflectivity in the visible light region, and silver is particularly preferable.
The metal particles may be single metal particles or metal alloy particles. In addition, when the metal particles are metal alloy particles, it is preferable that the metal alloy particles are alloy particles of two or more of the above-mentioned metal types.
 金属粒子の形状としては特に制限されず、例えば、球状、不定形、板状、針状、及び、多面体等が挙げられる。
 金属粒子の平均一次粒径としては特に制限されず、例えば、1~5000nmが好ましく、5~1000nmがより好ましい。
 なお、金属粒子の平均一次粒子径は、透過型電子顕微鏡(TEM)による観測で任意の100個の粒子の直径を測定し、100個の直径の算術平均により求められる値である。また、金属粒子の直径とは、透過型電子顕微鏡(TEM)による観測画像を同面積の円としたときの直径をいう。
 金属粒子は、例えば、特開平10-183207号公報に開示されるように、有機金属化合物の還元等による方法で作製できる。
The shape of the metal particles is not particularly limited, and examples include spherical, amorphous, plate-like, acicular, and polyhedral shapes.
The average primary particle size of the metal particles is not particularly limited, and is preferably, for example, 1 to 5,000 nm, more preferably 5 to 1,000 nm.
Note that the average primary particle diameter of the metal particles is a value determined by measuring the diameters of 100 arbitrary particles by observation using a transmission electron microscope (TEM) and calculating the arithmetic mean of the 100 diameters. Further, the diameter of the metal particles refers to the diameter when an image observed by a transmission electron microscope (TEM) is a circle with the same area.
Metal particles can be produced, for example, by a method such as reduction of an organometallic compound, as disclosed in JP-A-10-183207.
--中空粒子--
 中空粒子は、内部に空洞を有する粒子であれば特に制限されず、例えば、中空無機粒子及び中空樹脂粒子が挙げられる。
 中空無機粒子としては、例えば、シリカ、アルミナ、ジルコニア、酸化チタン、及び、それらの複合酸化物からなる群から選ばれる金属酸化物によりシェル部が構成された中空無機粒子であるのが好ましい。
 中空樹脂粒子としては、スチレン系樹脂、アクリル系樹脂、シリコーン系樹脂、アクリル-スチレン系樹脂、塩化ビニル系樹脂、塩化ビニリデン系樹脂、アミド系樹脂、ウレタン系樹脂、フェノール系樹脂、スチレン-共役ジエン系樹脂、アクリル-共役ジエン系樹脂、及びオレフィン系樹脂等のポリマー、並びにこれらポリマーの架橋体等の有機物によりシェル部が構成された中空樹脂粒子が挙げられる。
 中空粒子は、例えば、プラズマ放電処理及びコロナ放電処理等の物理的表面処理、又は、界面活性剤及びカップリング剤等による化学的表面処理がなされていてもよい。
--Hollow particles--
The hollow particles are not particularly limited as long as they have a cavity inside, and examples thereof include hollow inorganic particles and hollow resin particles.
The hollow inorganic particles are preferably hollow inorganic particles whose shell portions are made of a metal oxide selected from the group consisting of silica, alumina, zirconia, titanium oxide, and composite oxides thereof.
Examples of hollow resin particles include styrene resin, acrylic resin, silicone resin, acrylic-styrene resin, vinyl chloride resin, vinylidene chloride resin, amide resin, urethane resin, phenol resin, and styrene-conjugated diene. Polymers such as acrylic-based resins, acrylic-conjugated diene-based resins, and olefin-based resins, as well as hollow resin particles whose shell portions are made of organic substances such as crosslinked products of these polymers, can be mentioned.
The hollow particles may be subjected to physical surface treatments such as plasma discharge treatment and corona discharge treatment, or chemical surface treatments using surfactants, coupling agents, and the like.
 中空粒子の形状は特に制限されず、例えば、球状、破砕状、繊維状、針状、及び、鱗片状等が挙げられる。
 中空粒子の平均一次粒径としては特に制限されず、例えば、50~5000nmが好ましく、100~1000nmがより好ましい。
 なお、中空粒子の平均一次粒子径は、透過型電子顕微鏡(TEM)による観測で任意の100個の粒子の直径を測定し、100個の直径の算術平均により求められる値である。また、中空粒子の直径とは、透過型電子顕微鏡(TEM)による観測画像を同面積の円としたときの直径をいう。
The shape of the hollow particles is not particularly limited, and examples include spherical, crushed, fibrous, acicular, and scaly shapes.
The average primary particle size of the hollow particles is not particularly limited, and is preferably, for example, 50 to 5000 nm, more preferably 100 to 1000 nm.
Note that the average primary particle diameter of the hollow particles is a value obtained by measuring the diameters of 100 arbitrary particles by observation using a transmission electron microscope (TEM) and calculating the arithmetic mean of the 100 diameters. Further, the diameter of the hollow particles refers to the diameter when an image observed by a transmission electron microscope (TEM) is a circle with the same area.
--液晶化合物--
 液晶化合物としては、液晶性を有する化合物が挙げられる。なお、液晶化合物は、所定の配向状態で固定されていてもよい。つまり、感光性層は、配向した重合性液晶化合物を重合してなる重合体を含んでいてもよい。上記重合体においては、配向状態が固定されている。
 液晶化合物としては、反射性がより優れる点で、コレステリック液晶配向した重合性液晶化合物を重合してなる重合体(言い換えると、コレステリック液晶配向が固定化された重合体)であるのが好ましい。コレステリック液晶配向が固定化された重合体は、ネマチック液晶性化合物とキラル剤を含むコレステリック液晶組成物を用い、コレステリック液晶相を呈した状態で液晶組成物を硬化させることで得られる。コレステリック液晶配向が固定化された重合体は、通常円偏光を選択的に反射する円偏光選択反射機能を有する。
 また、感光性層中、コレステリック液晶配向が固定化された重合体は、液晶粒子の形態で含まれているのが好ましい。換言すると、感光性層は、コレステリック液晶配向が固定化された重合体からなる液晶粒子を含んでいるのが好ましい。
 液晶粒子の形状は特に限定されないが、分散性がより優れる点で、フレークであるのが好ましい。フレークの平均一次粒子径としては、例えば、1~120μmが好ましく、1~100μmがより好ましい。
 なお、液晶粒子の平均一次粒子径は、透過型電子顕微鏡(TEM)による観測で任意の100個の粒子の直径を測定し、100個の直径の算術平均により求められる値である。また、液晶粒子の直径とは、透過型電子顕微鏡(TEM)による観測画像を同面積の円としたときの直径をいう。
--Liquid crystal compound--
Examples of the liquid crystal compound include compounds having liquid crystal properties. Note that the liquid crystal compound may be fixed in a predetermined alignment state. That is, the photosensitive layer may contain a polymer obtained by polymerizing an oriented polymerizable liquid crystal compound. In the above polymer, the orientation state is fixed.
As the liquid crystal compound, a polymer obtained by polymerizing a polymerizable liquid crystal compound with cholesteric liquid crystal alignment (in other words, a polymer with fixed cholesteric liquid crystal alignment) is preferable because it has better reflectivity. A polymer with a fixed cholesteric liquid crystal orientation can be obtained by using a cholesteric liquid crystal composition containing a nematic liquid crystal compound and a chiral agent and curing the liquid crystal composition in a state exhibiting a cholesteric liquid crystal phase. A polymer in which cholesteric liquid crystal alignment is fixed usually has a circularly polarized light selective reflection function that selectively reflects circularly polarized light.
Further, it is preferable that the polymer in which the cholesteric liquid crystal alignment is fixed is contained in the photosensitive layer in the form of liquid crystal particles. In other words, the photosensitive layer preferably contains liquid crystal particles made of a polymer with fixed cholesteric liquid crystal orientation.
Although the shape of the liquid crystal particles is not particularly limited, flakes are preferable since they have better dispersibility. The average primary particle diameter of the flakes is, for example, preferably 1 to 120 μm, more preferably 1 to 100 μm.
Note that the average primary particle diameter of the liquid crystal particles is a value determined by measuring the diameters of 100 arbitrary particles through observation using a transmission electron microscope (TEM) and taking the arithmetic mean of the 100 diameters. Further, the diameter of the liquid crystal particles refers to the diameter when an image observed by a transmission electron microscope (TEM) is a circle with the same area.
 液晶粒子の市販品としては、例えば、「HELICONE HC Sapphire」、「HELICONE HC Aquarius」、「HELICONE HC Scarabeus」、「HELICONE HC Jade」、及び「HELICONE HC Maple」(いずれも旭化成ワッカーシリコーン社製)等が挙げられる。 Commercially available liquid crystal particles include, for example, "HELICONE HC Sapphire," "HELICONE HC Aquarius," "HELICONE HC Scarabeus," "HELICONE HC Jade," and "HELICONE HC Aquarius." ICONE HC Maple” (all manufactured by Asahi Kasei Wacker Silicone Co., Ltd.), etc. can be mentioned.
 感光性層が反射性調整剤を含む場合、反射性調整剤の含有量は、感光性層の全質量に対して、10~90質量%が好ましく、20~85質量%がより好ましく、30~80質量%が更に好ましい。
 特に、反射性調整剤が白色顔料を含む場合、白色顔料の含有量は、感光性層の全質量に対して、30~80質量%が好ましく、40~70質量%がより好ましい。また、反射性調整剤が金属粒子を含む場合、金属粒子の含有量は、感光性層の全質量に対して、20~95質量%が好ましく、30~90質量%がより好ましい。また、反射性調整剤が中空粒子を含む場合、中空粒子の含有量は、感光性層の全質量に対して、20~80質量%が好ましく、30~70質量%がより好ましい。また、反射性調整剤が液晶化合物(好ましくは液晶粒子)を含む場合、液晶化合物(好ましくは液晶粒子)の含有量は、感光性層の全質量に対して、10~90質量%が好ましく、20~80質量%がより好ましく、30~70質量%が更に好ましい。
When the photosensitive layer contains a reflection modifier, the content of the reflection modifier is preferably 10 to 90% by mass, more preferably 20 to 85% by mass, and 30 to 85% by mass, based on the total mass of the photosensitive layer. 80% by mass is more preferred.
In particular, when the reflectivity modifier contains a white pigment, the content of the white pigment is preferably 30 to 80% by mass, more preferably 40 to 70% by mass, based on the total mass of the photosensitive layer. Further, when the reflectance modifier contains metal particles, the content of the metal particles is preferably 20 to 95% by mass, more preferably 30 to 90% by mass, based on the total mass of the photosensitive layer. Further, when the reflectance modifier contains hollow particles, the content of the hollow particles is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, based on the total mass of the photosensitive layer. Further, when the reflectivity modifier contains a liquid crystal compound (preferably liquid crystal particles), the content of the liquid crystal compound (preferably liquid crystal particles) is preferably 10 to 90% by mass based on the total mass of the photosensitive layer. More preferably 20 to 80% by weight, even more preferably 30 to 70% by weight.
-光吸収性物質-
 感光性層は、光吸収性物質を含むのも好ましい。感光性層が光吸収性物質を含む場合、光吸収層前駆体層が形成され得る。
 感光性層が光吸収性物質を含む場合、本発明の第1実施形態により形成される積層体の樹脂パターンの外光反射性が低減し、及び/又は、発光素子を点灯したときに発生し得る迷光が吸収され易く、結果として、発光素子の非点灯時において黒締まりがより優れる。なお、感光性層が光吸収性物質を含む場合、後述する特性Y1及び/又は特性Y2の光吸収層が得られやすい。
-Light absorbing substance-
It is also preferred that the photosensitive layer contains a light-absorbing substance. When the photosensitive layer contains a light-absorbing substance, a light-absorbing layer precursor layer may be formed.
When the photosensitive layer contains a light-absorbing substance, the external light reflectivity of the resin pattern of the laminate formed according to the first embodiment of the present invention is reduced, and/or the external light reflectivity is reduced when the light emitting element is turned on. The obtained stray light is easily absorbed, and as a result, the black density is better when the light emitting element is not lit. Note that when the photosensitive layer contains a light-absorbing substance, a light-absorbing layer having characteristics Y1 and/or Y2, which will be described later, is likely to be obtained.
 光吸収性物質としては特に制限されず、例えば、黒色顔料が挙げられ、具体的には、カーボンブラック、チタンブラック、チタンカーボン、酸化鉄、酸化チタン、及び黒鉛等が挙げられ、カーボンブラックがより好ましい。 The light-absorbing substance is not particularly limited, and examples thereof include black pigments, and specific examples thereof include carbon black, titanium black, titanium carbon, iron oxide, titanium oxide, and graphite, with carbon black being more preferred. preferable.
 光吸収性物質が黒色顔料である場合、その形状としては特に制限されず、例えば、球状、不定形、板状、針状、及び多面体等が挙げられる。
 光吸収性物質の平均一次粒径としては特に制限されず、例えば、1~1000nmが好ましく、2~500nmがより好ましい。
 なお、光吸収性物質の平均一次粒子径は、透過型電子顕微鏡(TEM)による観測で任意の100個の粒子の直径を測定し、100個の直径の算術平均により求められる値である。また、光吸収性物質の直径とは、透過型電子顕微鏡(TEM)による観測画像を同面積の円としたときの直径をいう。
 光吸収性物質は、例えば、プラズマ放電処理及びコロナ放電処理等の物理的表面処理、又は、界面活性剤、カップリング剤、及び樹脂等による化学的表面処理がなされていてもよい。
When the light-absorbing substance is a black pigment, its shape is not particularly limited, and examples include spherical, amorphous, plate-like, needle-like, and polyhedral.
The average primary particle size of the light-absorbing substance is not particularly limited, and is preferably, for example, 1 to 1000 nm, more preferably 2 to 500 nm.
Note that the average primary particle diameter of the light-absorbing substance is a value determined by measuring the diameters of 100 arbitrary particles through observation using a transmission electron microscope (TEM) and taking the arithmetic mean of the 100 diameters. Further, the diameter of the light-absorbing substance refers to the diameter when an image observed by a transmission electron microscope (TEM) is a circle with the same area.
The light-absorbing substance may be subjected to physical surface treatments such as plasma discharge treatment and corona discharge treatment, or chemical surface treatments using surfactants, coupling agents, resins, and the like.
 また、光吸収性物質は、黒色染料のほか、露光や加熱等の作用によって黒色化する化合物等も挙げられる。露光や加熱等の作用によって黒色化する化合物としては、例えば、下記化合物(1)等が挙げられる。 In addition to black dyes, light-absorbing substances include compounds that turn black when exposed to light, heated, etc. Examples of compounds that turn black due to the action of exposure, heating, etc. include the following compound (1).
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 感光性層が光吸収性物質を含む場合、光吸収性物質の含有量は、感光性層の全質量に対して、5~80質量%が好ましく、10~70質量%がより好ましく、10~60質量%が更に好ましく、10~50質量%が特に好ましい。 When the photosensitive layer contains a light-absorbing substance, the content of the light-absorbing substance is preferably 5 to 80% by mass, more preferably 10 to 70% by mass, and 10 to 70% by mass, based on the total mass of the photosensitive layer. More preferably 60% by weight, particularly preferably 10 to 50% by weight.
 感光性層の厚みとしては、例えば、1μm以上が好ましく、2μm以上がより好ましい。上限値としては特に制限されず、例えば、100μm以下が好ましく、50μm以下がより好ましい。 The thickness of the photosensitive layer is, for example, preferably 1 μm or more, more preferably 2 μm or more. The upper limit is not particularly limited, and is preferably, for example, 100 μm or less, more preferably 50 μm or less.
(光反射層前駆体層及び光吸収層前駆体層の好適態様)
 上述のとおり、感光性層が反射性調整剤を含む場合、光反射層前駆体層とすることができ、感光性層が光吸収性物質を含む場合、光吸収層前駆体層とすることができる。
 以下、光吸収層前駆体層及び光吸収層前駆体層の各好適態様について述べる。
(Preferred embodiments of the light-reflecting layer precursor layer and the light-absorbing layer precursor layer)
As mentioned above, when the photosensitive layer contains a reflectivity modifier, it can be used as a light-reflecting layer precursor layer, and when the photosensitive layer contains a light-absorbing substance, it can be used as a light-absorbing layer precursor layer. can.
Hereinafter, preferred embodiments of the light absorption layer precursor layer and the light absorption layer precursor layer will be described.
・光反射層前駆体層
・・光反射層前駆体層の厚み
 光反射層前駆体層の厚みとしては、3μm以上が好ましく、5μm以上がより好ましく、10μm以上が更に好ましく、16μm以上が特に好ましい。上限値としては特に制限されず、例えば、100μm以下が好ましく、50μm以下がより好ましい。
- Light reflective layer precursor layer...thickness of the light reflective layer precursor layer The thickness of the light reflective layer precursor layer is preferably 3 μm or more, more preferably 5 μm or more, even more preferably 10 μm or more, particularly preferably 16 μm or more. . The upper limit is not particularly limited, and is preferably, for example, 100 μm or less, more preferably 50 μm or less.
・・光反射層前駆体層から形成される光反射層の特性
 光反射層前駆体層から形成される光反射層は、以下の特性X1、特性X2、及び特性X3の少なくとも一つを満たす層であるのが好ましい。特に、発光素子が可視光LEDである場合、光反射層としては、特性X1及び特性X2の少なくとも一方を満たす層であるのが好ましく、発光素子におけるLEDがUV-LEDである場合、光反射層としては、特性X3を満たす層であるのが好ましい。
 《特性X1》
 光反射層の全反射(入射角8°、光源:D-65(2°視野)))が、CIE1976(L、a、b)色空間において、L値が80以上であることが好ましい。
 なお、上記のCIE 1976(L、a、b)色空間におけるL値は、25℃において、厚み30μmの光反射層に対して分光光度計を用いて測定した値である。分光光度計としては、例えば、日本分光株式会社製の分光光度計V-570を使用できる。
 上記L値としては、90以上がより好ましい。上限値としては、100以下である。
 《特性X2》
 光反射層の波長550nmでの全反射率が、60%以上であることが好ましく、80%以上がより好ましい。上限値としては100%以下である。なお、波長550nmの全反射率は、25℃において、厚み30μmの光反射層に対して分光光度計を用いて測定した値である。分光光度計としては、例えば、日本分光株式会社製の分光光度計V-570を使用できる。
 《特性X3》
 光反射層の波長385nmの全反射率が60%以上であることが好ましく、80%以上がより好ましい。上限値としては100%以下である。波長385nmの全反射率は、25℃において、厚み30μmの光反射層に対して分光光度計を用いて測定した値である。分光光度計としては、例えば、日本分光株式会社製の分光光度計V-570を使用できる。
...Characteristics of the light reflective layer formed from the light reflective layer precursor layer The light reflective layer formed from the light reflective layer precursor layer is a layer that satisfies at least one of the following characteristics X1, X2, and X3. It is preferable that In particular, when the light-emitting element is a visible light LED, the light-reflecting layer is preferably a layer that satisfies at least one of the characteristics X1 and X2, and when the LED in the light-emitting element is a UV-LED, the light-reflecting layer As such, it is preferable that the layer satisfies characteristic X3.
《Characteristics X1》
The total internal reflection (incident angle: 8°, light source: D-65 (2° field of view)) of the light reflective layer has an L * value of 80 or more in the CIE1976 (L * , a * , b * ) color space. is preferred.
Note that the above L * value in the CIE 1976 (L * , a * , b * ) color space is a value measured using a spectrophotometer at 25° C. for a light reflecting layer with a thickness of 30 μm. As the spectrophotometer, for example, spectrophotometer V-570 manufactured by JASCO Corporation can be used.
The above L * value is more preferably 90 or more. The upper limit is 100 or less.
《Characteristics X2》
The total reflectance of the light reflecting layer at a wavelength of 550 nm is preferably 60% or more, more preferably 80% or more. The upper limit is 100% or less. Note that the total reflectance at a wavelength of 550 nm is a value measured using a spectrophotometer at 25° C. for a light reflecting layer with a thickness of 30 μm. As the spectrophotometer, for example, spectrophotometer V-570 manufactured by JASCO Corporation can be used.
《Characteristics X3》
The total reflectance of the light reflecting layer at a wavelength of 385 nm is preferably 60% or more, more preferably 80% or more. The upper limit is 100% or less. The total reflectance at a wavelength of 385 nm is a value measured using a spectrophotometer at 25° C. for a light reflecting layer with a thickness of 30 μm. As the spectrophotometer, for example, spectrophotometer V-570 manufactured by JASCO Corporation can be used.
・光吸収層前駆体層
・・光吸収層前駆体層の厚み
 光吸収層前駆体層の厚みとしては、1μm以上が好ましく、2μm以上がより好ましい。上限値としては特に制限されず、例えば、10μm以下が好ましく、5μm以下がより好ましい。
・・光吸収層前駆体層の光学濃度
 光吸収層前駆体層の波長550nmにおける光学濃度(OD)としては、0.5以上が好ましく、1.0以上がより好ましく、2.0以上が更に好ましく、3.0以上が特に好ましい。上限値としては特に制限されず例えば6.0以下が好ましい。光吸収層前駆体層の光学濃度は、マクベス濃度計(マクベス社製、TD-904、ビジュアルフィルター使用)等で測定できる。
 光吸収層前駆体層の波長385nmにおける光学濃度(OD)としては、0.5以上が好ましく、1.0以上がより好ましく、2.0以上が更に好ましく、3.0以上が特に好ましい。上限値としては特に制限されず例えば6.0以下が好ましい。光吸収層前駆体層の波長385nmの光学濃度は、紫外分光光度計U-3310(日立製作所製)等で測定できる。
- Light absorption layer precursor layer... Thickness of light absorption layer precursor layer The thickness of the light absorption layer precursor layer is preferably 1 μm or more, more preferably 2 μm or more. The upper limit is not particularly limited, and is preferably, for example, 10 μm or less, more preferably 5 μm or less.
... Optical density of light absorption layer precursor layer The optical density (OD) of the light absorption layer precursor layer at a wavelength of 550 nm is preferably 0.5 or more, more preferably 1.0 or more, and still more preferably 2.0 or more. Preferably, 3.0 or more is particularly preferable. The upper limit is not particularly limited, and is preferably 6.0 or less, for example. The optical density of the light absorption layer precursor layer can be measured with a Macbeth densitometer (manufactured by Macbeth, TD-904, using a visual filter) or the like.
The optical density (OD) of the light absorption layer precursor layer at a wavelength of 385 nm is preferably 0.5 or more, more preferably 1.0 or more, even more preferably 2.0 or more, and particularly preferably 3.0 or more. The upper limit is not particularly limited, and is preferably 6.0 or less, for example. The optical density of the light absorption layer precursor layer at a wavelength of 385 nm can be measured using an ultraviolet spectrophotometer U-3310 (manufactured by Hitachi, Ltd.) or the like.
・・光吸収層前駆体層から形成される光吸収層の特性
 光吸収層前駆体層から形成される光吸収層は、特性Y1及び/又は特性Y2を満たすのが好ましい。特に、発光素子が可視光LEDである場合、光吸収層としては、外光の反射防止性がより優れる点で、特性Y1を満たす層であるのが好ましく、発光素子がUV-LEDである場合、光吸収層としては、外光の反射防止性がより優れる点、及び、迷光の抑制性がより優れる点で、特性Y2を満たす層であるのが好ましい。
...Characteristics of the light absorption layer formed from the light absorption layer precursor layer The light absorption layer formed from the light absorption layer precursor layer preferably satisfies the characteristics Y1 and/or the characteristics Y2. In particular, when the light-emitting element is a visible light LED, the light-absorbing layer is preferably a layer that satisfies characteristic Y1 in that it has better antireflection properties for external light, and when the light-emitting element is a UV-LED The light absorption layer is preferably a layer that satisfies characteristic Y2 in that it has better antireflection properties for external light and better suppressing properties for stray light.
 《特性Y1》
 光吸収層の波長550nmにおける光学濃度(OD)としては、0.5以上が好ましく、1.0以上がより好ましく、2.0以上が更に好ましく、3.0以上が特に好ましい。上限値としては特に制限されず例えば6.0以下が好ましい。光吸収層の光学濃度は、マクベス濃度計(マクベス社製、TD-904、ビジュアルフィルター使用)等で測定できる。
 《特性Y2》
 光吸収層の波長385nmにおける光学濃度(OD)としては、0.5以上が好ましく、1.0以上がより好ましく、2.0以上が更に好ましく、3.0以上が特に好ましい。上限値としては特に制限されず例えば6.0以下が好ましい。光吸収層の波長385nmの光学濃度は、紫外分光光度計U-3310(日立製作所製)等で測定できる。
《Characteristic Y1》
The optical density (OD) of the light absorption layer at a wavelength of 550 nm is preferably 0.5 or more, more preferably 1.0 or more, even more preferably 2.0 or more, and particularly preferably 3.0 or more. The upper limit is not particularly limited, and is preferably 6.0 or less, for example. The optical density of the light absorption layer can be measured with a Macbeth densitometer (manufactured by Macbeth, TD-904, using a visual filter) or the like.
《Characteristic Y2》
The optical density (OD) of the light absorption layer at a wavelength of 385 nm is preferably 0.5 or more, more preferably 1.0 or more, even more preferably 2.0 or more, and particularly preferably 3.0 or more. The upper limit is not particularly limited, and is preferably 6.0 or less, for example. The optical density of the light absorption layer at a wavelength of 385 nm can be measured using an ultraviolet spectrophotometer U-3310 (manufactured by Hitachi, Ltd.) or the like.
《ポジ型感光性層》
 以下、ポジ型感光性層について詳述する。
 感光性層としては、ポリマーと光酸発生剤を少なくとも含む感光性層が挙げられる。上記ポリマーとしては、酸の作用により親水性が増大する基(例えば、酸の作用により脱離する脱離基で極性基が保護されてなる酸分解性基等)を有する繰り返し単位を含むポリマーであるのが好ましい。
 感光性層としては、公知のポジ型感光性層を適用できる。
 なお、感光性層は、感光性の光反射層及び感光性の光吸収層であってもよい。感光性層が感光性の光反射層である場合、感光性層は反射性調整剤を含み、感光性層が感光性の光吸収層である場合、感光性層は光吸収性物質を含む。反射性調整剤及び光吸収性物質の種類、及び、感光性層の全質量に対する反射性調整剤及び光吸収性物質の各含有量は、ネガ型感光性層における、反射性調整剤及び光吸収性物質の種類、及び、感光性層の全質量に対する反射性調整剤及び光吸収性物質の各含有量と同様であり、好適範囲も同じである。
《Positive photosensitive layer》
The positive photosensitive layer will be described in detail below.
Examples of the photosensitive layer include a photosensitive layer containing at least a polymer and a photoacid generator. The above-mentioned polymer is a polymer containing a repeating unit having a group whose hydrophilicity is increased by the action of an acid (for example, an acid-decomposable group in which a polar group is protected by a leaving group that is eliminated by the action of an acid). It is preferable to have one.
As the photosensitive layer, a known positive type photosensitive layer can be used.
Note that the photosensitive layer may be a photosensitive light reflection layer or a photosensitive light absorption layer. When the photosensitive layer is a photosensitive light-reflecting layer, the photosensitive layer contains a reflection modifier, and when the photosensitive layer is a photosensitive light-absorbing layer, the photosensitive layer contains a light-absorbing substance. The types of the reflectivity modifier and light-absorbing substance, and the respective contents of the reflectivity modifier and light-absorbing substance relative to the total mass of the photosensitive layer are as follows: The types of the photosensitive substances and the respective contents of the reflection modifier and the light-absorbing substance relative to the total mass of the photosensitive layer are the same, and the preferred ranges are also the same.
 感光性層の厚みとしては、例えば、1μm以上が好ましく、2μm以上がより好ましい。上限値としては特に制限されず、例えば、100μm以下が好ましく、50μm以下がより好ましい。 The thickness of the photosensitive layer is, for example, preferably 1 μm or more, more preferably 2 μm or more. The upper limit is not particularly limited, and is preferably, for example, 100 μm or less, more preferably 50 μm or less.
(感光性の光反射層及び感光性の光吸収層の好適態様)
 以下、感光性の光反射層及び感光性の光吸収層の各好適態様について述べる。
(Preferred embodiments of the photosensitive light-reflecting layer and the photosensitive light-absorbing layer)
Preferred embodiments of the photosensitive light-reflecting layer and the photosensitive light-absorbing layer will be described below.
・感光性の光反射層
・・感光性の光反射層の厚み
 感光性の光反射層の厚みとしては、3μm以上が好ましく、5μm以上がより好ましく、10μm以上が更に好ましく、16μm以上が特に好ましい。上限値としては特に制限されず、例えば、100μm以下が好ましく、50μm以下がより好ましい。
- Photosensitive light reflective layer...Thickness of the photosensitive light reflective layer The thickness of the photosensitive light reflective layer is preferably 3 μm or more, more preferably 5 μm or more, even more preferably 10 μm or more, particularly preferably 16 μm or more. . The upper limit is not particularly limited, and is preferably, for example, 100 μm or less, more preferably 50 μm or less.
・・感光性の光反射層の特性
 感光性の光反射層は、上述した特性X1、特性X2、及び特性X3の少なくとも一つを満たす層であるのが好ましい。特に、発光素子が可視光LEDである場合、感光性の光反射層としては、特性X1及び特性X2の少なくとも一方を満たす層であるのが好ましく、発光素子におけるLEDがUV-LEDである場合、感光性の光反射層としては、特性X3を満たす層であるのが好ましい。
...Characteristics of the photosensitive light-reflecting layer The photosensitive light-reflecting layer is preferably a layer that satisfies at least one of the above characteristics X1, X2, and X3. In particular, when the light-emitting element is a visible light LED, the photosensitive light-reflecting layer is preferably a layer that satisfies at least one of the characteristics X1 and X2, and when the LED in the light-emitting element is a UV-LED, The photosensitive light-reflecting layer is preferably a layer that satisfies characteristic X3.
・感光性の光吸収層
・・感光性の光吸収層の厚み
 感光性の光吸収層の厚みとしては、1μm以上が好ましく、2μm以上がより好ましい。上限値としては特に制限されず、例えば、10μm以下が好ましく、5μm以下がより好ましい。
- Photosensitive light absorption layer...Thickness of the photosensitive light absorption layer The thickness of the photosensitive light absorption layer is preferably 1 μm or more, more preferably 2 μm or more. The upper limit is not particularly limited, and is preferably, for example, 10 μm or less, more preferably 5 μm or less.
・・感光性の光吸収層の特性
 感光性の光吸収層は、上述した特性Y1及び/又は特性Y2を満たすのが好ましい。特に、発光素子が可視光LEDである場合、感光性の光吸収層としては、外光の反射防止性がより優れる点で、特性Y1を満たす層であるのが好ましく、発光素子がUV-LEDである場合、感光性の光吸収層としては、外光の反射防止性がより優れる点、及び、迷光の抑制性がより優れる点で、特性Y2を満たす層であるのが好ましい。
...Characteristics of the photosensitive light-absorbing layer The photosensitive light-absorbing layer preferably satisfies the above-mentioned characteristics Y1 and/or characteristics Y2. In particular, when the light-emitting element is a visible light LED, the photosensitive light-absorbing layer is preferably a layer that satisfies characteristic Y1 in that it has better antireflection properties for external light, and when the light-emitting element is a UV-LED In this case, the photosensitive light-absorbing layer is preferably a layer that satisfies characteristic Y2 in that it has better antireflection properties for external light and better suppressing properties for stray light.
<<保護フィルム>>
 転写フィルムは、保護フィルムを有していてもよい。
 保護フィルムとしては、耐熱性及び耐溶剤性を有する樹脂フィルムを用いることができ、例えば、ポリプロピレンフィルム及びポリエチレンフィルム等のポリオレフィンフィルム、ポリエチレンテレフタレートフィルム等のポリエステルフィルム、ポリカーボネートフィルム、並びに、ポリスチレンフィルムが挙げられる。
 また、保護フィルムとして上述の仮支持体と同じ材料で構成された樹脂フィルムを用いてもよい。
 なかでも、保護フィルムとしては、ポリオレフィンフィルムが好ましく、ポリプロピレンフィルム又はポリエチレンフィルムがより好ましく、ポリエチレンフィルムが更に好ましい。
<<Protective film>>
The transfer film may have a protective film.
As the protective film, a resin film having heat resistance and solvent resistance can be used, and examples thereof include polyolefin films such as polypropylene films and polyethylene films, polyester films such as polyethylene terephthalate films, polycarbonate films, and polystyrene films. It will be done.
Furthermore, a resin film made of the same material as the above-mentioned temporary support may be used as the protective film.
Among these, the protective film is preferably a polyolefin film, more preferably a polypropylene film or a polyethylene film, and even more preferably a polyethylene film.
 保護フィルムの厚みは、1~100μmが好ましく、5~50μmがより好ましく、5~40μmが更に好ましく、15~30μmが特に好ましい。保護フィルムの厚みは、SEM(走査型電子顕微鏡:Scanning Electron Microscope)による断面観察により測定した任意の5点の平均値として算出できる。
 保護フィルムの厚みは、機械的強度に優れる点で、1μm以上が好ましく、比較的安価となる点で、100μm以下が好ましい。
The thickness of the protective film is preferably 1 to 100 μm, more preferably 5 to 50 μm, even more preferably 5 to 40 μm, and particularly preferably 15 to 30 μm. The thickness of the protective film can be calculated as the average value of five arbitrary points measured by cross-sectional observation using a SEM (Scanning Electron Microscope).
The thickness of the protective film is preferably 1 μm or more in terms of excellent mechanical strength, and preferably 100 μm or less in terms of being relatively inexpensive.
 また、保護フィルムにおいては、保護フィルム中に含まれる直径80μm以上のフィッシュアイ数が、5個/m以下であることが好ましい。
 なお、「フィッシュアイ」とは、材料を熱溶融し、混練、押し出し、2軸延伸及びキャスティング法等の方法によりフィルムを製造する際に、材料の異物、未溶解物、及び酸化劣化物等がフィルム中に取り込まれたものである。
Further, in the protective film, it is preferable that the number of fish eyes with a diameter of 80 μm or more contained in the protective film is 5 pieces/m 2 or less.
"Fisheye" refers to foreign matter, undissolved matter, oxidized deterioration products, etc. of the material when manufacturing the film by methods such as heat-melting, kneading, extrusion, biaxial stretching, and casting. It was captured in the film.
 保護フィルムに含まれる直径3μm以上の粒子の数は、30個/mm以下が好ましく、10個/mm以下がより好ましく、5個/mm以下が更に好ましい。
 これにより、保護フィルムに含まれる粒子に起因する凹凸が感光性層に転写されることにより生じる欠陥を抑制することができる。
The number of particles with a diameter of 3 μm or more contained in the protective film is preferably 30 particles/mm 2 or less, more preferably 10 particles/mm 2 or less, and even more preferably 5 particles/mm 2 or less.
This makes it possible to suppress defects caused by the transfer of unevenness caused by particles contained in the protective film onto the photosensitive layer.
 巻き取り性を付与する点から、保護フィルムの感光性層と接する面とは反対側の表面の算術平均粗さRaは、0.01μm以上が好ましく、0.02μm以上がより好ましく、0.03μm以上が更に好ましい。一方で、0.50μm未満が好ましく、0.40μm以下がより好ましく、0.30μm以下が更に好ましい。
 保護フィルムは、転写時の欠陥抑制の点から、感光性層と接する面の表面粗さRa、0.01μm以上が好ましく、0.02μm以上がより好ましく、0.03μm以上が更に好ましい。一方で、0.50μm未満が好ましく、0.40μm以下がより好ましく、0.30μm以下が更に好ましい。
From the viewpoint of imparting windability, the arithmetic mean roughness Ra of the surface of the protective film opposite to the surface in contact with the photosensitive layer is preferably 0.01 μm or more, more preferably 0.02 μm or more, and 0.03 μm. The above is more preferable. On the other hand, it is preferably less than 0.50 μm, more preferably 0.40 μm or less, and even more preferably 0.30 μm or less.
From the viewpoint of suppressing defects during transfer, the surface roughness Ra of the surface of the protective film in contact with the photosensitive layer is preferably 0.01 μm or more, more preferably 0.02 μm or more, and even more preferably 0.03 μm or more. On the other hand, it is preferably less than 0.50 μm, more preferably 0.40 μm or less, and even more preferably 0.30 μm or less.
〔第2実施形態〕
 本発明の積層体の製造方法の第2実施形態(以下、単に「本発明の第2実施形態」ともいう。)は、下記工程(2-1)~(2-4)を有する。
[Second embodiment]
The second embodiment of the method for manufacturing a laminate of the present invention (hereinafter also simply referred to as "second embodiment of the present invention") includes the following steps (2-1) to (2-4).
・工程(2-1)(貼合工程):基板と上記基板上に配置された複数の発光素子とを含む発光素子付き基板の上記発光素子側の表面と、仮支持体と感光性層とを含む転写フィルムの上記仮支持体とは反対側の表面とが対向し、上記発光素子が上記感光性層で覆われるように、上記発光素子付き基板と上記転写フィルムとを貼合する工程
・工程(2-2)(露光工程):上記感光性層に対してパターン露光を行う工程
・工程(2-3)(現像工程):露光された上記感光性層を現像して、上記発光素子に対応する位置に開口部を有する樹脂パターンを形成する工程
・工程(2-4)(光反射膜形成工程):上記開口部の側壁に光反射膜を配置する工程
 更に、本発明の第2実施形態は、工程(2-1)と工程(2-2)、又は、工程(2-2)と工程(2-3)との間に、以下の工程(2-A)を有する。
・工程(2-A)(仮支持体剥離工程):仮支持体を剥離する工程。
・Step (2-1) (bonding step): The surface of the light emitting element side of the light emitting element-equipped substrate, which includes a substrate and a plurality of light emitting elements arranged on the substrate, the temporary support and the photosensitive layer. A step of laminating the light emitting element-equipped substrate and the transfer film so that the surface of the transfer film opposite to the temporary support faces each other and the light emitting element is covered with the photosensitive layer. Step (2-2) (exposure step): A step of exposing the photosensitive layer in a pattern.Step (2-3) (developing step): Developing the exposed photosensitive layer to form the light emitting element. Step (2-4) of forming a resin pattern having an opening at a position corresponding to (light-reflecting film forming step): a step of arranging a light-reflecting film on the side wall of the opening. The embodiment includes the following step (2-A) between step (2-1) and step (2-2) or between step (2-2) and step (2-3).
- Step (2-A) (temporary support peeling step): Step of peeling off the temporary support.
<工程(2-1)~(2-3)、(2-A)~(2-C)>
 本発明の第2実施形態における工程(2-1)~(2-3)、(2-A)は、それぞれ、本発明の第1実施形態における工程(1-1)~(1-3)、(1-A)として説明したのと同様である。
 また、本発明の第2実施形態において、工程(2-3)(現像工程)を実施後に、形成された樹脂パターンを、更に、露光する工程(以下、「工程(2-B)」又は「ポスト露光工程」ともいう。)及び/又は加熱する工程(以下、「工程(2-C)」又は「ポストベーク工程」ともいう。)を有していてもよい。
 本発明の第2実施形態における工程(2-B)、(2-C)は、それぞれ、本発明の第1実施形態における工程(1-B)、(1-C)として説明したのと同様である。
<Steps (2-1) to (2-3), (2-A) to (2-C)>
Steps (2-1) to (2-3) and (2-A) in the second embodiment of the present invention are respectively steps (1-1) to (1-3) in the first embodiment of the present invention. , (1-A).
Further, in the second embodiment of the present invention, after performing step (2-3) (developing step), the formed resin pattern is further exposed to light (hereinafter referred to as "step (2-B)" or " (also referred to as "post-exposure step") and/or a heating step (hereinafter also referred to as "step (2-C)" or "post-bake step").
Steps (2-B) and (2-C) in the second embodiment of the present invention are the same as those described as steps (1-B) and (1-C) in the first embodiment of the present invention, respectively. It is.
<工程(2-4)光反射膜形成工程>
 本発明の第2実施形態は、現像工程(工程(2-3))を経た後(なお、上述の工程(2-B)及び/又は工程(2-C)を実施する場合は、この工程を経た後)、発光素子付き基板上に形成された樹脂パターン中の開口部の側壁に光反射膜を形成する工程である。発光素子同士間を互いに隔てる隔壁層として機能する樹脂パターンにおいて、開口部の側壁に光反射膜が配置された場合、発光素子からの光が光反射膜で反射するため輝度がより優れる。
 図6に、光反射膜形成工程(工程(2-4))を経て形成される積層体の断面模式図を示す。積層体60は、発光素子付き基板10と樹脂パターン42と樹脂パターン42中の開口部43の側壁に配置された光反射膜62とから構成される。
<Step (2-4) Light reflective film formation step>
In the second embodiment of the present invention, after the development step (step (2-3)) (in addition, when carrying out the above-mentioned step (2-B) and/or step (2-C), 2), a light reflecting film is formed on the side wall of the opening in the resin pattern formed on the substrate with a light emitting element. In a resin pattern that functions as a partition layer that separates light-emitting elements from each other, when a light-reflecting film is disposed on the side wall of the opening, the light from the light-emitting elements is reflected by the light-reflecting film, resulting in better brightness.
FIG. 6 shows a schematic cross-sectional view of a laminate formed through the light reflective film forming step (step (2-4)). The laminate 60 includes a substrate 10 with a light emitting element, a resin pattern 42, and a light reflecting film 62 disposed on a side wall of an opening 43 in the resin pattern 42.
 光反射膜は、金属を含むのが好ましい。
 金属の種類としては特に制限されないが、高い反射性を有する点で、銀、ニッケル、コバルト、鉄、銅、パラジウム、金、白金、スズ、亜鉛、アルミニウム、タングステン、又はチタンが好ましく、銀、金、スズ、ニッケル、アルミニウム、又はコバルトがより好ましく、可視光領域でより高い反射性を示す点で、金、銀、又はアルミニウムが更に好ましく、銀が特に好ましい。
Preferably, the light-reflecting film contains metal.
The type of metal is not particularly limited, but silver, nickel, cobalt, iron, copper, palladium, gold, platinum, tin, zinc, aluminum, tungsten, or titanium is preferable because of its high reflectivity. , tin, nickel, aluminum, or cobalt are more preferable, and gold, silver, or aluminum is even more preferable in that they exhibit higher reflectivity in the visible light region, and silver is particularly preferable.
 光反射膜形成工程(工程(2-4))は、スパッタリング法、蒸着法、メッキ法、及び、金属粒子を含むインクの印刷(スクリーン印刷及びインクジェット等)等を適用できる。また、ウエットエッチング及びドライエッチング等の公知の方法で必要な個所のみ残すようにパターニングして形成してもよい。 In the light reflecting film forming step (step (2-4)), sputtering method, vapor deposition method, plating method, printing of ink containing metal particles (screen printing, inkjet, etc.), etc. can be applied. Alternatively, it may be formed by patterning using a known method such as wet etching or dry etching so that only necessary portions are left.
 光反射膜の膜厚としては、10nm以上が好ましく、50nm以上がより好ましく、250nm以上が更に好ましい。上限値としては特に制限されず、例えば、100μm以下が好ましく、50μm以下がより好ましく、10μm以下が更に好ましく、1μm以下が特に好ましく、800nm以下が最も好ましい。 The thickness of the light reflecting film is preferably 10 nm or more, more preferably 50 nm or more, and even more preferably 250 nm or more. The upper limit is not particularly limited, and for example, is preferably 100 μm or less, more preferably 50 μm or less, even more preferably 10 μm or less, particularly preferably 1 μm or less, and most preferably 800 nm or less.
 光反射膜は、以下の特性Z1及び特性Z2の少なくとも一方を満たす膜であるのが好ましい。発光素子が可視光LEDである場合、光反射膜は特性Z1を満たすのが好ましく、発光素子がUV-LEDである場合、光反射膜は特性Z2を満たすのが好ましい。
 (特性Z1)
 光反射膜の波長550nmの全反射率が60%以上が好ましく、80%以上がより好ましい。上限値としては、100%以下である。波長550nmの全反射率は、25℃において、厚み30μmの光反射膜に対して分光光度計を用いて測定した値である。分光光度計としては、例えば、日本分光株式会社製の分光光度計V-570を使用できる。
 (特性Z2)
 光反射膜の波長385nmの全反射率が60%以上が好ましく、80%以上がより好ましい。上限値としては100%以下である。光反射膜の波長385nmの全反射率は、25℃において、厚み30μmの光反射膜に対して分光光度計を用いて測定した値である。分光光度計としては、例えば、日本分光株式会社製の分光光度計V-570を使用できる。
The light reflecting film is preferably a film that satisfies at least one of the following characteristics Z1 and Z2. When the light-emitting element is a visible light LED, the light-reflecting film preferably satisfies characteristic Z1, and when the light-emitting element is a UV-LED, the light-reflecting film preferably satisfies characteristic Z2.
(Characteristic Z1)
The total reflectance of the light reflecting film at a wavelength of 550 nm is preferably 60% or more, more preferably 80% or more. The upper limit is 100% or less. The total reflectance at a wavelength of 550 nm is a value measured using a spectrophotometer at 25° C. for a light reflecting film with a thickness of 30 μm. As the spectrophotometer, for example, spectrophotometer V-570 manufactured by JASCO Corporation can be used.
(Characteristic Z2)
The total reflectance of the light reflecting film at a wavelength of 385 nm is preferably 60% or more, more preferably 80% or more. The upper limit is 100% or less. The total reflectance of the light reflection film at a wavelength of 385 nm is a value measured using a spectrophotometer at 25° C. for a light reflection film with a thickness of 30 μm. As the spectrophotometer, for example, spectrophotometer V-570 manufactured by JASCO Corporation can be used.
 本発明の第2実施形態で使用し得る転写フィルムとしては、例えば、本発明の第1実施形態で使用し得る転写フィルムとして示した各種転写フィルムを使用できる。
 以下、本発明の第2実施形態で使用し得る転写フィルムの好適態様の一例を示す。
 以下において、光反射層前駆体層、光吸収層前駆体層、保護フィルム、及び仮支持体は、本発明の第1実施形態で使用し得る転写フィルムにおける光反射層前駆体層、光吸収層前駆体層、保護フィルム、及び仮支持体と同義であり、好適態様も同じである。他の感光性層とは、光反射層前駆体層及び光吸収層前駆体層のいずれにも該当しない感光性層を意味する。
・(N4)仮支持体/光吸収層前駆体層/保護フィルム
・(N5)仮支持体/光吸収層前駆体層/他の感光性層/保護フィルム
As the transfer film that can be used in the second embodiment of the present invention, for example, the various transfer films shown as the transfer film that can be used in the first embodiment of the present invention can be used.
An example of a preferred embodiment of the transfer film that can be used in the second embodiment of the present invention will be shown below.
In the following, the light-reflecting layer precursor layer, the light-absorbing layer precursor layer, the protective film, and the temporary support are referred to as the light-reflecting layer precursor layer, the light-absorbing layer in the transfer film that can be used in the first embodiment of the present invention. It has the same meaning as a precursor layer, a protective film, and a temporary support, and the preferred embodiments are also the same. The other photosensitive layer means a photosensitive layer that does not fall under either the light-reflecting layer precursor layer or the light-absorbing layer precursor layer.
・(N4) Temporary support/light absorption layer precursor layer/protective film ・(N5) Temporary support/light absorption layer precursor layer/other photosensitive layer/protective film
 なお、本発明の第2実施形態にて転写フィルム(N5)を使用した場合、樹脂パターンの開口部の側壁において、少なくとも、他の感光性層に由来する樹脂層に相当する位置に、光反射膜を配置すればよい。 In addition, when the transfer film (N5) is used in the second embodiment of the present invention, on the side wall of the opening of the resin pattern, at least a position corresponding to the resin layer originating from another photosensitive layer has light reflection. Just place the membrane.
 以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
 なお、以下において、「部」又は「%」とは、特に断りのない限り質量基準である。
The present invention will be explained in more detail below based on Examples. The materials, usage amounts, proportions, processing details, processing procedures, etc. shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the Examples shown below.
In addition, in the following, "parts" or "%" are based on mass unless otherwise specified.
[光吸収層前駆体層形成用組成物の調製]
 表1に示す成分及び配合量に基づいて光吸収層前駆体層形成用組成物(A-1~A-2)を調製した。なお、表1において示される各成分の配合量の単位は、質量部である。
[Preparation of composition for forming light-absorbing layer precursor layer]
Light absorption layer precursor layer forming compositions (A-1 to A-2) were prepared based on the components and blending amounts shown in Table 1. Note that the unit of the amount of each component shown in Table 1 is parts by mass.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 以下、表1中のその他の略語及び製品名の詳細を示す。
 「化合物(1)」:下記構造の化合物。なお、化合物(1)は、加熱処理により、透明から黒色へ変化する化合物に該当する。
Details of other abbreviations and product names in Table 1 are shown below.
"Compound (1)": A compound having the following structure. In addition, compound (1) corresponds to a compound that changes from transparent to black by heat treatment.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 「重合体P-1溶液」:重合体P-1〔ベンジルメタクリレート/メタクリル酸の共重合体、共重合体の組成比(質量基準)=70/30、重量平均分子量(Mw)=5000〕のPGMEA溶液(固形分量:40.5質量%)。
 「アロニックスTO-2349」:カルボキシル基含有モノマー(東亜合成株式会社製)
 「SB-PI 701」:4,4’-ビス(ジエチルアミノ)ベンゾフェノン(三洋貿易株式会社製)
 「TDP-G」:フェノチアジン(川口化学工業株式会社製)
 「メガファックF551A」:フッ素系界面活性剤(DIC(株)製)
"Polymer P-1 solution": Polymer P-1 [benzyl methacrylate/methacrylic acid copolymer, copolymer composition ratio (mass basis) = 70/30, weight average molecular weight (Mw) = 5000] PGMEA solution (solid content: 40.5% by mass).
"Aronix TO-2349": Carboxyl group-containing monomer (manufactured by Toagosei Co., Ltd.)
"SB-PI 701": 4,4'-bis(diethylamino)benzophenone (manufactured by Sanyo Trading Co., Ltd.)
"TDP-G": Phenothiazine (manufactured by Kawaguchi Chemical Industry Co., Ltd.)
"Megafac F551A": Fluorine surfactant (manufactured by DIC Corporation)
[光反射層前駆体層形成用組成物(B-1)及び感光性組成物(B-2)の調製]
 表2に示す成分及び配合量に基づいて光反射層前駆体層形成用組成物(B-1)及び感光性組成物(B-2)を調製した。なお、表2において示される各成分の配合量の単位は、質量部である。
[Preparation of light reflective layer precursor layer forming composition (B-1) and photosensitive composition (B-2)]
A composition for forming a light reflective layer precursor layer (B-1) and a photosensitive composition (B-2) were prepared based on the components and blending amounts shown in Table 2. Note that the unit of the amount of each component shown in Table 2 is parts by mass.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
〔P-2溶液(重合体P-2の固形分36.2質量%溶液)の調製方法〕
 P-2溶液(重合体P-2の固形分36.2質量%溶液)は、下記に示す重合工程及び付加工程により準備した。
 プロピレングリコールモノメチルエーテル113.5gをフラスコに仕込み窒素気流下90℃に加熱した。この液に、スチレン172g、メタクリル酸メチル4.7g、及びメタクリル酸112.1gをプロピレングリコールモノメチルエーテル30gに溶解させた溶液、並びに、重合開始剤V-601(富士フイルム和光純薬社製)27.6gをプロピレングリコールモノメチルエーテル57.7gに溶解させた溶液を同時に3時間かけて滴下した。滴下終了後、1時間おきに3回V-601を2.5g添加した。その後更に3時間反応させた。その後プロピレングリコールモノメチルエーテルアセテート160.7g、及び、プロピレングリコールモノメチルエーテル233.3gで希釈した。空気気流下、反応液を100℃に昇温し、テトラエチルアンモニウムブロミド1.8g、及び、p-メトキシフェノール0.86gを添加した。これにグリシジルメタクリレート(日油社製ブレンマーG)71.9gを20分間かけて滴下した。滴下後、反応液を100℃で7時間反応させ、樹脂P-2の溶液を得た。得られた溶液の固形分濃度は36.2質量%であった。GPCにおける標準ポリスチレン換算の重量平均分子量は18000、数平均分子量は7800、分散度は2.3、ポリマーの酸価は124mgKOH/gであった。ガスクロマトグラフィーを用いて測定した残存モノマー量はいずれのモノマーにおいてもポリマー固形分に対し0.1質量%未満であった。重合体P-2の構造を以下に示す。
[Method for preparing P-2 solution (solid content 36.2% by mass solution of polymer P-2)]
A P-2 solution (a solution of polymer P-2 with a solid content of 36.2% by mass) was prepared by the polymerization step and addition step shown below.
113.5 g of propylene glycol monomethyl ether was charged into a flask and heated to 90° C. under a nitrogen stream. To this solution, a solution of 172 g of styrene, 4.7 g of methyl methacrylate, and 112.1 g of methacrylic acid dissolved in 30 g of propylene glycol monomethyl ether, and a polymerization initiator V-601 (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) 27 At the same time, a solution prepared by dissolving .6 g of propylene glycol monomethyl ether in 57.7 g of propylene glycol monomethyl ether was added dropwise over 3 hours. After the dropwise addition was completed, 2.5 g of V-601 was added three times every hour. Thereafter, the reaction was continued for an additional 3 hours. Thereafter, it was diluted with 160.7 g of propylene glycol monomethyl ether acetate and 233.3 g of propylene glycol monomethyl ether. The temperature of the reaction solution was raised to 100° C. under a stream of air, and 1.8 g of tetraethylammonium bromide and 0.86 g of p-methoxyphenol were added. To this, 71.9 g of glycidyl methacrylate (Blenmar G, manufactured by NOF Corporation) was added dropwise over 20 minutes. After the dropwise addition, the reaction solution was allowed to react at 100° C. for 7 hours to obtain a solution of resin P-2. The solid content concentration of the obtained solution was 36.2% by mass. The weight average molecular weight in terms of standard polystyrene in GPC was 18,000, the number average molecular weight was 7,800, the degree of dispersion was 2.3, and the acid value of the polymer was 124 mgKOH/g. The amount of residual monomer measured using gas chromatography was less than 0.1% by mass based on the solid content of the polymer in all monomers. The structure of polymer P-2 is shown below.
 重合体P-2:下記構造式中の構成単位の組成はモル比を表す。
 なお、重合体P-2は、アルカリ可溶性樹脂に相当する。
Polymer P-2: The composition of the structural units in the following structural formula represents the molar ratio.
Note that the polymer P-2 corresponds to an alkali-soluble resin.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 以下、表2中のその他の成分の略語及び製品名の詳細を示す。
 「A-NOD-N」:1,9-ノナンジオールジアクリレート(新中村化学工業(株)製)
 「A-DPH」:ジペンタエリスリトールヘキサアクリレート(新中村化学工業(株)製)
 「アロニックスTO-2349」:カルボキシル基含有モノマー(東亜合成株式会社製)
 「B-CIM」:2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール(Hampford株式会社製)
 「SB-PI 701」:4,4’-ビス(ジエチルアミノ)ベンゾフェノン(三洋貿易株式会社製)
 「TDP-G」:フェノチアジン(川口化学工業株式会社製)
 「CBT-1」:カルボキシベンゾトリアゾール(城北化学工業株式会社製)
 「メガファックF551A」:フッ素系界面活性剤(DIC(株)製)
Below, details of the abbreviations and product names of other components in Table 2 are shown.
"A-NOD-N": 1,9-nonanediol diacrylate (manufactured by Shin-Nakamura Chemical Industry Co., Ltd.)
"A-DPH": dipentaerythritol hexaacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.)
"Aronix TO-2349": Carboxyl group-containing monomer (manufactured by Toagosei Co., Ltd.)
"B-CIM": 2,2'-bis(2-chlorophenyl)-4,4',5,5'-tetraphenyl-1,2'-biimidazole (manufactured by Hampford Corporation)
"SB-PI 701": 4,4'-bis(diethylamino)benzophenone (manufactured by Sanyo Trading Co., Ltd.)
"TDP-G": Phenothiazine (manufactured by Kawaguchi Chemical Industry Co., Ltd.)
"CBT-1": Carboxybenzotriazole (manufactured by Johoku Chemical Industry Co., Ltd.)
"Megafac F551A": Fluorine surfactant (manufactured by DIC Corporation)
[実施例1]
〔転写フィルムの作製〕
 仮支持体として、ポリエチレンテレフタレートフィルム(ルミラー16KS40、東レ株式会社製、厚み:16μm)を準備した。仮支持体の上に、光吸収層前駆体層形成用組成物A-1を乾燥後の厚みが3μmになるように塗布し、100℃で1分間乾燥させることで、光吸収層前駆体層を形成した。光吸収層前駆体層上に、光反射層前駆体層形成用組成物B-1を乾燥後の厚みが30μmとなるように塗布し、100℃で3分間乾燥させることで光反射層前駆体層を形成した。光反射層前駆体層上にポリエチレンテレフタレートフィルム(ルミラー16KS40、東レ株式会社製、厚み:16μm)を圧着した。以上の手順によって、仮支持体と、光吸収層前駆体層と、光反射層前駆体層と、保護フィルムと、をこの順に含む転写フィルム1を得た。
[Example 1]
[Preparation of transfer film]
A polyethylene terephthalate film (Lumirror 16KS40, manufactured by Toray Industries, Inc., thickness: 16 μm) was prepared as a temporary support. The composition A-1 for forming a light-absorbing layer precursor layer is applied onto the temporary support so that the thickness after drying is 3 μm, and the light-absorbing layer precursor layer is formed by drying at 100° C. for 1 minute. was formed. On the light-absorbing layer precursor layer, the composition B-1 for forming a light-reflecting layer precursor layer is applied so that the thickness after drying is 30 μm, and the light-reflecting layer precursor layer is dried at 100° C. for 3 minutes. formed a layer. A polyethylene terephthalate film (Lumirror 16KS40, manufactured by Toray Industries, Inc., thickness: 16 μm) was pressure-bonded onto the light reflective layer precursor layer. By the above procedure, a transfer film 1 containing a temporary support, a light-absorbing layer precursor layer, a light-reflecting layer precursor layer, and a protective film in this order was obtained.
〔マイクロLED表示素子の作製〕
 以下の手順により、転写フィルム1を使用してマイクロLED表示素子を作製した。具体的には、アレイ基板上の接合部材にLEDチップを接合した後に、転写フィルム1を使用して樹脂パターン(隔壁層)を形成した。以下、具体的な手順を示す。
[Production of micro LED display element]
A micro LED display element was produced using the transfer film 1 according to the following procedure. Specifically, after the LED chips were bonded to the bonding member on the array substrate, a resin pattern (partition layer) was formed using the transfer film 1. The specific steps are shown below.
[[LEDチップの実装]]
 まず、特開2021-163945号公報(特に請求項、0013段落~0041段落)に記載の方法に従って、剥離用のサファイア基板にある200個のLEDチップを一括で、アレイ基板上に接合し、剥離用のサファイア基板を剥離した。
[[LED chip implementation]]
First, according to the method described in JP-A No. 2021-163945 (particularly the claims, paragraphs 0013 to 0041), 200 LED chips on a sapphire substrate for peeling are collectively bonded onto an array substrate, and then peeled. The sapphire substrate was peeled off.
[[樹脂パターン(隔壁層)の形成]]
 次に、転写フィルム1の保護フィルムを剥離し、以下に示すラミネート条件で、LEDチップが接合されているアレイ基板上に転写フィルム1を貼り合せ、発光素子付き基板(チップ付き基板)上に、光反射層前駆体層、光吸収層前駆体層、及び仮支持体の順番に積層してなる前駆体層付き基板を作製した。
 チップ付き基板の加熱温度:40℃
 ゴムローラーの温度:110℃
 線圧:3N/cm
 搬送速度:2m/分
[[Formation of resin pattern (partition layer)]]
Next, the protective film of the transfer film 1 is peeled off, and the transfer film 1 is laminated on the array substrate to which the LED chips are bonded under the lamination conditions shown below, and the transfer film 1 is placed on the light emitting element-attached substrate (chip-attached substrate). A substrate with a precursor layer was prepared by laminating a light-reflecting layer precursor layer, a light-absorbing layer precursor layer, and a temporary support in this order.
Heating temperature of substrate with chip: 40℃
Rubber roller temperature: 110℃
Linear pressure: 3N/cm
Conveying speed: 2m/min
 露光マスク(開口部形成用パターンを有するマスク)の表面と仮支持体の表面との間の距離を125μmに設定した。超高圧水銀灯を有するプロキシミティー型露光機(日立ハイテク電子エンジニアリング株式会社)を用いて、仮支持体を介して光反射層前駆体層及び光吸収層前駆体層に対してi線を100mJ/cmの露光量にてパターン状に照射した。その際、LEDチップが実装されている部分に、隔壁層のテーパー角度(図3のテーパー角度θ参照)が表3に示す角度になる開口部が形成されるように、露光マスクのパターン及び位置を調整した。
 露光処理後、仮支持体を剥離した後、温度32℃の炭酸ソーダ1質量%水溶液を用いて、露光後の光反射層前駆体層及び光吸収層前駆体層を60秒間現像処理した。次いで、現像処理後に得られる積層体に対して、超高圧洗浄ノズルから超純水を噴射することで残渣を除去し、その後、更にエアを吹きかけて水分を除去した。
 次に、得られた積層体中のパターンに対して、高圧水銀灯を有するポスト露光機(ウシオ電機製)を用いて露光量1000mJ/cm(i線)で露光処理を実施した(ポスト露光)。露光後、210℃にて5分間のポストベーク処理を施した。
 上記手順により、アレイ基板上に、LEDチップの位置に開口部を有する樹脂パターン(光反射層及び光吸収層の順で積層された隔壁層)を形成した。
The distance between the surface of the exposure mask (mask having a pattern for forming openings) and the surface of the temporary support was set to 125 μm. Using a proximity type exposure machine (Hitachi High-Tech Electronics Engineering Co., Ltd.) equipped with an ultra-high pressure mercury lamp, i-rays were applied at 100 mJ/cm to the light-reflecting layer precursor layer and the light-absorbing layer precursor layer through a temporary support. It was irradiated in a pattern at an exposure dose of 2 . At that time, the exposure mask is patterned and positioned so that an opening is formed in the part where the LED chip is mounted so that the taper angle of the partition layer (see taper angle θ in FIG. 3) is as shown in Table 3. adjusted.
After the exposure treatment, the temporary support was peeled off, and then the exposed light-reflecting layer precursor layer and light-absorbing layer precursor layer were developed for 60 seconds using a 1% by mass aqueous solution of sodium carbonate at a temperature of 32°C. Next, ultrapure water was sprayed from an ultra-high pressure cleaning nozzle to the laminate obtained after the development treatment to remove the residue, and then air was further sprayed to remove moisture.
Next, the pattern in the obtained laminate was exposed to light using a post-exposure machine (manufactured by Ushio Inc.) equipped with a high-pressure mercury lamp at an exposure dose of 1000 mJ/cm 2 (i-line) (post-exposure). . After exposure, a post-bake treatment was performed at 210° C. for 5 minutes.
By the above procedure, a resin pattern (a partition layer in which a light reflection layer and a light absorption layer were laminated in this order) having openings at the positions of the LED chips was formed on the array substrate.
 このようにして、マイクロLED表示素子を作製した。 In this way, a micro LED display element was produced.
[実施例2]
〔実施例の転写フィルムの作製〕
 仮支持体として、ポリエチレンテレフタレートフィルム(ルミラー16KS40、東レ株式会社製、厚み:16μm)を準備した。仮支持体の上に、光吸収層前駆体層形成用組成物A-1を乾燥後の厚みが3μmになるように塗布し、100℃で1分間乾燥させることで、光吸収層前駆体層を形成した。光吸収層前駆体層上に、感光性層形成用組成物B-2を乾燥後の厚みが30μmとなるように塗布し、100℃で3分間乾燥させることで感光性層(他の感光性層)を形成した。感光性層上にポリエチレンテレフタレートフィルム(ルミラー16KS40、東レ株式会社製、厚み:16μm)を圧着した。以上の手順によって、仮支持体と、光吸収層前駆体層と、感光性層と、保護フィルムと、をこの順に含む転写フィルム2を得た。
[Example 2]
[Preparation of transfer film of Example]
A polyethylene terephthalate film (Lumirror 16KS40, manufactured by Toray Industries, Inc., thickness: 16 μm) was prepared as a temporary support. The composition A-1 for forming a light-absorbing layer precursor layer is applied onto the temporary support so that the thickness after drying is 3 μm, and the light-absorbing layer precursor layer is formed by drying at 100° C. for 1 minute. was formed. Composition B-2 for forming a photosensitive layer is applied onto the light-absorbing layer precursor layer so that the thickness after drying is 30 μm, and dried at 100°C for 3 minutes to form a photosensitive layer (other photosensitive layers). layer) was formed. A polyethylene terephthalate film (Lumirror 16KS40, manufactured by Toray Industries, Inc., thickness: 16 μm) was pressure-bonded onto the photosensitive layer. By the above procedure, a transfer film 2 containing a temporary support, a light-absorbing layer precursor layer, a photosensitive layer, and a protective film in this order was obtained.
〔実施例2のマイクロLED表示素子の作製〕
 先ず、実施例1の[[LEDチップの実装]]と同様にして、アレイ基板にLEDチップを実装した。
 次に、表3に示す隔壁層のテーパー角度となるように適宜プロセス条件を調整した以外は、上述した実施例1における[[樹脂パターン(隔壁層)の形成]]と同様の手順により、LEDチップが実装されたアレイ基板上に、開口部を有する樹脂パターン(樹脂層及び光吸収層の順で積層された隔壁層)を形成した。
 隔壁を作製した後、公知の蒸着法によって隔壁の開口部に300nmの銀層を蒸着した。この際、チップ上及び隔壁層の基板側とは反対側の表面に対応する位置はマスクしておくことで、隔壁層の開口部の側面にのみに光反射層を形成した。このようにして実施例2のマイクロLED表示素子を作製した。
[Production of micro LED display element of Example 2]
First, an LED chip was mounted on an array substrate in the same manner as in Example 1 [[Mounting of LED chip]].
Next, the LED was formed using the same procedure as [[Formation of resin pattern (partition layer)]] in Example 1 described above, except that the process conditions were adjusted appropriately so that the taper angle of the partition layer was as shown in Table 3. A resin pattern (a partition layer in which a resin layer and a light absorption layer were laminated in this order) having an opening was formed on the array substrate on which the chips were mounted.
After the barrier ribs were fabricated, a 300 nm thick silver layer was deposited in the openings of the barrier ribs by a known vapor deposition method. At this time, the light reflecting layer was formed only on the side surface of the opening of the barrier layer by masking the chip and the surface of the barrier layer on the side opposite to the substrate. In this way, the micro LED display element of Example 2 was produced.
〔実施例3〕
 光吸収層前駆体層組成物としてA-2を使用して乾燥後の厚みが30μmとなるように塗布し、光反射層前駆体層は積層しない構成とした以外は実施例1と同様にして転写フィルム3を得た。
[Example 3]
A-2 was used as the light-absorbing layer precursor layer composition and coated to a thickness of 30 μm after drying, and the light-reflecting layer precursor layer was not laminated, but in the same manner as in Example 1. Transfer film 3 was obtained.
〔実施例3のマイクロLED表示素子の作製〕
 先ず、実施例1の[[LEDチップの実装]]と同様にして、アレイ基板にLEDチップを実装した。
 次に、表3に示す隔壁層のテーパー角度となるように適宜プロセス条件を調整した以外は、上述した実施例1における[[樹脂パターン(隔壁層)の形成]]と同様の手順により、チップ付きアレイ基板上に、開口部を有する樹脂パターン(光吸収層)を形成した。
[Production of micro LED display element of Example 3]
First, an LED chip was mounted on an array substrate in the same manner as in Example 1 [[Mounting of LED chip]].
Next, the chip was fabricated using the same procedure as [[Formation of resin pattern (barrier layer)]] in Example 1 above, except that the process conditions were adjusted appropriately so that the taper angle of the barrier layer was as shown in Table 3. A resin pattern (light absorption layer) having openings was formed on the attached array substrate.
〔比較例1のマイクロLED表示素子の作製〕
 隔壁層を形成しないこと以外は実施例1と同様にして比較例1のマイクロLED表示素子を作製した。
[Production of micro LED display element of Comparative Example 1]
A micro LED display element of Comparative Example 1 was produced in the same manner as in Example 1 except that the partition layer was not formed.
 上述のとおりに作製した各マイクロLED素子において、LEDチップのサイズは20μm角で、厚みは8μmであった。また、LEDチップが並べられているピッチは400μm、スルーホールサイズは30μm角、LEDチップ間の隔壁の幅は370μmであった。 In each micro LED element produced as described above, the size of the LED chip was 20 μm square and the thickness was 8 μm. Further, the pitch at which the LED chips were arranged was 400 μm, the through hole size was 30 μm square, and the width of the partition between the LED chips was 370 μm.
(隣接画素への光染み出し評価)
 上述のとおり作製したマイクロLED表示素子を用いて隣接画素への光染み出しの評価を行った。顕微紫外可視近赤外分光光度計MSV-5500(日本分光社製)を用いて、発光中心波長が530nmの緑画素を発光させた際の隣接する画素の位置で、530nmの光強度を測定した。この時、発光画素における530nmの光強度を100%としたときの隣接画素の530nm光強度を以下の基準で評価した。
(評価基準)
 「A」:隣接画素における光強度は0.1%未満
 「B」:隣接画素における光強度は0.1%以上1%未満
 「C」:隣接画素における光強度は1%以上
(Evaluation of light seepage to adjacent pixels)
Using the micro LED display element produced as described above, light seepage to adjacent pixels was evaluated. Using a microscopic UV-visible near-infrared spectrophotometer MSV-5500 (manufactured by JASCO Corporation), when a green pixel with an emission center wavelength of 530 nm was emitted, the light intensity at 530 nm was measured at the position of an adjacent pixel. . At this time, the 530 nm light intensity of the adjacent pixel was evaluated based on the following criteria, when the 530 nm light intensity of the light emitting pixel was taken as 100%.
(Evaluation criteria)
"A": Light intensity in adjacent pixels is less than 0.1% "B": Light intensity in adjacent pixels is 0.1% or more and less than 1% "C": Light intensity in adjacent pixels is 1% or more
 各実施例の評価結果を表3に示す。 Table 3 shows the evaluation results for each example.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 表3の結果から、実施例の積層体の製造方法により得られた複数の発光素子を含む積層体は、隣接する発光素子からの光漏れが抑制されていることが明らかである。
 一方で、比較例1の積層体の製造方法により得られた複数の発光素子を含む積層体は、上記効果が得らないことが明らかである。
 また、実施例1及び2の積層体の製造方法により得られた積層体は、実施例1及び比較例1と比べると、発光素子の点灯時において、より高い輝度の表示が可能であることが確認された。
From the results in Table 3, it is clear that in the laminate including a plurality of light emitting elements obtained by the method for manufacturing a laminate of Example, light leakage from adjacent light emitting elements is suppressed.
On the other hand, it is clear that the laminate including a plurality of light emitting elements obtained by the laminate manufacturing method of Comparative Example 1 does not have the above effects.
Furthermore, the laminates obtained by the laminate manufacturing methods of Examples 1 and 2 are capable of displaying higher luminance when the light emitting elements are turned on, compared to Example 1 and Comparative Example 1. confirmed.
〔比較例2のマイクロLED表示素子の作製〕
 LEDチップ接続前のアレイ基板上に、転写フィルム1を用いて予め隔壁構造を形成した後に、LEDチップを基板上に実装することによりマイクロLED表示素子を作製した。
 この際、アレイ基板には33μm厚みの隔壁構造があるため、実施例1の[[LEDチップの実装]]のように、複数のマイクロLEDチップを一括でアレイ基板に実装することが困難であったため、LEDチップを1個ずつ、接続部への接合、剥離用のサファイア基板からの剥離を繰り返してマイクロLED表示素子を作製した。
 その結果、比較例2においてはマイクロLED表示素子を製造するのに、実施例1~3のいずれと比べても100倍以上の時間がかかった。
[Production of micro LED display element of Comparative Example 2]
A barrier rib structure was previously formed on the array substrate before the LED chips were connected using the transfer film 1, and then the LED chips were mounted on the substrate to produce a micro LED display element.
At this time, since the array substrate has a partition wall structure with a thickness of 33 μm, it is difficult to mount multiple micro LED chips on the array substrate at once, as in Example 1 [[Mounting LED chips]]. Therefore, a micro LED display element was manufactured by repeatedly bonding the LED chips to the connecting portion and peeling them from the sapphire substrate for peeling one by one.
As a result, in Comparative Example 2, it took 100 times more time to manufacture the micro LED display element than in any of Examples 1 to 3.
 10 発光素子付き基板
 12 基板
 12A 基板面
 T1 発光素子の高さ
 14 発光素子
 20、20A、20B 転写フィルム
 22、仮支持体
 24 感光性層
 26 光吸収層前駆体層
 28 光反射層前駆体層
 30 マスク
 40、60 積層体
 42 樹脂パターン
 44 開口部
 50 保護フィルム
 62 光反射膜
 θ テーパー角度
10 Substrate with light-emitting element 12 Substrate 12A Substrate surface T1 Height of light-emitting element 14 Light-emitting element 20, 20A, 20B Transfer film 22, temporary support 24 Photosensitive layer 26 Light-absorbing layer precursor layer 28 Light-reflecting layer precursor layer 30 Mask 40, 60 Laminated body 42 Resin pattern 44 Opening 50 Protective film 62 Light reflecting film θ Taper angle

Claims (11)

  1.  基板と前記基板上に配置された複数の発光素子とを含む発光素子付き基板の前記発光素子側の表面と、仮支持体と感光性層とを含む転写フィルムの前記仮支持体とは反対側の表面とが対向し、前記発光素子が前記感光性層で覆われるように、前記発光素子付き基板と前記転写フィルムとを貼合する工程1と、
     前記感光性層に対してパターン露光を行う工程2と、
     露光された前記感光性層を現像して、前記発光素子に対応する位置に開口部を有する樹脂パターンを形成する工程3とを有し、
     前記工程1と前記工程2との間、又は、前記工程2と前記工程3との間に前記仮支持体を剥離する工程を有する、積層体の製造方法。
    A surface on the light emitting element side of a substrate with a light emitting element that includes a substrate and a plurality of light emitting elements arranged on the substrate, and a side opposite to the temporary support of a transfer film that includes a temporary support and a photosensitive layer. a step 1 of laminating the light emitting element-equipped substrate and the transfer film so that the surfaces thereof face each other and the light emitting element is covered with the photosensitive layer;
    Step 2 of performing pattern exposure on the photosensitive layer;
    Step 3 of developing the exposed photosensitive layer to form a resin pattern having an opening at a position corresponding to the light emitting element,
    A method for manufacturing a laminate, comprising a step of peeling off the temporary support between the step 1 and the step 2, or between the step 2 and the step 3.
  2.  前記転写フィルムにおける前記感光性層の膜厚が前記発光素子の高さよりも大きい、請求項1に記載の積層体の製造方法。 The method for manufacturing a laminate according to claim 1, wherein the thickness of the photosensitive layer in the transfer film is greater than the height of the light emitting element.
  3.  前記転写フィルムにおける前記感光性層が、アルカリ可溶樹脂、重合性化合物、及び光重合開始剤を含む、請求項1又は2に記載の積層体の製造方法。 The method for producing a laminate according to claim 1 or 2, wherein the photosensitive layer in the transfer film contains an alkali-soluble resin, a polymerizable compound, and a photopolymerization initiator.
  4.  前記転写フィルムにおける前記感光性層が、ポリマー及び光酸発生剤を含む、請求項1又は2に記載の積層体の製造方法。 The method for manufacturing a laminate according to claim 1 or 2, wherein the photosensitive layer in the transfer film contains a polymer and a photoacid generator.
  5.  前記転写フィルムにおける前記感光性層において、水の含有量が、前記感光性層の全質量に対して、5.0質量%以下である、請求項1又は2に記載の積層体の製造方法。 The method for manufacturing a laminate according to claim 1 or 2, wherein the photosensitive layer in the transfer film has a water content of 5.0% by mass or less based on the total mass of the photosensitive layer.
  6.  前記転写フィルムにおける前記感光性層において、有機溶剤の含有量が、前記感光性層の全質量に対して、5.0質量%以下である、請求項1又は2に記載の積層体の製造方法。 The method for producing a laminate according to claim 1 or 2, wherein the photosensitive layer in the transfer film has an organic solvent content of 5.0% by mass or less based on the total mass of the photosensitive layer. .
  7.  前記転写フィルムにおける前記感光性層において、塩化物イオンの含有量が、前記感光性層の全質量に対して、100質量ppm以下である、請求項1又は2に記載の積層体の製造方法。 The method for manufacturing a laminate according to claim 1 or 2, wherein the photosensitive layer in the transfer film has a chloride ion content of 100 mass ppm or less based on the total mass of the photosensitive layer.
  8.  前記転写フィルムにおける前記感光性層が、白色顔料を含む、請求項1又は2に記載の積層体の製造方法。 The method for manufacturing a laminate according to claim 1 or 2, wherein the photosensitive layer in the transfer film contains a white pigment.
  9.  前記転写フィルムにおける前記感光性層が、前記仮支持体側から順に、感光性の光吸収層前駆体層と、感光性の光反射性層前駆体層とを有する、請求項1又は2に記載の積層体の製造方法。 3. The photosensitive layer in the transfer film includes, in order from the temporary support side, a photosensitive light-absorbing layer precursor layer and a photosensitive light-reflecting layer precursor layer. Method for manufacturing a laminate.
  10.  前記転写フィルムにおける前記感光性層が、感光性の光吸収層前駆体層である、請求項1又は2に記載の積層体の製造方法。 The method for producing a laminate according to claim 1 or 2, wherein the photosensitive layer in the transfer film is a photosensitive light-absorbing layer precursor layer.
  11.  前記工程3の後に、更に、前記開口部の側壁に光反射膜を配置する工程4を有する、請求項1又は2に記載の積層体の製造方法。 The method for manufacturing a laminate according to claim 1 or 2, further comprising a step 4 of arranging a light reflective film on a side wall of the opening after the step 3.
PCT/JP2023/027400 2022-07-29 2023-07-26 Laminate manufacturing method WO2024024842A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-122020 2022-07-29
JP2022122020 2022-07-29

Publications (1)

Publication Number Publication Date
WO2024024842A1 true WO2024024842A1 (en) 2024-02-01

Family

ID=89706494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027400 WO2024024842A1 (en) 2022-07-29 2023-07-26 Laminate manufacturing method

Country Status (2)

Country Link
TW (1) TW202410492A (en)
WO (1) WO2024024842A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006011180A (en) * 2004-06-28 2006-01-12 Fuji Photo Film Co Ltd Method for manufacturing substrate with light-shielding image, and light-shielding image, photosensitive resin composition, transfer material, color filter, and display device
JP2010009913A (en) * 2008-06-26 2010-01-14 Asahi Kasei E-Materials Corp Photopolymerizable resin laminate, and method of manufacturing pattern using the same
JP2019179111A (en) * 2018-03-30 2019-10-17 Jsr株式会社 Display element laminate and partition forming composition
JP2023021603A (en) * 2021-08-02 2023-02-14 株式会社レゾナック Substrate for color conversion device formation, photosensitive film, color conversion device, and display device
WO2023127889A1 (en) * 2021-12-28 2023-07-06 富士フイルム株式会社 Transfer film, laminate manufacturing method, laminate, and micro-led display element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006011180A (en) * 2004-06-28 2006-01-12 Fuji Photo Film Co Ltd Method for manufacturing substrate with light-shielding image, and light-shielding image, photosensitive resin composition, transfer material, color filter, and display device
JP2010009913A (en) * 2008-06-26 2010-01-14 Asahi Kasei E-Materials Corp Photopolymerizable resin laminate, and method of manufacturing pattern using the same
JP2019179111A (en) * 2018-03-30 2019-10-17 Jsr株式会社 Display element laminate and partition forming composition
JP2023021603A (en) * 2021-08-02 2023-02-14 株式会社レゾナック Substrate for color conversion device formation, photosensitive film, color conversion device, and display device
WO2023127889A1 (en) * 2021-12-28 2023-07-06 富士フイルム株式会社 Transfer film, laminate manufacturing method, laminate, and micro-led display element

Also Published As

Publication number Publication date
TW202410492A (en) 2024-03-01

Similar Documents

Publication Publication Date Title
WO2023127889A1 (en) Transfer film, laminate manufacturing method, laminate, and micro-led display element
US11999157B2 (en) Transfer film, laminate, acoustic speaker, and method for producing laminate
US20230106830A1 (en) Transfer film, method for producing laminate, and blocked isocyanate compound
WO2024024842A1 (en) Laminate manufacturing method
JP7213981B2 (en) Transfer film, method for producing laminate, and method for producing touch panel
CN115698856A (en) Transfer film and method for manufacturing laminate
WO2022209307A1 (en) Multilayer body and method for producing multilayer body
US20220404526A1 (en) Transfer film, base material for display panel, manufacturing method of base material for display panel, and display panel
WO2022196537A1 (en) Laminate and method for manufacturing same
US20230069709A1 (en) Touch panel sensor and manufacturing method of touch panel sensor
JP7438366B2 (en) Method for forming metal pattern and method for manufacturing metal mask for vapor deposition
WO2021246251A1 (en) Transfer film and method for producing multilayer body
JP7416969B2 (en) Transfer film, laminate manufacturing method, circuit wiring manufacturing method
WO2022176382A1 (en) Touch sensor
US20230102758A1 (en) Photosensitive transfer material, light shielding material, led array, and electronic apparatus
US20230094866A1 (en) Photosensitive transfer material for led array, light shielding material for led array, led array, and electronic apparatus
US20240004291A1 (en) Composition, transfer film, manufacturing method of laminate, cured film, and device
WO2021125168A1 (en) Photosensitive transfer material, method for producing same, method for producing metal conductive material with pattern, film, touch panel, deterioration suppressing method, and multilayer body
WO2023100553A1 (en) Transfer film, laminate having conductor pattern, method for producing laminate having conductor pattern, and method for producing transfer film
WO2022131324A1 (en) Transfer film, method for producing laminate, and method for producing circuit wiring
WO2022075090A1 (en) Transfer film, method for producing laminate, and method for producing circuit wiring
WO2021246366A1 (en) Transfer film and method for producing laminate
JP2022156251A (en) Transfer film, method for manufacturing laminate, and method for manufacturing laminate having conductive pattern
WO2024004492A1 (en) Photosensitive composition, transfer film, laminate, and method for manufacturing same, and micro led display
CN115943347A (en) Transfer film, method for manufacturing laminate, and method for manufacturing circuit wiring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846572

Country of ref document: EP

Kind code of ref document: A1