WO2024024837A1 - Method and equipment for reducing flare gas, and method and equipment for reducing disposal amount of biogas - Google Patents

Method and equipment for reducing flare gas, and method and equipment for reducing disposal amount of biogas Download PDF

Info

Publication number
WO2024024837A1
WO2024024837A1 PCT/JP2023/027387 JP2023027387W WO2024024837A1 WO 2024024837 A1 WO2024024837 A1 WO 2024024837A1 JP 2023027387 W JP2023027387 W JP 2023027387W WO 2024024837 A1 WO2024024837 A1 WO 2024024837A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
flare
hydrogen
equipment
transfer pipe
Prior art date
Application number
PCT/JP2023/027387
Other languages
French (fr)
Japanese (ja)
Inventor
洋介 佐野
紘己 赤塚
拓矢 青山
Original Assignee
株式会社Inpex
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Inpex filed Critical 株式会社Inpex
Publication of WO2024024837A1 publication Critical patent/WO2024024837A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a flare gas reduction method and flare gas reduction equipment, and a method and equipment for reducing the amount of biogas to be disposed of.
  • the associated gas is generally a gas containing hydrocarbons having 1 to 5 carbon atoms, and is generated when hydrocarbons dissolved in crude oil under high pressure are depressurized in a mine or in a separator.
  • product gas containing carbon dioxide, methane, etc., and ethane, propane, and heavy components are separated from natural gas or petroleum-associated gas by using a membrane separation method, an absorption separation method, and a distillation separation method.
  • NGL Natural Gas Liquid
  • associated gas generated at crude oil production facilities is more difficult to transport than crude oil. Since large-scale oil and gas fields generate a large amount of associated gas, it is possible to construct pipelines and LNG terminals to produce product gas from the associated gas. On the other hand, since small and medium-sized oil and gas fields generate less associated gas than large-scale oil and gas fields, they require equipment to produce product gas from associated gas and pipelines and LNG terminals for transportation. It is not profitable to construct such a system, and the associated gas is often disposed of by flaring. Due to concerns about global warming, there is a need to reduce the amount of associated gas processed by flaring.
  • the present invention includes, for example, the following inventions [1] to [12].
  • a flare gas reduction method for reducing the amount of associated gas that is disposed of by flaring among the associated gas generated in the production of crude oil comprising: A flare gas reduction method that includes a process of decomposing hydrocarbons contained in the gas phase obtained by gas-liquid separation of fluid from oil and gas production wells into hydrogen and carbon materials.
  • the method for reducing flare gas according to [1] further comprising the step of supplying the hydrogen to one of a fuel cell and a hydrogen gas turbine to generate electricity.
  • Flare gas reduction equipment for reducing the amount of associated gas that is disposed of by flaring among the associated gas generated in the production of crude oil, a first transfer pipe that transfers at least a portion of a first gas phase obtained by gas-liquid separation of fluid from an oil and gas production well; a decomposition device that decomposes hydrocarbons contained in at least a portion of the first gas phase supplied from the first transfer pipe into hydrogen and carbon materials; Flare gas reduction equipment equipped with [7] The flare gas reduction equipment according to [6], further comprising one of a fuel cell and a hydrogen gas turbine that generate electricity using the hydrogen from the decomposition device.
  • the decomposition device is any one of a simple pyrolysis device, a plasma pyrolysis device, and a catalytic pyrolysis device.
  • Equipment for reducing the amount of biogas disposed of by combustion reaction or emission Equipment comprising a decomposition device that decomposes the biogas into hydrogen and carbon materials.
  • the present invention it is possible to provide a flare gas reduction method and flare gas reduction equipment that reduce the amount of associated gas that is disposed of by flaring out of the associated gas generated in the production of crude oil. Further, according to the present invention, it is possible to provide a method and equipment for reducing the amount of biogas that is disposed of without being effectively utilized.
  • FIG. 1 is a configuration diagram schematically showing an example of a crude oil production facility equipped with flare gas reduction equipment according to the present invention.
  • FIG. 2 is a configuration diagram schematically showing an example of flare gas reduction equipment according to the present invention.
  • the crude oil production facility 100 shown in FIG. 1 includes an oil and gas production line L1, a gas-liquid separator 1, a gas-liquid separator 5, and a flare gas reduction equipment 50 shown in FIG. 2.
  • a valve, a compressor, a heating device, a cooling device, etc. may be provided in the middle of each transfer pipe.
  • the fluid from the oil and gas production well is transferred to the gas-liquid separation device 1 (first gas-liquid separation device) through the transfer pipe (oil and gas production line) L1.
  • the gas-liquid separation device 1 is a device that separates fluid from an oil and gas production well into a first gas phase (associated gas) and a first liquid phase.
  • the gas-liquid separation device 1 may be, for example, a device that can adjust pressure, temperature, and the like.
  • a transfer pipe L2 and a transfer pipe L3 are connected to the gas-liquid separation device 1.
  • the transfer pipe L2 is a pipe that transfers the first gas phase.
  • the transfer pipe L3 is a pipe that transfers the first liquid phase.
  • the composition of the first gas phase varies depending on the oil field, but may have the following composition, for example.
  • the first gas phase may include at least methane.
  • the first gas phase may further contain, for example, carbon dioxide, sulfur components such as mercaptans, and the like.
  • Pentane (C5) 1 to 20 mol%
  • Hydrocarbons having 6 or more carbon atoms (C6 or more) 0 to 10 mol%.
  • the composition of the first liquid phase varies depending on the oil field, but includes, for example, C6 or higher hydrocarbons.
  • the first liquid phase further contains alicyclic hydrocarbons such as cyclohexane; aromatic hydrocarbons such as benzene; and heterocyclic compounds such as pyrrole compounds, pyridine compounds, and thiophene compounds. May include.
  • the transfer pipe L2 is connected to the transfer pipe L4 and the transfer pipe L5 at the junction point P1.
  • the valve 7a is closed, the valve 7b is opened, and the entire amount of the first gas phase is transferred to the impurity removal device 2 through the transfer pipe L4.
  • the valve 7b is closed, the valve 7a is opened, and the entire amount of the first gas phase is transferred to the flare equipment 8a through the transfer pipe L5. be done.
  • a flow rate adjustment valve or the like may be installed at the junction P1 to adjust the flow rate of the first gas phase transferred through the transfer pipe L4 and the flow rate of the first gas phase transferred through the transfer pipe L5. . At this time, at least a portion of the first gas phase is transferred to the impurity removal device 2 through the transfer pipe L4.
  • the impurity removal device 2 is a device that removes impurities (for example, sulfur components and mercury) from the first gas phase transferred through the transfer pipe L4. By removing impurities from the first gas phase, inhibition of hydrocarbon decomposition reactions and/or deterioration of product quality can be suppressed. Furthermore, by removing the sulfur component from the first gas phase, the sulfur component is less likely to be transferred to the fuel cell described later, and it is possible to suppress the electrodes of the fuel cell from being poisoned by the sulfur component.
  • the impurity removal device 2 may be a device that removes carbon dioxide, mercury, water vapor, etc. from the first gas phase along with the sulfur component.
  • the impurity removal device 2 examples include a hydrodesulfurization device, a dehydration device, an adsorption device (solid adsorption device), and the like. From the viewpoint of making the flare gas reduction equipment 50 easy to package equipment, the impurity removal device 2 may be of a solid adsorption type.
  • the dehydrator examples include a glycol absorption type, a solid adsorption type, and a pressure swing solid adsorption type.
  • a transfer pipe L6 is connected to the impurity removal device 2.
  • the transfer pipe L6 is a pipe that transfers the first gas phase from which impurities have been removed, and is connected to the decomposition device 3.
  • the impurities separated by the impurity removal device 2 are discharged, for example, through the discharge path L7. Note that if the impurity removal device 2 is of a solid adsorption type, impurities are discharged out of the system by periodic replacement of the filler.
  • the decomposition device 3 is a device that decomposes hydrocarbons (for example, methane) contained in the first gas phase into hydrogen and carbon materials.
  • the decomposition device 3 may be, for example, a thermal decomposition device, a decomposition device using a catalyst, or the like.
  • the pyrolysis device examples include a simple pyrolysis device, a plasma pyrolysis device, and a catalytic pyrolysis device.
  • a plasma pyrolysis device is a device that decomposes hydrocarbons such as methane into hydrogen and carbon materials by introducing plasma into the hydrocarbons.
  • the decomposition device 3 may be any one of a simple pyrolysis device, a plasma pyrolysis device, and a catalytic pyrolysis device, and in particular, may be a plasma pyrolysis device.
  • Simple pyrolysis, plasma pyrolysis, and catalytic pyrolysis all use electricity to advance the reaction, so by generating electricity using hydrogen generated during the production of carbon materials, they can be self-contained processes that can reduce flare gas and greenhouse gases. reduction is possible.
  • plasma pyrolysis can obtain high-quality carbon materials, it is advantageous in gas utilization in small and medium-sized oil fields where it is difficult to secure economic efficiency through natural gas sales.
  • a transfer pipe L8 and a transfer pipe L9 are connected to the decomposition device 3.
  • the transfer pipe L8 is a pipe that transfers the carbon material produced in the decomposition device 3.
  • the transfer pipe L9 is a pipe for transferring hydrogen generated in the decomposition device 3, and is connected to the fuel cell 4.
  • the crude oil production facility 100 (flare gas reduction equipment 50) has a separation system between the cracker 3 and the fuel cell 4 that separates hydrogen from gas components other than hydrogen, in order to increase the purity of the hydrogen produced in the cracker 3.
  • the device may further include a device.
  • the carbon material produced in the decomposition device 3 is transferred from the flare gas reduction equipment 50 through the transfer pipe L8.
  • Examples of the carbon material include carbon black.
  • Carbon materials may be stored and/or transported for sale, or stored underground. By generating carbon material from the first gas phase that was supposed to be flare gas and fixing carbon, it is possible to suppress carbon dioxide emissions and reduce the burden on the environment.
  • the fuel cell 4 is a device that generates electricity using hydrogen transferred from the decomposition device 3 through the transfer pipe L9.
  • An energy supply line E1 is connected to the fuel cell 4. Electric power generated by the fuel cell 4 is supplied to the decomposition device 3 through the energy supply line E1.
  • the electric power generated by the fuel cell 4 may be utilized in any device of the crude oil production facility 100.
  • the amount of associated gas generated during the production of crude oil is smaller than in large-scale oil fields, so the amount of hydrogen generated by decomposing the first gas phase is also smaller than that of large-scale oil fields. It will be less compared to oil fields. Therefore, it is not profitable to provide equipment for storing and/or transporting hydrogen produced in small and medium-sized oil fields.
  • supplying the generated hydrogen to a fuel cell using it for power generation, and consuming it within the crude oil production facility, there is no hydrogen transportation and/or storage cost, and the cost of electricity within the crude oil production facility is reduced. can be reduced.
  • fuel cells can generate electricity without emitting carbon dioxide, it is possible to reduce the amount of carbon dioxide emitted within crude oil production facilities, thereby reducing the burden on the environment.
  • the transfer pipe L3 is connected to the gas-liquid separation device 5 (second gas-liquid separation device).
  • the gas-liquid separation device 5 is a device that separates the first liquid phase transferred through the transfer pipe L3 into a second gas phase and a second liquid phase.
  • the gas-liquid separation device 5 may be a device that can adjust pressure, temperature, etc., for example.
  • a transfer pipe L10 and a transfer pipe L11 are connected to the gas-liquid separation device 5.
  • the transfer pipe L10 is a pipe that transfers the second gas phase. Although the second gas phase is smaller in amount than the first gas phase separated by the gas-liquid separator 1, it contains a large amount of hydrocarbons having a large number of carbon atoms.
  • the transfer pipe L11 is a pipe that transfers the second liquid phase. The second liquid phase is sent to, for example, a dehydrator or the like to remove impurities, and then shipped as crude oil.
  • the transfer pipe L10, the transfer pipe L12 and the transfer pipe L13 are connected at a junction point P2.
  • the valve 7c is closed, the valve 7d is opened, and the entire amount of the second gas phase is transferred to the gas engine 6 through the transfer pipe L12.
  • the valve 7d is closed, the valve 7c is opened, and the entire amount of the second gas phase is transferred to the flare equipment 8b through the transfer pipe L13. be done.
  • the flare gas reduction equipment 50 has flare equipment 8a, 8b, but the flare gas reduction equipment may include only one flare equipment.
  • a flow rate adjustment valve or the like may be installed at the junction P2 to adjust the flow rate of the second gas phase transferred through the transfer pipe L12 and the flow rate of the second gas phase transferred through the transfer pipe L13. . At this time, at least a portion of the second gas phase is transferred to the gas engine 6 through the transfer pipe L12.
  • the gas engine 6 is a device that generates energy by burning hydrocarbons contained in the second gas phase. Examples of the energy generated by the gas engine 6 include electric power, motive power, and the like.
  • the gas engine 6 is equipped with an energy supply line E2, and the energy generated by the gas engine 6 is supplied to the decomposition device 3 through the energy supply line E2.
  • the energy generated by gas engine 6 may be utilized in any device of crude oil production facility 100.
  • the flare gas reduction equipment 50 may be able to be separated from the junction P1 and the junction P2 of the crude oil production facility 100. That is, the flare gas reduction equipment 50 may be a packaged equipment that can be separated from the crude oil production facility 100. Since the flare gas reduction equipment 50 is a packaged equipment, when the production of crude oil is finished, the flare gas reduction equipment 50 can be separated from the crude oil production facility 100 and the flare gas reduction equipment 50 can be installed in a crude oil production facility in another oil and gas field. Can be reused.
  • the flare gas reduction equipment 50 can also be applied to biogas that is difficult to recover on a small scale, and can be disposed of by combustion reaction (flare, combustion reaction with heat recovery, etc.) or dissipation. It may also be equipment for reducing the amount of biogas used. That is, another embodiment of the present invention is a facility for reducing the amount of biogas disposed of by combustion reaction or dissipation, the facility including a decomposition device that decomposes biogas into hydrogen and carbon materials. . Biogas, which is difficult to utilize effectively within an economically reasonable range, may end up being released into the environment without being combusted.
  • the biogas may be, for example, a gas containing methane gas generated in the production of palm oil. More specifically, the biogas may be derived from waste liquid produced in the palm oil extraction process.
  • the flare gas reduction equipment does not need to be equipped with an impurity removal device.
  • the first gas phase may be directly transferred to the decomposition device without passing through the impurity removal device.
  • the first gas phase may be directly transferred to the decomposition device without passing through the impurity removal device.
  • the flare gas reduction equipment does not need to be equipped with a fuel cell.
  • the hydrogen produced in the cracker may be used for hydrorefining of petroleum fractions.
  • the flare gas reduction equipment may include a hydrogen gas turbine instead of a fuel cell.
  • the flare gas reduction equipment does not need to be equipped with a gas engine. For example, trace amounts of the second gas phase make it difficult for gas engines to generate sufficient energy. Additionally, if the fuel cell can provide sufficient power to the cracker, the need for power supply is reduced. If a gas engine is not provided, the second gas phase may be combined with the first gas phase and transferred to a flare facility for combustion.
  • the flare gas reduction method is a method of reducing the amount of associated gas that is disposed of by flaring out of the associated gas generated in the production of crude oil.
  • the flare gas reduction method may include a step of separating fluid from an oil and gas production well into a first gas phase and a first liquid phase (first gas-liquid separation step).
  • the first gas-liquid separation step may be a step of separating fluid from an oil and gas production well into a first gas phase and a first liquid phase using a gas-liquid separation device.
  • the flare gas reduction method may include a step (removal step) of removing impurities (for example, sulfur components) from the first gas phase obtained in the first gas-liquid separation step.
  • the removal step is a step of removing impurities from the first gas phase using an impurity removal device.
  • the flare gas reduction method includes a step (decomposition step) of decomposing hydrocarbons contained in the first gas phase (the first gas phase from which impurities have been removed) into hydrogen and carbon material.
  • the method for decomposing hydrocarbons may be, for example, thermal decomposition, decomposition using a catalyst, or the like.
  • the flare gas reduction method can generate carbon material from the first gas phase that would have become flare gas, and can fix carbon. Thereby, flare gas can be reduced, and carbon dioxide emissions can be suppressed, and the load on the environment can be reduced.
  • Examples of pyrolysis include simple pyrolysis, plasma pyrolysis, and catalytic pyrolysis. That is, hydrocarbons may be decomposed into hydrogen and carbon materials by any one of simple pyrolysis, plasma pyrolysis, and catalytic pyrolysis.
  • Plasma pyrolysis is a method of decomposing hydrocarbons such as methane into hydrogen and carbon materials by introducing plasma into the hydrocarbons.
  • the flare gas reduction method may include a step of supplying hydrogen generated in the decomposition step to one of a fuel cell and a hydrogen gas turbine to generate electricity (power generation step).
  • the electricity generated by the power generation may be consumed in any step of the flare gas reduction method.
  • the flare gas reduction method may include a step of further separating the first liquid phase into a second gas phase and a second liquid phase (second gas-liquid separation step).
  • the second gas-liquid separation step may be a step of separating the first liquid phase into a second gas phase and a second liquid phase using a gas-liquid separation device.
  • the flare gas reduction method may include a step (combustion step) of generating energy by burning hydrocarbons contained in the second gas phase.
  • the combustion step may be a step in which hydrocarbons contained in the second gas phase are combusted by a gas engine to generate energy.
  • the energy generated may be consumed in any step of the flare gas reduction method.
  • the flare gas reduction method can burn the second gas phase that would have become flare gas and generate energy. This makes it possible to reduce flare gas while generating energy to be used in the flare gas reduction equipment.
  • the flare gas reduction method according to the present embodiment can also be applied to small-scale biogas that is difficult to recover, and is a method for reducing the amount of biogas that is disposed of by combustion reaction or dissipation.
  • another embodiment of the present invention is a method of reducing the amount of biogas disposed of by combustion reaction or dissipation, the method including the step of decomposing the biogas into hydrogen and carbon material. According to this method, it is possible to reduce the amount of biogas that is not effectively utilized and is disposed of through combustion reactions or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

A flare gas reduction method for reducing the amount of associated gas that is disposed of through flaring among associated gas generated during crude oil production, the method comprising a step in which hydrocarbons contained in a gas phase obtained through the gas-liquid separation of fluid from oil and gas production wells are decomposed into hydrogen and carbon materials. Flare gas reduction equipment for reducing the amount of associated gas that is disposed of through flaring among associated gas generated during crude oil production, the equipment comprising: a first transfer pipe for transporting at least a portion of a first gas phase obtained through the gas-liquid separation of fluid from oil and gas production wells; and a decomposition device for decomposing hydrocarbons contained in at least a portion of the first gas phase supplied from the first transfer pipe into hydrogen and carbon materials.

Description

フレアガス削減方法及びフレアガス削減設備、並びに処分されるバイオガスの量を削減する方法及び設備Flare gas reduction method and flare gas reduction equipment, and method and equipment for reducing the amount of biogas to be disposed of
 本発明は、フレアガス削減方法及びフレアガス削減設備、並びに処分されるバイオガスの量を削減する方法及び設備に関する。 The present invention relates to a flare gas reduction method and flare gas reduction equipment, and a method and equipment for reducing the amount of biogas to be disposed of.
 原油生産施設では、随伴ガスと称される余剰ガスが発生する。随伴ガスは、一般に炭素数1~5の炭化水素を含有するガスであり、高圧下の原油に溶解していた炭化水素が坑内やセパレータで減圧されて生じるものである。地球温暖化に対する懸念を背景に、随伴ガスを有効利用するための種々の取り組みがなされている。例えば、特許文献1には、膜分離法、吸収分離法及び蒸留分離法を利用して天然ガス又は石油随伴ガスから、二酸化炭素及びメタン等を含有する製品ガスと、エタン、プロパン及び重質成分を主成分とするNGL(Natural Gas Liquid)とを製造する方法が記載されている。 Crude oil production facilities generate surplus gas called associated gas. The associated gas is generally a gas containing hydrocarbons having 1 to 5 carbon atoms, and is generated when hydrocarbons dissolved in crude oil under high pressure are depressurized in a mine or in a separator. Against the background of concerns about global warming, various efforts are being made to effectively utilize associated gases. For example, Patent Document 1 discloses that product gas containing carbon dioxide, methane, etc., and ethane, propane, and heavy components are separated from natural gas or petroleum-associated gas by using a membrane separation method, an absorption separation method, and a distillation separation method. A method for producing NGL (Natural Gas Liquid) whose main component is NGL is described.
特開2005-290151号公報Japanese Patent Application Publication No. 2005-290151
 ところで、原油生産施設で生じる随伴ガスは、原油と比較して輸送が困難である。大規模な油ガス田であれば、随伴ガスの発生量が多いことから、随伴ガスから製品ガスを製造するためにパイプラインやLNG基地を建設することが可能である。一方、中小規模の油ガス田では、大規模な油ガス田に比べて随伴ガスの発生量が少ないことから、随伴ガスから製品ガスを製造するための設備及び移送のためにパイプラインやLNG基地を建設することは採算が合わず、随伴ガスはフレアにより処理される場合が多い。地球温暖化に対する懸念から、フレアによって処理される随伴ガスの削減が求められている。他方、生物由来の有機性廃棄物が嫌気性発酵して生じるバイオガスを精製し、メタン純度を高めたバイオ燃料を製造する取り組みがなされている。経済的に合理的な範囲で有効活用が困難なバイオガスは、焼却処分(フレア)されずに、最終的に環境中に放散される場合もある。 Incidentally, associated gas generated at crude oil production facilities is more difficult to transport than crude oil. Since large-scale oil and gas fields generate a large amount of associated gas, it is possible to construct pipelines and LNG terminals to produce product gas from the associated gas. On the other hand, since small and medium-sized oil and gas fields generate less associated gas than large-scale oil and gas fields, they require equipment to produce product gas from associated gas and pipelines and LNG terminals for transportation. It is not profitable to construct such a system, and the associated gas is often disposed of by flaring. Due to concerns about global warming, there is a need to reduce the amount of associated gas processed by flaring. On the other hand, efforts are being made to purify biogas produced by anaerobic fermentation of biologically derived organic waste and produce biofuel with increased methane purity. Biogas, which is difficult to utilize effectively within an economically reasonable range, may end up being released into the environment without being incinerated (flared).
 本発明は、原油の生産に伴って生じる随伴ガスのうち、フレアによって処分される随伴ガスの量を削減するフレアガス削減方法及びフレアガス削減設備を提供することを目的とする。また、本発明は、有効活用されずに処分されるバイオガスの量を削減する方法及び設備を提供することを目的とする。 An object of the present invention is to provide a flare gas reduction method and flare gas reduction equipment that reduce the amount of associated gas that is disposed of by flaring out of the associated gas generated in the production of crude oil. Another object of the present invention is to provide a method and equipment for reducing the amount of biogas that is disposed of without being effectively utilized.
 本発明は、例えば、以下の発明[1]~[12]を含む。
[1] 原油の生産に伴って生じる随伴ガスのうち、フレアによって処分される随伴ガスの量を削減するフレアガス削減方法であって、
 油ガス生産井からの流体を気液分離して得られる気相に含まれる炭化水素を水素と炭素材料に分解する工程を含む、フレアガス削減方法。
[2] 前記水素を燃料電池及び水素ガスタービンの一方に供給して発電する工程を更に含む、[1]に記載のフレアガス削減方法。
[3] 前記気相から不純物を除去する工程を更に含む、[1]又は[2]に記載のフレアガス削減方法。
[4] 単純熱分解、プラズマ熱分解及び触媒熱分解のいずれかの処理によって前記炭化水素を前記水素と前記炭素材料に分解する、[1]~[3]のいずれか一つに記載のフレアガス削減方法。
[5] 燃焼反応又は放散によって処分されるバイオガスの量を削減する方法であって、
 前記バイオガスを水素と炭素材料に分解する工程を含む、方法。
[6] 原油の生産に伴って生じる随伴ガスのうち、フレアによって処分される随伴ガスの量を削減するためのフレアガス削減設備であって、
 油ガス生産井からの流体を気液分離して得られる第一の気相の少なくとも一部を移送する第一の移送管と、
 前記第一の移送管から供給される前記第一の気相の少なくとも一部に含まれる炭化水素を水素と炭素材料に分解する分解装置と、
を備える、フレアガス削減設備。
[7] 前記分解装置からの前記水素を利用して発電する燃料電池及び水素ガスタービンの一方を更に備える、[6]に記載のフレアガス削減設備。
[8] 前記第一の気相の少なくとも一部から不純物を除去する装置を更に備える、[6]又は[7]に記載のフレアガス削減設備。
[9] 前記分解装置が単純熱分解装置、プラズマ熱分解装置及び触媒熱分解装置のいずれかである、[6]~[8]のいずれか一つに記載のフレアガス削減設備。
[10] 油ガス生産井からの流体を気液分離して得られる液相を更に気液分離して得られる第二の気相の少なくとも一部を移送する第二の移送管を更に備える、[6]~[9]のいずれかに記載のフレアガス削減設備。
[11] 前記第二の移送管から供給される前記第二の気相の少なくとも一部に含まれる炭化水素を燃料として利用するガスエンジンを更に備える、[10]に記載のフレアガス削減設備。
[12] 燃焼反応又は放散によって処分されるバイオガスの量を削減するための設備であって、
 前記バイオガスを水素と炭素材料に分解する分解装置とを備える、設備。
The present invention includes, for example, the following inventions [1] to [12].
[1] A flare gas reduction method for reducing the amount of associated gas that is disposed of by flaring among the associated gas generated in the production of crude oil, the method comprising:
A flare gas reduction method that includes a process of decomposing hydrocarbons contained in the gas phase obtained by gas-liquid separation of fluid from oil and gas production wells into hydrogen and carbon materials.
[2] The method for reducing flare gas according to [1], further comprising the step of supplying the hydrogen to one of a fuel cell and a hydrogen gas turbine to generate electricity.
[3] The method for reducing flare gas according to [1] or [2], further comprising a step of removing impurities from the gas phase.
[4] The flare gas according to any one of [1] to [3], wherein the hydrocarbon is decomposed into the hydrogen and the carbon material by any one of simple pyrolysis, plasma pyrolysis, and catalytic pyrolysis. Reduction method.
[5] A method of reducing the amount of biogas disposed of by combustion reaction or emission, comprising:
A method comprising decomposing the biogas into hydrogen and carbon materials.
[6] Flare gas reduction equipment for reducing the amount of associated gas that is disposed of by flaring among the associated gas generated in the production of crude oil,
a first transfer pipe that transfers at least a portion of a first gas phase obtained by gas-liquid separation of fluid from an oil and gas production well;
a decomposition device that decomposes hydrocarbons contained in at least a portion of the first gas phase supplied from the first transfer pipe into hydrogen and carbon materials;
Flare gas reduction equipment equipped with
[7] The flare gas reduction equipment according to [6], further comprising one of a fuel cell and a hydrogen gas turbine that generate electricity using the hydrogen from the decomposition device.
[8] The flare gas reduction equipment according to [6] or [7], further comprising a device for removing impurities from at least a portion of the first gas phase.
[9] The flare gas reduction equipment according to any one of [6] to [8], wherein the decomposition device is any one of a simple pyrolysis device, a plasma pyrolysis device, and a catalytic pyrolysis device.
[10] Further comprising a second transfer pipe for transferring at least a portion of a second gas phase obtained by further separating the liquid phase obtained by gas-liquid separation of the fluid from the oil and gas production well. The flare gas reduction equipment according to any one of [6] to [9].
[11] The flare gas reduction equipment according to [10], further comprising a gas engine that utilizes as fuel hydrocarbons contained in at least a portion of the second gas phase supplied from the second transfer pipe.
[12] Equipment for reducing the amount of biogas disposed of by combustion reaction or emission,
Equipment comprising a decomposition device that decomposes the biogas into hydrogen and carbon materials.
 本発明によれば、原油の生産に伴って生じる随伴ガスのうち、フレアによって処分される随伴ガスの量を削減するフレアガス削減方法及びフレアガス削減設備を提供することができる。また、本発明によれば、有効活用されずに処分されるバイオガスの量を削減する方法及び設備を提供することができる。 According to the present invention, it is possible to provide a flare gas reduction method and flare gas reduction equipment that reduce the amount of associated gas that is disposed of by flaring out of the associated gas generated in the production of crude oil. Further, according to the present invention, it is possible to provide a method and equipment for reducing the amount of biogas that is disposed of without being effectively utilized.
図1は、本発明に係るフレアガス削減設備を備える原油生産施設の一例を模式的に示す構成図である。FIG. 1 is a configuration diagram schematically showing an example of a crude oil production facility equipped with flare gas reduction equipment according to the present invention. 図2は、本発明に係るフレアガス削減設備の一例を模式的に示す構成図である。FIG. 2 is a configuration diagram schematically showing an example of flare gas reduction equipment according to the present invention.
 本発明の実施形態について、図面を参照しながら、詳細に説明する。 Embodiments of the present invention will be described in detail with reference to the drawings.
<原油生産施設>
 図1に示される原油生産施設100は、油ガス生産ラインL1と、気液分離装置1と、気液分離装置5と、図2に示すフレアガス削減設備50によって構成されている。図1及び図2において、各移送管の途中には、バルブ、コンプレッサー、加熱装置、冷却装置等が設けられていてもよい。
<Crude oil production facility>
The crude oil production facility 100 shown in FIG. 1 includes an oil and gas production line L1, a gas-liquid separator 1, a gas-liquid separator 5, and a flare gas reduction equipment 50 shown in FIG. 2. In FIGS. 1 and 2, a valve, a compressor, a heating device, a cooling device, etc. may be provided in the middle of each transfer pipe.
 油ガス生産井からの流体は、移送管(油ガス生産ライン)L1を通じて気液分離装置1(第一の気液分離装置)に移送される。気液分離装置1は、油ガス生産井からの流体を第一の気相(随伴ガス)と第一の液相とに分離する装置である。気液分離装置1は、例えば、圧力、温度等を調整することが可能な装置であってもよい。 The fluid from the oil and gas production well is transferred to the gas-liquid separation device 1 (first gas-liquid separation device) through the transfer pipe (oil and gas production line) L1. The gas-liquid separation device 1 is a device that separates fluid from an oil and gas production well into a first gas phase (associated gas) and a first liquid phase. The gas-liquid separation device 1 may be, for example, a device that can adjust pressure, temperature, and the like.
 気液分離装置1には、移送管L2と移送管L3とが接続されている。移送管L2は、第一の気相を移送する配管である。移送管L3は第一の液相を移送する配管である。 A transfer pipe L2 and a transfer pipe L3 are connected to the gas-liquid separation device 1. The transfer pipe L2 is a pipe that transfers the first gas phase. The transfer pipe L3 is a pipe that transfers the first liquid phase.
 第一の気相の組成は、油田によって異なるが、例えば、以下のような組成であってもよい。第一の気相は、少なくともメタンを含んでもよい。第一の気相は、下記の炭化水素に加えて、例えば、二酸化炭素、メルカプタン等の硫黄成分などを更に含んでいてもよい。
 メタン(C1):30~90モル%、
 エタン(C2):10~50モル%、
 プロパン(C3):1~40モル%、
 ブタン(C4): 1~40モル%、
 ペンタン(C5):1~20モル%、
 炭素数6以上の炭化水素(C6以上):0~10モル%。
The composition of the first gas phase varies depending on the oil field, but may have the following composition, for example. The first gas phase may include at least methane. In addition to the hydrocarbons described below, the first gas phase may further contain, for example, carbon dioxide, sulfur components such as mercaptans, and the like.
Methane (C1): 30 to 90 mol%,
Ethane (C2): 10 to 50 mol%,
Propane (C3): 1 to 40 mol%,
Butane (C4): 1 to 40 mol%,
Pentane (C5): 1 to 20 mol%,
Hydrocarbons having 6 or more carbon atoms (C6 or more): 0 to 10 mol%.
 第一の液相の組成は、油田によって異なるが、例えば、C6以上の炭化水素を含む。第一の液相は、C6以上の炭化水素に加えて、シクロヘキサン等の脂環式炭化水素;ベンゼン等の芳香族炭化水素;ピロール化合物、ピリジン化合物、チオフェン化合物等の複素環式化合物などを更に含んでもよい。 The composition of the first liquid phase varies depending on the oil field, but includes, for example, C6 or higher hydrocarbons. In addition to C6 or higher hydrocarbons, the first liquid phase further contains alicyclic hydrocarbons such as cyclohexane; aromatic hydrocarbons such as benzene; and heterocyclic compounds such as pyrrole compounds, pyridine compounds, and thiophene compounds. May include.
 移送管L2は、接合点P1において、移送管L4と移送管L5とが接続されている。フレアガス削減設備50が稼働しているとき、バルブ7aが閉じられ、バルブ7bが開けられ、第一の気相の全量が移送管L4を通じて不純物除去装置2に移送される。一方、フレアガス削減設備50が稼働を停止しているとき(例えば、メンテナンス時)、バルブ7bが閉じられ、バルブ7aが開けられ、第一の気相の全量が移送管L5を通じてフレア設備8aに移送される。 The transfer pipe L2 is connected to the transfer pipe L4 and the transfer pipe L5 at the junction point P1. When the flare gas reduction equipment 50 is in operation, the valve 7a is closed, the valve 7b is opened, and the entire amount of the first gas phase is transferred to the impurity removal device 2 through the transfer pipe L4. On the other hand, when the flare gas reduction equipment 50 is out of operation (for example, during maintenance), the valve 7b is closed, the valve 7a is opened, and the entire amount of the first gas phase is transferred to the flare equipment 8a through the transfer pipe L5. be done.
 接合点P1には移送管L4を通じて移送される第一の気相の流量と、移送管L5を通じて移送される第一の気相の流量とを調整する流量調整弁等が設置されていてもよい。このとき、第一の気相の少なくとも一部が移送管L4を通じて不純物除去装置2に移送される。 A flow rate adjustment valve or the like may be installed at the junction P1 to adjust the flow rate of the first gas phase transferred through the transfer pipe L4 and the flow rate of the first gas phase transferred through the transfer pipe L5. . At this time, at least a portion of the first gas phase is transferred to the impurity removal device 2 through the transfer pipe L4.
 不純物除去装置2は、移送管L4を通じて移送される第一の気相から不純物(例えば、硫黄成分や水銀)を除去する装置である。第一の気相から不純物を除去することにより、炭化水素の分解反応の阻害及び/又は生成物の品質の低下を抑制することができる。また、第一の気相から硫黄成分を除去することにより、後述の燃料電池に硫黄成分が移送されにくくなり、燃料電池の電極が硫黄成分により被毒されることを抑制することができる。不純物除去装置2は、硫黄成分と共に、第一の気相から二酸化炭素、水銀、水蒸気等を除去する装置であってもよい。 The impurity removal device 2 is a device that removes impurities (for example, sulfur components and mercury) from the first gas phase transferred through the transfer pipe L4. By removing impurities from the first gas phase, inhibition of hydrocarbon decomposition reactions and/or deterioration of product quality can be suppressed. Furthermore, by removing the sulfur component from the first gas phase, the sulfur component is less likely to be transferred to the fuel cell described later, and it is possible to suppress the electrodes of the fuel cell from being poisoned by the sulfur component. The impurity removal device 2 may be a device that removes carbon dioxide, mercury, water vapor, etc. from the first gas phase along with the sulfur component.
 不純物除去装置2としては、例えば、水素化脱硫装置、脱水装置、吸着装置(固体吸着式装置)等が挙げられる。フレアガス削減設備50をパッケージ設備にしやすい観点から、不純物除去装置2は固体吸着式であってもよい。脱水装置としては、グライコール吸収式、固体吸着式、圧力スイング固体吸着式等が挙げられる。 Examples of the impurity removal device 2 include a hydrodesulfurization device, a dehydration device, an adsorption device (solid adsorption device), and the like. From the viewpoint of making the flare gas reduction equipment 50 easy to package equipment, the impurity removal device 2 may be of a solid adsorption type. Examples of the dehydrator include a glycol absorption type, a solid adsorption type, and a pressure swing solid adsorption type.
 不純物除去装置2には、移送管L6が接続されている。移送管L6は、不純物が除去された第一の気相を移送する配管であり、分解装置3に接続されている。不純物除去装置2で分離された不純物は、例えば、排出路L7を通じて排出される。なお、不純物除去装置2が固体吸着式であれば定期的な充填剤の交換によって不純物は系外に排出される。 A transfer pipe L6 is connected to the impurity removal device 2. The transfer pipe L6 is a pipe that transfers the first gas phase from which impurities have been removed, and is connected to the decomposition device 3. The impurities separated by the impurity removal device 2 are discharged, for example, through the discharge path L7. Note that if the impurity removal device 2 is of a solid adsorption type, impurities are discharged out of the system by periodic replacement of the filler.
 分解装置3は、第一の気相に含まれる炭化水素(例えば、メタン)を水素と炭素材料に分解する装置である。分解装置3は、例えば、熱分解装置、触媒を用いた分解装置等であってもよい。 The decomposition device 3 is a device that decomposes hydrocarbons (for example, methane) contained in the first gas phase into hydrogen and carbon materials. The decomposition device 3 may be, for example, a thermal decomposition device, a decomposition device using a catalyst, or the like.
 熱分解装置としては、例えば、単純熱分解装置、プラズマ熱分解装置及び触媒熱分解装置が挙げられる。プラズマ熱分解装置は、メタン等の炭化水素にプラズマを導入することにより、炭化水素を水素と炭素材料に分解する装置である。フレアガス削減設備50をパッケージ設備にしやすい観点から、分解装置3は、単純熱分解装置、プラズマ熱分解装置及び触媒熱分解装置のいずれかであってよく、特にプラズマ熱分解装置であってもよい。 Examples of the pyrolysis device include a simple pyrolysis device, a plasma pyrolysis device, and a catalytic pyrolysis device. A plasma pyrolysis device is a device that decomposes hydrocarbons such as methane into hydrogen and carbon materials by introducing plasma into the hydrocarbons. From the viewpoint of easily making the flare gas reduction equipment 50 into a packaged equipment, the decomposition device 3 may be any one of a simple pyrolysis device, a plasma pyrolysis device, and a catalytic pyrolysis device, and in particular, may be a plasma pyrolysis device.
 単純熱分解、プラズマ熱分解及び触媒熱分は、いずれも電力により反応を進行させるため、炭素材料の製造により発生する水素を利用して発電することにより、自己完結プロセスとしてフレアガス、温室効果ガスの削減が可能である。特に、プラズマ熱分解は、高品質な炭素材料を得ることができるため、天然ガス販売で経済性が確保しづらい中小規模油田におけるガス利用において有利である。 Simple pyrolysis, plasma pyrolysis, and catalytic pyrolysis all use electricity to advance the reaction, so by generating electricity using hydrogen generated during the production of carbon materials, they can be self-contained processes that can reduce flare gas and greenhouse gases. reduction is possible. In particular, since plasma pyrolysis can obtain high-quality carbon materials, it is advantageous in gas utilization in small and medium-sized oil fields where it is difficult to secure economic efficiency through natural gas sales.
 分解装置3には、移送管L8と移送管L9とが接続されている。移送管L8は、分解装置3で生成した炭素材料を移送する配管である。移送管L9は、分解装置3で生成した水素を移送する配管であり、燃料電池4に接続されている。原油生産施設100(フレアガス削減設備50)は、分解装置3で生成した水素の純度を高める観点から、分解装置3から燃料電池4までの間に、水素と水素以外のガス成分とを分離する分離装置を更に備えていてもよい。 A transfer pipe L8 and a transfer pipe L9 are connected to the decomposition device 3. The transfer pipe L8 is a pipe that transfers the carbon material produced in the decomposition device 3. The transfer pipe L9 is a pipe for transferring hydrogen generated in the decomposition device 3, and is connected to the fuel cell 4. The crude oil production facility 100 (flare gas reduction equipment 50) has a separation system between the cracker 3 and the fuel cell 4 that separates hydrogen from gas components other than hydrogen, in order to increase the purity of the hydrogen produced in the cracker 3. The device may further include a device.
 分解装置3で生成した炭素材料は、移送管L8を通じてフレアガス削減設備50から移送される。炭素材料としては、例えば、カーボンブラック等が挙げられる。炭素材料は、販売のために保管及び/又は輸送してもよく、地中等に貯留してもよい。フレアガスとなるはずであった第一の気相から炭素材料を生成し、炭素を固定化することにより、二酸化炭素の排出を抑制することができ、環境への負荷を低減することができる。 The carbon material produced in the decomposition device 3 is transferred from the flare gas reduction equipment 50 through the transfer pipe L8. Examples of the carbon material include carbon black. Carbon materials may be stored and/or transported for sale, or stored underground. By generating carbon material from the first gas phase that was supposed to be flare gas and fixing carbon, it is possible to suppress carbon dioxide emissions and reduce the burden on the environment.
 燃料電池4は、分解装置3から移送管L9を通じて移送される水素を利用して発電する装置である。燃料電池4には、エネルギー供給ラインE1が接続されている。燃料電池4により生じた電力は、エネルギー供給ラインE1を通じて、分解装置3に供給される。燃料電池4により生じた電力は、原油生産施設100のいずれかの装置において利用されてもよい。 The fuel cell 4 is a device that generates electricity using hydrogen transferred from the decomposition device 3 through the transfer pipe L9. An energy supply line E1 is connected to the fuel cell 4. Electric power generated by the fuel cell 4 is supplied to the decomposition device 3 through the energy supply line E1. The electric power generated by the fuel cell 4 may be utilized in any device of the crude oil production facility 100.
 中小規模の油田の場合、原油の生産に伴って生じる随伴ガスの発生量は、大規模の油田に比べて少ないことから、第一の気相を分解することにより生じる水素の量も大規模の油田に比べて少なくなる。そのため、中小規模の油田で生産される水素を保管及び/又は輸送するための設備を用意することは採算が合わない。しかし、生成した水素を燃料電池に供給して発電に利用して、原油生産施設内で消費することにより、水素の輸送及び/又は貯蔵コストを生じさせず、原油生産施設内での電力コストを削減することができる。また、燃料電池は、二酸化炭素を排出せずに発電することができることから、原油生産施設内での二酸化炭素の排出量を削減することができるため、環境への負荷を低減することができる。 In the case of small and medium-sized oil fields, the amount of associated gas generated during the production of crude oil is smaller than in large-scale oil fields, so the amount of hydrogen generated by decomposing the first gas phase is also smaller than that of large-scale oil fields. It will be less compared to oil fields. Therefore, it is not profitable to provide equipment for storing and/or transporting hydrogen produced in small and medium-sized oil fields. However, by supplying the generated hydrogen to a fuel cell, using it for power generation, and consuming it within the crude oil production facility, there is no hydrogen transportation and/or storage cost, and the cost of electricity within the crude oil production facility is reduced. can be reduced. Furthermore, since fuel cells can generate electricity without emitting carbon dioxide, it is possible to reduce the amount of carbon dioxide emitted within crude oil production facilities, thereby reducing the burden on the environment.
 移送管L3は、気液分離装置5(第二の気液分離装置)に接続されている。気液分離装置5は、移送管L3を通じて移送される第一の液相を第二の気相と第二の液相とに分離する装置である。気液分離装置5は、例えば、圧力、温度等を調整することが可能な装置であってもよい。 The transfer pipe L3 is connected to the gas-liquid separation device 5 (second gas-liquid separation device). The gas-liquid separation device 5 is a device that separates the first liquid phase transferred through the transfer pipe L3 into a second gas phase and a second liquid phase. The gas-liquid separation device 5 may be a device that can adjust pressure, temperature, etc., for example.
 気液分離装置5には、移送管L10と移送管L11とが接続されている。移送管L10は、第二の気相を移送する配管である。第二の気相は、気液分離装置1で分離される第一の気相よりも量が少ないものの、炭素数が多い炭化水素を多く含んでいる。移送管L11は第二の液相を移送する配管である。第二の液相は、例えば、脱水装置等に送られ、不純物を除去した後、原油として出荷される。 A transfer pipe L10 and a transfer pipe L11 are connected to the gas-liquid separation device 5. The transfer pipe L10 is a pipe that transfers the second gas phase. Although the second gas phase is smaller in amount than the first gas phase separated by the gas-liquid separator 1, it contains a large amount of hydrocarbons having a large number of carbon atoms. The transfer pipe L11 is a pipe that transfers the second liquid phase. The second liquid phase is sent to, for example, a dehydrator or the like to remove impurities, and then shipped as crude oil.
 移送管L10は、接合点P2において、移送管L12と移送管L13とが接続されている。フレアガス削減設備50が稼働しているとき、バルブ7cが閉じられ、バルブ7dが開けられ、第二の気相の全量が移送管L12を通じてガスエンジン6に移送される。一方、フレアガス削減設備50が稼働を停止しているとき(例えば、メンテナンス時)、バルブ7dが閉じられ、バルブ7cが開けられ、第二の気相の全量が移送管L13を通じてフレア設備8bに移送される。図1において、フレアガス削減設備50は、フレア設備8a,8bを有しているが、フレアガス削減設備は、フレア設備を1つだけ備えていてもよい。 In the transfer pipe L10, the transfer pipe L12 and the transfer pipe L13 are connected at a junction point P2. When the flare gas reduction equipment 50 is in operation, the valve 7c is closed, the valve 7d is opened, and the entire amount of the second gas phase is transferred to the gas engine 6 through the transfer pipe L12. On the other hand, when the flare gas reduction equipment 50 is not operating (for example, during maintenance), the valve 7d is closed, the valve 7c is opened, and the entire amount of the second gas phase is transferred to the flare equipment 8b through the transfer pipe L13. be done. In FIG. 1, the flare gas reduction equipment 50 has flare equipment 8a, 8b, but the flare gas reduction equipment may include only one flare equipment.
 接合点P2には移送管L12を通じて移送される第二の気相の流量と、移送管L13を通じて移送される第二の気相の流量とを調整する流量調整弁等が設置されていてもよい。このとき、第二の気相の少なくとも一部が移送管L12を通じてガスエンジン6に移送される。 A flow rate adjustment valve or the like may be installed at the junction P2 to adjust the flow rate of the second gas phase transferred through the transfer pipe L12 and the flow rate of the second gas phase transferred through the transfer pipe L13. . At this time, at least a portion of the second gas phase is transferred to the gas engine 6 through the transfer pipe L12.
 ガスエンジン6は、第二の気相に含まれる炭化水素を燃焼させることによりエネルギーを生成する装置である。ガスエンジン6が生成するエネルギーとしては、電力、動力等が挙げられる。ガスエンジン6には、エネルギー供給ラインE2が備え付けられており、ガスエンジン6で生成したエネルギーが、エネルギー供給ラインE2を通じて分解装置3に供給される。ガスエンジン6が生成するエネルギーは、原油生産施設100のいずれかの装置において利用されてもよい。 The gas engine 6 is a device that generates energy by burning hydrocarbons contained in the second gas phase. Examples of the energy generated by the gas engine 6 include electric power, motive power, and the like. The gas engine 6 is equipped with an energy supply line E2, and the energy generated by the gas engine 6 is supplied to the decomposition device 3 through the energy supply line E2. The energy generated by gas engine 6 may be utilized in any device of crude oil production facility 100.
 フレアガス削減設備50は、原油生産施設100の接合点P1及び接合点P2から分離することが可能であってもよい。すなわち、フレアガス削減設備50は、原油生産施設100から分離可能なパッケージ設備であってもよい。フレアガス削減設備50がパッケージ設備であることにより、原油の生産が終了した際に、原油生産施設100からフレアガス削減設備50を分離して、フレアガス削減設備50を別の油ガス田の原油生産施設で再利用することができる。 The flare gas reduction equipment 50 may be able to be separated from the junction P1 and the junction P2 of the crude oil production facility 100. That is, the flare gas reduction equipment 50 may be a packaged equipment that can be separated from the crude oil production facility 100. Since the flare gas reduction equipment 50 is a packaged equipment, when the production of crude oil is finished, the flare gas reduction equipment 50 can be separated from the crude oil production facility 100 and the flare gas reduction equipment 50 can be installed in a crude oil production facility in another oil and gas field. Can be reused.
 本実施形態に係るフレアガス削減設備50は、小規模で回収が困難であるバイオガスに対して適用することも可能であり、燃焼反応(フレア、熱回収を伴う燃焼反応等)又は放散によって処分されるバイオガスの量を削減するための設備であってもよい。すなわち、本発明の他の実施形態は、燃焼反応又は放散によって処分されるバイオガスの量を削減するための設備であって、バイオガスを水素と炭素材料に分解する分解装置を備える設備である。経済的に合理的な範囲で有効活用が困難なバイオガスは、燃焼されずに、最終的に環境中に放散される場合もある。この場合、温室効果が二酸化炭素よりも高いメタンを含むバイオガスがそのまま環境中に放出される。上記設備によれば、有効活用されずに、燃焼反応や放散(以下「燃焼反応等」という。)によって処分されるバイオガスの量を削減することができる。 The flare gas reduction equipment 50 according to the present embodiment can also be applied to biogas that is difficult to recover on a small scale, and can be disposed of by combustion reaction (flare, combustion reaction with heat recovery, etc.) or dissipation. It may also be equipment for reducing the amount of biogas used. That is, another embodiment of the present invention is a facility for reducing the amount of biogas disposed of by combustion reaction or dissipation, the facility including a decomposition device that decomposes biogas into hydrogen and carbon materials. . Biogas, which is difficult to utilize effectively within an economically reasonable range, may end up being released into the environment without being combusted. In this case, biogas containing methane, which has a higher greenhouse effect than carbon dioxide, is directly released into the environment. According to the above equipment, it is possible to reduce the amount of biogas that is not effectively utilized and is disposed of through combustion reaction or emission (hereinafter referred to as "combustion reaction, etc.").
 バイオガスは、例えば、パームオイルの生産に伴って生じるメタンガスを含むガスであってもよい。より具体的には、バイオガスは、パームオイルの搾油工程で生じる廃液に由来するものであってもよい。 The biogas may be, for example, a gas containing methane gas generated in the production of palm oil. More specifically, the biogas may be derived from waste liquid produced in the palm oil extraction process.
[変形例]
 フレアガス削減設備は、不純物除去装置を備えていなくてもよい。例えば、第一の気相中の不純物が微量である場合、第一の気相は不純物除去装置を経由せず、直接分解装置に移送されてもよい。また、例えば、第一の気相に不純物として硫黄成分がある程度含まれる場合であっても、フレアガス削減設備が燃料電池を備えていない場合、硫黄成分による燃料電池の電極の被毒の心配がないことから、第一の気相は不純物除去装置を経由せず、直接分解装置に移送されてもよい。
[Modified example]
The flare gas reduction equipment does not need to be equipped with an impurity removal device. For example, when the amount of impurities in the first gas phase is small, the first gas phase may be directly transferred to the decomposition device without passing through the impurity removal device. In addition, for example, even if the first gas phase contains a certain amount of sulfur component as an impurity, if the flare gas reduction equipment is not equipped with a fuel cell, there is no need to worry about poisoning of the fuel cell electrodes by the sulfur component. Therefore, the first gas phase may be directly transferred to the decomposition device without passing through the impurity removal device.
 フレアガス削減設備は、燃料電池を備えていなくてもよい。例えば、分解装置で生成した水素は、石油の各留分の水素化精製に用いられてもよい。フレアガス削減設備は、燃料電池に代えて水素ガスタービンを備えていてもよい。 The flare gas reduction equipment does not need to be equipped with a fuel cell. For example, the hydrogen produced in the cracker may be used for hydrorefining of petroleum fractions. The flare gas reduction equipment may include a hydrogen gas turbine instead of a fuel cell.
 フレアガス削減設備は、ガスエンジンを備えていなくてもよい。例えば、第二の気相が微量である場合、ガスエンジンで十分なエネルギーを生成することが難しくなる。また、燃料電池によって分解装置に十分な電力を供給できる場合、電力を供給する必要性が低くなる。ガスエンジンを備えていない場合、第二の気相を第一の気相と合流させてもよく、フレア設備に移送して燃焼してもよい。 The flare gas reduction equipment does not need to be equipped with a gas engine. For example, trace amounts of the second gas phase make it difficult for gas engines to generate sufficient energy. Additionally, if the fuel cell can provide sufficient power to the cracker, the need for power supply is reduced. If a gas engine is not provided, the second gas phase may be combined with the first gas phase and transferred to a flare facility for combustion.
<フレアガス削減方法>
 本発明の他の実施形態は、フレアガス削減方法である。フレアガス削減方法は、原油の生産に伴って生じる随伴ガスのうち、フレアによって処分される随伴ガスの量を削減する方法である。
<Flare gas reduction method>
Another embodiment of the invention is a flare gas reduction method. The flare gas reduction method is a method of reducing the amount of associated gas that is disposed of by flaring out of the associated gas generated in the production of crude oil.
 フレアガス削減方法は、油ガス生産井からの流体を第一の気相と第一の液相に分離する工程(第一の気液分離工程)を含んでもよい。第一の気液分離工程は、気液分離装置を用いて油ガス生産井からの流体を第一の気相と第一の液相に分離する工程であってよい。 The flare gas reduction method may include a step of separating fluid from an oil and gas production well into a first gas phase and a first liquid phase (first gas-liquid separation step). The first gas-liquid separation step may be a step of separating fluid from an oil and gas production well into a first gas phase and a first liquid phase using a gas-liquid separation device.
 フレアガス削減方法は、第一の気液分離工程で得られた第一の気相から不純物(例えば、硫黄成分)を除去する工程(除去工程)を含んでもよい。除去工程は、不純物除去装置を用いて第一の気相から不純物を除去する工程である。 The flare gas reduction method may include a step (removal step) of removing impurities (for example, sulfur components) from the first gas phase obtained in the first gas-liquid separation step. The removal step is a step of removing impurities from the first gas phase using an impurity removal device.
 フレアガス削減方法は、第一の気相(不純物が除去された第一の気相)に含まれる炭化水素を水素と炭素材料に分解する工程(分解工程)を含む。炭化水素を分解する方法は、例えば、熱分解、触媒を用いた分解等であってもよい。 The flare gas reduction method includes a step (decomposition step) of decomposing hydrocarbons contained in the first gas phase (the first gas phase from which impurities have been removed) into hydrogen and carbon material. The method for decomposing hydrocarbons may be, for example, thermal decomposition, decomposition using a catalyst, or the like.
 フレアガス削減方法は、分解工程を含むことにより、フレアガスとなるはずであった第一の気相から炭素材料を生成し、炭素を固定化することができる。これにより、フレアガスを削減すると共に、二酸化炭素の排出を抑制することができ、環境への負荷を低減することができる。 By including a decomposition step, the flare gas reduction method can generate carbon material from the first gas phase that would have become flare gas, and can fix carbon. Thereby, flare gas can be reduced, and carbon dioxide emissions can be suppressed, and the load on the environment can be reduced.
 熱分解としては、例えば、単純熱分解、プラズマ熱分解及び触媒熱分解が挙げられる。すなわち、炭化水素は、単純熱分解、プラズマ熱分解及び触媒熱分解のいずれかの処理によって水素と炭素材料に分解されてもよい。プラズマ熱分解は、メタン等の炭化水素にプラズマを導入することにより、炭化水素を水素と炭素材料に分解する方法である。 Examples of pyrolysis include simple pyrolysis, plasma pyrolysis, and catalytic pyrolysis. That is, hydrocarbons may be decomposed into hydrogen and carbon materials by any one of simple pyrolysis, plasma pyrolysis, and catalytic pyrolysis. Plasma pyrolysis is a method of decomposing hydrocarbons such as methane into hydrogen and carbon materials by introducing plasma into the hydrocarbons.
 フレアガス削減方法は、分解工程で生成した水素を燃料電池及び水素ガスタービンの一方に供給して発電する工程(発電工程)を含んでもよい。発電により生じた電気は、フレアガス削減方法のいずれかの工程で消費されてもよい。 The flare gas reduction method may include a step of supplying hydrogen generated in the decomposition step to one of a fuel cell and a hydrogen gas turbine to generate electricity (power generation step). The electricity generated by the power generation may be consumed in any step of the flare gas reduction method.
 フレアガス削減方法は、第一の液相を第二の気相と第二の液相に更に分離する工程(第二の気液分離工程)を含んでもよい。第二の気液分離工程は、気液分離装置を用いて第一の液相を第二の気相と第二の液相に分離する工程であってよい。 The flare gas reduction method may include a step of further separating the first liquid phase into a second gas phase and a second liquid phase (second gas-liquid separation step). The second gas-liquid separation step may be a step of separating the first liquid phase into a second gas phase and a second liquid phase using a gas-liquid separation device.
 フレアガス削減方法は、第二の気相に含まれる炭化水素を燃焼してエネルギーを生成する工程(燃焼工程)を含んでもよい。燃焼工程は、第二の気相に含まれる炭化水素をガスエンジンで燃焼して、エネルギーを生成する工程であってもよい。生成したエネルギーは、フレアガス削減方法のいずれかの工程で消費されてもよい。 The flare gas reduction method may include a step (combustion step) of generating energy by burning hydrocarbons contained in the second gas phase. The combustion step may be a step in which hydrocarbons contained in the second gas phase are combusted by a gas engine to generate energy. The energy generated may be consumed in any step of the flare gas reduction method.
 フレアガス削減方法は、第二の気液分離工程と、燃焼工程と、を含むことにより、フレアガスとなるはずであった第二の気相を燃焼し、エネルギーを生成することができる。これにより、フレアガスを削減しつつ、フレアガス削減設備で使用されるエネルギーを生成することができる。 By including a second gas-liquid separation step and a combustion step, the flare gas reduction method can burn the second gas phase that would have become flare gas and generate energy. This makes it possible to reduce flare gas while generating energy to be used in the flare gas reduction equipment.
 本実施形態に係るフレアガス削減方法は、小規模で回収が困難であるバイオガスに対して適用することも可能であり、燃焼反応又は放散によって処分されるバイオガスの量を削減するための方法であってもよい。すなわち、本発明の他の実施形態は、燃焼反応又は放散によって処分されるバイオガスの量を削減する方法であって、バイオガスを水素と炭素材料に分解する工程を含む方法である。この方法によれば、有効活用されずに、燃焼反応等によって処分されるバイオガスの量を削減することができる。 The flare gas reduction method according to the present embodiment can also be applied to small-scale biogas that is difficult to recover, and is a method for reducing the amount of biogas that is disposed of by combustion reaction or dissipation. There may be. That is, another embodiment of the present invention is a method of reducing the amount of biogas disposed of by combustion reaction or dissipation, the method including the step of decomposing the biogas into hydrogen and carbon material. According to this method, it is possible to reduce the amount of biogas that is not effectively utilized and is disposed of through combustion reactions or the like.
1,5…気液分離装置、2…不純物除去装置、3…分解装置、4…燃料電池、6…ガスエンジン、7a,7b,7c,7d…バルブ、8a,8b…フレア設備、50…フレアガス削減設備、100…原油生産施設、L1,L2,L3,L4,L5,L6,L8,L9,L10,L11,L12,L13…移送管、L7…排出路、E1,E2…エネルギー供給ライン、P1,P2…接合点。

 
DESCRIPTION OF SYMBOLS 1, 5... Gas-liquid separation device, 2... Impurity removal device, 3... Decomposition device, 4... Fuel cell, 6... Gas engine, 7a, 7b, 7c, 7d... Valve, 8a, 8b... Flare equipment, 50... Flare gas Reduction equipment, 100... Crude oil production facility, L1, L2, L3, L4, L5, L6, L8, L9, L10, L11, L12, L13... Transfer pipe, L7... Discharge path, E1, E2... Energy supply line, P1 , P2... Junction point.

Claims (12)

  1.  原油の生産に伴って生じる随伴ガスのうち、フレアによって処分される随伴ガスの量を削減するフレアガス削減方法であって、
     油ガス生産井からの流体を気液分離して得られる気相に含まれる炭化水素を水素と炭素材料に分解する工程を含む、フレアガス削減方法。
    A flare gas reduction method that reduces the amount of associated gas that is disposed of by flaring among associated gas generated in the production of crude oil,
    A flare gas reduction method that includes a process of decomposing hydrocarbons contained in the gas phase obtained by gas-liquid separation of fluid from oil and gas production wells into hydrogen and carbon materials.
  2.  前記水素を燃料電池及び水素ガスタービンの一方に供給して発電する工程を更に含む、請求項1に記載のフレアガス削減方法。 The flare gas reduction method according to claim 1, further comprising the step of supplying the hydrogen to one of a fuel cell and a hydrogen gas turbine to generate electricity.
  3.  前記気相から不純物を除去する工程を更に含む、請求項1又は2に記載のフレアガス削減方法。 The flare gas reduction method according to claim 1 or 2, further comprising the step of removing impurities from the gas phase.
  4.  単純熱分解、プラズマ熱分解及び触媒熱分解のいずれかの処理によって前記炭化水素を前記水素と前記炭素材料に分解する、請求項1又は2に記載のフレアガス削減方法。 The flare gas reduction method according to claim 1 or 2, wherein the hydrocarbon is decomposed into the hydrogen and the carbon material by any one of simple pyrolysis, plasma pyrolysis, and catalytic pyrolysis.
  5.  燃焼反応又は放散によって処分されるバイオガスの量を削減する方法であって、
     前記バイオガスを水素と炭素材料に分解する工程を含む、方法。
    A method of reducing the amount of biogas disposed of by combustion reaction or dissipation, the method comprising:
    A method comprising decomposing the biogas into hydrogen and carbon materials.
  6.  原油の生産に伴って生じる随伴ガスのうち、フレアによって処分される随伴ガスの量を削減するためのフレアガス削減設備であって、
     油ガス生産井からの流体を気液分離して得られる第一の気相の少なくとも一部を移送する第一の移送管と、
     前記第一の移送管から供給される前記第一の気相の少なくとも一部に含まれる炭化水素を水素と炭素材料に分解する分解装置と、
    を備える、フレアガス削減設備。
    A flare gas reduction facility for reducing the amount of associated gas that is disposed of by flaring among the associated gas generated with the production of crude oil,
    a first transfer pipe that transfers at least a portion of a first gas phase obtained by gas-liquid separation of fluid from an oil and gas production well;
    a decomposition device that decomposes hydrocarbons contained in at least a portion of the first gas phase supplied from the first transfer pipe into hydrogen and carbon materials;
    Flare gas reduction equipment equipped with
  7.  前記分解装置からの前記水素を利用して発電する燃料電池及び水素ガスタービンの一方を更に備える、請求項6に記載のフレアガス削減設備。 The flare gas reduction equipment according to claim 6, further comprising one of a fuel cell and a hydrogen gas turbine that generate electricity using the hydrogen from the cracker.
  8.  前記第一の気相の少なくとも一部から不純物を除去する装置を更に備える、請求項6又は7に記載のフレアガス削減設備。 The flare gas reduction equipment according to claim 6 or 7, further comprising a device for removing impurities from at least a portion of the first gas phase.
  9.  前記分解装置が単純熱分解装置、プラズマ熱分解装置及び触媒熱分解装置のいずれかである、請求項6又は7に記載のフレアガス削減設備。 The flare gas reduction equipment according to claim 6 or 7, wherein the decomposition device is any one of a simple pyrolysis device, a plasma pyrolysis device, and a catalytic pyrolysis device.
  10.  油ガス生産井からの流体を気液分離して得られる液相を更に気液分離して得られる第二の気相の少なくとも一部を移送する第二の移送管を更に備える、請求項6又は7に記載のフレアガス削減設備。 Claim 6 further comprising a second transfer pipe for transferring at least a portion of a second gas phase obtained by further separating a liquid phase obtained by gas-liquid separation of fluid from an oil and gas production well. Or the flare gas reduction equipment described in 7.
  11.  前記第二の移送管から供給される前記第二の気相の少なくとも一部に含まれる炭化水素を燃料として利用するガスエンジンを更に備える、請求項10に記載のフレアガス削減設備。 The flare gas reduction equipment according to claim 10, further comprising a gas engine that uses hydrocarbons contained in at least a portion of the second gas phase supplied from the second transfer pipe as fuel.
  12.  燃焼反応又は放散によって処分されるバイオガスの量を削減するための設備であって、
     前記バイオガスを水素と炭素材料に分解する分解装置とを備える、設備。

     
    Equipment for reducing the amount of biogas disposed of by combustion reaction or dissipation,
    Equipment comprising a decomposition device that decomposes the biogas into hydrogen and carbon materials.

PCT/JP2023/027387 2022-07-26 2023-07-26 Method and equipment for reducing flare gas, and method and equipment for reducing disposal amount of biogas WO2024024837A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-118695 2022-07-26
JP2022118695 2022-07-26

Publications (1)

Publication Number Publication Date
WO2024024837A1 true WO2024024837A1 (en) 2024-02-01

Family

ID=89706509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027387 WO2024024837A1 (en) 2022-07-26 2023-07-26 Method and equipment for reducing flare gas, and method and equipment for reducing disposal amount of biogas

Country Status (1)

Country Link
WO (1) WO2024024837A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07217424A (en) * 1994-01-28 1995-08-15 Shin A C Ii:Kk Fuel reforming device
JPH08158774A (en) * 1994-12-05 1996-06-18 Mitsubishi Heavy Ind Ltd Oil drilling method from oil field
JP2010153255A (en) * 2008-12-25 2010-07-08 Japan Petroleum Exploration Co Ltd Fuel cell system equipped with hydrogen generation apparatuses in multiple stages
JP2015031123A (en) * 2013-08-06 2015-02-16 千代田化工建設株式会社 Fossil fuel recovery system and fossil fuel recovery method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07217424A (en) * 1994-01-28 1995-08-15 Shin A C Ii:Kk Fuel reforming device
JPH08158774A (en) * 1994-12-05 1996-06-18 Mitsubishi Heavy Ind Ltd Oil drilling method from oil field
JP2010153255A (en) * 2008-12-25 2010-07-08 Japan Petroleum Exploration Co Ltd Fuel cell system equipped with hydrogen generation apparatuses in multiple stages
JP2015031123A (en) * 2013-08-06 2015-02-16 千代田化工建設株式会社 Fossil fuel recovery system and fossil fuel recovery method

Similar Documents

Publication Publication Date Title
US20100076097A1 (en) Chemical Product Providing System and Method for Providing a Chemical Product
US7897649B2 (en) Operation of a steam methane reformer by direct feeding of steam rich producer gas from steam hydro-gasification
DK3052435T3 (en) Method of storing electrical energy
CN102762493A (en) Method and device for simultaneous production of energy in the forms electricity, heat and hydrogen gas
US20090229463A1 (en) Apparatus and processes for production of coke and activated carbon from coal products
US11760630B2 (en) Process and system for producing low carbon intensity renewable hydrogen
AU2009216073B2 (en) Method of converting solar heat energy
EP2637991A2 (en) Method and apparatus for the carbon dioxide based methanol synthesis
EP4330187A1 (en) Process for producing hydrogen from a hydrocarbon feedstock
CN110938480A (en) Process for producing biomethane from a biogas stream comprising impurity coagulation
WO2022221954A1 (en) Process and system for producing fuel
JP6922526B2 (en) How to make methane
US20120152120A1 (en) Production of carbon dioxide from synthesis gas
WO2024024837A1 (en) Method and equipment for reducing flare gas, and method and equipment for reducing disposal amount of biogas
US9802153B2 (en) Sulphur-assisted carbon capture and utilization (CCU) methods and systems
MX2015000502A (en) Integrated oil production and upgrading using a molten alkali metal.
Zinn et al. Göteborg Energi: Vehicle fuel from organic waste
RU2806323C1 (en) Carbon-neutral energy system with liquid energy carrier
WO2023286730A1 (en) Synthetic fuel production method
RU2768354C1 (en) Complex for production, storage and transportation of hydrogen
Emam Gas flaring reduction: Perspective environmental and economical
EP4332200A1 (en) Synthetic fuel production method
CN207769556U (en) A kind of device for recycling gasoline hydrogenation device light petrol fractionation tower overhead gas
WO2017154043A1 (en) Novel production equipment and production method of natural gas and hydrogen
WO2023214076A1 (en) Integrated process for the conversion of flare gas to hydrogen with hydrogen storage and corresponding integrated unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846567

Country of ref document: EP

Kind code of ref document: A1