WO2024024791A1 - Rotary device - Google Patents

Rotary device Download PDF

Info

Publication number
WO2024024791A1
WO2024024791A1 PCT/JP2023/027230 JP2023027230W WO2024024791A1 WO 2024024791 A1 WO2024024791 A1 WO 2024024791A1 JP 2023027230 W JP2023027230 W JP 2023027230W WO 2024024791 A1 WO2024024791 A1 WO 2024024791A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
impeller
rotating device
polygonal shape
movable
Prior art date
Application number
PCT/JP2023/027230
Other languages
French (fr)
Japanese (ja)
Inventor
聡 大内田
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Publication of WO2024024791A1 publication Critical patent/WO2024024791A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/46Fluid-guiding means, e.g. diffusers adjustable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/56Fluid-guiding means, e.g. diffusers adjustable

Definitions

  • Rotating devices such as turbines and compressors include various flow formats such as axial flow, mixed flow, and radial flow. These rotating devices may include movable vanes to adjust the cross-sectional area of the flow path.
  • the movable vanes are arranged in an annular flow path that extends perpendicularly to the central axis of the impeller.
  • the movable vane is rotatably mounted on a plane perpendicular to the central axis of the impeller.
  • Each vane has an axis of rotation parallel to the plane normal.
  • the vanes are arranged on a plane, the clearance between the end face of the vane and the plane is constant regardless of the rotation angle of the vane.
  • the movable vanes are arranged in a cylindrical flow path concentric with the impeller.
  • the movable vanes are rotatably mounted on a cylindrical surface concentric with the impeller.
  • Each vane has an axis of rotation parallel to the normal to the cylindrical surface.
  • the cylindrical surface is straight in the generatrix direction but curved in the circumferential direction. From this, the clearance between the end face of the vane and the cylindrical surface changes depending on the rotation angle of the vane. Specifically, as the vane moves to a more oblique position with respect to the central axis of the impeller, the end face of the vane moves away from the cylindrical surface and the clearance between the vane and the cylindrical surface increases.
  • the movable vanes are arranged in a conical flow path concentric with the impeller.
  • the movable vanes are rotatably mounted on a conical surface concentric with the impeller.
  • Each vane has an axis of rotation parallel to the normal to the conical surface.
  • the conical surface is straight in the generatrix direction but curved in the circumferential direction. From this, the clearance between the end face of the vane and the conical surface changes depending on the rotation angle of the vane. Specifically, as the vane moves to a more oblique position with respect to the central axis of the impeller, the end face of the vane moves away from the conical surface and the clearance between the vane and the conical surface increases.
  • Patent Documents 1 and 2 below disclose a configuration in which the clearance between the vane and the surface is maintained constant regardless of the rotation angle of the vane in a mixed flow turbine.
  • the wall surface of the flow path is formed in a spherical shape, and the movable vanes are rotatably mounted on the spherical surface.
  • a spherical surface is similarly curved in both the generatrix and circumferential directions.
  • the end surface of the vane has a curved shape corresponding to a spherical surface. Therefore, the clearance between the vane and the spherical surface remains constant no matter what rotational angle the vane is in with respect to the central axis of the impeller.
  • An object of the present disclosure is to provide an axial or mixed flow rotating device that can ensure design flexibility.
  • a rotating device includes an impeller, a plurality of movable vanes that are arranged upstream or downstream of the impeller, and are operated to adjust the cross-sectional area of a flow path.
  • an inner wall and an outer wall defining a flow path, the inner wall and the outer wall being movable in the radial direction of the impeller or in a direction inclined with respect to both the axial direction and the radial direction of the impeller.
  • an inner wall and an outer wall including a plurality of sets of mutually parallel planes facing each other across a type vane, the inner wall and the outer wall having corresponding polygonal shapes when viewed in the axial direction of the impeller; and.
  • Each of the plurality of movable vanes may have a trapezoidal shape when viewed in the normal direction of the side surface of each movable vane.
  • Adjacent movable vanes may form a gap between them when the plurality of movable vanes minimizes the cross-sectional area of the flow path.
  • At least one of the inner wall and the outer wall has a circular shape and a polygonal shape in at least one of an end continuous with the space accommodating the impeller and an end opposite to the space accommodating the impeller in the axial direction. It may also include a connecting transition interval.
  • the polygonal shape may be a regular polygonal shape.
  • the interior angles of the polygon may be obtuse angles.
  • FIG. 1 is a schematic perspective view of the rotating device according to the first embodiment when the movable vane is in the open position.
  • FIG. 2 is a schematic cross-sectional view of the rotating device according to the first embodiment.
  • FIG. 3 is a schematic perspective view of the rotating device according to the first embodiment when the movable vane is in the closed position.
  • FIG. 4 is a schematic perspective view of a rotating device according to a second embodiment.
  • FIG. 1 is a schematic perspective view of the rotating device 100 according to the first embodiment when the movable vane 2 is in the open position.
  • rotating device 100 can be a turbine or a compressor.
  • the rotating device 100 can be applied to a turbine or a compressor of a supercharger.
  • the rotating device 100 is not limited to this, and may be applied to other devices.
  • the rotating device 100 includes an impeller 1, a plurality of movable vanes 2, an inner wall 3, and an outer wall 4.
  • Rotating device 100 may further include other components.
  • the impeller 1 is housed in a space S1 defined by a housing (not shown).
  • the impeller 1 rotates around the central axis A1.
  • the axial direction, radial direction, and circumferential direction of the impeller 1 may be simply referred to as axial direction x, radial direction r, and circumferential direction c, respectively.
  • FIG. 2 is a schematic cross-sectional view of the rotating device 100 according to the first embodiment.
  • the cross-sectional view of FIG. 2 includes the central axis A1 of the impeller 1.
  • the impeller 1 is a mixed flow impeller.
  • FIG. 2 when fluid flows from left to right, the impeller 1 directs the fluid flowing into the impeller 1 along the axial direction x along a direction i1 inclined with respect to both the axial direction x and the radial direction r. send out.
  • the impeller 1 when the fluid flows from right to left, the impeller 1 sends out the fluid that flows into the impeller 1 along the direction i1 along the axial direction x.
  • the impeller 1 may be an axial impeller. The axial impeller sends out fluid that flows into the impeller 1 along the axial direction x.
  • impeller 1 includes a hub 11 and a plurality of vanes 12.
  • the hub 11 has a frustoconical shape.
  • the hub 11 may have a cylindrical shape.
  • the vane 12 is fixed to the side surface of the hub 11.
  • the impeller 1 includes nine vanes 12. The number of vanes 12 is not limited to this, and may be less than nine or more than nine.
  • the movable vane 2 is arranged upstream or downstream of the impeller 1 depending on the direction of fluid flow.
  • the plurality of movable vanes 2 are arranged apart from each other along the circumferential direction c.
  • the rotating device 100 includes twelve movable vanes 2.
  • the number of movable vanes 2 is not limited to this, and may be less than 12 or more than 12.
  • the movable vane 2 is operated to adjust the cross-sectional area of the flow path (details will be described later).
  • the inner wall 3 and the outer wall 4 define a part of the flow path.
  • the inner wall 3 and the outer wall 4 are stationary walls.
  • the inner wall 3 and the outer wall 4 may be part of a housing (not shown). Alternatively, one or both of the inner wall 3 and the outer wall 4 may be separate members from the housing and may be attached to the housing.
  • inner wall 3 includes a plurality of flat surfaces 31. As shown in FIG. The plane 31 faces radially outward.
  • the outer wall 4 includes a plurality of planes 41.
  • the plane 41 faces radially inward.
  • the number of planes 31 and the number of planes 41 are equal to the number of movable vanes 2.
  • the inner wall 3 includes twelve planes 31 and the outer wall 4 includes twelve planes 41.
  • the inner wall 3 and the outer wall 4 are arranged such that the plurality of planes 31 and the plurality of planes 41 are parallel to each other.
  • the plane 31 and the plane 41 face each other with the movable vane 2 in between in the direction i2 inclined in both the axial direction x and the radial direction r.
  • Direction i2 may be perpendicular to the above-mentioned direction i1 in which the fluid flows.
  • the impeller 1 is an axial impeller
  • the inner wall 3 and the outer wall 4 may face each other with the movable vane 2 in between in the radial direction r. Since the plane 41 is located on the radially outer side of the plane 31, the plane 41 is longer than the plane 31 in the circumferential direction c.
  • the inner wall 3 and the outer wall 4 have a polygonal shape including the same number of corners as the number of movable vanes 2 when viewed in the axial direction x.
  • the inner wall 3 and the outer wall 4 have a regular dodecagonal shape when viewed in the axial direction x.
  • the inner wall 3 and the outer wall 4 are not limited to this, and may have other polygonal shapes depending on the number of movable vanes 2.
  • the inner wall 3 and the outer wall 4 have a truncated polygonal shape with a number of sides equal to the number of movable vanes 2.
  • the inner wall 3 and the outer wall 4 have a truncated dodecagonal pyramid shape.
  • the inner wall 3 and the outer wall 4 may have a polygonal cylindrical shape in three dimensions, including a number of sides equal to the number of movable vanes 2. .
  • the internal angle between adjacent planes 41 is 150 degrees.
  • the interior angles of the polygon may be obtuse angles other than 150 degrees.
  • the inner wall 3 and the outer wall 4 have a polygonal shape including five or more corners.
  • inner wall 3 and outer wall 4 define a space S2 therebetween.
  • the space S2 is continuous with the above-mentioned space S1 that accommodates the impeller 1.
  • Space S1 and space S2 form part of a flow path.
  • the movable vane 2 is arranged in the space S2. Specifically, the movable vane 2 is rotatably attached to at least one of the plane 31 and the plane 41. The movable vane 2 rotates around the central axis A2. The central axis A2 is parallel to the perpendiculars of the planes 31 and 41. From another perspective, the central axis A2 is perpendicular to the direction i1. The central axis A2 intersects the central axis A1 of the impeller 1. As the movable vane 2 rotates around the central axis A2, the cross-sectional area of the flow path is adjusted.
  • the rotating device 100 may include a drive mechanism (not shown) inside the inner wall 3 or outside the outer wall 4 for rotating the movable vane 2 .
  • the movable vane 2 is placed in the open position. In the open position, the movable vanes 2 maximize the cross-sectional area of the flow path.
  • FIG. 3 is a schematic perspective view of the rotating device 100 according to the first embodiment when the movable vane 2 is in the closed position.
  • the movable vane 2 is placed in the closed position.
  • the movable vanes 2 minimize the cross-sectional area of the flow path.
  • the movable vane 2 in the closed position, is arranged at a more oblique position with respect to the central axis A1 of the impeller 1 than in the open position.
  • the end surface 21 that contacts or opposes the plane 31 is formed flat along the plane 31.
  • the end surface 22 that contacts or opposes the plane 41 is formed flat along the plane 41.
  • the outer plane 41 is longer than the inner plane 31 in the circumferential direction c. Therefore, the space S2 between the plane 41 and the plane 31 has a trapezoidal shape when viewed in the fluid flow direction i1 (see FIG. 2).
  • the movable vanes 2 have a trapezoidal shape when viewed in the normal direction of the side surface 23 of each movable vane 2 so as to fit into this space S2. According to such a configuration, the movable vane 2 can efficiently cover the space S2 between the plane 41 and the plane 31 in the closed position. Further, referring to FIG. 3, the movable vanes 2 are designed to form a slight gap between adjacent movable vanes 2 in the closed position. According to such a configuration, when the movable vanes 2 rotate, contact between adjacent movable vanes 2 can be avoided.
  • the rotating device 100 as described above includes an impeller 1, a plurality of movable vanes 2 that are arranged upstream or downstream of the impeller 1 and are operated to adjust the cross-sectional area of a flow path, and an inner vane that defines a flow path.
  • a wall 3 and an outer wall 4 are provided.
  • the inner wall 3 and the outer wall 4 include a plurality of sets of parallel planes 31 and 41 that face each other with the movable vane 2 in between in the direction i2 inclined in both the axial direction x and the radial direction r.
  • the inner wall 3 and the outer wall 4 have corresponding polygonal shapes when viewed in the axial direction x of the impeller 1.
  • the polygonal inner wall 3 and outer wall 4 include a plane 31 and a plane 41 that are parallel to each other. Therefore, the movable vane 2 can be arranged between planes 31 and 41 that are parallel to each other. In this case, the end surfaces 21 and 22 of the movable vane 2 can be formed into a planar shape. According to such a configuration, even if the movable vane 2 moves from the open position (FIG. 1) to the closed position (FIG. 2) that is more oblique with respect to the central axis A1 of the impeller 1, the movable vane 2 remains in contact with the end surface 21 and the plane. 31 and the gap between the end surface 22 and the plane 41 are maintained constant.
  • each of the plurality of movable vanes 2 has a trapezoidal shape when viewed in the normal direction of the side surface 23 of each movable vane 2.
  • the space between plane 41 and plane 31 has a trapezoidal shape. Therefore, according to such a configuration, the movable vane 2 can efficiently cover the space between the plane 41 and the plane 31 in the closed position.
  • the polygonal shape is a regular polygonal shape. According to such a configuration, the rotation device 100 can be balanced.
  • the interior angles of the polygon are obtuse angles. According to such a configuration, it is possible to prevent the outer plane 41 from becoming excessively longer than the inner plane 31 in the circumferential direction c. Therefore, the rotation device 100 can be balanced.
  • FIG. 4 is a schematic perspective view of a rotating device 100A according to the second embodiment.
  • the rotating device 100A differs from the rotating device 100 of the first embodiment in that the inner wall 3A includes transition sections 32 and 33.
  • the other points of the rotating device 100A may be the same as the rotating device 100.
  • the end surface adjacent to the above-mentioned space S1 that accommodates the impeller 1 has a circular shape.
  • the inner wall 3A includes a transition section 32 that smoothly connects a circular end surface and a regular dodecagonal shape.
  • transition interval 32 can be chamfered.
  • the end surface on the opposite side to the space S1 in the axial direction x also has a circular shape.
  • the inner wall 3A includes a transition section 33 that smoothly connects a circular end surface and a regular dodecagonal shape.
  • transition section 33 can be chamfered.
  • the outer wall 4 may also include similar transition sections at the end adjacent to the space S1 and at the opposite end.
  • Such a rotating device 100A can obtain the same effects as the rotating device 100 of the first embodiment.
  • At least one of the inner wall 3 and the outer wall 4 has a transition section 32 connecting the circular shape and the polygonal shape at an end continuous with the space S1 that accommodates the impeller 1 in the axial direction x.
  • at least one of the inner wall 3 and the outer wall 4 includes a transition section 33 connecting the circular shape and the polygonal shape at the end opposite to the space S1 that accommodates the impeller 1 in the axial direction x. According to such a configuration, fluid can be guided smoothly.
  • the inner wall 3 and the outer wall 4 have a regular polygonal shape when viewed in the axial direction x.
  • the inner wall 3 and the outer wall 4 may not have a regular polygonal shape when viewed in the axial direction x.
  • the lengths of multiple sides of a polygon may not be equal.

Abstract

This rotary device (100) comprises: an impeller 1; a plurality of movable-type vanes 2 which are disposed upstream or downstream from the impeller 1 and operated so as to adjust the cross-sectional area of a flow passage; and an inner wall 3 and an outer wall 4 which define the flow passage. In a radial direction r of the impeller 1, or in a direction inclined with respect to both the axial direction x and the radial direction r of the impeller 1, the inner wall 3 and the outer wall 4 include a plurality of groups of flat surfaces 31, 41 which are parallel to each other and face each other with the movable vanes 2 therebetween. When viewed in the axial direction x of the impeller 1, the inner wall 3 and the outer wall 4 have polygonal shapes corresponding to each other.

Description

回転装置rotating device
 本開示は、回転装置に関する。本出願は2022年7月29日に提出された日本特許出願第2022-121177号に基づく優先権の利益を主張するものであり、その内容は本出願に援用される。 The present disclosure relates to a rotating device. This application claims the benefit of priority based on Japanese Patent Application No. 2022-121177 filed on July 29, 2022, the contents of which are incorporated into this application.
 タービンおよびコンプレッサ等の回転装置は、軸流、斜流およびラジアル流等の様々な流れ形式を含む。これらの回転装置は、流路の断面積を調整するための可動式ベーンを備える場合がある。 Rotating devices such as turbines and compressors include various flow formats such as axial flow, mixed flow, and radial flow. These rotating devices may include movable vanes to adjust the cross-sectional area of the flow path.
 例えば、ラジアル流式の回転装置では、可動式ベーンは、インペラの中心軸に対して垂直に拡がる円環状の流路に配置される。可動式ベーンは、インペラの中心軸に対して垂直な平面上に回転可能に取り付けられる。各ベーンは、平面の垂線に対して平行な回転軸を有する。ラジアル流式の回転装置では、ベーンは平面上に配置されることから、ベーンの端面と平面との間のクリアランスは、ベーンの回転角度に依らずに一定である。 For example, in a radial flow type rotating device, the movable vanes are arranged in an annular flow path that extends perpendicularly to the central axis of the impeller. The movable vane is rotatably mounted on a plane perpendicular to the central axis of the impeller. Each vane has an axis of rotation parallel to the plane normal. In a radial flow type rotating device, since the vanes are arranged on a plane, the clearance between the end face of the vane and the plane is constant regardless of the rotation angle of the vane.
 対照的に、軸流式の回転装置では、可動式ベーンは、インペラと同心の円筒状の流路に配置される。可動式ベーンは、インペラと同心の円筒表面上に回転可能に取り付けられる。各ベーンは、円筒表面の法線に対して平行な回転軸を有する。円筒表面は、母線方向には真っ直ぐだが、円周方向には湾曲する。このことから、ベーンの端面と円筒表面との間のクリアランスは、ベーンの回転角度に応じて変化する。具体的には、ベーンがインペラの中心軸に対してより斜めの位置に移動するにつれて、ベーンの端面が円筒表面から離間し、ベーンと円筒表面との間のクリアランスが増加する。 In contrast, in axial flow rotating devices, the movable vanes are arranged in a cylindrical flow path concentric with the impeller. The movable vanes are rotatably mounted on a cylindrical surface concentric with the impeller. Each vane has an axis of rotation parallel to the normal to the cylindrical surface. The cylindrical surface is straight in the generatrix direction but curved in the circumferential direction. From this, the clearance between the end face of the vane and the cylindrical surface changes depending on the rotation angle of the vane. Specifically, as the vane moves to a more oblique position with respect to the central axis of the impeller, the end face of the vane moves away from the cylindrical surface and the clearance between the vane and the cylindrical surface increases.
 同様に、斜流式の回転装置では、可動式ベーンは、インペラと同心の円錐状の流路に配置される。可動式ベーンは、インペラと同心の円錐表面上に回転可能に取り付けられる。各ベーンは、円錐表面の法線に対して平行な回転軸を有する。円錐表面は、母線方向にはまっすぐだが、円周方向には湾曲する。このことから、ベーンの端面と円錐表面との間のクリアランスは、ベーンの回転角度に応じて変化する。具体的には、ベーンがインペラの中心軸に対してより斜めの位置に移動するにつれて、ベーンの端面が円錐表面から離間し、ベーンと円錐表面との間のクリアランスが増加する。 Similarly, in a mixed-flow rotating device, the movable vanes are arranged in a conical flow path concentric with the impeller. The movable vanes are rotatably mounted on a conical surface concentric with the impeller. Each vane has an axis of rotation parallel to the normal to the conical surface. The conical surface is straight in the generatrix direction but curved in the circumferential direction. From this, the clearance between the end face of the vane and the conical surface changes depending on the rotation angle of the vane. Specifically, as the vane moves to a more oblique position with respect to the central axis of the impeller, the end face of the vane moves away from the conical surface and the clearance between the vane and the conical surface increases.
 上記のような問題に対して、以下の特許文献1,2は、斜流タービンにおいて、ベーンと表面との間のクリアランスを、ベーンの回転角度に依らずに一定に維持する構成を開示する。これらの斜流タービンでは、流路の壁面が球面形状に形成され、可動式のベーンは、球面表面上に回転可能に取り付けられる。球面表面は、母線方向および円周方向の双方に同様に湾曲する。ベーンの端面は、球面表面に対応する曲面形状を有する。したがって、ベーンがインペラの中心軸に対してどの回転角度にあっても、ベーンと球面表面との間のクリアランスは一定に維持される。 To address the above-mentioned problems, Patent Documents 1 and 2 below disclose a configuration in which the clearance between the vane and the surface is maintained constant regardless of the rotation angle of the vane in a mixed flow turbine. In these mixed flow turbines, the wall surface of the flow path is formed in a spherical shape, and the movable vanes are rotatably mounted on the spherical surface. A spherical surface is similarly curved in both the generatrix and circumferential directions. The end surface of the vane has a curved shape corresponding to a spherical surface. Therefore, the clearance between the vane and the spherical surface remains constant no matter what rotational angle the vane is in with respect to the central axis of the impeller.
特開2000-120442号公報Japanese Patent Application Publication No. 2000-120442 特表2014-534378号公報Special Publication No. 2014-534378
 特許文献1,2の斜流タービンでは、インペラの形状、および、可動式ベーンがインペラに最も近付くときのベーンのエッジの位置が決まると、球面表面の形状がほぼ自動的に決定される。したがって、ベーンの形状および流路の壁面の形状もほぼ自動的に決定される。その結果、設計の柔軟性が制限される。 In the mixed flow turbines of Patent Documents 1 and 2, once the shape of the impeller and the position of the edge of the vane when the movable vane approaches the impeller most are determined, the shape of the spherical surface is almost automatically determined. Therefore, the shape of the vane and the shape of the wall surface of the flow path are also determined almost automatically. As a result, design flexibility is limited.
 本開示の目的は、設計の柔軟性を確保することができる、軸流式または斜流式の回転装置を提供することである。 An object of the present disclosure is to provide an axial or mixed flow rotating device that can ensure design flexibility.
 上記課題を解決するために、本開示の一態様に係る回転装置は、インペラと、インペラの上流または下流に配置され、流路の断面積を調整するように動作される複数の可動式ベーンと、流路を画定する内側壁および外側壁であって、当該内側壁および当該外側壁は、インペラの径方向において、または、インペラの軸方向および径方向の双方に対して傾いた方向において、可動式ベーンを挟んで互いに対向する、互いに平行な複数組の平面を含み、当該内側壁および当該外側壁は、インペラの軸方向に見た場合に、対応する多角形状を有する、内側壁および外側壁と、を備える。 In order to solve the above problems, a rotating device according to one aspect of the present disclosure includes an impeller, a plurality of movable vanes that are arranged upstream or downstream of the impeller, and are operated to adjust the cross-sectional area of a flow path. , an inner wall and an outer wall defining a flow path, the inner wall and the outer wall being movable in the radial direction of the impeller or in a direction inclined with respect to both the axial direction and the radial direction of the impeller. an inner wall and an outer wall including a plurality of sets of mutually parallel planes facing each other across a type vane, the inner wall and the outer wall having corresponding polygonal shapes when viewed in the axial direction of the impeller; and.
 複数の可動式ベーンの各々は、各可動式ベーンの側面の法線方向に見た場合に、台形形状を有してもよい。 Each of the plurality of movable vanes may have a trapezoidal shape when viewed in the normal direction of the side surface of each movable vane.
 複数の可動式ベーンが流路の断面積を最小にするときに、隣り合う可動式ベーンは、それらの間に隙間を形成してもよい。 Adjacent movable vanes may form a gap between them when the plurality of movable vanes minimizes the cross-sectional area of the flow path.
 内側壁および外側壁の少なくとも一方は、軸方向において、インペラを収容する空間と連続する端部、および、インペラを収容する空間と反対側の端部の少なくとも一方に、円形状と多角形状とをつなぐ推移区間を含んでもよい。 At least one of the inner wall and the outer wall has a circular shape and a polygonal shape in at least one of an end continuous with the space accommodating the impeller and an end opposite to the space accommodating the impeller in the axial direction. It may also include a connecting transition interval.
 多角形状は、正多角形状であってもよい。 The polygonal shape may be a regular polygonal shape.
 多角形状の内角は、鈍角であってもよい。 The interior angles of the polygon may be obtuse angles.
 本開示によれば、設計の柔軟性を確保しつつ、可動式ベーンと表面との間のクリアランスを一定に維持することができる。 According to the present disclosure, it is possible to maintain a constant clearance between the movable vane and the surface while ensuring design flexibility.
図1は、可動式ベーンが開位置にあるときの第1実施形態に係る回転装置の概略的な斜視図である。FIG. 1 is a schematic perspective view of the rotating device according to the first embodiment when the movable vane is in the open position. 図2は、第1実施形態に係る回転装置の概略的な断面図である。FIG. 2 is a schematic cross-sectional view of the rotating device according to the first embodiment. 図3は、可動式ベーンが閉位置にあるときの第1実施形態に係る回転装置の概略的な斜視図である。FIG. 3 is a schematic perspective view of the rotating device according to the first embodiment when the movable vane is in the closed position. 図4は、第2実施形態に係る回転装置の概略的な斜視図である。FIG. 4 is a schematic perspective view of a rotating device according to a second embodiment.
 以下に添付図面を参照しながら、本開示の実施形態について詳細に説明する。実施形態に示す具体的な寸法、材料および数値等は、理解を容易とするための例示にすぎず、特に断る場合を除き、本開示を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略する。また本開示に直接関係のない要素は図示を省略する。 Embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings. The specific dimensions, materials, numerical values, etc. shown in the embodiments are merely examples for easy understanding, and do not limit the present disclosure unless otherwise specified. In this specification and the drawings, elements having substantially the same functions and configurations are designated by the same reference numerals and redundant explanation will be omitted. Further, illustrations of elements not directly related to the present disclosure are omitted.
 図1は、可動式ベーン2が開位置にあるときの第1実施形態に係る回転装置100の概略的な斜視図である。 FIG. 1 is a schematic perspective view of the rotating device 100 according to the first embodiment when the movable vane 2 is in the open position.
 図1を参照して、例えば、回転装置100は、タービンまたはコンプレッサであることができる。例えば、回転装置100は、過給機のタービンまたはコンプレッサに適用されることができる。回転装置100はこれに限定されず、他の装置に適用されてもよい。回転装置100は、インペラ1と、複数の可動式ベーン2と、内側壁3と、外側壁4と、を備える。回転装置100は、他の構成要素を更に備えてもよい。 Referring to FIG. 1, for example, rotating device 100 can be a turbine or a compressor. For example, the rotating device 100 can be applied to a turbine or a compressor of a supercharger. The rotating device 100 is not limited to this, and may be applied to other devices. The rotating device 100 includes an impeller 1, a plurality of movable vanes 2, an inner wall 3, and an outer wall 4. Rotating device 100 may further include other components.
 インペラ1は、不図示のハウジングによって画定される空間S1に収容される。インペラ1は、中心軸A1周りに回転する。本開示において、インペラ1の軸方向、径方向および周方向は、それぞれ単に軸方向x、径方向rおよび周方向cと称され得る。 The impeller 1 is housed in a space S1 defined by a housing (not shown). The impeller 1 rotates around the central axis A1. In this disclosure, the axial direction, radial direction, and circumferential direction of the impeller 1 may be simply referred to as axial direction x, radial direction r, and circumferential direction c, respectively.
 図2は、第1実施形態に係る回転装置100の概略的な断面図である。図2の断面図は、インペラ1の中心軸A1を含む。本実施形態では、インペラ1は、斜流式インペラである。図2において、流体が左から右に流れる場合、インペラ1は、軸方向xに沿ってインペラ1に流入する流体を、軸方向xおよび径方向rの双方に対して傾斜した方向i1に沿って送り出す。図2において、流体が右から左に流れる場合、インペラ1は、方向i1に沿ってインペラ1に流入する流体を、軸方向xに沿って送り出す。他の実施形態では、インペラ1は、軸流式インペラであってもよい。軸流式インペラは、軸方向xに沿ってインペラ1に流入する流体を、軸方向xに沿って送り出す。 FIG. 2 is a schematic cross-sectional view of the rotating device 100 according to the first embodiment. The cross-sectional view of FIG. 2 includes the central axis A1 of the impeller 1. In this embodiment, the impeller 1 is a mixed flow impeller. In FIG. 2, when fluid flows from left to right, the impeller 1 directs the fluid flowing into the impeller 1 along the axial direction x along a direction i1 inclined with respect to both the axial direction x and the radial direction r. send out. In FIG. 2, when the fluid flows from right to left, the impeller 1 sends out the fluid that flows into the impeller 1 along the direction i1 along the axial direction x. In other embodiments, the impeller 1 may be an axial impeller. The axial impeller sends out fluid that flows into the impeller 1 along the axial direction x.
 図1を参照して、インペラ1は、ハブ11と、複数のベーン12と、を含む。本実施形態では、ハブ11は、截頭円錐形状を有する。インペラ1が軸流式インペラである場合には、ハブ11は、円筒形状を有してもよい。ベーン12は、ハブ11の側面に固定される。本実施形態では、インペラ1は、9枚のベーン12を含む。ベーン12の枚数はこれに限定されず、9より少なくてもよく、または、多くてもよい。 Referring to FIG. 1, impeller 1 includes a hub 11 and a plurality of vanes 12. In this embodiment, the hub 11 has a frustoconical shape. When the impeller 1 is an axial impeller, the hub 11 may have a cylindrical shape. The vane 12 is fixed to the side surface of the hub 11. In this embodiment, the impeller 1 includes nine vanes 12. The number of vanes 12 is not limited to this, and may be less than nine or more than nine.
 可動式ベーン2は、流体の流れる方向に応じて、インペラ1の上流または下流に配置される。複数の可動式ベーン2は、周方向cに沿って互いに離間して配置される。本実施形態では、回転装置100は、12枚の可動式ベーン2を備える。可動式ベーン2の枚数はこれに限定されず、12より少なくてもよく、または、多くてもよい。可動式ベーン2は、流路の断面積を調整するように動作される(詳しくは後述)。 The movable vane 2 is arranged upstream or downstream of the impeller 1 depending on the direction of fluid flow. The plurality of movable vanes 2 are arranged apart from each other along the circumferential direction c. In this embodiment, the rotating device 100 includes twelve movable vanes 2. The number of movable vanes 2 is not limited to this, and may be less than 12 or more than 12. The movable vane 2 is operated to adjust the cross-sectional area of the flow path (details will be described later).
 内側壁3および外側壁4は、流路の一部を画定する。内側壁3および外側壁4は、静止壁である。内側壁3および外側壁4は、不図示のハウジングの一部であってもよい。代替的に、内側壁3および外側壁4の一方または双方は、ハウジングとは別の部材であってもよく、ハウジングに取り付けられてもよい。 The inner wall 3 and the outer wall 4 define a part of the flow path. The inner wall 3 and the outer wall 4 are stationary walls. The inner wall 3 and the outer wall 4 may be part of a housing (not shown). Alternatively, one or both of the inner wall 3 and the outer wall 4 may be separate members from the housing and may be attached to the housing.
 図2を参照して、内側壁3は、複数の平面31を含む。平面31は、径方向外側を向く。外側壁4は、複数の平面41を含む。平面41は、径方向内側を向く。平面31の数および平面41の数は、可動式ベーン2の枚数と等しい。本実施形態では、内側壁3は、12個の平面31を含み、外側壁4は、12個の平面41を含む。内側壁3および外側壁4は、複数の平面31および複数の平面41が互いに平行になるように配置される。本実施形態では、平面31および平面41は、軸方向xおよび径方向rの双方に傾いた方向i2において、可動式ベーン2を挟んで互いに対向する。方向i2は、流体が流れる上記の方向i1に対して垂直であってもよい。インペラ1が軸流式インペラである場合には、内側壁3および外側壁4は、径方向rにおいて、可動式ベーン2を挟んで互いに対向してもよい。
平面41は平面31の径方向外側に位置するので、平面41は、周方向cにおいて平面31よりも長い。
Referring to FIG. 2, inner wall 3 includes a plurality of flat surfaces 31. As shown in FIG. The plane 31 faces radially outward. The outer wall 4 includes a plurality of planes 41. The plane 41 faces radially inward. The number of planes 31 and the number of planes 41 are equal to the number of movable vanes 2. In this embodiment, the inner wall 3 includes twelve planes 31 and the outer wall 4 includes twelve planes 41. The inner wall 3 and the outer wall 4 are arranged such that the plurality of planes 31 and the plurality of planes 41 are parallel to each other. In this embodiment, the plane 31 and the plane 41 face each other with the movable vane 2 in between in the direction i2 inclined in both the axial direction x and the radial direction r. Direction i2 may be perpendicular to the above-mentioned direction i1 in which the fluid flows. When the impeller 1 is an axial impeller, the inner wall 3 and the outer wall 4 may face each other with the movable vane 2 in between in the radial direction r.
Since the plane 41 is located on the radially outer side of the plane 31, the plane 41 is longer than the plane 31 in the circumferential direction c.
 図1を参照して、内側壁3および外側壁4は、軸方向xに見た場合に、可動式ベーン2の枚数と等しい数の角を含む、多角形状を有する。本実施形態では、内側壁3および外側壁4は、軸方向xに見た場合に、正十二角形状を有する。内側壁3および外側壁4は、これに限定されず、可動式ベーン2の枚数に応じて、他の多角形状を有してもよい。三次元においては、内側壁3および外側壁4は、可動式ベーン2の枚数と等しい数の側辺を含む、截頭多角推形状を有する。本実施形態では、内側壁3および外側壁4は、截頭十二角錐形状を有する。インペラ1が軸流式インペラである場合には、三次元において、内側壁3および外側壁4は、可動式ベーン2の枚数と等しい数の側辺を含む、多角筒形状を有してもよい。 Referring to FIG. 1, the inner wall 3 and the outer wall 4 have a polygonal shape including the same number of corners as the number of movable vanes 2 when viewed in the axial direction x. In this embodiment, the inner wall 3 and the outer wall 4 have a regular dodecagonal shape when viewed in the axial direction x. The inner wall 3 and the outer wall 4 are not limited to this, and may have other polygonal shapes depending on the number of movable vanes 2. In three dimensions, the inner wall 3 and the outer wall 4 have a truncated polygonal shape with a number of sides equal to the number of movable vanes 2. In this embodiment, the inner wall 3 and the outer wall 4 have a truncated dodecagonal pyramid shape. When the impeller 1 is an axial impeller, the inner wall 3 and the outer wall 4 may have a polygonal cylindrical shape in three dimensions, including a number of sides equal to the number of movable vanes 2. .
 本実施形態では、軸方向xに見た場合に、隣接する平面31の間の内角は、150度である(150=180×(n-2)/n、n=12)。同様に、隣接する平面41の間の内角は、150度である。他の実施形態では、多角形状の内角は、150度以外の鈍角であってもよい。この場合、軸方向xに見た場合に、内側壁3および外側壁4は、5以上の角を含む多角形状である。 In this embodiment, when viewed in the axial direction x, the interior angle between adjacent planes 31 is 150 degrees (150=180×(n-2)/n, n=12). Similarly, the internal angle between adjacent planes 41 is 150 degrees. In other embodiments, the interior angles of the polygon may be obtuse angles other than 150 degrees. In this case, when viewed in the axial direction x, the inner wall 3 and the outer wall 4 have a polygonal shape including five or more corners.
 図2を参照して、内側壁3および外側壁4は、それらの間に空間S2を画定する。空間S2は、インペラ1を収容する上記の空間S1と連続する。空間S1および空間S2は、流路の一部を形成する。 Referring to FIG. 2, inner wall 3 and outer wall 4 define a space S2 therebetween. The space S2 is continuous with the above-mentioned space S1 that accommodates the impeller 1. Space S1 and space S2 form part of a flow path.
 可動式ベーン2は、空間S2に配置される。具体的には、可動式ベーン2は、平面31または平面41の少なくとも一方に対して、回転可能に取り付けられる。可動式ベーン2は、中心軸A2周りに回転する。中心軸A2は、平面31および平面41の垂線に対して平行である。別の観点では、中心軸A2は、方向i1に対して垂直である。中心軸A2は、インペラ1の中心軸A1と交差する。可動式ベーン2が中心軸A2周りに回転するにつれて、流路の断面積が調整される。例えば、回転装置100は、内側壁3の内側または外側壁4の外側に、可動式ベーン2を回転させるための不図示の駆動機構を含んでもよい。 The movable vane 2 is arranged in the space S2. Specifically, the movable vane 2 is rotatably attached to at least one of the plane 31 and the plane 41. The movable vane 2 rotates around the central axis A2. The central axis A2 is parallel to the perpendiculars of the planes 31 and 41. From another perspective, the central axis A2 is perpendicular to the direction i1. The central axis A2 intersects the central axis A1 of the impeller 1. As the movable vane 2 rotates around the central axis A2, the cross-sectional area of the flow path is adjusted. For example, the rotating device 100 may include a drive mechanism (not shown) inside the inner wall 3 or outside the outer wall 4 for rotating the movable vane 2 .
 図1では、可動式ベーン2は、開位置に配置される。開位置では、可動式ベーン2は、流路の断面積を最大にする。 In FIG. 1, the movable vane 2 is placed in the open position. In the open position, the movable vanes 2 maximize the cross-sectional area of the flow path.
 図3は、可動式ベーン2が閉位置にあるときの第1実施形態に係る回転装置100の概略的な斜視図である。図2では、可動式ベーン2は、閉位置に配置される。閉位置では、可動式ベーン2は、流路の断面積を最小にする。図1,3からわかるように、閉位置では、可動式ベーン2は、開位置に比べて、インペラ1の中心軸A1に対してより斜めの位置に配置される。 FIG. 3 is a schematic perspective view of the rotating device 100 according to the first embodiment when the movable vane 2 is in the closed position. In FIG. 2, the movable vane 2 is placed in the closed position. In the closed position, the movable vanes 2 minimize the cross-sectional area of the flow path. As can be seen from FIGS. 1 and 3, in the closed position, the movable vane 2 is arranged at a more oblique position with respect to the central axis A1 of the impeller 1 than in the open position.
 図2を参照して、可動式ベーン2において、平面31と接触または対向する端面21は、平面31に沿うように平らに形成される。同様に、可動式ベーン2において、平面41と接触または対向する端面22は、平面41に沿うように平らに形成される。 Referring to FIG. 2, in the movable vane 2, the end surface 21 that contacts or opposes the plane 31 is formed flat along the plane 31. Similarly, in the movable vane 2, the end surface 22 that contacts or opposes the plane 41 is formed flat along the plane 41.
 図3を参照して、上記のように、外側の平面41は、周方向cにおいて内側の平面31よりも長い。このため、平面41と平面31との間の空間S2は、流体が流れる方向i1(図2参照)に見た場合に、台形形状を有する。可動式ベーン2は、この空間S2と合うように、各可動式ベーン2の側面23の法線方向に見た場合に、台形形状を有する。このような構成によれば、可動式ベーン2は、閉位置において、平面41および平面31の間の空間S2を効率的にカバーすることができる。また、図3を参照して、可動式ベーン2は、閉位置において、隣り合う可動式ベーン2と共に、それらの間に若干の隙間を形成するように設計される。このような構成によれば、可動式ベーン2が回転する際に、隣り合う可動式ベーン2の間の接触を避けることができる。 Referring to FIG. 3, as described above, the outer plane 41 is longer than the inner plane 31 in the circumferential direction c. Therefore, the space S2 between the plane 41 and the plane 31 has a trapezoidal shape when viewed in the fluid flow direction i1 (see FIG. 2). The movable vanes 2 have a trapezoidal shape when viewed in the normal direction of the side surface 23 of each movable vane 2 so as to fit into this space S2. According to such a configuration, the movable vane 2 can efficiently cover the space S2 between the plane 41 and the plane 31 in the closed position. Further, referring to FIG. 3, the movable vanes 2 are designed to form a slight gap between adjacent movable vanes 2 in the closed position. According to such a configuration, when the movable vanes 2 rotate, contact between adjacent movable vanes 2 can be avoided.
 以上のような回転装置100は、インペラ1と、インペラ1の上流または下流に配置され、流路の断面積を調整するように動作される複数の可動式ベーン2と、流路を画定する内側壁3および外側壁4と、を備える。内側壁3および外側壁4は、軸方向xおよび径方向rの双方に傾いた方向i2において、可動式ベーン2を挟んで互いに対向する、互いに平行な複数組の平面31,41を含む。内側壁3および外側壁4は、インペラ1の軸方向xに見た場合に、対応する多角形状を有する。このような構成によれば、多角形状を有する内側壁3および外側壁4は、互いに平行な平面31および平面41を含む。したがって、可動式ベーン2は、互いに平行な平面31および平面41の間に配置されることができる。この場合、可動式ベーン2の端面21,22は、平面形状に形成されることができる。このような構成によれば、可動式ベーン2が、開位置(図1)から、インペラ1の中心軸A1に対してより斜めの閉位置(図2)に移動しても、端面21と平面31との間の隙間、および、端面22と平面41との間の隙間は、一定に維持される。また、特許文献1,2の斜流タービンに比べて、端面21,22および平面31,41を球面形状に形成する必要がないので、設計の柔軟性が確保される。したがって、設計の柔軟性を確保しつつ、可動式ベーン2と平面31,41との間のクリアランスを一定に維持することができる。 The rotating device 100 as described above includes an impeller 1, a plurality of movable vanes 2 that are arranged upstream or downstream of the impeller 1 and are operated to adjust the cross-sectional area of a flow path, and an inner vane that defines a flow path. A wall 3 and an outer wall 4 are provided. The inner wall 3 and the outer wall 4 include a plurality of sets of parallel planes 31 and 41 that face each other with the movable vane 2 in between in the direction i2 inclined in both the axial direction x and the radial direction r. The inner wall 3 and the outer wall 4 have corresponding polygonal shapes when viewed in the axial direction x of the impeller 1. According to such a configuration, the polygonal inner wall 3 and outer wall 4 include a plane 31 and a plane 41 that are parallel to each other. Therefore, the movable vane 2 can be arranged between planes 31 and 41 that are parallel to each other. In this case, the end surfaces 21 and 22 of the movable vane 2 can be formed into a planar shape. According to such a configuration, even if the movable vane 2 moves from the open position (FIG. 1) to the closed position (FIG. 2) that is more oblique with respect to the central axis A1 of the impeller 1, the movable vane 2 remains in contact with the end surface 21 and the plane. 31 and the gap between the end surface 22 and the plane 41 are maintained constant. Furthermore, compared to the mixed flow turbines of Patent Documents 1 and 2, there is no need to form the end faces 21, 22 and the flat surfaces 31, 41 into spherical shapes, so flexibility in design is ensured. Therefore, the clearance between the movable vane 2 and the flat surfaces 31 and 41 can be maintained constant while ensuring design flexibility.
 また、回転装置100では、複数の可動式ベーン2の各々は、各可動式ベーン2の側面23の法線方向に見た場合に、台形形状を有する。上記のように、平面41と平面31との間の空間は、台形形状を有する。したがって、このような構成によれば、可動式ベーン2は、閉位置において、平面41および平面31の間の空間を効率的にカバーすることができる。 Furthermore, in the rotating device 100, each of the plurality of movable vanes 2 has a trapezoidal shape when viewed in the normal direction of the side surface 23 of each movable vane 2. As mentioned above, the space between plane 41 and plane 31 has a trapezoidal shape. Therefore, according to such a configuration, the movable vane 2 can efficiently cover the space between the plane 41 and the plane 31 in the closed position.
 また、回転装置100では、複数の可動式ベーン2が流路の断面積を最小にするときに、隣り合う可動式ベーン2は、それらの間に隙間を形成する。このような構成によれば、可動式ベーン2が回転する際に、隣り合う可動式ベーン2の間の接触を避けることができる。 Furthermore, in the rotating device 100, when the plurality of movable vanes 2 minimize the cross-sectional area of the flow path, adjacent movable vanes 2 form a gap between them. According to such a configuration, when the movable vanes 2 rotate, contact between adjacent movable vanes 2 can be avoided.
 また、回転装置100では、多角形状は、正多角形状である。このような構成によれば、回転装置100の均整をとることができる。 Furthermore, in the rotating device 100, the polygonal shape is a regular polygonal shape. According to such a configuration, the rotation device 100 can be balanced.
 また、回転装置100では、多角形状の内角は、鈍角である。このような構成によれば、周方向cにおいて、外側の平面41が、内側の平面31よりも過度に長くなることを防止することができる。したがって、回転装置100の均整をとることができる。 Furthermore, in the rotating device 100, the interior angles of the polygon are obtuse angles. According to such a configuration, it is possible to prevent the outer plane 41 from becoming excessively longer than the inner plane 31 in the circumferential direction c. Therefore, the rotation device 100 can be balanced.
 続いて、他の実施形態について説明する。 Next, other embodiments will be described.
 図4は、第2実施形態に係る回転装置100Aの概略的な斜視図である。 FIG. 4 is a schematic perspective view of a rotating device 100A according to the second embodiment.
 回転装置100Aは、内側壁3Aが推移区間32,33を含む点で、第1実施形態の回転装置100と異なる。回転装置100Aのその他の点については、回転装置100と同じであってもよい。 The rotating device 100A differs from the rotating device 100 of the first embodiment in that the inner wall 3A includes transition sections 32 and 33. The other points of the rotating device 100A may be the same as the rotating device 100.
 内側壁3Aでは、インペラ1を収容する上記の空間S1に隣接する端面は、円形状を有する。内側壁3Aは、円形の端面と、正十二角形状と、を滑らかにつなぐ推移区間32を含む。例えば、推移区間32は、チャンファであることができる。 In the inner wall 3A, the end surface adjacent to the above-mentioned space S1 that accommodates the impeller 1 has a circular shape. The inner wall 3A includes a transition section 32 that smoothly connects a circular end surface and a regular dodecagonal shape. For example, transition interval 32 can be chamfered.
 同様に、内側壁3Aでは、軸方向xにおいて空間S1と反対側の端面も、円形状を有する。内側壁3Aは、円形の端面と、正十二角形状と、を滑らかにつなぐ推移区間33を含む。例えば、推移区間33は、チャンファであることができる。 Similarly, in the inner wall 3A, the end surface on the opposite side to the space S1 in the axial direction x also has a circular shape. The inner wall 3A includes a transition section 33 that smoothly connects a circular end surface and a regular dodecagonal shape. For example, transition section 33 can be chamfered.
 外側壁4も、同様の推移区間を、空間S1に隣接する端部、および、反対側の端部に含んでもよい。 The outer wall 4 may also include similar transition sections at the end adjacent to the space S1 and at the opposite end.
 このような回転装置100Aは、第1実施形態の回転装置100と同様な効果を得ることができる。 Such a rotating device 100A can obtain the same effects as the rotating device 100 of the first embodiment.
 また、回転装置100Aでは、内側壁3および外側壁4の少なくとも一方は、軸方向xにおいて、インペラ1を収容する空間S1と連続する端部に、円形状と多角形状とをつなぐ推移区間32を含む。また、内側壁3および外側壁4の少なくとも一方は、軸方向xにおいて、インペラ1を収容する空間S1と反対側の端部に、円形状と多角形状とをつなぐ推移区間33を含む。このような構成によれば、流体をスムーズに案内することができる。 Further, in the rotating device 100A, at least one of the inner wall 3 and the outer wall 4 has a transition section 32 connecting the circular shape and the polygonal shape at an end continuous with the space S1 that accommodates the impeller 1 in the axial direction x. include. Furthermore, at least one of the inner wall 3 and the outer wall 4 includes a transition section 33 connecting the circular shape and the polygonal shape at the end opposite to the space S1 that accommodates the impeller 1 in the axial direction x. According to such a configuration, fluid can be guided smoothly.
 以上、添付図面を参照しながら本開示の実施形態について説明したが、本開示はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。 Although the embodiments of the present disclosure have been described above with reference to the accompanying drawings, it goes without saying that the present disclosure is not limited to such embodiments. It is clear that those skilled in the art can come up with various changes and modifications within the scope of the claims, and it is understood that these naturally fall within the technical scope of the present disclosure. be done.
 例えば、上記の実施形態では、内側壁3および外側壁4は、軸方向xに見た場合に、正多角形状を有する。しかしながら、他の実施形態では、内側壁3および外側壁4は、軸方向xに見た場合に、正多角形状を有さなくてもよい。例えば、多角形状の複数の辺の長さは、均等でなくてもよい。 For example, in the above embodiment, the inner wall 3 and the outer wall 4 have a regular polygonal shape when viewed in the axial direction x. However, in other embodiments, the inner wall 3 and the outer wall 4 may not have a regular polygonal shape when viewed in the axial direction x. For example, the lengths of multiple sides of a polygon may not be equal.
 1     インペラ
 2     可動式ベーン
 3     内側壁
 3A    内側壁
 4     外側壁
 23    可動式ベーンの側面
 32    推移区間
 33    推移区間
 100   回転装置
 100A  回転装置
 i2    インペラの軸方向および径方向の双方に対して傾いた方向
 r     インペラの径方向
 S1    インペラを収容する空間(流路)
 S2    可動式ベーンを収容する区間(流路)
 x     インペラの軸方向
1 Impeller 2 Movable vane 3 Inner wall 3A Inner wall 4 Outer wall 23 Side surface of movable vane 32 Transition section 33 Transition section 100 Rotating device 100A Rotating device i2 Direction inclined to both the axial direction and radial direction of the impeller r Radial direction of the impeller S1 Space (flow path) that accommodates the impeller
S2 Section (flow path) that accommodates the movable vane
x Impeller axial direction

Claims (15)

  1.  インペラと、
     前記インペラの上流または下流に配置され、流路の断面積を調整するように動作される複数の可動式ベーンと、
     前記流路を画定する内側壁および外側壁であって、
      当該内側壁および当該外側壁は、前記インペラの径方向において、または、前記インペラの軸方向および径方向の双方に対して傾いた方向において、前記可動式ベーンを挟んで互いに対向する、互いに平行な複数組の平面を含み、
      当該内側壁および当該外側壁は、前記インペラの軸方向に見た場合に、対応する多角形状を有する、
     内側壁および外側壁と、
     を備える、
     回転装置。
    impeller and
    a plurality of movable vanes disposed upstream or downstream of the impeller and operated to adjust the cross-sectional area of the flow path;
    an inner wall and an outer wall defining the flow path,
    The inner wall and the outer wall are parallel to each other and face each other across the movable vane in the radial direction of the impeller or in a direction inclined with respect to both the axial direction and the radial direction of the impeller. Contains multiple sets of planes,
    the inner wall and the outer wall have corresponding polygonal shapes when viewed in the axial direction of the impeller;
    an inner wall and an outer wall;
    Equipped with
    Rotating device.
  2.  前記複数の可動式ベーンの各々は、各可動式ベーンの側面の法線方向に見た場合に、台形形状を有する、請求項1に記載の回転装置。 The rotating device according to claim 1, wherein each of the plurality of movable vanes has a trapezoidal shape when viewed in the normal direction of the side surface of each movable vane.
  3.  前記複数の可動式ベーンが前記流路の前記断面積を最小にするときに、隣り合う可動式ベーンは、それらの間に隙間を形成する、請求項1または2に記載の回転装置。 The rotating device according to claim 1 or 2, wherein when the plurality of movable vanes minimize the cross-sectional area of the flow path, adjacent movable vanes form a gap between them.
  4.  前記内側壁および前記外側壁の少なくとも一方は、前記軸方向において、前記インペラを収容する空間と連続する端部、および、前記インペラを収容する空間と反対側の端部の少なくとも一方に、円形状と前記多角形状とをつなぐ推移区間を含む、請求項1または2に記載の回転装置。 At least one of the inner wall and the outer wall has a circular shape in the axial direction at least one of an end continuous with the space accommodating the impeller and an end opposite to the space accommodating the impeller. The rotating device according to claim 1 or 2, comprising a transition section connecting the polygonal shape and the polygonal shape.
  5.  前記内側壁および前記外側壁の少なくとも一方は、前記軸方向において、前記インペラを収容する空間と連続する端部、および、前記インペラを収容する区間と反対側の端部の少なくとも一方に、円形状と前記多角形状とをつなぐ推移区間を含む、請求項3に記載の回転装置。 At least one of the inner wall and the outer wall has a circular shape in the axial direction at least one of an end continuous with the space accommodating the impeller and an end opposite to a section accommodating the impeller. The rotating device according to claim 3, further comprising a transition section connecting the polygonal shape and the polygonal shape.
  6.  前記多角形状は、正多角形状である、請求項1または2に記載の回転装置。 The rotating device according to claim 1 or 2, wherein the polygonal shape is a regular polygonal shape.
  7.  前記多角形状は、正多角形状である、請求項3に記載の回転装置。 The rotating device according to claim 3, wherein the polygonal shape is a regular polygonal shape.
  8.  前記多角形状は、正多角形状である、請求項4に記載の回転装置。 The rotating device according to claim 4, wherein the polygonal shape is a regular polygonal shape.
  9.  前記多角形状は、正多角形状である、請求項5に記載の回転装置。 The rotating device according to claim 5, wherein the polygonal shape is a regular polygonal shape.
  10.  前記多角形状の内角は、鈍角である、請求項1または2に記載の回転装置。 The rotating device according to claim 1 or 2, wherein the interior angles of the polygonal shape are obtuse angles.
  11.  前記多角形状の内角は、鈍角である、請求項3に記載の回転装置。 The rotating device according to claim 3, wherein the interior angles of the polygon are obtuse angles.
  12.  前記多角形状の内角は、鈍角である、請求項4に記載の回転装置。 The rotating device according to claim 4, wherein the interior angles of the polygon are obtuse angles.
  13.  前記多角形状の内角は、鈍角である、請求項5に記載の回転装置。 The rotating device according to claim 5, wherein the interior angles of the polygon are obtuse angles.
  14.  前記多角形状の内角は、鈍角である、請求項6に記載の回転装置。 The rotating device according to claim 6, wherein the interior angles of the polygon are obtuse angles.
  15.  前記多角形状の内角は、鈍角である、請求項7に記載の回転装置。 The rotating device according to claim 7, wherein the interior angles of the polygonal shape are obtuse angles.
PCT/JP2023/027230 2022-07-29 2023-07-25 Rotary device WO2024024791A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-121177 2022-07-29
JP2022121177 2022-07-29

Publications (1)

Publication Number Publication Date
WO2024024791A1 true WO2024024791A1 (en) 2024-02-01

Family

ID=89706360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027230 WO2024024791A1 (en) 2022-07-29 2023-07-25 Rotary device

Country Status (1)

Country Link
WO (1) WO2024024791A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001193695A (en) * 2000-01-12 2001-07-17 Mitsubishi Heavy Ind Ltd Compressor
JP2004278386A (en) * 2003-03-14 2004-10-07 Hitachi Industries Co Ltd Turbo type fluid machine
JP2010230003A (en) * 2009-03-26 2010-10-14 General Electric Co <Ge> Duct-member based turbine nozzle
JP2011144722A (en) * 2010-01-13 2011-07-28 Ihi Corp Vane mechanism
JP2014534378A (en) * 2011-12-01 2014-12-18 アイ・エイチ・アイ チャージング システムズ インターナショナル ゲーエムベーハー A fluid energy machine in which a rotatable guide member used in an exhaust gas turbocharger is disposed obliquely

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001193695A (en) * 2000-01-12 2001-07-17 Mitsubishi Heavy Ind Ltd Compressor
JP2004278386A (en) * 2003-03-14 2004-10-07 Hitachi Industries Co Ltd Turbo type fluid machine
JP2010230003A (en) * 2009-03-26 2010-10-14 General Electric Co <Ge> Duct-member based turbine nozzle
JP2011144722A (en) * 2010-01-13 2011-07-28 Ihi Corp Vane mechanism
JP2014534378A (en) * 2011-12-01 2014-12-18 アイ・エイチ・アイ チャージング システムズ インターナショナル ゲーエムベーハー A fluid energy machine in which a rotatable guide member used in an exhaust gas turbocharger is disposed obliquely

Similar Documents

Publication Publication Date Title
CN112334667B (en) Centrifugal compressor and supercharger
KR101464910B1 (en) Turbine
JP5409741B2 (en) Opening restriction structure of variable nozzle mechanism and variable capacity turbocharger
JP2012077661A (en) Variable capacity turbine
WO2024024791A1 (en) Rotary device
CN110520631B (en) Variable stator blade and compressor
CN111448396B (en) Variable stator blade and compressor
WO2014033920A1 (en) Axial flow turbine for superchargers
US11236669B2 (en) Turbine and turbocharger
JP2008298005A (en) Variable displacement mechanism for turbine
JP2019044659A (en) Centrifugal compressor
US11136900B2 (en) Turbine and turbocharger
JP7013316B2 (en) Centrifugal compressor
JP2013155640A (en) Variable stator vane mechanism of turbo machine
JP4025172B2 (en) Gas turbine equipment
JP2002206427A (en) Variable nozzle device of variable displacement supercharger
WO2020129234A1 (en) Turbomachine
WO2023218723A1 (en) Variable stator blade and compressor
WO2023162115A1 (en) Variable nozzle device and variable-capacity-type turbocharger
JP7302738B2 (en) Variable displacement turbocharger
WO2020261417A1 (en) Variable nozzle device and variable capacity-type exhaust turbocharger
WO2018235857A1 (en) Variable nozzle unit and variable capacity-type turbocharger
WO2021235027A1 (en) Centrifugal compressor
WO2020050051A1 (en) Turbine and supercharger
CN116848326A (en) Centrifugal compressor and supercharger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846521

Country of ref document: EP

Kind code of ref document: A1