WO2024024714A1 - Measurement range determining device, optical measuring device, optical measuring system, optical measuring method, display adjusting device and adjusting method, and program - Google Patents

Measurement range determining device, optical measuring device, optical measuring system, optical measuring method, display adjusting device and adjusting method, and program Download PDF

Info

Publication number
WO2024024714A1
WO2024024714A1 PCT/JP2023/026971 JP2023026971W WO2024024714A1 WO 2024024714 A1 WO2024024714 A1 WO 2024024714A1 JP 2023026971 W JP2023026971 W JP 2023026971W WO 2024024714 A1 WO2024024714 A1 WO 2024024714A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
display
light emission
range
preliminary
Prior art date
Application number
PCT/JP2023/026971
Other languages
French (fr)
Japanese (ja)
Inventor
知宏 桐山
崇慶 岡田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2024024714A1 publication Critical patent/WO2024024714A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/10Intensity circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/04Diagnosis, testing or measuring for television systems or their details for receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/20Circuitry for controlling amplitude response
    • H04N5/202Gamma control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/66Transforming electric information into light information

Definitions

  • the present invention relates to a light measuring device capable of measuring the light emitting state of a measurement target such as display brightness and chromaticity in multiple measurement ranges, and a measuring range determining device and a light measuring device that determine a measurement range according to the light emitting state. , a light measurement system, a light measurement method, a display adjustment device, an adjustment method, and a program.
  • the luminance which is one of the parameters related to the display's light emitting state
  • a light measurement device such as a color analyzer
  • a measurement range that allows optimal measurement is automatically determined according to the luminance value. For example, in a case where there are three measurement ranges R1 (dark), R2 (middle), and R3 (bright), if the measurement results cannot be obtained optimally using the R1 measurement range, remeasure the measurement range using the R2 measurement range. . If the measurement cannot be performed optimally using the measurement range R2, the optimum measurement range is determined by re-measuring using the measurement range R3. The same holds true when moving from the R3 measurement range to the R2 and R1 measurement ranges. By determining the optimal measurement range in this way, the user can perform optimal measurement without specifying the measurement range according to the luminance value.
  • Patent Document 1 discloses a technique of performing measurement based on required accuracy and approximate luminance, with the aim of widening the measurement luminance range and reducing the load on the optical measurement device.
  • Patent Document 1 aims to reduce the load placed on the optical measurement device. Therefore, even if the method is applied to gamma adjustment by switching the brightness many times and waiting for the switched brightness to stabilize, it is difficult to reduce the time required.
  • An object of the present invention is to determine the measuring range according to the light emitting state from among a plurality of measurement ranges included in an optical measuring device capable of measuring parameters related to the light emitting state of an object to be measured.
  • the purpose of the present invention is to provide a measurement range determining device, a light measurement device, a light measurement system, a light measurement method, a display adjustment device and adjustment method, and a program that can be shortened.
  • a measurement range determining device comprising a determining means for determining a measurement range according to a light emitting state among a plurality of measurement ranges of an optical measuring device capable of measuring parameters related to a light emitting state of a measurement target, Before the main measurement, comprising a control means for causing the optical measurement device to perform a preliminary measurement of the parameter in a measurement time shorter than the measurement time of the main measurement in each measurement range,
  • the determining means is a measurement range determining device that determines a measurement range for the main measurement that is suitable for the object to be measured based on the results of preliminary measurements performed by the optical measuring device.
  • a light measuring device capable of measuring parameters related to the light emitting state of a measurement target in multiple measurement ranges;
  • a control means for causing the optical measurement device to perform a preliminary measurement of the measurement target in a measurement time shorter than the measurement time of the main measurement in each measurement range before the main measurement; determining means for determining a measurement range for main measurement according to a light emission state based on the results of a preliminary measurement performed by the optical measurement device;
  • An optical measuring device capable of measuring parameters related to the light emitting state of the measurement target in multiple measurement ranges is capable of measuring parameters related to the light emission state of the measurement target in a measurement time shorter than the measurement time of the main measurement in each measurement range.
  • the optical measurement method according to item 8 further comprising the step of adjusting the gamma of the measurement target based on the parameters measured by the optical measurement device.
  • the parameters related to the light emitting state of the measurement target can be measured using an optical measurement device that can measure the light emission state of the measurement target in multiple measurement ranges. performing a preliminary measurement of the object; a step of determining a measurement range for main measurement according to the light emission state based on the results of the preliminary measurement; A program that causes the measurement range determination device's computer to execute the following.
  • a display adjustment device that uses a light emitting part of a display as a measurement target and performs gamma adjustment of the display,
  • the optical measuring device according to the preceding section 3, output means for a light emission drive signal that causes the display to display panel display information for the gamma adjustment;
  • Gamma adjustment control means that performs gamma adjustment based on parameters related to the light emission state of the display measured in the main measurement in the light measurement device;
  • gamma adjustment result notification means for notifying the display of the result of gamma adjustment by the gamma adjustment control means; Display adjustment device with.
  • a display adjustment method that uses a light emitting part of a display as a measurement target and performs gamma adjustment of the display, comprising: outputting a light emission drive signal that causes the display to display panel display information for the gamma adjustment; a gamma adjustment control step of performing gamma adjustment based on the parameters related to the light emission state of the display measured in the main measurement in the light measurement device according to item 3 above; a gamma adjustment result notification step of notifying the display of the gamma adjustment result in the gamma adjustment control step; Display adjustment method including.
  • the measurement range determination device before the main measurement of parameters such as brightness related to the light emission state of a measurement target such as a display, The preliminary measurement is performed in a measurement time shorter than the measurement time of the main measurement. Based on the results of the preliminary measurement, a measurement range for the main measurement is determined according to the light emission state. Therefore, compared to the conventional case where the measurement range is determined during the main measurement, the time required to determine the measurement range can be shortened, and the overall processing time can be shortened.
  • the measurement range can be determined with high accuracy.
  • parameters related to the light emitting state of the object to be measured are sent to an optical measuring device capable of measuring the light emitting state in a plurality of measurement ranges from the measurement time of the main measurement in each measurement range before the main measurement.
  • the computer of the measuring range determining device performs a step of performing a preliminary measurement of the object to be measured in a short measurement time, and a step of determining a measurement range for the main measurement according to the light emission state based on the result of the preliminary measurement. can be executed.
  • gamma adjustment is performed based on parameters regarding the light emitting state of the display measured in the main measurement by the optical measurement device, and the result of the gamma adjustment is notified to the display. Can be done.
  • FIG. 1 is a block diagram showing the overall configuration of an optical measurement system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing specific configurations of a light measurement device, a display inspection/adjustment device, and a display of the light measurement system shown in FIG. 1.
  • FIG. (a) to (e) show various waveforms of drive signals for driving the display to emit light.
  • FIG. 2 is an explanatory diagram of a conventional measurement range determination method.
  • FIG. 3 is an explanatory diagram of a conventional measurement range determination method.
  • FIG. 3 is an explanatory diagram of a conventional measurement range determination method.
  • FIG. 3 is an explanatory diagram of a conventional measurement range determination method.
  • FIG. 3 is an explanatory diagram of a measurement range determining method in an embodiment of the present invention.
  • FIG. 3 is an explanatory diagram of a measurement range determining method according to the embodiment of the present invention.
  • (A) to (D) are diagrams for explaining the relationship between the frequency (period) of the light emission drive signal of the display and the preliminary measurement time. It is a flowchart for explaining the conventional measurement range determination process. It is a flow chart for explaining measurement range decision processing concerning this embodiment.
  • 13 is a flowchart for explaining the contents of the preliminary measurement process in step S12 of FIG. 12.
  • FIG. 14 is a flowchart for explaining the details of the preliminary measurement brightness determination process in step S124 of FIG. 13.
  • FIG. 3 is a flowchart for explaining the contents of gamma adjustment processing.
  • 16 is a flowchart for explaining the content of the gamma adjustment execution process in step S23 of FIG. 15.
  • FIG. 17 is a flowchart for explaining the content of the result determination process in step S238 of FIG. 16.
  • FIG. 1 is a block diagram showing the overall configuration of an optical measurement system 1 according to an embodiment of the present invention.
  • This light measurement system 1 includes a light measurement device 2 and a display inspection/adjustment device 3.
  • the light measurement device 2 is, for example, a device called a color analyzer, and can measure brightness, chromaticity, etc., which are parameters related to the light emission state of the object to be measured.
  • the object to be measured is a display 4 including a plurality of light emitters such as LEDs, and the light measuring device 2 measures the brightness in order to perform gamma adjustment of the display 4.
  • the optical measurement device 2 has a built-in measurement range determining section 21.
  • the measurement range determining unit 21 determines a measurement range for the main measurement according to the light emitting state of the display 4 in a preliminary measurement performed prior to the main measurement. The determination process will be described later.
  • the display inspection/adjustment device 3 controls the light emitting state of the display 4 and performs gamma adjustment based on the results of brightness measurement by the light measurement device 2.
  • the display inspection/adjustment device 3 includes a light emission drive signal output section 31 and a gamma (denoted as " ⁇ " in the drawing) adjustment section 32.
  • the light emission drive signal output unit 31 outputs a pulsed light emission drive signal to the display 4 to drive the display 4 to emit light when the light measurement device 2 measures the brightness of the display 4 .
  • the frequency of the light emission drive signal generated by the light emission drive signal output section 31 (light emission drive frequency of the display 4), shape, etc. are matched with those planned by the manufacturer of the display 4, and the display 4 is adjusted. supply to.
  • the gamma adjustment unit 32 adjusts the gamma of the display 4 using a known method during the main measurement.
  • the display inspection/adjustment device 3 described above is composed of an information processing device such as a PLC (programmable logic controller) equipped with a CPU as a processor, a RAM as a memory, and a storage device such as a hard disk or SSD.
  • the functions of the light emission drive signal output 31, the gamma adjustment section 32, etc. are executed by the CPU operating according to an operation program stored in the storage device and developed in the RAM.
  • FIG. 2 is a block diagram showing a specific configuration of the optical measurement device 2, display inspection/adjustment device 3, and display 4 of the optical measurement system 1 shown in FIG.
  • the optical measuring device 2 includes a communication section 201, an integrating means 202, an IV converting means 203, a light receiving section 204, and a control section 205.
  • the communication unit 201 is an interface that sends and receives data to and from the display inspection/gamma adjustment device 3. Integrating means 202 obtains a luminance value using an integral method.
  • the IV conversion means 203 converts the light-receiving current into voltage.
  • the light receiving unit 204 receives the light emitted from the display 4 using a light receiving sensor.
  • the control unit 205 controls the overall operation of the optical measurement device 2.
  • An example of control is switching the measurement range and setting the measurement time in each measurement range so that brightness measurements can be performed by switching to multiple measurement ranges from low to high brightness areas in the main measurement and preliminary measurements described later. , set the measurement start timing, etc.
  • the control unit 205 also includes a measurement method switching unit 205a, a cycle acquisition unit 205b, a brightness estimation unit 205c, a measurement range switching unit 205d, a measurement time setting unit 205e, a calculation unit 205f, a storage unit 205g, a time measurement unit 205h, etc. There is.
  • the measurement method switching unit 205a switches the measurement method, such as whether to acquire the luminance value using the integral method or the sequential method.
  • the cycle acquisition unit 205b acquires the light emission drive cycle of the display 4.
  • the brightness estimating unit 205c estimates the brightness based on the measurement time, the amount of received light, etc. in the preliminary measurement.
  • the measurement range switching unit 205d switches between a plurality of preset measurement ranges.
  • the measurement time setting section 205e sets the measurement time.
  • the calculation unit 205f corresponds to a CPU, which is a processor, and performs necessary calculations.
  • the storage unit 205g stores various data including programs and measurement results necessary for the operation of the optical measuring device 2.
  • the time measurement unit 205h measures the light reception time and the like.
  • the functions of the control unit 205 of the optical measurement device 2 are executed by the calculation unit 205f operating according to the operation program stored in the storage unit 205g.
  • the measurement range determining section 21 shown in FIG. 1 is also configured as part of the functions of the control section 205.
  • the display inspection/adjustment device 3 includes a communication section 301, a display inspection adjustment pattern storage section 302, a display information transmission section 303, a gamma adjustment control section 304, a gamma adjustment mode/brightness/frequency switching section 305, It includes a display brightness stability determination section 306, a gamma adjustment allowable width storage section 307, a gamma adjustment result determination section 308, a gamma adjustment result notification section 309, a time measurement section 310, and the like.
  • the communication unit 301 functions as an interface that transmits and receives data to and from the optical measurement device 2.
  • the display inspection adjustment pattern storage unit 302 stores patterns of light emission drive signals for the display 4, and stores patterns for each customer.
  • the pattern of the light emission drive signal also includes a relational expression (ideal curve) between the input signal (voltage value) to the display 4 and the output luminance.
  • a relational expression ideal curve
  • the relationship between the output brightness and the input signal is reset so as to correct the difference between the output brightness and the ideal curve for the input voltage value.
  • the display information transmission unit 303 transmits information to be displayed on the display 4 to the display 4.
  • the display inspection adjustment pattern storage section 302, display information transmission section 303, and the like constitute the light emission drive signal output section 31 shown in FIG.
  • the gamma adjustment control unit 304 controls gamma adjustment processing using the results of the main measurement after the measurement range in the preliminary measurement has been determined.
  • the gamma adjustment mode/brightness/frequency switching unit 305 switches between the gamma adjustment mode, brightness, and frequency.
  • the display brightness stability determination unit 306 determines whether the brightness of the display 4 is stable during gamma adjustment, and gamma adjustment is performed in a stable state.
  • the gamma adjustment allowable width storage unit 307 stores the gamma adjustment allowable width for each customer or for each type (product number, model number) of the display 4, for example.
  • the gamma adjustment result determination unit 308 determines the gamma adjustment result, and the gamma adjustment result notification unit 309 notifies the display 4 of the gamma adjustment result.
  • the gamma adjustment result is the relationship (formula or lookup table, etc.) between the output brightness and the reset input signal, or the input signal (voltage value) and output to the display stored in the display inspection adjustment pattern storage unit 302. It is a correction coefficient etc. for the relational expression of brightness.
  • the time measurement unit 310 measures time during gamma adjustment and the like.
  • the gamma adjustment section 31 shown in FIG. 1 is configured by the section 310 and the like.
  • the display 4 includes a control section 41, a light emitting section 42, a drive frequency control section 43, a display information acquisition section 44, a gamma adjustment result storage section 45, and the like.
  • the control section 41 centrally controls the entire display 4, and the light emitting section 42 consists of light emitting elements such as LEDs.
  • the drive frequency control section 43 drives and controls the light emitting section 2 so that it emits light at the light emission drive frequency output from the display inspection/adjustment device 3 .
  • the display information acquisition unit 44 acquires information to be displayed on the display 4 transmitted from the display information transmission unit 303 of the display inspection/adjustment device 3.
  • the gamma adjustment result storage unit 45 stores the gamma adjustment result notified from the gamma adjustment result notification unit 309 of the display inspection/adjustment device 3.
  • FIGS. 3A to 3E show various waveform examples of drive signals for driving the display 4 to emit light.
  • the horizontal axis of each waveform is time, and the vertical axis is intensity.
  • the signal in figure (a) has a constant intensity
  • the signal in figure (b) has a different intensity repeated every frame (1 flame)
  • the signal in figure (c) has a pulse waveform with a large width. It is.
  • the signal in (d) of the figure is a pulse waveform with a small width
  • the signal in (e) of the figure is a waveform whose intensity gradually decreases from the beginning to the end of one frame.
  • the optical measurement device 2 is configured to measure brightness in four measurement ranges R1 to R4.
  • the optical measurement device 2 determines an optimal measurement range in accordance with the light emission state (brightness value), and performs measurement by switching to the measurement range.
  • Table 1 shows an example of the measurement range (luminance range) in measurement ranges R1 to R4 and the time required to determine the measurement range.
  • the measurement ranges were sequentially switched until the optimal measurement range was reached in the main measurement. For this reason, it takes time to start measuring the four brightness levels of the display.
  • FIGS. 4 to 7. are explanatory diagrams for high luminance measurement, and FIGS. 6 and 7 are explanatory diagrams for low luminance measurement.
  • the white pulses at the top of each figure indicate the light emission drive signal, and the period of the light emission drive signal is 15 ms.
  • the luminance to be measured is 1000 nits
  • the light emission period is 15 ms
  • the measurement period is 30 ms (for measurement ranges R2 to R4) to 60 ms (for measurement range R1).
  • the first two cycles indicate a standby state, and the measurement range in the standby state is set as the previous measurement range.
  • the main measurement is started based on the measurement start instruction indicated by the arrow T1, but as shown in FIG. 4, if the previous measurement range was R4, the current measurement range is also R4.
  • the measurement range R4 has a brightness range of 400 nits or more, and the measurement target brightness is 1000 nits, so the measurement range R4 is the optimal measurement range. Therefore, an estimated luminance of 1000 nits is obtained in two cycles (30 ms) from the start of the main measurement, and the measurement range in the main measurement is determined to be R4. The brightness measurement result in this measurement is also 1000 nits. The time from the start of this measurement to the end indicated by arrow T2 is 30 ms.
  • the main measurement is started in the measurement range R1.
  • the luminance range of measurement range R1 is 10 nits or less, and the luminance to be measured is 1000 nits. Therefore, measurement range R1 is not the optimal measurement range, and an error occurs because the luminance cannot be estimated within the measurement time of 60 ms. (Indicated by N/A).
  • the next measurement range R2 also has a brightness range of 10 to 100 nits, which is not the optimal measurement range, and the brightness is estimated within the measurement time of 30ms. Can not.
  • the next measurement range R3 also has a luminance range of 100 to 400 nits, which is not the optimal measurement range, and the luminance cannot be estimated within the measurement time of 30 ms. Then, the measurement range is switched to the next measurement range R4, which becomes the optimum measurement range, and an estimated luminance of 1000 nits is obtained, and the measurement range for the main measurement is determined to be R4.
  • the main measurement is started in the measurement range R1.
  • the luminance range of the measurement range R1 is 10 nit or less, and the luminance to be measured is 1 nit, so the measurement range R1 is the optimal measurement range. Therefore, an estimated luminance of 1 nit is obtained in four cycles (60 ms) from the start of the main measurement, and the measurement range in the main measurement is determined to be R1. The time from start to end of this measurement is 60 ms.
  • the main measurement is started in measurement range R4. Since the luminance range of the measurement range R4 is 400 nit or more and the luminance to be measured is 1 nit, the measurement range R4 is not the optimal measurement range, and the luminance cannot be estimated within the measurement time of 30 ms, resulting in an error.
  • the next measurement range R3 also has a brightness range of 100 to 400 nits, which is not the optimal measurement range, and the brightness is estimated within the 30ms measurement time. Can not.
  • the next measurement range R2 also has a luminance range of 10 to 100 nits, which is not the optimal measurement range, and the luminance cannot be estimated within the measurement time of 30 ms. Then, the measurement range is switched to the next measurement range R1, which becomes the optimum measurement range, and an estimated luminance of 1 nit is obtained, and the measurement range for the main measurement is determined to be R1.
  • the time it takes to determine the optimal measurement range is rarely a problem in normal brightness measurements.
  • the number of adjustment points has increased due to the improved performance of the display 4, it is necessary to repeatedly measure the display 4's light emission drive frequency, number of gamma modes, and number of gamma adjustment points while switching between low and high brightness. . Therefore, the long time required to determine the optimal measurement range leads to a decrease in efficiency due to the lengthening of the overall gamma adjustment time.
  • the optimal measurement range is determined early by performing preliminary measurement in a measurement time shorter than the measurement time of the main measurement in each measurement range.
  • the preliminary measurement is configured to measure the brightness in four measurement ranges R1 to R4 like the main measurement, but the measurement time is set to half of the main measurement shown in Table 1. There is. Therefore, the measurement range in each range is also half of the actual measurement.
  • Table 2 shows an example of the measurement range (luminance range) in the measurement ranges R1 to R4 of the preliminary measurement and the time required to determine the measurement range.
  • Case 5 in FIG. 8 shows a preliminary measurement method when the luminance of the measurement target is as high as 1000 nits.
  • Luminance is estimated from preliminary measurements, regardless of the measurement range of the previous main measurement. For example, when measurement range R4 is first set, an estimated luminance of 500 nits can be obtained in 15 ms. Therefore, the optimum measurement range is determined to be R4, measurement range R4 is set, and the main measurement is performed in the next 30 ms. The time from the start of the preliminary measurement to the end of the main measurement was 45 ms.
  • Case 6 in FIG. 9 shows a preliminary measurement method when the luminance of the measurement target is as low as 1 nit.
  • the preliminary measurement for example, when measurement range R4 is set first, only an estimated luminance of 200 nit or less can be obtained in 15 ms, so it is determined that measurement range R4 is not optimal, and it is switched to the next measurement range R3.
  • the optimum measurement range is R1, and the main measurement is performed with measurement range R1 set.
  • the optimum measurement range R1 may be determined after performing a preliminary measurement in the measurement range R2 after a preliminary measurement in the measurement range R3. The time from the start of the preliminary measurement to the end of the main measurement was 90 ms.
  • the time from the start of the preliminary measurement to the end of the main measurement is 90 ms.
  • the preliminary measurement time was set to 30 ms in the measurement range R1 and 15 ms in the measurement ranges R2 to R4. The shorter the preliminary measurement time, the shorter the time required to determine the optimal range.
  • the preliminary measurement time is preferably determined according to the frequency of the light emission drive signal of the display 4. Specifically, in order to reduce the preliminary measurement time and maintain accuracy, it is preferable to synchronize with the cycle of the frequency of the light emission drive signal, that is, set the time length to be the same as the cycle.
  • FIG. 10(A) is a diagram showing the output state of the light emission drive signal of the display 4, and the horizontal axis shows time. Moreover, the white part is the light emission drive signal, and T3 is the period (light emission period) of the light emission drive signal.
  • the figure (C) shows a case where the preliminary measurement time indicated by double hatching is shorter than the cycle of the light emission drive signal.
  • the preliminary measurement time is short, but the light emission drive signal may not arrive within the preliminary measurement time and no light is emitted, resulting in a decrease in measurement accuracy.
  • the same figure (D) shows the case where the preliminary measurement time is longer than the cycle of the light emission drive signal.
  • the light emission drive signal may arrive once or twice within the preliminary measurement time, and the measurement accuracy also decreases.
  • the preliminary measurement time becomes longer.
  • the preliminary measurement time is the same time length as the cycle of the light emission drive signal. In other words, it is synchronized with the cycle of the light emission drive signal. By synchronizing in this manner, one light emission drive signal always arrives within the preliminary measurement time, so it is possible to perform highly accurate and stable measurements. Moreover, the preliminary measurement time is also shorter than that shown in FIG. Therefore, by synchronizing the preliminary measurement time with the period of the light emission drive signal, it is possible to both shorten the preliminary measurement time and maintain accuracy. Note that in the case of low luminance, the preliminary measurement time may be set to a natural number multiple of 2 or more of the cycle of the light emission drive signal in order to ensure accuracy.
  • step S01 it is determined whether there is an instruction to start measurement, and if there is no instruction (NO in step S01), the process waits until there is an instruction. If there is an instruction (YES in step S01), the previous measurement range is set in step S02, and then the main measurement is executed in step S03.
  • step S04 the measurement result is determined, and it is determined whether the determination result is OK, that is, whether the brightness could be measured within the measurement range. If the brightness cannot be measured (NG in step S05), the measurement range is switched in step S06, and then the process returns to step S03 to perform the main measurement. The measurement range is switched and the actual measurement is performed until the brightness determination result is OK. If the brightness can be measured (OK in step S05), the display inspection/adjustment device 3 is notified of the measurement result in step S07. Note that instead of notifying the measurement results each time, a plurality of measurement results may be saved and notified all at once at a predetermined timing.
  • FIG. 12 is a flowchart showing the measurement range determination process executed by the optical measurement device 2 in this embodiment.
  • the processing in FIG. 12 is executed by the calculation unit (processor) 205f in the optical measuring device 2 operating according to an operation program stored in the storage unit 205g or the like.
  • step S11 the process waits for an instruction to start measurement (NO in step S11), and when there is an instruction (YES in step S11), a preliminary measurement is performed in step S12. This preliminary measurement will be described later.
  • step S13 the measurement range determined in the preliminary measurement in step S12 is set and the main measurement is performed, and then, in step S14, the display inspection/adjustment device 3 is notified of the main measurement result.
  • step S121 a sampling period (measurement time) for preliminary measurement is set.
  • the sampling period is, for example, 15 ms.
  • step S122 a measurement range that is high brightness and does not saturate is set.
  • R4 which is the measurement range with the highest measurement brightness
  • step S124 a process for determining the preliminarily measured brightness is performed in step S124. This processing will also be described later.
  • step S125 it is determined whether the determination has been completed, and if it has not been completed (NO in step S125), the measurement range is switched in step S126, and the process returns to step S123 to perform preliminary measurement again. If the determination is completed in step S125, the process proceeds to step S127, where the measurement range for the main measurement is determined, and then the preliminary measurement process is ended and the process returns to the flowchart of FIG. 12.
  • step S124 The details of the preliminary measurement brightness determination process in step S124 will be explained with reference to the flowchart in FIG.
  • step S1241 preliminary measurement conditions are acquired.
  • the preliminary measurement conditions are the sampling period set in step S121 of FIG. 13 and the current measurement range set in step S122 or switched in step S126.
  • step S1242 after estimating the original brightness from the AD value (a value obtained by digitally converting the analog value obtained by the light receiving section), which is the measured value obtained under the preliminary measurement conditions, the brightness determination process for the preliminary measurement is performed. The process ends and returns to the flowchart of FIG. If the brightness can be estimated, in step S127 of FIG. 13, a measurement range suitable for the brightness is determined as the measurement range for the main measurement. If the brightness cannot be estimated, the measurement range is switched in step S126 of FIG. 13 and preliminary measurements are repeated until the brightness can be estimated.
  • the AD value a value obtained by digitally converting the analog value obtained by the light receiving section
  • step S21 After determining the drive refresh rate of the display (also referred to as panel) to be gamma adjusted in step S21, the drive refresh rate is selected in step S22, and gamma adjustment is performed in step S23.
  • the gamma adjustment execution process will be described later.
  • step S24 it is determined whether gamma adjustment has been completed for all drive frequencies. If the process has not been completed (NO in step S24), the process returns to step S22, selects another drive refresh rate, and then repeats steps S22 to S24. If gamma adjustment is completed for all drive frequencies (YES in step S24), the gamma adjustment process is ended.
  • step S23 The contents of the gamma adjustment execution process in step S23 will be explained with reference to the flowchart of FIG. 16.
  • step S231 wait for an instruction to start gamma adjustment (NO in step S231), and if there is a start instruction (YES in step S231), determine the gamma adjustment mode in step S232, and then determine the gradation to be adjusted in step S233. do.
  • step S234 the output value of the panel is determined, and then, in step S235, it is determined whether the panel display has become stable. If it is not stable (NO in step S235), wait until it is stabilized.
  • a measurement start instruction is given to the optical measuring device 2 in step S236, and in step S237 it is determined whether the measurement result has been received from the optical measuring device 2. If it is not received (NO in step S237), it waits until it is received, and if it is received (YES in step S237), a result determination process is performed in step S238. The result determination process will be described later.
  • step S239 it is checked whether the result is within an acceptable range. If it is not within the allowable range (NO in step S239), it is determined in step S240 whether the measurement has been repeated up to a preset upper limit. If the upper limit has not been reached (NO in step S240), the process returns to step S234 and the measurement is performed again. If the upper limit has been reached (YES at step S240), the adjustment cannot be completed, so it is determined that there is an abnormality at step S241, and the process returns to the flowchart of FIG. 15.
  • step S239 If the result is within the allowable range in step S239 (YES in step S239), the process advances to step S242, and it is checked whether gamma adjustment for all tones has been completed. If gamma adjustment for all tones has not been completed (NO in step S242), the process returns to step S233 to determine the next tones. That is, steps S233 to S242 are repeated.
  • step S243 When gamma adjustment for all tones is completed (YES in step S242), it is determined in step S243 whether adjustment in all gamma adjustment modes has been completed. If all have not been completed (NO in step S243), the process returns to step S232 to determine the next mode. That is, steps S232 to S243 are repeated. If all have been completed (YES in step S243), the process returns to the flowchart of FIG. 15.
  • the gamma adjustment process takes time. Therefore, by performing preliminary measurements as in this embodiment, the time required to determine the optimal measurement range can be shortened, and the time required to complete gamma adjustment can be significantly shortened.
  • step S238 in FIG. 16 The result determination process in step S238 in FIG. 16 will be explained with reference to the flowchart in FIG. 17.
  • step S2381 a target value of luminance and chromaticity is acquired, and in step S2382, an allowable range of luminance and chromaticity is acquired.
  • step S2383 the measurement results are obtained, and in step S2384, it is determined whether the measurement results, luminance (Lv) and chromaticity (x, y), are within the allowable range with respect to the target values.
  • the optical measurement device 2 determines the measurement range through preliminary measurements, but the measurement range is determined through preliminary measurements by the display inspection/adjustment device 3 after receiving measurement data from the optical measurement device 2.
  • another external device different from the display inspection/adjustment device 3 may perform the inspection.
  • the optical measurement device 2 may have a built-in gamma adjustment function.
  • the present invention can be used as a measurement range determining device that determines the measurement range according to the light emission state of a light measurement device that can measure the light emission state of an object to be measured, such as display brightness and chromaticity, in multiple measurement ranges. It is.

Abstract

A measurement range determining device comprises a determining means (21) for determining a measurement range corresponding to a light emission state of a measurement target object (4), from among a plurality of measurement ranges of an optical measuring device (2) capable of measuring a parameter relating to the light emission state. The measurement range determining device is provided with a control means (205) for causing the optical measuring device (2) to execute preliminary measurement of the parameter prior to main measurement, in a measuring time that is shorter than a measuring time for the main measurement in each measurement range, and the determining means (21) determines the measurement range for the main measurement appropriate for the measurement target object (4) on the basis of the results of the preliminary measurement executed by the optical measuring device (2).

Description

測定レンジ決定装置、光測定装置、光測定システム、光測定方法、ディスプレイ調整装置及び調整方法並びにプログラムMeasurement range determination device, light measurement device, light measurement system, light measurement method, display adjustment device and adjustment method, and program
 この発明は、ディスプレイの輝度、色度等の測定対象物の発光状態を複数の測定レンジで測定可能な光測定装置について、発光状態に応じた測定レンジを決定する測定レンジ決定装置、光測定装置、光測定システム、光測定方法、ディスプレイ調整装置及び調整方法並びにプログラムに関する。 The present invention relates to a light measuring device capable of measuring the light emitting state of a measurement target such as display brightness and chromaticity in multiple measurement ranges, and a measuring range determining device and a light measuring device that determine a measurement range according to the light emitting state. , a light measurement system, a light measurement method, a display adjustment device, an adjustment method, and a program.
 例えば測定対象物であるディスプレイの製造工程においては、ディスプレイの発光状態に関するパラメータの一つである輝度をカラーアナライザ等の光測定装置で測定するとともに、測定した輝度に基づくディスプレイのガンマ調整が行われている。 For example, in the manufacturing process of the display that is the object to be measured, the luminance, which is one of the parameters related to the display's light emitting state, is measured using a light measurement device such as a color analyzer, and the gamma adjustment of the display is performed based on the measured luminance. ing.
 このような光測定装置として、輝度値に応じた最適な測定を行うために複数の測定レンジを有するものが知られている。この光測定装置では、輝度値に応じて自動的に最適測定が可能な測定レンジが決定されるようになっている。例えば3つの測定レンジR1(暗)、R2(中間)、R3(明)を有している場合において、R1の測定レンジで測定した結果、最適に測定できない場合はR2の測定レンジで再測定する。R2の測定レンジで最適に測定できない場合はR3の測定レンジにて再測定することで、最適な測定レンジが決定される。R3の測定レンジからR2、R1の測定レンジへと移行する場合も同様である。このように最適な測定レンジが決定されることで、ユーザーは輝度値に応じて測定レンジを指定することなく最適な測定を行うことが可能となる。 As such a light measurement device, one having a plurality of measurement ranges is known in order to perform optimal measurement according to the brightness value. In this optical measurement device, a measurement range that allows optimal measurement is automatically determined according to the luminance value. For example, in a case where there are three measurement ranges R1 (dark), R2 (middle), and R3 (bright), if the measurement results cannot be obtained optimally using the R1 measurement range, remeasure the measurement range using the R2 measurement range. . If the measurement cannot be performed optimally using the measurement range R2, the optimum measurement range is determined by re-measuring using the measurement range R3. The same holds true when moving from the R3 measurement range to the R2 and R1 measurement ranges. By determining the optimal measurement range in this way, the user can perform optimal measurement without specifying the measurement range according to the luminance value.
 近年、光測定装置が使用されるディスプレイのガンマ調整においては、ディスプレイの高性能化により調整点が増大しており、ディスプレイの発光駆動周波数、ガンマモード数、ガンマ調整点数において低輝度と高輝度を切替えながら繰り返し測定する必要がある。そのたびに最適な測定レンジの決定処理が行われる。このため、このガンマ調整工程がディスプレイの生産工程においてのボトルネックになっている。生産効率向上のためには、ガンマ調整に費やす時間(タクトタイム)を短縮することが求められている。 In recent years, in gamma adjustment of displays using optical measurement devices, the number of adjustment points has increased due to the improvement of display performance. It is necessary to repeatedly measure while switching. The process of determining the optimal measurement range is performed each time. For this reason, this gamma adjustment process has become a bottleneck in the display production process. In order to improve production efficiency, it is required to shorten the time spent on gamma adjustment (takt time).
 なお、特許文献1には、測定輝度幅を広げつつ光計測装置にかかる負荷を軽減することを目的として、要求精度と概算輝度から測定を行う技術が開示されている。 Incidentally, Patent Document 1 discloses a technique of performing measurement based on required accuracy and approximate luminance, with the aim of widening the measurement luminance range and reducing the load on the optical measurement device.
WО2018/198674号公報WO2018/198674 publication
 しかし、特許文献1に記載の技術では、光測定装置にかかる負荷を減らすことを目的としている。このため、何度も輝度を切り替え、切り替えた輝度の安定待ちをしながらのガンマ調整に適用しても、時間短縮を図ることは難しいという課題がある。 However, the technique described in Patent Document 1 aims to reduce the load placed on the optical measurement device. Therefore, even if the method is applied to gamma adjustment by switching the brightness many times and waiting for the switched brightness to stabilize, it is difficult to reduce the time required.
 このような課題は、輝度の測定によるガンマ調整の場合のみならず、測定対象物の発光状態に関する例えば色度等のパラメータを、複数の測定レンジのうち最適な測定レンジを決定して測定する場合においても、同様に発生する。 Such issues arise not only when adjusting gamma by measuring brightness, but also when measuring parameters such as chromaticity related to the light emitting state of the object to be measured by determining the optimal measurement range among multiple measurement ranges. The same thing occurs in .
 この発明の目的は、測定対象物の発光状態に関するパラメータを測定可能な光測定装置が有する複数の測定レンジの中から、発光状態に応じた測定レンジを決定して測定を行う場合の測定時間を短縮可能な測定レンジ決定装置、光測定装置、光測定システム、光測定方法、ディスプレイ調整装置及び調整方法並びにプログラムの提供を目的とする。 An object of the present invention is to determine the measuring range according to the light emitting state from among a plurality of measurement ranges included in an optical measuring device capable of measuring parameters related to the light emitting state of an object to be measured. The purpose of the present invention is to provide a measurement range determining device, a light measurement device, a light measurement system, a light measurement method, a display adjustment device and adjustment method, and a program that can be shortened.
 上記目的は以下の手段によって達成される。
(1)測定対象物の発光状態に関するパラメータを測定可能な光測定装置の複数の測定レンジのうち、発光状態に応じた測定レンジを決定する決定手段を備えた測定レンジ決定装置であって、
 本測定の前に、各測定レンジでの本測定の測定時間よりも短い測定時間で、前記光測定装置に前記パラメータの予備測定を実行させる制御手段を備え、
 前記決定手段は、前記光測定装置で実行された予備測定の結果を基に、測定対象物に適した本測定用の測定レンジを決定する測定レンジ決定装置。
(2)前記予備測定の測定時間は、前記測定対象物の発光駆動信号の周波数に応じて決定される前項1に記載の測定レンジ決定装置。
(3)前項1または2に記載の測定レンジ決定装置を備えた光測定装置。
(4)前記予備測定の測定時間は、前記測定対象物の発光駆動信号の周波数に応じて決定される前項3に記載の光測定装置。
(5)測定対象物の発光状態に関するパラメータを複数の測定レンジで測定可能な光測定装置と、
 本測定の前に、各測定レンジでの本測定の測定時間よりも短い測定時間で、前記光測定装置に測定対象物の予備測定を実行させる制御手段と、
 前記光測定装置で実行された予備測定の結果を基に、発光状態に応じた本測定用の測定レンジを決定する決定手段と、
 を備えた光測定システム。
(6)前記本測定により測定されたパラメータに基づいて測定対象物のガンマ調整を行うガンマ調整手段を備えている前項5に記載の光測定システム。
(7)前記予備測定の測定時間は、前記測定対象物の発光駆動信号の周波数に応じて決定される前項5または6に記載の光測定システム。
(8)測定対象物の発光状態に関するパラメータを複数の測定レンジで測定可能な光測定装置が、本測定の前に、各測定レンジでの本測定の測定時間よりも短い測定時間で、測定対象物の予備測定を実行するステップと、
 前記予備測定の結果を基に、発光状態に応じた本測定用の測定レンジを決定するステップと、
 決定された測定レンジで前記光測定装置が本測定を実行するステップと、
 を含む光測定方法。
(9)光測定装置により測定されたパラメータに基づいて測定対象物のガンマ調整を行うステップをさらに含む前項8に記載の光測定方法。
(10)前記予備測定の測定時間は、前記測定対象物の発光駆動信号の周波数に応じて決定される前項8または9に記載の光測定方法。
(11)測定対象物の発光状態に関するパラメータを複数の測定レンジで測定可能な光測定装置に、本測定の前に、各測定レンジでの本測定の測定時間よりも短い測定時間で、測定対象物の予備測定を実行させるステップと、
 前記予備測定の結果を基に、発光状態に応じた本測定用の測定レンジを決定するステップと、
 を測定レンジ決定装置のコンピュータに実行させるためのプログラム。
(12)光測定装置により測定されたパラメータに基づいて測定対象物のガンマ調整を行うステップを前記コンピュータにさらに実行させる前項11に記載のプログラム。
(13)前記予備測定の測定時間は、前記測定対象物の発光駆動信号の周波数に応じて決定される前項11または12に記載のプログラム。
(14)ディスプレイの発光部を測定対象物とし、前記ディスプレイのガンマ調整を行うディスプレイ調整装置であって、
 前項3に記載の光測定装置と、
 前記ディスプレイに前記ガンマ調整のためのパネル表示情報を表示させる発光駆動信号の出力手段と、
 前記光測定装置における本測定で測定された前記ディスプレイの発光状態に関するパラメータに基づいてガンマ調整を行うガンマ調整制御手段と、
 前記ガンマ調整制御手段によるガンマ調整の結果を前記ディスプレイに通知するガンマ調整結果通知手段と、
 を備えたディスプレイ調整装置。
(15)ディスプレイの発光部を測定対象物とし、前記ディスプレイのガンマ調整を行うディスプレイ調整方法であって、
 前記ディスプレイに前記ガンマ調整のためのパネル表示情報を表示させる発光駆動信号の出力ステップと、
 前項3に記載の光測定装置における本測定で測定された前記ディスプレイの発光状態に関するパラメータに基づいてガンマ調整を行うガンマ調整制御ステップと、
 前記ガンマ調整制御ステップによるガンマ調整の結果を前記ディスプレイに通知するガンマ調整結果通知ステップと、
 を含むディスプレイ調整方法。
The above objective is achieved by the following means.
(1) A measurement range determining device comprising a determining means for determining a measurement range according to a light emitting state among a plurality of measurement ranges of an optical measuring device capable of measuring parameters related to a light emitting state of a measurement target,
Before the main measurement, comprising a control means for causing the optical measurement device to perform a preliminary measurement of the parameter in a measurement time shorter than the measurement time of the main measurement in each measurement range,
The determining means is a measurement range determining device that determines a measurement range for the main measurement that is suitable for the object to be measured based on the results of preliminary measurements performed by the optical measuring device.
(2) The measurement range determining device according to item 1, wherein the measurement time of the preliminary measurement is determined according to the frequency of the light emission drive signal of the measurement object.
(3) An optical measurement device comprising the measurement range determining device according to item 1 or 2 above.
(4) The optical measuring device according to item 3, wherein the measurement time of the preliminary measurement is determined according to the frequency of the light emission drive signal of the measurement target.
(5) a light measuring device capable of measuring parameters related to the light emitting state of a measurement target in multiple measurement ranges;
A control means for causing the optical measurement device to perform a preliminary measurement of the measurement target in a measurement time shorter than the measurement time of the main measurement in each measurement range before the main measurement;
determining means for determining a measurement range for main measurement according to a light emission state based on the results of a preliminary measurement performed by the optical measurement device;
Optical measurement system with.
(6) The optical measurement system according to item 5, further comprising a gamma adjustment means for adjusting the gamma of the object to be measured based on the parameters measured by the main measurement.
(7) The optical measurement system according to item 5 or 6, wherein the measurement time of the preliminary measurement is determined according to the frequency of the light emission drive signal of the measurement object.
(8) An optical measuring device capable of measuring parameters related to the light emitting state of the measurement target in multiple measurement ranges is capable of measuring parameters related to the light emission state of the measurement target in a measurement time shorter than the measurement time of the main measurement in each measurement range. performing a preliminary measurement of the object;
a step of determining a measurement range for the main measurement according to the light emission state based on the results of the preliminary measurement;
a step of the optical measurement device performing the main measurement in the determined measurement range;
Light measurement methods including.
(9) The optical measurement method according to item 8, further comprising the step of adjusting the gamma of the measurement target based on the parameters measured by the optical measurement device.
(10) The optical measurement method according to item 8 or 9, wherein the measurement time of the preliminary measurement is determined according to the frequency of the light emission drive signal of the measurement object.
(11) Before the main measurement, the parameters related to the light emitting state of the measurement target can be measured using an optical measurement device that can measure the light emission state of the measurement target in multiple measurement ranges. performing a preliminary measurement of the object;
a step of determining a measurement range for main measurement according to the light emission state based on the results of the preliminary measurement;
A program that causes the measurement range determination device's computer to execute the following.
(12) The program according to item 11, which causes the computer to further execute the step of adjusting the gamma of the measurement target based on the parameters measured by the optical measurement device.
(13) The program according to item 11 or 12, wherein the measurement time of the preliminary measurement is determined according to the frequency of the light emission drive signal of the object to be measured.
(14) A display adjustment device that uses a light emitting part of a display as a measurement target and performs gamma adjustment of the display,
The optical measuring device according to the preceding section 3,
output means for a light emission drive signal that causes the display to display panel display information for the gamma adjustment;
Gamma adjustment control means that performs gamma adjustment based on parameters related to the light emission state of the display measured in the main measurement in the light measurement device;
gamma adjustment result notification means for notifying the display of the result of gamma adjustment by the gamma adjustment control means;
Display adjustment device with.
(15) A display adjustment method that uses a light emitting part of a display as a measurement target and performs gamma adjustment of the display, comprising:
outputting a light emission drive signal that causes the display to display panel display information for the gamma adjustment;
a gamma adjustment control step of performing gamma adjustment based on the parameters related to the light emission state of the display measured in the main measurement in the light measurement device according to item 3 above;
a gamma adjustment result notification step of notifying the display of the gamma adjustment result in the gamma adjustment control step;
Display adjustment method including.
 この発明に係る測定レンジ決定装置、光測定装置、光測定システム及び光測定方法によれば、ディスプレイ等の測定対象物の発光状態に関する輝度等のパラメータの本測定の前に、各測定レンジでの本測定の測定時間よりも短い測定時間で予備測定が実行される。予備測定の結果を基に、発光状態に応じた本測定用の測定レンジが決定される。このため、従来のように、本測定の際に測定レンジを決定する場合に較べて、測定レンジの決定までの時間を短縮することができ、ひいては全体の処理時間を短縮することができる。 According to the measurement range determination device, optical measurement device, optical measurement system, and optical measurement method according to the present invention, before the main measurement of parameters such as brightness related to the light emission state of a measurement target such as a display, The preliminary measurement is performed in a measurement time shorter than the measurement time of the main measurement. Based on the results of the preliminary measurement, a measurement range for the main measurement is determined according to the light emission state. Therefore, compared to the conventional case where the measurement range is determined during the main measurement, the time required to determine the measurement range can be shortened, and the overall processing time can be shortened.
 特に、多数点での測定が必要な測定対象物のガンマ調整が行われる場合に、極めて有効である。 It is particularly effective when gamma adjustment is performed on a measurement object that requires measurement at multiple points.
 また、予備測定の測定時間を、測定対象物の発光駆動周波数に応じて決定することで、測定レンジの決定を精度高く行うことができる。 Furthermore, by determining the measurement time of the preliminary measurement according to the light emission drive frequency of the object to be measured, the measurement range can be determined with high accuracy.
 また、この発明に係るプログラムによれば、測定対象物の発光状態に関するパラメータを複数の測定レンジで測定可能な光測定装置に、本測定の前に、各測定レンジでの本測定の測定時間よりも短い測定時間で、測定対象物の予備測定を実行させるステップと、予備測定の結果を基に、発光状態に応じた本測定用の測定レンジを決定するステップと、を測定レンジ決定装置のコンピュータに実行させることができる。 Furthermore, according to the program according to the present invention, parameters related to the light emitting state of the object to be measured are sent to an optical measuring device capable of measuring the light emitting state in a plurality of measurement ranges from the measurement time of the main measurement in each measurement range before the main measurement. The computer of the measuring range determining device performs a step of performing a preliminary measurement of the object to be measured in a short measurement time, and a step of determining a measurement range for the main measurement according to the light emission state based on the result of the preliminary measurement. can be executed.
 また、この発明に係るディスプレイ調整装置及び調整方法によれば、光測定装置における本測定で測定されたディスプレイの発光状態に関するパラメータに基づいてガンマ調整を行い、ガンマ調整の結果をディスプレイに通知することができる。 Further, according to the display adjustment device and adjustment method according to the present invention, gamma adjustment is performed based on parameters regarding the light emitting state of the display measured in the main measurement by the optical measurement device, and the result of the gamma adjustment is notified to the display. Can be done.
この発明の一実施形態に係る光測定システムの全体構成を示すブロック図である。1 is a block diagram showing the overall configuration of an optical measurement system according to an embodiment of the present invention. 図1に示した光測定システムの光測定装置と、ディスプレイ検査・調整装置と、ディスプレイの具体的な構成を示すブロック図である。FIG. 2 is a block diagram showing specific configurations of a light measurement device, a display inspection/adjustment device, and a display of the light measurement system shown in FIG. 1. FIG. (a)~(e)は、ディスプレイを発光駆動する駆動信号の各種の波形を示している。(a) to (e) show various waveforms of drive signals for driving the display to emit light. 従来の測定レンジ決定方法の説明図である。FIG. 2 is an explanatory diagram of a conventional measurement range determination method. 同じく従来の測定レンジ決定方法の説明図である。FIG. 3 is an explanatory diagram of a conventional measurement range determination method. 同じく従来の測定レンジ決定方法の説明図である。FIG. 3 is an explanatory diagram of a conventional measurement range determination method. 同じく従来の測定レンジ決定方法の説明図である。FIG. 3 is an explanatory diagram of a conventional measurement range determination method. 本発明の実施形態における測定レンジ決定方法の説明図である。FIG. 3 is an explanatory diagram of a measurement range determining method in an embodiment of the present invention. 同じく本発明の実施形態における測定レンジ決定方法の説明図である。FIG. 3 is an explanatory diagram of a measurement range determining method according to the embodiment of the present invention. (A)~(D)は、ディスプレイの発光駆動信号の周波数(周期)と予備測定時間との関係を説明するための図である。(A) to (D) are diagrams for explaining the relationship between the frequency (period) of the light emission drive signal of the display and the preliminary measurement time. 従来の測定レンジ決定処理を説明するためのフローチャートである。It is a flowchart for explaining the conventional measurement range determination process. 本実施形態に係る測定レンジ決定処理を説明するためのフローチャートである。It is a flow chart for explaining measurement range decision processing concerning this embodiment. 図12のステップS12の予備測定処理の内容を説明するためのフローチャートである。13 is a flowchart for explaining the contents of the preliminary measurement process in step S12 of FIG. 12. FIG. 図13のステップS124の予備測定の輝度判定処理の内容を説明するためのフローチャートである。14 is a flowchart for explaining the details of the preliminary measurement brightness determination process in step S124 of FIG. 13. FIG. ガンマ調整処理の内容を説明するためのフローチャートである。3 is a flowchart for explaining the contents of gamma adjustment processing. 図15のステップS23のガンマ調整の実行処理の内容を説明するためのフローチャートである。16 is a flowchart for explaining the content of the gamma adjustment execution process in step S23 of FIG. 15. FIG. 図16のステップS238の結果判定処理の内容を説明するためのフローチャートである。17 is a flowchart for explaining the content of the result determination process in step S238 of FIG. 16. FIG.
 以下、この発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described based on the drawings.
 図1は、この発明の一実施形態に係る光測定システム1の全体構成を示すブロック図である。この光測定システム1は、光測定装置2とディスプレイ検査・調整装置3を備えている。 FIG. 1 is a block diagram showing the overall configuration of an optical measurement system 1 according to an embodiment of the present invention. This light measurement system 1 includes a light measurement device 2 and a display inspection/adjustment device 3.
 光測定装置2は例えばカラーアナライザと称される装置であり、測定対象物の発光状態に関するパラメータである輝度や色度等を測定できる。この実施形態では、測定対象物がLED等の複数の発光体を備えたディスプレイ4であり、またディスプレイ4のガンマ調整を行うために光測定装置2は輝度を測定する場合について説明する。 The light measurement device 2 is, for example, a device called a color analyzer, and can measure brightness, chromaticity, etc., which are parameters related to the light emission state of the object to be measured. In this embodiment, a case will be described in which the object to be measured is a display 4 including a plurality of light emitters such as LEDs, and the light measuring device 2 measures the brightness in order to perform gamma adjustment of the display 4.
 また、この実施形態では、光測定装置2は測定レンジ決定部21を内蔵している。測定レンジ決定部21は、本測定に先立って行われる予備測定において、ディスプレイ4の発光状態に応じた本測定用の測定レンジを決定する。決定処理については後述する。 Furthermore, in this embodiment, the optical measurement device 2 has a built-in measurement range determining section 21. The measurement range determining unit 21 determines a measurement range for the main measurement according to the light emitting state of the display 4 in a preliminary measurement performed prior to the main measurement. The determination process will be described later.
 ディスプレイ検査・調整装置3は、ディスプレイ4の発光状態を制御し、光測定装置2の輝度測定の結果を基にガンマ調整を行う。ディスプレイ検査・調整装置3は、発光駆動信号出力部31と、ガンマ(図面では「γ」と記している)調整部32を備えている。 The display inspection/adjustment device 3 controls the light emitting state of the display 4 and performs gamma adjustment based on the results of brightness measurement by the light measurement device 2. The display inspection/adjustment device 3 includes a light emission drive signal output section 31 and a gamma (denoted as "γ" in the drawing) adjustment section 32.
 発光駆動信号出力部31は、光測定装置2によるディスプレイ4の輝度測定に際して、ディスプレイ4を発光駆動するためのパルス状の発光駆動信号をディスプレイ4に出力する。具体的には、発光駆動信号出力部31で発生される発光駆動信号の周波数(ディスプレイ4の発光駆動周波数)や形状等を、ディスプレイ4の製造者が予定しているものと整合させてディスプレイ4に供給する。 The light emission drive signal output unit 31 outputs a pulsed light emission drive signal to the display 4 to drive the display 4 to emit light when the light measurement device 2 measures the brightness of the display 4 . Specifically, the frequency of the light emission drive signal generated by the light emission drive signal output section 31 (light emission drive frequency of the display 4), shape, etc. are matched with those planned by the manufacturer of the display 4, and the display 4 is adjusted. supply to.
 ガンマ調整部32は、本測定時に、公知の方法によりディスプレイ4のガンマ調整を行う。 The gamma adjustment unit 32 adjusts the gamma of the display 4 using a known method during the main measurement.
 上述したディスプレイ検査・調整装置3は、プロセッサであるCPUと、メモリであるRAMと、ハードディスクやSSD等の記憶装置等を備えたPLC(プログラマブルロジックコントローラ)等の情報処理装置で構成される。発光駆動信号出力31やガンマ調整部32等は、CPUが記憶装置に格納されRAMに展開された動作プログラムに従って動作することにより機能が実行される。 The display inspection/adjustment device 3 described above is composed of an information processing device such as a PLC (programmable logic controller) equipped with a CPU as a processor, a RAM as a memory, and a storage device such as a hard disk or SSD. The functions of the light emission drive signal output 31, the gamma adjustment section 32, etc. are executed by the CPU operating according to an operation program stored in the storage device and developed in the RAM.
 図2は、図1に示した光測定システム1の光測定装置2と、ディスプレイ検査・調整装置3と、ディスプレイ4の具体的な構成を示すブロック図である。 FIG. 2 is a block diagram showing a specific configuration of the optical measurement device 2, display inspection/adjustment device 3, and display 4 of the optical measurement system 1 shown in FIG.
 光測定装置2は、通信部201と、積分手段202と、I-V変換手段203と、受光部204と、制御部205を備えている。 The optical measuring device 2 includes a communication section 201, an integrating means 202, an IV converting means 203, a light receiving section 204, and a control section 205.
 通信部201は、ディスプレイ検査・ガンマ調整装置3とデータの送受信を行うインターフェースである。積分手段202は積分方式により輝度値を取得する。I-V変換手段203は受光電流を電圧に変換する。受光部204はディスプレイ4から放射された光を受光センサにより受光する。 The communication unit 201 is an interface that sends and receives data to and from the display inspection/gamma adjustment device 3. Integrating means 202 obtains a luminance value using an integral method. The IV conversion means 203 converts the light-receiving current into voltage. The light receiving unit 204 receives the light emitted from the display 4 using a light receiving sensor.
 制御部205は光測定装置2の全体動作を制御する。制御の一例としては、後述する本測定及び予備測定において、低輝度域から高輝度域にわたって複数の測定レンジに切り替えて輝度測定が行えるように、測定レンジの切り替え、各測定レンジにおける測定時間の設定、測定開始タイミングの設定等を行う。 The control unit 205 controls the overall operation of the optical measurement device 2. An example of control is switching the measurement range and setting the measurement time in each measurement range so that brightness measurements can be performed by switching to multiple measurement ranges from low to high brightness areas in the main measurement and preliminary measurements described later. , set the measurement start timing, etc.
 また制御部205は、測定方式切替部205a、周期取得部205b、輝度推定部205c、測定レンジ切替部205d、測定時間設定部205e、演算部205f、記憶部205g、時間計測部205h等を備えている。 The control unit 205 also includes a measurement method switching unit 205a, a cycle acquisition unit 205b, a brightness estimation unit 205c, a measurement range switching unit 205d, a measurement time setting unit 205e, a calculation unit 205f, a storage unit 205g, a time measurement unit 205h, etc. There is.
 測定方式切替部205aは、輝度値を積分方式により取得するか逐次取得方式により取得するか等、測定方式の切替を行う。 The measurement method switching unit 205a switches the measurement method, such as whether to acquire the luminance value using the integral method or the sequential method.
 周期取得部205bはディスプレイ4の発光駆動周期を取得する。輝度推定部205cは予備測定において測定時間と受光量等を基に輝度を推定する。測定レンジ切替部205dは予め設定された複数の測定レンジを切り替える。 The cycle acquisition unit 205b acquires the light emission drive cycle of the display 4. The brightness estimating unit 205c estimates the brightness based on the measurement time, the amount of received light, etc. in the preliminary measurement. The measurement range switching unit 205d switches between a plurality of preset measurement ranges.
 測定時間設定部205eは測定時間の設定を行う。演算部205fはプロセッサであるCPUに相当し必要な演算を行う。記憶部205gは光測定装置2の動作に必要なプログラムや測定結果を含む各種データを記憶する。時間計測部205hは受光時間の計測等を行う。 The measurement time setting section 205e sets the measurement time. The calculation unit 205f corresponds to a CPU, which is a processor, and performs necessary calculations. The storage unit 205g stores various data including programs and measurement results necessary for the operation of the optical measuring device 2. The time measurement unit 205h measures the light reception time and the like.
 光測定装置2の制御部205による機能は、演算部205fが記憶部205gに格納された動作プログラムに従って動作することにより実行される。図1に示した測定レンジ決定部21も、制御部205による機能の一部として構成される。 The functions of the control unit 205 of the optical measurement device 2 are executed by the calculation unit 205f operating according to the operation program stored in the storage unit 205g. The measurement range determining section 21 shown in FIG. 1 is also configured as part of the functions of the control section 205.
 一方、ディスプレイ検査・調整装置3は、通信部301と、ディスプレイ検査調整パターン記憶部302と、表示情報伝達部303と、ガンマ調整制御部304と、ガンマ調整モード/輝度/周波数切り替え部305と、ディスプレイ輝度安定判定部306と、ガンマ調整許容幅記憶部307と、ガンマ調整結果判定部308と、ガンマ調整結果通知部309と、時間計測部310等を備えている。 On the other hand, the display inspection/adjustment device 3 includes a communication section 301, a display inspection adjustment pattern storage section 302, a display information transmission section 303, a gamma adjustment control section 304, a gamma adjustment mode/brightness/frequency switching section 305, It includes a display brightness stability determination section 306, a gamma adjustment allowable width storage section 307, a gamma adjustment result determination section 308, a gamma adjustment result notification section 309, a time measurement section 310, and the like.
 通信部301は、光測定装置2との間でデータの送受信を行うインターフェースとして機能する。 The communication unit 301 functions as an interface that transmits and receives data to and from the optical measurement device 2.
 ディスプレイ検査調整パターン記憶部302は、ディスプレイ4の発光駆動信号のパターンを記憶するものであり、顧客毎のパターンが記憶されている。発光駆動信号のパターンには、ディスプレイ4への入力信号(電圧値)と出力輝度の関係式(理想曲線)も含まれる。ガンマ調整処理においては、入力電圧値に対する出力輝度と理想曲線との差異を補正するように、入力信号に対する出力輝度の関係を再設定する。 The display inspection adjustment pattern storage unit 302 stores patterns of light emission drive signals for the display 4, and stores patterns for each customer. The pattern of the light emission drive signal also includes a relational expression (ideal curve) between the input signal (voltage value) to the display 4 and the output luminance. In the gamma adjustment process, the relationship between the output brightness and the input signal is reset so as to correct the difference between the output brightness and the ideal curve for the input voltage value.
 表示情報伝達部303は、ディスプレイ4に表示させる情報をディスプレイ4に伝達する。これらのディスプレイ検査調整パターン記憶部302や表示情報伝達部303等によって、図1に示した発光駆動信号出力部31が構成される。 The display information transmission unit 303 transmits information to be displayed on the display 4 to the display 4. The display inspection adjustment pattern storage section 302, display information transmission section 303, and the like constitute the light emission drive signal output section 31 shown in FIG.
 ガンマ調整制御部304は、予備測定での測定レンジが決定された後の本測定の結果を用いたガンマ調整処理を制御する。ガンマ調整モード/輝度/周波数切り替え部305は、ガンマ調整モードと輝度と周波数を切り替える。 The gamma adjustment control unit 304 controls gamma adjustment processing using the results of the main measurement after the measurement range in the preliminary measurement has been determined. The gamma adjustment mode/brightness/frequency switching unit 305 switches between the gamma adjustment mode, brightness, and frequency.
 ディスプレイ輝度安定判定部306は、ガンマ調整に際してディスプレイ4の輝度が安定したかどうかを判定し、安定した状態でガンマ調整が行われる。ガンマ調整許容幅記憶部307は、ガンマ調整の許容幅を例えば顧客毎あるいはディスプレイ4の種類(品番、型番)毎に記憶する。 The display brightness stability determination unit 306 determines whether the brightness of the display 4 is stable during gamma adjustment, and gamma adjustment is performed in a stable state. The gamma adjustment allowable width storage unit 307 stores the gamma adjustment allowable width for each customer or for each type (product number, model number) of the display 4, for example.
 ガンマ調整結果判定部308はガンマ調整の結果を判定し、ガンマ調整結果通知部309はガンマ調整の結果をディスプレイ4に通知する。ガンマ調整の結果は、再設定された入力信号に対する出力輝度の関係(式あるいはルックアップテーブル等)あるいは、ディスプレイ検査調整パターン記憶部302に記憶されているディスプレイへの入力信号(電圧値)と出力輝度の関係式に対する補正係数等である。時間計測部310はガンマ調整時等において時間計測を行う。 The gamma adjustment result determination unit 308 determines the gamma adjustment result, and the gamma adjustment result notification unit 309 notifies the display 4 of the gamma adjustment result. The gamma adjustment result is the relationship (formula or lookup table, etc.) between the output brightness and the reset input signal, or the input signal (voltage value) and output to the display stored in the display inspection adjustment pattern storage unit 302. It is a correction coefficient etc. for the relational expression of brightness. The time measurement unit 310 measures time during gamma adjustment and the like.
 上述のガンマ調整制御部304、ガンマ調整モード/輝度/周波数切り替え部305、ディスプレイ輝度安定判定部306、ガンマ調整許容幅記憶部307、ガンマ調整結果判定部308、ガンマ調整結果通知部309、時間計測部310等によって、図1に示したガンマ調整部31が構成される。 The above-mentioned gamma adjustment control section 304, gamma adjustment mode/brightness/frequency switching section 305, display brightness stability determination section 306, gamma adjustment allowable width storage section 307, gamma adjustment result determination section 308, gamma adjustment result notification section 309, time measurement The gamma adjustment section 31 shown in FIG. 1 is configured by the section 310 and the like.
 ディスプレイ4は、制御部41と、発光部42と、駆動周波数制御部43と、表示情報取得部44と、ガンマ調整結果記憶部45等を備えている。 The display 4 includes a control section 41, a light emitting section 42, a drive frequency control section 43, a display information acquisition section 44, a gamma adjustment result storage section 45, and the like.
 制御部41はディスプレイ4の全体を統括的に制御し、発光部42はLED等の発光素子からなる。駆動周波数制御部43は、ディスプレイ検査・調整装置3から出力された発光駆動周波数で発光するように発光部2を駆動制御する。 The control section 41 centrally controls the entire display 4, and the light emitting section 42 consists of light emitting elements such as LEDs. The drive frequency control section 43 drives and controls the light emitting section 2 so that it emits light at the light emission drive frequency output from the display inspection/adjustment device 3 .
 表示情報取得部44は、ディスプレイ検査・調整装置3の表示情報伝達部303から伝達されるディスプレイ4に表示させる情報を取得する。ガンマ調整結果記憶部45はディスプレイ検査・調整装置3のガンマ調整結果通知部309から通知されるガンマ調整結果を記憶する。 The display information acquisition unit 44 acquires information to be displayed on the display 4 transmitted from the display information transmission unit 303 of the display inspection/adjustment device 3. The gamma adjustment result storage unit 45 stores the gamma adjustment result notified from the gamma adjustment result notification unit 309 of the display inspection/adjustment device 3.
 図3(a)~(e)は、ディスプレイ4を発光駆動する駆動信号の各種の波形例を示している。各波形の横軸は時間、縦軸は強度(Intensity)である。同図(a)の信号は強度が常時一定であり、同図(b)の信号は1フレーム(1 flame)毎に異なる強度が繰り返され、同図(c)の信号は幅の大きいパルス波形である。同図(d)の信号は幅の小さいパルス波形であり、同図(e)の信号は1フレームの最初から最後に向かって強度が徐々に低下する波形である。 FIGS. 3A to 3E show various waveform examples of drive signals for driving the display 4 to emit light. The horizontal axis of each waveform is time, and the vertical axis is intensity. The signal in figure (a) has a constant intensity, the signal in figure (b) has a different intensity repeated every frame (1 flame), and the signal in figure (c) has a pulse waveform with a large width. It is. The signal in (d) of the figure is a pulse waveform with a small width, and the signal in (e) of the figure is a waveform whose intensity gradually decreases from the beginning to the end of one frame.
 この実施形態では、同図(c)または(d)に示す波形の発光駆動信号を使用するものとする。 In this embodiment, it is assumed that a light emission drive signal having a waveform shown in (c) or (d) of the same figure is used.
 この実施形態では、光測定装置2はR1~R4の4つの測定レンジで輝度の測定を行うように構成されている。光測定装置2は、発光状態(輝度値)に対応して最適な測定レンジを決定しその測定レンジに切り替えて測定を行うようになっている。 In this embodiment, the optical measurement device 2 is configured to measure brightness in four measurement ranges R1 to R4. The optical measurement device 2 determines an optimal measurement range in accordance with the light emission state (brightness value), and performs measurement by switching to the measurement range.
 測定レンジR1~R4での測定範囲(輝度範囲)及び測定レンジの決定までに必要な時間を表1に例示する。 Table 1 shows an example of the measurement range (luminance range) in measurement ranges R1 to R4 and the time required to determine the measurement range.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 最適な測定レンジの決定に関して、従来では、本測定において最適な測定レンジに到達するまで測定レンジを順に切り替えていた。このため、ディスプレイの4輝度の測定が開始されるまでに時間を要していた。 Regarding determining the optimal measurement range, conventionally, the measurement ranges were sequentially switched until the optimal measurement range was reached in the main measurement. For this reason, it takes time to start measuring the four brightness levels of the display.
 この従来の様子を図4~図7を参照して説明する。図4及び図5は高輝度測定の場合の説明図、図6及び図7は低輝度測定の場合の説明図である。各図の上段の白抜きパルスが発光駆動信号を示しており、発光駆動信号の周期は15msである。 This conventional situation will be explained with reference to FIGS. 4 to 7. 4 and 5 are explanatory diagrams for high luminance measurement, and FIGS. 6 and 7 are explanatory diagrams for low luminance measurement. The white pulses at the top of each figure indicate the light emission drive signal, and the period of the light emission drive signal is 15 ms.
 図4に示すケース1(Case1)では、測定対象輝度が1000nit、発光周期15ms、測定周期30ms(測定レンジR2~R4の場合)~60ms(測定レンジR1の場合)である。最初の2周期は待機状態を示し、待機状態での測定レンジは前回の測定レンジがそのまま設定されていることを示している。 In Case 1 shown in FIG. 4, the luminance to be measured is 1000 nits, the light emission period is 15 ms, and the measurement period is 30 ms (for measurement ranges R2 to R4) to 60 ms (for measurement range R1). The first two cycles indicate a standby state, and the measurement range in the standby state is set as the previous measurement range.
 矢印T1で示す測定開始指示に基づいて本測定が開始されるが、図4のように、前回の測定レンジがR4の場合、今回の測定レンジもR4となる。 The main measurement is started based on the measurement start instruction indicated by the arrow T1, but as shown in FIG. 4, if the previous measurement range was R4, the current measurement range is also R4.
 測定レンジR4の輝度範囲は400nit以上であり、測定対象輝度が1000nitであるから、測定レンジR4は最適な測定レンジである。このため、本測定の開始から2周期(30ms)で推定輝度1000nitが得られ、本測定での測定レンジがR4に決定される。本測定での輝度測定結果も1000nitである。本測定の開始から矢印T2で示す終了までの時間は30msである。 The measurement range R4 has a brightness range of 400 nits or more, and the measurement target brightness is 1000 nits, so the measurement range R4 is the optimal measurement range. Therefore, an estimated luminance of 1000 nits is obtained in two cycles (30 ms) from the start of the main measurement, and the measurement range in the main measurement is determined to be R4. The brightness measurement result in this measurement is also 1000 nits. The time from the start of this measurement to the end indicated by arrow T2 is 30 ms.
 しかし、図5のケース2(Case2)に示すように、前回の測定レンジがR1の場合、本測定が測定レンジR1で開始される。測定レンジR1の輝度範囲は10nit以下であり、測定対象輝度は1000nitであるから、測定レンジR1は最適な測定レンジではなく、60msの測定時間内に輝度を推定できずエラーとなる(図5ではN/Aで示している)。 However, as shown in Case 2 of FIG. 5, when the previous measurement range is R1, the main measurement is started in the measurement range R1. The luminance range of measurement range R1 is 10 nits or less, and the luminance to be measured is 1000 nits. Therefore, measurement range R1 is not the optimal measurement range, and an error occurs because the luminance cannot be estimated within the measurement time of 60 ms. (Indicated by N/A).
 4つの測定レンジをR1、R2、R3、R4の順で切り替えるとすると、次の測定レンジR2も輝度範囲は10~100nitであって最適な測定レンジではなく、30msの測定時間内に輝度を推定できない。さらに次の測定レンジR3も輝度範囲は100~400nitであって最適な測定レンジではなく、30msの測定時間内に輝度を推定できない。そして、次の測定レンジR4に切り替わって最適な測定レンジとなり、推定輝度1000nitが得られ、本測定での測定レンジがR4に決定される。 Assuming that the four measurement ranges are switched in the order of R1, R2, R3, and R4, the next measurement range R2 also has a brightness range of 10 to 100 nits, which is not the optimal measurement range, and the brightness is estimated within the measurement time of 30ms. Can not. Furthermore, the next measurement range R3 also has a luminance range of 100 to 400 nits, which is not the optimal measurement range, and the luminance cannot be estimated within the measurement time of 30 ms. Then, the measurement range is switched to the next measurement range R4, which becomes the optimum measurement range, and an estimated luminance of 1000 nits is obtained, and the measurement range for the main measurement is determined to be R4.
 図5のように、本測定開始時の測定レンジがR1の場合は、本測定の開始から終了までに150msを要し、時間がかかっていた。 As shown in FIG. 5, when the measurement range at the start of the main measurement is R1, it takes 150 ms from the start to the end of the main measurement, which takes a long time.
 また、図6にケース3(Case3)で示す測定対象輝度が1nitの低輝度の測定において、前回の測定レンジがR1の場合、本測定が測定レンジR1で開始される。測定レンジR1の輝度範囲は10nit以下であり、測定対象輝度は1nitであるから、測定レンジR1は最適な測定レンジである。このため、本測定の開始から4周期(60ms)で推定輝度1nitが得られ、本測定での測定レンジがR1に決定される。本測定の開始から終了までの時間は60msである。 Furthermore, in the measurement of low luminance where the measurement target luminance is 1 nit as shown in Case 3 in FIG. 6, if the previous measurement range is R1, the main measurement is started in the measurement range R1. The luminance range of the measurement range R1 is 10 nit or less, and the luminance to be measured is 1 nit, so the measurement range R1 is the optimal measurement range. Therefore, an estimated luminance of 1 nit is obtained in four cycles (60 ms) from the start of the main measurement, and the measurement range in the main measurement is determined to be R1. The time from start to end of this measurement is 60 ms.
 しかし、図7のケース4(Case4)に示すように、前回の測定レンジがR4の場合、本測定が測定レンジR4で開始される。測定レンジR4の輝度範囲は400nit以上であり、測定対象輝度は1nitであるから、測定レンジR4は最適な測定レンジではなく、30msの測定時間内に輝度を推定できずエラーとなる。 However, as shown in Case 4 in FIG. 7, if the previous measurement range is R4, the main measurement is started in measurement range R4. Since the luminance range of the measurement range R4 is 400 nit or more and the luminance to be measured is 1 nit, the measurement range R4 is not the optimal measurement range, and the luminance cannot be estimated within the measurement time of 30 ms, resulting in an error.
 4つの測定レンジをR4、R3、R2、R1の順で切り替えるとすると、次の測定レンジR3も輝度範囲は100~400nitであって最適な測定レンジではなく、30msの測定時間内に輝度を推定できない。さらに次の測定レンジR2も輝度範囲は10~100nitであって最適な測定レンジではなく、30msの測定時間内に輝度を推定できない。そして、次の測定レンジR1に切り替わって最適な測定レンジとなり、推定輝度1nitが得られ、本測定での測定レンジがR1に決定される。 Assuming that the four measurement ranges are switched in the order of R4, R3, R2, and R1, the next measurement range R3 also has a brightness range of 100 to 400 nits, which is not the optimal measurement range, and the brightness is estimated within the 30ms measurement time. Can not. Furthermore, the next measurement range R2 also has a luminance range of 10 to 100 nits, which is not the optimal measurement range, and the luminance cannot be estimated within the measurement time of 30 ms. Then, the measurement range is switched to the next measurement range R1, which becomes the optimum measurement range, and an estimated luminance of 1 nit is obtained, and the measurement range for the main measurement is determined to be R1.
 図7のように、本測定開始時の測定レンジがR4の場合は、本測定の開始から終了までに150msを要し、時間がかかっていた。 As shown in FIG. 7, when the measurement range at the start of the main measurement was R4, it took 150 ms from the start to the end of the main measurement, which took a long time.
 図5及び図7の例で説明したような、最適な測定レンジが決定されるまでの時間が通常の輝度測定で問題になることは少ない。しかしながら、ディスプレイ4の高性能化により調整点が増大しているガンマ調整においては、ディスプレイ4の発光駆動周波数、ガンマモード数、ガンマ調整点数において低輝度と高輝度を切替ながら繰り返し測定する必要がある。このため、最適な測定レンジの決定に要する時間が長いことは、全体のガンマ調整時間の長期化による効率悪化をもたらす。 As explained in the examples of FIGS. 5 and 7, the time it takes to determine the optimal measurement range is rarely a problem in normal brightness measurements. However, in gamma adjustment, where the number of adjustment points has increased due to the improved performance of the display 4, it is necessary to repeatedly measure the display 4's light emission drive frequency, number of gamma modes, and number of gamma adjustment points while switching between low and high brightness. . Therefore, the long time required to determine the optimal measurement range leads to a decrease in efficiency due to the lengthening of the overall gamma adjustment time.
 そこで、本実施形態では、各測定レンジでの本測定の測定時間よりも短い測定時間で予備測定を行うことで、最適な測定レンジを早期に決定する。 Therefore, in this embodiment, the optimal measurement range is determined early by performing preliminary measurement in a measurement time shorter than the measurement time of the main measurement in each measurement range.
 この実施形態では、予備測定は本測定と同じくR1~R4の4つの測定レンジで輝度の測定を行うように構成されているが、測定時間は表1に示した本測定の半分に設定している。このため、各レンジでの測定範囲も本測定の半分となっている。予備測定の測定レンジR1~R4での測定範囲(輝度範囲)及び測定レンジの決定までに必要な時間を表2に例示する。 In this embodiment, the preliminary measurement is configured to measure the brightness in four measurement ranges R1 to R4 like the main measurement, but the measurement time is set to half of the main measurement shown in Table 1. There is. Therefore, the measurement range in each range is also half of the actual measurement. Table 2 shows an example of the measurement range (luminance range) in the measurement ranges R1 to R4 of the preliminary measurement and the time required to determine the measurement range.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 図8のケース5(Case5)は測定対象輝度が1000nitの高輝度の場合の予備測定の方法を示している。前回の本測定の測定レンジにかかわらず、予備測定により輝度推定する。例えば最初に測定レンジR4を設定した場合、15msの時間で推定輝度500nitが得られる。このため、最適な測定レンジはR4と決定し、測定レンジR4を設定して次の30msで本測定を行う。予備測定開始から本測定終了までの時間は45msである。 Case 5 in FIG. 8 shows a preliminary measurement method when the luminance of the measurement target is as high as 1000 nits. Luminance is estimated from preliminary measurements, regardless of the measurement range of the previous main measurement. For example, when measurement range R4 is first set, an estimated luminance of 500 nits can be obtained in 15 ms. Therefore, the optimum measurement range is determined to be R4, measurement range R4 is set, and the main measurement is performed in the next 30 ms. The time from the start of the preliminary measurement to the end of the main measurement was 45 ms.
 図9のケース6(Case6)は測定対象輝度が1nitの低輝度の場合の予備測定の方法を示している。予備測定において、例えば最初に測定レンジR4を設定した場合、15msの時間で200nit以下の推定輝度しか得られないから、測定レンジR4は最適ではないと判断し、次の測定レンジR3に切り替える。 Case 6 in FIG. 9 shows a preliminary measurement method when the luminance of the measurement target is as low as 1 nit. In the preliminary measurement, for example, when measurement range R4 is set first, only an estimated luminance of 200 nit or less can be obtained in 15 ms, so it is determined that measurement range R4 is not optimal, and it is switched to the next measurement range R3.
 測定レンジR3においても15msの時間で5nit以下の推定輝度しか得られない。このため、最適な測定レンジはR1であると決定し、測定レンジR1を設定して本測定を行う。なお、測定レンジR3での予備測定の次に測定レンジR2で予備測定を行ったのち、最適な測定レンジR1を決定しても良い。予備測定開始から本測定終了までの時間は90msである。 Even in measurement range R3, only an estimated luminance of 5 nit or less can be obtained in 15 ms. Therefore, it is determined that the optimum measurement range is R1, and the main measurement is performed with measurement range R1 set. Note that the optimum measurement range R1 may be determined after performing a preliminary measurement in the measurement range R2 after a preliminary measurement in the measurement range R3. The time from the start of the preliminary measurement to the end of the main measurement was 90 ms.
 測定対象輝度が1000nitの高輝度の場合に、予備測定を測定レンジR1からR2、R3、R4と切り替えていく場合も、予備測定開始から本測定終了までの時間は90msである。 When the luminance to be measured is as high as 1000 nits and the preliminary measurement is switched from measurement range R1 to R2, R3, and R4, the time from the start of the preliminary measurement to the end of the main measurement is 90 ms.
 図5のケース2及び図7のケース4で示した本測定で最適な測定レンジを決定する方法と、図9のケース6で示した予備測定で最適な測定レンジを決定する方法との比較から理解されるように、最初に設定された測定レンジが最適な測定レンジと異なっている場合において、本測定の測定時間よりも短い測定時間での予備測定によって最適な測定レンジを決定する方が、本測定を終了するまでの時間が短縮される。このため、ガンマ調整のように調整点が多い場合には、予備測定により最適レンジを決定することにより、全体の処理時間を短縮でき、作業の効率化を図ることができる。 From a comparison between the method of determining the optimal measurement range in the main measurement shown in Case 2 in Figure 5 and Case 4 in Figure 7, and the method of determining the optimal measurement range in the preliminary measurement shown in Case 6 in Figure 9. As can be understood, when the initially set measurement range is different from the optimal measurement range, it is better to determine the optimal measurement range by preliminary measurement with a measurement time shorter than the measurement time of the main measurement. The time required to complete the main measurement is shortened. Therefore, when there are many adjustment points such as gamma adjustment, by determining the optimal range through preliminary measurements, the overall processing time can be shortened and work efficiency can be improved.
 ところで、上述した例では予備測定時間を測定レンジR1では30ms、測定レンジR2~R4では15msに設定した。予備測定時間が短いほど最適レンジの決定に要する時間は短くなる。 Incidentally, in the above example, the preliminary measurement time was set to 30 ms in the measurement range R1 and 15 ms in the measurement ranges R2 to R4. The shorter the preliminary measurement time, the shorter the time required to determine the optimal range.
 しかしながら、予備測定時間がディスプレイ4の発光駆動信号の周波数の周期よりも短いと予備測定時間は短くなるが精度が低下する。逆に、予備測定時間がディスプレイ4の発光駆動信号の周波数の周期よりも長いと予備測定時間が長くなるうえ、精度も低下する。そこで、予備測定時間は、ディスプレイ4の発光駆動信号の周波数に応じて決定されるのがよい。具体的には、予備測定時間の短縮と精度維持を両立させるため、発光駆動信号の周波数の周期に同期させる、つまり周期と同じ時間長さに設定するのがよい。 However, if the preliminary measurement time is shorter than the period of the frequency of the light emission drive signal of the display 4, the preliminary measurement time will be shortened, but the accuracy will be reduced. Conversely, if the preliminary measurement time is longer than the period of the frequency of the light emission drive signal of the display 4, the preliminary measurement time will be longer and the accuracy will also be lowered. Therefore, the preliminary measurement time is preferably determined according to the frequency of the light emission drive signal of the display 4. Specifically, in order to reduce the preliminary measurement time and maintain accuracy, it is preferable to synchronize with the cycle of the frequency of the light emission drive signal, that is, set the time length to be the same as the cycle.
 この点を図10で説明する。図10(A)はディスプレイ4の発光駆動信号の出力状態を示す図であり、横軸が時間を示す。また、白抜きの部分が発光駆動信号であり、T3は発光駆動信号の周期(発光周期)である。 This point will be explained with reference to FIG. FIG. 10(A) is a diagram showing the output state of the light emission drive signal of the display 4, and the horizontal axis shows time. Moreover, the white part is the light emission drive signal, and T3 is the period (light emission period) of the light emission drive signal.
 同図(C)は、ダブルハッチングで示す予備測定時間が発光駆動信号の周期よりも短い場合を示している。この場合は予備測定時間は短いが、予備測定時間内に発光駆動信号が到来せず発光しないこともあり、測定精度が低下する。 The figure (C) shows a case where the preliminary measurement time indicated by double hatching is shorter than the cycle of the light emission drive signal. In this case, the preliminary measurement time is short, but the light emission drive signal may not arrive within the preliminary measurement time and no light is emitted, resulting in a decrease in measurement accuracy.
 同図(D)は、予備測定時間が発光駆動信号の周期よりも長い場合を示している。この場合は、予備測定時間内に発光駆動信号が1回到来する場合と2回到来する場合があり、やはり測定精度が低下する。しかも予備測定時間が長くなる。 The same figure (D) shows the case where the preliminary measurement time is longer than the cycle of the light emission drive signal. In this case, the light emission drive signal may arrive once or twice within the preliminary measurement time, and the measurement accuracy also decreases. Moreover, the preliminary measurement time becomes longer.
 同図(B)は、予備測定時間が発光駆動信号の周期と同一の時間長さである。つまり発光駆動信号の周期に同期している。このように同期させることで、予備測定時間内に常時1つの発光駆動信号が到来するため、精度の高い安定した測定を行うことができる。しかも、予備測定時間も同図(D)よりも短くなる。従って、予備測定時間を発光駆動信号の周期に同期させることで、予備測定時間の短縮と精度維持を両立させることができる。なお、低輝度の場合には精度を確保するために予備測定時間を発光駆動信号の周期の2以上の自然数倍に設定しても良い。 In the same figure (B), the preliminary measurement time is the same time length as the cycle of the light emission drive signal. In other words, it is synchronized with the cycle of the light emission drive signal. By synchronizing in this manner, one light emission drive signal always arrives within the preliminary measurement time, so it is possible to perform highly accurate and stable measurements. Moreover, the preliminary measurement time is also shorter than that shown in FIG. Therefore, by synchronizing the preliminary measurement time with the period of the light emission drive signal, it is possible to both shorten the preliminary measurement time and maintain accuracy. Note that in the case of low luminance, the preliminary measurement time may be set to a natural number multiple of 2 or more of the cycle of the light emission drive signal in order to ensure accuracy.
 次に、本実施形態における測定レンジの決定処理について従来の決定処理と比較して説明する。 Next, measurement range determination processing in this embodiment will be explained in comparison with conventional determination processing.
 まず、従来の測定レンジ決定処理を図11のフローチャートを参照して説明する。 First, conventional measurement range determination processing will be explained with reference to the flowchart of FIG. 11.
 ステップS01で、測定開始の指示の有無を判断し、指示がなければ(ステップS01でNO)、指示があるまで待つ。指示があると(ステップS01でYES)、ステップS02で直前の測定レンジを設定したのち、ステップS03で本測定を実行する。 In step S01, it is determined whether there is an instruction to start measurement, and if there is no instruction (NO in step S01), the process waits until there is an instruction. If there is an instruction (YES in step S01), the previous measurement range is set in step S02, and then the main measurement is executed in step S03.
 次いでステップS04では測定結果を判定し、判定結果がOKかどうかつまりその測定レンジで輝度を測定できたかどうかを判断する。輝度を測定できなければ(ステップS05でNG)、ステップS06で測定レンジを切り替えた後、ステップS03に戻って本測定を行う。輝度判定の結果がOKとなるまで測定レンジの切替と本測定を実施する。輝度を測定できた場合は(ステップS05でOK)、ステップS07で、測定結果をディスプレイ検査・調整装置3に通知する。なお、測定結果をその都度通知するのではなく、複数の測定結果を保存しておき、所定のタイミングで一括して通知しても良い。 Next, in step S04, the measurement result is determined, and it is determined whether the determination result is OK, that is, whether the brightness could be measured within the measurement range. If the brightness cannot be measured (NG in step S05), the measurement range is switched in step S06, and then the process returns to step S03 to perform the main measurement. The measurement range is switched and the actual measurement is performed until the brightness determination result is OK. If the brightness can be measured (OK in step S05), the display inspection/adjustment device 3 is notified of the measurement result in step S07. Note that instead of notifying the measurement results each time, a plurality of measurement results may be saved and notified all at once at a predetermined timing.
 図12は、本実施形態における光測定装置2が実行する測定レンジの決定処理を示すフローチャートである。図12の処理は、光測定装置2内の演算部(プロセッサ)205fが記憶部205g等に格納された動作プログラムに従って動作することにより実行される。 FIG. 12 is a flowchart showing the measurement range determination process executed by the optical measurement device 2 in this embodiment. The processing in FIG. 12 is executed by the calculation unit (processor) 205f in the optical measuring device 2 operating according to an operation program stored in the storage unit 205g or the like.
 ステップS11で、測定開始の指示を待ち(ステップS11でNO)、指示があると(ステップS11でYES)、ステップS12で予備測定を実施する。この予備測定については後述する。 In step S11, the process waits for an instruction to start measurement (NO in step S11), and when there is an instruction (YES in step S11), a preliminary measurement is performed in step S12. This preliminary measurement will be described later.
 次にステップS13で、ステップS12の予備測定で決定された測定レンジを設定して本測定を実行したのち、ステップS14で本測定結果をディスプレイ検査・調整装置3に通知する。 Next, in step S13, the measurement range determined in the preliminary measurement in step S12 is set and the main measurement is performed, and then, in step S14, the display inspection/adjustment device 3 is notified of the main measurement result.
 ステップS12の予備測定処理の内容を図13のフローチャートで説明する。 The contents of the preliminary measurement process in step S12 will be explained with reference to the flowchart in FIG.
 ステップS121で予備測定のサンプリング期間(測定時間)を設定する。この実施形態ではサンプリング期間は例えば15msである。 In step S121, a sampling period (measurement time) for preliminary measurement is set. In this embodiment, the sampling period is, for example, 15 ms.
 次にステップS122で、高輝度で飽和しない測定レンジを設定する。例えばこの実施形態で最も測定輝度の高い測定レンジであるR4を設定する。そしてステップS123で輝度を測定したのち、ステップS124で予備測定した輝度の判定処理を行う。この処理についても後述する。 Next, in step S122, a measurement range that is high brightness and does not saturate is set. For example, in this embodiment, R4, which is the measurement range with the highest measurement brightness, is set. After measuring the brightness in step S123, a process for determining the preliminarily measured brightness is performed in step S124. This processing will also be described later.
 次いでステップS125で判定が終了したかどうかを判断し、終了していなければ(ステップS125でNO)、ステップS126で測定レンジを切り替えてステップS123に戻り、再度予備測定を行う。ステップS125で判定が終了した場合はステップS127に進み、本測定の測定レンジを決定した後、予備測定処理を終了して図12のフローチャートにリターンする。 Next, in step S125, it is determined whether the determination has been completed, and if it has not been completed (NO in step S125), the measurement range is switched in step S126, and the process returns to step S123 to perform preliminary measurement again. If the determination is completed in step S125, the process proceeds to step S127, where the measurement range for the main measurement is determined, and then the preliminary measurement process is ended and the process returns to the flowchart of FIG. 12.
 ステップS124の予備測定の輝度判定処理の内容を図14のフローチャートで説明する。 The details of the preliminary measurement brightness determination process in step S124 will be explained with reference to the flowchart in FIG.
 ステップS1241では予備測定条件を取得する。予備測定条件は図13のステップS121で設定したサンプリング期間と、ステップS122で設定しまたはステップS126で切り替えられた現在の測定レンジである。 In step S1241, preliminary measurement conditions are acquired. The preliminary measurement conditions are the sampling period set in step S121 of FIG. 13 and the current measurement range set in step S122 or switched in step S126.
 次にステップS1242で、予備測定条件にて取得された測定値であるAD値(受光部で得られたアナログ値をデジタル変換した値)から本来の輝度を推定した後、予備測定の輝度判定処理を終了し図13のフローチャートにリターンする。輝度が推定できた場合は、図13のステップS127で、その輝度に適した測定レンジを本測定の測定レンジとして決定する。輝度が推定できなかった場合は、図13のステップS126で測定レンジを切り替えて輝度を推定できるまで予備測定を繰り返す。 Next, in step S1242, after estimating the original brightness from the AD value (a value obtained by digitally converting the analog value obtained by the light receiving section), which is the measured value obtained under the preliminary measurement conditions, the brightness determination process for the preliminary measurement is performed. The process ends and returns to the flowchart of FIG. If the brightness can be estimated, in step S127 of FIG. 13, a measurement range suitable for the brightness is determined as the measurement range for the main measurement. If the brightness cannot be estimated, the measurement range is switched in step S126 of FIG. 13 and preliminary measurements are repeated until the brightness can be estimated.
 次に、ディスプレイ検査・調整装置3で行われるガンマ調整処理を、図15のフローチャートを参照して説明する。 Next, the gamma adjustment process performed by the display inspection/adjustment device 3 will be explained with reference to the flowchart of FIG. 15.
 ステップS21で、ガンマ調整対象のディスプレイ(パネルともいう)の駆動リフレッシュレートを決定したのち、ステップS22で駆動リフレッシュレートを選択し、ステップS23でガンマ調整を実行する。ガンマ調整の実行処理については後述する。 After determining the drive refresh rate of the display (also referred to as panel) to be gamma adjusted in step S21, the drive refresh rate is selected in step S22, and gamma adjustment is performed in step S23. The gamma adjustment execution process will be described later.
 次いでステップS24で、すべての駆動周波数でガンマ調整が終了したかどうかを判断する。終了していなければ(ステップS24でNO)、ステップS22に戻って別の駆動リフレッシュレートを選択した後、ステップS22~ステップS24を繰り返す。すべての駆動周波数でガンマ調整が終了した場合は(ステップS24でYES)、ガンマ調整処理を終了する。 Next, in step S24, it is determined whether gamma adjustment has been completed for all drive frequencies. If the process has not been completed (NO in step S24), the process returns to step S22, selects another drive refresh rate, and then repeats steps S22 to S24. If gamma adjustment is completed for all drive frequencies (YES in step S24), the gamma adjustment process is ended.
 ステップS23のガンマ調整の実行処理の内容を図16のフローチャートを参照して説明する。 The contents of the gamma adjustment execution process in step S23 will be explained with reference to the flowchart of FIG. 16.
 ステップS231で、ガンマ調整の開始指示を待ち(ステップS231でNO)、開始指示があると(ステップS231でYES)、ステップS232でガンマ調整モードを決定した後、ステップS233で調整する階調を決定する。次いでステップS234で、パネルの出力値を決定したのち、ステップS235でパネル表示が安定したかどうかを判断する。安定しなければ(ステップS235でNO)、安定するまで待つ。安定すると(ステップS235でYES)、ステップS236で測定開始指示を光測定装置2に対して行い、ステップS237で、光測定装置2から測定結果を受信したかどうかを判断する。受信しなければ(ステップS237でNO)、受信するまで待ち、受信すると(ステップS237でYES)、ステップS238で結果判定処理を行う。結果判定処理については後述する。 In step S231, wait for an instruction to start gamma adjustment (NO in step S231), and if there is a start instruction (YES in step S231), determine the gamma adjustment mode in step S232, and then determine the gradation to be adjusted in step S233. do. Next, in step S234, the output value of the panel is determined, and then, in step S235, it is determined whether the panel display has become stable. If it is not stable (NO in step S235), wait until it is stabilized. When it is stabilized (YES in step S235), a measurement start instruction is given to the optical measuring device 2 in step S236, and in step S237 it is determined whether the measurement result has been received from the optical measuring device 2. If it is not received (NO in step S237), it waits until it is received, and if it is received (YES in step S237), a result determination process is performed in step S238. The result determination process will be described later.
 次いでステップS239で、結果が許容範囲かどうかを調べる。許容範囲でなければ(ステップS239でNO)、ステップS240で、予め設定されている上限値まで測定が繰り返されたかどうかを判断する。上限値に達していなければ(ステップS240でNO)、ステップS234に戻って再度の測定を行わせる。上限値に達していれば(ステップS240でYES)、調整しきれないのでステップS241で異常と判断して図15のフローチャートにリターンする。 Next, in step S239, it is checked whether the result is within an acceptable range. If it is not within the allowable range (NO in step S239), it is determined in step S240 whether the measurement has been repeated up to a preset upper limit. If the upper limit has not been reached (NO in step S240), the process returns to step S234 and the measurement is performed again. If the upper limit has been reached (YES at step S240), the adjustment cannot be completed, so it is determined that there is an abnormality at step S241, and the process returns to the flowchart of FIG. 15.
 ステップS239で結果が許容範囲であれば(ステップS239でYES)、ステップS242に進み、すべての諧調のガンマ調整が完了したかどうかを調べる。すべての諧調のガンマ調整が完了していなければ(ステップS242でNO)、ステップS233に戻って次の諧調を決定する。つまりステップS233~ステップS242を繰り返す。 If the result is within the allowable range in step S239 (YES in step S239), the process advances to step S242, and it is checked whether gamma adjustment for all tones has been completed. If gamma adjustment for all tones has not been completed (NO in step S242), the process returns to step S233 to determine the next tones. That is, steps S233 to S242 are repeated.
 すべての諧調のガンマ調整が完了すると(ステップS242でYES)、ステップS243で、すべてのガンマ調整モードでの調整が完了したかどうかを判断する。すべて完了していなければ(ステップS243でNO)、ステップS232に戻って次のモードを決定する。つまりステップS232~ステップS243を繰り返す。すべて完了していれば(ステップS243でYES)、図15のフローチャートにリターンする。 When gamma adjustment for all tones is completed (YES in step S242), it is determined in step S243 whether adjustment in all gamma adjustment modes has been completed. If all have not been completed (NO in step S243), the process returns to step S232 to determine the next mode. That is, steps S232 to S243 are repeated. If all have been completed (YES in step S243), the process returns to the flowchart of FIG. 15.
 このことから理解されるように、ガンマ調整モード毎に複数の諧調を調整する必要があるうえ、昨今のようにディスプレイ4のガンマ調整モードが増加することで、ガンマ調整の繰り返し回数が極めて多くなり、ガンマ調整工程に時間がかかる。このため、本実施形態のように予備測定を行うことで、最適な測定レンジの決定に要する時間を短縮できるから、ガンマ調整の終了までの時間を大幅に短縮することができる。 As can be understood from this, it is necessary to adjust multiple tones for each gamma adjustment mode, and as the number of gamma adjustment modes for the display 4 increases these days, the number of repetitions of gamma adjustment becomes extremely large. , the gamma adjustment process takes time. Therefore, by performing preliminary measurements as in this embodiment, the time required to determine the optimal measurement range can be shortened, and the time required to complete gamma adjustment can be significantly shortened.
 図16のステップS238の結果判定処理を、図17のフローチャートを参照して説明する。 The result determination process in step S238 in FIG. 16 will be explained with reference to the flowchart in FIG. 17.
 ステップS2381で輝度色度の目標値を取得し、ステップS2382で輝度色度の許容範囲を取得する。次にステップS2383で測定結果を取得し、ステップS2384で、測定結果である輝度(Lv)、色度(x,y)が目標値に対して許容範囲内であるかどうかを判定して、図16のフローチャートにリターンする。 In step S2381, a target value of luminance and chromaticity is acquired, and in step S2382, an allowable range of luminance and chromaticity is acquired. Next, in step S2383, the measurement results are obtained, and in step S2384, it is determined whether the measurement results, luminance (Lv) and chromaticity (x, y), are within the allowable range with respect to the target values. Return to the flowchart in step 16.
 以上、本発明の一実施形態を説明したが、本発明は上記実施形態に限定されることはない。 Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment.
 例えば、予備測定による測定レンジの決定を光測定装置2が行う場合を説明したが、予備測定による測定レンジの決定は、光測定装置2からの測定データを受信してディスプレイ検査・調整装置3が行っても良いし、ディスプレイ検査・調整装置3とは異なる他の外部装置が行っても良い。 For example, a case has been described in which the optical measurement device 2 determines the measurement range through preliminary measurements, but the measurement range is determined through preliminary measurements by the display inspection/adjustment device 3 after receiving measurement data from the optical measurement device 2. Alternatively, another external device different from the display inspection/adjustment device 3 may perform the inspection.
 また、ディスプレイ検査・調整装置3がガンマ調整を行うものとしたが、光測定装置2がガンマ調整機能を内蔵していても良い。 Furthermore, although the display inspection/adjustment device 3 performs gamma adjustment, the optical measurement device 2 may have a built-in gamma adjustment function.
 本願は、2022年7月29日付で出願された日本国特許出願の特願2022-121738号の優先権主張を伴うものであり、その開示内容は、そのまま本願の一部を構成するものである。 This application claims priority to Japanese Patent Application No. 2022-121738 filed on July 29, 2022, and the disclosure thereof constitutes a part of this application as is. .
 本発明は、ディスプレイの輝度、色度等の測定対象物の発光状態を複数の測定レンジで測定可能な光測定装置について、発光状態に応じた測定レンジを決定する測定レンジ決定装置等に利用可能である。 INDUSTRIAL APPLICABILITY The present invention can be used as a measurement range determining device that determines the measurement range according to the light emission state of a light measurement device that can measure the light emission state of an object to be measured, such as display brightness and chromaticity, in multiple measurement ranges. It is.
 1  光測定システム
 2  光測定装置
 21 測定レンジ決定部
 3  ディスプレイ検査・調整装置
 31 パルス発生部
 32 ガンマ調整部
 4  ディスプレイ(測定対象物)
 201 通信部
 204 受光部
 205 制御部
 205c 輝度推定部
 205d 推定レンジ切替部
 205e 測定時間設定部
 205f 演算部
 205g 記憶部
 301 通信部
 304 ガンマ調整制御部
1 Optical measurement system 2 Optical measurement device 21 Measurement range determination section 3 Display inspection/adjustment device 31 Pulse generation section 32 Gamma adjustment section 4 Display (measurement object)
201 Communication section 204 Light receiving section 205 Control section 205c Brightness estimation section 205d Estimated range switching section 205e Measurement time setting section 205f Calculation section 205g Storage section 301 Communication section 304 Gamma adjustment control section

Claims (15)

  1.  測定対象物の発光状態に関するパラメータを測定可能な光測定装置の複数の測定レンジのうち、発光状態に応じた測定レンジを決定する決定手段を備えた測定レンジ決定装置であって、
     本測定の前に、各測定レンジでの本測定の測定時間よりも短い測定時間で、前記光測定装置に前記パラメータの予備測定を実行させる制御手段を備え、
     前記決定手段は、前記光測定装置で実行された予備測定の結果を基に、測定対象物に適した本測定用の測定レンジを決定する測定レンジ決定装置。
    A measurement range determining device comprising a determining means for determining a measurement range according to a light emission state among a plurality of measurement ranges of an optical measurement device capable of measuring parameters related to a light emission state of a measurement target,
    Before the main measurement, comprising a control means for causing the optical measurement device to perform a preliminary measurement of the parameter in a measurement time shorter than the measurement time of the main measurement in each measurement range,
    The determining means is a measurement range determining device that determines a measurement range for the main measurement that is suitable for the object to be measured based on the results of preliminary measurements performed by the optical measuring device.
  2.  前記予備測定の測定時間は、前記測定対象物の発光駆動信号の周波数に応じて決定される請求項1に記載の測定レンジ決定装置。 The measurement range determining device according to claim 1, wherein the measurement time of the preliminary measurement is determined according to the frequency of a light emission drive signal of the object to be measured.
  3.  請求項1または2に記載の測定レンジ決定装置を備えた光測定装置。 An optical measurement device comprising the measurement range determining device according to claim 1 or 2.
  4.  前記予備測定の測定時間は、前記測定対象物の発光駆動信号の周波数に応じて決定される請求項3に記載の光測定装置。 The optical measurement device according to claim 3, wherein the measurement time of the preliminary measurement is determined according to the frequency of a light emission drive signal of the measurement target.
  5.  測定対象物の発光状態に関するパラメータを複数の測定レンジで測定可能な光測定装置と、
     本測定の前に、各測定レンジでの本測定の測定時間よりも短い測定時間で、前記光測定装置に測定対象物の予備測定を実行させる制御手段と、
     前記光測定装置で実行された予備測定の結果を基に、発光状態に応じた本測定用の測定レンジを決定する決定手段と、
     を備えた光測定システム。
    A light measuring device capable of measuring parameters related to the light emitting state of a measurement target in multiple measurement ranges;
    A control means for causing the optical measurement device to perform a preliminary measurement of the measurement target in a measurement time shorter than the measurement time of the main measurement in each measurement range before the main measurement;
    determining means for determining a measurement range for main measurement according to a light emission state based on the results of a preliminary measurement performed by the optical measurement device;
    Optical measurement system with.
  6.  前記本測定により測定されたパラメータに基づいて測定対象物のガンマ調整を行うガンマ調整手段を備えている請求項5に記載の光測定システム。 The optical measurement system according to claim 5, further comprising gamma adjustment means for adjusting the gamma of the object to be measured based on the parameters measured by the main measurement.
  7.  前記予備測定の測定時間は、前記測定対象物の発光駆動信号の周波数に応じて決定される請求項5または6に記載の光測定システム。 The optical measurement system according to claim 5 or 6, wherein the measurement time of the preliminary measurement is determined according to the frequency of the light emission drive signal of the measurement target.
  8.  測定対象物の発光状態に関するパラメータを複数の測定レンジで測定可能な光測定装置が、本測定の前に、各測定レンジでの本測定の測定時間よりも短い測定時間で、測定対象物の予備測定を実行するステップと、
     前記予備測定の結果を基に、発光状態に応じた本測定用の測定レンジを決定するステップと、
     決定された測定レンジで前記光測定装置が本測定を実行するステップと、
     を含む光測定方法。
    An optical measurement device that can measure parameters related to the light emitting state of a measurement target in multiple measurement ranges can perform a preliminary measurement of the measurement target in a measurement time shorter than the measurement time of the main measurement in each measurement range before the actual measurement. performing a measurement;
    a step of determining a measurement range for the main measurement according to the light emission state based on the results of the preliminary measurement;
    a step of the optical measurement device performing the main measurement in the determined measurement range;
    Light measurement methods including.
  9.  光測定装置により測定されたパラメータに基づいて測定対象物のガンマ調整を行うステップをさらに含む請求項8に記載の光測定方法。 The light measurement method according to claim 8, further comprising the step of adjusting the gamma of the measurement target based on the parameters measured by the light measurement device.
  10.  前記予備測定の測定時間は、前記測定対象物の発光駆動信号の周波数に応じて決定される請求項8または9に記載の光測定方法。 The optical measurement method according to claim 8 or 9, wherein the measurement time of the preliminary measurement is determined according to the frequency of a light emission drive signal of the measurement target.
  11.  測定対象物の発光状態に関するパラメータを複数の測定レンジで測定可能な光測定装置に、本測定の前に、各測定レンジでの本測定の測定時間よりも短い測定時間で、測定対象物の予備測定を実行させるステップと、
     前記予備測定の結果を基に、発光状態に応じた本測定用の測定レンジを決定するステップと、
     を測定レンジ決定装置のコンピュータに実行させるためのプログラム。
    Before the main measurement, the parameters related to the light emission state of the measurement target can be measured using an optical measurement device that can measure the light emission state of the measurement target in multiple measurement ranges. a step of performing the measurement;
    a step of determining a measurement range for the main measurement according to the light emission state based on the results of the preliminary measurement;
    A program that causes the measurement range determination device's computer to execute the following.
  12.  光測定装置により測定されたパラメータに基づいて測定対象物のガンマ調整を行うステップを前記コンピュータにさらに実行させる請求項11に記載のプログラム。 12. The program according to claim 11, which causes the computer to further execute the step of adjusting the gamma of the object to be measured based on the parameters measured by the optical measurement device.
  13.  前記予備測定の測定時間は、前記測定対象物の発光駆動信号の周波数に応じて決定される請求項11または12に記載のプログラム。 The program according to claim 11 or 12, wherein the measurement time of the preliminary measurement is determined according to the frequency of a light emission drive signal of the measurement target.
  14.  ディスプレイの発光部を測定対象物とし、前記ディスプレイのガンマ調整を行うディスプレイ調整装置であって、
     請求項3に記載の光測定装置と、
     前記ディスプレイに前記ガンマ調整のためのパネル表示情報を表示させる発光駆動信号の出力手段と、
     前記光測定装置における本測定で測定された前記ディスプレイの発光状態に関するパラメータに基づいてガンマ調整を行うガンマ調整制御手段と、
     前記ガンマ調整制御手段によるガンマ調整の結果を前記ディスプレイに通知するガンマ調整結果通知手段と、
     を備えたディスプレイ調整装置。
    A display adjustment device that uses a light emitting part of a display as a measurement object and performs gamma adjustment of the display,
    The optical measuring device according to claim 3;
    output means for a light emission drive signal that causes the display to display panel display information for the gamma adjustment;
    Gamma adjustment control means that performs gamma adjustment based on parameters related to the light emission state of the display measured in the main measurement in the light measurement device;
    gamma adjustment result notification means for notifying the display of the result of gamma adjustment by the gamma adjustment control means;
    Display adjustment device with.
  15.  ディスプレイの発光部を測定対象物とし、前記ディスプレイのガンマ調整を行うディスプレイ調整方法であって、
     前記ディスプレイに前記ガンマ調整のためのパネル表示情報を表示させる発光駆動信号の出力ステップと、
     請求項3に記載の光測定装置における本測定で測定された前記ディスプレイの発光状態に関するパラメータに基づいてガンマ調整を行うガンマ調整制御ステップと、
     前記ガンマ調整制御ステップによるガンマ調整の結果を前記ディスプレイに通知するガンマ調整結果通知ステップと、
     を含むディスプレイ調整方法。
    A display adjustment method that uses a light emitting part of a display as a measurement target and performs gamma adjustment of the display, the method comprising:
    outputting a light emission drive signal that causes the display to display panel display information for the gamma adjustment;
    A gamma adjustment control step of performing gamma adjustment based on parameters related to the light emission state of the display measured in the main measurement in the light measurement device according to claim 3;
    a gamma adjustment result notification step of notifying the display of the result of the gamma adjustment performed by the gamma adjustment control step;
    Display adjustment method including.
PCT/JP2023/026971 2022-07-29 2023-07-24 Measurement range determining device, optical measuring device, optical measuring system, optical measuring method, display adjusting device and adjusting method, and program WO2024024714A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022121738 2022-07-29
JP2022-121738 2022-07-29

Publications (1)

Publication Number Publication Date
WO2024024714A1 true WO2024024714A1 (en) 2024-02-01

Family

ID=89706605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026971 WO2024024714A1 (en) 2022-07-29 2023-07-24 Measurement range determining device, optical measuring device, optical measuring system, optical measuring method, display adjusting device and adjusting method, and program

Country Status (1)

Country Link
WO (1) WO2024024714A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000358190A (en) * 1990-10-08 2000-12-26 Olympus Optical Co Ltd Exposure control circuit of image input device
JP2003227756A (en) * 2002-02-05 2003-08-15 Seiko Epson Corp Photodetecting device, photodetecting method, program and recording medium
JP2004160449A (en) * 2002-10-24 2004-06-10 Seiko Epson Corp Device manufacturing equipment and device manufacturing method, electronic instrument
JP2009244566A (en) * 2008-03-31 2009-10-22 Nanao Corp Method for acquiring gamma value of liquid crystal display device, gamma value acquisition system, and liquid crystal display device, gamma value acquisition computer and program for use in the system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000358190A (en) * 1990-10-08 2000-12-26 Olympus Optical Co Ltd Exposure control circuit of image input device
JP2003227756A (en) * 2002-02-05 2003-08-15 Seiko Epson Corp Photodetecting device, photodetecting method, program and recording medium
JP2004160449A (en) * 2002-10-24 2004-06-10 Seiko Epson Corp Device manufacturing equipment and device manufacturing method, electronic instrument
JP2009244566A (en) * 2008-03-31 2009-10-22 Nanao Corp Method for acquiring gamma value of liquid crystal display device, gamma value acquisition system, and liquid crystal display device, gamma value acquisition computer and program for use in the system

Similar Documents

Publication Publication Date Title
KR101614662B1 (en) Projection apparatus and projection method
TWI414874B (en) Projector apparatus using pulse-driven light sources of different colours
US9961313B2 (en) Laser projection display device
JP4743318B2 (en) Projection apparatus, projection method, and program
JP5225989B2 (en) Illumination system including multiple light sources
JP6186682B2 (en) Projection apparatus, projection method, and program
JP6331539B2 (en) Driving device, light source driving device, light source device, projection device, and driving method
JP6381227B2 (en) Calibration apparatus and calibration method
KR101562261B1 (en) Projection apparatus, projection method, and storage medium having program stored thereon, which provide high-quality image by effectively using spoke period
US20150333478A1 (en) A laser driver and method of operating a laser
JP2012068528A (en) Projection device, projection method, and program
WO2024024714A1 (en) Measurement range determining device, optical measuring device, optical measuring system, optical measuring method, display adjusting device and adjusting method, and program
RU2665271C1 (en) Method of configuring color temperature of a display device, display system, program for setting the color temperature of a display and a method of determining the color temperature of a display
JP5407254B2 (en) Projection apparatus, projection method, and program
JP2014197176A (en) Color control method
JP6083193B2 (en) Image output device, operation method of image output device, electronic circuit, electronic device, and program
JP6527572B2 (en) Laser projection display
JP2017201834A (en) Projection device, projection method and program
JP2013029621A (en) Display apparatus and adjustment method therefor
JP6288972B2 (en) Image display apparatus and control method thereof
JP2017116734A (en) Light source control device and light source control method
JP2017072854A (en) Imaging device, imaging method, and program
JP2014048543A (en) Projection device, projection method, and program
JP2013092780A (en) Projection apparatus, projection method and program
JP2016038935A (en) Led driving device, led driving method and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846444

Country of ref document: EP

Kind code of ref document: A1