WO2024024623A1 - Light source module and lighting device - Google Patents

Light source module and lighting device Download PDF

Info

Publication number
WO2024024623A1
WO2024024623A1 PCT/JP2023/026585 JP2023026585W WO2024024623A1 WO 2024024623 A1 WO2024024623 A1 WO 2024024623A1 JP 2023026585 W JP2023026585 W JP 2023026585W WO 2024024623 A1 WO2024024623 A1 WO 2024024623A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
source module
output
light source
Prior art date
Application number
PCT/JP2023/026585
Other languages
French (fr)
Japanese (ja)
Inventor
俊文 緒方
尚樹 藤谷
祐也 山本
美紀 若林
健太郎 西垣
龍永 安川
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024024623A1 publication Critical patent/WO2024024623A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S6/00Lighting devices intended to be free-standing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • F21Y2113/13Combination of light sources of different colours comprising an assembly of point-like light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • F21Y2113/13Combination of light sources of different colours comprising an assembly of point-like light sources
    • F21Y2113/17Combination of light sources of different colours comprising an assembly of point-like light sources forming a single encapsulated light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a light source module and a lighting fixture.
  • Patent Document 1 discloses a light source module including a blue-violet LED (Light Emitting Diode) and a white LED.
  • a blue-violet LED Light Emitting Diode
  • An object of the present invention is to provide a light source module and a lighting fixture that can emit output light that includes a violet component and is suitable for use in illumination.
  • a light source module is a light source module that emits output light, and includes a plurality of light emitting sections, the plurality of light emitting sections including light emitting sections that emit light of different light colors, and the light source module that emits output light.
  • the light includes light emitted by each of the plurality of light emitting parts, and in the output light, the ratio of the radiant flux in the wavelength range of 360 nm to 400 nm to the total radiant flux in the visible light region has the same correlated color as the output light.
  • the temperature is the same as sunlight.
  • a light source module is a light source module that emits output light, and includes a plurality of light emitting sections, the plurality of light emitting sections including light emitting sections that emit light of different light colors, and the light source module that emits output light.
  • the light includes light emitted by each of the plurality of light emitting parts, and in the output light, the radiant flux in the wavelength range of 360 nm to 400 nm per unit total luminous flux in the visible light region has the same correlated color temperature as the output light. is the same as sunlight.
  • a lighting fixture includes the light source module and a lighting circuit that supplies power to the light source module to light the light source module.
  • a light source module and a lighting fixture that can emit output light that includes a violet component and is suitable for use in illumination.
  • FIG. 1 is a perspective view showing an example of the appearance of a lighting fixture including a light source module according to a first embodiment.
  • FIG. 2 is a block diagram showing the configuration of the lighting fixture according to the first embodiment.
  • FIG. 3 is a plan view showing the light source module according to the first embodiment.
  • FIG. 4 is a sectional view showing a part of the light source module according to the first embodiment.
  • FIG. 5 is a diagram showing an example of the spectrum of the first light emitted by the first light emitting section according to the first embodiment.
  • FIG. 6 is a diagram showing an example of the spectrum of the second light emitted by the second light emitting section according to the first embodiment.
  • FIG. 7 is a diagram showing an example of the excitation spectrum of the phosphor included in the second light emitting section according to the first embodiment.
  • FIG. 8 is a diagram showing an example of the spectrum of output light emitted by the light source module according to the first embodiment.
  • FIG. 9 is a plan view showing a light source module according to a modification of the first embodiment.
  • FIG. 10 is a block diagram showing the configuration of a lighting fixture according to the second embodiment.
  • FIG. 11 is a diagram showing an example of the spectrum of output light emitted by the light source module according to the second embodiment and the spectrum of sunlight having the same correlated color temperature as the output light.
  • FIG. 12 is a block diagram showing the configuration of a lighting fixture according to a modification of the second embodiment.
  • FIG. 13 is an xy chromaticity diagram of the CIE1931 color space for explaining an example of a change in the correlated color temperature of output light in a lighting fixture according to a modification of the second embodiment.
  • each figure is a schematic diagram and is not necessarily strictly illustrated. Therefore, for example, the scales and the like in each figure do not necessarily match. Further, in each figure, substantially the same configurations are denoted by the same reference numerals, and overlapping explanations will be omitted or simplified.
  • ordinal numbers such as “first” and “second” do not mean the number or order of components, unless otherwise specified, and should be used to avoid confusion between similar components and to distinguish between them. It is used for the purpose of
  • the numerical value of the color deviation Duv is the numerical value of Duv, which is a representation of the color deviation from the black body radiation locus defined by JIS Z8725, that is, the numerical value of duv is 1000 times.
  • the numerical value of the color deviation Duv is 1000 times the numerical value of duv, unless otherwise specified, according to JIS Z8725.
  • FIG. 1 is a perspective view showing an example of the appearance of a lighting fixture 100 including a light source module 50 according to the present embodiment.
  • FIG. 2 is a block diagram showing the configuration of lighting fixture 100 according to this embodiment.
  • FIG. 3 is a plan view showing the light source module 50 according to this embodiment.
  • FIG. 4 is a cross-sectional view showing a part of the light source module 50 according to this embodiment.
  • FIG. 4 shows a cross section taken along the line IV--IV in FIG.
  • the lighting fixture 100 shown in FIG. 1 is, for example, a stand light. As shown in FIG. 2, the lighting fixture 100 includes a light source module 50 and a lighting circuit 70. The lighting fixture 100 further includes, for example, a head housing that houses the light source module 50, an arm that supports the head, and a main body to which the arm is attached. The lighting fixture 100 receives power supplied from a power supply device such as a commercial power supply, and uses the power to emit output light emitted by the light source module 50 as illumination light. Note that the lighting fixture 100 is not particularly limited as long as it is a lighting fixture used for lighting, and may be a ceiling light, a base light, a spotlight, a downlight, a pendant light, a wall light, a floor light, or the like.
  • the lighting fixture 100 is, for example, a residential lighting fixture installed in a child's room, a bedroom, a living room, a study, etc., but may also be a lighting fixture used in an office, store, commercial facility, factory, etc. .
  • the light source module 50 emits output light used as illumination.
  • the light color of the output light is, for example, white.
  • the light source module 50 includes a substrate 1, a first light emitting section 10, and a second light emitting section 20.
  • the light source module 50 includes a plurality of first light emitting sections 10 and a plurality of second light emitting sections 20.
  • the first light emitting section 10 is an example of a violet light emitting section
  • the second light emitting section 20 is an example of a white light emitting section. Note that in FIG. 3, a dot pattern is attached to the first light emitting section 10, but this is for distinguishing between the first light emitting section 10 and the second light emitting section 20. This does not mean that a dot pattern is attached to the .
  • the first light emitting section 10 and the second light emitting section 20 are each a surface mount device (SMD) light emitting module.
  • SMD surface mount device
  • the first light emitting unit 10 emits first light.
  • the second light emitting section 20 emits second light.
  • the output light emitted by the light source module 50 includes first light emitted by all the first light emitting sections 10 included in the light source module 50 and second light emitted by all the second light emitting sections 20 included in the light source module 50. That is, the output light of the light source module 50 is a mixed light of the first light and the second light. In the output light, the total radiant energy of the second light emitted by all the second light emitting sections 20 is, for example, greater than the total radiant energy of the first light emitted by all the first light emitting sections 10.
  • the plurality of first light emitting sections 10 and the plurality of second light emitting sections 20 are arranged on the substrate 1 so as to be spaced apart from each other.
  • the plurality of first light emitting sections 10 and the plurality of second light emitting sections 20 are regularly arranged in a line at equal intervals.
  • the number of second light emitting sections 20 is greater than the number of first light emitting sections 10.
  • the first light emitting section 10 and the second light emitting section 20 may be arranged in two or more rows, arranged in a ring shape, or arranged at grid points of a predetermined grid shape, for example. good.
  • the number of at least one of the first light emitting section 10 and the second light emitting section 20 may be one.
  • the arrangement of the first light emitting section 10 and the second light emitting section 20 is determined, for example, by creating several arrangement patterns, evaluating the light radiation characteristics, etc. of each arrangement pattern, and selecting the best arrangement pattern. be done.
  • the plurality of first light emitting sections 10 and the plurality of second light emitting sections 20 are mounted on the substrate 1 so that, for example, the same amount of current flows through them. Note that the plurality of first light emitting sections 10 and the plurality of second light emitting sections 20 may be mounted on the substrate 1 so that individual currents can flow therein independently.
  • the substrate 1 is a mounting substrate for mounting the first light emitting section 10 and the second light emitting section 20.
  • the substrate 1 is provided with metal wiring (not shown) for supplying power to the first light emitting section 10 and the second light emitting section 20.
  • the substrate 1 is, for example, an insulating substrate such as a ceramic substrate made of ceramics, a resin substrate made of resin, or a glass substrate.
  • the substrate 1 may be a metal base substrate (metal substrate) in which a metal plate is coated with an insulating film.
  • the first light emitting unit 10 includes a first light emitting element 11, a sealing member 15, and a package 17, as shown in FIG.
  • the first light emitting section 10 does not include, for example, a phosphor, and directly emits the light emitted by the first light emitting element 11 as the first light.
  • the first light is light containing a violet component having an intensity in the wavelength range of the violet component, and is, for example, violet light.
  • the output light can be used for illumination to obtain the effect of suppressing myopia in humans.
  • the wavelength range of the violet component can be considered to be, for example, a wavelength range of 350 nm or more and 410 nm or less.
  • the first light emitting element 11 is, for example, an LED chip, and is placed in the recess of the package 17.
  • the wavelength of the emission peak of the first light emitting element 11 is, for example, 350 nm or more and 410 nm or less, and may be 360 nm or more and 400 nm or less. Further, the wavelength of the light emission peak of the first light emitting element 11 is shorter than the wavelength of the light emission peak of the second light emitting element 21.
  • the sealing member 15 is a translucent resin material that seals the first light emitting element 11.
  • the translucent resin material is not particularly limited as long as it is a material that transmits the light emitted by the first light emitting element 11.
  • the transparent resin material for example, silicone resin, epoxy resin, urea resin, or the like is used.
  • the package 17 is, for example, a container molded into a predetermined shape using a resin material. Further, the package 17 is provided with wiring (not shown) connected to the first light emitting element 11.
  • the second light emitting section 20 includes a second light emitting element 21, a phosphor 22, a sealing member 25, and a package 27.
  • the second light emitting unit 20 emits light emitted by the second light emitting element 21 (specifically, light emitted by the second light emitting element 21 that is not absorbed by the phosphor 22) and light emitted by the phosphor 22.
  • the mixed light is emitted as white second light.
  • white light refers to the range of daylight color (symbol D), daylight white (symbol N), white (symbol W), warm white (symbol WW), and light bulb color (symbol L), or, It means a light color for illumination along the black body radiation locus or synthetic daylight locus with a correlated color temperature above or below, and is intended to be the narrow range of white (symbol W) in the chromaticity classification of light colors. It's not something you do.
  • the color deviation Duv of the second light and the output light is, for example, ⁇ 10 or more and +10 or less.
  • the second light emitting element 21 is, for example, an LED chip, and is placed in the recess of the package 27.
  • the wavelength of the emission peak of the second light emitting element 21 is, for example, 410 nm or more and 500 nm or less, and may be 420 nm or more and 470 nm or less.
  • the second light emitting element 21 emits, for example, blue light.
  • the phosphor 22 is excited by a portion of the light emitted by the second light emitting element 21, and emits light with a longer wavelength than the light emitted by the second light emitting element 21.
  • the phosphor 22 emits, for example, green light with an emission peak wavelength of 500 nm or more and 570 nm or less.
  • the phosphor 22 is dispersed in the sealing member 25.
  • the phosphor 22 is, for example, a yttrium aluminum garnet (YAG) phosphor or a lutetium aluminum garnet (LuAG) phosphor. By using these phosphors, it is possible to easily adjust the wavelength that exhibits a minimum value in the excitation spectrum of the phosphor 22, which will be described later.
  • the bandgap of the phosphor 22 changes, so the excitation spectrum of the phosphor 22 can be adjusted.
  • the color of the light emitted by the phosphor 22 is not limited to green, and may be a color other than green, such as yellow or red.
  • the second light emitting section 20 may further include another phosphor having a different emission peak wavelength from the phosphor 22 in order to adjust the color of the second light.
  • the sealing member 25 is a translucent resin material that seals the second light emitting element 21.
  • the translucent resin material is not particularly limited as long as it is a material that transmits the light emitted by the second light emitting element 21 and the phosphor 22.
  • the transparent resin material for example, silicone resin, epoxy resin, urea resin, or the like is used.
  • the package 27 is, for example, a container molded into a predetermined shape using a resin material. Further, the package 27 is provided with wiring (not shown) connected to the second light emitting element 21.
  • the second light emitted by the second light emitting unit 20 is adjusted to a desired light color by adjusting at least one of the output characteristics of the second light emitting element 21 and the type and amount of the phosphor 22.
  • the first light emitting unit 10 and the second light emitting unit 20 may not include the package 17 and the package 27, respectively, and the first light emitting element 11 and the second light emitting element 21 may be directly mounted on the substrate 1. That is, the light source module 50 may be a COB (Chip On Board) type module in which the first light emitting element 11 and the second light emitting element 21 are directly mounted on the substrate 1.
  • COB Chip On Board
  • the lighting circuit 70 is a circuit that lights up the light source module 50 by supplying power to the light source module 50.
  • the lighting circuit 70 supplies predetermined power (DC current) to each of the first light emitting section 10 and the second light emitting section 20, for example.
  • the lighting circuit 70 includes, for example, a circuit that converts alternating current supplied from a commercial power source into direct current.
  • the lighting fixture 100 may further include a control unit (control circuit) that performs dimming and color adjustment of the output light of the light source module 50.
  • the control unit controls, for example, the power that the lighting circuit 70 supplies to the light source module 50.
  • the lighting fixture 100 may further include an operation reception unit such as a switch or an input panel that receives an operation of the lighting fixture 100, a communication module for remote operation, and the like.
  • FIG. 5 is a diagram showing an example of the spectrum of the first light emitted by the first light emitting section 10 according to the present embodiment.
  • FIG. 6 is a diagram showing an example of the spectrum of the second light emitted by the second light emitting section 20 according to the present embodiment.
  • FIG. 7 is a diagram showing an example of the excitation spectrum of the phosphor 22 included in the second light emitting section 20 according to the present embodiment.
  • FIG. 8 is a diagram showing an example of the spectrum of output light emitted by the light source module 50 according to the present embodiment.
  • the horizontal axis represents wavelength (unit: nm).
  • the vertical axis represents the normalized luminescence intensity with the maximum value being 1. That is, FIGS.
  • the spectrum of the first light includes the emission peak of the light emitted by the first light emitting element 11.
  • the spectrum of the first light is, for example, the same as the spectrum of the light emitted by the first light emitting element 11, and the spectrum shown in FIG. 5 is the spectrum of the light emitted by the first light emitting element 11. It can be said that there is.
  • the wavelength of the emission peak of the first light emitting element 11 is about 380 nm, and the half width of the emission peak is about 10 nm.
  • the total emission intensity is included in the wavelength range of the violet component, for example.
  • the first light may have an emission intensity or an emission peak outside the wavelength range of the violet component (for example, on a longer wavelength side than the violet component) because the first light emitting section 10 contains a phosphor.
  • the maximum value of the emission intensity or the emission intensity at the emission peak is, for example, the emission peak of the light emitted by the first light emitting element 11. less than half the strength.
  • the radiant flux in the wavelength range of the violet component in the first light is the radiation outside the wavelength range of the violet component in the first light.
  • the number may be one or more times the number of bundles, or may be two or more times the number of bundles.
  • the spectrum of the second light includes an emission peak of the light emitted by the second light emitting element 21 and a broad emission peak of the light emitted by the phosphor 22.
  • FIG. 6 shows the spectrum of the second light when the correlated color temperature is 5000K.
  • the wavelength of the emission peak of the second light emitting element 21 is about 450 nm, and the half width of the emission peak is about 20 nm.
  • the wavelength of the light emitted by the phosphor 22 is approximately 580 nm.
  • the excitation spectrum of the phosphor 22 has a minimum value in the wavelength range from 350 nm to 410 nm in which the first light emitting element 11 has an emission intensity.
  • the excitation intensity of the phosphor 22 tends to be small in the wavelength range in which the first light emitting element 11 has an emission intensity of 350 nm or more and 410 nm or less.
  • the excitation spectrum of the phosphor 22 may have a minimum value in a wavelength range from 360 nm to 400 nm in which the first light emitting element 11 has an emission intensity.
  • the excitation spectrum of the phosphor 22 has a minimum value within the half width of the emission peak of the first light emitting element 11, for example.
  • the excitation spectrum of the phosphor 22 has a minimum value of excitation intensity at about 380 nm. Therefore, in the examples shown in FIGS. 5 and 7, the wavelength of the emission peak of the first light emitting element 11 and the wavelength at which the excitation spectrum of the phosphor 22 shows the minimum value match. Note that when the second light emitting section 20 includes another phosphor other than the phosphor 22, the excitation spectrum of the other phosphor also has a minimum value in the wavelength range in which the first light emitting element 11 has an emission intensity. Good too.
  • the excitation spectrum of the phosphor 22 has a maximum excitation intensity peak at a wavelength of about 430 nm.
  • the excitation intensity at the wavelength of the emission peak of the first light emitting element 11 is, for example, the excitation intensity at the wavelength of the emission peak of the second light emitting element 21 (approximately 450 nm in this example). It is half or less of the excitation intensity, and may be one-third or less. Thereby, excitation of the phosphor 22 by the first light can be suppressed while increasing the light emission efficiency of the second light emitting section 20.
  • the excitation intensity at the minimum value is, for example, less than half, and may be less than one-third, the excitation intensity at the maximum peak.
  • the excitation spectrum of the phosphor 22 has a minimum value in the wavelength range in which the first light emitting element 11 has an emission intensity. Therefore, even if a portion of the first light emitted from the first light emitting section 10 enters the second light emitting section 20 due to diffusion or the like, the fluorescent substance 22 is hardly excited by the incident first light. This prevents the phosphor 22 from emitting light of an unintended wavelength due to the first light, and even when the light source module 50 has the first light emitting section 10, the white second light emitted by the second light emitting section 20 is suppressed. Changes in light color are suppressed.
  • the light emitted by the phosphor 22 has a longer wavelength than the excitation light, so the light emitted by the phosphor 22 excited by the first light is longer than the wavelength of the first light, and the human visibility is As the wavelength increases, it has a large effect on the color of light perceived by humans. For example, human visibility at 400 nm is 10 times greater than human visibility at 380 nm. Therefore, in the second light emitting unit 20, by suppressing the excitation of the phosphor 22 by the first light, it is possible to suppress a change in light color from white, which is suitable for illumination. Furthermore, since the first light is less likely to be absorbed by the phosphor 22, it is possible to suppress a decrease in the amount of the first light including the violet component in the output light. Therefore, the light source module 50 can effectively emit output light that includes a violet component and is used for illumination. Therefore, the output light of the light source module 50 can be used, for example, for illumination that has a myopia suppressing effect.
  • the spectrum of the output light is a spectrum obtained by adding the spectrum of the first light and the spectrum of the second light at a predetermined ratio.
  • the predetermined ratio is adjusted, for example, by the number of the first light emitting sections 10 and the second light emitting sections 20 included in the light source module 50, the outputs of the first light emitting sections 10 and the second light emitting sections 20, and the like.
  • the spectrum shown in FIG. 8 is, for example, a spectrum of output light when the same current is passed through the first light emitting section 10 and the second light emitting section 20 included in the light source module 50.
  • the output light has the highest emission intensity, for example, at the wavelength of the emission peak of the first light emitting element 11 (approximately 380 nm in this example).
  • the light source module 50 is a light source module 50 that emits output light, and includes the first light emitting section 10 that emits the first light, and the second light emitting section that emits the second white light. 20.
  • the first light emitting section 10 has a first light emitting element 11.
  • the second light emitting section 20 includes a second light emitting element 21 and a phosphor 22 that is excited by the light from the second light emitting element 21 and emits light.
  • the output light includes first light and second light.
  • the wavelength of the light emission peak of the first light emitting element 11 is shorter than the wavelength of the light emission peak of the second light emitting element 21, and is 350 nm or more and 410 nm or less.
  • the excitation spectrum of the phosphor 22 has a minimum value in the wavelength range from 350 nm to 410 nm in which the first light emitting element 11 has an emission intensity.
  • the phosphor 22 is unlikely to be excited by the incident first light. Therefore, the phosphor 22 is suppressed from emitting light of an unintended wavelength due to the first light, and even when the light source module 50 has the first light emitting section 10, the white second light emitted by the second light emitting section 20 is suppressed. Color changes are suppressed. That is, in the second light emitting section 20, by suppressing the excitation of the phosphor 22 by the first light, it is possible to suppress a change in the light color from white, which is suitable for illumination. Furthermore, since the first light is less likely to be absorbed by the phosphor 22, it is possible to suppress a decrease in the amount of the first light including the violet component in the output light. Therefore, the light source module 50 can effectively emit output light containing a violet component.
  • the excitation spectrum of the phosphor 22 has a minimum value within the range of the half width of the emission peak of the first light emitting element 11.
  • the intensity at the wavelength of the emission peak of the first light emitting element 11 is less than half the intensity at the wavelength of the emission peak of the second light emitting element 21.
  • the output light of the light source module 50 has the highest emission intensity at the wavelength of the emission peak of the first light emitting element 11.
  • the lighting fixture 100 includes a light source module 50 and a lighting circuit 70 that supplies the light source module 50 with electric power for lighting the light source module 50.
  • the lighting fixture 100 that can effectively emit output light containing a violet component.
  • FIG. 9 is a plan view showing a light source module 50a according to this modification.
  • the plurality of first light emitting parts 10 and the plurality of second light emitting parts 20 are not arranged at equal intervals, compared to the light source module 50 according to the first embodiment. They differ in some respects.
  • the light source module 50a is used in the lighting fixture 100 instead of the light source module 50, for example.
  • the plurality of first light emitting sections 10 include a first light emitting section 10a that is one of the plurality of first light emitting sections 10.
  • the plurality of second light emitting sections 20 include a second light emitting section 20a closest to the first light emitting section 10a among the plurality of second light emitting sections 20, and a second light emitting section 20a closest to the first light emitting section 10a among the plurality of second light emitting sections 20.
  • the closest second light emitting unit 20b is included.
  • the first light emitting section 10a is an example of a first violet light emitting section.
  • the second light emitting section 20a is an example of the first white light emitting section.
  • the second light emitting section 20b is an example of a second white light emitting section.
  • the first light emitting section 10a, the second light emitting section 20a, and the second light emitting section 20b are arranged in a line in this order, for example.
  • the distance W1 between the first light emitting section 10a and the second light emitting section 20a is longer than the distance W2 between the second light emitting section 20a and the second light emitting section 20b.
  • the distance W1 between the second light emitting section 20a and the first light emitting section 10a closest to the second light emitting section 20a becomes longer, and the first light emitted by the first light emitting section 10a enters the second light emitting section 20a. It becomes difficult.
  • excitation of the phosphor 22 by the first light is further suppressed. Therefore, it is possible to further suppress a change in the light color of the second light and a decrease in the amount of the first light in the output light.
  • each of the plurality of second light emitting units 20 has a distance to the first light emitting unit 10 closest to itself than a distance to a second light emitting unit 20 other than itself, which is closest to itself. It's also long.
  • At least one first light emitting section 10 includes the first light emitting section 10a
  • at least one second light emitting section 20 includes the first light emitting section 10a.
  • a second light emitting section 20a closest to the first light emitting section 10a
  • a second light emitting section 20b closest to the second light emitting section 20a.
  • the distance W1 between the first light emitting section 10a and the second light emitting section 20a is longer than the distance W2 between the second light emitting section 20a and the second light emitting section 20b.
  • Embodiment 2 Next, a second embodiment will be described. Below, the explanation will focus on the differences between Embodiment 1 and the modification of Embodiment 1, and the explanation of common points will be omitted or simplified.
  • FIG. 10 is a block diagram showing the configuration of lighting fixture 200 according to this embodiment. As shown in FIG. 10, lighting fixture 200 differs from lighting fixture 100 according to Embodiment 1 in that it includes a light source module 250 instead of light source module 50.
  • the light source module 250 has a plurality of light emitting parts including at least one first light emitting part 10 and at least one second light emitting part 20, like the light source module 50, but has a different spectrum of output light from the light source module 50. .
  • the configuration of the light source module 250 is the same as that of the light source module 50, for example, except that a plurality of light emitting parts are configured to emit output light with a spectrum different from that of the light source module 50.
  • the output light emitted by the light source module 250 includes first light emitted by all the first light emitting sections 10 included in the light source module 250 and second light emitted by all the second light emitting sections 20 included in the light source module 250.
  • the light source module 250 has a different spectrum of output light from the light source module 50 because, for example, the number of first light emitting units 10 and second light emitting units 20 provided is different from that of the light source module 50. Note that the light source module 250 is different from the light source module 50 in that at least one of the light emitting characteristics of the first light emitting element 11, the second light emitting element 21, and the phosphor 22 is different from the light source module 50, so that even if the spectrum of the output light is different from that of the light source module 50, good.
  • FIG. 11 is a diagram showing an example of the spectrum of output light emitted by the light source module 250 according to this embodiment and the spectrum of sunlight having the same correlated color temperature as the output light.
  • the horizontal axis represents wavelength (unit: nm).
  • the vertical axis represents the normalized light emission intensity with the maximum value being 1.
  • the spectra of each of the first light and the second light and the excitation spectrum of the phosphor 22 are, for example, the spectra shown in FIGS. 5 to 7, respectively.
  • the spectrum of the output light shown in FIG. 11 is the spectrum when the correlated color temperature of the output light is 5000K.
  • the spectrum of sunlight shown in FIG. 11 is the spectrum of light from a standard light source (so-called CIE standard illuminant D50) with a D series correlated color temperature of 5000 K defined by the Commission Internationale de l'Eclairage (CIE).
  • CIE Commission Internationale de l'Eclairage
  • the spectrum of sunlight can be regarded as the spectrum of light from standard light sources of each correlated color temperature defined by the International Commission on Illumination. That is, in this specification, sunlight can be considered as standard light source light of each correlated color temperature defined by the International Commission on Illumination.
  • the spectrum of the output light is a spectrum obtained by adding the spectrum of the first light shown in FIG. 5 and the spectrum of the second light shown in FIG. 6 at a predetermined ratio.
  • the predetermined ratio is adjusted, for example, by the number of the first light emitting sections 10 and the second light emitting sections 20 included in the light source module 250, the outputs of the first light emitting sections 10 and the second light emitting sections 20, and the like.
  • the spectrum of the output light shown in FIG. 11 is, for example, the spectrum of the output light when the same current is passed through the first light emitting section 10 and the second light emitting section 20 included in the light source module 250.
  • the ratio of the radiant flux in the wavelength range of 360 nm to 400 nm (the range between the dashed lines in FIG. 11) to the total radiant flux in the visible light region of the output light has the same correlated color as the output light. It is the same as the ratio of the radiant flux in the wavelength range of 360 nm to 400 nm to the total radiant flux in the visible light region of sunlight at a certain temperature.
  • the radiant flux of the output light in the wavelength range of 360 nm to 400 nm per unit total luminous flux in the visible light region is the same as that of the output light.
  • the light source module 250 can emit output light that includes a violet component and is suitable for use in illumination. Therefore, the light source module 250 can be used, for example, for illumination that has a myopia suppressing effect.
  • output light containing the violet component which is missing in general lighting sources, is emitted, it becomes possible to provide more desirable lighting for people.
  • the visible light region can be regarded as a wavelength range of, for example, 360 nm or more and 780 nm or less.
  • the radiant flux of output light and sunlight corresponds to the area of the spectrum shown in FIG. Therefore, when the wavelength is ⁇ , the spectrum of the output light is P L ( ⁇ ), and the spectrum of sunlight is P S ( ⁇ ), the total radiant flux ⁇ Lall of the output light in the visible light region and 360 nm to 400 nm
  • the radiant flux ⁇ Lv in the wavelength range, the total radiant flux ⁇ Sall in the visible light region of sunlight, and the radiant flux ⁇ Sv in the wavelength range from 360 nm to 400 nm are calculated by the following formula.
  • P L ( ⁇ ) and P S ( ⁇ ) are functions of wavelength (unit: nm).
  • K( ⁇ ) is a function of wavelength (unit: nm).
  • the radiant flux ⁇ Lv /total radiant flux ⁇ Lall is the same as the radiant flux ⁇ Sv /total radiant flux ⁇ Sall .
  • the radiant flux is The flux ⁇ Lv /total luminous flux ⁇ VLall is the same as the radiant flux ⁇ Sv /total luminous flux ⁇ VSall .
  • being the same means being substantially the same.
  • substantially the same means, for example, that there is a difference of ⁇ 30% or less regardless of which value is used as a reference.
  • substantially the same may mean a difference of ⁇ 20% or less no matter which value is used as the standard, or a difference of ⁇ 10% or less no matter which value is used as the standard. It can mean something.
  • the output light has the highest emission intensity at, for example, the wavelength of the emission peak of the second light emitting element 21 (about 450 nm in this example).
  • the number of peaks (maximum) in the spectrum of the output light is three in the example shown in FIG. 11.
  • the number of peaks in the spectrum of the output light is not limited to three, but may be, for example, seven or less, or five or less. Thereby, the light source module 250 can be realized with a simple configuration. Further, the number of peaks in the spectrum of the output light is, for example, three or more.
  • the plurality of light emitting parts included in the light source module 250 are not limited to the above example.
  • the light source module 250 may include a plurality of light emitting sections each having a plurality of LED chips that emit light of different colors instead of the second light emitting section 20.
  • the light source module 250 is a light source module 250 that emits output light, and includes a plurality of light emitting sections.
  • the plurality of light emitting sections include a plurality of light emitting sections that emit light of mutually different colors.
  • the output light includes light emitted from each of the plurality of light emitting sections.
  • the ratio of the radiant flux in the wavelength range of 360 nm to 400 nm to the total radiant flux in the visible light region is the same as that of sunlight having the same correlated color temperature as the output light of the light source module 250.
  • the output light contains violet components in the same proportion as sunlight, so even if the output light includes violet components, the burden on people can be reduced. Therefore, the light source module 250 can emit output light that includes a violet component and is suitable for use in illumination. Moreover, since the above ratio can be calculated using radiant flux, it is possible to use a numerical value directly connected to the energy radiated to a person.
  • the light source module 250 is a light source module 250 that emits output light, and includes a plurality of light emitting sections.
  • the plurality of light emitting sections include a plurality of light emitting sections that emit light of mutually different colors.
  • the output light includes light emitted from each of the plurality of light emitting sections.
  • the radiant flux in the wavelength range of 360 nm or more and 400 nm or less per unit total luminous flux in the visible light region is the same as sunlight having the same correlated color temperature as the output light of the light source module 250.
  • the output light contains violet components in the same proportion as sunlight, so even if the output light includes violet components, the burden on people can be reduced. Therefore, the light source module 250 can emit output light that includes a violet component and is suitable for use in illumination. Furthermore, since the radiant flux per unit total luminous flux is used, it is easy to apply to lighting design.
  • the plurality of light emitting units include a first light emitting unit 10 that emits first light, and a second light emitting unit 20 that emits white second light.
  • the first light emitting section 10 has a first light emitting element 11.
  • the second light emitting section 20 includes a second light emitting element 21 and a phosphor 22 that is excited by the light from the second light emitting element 21 and emits light.
  • the output light includes first light and second light.
  • the wavelength of the light emission peak of the first light emitting element 11 is shorter than the wavelength of the light emission peak of the second light emitting element 21, and is 360 nm or more and 400 nm or less.
  • the excitation spectrum of the phosphor 22 has a minimum value in a wavelength range from 360 nm to 400 nm, in which the first light emitting element 11 has an emission intensity.
  • the phosphor 22 is unlikely to be excited by the incident first light. Therefore, the phosphor 22 is suppressed from emitting light of an unintended wavelength due to the first light, and even when the light source module 250 has the first light emitting section 10, the white second light emitted by the second light emitting section 20 is suppressed. Color changes are suppressed. Furthermore, since the first light is less likely to be absorbed by the phosphor 22, it is possible to suppress a decrease in the amount of the first light including the violet component in the output light.
  • the excitation spectrum of the phosphor 22 has a minimum value within the range of the half width of the emission peak of the first light emitting element 11.
  • the lighting fixture 200 includes a light source module 250 and a lighting circuit 70 that supplies the light source module 250 with power for lighting the light source module 250.
  • the lighting fixture 200 that can emit output light that includes a violet component and is suitable for use in illumination.
  • FIG. 12 is a block diagram showing the configuration of a lighting fixture 200a according to this modification.
  • the lighting fixture 200a is different from the lighting fixture 200 according to the second embodiment in that it includes a light source module 250a instead of the light source module 250, and that it additionally includes a control unit 90. There is a difference.
  • the light source module 250a includes a first light emitting section 10, a second light emitting section 20, and a third light emitting section 30. That is, the light source module 250a includes the third light emitting section 30 in addition to the configuration of the light source module 250.
  • the third light emitting unit 30 emits white third light.
  • the output light emitted by the light source module 250a includes the first light emitted by all the first light emitting parts 10 included in the light source module 250a, the second light emitted by all the second light emitting parts 20 included in the light source module 250a, and the light source module 250a. includes the third light emitted by all the third light emitting units 30 included in the third light emitting unit 30 . Note that under the control of the control unit 90, one of the second light emitting unit 20 and the third light emitting unit 30 may not emit light, and the output light may not include one of the second light and the third light.
  • the third light emitting section 30 has the same configuration as the second light emitting section 20, except that the correlated color temperature of the emitted light is different.
  • the third light emitting section 30 includes, for example, a light emitting element, a phosphor, a sealing member, and a package, similarly to the second light emitting section 20 shown in FIG. 4 .
  • the light emitting element, phosphor, sealing member, and package of the third light emitting section 30 may have the configurations exemplified in the second light emitting element 21, the phosphor 22, the sealing member 25, and the package 27 of the second light emitting section 20. .
  • the excitation spectrum of the phosphor included in the third light emitting section 30 may have a minimum value in a wavelength range from 360 nm to 400 nm in which the first light emitting element 11 has an emission intensity.
  • the third light emitting unit 30 has at least one of the output characteristics of the light emitting element and the type and amount of the phosphor different from the configuration of the corresponding second light emitting element, so that the correlated color temperature of the emitted light is different from that of the second light emitting element. This is different from part 20.
  • the lighting of the first light emitting section 10, the second light emitting section 20, and the third light emitting section 30 is controlled independently.
  • the first light emitting section 10, the second light emitting section 20, and the third light emitting section 30 are mounted on a substrate so that power can be supplied independently.
  • the control unit 90 controls the light emission of the light source module 250a.
  • the control section 90 adjusts the output of each of the first light emitting section 10, the second light emitting section 20, and the third light emitting section 30.
  • the control unit 90 independently supplies power to the first light emitting unit 10, the second light emitting unit 20, and the third light emitting unit 30 using the lighting circuit 70, and changes the amount of current individually. Adjust the amount of each of the first light, second light, and third light. Thereby, the control unit 90 changes the correlated color temperature of the output light.
  • the control of the outputs of the first light emitting section 10, the second light emitting section 20, and the third light emitting section 30 by the control section 90 may be PWM (Pulse Width Modulation) control.
  • control unit 90 is realized by, for example, an LSI (Large Scale Integration) that is an integrated circuit (IC).
  • the integrated circuit is not limited to an LSI, and may be a dedicated circuit or a general-purpose processor.
  • the control unit 90 may be a microcontroller.
  • a microcontroller includes, for example, a nonvolatile memory in which a program is stored, a volatile memory that is a temporary storage area for executing the program, an input/output port, a processor that executes the program, and the like.
  • the control unit 90 may be a programmable FPGA (Field Programmable Gate Array) or a reconfigurable processor in which connections and settings of circuit cells within the LSI can be reconfigured.
  • the functions executed by the control unit 90 may be realized by software or hardware.
  • FIG. 13 is an xy chromaticity diagram of the CIE1931 color space for explaining an example of a change in the correlated color temperature of output light in the lighting fixture 200a according to this modification.
  • FIG. 13 shows a case where the second light emitting section 20 emits the second light with the chromaticity coordinate L2, and the third light emitting section 30 emits the third light with the chromaticity coordinate L3.
  • the correlated color temperature of the second light is 6500K
  • the correlated color temperature of the third light is 3000K.
  • the correlated color temperature of the second light and the third light is not particularly limited, and is set according to the range in which the correlated color temperature of the output light is desired to be adjusted.
  • the chromaticity coordinate L2 of the second light and the chromaticity coordinate L3 of the third light are chromaticity coordinates on the blackbody radiation locus, but they are far from the blackbody radiation locus. It's okay.
  • at least one of the chromaticity coordinate L2 of the second light and the chromaticity coordinate L3 of the third light may be a chromaticity coordinate outside the specified range of correlated color temperature.
  • the output light includes the first light in addition to the second light and the third light
  • the first light has a small influence on the correlated color temperature of the output light. Therefore, the correlated color temperature of the output light is approximately determined by the ratio of the light amounts of the second light and the third light. In the following description, in order to simplify the explanation, it will be assumed that the correlated color temperature of the output light is determined by the ratio of the light amounts of the second light and the third light.
  • the control unit 90 controls the ratio of the output of the second light emitting unit 20 and the output of the third light emitting unit 30 to convert the chromaticity coordinates of the light in which the second light and the third light are mixed into chromaticity coordinates. It is changed between L2 and chromaticity coordinate L3. Due to this change, the correlated color temperature of the output light also changes between the correlated color temperature of the second light and the correlated color temperature of the third light.
  • control unit 90 controls the output light so that the ratio of the radiant flux in the wavelength range of 360 nm to 400 nm to the total radiant flux in the visible light region is within the visible light region of sunlight having the same correlated color temperature as the output light.
  • the correlated color temperature of the output light is changed so that the ratio of the radiant flux in the wavelength range of 360 nm to 400 nm to the total radiant flux is the same.
  • the control unit 90 also controls the control unit 90 to control how the radiant flux in the wavelength range of 360 nm or more and 400 nm or less per unit total luminous flux in the visible light region of the output light is the unit in the visible light region of sunlight having the same correlated color temperature as the output light.
  • the correlated color temperature of the output light is changed so that the radiant flux in the wavelength range of 360 nm or more and 400 nm or less per total luminous flux is the same.
  • the control unit 90 controls, for example, to increase the output of the first light emitting unit 10 when increasing the correlated color temperature of the output light, and controls the output of the first light emitting unit 10 to increase when decreasing the correlated color temperature of the output light. Control is performed to reduce the output of the light emitting section 10.
  • the control unit 90 creates a data table that associates the correlated color temperature of the output light with the amount of power supplied (current amount) to each of the first light emitting unit 10, the second light emitting unit 20, and the third light emitting unit 30.
  • the data table can be designed from the output characteristics of the first light emitting section 10, the second light emitting section 20, and the third light emitting section 30, and the spectra of the first light, second light, and third light.
  • the lighting fixture 200a includes the control section 90 that changes the correlated color temperature of output light by adjusting the output of each of the plurality of light emitting sections of the light source module 250a.
  • the control unit 90 may control the ratio of the radiant flux in the wavelength range of 360 nm to 400 nm to the total radiant flux in the visible light region from sunlight with the same correlated color temperature as the output light of the light source module 250a.
  • the correlated color temperature of the output light of the light source module 250a is changed so that the correlated color temperature is the same as that of the light.
  • control unit 90 may control the control unit 90 so that the output light of the light source module 250a has a radiant flux in a wavelength range of 360 nm or more and 400 nm or less per unit total luminous flux in the visible light region, which has the same correlated color temperature as the output light of the light source module 250a.
  • the correlated color temperature of the output light of the light source module 250a is changed so that it is the same as sunlight.
  • At least one of the first light emitting element 11 and the second light emitting element 21 may not be an LED chip.
  • at least one of the first light emitting element 11 and the second light emitting element 21 may be an element other than an LED chip, such as a laser element or an organic EL (Electroluminescence) element.
  • the second light emitting section 20 may include a sintered body of the phosphor 22 instead of the sealing member 25 in which the phosphor 22 is dispersed. Further, the second light emitting section 20 may be a remote phosphor type light emitting module.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Fastening Of Light Sources Or Lamp Holders (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

This light source module is for emitting output light and comprises a plurality of light emission units. The plurality of light emission units include a plurality of light emission units that emit light having light colors different from each other. The output light includes light emitted from each of the light emission units. Regarding the output light of the light source module, the ratio of radiant fluxes within the wavelength range of 360-400 nm to all radiant fluxes in the visible light region is the same between the output light of the light source module and sunlight having the same correlated color temperature as the output light.

Description

光源モジュール及び照明器具Light source module and lighting equipment
 本発明は、光源モジュール及び照明器具に関する。 The present invention relates to a light source module and a lighting fixture.
 特許文献1には、青紫色LED(Light Emitting Diode)と、白色LEDと、を備える光源モジュールが開示されている。 Patent Document 1 discloses a light source module including a blue-violet LED (Light Emitting Diode) and a white LED.
特表2019-525413号公報Special table 2019-525413 publication
 近年、紫色の光が人の近視抑制に効果があるとの知見が報告されている。従来技術において、紫色成分を含む光を人に対する照明として用いる場合に適切な光源モジュールの構成についての開示は無い。 In recent years, findings have been reported that purple light is effective in suppressing myopia in people. In the prior art, there is no disclosure regarding the configuration of a light source module suitable for using light containing a violet component as illumination for a person.
 本発明は、紫色成分を含み、かつ、照明に用いることに適した出力光を発することができる光源モジュール及び照明器具を提供することを目的とする。 An object of the present invention is to provide a light source module and a lighting fixture that can emit output light that includes a violet component and is suitable for use in illumination.
 本発明の一態様に係る光源モジュールは、出力光を発する光源モジュールであって、複数の発光部を備え、前記複数の発光部は、互いに異なる光色の光を発する発光部を含み、前記出力光は、前記複数の発光部のそれぞれが発する光を含み、前記出力光において、可視光領域における全放射束に対する360nm以上400nm以下の波長範囲の放射束の割合は、前記出力光と同じ相関色温度の太陽光と同一である。 A light source module according to one aspect of the present invention is a light source module that emits output light, and includes a plurality of light emitting sections, the plurality of light emitting sections including light emitting sections that emit light of different light colors, and the light source module that emits output light. The light includes light emitted by each of the plurality of light emitting parts, and in the output light, the ratio of the radiant flux in the wavelength range of 360 nm to 400 nm to the total radiant flux in the visible light region has the same correlated color as the output light. The temperature is the same as sunlight.
 本発明の一態様に係る光源モジュールは、出力光を発する光源モジュールであって、複数の発光部を備え、前記複数の発光部は、互いに異なる光色の光を発する発光部を含み、前記出力光は、前記複数の発光部のそれぞれが発する光を含み、前記出力光において、可視光領域における単位全光束あたりの360nm以上400nm以下の波長範囲の放射束が、前記出力光と同じ相関色温度の太陽光と同一である。 A light source module according to one aspect of the present invention is a light source module that emits output light, and includes a plurality of light emitting sections, the plurality of light emitting sections including light emitting sections that emit light of different light colors, and the light source module that emits output light. The light includes light emitted by each of the plurality of light emitting parts, and in the output light, the radiant flux in the wavelength range of 360 nm to 400 nm per unit total luminous flux in the visible light region has the same correlated color temperature as the output light. is the same as sunlight.
 本発明の一態様に係る照明器具は、上記光源モジュールと、前記光源モジュールを点灯するための電力を前記光源モジュールに供給する点灯回路と、を備える。 A lighting fixture according to one aspect of the present invention includes the light source module and a lighting circuit that supplies power to the light source module to light the light source module.
 本発明によれば、紫色成分を含み、かつ、照明に用いることに適した出力光を発することができる光源モジュール及び照明器具を提供できる。 According to the present invention, it is possible to provide a light source module and a lighting fixture that can emit output light that includes a violet component and is suitable for use in illumination.
図1は、実施の形態1に係る光源モジュールを備える照明器具の外観の一例を示す斜視図である。FIG. 1 is a perspective view showing an example of the appearance of a lighting fixture including a light source module according to a first embodiment. 図2は、実施の形態1に係る照明器具の構成を示すブロック図である。FIG. 2 is a block diagram showing the configuration of the lighting fixture according to the first embodiment. 図3は、実施の形態1に係る光源モジュールを示す平面図である。FIG. 3 is a plan view showing the light source module according to the first embodiment. 図4は、実施の形態1に係る光源モジュールの一部を示す断面図である。FIG. 4 is a sectional view showing a part of the light source module according to the first embodiment. 図5は、実施の形態1に係る第1発光部が発する第1光のスペクトルの一例を示す図である。FIG. 5 is a diagram showing an example of the spectrum of the first light emitted by the first light emitting section according to the first embodiment. 図6は、実施の形態1に係る第2発光部が発する第2光のスペクトルの一例を示す図である。FIG. 6 is a diagram showing an example of the spectrum of the second light emitted by the second light emitting section according to the first embodiment. 図7は、実施の形態1に係る第2発光部が有する蛍光体の励起スペクトルの一例を示す図である。FIG. 7 is a diagram showing an example of the excitation spectrum of the phosphor included in the second light emitting section according to the first embodiment. 図8は、実施の形態1に係る光源モジュールが発する出力光のスペクトルの一例を示す図である。FIG. 8 is a diagram showing an example of the spectrum of output light emitted by the light source module according to the first embodiment. 図9は、実施の形態1の変形例に係る光源モジュールを示す平面図である。FIG. 9 is a plan view showing a light source module according to a modification of the first embodiment. 図10は、実施の形態2に係る照明器具の構成を示すブロック図である。FIG. 10 is a block diagram showing the configuration of a lighting fixture according to the second embodiment. 図11は、実施の形態2に係る光源モジュールが発する出力光のスペクトル及び出力光と同じ相関色温度の太陽光のスペクトルの一例を示す図である。FIG. 11 is a diagram showing an example of the spectrum of output light emitted by the light source module according to the second embodiment and the spectrum of sunlight having the same correlated color temperature as the output light. 図12は、実施の形態2の変形例に係る照明器具の構成を示すブロック図である。FIG. 12 is a block diagram showing the configuration of a lighting fixture according to a modification of the second embodiment. 図13は、実施の形態2の変形例に係る照明器具における出力光の相関色温度の変化の一例を説明するためのCIE1931色空間のxy色度図である。FIG. 13 is an xy chromaticity diagram of the CIE1931 color space for explaining an example of a change in the correlated color temperature of output light in a lighting fixture according to a modification of the second embodiment.
 以下では、本発明の実施の形態に係る光源モジュール及び照明器具について、図面を用いて詳細に説明する。なお、以下に説明する実施の形態は、いずれも本発明の一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する趣旨ではない。以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, a light source module and a lighting fixture according to an embodiment of the present invention will be described in detail using the drawings. Note that all of the embodiments described below are specific examples of the present invention. Therefore, the numerical values, shapes, materials, components, arrangement and connection forms of the components, steps, order of steps, etc. shown in the following embodiments are merely examples, and are not intended to limit the present invention. Among the constituent elements in the following embodiments, constituent elements not stated in the independent claims will be described as arbitrary constituent elements.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、例えば、各図において縮尺などは必ずしも一致しない。また、各図において、実質的に同一の構成については同一の符号を付しており、重複する説明は省略又は簡略化する。 Furthermore, each figure is a schematic diagram and is not necessarily strictly illustrated. Therefore, for example, the scales and the like in each figure do not necessarily match. Further, in each figure, substantially the same configurations are denoted by the same reference numerals, and overlapping explanations will be omitted or simplified.
 また、本明細書において、要素間の関係性を示す用語、及び、要素の形状を示す用語、並びに、数値範囲は、厳格な意味のみを表す表現ではなく、実質的に同等な範囲、例えば数%程度の差異をも含むことを意味する表現である。 In addition, in this specification, terms that indicate relationships between elements, terms that indicate the shape of elements, and numerical ranges are not expressions that express only strict meanings, but are used to indicate substantially equivalent ranges, such as numerical values. This expression means that it also includes a difference of about %.
 また、本明細書において、「第1」、「第2」などの序数詞は、特に断りの無い限り、構成要素の数又は順序を意味するものではなく、同種の構成要素の混同を避け、区別する目的で用いられている。 In addition, in this specification, ordinal numbers such as "first" and "second" do not mean the number or order of components, unless otherwise specified, and should be used to avoid confusion between similar components and to distinguish between them. It is used for the purpose of
 また、本明細書において、色偏差Duvの数値は、JIS Z8725により定められる黒体放射軌跡からの色偏差の表記であるDuvの数値、つまり、duvの数値の1000倍である。言い換えると、本明細書において、色偏差Duvの数値は、特に言及がない限り、JIS Z8725に準じ、duvの数値の1000倍とする。 Furthermore, in this specification, the numerical value of the color deviation Duv is the numerical value of Duv, which is a representation of the color deviation from the black body radiation locus defined by JIS Z8725, that is, the numerical value of duv is 1000 times. In other words, in this specification, the numerical value of the color deviation Duv is 1000 times the numerical value of duv, unless otherwise specified, according to JIS Z8725.
 (実施の形態1)
 [構成]
 まず、実施の形態1に係る光源モジュール及び照明器具の構成について、図1から図4を用いて説明する。
(Embodiment 1)
[composition]
First, the configurations of a light source module and a lighting fixture according to Embodiment 1 will be described using FIGS. 1 to 4.
 図1は、本実施の形態に係る光源モジュール50を備える照明器具100の外観の一例を示す斜視図である。図2は、本実施の形態に係る照明器具100の構成を示すブロック図である。図3は、本実施の形態に係る光源モジュール50を示す平面図である。図4は、本実施の形態に係る光源モジュール50の一部を示す断面図である。図4は、図3のIV-IV線における断面を表している。 FIG. 1 is a perspective view showing an example of the appearance of a lighting fixture 100 including a light source module 50 according to the present embodiment. FIG. 2 is a block diagram showing the configuration of lighting fixture 100 according to this embodiment. FIG. 3 is a plan view showing the light source module 50 according to this embodiment. FIG. 4 is a cross-sectional view showing a part of the light source module 50 according to this embodiment. FIG. 4 shows a cross section taken along the line IV--IV in FIG.
 図1に示される照明器具100は、例えばスタンドライトである。図2に示されるように、照明器具100は、光源モジュール50と、点灯回路70とを備える。また、照明器具100は、例えば、光源モジュール50を収容するヘッド部筐体と、ヘッド部を支持するアームと、アームが取り付けられた本体とをさらに備える。照明器具100は、商用電源などの電源装置から供給される電力を受け、当該電力によって光源モジュール50が発する出力光を照明光として照射する。なお、照明器具100は、照明に用いられる照明器具であれば特に制限されず、シーリングライト、ベースライト、スポットライト、ダウンライト、ペンダントライト、ウォールライト又はフロアライトなどであってもよい。また、照明器具100は、例えば、子供部屋、寝室、リビング又は書斎等に設置される住宅用の照明器具であるが、オフィス、店舗、商業施設及び工場等に用いられる照明器具であってもよい。 The lighting fixture 100 shown in FIG. 1 is, for example, a stand light. As shown in FIG. 2, the lighting fixture 100 includes a light source module 50 and a lighting circuit 70. The lighting fixture 100 further includes, for example, a head housing that houses the light source module 50, an arm that supports the head, and a main body to which the arm is attached. The lighting fixture 100 receives power supplied from a power supply device such as a commercial power supply, and uses the power to emit output light emitted by the light source module 50 as illumination light. Note that the lighting fixture 100 is not particularly limited as long as it is a lighting fixture used for lighting, and may be a ceiling light, a base light, a spotlight, a downlight, a pendant light, a wall light, a floor light, or the like. Furthermore, the lighting fixture 100 is, for example, a residential lighting fixture installed in a child's room, a bedroom, a living room, a study, etc., but may also be a lighting fixture used in an office, store, commercial facility, factory, etc. .
 光源モジュール50は、照明として用いられる出力光を発する。出力光の光色は、例えば、白色である。図3に示されるように、光源モジュール50は、基板1と、第1発光部10と、第2発光部20と、を備える。本実施の形態では、光源モジュール50は、複数の第1発光部10と、複数の第2発光部20と、を備える。第1発光部10は、紫色発光部の一例であり、第2発光部20は、白色発光部の一例である。なお、図3において、第1発光部10にドットの模様を付しているが、これは第1発光部10と第2発光部20とを区別するためのものであり、第1発光部10にドットの模様が付されていることを意味するものではない。 The light source module 50 emits output light used as illumination. The light color of the output light is, for example, white. As shown in FIG. 3, the light source module 50 includes a substrate 1, a first light emitting section 10, and a second light emitting section 20. In this embodiment, the light source module 50 includes a plurality of first light emitting sections 10 and a plurality of second light emitting sections 20. The first light emitting section 10 is an example of a violet light emitting section, and the second light emitting section 20 is an example of a white light emitting section. Note that in FIG. 3, a dot pattern is attached to the first light emitting section 10, but this is for distinguishing between the first light emitting section 10 and the second light emitting section 20. This does not mean that a dot pattern is attached to the .
 第1発光部10及び第2発光部20はそれぞれ、表面実装型(SMD:Surface Mount Device)の発光モジュールである。 The first light emitting section 10 and the second light emitting section 20 are each a surface mount device (SMD) light emitting module.
 第1発光部10は、第1光を発する。第2発光部20は、第2光を発する。光源モジュール50が発する出力光は、光源モジュール50が備える全ての第1発光部10が発する第1光、及び、光源モジュール50が備える全ての第2発光部20が発する第2光を含む。つまり、光源モジュール50の出力光は、第1光と第2光との混合光である。出力光において、全ての第2発光部20が発する第2光の放射エネルギーの合計は、例えば、全ての第1発光部10が発する第1光の放射エネルギーの合計よりも大きい。 The first light emitting unit 10 emits first light. The second light emitting section 20 emits second light. The output light emitted by the light source module 50 includes first light emitted by all the first light emitting sections 10 included in the light source module 50 and second light emitted by all the second light emitting sections 20 included in the light source module 50. That is, the output light of the light source module 50 is a mixed light of the first light and the second light. In the output light, the total radiant energy of the second light emitted by all the second light emitting sections 20 is, for example, greater than the total radiant energy of the first light emitted by all the first light emitting sections 10.
 複数の第1発光部10及び複数の第2発光部20は、例えば、基板1上に互いに離間して配置される。図3に示される例では、複数の第1発光部10と複数の第2発光部20とは、等間隔で規則的に一列に並んで配置されている。第2発光部20の数は、例えば、第1発光部10の数よりも多い。なお、第1発光部10及び第2発光部20の個数及び配置は特に限定されない。第1発光部10及び第2発光部20は、例えば、2以上の列に並んで配置されてもよく、環状に並んで配置されてもよく、所定の格子形状の格子点に配置されてもよい。また、第1発光部10及び第2発光部20のうちの少なくとも一方の数は1つであってもよい。第1発光部10及び第2発光部20の配置は、例えば、いくつかの配置パターンを作成し、各配置パターンについて光の放射特性等を評価した中で最も良い配置パターンを選択する等によって決定される。 For example, the plurality of first light emitting sections 10 and the plurality of second light emitting sections 20 are arranged on the substrate 1 so as to be spaced apart from each other. In the example shown in FIG. 3, the plurality of first light emitting sections 10 and the plurality of second light emitting sections 20 are regularly arranged in a line at equal intervals. For example, the number of second light emitting sections 20 is greater than the number of first light emitting sections 10. Note that the number and arrangement of the first light emitting section 10 and the second light emitting section 20 are not particularly limited. The first light emitting section 10 and the second light emitting section 20 may be arranged in two or more rows, arranged in a ring shape, or arranged at grid points of a predetermined grid shape, for example. good. Further, the number of at least one of the first light emitting section 10 and the second light emitting section 20 may be one. The arrangement of the first light emitting section 10 and the second light emitting section 20 is determined, for example, by creating several arrangement patterns, evaluating the light radiation characteristics, etc. of each arrangement pattern, and selecting the best arrangement pattern. be done.
 複数の第1発光部10と複数の第2発光部20とは、例えば、同一量の電流が流れるように基板1に実装されている。なお、複数の第1発光部10と複数の第2発光部20とは、独立して個別の電流を流すことができるように基板1に実装されていてもよい。 The plurality of first light emitting sections 10 and the plurality of second light emitting sections 20 are mounted on the substrate 1 so that, for example, the same amount of current flows through them. Note that the plurality of first light emitting sections 10 and the plurality of second light emitting sections 20 may be mounted on the substrate 1 so that individual currents can flow therein independently.
 基板1は、第1発光部10及び第2発光部20を実装するための実装用基板である。基板1には、第1発光部10及び第2発光部20に電力を供給するための金属配線(図示せず)が設けられている。基板1は、例えば、セラミックスからなるセラミックス基板、樹脂からなる樹脂基板、又は、ガラス基板などの絶縁基板である。あるいは、基板1は、金属板に絶縁膜が被膜されたメタルベース基板(金属基板)でもよい。 The substrate 1 is a mounting substrate for mounting the first light emitting section 10 and the second light emitting section 20. The substrate 1 is provided with metal wiring (not shown) for supplying power to the first light emitting section 10 and the second light emitting section 20. The substrate 1 is, for example, an insulating substrate such as a ceramic substrate made of ceramics, a resin substrate made of resin, or a glass substrate. Alternatively, the substrate 1 may be a metal base substrate (metal substrate) in which a metal plate is coated with an insulating film.
 第1発光部10は、図4に示されるように、第1発光素子11と、封止部材15と、パッケージ17と、を有する。第1発光部10は、例えば、蛍光体を含まず、第1発光素子11が発する光をそのまま第1光として射出する。第1光は、紫色成分の波長範囲に強度を有する紫色成分を含む光であり、例えば紫色の光である。第1光が紫色成分を含む光であることにより、例えば、出力光を照明に用いて人の近視抑制の効果を得ることができる。なお、本明細書において、紫色成分の波長範囲は、例えば350nm以上410nm以下の波長範囲とみなすことができる。 The first light emitting unit 10 includes a first light emitting element 11, a sealing member 15, and a package 17, as shown in FIG. The first light emitting section 10 does not include, for example, a phosphor, and directly emits the light emitted by the first light emitting element 11 as the first light. The first light is light containing a violet component having an intensity in the wavelength range of the violet component, and is, for example, violet light. By using the first light as light containing a violet component, for example, the output light can be used for illumination to obtain the effect of suppressing myopia in humans. Note that in this specification, the wavelength range of the violet component can be considered to be, for example, a wavelength range of 350 nm or more and 410 nm or less.
 第1発光素子11は、例えば、LEDチップであり、パッケージ17の凹部内に配置されている。第1発光素子11の発光ピークの波長は、例えば、350nm以上410nm以下であり、360nm以上400nm以下であってもよい。また、第1発光素子11の発光ピークの波長は、第2発光素子21の発光ピークの波長よりも短い。 The first light emitting element 11 is, for example, an LED chip, and is placed in the recess of the package 17. The wavelength of the emission peak of the first light emitting element 11 is, for example, 350 nm or more and 410 nm or less, and may be 360 nm or more and 400 nm or less. Further, the wavelength of the light emission peak of the first light emitting element 11 is shorter than the wavelength of the light emission peak of the second light emitting element 21.
 封止部材15は、第1発光素子11を封止する透光性樹脂材料である。透光性樹脂材料としては、第1発光素子11が発する光を透過する材料であれば、特に限定されない。透光性樹脂材料としては、例えば、シリコーン樹脂、エポキシ樹脂、又はユリア樹脂等が用いられる。 The sealing member 15 is a translucent resin material that seals the first light emitting element 11. The translucent resin material is not particularly limited as long as it is a material that transmits the light emitted by the first light emitting element 11. As the transparent resin material, for example, silicone resin, epoxy resin, urea resin, or the like is used.
 パッケージ17は、例えば、樹脂材料を用いて所定形状に成形された容器である。また、パッケージ17には、第1発光素子11に接続される配線(不図示)が設けられている。 The package 17 is, for example, a container molded into a predetermined shape using a resin material. Further, the package 17 is provided with wiring (not shown) connected to the first light emitting element 11.
 第2発光部20は、図4に示されるように、第2発光素子21と、蛍光体22と、封止部材25と、パッケージ27と、を有する。第2発光部20は、第2発光素子21が発する光(具体的には第2発光素子21が発する光のうち蛍光体22に吸収されなかった光)と、蛍光体22が発する光とを混合した光を白色の第2光として発する。なお、本明細書において、白色の光とは、昼光色(記号D)、昼白色(記号N)、白色(記号W)、温白色(記号WW)及び電球色(記号L)の範囲、又は、それ以上若しくは以下の相関色温度を有する黒体放射軌跡又は合成昼光の軌跡に沿った照明用の光色を意味し、光色の色度区分における白色(記号W)の狭義の範囲を意図するものでない。第2光及び出力光の色偏差Duvは、例えば、-10以上+10以下である。 As shown in FIG. 4, the second light emitting section 20 includes a second light emitting element 21, a phosphor 22, a sealing member 25, and a package 27. The second light emitting unit 20 emits light emitted by the second light emitting element 21 (specifically, light emitted by the second light emitting element 21 that is not absorbed by the phosphor 22) and light emitted by the phosphor 22. The mixed light is emitted as white second light. In this specification, white light refers to the range of daylight color (symbol D), daylight white (symbol N), white (symbol W), warm white (symbol WW), and light bulb color (symbol L), or, It means a light color for illumination along the black body radiation locus or synthetic daylight locus with a correlated color temperature above or below, and is intended to be the narrow range of white (symbol W) in the chromaticity classification of light colors. It's not something you do. The color deviation Duv of the second light and the output light is, for example, −10 or more and +10 or less.
 第2発光素子21は、例えば、LEDチップであり、パッケージ27の凹部内に配置されている。第2発光素子21の発光ピークの波長は、例えば、410nm以上500nm以下であり、420nm以上470nm以下であってもよい。第2発光素子21は、例えば、青色光を発する。 The second light emitting element 21 is, for example, an LED chip, and is placed in the recess of the package 27. The wavelength of the emission peak of the second light emitting element 21 is, for example, 410 nm or more and 500 nm or less, and may be 420 nm or more and 470 nm or less. The second light emitting element 21 emits, for example, blue light.
 蛍光体22は、第2発光素子21が発する光の一部によって励起され、第2発光素子21が発する光よりも長い波長の光を放射する。蛍光体22は、例えば、発光ピークの波長が500nm以上570nm以下の緑色の光を発する。蛍光体22は、封止部材25中に分散している。蛍光体22は、例えば、イットリウム・アルミニウム・ガーネット(YAG)蛍光体又はルテチウム・アルミニウム・ガーネット(LuAG)蛍光体である。これらの蛍光体を用いることにより、後述する蛍光体22の励起スペクトルにおいて極小値を示す波長を容易に調整することができる。例えば、蛍光体22の組成元素を調整することで、蛍光体22のバンドギャップが変化するため、蛍光体22の励起スペクトルを調整可能である。なお、蛍光体22が発する光の色は、緑色に限らず、黄色又は赤色等の緑色以外の色であってもよい。また、第2発光部20は、第2光の光色の調整のために蛍光体22とは異なる発光ピークの波長を有する別の蛍光体をさらに有していてもよい。 The phosphor 22 is excited by a portion of the light emitted by the second light emitting element 21, and emits light with a longer wavelength than the light emitted by the second light emitting element 21. The phosphor 22 emits, for example, green light with an emission peak wavelength of 500 nm or more and 570 nm or less. The phosphor 22 is dispersed in the sealing member 25. The phosphor 22 is, for example, a yttrium aluminum garnet (YAG) phosphor or a lutetium aluminum garnet (LuAG) phosphor. By using these phosphors, it is possible to easily adjust the wavelength that exhibits a minimum value in the excitation spectrum of the phosphor 22, which will be described later. For example, by adjusting the compositional elements of the phosphor 22, the bandgap of the phosphor 22 changes, so the excitation spectrum of the phosphor 22 can be adjusted. Note that the color of the light emitted by the phosphor 22 is not limited to green, and may be a color other than green, such as yellow or red. Further, the second light emitting section 20 may further include another phosphor having a different emission peak wavelength from the phosphor 22 in order to adjust the color of the second light.
 封止部材25は、第2発光素子21を封止する透光性樹脂材料である。透光性樹脂材料としては、第2発光素子21及び蛍光体22が発する光を透過する材料であれば、特に限定されない。透光性樹脂材料としては、例えば、シリコーン樹脂、エポキシ樹脂、又はユリア樹脂等が用いられる。 The sealing member 25 is a translucent resin material that seals the second light emitting element 21. The translucent resin material is not particularly limited as long as it is a material that transmits the light emitted by the second light emitting element 21 and the phosphor 22. As the transparent resin material, for example, silicone resin, epoxy resin, urea resin, or the like is used.
 パッケージ27は、例えば、樹脂材料を用いて所定形状に成形された容器である。また、パッケージ27には、第2発光素子21に接続される配線(不図示)が設けられている。 The package 27 is, for example, a container molded into a predetermined shape using a resin material. Further, the package 27 is provided with wiring (not shown) connected to the second light emitting element 21.
 第2発光部20が発する第2光は、第2発光素子21の出力特性、並びに、蛍光体22の種類及び量のうち少なくとも1つを調整することで、所望の光色に調整される。 The second light emitted by the second light emitting unit 20 is adjusted to a desired light color by adjusting at least one of the output characteristics of the second light emitting element 21 and the type and amount of the phosphor 22.
 なお、第1発光部10及び第2発光部20はそれぞれ、パッケージ17及びパッケージ27を備えず、第1発光素子11及び第2発光素子21が基板1に直接実装されていてもよい。つまり、光源モジュール50は、第1発光素子11及び第2発光素子21が基板1に直接実装されたCOB(Chip On Board)型モジュールであってもよい。 Note that the first light emitting unit 10 and the second light emitting unit 20 may not include the package 17 and the package 27, respectively, and the first light emitting element 11 and the second light emitting element 21 may be directly mounted on the substrate 1. That is, the light source module 50 may be a COB (Chip On Board) type module in which the first light emitting element 11 and the second light emitting element 21 are directly mounted on the substrate 1.
 点灯回路70は、光源モジュール50に電力を供給することにより、光源モジュール50を点灯させる回路である。点灯回路70は、例えば、第1発光部10及び第2発光部20のそれぞれに所定の電力(直流電流)を供給する。点灯回路70は、例えば、商用電源から供給される交流電流を直流電流に変換する回路を含む。 The lighting circuit 70 is a circuit that lights up the light source module 50 by supplying power to the light source module 50. The lighting circuit 70 supplies predetermined power (DC current) to each of the first light emitting section 10 and the second light emitting section 20, for example. The lighting circuit 70 includes, for example, a circuit that converts alternating current supplied from a commercial power source into direct current.
 なお、照明器具100は、光源モジュール50の出力光の調光及び調色等を行う制御部(制御回路)をさらに備えていてもよい。制御部は、例えば、点灯回路70が光源モジュール50に供給する電力の制御を行う。また、照明器具100は、スイッチ又は入力パネル等の照明器具100の操作を受け付ける操作受付部及び遠隔での操作のための通信モジュール等をさらに備えていてもよい。 Note that the lighting fixture 100 may further include a control unit (control circuit) that performs dimming and color adjustment of the output light of the light source module 50. The control unit controls, for example, the power that the lighting circuit 70 supplies to the light source module 50. Furthermore, the lighting fixture 100 may further include an operation reception unit such as a switch or an input panel that receives an operation of the lighting fixture 100, a communication module for remote operation, and the like.
 [第1光、第2光及び出力光のスペクトル並びに蛍光体の励起スペクトル]
 次に、第1光、第2光及び出力光の各々のスペクトル並びに蛍光体22の励起スペクトルについて、図5から図8を用いて説明する。
[Spectra of first light, second light and output light, and excitation spectrum of phosphor]
Next, the spectra of each of the first light, second light, and output light as well as the excitation spectrum of the phosphor 22 will be explained using FIGS. 5 to 8.
 図5は、本実施の形態に係る第1発光部10が発する第1光のスペクトルの一例を示す図である。図6は、本実施の形態に係る第2発光部20が発する第2光のスペクトルの一例を示す図である。図7は、本実施の形態に係る第2発光部20が有する蛍光体22の励起スペクトルの一例を示す図である。図8は、本実施の形態に係る光源モジュール50が発する出力光のスペクトルの一例を示す図である。図5から図8において、横軸は波長(単位:nm)を表す。図5、6及び8において、縦軸は最大値を1として規格化された発光強度を表す。つまり、図5、6及び8では、波長ごとの放射束(単位:W/nm)を規格化したスペクトルが示されている。また、図7において、縦軸は最大値を1として規格化された励起強度を表す。また、一般的に蛍光体の励起スペクトルは、吸収スペクトルとほぼ同じである。 FIG. 5 is a diagram showing an example of the spectrum of the first light emitted by the first light emitting section 10 according to the present embodiment. FIG. 6 is a diagram showing an example of the spectrum of the second light emitted by the second light emitting section 20 according to the present embodiment. FIG. 7 is a diagram showing an example of the excitation spectrum of the phosphor 22 included in the second light emitting section 20 according to the present embodiment. FIG. 8 is a diagram showing an example of the spectrum of output light emitted by the light source module 50 according to the present embodiment. In FIGS. 5 to 8, the horizontal axis represents wavelength (unit: nm). In FIGS. 5, 6, and 8, the vertical axis represents the normalized luminescence intensity with the maximum value being 1. That is, FIGS. 5, 6, and 8 show spectra in which the radiant flux (unit: W/nm) is normalized for each wavelength. Moreover, in FIG. 7, the vertical axis represents the normalized excitation intensity with the maximum value being 1. Further, the excitation spectrum of a phosphor is generally almost the same as the absorption spectrum.
 図5に示されるように、第1光のスペクトルは、第1発光素子11が発する光の発光ピークを含む。本実施の形態においては、第1光のスペクトルは、例えば、第1発光素子11が発する光のスペクトルと同一であり、図5に示されるスペクトルは、第1発光素子11が発する光のスペクトルであるとも言える。図5に示される例では、第1発光素子11の発光ピークの波長は、約380nmであり、当該発光ピークの半値幅は約10nmである。第1発光素子11が発する光、つまり第1光では、例えば、全発光強度が紫色成分の波長範囲に含まれる。 As shown in FIG. 5, the spectrum of the first light includes the emission peak of the light emitted by the first light emitting element 11. In this embodiment, the spectrum of the first light is, for example, the same as the spectrum of the light emitted by the first light emitting element 11, and the spectrum shown in FIG. 5 is the spectrum of the light emitted by the first light emitting element 11. It can be said that there is. In the example shown in FIG. 5, the wavelength of the emission peak of the first light emitting element 11 is about 380 nm, and the half width of the emission peak is about 10 nm. In the light emitted by the first light emitting element 11, that is, the first light, the total emission intensity is included in the wavelength range of the violet component, for example.
 なお、第1光は、第1発光部10が蛍光体を含む等によって、紫色成分の波長範囲外(例えば紫色成分よりも長波長側)にも発光強度または発光ピークを有していてもよい。第1光が紫色成分の波長範囲外に発光強度または発光ピークを有する場合、当該発光強度の最大値または当該発光ピークにおける発光強度は、例えば、第1発光素子11が発する光の発光ピークの発光強度の半分以下である。また、第1光が紫色成分の波長範囲外に発光強度または発光ピークを有する場合、例えば、第1光における紫色成分の波長範囲の放射束は、第1光における紫色成分の波長範囲外の放射束の1倍以上であってもよく、2倍以上であってもよい。 Note that the first light may have an emission intensity or an emission peak outside the wavelength range of the violet component (for example, on a longer wavelength side than the violet component) because the first light emitting section 10 contains a phosphor. . When the first light has an emission intensity or an emission peak outside the wavelength range of the violet component, the maximum value of the emission intensity or the emission intensity at the emission peak is, for example, the emission peak of the light emitted by the first light emitting element 11. less than half the strength. Further, if the first light has an emission intensity or an emission peak outside the wavelength range of the violet component, for example, the radiant flux in the wavelength range of the violet component in the first light is the radiation outside the wavelength range of the violet component in the first light. The number may be one or more times the number of bundles, or may be two or more times the number of bundles.
 図6に示されるように、第2光のスペクトルは、第2発光素子21が発する光の発光ピークと、蛍光体22が発する光のブロードな発光ピークとを含む。図6では、相関色温度が5000Kである場合の第2光のスペクトルが示されている。図6に示される例では、第2発光素子21の発光ピークの波長は、約450nmであり、当該発光ピークの半値幅は約20nmである。また、蛍光体22が発する光の発光ピークの波長は、約580nmである。 As shown in FIG. 6, the spectrum of the second light includes an emission peak of the light emitted by the second light emitting element 21 and a broad emission peak of the light emitted by the phosphor 22. FIG. 6 shows the spectrum of the second light when the correlated color temperature is 5000K. In the example shown in FIG. 6, the wavelength of the emission peak of the second light emitting element 21 is about 450 nm, and the half width of the emission peak is about 20 nm. Furthermore, the wavelength of the light emitted by the phosphor 22 is approximately 580 nm.
 図7に示されるように、蛍光体22の励起スペクトルは、350nm以上410nm以下における第1発光素子11が発光強度を有する波長範囲に極小値を有する。例えば、緑色の光を発する蛍光体22を用いると、350nm以上410nm以下における第1発光素子11が発光強度を有する波長範囲において、蛍光体22の励起強度が小さくなりやすい。また、蛍光体22の励起スペクトルは、360nm以上400nm以下における第1発光素子11が発光強度を有する波長範囲に極小値を有していてもよい。 As shown in FIG. 7, the excitation spectrum of the phosphor 22 has a minimum value in the wavelength range from 350 nm to 410 nm in which the first light emitting element 11 has an emission intensity. For example, when the phosphor 22 that emits green light is used, the excitation intensity of the phosphor 22 tends to be small in the wavelength range in which the first light emitting element 11 has an emission intensity of 350 nm or more and 410 nm or less. Further, the excitation spectrum of the phosphor 22 may have a minimum value in a wavelength range from 360 nm to 400 nm in which the first light emitting element 11 has an emission intensity.
 また、蛍光体22の励起スペクトルは、例えば、第1発光素子11の発光ピークの半値幅の範囲に極小値を有する。図7で示される例では、蛍光体22の励起スペクトルは、約380nmに励起強度の極小値を有する。よって、図5及び図7で示される例では、第1発光素子11の発光ピークの波長と、蛍光体22の励起スペクトルが極小値を示す波長とは一致している。なお、第2発光部20が蛍光体22以外の別の蛍光体を含む場合、別の蛍光体の励起スペクトルも、第1発光素子11が発光強度を有する波長範囲に極小値を有していてもよい。 Furthermore, the excitation spectrum of the phosphor 22 has a minimum value within the half width of the emission peak of the first light emitting element 11, for example. In the example shown in FIG. 7, the excitation spectrum of the phosphor 22 has a minimum value of excitation intensity at about 380 nm. Therefore, in the examples shown in FIGS. 5 and 7, the wavelength of the emission peak of the first light emitting element 11 and the wavelength at which the excitation spectrum of the phosphor 22 shows the minimum value match. Note that when the second light emitting section 20 includes another phosphor other than the phosphor 22, the excitation spectrum of the other phosphor also has a minimum value in the wavelength range in which the first light emitting element 11 has an emission intensity. Good too.
 また、図7で示される例では、蛍光体22の励起スペクトルは、約430nmの波長に最大の励起強度のピークを有する。蛍光体22の励起スペクトルにおいて、第1発光素子11の発光ピークの波長(この例では約380nm)における励起強度は、例えば、第2発光素子21の発光ピークの波長(この例では約450nm)における励起強度の半分以下であり、3分の1以下であってもよい。これにより、第2発光部20の発光効率を高めつつ、第1光による蛍光体22の励起を抑制できる。また、蛍光体22の励起スペクトルにおいて、上記極小値の励起強度は、例えば、最大ピークの励起強度の半分以下であり、3分の1以下であってもよい。 In the example shown in FIG. 7, the excitation spectrum of the phosphor 22 has a maximum excitation intensity peak at a wavelength of about 430 nm. In the excitation spectrum of the phosphor 22, the excitation intensity at the wavelength of the emission peak of the first light emitting element 11 (approximately 380 nm in this example) is, for example, the excitation intensity at the wavelength of the emission peak of the second light emitting element 21 (approximately 450 nm in this example). It is half or less of the excitation intensity, and may be one-third or less. Thereby, excitation of the phosphor 22 by the first light can be suppressed while increasing the light emission efficiency of the second light emitting section 20. Further, in the excitation spectrum of the phosphor 22, the excitation intensity at the minimum value is, for example, less than half, and may be less than one-third, the excitation intensity at the maximum peak.
 このように、光源モジュール50において、蛍光体22の励起スペクトルが、第1発光素子11が発光強度を有する波長範囲に極小値を有する。そのため、第1発光部10から発せられる第1光の一部が拡散等によって第2発光部20に入射しても、入射した第1光によって蛍光体22が励起しにくい。これにより、第1光によって蛍光体22が意図しない波長の光を発することが抑制され、光源モジュール50が第1発光部10を有する場合でも、第2発光部20が発する白色の第2光の光色の変化が抑制される。特に、蛍光体22が発する光は、励起光よりも波長の長い光となるため、第1光によって励起された蛍光体22が発する光は、第1光の波長よりも長く、人の視感度が高まる波長となるため、人が感じる光色への影響が大きい。例えば、400nmにおける人の視感度は、380nmにおける人の視感度の10倍である。そのため、第2発光部20において、第1光による蛍光体22の励起が抑制されることで、照明として適切な白色からの光色の変化を抑制できる。また、第1光が蛍光体22に吸収されにくくなるため、出力光における紫色成分を含む第1光の光量の低下を抑制できる。よって、光源モジュール50は、紫色成分を含み、照明に用いられる出力光を効果的に発することができる。そのため、光源モジュール50の出力光は、例えば、近視抑制効果を有する照明に用いることが可能である。 In this manner, in the light source module 50, the excitation spectrum of the phosphor 22 has a minimum value in the wavelength range in which the first light emitting element 11 has an emission intensity. Therefore, even if a portion of the first light emitted from the first light emitting section 10 enters the second light emitting section 20 due to diffusion or the like, the fluorescent substance 22 is hardly excited by the incident first light. This prevents the phosphor 22 from emitting light of an unintended wavelength due to the first light, and even when the light source module 50 has the first light emitting section 10, the white second light emitted by the second light emitting section 20 is suppressed. Changes in light color are suppressed. In particular, the light emitted by the phosphor 22 has a longer wavelength than the excitation light, so the light emitted by the phosphor 22 excited by the first light is longer than the wavelength of the first light, and the human visibility is As the wavelength increases, it has a large effect on the color of light perceived by humans. For example, human visibility at 400 nm is 10 times greater than human visibility at 380 nm. Therefore, in the second light emitting unit 20, by suppressing the excitation of the phosphor 22 by the first light, it is possible to suppress a change in light color from white, which is suitable for illumination. Furthermore, since the first light is less likely to be absorbed by the phosphor 22, it is possible to suppress a decrease in the amount of the first light including the violet component in the output light. Therefore, the light source module 50 can effectively emit output light that includes a violet component and is used for illumination. Therefore, the output light of the light source module 50 can be used, for example, for illumination that has a myopia suppressing effect.
 また、図8に示されるように、出力光のスペクトルは、第1光のスペクトルと第2光のスペクトルとを所定の比率で足し合わせたスペクトルである。所定の比率は、例えば、光源モジュール50が備える第1発光部10及び第2発光部20それぞれの数、並びに、第1発光部10及び第2発光部20それぞれの出力等によって調整される。図8で示されるスペクトルは、例えば、光源モジュール50が備える第1発光部10及び第2発光部20に同じ電流を流した場合の出力光のスペクトルである。出力光は、例えば、第1発光素子11の発光ピークの波長(この例では約380nm)において最も発光強度が高い。紫色の波長の光は人の視感度が低いため、第1発光素子11の発光ピークの波長の発光強度が高くても、人が感じる出力光の光色への影響が小さく、出力光における紫色成分を増やして、人への近視抑制効果を高めることができる。 Further, as shown in FIG. 8, the spectrum of the output light is a spectrum obtained by adding the spectrum of the first light and the spectrum of the second light at a predetermined ratio. The predetermined ratio is adjusted, for example, by the number of the first light emitting sections 10 and the second light emitting sections 20 included in the light source module 50, the outputs of the first light emitting sections 10 and the second light emitting sections 20, and the like. The spectrum shown in FIG. 8 is, for example, a spectrum of output light when the same current is passed through the first light emitting section 10 and the second light emitting section 20 included in the light source module 50. The output light has the highest emission intensity, for example, at the wavelength of the emission peak of the first light emitting element 11 (approximately 380 nm in this example). Since human visibility is low for light with a violet wavelength, even if the emission intensity at the wavelength of the emission peak of the first light emitting element 11 is high, the effect on the light color of the output light perceived by humans is small, and the violet color of the output light By increasing the amount of ingredients, it is possible to enhance the effect of suppressing myopia in humans.
 [効果など]
 以上のように、本実施の形態に係る光源モジュール50は、出力光を発する光源モジュール50であって、第1光を発する第1発光部10と、白色の第2光を発する第2発光部20と、を備える。第1発光部10は、第1発光素子11を有する。第2発光部20は、第2発光素子21と、第2発光素子21からの光で励起されて光を発する蛍光体22と、を有する。出力光は、第1光及び第2光を含む。第1発光素子11の発光ピークの波長は、第2発光素子21の発光ピークの波長よりも短く、かつ、350nm以上410nm以下である。蛍光体22の励起スペクトルは、350nm以上410nm以下における第1発光素子11が発光強度を有する波長範囲に極小値を有する。
[Effects etc.]
As described above, the light source module 50 according to the present embodiment is a light source module 50 that emits output light, and includes the first light emitting section 10 that emits the first light, and the second light emitting section that emits the second white light. 20. The first light emitting section 10 has a first light emitting element 11. The second light emitting section 20 includes a second light emitting element 21 and a phosphor 22 that is excited by the light from the second light emitting element 21 and emits light. The output light includes first light and second light. The wavelength of the light emission peak of the first light emitting element 11 is shorter than the wavelength of the light emission peak of the second light emitting element 21, and is 350 nm or more and 410 nm or less. The excitation spectrum of the phosphor 22 has a minimum value in the wavelength range from 350 nm to 410 nm in which the first light emitting element 11 has an emission intensity.
 これにより、第1発光部10から発せられる紫色成分を含む第1光の一部が拡散等によって第2発光部20に入射しても、入射した第1光によって蛍光体22が励起しにくい。そのため、第1光によって蛍光体22が意図しない波長の光を発することが抑制され、光源モジュール50が第1発光部10を有する場合でも、第2発光部20が発する白色の第2光の光色の変化が抑制される。つまり、第2発光部20において、第1光による蛍光体22の励起が抑制されることで、照明として適切な白色からの光色の変化を抑制できる。また、第1光が蛍光体22に吸収されにくくなるため、出力光における紫色成分を含む第1光の光量の低下を抑制できる。よって、光源モジュール50は、紫色成分を含む出力光を効果的に発することができる。 As a result, even if a part of the first light including a violet component emitted from the first light emitting section 10 enters the second light emitting section 20 due to diffusion or the like, the phosphor 22 is unlikely to be excited by the incident first light. Therefore, the phosphor 22 is suppressed from emitting light of an unintended wavelength due to the first light, and even when the light source module 50 has the first light emitting section 10, the white second light emitted by the second light emitting section 20 is suppressed. Color changes are suppressed. That is, in the second light emitting section 20, by suppressing the excitation of the phosphor 22 by the first light, it is possible to suppress a change in the light color from white, which is suitable for illumination. Furthermore, since the first light is less likely to be absorbed by the phosphor 22, it is possible to suppress a decrease in the amount of the first light including the violet component in the output light. Therefore, the light source module 50 can effectively emit output light containing a violet component.
 また、例えば、蛍光体22の励起スペクトルは、第1発光素子11の発光ピークの半値幅の範囲内に極小値を有する。 Further, for example, the excitation spectrum of the phosphor 22 has a minimum value within the range of the half width of the emission peak of the first light emitting element 11.
 これにより、第2発光部20において、第1光による蛍光体22の励起をさらに抑制できる。 Thereby, in the second light emitting section 20, excitation of the phosphor 22 by the first light can be further suppressed.
 また、例えば、蛍光体22の励起スペクトルにおいて、第1発光素子11の発光ピークの波長における強度は、第2発光素子21の発光ピークの波長における強度の半分以下である。 Furthermore, for example, in the excitation spectrum of the phosphor 22, the intensity at the wavelength of the emission peak of the first light emitting element 11 is less than half the intensity at the wavelength of the emission peak of the second light emitting element 21.
 これにより、第2発光部20の発光効率を高めつつ、第1光による蛍光体22の励起を抑制できる。 As a result, excitation of the phosphor 22 by the first light can be suppressed while increasing the luminous efficiency of the second light emitting section 20.
 また、例えば、光源モジュール50の出力光は、第1発光素子11の発光ピークの波長において最も発光強度が高い。 Further, for example, the output light of the light source module 50 has the highest emission intensity at the wavelength of the emission peak of the first light emitting element 11.
 これにより、出力光における紫色成分を増やすことができる。その結果、例えば、出力光による人への近視抑制効果を高めることができる。 This makes it possible to increase the purple component in the output light. As a result, for example, the effect of suppressing myopia on a person due to the output light can be enhanced.
 また、本実施の形態に係る照明器具100は、光源モジュール50と、光源モジュール50を点灯するための電力を光源モジュール50に供給する点灯回路70と、を備える。 Furthermore, the lighting fixture 100 according to the present embodiment includes a light source module 50 and a lighting circuit 70 that supplies the light source module 50 with electric power for lighting the light source module 50.
 これにより、紫色成分を含む出力光を効果的に発することができる照明器具100を実現できる。 Thereby, it is possible to realize the lighting fixture 100 that can effectively emit output light containing a violet component.
 [変形例]
 次に、実施の形態1の変形例について説明する。以下の説明では、実施の形態1との相違点を中心に説明を行い、共通点の説明を省略又は簡略化する。
[Modified example]
Next, a modification of the first embodiment will be described. In the following description, differences from Embodiment 1 will be mainly explained, and descriptions of common points will be omitted or simplified.
 図9は、本変形例に係る光源モジュール50aを示す平面図である。図9に示されるように、光源モジュール50aは、実施の形態1に係る光源モジュール50と比較して、複数の第1発光部10と複数の第2発光部20とが等間隔で並んでいない点で相違する。光源モジュール50aは、例えば、光源モジュール50の代わりに照明器具100に用いられる。 FIG. 9 is a plan view showing a light source module 50a according to this modification. As shown in FIG. 9, in the light source module 50a, the plurality of first light emitting parts 10 and the plurality of second light emitting parts 20 are not arranged at equal intervals, compared to the light source module 50 according to the first embodiment. They differ in some respects. The light source module 50a is used in the lighting fixture 100 instead of the light source module 50, for example.
 複数の第1発光部10は、複数の第1発光部10のうちの1つである第1発光部10aを含む。また、複数の第2発光部20は、複数の第2発光部20のうち第1発光部10aに最も近い第2発光部20aと、複数の第2発光部20のうち第2発光部20aに最も近い第2発光部20bと、を含む。第1発光部10aは第1紫色発光部の一例である。第2発光部20aは第1白色発光部の一例である。第2発光部20bは第2白色発光部の一例である。第1発光部10aと、第2発光部20aと、第2発光部20bとは、例えば、この順で1列に並んでいる。 The plurality of first light emitting sections 10 include a first light emitting section 10a that is one of the plurality of first light emitting sections 10. Further, the plurality of second light emitting sections 20 include a second light emitting section 20a closest to the first light emitting section 10a among the plurality of second light emitting sections 20, and a second light emitting section 20a closest to the first light emitting section 10a among the plurality of second light emitting sections 20. The closest second light emitting unit 20b is included. The first light emitting section 10a is an example of a first violet light emitting section. The second light emitting section 20a is an example of the first white light emitting section. The second light emitting section 20b is an example of a second white light emitting section. The first light emitting section 10a, the second light emitting section 20a, and the second light emitting section 20b are arranged in a line in this order, for example.
 第1発光部10aと第2発光部20aとの間の距離W1は、第2発光部20aと第2発光部20bとの間の距離W2よりも長い。これにより、第2発光部20aと、第2発光部20aに最も近い第1発光部10aとの距離W1が長くなり、第1発光部10aが発する第1光が第2発光部20aに入射しにくくなる。その結果、第1光が蛍光体22を励起することがさらに抑制される。よって、第2光の光色の変化、及び、出力光における第1光の光量の低下をさらに抑制できる。 The distance W1 between the first light emitting section 10a and the second light emitting section 20a is longer than the distance W2 between the second light emitting section 20a and the second light emitting section 20b. As a result, the distance W1 between the second light emitting section 20a and the first light emitting section 10a closest to the second light emitting section 20a becomes longer, and the first light emitted by the first light emitting section 10a enters the second light emitting section 20a. It becomes difficult. As a result, excitation of the phosphor 22 by the first light is further suppressed. Therefore, it is possible to further suppress a change in the light color of the second light and a decrease in the amount of the first light in the output light.
 また、光源モジュール50aにおいて、複数の第2発光部20の各々は、例えば、自身に最も近い第1発光部10までの距離が、自身に最も近い自身以外の第2発光部20までの距離よりも長い。 Moreover, in the light source module 50a, each of the plurality of second light emitting units 20 has a distance to the first light emitting unit 10 closest to itself than a distance to a second light emitting unit 20 other than itself, which is closest to itself. It's also long.
 以上のように、本変形例に係る光源モジュール50aでは、少なくとも1つの第1発光部10は、第1発光部10aを含み、少なくとも1つの第2発光部20は、第2発光部20のうち、第1発光部10aに最も近い第2発光部20aと、第2発光部20aに最も近い第2発光部20bとを含む。第1発光部10aと第2発光部20aとの間の距離W1は、第2発光部20aと第2発光部20bとの間の距離W2よりも長い。 As described above, in the light source module 50a according to the present modification, at least one first light emitting section 10 includes the first light emitting section 10a, and at least one second light emitting section 20 includes the first light emitting section 10a. , a second light emitting section 20a closest to the first light emitting section 10a, and a second light emitting section 20b closest to the second light emitting section 20a. The distance W1 between the first light emitting section 10a and the second light emitting section 20a is longer than the distance W2 between the second light emitting section 20a and the second light emitting section 20b.
 これにより、第1発光部10aが発する第1光が第2発光部20aに入射しにくくなり、第1光が蛍光体22を励起することがさらに抑制される。 This makes it difficult for the first light emitted by the first light emitting section 10a to enter the second light emitting section 20a, and further suppresses the first light from exciting the phosphor 22.
 (実施の形態2)
 次に、実施の形態2について説明する。以下では、実施の形態1及び実施の形態1の変形例との相違点を中心に説明を行い、共通点の説明を省略又は簡略化する。
(Embodiment 2)
Next, a second embodiment will be described. Below, the explanation will focus on the differences between Embodiment 1 and the modification of Embodiment 1, and the explanation of common points will be omitted or simplified.
 図10は、本実施の形態に係る照明器具200の構成を示すブロック図である。図10に示されるように、照明器具200は、実施の形態1に係る照明器具100と比較して、光源モジュール50の代わりに光源モジュール250を備える点で相違する。 FIG. 10 is a block diagram showing the configuration of lighting fixture 200 according to this embodiment. As shown in FIG. 10, lighting fixture 200 differs from lighting fixture 100 according to Embodiment 1 in that it includes a light source module 250 instead of light source module 50.
 光源モジュール250は、光源モジュール50と同様に少なくとも1つの第1発光部10及び少なくとも1つの第2発光部20を含む複数の発光部を有するが、光源モジュール50とは、出力光のスペクトルが異なる。光源モジュール250の構成は、例えば、光源モジュール50と異なるスペクトルの出力光を発するように複数の発光部が構成されている以外は光源モジュール50と同じである。光源モジュール250が発する出力光は、光源モジュール250が備える全ての第1発光部10が発する第1光、及び、光源モジュール250が備える全ての第2発光部20が発する第2光を含む。 The light source module 250 has a plurality of light emitting parts including at least one first light emitting part 10 and at least one second light emitting part 20, like the light source module 50, but has a different spectrum of output light from the light source module 50. . The configuration of the light source module 250 is the same as that of the light source module 50, for example, except that a plurality of light emitting parts are configured to emit output light with a spectrum different from that of the light source module 50. The output light emitted by the light source module 250 includes first light emitted by all the first light emitting sections 10 included in the light source module 250 and second light emitted by all the second light emitting sections 20 included in the light source module 250.
 光源モジュール250は、例えば、備えられる第1発光部10及び第2発光部20の数が光源モジュール50と異なることによって、光源モジュール50と出力光のスペクトルが異なる。なお、光源モジュール250は、第1発光素子11、第2発光素子21及び蛍光体22の少なくとも1つの発光特性が光源モジュール50と異なることで、光源モジュール50と出力光のスペクトルが異なっていてもよい。 The light source module 250 has a different spectrum of output light from the light source module 50 because, for example, the number of first light emitting units 10 and second light emitting units 20 provided is different from that of the light source module 50. Note that the light source module 250 is different from the light source module 50 in that at least one of the light emitting characteristics of the first light emitting element 11, the second light emitting element 21, and the phosphor 22 is different from the light source module 50, so that even if the spectrum of the output light is different from that of the light source module 50, good.
 図11は、本実施の形態に係る光源モジュール250が発する出力光のスペクトル及び出力光と同じ相関色温度の太陽光のスペクトルの一例を示す図である。図11において、横軸は波長(単位:nm)を表す。図11において、縦軸は最大値を1として規格化された発光強度を表す。なお、第1光及び第2光の各々のスペクトル並びに蛍光体22の励起スペクトルはそれぞれ、例えば、図5から図7で示されるスペクトルである。 FIG. 11 is a diagram showing an example of the spectrum of output light emitted by the light source module 250 according to this embodiment and the spectrum of sunlight having the same correlated color temperature as the output light. In FIG. 11, the horizontal axis represents wavelength (unit: nm). In FIG. 11, the vertical axis represents the normalized light emission intensity with the maximum value being 1. The spectra of each of the first light and the second light and the excitation spectrum of the phosphor 22 are, for example, the spectra shown in FIGS. 5 to 7, respectively.
 図11で示される出力光のスペクトルは、出力光の相関色温度が5000Kである場合のスペクトルである。図11で示される太陽光のスペクトルは、国際照明委員会(CIE)により定義されたDシリーズの相関色温度が5000Kの標準光源(いわゆるCIE標準光源D50)の光のスペクトルである。本明細書において、太陽光のスペクトルは、国際照明委員会により定義された各相関色温度の標準光源の光のスペクトルとみなすことができる。つまり、本明細書において、太陽光は、国際照明委員会により定義された各相関色温度の標準光源の光とみなすことができる。 The spectrum of the output light shown in FIG. 11 is the spectrum when the correlated color temperature of the output light is 5000K. The spectrum of sunlight shown in FIG. 11 is the spectrum of light from a standard light source (so-called CIE standard illuminant D50) with a D series correlated color temperature of 5000 K defined by the Commission Internationale de l'Eclairage (CIE). In this specification, the spectrum of sunlight can be regarded as the spectrum of light from standard light sources of each correlated color temperature defined by the International Commission on Illumination. That is, in this specification, sunlight can be considered as standard light source light of each correlated color temperature defined by the International Commission on Illumination.
 また、図11に示されるように、出力光のスペクトルは、図5で示される第1光のスペクトルと図6で示される第2光のスペクトルとを所定の比率で足し合わせたスペクトルである。所定の比率は、例えば、光源モジュール250が備える第1発光部10及び第2発光部20それぞれの数、並びに、第1発光部10及び第2発光部20それぞれの出力等によって調整される。図11で示される出力光のスペクトルは、例えば、光源モジュール250が備える第1発光部10及び第2発光部20に同じ電流を流した場合の出力光のスペクトルである。 Further, as shown in FIG. 11, the spectrum of the output light is a spectrum obtained by adding the spectrum of the first light shown in FIG. 5 and the spectrum of the second light shown in FIG. 6 at a predetermined ratio. The predetermined ratio is adjusted, for example, by the number of the first light emitting sections 10 and the second light emitting sections 20 included in the light source module 250, the outputs of the first light emitting sections 10 and the second light emitting sections 20, and the like. The spectrum of the output light shown in FIG. 11 is, for example, the spectrum of the output light when the same current is passed through the first light emitting section 10 and the second light emitting section 20 included in the light source module 250.
 光源モジュール250では、出力光での、可視光領域における全放射束に対する360nm以上400nm以下の波長範囲(図11において一点鎖線で挟まれた範囲)の放射束の割合は、出力光と同じ相関色温度の太陽光での、可視光領域における全放射束に対する360nm以上400nm以下の波長範囲の放射束の割合と同一である。また、光源モジュール250では、出力光での、可視光領域における単位全光束あたりの360nm以上400nm以下の波長範囲の放射束(言い換えると当該全光束に対する当該放射束の比率)は、出力光と同じ相関色温度の太陽光での、可視光領域における単位全光束あたりの360nm以上400nm以下の波長範囲の放射束と同一である。これにより、出力光が太陽光と同じ割合で紫色成分の光を含むため、紫色成分を含む照明であっても、人への負荷を低減できる。よって、光源モジュール250は、紫色成分を含み、かつ、照明に用いることに適した出力光を発することができる。そのため、光源モジュール250は、例えば、近視抑制効果を有する照明に用いることが可能である。また、一般的な照明用の光源において抜け落ちている紫色成分を含む出力光が発せられるため、人にとってより望ましい照明が可能になる。 In the light source module 250, the ratio of the radiant flux in the wavelength range of 360 nm to 400 nm (the range between the dashed lines in FIG. 11) to the total radiant flux in the visible light region of the output light has the same correlated color as the output light. It is the same as the ratio of the radiant flux in the wavelength range of 360 nm to 400 nm to the total radiant flux in the visible light region of sunlight at a certain temperature. In addition, in the light source module 250, the radiant flux of the output light in the wavelength range of 360 nm to 400 nm per unit total luminous flux in the visible light region (in other words, the ratio of the radiant flux to the total luminous flux) is the same as that of the output light. It is the same as the radiant flux in the wavelength range of 360 nm or more and 400 nm or less per unit total luminous flux in the visible light region in sunlight with a correlated color temperature. As a result, the output light includes light with a violet component in the same proportion as sunlight, so even if the illumination includes a violet component, the burden on people can be reduced. Therefore, the light source module 250 can emit output light that includes a violet component and is suitable for use in illumination. Therefore, the light source module 250 can be used, for example, for illumination that has a myopia suppressing effect. In addition, since output light containing the violet component, which is missing in general lighting sources, is emitted, it becomes possible to provide more desirable lighting for people.
 なお、本明細書において、可視光領域は、例えば360nm以上780nm以下の波長範囲とみなすことができる。 Note that in this specification, the visible light region can be regarded as a wavelength range of, for example, 360 nm or more and 780 nm or less.
 出力光及び太陽光の放射束は、図11で示されるスペクトルの面積に相当する。そのため、波長をλ、出力光のスペクトルをP(λ)、太陽光のスペクトルをP(λ)とした場合に、出力光の可視光領域における全放射束ΦLall及び360nm以上400nm以下の波長範囲の放射束ΦLv、並びに、太陽光の可視光領域における全放射束ΦSall及び360nm以上400nm以下の波長範囲の放射束ΦSvは、以下の式により算出される。P(λ)及びP(λ)は、波長(単位:nm)の関数である。 The radiant flux of output light and sunlight corresponds to the area of the spectrum shown in FIG. Therefore, when the wavelength is λ, the spectrum of the output light is P L (λ), and the spectrum of sunlight is P S (λ), the total radiant flux Φ Lall of the output light in the visible light region and 360 nm to 400 nm The radiant flux Φ Lv in the wavelength range, the total radiant flux Φ Sall in the visible light region of sunlight, and the radiant flux Φ Sv in the wavelength range from 360 nm to 400 nm are calculated by the following formula. P L (λ) and P S (λ) are functions of wavelength (unit: nm).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 また、人の視感度をK(λ)とした場合、出力光の可視光領域における全光束ΦVLall及び太陽光の可視光領域における全光束ΦVSallは、以下の式により算出される。K(λ)は、波長(単位:nm)の関数である。 Further, when the human visibility is K(λ), the total luminous flux Φ VLall of the output light in the visible light region and the total luminous flux Φ VSall of the sunlight in the visible light region are calculated by the following formula. K(λ) is a function of wavelength (unit: nm).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 よって、光源モジュール250では、上記全放射束に対する上記放射束の割合を、P(λ)及び出力光と同じ相関色温度のP(λ)を用いて上記の式で算出した場合に、放射束ΦLv/全放射束ΦLallが放射束ΦSv/全放射束ΦSallと同一である。また、光源モジュール250では、上記単位全光束あたりの上記放射束を、P(λ)及び出力光と同じ相関色温度のP(λ)を用いて上記の式で算出した場合に、放射束ΦLv/全光束ΦVLallが放射束ΦSv/全光束ΦVSallと同一である。なお、本明細書において、同一であるとは、実質的に同一であることを意味する。ここで、実質的に同一とは、例えば、どちらの値を基準にした場合でも±30%以下の差であることを意味する。また、実質的に同一とは、どちらの値を基準にした場合でも±20%以下の差であることを意味してもよく、どちらの値を基準にした場合でも±10%以下の差であることを意味してもよい。 Therefore, in the light source module 250, when the ratio of the radiant flux to the total radiant flux is calculated using the above formula using P L (λ) and P S (λ) having the same correlated color temperature as the output light, The radiant flux Φ Lv /total radiant flux Φ Lall is the same as the radiant flux Φ Sv /total radiant flux Φ Sall . In addition, in the light source module 250, when the radiant flux per unit total luminous flux is calculated using the above formula using P L (λ) and P S (λ) having the same correlated color temperature as the output light, the radiant flux is The flux Φ Lv /total luminous flux Φ VLall is the same as the radiant flux Φ Sv /total luminous flux Φ VSall . In addition, in this specification, being the same means being substantially the same. Here, "substantially the same" means, for example, that there is a difference of ±30% or less regardless of which value is used as a reference. In addition, "substantially the same" may mean a difference of ±20% or less no matter which value is used as the standard, or a difference of ±10% or less no matter which value is used as the standard. It can mean something.
 また、図11に示されるように、出力光は、例えば、第2発光素子21の発光ピークの波長(この例では約450nm)において最も発光強度が高い。また、出力光のスペクトルにおけるピーク(極大)の数は、図11で示される例では3つである。出力光のスペクトルにおけるピークの数は、3つに限らず、例えば、7つ以下であり、5つ以下であってもよい。これにより、簡易な構成で光源モジュール250を実現できる。また、出力光のスペクトルにおけるピークの数は、例えば、3つ以上である。 Further, as shown in FIG. 11, the output light has the highest emission intensity at, for example, the wavelength of the emission peak of the second light emitting element 21 (about 450 nm in this example). Further, the number of peaks (maximum) in the spectrum of the output light is three in the example shown in FIG. 11. The number of peaks in the spectrum of the output light is not limited to three, but may be, for example, seven or less, or five or less. Thereby, the light source module 250 can be realized with a simple configuration. Further, the number of peaks in the spectrum of the output light is, for example, three or more.
 なお、光源モジュール250において、出力光の分光特性と太陽光との分光特性とが上記の関係になるように構成されれば、光源モジュール250が備える複数の発光部は、上記の例に限らない。例えば、光源モジュール250は、第2発光部20の代わりに、光色の互いに異なる光を発する複数のLEDチップを有する複数の発光部を備える構成であってもよい。 Note that if the light source module 250 is configured such that the spectral characteristics of the output light and the spectral characteristics of sunlight have the above relationship, the plurality of light emitting parts included in the light source module 250 are not limited to the above example. . For example, the light source module 250 may include a plurality of light emitting sections each having a plurality of LED chips that emit light of different colors instead of the second light emitting section 20.
 [効果など]
 以上のように、本実施の形態に係る光源モジュール250は、出力光を発する光源モジュール250であって、複数の発光部を備える。複数の発光部は、互いに異なる光色の光を発する複数の発光部を含む。出力光は、複数の発光部のそれぞれが発する光を含む。光源モジュール250の出力光において、可視光領域における全放射束に対する360nm以上400nm以下の波長範囲の放射束の割合は、光源モジュール250の出力光と同じ相関色温度の太陽光と同一である。
[Effects etc.]
As described above, the light source module 250 according to this embodiment is a light source module 250 that emits output light, and includes a plurality of light emitting sections. The plurality of light emitting sections include a plurality of light emitting sections that emit light of mutually different colors. The output light includes light emitted from each of the plurality of light emitting sections. In the output light of the light source module 250, the ratio of the radiant flux in the wavelength range of 360 nm to 400 nm to the total radiant flux in the visible light region is the same as that of sunlight having the same correlated color temperature as the output light of the light source module 250.
 これにより、出力光が太陽光と同じ割合で紫色成分を含むため、紫色成分を含む出力光による照明であっても、人への負荷を低減できる。よって、光源モジュール250は、紫色成分を含み、かつ、照明に用いることに適した出力光を発することができる。また、放射束を用いて上記割合を算出できるため、人に放射されるエネルギーに直結した数値を用いることができる。 As a result, the output light contains violet components in the same proportion as sunlight, so even if the output light includes violet components, the burden on people can be reduced. Therefore, the light source module 250 can emit output light that includes a violet component and is suitable for use in illumination. Moreover, since the above ratio can be calculated using radiant flux, it is possible to use a numerical value directly connected to the energy radiated to a person.
 また、本実施の形態に係る光源モジュール250は、出力光を発する光源モジュール250であって、複数の発光部を備える。複数の発光部は、互いに異なる光色の光を発する複数の発光部を含む。出力光は、複数の発光部のそれぞれが発する光を含む。光源モジュール250の出力光において、可視光領域における単位全光束あたりの360nm以上400nm以下の波長範囲の放射束が、光源モジュール250の出力光と同じ相関色温度の太陽光と同一である。 Furthermore, the light source module 250 according to this embodiment is a light source module 250 that emits output light, and includes a plurality of light emitting sections. The plurality of light emitting sections include a plurality of light emitting sections that emit light of mutually different colors. The output light includes light emitted from each of the plurality of light emitting sections. In the output light of the light source module 250, the radiant flux in the wavelength range of 360 nm or more and 400 nm or less per unit total luminous flux in the visible light region is the same as sunlight having the same correlated color temperature as the output light of the light source module 250.
 これにより、出力光が太陽光と同じ割合で紫色成分を含むため、紫色成分を含む出力光による照明であっても、人への負荷を低減できる。よって、光源モジュール250は、紫色成分を含み、かつ、照明に用いることに適した出力光を発することができる。また、単位全光束あたりの放射束を用いるため、照明設計への適用が容易である。 As a result, the output light contains violet components in the same proportion as sunlight, so even if the output light includes violet components, the burden on people can be reduced. Therefore, the light source module 250 can emit output light that includes a violet component and is suitable for use in illumination. Furthermore, since the radiant flux per unit total luminous flux is used, it is easy to apply to lighting design.
 また、例えば、複数の発光部は、第1光を発する第1発光部10と、白色の第2光を発する第2発光部20と、を含む。第1発光部10は、第1発光素子11を有する。第2発光部20は、第2発光素子21と、第2発光素子21からの光で励起されて光を発する蛍光体22と、を有する。出力光は、第1光及び第2光を含む。第1発光素子11の発光ピークの波長は、第2発光素子21の発光ピークの波長よりも短く、かつ、360nm以上400nm以下である。蛍光体22の励起スペクトルは、360nm以上400nm以下における第1発光素子11が発光強度を有する波長範囲に極小値を有する。 Further, for example, the plurality of light emitting units include a first light emitting unit 10 that emits first light, and a second light emitting unit 20 that emits white second light. The first light emitting section 10 has a first light emitting element 11. The second light emitting section 20 includes a second light emitting element 21 and a phosphor 22 that is excited by the light from the second light emitting element 21 and emits light. The output light includes first light and second light. The wavelength of the light emission peak of the first light emitting element 11 is shorter than the wavelength of the light emission peak of the second light emitting element 21, and is 360 nm or more and 400 nm or less. The excitation spectrum of the phosphor 22 has a minimum value in a wavelength range from 360 nm to 400 nm, in which the first light emitting element 11 has an emission intensity.
 これにより、第1発光部10から発せられる紫色成分を含む第1光の一部が拡散等によって第2発光部20に入射しても、入射した第1光によって蛍光体22が励起しにくい。そのため、第1光によって蛍光体22が意図しない波長の光を発することが抑制され、光源モジュール250が第1発光部10を有する場合でも、第2発光部20が発する白色の第2光の光色の変化が抑制される。また、第1光が蛍光体22に吸収されにくくなるため、出力光における紫色成分を含む第1光の光量の低下を抑制できる。 As a result, even if a part of the first light including a violet component emitted from the first light emitting section 10 enters the second light emitting section 20 due to diffusion or the like, the phosphor 22 is unlikely to be excited by the incident first light. Therefore, the phosphor 22 is suppressed from emitting light of an unintended wavelength due to the first light, and even when the light source module 250 has the first light emitting section 10, the white second light emitted by the second light emitting section 20 is suppressed. Color changes are suppressed. Furthermore, since the first light is less likely to be absorbed by the phosphor 22, it is possible to suppress a decrease in the amount of the first light including the violet component in the output light.
 また、例えば、蛍光体22の励起スペクトルは、第1発光素子11の発光ピークの半値幅の範囲内に極小値を有する。 Further, for example, the excitation spectrum of the phosphor 22 has a minimum value within the range of the half width of the emission peak of the first light emitting element 11.
 これにより、第2発光部20において、第1光による蛍光体22の励起をさらに抑制できる。 Thereby, in the second light emitting section 20, excitation of the phosphor 22 by the first light can be further suppressed.
 また、本実施の形態に係る照明器具200は、光源モジュール250と、光源モジュール250を点灯するための電力を光源モジュール250に供給する点灯回路70と、を備える。 Furthermore, the lighting fixture 200 according to the present embodiment includes a light source module 250 and a lighting circuit 70 that supplies the light source module 250 with power for lighting the light source module 250.
 これにより、紫色成分を含み、かつ、照明に用いることに適した出力光を発することができる照明器具200を実現できる。 With this, it is possible to realize the lighting fixture 200 that can emit output light that includes a violet component and is suitable for use in illumination.
 [変形例]
 次に、実施の形態2の変形例について説明する。以下の説明では、実施の形態1、実施の形態1の変形例及び実施の形態2との相違点を中心に説明を行い、共通点の説明を省略又は簡略化する。
[Modified example]
Next, a modification of the second embodiment will be described. In the following description, differences from Embodiment 1, a modification of Embodiment 1, and Embodiment 2 will be mainly explained, and explanations of common points will be omitted or simplified.
 図12は、本変形例に係る照明器具200aの構成を示すブロック図である。図12に示されるように、照明器具200aは、実施の形態2に係る照明器具200と比較して、光源モジュール250の代わりに光源モジュール250aを備える点、及び、制御部90を追加で備える点で相違する。 FIG. 12 is a block diagram showing the configuration of a lighting fixture 200a according to this modification. As shown in FIG. 12, the lighting fixture 200a is different from the lighting fixture 200 according to the second embodiment in that it includes a light source module 250a instead of the light source module 250, and that it additionally includes a control unit 90. There is a difference.
 光源モジュール250aは、第1発光部10と、第2発光部20と、第3発光部30と、を備える。つまり、光源モジュール250aは、光源モジュール250の構成に加えて、第3発光部30を備える。 The light source module 250a includes a first light emitting section 10, a second light emitting section 20, and a third light emitting section 30. That is, the light source module 250a includes the third light emitting section 30 in addition to the configuration of the light source module 250.
 第3発光部30は、白色の第3光を発する。光源モジュール250aが発する出力光は、光源モジュール250aが備える全ての第1発光部10が発する第1光、光源モジュール250aが備える全ての第2発光部20が発する第2光、及び、光源モジュール250aが備える全ての第3発光部30が発する第3光を含む。なお、制御部90による制御によって、第2発光部20及び第3発光部30の一方が発光せず、出力光が第2光及び第3光のうち一方を含まない場合があってもよい。 The third light emitting unit 30 emits white third light. The output light emitted by the light source module 250a includes the first light emitted by all the first light emitting parts 10 included in the light source module 250a, the second light emitted by all the second light emitting parts 20 included in the light source module 250a, and the light source module 250a. includes the third light emitted by all the third light emitting units 30 included in the third light emitting unit 30 . Note that under the control of the control unit 90, one of the second light emitting unit 20 and the third light emitting unit 30 may not emit light, and the output light may not include one of the second light and the third light.
 第3発光部30は、発する光の相関色温度が異なる以外は、第2発光部20と同じ構成を有する。第3発光部30は、例えば、図4で示される第2発光部20と同様に、発光素子と、蛍光体と、封止部材と、パッケージとを備える。第3発光部30の発光素子、蛍光体、封止部材及びパッケージは、第2発光部20の第2発光素子21、蛍光体22、封止部材25及びパッケージ27で例示した構成を有しうる。例えば、第3発光部30が有する蛍光体の励起スペクトルは、360nm以上400nm以下における第1発光素子11が発光強度を有する波長範囲に極小値を有していてもよい。第3発光部30は、発光素子の出力特性、並びに、蛍光体の種類及び量のうち少なくとも1つが、対応する第2発光素子の構成と異なることで、発する光の相関色温度が第2発光部20と異なる。 The third light emitting section 30 has the same configuration as the second light emitting section 20, except that the correlated color temperature of the emitted light is different. The third light emitting section 30 includes, for example, a light emitting element, a phosphor, a sealing member, and a package, similarly to the second light emitting section 20 shown in FIG. 4 . The light emitting element, phosphor, sealing member, and package of the third light emitting section 30 may have the configurations exemplified in the second light emitting element 21, the phosphor 22, the sealing member 25, and the package 27 of the second light emitting section 20. . For example, the excitation spectrum of the phosphor included in the third light emitting section 30 may have a minimum value in a wavelength range from 360 nm to 400 nm in which the first light emitting element 11 has an emission intensity. The third light emitting unit 30 has at least one of the output characteristics of the light emitting element and the type and amount of the phosphor different from the configuration of the corresponding second light emitting element, so that the correlated color temperature of the emitted light is different from that of the second light emitting element. This is different from part 20.
 光源モジュール250aでは、第1発光部10と第2発光部20と第3発光部30は、独立して点灯が制御される。光源モジュール250aでは、例えば、第1発光部10、第2発光部20及び第3発光部30に独立して電力を供給できるように基板に実装されている。 In the light source module 250a, the lighting of the first light emitting section 10, the second light emitting section 20, and the third light emitting section 30 is controlled independently. In the light source module 250a, for example, the first light emitting section 10, the second light emitting section 20, and the third light emitting section 30 are mounted on a substrate so that power can be supplied independently.
 制御部90は、光源モジュール250aの発光を制御する。制御部90は、例えば、第1発光部10、第2発光部20及び第3発光部30それぞれの出力を調整する。制御部90は、例えば、点灯回路70を用いて第1発光部10、第2発光部20及び第3発光部30に独立して電力を供給し、個別に電流量を変化させることで、第1光、第2光及び第3光のそれぞれの光量を調整する。これにより、制御部90は、出力光の相関色温度を変化させる。なお、制御部90による点灯回路70を用いた電力供給では、目的の出力光の相関色温度によっては、電力供給しない発光部があってもよい。また、制御部90による第1発光部10、第2発光部20及び第3発光部30の出力の制御は、PWM(Pulse Width Modulation)制御であってもよい。 The control unit 90 controls the light emission of the light source module 250a. For example, the control section 90 adjusts the output of each of the first light emitting section 10, the second light emitting section 20, and the third light emitting section 30. For example, the control unit 90 independently supplies power to the first light emitting unit 10, the second light emitting unit 20, and the third light emitting unit 30 using the lighting circuit 70, and changes the amount of current individually. Adjust the amount of each of the first light, second light, and third light. Thereby, the control unit 90 changes the correlated color temperature of the output light. Note that when power is supplied by the control unit 90 using the lighting circuit 70, some light emitting units may not be supplied with power depending on the correlated color temperature of the target output light. Furthermore, the control of the outputs of the first light emitting section 10, the second light emitting section 20, and the third light emitting section 30 by the control section 90 may be PWM (Pulse Width Modulation) control.
 なお、制御部90は、例えば、集積回路(IC:Integrated Circuit)であるLSI(Large Scale Integration)によって実現される。なお、集積回路は、LSIに限られず、専用回路又は汎用プロセッサであってもよい。例えば、制御部90は、マイクロコントローラであってもよい。マイクロコントローラは、例えば、プログラムが格納された不揮発性メモリ、プログラムを実行するための一時的な記憶領域である揮発性メモリ、入出力ポート、プログラムを実行するプロセッサなどを含んでいる。また、制御部90は、プログラム可能なFPGA(Field Programmable Gate Array)、又は、LSI内の回路セルの接続及び設定が再構成可能なリコンフィギュラブルプロセッサであってもよい。制御部90が実行する機能は、ソフトウェアで実現されてもよく、ハードウェアで実現されてもよい。 Note that the control unit 90 is realized by, for example, an LSI (Large Scale Integration) that is an integrated circuit (IC). Note that the integrated circuit is not limited to an LSI, and may be a dedicated circuit or a general-purpose processor. For example, the control unit 90 may be a microcontroller. A microcontroller includes, for example, a nonvolatile memory in which a program is stored, a volatile memory that is a temporary storage area for executing the program, an input/output port, a processor that executes the program, and the like. Further, the control unit 90 may be a programmable FPGA (Field Programmable Gate Array) or a reconfigurable processor in which connections and settings of circuit cells within the LSI can be reconfigured. The functions executed by the control unit 90 may be realized by software or hardware.
 図13は、本変形例に係る照明器具200aにおける出力光の相関色温度の変化の一例を説明するためのCIE1931色空間のxy色度図である。図13においては、第2発光部20が色度座標L2の第2光を発し、第3発光部30が色度座標L3の第3光を発する場合が示されている。 FIG. 13 is an xy chromaticity diagram of the CIE1931 color space for explaining an example of a change in the correlated color temperature of output light in the lighting fixture 200a according to this modification. FIG. 13 shows a case where the second light emitting section 20 emits the second light with the chromaticity coordinate L2, and the third light emitting section 30 emits the third light with the chromaticity coordinate L3.
 図13で示される例では、第2光の相関色温度は6500Kであり、第3光の相関色温度は3000Kである。なお、第2光及び第3光の相関色温度は特に制限されず、出力光の相関色温度を調整したい範囲に応じて設定される。また、図13で示される例では、第2光の色度座標L2及び第3光の色度座標L3はそれぞれ、黒体放射軌跡上の色度座標であるが、黒体放射軌跡から離れていてもよい。また、第2光の色度座標L2及び第3光の色度座標L3の少なくとも一方は、相関色温度の規定範囲外の色度座標であってもよい。 In the example shown in FIG. 13, the correlated color temperature of the second light is 6500K, and the correlated color temperature of the third light is 3000K. Note that the correlated color temperature of the second light and the third light is not particularly limited, and is set according to the range in which the correlated color temperature of the output light is desired to be adjusted. Furthermore, in the example shown in FIG. 13, the chromaticity coordinate L2 of the second light and the chromaticity coordinate L3 of the third light are chromaticity coordinates on the blackbody radiation locus, but they are far from the blackbody radiation locus. It's okay. Further, at least one of the chromaticity coordinate L2 of the second light and the chromaticity coordinate L3 of the third light may be a chromaticity coordinate outside the specified range of correlated color temperature.
 出力光は、第2光及び第3光に加えて第1光を含むが、第1光は出力光の相関色温度への影響は小さい。そのため、出力光の相関色温度は、第2光及び第3光の光量の比率によっておおよそ決定される。以下では、説明を簡単にするため、出力光の相関色温度は第2光及び第3光の光量の比率によって決定されるとして説明する。 Although the output light includes the first light in addition to the second light and the third light, the first light has a small influence on the correlated color temperature of the output light. Therefore, the correlated color temperature of the output light is approximately determined by the ratio of the light amounts of the second light and the third light. In the following description, in order to simplify the explanation, it will be assumed that the correlated color temperature of the output light is determined by the ratio of the light amounts of the second light and the third light.
 制御部90は、第2発光部20の出力と第3発光部30の出力との比率を制御することで、第2光と第3光とが混合された光の色度座標を色度座標L2と色度座標L3との間で変化させる。この変化によって、出力光の相関色温度も第2光の相関色温度と第3光の相関色温度との間で変化する。 The control unit 90 controls the ratio of the output of the second light emitting unit 20 and the output of the third light emitting unit 30 to convert the chromaticity coordinates of the light in which the second light and the third light are mixed into chromaticity coordinates. It is changed between L2 and chromaticity coordinate L3. Due to this change, the correlated color temperature of the output light also changes between the correlated color temperature of the second light and the correlated color temperature of the third light.
 また、制御部90は、出力光での、可視光領域における全放射束に対する360nm以上400nm以下の波長範囲の放射束の割合が、出力光と同じ相関色温度の太陽光での、可視光領域における全放射束に対する360nm以上400nm以下の波長範囲の放射束の割合と同一であるように、出力光の相関色温度を変化させる。また、制御部90は、出力光での、可視光領域における単位全光束あたりの360nm以上400nm以下の波長範囲の放射束が、出力光と同じ相関色温度の太陽光での可視光領域における単位全光束あたりの360nm以上400nm以下の波長範囲の放射束と同一であるように、出力光の相関色温度を変化させる。この際、制御部90は、例えば、出力光の相関色温度を高くする場合には第1発光部10の出力を大きくする制御を行い、出力光の相関色温度を低くする場合には第1発光部10の出力を小さくする制御を行う。制御部90は、例えば、出力光の相関色温度と、第1発光部10、第2発光部20及び第3発光部30のそれぞれへの電力供給量(電流量)とを対応付けたデータテーブルを保持し、当該データテーブルに基づいて、所望の出力光の相関色温度となるように点灯回路70から光源モジュール250aへ供給される電力を制御する。当該データテーブルは、第1発光部10、第2発光部20及び第3発光部30の出力特性、並びに、第1光、第2光及び第3光のスペクトルから設計可能である。 Further, the control unit 90 controls the output light so that the ratio of the radiant flux in the wavelength range of 360 nm to 400 nm to the total radiant flux in the visible light region is within the visible light region of sunlight having the same correlated color temperature as the output light. The correlated color temperature of the output light is changed so that the ratio of the radiant flux in the wavelength range of 360 nm to 400 nm to the total radiant flux is the same. The control unit 90 also controls the control unit 90 to control how the radiant flux in the wavelength range of 360 nm or more and 400 nm or less per unit total luminous flux in the visible light region of the output light is the unit in the visible light region of sunlight having the same correlated color temperature as the output light. The correlated color temperature of the output light is changed so that the radiant flux in the wavelength range of 360 nm or more and 400 nm or less per total luminous flux is the same. At this time, the control unit 90 controls, for example, to increase the output of the first light emitting unit 10 when increasing the correlated color temperature of the output light, and controls the output of the first light emitting unit 10 to increase when decreasing the correlated color temperature of the output light. Control is performed to reduce the output of the light emitting section 10. For example, the control unit 90 creates a data table that associates the correlated color temperature of the output light with the amount of power supplied (current amount) to each of the first light emitting unit 10, the second light emitting unit 20, and the third light emitting unit 30. is held, and based on the data table, the power supplied from the lighting circuit 70 to the light source module 250a is controlled so as to achieve a desired correlated color temperature of output light. The data table can be designed from the output characteristics of the first light emitting section 10, the second light emitting section 20, and the third light emitting section 30, and the spectra of the first light, second light, and third light.
 以上のように、本変形例に係る照明器具200aは、光源モジュール250aの複数の発光部のそれぞれの出力を調整することにより出力光の相関色温度を変化させる制御部90を備える。例えば、制御部90は、光源モジュール250aの出力光において、可視光領域における全放射束に対する360nm以上400nm以下の波長範囲の放射束の割合が、光源モジュール250aの出力光と同じ相関色温度の太陽光と同一であるように、光源モジュール250aの出力光の相関色温度を変化させる。また、例えば、制御部90は、光源モジュール250aの出力光において、可視光領域における単位全光束あたりの360nm以上400nm以下の波長範囲の放射束が、光源モジュール250aの出力光と同じ相関色温度の太陽光と同一であるように、光源モジュール250aの出力光の相関色温度を変化させる。 As described above, the lighting fixture 200a according to this modification includes the control section 90 that changes the correlated color temperature of output light by adjusting the output of each of the plurality of light emitting sections of the light source module 250a. For example, in the output light of the light source module 250a, the control unit 90 may control the ratio of the radiant flux in the wavelength range of 360 nm to 400 nm to the total radiant flux in the visible light region from sunlight with the same correlated color temperature as the output light of the light source module 250a. The correlated color temperature of the output light of the light source module 250a is changed so that the correlated color temperature is the same as that of the light. For example, the control unit 90 may control the control unit 90 so that the output light of the light source module 250a has a radiant flux in a wavelength range of 360 nm or more and 400 nm or less per unit total luminous flux in the visible light region, which has the same correlated color temperature as the output light of the light source module 250a. The correlated color temperature of the output light of the light source module 250a is changed so that it is the same as sunlight.
 これにより、出力光の相関色温度を変化させる場合であっても、各相関色温度での太陽光に合わせた出力光の紫色成分の割合になるため、人への負荷を低減できる。 As a result, even when changing the correlated color temperature of the output light, the proportion of the violet component of the output light matches the sunlight at each correlated color temperature, so the burden on people can be reduced.
 (その他)
 以上、本発明に係る光源モジュール及び照明器具について、上記の実施の形態及び変形例に基づいて説明したが、本発明は、上記の実施の形態及び変形例に限定されるものではない。
(others)
Although the light source module and lighting fixture according to the present invention have been described above based on the above embodiments and modifications, the present invention is not limited to the above embodiments and modifications.
 例えば、第1発光素子11及び第2発光素子21の少なくとも一方は、LEDチップでなくてもよい。例えば、第1発光素子11及び第2発光素子21の少なくとも一方は、レーザ素子又は有機EL(Electroluminescence)素子等のLEDチップ以外の素子であってもよい。 For example, at least one of the first light emitting element 11 and the second light emitting element 21 may not be an LED chip. For example, at least one of the first light emitting element 11 and the second light emitting element 21 may be an element other than an LED chip, such as a laser element or an organic EL (Electroluminescence) element.
 また、例えば、第2発光部20は、蛍光体22が分散した封止部材25の代わりに、蛍光体22の焼結体を備えてもよい。また、第2発光部20は、リモートフォスファー型の発光モジュールであってもよい。 Furthermore, for example, the second light emitting section 20 may include a sintered body of the phosphor 22 instead of the sealing member 25 in which the phosphor 22 is dispersed. Further, the second light emitting section 20 may be a remote phosphor type light emitting module.
 その他、各実施の形態及び各変形例に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態及び各変形例における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。 In addition, forms obtained by applying various modifications to each embodiment and each modification example that those skilled in the art can think of, and components and functions of each embodiment and each modification example are modified without departing from the spirit of the present invention. The present invention also includes forms realized by arbitrary combinations.
 10、10a 第1発光部
 11 第1発光素子
 20、20a、20b 第2発光部
 21 第2発光素子
 22 蛍光体
 50、50a、250、250a 光源モジュール
 70 点灯回路
 90 制御部
 100、200、200a 照明器具
10, 10a first light emitting section 11 first light emitting element 20, 20a, 20b second light emitting section 21 second light emitting element 22 phosphor 50, 50a, 250, 250a light source module 70 lighting circuit 90 control section 100, 200, 200a illumination utensil

Claims (10)

  1.  出力光を発する光源モジュールであって、
     複数の発光部を備え、
     前記複数の発光部は、互いに異なる光色の光を発する発光部を含み、
     前記出力光は、前記複数の発光部のそれぞれが発する光を含み、
     前記出力光において、可視光領域における全放射束に対する360nm以上400nm以下の波長範囲の放射束の割合は、前記出力光と同じ相関色温度の太陽光と同一である、
     光源モジュール。
    A light source module that emits output light,
    Equipped with multiple light emitting parts,
    The plurality of light emitting units include light emitting units that emit light of mutually different colors,
    The output light includes light emitted by each of the plurality of light emitting parts,
    In the output light, the ratio of the radiant flux in the wavelength range of 360 nm to 400 nm to the total radiant flux in the visible light region is the same as that of sunlight having the same correlated color temperature as the output light.
    light source module.
  2.  前記複数の発光部は、
      第1発光素子を有し、第1光を発する第1発光部と、
      第2発光素子と、前記第2発光素子からの光で励起されて光を発する蛍光体と、を有し、白色の第2光を発する第2発光部と、を含み、
     前記第1発光素子の発光ピークの波長は、前記第2発光素子の第2発光ピークの波長よりも短く、かつ、360nm以上400nm以下であり、
     前記蛍光体の励起スペクトルは、360nm以上400nm以下における前記第1発光素子が発光強度を有する波長範囲に極小値を有する、
     請求項1に記載の光源モジュール。
    The plurality of light emitting parts are
    a first light emitting section that has a first light emitting element and emits first light;
    a second light emitting section that includes a second light emitting element and a phosphor that emits light when excited by the light from the second light emitting element, and that emits white second light;
    The wavelength of the emission peak of the first light emitting element is shorter than the wavelength of the second emission peak of the second light emitting element, and is 360 nm or more and 400 nm or less,
    The excitation spectrum of the phosphor has a minimum value in a wavelength range of 360 nm or more and 400 nm or less in which the first light emitting element has an emission intensity.
    The light source module according to claim 1.
  3.  前記励起スペクトルは、前記第1発光素子の発光ピークの半値幅の範囲内に極小値を有する、
     請求項2に記載の光源モジュール。
    The excitation spectrum has a minimum value within the half width of the emission peak of the first light emitting element.
    The light source module according to claim 2.
  4.  請求項1から3のいずれか1項に記載の光源モジュールと、
     前記光源モジュールを点灯するための電力を前記光源モジュールに供給する点灯回路と、を備える、
     照明器具。
    The light source module according to any one of claims 1 to 3,
    a lighting circuit that supplies power for lighting the light source module to the light source module;
    lighting equipment.
  5.  前記複数の発光部のそれぞれの出力を調整することにより前記出力光の相関色温度を変化させる制御部をさらに備え、
     前記制御部は、前記出力光において、可視光領域における全放射束に対する360nm以上400nm以下の波長範囲の放射束の割合が、前記出力光と同じ相関色温度の太陽光と同一であるように、前記出力光の相関色温度を変化させる、
     請求項4に記載の照明器具。
    further comprising a control unit that changes the correlated color temperature of the output light by adjusting the output of each of the plurality of light emitting units,
    The control unit is configured such that, in the output light, a ratio of radiant flux in a wavelength range of 360 nm to 400 nm to the total radiant flux in the visible light region is the same as that of sunlight having the same correlated color temperature as the output light. changing the correlated color temperature of the output light;
    The lighting fixture according to claim 4.
  6.  出力光を発する光源モジュールであって、
     複数の発光部を備え、
     前記複数の発光部は、互いに異なる光色の光を発する発光部を含み、
     前記出力光は、前記複数の発光部のそれぞれが発する光を含み、
     前記出力光において、可視光領域における単位全光束あたりの360nm以上400nm以下の波長範囲の放射束が、前記出力光と同じ相関色温度の太陽光と同一である、
     光源モジュール。
    A light source module that emits output light,
    Equipped with multiple light emitting parts,
    The plurality of light emitting units include light emitting units that emit light of mutually different colors,
    The output light includes light emitted by each of the plurality of light emitting parts,
    In the output light, the radiant flux in the wavelength range of 360 nm or more and 400 nm or less per unit total luminous flux in the visible light region is the same as sunlight having the same correlated color temperature as the output light.
    light source module.
  7.  前記複数の発光部は、
      第1発光素子を有し、第1光を発する第1発光部と、
      第2発光素子と、前記第2発光素子からの光で励起されて光を発する蛍光体と、を有し、白色の第2光を発する第2発光部と、を含み、
     前記第1発光素子の発光ピークの波長は、前記第2発光素子の第2発光ピークの波長よりも短く、かつ、360nm以上400nm以下であり、
     前記蛍光体の励起スペクトルは、360nm以上400nm以下における前記第1発光素子が発光強度を有する波長範囲に極小値を有する、
     請求項6に記載の光源モジュール。
    The plurality of light emitting parts are
    a first light emitting section that has a first light emitting element and emits first light;
    a second light emitting section that includes a second light emitting element and a phosphor that emits light when excited by the light from the second light emitting element, and that emits white second light;
    The wavelength of the emission peak of the first light emitting element is shorter than the wavelength of the second emission peak of the second light emitting element, and is 360 nm or more and 400 nm or less,
    The excitation spectrum of the phosphor has a minimum value in a wavelength range of 360 nm or more and 400 nm or less in which the first light emitting element has an emission intensity.
    The light source module according to claim 6.
  8.  前記励起スペクトルが前記極小値を示す波長は、前記第1発光素子の発光ピークの半値幅の範囲内である、
     請求項7に記載の光源モジュール。
    The wavelength at which the excitation spectrum shows the minimum value is within the half width of the emission peak of the first light emitting element.
    The light source module according to claim 7.
  9.  請求項6から8のいずれか1項に記載の光源モジュールと、
     前記光源モジュールを点灯するための電力を前記光源モジュールに供給する点灯回路と、を備える、
     照明器具。
    The light source module according to any one of claims 6 to 8,
    a lighting circuit that supplies power for lighting the light source module to the light source module;
    lighting equipment.
  10.  前記照明器具は、前記複数の発光部のそれぞれの出力を調整することにより前記出力光の相関色温度を変化させる制御部をさらに備え、
     前記制御部は、前記出力光において、可視光領域における単位全光束あたりの360nm以上400nm以下の波長範囲の放射束が、前記出力光と同じ相関色温度の太陽光と同一であるように、前記出力光の相関色温度を変化させる、
     請求項9に記載の照明器具。
    The lighting fixture further includes a control unit that changes the correlated color temperature of the output light by adjusting the output of each of the plurality of light emitting units,
    The control unit controls the output light so that a radiant flux in a wavelength range of 360 nm or more and 400 nm or less per unit total luminous flux in the visible light region is the same as sunlight having the same correlated color temperature as the output light. Change the correlated color temperature of the output light,
    The lighting fixture according to claim 9.
PCT/JP2023/026585 2022-07-27 2023-07-20 Light source module and lighting device WO2024024623A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-119465 2022-07-27
JP2022119465A JP2024017070A (en) 2022-07-27 2022-07-27 Light source module and lighting equipment

Publications (1)

Publication Number Publication Date
WO2024024623A1 true WO2024024623A1 (en) 2024-02-01

Family

ID=89706412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026585 WO2024024623A1 (en) 2022-07-27 2023-07-20 Light source module and lighting device

Country Status (2)

Country Link
JP (1) JP2024017070A (en)
WO (1) WO2024024623A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017502493A (en) * 2013-10-28 2017-01-19 ジーイー・ライティング・ソルーションズ,エルエルシー Lamp for improved fluorescent whitening and color preference
JP2021122014A (en) * 2014-10-28 2021-08-26 東芝マテリアル株式会社 Method for using white light source and method for using white light source system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017502493A (en) * 2013-10-28 2017-01-19 ジーイー・ライティング・ソルーションズ,エルエルシー Lamp for improved fluorescent whitening and color preference
JP2021122014A (en) * 2014-10-28 2021-08-26 東芝マテリアル株式会社 Method for using white light source and method for using white light source system

Also Published As

Publication number Publication date
JP2024017070A (en) 2024-02-08

Similar Documents

Publication Publication Date Title
US10753575B2 (en) Single diode disinfection
JP7276965B2 (en) Multi-emitter for inactivating microorganisms
EP3155874B1 (en) Light emitting arrangement with adjustable emission spectrum
TWI709358B (en) Multi-channel lamp system and method with mixed spectrum
JP6037541B2 (en) LED module, LED illuminator and LED lamp for energy efficient reproduction of white light
KR101419954B1 (en) Lighting device and lighting method
US20120155076A1 (en) Led-based light emitting systems and devices
US20160218254A1 (en) High color-saturation lighting devices with enhanced long wavelength illumination
JP6074703B2 (en) LED lighting device and LED light emitting module
JP5654328B2 (en) Light emitting device
EP3845033B1 (en) Cyan enriched white light
JP2005057272A (en) Led module
KR20100080927A (en) Lighting device and method of making
JP2007227681A (en) White lighting system using light-emitting diode
WO2024024623A1 (en) Light source module and lighting device
WO2024024619A1 (en) Light source module and lighting fixture
US20210308480A1 (en) Lighting assembly
KR102556270B1 (en) LED sunlight and LED luminaire
JP2020136619A (en) Light emitting device and lighting system
JP7296579B2 (en) lighting equipment
KR20230133465A (en) LED evening sun light
Edwards et al. Novel multi-layer remote phosphor linear optics for solid state lighting
CN113261121A (en) LED module
JP2020136597A (en) Light emitting device and lighting system
JP2015198119A (en) light-emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846354

Country of ref document: EP

Kind code of ref document: A1