WO2024024569A1 - Optical system - Google Patents

Optical system Download PDF

Info

Publication number
WO2024024569A1
WO2024024569A1 PCT/JP2023/026257 JP2023026257W WO2024024569A1 WO 2024024569 A1 WO2024024569 A1 WO 2024024569A1 JP 2023026257 W JP2023026257 W JP 2023026257W WO 2024024569 A1 WO2024024569 A1 WO 2024024569A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
metalens
optical system
light
central axis
Prior art date
Application number
PCT/JP2023/026257
Other languages
French (fr)
Japanese (ja)
Inventor
拓哉 松浦
知浩 福浦
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2024024569A1 publication Critical patent/WO2024024569A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends

Definitions

  • the present invention relates to an optical system, and particularly to an optical system that can connect two optical waveguides of different sizes.
  • Patent Document 1 describes a polymer waveguide-type spot size converter for connecting two optical waveguides of different sizes.
  • Patent Document 2 JP 2021-148851 A discloses an optical integrated circuit including a plurality of waveguide cores, and an optical path converter for connecting each of the plurality of waveguide cores to the core of an optical fiber.
  • a photoelectric fusion module is described.
  • the optical path converter includes a spot size converter, a curved mirror, a plated mirror, and a polymer waveguide.
  • the optical path length between each of the plurality of waveguide cores and the core of the optical fiber may become long, and there is room for improvement in miniaturization.
  • One object of the present invention is to provide an optical system that can connect two optical waveguides of different sizes, and that can shorten the optical path length than before.
  • the present invention provides the optical system shown below.
  • a metalens that is optically connected the metalens having a first surface facing the first waveguide, and a second surface facing the opposite side to the first surface; is formed with a through hole penetrating between the first surface and the second surface, the diameter of the through hole is smaller than the target wavelength, and the metalens is made of a conductor;
  • a plurality of uneven structures are formed on at least the first surface of the metalens, and the plurality of convex and convex structures are formed by the first surface and a plurality of annular grooves recessed with respect to the first surface.
  • An optical system, wherein the uneven structure is formed in an annular shape so as to surround the through hole in a plan view.
  • the ratio (P/ ⁇ ) of the interval P (unit: nm) of each of the plurality of uneven structures to the target wavelength ⁇ (unit: nm) is 30% or more and 140% or less, described in [1] optical system.
  • the ratio (W5/P) of the width W5 (unit: nm) of each of the plurality of annular grooves to the distance P of each of the plurality of uneven structures in the radial direction with respect to the central axis of the through hole. ) is 10% or more and 95% or less, the optical system according to [2].
  • each of the plurality of annular grooves is connected to the first surface of the metalens. and the second surface, and is formed to expose a part of the third surface.
  • the metalens is provided with an optically connected metalens, and a substrate having a third surface that is transparent to light of a target wavelength and intersects with the propagation direction of the light, and the metalens is disposed on the third surface. and a phase grating that provides a phase difference to light of the target wavelength, and the metalens includes a plurality of convex portions arranged at intervals on the third surface,
  • Each of the plurality of convex portions includes a first group of convex portions that are spaced apart from each other on a first region of the third surface, and a first group of convex portions that are spaced apart from each other on a second region of the third surface. a second group of convex portions arranged in a manner that an optical system that differs in at least one of a width, a maximum width, and a pitch.
  • the metalens includes the first group of convex portions and the second group of convex portions, and at least one of the height, maximum width, and pitch of each of the plurality of convex portions is continuous or stepwise.
  • the width in the radial direction of the first structural unit located at the position closest to the central axis is equal to the width at the position second closest to the central axis.
  • Each of the plurality of convex portions is a columnar body or a spherical body
  • the first waveguide is at least one core of an optical fiber
  • the second waveguide is a thin wire waveguide, a rib waveguide, or a photonic crystal waveguide
  • the metalens is The optical system according to any one of [1] and [9], which is arranged between the first waveguide and the second waveguide.
  • the first waveguide is composed of a plurality of discretely arranged cores, and the metalens optically connects each of the plurality of cores and the second waveguide.
  • the metalens is provided so that the light emitted from each of the plurality of cores is focused on the same straight line as the central axis of each of the first waveguide and the second waveguide, [ 17].
  • an optical system that can connect two optical waveguides of different sizes and has a shorter optical path length than conventional ones.
  • FIG. 1 is an exploded perspective view for explaining an optical system according to a first embodiment.
  • FIG. FIG. 2 is a front view for explaining the metalens shown in FIG. 1.
  • FIG. FIG. 3 is a cross-sectional view of the metalens and the substrate viewed from arrow III-III in FIG. 2; 1 is a cross-sectional view for explaining an optical system according to Embodiment 1.
  • FIG. FIG. 7 is a front view for explaining a first modification example of the metalens of the optical system according to the first embodiment. 6 is a cross-sectional view of the metalens and the substrate as seen from arrow VI-VI in FIG. 5.
  • FIG. FIG. 7 is a cross-sectional view for explaining a first example of an optical system including the metalens shown in FIGS. 5 and 6.
  • FIG. FIG. 7 is a cross-sectional view for explaining a second example of an optical system including the metalens shown in FIGS. 5 and 6.
  • FIG. 7 is a cross-sectional view for explaining a modification of the metalens shown in FIGS. 5 and 6.
  • FIG. 7 is a cross-sectional view for explaining a second modification of the metalens of the optical system according to the first embodiment.
  • FIG. FIG. 7 is a cross-sectional view for explaining a third modification of the metalens of the optical system according to the first embodiment.
  • FIG. 7 is a cross-sectional view for explaining a fourth modification of the metalens of the optical system according to the first embodiment.
  • FIG. 3 is an exploded perspective view for explaining an optical system according to a second embodiment.
  • FIG. 14 is a partially enlarged front view for explaining the metalens shown in FIG. 13.
  • FIG. FIG. 15 is a partially enlarged perspective view for explaining the metalens shown in FIGS. 13 and 14.
  • FIG. 7 is a cross-sectional view for explaining a condensing angle of a metalens of an optical system according to a second embodiment.
  • FIG. 7 is an exploded perspective view for explaining an optical system according to a third embodiment.
  • 18 is a partially enlarged perspective view for explaining the metalens shown in FIG. 17.
  • FIG. FIG. 7 is an exploded perspective view for explaining an optical system according to a fourth embodiment.
  • FIG. 7 is an exploded perspective view for explaining an optical system according to a fifth embodiment.
  • FIG. 7 is an exploded perspective view for explaining an optical system according to a sixth embodiment.
  • FIG. 7 is a partially enlarged plan view for explaining an example of a metalens of an optical system according to a sixth embodiment.
  • FIG. 7 is an exploded perspective view for explaining a modification of the optical system according to the sixth embodiment.
  • FIG. 7 is a diagram for explaining a first example of an optical system according to a seventh embodiment.
  • FIG. 7 is a diagram for explaining a second example of an optical system according to Embodiment 7.
  • the optical system according to the present embodiment optically connects a first waveguide, a second waveguide whose optical spot size is different from that of the first waveguide, and the first waveguide and the second waveguide. and a metalens.
  • light spot size means the width of a region where the light power is 1/e 2 of the maximum value, assuming that the light power distribution of propagating light is Gaussian.
  • the first waveguide has a first end face facing the metalens.
  • the second waveguide has a second end face facing the metalens.
  • the optical spot size at the first end surface of the first waveguide is referred to as the “optical spot size” of the first waveguide.
  • the light spot size at the second end surface of the second waveguide will be referred to as the "light spot size” of the second waveguide.
  • the optical spot size of the first waveguide is larger than the optical spot size of the second waveguide.
  • the term “metalens” refers to a structure that includes at least one metasurface and that condenses light incident from one of the first end surface of the first waveguide and the second end surface of the second waveguide on the other. means body.
  • the term “metasurface” refers to a structure consisting of a plurality of electromagnetic wave scatterers arranged in a direction intersecting the direction in which light propagates between a first end face and a second end face.
  • the plurality of electromagnetic wave scatterers may be arranged in a direction perpendicular to the propagation direction of light between the first end face and the second end face.
  • the plurality of electromagnetic wave scatterers may be arranged in a direction that is inclined at an obtuse angle or an acute angle with respect to the propagation direction of light between the first end face and the second end face.
  • the light condensing principle of the metalens according to this embodiment is not particularly limited, typical examples thereof are listed below.
  • the metasurface is preferably provided to concentrate light into the micro-aperture and enhance the intensity of the light escaping from the micro-aperture.
  • the metalens of the first example has, for example, a bull's eye structured metasurface.
  • the metalens of the second example when a metalens with a phase grating is irradiated with light of a target wavelength, the light diffracted at spatially different parts of the phase grating is focused by giving a phase difference to the light.
  • the metalens of the second example may include a resonant phase grating provided to provide a phase difference by causing light to resonate with a plurality of fine particles made of, for example, a metal or a dielectric material. Further, the metalens of the second example is provided so as to give a phase difference to light propagating through each of a plurality of dielectric waveguides or metal gap waveguides (MIM (Metal-Insulator-Metal) waveguides). It may also include a waveguide type phase grating.
  • MIM Metal-Insulator-Metal
  • the optical system according to the present embodiment light at the target wavelength propagates from the first waveguide where the optical spot size is relatively large, through the metalens, to the second waveguide where the optical spot size is relatively small.
  • the optical system according to this embodiment is particularly suitable for a configuration in which light propagates from a first waveguide with a relatively large light spot size to a second waveguide with a relatively small light spot size via a metalens.
  • the light of the target wavelength may propagate from the second waveguide to the first waveguide through the metalens in the opposite direction to the above.
  • the focus of the metalens is on the second end face of the second waveguide, the light emitted from the second end face is enlarged in diameter via the metalens and then transferred to the first end face of the first waveguide. It is emitted as parallel light to the end face side.
  • the light spot size at the first end surface of the light propagating from the metalens to the first end surface is referred to as the first light spot size.
  • the light spot size at the second end face of the light propagating from the metalens to the second end face is referred to as a second light spot size.
  • the difference between the first optical spot size and the optical spot size of the core 1A is as small as possible, and the difference between the second optical spot size and the optical spot size of the Si waveguide 2A is as small as possible. It is designed to be small. In this way, the light transmission efficiency between the first waveguide and the second waveguide is increased.
  • the metalens is provided such that the first light spot size is equal to the light spot size of the core 1A, and the second light spot size is equal to the light spot size of the Si waveguide 2A. In this way, the light transmission efficiency between the first waveguide and the second waveguide is maximized.
  • the metalens collects the light incident from the first waveguide onto the second waveguide. In other words, the metalens reduces the spot size of the light incident from the first waveguide to the same extent as the second light spot size.
  • the metalens causes a process opposite to the former case, and spreads the light incident from the second waveguide to the first waveguide. In other words, the metalens increases the spot size of the light incident from the second waveguide to the same extent as the first light spot size.
  • the optical system according to the present embodiment includes a metalens, it is different from a conventional optical system including a polymer waveguide that optically connects the first waveguide and the second waveguide.
  • the optical path length between the two waveguides can be shortened.
  • planar view means a viewpoint from which the metalens is viewed from the direction in which light propagates between the first waveguide and the second waveguide (hereinafter also referred to as the optical axis direction).
  • the arrangement of the plurality of electromagnetic wave scatterers is periodic or non-periodic.
  • At least one of the intervals is equal to or less than the wavelength of light propagating through the optical system (hereinafter also referred to as the target wavelength).
  • the thickness, width, and interval of each of the plurality of electromagnetic wave scatterers are all equal to or less than the target wavelength.
  • the thickness, width, and spacing of each of the plurality of electromagnetic wave scatterers may exceed, for example, the target wavelength. In this case, other parameters among the thickness, width, and spacing of each of the plurality of electromagnetic wave scatterers may be less than the target wavelength. Further, in this case, the thickness, width, or interval of each of the plurality of electromagnetic wave scatterers exceeding the target wavelength is twice or less than the target wavelength.
  • the target wavelength is not particularly limited, but is, for example, 300 nm or more and 3 mm or less.
  • the optical system is arranged to propagate, for example, visible light, infrared light, and/or terahertz waves.
  • the first waveguide according to this embodiment is, for example, the core of an optical fiber.
  • the first waveguide is, for example, the core of a single-core fiber or a multi-core fiber.
  • the second waveguide according to this embodiment is, for example, a thin wire waveguide, a rib waveguide, or a photonic crystal waveguide.
  • an optical system 101 includes an optical fiber 1, a photonics element 2, a metalens 3, and a substrate 4.
  • the target wavelength of the optical system 101 is longer than 1100 nm at which basic absorption can occur in silicon (Si), for example, 1260 nm or more and 1565 nm or less.
  • the optical fiber 1 is a single-core fiber and includes a core 1A as a first waveguide and a cladding 1B.
  • the optical fiber 1 is, for example, a single mode fiber that propagates light of a target wavelength in a single mode.
  • the core 1A has a first end surface 1A1 facing the metalens 3.
  • the first end surface 1A1 is a plane that intersects with the central axis C1 of the core 1A.
  • the first end surface 1A1 is perpendicular to the central axis C1 of the core 1A, for example.
  • the shape of the first end surface 1A1 is, for example, circular.
  • the cladding 1B covers the core 1A in the circumferential direction with respect to the central axis C1 of the core 1A.
  • the refractive index of the material forming the core 1A is higher than the refractive index of the material forming the cladding 1B.
  • the dimension (core diameter W1) of the first end surface 1A1 of the core 1A is, for example, 1 ⁇ m or more and 20 ⁇ m or less, preferably 5 ⁇ m or more and 10 ⁇ m or less.
  • the optical fiber 1 may be a multimode fiber that propagates light of the target wavelength in multiple modes.
  • the core diameter W1 of the core 1A may be, for example, 20 ⁇ m or more and 70 ⁇ m or less.
  • Photonics element 2 is a silicon photonics element.
  • the photonics element 2 includes a Si waveguide 2A as a second waveguide, a cladding 2B, and a Si substrate 2C.
  • the Si waveguide 2A is made of Si.
  • the Si waveguide 2A is a so-called thin wire waveguide.
  • the Si waveguide 2A has a second end surface 2A1 facing the metalens 3.
  • the second end surface 2A1 is a plane that intersects with the central axis C2 of the Si waveguide 2A.
  • the second end surface 2A1 is perpendicular to the central axis C2 of the Si waveguide 2A, for example.
  • the shape of the second end surface 2A1 is, for example, quadrilateral, preferably square.
  • the cladding 2B covers the Si waveguide 2A in the circumferential direction with respect to the central axis C2 of the Si waveguide 2A.
  • the material making up the Si waveguide 2A has a higher refractive index than the material making up the cladding 2B.
  • the material constituting the Si waveguide 2A includes, for example, Si or silicon nitride (Si 3 N 4 ).
  • the cladding 2B includes a first cladding layer 2B1 and a second cladding layer 2B2.
  • the first cladding layer 2B1 is placed on the Si substrate 2C, and separates the Si waveguide 2A from the Si substrate 2C.
  • the Si waveguide 2A is arranged on the first cladding layer 2B1.
  • the second cladding layer 2B2 is placed on each of the Si waveguide 2A and the first cladding layer 2B1.
  • the material constituting each of the first cladding layer 2B1 and the second cladding layer 2B2 includes, for example, silicon oxide (SiO 2 ).
  • the second cladding layer 2B2 may be an air cladding layer. Note that the entire second cladding layer 2B2 may be an air cladding layer.
  • the optical spot size of the Si waveguide 2A is smaller than the optical spot size of the core 1A.
  • Each of the width W2 and the thickness T0 of the second end surface 2A1 of the Si waveguide 2A is smaller than the core diameter W1 of the core 1A.
  • Each of the width W2 and the thickness To of the Si waveguide 2A is less than 1 ⁇ m, preferably 100 nm or more and less than 500 nm.
  • the width W2 of the Si waveguide 2A has a trapezoidal shape, and the width W2 can be long or short, it is preferable that the shorter width satisfies the above-mentioned length, and both the long and short widths should not satisfy the above-mentioned length. More preferred.
  • the area of the first end surface 1A1 of the core 1A (hereinafter also referred to as the first area) is larger than the area of the second end surface 2A1 of the Si waveguide 2A (hereinafter also referred to as the second area).
  • the ratio of the first area to the second area may be 10 or more, 25 or more, 50 or more, 100 or more, or 500 or more. , 1000 or more.
  • the metalens 3 optically connects the first end surface 1A1 of the core 1A and the second end surface 2A1 of the Si waveguide 2A.
  • the metalens 3 includes a metasurface 3A with a bull's eye structure.
  • the light condensing principle of the metalens 3 of the optical system 101 is the above-mentioned first example.
  • the metasurface 3A is formed on the conductor layer 31.
  • the conductor layer 31 has a first surface 31A facing the first end surface 1A1 of the core 1A, and a second surface 31B located on the opposite side to the first surface 31A. Each of the first surface 31A and the second surface 31B is perpendicular to, for example, the central axis C1 of the core 1A and the central axis C2 of the Si waveguide 2A.
  • the material constituting the conductive layer 31 may be any conductive material as long as surface plasmons can be excited resonantly when light of the target wavelength is incident, but preferably it is an inorganic material, such as , gold, silver, copper, platinum, aluminum or alloys thereof.
  • the material constituting the conductor layer 31 preferably contains silver.
  • the conductor layer 31 is formed with a through hole 31C as a minute opening.
  • the through hole 31C penetrates between the first surface 31A and the second surface 31B.
  • the planar shape of the through hole 31C is, for example, circular.
  • the through hole 31C is arranged to overlap with the core 1A and the Si waveguide 2A.
  • the central axis C3 (hole axis) of the through hole 31C is arranged to overlap with the core 1A and the Si waveguide 2A. More preferably, the central axis C3 of the through hole 31C is arranged on the same straight line as the central axis C1 of the core 1A and the central axis C2 of the Si waveguide 2A.
  • a plurality of uneven structures 31D are formed on the first surface 31A of the conductor layer 31.
  • the plurality of uneven structures 31D are constituted by a first surface 31A and a plurality of annular grooves 31E recessed with respect to the first surface 31A.
  • the conductor layer 31 is formed with a plurality of convex portions 31F (see FIG. 3) that protrude from the bottom surfaces of the plurality of annular grooves 31E and have a first surface 31A.
  • each of the plurality of uneven structures 31D is formed in an annular shape so as to surround the through hole 31C.
  • the centers of each of the plurality of uneven structures 31D overlap with each other.
  • the center of each of the plurality of uneven structures 31D overlaps with the center of the through hole 31C (central axis C3).
  • the number of uneven structures 31D is not particularly limited, but may be 3 or more and 30 or less. If the number of uneven structures is small, the range of target wavelengths exhibiting light focusing performance can be widened, and if the number of uneven structures is large, the range of target wavelengths can be narrowed and wavelength selectivity can be improved.
  • the surfaces of the plurality of uneven structures 31D that is, the first surface 31A and the wall surfaces and bottom surfaces of the plurality of annular grooves 31E are in contact with air, for example.
  • the surface of the plurality of uneven structures 31D may be in contact with any dielectric material.
  • the metalens 3 may further include a dielectric film covering the surface of each of the plurality of annular grooves 31E.
  • the plurality of uneven structures 31D may be flattened by a dielectric film.
  • the outer peripheral edge of the plurality of uneven structures 31D is constituted by, for example, an annular groove 31E.
  • the dimensions of the plurality of uneven structures 31D are, for example, equal to each other.
  • the width W4 of the outer peripheral edge of the plurality of uneven structures 31D is equal to the core diameter W1 of the core 1A.
  • the outer peripheral edge of the plurality of uneven structures 31D may be formed by the first surface 31A.
  • the plurality of uneven structures 31D may include a first surface 31A and a plurality of annular convex portions protruding from the first surface 31A.
  • the outer peripheral edge of the plurality of uneven structures 31D may be formed by an annular convex portion or may be formed by the first surface 31A.
  • the propagation direction of light is not limited.
  • Light can propagate along direction A (see FIGS. 1 to 3) from the core 1A, where the optical spot size is relatively large, through the metalens 3, to the Si waveguide 2A, where the optical spot size is relatively small.
  • light can propagate from the Si waveguide 2A to the core 1A via the metalens 3 along the direction B (see FIGS. 1 and 3).
  • Direction A and direction B are along the horizontal direction, for example. Note that the direction A and the direction B may be along the vertical direction.
  • the optical spot size (hereinafter also referred to as first optical spot size) on the first end surface 1A1 of the light propagating from the metalens 3 to the first end surface 1A1 is larger than the optical spot size of the Si waveguide 2A, and preferably the core Equivalent to a light spot size of 1A.
  • the optical spot size at the second end surface 2A1 of the light propagating from the metalens 3 to the second end surface 2A1 (hereinafter also referred to as second optical spot size) is smaller than the optical spot size of the core 1A, and preferably Si waveguide. Equivalent to a light spot size of 2A.
  • the metalens 3 including the metasurface 3A resonantly excites surface plasmons when light of the target wavelength enters the metasurface 3A from the core 1A, collects the surface plasmons in the through hole 31C as a minute opening, and generates a second light beam. It is provided to emit spot-sized light to the Si waveguide 2A. Further, the metalens 3 is provided so that when light of the target wavelength enters the through hole 31C from the Si waveguide 2A, the light of the first light spot size is emitted to the core 1A by a process opposite to the above process. There is.
  • each of the conductor layer 31, the through hole 31C, and the plurality of uneven structures 31D that constitute the metasurface 3A can be arbitrarily selected depending on the target wavelength.
  • the thickness T1 (see FIG. 1) of the conductor layer 31 is not particularly limited, but is preferably equal to or less than the target wavelength, more preferably less than the target wavelength, more preferably equal to or less than half the target wavelength, and is 50 nm or more. It may be. When the target wavelength is 1260 nm or more and 1565 nm or less as described above, the thickness T1 may be about 300 nm.
  • the hole diameter W3 of the through hole 31C is less than or equal to the target wavelength, and preferably smaller than the target wavelength.
  • the hole diameter W3 is, for example, about half the wavelength of interest.
  • the width W5 of each of the plurality of annular grooves 31E in the radial direction with respect to the central axis C3 of the through hole 31C and the depth D of each of the plurality of annular grooves 31E are each less than or equal to the target wavelength, preferably smaller than the target wavelength. .
  • the width W5 of each of the plurality of annular grooves 31E and the depth D of each of the plurality of annular grooves 31E are, for example, approximately half the value of the target wavelength.
  • the distance P between each of the plurality of uneven structures 31D in the radial direction with respect to the central axis C3 of the through hole 31C is not particularly limited, but is equivalent to the target wavelength.
  • the interval between the plurality of concavo-convex structures means the pitch (period) between adjacent convex portions or between adjacent concave portions. Specifically, as shown in FIG. 3, it means the interval (width) P of one uneven structure 31D. From the viewpoint of improving light collection performance, it is preferable that the ratio of the distance P between each of the plurality of concavo-convex structures 31D to the target wavelength is 30% or more and 200% or less.
  • the ratio of the interval P of each of the plurality of uneven structures 31D to the target wavelength is preferably 140% or less, more preferably 110% or less, and still more preferably less than 100%.
  • the ratio of the interval P of each of the plurality of uneven structures 31D to the target wavelength is preferably 60% or more, more preferably more than 65%, and still more preferably 70% or more.
  • the ratio (W5/P) of the width W5 of each of the plurality of annular grooves 31E to the interval P of each of the plurality of uneven structures 31D in the radial direction with respect to the central axis C3 of the through hole 31C is not particularly limited, but is 10% or more. % or less. From the viewpoint of further increasing the ratio of transmittance to reflectance of the target wavelength, the ratio W5/P is preferably 30% or more, more preferably 45% or more, even more preferably 60% or more, and particularly preferably 70% or more. , 80% or more is even more particularly preferred.
  • the second surface 31B of the metalens 3 is, for example, a flat surface.
  • the method for forming the metalens 3 is not particularly limited.
  • the metalens 3 may be formed as follows. First, a conductor layer 31 is formed on the third surface 4A of the substrate 4. Any method may be used to form the conductor layer 31, and for example, a sputtering method may be used. Second, the conductor layer 31 is patterned to form a through hole 31C and a plurality of annular grooves 31E. Any method may be used to pattern the conductor layer 31, and may be, for example, photolithography, dry etching, or the like.
  • the substrate 4 supports the metalens 3.
  • the substrate 4 is transparent to light of the target wavelength.
  • the substrate 4 has a third surface 4A in contact with the second surface 31B of the metalens 3, and a fourth surface located on the opposite side to the third surface 4A and facing the second end surface 2A1 of the Si waveguide 2A. 4B.
  • the third surface 4A is perpendicular to the central axis C3 of the through hole 31C, for example.
  • the substrate 4 is preferably made of a material with a low refractive index from the viewpoint of suppressing Fresnel reflection.
  • the substrate 4 may contain, for example, SiO 2 , more preferably contains glass, and is even more preferably made of glass.
  • the thickness T2 of the substrate 4 is thicker than the thickness T1 of the conductor layer 31, for example.
  • the sum of the thickness T1 of the conductor layer 31 and the thickness T2 of the substrate 4 is the same as that of the polymer required when optically connecting the core 1A and the Si waveguide 2A with a conventional polymer waveguide. shorter than the length of the waveguide.
  • Each of the shortest distance L1 and the shortest distance L2 may be shorter than the thickness T1 (see FIG. 3) of the conductor layer 31 of the metalens 3.
  • the light propagating through the optical system 101 may pass through the core 1A, the metalens 3, the substrate 4, and the Si waveguide 2A in this order, or may pass through the Si waveguide 2A, the substrate 4, the metalens 3, and the core 1A in this order. You can.
  • the optical system 101 includes the metalens 3, the core 1A and the Si waveguide 2A are more connected to each other than an optical system including a polymer waveguide or a convex lens that optically connects the core 1A and the Si waveguide 2A.
  • the optical path length between the two can be shortened.
  • the relative positions of each of the core 1A, the Si waveguide 2A, and the metalens 3 are caused by manufacturing errors. Even in the case where the waveguide 2A varies, the light transmission efficiency between the core 1A and the Si waveguide 2A is not likely to decrease.
  • the focal position of the optical lens changes relative to the Si waveguide. There is a risk that the transmission efficiency may significantly decrease due to large fluctuations.
  • the metalens 3 since the metalens 3 is formed with the through-hole 31C, the light incident on the metalens 3 from the core 1A or the Si waveguide 2A is concentrated on the through-hole 31C, and then passes through the through-hole 31C. To Penetrate.
  • the focal point of the light emitted from the metalens 3 to the Si waveguide 2A or the core 1A is formed in the through hole 31C, and it can be assumed that parallel light is incident on the Si waveguide 2A or the core 1A. can.
  • the light transmission efficiency between the first waveguide and the second waveguide is determined by the shortest distance L1 between the core 1A and the metalens 3 and between the Si waveguide 2A and the substrate 4.
  • the shortest distance L2 between them is not easily affected by variations due to manufacturing errors and the like.
  • the direction A or the direction B in which light propagates in the optical system 101 may be any direction, and may be along the horizontal direction or the vertical direction, for example. According to the optical system 101, even when the first end surface 1A1 of the optical fiber 1 and the second end surface 2A1 of the Si waveguide 2A face each other in the horizontal direction, the direction of propagation of light is not changed by a mirror or the like, and both can be connected. can be optically connected. Therefore, the degree of freedom in designing the optical system 101 is higher than that of conventional optical systems.
  • a plurality of concavo-convex structures 31D are formed to surround the through-hole 31C of the metalens 3.
  • surface plasmons that are resonantly excited gather at the through-holes 31C.
  • the light transmitted through the metalens 3 can be collected more efficiently, and the intensity of the light becomes higher.
  • the propagation direction of the light IL entering the metalens 3 from the core 1A is set in a direction perpendicular to the first surface 31A.
  • the propagation direction of the light TL emitted from the metalens 3 to the Si waveguide 2A is parallel to the propagation direction of the light IL entering the metalens 3 from the core 1A.
  • the propagation direction of the light IL entering the metalens 3 from the Si waveguide 2A is set to be perpendicular to the second surface 31B.
  • the propagation direction of the light emitted from the metalens 3 to the core 1A is parallel to the propagation direction of the light IL entering the metalens 3 from the Si waveguide 2A.
  • the metalens 3 may be made of an inorganic material.
  • the heat resistance of the optical system 101 is high compared to optical systems comprising polymer waveguides.
  • the optical system 101 may include the metalens 3 shown in FIGS. 5 and 6 instead of the metalens 3 shown in FIGS. 1 to 4.
  • the metalens 3 shown in FIGS. 5 and 6 has basically the same configuration as the metalens 3 shown in FIGS. 1 to 4, but includes a metasurface 3B instead of the metasurface 3A. This is different from the metalens 3 shown in FIG.
  • the metasurface 3B is different from the metasurface 3A in that the center of each of the plurality of uneven structures 31D is arranged so as not to overlap the center (central axis C3) of the through hole 31C (micro opening) in plan view. different.
  • the metasurface 3B also has a bull's eye structure like the metasurface 3A.
  • the following will mainly explain the differences between the metalens 3 and the metasurface 3B shown in FIGS. 5 and 6 from the metalens 3 and the metasurface 3B shown in FIGS. 1 to 4.
  • the interval (period) of each part of the plurality of uneven structures 31D located on one side with respect to the through hole 31C in the direction C perpendicular to the central axis C3 of the through hole 31C is wider than the interval (period) of each part of the plurality of uneven structures 31D located on the other side with respect to the through hole 31C.
  • the interval between the respective parts of the plurality of uneven structures 31D, which are located on one side of the through hole 31C in the direction C and are arranged at relatively wide intervals will also be referred to as a first interval PA. do.
  • the interval between each portion of the plurality of uneven structures 31D, which are located on the other side of the through hole 31C in the direction C and are arranged at relatively narrow intervals, is also referred to as a second interval PB.
  • the first interval PA of each portion of the plurality of uneven structures 31D located on one side with respect to the through hole 31C gradually becomes wider as the distance from the through hole 31C increases.
  • the second spacing PB of each portion of the plurality of uneven structures 31D located on the other side with respect to the through hole 31C is, for example, equal to each other.
  • the width of each portion of the plurality of annular grooves 31E located on one side with respect to the through hole 31C in the first direction C perpendicular to the central axis C3 of the through hole 31C (hereinafter also referred to as the first width W5A). ) is wider than the width (hereinafter also referred to as second width W5B) of each portion of the plurality of annular grooves 31E located on the other side with respect to the through hole 31C.
  • the first width W5A of each portion of the plurality of annular grooves 31E located on one side with respect to the through hole 31C gradually becomes wider as the distance from the through hole 31C increases.
  • the second width W5B of each portion of the plurality of annular grooves 31E located on the other side with respect to the through hole 31C is, for example, equal to each other.
  • the plurality of uneven structures 31D may have a region where the ratio of the interval P to the target wavelength is 30% or more and 200% or less.
  • the ratio of the first interval PA of each of the plurality of uneven structures 31D to the target wavelength may be, for example, 200% or less, preferably 140% or less, more preferably 110% or less, and even more preferably 100% or less. less than %.
  • the ratio of the second interval PB of each of the plurality of uneven structures 31D to the target wavelength may be 30% or more, preferably 60% or more, more preferably more than 65%, and still more preferably It is 70% or more.
  • the ratio of the first width W5A to the first spacing PA (W5A/PA) and the ratio of the second width W5B to the second spacing PB (W5B/PB) are not particularly limited, but should be 10% or more and 95% or less. It's fine. From the viewpoint of further increasing the ratio of transmittance to reflectance of the target wavelength, each of the ratio W5A/PA and the ratio W5B/PB is preferably 30% or more, more preferably 45% or more, and even more preferably 60% or more. Preferably, 80% or more is particularly preferable.
  • the propagation direction of the light IL entering the metalens 3 from the core 1A is set in a direction perpendicular to the first surface 31A.
  • the propagation direction of the light TL emitted from the metalens 3 to the Si waveguide 2A is inclined with respect to the propagation direction of the light IL incident on the metalens 3 from the core 1A. Therefore, as shown in FIG. 7, the metalens 3 including the metasurface 3B is suitable for an optical system in which the central axis C2 of the Si waveguide 2A is inclined toward the first direction C with respect to the central axis C1 of the core 1A. It is. Further, as shown in FIG.
  • the central axis C2 of the Si waveguide 2A is parallel to the central axis C1 of the core 1A, but the central axis C1 is centered in the first direction C. It is also suitable for optical systems spaced apart from axis C2. In each of the optical systems shown in FIGS. 7 and 8, the light transmission efficiency between the core 1A and the Si waveguide 2A is also high.
  • FIGS. 7 and 8 illustrate the output angle ⁇ 1 of the metalens 3 including the metasurface 3B having a bull's eye structure.
  • the output angle ⁇ 1 in FIG. 7 is the angle (first angle) that the central axis C2 of the Si waveguide 2A makes with the central axis C3 of the through hole 31C (C3 coincides with C1 in FIG. 7).
  • the emission angle ⁇ 1 in FIG. 8 is the intersection of the central axis C3 of the through hole 31C (C3 coincides with C1 in FIG. 8) and the third surface 4A of the substrate 4 (on the second surface 31B of the metasurface 3B).
  • the intersection of the central axis C2 of the Si waveguide 2A and the second end surface 2A1 of the Si waveguide 2A (the end of the central axis C3 of the through hole 31C located on the second end surface 2A1 of the Si waveguide 2A) This is the angle that the straight line connecting the central axis C2 of the Si waveguide 2A (the end of the central axis C2) and the central axis C3 of the through hole 31C forms.
  • the exit angle ⁇ 1 of the metalens 3 including the metasurface 3B is not particularly limited, but may be, for example, 3° or more and 60° or less, and may be 45° or less.
  • the output angle ⁇ 1 may be 7° or more, 16° or more, 30° or more, or 40° or more.
  • the distances (hereinafter also referred to as shift amounts) between the centers of the plurality of uneven structures 31D may be equal to each other.
  • each shift amount is referred to as a unit shift amount S.
  • the ratio ( ⁇ 1 /S) of the output angle ⁇ 1 to the unit shift amount S may be 0.19 or more, or 0.58 or more. It may be 2.00 or more, 3.33 or more, 6.00 or more, or 10.00 or more.
  • the first intervals PA are, for example, equal to each other.
  • the ratio of the first interval PA of each of the plurality of uneven structures 31D to the target wavelength may be, for example, 200% or less, preferably 140% or less, and more Preferably it is 110% or less, more preferably less than 100%.
  • the ratio of the first interval PA of each of the plurality of uneven structures 31D to the target wavelength may be 30% or more, preferably 60% or more, more preferably more than 65%, and still more preferably It is 70% or more. Note that the first interval PA may gradually become wider as the distance from the through hole 31C increases.
  • the present inventors have determined that when the output angle ⁇ 1 to be achieved in the metasurface 3B is 5° or more, the unit shift amount S (unit: nm) of the metasurface 3B and the above-mentioned interval P of the plurality of uneven structures 31D (Unit: nm) It was confirmed that the above-mentioned output angle ⁇ 1 can be achieved if the angle is set so that the following relational expression (1) is satisfied.
  • the optical system 101 may include a metalens 3 shown in FIG. 10 instead of the metalens 3 shown in FIGS. 1 to 6.
  • the metalens 3 shown in FIG. 10 has basically the same configuration as the metalens 3 shown in FIGS. 1 to 6, except that it further includes a metasurface 3A disposed on the fourth surface 4B of the substrate 4. , which is different from the metalens 3 shown in FIGS. 1 to 6.
  • the metasurface 3A disposed on the fourth surface 4B is symmetrical with respect to the substrate 4 with respect to the metasurface 3A disposed on the third surface 4A.
  • the metalens 3 of the optical system 101 only needs to include the metasurface 3A or the metasurface 3B disposed on at least one of the third surface 4A and the fourth surface 4B of the substrate 4.
  • the optical system 101 may include the metalens 3 shown in FIG. 11 or 12 instead of the metalens 3 shown in FIGS. 1 to 6.
  • the metalens 3 shown in FIG. 11 has basically the same configuration as the metalens 3 shown in FIGS. 1 to 6, but each of the plurality of annular grooves 31E in the plurality of uneven structures 31D is It differs from the metalens 3 shown in FIGS. 1 to 6 in that it is formed so as to penetrate between the first surface 31A and the second surface 31B and expose a part of the third surface 4A of the substrate 4. .
  • the bottom surface of each annular groove 31E is formed by the third surface 4A of the substrate 4.
  • the metalens 3 shown in FIG. 11 has basically the same configuration as the metalens 3 shown in FIGS.
  • 1 to 6 is composed of a surface 4A and a plurality of convex portions 31F formed on the third surface 4A of the substrate 4 as an island-like pattern separated from each other. It is different from.
  • the depth of each of the plurality of annular grooves 31E is equal to the depth of the through hole 31C.
  • the metalens 3 shown in FIG. 12 has basically the same configuration as the metalens 3 shown in FIGS. 1 to 6, but a plurality of It differs from the metalens 3 shown in FIGS. 1 to 6 in that a concavo-convex structure is formed.
  • the plurality of uneven structures 31G formed on the second surface 31B are arranged on the first surface 31A with respect to a virtual symmetrical plane located on the midpoint between the first surface 31A and the second surface 31B. It is in a plane symmetrical relationship with the plurality of concavo-convex structures 31D that are formed.
  • the plurality of uneven structures 31G are constituted by a second surface 31B and a plurality of annular grooves 31H recessed with respect to the second surface 31B.
  • the conductor layer 31 is formed with a plurality of protrusions 31I that protrude from the bottom surfaces of the plurality of annular grooves 31H and have a second surface 31B.
  • Each convex portion 31I is arranged to overlap with each convex portion 31F, for example, in a direction orthogonal to the first surface 31A.
  • the second surface 31B and the walls and bottom surfaces of the plurality of annular grooves 31E formed on the second surface 31B are in contact with the third surface 4A of the substrate 4.
  • the width of each of the plurality of annular grooves 31H is equal to the width W5 of the plurality of annular grooves 31E.
  • the metalens 3 shown in FIG. 12 is formed by, for example, forming a plurality of convex portions 31I in the recessed portions of the third surface 4A of the substrate 4, and then forming the remainder of the conductor layer 31 on the third surface 4A. , can be manufactured.
  • the optical system 102 according to the second embodiment will be described with reference to FIG. 13.
  • the optical system 102 according to the second embodiment has basically the same configuration as the optical system 101 according to the first embodiment and has the same effects, but the metalens 3 is arranged on the third surface 4A of the substrate 4. It differs from the optical system 101 in that it includes a phase grating that provides a phase difference to light of the target wavelength.
  • the differences between the optical system 102 and the optical system 101 will be mainly explained.
  • the metalens 3 of the optical system 102 includes a waveguide type phase grating.
  • the light focusing principle of the metalens 3 of the optical system 102 is the same as the second example above.
  • the metalens 3 includes a plurality of columnar bodies 32 (convex portions) arranged at intervals on the third surface 4A and a filling portion 33 that fills the spaces between the plurality of columnar bodies 32. It includes a metasurface 3C composed of.
  • the refractive index of the material constituting each of the plurality of columnar bodies 32 is higher than the refractive index of the material constituting the filling part 33.
  • the outer shape of each of the plurality of columnar bodies 32 is, for example, cylindrical.
  • the central axis of each of the plurality of columnar bodies 32 is parallel to the central axis C1 of the core 1A.
  • each of the plurality of columnar bodies 32 is perpendicular to the third surface 4A of the substrate 4, for example.
  • the material constituting the plurality of columnar bodies 32 and the material constituting the filling part 33 are not particularly limited as long as their respective refractive indices satisfy the above relationship.
  • the material constituting the plurality of columnar bodies 32 is, for example, a dielectric material, more preferably an inorganic material, and includes Si as a specific example.
  • the surfaces of the plurality of columnar bodies 32 are in contact with an air layer serving as the filling portion 33, for example.
  • the filling portion 33 may be formed of a dielectric film.
  • the surfaces of the plurality of columnar bodies 32 may be in contact with a dielectric film.
  • the plurality of columnar bodies 32 may be embedded in the filling part 33.
  • the metalens 3 may further include a base material 34 that is transparent to light of the target wavelength and is disposed on the third surface 4A of the substrate 4.
  • Each of the plurality of columnar bodies 32 may be fixed to the base material 34. Note that the metalens 3 may not include the base material 34, and each of the plurality of columnar bodies 32 may be fixed to the third surface 4A of the substrate 4.
  • Each of the plurality of columnar bodies 32 forms a waveguide through which light of the target wavelength propagates.
  • the phase of the light incident on each of the plurality of columnar bodies 32 changes during the process of propagating through each columnar body 32.
  • the amount of change in the phase of light propagating through each columnar body 32 is the ratio D of the outer diameter D (maximum width) of the columnar body 32 to the distance P (pitch) between the columnar body 32 and another adjacent columnar body 32. The larger /P is, the more.
  • the position of the focal point F (see FIG. 15) of the metalens 3 changes depending on the spatial distribution of the phase of the light that has passed through each waveguide. Therefore, the amount of change in the phase of the light propagating through each columnar body 32 may be arbitrarily set according to the position where the focal point F of the metalens 3 is to be placed.
  • At least one of the outer diameter and height of each of the plurality of columnar bodies 32 and the interval between two adjacent columnar bodies 32 is continuous or stepped in the radial direction depending on the distance to the focal point. It is set up so that it changes over time.
  • At least one of the outer diameter of the columnar body 32 and the interval between two adjacent columnar bodies 32 changes continuously or stepwise depending on the distance to the focal point. It is preferable. More preferably, in a plan view, both the outer diameter of the columnar body 32 and the interval between two adjacent columnar bodies 32 change continuously or stepwise depending on the distance to the focal point.
  • the outer diameter of each of the plurality of columnar bodies 32 increases as the distance from the focal point F of the metalens 3 increases in plan view.
  • the distance between two adjacent columnar bodies 32 is provided such that the farther from the focal point F of the metalens 3, the smaller the distance between them.
  • the metalens 3 has a first region R1 in which the plurality of columnar bodies 32 are arranged such that the amount of change in phase is relatively small. and a second region R2 in which a plurality of columnar bodies 32 are arranged so as to increase in size.
  • the first region R1 is a region closer to the focal point F than the second region R2.
  • the ratio D2/P2 of the outer diameter D2 of the second group of columnar bodies 32B to the interval P2 between the second group of columnar bodies 32B formed in the second region R2 is the ratio D2/P2 of the second group of columnar bodies 32B formed in the second region R2.
  • the amount of change in the phase of the light TL2 that has propagated through each of the columnar bodies 32B of the second group is greater than the amount of change in the phase of the light TL1 that has propagated through each of the columnar bodies 32A of the first group.
  • the focal point F is arranged on the same straight line as the central axis C4 of the phase grating of the metalens 3, at least one of the outer diameter of the columnar body 32 and the interval between two adjacent columnar bodies 32 is It suffices if it changes continuously or stepwise depending on the distance to the central axis C4.
  • the outer diameter of each of the plurality of columnar bodies 32 increases as the distance from the central axis C4 of the metalens 3 increases, and the distance between two adjacent columnar bodies 32 decreases as the distance from the central axis C4 of the metalens 3 increases. It may be provided as follows.
  • the outer diameter of each of the plurality of columnar bodies 32 is equal to or less than the target wavelength.
  • the outer diameter of each of the plurality of columnar bodies 32 is, for example, several tens of nm or more and 1 ⁇ m or less.
  • the distance between two adjacent columnar bodies 32 is equal to or less than the target wavelength.
  • the interval between two adjacent columnar bodies 32 is, for example, several tens of nanometers or more and 1.55 ⁇ m or less. Note that the interval between two adjacent columnar bodies 32 means the distance between the central axes of two adjacent columnar bodies 32.
  • the height H2 of the second group of columnar bodies 32B is, for example, lower than the height H1 of the first group of columnar bodies 32B. Note that the height H2 of the second group of columnar bodies 32B may be equal to the height H1 of the first group of columnar bodies 32B, for example.
  • the maximum height of each of the plurality of columnar bodies 32 is shorter than the thickness of a convex lens for optically connecting the core 1A and the Si waveguide 2A.
  • the maximum height of each of the plurality of columnar bodies 32 is, for example, 2 ⁇ m or less, and may be 1 ⁇ m or less.
  • structures in which at least one of the outer diameter and height of the columnar body 32 and the interval between two adjacent columnar bodies 32 change continuously or stepwise depending on the distance to the focal point include those shown in FIGS. 15, in which at least one of the outer diameter and height of a columnar body 32 and the interval between two adjacent columnar bodies 32 change monotonically, such a structure is also referred to as a unit (hereinafter referred to as a structure A periodic structure in which the structural units are periodically arranged in the radial direction with respect to the central axis C4 of the phase grating is included.
  • the structural units in which at least one of the height, maximum width, and pitch of each of the plurality of columnar bodies 32 changes continuously or stepwise are periodically arranged in the radial direction. It may have a periodic structure arranged symmetrically.
  • the shortest distance between the first end surface 1A1 of the core 1A and the metalens 3 is preferably as short as possible.
  • the shortest distance between the Si waveguide 2A and the metalens 3 is preferably a value as close to the focal length f as possible, and more preferably equal to the focal length f.
  • the optical path length between the first end surface 1A1 of the core 1A and the second end surface 2A1 of the Si waveguide 2A in the optical system 102 is determined when the core 1A and the Si waveguide 2A are optically connected by a polymer waveguide or a convex lens. can be shorter compared to optical systems with
  • the propagation direction of light is not limited.
  • the light may propagate from the core 1A, where the optical spot size is relatively large, through the metalens 3, to the Si waveguide 2A, where the optical spot size is relatively small, or in the opposite direction, through the Si waveguide 2A, where the optical spot size is relatively small. It may also propagate from 2A to the core 1A via the metalens 3.
  • the method of forming the metalens 3 of the optical system 102 is also not particularly limited.
  • the plurality of columnar bodies 32 of the metalens 3 may be formed by forming a dielectric film on the third surface 4A of the substrate 4 and then patterning the dielectric film. For example, a photoresist is applied onto a dielectric film formed on the third surface 4A of the substrate 4, and the photoresist is exposed and developed through a mask with a pattern drawn thereon, and then the dielectric film is coated using the photoresist as a mask. It may be formed by etching. Further, the plurality of columnar bodies 32 may be formed by, for example, a screen printing method.
  • the optical path length between the core 1A and the Si waveguide 2A which is limited by the thickness and depth of focus of the metalens 3, is determined by the polymer waveguide that can optically connect the core 1A and the Si waveguide 2A. or the sum of the thickness and depth of focus of a convex lens that can optically connect the core 1A and the Si waveguide 2A.
  • the degree of freedom in designing the focal position is higher, and the depth of focus and the propagation direction of light can be easily changed.
  • the metalens 3 of the optical system 102 only needs to be placed on the third surface 4A or fourth surface 4B of the substrate 4.
  • a structure in which at least one of the outer diameter and height of the columnar body 32 and the interval between two adjacent columnar bodies 32 changes continuously or stepwise depending on the distance to the focal point has the structure shown in FIG. 14 and 15, in which the outer diameter and height of the columnar bodies 32 and/or the interval between two adjacent columnar bodies 32 change monotonically, as well as structures in which such a structure is used as a structural unit.
  • Each structural unit includes the first region R1 and the second region R2.
  • the amount of change in the phase of each columnar body 32 in each structural unit is within the range of 0 to 2 ⁇ .
  • the width of each structural unit in the radial direction may be set so that
  • the width of each structural unit in the radial direction required for the amount of change in phase to be 2 ⁇ in each structural unit becomes narrower as the distance from the central axis C4 increases.
  • the width in the radial direction of the first structural unit located closest to the central axis C4 of the phase grating is the second closest to the central axis C4 of the phase grating.
  • the width in the radial direction of the second structural unit at the position is set to be wider than the width in the radial direction.
  • the width of each structural unit in the radial direction required for the amount of change in phase to be 2 ⁇ in each structural unit changes depending on the diameter of the metalens 3.
  • the width of the first structural unit in the radial direction required for the amount of phase change to be 2 ⁇ in the first structural unit is 1.00 ⁇ m or more.3. It is preferable that it is 50 ⁇ m or less.
  • the width of the first structural unit in the radial direction required for the amount of phase change to be 2 ⁇ in the first structural unit is 2.00 ⁇ m or more.5. It is preferable that it is 00 ⁇ m or less.
  • the width of the first structural unit in the radial direction required for the amount of phase change to be 2 ⁇ in the first structural unit is 3.00 ⁇ m or more7. It is preferable that it is 00 ⁇ m or less.
  • the focal length f (unit: nm) of the metalens 3 including the phase grating, the condensing angle ⁇ 2 of the metalens 3, and the radius R (unit: nm) of the metalens 3 satisfy the following relational expression (2).
  • FIG. 16 shows the focal length f, radius R, and condensing angle ⁇ 2 of the metalens 3 including the metasurface 3C.
  • the condensing angle ⁇ 2 shown in FIG. 16 is the angle that the first virtual straight line VL1 makes with the second virtual straight line VL2.
  • the first virtual straight line VL1 indicates the course of light that has propagated through the columnar body 32 located at the outermost position in the radial direction with respect to the central axis C4 among the plurality of columnar bodies 32.
  • the first imaginary straight line VL1 connects the outermost end of the columnar body 32 located at the outermost position in the radial direction on the third surface 4A side of the substrate 4, the central axis C2 of the Si waveguide 2A, and the second end surface 2A1.
  • the second virtual straight line VL2 is a virtual straight line connecting the intersection between the central axis C3 of the metasurface 3C and the third surface 4A of the substrate 4 and the intersection between the central axis C2 of the Si waveguide 2A and the second end surface 2A1. .
  • the second virtual straight line VL2 is arranged on the same straight line.
  • the condensing angle ⁇ 2 of the metalens 3 including the metasurface 3C is, for example, 20° or more and 70° or less, preferably 30° or more and 60° or less.
  • the length of the second virtual straight line VL2 is equal to the focal length f. If the condensing angle ⁇ 2 is 30° or more and 60° or less, the numerical aperture NA of the metalens 3 becomes smaller and the depth of focus becomes deeper, compared to the case where the condensing angle ⁇ 2 is 70°, so the optical axis It is easy to adjust the position of the metalens 3 with respect to the Si waveguide 2A in the direction.
  • the numerical aperture NA of the metalens 3 is calculated by multiplying the sine (Sin ⁇ 2 ) of the condensing angle ⁇ 2 of the metalens 3 by the refractive index n of the medium existing between the metalens 3 and the Si waveguide 2A. .
  • the numerical aperture NA is preferably 0.5 or more, more preferably 0.7 or more.
  • the Si waveguide 2A has a large numerical aperture (spreading of light) due to a large relative refractive index difference between Si forming the core and SiO 2 forming the cladding.
  • the numerical aperture NA of the metalens 3 is as large as the numerical aperture of the Si waveguide 2A.
  • the material forming the plurality of columnar bodies 32 may be metal.
  • the phase grating of the metalens 3 may include a plurality of MIM waveguides instead of a plurality of dielectric waveguides.
  • the optical system 103 according to Embodiment 3 will be described with reference to FIG. 17.
  • the optical system 103 according to the third embodiment has basically the same configuration as the optical system 102 according to the second embodiment and has the same effect, but the metalens 3 is not a waveguide type phase grating but a resonance side phase grating. It differs from optical system 102 in that it includes: Hereinafter, the differences between the optical system 103 and the optical system 102 will be mainly explained.
  • the metalens 3 includes a plurality of spherical bodies 35 (convex parts) arranged at intervals on the third surface 4A and a filling part 33 filling the spaces between the plurality of spherical bodies 35. including a metasurface 3D with .
  • the material constituting the plurality of spherical bodies 35 is, for example, a dielectric.
  • the material forming the filling portion 33 is, for example, air.
  • the filling portion 33 may be made of a dielectric film.
  • the surfaces of the plurality of spherical bodies 35 may be in contact with a dielectric film.
  • the plurality of spherical bodies 35 may be embedded in the filling part 33.
  • Each of the plurality of spherical bodies 35 is provided so as to have Mie resonance with the light of the target wavelength.
  • the phase of the light incident on each of the plurality of spherical bodies 35 changes in the process of scattering the light due to resonance.
  • the wavelength of the light incident on each spherical body 35 is not too long compared to the wavelength of light that resonates with each spherical body 35 (resonance wavelength)
  • the wavelength of light that resonates with each spherical body 35 resonate wavelength
  • the longer the wavelength of the light incident on the spherical bodies 35 the greater the amount of change in the phase of the light scattered by each spherical body 35.
  • the amount of change in the phase of the light scattered by each spherical body 35 increases as the outer diameter D of the spherical body 35 increases.
  • the position of the focal point F (see FIG. 18) of the metalens 3 changes depending on the spatial distribution of the phase of the light scattered by each spherical body 35. Therefore, the amount of change in the phase of the light scattered by each spherical body 35 may be arbitrarily set depending on the position where the focal point F of the metalens 3 is to be placed.
  • the outer diameter of the spherical body 35 changes continuously or stepwise depending on the distance to the focal point.
  • the outer diameter of each of the plurality of spherical bodies 35 increases as the distance from the focal point F of the metalens 3 increases in plan view.
  • the metalens 3 has a first region R1 where a plurality of spherical bodies 35 are arranged such that the amount of change in phase is relatively small, and a first region R1 where the amount of change in phase is relatively large. and a second region R2 in which a plurality of spherical bodies 35 are arranged.
  • the first region R1 is a region closer to the focal point F than the second region R2.
  • the outer diameter D2 of the second group of spherical bodies 35 formed in the second region R2 is larger than the outer diameter D1 of the first group of spherical bodies 35A formed in the first region R1.
  • the amount of change in the phase of the light TL2 scattered by each of the second group of spherical bodies 35B is greater than the amount of change in the phase of the light TL1 scattered by each of the first group of spherical bodies 35A.
  • the outer diameter of the spherical body 35 is continuous or stepwise in plan view depending on the distance to the central axis C4. It suffices if it changes accordingly.
  • the outer diameter of each of the plurality of spherical bodies 35 is equal to or less than the target wavelength.
  • the outer diameter of each of the plurality of spherical bodies 35 is, for example, several tens of nanometers or more and 1 ⁇ m or less.
  • the shortest distance between the first end surface 1A1 of the core 1A and the metalens 3 is preferably as short as possible.
  • the shortest distance between the Si waveguide 2A and the metalens 3 is preferably a value as close to the focal length f as possible, and more preferably equal to the focal length f.
  • the optical path length between the first end surface 1A1 of the core 1A and the second end surface 2A1 of the Si waveguide 2A in the optical system 103 is such that the core 1A and the Si waveguide 2A are optically connected by a polymer waveguide or a convex lens. can be shorter compared to optical systems with
  • the propagation direction of light is not limited.
  • the light may propagate from the core 1A, where the optical spot size is relatively large, through the metalens 3, to the Si waveguide 2A, where the optical spot size is relatively small, or in the opposite direction, through the Si waveguide 2A, where the optical spot size is relatively small. It may also propagate from 2A to the core 1A via the metalens 3.
  • the method of forming the metalens 3 of the optical system 103 is also not particularly limited.
  • the plurality of spherical bodies 35 of the metalens 3 can be formed, for example, by a known nanoparticle manufacturing method.
  • the optical path length between the core 1A and the Si waveguide 2A which is limited by the thickness and depth of focus of the metalens 3, is determined by the polymer waveguide that can optically connect the core 1A and the Si waveguide 2A. or the sum of the thickness and depth of focus of a convex lens that can optically connect the core 1A and the Si waveguide 2A.
  • the optical system 103 has a higher degree of freedom in designing the focal position than an optical system including a convex lens, and can easily change the depth of focus and the propagation direction of light.
  • the metalens 3 of the optical system 103 only needs to be placed on the third surface 4A or fourth surface 4B of the substrate 4.
  • the material constituting the plurality of spherical bodies 35 may be metal.
  • each of the plurality of spherical bodies 35 is provided so as to have plasmon resonance with the light of the target wavelength.
  • the phase of the light incident on each of the plurality of spherical bodies 35 changes as the light resonates with each spherical body 35 and is scattered.
  • the spherical body 35 made of metal, as well as the spherical body 35 made of dielectric the larger the outer diameter D of the spherical body 35, the greater the amount of change in the phase of light.
  • the principle by which the phase of light scattered by the spherical body 35 changes differs depending on the material that constitutes the spherical body 35, but there is a tendency that the larger the outer diameter D of the spherical body 35, the greater the amount of change in the phase of the light. This is the same regardless of the material of which the spherical body 35 is made.
  • the metalens 3 of the optical system 103 can also be deformed similarly to the metalens 3 of the optical system 102.
  • the outer diameter of the spherical body 35 In addition to the structure in which at least one of the height and the interval between two adjacent spherical bodies 35 changes monotonically, such a structure is used as a structural unit, and the structural unit is the radial direction with respect to the central axis C4 of the phase grating. contains periodic structures that are arranged periodically.
  • optical system 104 according to Embodiment 4 will be described.
  • the optical system 104 according to the fourth embodiment has basically the same configuration as the optical systems 101 to 103 of any of the first to third embodiments and has the same effects, but the second waveguide is a thin wire waveguide. It differs from the optical systems 101 to 103 in that it is a photonic crystal waveguide rather than a photonic crystal waveguide. The following will mainly explain the differences between the optical system 104 and the optical systems 101 to 103.
  • the photonics element 2 includes a crystal slab 2D, a first cladding layer 2B1, and a second cladding layer 2B2.
  • the second waveguide is part of the crystal slab 2D.
  • the crystal slab 2D has two regions 2D1 and 2D2 in which a plurality of through holes 2E are formed, and a region 2D3 sandwiched between these two regions 2D1 and 2D2 in which a plurality of through holes 2E are not formed. are doing.
  • the material constituting the crystal slab 2D includes, for example, at least one selected from the group consisting of polytetrafluoroethylene (PTFE), polyimide, and cyclic olefin polymer (COP).
  • PTFE polytetrafluoroethylene
  • COP cyclic olefin polymer
  • the opening shape of the plurality of through holes 2E is, for example, circular.
  • the centers of each of the plurality of through holes 2E are arranged to form lattice points of a regular hexagonal lattice.
  • the hole diameter of each of the plurality of through holes 2E and the interval between two adjacent through holes 2E are set so that light of the target wavelength does not propagate through the region 2D1 and the region 2D2. From a different perspective, the hole diameter of each of the plurality of through holes 2E and the interval between two adjacent through holes 2E are set such that the region 2D3 where no through hole 2E is formed forms a photonic crystal waveguide. There is.
  • the first cladding layer 2B1 and the second cladding layer 2B2 are arranged to sandwich the crystal slab 2D.
  • the refractive index of the material forming each of the first cladding layer 2B1 and the second cladding layer 2B2 is lower than the refractive index of the material forming the crystal slab 2D.
  • the material constituting each of the first cladding layer 2B1 and the second cladding layer 2B2 includes, for example, SiO 2 . Note that one or both of the first cladding layer 2B1 and the second cladding layer 2B2 may be an air layer.
  • the optical system 104 is provided to propagate, for example, terahertz waves.
  • the target wavelength of the optical system 104 is, for example, 30 ⁇ m or more and 3 mm or less.
  • the optical fiber 1 is a metal hollow optical fiber and may include a hollow portion 1C, a metal layer 1D, and a cladding 1B.
  • the hollow portion 1C is filled with air.
  • the metal layer 1D has an inner circumferential surface facing the hollow portion 1C and an outer circumferential surface in contact with the inner circumferential surface of the cladding 1B.
  • the material constituting the metal layer 1D is not particularly limited, but includes silver (Ag), for example.
  • the thickness of the metal layer 1D is, for example, several nm or more and several 100 nm or less.
  • the outer diameter of the metal layer 1D is, for example, 1 mm or less.
  • the propagation direction of light is not limited.
  • the light may propagate from the core 1A, where the optical spot size is relatively large, through the metalens 3, to the Si waveguide 2A, where the optical spot size is relatively small, or in the opposite direction, through the Si waveguide 2A, where the optical spot size is relatively small. It may also propagate from 2A to the core 1A via the metalens 3.
  • the optical system 104 is suitable for propagating terahertz waves.
  • the material constituting the crystal slab 2D includes at least one selected from the group consisting of polytetrafluoroethylene (PTFE), polyimide, and cyclic olefin polymer (COP) as described above.
  • the light propagated by the optical system 104 is not limited to terahertz waves.
  • the target wavelength of the optical system 104 may be shorter than the terahertz wave, and in this case, the material forming the crystal slab 2D may be Si.
  • optical system 105 according to Embodiment 5 With reference to FIG. 20, optical system 105 according to Embodiment 5 will be described.
  • the optical system 105 according to the fifth embodiment has basically the same configuration as the optical systems 101 to 103 of any of the first to third embodiments and has the same effect, but the Si waveguide 2A is a thin wire waveguide. It differs from the optical systems 101 to 103 in that it is a rib-type waveguide rather than a rib-type waveguide. The following will mainly explain the differences between the optical system 105 and the optical systems 101 to 103.
  • the Si waveguide 2A has a relative width in a direction perpendicular to the stacking direction of the Si substrate 2C, the first cladding layer 2B1, the Si waveguide 2A, and the second cladding layer 2B2, and the extending direction of the Si waveguide 2A. It has a slab part 21 that is relatively wide, and a ridge part 22 that protrudes from the slab part 21 to the side opposite to the first cladding layer 2B1 and has a relatively narrow width in that direction. In the optical system 105, the ridge portion 22 and a portion of the slab portion 21 located near the ridge portion 22 constitute the Si waveguide 2A.
  • the propagation direction of light is not limited.
  • the light may propagate from the core 1A, where the optical spot size is relatively large, through the metalens 3, to the Si waveguide 2A, where the optical spot size is relatively small, or in the opposite direction, through the Si waveguide 2A, where the optical spot size is relatively small. It may also propagate from 2A to the core 1A via the metalens 3.
  • the photonics element 2 may have a PIN structure. Specifically, when viewed from the stacking direction of the slab portion 21 and the ridge portion 22, the slab portion 21 has a p-type impurity region formed on one side with respect to the ridge portion 22, and a p-type impurity region formed on one side with respect to the ridge portion 22. and an n-type impurity region formed on the other side.
  • the photonics element 2 may further include an electrode electrically connected to the p-type impurity region and an electrode electrically connected to the n-type impurity region.
  • optical system 106 according to the sixth embodiment will be described with reference to FIG. 21.
  • Optical system 106 according to Embodiment 6 has basically the same configuration as optical system 101 to 105 of any of Embodiments 1 to 5, and produces similar effects, but optical fiber 1 has a plurality of cores 1A. It differs from the optical systems 101 to 105 in that the metalens 3 includes a plurality of metasurfaces 3E. The following will mainly explain the differences between the optical system 106 and the optical systems 101 to 105.
  • the optical fiber 1 is a multi-core fiber.
  • Each of the plurality of cores 1A is, for example, a single mode fiber.
  • the cladding 1B separates the plurality of cores 1A.
  • the arrangement of the plurality of cores 1A in plan view is not limited.
  • the plurality of cores 1A shown in FIG. 21 are rotationally symmetrical with respect to the central axis C1 of the optical fiber 1.
  • the plurality of cores 1A may be arranged such that the central axis of each core 1A forms a lattice point of a square lattice, a triangular lattice, or a hexagonal lattice.
  • the plurality of cores 1A do not have to be rotationally symmetrical with respect to the central axis C1 of the optical fiber 1.
  • Each of the plurality of cores 1A has, for example, mutually equivalent characteristics.
  • the plurality of cores 1A may have different characteristics from each other.
  • the optical fiber 1 includes a central core disposed on the central axis C1 of the optical fiber 1 in plan view, and a plurality of peripheral cores disposed around the central core and rotationally symmetrical to each other.
  • the core diameter of the central core may be larger than the core diameter of each peripheral core.
  • the dimension (core diameter W1) of the first end surface 1A1 of each core 1A is larger than each of the width W2 and the thickness T0 of the second end surface 2A1 of the second waveguide.
  • Each core diameter W1 is 1 ⁇ m or more and 20 ⁇ m or less, preferably 5 ⁇ m or more and 10 ⁇ m or less.
  • the metalens 3 focuses the light emitted from each of the plurality of cores 1A onto one second waveguide (for example, the Si waveguide 2A).
  • Light emitted from one core 1A enters each of the plurality of metasurfaces 3E. All of the light emitted from the plurality of metasurfaces 3E enters the Si waveguide 2A. That is, each metasurface 3E optically connects one core 1A and the Si waveguide 2A.
  • Each of the plurality of metasurfaces 3E is one of the above-mentioned metasurfaces 3A, metasurfaces 3B, metasurfaces 3C, and metasurfaces 3D.
  • Each of the plurality of metasurfaces 3E is provided so that the light emitted from each metasurface 3E is focused on the second end surface 2A1 of the Si waveguide 2A.
  • the propagation direction of the light emitted from each metasurface 3E is set so that the light emitted from each metasurface 3E is focused on the second end surface 2A1 of the Si waveguide 2A.
  • the arrangement of the plurality of metasurfaces 3E in plan view is set according to the arrangement of the plurality of cores 1A.
  • the plurality of metasurfaces 3E shown in FIG. 21 are rotationally symmetrical with respect to the central axis C1 of the optical fiber 1. If the rotational symmetry axis of the plurality of metasurfaces 3E is the central axis of the metalens 3, the central axis of the metalens 3 is arranged on the same straight line as the central axis C1 of the optical fiber 1.
  • the plurality of metasurfaces 3E may be arranged such that the center of each metasurface 3E forms a lattice point of a square lattice, a triangular lattice, or a hexagonal lattice. Furthermore, the plurality of metasurfaces 3E do not have to be rotationally symmetrical with respect to the central axis C1 of the optical fiber 1.
  • the plurality of electromagnetic wave scatterers of each metasurface 3E are arranged, for example, in a direction perpendicular to the propagation direction of light between the first end face and the second end face.
  • the plurality of uneven structures 31D of each metasurface 3A are arranged, for example, in a direction perpendicular to the central axis C1 of the core 1A and the central axis C2 of the Si waveguide 2A.
  • the central axis of the through hole 31C of each metasurface 3A is parallel to, for example, the central axis C1 of the core 1A and the central axis C2 of the Si waveguide 2A.
  • each metasurface 3E is a metasurface 3C or a metasurface 3D
  • the plurality of columnar bodies 32 or the plurality of spherical bodies 35 are arranged, for example, in a direction perpendicular to the central axis C1 of the core 1A and the central axis C2 of the Si waveguide 2A. Arranged.
  • FIG. 22 shows a configuration example in which each of the plurality of metasurfaces 3E is a metasurface 3A having a bull's eye structure, and the center of each metasurface 3E is arranged so as to form a lattice point of a square lattice in plan view. There is.
  • the center of each metasurface 3E (3A) means the center of the outline of each metasurface 3E.
  • the plurality of metasurfaces 3E (3A) are formed, for example, on one conductor layer 31 and supported by one substrate 4.
  • each of the plurality of metasurfaces 3E may be formed on a different conductor layer 31.
  • Each of the plurality of metasurfaces 3E may be supported by a mutually different substrate 4.
  • the propagation direction of the light emitted from each metasurface 3E (3A) toward the Si waveguide 2A is such that the light emitted from each metasurface 3E (3A) is directed toward the Si waveguide 2A. It is set to focus on the second end surface 2A1.
  • the central axis of the through hole 31C of each metasurface 3E (3A) is located on the opposite side of the focal point F with respect to the center of the metasurface 3E (3A). ing.
  • the central axis of the through hole 31C of each metasurface 3E (3A) may be arranged on a virtual straight line connecting the center of the metasurface 3E (3A) and the focal point F.
  • the central axis C5 of the through hole 31C of one metasurface 3E1 may be arranged on a virtual straight line connecting the center C6 of the metasurface 3E1 and the focal point F.
  • the central axis C7 of the through hole 31C of the metasurface 3E2 which is farther from the focal point F than the metasurface 3E1, may be arranged on a virtual straight line connecting the center C8 of the metasurface 3E2 and the focal point F.
  • the virtual straight line of the metasurface 3E2 may be arranged on the same straight line as the virtual straight line of the metasurface 3E1.
  • the distance between the center of each metasurface 3E (3A) and the central axis of the through hole 31C of the metasurface 3E (3A) is the distance between the center of the metasurface 3E and the metalens.
  • the distance between the central axis C5 of the through hole 31C of the metasurface 3E1 and the center C6 of the metasurface 3E1 is longer than the distance between the central axis C7 of the through hole 31C of the metasurface 3E2 and the center C8 of the metasurface 3E2. It can be short.
  • the propagation direction of light is not limited in the optical system 106 either.
  • the light may propagate from each of the plurality of cores 1A with a relatively large optical spot size, through each metasurface 3E of the metalens 3, to the Si waveguide 2A with a relatively small optical spot size.
  • the light may propagate from the Si waveguide 2A through each metasurface 3E of the metalens 3 to each of the plurality of cores 1A.
  • the plurality of electromagnetic wave scatterers of each metasurface 3E are arranged in a direction inclined at an obtuse angle or an acute angle with respect to the propagation direction of light between the first end surface and the second end surface.
  • the plurality of uneven structures 31D of each metasurface 3A form an obtuse or acute angle with respect to the central axis C1 of the core 1A and the central axis C2 of the Si waveguide 2A, for example. They may be arranged in an inclined direction.
  • each metasurface 3E is a metasurface 3C or a metasurface 3D
  • the plurality of columnar bodies 32 or the plurality of spherical bodies 35 form an obtuse or acute angle with the central axis C1 of the core 1A and the central axis C2 of the Si waveguide 2A. They may be arranged in the direction. In such a case, if each metasurface 3E is supported by a different substrate 4, the distance between each metasurface 3E and the first end surface 1A1 of each core 1A should be as short as possible. They may be set equal to each other.
  • the photonics element 2 may include a plurality of second waveguides.
  • the number of second waveguides may be less than or equal to the number of first waveguides. As shown in FIG. 23, the number of second waveguides may be equal to the number of first waveguides.
  • the light emitted from each of the plurality of cores 1A may pass through different metasurfaces 3E and enter different Si waveguides 2A.
  • the optical system 106 is an optical system realized in the optical systems 101 to 105 (one first waveguide and one second waveguide are optically connected via one metalens (metasurface 3E)).
  • the optical system may include multiple sets of optical systems.
  • the plurality of optical systems may have mutually equivalent configurations or may have mutually different configurations. Although the arrangement of the plurality of optical systems is not particularly limited, they may be arranged side by side in the horizontal direction, for example.
  • optical system 107 according to Embodiment 7 will be described.
  • Optical system 107 according to Embodiment 7 is different from optical systems 101 to 106 in that it further includes an information output section 201 and an information input section 202 in addition to optical systems 101 to 106 of any of Embodiments 1 to 6. is different. The following will mainly explain the differences between optical system 107 and optical systems 101 to 106.
  • the information output unit 201 includes, for example, an electronic circuit, a photoelectric conversion unit (i.e., a light source) that outputs an optical signal according to an electric signal flowing through the electronic circuit, and a phase modulation of the optical signal output from the photoelectric conversion unit. It includes an optical modulator and a condensing element that condenses the light phase-modulated by the optical modulator.
  • the information input section 202 includes, for example, an optical modulator, a photoelectric conversion section, and an electronic circuit.
  • the core 1A of any one of the optical systems 101 to 106 is optically connected to the information output section 201 that outputs an optical signal, and the Si waveguide 2A is connected to the optical signal input.
  • the information input unit 202 may be optically connected to the information input unit 202.
  • the core 1A is optically connected to the condensing element of the information output section 201.
  • Light focused by the light focusing element is incident on the core 1A.
  • the Si waveguide 2A is optically connected to the optical modulator of the information input section 202.
  • the light emitted from the Si waveguide 2A is phase modulated by the optical modulator of the information input section 202, then converted into an electronic signal by the photoelectric conversion section, and transmitted to the electronic circuit.
  • the signal is transmitted to the electronic circuit of the information output section 201, the photoelectric conversion section, the optical modulator, the condensing element, the core 1A of any of the optical systems 101 to 106, the metalens 3,
  • the light is transmitted in this order through the Si waveguide 2A, the optical modulator of the information input section 202, the photoelectric conversion section, and the electronic circuit.
  • the Si waveguide 2A is optically connected to the optical modulator of the information output section 201.
  • the core 1A is optically connected to a condensing element of the information input section 202.
  • the signal is transmitted to the electronic circuit of the information output section 201, the photoelectric conversion section, the optical modulator, the Si waveguide 2A of any of the optical systems 101 to 106, the metalens 3, and the core 1A. , the light condensing element of the information input section 202, the optical modulator, the photoelectric conversion section, and the electronic circuit in this order.
  • the information output unit 201 only needs to include at least a light source that outputs an optical signal. Furthermore, the information output unit 201 may include an optical lens as a condensing element, or may include the metalens 3 of the optical systems 101 to 106.
  • metalens having a bull's-eye structured metasurface having the planar structure shown in FIG. 3 and the cross-sectional structure shown in FIG. 11 were produced. Specifically, an electron beam resist (NEB-22) is applied onto a glass substrate by spin coating, and then exposed to the electron beam resist using an electron beam lithography system (ELS-F125HS, ELIONIX) to create multiple resist patterns. were formed in concentric circles. The intervals between the plurality of resist patterns were set to 1550 nm, 1310 nm, 1000 nm, or 900 nm.
  • ELS-F125HS electron beam lithography system
  • a conductive film made of silver was formed on a glass substrate by a sputtering method using a magnetron sputter coater (Q-150TES, Quorum Technologies). Thereafter, the conductive film on the glass substrate was immersed in a dimethylacetamide solution to lift off the excess conductive film on the resist pattern.
  • the metalens 3 of Experimental Examples 1 to 7, which had the cross-sectional structure shown in FIG. 11 and in which the distance P between each of the plurality of concavo-convex structures 31D was different from each other according to the above-mentioned distance of the resist pattern was manufactured.
  • Experimental Example 8 consisting of only a glass substrate was prepared.
  • the ratio (W5/P) of the width (W5) of each of the plurality of annular grooves 31E to the interval P of each of the plurality of uneven structures 31D was set to 50%. Further, in each of Experimental Examples 1 to 7, the hole diameter (W3) of the through hole 31C was made equal to the above width (W5).
  • Each of Experimental Examples 1 to 8 was irradiated with light (linearly polarized light) with wavelengths of 1550 nm and 1310 nm so as to become collimated light.
  • the light was irradiated so as to be focused on the through hole 31C.
  • the light emitted from the metalens is imaged on an image sensor using an objective lens, and from the obtained image, the spread angle X on the polarization plane of linearly polarized light and the spread angle The spread angle Y was evaluated.
  • the light collection performance of each sample was evaluated based on the following criteria with respect to the spread angles X and Y described above. S: Less than 4.00° A: 4.00° or more and less than 5.50° B: 5.50° or more and less than 7.50° C: 7.50° or more and less than 9.00° D: 9.00° or more
  • Experimental Examples 9 to 13 using the electromagnetic calculation software MEEP, a metalens having a bull's-eye structure metasurface having the planar structure shown in FIG. 3 and the cross-sectional structure shown in FIG. 11 was designed.
  • Experimental Examples 9 to 13 had a common interval P of 1550 nm, and only the width W5 of each of the plurality of annular grooves 31E was different from each other. That is, in Experimental Examples 9 to 13, the ratio W5/P was different from each other.
  • the light focusing performance of each experimental example was calculated by simulating the transmitted intensity, reflected intensity, and electric field strength around the structure when a plane wave with a wavelength of 1550 nm was incident on each experimental example using the above calculation software.
  • the ratio of transmitted intensity to reflected intensity in the experimental example was evaluated based on the following criteria. S: 0.40 or more A: 0.20 or more and less than 0.40 B: 0.04 or more and less than 0.20
  • the ratio W5/P is .
  • Experimental Examples 9 to 11 where the ratio W5/P is higher than 43.0% the ratio of the transmitted intensity to the reflected intensity is 0.20 or more
  • Experimental Example 12 where the ratio W5/P is 43.0% or lower It was confirmed that it was higher than that of No. 13. In other words, it was confirmed that the light focusing performance of Experimental Examples 9 to 11 where the ratio W5/P is higher than 43.0% is higher than that of Experimental Examples 12 and 13 where the ratio W5/P is 43.0% or less. It was done.
  • the ratio of transmitted intensity to reflected intensity in Experimental Examples 9 and 10 where the ratio W5/P is higher than 50.0% is 0.40 or more, and is different from that in Experimental Example 11 where the ratio W5/P is 50.0%. It was confirmed that it was even higher. In other words, it was confirmed that the light focusing performance of Experimental Examples 9 and 10 where the ratio W5/P is higher than 50.0% is even higher than that of Experimental Example 11 where the ratio W5/P is 50.0%. Ta.
  • the light focusing performance of each experimental example was calculated by simulating the transmission spectrum and reflection spectrum when a plane wave with a wavelength within the range of 1300 nm to 1900 nm was incident on each experimental example using the electromagnetic calculation software described above. Based on the reflection intensity and transmission intensity of each experimental example, the transmission characteristics and reflection characteristics were evaluated based on the following criteria. Note that each intensity was a standardized intensity (arbitrary unit au). Evaluation criterion for transmission characteristics A: The presence of a peak with an intensity of 0.04 or more.Evaluation criterion for transmission characteristics: The presence of a peak with an intensity of 0.10 or more.Evaluation criterion for reflection characteristics A: An intensity of 0.04 over the entire wavelength range mentioned above. Evaluation criteria for reflection characteristics S: Intensity is less than 0.01 over the entire wavelength range above
  • a metalens having a bull's-eye structure metasurface having the planar structure shown in FIG. 9 and the cross-sectional structure shown in FIG. 11 was designed using the electromagnetic calculation software MEEP.
  • the first interval PA was 1550 nm in common
  • the ratio W5A/PA was 50% in common
  • only the unit shift amount S was changed stepwise.
  • the emission angle of light emitted from each experimental example when a plane wave with a wavelength of 1550 nm was incident on each experimental example was calculated using the electromagnetic calculation software described above.
  • electromagnetic calculation software MEEP was used to construct a metalens containing a phase grating, which includes a periodic structure in which the structural units shown in FIG. 11 are arranged periodically in the radial direction with respect to the central axis. , designed metalens with different diameters.
  • the diameter of the metalens in Experimental Example 22 was 10 ⁇ m
  • the diameter of the metalens in Experimental Example 23 was 20 ⁇ m
  • the diameter of the metalens in Experimental Example 24 was 40 ⁇ m.
  • the refractive index of each columnar body was 3.5
  • NA was 0.7. Note that the diameter of the metalens was set within the range of 10 ⁇ m to 40 ⁇ m, which can be assumed as the core diameter of the optical fiber 1.
  • Relational expression (3) is a relational expression between the phase difference that each metalens including the phase grating gives to light of the target wavelength ⁇ at a distance r from its central axis and the focal length f of each metalens.
  • the focal length f was calculated by substituting the diameter R of each metalens of Experimental Examples 22 to 24 into the distance r.
  • the focal length f can be sufficiently shortened from the viewpoint of downsizing the optical system. It was confirmed that when the diameter of the metalens is 20 ⁇ m or more, the focal length f can be made sufficiently short from the viewpoint of downsizing the optical system even if the condensing angle ⁇ 2 is 20° or more. On the other hand, it has been confirmed that when the condensing angle ⁇ 2 is 70°, it is difficult to adjust the position in the optical axis direction when used as an optical system.
  • 1 Optical fiber 1A1 first end surface, 1A core, 1B, 2B cladding, 1C hollow section, 1D metal layer, 2 photonics element, 2A1 second end surface, 2A waveguide, 2B1 first cladding layer, 2B2 second cladding layer, 2C Si substrate, 2D crystal slab, 2E through hole, 21 slab part, 22 ridge part, 3 metalens, 3A, 3B, 3C, 3D, 3E, 3E1, 3E2 metasurface, 31C through hole, 31 conductor layer, 31A No.

Abstract

An optical system (101) comprises: a core (1A); an Si waveguide (2A) having an optical spot size different from that of the core (1A); and a metalens (3) that optically connects the core (1A) and the Si waveguide (2A). The metalens has a first surface (31A) facing a first waveguide, and a second surface (31B) facing the opposite side from the first surface. In the metalens, a through-hole (31C) penetrating a space between the first surface and the second surface is formed. The hole diameter of the through-hole is smaller than an object wavelength. The metalens is configured from an electric conductor. On the first surface of the metalens, a plurality of relief structures configured from the first surface and a plurality of annular grooves (31D) recessed from the first surface are formed. The plurality of relief structures are annularly formed so as to surround the through-hole in plan view.

Description

光学システムoptical system
 本発明は、光学システムに関し、特にサイズの異なる2つの光導波路間を接続できる光学システムに関する。 The present invention relates to an optical system, and particularly to an optical system that can connect two optical waveguides of different sizes.
 国際公開第2018/105712号(特許文献1)には、サイズの異なる2つの光導波路間を接続するためのポリマー導波路型のスポットサイズ変換器が記載されている。 International Publication No. 2018/105712 (Patent Document 1) describes a polymer waveguide-type spot size converter for connecting two optical waveguides of different sizes.
 特開2021-148851号公報(特許文献2)には、複数の導波路コアを含む光集積回路と、複数の導波路コアの各々を光ファイバのコアとを接続するための光路変換部とを備える光電融合モジュールが記載されている。光路変換部は、スポットサイズコンバータ、曲面ミラー、メッキミラー、及びポリマー導波路を含む。 JP 2021-148851 A (Patent Document 2) discloses an optical integrated circuit including a plurality of waveguide cores, and an optical path converter for connecting each of the plurality of waveguide cores to the core of an optical fiber. A photoelectric fusion module is described. The optical path converter includes a spot size converter, a curved mirror, a plated mirror, and a polymer waveguide.
国際公開第2018/105712号International Publication No. 2018/105712 特開2021-148851号公報Japanese Patent Application Publication No. 2021-148851
 従来のスポットサイズ変換器及び光路変換部では、複数の導波路コアの各々と光ファイバのコアとの間の光路長が長くなる場合があり、小型化に改善の余地があった。 In conventional spot size converters and optical path converters, the optical path length between each of the plurality of waveguide cores and the core of the optical fiber may become long, and there is room for improvement in miniaturization.
 本発明の1つの目的は、サイズの異なる2つの光導波路間を接続できる光学システムであって、従来よりも光路長を短くできる光学システムを提供することにある。 One object of the present invention is to provide an optical system that can connect two optical waveguides of different sizes, and that can shorten the optical path length than before.
 本発明は、以下に示される光学システムを提供する。 The present invention provides the optical system shown below.
 [1] 第1導波路と、光スポットサイズが前記第1導波路とは異なる第2導波路と、前記第1導波路の第1端面と前記第2導波路の第2端面との間を光学的に接続するメタレンズとを備え、前記メタレンズは、前記第1導波路と対向する第1面と、前記第1面とは反対側を向いている第2面とを有し、前記メタレンズには、前記第1面と前記第2面との間を貫通する貫通孔が形成されており、前記貫通孔の孔径は、対象波長よりも小さく、前記メタレンズは、導電体により構成されており、前記メタレンズの少なくとも前記第1面には、前記第1面と、前記第1面に対して凹んでいる複数の環状溝とにより構成されている複数の凹凸構造が形成されており、前記複数の凹凸構造は、平面視において前記貫通孔を囲むように環状に形成されている、光学システム。 [1] A first waveguide, a second waveguide whose optical spot size is different from that of the first waveguide, and a distance between the first end surface of the first waveguide and the second end surface of the second waveguide. a metalens that is optically connected, the metalens having a first surface facing the first waveguide, and a second surface facing the opposite side to the first surface; is formed with a through hole penetrating between the first surface and the second surface, the diameter of the through hole is smaller than the target wavelength, and the metalens is made of a conductor; A plurality of uneven structures are formed on at least the first surface of the metalens, and the plurality of convex and convex structures are formed by the first surface and a plurality of annular grooves recessed with respect to the first surface. An optical system, wherein the uneven structure is formed in an annular shape so as to surround the through hole in a plan view.
 [2] 対象波長λ(単位:nm)に対する前記複数の凹凸構造の各々の間隔P(単位:nm)の比率(P/λ)が、30%以上140%以下である、[1]に記載の光学システム。 [2] The ratio (P/λ) of the interval P (unit: nm) of each of the plurality of uneven structures to the target wavelength λ (unit: nm) is 30% or more and 140% or less, described in [1] optical system.
 [3] 前記貫通孔の中心軸に対する径方向における前記複数の凹凸構造の各々の前記間隔Pに対して、前記複数の環状溝の各々の幅W5(単位:nm)が成す比率(W5/P)は、10%以上95%以下である、[2]に記載の光学システム。 [3] The ratio (W5/P) of the width W5 (unit: nm) of each of the plurality of annular grooves to the distance P of each of the plurality of uneven structures in the radial direction with respect to the central axis of the through hole. ) is 10% or more and 95% or less, the optical system according to [2].
 [4] 平面視において、前記複数の凹凸構造の各々の中心は、前記貫通孔の中心と重なっている、[1]~[3]のいずれかに記載の光学システム。 [4] The optical system according to any one of [1] to [3], wherein the center of each of the plurality of uneven structures overlaps the center of the through hole in plan view.
 [5] 平面視において、前記複数の凹凸構造の中心は、前記貫通孔の中心と重なっていない、[1]~[3]のいずれかに記載の光学システム。 [5] The optical system according to any one of [1] to [3], wherein the center of the plurality of uneven structures does not overlap the center of the through hole in plan view.
 [6] 前記複数の凹凸構造の各々の前記中心が、同一直線上に互いに等しい距離を隔てて並んで配置されており、前記貫通孔の中心軸と前記第2導波路の中心軸とが第1角度Θ1を成しており、前記第1角度Θ1が3°以上60°以下である、[5]に記載の光学システム。 [6] The centers of each of the plurality of uneven structures are arranged side by side on the same straight line at equal distances from each other, and the center axis of the through hole and the center axis of the second waveguide are aligned with each other. The optical system according to [ 5], wherein the first angle Θ 1 is 3° or more and 60° or less.
 [7] 前記第1角度Θ1が5°以上である場合、前記間隔P及び前記距離S(単位:nm)が以下の関係式(1)を満足する、[6]に記載の光学システム。
Figure JPOXMLDOC01-appb-M000002
[7] The optical system according to [6], wherein when the first angle Θ 1 is 5° or more, the interval P and the distance S (unit: nm) satisfy the following relational expression (1).
Figure JPOXMLDOC01-appb-M000002
 [8] 前記対象波長の光に対して透明でありかつ前記メタレンズの前記第2面と接する第3面を有する基板をさらに備え、前記複数の環状溝の各々は、前記メタレンズの前記第1面と前記第2面との間を貫通し、かつ前記第3面の一部を露出させるように形成されている、[1]~[7]のいずれかに記載の光学システム。 [8] Further comprising a substrate having a third surface that is transparent to light of the target wavelength and that is in contact with the second surface of the metalens, and each of the plurality of annular grooves is connected to the first surface of the metalens. and the second surface, and is formed to expose a part of the third surface.
 [9]第1導波路と、光スポットサイズが前記第1導波路とは異なる第2導波路と、前記第1導波路の第1端面と前記第2導波路の第2端面との間を光学的に接続するメタレンズと、対象波長の光に対して透明でありかつ前記光の伝搬方向に交差する第3面を有する基板とを備え、前記メタレンズは、前記第3面上に配置されておりかつ前記対象波長の光に位相差を与える位相格子であり、前記メタレンズは、前記第3面上に互いに間隔を空けて配置されている複数の凸部を含み、 [9] A first waveguide, a second waveguide whose optical spot size is different from that of the first waveguide, and a distance between a first end surface of the first waveguide and a second end surface of the second waveguide. The metalens is provided with an optically connected metalens, and a substrate having a third surface that is transparent to light of a target wavelength and intersects with the propagation direction of the light, and the metalens is disposed on the third surface. and a phase grating that provides a phase difference to light of the target wavelength, and the metalens includes a plurality of convex portions arranged at intervals on the third surface,
 前記複数の凸部の各々は、前記第3面の第1領域上に互いに間隔を空けて配置されている第1群の凸部と、前記第3面の第2領域上に互いに間隔を空けて配置されている第2群の凸部とを含み、前記第1群の凸部の各々の高さ、最大幅、及びピッチの少なくともいずれかは、前記第2群の凸部の各々の高さ、最大幅、及びピッチの少なくともいずれかと異なる、光学システム。 Each of the plurality of convex portions includes a first group of convex portions that are spaced apart from each other on a first region of the third surface, and a first group of convex portions that are spaced apart from each other on a second region of the third surface. a second group of convex portions arranged in a manner that an optical system that differs in at least one of a width, a maximum width, and a pitch.
 [10]前記メタレンズは、前記第1群の凸部及び前記第2群の凸部を含みかつ前記複数の凸部の各々の高さ、最大幅、及びピッチの少なくともいずれかが連続的または段階的に変化する構造単位が前記メタレンズの中心軸に対する径方向に周期的に配置されて成る周期構造を有している、[9]に記載の光学システム。 [10] The metalens includes the first group of convex portions and the second group of convex portions, and at least one of the height, maximum width, and pitch of each of the plurality of convex portions is continuous or stepwise. The optical system according to [9], wherein the optical system has a periodic structure in which structural units that change cyclically are arranged periodically in a radial direction with respect to the central axis of the metalens.
 [11]前記メタレンズの前記周期構造に含まれる複数の前記構造単位のうち、前記中心軸に最も近い位置にある第1構造単位の前記径方向の幅は、前記中心軸に2番目に近い位置にある第2構造単位の前記径方向の幅よりも広い、[9]に記載の光学システム。 [11] Among the plurality of structural units included in the periodic structure of the metalens, the width in the radial direction of the first structural unit located at the position closest to the central axis is equal to the width at the position second closest to the central axis. The optical system according to [9], wherein the radial width of the second structural unit is wider than the radial width of the second structural unit.
 [12] 前記第1構造単位の前記径方向の幅は、1.00μm以上7.00μm以下である、[11]に記載の光学システム。 [12] The optical system according to [11], wherein the radial width of the first structural unit is 1.00 μm or more and 7.00 μm or less.
 [13] 前記複数の凸部の各々は、柱状体または球状体であり、 [13] Each of the plurality of convex portions is a columnar body or a spherical body,
 前記複数の凸部の各々の最大幅は、前記対象波長よりも短い、[9]に記載の光学システム。  The optical system according to [9], wherein the maximum width of each of the plurality of convex portions is shorter than the target wavelength. 
 [14] 前記複数の凸部のうち前記メタレンズの中心軸に対する径方向において最外に位置する前記凸部の前記第3面側に位置する最外端部と、前記第2導波路の中心軸と前記第2端面との交点とを結ぶ第1仮想直線が、前記メタレンズの前記中心軸と前記第3面との交点と、前記第2導波路の前記中心軸と前記第2端面との交点とを結ぶ第2仮想直線に対して成す集光角度が、20°以上70°以下である、[9]~[13]のいずれかに記載の光学システム。 [14] The outermost end portion of the plurality of convex portions located on the third surface side of the convex portion located at the outermost position in the radial direction with respect to the central axis of the metalens, and the central axis of the second waveguide. A first imaginary straight line connecting the intersection between the central axis of the metalens and the third surface, and the intersection between the central axis of the second waveguide and the second end surface The optical system according to any one of [9] to [13], wherein the condensing angle formed with respect to the second virtual straight line connecting the two lines is 20° or more and 70° or less.
 [15] 前記第1導波路は、光ファイバの少なくとも1つのコアであり、前記第2導波路は、細線導波路、リブ型導波路、又はフォトニック結晶導波路であり、前記メタレンズは、前記第1導波路と前記第2導波路との間に配置されている、[1]または[9]のいずれかに記載の光学システム。 [15] The first waveguide is at least one core of an optical fiber, the second waveguide is a thin wire waveguide, a rib waveguide, or a photonic crystal waveguide, and the metalens is The optical system according to any one of [1] and [9], which is arranged between the first waveguide and the second waveguide.
 [16] 前記第2端面の面積に対する前記第1端面の面積の比率が10以上である、[15]に記載の光学システム。 [16] The optical system according to [15], wherein the ratio of the area of the first end surface to the area of the second end surface is 10 or more.
 [17] 前記第1導波路は、離散的に配置されている複数のコアにより構成されており、前記メタレンズは、前記複数のコアの各々と前記第2導波路との間を光学的に接続する、[15]に記載の光学システム。 [17] The first waveguide is composed of a plurality of discretely arranged cores, and the metalens optically connects each of the plurality of cores and the second waveguide. The optical system according to [15].
 [18] 前記メタレンズは、前記複数のコアの各々から出射した光が前記第1導波路及び前記第2導波路の各々の中心軸と同一直線上に焦点を結ぶように設けられている、[17]に記載の光学システム。 [18] The metalens is provided so that the light emitted from each of the plurality of cores is focused on the same straight line as the central axis of each of the first waveguide and the second waveguide, [ 17].
 [19] 前記第1導波路及び前記第2導波路の一方と光学的に接続されている情報出力部と、前記第1導波路及び前記第2導波路の他方と光学的に接続されている情報入力部とをさらに備える、[1]または[9]のいずれかに記載の光学システム。 [19] An information output unit optically connected to one of the first waveguide and the second waveguide, and an information output unit optically connected to the other of the first waveguide and the second waveguide. The optical system according to any one of [1] and [9], further comprising an information input section.
 [20] 前記情報出力部は、前記第1導波路と光学的に接続されており、前記情報入力部は、前記第2導波路と光学的に接続されている、[19]に記載の光学システム。 [20] The optical system according to [19], wherein the information output section is optically connected to the first waveguide, and the information input section is optically connected to the second waveguide. system.
 本発明によれば、サイズの異なる2つの光導波路間を接続できる光学システムであって、従来よりも光路長が短い光学システムを提供できる。 According to the present invention, it is possible to provide an optical system that can connect two optical waveguides of different sizes and has a shorter optical path length than conventional ones.
実施の形態1に係る光学システムを説明するための分解斜視図である。1 is an exploded perspective view for explaining an optical system according to a first embodiment. FIG. 図1に示されるメタレンズを説明するための正面図である。FIG. 2 is a front view for explaining the metalens shown in FIG. 1. FIG. 図2中の矢印III-IIIから視たメタレンズ及び基板の断面図である。FIG. 3 is a cross-sectional view of the metalens and the substrate viewed from arrow III-III in FIG. 2; 実施の形態1に係る光学システムを説明するための断面図である。1 is a cross-sectional view for explaining an optical system according to Embodiment 1. FIG. 実施の形態1に係る光学システムのメタレンズの第1変形例を説明するための正面図である。FIG. 7 is a front view for explaining a first modification example of the metalens of the optical system according to the first embodiment. 図5中の矢印VI-VIから視たメタレンズ及び基板の断面図である。6 is a cross-sectional view of the metalens and the substrate as seen from arrow VI-VI in FIG. 5. FIG. 図5及び図6に示されるメタレンズを備える光学システムの第1例を説明するための断面図である。FIG. 7 is a cross-sectional view for explaining a first example of an optical system including the metalens shown in FIGS. 5 and 6. FIG. 図5及び図6に示されるメタレンズを備える光学システムの第2例を説明するための断面図である。FIG. 7 is a cross-sectional view for explaining a second example of an optical system including the metalens shown in FIGS. 5 and 6. FIG. 図5及び図6に示されるメタレンズの変形例を説明するための断面図である。FIG. 7 is a cross-sectional view for explaining a modification of the metalens shown in FIGS. 5 and 6. FIG. 実施の形態1に係る光学システムのメタレンズの第2変形例を説明するための断面図である。7 is a cross-sectional view for explaining a second modification of the metalens of the optical system according to the first embodiment. FIG. 実施の形態1に係る光学システムのメタレンズの第3変形例を説明するための断面図である。FIG. 7 is a cross-sectional view for explaining a third modification of the metalens of the optical system according to the first embodiment. 実施の形態1に係る光学システムのメタレンズの第4変形例を説明するための断面図である。FIG. 7 is a cross-sectional view for explaining a fourth modification of the metalens of the optical system according to the first embodiment. 実施の形態2に係る光学システムを説明するための分解斜視図である。FIG. 3 is an exploded perspective view for explaining an optical system according to a second embodiment. 図13に示されるメタレンズを説明するための部分拡大正面図である。14 is a partially enlarged front view for explaining the metalens shown in FIG. 13. FIG. 図13及び図14に示されるメタレンズを説明するための部分拡大斜視図である。FIG. 15 is a partially enlarged perspective view for explaining the metalens shown in FIGS. 13 and 14. FIG. 実施の形態2に係る光学システムのメタレンズの集光角度を説明するための断面図である。FIG. 7 is a cross-sectional view for explaining a condensing angle of a metalens of an optical system according to a second embodiment. 実施の形態3に係る光学システムを説明するための分解斜視図である。FIG. 7 is an exploded perspective view for explaining an optical system according to a third embodiment. 図17に示されるメタレンズを説明するための部分拡大斜視図である。18 is a partially enlarged perspective view for explaining the metalens shown in FIG. 17. FIG. 実施の形態4に係る光学システムを説明するための分解斜視図である。FIG. 7 is an exploded perspective view for explaining an optical system according to a fourth embodiment. 実施の形態5に係る光学システムを説明するための分解斜視図である。FIG. 7 is an exploded perspective view for explaining an optical system according to a fifth embodiment. 実施の形態6に係る光学システムを説明するための分解斜視図である。FIG. 7 is an exploded perspective view for explaining an optical system according to a sixth embodiment. 実施の形態6に係る光学システムのメタレンズの一例を説明するための部分拡大平面図である。FIG. 7 is a partially enlarged plan view for explaining an example of a metalens of an optical system according to a sixth embodiment. 実施の形態6に係る光学システムの変形例を説明するための分解斜視図である。FIG. 7 is an exploded perspective view for explaining a modification of the optical system according to the sixth embodiment. 実施の形態7に係る光学システムの第1例を説明するための図である。FIG. 7 is a diagram for explaining a first example of an optical system according to a seventh embodiment. 実施の形態7に係る光学システムの第2例を説明するための図である。FIG. 7 is a diagram for explaining a second example of an optical system according to Embodiment 7.
 以下、図面を参照して、本発明の実施の形態について説明する。なお、以下の図面において同一または相当する部分には、同一の参照符号を付し、その説明は繰り返さない。 Embodiments of the present invention will be described below with reference to the drawings. In addition, in the following drawings, the same reference numerals are given to the same or corresponding parts, and the description thereof will not be repeated.
 本実施の形態において幾何学的な文言および位置・方向・大小関係を表す文言、たとえば「直交」、「同軸」、「同等」などの文言が用いられる場合、それらの文言は、製造誤差ないし若干の変動を許容する。 In this embodiment, when geometric words and words expressing position/direction/size relationships, such as "orthogonal," "coaxial," and "equivalent" are used, these words may be caused by manufacturing errors or slight Tolerate fluctuations in
 <光学システムの構成> <Optical system configuration>
 本実施の形態に係る光学システムは、第1導波路と、光スポットサイズが第1導波路とは異なる第2導波路と、第1導波路と第2導波路との間を光学的に接続するメタレンズとを備える。 The optical system according to the present embodiment optically connects a first waveguide, a second waveguide whose optical spot size is different from that of the first waveguide, and the first waveguide and the second waveguide. and a metalens.
 本明細書において、「光スポットサイズ」とは、伝搬する光の光電力分布がガウシアンであると仮定した場合に、その光電力が最大値の1/e2になる領域の幅を意味する。第1導波路は、メタレンズと対向する第1端面を有する。第2導波路は、メタレンズと対向する第2端面を有する。本明細書では、第1導波路の第1端面での光スポットサイズを、第1導波路の「光スポットサイズ」と記載する。第2導波路の第2端面での光スポットサイズを、第2導波路の「光スポットサイズ」と記載する。第1導波路の光スポットサイズは、第2導波路の光スポットサイズよりも大きい。 In this specification, "light spot size" means the width of a region where the light power is 1/e 2 of the maximum value, assuming that the light power distribution of propagating light is Gaussian. The first waveguide has a first end face facing the metalens. The second waveguide has a second end face facing the metalens. In this specification, the optical spot size at the first end surface of the first waveguide is referred to as the "optical spot size" of the first waveguide. The light spot size at the second end surface of the second waveguide will be referred to as the "light spot size" of the second waveguide. The optical spot size of the first waveguide is larger than the optical spot size of the second waveguide.
 本明細書において「メタレンズ」とは、少なくとも1つのメタサーフェスを含み、第1導波路の第1端面及び第2導波路の第2端面のうちの一方から入射した光を他方において集光させる構造体を意味する。本明細書において「メタサーフェス」とは、第1端面と第2端面との間を光が伝搬する方向と交差する方向に配列されている複数の電磁波散乱体から成る構造体を意味する。複数の電磁波散乱体は、第1端面と第2端面との間の光の伝搬方向に対して直交する方向に配列していてもよい。複数の電磁波散乱体は、第1端面と第2端面との間の光の伝搬方向に対して鈍角または鋭角を成して傾斜する方向に配列していてもよい。 In this specification, the term "metalens" refers to a structure that includes at least one metasurface and that condenses light incident from one of the first end surface of the first waveguide and the second end surface of the second waveguide on the other. means body. As used herein, the term "metasurface" refers to a structure consisting of a plurality of electromagnetic wave scatterers arranged in a direction intersecting the direction in which light propagates between a first end face and a second end face. The plurality of electromagnetic wave scatterers may be arranged in a direction perpendicular to the propagation direction of light between the first end face and the second end face. The plurality of electromagnetic wave scatterers may be arranged in a direction that is inclined at an obtuse angle or an acute angle with respect to the propagation direction of light between the first end face and the second end face.
 本実施の形態に係るメタレンズの集光原理は、特に制限されないが、その代表例を以下に列記する。第1例は、開口幅が対象波長よりも小さい微小開口が形成されているメタレンズにおいて、対象波長の光が照射されたときに、微小開口から漏れ出した光を回収するというものである。第1例では、好ましくは、メタサーフェスが光を微小開口に集めて微小開口から漏れ出す光の強度を増強させるように設けられている。第1例のメタレンズは、例えばブルズアイ構造のメタサーフェスを有している。第2例は、位相格子が形成されているメタレンズにおいて、対象波長の光が照射されたときに、位相格子の空間的に異なる部分で回折した光に位相差を与えて集光するというものである。第2例のメタレンズは、例えば金属又は誘電体からなる複数の微粒子と光を共鳴させることにより位相差を与えるように設けられている共鳴型位相格子を含んでいてもよい。また、第2例のメタレンズは、例えば複数の誘電体導波路又は金属ギャップ導波路(MIM(Metal-Insulator-Metal)導波路)の各々を伝搬する光に位相差を与えるように設けられている導波路型位相格子を含んでいてもよい。 Although the light condensing principle of the metalens according to this embodiment is not particularly limited, typical examples thereof are listed below. In the first example, in a metalens in which a micro-aperture with an aperture width smaller than the target wavelength is formed, when light of the target wavelength is irradiated, light leaking from the micro-aperture is collected. In the first example, the metasurface is preferably provided to concentrate light into the micro-aperture and enhance the intensity of the light escaping from the micro-aperture. The metalens of the first example has, for example, a bull's eye structured metasurface. In the second example, when a metalens with a phase grating is irradiated with light of a target wavelength, the light diffracted at spatially different parts of the phase grating is focused by giving a phase difference to the light. be. The metalens of the second example may include a resonant phase grating provided to provide a phase difference by causing light to resonate with a plurality of fine particles made of, for example, a metal or a dielectric material. Further, the metalens of the second example is provided so as to give a phase difference to light propagating through each of a plurality of dielectric waveguides or metal gap waveguides (MIM (Metal-Insulator-Metal) waveguides). It may also include a waveguide type phase grating.
 本実施の形態に係る光学システムでは、対象波長の光は、光スポットサイズが相対的に大きい第1導波路から、メタレンズを経て、光スポットサイズが相対的に小さい第2導波路へ伝搬してもよい。本実施の形態に係る光学システムは、光スポットサイズが相対的に大きい第1導波路から、メタレンズを経て、光スポットサイズが相対的に小さい第2導波路へ伝搬する形態に、特に好適である。他方、本実施の形態に係る光学システムでは、対象波長の光は、上記とは逆方向に、第2導波路からメタレンズを経て、第1導波路に伝搬してもよい。後者の場合、メタレンズの焦点が第2導波路の第2端面にあっていれば、第2端面から出射される光は、メタレンズを経由して増径されたうえで第1導波路の第1端面側へ平行光として出射される。 In the optical system according to the present embodiment, light at the target wavelength propagates from the first waveguide where the optical spot size is relatively large, through the metalens, to the second waveguide where the optical spot size is relatively small. Good too. The optical system according to this embodiment is particularly suitable for a configuration in which light propagates from a first waveguide with a relatively large light spot size to a second waveguide with a relatively small light spot size via a metalens. . On the other hand, in the optical system according to this embodiment, the light of the target wavelength may propagate from the second waveguide to the first waveguide through the metalens in the opposite direction to the above. In the latter case, if the focus of the metalens is on the second end face of the second waveguide, the light emitted from the second end face is enlarged in diameter via the metalens and then transferred to the first end face of the first waveguide. It is emitted as parallel light to the end face side.
 本明細書では、メタレンズから第1端面に伝搬する光の第1端面での光スポットサイズを第1光スポットサイズと記載する。メタレンズから第2端面に伝搬する光の第2端面での光スポットサイズを第2光スポットサイズと記載する。好ましくは、メタレンズ3は、第1光スポットサイズとコア1Aの光スポットサイズとの差が可能な限り小さく、かつ第2光スポットサイズとSi導波路2Aの光スポットサイズとの差が可能な限り小さくなるように、設けられている。このようにすれば、第1導波路と第2導波路との間での光の伝達効率が高められる。より好ましくは、メタレンズは、第1光スポットサイズがコア1Aの光スポットサイズと等しく、かつ第2光スポットサイズがSi導波路2Aの光スポットサイズと等しくなるように、設けられている。このようにすれば、第1導波路と第2導波路との間での光の伝達効率が最も高められる。 In this specification, the light spot size at the first end surface of the light propagating from the metalens to the first end surface is referred to as the first light spot size. The light spot size at the second end face of the light propagating from the metalens to the second end face is referred to as a second light spot size. Preferably, in the metalens 3, the difference between the first optical spot size and the optical spot size of the core 1A is as small as possible, and the difference between the second optical spot size and the optical spot size of the Si waveguide 2A is as small as possible. It is designed to be small. In this way, the light transmission efficiency between the first waveguide and the second waveguide is increased. More preferably, the metalens is provided such that the first light spot size is equal to the light spot size of the core 1A, and the second light spot size is equal to the light spot size of the Si waveguide 2A. In this way, the light transmission efficiency between the first waveguide and the second waveguide is maximized.
 光が第1導波路から第2導波路に伝搬する場合において、メタレンズは、第1導波路から入射した光を第2導波路に集める。言い換えると、メタレンズは、第1導波路から入射した光のスポットサイズを第2光スポットサイズと同等程度にまで小さくする。メタレンズは、光が第2導波路から第1導波路に伝搬する場合において、前者の場合とは逆の過程を生じさせて、第2導波路から入射した光を第1導波路に拡げる。言い換えると、メタレンズは、第2導波路から入射した光のスポットサイズを第1光スポットサイズと同等程度にまで大きくする。 When light propagates from the first waveguide to the second waveguide, the metalens collects the light incident from the first waveguide onto the second waveguide. In other words, the metalens reduces the spot size of the light incident from the first waveguide to the same extent as the second light spot size. When light propagates from the second waveguide to the first waveguide, the metalens causes a process opposite to the former case, and spreads the light incident from the second waveguide to the first waveguide. In other words, the metalens increases the spot size of the light incident from the second waveguide to the same extent as the first light spot size.
 本実施の形態に係る光学システムは、メタレンズを備えるため、第1導波路と第2導波路とを光学的に接続するポリマー導波路を備える従来の光学システムと比べて、第1導波路と第2導波路との間の光路長が短くなり得る。 Since the optical system according to the present embodiment includes a metalens, it is different from a conventional optical system including a polymer waveguide that optically connects the first waveguide and the second waveguide. The optical path length between the two waveguides can be shortened.
 本明細書において、「平面視」とは、第1導波路と第2導波路との間で光が伝搬する方向(以下、光軸方向とも記載する)からメタレンズを視た視点を意味する。平面視において、複数の電磁波散乱体の配列は、周期的又は非周期的である。複数の電磁波散乱体の各々の光軸方向の寸法(以下、厚さとも記載する)、光軸方向と直交する方向の寸法(以下、幅とも記載する)、及び隣り合う2つの電磁波散乱体の間隔の少なくともいずれかは、光学システムを伝搬する光の波長(以下、対象波長とも記載する)と同等あるいは対象波長未満である。好ましくは、複数の電磁波散乱体の各々の厚さ、幅、及び間隔が、いずれも対象波長以下である。 In this specification, "planar view" means a viewpoint from which the metalens is viewed from the direction in which light propagates between the first waveguide and the second waveguide (hereinafter also referred to as the optical axis direction). In plan view, the arrangement of the plurality of electromagnetic wave scatterers is periodic or non-periodic. The dimension in the optical axis direction (hereinafter also referred to as thickness) of each of the plurality of electromagnetic wave scatterers, the dimension in the direction perpendicular to the optical axis direction (hereinafter also referred to as width), and the size of each of the two adjacent electromagnetic wave scatterers. At least one of the intervals is equal to or less than the wavelength of light propagating through the optical system (hereinafter also referred to as the target wavelength). Preferably, the thickness, width, and interval of each of the plurality of electromagnetic wave scatterers are all equal to or less than the target wavelength.
 なお、複数の電磁波散乱体の各々の厚さ、幅、及び間隔のいずれかは、例えば対象波長を超えていてもよい。この場合、複数の電磁波散乱体の各々の厚さ、幅、及び間隔のうちの他のパラメータが、対象波長未満であればよい。また、この場合、対象波長を超えている複数の電磁波散乱体の各々の厚さ、幅、または間隔は、対象波長の2倍以下である。 Note that the thickness, width, and spacing of each of the plurality of electromagnetic wave scatterers may exceed, for example, the target wavelength. In this case, other parameters among the thickness, width, and spacing of each of the plurality of electromagnetic wave scatterers may be less than the target wavelength. Further, in this case, the thickness, width, or interval of each of the plurality of electromagnetic wave scatterers exceeding the target wavelength is twice or less than the target wavelength.
 対象波長は、特に制限されないが、例えば300nm以上3mm以下である。言い換えると、光学システムは、例えば可視光、赤外線、及びテラヘルツ波の少なくともいずれかを伝搬するように設けられている。 The target wavelength is not particularly limited, but is, for example, 300 nm or more and 3 mm or less. In other words, the optical system is arranged to propagate, for example, visible light, infrared light, and/or terahertz waves.
 本実施の形態に係る第1導波路は、例えば光ファイバのコアである。第1導波路は、例えばシングルコアファイバ又はマルチコアファイバのコアである。本実施の形態に係る第2導波路は、例えば細線導波路、リブ型導波路、又はフォトニック結晶導波路である。 The first waveguide according to this embodiment is, for example, the core of an optical fiber. The first waveguide is, for example, the core of a single-core fiber or a multi-core fiber. The second waveguide according to this embodiment is, for example, a thin wire waveguide, a rib waveguide, or a photonic crystal waveguide.
 以下に、本実施の形態に係る光学システムを例示する。 An optical system according to this embodiment will be illustrated below.
 (実施の形態1) (Embodiment 1)
 <光学システム101の構成> <Configuration of optical system 101>
 図1に示されるように、実施の形態1に係る光学システム101は、光ファイバ1、フォトニクス素子2、メタレンズ3、及び基板4を備える。光学システム101の対象波長は、シリコン(Si)において基礎吸収が生じ得る1100nmよりも長く、例えば1260nm以上1565nm以下である。 As shown in FIG. 1, an optical system 101 according to the first embodiment includes an optical fiber 1, a photonics element 2, a metalens 3, and a substrate 4. The target wavelength of the optical system 101 is longer than 1100 nm at which basic absorption can occur in silicon (Si), for example, 1260 nm or more and 1565 nm or less.
 (1)光ファイバ (1) Optical fiber
 光ファイバ1は、シングルコアファイバであり、第1導波路としてのコア1Aと、クラッド1Bとを含む。光ファイバ1は、例えば対象波長の光をシングルモードで伝搬させるシングルモードファイバである。コア1Aは、メタレンズ3と対向する第1端面1A1を有する。第1端面1A1は、コア1Aの中心軸C1と交差する平面である。第1端面1A1は、例えばコア1Aの中心軸C1と直交する。第1端面1A1の形状は、例えば円形状である。クラッド1Bは、コア1Aの中心軸C1に対する周方向においてコア1Aを覆っている。コア1Aを構成する材料の屈折率は、クラッド1Bを構成する材料の屈折率よりも高い。コア1Aの第1端面1A1の寸法(コア径W1)は、例えば1μm以上20μm以下であり、好ましくは5μm以上10μm以下である。 The optical fiber 1 is a single-core fiber and includes a core 1A as a first waveguide and a cladding 1B. The optical fiber 1 is, for example, a single mode fiber that propagates light of a target wavelength in a single mode. The core 1A has a first end surface 1A1 facing the metalens 3. The first end surface 1A1 is a plane that intersects with the central axis C1 of the core 1A. The first end surface 1A1 is perpendicular to the central axis C1 of the core 1A, for example. The shape of the first end surface 1A1 is, for example, circular. The cladding 1B covers the core 1A in the circumferential direction with respect to the central axis C1 of the core 1A. The refractive index of the material forming the core 1A is higher than the refractive index of the material forming the cladding 1B. The dimension (core diameter W1) of the first end surface 1A1 of the core 1A is, for example, 1 μm or more and 20 μm or less, preferably 5 μm or more and 10 μm or less.
 なお、光ファイバ1は、対象波長の光をマルチモードで伝搬させるマルチモードファイバであってもよい。この場合、コア1Aのコア径W1は、例えば20μm以上70μm以下であってもよい。 Note that the optical fiber 1 may be a multimode fiber that propagates light of the target wavelength in multiple modes. In this case, the core diameter W1 of the core 1A may be, for example, 20 μm or more and 70 μm or less.
 (2)フォトニクス素子 (2) Photonics element
 フォトニクス素子2は、シリコンフォトニクス素子である。フォトニクス素子2は、第2導波路としてのSi導波路2Aと、クラッド2Bと、Si基板2Cとを含む。Si導波路2Aは、Siから成る。Si導波路2Aは、いわゆる細線導波路である。Si導波路2Aは、メタレンズ3と対向する第2端面2A1を有する。第2端面2A1は、Si導波路2Aの中心軸C2と交差する平面である。第2端面2A1は、例えばSi導波路2Aの中心軸C2と直交する。第2端面2A1の形状は、例えば四辺形状であり、好ましくは正方形状である。クラッド2Bは、Si導波路2Aの中心軸C2に対する周方向においてSi導波路2Aを覆っている。Si導波路2Aを構成する材料は、クラッド2Bを構成する材料の屈折率よりも高い。Si導波路2Aを構成する材料は、例えばSi又は窒化ケイ素(Si34)を含む。 Photonics element 2 is a silicon photonics element. The photonics element 2 includes a Si waveguide 2A as a second waveguide, a cladding 2B, and a Si substrate 2C. The Si waveguide 2A is made of Si. The Si waveguide 2A is a so-called thin wire waveguide. The Si waveguide 2A has a second end surface 2A1 facing the metalens 3. The second end surface 2A1 is a plane that intersects with the central axis C2 of the Si waveguide 2A. The second end surface 2A1 is perpendicular to the central axis C2 of the Si waveguide 2A, for example. The shape of the second end surface 2A1 is, for example, quadrilateral, preferably square. The cladding 2B covers the Si waveguide 2A in the circumferential direction with respect to the central axis C2 of the Si waveguide 2A. The material making up the Si waveguide 2A has a higher refractive index than the material making up the cladding 2B. The material constituting the Si waveguide 2A includes, for example, Si or silicon nitride (Si 3 N 4 ).
 図1に示されるように、クラッド2Bは、第1クラッド層2B1と、第2クラッド層2B2とを含む。第1クラッド層2B1は、Si基板2C上に配置されており、Si導波路2AとSi基板2Cとの間を隔てている。Si導波路2Aは、第1クラッド層2B1上に配置されている。第2クラッド層2B2は、Si導波路2A及び第1クラッド層2B1各々の上に配置されている。第1クラッド層2B1及び第2クラッド層2B2の各々を構成する材料は、例えば酸化ケイ素(SiO2)を含む。 As shown in FIG. 1, the cladding 2B includes a first cladding layer 2B1 and a second cladding layer 2B2. The first cladding layer 2B1 is placed on the Si substrate 2C, and separates the Si waveguide 2A from the Si substrate 2C. The Si waveguide 2A is arranged on the first cladding layer 2B1. The second cladding layer 2B2 is placed on each of the Si waveguide 2A and the first cladding layer 2B1. The material constituting each of the first cladding layer 2B1 and the second cladding layer 2B2 includes, for example, silicon oxide (SiO 2 ).
 図1に示されるように、第2クラッド層2B2の少なくとも一部は、空気クラッド層であってもよい。なお、第2クラッド層2B2の全部が、空気クラッド層であってもよい。 As shown in FIG. 1, at least a portion of the second cladding layer 2B2 may be an air cladding layer. Note that the entire second cladding layer 2B2 may be an air cladding layer.
 Si導波路2Aの光スポットサイズは、コア1Aの光スポットサイズよりも小さい。Si導波路2Aの第2端面2A1の幅W2及び厚さT0の各々は、コア1Aのコア径W1よりも小さい。Si導波路2Aの幅W2及び厚さToの各々は、1μm未満であり、好ましくは100nm以上500nm未満である。なお、例えばSi導波路2Aが台形形状などのように幅W2が長短の幅を持ちうる場合、幅の短い方が上記長さを満たすことが好ましく、長短幅どちらも上記長さを満たすことがさらに好ましい。コア1Aの第1端面1A1の面積(以下、第1面積とも記載する)は、Si導波路2Aの第2端面2A1の面積(以下、第2面積とも記載する)よりも大きい。第2面積に対する第1面積の比率は、10以上であってもよく、25以上であってもよく、50以上であってもよく、100以上であってもよく、500以上であってもよく、1000以上であってもよい。 The optical spot size of the Si waveguide 2A is smaller than the optical spot size of the core 1A. Each of the width W2 and the thickness T0 of the second end surface 2A1 of the Si waveguide 2A is smaller than the core diameter W1 of the core 1A. Each of the width W2 and the thickness To of the Si waveguide 2A is less than 1 μm, preferably 100 nm or more and less than 500 nm. For example, when the width W2 of the Si waveguide 2A has a trapezoidal shape, and the width W2 can be long or short, it is preferable that the shorter width satisfies the above-mentioned length, and both the long and short widths should not satisfy the above-mentioned length. More preferred. The area of the first end surface 1A1 of the core 1A (hereinafter also referred to as the first area) is larger than the area of the second end surface 2A1 of the Si waveguide 2A (hereinafter also referred to as the second area). The ratio of the first area to the second area may be 10 or more, 25 or more, 50 or more, 100 or more, or 500 or more. , 1000 or more.
 (3)メタレンズ (3) Metalens
 メタレンズ3は、コア1Aの第1端面1A1とSi導波路2Aの第2端面2A1との間を光学的に接続する。 The metalens 3 optically connects the first end surface 1A1 of the core 1A and the second end surface 2A1 of the Si waveguide 2A.
 図1~図3に示されるように、メタレンズ3は、ブルズアイ構造のメタサーフェス3Aを含む。つまり、光学システム101のメタレンズ3の集光原理は、上記第1例である。メタサーフェス3Aは、導電体層31に形成されている。 As shown in FIGS. 1 to 3, the metalens 3 includes a metasurface 3A with a bull's eye structure. In other words, the light condensing principle of the metalens 3 of the optical system 101 is the above-mentioned first example. The metasurface 3A is formed on the conductor layer 31.
 導電体層31は、コア1Aの第1端面1A1と対向する第1面31Aと、第1面31Aとは反対側に位置する第2面31Bとを有する。第1面31A及び第2面31Bの各々は、例えばコア1Aの中心軸C1及びSi導波路2Aの中心軸C2の各々と直交している。導電体層31を構成する材料は、対象波長の光が入射したときに表面プラズモンが共鳴的に励起される得る限りにおいて、任意の導電体であればよいが、好ましくは無機材料であり、例えば、金、銀、銅、白金、アルミニウム又はそれらの合金を含んでいてよい。導電体層31を構成する材料は、好ましくは銀を含む。 The conductor layer 31 has a first surface 31A facing the first end surface 1A1 of the core 1A, and a second surface 31B located on the opposite side to the first surface 31A. Each of the first surface 31A and the second surface 31B is perpendicular to, for example, the central axis C1 of the core 1A and the central axis C2 of the Si waveguide 2A. The material constituting the conductive layer 31 may be any conductive material as long as surface plasmons can be excited resonantly when light of the target wavelength is incident, but preferably it is an inorganic material, such as , gold, silver, copper, platinum, aluminum or alloys thereof. The material constituting the conductor layer 31 preferably contains silver.
 図2及び図3に示されるように、導電体層31には、微少開口部としての貫通孔31Cが形成されている。貫通孔31Cは、第1面31Aと第2面31Bとの間を貫通する。貫通孔31Cの平面形状は、例えば円形状である。 As shown in FIGS. 2 and 3, the conductor layer 31 is formed with a through hole 31C as a minute opening. The through hole 31C penetrates between the first surface 31A and the second surface 31B. The planar shape of the through hole 31C is, for example, circular.
 平面視において、貫通孔31Cの少なくとも一部は、コア1A及びSi導波路2Aと重なるように配置されている。好ましくは、平面視において、貫通孔31Cの中心軸C3(孔軸)は、コア1A及びSi導波路2Aと重なるように配置されている。より好ましくは、貫通孔31Cの中心軸C3は、コア1Aの中心軸C1及びSi導波路2Aの中心軸C2の各々と同一直線上に配置されている。 In plan view, at least a portion of the through hole 31C is arranged to overlap with the core 1A and the Si waveguide 2A. Preferably, in plan view, the central axis C3 (hole axis) of the through hole 31C is arranged to overlap with the core 1A and the Si waveguide 2A. More preferably, the central axis C3 of the through hole 31C is arranged on the same straight line as the central axis C1 of the core 1A and the central axis C2 of the Si waveguide 2A.
 図2及び図3に示されるように、導電体層31の第1面31Aには、複数の凹凸構造31Dが形成されている。複数の凹凸構造31Dは、第1面31Aと、第1面31Aに対して凹んでいる複数の環状溝31Eとにより構成されている。異なる観点から言えば、導電体層31には、複数の環状溝31Eの底面から突出しており第1面31Aを有する複数の凸部31F(図3参照)が形成されている。 As shown in FIGS. 2 and 3, a plurality of uneven structures 31D are formed on the first surface 31A of the conductor layer 31. The plurality of uneven structures 31D are constituted by a first surface 31A and a plurality of annular grooves 31E recessed with respect to the first surface 31A. From a different perspective, the conductor layer 31 is formed with a plurality of convex portions 31F (see FIG. 3) that protrude from the bottom surfaces of the plurality of annular grooves 31E and have a first surface 31A.
 図2に示されるように、平面視において、複数の凹凸構造31Dの各々は、貫通孔31Cを囲むように円環状に形成されている。平面視において、複数の凹凸構造31Dの各々の中心は、互いに重なっている。平面視において、複数の凹凸構造31Dの各々の中心は、貫通孔31Cの中心(中心軸C3)と重なっている。 As shown in FIG. 2, in plan view, each of the plurality of uneven structures 31D is formed in an annular shape so as to surround the through hole 31C. In plan view, the centers of each of the plurality of uneven structures 31D overlap with each other. In plan view, the center of each of the plurality of uneven structures 31D overlaps with the center of the through hole 31C (central axis C3).
 凹凸構造31Dの数は、特に制限されないが、3以上30以下であってよい。凹凸構造の数が少なければ、集光性能を示す対象波長の範囲を広くでき、凹凸構造の数が多ければ、対象波長の範囲が狭まり波長選択性を高めることができる。 The number of uneven structures 31D is not particularly limited, but may be 3 or more and 30 or less. If the number of uneven structures is small, the range of target wavelengths exhibiting light focusing performance can be widened, and if the number of uneven structures is large, the range of target wavelengths can be narrowed and wavelength selectivity can be improved.
 複数の凹凸構造31Dの表面、すなわち第1面31A並びに複数の環状溝31Eの壁面及び底面は、例えば空気と接している。複数の凹凸構造31Dの表面は、任意の誘電体と接していてもよい。メタレンズ3は、複数の環状溝31Eの各々の表面を覆う誘電体膜をさらに含んでいてもよい。複数の凹凸構造31Dは、誘電体膜によって平坦化されていてもよい。 The surfaces of the plurality of uneven structures 31D, that is, the first surface 31A and the wall surfaces and bottom surfaces of the plurality of annular grooves 31E are in contact with air, for example. The surface of the plurality of uneven structures 31D may be in contact with any dielectric material. The metalens 3 may further include a dielectric film covering the surface of each of the plurality of annular grooves 31E. The plurality of uneven structures 31D may be flattened by a dielectric film.
 図2及び図3に示されるように、複数の凹凸構造31Dの外周縁は、例えば環状溝31Eにより構成されている。複数の凹凸構造31Dの寸法は、例えば互いに同等である。好ましくは、複数の凹凸構造31Dの外周縁の幅W4は、コア1Aのコア径W1と同等である。 As shown in FIGS. 2 and 3, the outer peripheral edge of the plurality of uneven structures 31D is constituted by, for example, an annular groove 31E. The dimensions of the plurality of uneven structures 31D are, for example, equal to each other. Preferably, the width W4 of the outer peripheral edge of the plurality of uneven structures 31D is equal to the core diameter W1 of the core 1A.
 なお、複数の凹凸構造31Dの外周縁は、第1面31Aにより構成されていてもよい。複数の凹凸構造31Dは、第1面31Aと、第1面31Aから突出している複数の環状凸部により構成されていてもよい。この場合、複数の凹凸構造31Dの外周縁は、環状凸部により構成されていてもよいし、第1面31Aにより構成されていてもよい。 Note that the outer peripheral edge of the plurality of uneven structures 31D may be formed by the first surface 31A. The plurality of uneven structures 31D may include a first surface 31A and a plurality of annular convex portions protruding from the first surface 31A. In this case, the outer peripheral edge of the plurality of uneven structures 31D may be formed by an annular convex portion or may be formed by the first surface 31A.
 光学システム101では、光の伝搬方向が制限されない。光は、光スポットサイズが相対的に大きいコア1Aから、メタレンズ3を経て、光スポットサイズが相対的に小さいSi導波路2Aへ、方向A(図1~図3参照)に沿って伝搬し得る。また、これとは逆方向に、光は、Si導波路2Aからメタレンズ3を経てコア1Aへ、方向B(図1,図3参照)に沿って伝搬し得る。方向A及び方向Bは、例えば水平方向に沿っている。なお、方向A及び方向Bは、鉛直方向に沿っていてもよい。 In the optical system 101, the propagation direction of light is not limited. Light can propagate along direction A (see FIGS. 1 to 3) from the core 1A, where the optical spot size is relatively large, through the metalens 3, to the Si waveguide 2A, where the optical spot size is relatively small. . Further, in the opposite direction, light can propagate from the Si waveguide 2A to the core 1A via the metalens 3 along the direction B (see FIGS. 1 and 3). Direction A and direction B are along the horizontal direction, for example. Note that the direction A and the direction B may be along the vertical direction.
 メタレンズ3から第1端面1A1に伝搬する光の第1端面1A1での光スポットサイズ(以下、第1光スポットサイズとも記載する)は、Si導波路2Aの光スポットサイズよりも大きく、好ましくはコア1Aの光スポットサイズと等しい。メタレンズ3から第2端面2A1に伝搬する光の第2端面2A1での光スポットサイズ(以下、第2光スポットサイズとも記載する)は、コア1Aの光スポットサイズよりも小さく、好ましくはSi導波路2Aの光スポットサイズと等しい。 The optical spot size (hereinafter also referred to as first optical spot size) on the first end surface 1A1 of the light propagating from the metalens 3 to the first end surface 1A1 is larger than the optical spot size of the Si waveguide 2A, and preferably the core Equivalent to a light spot size of 1A. The optical spot size at the second end surface 2A1 of the light propagating from the metalens 3 to the second end surface 2A1 (hereinafter also referred to as second optical spot size) is smaller than the optical spot size of the core 1A, and preferably Si waveguide. Equivalent to a light spot size of 2A.
 メタサーフェス3Aを含むメタレンズ3は、対象波長の光がコア1Aからメタサーフェス3Aに入射した時に表面プラズモンを共鳴的に励起させ、表面プラズモンを微小開口部としての貫通孔31Cに集め、第2光スポットサイズの光をSi導波路2Aに出射するように設けられている。また、メタレンズ3は、対象波長の光がSi導波路2Aから貫通孔31Cに入射した時には、上記プロセスとは逆のプロセスにより第1光スポットサイズの光をコア1Aに出射するように設けられている。 The metalens 3 including the metasurface 3A resonantly excites surface plasmons when light of the target wavelength enters the metasurface 3A from the core 1A, collects the surface plasmons in the through hole 31C as a minute opening, and generates a second light beam. It is provided to emit spot-sized light to the Si waveguide 2A. Further, the metalens 3 is provided so that when light of the target wavelength enters the through hole 31C from the Si waveguide 2A, the light of the first light spot size is emitted to the core 1A by a process opposite to the above process. There is.
 メタサーフェス3Aを構成する導電体層31、貫通孔31C、及び複数の凹凸構造31Dの各々の寸法は、対象波長に応じて任意に選択され得る。導電体層31の厚さT1(図1参照)は、特に制限されないが、好ましくは対象波長以下であり、より好ましくは対象波長未満であり、より好ましくは対象波長の半値以下であり、50nm以上であってよいる。上記のように対象波長が1260nm以上1565nm以下である場合、厚さT1は、300nm程度であってもよい。貫通孔31Cの孔径W3は、対象波長以下であり、好ましくは対象波長よりも小さい。孔径W3は、例えば対象波長の半値程度である。貫通孔31Cの中心軸C3に対する径方向における複数の環状溝31Eの各々の幅W5、及び複数の環状溝31Eの各々の深さDは、それぞれ対象波長以下であり、好ましくは対象波長よりも小さい。複数の環状溝31Eの各々の幅W5、及び複数の環状溝31Eの各々の深さDは、例えば対象波長の半値程度である。 The dimensions of each of the conductor layer 31, the through hole 31C, and the plurality of uneven structures 31D that constitute the metasurface 3A can be arbitrarily selected depending on the target wavelength. The thickness T1 (see FIG. 1) of the conductor layer 31 is not particularly limited, but is preferably equal to or less than the target wavelength, more preferably less than the target wavelength, more preferably equal to or less than half the target wavelength, and is 50 nm or more. It may be. When the target wavelength is 1260 nm or more and 1565 nm or less as described above, the thickness T1 may be about 300 nm. The hole diameter W3 of the through hole 31C is less than or equal to the target wavelength, and preferably smaller than the target wavelength. The hole diameter W3 is, for example, about half the wavelength of interest. The width W5 of each of the plurality of annular grooves 31E in the radial direction with respect to the central axis C3 of the through hole 31C and the depth D of each of the plurality of annular grooves 31E are each less than or equal to the target wavelength, preferably smaller than the target wavelength. . The width W5 of each of the plurality of annular grooves 31E and the depth D of each of the plurality of annular grooves 31E are, for example, approximately half the value of the target wavelength.
 貫通孔31Cの中心軸C3に対する径方向における複数の凹凸構造31Dの各々の間隔Pは、特に制限されないが、対象波長と同等である。なお、複数の凹凸構造の間隔とは、隣り合う凸部間又は隣り合う凹部間のピッチ(周期)を意味する。具体的には、図3に示すように、一の凸凹構造31Dの間隔(幅)Pを意味する。集光性能を高める観点から、対象波長に対する複数の凹凸構造31Dの各々の間隔Pの比率は、30%以上200%以下であることが好ましい。対象波長に対する複数の凹凸構造31Dの各々の間隔Pの比率は、好ましくは140%以下であり、より好ましくは110%以下であり、さらに好ましくは100%未満である。対象波長に対する複数の凹凸構造31Dの各々の間隔Pの比率は、好ましくは60%以上であり、より好ましくは65%超えであり、さらに好ましくは70%以上である。 The distance P between each of the plurality of uneven structures 31D in the radial direction with respect to the central axis C3 of the through hole 31C is not particularly limited, but is equivalent to the target wavelength. Note that the interval between the plurality of concavo-convex structures means the pitch (period) between adjacent convex portions or between adjacent concave portions. Specifically, as shown in FIG. 3, it means the interval (width) P of one uneven structure 31D. From the viewpoint of improving light collection performance, it is preferable that the ratio of the distance P between each of the plurality of concavo-convex structures 31D to the target wavelength is 30% or more and 200% or less. The ratio of the interval P of each of the plurality of uneven structures 31D to the target wavelength is preferably 140% or less, more preferably 110% or less, and still more preferably less than 100%. The ratio of the interval P of each of the plurality of uneven structures 31D to the target wavelength is preferably 60% or more, more preferably more than 65%, and still more preferably 70% or more.
 貫通孔31Cの中心軸C3に対する径方向における複数の凹凸構造31Dの各々の間隔Pに対する複数の環状溝31Eの各々の幅W5の比率(W5/P)は、特に制限されないが、10%以上95%以下であってよい。対象波長の反射率に対する透過率の比をより高める観点から、上記比率W5/Pは、30%以上が好ましく、45%以上がより好ましく、60%以上がなおさらに好ましく、70%以上が特に好ましく、80%以上がなおさら特に好ましい。 The ratio (W5/P) of the width W5 of each of the plurality of annular grooves 31E to the interval P of each of the plurality of uneven structures 31D in the radial direction with respect to the central axis C3 of the through hole 31C is not particularly limited, but is 10% or more. % or less. From the viewpoint of further increasing the ratio of transmittance to reflectance of the target wavelength, the ratio W5/P is preferably 30% or more, more preferably 45% or more, even more preferably 60% or more, and particularly preferably 70% or more. , 80% or more is even more particularly preferred.
 メタレンズ3の第2面31Bは、例えば平面である。 The second surface 31B of the metalens 3 is, for example, a flat surface.
 メタレンズ3の形成方法は特に制限されない。メタレンズ3は、以下のように形成されてもよい。第1に、導電体層31が基板4の第3面4A上に形成される。導電体層31を形成する方法は、任意の方法であればよく、例えばスパッタリング法などであってもよい。第2に、導電体層31がパターニングされ、貫通孔31C及び複数の環状溝31Eが形成される。導電体層31をパターニングする方法は、任意の方法であればよく、例えば写真製版及びドライエッチング法などであってもよい。 The method for forming the metalens 3 is not particularly limited. The metalens 3 may be formed as follows. First, a conductor layer 31 is formed on the third surface 4A of the substrate 4. Any method may be used to form the conductor layer 31, and for example, a sputtering method may be used. Second, the conductor layer 31 is patterned to form a through hole 31C and a plurality of annular grooves 31E. Any method may be used to pattern the conductor layer 31, and may be, for example, photolithography, dry etching, or the like.
 (4)基板 (4) Substrate
 図1及び図3に示されるように、基板4は、メタレンズ3を支持している。基板4は、対象波長の光に対して透明である。基板4は、メタレンズ3の第2面31Bと接している第3面4Aと、第3面4Aとは反対側に位置しておりかつSi導波路2Aの第2端面2A1と対向する第4面4Bとを有している。第3面4Aは、例えば貫通孔31Cの中心軸C3と直交する。 As shown in FIGS. 1 and 3, the substrate 4 supports the metalens 3. The substrate 4 is transparent to light of the target wavelength. The substrate 4 has a third surface 4A in contact with the second surface 31B of the metalens 3, and a fourth surface located on the opposite side to the third surface 4A and facing the second end surface 2A1 of the Si waveguide 2A. 4B. The third surface 4A is perpendicular to the central axis C3 of the through hole 31C, for example.
 基板4は、特に制限されないが、フレネル反射を抑制する観点から、屈折率の低い材から構成されることが好ましい。基板4は、例えばSiO2を含んでいてよく、ガラスを含むことがより好ましく、ガラスからなることがさらに好ましい。 Although not particularly limited, the substrate 4 is preferably made of a material with a low refractive index from the viewpoint of suppressing Fresnel reflection. The substrate 4 may contain, for example, SiO 2 , more preferably contains glass, and is even more preferably made of glass.
 基板4の厚さT2は、例えば導電体層31の厚さT1よりも厚い。好ましくは、導電体層31の厚さT1と基板4の厚さT2との和が、コア1AとSi導波路2Aとを従来のポリマー導波路で光学的に接続する場合に必要とされるポリマー導波路の長さよりも短い。 The thickness T2 of the substrate 4 is thicker than the thickness T1 of the conductor layer 31, for example. Preferably, the sum of the thickness T1 of the conductor layer 31 and the thickness T2 of the substrate 4 is the same as that of the polymer required when optically connecting the core 1A and the Si waveguide 2A with a conventional polymer waveguide. shorter than the length of the waveguide.
 図4を参照して、コア1Aの第1端面1A1とメタレンズ3の第1面31Aとの間の最短距離L1と、Si導波路2Aの第2端面2A1と基板4の第4面4Bとの間の最短距離L2とは、可能な限り短いことが好ましい。最短距離L1及び最短距離L2の各々は、メタレンズ3の導電体層31の厚さT1(図3参照)よりも短くてもよい。 Referring to FIG. 4, the shortest distance L1 between the first end surface 1A1 of the core 1A and the first surface 31A of the metalens 3, and the distance between the second end surface 2A1 of the Si waveguide 2A and the fourth surface 4B of the substrate 4. It is preferable that the shortest distance L2 between them is as short as possible. Each of the shortest distance L1 and the shortest distance L2 may be shorter than the thickness T1 (see FIG. 3) of the conductor layer 31 of the metalens 3.
 光学システム101を伝搬する光は、コア1A、メタレンズ3、基板4、及びSi導波路2Aを順に通過してもよいし、Si導波路2A、基板4、メタレンズ3、及びコア1Aを順に通過してもよい。 The light propagating through the optical system 101 may pass through the core 1A, the metalens 3, the substrate 4, and the Si waveguide 2A in this order, or may pass through the Si waveguide 2A, the substrate 4, the metalens 3, and the core 1A in this order. You can.
 <光学システム101の効果> <Effects of optical system 101>
 上述のように、光学システム101は、メタレンズ3を備えるため、コア1AとSi導波路2Aとを光学的に接続するポリマー導波路又は凸レンズを備える光学システムと比べて、コア1AとSi導波路2Aとの間の光路長が短くなり得る。 As described above, since the optical system 101 includes the metalens 3, the core 1A and the Si waveguide 2A are more connected to each other than an optical system including a polymer waveguide or a convex lens that optically connects the core 1A and the Si waveguide 2A. The optical path length between the two can be shortened.
 また、光学システム101では、光ファイバのコアとSi導波路とを光学レンズによって接続する光学システムと比べて、コア1A、Si導波路2A、及びメタレンズ3の各々の相対的な位置が製造誤差等によって変動する場合にも、コア1AとSi導波路2Aとの間での光の伝達効率が低下しにくい。具体的には、光ファイバのコアとSi導波路とを光学レンズによって接続する光学システムでは、光学レンズとSi導波路との間の距離が変動すると、光学レンズの焦点位置がSi導波路に対して大きく変動して、伝達効率が著しく低くなるおそれがある。これに対し、光学システム101では、メタレンズ3には貫通孔31Cが形成されているため、コア1A又はSi導波路2Aからメタレンズ3に入射した光は貫通孔31Cに集中した後、貫通孔31Cを透過する。これにより、光学システム101では、メタレンズ3からSi導波路2A又はコア1Aに出射する光の焦点が貫通孔31C内に形成され、Si導波路2A又はコア1Aには平行光が入射するとみなすことができる。そのため、光学システム101では、第1導波路と第2導波路との間での光の伝達効率が、コア1Aとメタレンズ3との間の上記最短距離L1及びSi導波路2Aと基板4との間の上記最短距離L2が製造誤差等によって変動する影響を受けにくい。 In addition, in the optical system 101, compared to an optical system in which the core of the optical fiber and the Si waveguide are connected by an optical lens, the relative positions of each of the core 1A, the Si waveguide 2A, and the metalens 3 are caused by manufacturing errors. Even in the case where the waveguide 2A varies, the light transmission efficiency between the core 1A and the Si waveguide 2A is not likely to decrease. Specifically, in an optical system that connects the core of an optical fiber and a Si waveguide using an optical lens, when the distance between the optical lens and the Si waveguide changes, the focal position of the optical lens changes relative to the Si waveguide. There is a risk that the transmission efficiency may significantly decrease due to large fluctuations. On the other hand, in the optical system 101, since the metalens 3 is formed with the through-hole 31C, the light incident on the metalens 3 from the core 1A or the Si waveguide 2A is concentrated on the through-hole 31C, and then passes through the through-hole 31C. To Penetrate. As a result, in the optical system 101, the focal point of the light emitted from the metalens 3 to the Si waveguide 2A or the core 1A is formed in the through hole 31C, and it can be assumed that parallel light is incident on the Si waveguide 2A or the core 1A. can. Therefore, in the optical system 101, the light transmission efficiency between the first waveguide and the second waveguide is determined by the shortest distance L1 between the core 1A and the metalens 3 and between the Si waveguide 2A and the substrate 4. The shortest distance L2 between them is not easily affected by variations due to manufacturing errors and the like.
 光学システム101において光が伝搬する方向A又は方向Bは、任意の方向であればよく、例えば水平方向又は鉛直方向に沿っていてもよい。光学システム101によれば、光ファイバ1の第1端面1A1及びSi導波路2Aの第2端面2A1が水平方向に互いに対向する場合にも、光の伝搬方向をミラー等によって変更することなく、両者を光学的に接続できる。そのため、光学システム101の設計の自由度は、従来の光学システムと比べて高い。 The direction A or the direction B in which light propagates in the optical system 101 may be any direction, and may be along the horizontal direction or the vertical direction, for example. According to the optical system 101, even when the first end surface 1A1 of the optical fiber 1 and the second end surface 2A1 of the Si waveguide 2A face each other in the horizontal direction, the direction of propagation of light is not changed by a mirror or the like, and both can be connected. can be optically connected. Therefore, the degree of freedom in designing the optical system 101 is higher than that of conventional optical systems.
 また、光ファイバのコアとSi導波路とを複数のミラーによって接続する特許文献2に記載の光学システムでは、複数のミラーの各々の光軸が一度ずれてしまうと、これを修正することは不可能である。これに対し、光学システム101では、コア1A、Si導波路2A、及びメタレンズ3の各々の相対的な位置を容易に再調整できるため、歩留まりの低下が抑制され得る。 Furthermore, in the optical system described in Patent Document 2 in which the core of the optical fiber and the Si waveguide are connected by a plurality of mirrors, once the optical axis of each of the plurality of mirrors is shifted, it is impossible to correct the shift. It is possible. On the other hand, in the optical system 101, the relative positions of the core 1A, the Si waveguide 2A, and the metalens 3 can be easily readjusted, so that a decrease in yield can be suppressed.
 また、光学システム101では、複数の凹凸構造31Dがメタレンズ3の貫通孔31Cを囲むように形成されている。これにより、対象波長の光が複数の凹凸構造31Dに入射した時には、共鳴的に励起された表面プラズモンが貫通孔31Cに集まるため、導電体層31に貫通孔31Cのみが形成されている場合と比べて、メタレンズ3の透過する光をより効率的に回収でき、当該光の強度が高くなる。 Furthermore, in the optical system 101, a plurality of concavo-convex structures 31D are formed to surround the through-hole 31C of the metalens 3. As a result, when light of the target wavelength is incident on the plurality of concavo-convex structures 31D, surface plasmons that are resonantly excited gather at the through-holes 31C. In comparison, the light transmitted through the metalens 3 can be collected more efficiently, and the intensity of the light becomes higher.
 図3に示されるように、光学システム101では、コア1Aからメタレンズ3に入射する光ILの伝搬方向は、第1面31Aに対して垂直な方向に設定される。メタレンズ3からSi導波路2Aに出射する光TLの伝搬方向は、コア1Aからメタレンズ3に入射する光ILの伝搬方向と平行となる。同様に、光学システム101では、Si導波路2Aからメタレンズ3に入射する光ILの伝搬方向は、第2面31Bに対して垂直な方向に設定される。メタレンズ3からコア1Aに出射する光の伝搬方向は、光ILがSi導波路2Aからメタレンズ3に入射する光の伝搬方向と平行となる。 As shown in FIG. 3, in the optical system 101, the propagation direction of the light IL entering the metalens 3 from the core 1A is set in a direction perpendicular to the first surface 31A. The propagation direction of the light TL emitted from the metalens 3 to the Si waveguide 2A is parallel to the propagation direction of the light IL entering the metalens 3 from the core 1A. Similarly, in the optical system 101, the propagation direction of the light IL entering the metalens 3 from the Si waveguide 2A is set to be perpendicular to the second surface 31B. The propagation direction of the light emitted from the metalens 3 to the core 1A is parallel to the propagation direction of the light IL entering the metalens 3 from the Si waveguide 2A.
 また、光学システム101では、メタレンズ3が無機材料により構成されていてもよい。この場合、光学システム101の耐熱性は、ポリマー導波路を備える光学システムと比べて、高い。 Furthermore, in the optical system 101, the metalens 3 may be made of an inorganic material. In this case, the heat resistance of the optical system 101 is high compared to optical systems comprising polymer waveguides.
 <メタレンズの変形例> <Modified example of metalens>
 以下、光学システム101のメタレンズ3の変形例を説明する。 Hereinafter, a modification of the metalens 3 of the optical system 101 will be described.
 光学システム101は、図1~図4に示されるメタレンズ3に代えて、図5及び図6に示されるメタレンズ3を備えていてもよい。図5及び図6に示されるメタレンズ3は、図1~図4に示されるメタレンズ3と基本的に同様の構成を備えるが、メタサーフェス3Aに代えてメタサーフェス3Bを含む点で、図1~図4に示されるメタレンズ3とは異なる。メタサーフェス3Bは、平面視において、複数の凹凸構造31Dの各々の中心が貫通孔31C(微小開口)の中心(中心軸C3)と重ならないように配置されている点で、メタサーフェス3Aとは異なる。つまり、メタサーフェス3Bも、メタサーフェス3Aと同様に、ブルズアイ構造を有している。以下、図5及び図6に示されるメタレンズ3及びメタサーフェス3Bが、図1~図4に示されるメタレンズ3及びメタサーフェス3Bとは異なる点を主に説明する。 The optical system 101 may include the metalens 3 shown in FIGS. 5 and 6 instead of the metalens 3 shown in FIGS. 1 to 4. The metalens 3 shown in FIGS. 5 and 6 has basically the same configuration as the metalens 3 shown in FIGS. 1 to 4, but includes a metasurface 3B instead of the metasurface 3A. This is different from the metalens 3 shown in FIG. The metasurface 3B is different from the metasurface 3A in that the center of each of the plurality of uneven structures 31D is arranged so as not to overlap the center (central axis C3) of the through hole 31C (micro opening) in plan view. different. In other words, the metasurface 3B also has a bull's eye structure like the metasurface 3A. The following will mainly explain the differences between the metalens 3 and the metasurface 3B shown in FIGS. 5 and 6 from the metalens 3 and the metasurface 3B shown in FIGS. 1 to 4.
 図5及び図6に示されるように、貫通孔31Cの中心軸C3と直交する方向Cにおいて、貫通孔31Cに対して一方の側に位置する複数の凹凸構造31Dの各部分の間隔(周期)は、貫通孔31Cに対して他方の側に位置する複数の凹凸構造31Dの各部分の間隔(周期)よりも広い。以下では、上記方向Cにおいて貫通孔31Cの一方の側に位置し、かつ相対的に広い間隔を空けて配置されている、複数の凹凸構造31Dの各部分の間隔を、第1間隔PAとも記載する。上記方向Cにおいて貫通孔31Cの他方の側に位置し、かつ相対的に狭い間隔を空けて配置されている、複数の凹凸構造31Dの各部分の間隔を、第2間隔PBとも記載する。貫通孔31Cに対して一方の側に位置する複数の凹凸構造31Dの各部分の第1間隔PAは、貫通孔31Cから離れるにつれて徐々に広くなっている。貫通孔31Cに対して他方の側に位置する複数の凹凸構造31Dの各部分の第2間隔PBは、例えば互いに等しい。 As shown in FIGS. 5 and 6, the interval (period) of each part of the plurality of uneven structures 31D located on one side with respect to the through hole 31C in the direction C perpendicular to the central axis C3 of the through hole 31C is wider than the interval (period) of each part of the plurality of uneven structures 31D located on the other side with respect to the through hole 31C. Hereinafter, the interval between the respective parts of the plurality of uneven structures 31D, which are located on one side of the through hole 31C in the direction C and are arranged at relatively wide intervals, will also be referred to as a first interval PA. do. The interval between each portion of the plurality of uneven structures 31D, which are located on the other side of the through hole 31C in the direction C and are arranged at relatively narrow intervals, is also referred to as a second interval PB. The first interval PA of each portion of the plurality of uneven structures 31D located on one side with respect to the through hole 31C gradually becomes wider as the distance from the through hole 31C increases. The second spacing PB of each portion of the plurality of uneven structures 31D located on the other side with respect to the through hole 31C is, for example, equal to each other.
 言い換えると、貫通孔31Cの中心軸C3と直交する第1方向Cにおいて、貫通孔31Cに対して一方の側に位置する複数の環状溝31Eの各部分の幅(以下、第1幅W5Aとも記載する)は、貫通孔31Cに対して他方の側に位置する複数の環状溝31Eの各部分の幅(以下、第2幅W5Bとも記載する)よりも広い。貫通孔31Cに対して一方の側に位置する複数の環状溝31Eの各部分の第1幅W5Aは、貫通孔31Cから離れるにつれて徐々に広くなっている。貫通孔31Cに対して他方の側に位置する複数の環状溝31Eの各部分の第2幅W5Bは、例えば互いに等しい。 In other words, the width of each portion of the plurality of annular grooves 31E located on one side with respect to the through hole 31C in the first direction C perpendicular to the central axis C3 of the through hole 31C (hereinafter also referred to as the first width W5A). ) is wider than the width (hereinafter also referred to as second width W5B) of each portion of the plurality of annular grooves 31E located on the other side with respect to the through hole 31C. The first width W5A of each portion of the plurality of annular grooves 31E located on one side with respect to the through hole 31C gradually becomes wider as the distance from the through hole 31C increases. The second width W5B of each portion of the plurality of annular grooves 31E located on the other side with respect to the through hole 31C is, for example, equal to each other.
 図5及び図6に示されるメタサーフェス3Bにおいても、複数の凹凸構造31Dは、対象波長に対する間隔Pの比率が30%以上200%以下である領域を有していてもよい。対象波長に対する複数の凹凸構造31Dの各々の第1間隔PAの比率は、例えば200%以下であってもよく、好ましくは140%以下であり、より好ましくは110%以下であり、さらに好ましくは100%未満である。同様に、対象波長に対する複数の凹凸構造31Dの各々の第2間隔PBの比率は、30%以上であってよく、好ましくは60%以上であり、より好ましくは65%超えであり、さらに好ましくは70%以上である。 Also in the metasurface 3B shown in FIGS. 5 and 6, the plurality of uneven structures 31D may have a region where the ratio of the interval P to the target wavelength is 30% or more and 200% or less. The ratio of the first interval PA of each of the plurality of uneven structures 31D to the target wavelength may be, for example, 200% or less, preferably 140% or less, more preferably 110% or less, and even more preferably 100% or less. less than %. Similarly, the ratio of the second interval PB of each of the plurality of uneven structures 31D to the target wavelength may be 30% or more, preferably 60% or more, more preferably more than 65%, and still more preferably It is 70% or more.
 上記第1間隔PAに対する第1幅W5Aの比率(W5A/PA)及び上記第2間隔PBに対する第2幅W5Bの比率(W5B/PB)は、特に制限されないが、10%以上95%以下であってよい。対象波長の反射率に対する透過率の比をより高める観点から、上記比率W5A/PA及び上記比率W5B/PBの各々は、30%以上が好ましく、45%以上がより好ましく、60%以上がなおさらに好ましく、80%以上が特に好ましい。 The ratio of the first width W5A to the first spacing PA (W5A/PA) and the ratio of the second width W5B to the second spacing PB (W5B/PB) are not particularly limited, but should be 10% or more and 95% or less. It's fine. From the viewpoint of further increasing the ratio of transmittance to reflectance of the target wavelength, each of the ratio W5A/PA and the ratio W5B/PB is preferably 30% or more, more preferably 45% or more, and even more preferably 60% or more. Preferably, 80% or more is particularly preferable.
 メタサーフェス3Bを備えるメタレンズ3においても、コア1Aからメタレンズ3に入射する光ILの伝搬方向は、第1面31Aに対して垂直な方向に設定される。メタサーフェス3Bを備えるメタレンズ3では、メタレンズ3からSi導波路2Aに出射する光TLの伝搬方向は、光ILがコア1Aからメタレンズ3に入射する光ILの伝搬方向に対して傾斜する。このため、図7に示されるように、メタサーフェス3Bを備えるメタレンズ3は、Si導波路2Aの中心軸C2がコア1Aの中心軸C1に対して第1方向C側に傾斜する光学システムに好適である。また、図8に示されるように、メタサーフェス3Bを備えるメタレンズ3は、Si導波路2Aの中心軸C2がコア1Aの中心軸C1と平行であるが、中心軸C1が第1方向Cにおいて中心軸C2と間隔を空けて配置される光学システムにも好適である。図7及び図8に示される各光学システムにおいても、コア1AとSi導波路2Aとの間での光の伝達効率が高い。 Also in the metalens 3 including the metasurface 3B, the propagation direction of the light IL entering the metalens 3 from the core 1A is set in a direction perpendicular to the first surface 31A. In the metalens 3 including the metasurface 3B, the propagation direction of the light TL emitted from the metalens 3 to the Si waveguide 2A is inclined with respect to the propagation direction of the light IL incident on the metalens 3 from the core 1A. Therefore, as shown in FIG. 7, the metalens 3 including the metasurface 3B is suitable for an optical system in which the central axis C2 of the Si waveguide 2A is inclined toward the first direction C with respect to the central axis C1 of the core 1A. It is. Further, as shown in FIG. 8, in the metalens 3 including the metasurface 3B, the central axis C2 of the Si waveguide 2A is parallel to the central axis C1 of the core 1A, but the central axis C1 is centered in the first direction C. It is also suitable for optical systems spaced apart from axis C2. In each of the optical systems shown in FIGS. 7 and 8, the light transmission efficiency between the core 1A and the Si waveguide 2A is also high.
 なお、図7及び図8には、ブルズアイ構造のメタサーフェス3Bを備えるメタレンズ3の出射角度θ1が図示されている。図7における出射角度θ1は、Si導波路2Aの中心軸C2が貫通孔31Cの中心軸C3(図7中で、C3はC1と一致)に対して成す角度(第1角度)である。図8における出射角度θ1は、貫通孔31Cの中心軸C3(図8中で、C3はC1と一致)と基板4の第3面4Aとの交点(メタサーフェス3Bの第2面31B上に位置する貫通孔31Cの中心軸C3の端部)と、Si導波路2Aの中心軸C2とSi導波路2Aの第2端面2A1との交点(Si導波路2Aの第2端面2A1上に位置するSi導波路2Aの中心軸C2の端部)とを結ぶ直線が貫通孔31Cの中心軸C3に対して成す角度である。メタサーフェス3Bを備えるメタレンズ3の出射角度θ1は、特に制限されないが、例えば3°以上60°以下であり、45°以下であってもよい。当該出射角度θ1は、7°以上であってもよいし、16°以上であってもよいし、30°以上であってもよいし、40°以上であってもよい。 Note that FIGS. 7 and 8 illustrate the output angle θ 1 of the metalens 3 including the metasurface 3B having a bull's eye structure. The output angle θ 1 in FIG. 7 is the angle (first angle) that the central axis C2 of the Si waveguide 2A makes with the central axis C3 of the through hole 31C (C3 coincides with C1 in FIG. 7). The emission angle θ 1 in FIG. 8 is the intersection of the central axis C3 of the through hole 31C (C3 coincides with C1 in FIG. 8) and the third surface 4A of the substrate 4 (on the second surface 31B of the metasurface 3B). The intersection of the central axis C2 of the Si waveguide 2A and the second end surface 2A1 of the Si waveguide 2A (the end of the central axis C3 of the through hole 31C located on the second end surface 2A1 of the Si waveguide 2A) This is the angle that the straight line connecting the central axis C2 of the Si waveguide 2A (the end of the central axis C2) and the central axis C3 of the through hole 31C forms. The exit angle θ 1 of the metalens 3 including the metasurface 3B is not particularly limited, but may be, for example, 3° or more and 60° or less, and may be 45° or less. The output angle θ 1 may be 7° or more, 16° or more, 30° or more, or 40° or more.
 図9に示されるように、メタサーフェス3Bでは、複数の凹凸構造31Dの各々の中心間の距離(以下、シフト量とも記載する)が互いに等しくてもよい。本明細書では、複数の凹凸構造31Dにおいて隣り合う2つの凹凸構造31Dの上記シフト量が互いに等しい図9に示される構成において、各シフト量を単位シフト量Sと記載する。図9に示されるメタサーフェス3Bを含むメタレンズ3では、単位シフト量Sに対する上記出射角度θ1の比率(θ1/S)が、0.19以上であってもよいし、0.58以上であってもよいし、2.00以上であってもよいし、3.33以上であってもよいし、6.00以上であってもよいし、10.00以上であってもよい。 As shown in FIG. 9, in the metasurface 3B, the distances (hereinafter also referred to as shift amounts) between the centers of the plurality of uneven structures 31D may be equal to each other. In this specification, in the configuration shown in FIG. 9 in which the shift amounts of two adjacent concavo-convex structures 31D in the plurality of concavo-convex structures 31D are equal to each other, each shift amount is referred to as a unit shift amount S. In the metalens 3 including the metasurface 3B shown in FIG. 9, the ratio (θ 1 /S) of the output angle θ 1 to the unit shift amount S may be 0.19 or more, or 0.58 or more. It may be 2.00 or more, 3.33 or more, 6.00 or more, or 10.00 or more.
 図9に示されるメタサーフェス3Bにおいて、上記第1間隔PAは、例えば互いに等しい。この場合も、集光性能を高める観点から、対象波長に対する複数の凹凸構造31Dの各々の第1間隔PAの比率は、例えば200%以下であってもよく、好ましくは140%以下であり、より好ましくは110%以下であり、さらに好ましくは100%未満である。同様に、対象波長に対する複数の凹凸構造31Dの各々の第1間隔PAの比率は、30%以上であってよく、好ましくは60%以上であり、より好ましくは65%超えであり、さらに好ましくは70%以上である。なお、上記第1間隔PAは、貫通孔31Cから離れるにつれて徐々に広くなっていてもよい。 In the metasurface 3B shown in FIG. 9, the first intervals PA are, for example, equal to each other. Also in this case, from the viewpoint of improving the light focusing performance, the ratio of the first interval PA of each of the plurality of uneven structures 31D to the target wavelength may be, for example, 200% or less, preferably 140% or less, and more Preferably it is 110% or less, more preferably less than 100%. Similarly, the ratio of the first interval PA of each of the plurality of uneven structures 31D to the target wavelength may be 30% or more, preferably 60% or more, more preferably more than 65%, and still more preferably It is 70% or more. Note that the first interval PA may gradually become wider as the distance from the through hole 31C increases.
 本発明者らは、メタサーフェス3Bにおいて実現されるべき出射角度θ1が5°以上である場合に、メタサーフェス3Bの単位シフト量S(単位:nm)及び複数の凹凸構造31Dの上記間隔P(単位:nm)が以下の関係式(1)を満たすように設けられていれば、上記出射角度θ1を実現できることを確認した。
Figure JPOXMLDOC01-appb-M000003
The present inventors have determined that when the output angle θ 1 to be achieved in the metasurface 3B is 5° or more, the unit shift amount S (unit: nm) of the metasurface 3B and the above-mentioned interval P of the plurality of uneven structures 31D (Unit: nm) It was confirmed that the above-mentioned output angle θ 1 can be achieved if the angle is set so that the following relational expression (1) is satisfied.
Figure JPOXMLDOC01-appb-M000003
 光学システム101は、図1~図6に示されるメタレンズ3に代えて、図10に示されるメタレンズ3を備えていてもよい。図10に示されるメタレンズ3は、図1~図6に示されるメタレンズ3と基本的に同様の構成を備えるが、基板4の第4面4B上に配置されたメタサーフェス3Aをさらに含む点で、図1~図6に示されるメタレンズ3とは異なる。第4面4B上に配置されているメタサーフェス3Aは、第3面4A上に配置されているメタサーフェス3Aと、基板4に対して対称である。図10に示されるメタレンズ3では、基板4の第3面4A上に配置されているメタサーフェス3Aとコア1Aの第1端面1A1との間の最短距離、及び基板4の第4面4B上に配置されているメタサーフェス3AとSi導波路2Aの第2端面2A1との間の最短距離が、可能な限り短いことが好ましい。 The optical system 101 may include a metalens 3 shown in FIG. 10 instead of the metalens 3 shown in FIGS. 1 to 6. The metalens 3 shown in FIG. 10 has basically the same configuration as the metalens 3 shown in FIGS. 1 to 6, except that it further includes a metasurface 3A disposed on the fourth surface 4B of the substrate 4. , which is different from the metalens 3 shown in FIGS. 1 to 6. The metasurface 3A disposed on the fourth surface 4B is symmetrical with respect to the substrate 4 with respect to the metasurface 3A disposed on the third surface 4A. In the metalens 3 shown in FIG. 10, the shortest distance between the metasurface 3A disposed on the third surface 4A of the substrate 4 and the first end surface 1A1 of the core 1A, and It is preferable that the shortest distance between the disposed metasurface 3A and the second end surface 2A1 of the Si waveguide 2A is as short as possible.
 なお、光学システム101のメタレンズ3は、基板4の第3面4A及び第4面4Bの少なくともいずれかの上に配置されたメタサーフェス3A又はメタサーフェス3Bを含んでいればよい。 Note that the metalens 3 of the optical system 101 only needs to include the metasurface 3A or the metasurface 3B disposed on at least one of the third surface 4A and the fourth surface 4B of the substrate 4.
 光学システム101は、図1~図6に示されるメタレンズ3に代えて、図11または図12に示されるメタレンズ3を備えていてもよい。 The optical system 101 may include the metalens 3 shown in FIG. 11 or 12 instead of the metalens 3 shown in FIGS. 1 to 6.
 図11に示されるメタレンズ3は、図1~図6に示されるメタレンズ3と基本的に同様の構成を備えるが、複数の凹凸構造31D中の複数の環状溝31Eの各々が、メタレンズ3の第1面31Aと第2面31Bとの間を貫通し、基板4の第3面4Aの一部を露出させるように形成されている点で、図1~図6に示されるメタレンズ3とは異なる。各環状溝31Eの底面が基板4の第3面4Aにより構成されている。異なる観点から言えば、図11に示されるメタレンズ3は、図1~図6に示されるメタレンズ3と基本的に同様の構成を備えるが、複数の凹凸構造31Dの各々が、基板4の第3面4Aと、互いに分離されたアイランド状のパターンとして基板4の第3面4A上に形成されている複数の凸部31Fとにより構成されている点で、図1~図6に示されるメタレンズ3とは異なる。図11に示されるメタレンズ3では、複数の環状溝31Eの各々の深さは、貫通孔31Cの深さと等しい。 The metalens 3 shown in FIG. 11 has basically the same configuration as the metalens 3 shown in FIGS. 1 to 6, but each of the plurality of annular grooves 31E in the plurality of uneven structures 31D is It differs from the metalens 3 shown in FIGS. 1 to 6 in that it is formed so as to penetrate between the first surface 31A and the second surface 31B and expose a part of the third surface 4A of the substrate 4. . The bottom surface of each annular groove 31E is formed by the third surface 4A of the substrate 4. From a different perspective, the metalens 3 shown in FIG. 11 has basically the same configuration as the metalens 3 shown in FIGS. The metalens 3 shown in FIGS. 1 to 6 is composed of a surface 4A and a plurality of convex portions 31F formed on the third surface 4A of the substrate 4 as an island-like pattern separated from each other. It is different from. In the metalens 3 shown in FIG. 11, the depth of each of the plurality of annular grooves 31E is equal to the depth of the through hole 31C.
 図12に示されるメタレンズ3は、図1~図6に示されるメタレンズ3と基本的に同様の構成を備えるが、導電体層31の第1面31A及び第2面31Bの各々に、複数の凹凸構造が形成されている点で、図1~図6に示されるメタレンズ3とは異なる。 The metalens 3 shown in FIG. 12 has basically the same configuration as the metalens 3 shown in FIGS. 1 to 6, but a plurality of It differs from the metalens 3 shown in FIGS. 1 to 6 in that a concavo-convex structure is formed.
 第2面31Bに形成されている複数の凹凸構造31Gは、例えば、第1面31Aと第2面31Bとの中間点上に位置する仮想的な対称面に対して、第1面31A上に形成されている複数の凹凸構造31Dと面対称の関係にある。複数の凹凸構造31Gは、第2面31Bと、第2面31Bに対して凹んでいる複数の環状溝31Hとにより構成されている。異なる観点から言えば、導電体層31には、複数の環状溝31Hの底面から突出しており第2面31Bを有する複数の凸部31Iが形成されている。各凸部31Iは、例えば第1面31Aと直交する方向において、各凸部31Fと重なるように配置されている。第2面31B、並びに、第2面31B上に形成されている複数の環状溝31Eの壁面及び底面が、基板4の第3面4Aと接している。複数の環状溝31H各々の幅は、複数の環状溝31Eの幅W5と等しい。図12に示されるメタレンズ3は、例えば複数の凸部31Iが基板4の第3面4Aの凹部内に形成された後、導電体層31の残部が第3面4A上に形成されることにより、製造され得る。 For example, the plurality of uneven structures 31G formed on the second surface 31B are arranged on the first surface 31A with respect to a virtual symmetrical plane located on the midpoint between the first surface 31A and the second surface 31B. It is in a plane symmetrical relationship with the plurality of concavo-convex structures 31D that are formed. The plurality of uneven structures 31G are constituted by a second surface 31B and a plurality of annular grooves 31H recessed with respect to the second surface 31B. From a different perspective, the conductor layer 31 is formed with a plurality of protrusions 31I that protrude from the bottom surfaces of the plurality of annular grooves 31H and have a second surface 31B. Each convex portion 31I is arranged to overlap with each convex portion 31F, for example, in a direction orthogonal to the first surface 31A. The second surface 31B and the walls and bottom surfaces of the plurality of annular grooves 31E formed on the second surface 31B are in contact with the third surface 4A of the substrate 4. The width of each of the plurality of annular grooves 31H is equal to the width W5 of the plurality of annular grooves 31E. The metalens 3 shown in FIG. 12 is formed by, for example, forming a plurality of convex portions 31I in the recessed portions of the third surface 4A of the substrate 4, and then forming the remainder of the conductor layer 31 on the third surface 4A. , can be manufactured.
 (実施の形態2) (Embodiment 2)
 図13を参照して、実施の形態2に係る光学システム102について説明する。実施の形態2に係る光学システム102は、実施の形態1に係る光学システム101と基本的に同様の構成を備え同様の効果を奏するが、メタレンズ3が、基板4の第3面4A上に配置されておりかつ対象波長の光に位相差を与える位相格子を含む点で、光学システム101とは異なる。以下、光学システム102が光学システム101とは異なる点を主に説明する。 The optical system 102 according to the second embodiment will be described with reference to FIG. 13. The optical system 102 according to the second embodiment has basically the same configuration as the optical system 101 according to the first embodiment and has the same effects, but the metalens 3 is arranged on the third surface 4A of the substrate 4. It differs from the optical system 101 in that it includes a phase grating that provides a phase difference to light of the target wavelength. Hereinafter, the differences between the optical system 102 and the optical system 101 will be mainly explained.
 光学システム102のメタレンズ3は導波路型位相格子を含む。光学システム102のメタレンズ3の集光原理は上記第2例である。 The metalens 3 of the optical system 102 includes a waveguide type phase grating. The light focusing principle of the metalens 3 of the optical system 102 is the same as the second example above.
 図13に示されるように、メタレンズ3は、第3面4A上に互いに間隔を空けて配置されている複数の柱状体32(凸部)と複数の柱状体32間を満たしている充填部33とにより構成されているメタサーフェス3Cを含む。複数の柱状体32の各々を構成する材料の屈折率は、充填部33を構成する材料の屈折率より高い。複数の柱状体32の各々の外形状は、例えば円柱状である。複数の柱状体32の各々の中心軸は、コア1Aの中心軸C1と平行である。複数の柱状体32の各々の中心軸は、例えば基板4の第3面4Aと直交している。複数の柱状体32を構成する材料、及び充填部33を構成する材料は、それぞれの屈折率が上記関係を満たす限りにおいて特に制限されない。複数の柱状体32を構成する材料は、例えば誘電体であり、より好ましくは無機材料であり、具体的な一例としてSiを含む。複数の柱状体32の表面は、例えば充填部33としての空気層に接している。なお、充填部33は、誘電体膜によって構成されていてもよい。複数の柱状体32の表面は、誘電体膜と接していてもよい。複数の柱状体32は、充填部33に埋め込まれていてもよい。 As shown in FIG. 13, the metalens 3 includes a plurality of columnar bodies 32 (convex portions) arranged at intervals on the third surface 4A and a filling portion 33 that fills the spaces between the plurality of columnar bodies 32. It includes a metasurface 3C composed of. The refractive index of the material constituting each of the plurality of columnar bodies 32 is higher than the refractive index of the material constituting the filling part 33. The outer shape of each of the plurality of columnar bodies 32 is, for example, cylindrical. The central axis of each of the plurality of columnar bodies 32 is parallel to the central axis C1 of the core 1A. The central axis of each of the plurality of columnar bodies 32 is perpendicular to the third surface 4A of the substrate 4, for example. The material constituting the plurality of columnar bodies 32 and the material constituting the filling part 33 are not particularly limited as long as their respective refractive indices satisfy the above relationship. The material constituting the plurality of columnar bodies 32 is, for example, a dielectric material, more preferably an inorganic material, and includes Si as a specific example. The surfaces of the plurality of columnar bodies 32 are in contact with an air layer serving as the filling portion 33, for example. Note that the filling portion 33 may be formed of a dielectric film. The surfaces of the plurality of columnar bodies 32 may be in contact with a dielectric film. The plurality of columnar bodies 32 may be embedded in the filling part 33.
 図13に示されるように、メタレンズ3は、対象波長の光に対して透明でありかつ基板4の第3面4A上に配置されている基材34をさらに含んでいてもよい。複数の柱状体32の各々は基材34に固定されていてもよい。なお、メタレンズ3は基材34を含まず、複数の柱状体32の各々は基板4の第3面4Aに固定されていてもよい。 As shown in FIG. 13, the metalens 3 may further include a base material 34 that is transparent to light of the target wavelength and is disposed on the third surface 4A of the substrate 4. Each of the plurality of columnar bodies 32 may be fixed to the base material 34. Note that the metalens 3 may not include the base material 34, and each of the plurality of columnar bodies 32 may be fixed to the third surface 4A of the substrate 4.
 複数の柱状体32の各々は、対象波長の光が伝搬する導波路を形成している。複数の柱状体32の各々に入射した光の位相は、各柱状体32を伝搬する過程で変化する。各柱状体32を伝搬する光の位相の変化量は、当該柱状体32と隣り合う他の柱状体32との間隔P(ピッチ)に対する当該柱状体32の外径D(最大幅)の比率D/Pが大きいほど、多くなる。各導波路を通過した光の位相の空間分布に応じて、メタレンズ3の焦点F(図15参照)の位置は変化する。そのため、各柱状体32を伝搬する光の位相の変化量はメタレンズ3の焦点Fが配置されるべき位置に応じて任意に設定されればよい。 Each of the plurality of columnar bodies 32 forms a waveguide through which light of the target wavelength propagates. The phase of the light incident on each of the plurality of columnar bodies 32 changes during the process of propagating through each columnar body 32. The amount of change in the phase of light propagating through each columnar body 32 is the ratio D of the outer diameter D (maximum width) of the columnar body 32 to the distance P (pitch) between the columnar body 32 and another adjacent columnar body 32. The larger /P is, the more. The position of the focal point F (see FIG. 15) of the metalens 3 changes depending on the spatial distribution of the phase of the light that has passed through each waveguide. Therefore, the amount of change in the phase of the light propagating through each columnar body 32 may be arbitrarily set according to the position where the focal point F of the metalens 3 is to be placed.
 光学システム102では、複数の柱状体32の各々の外径及び高さ、並びに隣り合う2つの柱状体32の間隔の少なくともいずれかが、焦点までの距離に応じて上記径方向に連続的または段階的に変化するように設けられている。 In the optical system 102, at least one of the outer diameter and height of each of the plurality of columnar bodies 32 and the interval between two adjacent columnar bodies 32 is continuous or stepped in the radial direction depending on the distance to the focal point. It is set up so that it changes over time.
 図14に示されるように、平面視において、柱状体32の外径及び隣り合う2つの柱状体32の間隔の少なくともいずれかは、焦点までの距離に応じて、連続的又は段階的に変化することが好ましい。より好ましくは、平面視において、柱状体32の外径及び隣り合う2つの柱状体32の間隔の両方が、焦点までの距離に応じて、連続的又は段階的に変化する。好ましくは、平面視において、複数の柱状体32の各々の外径は、メタレンズ3の焦点Fから離れるほど大きくなるように設けられている。好ましくは、平面視において、隣り合う2つの柱状体32の間隔は、メタレンズ3の焦点Fから離れるほど小さくなるように設けられている。 As shown in FIG. 14, in plan view, at least one of the outer diameter of the columnar body 32 and the interval between two adjacent columnar bodies 32 changes continuously or stepwise depending on the distance to the focal point. It is preferable. More preferably, in a plan view, both the outer diameter of the columnar body 32 and the interval between two adjacent columnar bodies 32 change continuously or stepwise depending on the distance to the focal point. Preferably, the outer diameter of each of the plurality of columnar bodies 32 increases as the distance from the focal point F of the metalens 3 increases in plan view. Preferably, in plan view, the distance between two adjacent columnar bodies 32 is provided such that the farther from the focal point F of the metalens 3, the smaller the distance between them.
 図14及び図15に示されるように、メタレンズ3は、位相の変化量が相対的に小さくなるように複数の柱状体32が配置されている第1領域R1と、位相の変化量が相対的に大きくなるように複数の柱状体32が配置されている第2領域R2とを含む。平面視において、第1領域R1は、第2領域R2よりも焦点Fに近い領域とされる。第2領域R2内に形成されている第2群の柱状体32Bの間隔P2に対する第2群の柱状体32Bの外径D2の比率D2/P2は、第1領域R1内に形成されている第1群の柱状体32Aの間隔P1に対する第1群の柱状体32Aの外径D1の比率D1/P1よりも大きい。これにより、第2群の柱状体32Bの各々を伝搬した光TL2の位相の変化量は、第1群の柱状体32Aの各々を伝搬した光TL1の位相の変化量よりも多くなる。 As shown in FIGS. 14 and 15, the metalens 3 has a first region R1 in which the plurality of columnar bodies 32 are arranged such that the amount of change in phase is relatively small. and a second region R2 in which a plurality of columnar bodies 32 are arranged so as to increase in size. In plan view, the first region R1 is a region closer to the focal point F than the second region R2. The ratio D2/P2 of the outer diameter D2 of the second group of columnar bodies 32B to the interval P2 between the second group of columnar bodies 32B formed in the second region R2 is the ratio D2/P2 of the second group of columnar bodies 32B formed in the second region R2. It is larger than the ratio D1/P1 of the outer diameter D1 of the first group of columnar bodies 32A to the interval P1 of the first group of columnar bodies 32A. As a result, the amount of change in the phase of the light TL2 that has propagated through each of the columnar bodies 32B of the second group is greater than the amount of change in the phase of the light TL1 that has propagated through each of the columnar bodies 32A of the first group.
 なお、焦点Fがメタレンズ3の位相格子の中心軸C4と同一直線上に配置される場合、平面視において、柱状体32の外径及び隣り合う2つの柱状体32の間隔の少なくともいずれかが、中心軸C4までの距離に応じて、連続的又は段階的に変化していればよい。例えば、平面視において、複数の柱状体32の各々の外径がメタレンズ3の中心軸C4から離れるほど大きくなり、かつ隣り合う2つの柱状体32の間隔がメタレンズ3の中心軸C4から離れるほど小さくなるように設けられていてもよい。 Note that when the focal point F is arranged on the same straight line as the central axis C4 of the phase grating of the metalens 3, at least one of the outer diameter of the columnar body 32 and the interval between two adjacent columnar bodies 32 is It suffices if it changes continuously or stepwise depending on the distance to the central axis C4. For example, in plan view, the outer diameter of each of the plurality of columnar bodies 32 increases as the distance from the central axis C4 of the metalens 3 increases, and the distance between two adjacent columnar bodies 32 decreases as the distance from the central axis C4 of the metalens 3 increases. It may be provided as follows.
 複数の柱状体32の各々の外径は、対象波長以下である。複数の柱状体32の各々の外径は、例えば数10nm以上1μm以下である。隣り合う2つの柱状体32の間隔は、対象波長以下である。隣り合う2つの柱状体32の間隔は、例えば数10nm以上1.55μm以下である。なお、隣り合う2つの柱状体32の間隔とは、隣り合う2つの柱状体32の中心軸間の距離を意味する。 The outer diameter of each of the plurality of columnar bodies 32 is equal to or less than the target wavelength. The outer diameter of each of the plurality of columnar bodies 32 is, for example, several tens of nm or more and 1 μm or less. The distance between two adjacent columnar bodies 32 is equal to or less than the target wavelength. The interval between two adjacent columnar bodies 32 is, for example, several tens of nanometers or more and 1.55 μm or less. Note that the interval between two adjacent columnar bodies 32 means the distance between the central axes of two adjacent columnar bodies 32.
 第2群の柱状体32Bの高さH2は、例えば第1群の柱状体32Bの高さH1よりも低い。なお、第2群の柱状体32Bの高さH2は、例えば第1群の柱状体32Bの高さH1と等しくてもよい。複数の柱状体32の各々の高さの最大値は、コア1AとSi導波路2Aとを光学的に接続するための凸レンズの厚さよりも短い。複数の柱状体32の各々の高さの最大値は、例えば2μm以下であり、1μm以下であってもよい。  The height H2 of the second group of columnar bodies 32B is, for example, lower than the height H1 of the first group of columnar bodies 32B. Note that the height H2 of the second group of columnar bodies 32B may be equal to the height H1 of the first group of columnar bodies 32B, for example. The maximum height of each of the plurality of columnar bodies 32 is shorter than the thickness of a convex lens for optically connecting the core 1A and the Si waveguide 2A. The maximum height of each of the plurality of columnar bodies 32 is, for example, 2 μm or less, and may be 1 μm or less. 
 なお、柱状体32の外径及び高さ、並びに隣り合う2つの柱状体32の間隔の少なくともいずれかが焦点までの距離に応じて連続的又は段階的に変化する構造には、図14及び図15に示されるように柱状体32の外径及び高さ、並びに隣り合う2つの柱状体32の間隔の少なくともいずれかが単調に変化する構造のみならず、このような構造を単位(以下、構造単位と記載する)として、当該構造単位が位相格子の中心軸C4に対する径方向に周期的に配置されている周期構造が含まれる。言い換えると、実施の形態2に係るメタレンズ3は、複数の柱状体32の各々の高さ、最大幅、及びピッチの少なくともいずれかが連続的または段階的に変化する構造単位が上記径方向に周期的に配置されて成る周期構造を有していてもよい。 Note that structures in which at least one of the outer diameter and height of the columnar body 32 and the interval between two adjacent columnar bodies 32 change continuously or stepwise depending on the distance to the focal point include those shown in FIGS. 15, in which at least one of the outer diameter and height of a columnar body 32 and the interval between two adjacent columnar bodies 32 change monotonically, such a structure is also referred to as a unit (hereinafter referred to as a structure A periodic structure in which the structural units are periodically arranged in the radial direction with respect to the central axis C4 of the phase grating is included. In other words, in the metalens 3 according to the second embodiment, the structural units in which at least one of the height, maximum width, and pitch of each of the plurality of columnar bodies 32 changes continuously or stepwise are periodically arranged in the radial direction. It may have a periodic structure arranged symmetrically.
 光学システム102では、コア1Aの第1端面1A1とメタレンズ3との間の最短距離は、可能な限り短いことが好ましい。Si導波路2Aとメタレンズ3との間の最短距離は、可能な限り焦点距離fに近い値であることが好ましく、より好ましくは焦点距離fと等しい。 In the optical system 102, the shortest distance between the first end surface 1A1 of the core 1A and the metalens 3 is preferably as short as possible. The shortest distance between the Si waveguide 2A and the metalens 3 is preferably a value as close to the focal length f as possible, and more preferably equal to the focal length f.
 光学システム102におけるコア1Aの第1端面1A1とSi導波路2Aの第2端面2A1との間の光路長は、コア1AとSi導波路2Aとがポリマー導波路又は凸レンズによりを光学的に接続されている光学システムと比べて、短くなり得る。 The optical path length between the first end surface 1A1 of the core 1A and the second end surface 2A1 of the Si waveguide 2A in the optical system 102 is determined when the core 1A and the Si waveguide 2A are optically connected by a polymer waveguide or a convex lens. can be shorter compared to optical systems with
 なお、光学システム102においても、光の伝搬方向が制限されない。光は、光スポットサイズが相対的に大きいコア1Aから、メタレンズ3を経て、光スポットサイズが相対的に小さいSi導波路2Aへ伝搬してもよいし、これとは逆方向に、Si導波路2Aからメタレンズ3を経て、コア1Aに伝搬してもよい。 Note that in the optical system 102 as well, the propagation direction of light is not limited. The light may propagate from the core 1A, where the optical spot size is relatively large, through the metalens 3, to the Si waveguide 2A, where the optical spot size is relatively small, or in the opposite direction, through the Si waveguide 2A, where the optical spot size is relatively small. It may also propagate from 2A to the core 1A via the metalens 3.
 光学システム102のメタレンズ3の形成方法も特に制限されない。メタレンズ3の複数の柱状体32は、誘電体膜が基板4の第3面4A上に形成された後、当該誘電体膜がパターニングされることにより、形成されてもよい。例えば、基板4の第3面4A上に形成された誘電体膜上にフォトレジストを塗布し、パターンを描画したマスク越しにフォトレジストを露光、現像した後、当該フォトレジストをマスクとして誘電体膜をエッチングすることにより形成されてもよい。また、複数の柱状体32は、例えばスクリーン印刷法等によって形成されてもよい。 The method of forming the metalens 3 of the optical system 102 is also not particularly limited. The plurality of columnar bodies 32 of the metalens 3 may be formed by forming a dielectric film on the third surface 4A of the substrate 4 and then patterning the dielectric film. For example, a photoresist is applied onto a dielectric film formed on the third surface 4A of the substrate 4, and the photoresist is exposed and developed through a mask with a pattern drawn thereon, and then the dielectric film is coated using the photoresist as a mask. It may be formed by etching. Further, the plurality of columnar bodies 32 may be formed by, for example, a screen printing method.
 光学システム102では、メタレンズ3の厚さ及び焦点深度によって制限されるコア1AとSi導波路2Aとの間の光路長は、コア1AとSi導波路2Aとを光学的に接続し得るポリマー導波路の光路長、又はコア1AとSi導波路2Aとを光学的に接続し得る凸レンズの厚さ及び焦点深度の和と比べて、短くなり得る。また、光学システム102では、凸レンズを備える光学システムと比べて、焦点位置の設計自由度が高く、焦点深度及び光の伝搬方向を容易に変更できる。 In the optical system 102, the optical path length between the core 1A and the Si waveguide 2A, which is limited by the thickness and depth of focus of the metalens 3, is determined by the polymer waveguide that can optically connect the core 1A and the Si waveguide 2A. or the sum of the thickness and depth of focus of a convex lens that can optically connect the core 1A and the Si waveguide 2A. Further, in the optical system 102, compared to an optical system including a convex lens, the degree of freedom in designing the focal position is higher, and the depth of focus and the propagation direction of light can be easily changed.
 なお、光学システム102のメタレンズ3は、基板4の第3面4A又は第4面4Bの上に配置されていればよい。 Note that the metalens 3 of the optical system 102 only needs to be placed on the third surface 4A or fourth surface 4B of the substrate 4.
 上述のように、柱状体32の外径及び高さ、並びに隣り合う2つの柱状体32の間隔の少なくともいずれかが焦点までの距離に応じて連続的又は段階的に変化する構造には、図14及び図15に示されるように柱状体32の外径及び高さ、並びに隣り合う2つの柱状体32の間隔の少なくともいずれかが単調に変化する構造のみならず、このような構造を構造単位として、当該構造単位が位相格子の中心軸C4に対する径方向に周期的に配置されている周期構造が含まれる。各構造単位は、上記第1領域R1と、上記第2領域R2とを含む。 As described above, a structure in which at least one of the outer diameter and height of the columnar body 32 and the interval between two adjacent columnar bodies 32 changes continuously or stepwise depending on the distance to the focal point has the structure shown in FIG. 14 and 15, in which the outer diameter and height of the columnar bodies 32 and/or the interval between two adjacent columnar bodies 32 change monotonically, as well as structures in which such a structure is used as a structural unit. This includes a periodic structure in which the structural units are periodically arranged in the radial direction with respect to the central axis C4 of the phase grating. Each structural unit includes the first region R1 and the second region R2.
 図14に示される構造単位が位相格子の中心軸C4に対する径方向に周期的に配置されている周期構造では、各構造単位においてそれぞれの柱状体32の位相の変化量が0~2πの範囲内となるように、各構造単位の上記径方向の幅が設定されていてよい。また、図14に示される各構造単位において、位相格子の中心軸C4に最も近い柱状体32を伝搬した光の位相に対する位相格子の中心軸C4から最も離れた柱状体32を伝搬した光の位相の変化量が2πになるように、各構造単位の上記径方向の幅が設定されていることが好ましい。この場合、各構造単位において上記位相の変化量が2πとなるために必要とされる各構造単位の上記径方向の幅は、中心軸C4から離れるにつれて狭くなる。例えば、上記周期構造に含まれる複数の構造単位のうち、位相格子の中心軸C4に最も近い位置にある第1構造単位の上記径方向の幅は、位相格子の中心軸C4に2番目に近い位置にある第2構造単位の上記径方向の幅よりも広く設定される。また、各構造単位において上記位相の変化量が2πとなるために必要とされる各構造単位の上記径方向の幅は、メタレンズ3の直径に応じて変化する。直径が10μmであるメタレンズ3においては、上記第1構造単位において上記位相の変化量が2πとなるために必要とされる当該第1構造単位の上記径方向の幅は、1.00μm以上3.50μm以下であることが好ましい。直径が20μmであるメタレンズ3においては、上記第1構造単位において上記位相の変化量が2πとなるために必要とされる当該第1構造単位の上記径方向の幅は、2.00μm以上5.00μm以下であることが好ましい。直径が40μmであるメタレンズ3においては、上記第1構造単位において上記位相の変化量が2πとなるために必要とされる当該第1構造単位の上記径方向の幅は、3.00μm以上7.00μm以下であることが好ましい。 In the periodic structure shown in FIG. 14 in which the structural units are periodically arranged in the radial direction with respect to the central axis C4 of the phase grating, the amount of change in the phase of each columnar body 32 in each structural unit is within the range of 0 to 2π. The width of each structural unit in the radial direction may be set so that In addition, in each structural unit shown in FIG. 14, the phase of light propagated through the columnar body 32 furthest from the central axis C4 of the phase grating relative to the phase of light propagated through the columnar body 32 closest to the central axis C4 of the phase grating. It is preferable that the width of each structural unit in the radial direction is set so that the amount of change is 2π. In this case, the width of each structural unit in the radial direction required for the amount of change in phase to be 2π in each structural unit becomes narrower as the distance from the central axis C4 increases. For example, among the plurality of structural units included in the periodic structure, the width in the radial direction of the first structural unit located closest to the central axis C4 of the phase grating is the second closest to the central axis C4 of the phase grating. The width in the radial direction of the second structural unit at the position is set to be wider than the width in the radial direction. Further, the width of each structural unit in the radial direction required for the amount of change in phase to be 2π in each structural unit changes depending on the diameter of the metalens 3. In the metalens 3 having a diameter of 10 μm, the width of the first structural unit in the radial direction required for the amount of phase change to be 2π in the first structural unit is 1.00 μm or more.3. It is preferable that it is 50 μm or less. In the metalens 3 having a diameter of 20 μm, the width of the first structural unit in the radial direction required for the amount of phase change to be 2π in the first structural unit is 2.00 μm or more.5. It is preferable that it is 00 μm or less. In the metalens 3 having a diameter of 40 μm, the width of the first structural unit in the radial direction required for the amount of phase change to be 2π in the first structural unit is 3.00 μm or more7. It is preferable that it is 00 μm or less.
 位相格子を含むメタレンズ3の焦点距離f(単位:nm)、当該メタレンズ3の集光角度θ2、及び当該メタレンズ3の半径R(単位:nm)は、以下の関係式(2)を満たす。
Figure JPOXMLDOC01-appb-M000004
The focal length f (unit: nm) of the metalens 3 including the phase grating, the condensing angle θ 2 of the metalens 3, and the radius R (unit: nm) of the metalens 3 satisfy the following relational expression (2).
Figure JPOXMLDOC01-appb-M000004
 図16には、メタサーフェス3Cを備えるメタレンズ3の焦点距離f、半径R、及び集光角度θ2が図示されている。図16に示される集光角度θ2は、第1仮想直線VL1が第2仮想直線VL2に対して成す角度である。第1仮想直線VL1は、複数の柱状体32のうち中心軸C4に対する径方向において最外に位置する柱状体32を伝搬した光の進路を示している。第1仮想直線VL1は、上記径方向において最外に位置する柱状体32の基板4の第3面4A側に位置する最外端部と、Si導波路2Aの中心軸C2と第2端面2A1との交点とを結ぶ仮想直線である。第2仮想直線VL2は、メタサーフェス3Cの中心軸C3と基板4の第3面4Aとの交点と、Si導波路2Aの中心軸C2と第2端面2A1との交点とを結ぶ仮想直線である。中心軸C4と中心軸C2とが同一直線上に配置されている場合、第2仮想直線VL2はこれらと同一直線上に配置される。 FIG. 16 shows the focal length f, radius R, and condensing angle θ 2 of the metalens 3 including the metasurface 3C. The condensing angle θ 2 shown in FIG. 16 is the angle that the first virtual straight line VL1 makes with the second virtual straight line VL2. The first virtual straight line VL1 indicates the course of light that has propagated through the columnar body 32 located at the outermost position in the radial direction with respect to the central axis C4 among the plurality of columnar bodies 32. The first imaginary straight line VL1 connects the outermost end of the columnar body 32 located at the outermost position in the radial direction on the third surface 4A side of the substrate 4, the central axis C2 of the Si waveguide 2A, and the second end surface 2A1. This is an imaginary straight line connecting the intersection with . The second virtual straight line VL2 is a virtual straight line connecting the intersection between the central axis C3 of the metasurface 3C and the third surface 4A of the substrate 4 and the intersection between the central axis C2 of the Si waveguide 2A and the second end surface 2A1. . When the central axis C4 and the central axis C2 are arranged on the same straight line, the second virtual straight line VL2 is arranged on the same straight line.
 メタサーフェス3Cを備えるメタレンズ3の集光角度θ2は、例えば20°以上70°以下であり、好ましくは30°以上60°以下である。好ましくは、上記第2仮想直線VL2の長さは、焦点距離fに等しい。集光角度θ2が30°以上60°以下であれば、集光角度θ2が70°である場合と比べて、メタレンズ3の開口数NAが小さくなり、焦点深度が深くなるため、光軸方向においてSi導波路2Aに対するメタレンズ3の位置を調整しやすい。なお、メタレンズ3の開口数NAは、メタレンズ3の集光角度θ2の正弦(Sinθ2)に、メタレンズ3とSi導波路2Aとの間に存在する媒質の屈折率nを乗じて算出される。 The condensing angle θ 2 of the metalens 3 including the metasurface 3C is, for example, 20° or more and 70° or less, preferably 30° or more and 60° or less. Preferably, the length of the second virtual straight line VL2 is equal to the focal length f. If the condensing angle θ 2 is 30° or more and 60° or less, the numerical aperture NA of the metalens 3 becomes smaller and the depth of focus becomes deeper, compared to the case where the condensing angle θ 2 is 70°, so the optical axis It is easy to adjust the position of the metalens 3 with respect to the Si waveguide 2A in the direction. Note that the numerical aperture NA of the metalens 3 is calculated by multiplying the sine (Sinθ 2 ) of the condensing angle θ 2 of the metalens 3 by the refractive index n of the medium existing between the metalens 3 and the Si waveguide 2A. .
 光学システム102のメタレンズ3では、開口数NAが0.5以上であることが好ましく、0.7以上であることがより好ましい。Si導波路2Aでは、コアを構成するSiとクラッドを構成するSiO2との比屈折率差が大きいため、開口数(光の広がり)が大きいという特徴がある。メタレンズ3とSi導波路2Aとの結合効率を高めるには、メタレンズ3の開口数NAはSi導波路2Aの開口数と同程度に大きいことが好ましい。 In the metalens 3 of the optical system 102, the numerical aperture NA is preferably 0.5 or more, more preferably 0.7 or more. The Si waveguide 2A has a large numerical aperture (spreading of light) due to a large relative refractive index difference between Si forming the core and SiO 2 forming the cladding. In order to increase the coupling efficiency between the metalens 3 and the Si waveguide 2A, it is preferable that the numerical aperture NA of the metalens 3 is as large as the numerical aperture of the Si waveguide 2A.
 <メタレンズの変形例> <Modified example of metalens>
 以下、光学システム102のメタレンズ3の変形例を説明する。 Hereinafter, modified examples of the metalens 3 of the optical system 102 will be described.
 光学システム102において、複数の柱状体32を構成する材料は、金属であってもよい。メタレンズ3の位相格子は、複数の誘電体導波路に代えて、複数のMIM導波路を含んでいてもよい。 In the optical system 102, the material forming the plurality of columnar bodies 32 may be metal. The phase grating of the metalens 3 may include a plurality of MIM waveguides instead of a plurality of dielectric waveguides.
 (実施の形態3) (Embodiment 3)
 図17を参照して、実施の形態3に係る光学システム103について説明する。実施の形態3に係る光学システム103は、実施の形態2に係る光学システム102と基本的に同様の構成を備え同様の効果を奏するが、メタレンズ3が導波路型位相格子ではなく共鳴側位相格子を含む点で、光学システム102とは異なる。以下、光学システム103が光学システム102とは異なる点を主に説明する。 The optical system 103 according to Embodiment 3 will be described with reference to FIG. 17. The optical system 103 according to the third embodiment has basically the same configuration as the optical system 102 according to the second embodiment and has the same effect, but the metalens 3 is not a waveguide type phase grating but a resonance side phase grating. It differs from optical system 102 in that it includes: Hereinafter, the differences between the optical system 103 and the optical system 102 will be mainly explained.
 図17に示されるように、メタレンズ3は、第3面4A上に互いに間隔を空けて配置されている複数の球状体35(凸部)及び複数の球状体35間を満たしている充填部33を有するメタサーフェス3Dを含む。複数の球状体35を構成する材料は、例えば誘電体である。充填部33を構成する材料は、例えば空気である。充填部33は、誘電体膜によって構成されていてもよい。複数の球状体35の表面は、誘電体膜と接していてもよい。複数の球状体35は、充填部33に埋め込まれていてもよい。 As shown in FIG. 17, the metalens 3 includes a plurality of spherical bodies 35 (convex parts) arranged at intervals on the third surface 4A and a filling part 33 filling the spaces between the plurality of spherical bodies 35. including a metasurface 3D with . The material constituting the plurality of spherical bodies 35 is, for example, a dielectric. The material forming the filling portion 33 is, for example, air. The filling portion 33 may be made of a dielectric film. The surfaces of the plurality of spherical bodies 35 may be in contact with a dielectric film. The plurality of spherical bodies 35 may be embedded in the filling part 33.
 複数の球状体35の各々は、対象波長の光とMie共鳴するように設けられている。複数の球状体35の各々に入射した光の位相は、光が共鳴により散乱する過程で変化する。球状体35の外径Dが大きいほど、球状体35と共鳴する光の周波数(共鳴周波数)は低くなり、各球状体35と共鳴する光の波長(共鳴波長)が長くなる。各球状体35に入射する光の波長が各球状体35と共鳴する光の波長(共鳴波長)に対して長すぎない限りにおいて、各球状体35と共鳴する光の波長(共鳴波長)が各球状体35に入射する光の波長よりも長いほど、各球状体35で散乱された光の位相の変化量は多くなる。この場合、各球状体35で散乱された光の位相の変化量は、当該球状体35の外径Dが大きいほど、多くなる。 Each of the plurality of spherical bodies 35 is provided so as to have Mie resonance with the light of the target wavelength. The phase of the light incident on each of the plurality of spherical bodies 35 changes in the process of scattering the light due to resonance. The larger the outer diameter D of the spherical bodies 35, the lower the frequency of light that resonates with the spherical bodies 35 (resonant frequency), and the longer the wavelength of light that resonates with each spherical body 35 (resonant wavelength). As long as the wavelength of the light incident on each spherical body 35 is not too long compared to the wavelength of light that resonates with each spherical body 35 (resonance wavelength), the wavelength of light that resonates with each spherical body 35 (resonance wavelength) The longer the wavelength of the light incident on the spherical bodies 35, the greater the amount of change in the phase of the light scattered by each spherical body 35. In this case, the amount of change in the phase of the light scattered by each spherical body 35 increases as the outer diameter D of the spherical body 35 increases.
 各球状体35で散乱した光の位相の空間分布に応じて、メタレンズ3の焦点F(図18参照)の位置は変化する。そのため、各球状体35にて散乱した光の位相の変化量はメタレンズ3の焦点Fが配置されるべき位置に応じて任意に設定されればよい。 The position of the focal point F (see FIG. 18) of the metalens 3 changes depending on the spatial distribution of the phase of the light scattered by each spherical body 35. Therefore, the amount of change in the phase of the light scattered by each spherical body 35 may be arbitrarily set depending on the position where the focal point F of the metalens 3 is to be placed.
 平面視において、球状体35の外径は、焦点までの距離に応じて、連続的又は段階的に変化する。好ましくは、平面視において、複数の球状体35の各々の外径は、メタレンズ3の焦点Fから離れるほど大きくなるように設けられている。 In plan view, the outer diameter of the spherical body 35 changes continuously or stepwise depending on the distance to the focal point. Preferably, the outer diameter of each of the plurality of spherical bodies 35 increases as the distance from the focal point F of the metalens 3 increases in plan view.
 図18に示されるように、メタレンズ3は、位相の変化量が相対的に小さくなるように複数の球状体35が配置されている第1領域R1と、位相の変化量が相対的に大きくなるように複数の球状体35が配置されている第2領域R2とを含む。平面視において、第1領域R1は、第2領域R2よりも焦点Fに近い領域とされる。第2領域R2内に形成されている第2群の球状体35の外径D2は、第1領域R1内に形成されている第1群の球状体35Aの外径D1よりも大きい。これにより、第2群の球状体35Bの各々にて散乱した光TL2の位相の変化量は、第1群の球状体35Aの各々にて散乱した光TL1の位相の変化量よりも多くなる。 As shown in FIG. 18, the metalens 3 has a first region R1 where a plurality of spherical bodies 35 are arranged such that the amount of change in phase is relatively small, and a first region R1 where the amount of change in phase is relatively large. and a second region R2 in which a plurality of spherical bodies 35 are arranged. In plan view, the first region R1 is a region closer to the focal point F than the second region R2. The outer diameter D2 of the second group of spherical bodies 35 formed in the second region R2 is larger than the outer diameter D1 of the first group of spherical bodies 35A formed in the first region R1. As a result, the amount of change in the phase of the light TL2 scattered by each of the second group of spherical bodies 35B is greater than the amount of change in the phase of the light TL1 scattered by each of the first group of spherical bodies 35A.
 なお、焦点Fがメタレンズ3の位相格子の中心軸C4と同一直線上に配置される場合、平面視において、球状体35の外径が、中心軸C4までの距離に応じて、連続的又は段階的に変化していればよい。 Note that when the focal point F is arranged on the same straight line as the central axis C4 of the phase grating of the metalens 3, the outer diameter of the spherical body 35 is continuous or stepwise in plan view depending on the distance to the central axis C4. It suffices if it changes accordingly.
 複数の球状体35の各々の外径は、対象波長以下である。複数の球状体35の各々の外径は、例えば数10nm以上1μm以下である。 The outer diameter of each of the plurality of spherical bodies 35 is equal to or less than the target wavelength. The outer diameter of each of the plurality of spherical bodies 35 is, for example, several tens of nanometers or more and 1 μm or less.
 光学システム103では、コア1Aの第1端面1A1とメタレンズ3との間の最短距離は、可能な限り短いことが好ましい。Si導波路2Aとメタレンズ3との間の最短距離は、可能な限り焦点距離fに近い値であることが好ましく、より好ましくは焦点距離fと等しい。 In the optical system 103, the shortest distance between the first end surface 1A1 of the core 1A and the metalens 3 is preferably as short as possible. The shortest distance between the Si waveguide 2A and the metalens 3 is preferably a value as close to the focal length f as possible, and more preferably equal to the focal length f.
 光学システム103におけるコア1Aの第1端面1A1とSi導波路2Aの第2端面2A1との間の光路長は、コア1AとSi導波路2Aとがポリマー導波路又は凸レンズによりを光学的に接続されている光学システムと比べて、短くなり得る。 The optical path length between the first end surface 1A1 of the core 1A and the second end surface 2A1 of the Si waveguide 2A in the optical system 103 is such that the core 1A and the Si waveguide 2A are optically connected by a polymer waveguide or a convex lens. can be shorter compared to optical systems with
 なお、光学システム103においても、光の伝搬方向が制限されない。光は、光スポットサイズが相対的に大きいコア1Aから、メタレンズ3を経て、光スポットサイズが相対的に小さいSi導波路2Aへ伝搬してもよいし、これとは逆方向に、Si導波路2Aからメタレンズ3を経て、コア1Aに伝搬してもよい。 Note that in the optical system 103 as well, the propagation direction of light is not limited. The light may propagate from the core 1A, where the optical spot size is relatively large, through the metalens 3, to the Si waveguide 2A, where the optical spot size is relatively small, or in the opposite direction, through the Si waveguide 2A, where the optical spot size is relatively small. It may also propagate from 2A to the core 1A via the metalens 3.
 光学システム103のメタレンズ3の形成方法も特に制限されない。メタレンズ3の複数の球状体35は、例えば公知のナノ粒子の製造方法により形成され得る。 The method of forming the metalens 3 of the optical system 103 is also not particularly limited. The plurality of spherical bodies 35 of the metalens 3 can be formed, for example, by a known nanoparticle manufacturing method.
 光学システム103では、メタレンズ3の厚さ及び焦点深度によって制限されるコア1AとSi導波路2Aとの間の光路長は、コア1AとSi導波路2Aとを光学的に接続し得るポリマー導波路の光路長、又はコア1AとSi導波路2Aとを光学的に接続し得る凸レンズの厚さ及び焦点深度の和と比べて、短くなり得る。また、光学システム103では、凸レンズを備える光学システムと比べて、焦点位置の設計自由度が高く、焦点深度及び光の伝搬方向を容易に変更できる。 In the optical system 103, the optical path length between the core 1A and the Si waveguide 2A, which is limited by the thickness and depth of focus of the metalens 3, is determined by the polymer waveguide that can optically connect the core 1A and the Si waveguide 2A. or the sum of the thickness and depth of focus of a convex lens that can optically connect the core 1A and the Si waveguide 2A. Furthermore, the optical system 103 has a higher degree of freedom in designing the focal position than an optical system including a convex lens, and can easily change the depth of focus and the propagation direction of light.
 なお、光学システム103のメタレンズ3は、基板4の第3面4A又は第4面4Bの上に配置されていればよい。 Note that the metalens 3 of the optical system 103 only needs to be placed on the third surface 4A or fourth surface 4B of the substrate 4.
 <メタレンズの変形例> <Modified example of metalens>
 光学システム103において、複数の球状体35を構成する材料は、金属であってもよい。この場合、複数の球状体35の各々は、対象波長の光とプラズモン共鳴するように設けられている。複数の球状体35の各々に入射した光の位相は、光が各球状体35と共鳴するにより散乱される過程で変化する。金属により構成されている球状体35についても、誘電体により構成されている球状体35と同様に、球状体35の外径Dが大きいほど光の位相の変化量が多くなる。つまり、球状体35で散乱した光の位相が変化する原理は球状体35を構成する材料に応じて異なるが、球状体35の外径Dが大きいほど光の位相の変化量が多くなる傾向は球状体35を構成する材料によらず同じである。 In the optical system 103, the material constituting the plurality of spherical bodies 35 may be metal. In this case, each of the plurality of spherical bodies 35 is provided so as to have plasmon resonance with the light of the target wavelength. The phase of the light incident on each of the plurality of spherical bodies 35 changes as the light resonates with each spherical body 35 and is scattered. Regarding the spherical body 35 made of metal, as well as the spherical body 35 made of dielectric, the larger the outer diameter D of the spherical body 35, the greater the amount of change in the phase of light. In other words, the principle by which the phase of light scattered by the spherical body 35 changes differs depending on the material that constitutes the spherical body 35, but there is a tendency that the larger the outer diameter D of the spherical body 35, the greater the amount of change in the phase of the light. This is the same regardless of the material of which the spherical body 35 is made.
 光学システム103のメタレンズ3も、光学システム102のメタレンズ3と同様に変形され得る。球状体35の外径及び高さ、並びに隣り合う2つの球状体35の間隔の少なくともいずれかが焦点までの距離に応じて連続的又は段階的に変化する構造には、球状体35の外径及び高さ、並びに隣り合う2つの球状体35の間隔の少なくともいずれかが単調に変化する構造のみならず、このような構造を構造単位として、当該構造単位が位相格子の中心軸C4に対する径方向に周期的に配置されている周期構造が含まれる。 The metalens 3 of the optical system 103 can also be deformed similarly to the metalens 3 of the optical system 102. In a structure in which at least one of the outer diameter and height of the spherical body 35 and the interval between two adjacent spherical bodies 35 changes continuously or stepwise depending on the distance to the focal point, the outer diameter of the spherical body 35 In addition to the structure in which at least one of the height and the interval between two adjacent spherical bodies 35 changes monotonically, such a structure is used as a structural unit, and the structural unit is the radial direction with respect to the central axis C4 of the phase grating. contains periodic structures that are arranged periodically.
 (実施の形態4) (Embodiment 4)
 図19を参照して、実施の形態4に係る光学システム104について説明する。実施の形態4に係る光学システム104は、実施の形態1~3のいずれかの光学システム101~103と基本的に同様の構成を備え同様の効果を奏するが、第2導波路が細線導波路ではなく、フォトニック結晶導波路である点で、光学システム101~103とは異なる。以下、光学システム104が光学システム101~103とは異なる点を主に説明する。 With reference to FIG. 19, optical system 104 according to Embodiment 4 will be described. The optical system 104 according to the fourth embodiment has basically the same configuration as the optical systems 101 to 103 of any of the first to third embodiments and has the same effects, but the second waveguide is a thin wire waveguide. It differs from the optical systems 101 to 103 in that it is a photonic crystal waveguide rather than a photonic crystal waveguide. The following will mainly explain the differences between the optical system 104 and the optical systems 101 to 103.
 フォトニクス素子2は、結晶スラブ2Dと、第1クラッド層2B1及び第2クラッド層2B2とを含む。第2導波路は、結晶スラブ2Dの一部分である。結晶スラブ2Dは、複数の貫通孔2Eが形成されている2つの領域2D1,2D2、及び、この2つの領域2D1,2D2に挟まれており複数の貫通孔2Eが形成されていない領域2D3を有している。結晶スラブ2Dを構成する材料は、例えばポリテトラフルオロエチレン(PTFE)、ポリイミド、及び環状オレフィンポリマー(COP)からなる群から選択される少なくともいずれかを含む。 The photonics element 2 includes a crystal slab 2D, a first cladding layer 2B1, and a second cladding layer 2B2. The second waveguide is part of the crystal slab 2D. The crystal slab 2D has two regions 2D1 and 2D2 in which a plurality of through holes 2E are formed, and a region 2D3 sandwiched between these two regions 2D1 and 2D2 in which a plurality of through holes 2E are not formed. are doing. The material constituting the crystal slab 2D includes, for example, at least one selected from the group consisting of polytetrafluoroethylene (PTFE), polyimide, and cyclic olefin polymer (COP).
 複数の貫通孔2Eの開口形状は、例えば円形状である。複数の貫通孔2Eの各々の中心は、正六角格子の格子点を成すように配置されている。複数の貫通孔2Eの各々の孔径及び隣り合う2つの貫通孔2Eの間隔は、対象波長の光が領域2D1及び領域2D2を伝搬しないように設けられている。異なる観点から言えば、複数の貫通孔2Eの各々の孔径及び隣り合う2つの貫通孔2Eの間隔は、貫通孔2Eが形成されていない領域2D3がフォトニック結晶導波路を成すように設けられている。 The opening shape of the plurality of through holes 2E is, for example, circular. The centers of each of the plurality of through holes 2E are arranged to form lattice points of a regular hexagonal lattice. The hole diameter of each of the plurality of through holes 2E and the interval between two adjacent through holes 2E are set so that light of the target wavelength does not propagate through the region 2D1 and the region 2D2. From a different perspective, the hole diameter of each of the plurality of through holes 2E and the interval between two adjacent through holes 2E are set such that the region 2D3 where no through hole 2E is formed forms a photonic crystal waveguide. There is.
 第1クラッド層2B1及び第2クラッド層2B2は、結晶スラブ2Dを挟むように配置されている。第1クラッド層2B1及び第2クラッド層2B2の各々を構成する材料の屈折率は、結晶スラブ2Dを構成する材料よりも屈折率よりも低い。第1クラッド層2B1及び第2クラッド層2B2の各々を構成する材料は、例えばSiO2を含む。なお、第1クラッド層2B1及び第2クラッド層2B2の一方又は両方は、空気層であってもよい。 The first cladding layer 2B1 and the second cladding layer 2B2 are arranged to sandwich the crystal slab 2D. The refractive index of the material forming each of the first cladding layer 2B1 and the second cladding layer 2B2 is lower than the refractive index of the material forming the crystal slab 2D. The material constituting each of the first cladding layer 2B1 and the second cladding layer 2B2 includes, for example, SiO 2 . Note that one or both of the first cladding layer 2B1 and the second cladding layer 2B2 may be an air layer.
 光学システム104は、例えばテラヘルツ波を伝搬するように設けられている。光学システム104の対象波長は、例えば30μm以上3mm以下である。光ファイバ1は、金属中空光ファイバであって、中空部1Cと、金属層1Dと、クラッド1Bとを含んでいてもよい。中空部1Cは、空気によって満たされている。金属層1Dは、中空部1Cに面している内周面とクラッド1Bの内周面と接している外周面とを有している。金属層1Dを構成する材料は、特に制限されないが、例えば銀(Ag)を含む。金属層1Dの厚さは、例えば数nm以上数100nm以下である。金属層1Dの外径は、例えば1mm以下である。 The optical system 104 is provided to propagate, for example, terahertz waves. The target wavelength of the optical system 104 is, for example, 30 μm or more and 3 mm or less. The optical fiber 1 is a metal hollow optical fiber and may include a hollow portion 1C, a metal layer 1D, and a cladding 1B. The hollow portion 1C is filled with air. The metal layer 1D has an inner circumferential surface facing the hollow portion 1C and an outer circumferential surface in contact with the inner circumferential surface of the cladding 1B. The material constituting the metal layer 1D is not particularly limited, but includes silver (Ag), for example. The thickness of the metal layer 1D is, for example, several nm or more and several 100 nm or less. The outer diameter of the metal layer 1D is, for example, 1 mm or less.
 なお、光学システム104においても、光の伝搬方向が制限されない。光は、光スポットサイズが相対的に大きいコア1Aから、メタレンズ3を経て、光スポットサイズが相対的に小さいSi導波路2Aへ伝搬してもよいし、これとは逆方向に、Si導波路2Aからメタレンズ3を経て、コア1Aに伝搬してもよい。 Note that in the optical system 104 as well, the propagation direction of light is not limited. The light may propagate from the core 1A, where the optical spot size is relatively large, through the metalens 3, to the Si waveguide 2A, where the optical spot size is relatively small, or in the opposite direction, through the Si waveguide 2A, where the optical spot size is relatively small. It may also propagate from 2A to the core 1A via the metalens 3.
 上述のように、光学システム104は、テラヘルツ波を伝搬するための光学システムに好適である。この場合、結晶スラブ2Dを構成する材料は、上述のようにポリテトラフルオロエチレン(PTFE)、ポリイミド、及び環状オレフィンポリマー(COP)からなる群から選択される少なくともいずれかを含む。他方、光学システム104が伝搬する光は、テラヘルツ波に限られない。光学システム104の対象波長はテラヘルツ波よりも短くてもよく、この場合、結晶スラブ2Dを構成する材料は、Siであってもよい。 As mentioned above, the optical system 104 is suitable for propagating terahertz waves. In this case, the material constituting the crystal slab 2D includes at least one selected from the group consisting of polytetrafluoroethylene (PTFE), polyimide, and cyclic olefin polymer (COP) as described above. On the other hand, the light propagated by the optical system 104 is not limited to terahertz waves. The target wavelength of the optical system 104 may be shorter than the terahertz wave, and in this case, the material forming the crystal slab 2D may be Si.
 (実施の形態5) (Embodiment 5)
 図20を参照して、実施の形態5に係る光学システム105について説明する。実施の形態5に係る光学システム105は、実施の形態1~3のいずれかの光学システム101~103と基本的に同様の構成を備え同様の効果を奏するが、Si導波路2Aが細線導波路ではなく、リブ型導波路である点で、光学システム101~103とは異なる。以下、光学システム105が光学システム101~103とは異なる点を主に説明する。 With reference to FIG. 20, optical system 105 according to Embodiment 5 will be described. The optical system 105 according to the fifth embodiment has basically the same configuration as the optical systems 101 to 103 of any of the first to third embodiments and has the same effect, but the Si waveguide 2A is a thin wire waveguide. It differs from the optical systems 101 to 103 in that it is a rib-type waveguide rather than a rib-type waveguide. The following will mainly explain the differences between the optical system 105 and the optical systems 101 to 103.
 Si導波路2Aは、Si基板2C、第1クラッド層2B1、Si導波路2A、及び第2クラッド層2B2の積層方向、並びにSi導波路2Aの延在方向の各々と直交する方向の幅が相対的に広いスラブ部21と、スラブ部21から第1クラッド層2B1とは反対側に突出しており当該方向の幅が相対的に狭いリッジ部22とを有している。光学システム105では、リッジ部22及びリッジ部22の近傍に位置するスラブ部21の一部分が、Si導波路2Aを構成する。 The Si waveguide 2A has a relative width in a direction perpendicular to the stacking direction of the Si substrate 2C, the first cladding layer 2B1, the Si waveguide 2A, and the second cladding layer 2B2, and the extending direction of the Si waveguide 2A. It has a slab part 21 that is relatively wide, and a ridge part 22 that protrudes from the slab part 21 to the side opposite to the first cladding layer 2B1 and has a relatively narrow width in that direction. In the optical system 105, the ridge portion 22 and a portion of the slab portion 21 located near the ridge portion 22 constitute the Si waveguide 2A.
 なお、光学システム105においても、光の伝搬方向が制限されない。光は、光スポットサイズが相対的に大きいコア1Aから、メタレンズ3を経て、光スポットサイズが相対的に小さいSi導波路2Aへ伝搬してもよいし、これとは逆方向に、Si導波路2Aからメタレンズ3を経て、コア1Aに伝搬してもよい。 Note that in the optical system 105 as well, the propagation direction of light is not limited. The light may propagate from the core 1A, where the optical spot size is relatively large, through the metalens 3, to the Si waveguide 2A, where the optical spot size is relatively small, or in the opposite direction, through the Si waveguide 2A, where the optical spot size is relatively small. It may also propagate from 2A to the core 1A via the metalens 3.
 光学システム105において、フォトニクス素子2は、PIN構造を有していてもよい。具体的には、スラブ部21とリッジ部22との積層方向から視て、スラブ部21は、リッジ部22に対して一方の側に形成されているp型不純物領域と、リッジ部22に対して他方の側に形成されているn型不純物領域とを有していてもよい。この場合、フォトニクス素子2は、p型不純物領域と電気的に接続されている電極と、n型不純物領域と電気的に接続されている電極とをさらに含んでいればよい。 In the optical system 105, the photonics element 2 may have a PIN structure. Specifically, when viewed from the stacking direction of the slab portion 21 and the ridge portion 22, the slab portion 21 has a p-type impurity region formed on one side with respect to the ridge portion 22, and a p-type impurity region formed on one side with respect to the ridge portion 22. and an n-type impurity region formed on the other side. In this case, the photonics element 2 may further include an electrode electrically connected to the p-type impurity region and an electrode electrically connected to the n-type impurity region.
 (実施の形態6) (Embodiment 6)
 図21を参照して、実施の形態6に係る光学システム106について説明する。実施の形態6に係る光学システム106は、実施の形態1~5のいずれかの光学システム101~105と基本的に同様の構成を備え同様の効果を奏するが、光ファイバ1が複数のコア1Aを含み、かつメタレンズ3が複数のメタサーフェス3Eを含む点で、光学システム101~105とは異なる。以下、光学システム106が光学システム101~105とは異なる点を主に説明する。 The optical system 106 according to the sixth embodiment will be described with reference to FIG. 21. Optical system 106 according to Embodiment 6 has basically the same configuration as optical system 101 to 105 of any of Embodiments 1 to 5, and produces similar effects, but optical fiber 1 has a plurality of cores 1A. It differs from the optical systems 101 to 105 in that the metalens 3 includes a plurality of metasurfaces 3E. The following will mainly explain the differences between the optical system 106 and the optical systems 101 to 105.
 光ファイバ1は、マルチコアファイバである。複数のコア1Aの各々は、例えばシングルモードファイバである。平面視において、複数のコア1Aは、互いに間隔を空けて配置されている。クラッド1Bは、複数のコア1A間を隔てている。平面視における複数のコア1Aの配列は、制限されない。図21に示される複数のコア1Aは、光ファイバ1の中心軸C1に対して互いに回転対称の関係にある。なお、平面視において、複数のコア1Aは、各コア1Aの中心軸が正方格子、三角格子、又は六角格子の格子点を成すように配置されていてもよい。また、複数のコア1Aは、光ファイバ1の中心軸C1に対して互いに回転対称の関係になくてもよい。 The optical fiber 1 is a multi-core fiber. Each of the plurality of cores 1A is, for example, a single mode fiber. In plan view, the plurality of cores 1A are arranged at intervals from each other. The cladding 1B separates the plurality of cores 1A. The arrangement of the plurality of cores 1A in plan view is not limited. The plurality of cores 1A shown in FIG. 21 are rotationally symmetrical with respect to the central axis C1 of the optical fiber 1. Note that, in plan view, the plurality of cores 1A may be arranged such that the central axis of each core 1A forms a lattice point of a square lattice, a triangular lattice, or a hexagonal lattice. Furthermore, the plurality of cores 1A do not have to be rotationally symmetrical with respect to the central axis C1 of the optical fiber 1.
 複数のコア1Aの各々は、例えば互いに同等の特性を有している。なお、複数のコア1Aは、互いに異なる特性を有していてもよい。例えば、光ファイバ1が、平面視において光ファイバ1の中心軸C1上に配置されている中央コアと、中心コアの周囲に配置されており互いに回転対称の関係にある複数の周辺コアとを含む場合、中央コアのコア径が各周辺コアのコア径よりも大きくてもよい。 Each of the plurality of cores 1A has, for example, mutually equivalent characteristics. Note that the plurality of cores 1A may have different characteristics from each other. For example, the optical fiber 1 includes a central core disposed on the central axis C1 of the optical fiber 1 in plan view, and a plurality of peripheral cores disposed around the central core and rotationally symmetrical to each other. In this case, the core diameter of the central core may be larger than the core diameter of each peripheral core.
 各コア1Aの第1端面1A1の寸法(コア径W1)は、第2導波路の第2端面2A1の幅W2及び厚さT0の各々よりも大きい。各コア径W1は、1μm以上20μm以下であり、好ましくは5μm以上10μm以下である。 The dimension (core diameter W1) of the first end surface 1A1 of each core 1A is larger than each of the width W2 and the thickness T0 of the second end surface 2A1 of the second waveguide. Each core diameter W1 is 1 μm or more and 20 μm or less, preferably 5 μm or more and 10 μm or less.
 メタレンズ3は、複数のコア1Aの各々から出射した光を、1つの第2導波路(例えばSi導波路2A)に集光する。複数のメタサーフェス3Eの各々には、1つのコア1Aから出射した光が入射する。複数のメタサーフェス3Eから出射した光は、いずれもSi導波路2Aに入射する。つまり、各メタサーフェス3Eは、1つのコア1AとSi導波路2Aとの間を光学的に接続している。 The metalens 3 focuses the light emitted from each of the plurality of cores 1A onto one second waveguide (for example, the Si waveguide 2A). Light emitted from one core 1A enters each of the plurality of metasurfaces 3E. All of the light emitted from the plurality of metasurfaces 3E enters the Si waveguide 2A. That is, each metasurface 3E optically connects one core 1A and the Si waveguide 2A.
 複数のメタサーフェス3Eの各々は、上述したメタサーフェス3A、メタサーフェス3B、メタサーフェス3C、及びメタサーフェス3Dのいずれかである。複数のメタサーフェス3Eの各々は、各メタサーフェス3Eから出射した光がSi導波路2Aの第2端面2A1で焦点を結ぶように設けられている。具体的には、各メタサーフェス3Eから出射する光の伝搬方向が、各メタサーフェス3Eから出射した光がSi導波路2Aの第2端面2A1で焦点を結ぶように設定されている。 Each of the plurality of metasurfaces 3E is one of the above-mentioned metasurfaces 3A, metasurfaces 3B, metasurfaces 3C, and metasurfaces 3D. Each of the plurality of metasurfaces 3E is provided so that the light emitted from each metasurface 3E is focused on the second end surface 2A1 of the Si waveguide 2A. Specifically, the propagation direction of the light emitted from each metasurface 3E is set so that the light emitted from each metasurface 3E is focused on the second end surface 2A1 of the Si waveguide 2A.
 平面視における複数のメタサーフェス3Eの配列は、複数のコア1Aの配列に応じて設定される。図21に示される複数のメタサーフェス3Eは、光ファイバ1の中心軸C1に対して互いに回転対称の関係にある。複数のメタサーフェス3Eの回転対称軸をメタレンズ3の中心軸とすると、メタレンズ3の中心軸は光ファイバ1の中心軸C1と同一直線上に配置される。 The arrangement of the plurality of metasurfaces 3E in plan view is set according to the arrangement of the plurality of cores 1A. The plurality of metasurfaces 3E shown in FIG. 21 are rotationally symmetrical with respect to the central axis C1 of the optical fiber 1. If the rotational symmetry axis of the plurality of metasurfaces 3E is the central axis of the metalens 3, the central axis of the metalens 3 is arranged on the same straight line as the central axis C1 of the optical fiber 1.
 なお、平面視において、複数のメタサーフェス3Eは、各メタサーフェス3Eの中心が正方格子、三角格子、又は六角格子の格子点を成すように配置されていてもよい。また、複数のメタサーフェス3Eは、光ファイバ1の中心軸C1に対して互いに回転対称の関係になくてもよい。 Note that, in plan view, the plurality of metasurfaces 3E may be arranged such that the center of each metasurface 3E forms a lattice point of a square lattice, a triangular lattice, or a hexagonal lattice. Furthermore, the plurality of metasurfaces 3E do not have to be rotationally symmetrical with respect to the central axis C1 of the optical fiber 1.
 各メタサーフェス3Eの複数の電磁波散乱体は、例えば第1端面と第2端面との間の光の伝搬方向に対して直交する方向に配列している。各メタサーフェス3Eがメタサーフェス3Aである場合、各メタサーフェス3Aの複数の凹凸構造31Dは、例えばコア1Aの中心軸C1及びSi導波路2Aの中心軸C2と直交する方向に配列している。各メタサーフェス3Aの貫通孔31Cの中心軸は、例えばコア1Aの中心軸C1及びSi導波路2Aの中心軸C2と平行である。各メタサーフェス3Eがメタサーフェス3C又はメタサーフェス3Dである場合、複数の柱状体32又は複数の球状体35は、例えばコア1Aの中心軸C1及びSi導波路2Aの中心軸C2と直交する方向に配列している。 The plurality of electromagnetic wave scatterers of each metasurface 3E are arranged, for example, in a direction perpendicular to the propagation direction of light between the first end face and the second end face. When each metasurface 3E is a metasurface 3A, the plurality of uneven structures 31D of each metasurface 3A are arranged, for example, in a direction perpendicular to the central axis C1 of the core 1A and the central axis C2 of the Si waveguide 2A. The central axis of the through hole 31C of each metasurface 3A is parallel to, for example, the central axis C1 of the core 1A and the central axis C2 of the Si waveguide 2A. When each metasurface 3E is a metasurface 3C or a metasurface 3D, the plurality of columnar bodies 32 or the plurality of spherical bodies 35 are arranged, for example, in a direction perpendicular to the central axis C1 of the core 1A and the central axis C2 of the Si waveguide 2A. Arranged.
 図22は、複数のメタサーフェス3Eの各々がブルズアイ構造のメタサーフェス3Aであって、平面視において各メタサーフェス3Eの中心が正方格子の格子点を成すように配置されている構成例を示している。各メタサーフェス3E(3A)の中心とは、各メタサーフェス3Eの外形線の中心を意味する。複数のメタサーフェス3E(3A)は、例えば1つの導電体層31に形成されており、1つの基板4によって支持されている。 FIG. 22 shows a configuration example in which each of the plurality of metasurfaces 3E is a metasurface 3A having a bull's eye structure, and the center of each metasurface 3E is arranged so as to form a lattice point of a square lattice in plan view. There is. The center of each metasurface 3E (3A) means the center of the outline of each metasurface 3E. The plurality of metasurfaces 3E (3A) are formed, for example, on one conductor layer 31 and supported by one substrate 4.
 なお、複数のメタサーフェス3Eの各々は、互いに異なる導電体層31に形成されていてもよい。複数のメタサーフェス3Eの各々は、互いに異なる基板4に支持されていてもよい。 Note that each of the plurality of metasurfaces 3E may be formed on a different conductor layer 31. Each of the plurality of metasurfaces 3E may be supported by a mutually different substrate 4.
 図22に示されるメタレンズ3においても、各メタサーフェス3E(3A)からSi導波路2Aに向けて出射する光の伝搬方向は、各メタサーフェス3E(3A)から出射した光がSi導波路2Aの第2端面2A1で焦点を結ぶように設定されている。 In the metalens 3 shown in FIG. 22, the propagation direction of the light emitted from each metasurface 3E (3A) toward the Si waveguide 2A is such that the light emitted from each metasurface 3E (3A) is directed toward the Si waveguide 2A. It is set to focus on the second end surface 2A1.
 図22に示されるように、平面視において、各メタサーフェス3E(3A)の貫通孔31Cの中心軸は、当該メタサーフェス3E(3A)の中心に対して焦点Fとは反対側には配置されている。平面視において、各メタサーフェス3E(3A)の貫通孔31Cの中心軸は、当該メタサーフェス3E(3A)の中心と焦点Fとを結ぶ仮想直線上に配置されていてもよい。平面視において、1つのメタサーフェス3E1の貫通孔31Cの中心軸C5は、メタサーフェス3E1の中心C6と焦点Fとを結ぶ仮想直線上に配置されていてもよい。平面視において、メタサーフェス3E1よりも焦点Fから遠いメタサーフェス3E2の貫通孔31Cの中心軸C7は、メタサーフェス3E2の中心C8と焦点Fとを結ぶ仮想直線上に配置されていてもよい。メタサーフェス3E2の上記仮想直線は、メタサーフェス3E1の仮想直線と同一直線上に配置されていてもよい。 As shown in FIG. 22, in plan view, the central axis of the through hole 31C of each metasurface 3E (3A) is located on the opposite side of the focal point F with respect to the center of the metasurface 3E (3A). ing. In plan view, the central axis of the through hole 31C of each metasurface 3E (3A) may be arranged on a virtual straight line connecting the center of the metasurface 3E (3A) and the focal point F. In plan view, the central axis C5 of the through hole 31C of one metasurface 3E1 may be arranged on a virtual straight line connecting the center C6 of the metasurface 3E1 and the focal point F. In plan view, the central axis C7 of the through hole 31C of the metasurface 3E2, which is farther from the focal point F than the metasurface 3E1, may be arranged on a virtual straight line connecting the center C8 of the metasurface 3E2 and the focal point F. The virtual straight line of the metasurface 3E2 may be arranged on the same straight line as the virtual straight line of the metasurface 3E1.
 図22に示されるように、平面視において、各メタサーフェス3E(3A)の中心と当該メタサーフェス3E(3A)の貫通孔31Cの中心軸との間の距離は、メタサーフェス3Eの中心とメタレンズ3の焦点Fとの間の距離が短いほど、短くてもよい。メタサーフェス3E1の貫通孔31Cの中心軸C5とメタサーフェス3E1の中心C6との間の距離は、メタサーフェス3E2の貫通孔31Cの中心軸C7とメタサーフェス3E2の中心C8との間の距離よりも短くてもよい。 As shown in FIG. 22, in plan view, the distance between the center of each metasurface 3E (3A) and the central axis of the through hole 31C of the metasurface 3E (3A) is the distance between the center of the metasurface 3E and the metalens. The shorter the distance from the focal point F of No. 3, the shorter the distance may be. The distance between the central axis C5 of the through hole 31C of the metasurface 3E1 and the center C6 of the metasurface 3E1 is longer than the distance between the central axis C7 of the through hole 31C of the metasurface 3E2 and the center C8 of the metasurface 3E2. It can be short.
 なお、光学システム106においても、光の伝搬方向が制限されない。光は、光スポットサイズが相対的に大きい複数のコア1Aの各々から、メタレンズ3の各メタサーフェス3Eを経て、光スポットサイズが相対的に小さいSi導波路2Aへ伝搬してもよいし、これとは逆方向に、Si導波路2Aからメタレンズ3の各メタサーフェス3Eを経て、複数のコア1Aの各々に伝搬してもよい。 Note that the propagation direction of light is not limited in the optical system 106 either. The light may propagate from each of the plurality of cores 1A with a relatively large optical spot size, through each metasurface 3E of the metalens 3, to the Si waveguide 2A with a relatively small optical spot size. In the opposite direction, the light may propagate from the Si waveguide 2A through each metasurface 3E of the metalens 3 to each of the plurality of cores 1A.
 <光学システムの変形例> <Modified example of optical system>
 光学システム106において、各メタサーフェス3Eの複数の電磁波散乱体は、第1端面と第2端面との間の光の伝搬方向に対して鈍角または鋭角を成して傾斜する方向に配列していてもよい。各メタサーフェス3Eがメタサーフェス3Aである場合、各メタサーフェス3Aの複数の凹凸構造31Dは、例えばコア1Aの中心軸C1及びSi導波路2Aの中心軸C2に対して鈍角または鋭角を成して傾斜する方向に配列していてもよい。各メタサーフェス3Eがメタサーフェス3C又はメタサーフェス3Dである場合、複数の柱状体32又は複数の球状体35は、コア1Aの中心軸C1及びSi導波路2Aの中心軸C2と鈍角又は鋭角を成す方向に配列していてもよい。このような場合であって、各メタサーフェス3Eが互いに異なる基板4に支持されている場合には、各メタサーフェス3Eと各コア1Aの第1端面1A1との間の距離は可能な限り短くかつ互いに等しく設定されてもよい。 In the optical system 106, the plurality of electromagnetic wave scatterers of each metasurface 3E are arranged in a direction inclined at an obtuse angle or an acute angle with respect to the propagation direction of light between the first end surface and the second end surface. Good too. When each metasurface 3E is a metasurface 3A, the plurality of uneven structures 31D of each metasurface 3A form an obtuse or acute angle with respect to the central axis C1 of the core 1A and the central axis C2 of the Si waveguide 2A, for example. They may be arranged in an inclined direction. When each metasurface 3E is a metasurface 3C or a metasurface 3D, the plurality of columnar bodies 32 or the plurality of spherical bodies 35 form an obtuse or acute angle with the central axis C1 of the core 1A and the central axis C2 of the Si waveguide 2A. They may be arranged in the direction. In such a case, if each metasurface 3E is supported by a different substrate 4, the distance between each metasurface 3E and the first end surface 1A1 of each core 1A should be as short as possible. They may be set equal to each other.
 光学システム106では、フォトニクス素子2が複数の第2導波路を含んでいてもよい。第2導波路の数は、第1導波路の数以下であればよい。図23に示されるように、第2導波路の数は、第1導波路の数と等しくてもよい。複数のコア1Aの各々から出射した光は、互いに異なるメタサーフェス3Eを経て、互いに異なるSi導波路2Aに入射してもよい。つまり、光学システム106は、光学システム101~105において実現される光学系(1つの第1導波路と1つの第2導波路とが1つのメタレンズ(メタサーフェス3E)を介して光学的に接続されてなる光学系)を複数セット備えていてもよい。光学システム106において、複数の光学系は、互いに同等の構成を有していてもよいし、互いに異なる構成を有していてもよい。複数の光学系の配列は、特に制限されないが、例えば水平方向に並んで配置されていてもよい。 In the optical system 106, the photonics element 2 may include a plurality of second waveguides. The number of second waveguides may be less than or equal to the number of first waveguides. As shown in FIG. 23, the number of second waveguides may be equal to the number of first waveguides. The light emitted from each of the plurality of cores 1A may pass through different metasurfaces 3E and enter different Si waveguides 2A. In other words, the optical system 106 is an optical system realized in the optical systems 101 to 105 (one first waveguide and one second waveguide are optically connected via one metalens (metasurface 3E)). The optical system may include multiple sets of optical systems. In the optical system 106, the plurality of optical systems may have mutually equivalent configurations or may have mutually different configurations. Although the arrangement of the plurality of optical systems is not particularly limited, they may be arranged side by side in the horizontal direction, for example.
 (実施の形態7) (Embodiment 7)
 図24を参照して、実施の形態7に係る光学システム107について説明する。実施の形態7に係る光学システム107は、実施の形態1~6のいずれかの光学システム101~106に加え、情報出力部201及び情報入力部202をさらに備える点で、光学システム101~106とは異なる。以下、光学システム107が光学システム101~106とは異なる点を主に説明する。 With reference to FIG. 24, optical system 107 according to Embodiment 7 will be described. Optical system 107 according to Embodiment 7 is different from optical systems 101 to 106 in that it further includes an information output section 201 and an information input section 202 in addition to optical systems 101 to 106 of any of Embodiments 1 to 6. is different. The following will mainly explain the differences between optical system 107 and optical systems 101 to 106.
 情報出力部201は、例えば、電子回路と、電子回路を流れる電気信号に応じた光信号を出力する光電変換部(すなわち、光源)と、光電変換部から出力された光信号の位相変調を行う光変調器と、光変調器にて位相変調された光を集光する集光要素とを含む。情報入力部202は、例えば、光変調器と、光電変換部と、電子回路とを含む。 The information output unit 201 includes, for example, an electronic circuit, a photoelectric conversion unit (i.e., a light source) that outputs an optical signal according to an electric signal flowing through the electronic circuit, and a phase modulation of the optical signal output from the photoelectric conversion unit. It includes an optical modulator and a condensing element that condenses the light phase-modulated by the optical modulator. The information input section 202 includes, for example, an optical modulator, a photoelectric conversion section, and an electronic circuit.
 光学システム107では、図24に示されるように、光学システム101~106のいずれかのコア1Aが光信号を出力する情報出力部201と光学的に接続され、Si導波路2Aは光信号が入力される情報入力部202と光学的に接続されていてもよい。この場合、コア1Aは、情報出力部201の集光要素と光学的に接続されている。コア1Aには、集光要素にて集光された光が入射する。Si導波路2Aは、情報入力部202の光変調器と光学的に接続されている。Si導波路2Aから出射した光は、情報入力部202の光変調器にて位相変調された後、光電変換部にて電子信号に変換され、電子回路に送信される。 In the optical system 107, as shown in FIG. 24, the core 1A of any one of the optical systems 101 to 106 is optically connected to the information output section 201 that outputs an optical signal, and the Si waveguide 2A is connected to the optical signal input. The information input unit 202 may be optically connected to the information input unit 202. In this case, the core 1A is optically connected to the condensing element of the information output section 201. Light focused by the light focusing element is incident on the core 1A. The Si waveguide 2A is optically connected to the optical modulator of the information input section 202. The light emitted from the Si waveguide 2A is phase modulated by the optical modulator of the information input section 202, then converted into an electronic signal by the photoelectric conversion section, and transmitted to the electronic circuit.
 つまり、図24に示される光学システム107では、信号が、情報出力部201の電子回路、光電変換部、光変調器、集光要素、光学システム101~106のいずれかのコア1A、メタレンズ3、Si導波路2A、情報入力部202の光変調器、光電変換部、及び電子回路、を順に伝わる。 That is, in the optical system 107 shown in FIG. 24, the signal is transmitted to the electronic circuit of the information output section 201, the photoelectric conversion section, the optical modulator, the condensing element, the core 1A of any of the optical systems 101 to 106, the metalens 3, The light is transmitted in this order through the Si waveguide 2A, the optical modulator of the information input section 202, the photoelectric conversion section, and the electronic circuit.
 他方、光学システム107では、図25に示されるように、光学システム101~106のいずれかのSi導波路2Aが情報出力部201と光学的に接続され、コア1A号が情報入力部202と光学的に接続されていてもよい。この場合、Si導波路2Aは、情報出力部201の光変調器と光学的に接続されている。コア1Aは、情報入力部202の集光要素と光学的に接続されている。 On the other hand, in the optical system 107, as shown in FIG. may be connected to each other. In this case, the Si waveguide 2A is optically connected to the optical modulator of the information output section 201. The core 1A is optically connected to a condensing element of the information input section 202.
 つまり、図25に示される光学システム107では、信号が、情報出力部201の電子回路、光電変換部、光変調器、光学システム101~106のいずれかのSi導波路2A、メタレンズ3、コア1A、情報入力部202の集光要素、光変調器、光電変換部、及び電子回路、を順に伝わる。 That is, in the optical system 107 shown in FIG. 25, the signal is transmitted to the electronic circuit of the information output section 201, the photoelectric conversion section, the optical modulator, the Si waveguide 2A of any of the optical systems 101 to 106, the metalens 3, and the core 1A. , the light condensing element of the information input section 202, the optical modulator, the photoelectric conversion section, and the electronic circuit in this order.
 なお、情報出力部201は、少なくとも光信号を出力する光源を含んでいればよい。また、情報出力部201は、集光要素として、光学レンズを含んでいてもよいし、光学システム101~106のメタレンズ3を含んでいてもよい。 Note that the information output unit 201 only needs to include at least a light source that outputs an optical signal. Furthermore, the information output unit 201 may include an optical lens as a condensing element, or may include the metalens 3 of the optical systems 101 to 106.
 <実験例> <Experiment example>
 以下に、上述した各メタレンズの光学特性の評価結果を、図面も参照して説明する。 Below, the evaluation results of the optical properties of each metalens described above will be explained with reference to the drawings.
 <間隔Pが互いに異なる、ブルズアイ構造のメタサーフェスを有するメタレンズの集光性能> <Light-gathering performance of metalens having a bull's-eye structured metasurface with different spacing P>
 (1)実験例1~8 (1) Experimental examples 1 to 8
 実験例1~7として、図3に示される平面構造を有し、かつ図11に示される断面構造を有する、ブルズアイ構造のメタサーフェスを有するメタレンズを作製した。具体的には、ガラス基板上に電子線レジスト(NEB-22)をスピンコートで塗布し、電子ビーム描画装置(ELS-F125HS、ELIONIX社)を用いて電子線レジストに露光すし、複数のレジストパターンを同心円状に形成した。複数のレジストパターンの間隔は1550nm、1310nm、1000nm、または900nmとした。マグネトロンスパッタコーター(Q-150TES、Quorum Technologies社)を用いて、スパッタリング法によって、ガラス基板上に銀からなる導電膜を形成した。その後、ガラス基板上の導電膜をジメチルアセトアミド溶液に浸漬させ、レジストパターン上の余分な導電膜をリフトオフした。このようにして、図11に示される断面構造を有し、かつ複数の凹凸構造31Dの各々の間隔Pがレジストパターンの上記間隔に応じて互いに異なる実験例1~7のメタレンズ3を作製した。さらに、ガラス基板のみからなる実験例8を準備した。 As Experimental Examples 1 to 7, metalens having a bull's-eye structured metasurface having the planar structure shown in FIG. 3 and the cross-sectional structure shown in FIG. 11 were produced. Specifically, an electron beam resist (NEB-22) is applied onto a glass substrate by spin coating, and then exposed to the electron beam resist using an electron beam lithography system (ELS-F125HS, ELIONIX) to create multiple resist patterns. were formed in concentric circles. The intervals between the plurality of resist patterns were set to 1550 nm, 1310 nm, 1000 nm, or 900 nm. A conductive film made of silver was formed on a glass substrate by a sputtering method using a magnetron sputter coater (Q-150TES, Quorum Technologies). Thereafter, the conductive film on the glass substrate was immersed in a dimethylacetamide solution to lift off the excess conductive film on the resist pattern. In this way, the metalens 3 of Experimental Examples 1 to 7, which had the cross-sectional structure shown in FIG. 11 and in which the distance P between each of the plurality of concavo-convex structures 31D was different from each other according to the above-mentioned distance of the resist pattern, was manufactured. Furthermore, Experimental Example 8 consisting of only a glass substrate was prepared.
 なお、実験例1~7の各々について、複数の凹凸構造31Dの各々の間隔Pに対する複数の環状溝31Eの各々の幅(W5)の比率(W5/P)は、50%とした。また、実験例1~7の各々について、貫通孔31Cの孔径(W3)は、上記幅(W5)と同等とした。 For each of Experimental Examples 1 to 7, the ratio (W5/P) of the width (W5) of each of the plurality of annular grooves 31E to the interval P of each of the plurality of uneven structures 31D was set to 50%. Further, in each of Experimental Examples 1 to 7, the hole diameter (W3) of the through hole 31C was made equal to the above width (W5).
 (2)集光性能の評価方法 (2) Evaluation method of light gathering performance
 実験例1~8の各々に、波長1550nm及び1310nmの光(直線偏光)をコリメート光となるように照射した。実験例1~7については、光が貫通孔31Cに集光されるように照射した。メタレンズから出射された光を、対物レンズを用いてイメージセンサに結像させ、得られた画像から、直線偏光の偏光面上での広がり角度Xと、直線偏光の偏光面と直交する平面上での広がり角度Yとを評価した。 Each of Experimental Examples 1 to 8 was irradiated with light (linearly polarized light) with wavelengths of 1550 nm and 1310 nm so as to become collimated light. In Experimental Examples 1 to 7, the light was irradiated so as to be focused on the through hole 31C. The light emitted from the metalens is imaged on an image sensor using an objective lens, and from the obtained image, the spread angle X on the polarization plane of linearly polarized light and the spread angle The spread angle Y was evaluated.
 各サンプルの集光性能を、上記広がり角度X、Yに対して以下の基準に基づいて評価した。
S:4.00°未満
A:4.00°以上5.50°未満
B:5.50°以上7.50°未満
C:7.50°以上9.00°未満
D:9.00°以上
The light collection performance of each sample was evaluated based on the following criteria with respect to the spread angles X and Y described above.
S: Less than 4.00° A: 4.00° or more and less than 5.50° B: 5.50° or more and less than 7.50° C: 7.50° or more and less than 9.00° D: 9.00° or more
 (3)評価結果
評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000005
(3) Evaluation results The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000005
 表1に示されるように、実験例1~7では、実験例8と比べて、広がり角度X及びYが小さく、高い集光性能を示すことが確認された。比率P/λが0.58よりも高い実験例1~6では、比率P/λが0.58である実験例7と比べて、広がり角度X及びYが小さく、さらに高い集光性能を示すことが確認された。比率P/λが0.65よりも高い実験例1~5では、比率P/λが0.65である実験例6と比べて、広がり角度Yが小さく、さらに高い集光性能を示すことが確認された。比率P/λが0.69よりも高い実験例1~4では、比率P/λが0.69である実験例5と比べて、広がり角度X及びYが小さく、さらに高い集光性能を示すことが確認された。比率P/λが0.58よりも高く1.00よりも低い実験例3~7では、広がり角度Yが広がり角度Xよりも小さい傾向が確認された。比率P/λが1.00よりも高い実験例1~2では、広がり角度Xが広がり角度Yと同程度に小さい傾向が確認された。広がり角度Yは、比率P/λが0.69よりも大きく1.00よりも小さい実験例3,4において最も小さかった。 As shown in Table 1, it was confirmed that in Experimental Examples 1 to 7, the spread angles X and Y were smaller than in Experimental Example 8, and that they exhibited high light focusing performance. In Experimental Examples 1 to 6, in which the ratio P/λ is higher than 0.58, the spread angles X and Y are smaller than in Experimental Example 7, in which the ratio P/λ is 0.58, and exhibit even higher light collection performance. This was confirmed. In Experimental Examples 1 to 5, in which the ratio P/λ is higher than 0.65, the spread angle Y is smaller than in Experimental Example 6, in which the ratio P/λ is 0.65, and it is possible to show even higher light collection performance. confirmed. In Experimental Examples 1 to 4, in which the ratio P/λ is higher than 0.69, the spread angles X and Y are smaller than in Experimental Example 5, in which the ratio P/λ is 0.69, and exhibit even higher light collection performance. This was confirmed. In Experimental Examples 3 to 7 where the ratio P/λ was higher than 0.58 and lower than 1.00, it was confirmed that the spread angle Y tended to be smaller than the spread angle X. In Experimental Examples 1 and 2 where the ratio P/λ was higher than 1.00, it was confirmed that the spread angle X tended to be as small as the spread angle Y. The spread angle Y was the smallest in Experimental Examples 3 and 4, where the ratio P/λ was greater than 0.69 and less than 1.00.
 <比率W5/Pが異なるブルズアイ構造のメタサーフェスを有するメタレンズの集光性能> <Light-gathering performance of metalens having bull's-eye structure metasurfaces with different ratios W5/P>
 (4)実験例9~13、及び実験例9~13の集光性能の評価方法 (4) Experimental Examples 9 to 13 and evaluation method of light collection performance of Experimental Examples 9 to 13
 実験例9~13として、電磁気学計算ソフトMEEPを用いて、図3に示される平面構造を有し、かつ図11に示される断面構造を有する、ブルズアイ構造のメタサーフェスを有するメタレンズをデザインした。実験例9~13は、それぞれの間隔Pが1550nmで共通とし、複数の環状溝31Eの各々の幅W5のみが互いに異なるものとした。つまり、実験例9~13は、比率W5/Pが互いに異なるものとした。 As Experimental Examples 9 to 13, using the electromagnetic calculation software MEEP, a metalens having a bull's-eye structure metasurface having the planar structure shown in FIG. 3 and the cross-sectional structure shown in FIG. 11 was designed. Experimental Examples 9 to 13 had a common interval P of 1550 nm, and only the width W5 of each of the plurality of annular grooves 31E was different from each other. That is, in Experimental Examples 9 to 13, the ratio W5/P was different from each other.
 各実験例の集光性能として、上記計算ソフトを用いて各実験例に波長が1550nmである平面波を入射した際の透過強度、反射強度、及び構造周辺の電場強度をシミュレーションし、算出された各実験例の反射強度に対する透過強度の比率を、以下の基準に基づいて評価した。
S:0.40以上
A:0.20以上0.40未満
B:0.04以上0.20未満
The light focusing performance of each experimental example was calculated by simulating the transmitted intensity, reflected intensity, and electric field strength around the structure when a plane wave with a wavelength of 1550 nm was incident on each experimental example using the above calculation software. The ratio of transmitted intensity to reflected intensity in the experimental example was evaluated based on the following criteria.
S: 0.40 or more A: 0.20 or more and less than 0.40 B: 0.04 or more and less than 0.20
 (5)評価結果
評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000006
(5) Evaluation results The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000006
 表2に示されるように、比率W5/Pが.34.0%以上である実験例9~13の反射強度に対する透過強度の比率は、0.04以上であった。比率W5/Pが43.0%よりも高い実験例9~11の反射強度に対する透過強度の比率は、0.20以上であり、比率W5/Pが43.0%以下である実験例12,13のそれと比べて高いことが確認された。つまり、比率W5/Pが43.0%よりも高い実験例9~11の集光性能は、比率W5/Pが43.0%以下である実験例12,13のそれと比べて高いことが確認された。比率W5/Pが50.0%よりも高い実験例9,10の反射強度に対する透過強度の比率は、0.40以上であり、比率W5/Pが50.0%である実験例11のそれと比べて、さらに高いことが確認された。つまり、比率W5/Pが50.0%よりも高い実験例9,10の集光性能は、比率W5/Pが50.0%である実験例11のそれと比べて、さらに高いことが確認された。 As shown in Table 2, the ratio W5/P is . The ratio of transmitted intensity to reflected intensity in Experimental Examples 9 to 13, which was 34.0% or more, was 0.04 or more. In Experimental Examples 9 to 11 where the ratio W5/P is higher than 43.0%, the ratio of the transmitted intensity to the reflected intensity is 0.20 or more, and Experimental Example 12 where the ratio W5/P is 43.0% or lower, It was confirmed that it was higher than that of No. 13. In other words, it was confirmed that the light focusing performance of Experimental Examples 9 to 11 where the ratio W5/P is higher than 43.0% is higher than that of Experimental Examples 12 and 13 where the ratio W5/P is 43.0% or less. It was done. The ratio of transmitted intensity to reflected intensity in Experimental Examples 9 and 10 where the ratio W5/P is higher than 50.0% is 0.40 or more, and is different from that in Experimental Example 11 where the ratio W5/P is 50.0%. It was confirmed that it was even higher. In other words, it was confirmed that the light focusing performance of Experimental Examples 9 and 10 where the ratio W5/P is higher than 50.0% is even higher than that of Experimental Example 11 where the ratio W5/P is 50.0%. Ta.
 <断面構造の異なるブルズアイ構造のメタサーフェスを有するメタレンズの集光性能> <Light-gathering performance of metalens with bull's-eye metasurfaces with different cross-sectional structures>
 (6)実験例14,15、及び実験例14,15の集光性能の評価方法 (6) Experimental Examples 14 and 15, and evaluation method of light collection performance of Experimental Examples 14 and 15
 実験例14,15として、電磁気学計算ソフトMEEPを用いて、図3に示される平面構造を有し、かつ図2に示される断面構造または図11に示される断面構造を有する、ブルズアイ構造のメタサーフェスを有するメタレンズをデザインした。実験例14のメタサーフェスの断面構造は図11に示される構造とし、実験例15のメタサーフェスの断面構造は図2に示される構造とした。実験例14,15のその他の構成は互いに同等とした。実験例14,15のそれぞれの間隔Pは1550nm、それぞれの比率W5/Pは100%とした。 As Experimental Examples 14 and 15, electromagnetic calculation software MEEP was used to create a bull's eye structure meta having the planar structure shown in FIG. 3 and the cross-sectional structure shown in FIG. 2 or the cross-sectional structure shown in FIG. We designed a metalens with a surface. The cross-sectional structure of the metasurface in Experimental Example 14 was as shown in FIG. 11, and the cross-sectional structure of the metasurface in Experimental Example 15 was as shown in FIG. The other configurations of Experimental Examples 14 and 15 were made equivalent to each other. In Experimental Examples 14 and 15, each interval P was 1550 nm, and each ratio W5/P was 100%.
 各実験例の集光性能として、上記電磁気学計算ソフトを用いて各実験例に波長が1300nm~1900nmの範囲内の平面波を入射した際の透過スペクトル及び反射スペクトルをシミュレーションし、上記シミュレーションにより算出された各実験例の反射強度及び透過強度に基づいて、透過特性及び反射特性を以下の基準に基づいて評価した。なお、各強度は、規格化された強度(任意単位a.u.)とした。
透過特性の評価基準A:強度0.04以上のピークが存在
透過特性の評価基準S:強度0.10以上のピークが存在
反射特性の評価基準A:上記波長域の全体にわたって強度が0.04未満
反射特性の評価基準S:上記波長域の全体にわたって強度が0.01未満
The light focusing performance of each experimental example was calculated by simulating the transmission spectrum and reflection spectrum when a plane wave with a wavelength within the range of 1300 nm to 1900 nm was incident on each experimental example using the electromagnetic calculation software described above. Based on the reflection intensity and transmission intensity of each experimental example, the transmission characteristics and reflection characteristics were evaluated based on the following criteria. Note that each intensity was a standardized intensity (arbitrary unit au).
Evaluation criterion for transmission characteristics A: The presence of a peak with an intensity of 0.04 or more.Evaluation criterion for transmission characteristics: The presence of a peak with an intensity of 0.10 or more.Evaluation criterion for reflection characteristics A: An intensity of 0.04 over the entire wavelength range mentioned above. Evaluation criteria for reflection characteristics S: Intensity is less than 0.01 over the entire wavelength range above
 (7)評価結果
評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000007
(7) Evaluation results The evaluation results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000007
 表3に示されるように、実験例14,15では、透過強度が十分に高く、かつ反射強度が十分に低いため、良好な集光性能を有していることが確認された。 As shown in Table 3, in Experimental Examples 14 and 15, the transmitted intensity was sufficiently high and the reflected intensity was sufficiently low, so it was confirmed that they had good light collection performance.
 <複数の凹凸構造の各々の中心が貫通孔の中心と重ならないように配置されているブルズアイ構造のメタサーフェスを有するメタレンズの集光性能> <Light-gathering performance of a metalens having a bull's-eye structured metasurface arranged so that the center of each of the plurality of uneven structures does not overlap with the center of the through hole>
 (8)実験例16~21、及び実験例16~21の集光性能の評価方法 (8) Experimental Examples 16 to 21 and evaluation method of light collection performance of Experimental Examples 16 to 21
 実験例16~21として、電磁気学計算ソフトMEEPを用いて、図9に示される平面構造を有し、かつ図11に示される断面構造を有する、ブルズアイ構造のメタサーフェスを有するメタレンズをデザインした。実験例16~21の各々について、上記第1間隔PAは1550nmで共通とし、上記比率W5A/PAは50%で共通とし、単位シフト量Sのみを段階的に変更させた。 As Experimental Examples 16 to 21, a metalens having a bull's-eye structure metasurface having the planar structure shown in FIG. 9 and the cross-sectional structure shown in FIG. 11 was designed using the electromagnetic calculation software MEEP. For each of Experimental Examples 16 to 21, the first interval PA was 1550 nm in common, the ratio W5A/PA was 50% in common, and only the unit shift amount S was changed stepwise.
 各実験例の集光性能として、上記電磁気学計算ソフトを用いて各実験例に波長が1550nmである平面波を入射した際に各実験例から出射される光の出射角度を算出した。 As the light collection performance of each experimental example, the emission angle of light emitted from each experimental example when a plane wave with a wavelength of 1550 nm was incident on each experimental example was calculated using the electromagnetic calculation software described above.
 (9)評価結果
評価結果を表4に示す。なお、表4では、単位シフト量S(単位:nm)を、第1間隔PAを用いた比率として記載する。
Figure JPOXMLDOC01-appb-T000008
(9) Evaluation results The evaluation results are shown in Table 4. Note that in Table 4, the unit shift amount S (unit: nm) is described as a ratio using the first interval PA.
Figure JPOXMLDOC01-appb-T000008
 表4に示されるように、単位シフト量Sが多くなるほど、光の出射角度が大きくなることが確認された。単位シフト量SがPA/16nmである実験例16では出射角度が3°であった。単位シフト量SがPA/8nmである実験例18では出射角度が16°であった。単位シフト量SがPA/4nmである実験例18では出射角度が40°であった。単位シフト量Sに応じて、図9に示されるメタレンズから出射される光の出射角度を適宜設定できることが確認された。 As shown in Table 4, it was confirmed that the larger the unit shift amount S, the larger the light emission angle. In Experimental Example 16 in which the unit shift amount S was PA/16 nm, the emission angle was 3°. In Experimental Example 18 in which the unit shift amount S was PA/8 nm, the emission angle was 16°. In Experimental Example 18 in which the unit shift amount S was PA/4 nm, the emission angle was 40°. It has been confirmed that the emission angle of light emitted from the metalens shown in FIG. 9 can be appropriately set according to the unit shift amount S.
 また、実験例17~21では、出射角度θ1が5°以上である場合、間隔P(単位:nm)及び距離S(単位:nm)が以下の関係式(1)を満足することが確認された。 In addition, in Experimental Examples 17 to 21, it was confirmed that when the output angle θ 1 is 5° or more, the interval P (unit: nm) and distance S (unit: nm) satisfy the following relational expression (1). It was done.
 <周期構造を有する位相格子を含むメタレンズの集光特性> <Light-gathering characteristics of a metalens containing a phase grating with a periodic structure>
 (10)実験例22~24、及び実験例22~24の集光性能の評価方法 (10) Experimental Examples 22 to 24 and method for evaluating light collection performance in Experimental Examples 22 to 24
 実験例22~24として、電磁気学計算ソフトMEEPを用いて、位相格子を含むメタレンズであって、図11に示される構造単位が中心軸に対する径方向に周期的に配置されている周期構造を含み、メタレンズの直径が互いに異なるメタレンズをデザインした。実験例22のメタレンズの直径は10μm、実験例23のメタレンズの直径は20μm、実験例24のメタレンズの直径は40μmとした。実験例22~24について、それぞれの柱状体の屈折率は3.5、開口数NAは0.7とした。なお、メタレンズの直径は、光ファイバ1のコア径として想定され得る10μm~40μmの範囲内で設定した。 As Experimental Examples 22 to 24, electromagnetic calculation software MEEP was used to construct a metalens containing a phase grating, which includes a periodic structure in which the structural units shown in FIG. 11 are arranged periodically in the radial direction with respect to the central axis. , designed metalens with different diameters. The diameter of the metalens in Experimental Example 22 was 10 μm, the diameter of the metalens in Experimental Example 23 was 20 μm, and the diameter of the metalens in Experimental Example 24 was 40 μm. For Experimental Examples 22 to 24, the refractive index of each columnar body was 3.5, and the numerical aperture NA was 0.7. Note that the diameter of the metalens was set within the range of 10 μm to 40 μm, which can be assumed as the core diameter of the optical fiber 1.
 各実験例の集光性能として、上記電磁気学計算ソフトを用いて各実験例に波長が1550nmである平面波を入射した際に、メタレンズに含まれる複数の柱状体の各々を伝搬した光の位相の空間分布をシミュレーションした。シミュレーションにより求められた各実験例の焦点距離を,以下の基準に基づいて評価した。
焦点距離の評価基準A:焦点距離がレンズ直径より小さい
焦点距離の評価基準S:焦点距離がレンズ直径より大きい
As for the light focusing performance of each experimental example, when a plane wave with a wavelength of 1550 nm is incident on each experimental example using the electromagnetic calculation software mentioned above, the phase of the light propagated through each of the plurality of columnar bodies included in the metalens is The spatial distribution was simulated. The focal length of each experimental example determined by simulation was evaluated based on the following criteria.
Focal length evaluation criteria A: Focal length is smaller than the lens diameter Focal length evaluation criteria S: Focal length is larger than the lens diameter
 シミュレーションでは、以下の関係式(3)を用いた。関係式(3)は、位相格子を含む各メタレンズがその中心軸からの距離rにおいて対象波長λの光に与える位相差と、各メタレンズの焦点距離fとの関係式である。関係式(3)を用いて、対象波長λが1550nmであるときに、実験例22~24の各メタレンズの直径Rを距離rに代入して焦点距離fを算出した。
Figure JPOXMLDOC01-appb-M000009
In the simulation, the following relational expression (3) was used. Relational expression (3) is a relational expression between the phase difference that each metalens including the phase grating gives to light of the target wavelength λ at a distance r from its central axis and the focal length f of each metalens. Using relational expression (3), when the target wavelength λ was 1550 nm, the focal length f was calculated by substituting the diameter R of each metalens of Experimental Examples 22 to 24 into the distance r.
Figure JPOXMLDOC01-appb-M000009
 (11)評価結果
評価結果を表5に示す。
Figure JPOXMLDOC01-appb-T000010
(11) Evaluation results The evaluation results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000010
 メタレンズの直径が10μmである場合、集光角度θ2が30°以上であると、光学システムを小型化する観点において焦点距離fが十分に短くできることが確認された。メタレンズの直径が20μm以上である場合、集光角度θ2が20°以上であっても、光学システムを小型化する観点において焦点距離fが十分に短くできることが確認された。他方、集光角度θ2が70°であると、光学システムとした場合に光軸方向の位置調整が難しいことを確認した。 It was confirmed that when the diameter of the metalens is 10 μm and the condensing angle θ 2 is 30° or more, the focal length f can be sufficiently shortened from the viewpoint of downsizing the optical system. It was confirmed that when the diameter of the metalens is 20 μm or more, the focal length f can be made sufficiently short from the viewpoint of downsizing the optical system even if the condensing angle θ 2 is 20° or more. On the other hand, it has been confirmed that when the condensing angle θ 2 is 70°, it is difficult to adjust the position in the optical axis direction when used as an optical system.
 1 光ファイバ、1A1 第1端面、1A コア、1B,2B クラッド、1C 中空部、1D 金属層、2 フォトニクス素子、2A1 第2端面、2A 導波路、2B1 第1クラッド層、2B2 第2クラッド層、2C Si基板、2D 結晶スラブ、2E 貫通孔、21 スラブ部、22 リッジ部、3 メタレンズ、3A,3B,3C,3D,3E,3E1,3E2 メタサーフェス、31C 貫通孔、31 導電体層、31A 第1面、31B 第2面、31D,31G 凹凸構造、31E,31H 環状溝、31F,31I 凸部、32,32A,32B 柱状体、33 充填部、34 基材、35,35A,35B 球状体、4 基板、4A 第3面、4B 第4面、101,102,103,104,105,106,107 光学システム、201 情報出力部、202 情報入力部。 1 Optical fiber, 1A1 first end surface, 1A core, 1B, 2B cladding, 1C hollow section, 1D metal layer, 2 photonics element, 2A1 second end surface, 2A waveguide, 2B1 first cladding layer, 2B2 second cladding layer, 2C Si substrate, 2D crystal slab, 2E through hole, 21 slab part, 22 ridge part, 3 metalens, 3A, 3B, 3C, 3D, 3E, 3E1, 3E2 metasurface, 31C through hole, 31 conductor layer, 31A No. 1 side, 31B 2nd side, 31D, 31G uneven structure, 31E, 31H annular groove, 31F, 31I convex part, 32, 32A, 32B columnar body, 33 filling part, 34 base material, 35, 35A, 35B spherical body, 4 Substrate, 4A third surface, 4B fourth surface, 101, 102, 103, 104, 105, 106, 107 optical system, 201 information output section, 202 information input section.

Claims (20)

  1.  第1導波路と、
     光スポットサイズが前記第1導波路とは異なる第2導波路と、
     前記第1導波路の第1端面と前記第2導波路の第2端面との間を光学的に接続するメタレンズとを備え、
     前記メタレンズは、前記第1導波路と対向する第1面と、前記第1面とは反対側を向いている第2面とを有し、
     前記メタレンズには、前記第1面と前記第2面との間を貫通する貫通孔が形成されており、
     前記貫通孔の孔径は、対象波長よりも小さく、
     前記メタレンズは、導電体により構成されており、
     前記メタレンズの少なくとも前記第1面には、前記第1面と、前記第1面に対して凹んでいる複数の環状溝とにより構成されている複数の凹凸構造が形成されており、
     前記複数の凹凸構造は、平面視において前記貫通孔を囲むように環状に形成されている、光学システム。
    a first waveguide;
    a second waveguide having a light spot size different from that of the first waveguide;
    a metalens optically connecting a first end surface of the first waveguide and a second end surface of the second waveguide,
    The metalens has a first surface facing the first waveguide, and a second surface facing opposite to the first surface,
    A through hole passing through between the first surface and the second surface is formed in the metalens,
    The hole diameter of the through hole is smaller than the target wavelength,
    The metalens is made of a conductor,
    A plurality of uneven structures are formed on at least the first surface of the metalens, and the plurality of uneven structures are formed by the first surface and a plurality of annular grooves recessed with respect to the first surface,
    In the optical system, the plurality of uneven structures are formed in an annular shape so as to surround the through hole in a plan view.
  2.  前記対象波長λ(単位:nm)に対する前記複数の凹凸構造の各々の間隔P(単位:nm)の比率(P/λ)が、30%以上140%以下である、請求項1に記載の光学システム。 The optical system according to claim 1, wherein a ratio (P/λ) of the interval P (unit: nm) of each of the plurality of uneven structures to the target wavelength λ (unit: nm) is 30% or more and 140% or less. system.
  3.  前記貫通孔の中心軸に対する径方向における前記複数の凹凸構造の各々の前記間隔Pに対して、前記複数の環状溝の各々の幅W5(単位:nm)が成す比率(W5/P)は、10%以上95%以下である、請求項2に記載の光学システム。 The ratio (W5/P) of the width W5 (unit: nm) of each of the plurality of annular grooves to the distance P of each of the plurality of uneven structures in the radial direction with respect to the central axis of the through hole is: The optical system according to claim 2, wherein the optical system is 10% or more and 95% or less.
  4.  平面視において、前記複数の凹凸構造の各々の中心は、前記貫通孔の中心と重なっている、請求項2に記載の光学システム。 The optical system according to claim 2, wherein the center of each of the plurality of uneven structures overlaps the center of the through hole in plan view.
  5.  平面視において、前記複数の凹凸構造の中心は、前記貫通孔の中心と重なっていない、請求項2に記載の光学システム。 The optical system according to claim 2, wherein the centers of the plurality of concavo-convex structures do not overlap the centers of the through holes in plan view.
  6.  前記複数の凹凸構造の各々の前記中心が、同一直線上に互いに等しい距離を隔てて並んで配置されており、
     前記貫通孔の中心軸と前記第2導波路の中心軸とが第1角度Θ1を成しており、
     前記第1角度Θ1が3°以上60°以下である、請求項5に記載の光学システム。
    The centers of each of the plurality of uneven structures are arranged side by side on the same straight line at equal distances from each other,
    A central axis of the through hole and a central axis of the second waveguide form a first angle Θ1 ,
    The optical system according to claim 5, wherein the first angle Θ 1 is 3° or more and 60° or less.
  7.  前記第1角度Θ1が5°以上である場合、前記間隔P及び前記距離S(単位:nm)が以下の関係式(1)を満足する、請求項6に記載の光学システム。
    Figure JPOXMLDOC01-appb-M000001
    The optical system according to claim 6, wherein when the first angle Θ 1 is 5 degrees or more, the interval P and the distance S (unit: nm) satisfy the following relational expression (1).
    Figure JPOXMLDOC01-appb-M000001
  8.  前記対象波長の光に対して透明でありかつ前記メタレンズの前記第2面と接する第3面を有する基板をさらに備え、
     前記複数の環状溝の各々は、前記メタレンズの前記第1面と前記第2面との間を貫通し、かつ前記第3面の一部を露出させるように形成されている、請求項1~7のいずれか1項に記載の光学システム。
    further comprising a substrate that is transparent to light of the target wavelength and has a third surface in contact with the second surface of the metalens,
    Each of the plurality of annular grooves is formed to penetrate between the first surface and the second surface of the metalens and expose a part of the third surface. 7. The optical system according to any one of 7.
  9.  第1導波路と、
     光スポットサイズが前記第1導波路とは異なる第2導波路と、
     前記第1導波路の第1端面と前記第2導波路の第2端面との間を光学的に接続するメタレンズと、
     対象波長の光に対して透明でありかつ前記光の伝搬方向に交差する第3面を有する基板とを備え、
     前記メタレンズは、前記第3面上に配置されておりかつ前記対象波長の光に位相差を与える位相格子であり、
     前記メタレンズは、前記第3面上に互いに間隔を空けて配置されている複数の凸部を含み、
     前記複数の凸部の各々は、前記第3面の第1領域上に互いに間隔を空けて配置されている第1群の凸部と、前記第3面の第2領域上に互いに間隔を空けて配置されている第2群の凸部とを含み、前記第1群の凸部の各々の高さ、最大幅、及びピッチの少なくともいずれかは、前記第2群の凸部の各々の高さ、最大幅、及びピッチの少なくともいずれかと異なる、光学システム。
    a first waveguide;
    a second waveguide having a light spot size different from that of the first waveguide;
    a metalens optically connecting a first end surface of the first waveguide and a second end surface of the second waveguide;
    a substrate that is transparent to light of a target wavelength and has a third surface that intersects with the propagation direction of the light;
    The metalens is a phase grating that is disposed on the third surface and provides a phase difference to light of the target wavelength,
    The metalens includes a plurality of convex portions arranged at intervals on the third surface,
    Each of the plurality of convex portions includes a first group of convex portions that are spaced apart from each other on a first region of the third surface, and a first group of convex portions that are spaced apart from each other on a second region of the third surface. a second group of convex portions arranged in a manner that an optical system that differs in at least one of a width, a maximum width, and a pitch.
  10.  前記メタレンズは、前記第1群の凸部及び前記第2群の凸部を含みかつ前記複数の凸部の各々の高さ、最大幅、及びピッチの少なくともいずれかが連続的または段階的に変化する構造単位が、前記メタレンズの中心軸に対する径方向に周期的に配置されて成る周期構造を有している、請求項9に記載の光学システム。 The metalens includes the first group of convex portions and the second group of convex portions, and at least one of the height, maximum width, and pitch of each of the plurality of convex portions changes continuously or stepwise. 10. The optical system according to claim 9, wherein the structural units have a periodic structure that is periodically arranged in a radial direction with respect to the central axis of the metalens.
  11.  前記メタレンズの前記周期構造に含まれる複数の前記構造単位のうち、前記中心軸に最も近い位置にある第1構造単位の前記径方向の幅は、前記中心軸に2番目に近い位置にある第2構造単位の前記径方向の幅よりも広い、請求項10に記載の光学システム。 Among the plurality of structural units included in the periodic structure of the metalens, the width in the radial direction of the first structural unit located at the position closest to the central axis is equal to the width in the radial direction of the first structural unit located at the position closest to the central axis. 11. The optical system of claim 10, wherein the radial width is greater than two structural units.
  12.  前記第1構造単位の前記径方向の幅は、1.00μm以上7.00μm以下である、請求項11に記載の光学システム。 The optical system according to claim 11, wherein the radial width of the first structural unit is 1.00 μm or more and 7.00 μm or less.
  13.  前記複数の凸部の各々は、柱状体または球状体であり、
     前記複数の凸部の各々の最大幅は、前記対象波長よりも短い、請求項9に記載の光学システム。
    Each of the plurality of convex portions is a columnar body or a spherical body,
    The optical system according to claim 9, wherein a maximum width of each of the plurality of convex portions is shorter than the target wavelength.
  14.  前記複数の凸部のうち前記メタレンズの中心軸に対する径方向において最外に位置する前記凸部の前記第3面側に位置する最外端部と、前記第2導波路の中心軸と前記第2端面との交点とを結ぶ第1仮想直線が、前記メタレンズの前記中心軸と前記第3面との交点と、前記第2導波路の前記中心軸と前記第2端面との交点とを結ぶ第2仮想直線に対して成す集光角度が、20°以上70°以下である、請求項9~13のいずれか1項に記載の光学システム。 The outermost end portion of the plurality of convex portions located on the third surface side of the convex portion located at the outermost position in the radial direction with respect to the central axis of the metalens, the central axis of the second waveguide, and the second waveguide. A first virtual straight line connecting the intersection with the second end surface connects the intersection between the central axis of the metalens and the third surface and the intersection between the central axis of the second waveguide and the second end surface. The optical system according to any one of claims 9 to 13, wherein a condensing angle formed with respect to the second virtual straight line is 20° or more and 70° or less.
  15.  前記第1導波路は、光ファイバの少なくとも1つのコアであり、
     前記第2導波路は、細線導波路、リブ型導波路、又はフォトニック結晶導波路であり、
     前記メタレンズは、前記第1導波路と前記第2導波路との間に配置されている、請求項1または9に記載の光学システム。
    The first waveguide is at least one core of an optical fiber,
    The second waveguide is a thin wire waveguide, a rib waveguide, or a photonic crystal waveguide,
    The optical system according to claim 1 or 9, wherein the metalens is arranged between the first waveguide and the second waveguide.
  16.  前記第2端面の面積に対する前記第1端面の面積の比率が10以上である、請求項15に記載の光学システム。 The optical system according to claim 15, wherein the ratio of the area of the first end face to the area of the second end face is 10 or more.
  17.  前記第1導波路は、離散的に配置されている複数のコアにより構成されており、
     前記メタレンズは、前記複数のコアの各々と前記第2導波路との間を光学的に接続する、請求項15に記載の光学システム。
    The first waveguide is composed of a plurality of discretely arranged cores,
    The optical system according to claim 15, wherein the metalens optically connects each of the plurality of cores and the second waveguide.
  18.  前記メタレンズは、前記複数のコアの各々から出射した光が前記第1導波路及び前記第2導波路の各々の中心軸と同一直線上に焦点を結ぶように設けられている、請求項17に記載の光学システム。 18. The metalens is provided so that the light emitted from each of the plurality of cores is focused on the same straight line as the central axis of each of the first waveguide and the second waveguide. Optical system described.
  19.  前記第1導波路及び前記第2導波路の一方と光学的に接続されている情報出力部と、
     前記第1導波路及び前記第2導波路の他方と光学的に接続されている情報入力部とをさらに備える、請求項1または9に記載の光学システム。
    an information output unit optically connected to one of the first waveguide and the second waveguide;
    The optical system according to claim 1 or 9, further comprising an information input section optically connected to the other of the first waveguide and the second waveguide.
  20.  前記第1導波路の前記光スポットサイズは、前記第2導波路の前記光スポットサイズよりも大きく、
     前記情報出力部は、前記第1導波路と光学的に接続されており、
     前記情報入力部は、前記第2導波路と光学的に接続されている、請求項19に記載の光学システム。
    the light spot size of the first waveguide is larger than the light spot size of the second waveguide;
    The information output section is optically connected to the first waveguide,
    The optical system according to claim 19, wherein the information input section is optically connected to the second waveguide.
PCT/JP2023/026257 2022-07-29 2023-07-18 Optical system WO2024024569A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022121727 2022-07-29
JP2022-121727 2022-07-29

Publications (1)

Publication Number Publication Date
WO2024024569A1 true WO2024024569A1 (en) 2024-02-01

Family

ID=88510773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026257 WO2024024569A1 (en) 2022-07-29 2023-07-18 Optical system

Country Status (2)

Country Link
JP (2) JP7371286B1 (en)
WO (1) WO2024024569A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120328240A1 (en) * 2010-02-12 2012-12-27 The Regents Of The University Of California Metamaterial-based optical lenses
US20160299337A1 (en) * 2015-04-08 2016-10-13 Samsung Electronics Co., Ltd. Focusing device, and beam scanner and scope device including the focusing device
JP2019086765A (en) * 2017-11-08 2019-06-06 三星電子株式会社Samsung Electronics Co.,Ltd. Projector including meta-lens
JP2019533834A (en) * 2016-11-02 2019-11-21 カールスルーエ インスティテュート フュア テクノロジ Method for manufacturing an optical system and optical system
CN111090148A (en) * 2019-12-06 2020-05-01 武汉大学 Multi-core optical fiber multiplexing and demultiplexing device and method based on super-surface lens
JP2020173407A (en) * 2019-04-15 2020-10-22 日本電信電話株式会社 Optical coupling structure
JP2022058082A (en) * 2020-09-30 2022-04-11 采▲ぎょく▼科技股▲ふん▼有限公司 Optical communication device
US20220137259A1 (en) * 2019-03-29 2022-05-05 Sony Group Corporation Metalens portion, electronic device and method
US20220368024A1 (en) * 2019-09-24 2022-11-17 IHP GmbH - Innovation for High Performance Microelectronics/Leibniz-Institut für Innovative Mikroele Gradient index metamaterial lens for terahertz radiation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101429093B1 (en) 2013-02-14 2014-08-12 한국과학기술원 A lens structure with vertical nanowire arrays and method for manufacturing the same, and the lens was fabricated using.
US11194082B2 (en) 2016-12-20 2021-12-07 President And Fellows Of Harvard College Ultra-compact, aberration corrected, visible chiral spectrometer with meta-lenses

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120328240A1 (en) * 2010-02-12 2012-12-27 The Regents Of The University Of California Metamaterial-based optical lenses
US20160299337A1 (en) * 2015-04-08 2016-10-13 Samsung Electronics Co., Ltd. Focusing device, and beam scanner and scope device including the focusing device
JP2019533834A (en) * 2016-11-02 2019-11-21 カールスルーエ インスティテュート フュア テクノロジ Method for manufacturing an optical system and optical system
JP2019086765A (en) * 2017-11-08 2019-06-06 三星電子株式会社Samsung Electronics Co.,Ltd. Projector including meta-lens
US20220137259A1 (en) * 2019-03-29 2022-05-05 Sony Group Corporation Metalens portion, electronic device and method
JP2020173407A (en) * 2019-04-15 2020-10-22 日本電信電話株式会社 Optical coupling structure
US20220368024A1 (en) * 2019-09-24 2022-11-17 IHP GmbH - Innovation for High Performance Microelectronics/Leibniz-Institut für Innovative Mikroele Gradient index metamaterial lens for terahertz radiation
CN111090148A (en) * 2019-12-06 2020-05-01 武汉大学 Multi-core optical fiber multiplexing and demultiplexing device and method based on super-surface lens
JP2022058082A (en) * 2020-09-30 2022-04-11 采▲ぎょく▼科技股▲ふん▼有限公司 Optical communication device

Also Published As

Publication number Publication date
JP2024018902A (en) 2024-02-08
JP2024019028A (en) 2024-02-08
JP7371286B1 (en) 2023-10-30

Similar Documents

Publication Publication Date Title
JP7199223B2 (en) A device that forms a field intensity pattern in the near field from an incident electromagnetic wave
US10830951B2 (en) Optical circuit and optical device
US20040076374A1 (en) Amplitude and phase control in distributed optical structures
JP2007003969A (en) Optical element
US6922287B2 (en) Light coupling element
JP3702445B2 (en) Optical element and apparatus using the optical element
US6903877B2 (en) Gradient-index lens, and method for producing the same
JP2002169022A (en) Optical element, spectroscopic device and integrated optical device using the same
WO2024024569A1 (en) Optical system
US7609920B2 (en) Optical coupler
TW202405491A (en) Optical system
US8515223B2 (en) Lens
JP2008032931A (en) Optical coupling element
US7305155B2 (en) Optical element and wavelength separator using the same
Sinha et al. Highly efficient two-dimensional beam steering using all-dielectric fiber metatip
JP4415756B2 (en) Optical element and method for manufacturing the same
JP6988375B2 (en) Optical element
JP2004258076A (en) Optical fiber cable layer and its manufacturing method
JP2004101678A (en) Micro mirror and its manufacturing method
CN116338855B (en) ISORS photon chip and noninvasive component detection system
JP2003131028A (en) Optical circuit
TWI826644B (en) Large area high resolution feature reduction lithography technique
KR100897872B1 (en) Light guiding plate for area light source and the manufacturing method thereof
JP5772436B2 (en) Optical coupler and optical device
JP3003348B2 (en) Optical lens and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846300

Country of ref document: EP

Kind code of ref document: A1