WO2024024467A1 - Liquid composition and optical film - Google Patents

Liquid composition and optical film Download PDF

Info

Publication number
WO2024024467A1
WO2024024467A1 PCT/JP2023/025399 JP2023025399W WO2024024467A1 WO 2024024467 A1 WO2024024467 A1 WO 2024024467A1 JP 2023025399 W JP2023025399 W JP 2023025399W WO 2024024467 A1 WO2024024467 A1 WO 2024024467A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid composition
weight
base material
less
layer
Prior art date
Application number
PCT/JP2023/025399
Other languages
French (fr)
Japanese (ja)
Inventor
学 伊藤
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Publication of WO2024024467A1 publication Critical patent/WO2024024467A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes

Definitions

  • the present invention relates to a liquid composition and an optical film.
  • Such a multilayer structure may be formed by a method including a step of applying a liquid composition to the surface of a film serving as a base material.
  • a surfactant may be blended into the liquid composition for the purpose of reducing alignment defects of the liquid crystalline compound blended or for the purpose of making the layer of the liquid composition function as an antistatic layer (Patent Documents 1 to 3). (See 3).
  • JP2017-203168A (corresponding foreign publication: US Patent Application Publication No. 2018/0002459) International Publication No. 2016/136231 (corresponding foreign publication: US Patent Application Publication No. 2017/0351147) Japanese Patent Application Publication No. 2011-184676
  • a layer of the liquid composition is formed by coating the surface of the film serving as a base material with an aqueous liquid composition, and this layer is dried to remove water, thereby forming a cured layer of the liquid composition.
  • An optical film having a multilayer structure can be obtained.
  • a heating dryer is used to dry a layer of a liquid composition, resinous stains may adhere to the inside of the heating dryer. Dirt inside the heat drying device causes contamination of optical films that require high quality. Therefore, the optical film production line may be frequently stopped in order to clean the dirt inside the heating dryer. Therefore, there is a need for a liquid composition that generates less stain when dried.
  • the cured layer of the liquid composition is required to have a good surface condition. Therefore, there is a need for a liquid composition that produces a cured layer with a small amount of dirt and a good surface condition when dried; and an optical film that includes a cured layer of such a liquid composition.
  • the inventors of the present invention have made extensive studies to solve the above problems. As a result, it was discovered that the resinous stains occurring inside the heat drying device were derived from the surfactant contained in the liquid composition. As a result of further studies based on this knowledge, the present inventor found that a nonionic surfactant containing a nonionic surfactant with a number average molecular weight of more than 500 and water has a number average molecular weight relative to the weight of the nonionic surfactant. The inventors have discovered that the above-mentioned problems can be solved by a liquid composition in which the weight of the components is 100 or more and 500 or less, and the present invention has been completed. That is, the present invention provides the following.
  • [1] 70 parts by weight or more and 100 parts by weight or less of a nonionic surfactant having a number average molecular weight of more than 500; 0 parts by weight or more and 30 parts by weight or less of a component having a number average molecular weight of 100 or more and 500 or less; A liquid composition containing water.
  • liquid composition that produces a cured layer with a small amount of dirt and a good surface condition when dried; and an optical film that includes a cured layer of such a liquid composition.
  • a "long" film refers to a film having a length of 5 times or more, preferably 10 times or more, of the width, and specifically a roll A film that is long enough to be rolled up into a shape for storage or transportation.
  • the upper limit of the length of the film is not particularly limited, and may be, for example, 100,000 times or less the width.
  • nx represents the refractive index in the direction perpendicular to the thickness direction of the layer (in-plane direction) and giving the maximum refractive index.
  • ny represents the refractive index in the in-plane direction of the layer and perpendicular to the nx direction.
  • nz represents the refractive index in the thickness direction of the layer.
  • d represents the layer thickness.
  • the measurement wavelength is 590 nm unless otherwise specified.
  • the liquid composition according to one embodiment of the present invention is 70 parts by weight or more and 100 parts by weight or less of a nonionic surfactant having a number average molecular weight of more than 500; 0 parts by weight or more and 30 parts by weight or less of a component having a number average molecular weight of 100 or more and 500 or less; including water.
  • a nonionic surfactant having a number average molecular weight of more than 500 is also referred to as a nonionic surfactant (N)
  • a component having a number average molecular weight of 100 to 500 is also referred to as a component (L).
  • the liquid composition according to one embodiment of the present invention may be the following liquid composition (1) or (2).
  • a liquid composition containing a certain ingredient and water is less likely to cause volatile stains when it is applied to a substrate to form a layer of the liquid composition, and the layer of the liquid composition is heated and dried to cure it.
  • the components contained therein can be well dispersed in the liquid composition, and the cured layer of the liquid composition can have a good surface condition.
  • Nonionic surfactant usually means a surfactant having a hydrophilic group that does not ionize in water.
  • nonionic surfactants include acetylene surfactants containing an acetylene structure; compounds having an ester structure of fatty acid and polyhydric alcohol; compounds having a polyoxyalkylene structure; and the like.
  • the nonionic surfactant may or may not have a fluorine atom, but it is preferable that it does not have a fluorine atom because it has a small burden on the environment.
  • nonionic surfactants examples include "Surfynol Series” manufactured by Air Products and Chemicals; “Dynor 607” manufactured by Nissin Chemical Co.; “Floren D-90” and “Polyflow” manufactured by Kyoeisha Chemical KL-900”; “SN Wet 980", “SN Wet 984" manufactured by Sannopco; “Nukol 170”, “Nukol 85”, “Nukol 3-85” manufactured by Nippon Nyukazai; “NIKKOL” manufactured by Nikko Chemicals ” series (BT-7, BT-9, BT-12, BL-4.2, BL-9EX, BB-10, BB-20, BC-7, BC-15, BO-7V, BO-10V, SG -DTD620, SG-DTD630, SG-G2424, PBC-33, BPS-20); One type of nonionic surfactant may be used alone, or two or more types may be used in combination in any ratio.
  • the nonionic surfactant (N) usually has a number average molecular weight of more than 500, preferably 550 or more, and the upper limit is not particularly limited, but may be 15,000 or less.
  • the nonionic surfactant (N) may be a compound having no molecular weight distribution, may be an oligomer, or may be a polymer.
  • the number average molecular weight of the nonionic surfactant (N) can be measured using gel permeation chromatography (GPC). The measurement conditions may be as follows. Injection sample: 0.1% by weight tetrahydrofuran (THF) solution Column temperature: 40°C Developing solvent: THF Detector: Differential refractometer (RI) Standard material: polystyrene
  • the HLB value of the nonionic surfactant (N) is not particularly limited, but may be, for example, 7 or more and, for example, 16 or less.
  • the HLB value can be determined, for example, by the Griffin method.
  • the liquid composition of the present embodiment may contain one kind of nonionic surfactant (N), or two or more kinds thereof in any ratio.
  • the liquid composition of this embodiment may or may not contain a surfactant other than the nonionic surfactant (N).
  • the content of the nonionic surfactant (N) in the liquid composition of the present embodiment is usually more than 0% by weight, preferably 0.02% by weight or more, based on 100% by weight of the liquid composition, Preferably it is 0.10% by weight or less.
  • the content rate means the total content of the multiple types of nonionic surfactants (N) included.
  • the component (L) having a number average molecular weight of 100 or more and 500 or less may or may not be contained in the liquid composition.
  • the presence of component (L) in the liquid composition and the weight ratio of the nonionic surfactant (N) to component (L) can be confirmed by GPC.
  • GPC the same conditions as those for measuring the number average molecular weight of the nonionic surfactant (N) may be used.
  • the liquid composition may contain only one kind of component (L), or may contain two or more kinds in any ratio.
  • Component (L) may be a substance having no molecular weight distribution, may be an oligomer, or may be a polymer.
  • the weight ratio of the nonionic surfactant (N) to the component (L) is such that the nonionic surfactant (N) is usually 70 parts by weight or more and 100 parts by weight or less, and the component (L) is usually 0 parts by weight or more and 30 parts by weight or less.
  • Component (L) being 0 parts by weight or more means that component (L) is 0 parts by weight (that is, it does not contain component (L)) or more than 0 parts by weight.
  • Component (L) may be 0 parts by weight, for example, 1 part by weight or more, for example, 5 parts by weight or more.
  • the nonionic surfactant (N) is usually 100 parts by weight or less, and may be less than 100 parts by weight, for example.
  • the total weight of the nonionic surfactant (N) and component (L) contained in the liquid composition is 100 parts by weight.
  • the nonionic surfactant when the liquid composition contains multiple types of nonionic surfactants (N) and/or when the liquid composition contains multiple types of components (L), the nonionic surfactant
  • the weight ratio of the agent (N) to the component (L) is the ratio of the total weight of the nonionic surfactant to the total weight of the component (L).
  • the weight ratio of the nonionic surfactant (N) to the component (L) can be determined by measuring GPC of the liquid composition. Specifically, GPC of the liquid composition is measured, and the area of all peaks is set as 100%, and based on the peak area of the nonionic surfactant (N) and the peak area of the component (L), the The content weight ratio can be determined.
  • the liquid composition of this embodiment usually contains water.
  • Water can be a solvent or dispersion medium that dissolves or disperses the components contained in the liquid composition.
  • the content of water contained in the liquid composition is determined, for example, from the viewpoint of keeping the liquid composition within a viscosity range suitable as a coating liquid used in a coating method, and from the viewpoint of adjusting the thickness of the cured layer of the liquid composition to a desired thickness. It can be set as appropriate from the viewpoint of
  • the content of water contained in the liquid composition is not particularly limited, but is, for example, 90% by weight or more, such as 91% by weight or more, such as 92% by weight or more, such as 99% by weight, based on 100% by weight of the liquid composition.
  • the content is, for example, 98% by weight or less, and is, for example, 92% by weight or more and 98% by weight or less.
  • the liquid composition can be used in a coating method as an aqueous coating liquid containing water as a solvent or dispersion medium.
  • Water-based coating fluids have a small environmental impact when dried.
  • the liquid composition of this embodiment may further contain an arbitrary component in addition to the nonionic surfactant (N), water, and an arbitrary component (L).
  • the liquid composition may contain a polymer.
  • polymers that the liquid composition may include include polyurethanes, acrylic polymers, polyesters, polyvinyl acetates, polyvinyl chlorides, and polyolefins. These polymers may be homopolymers or copolymers. Further, the polymer may be a prepolymer having a polymerizable group that can be further polymerized.
  • the liquid composition may contain one kind of polymer alone, or two or more kinds of polymers in any ratio.
  • the liquid composition preferably contains polyurethane.
  • a primer layer can be provided on a substrate using a liquid composition containing polyurethane. By providing a primer layer between the base material and a functional layer such as a polarizer layer, the adhesiveness between the base material and the functional layer can be improved.
  • polyurethane for example, a polyurethane obtained by reacting (i) a component containing an average of two or more active hydrogens per molecule and (ii) a polyisocyanate component can be used.
  • polyurethane for example, an isocyanate group-containing prepolymer obtained by subjecting component (i) and component (ii) to a urethanization reaction is chain-extended using a chain extender, and water is added to form a dispersion.
  • a polyurethane produced by the following method can be used.
  • the prepolymer described above can be obtained by subjecting the component (i) and the component (ii) to a urethane reaction under conditions where an excess of isocyanate groups is present.
  • the urethanization reaction described above can be carried out in an organic solvent that is inert to the reaction and has a high affinity for water.
  • the prepolymer may be neutralized before chain extension.
  • a method for extending the chain of the isocyanate group-containing prepolymer there may be mentioned a method of reacting the isocyanate group-containing prepolymer with a chain extender in the presence of a catalyst if necessary. At this time, water, water-soluble polyamines, glycols, etc. can be used as the chain extender.
  • the component (i) is preferably one having a hydroxyl active hydrogen, such as a compound having an average of two or more hydroxyl groups in one molecule.
  • component (i) is polyether polyol.
  • polyether polyols examples include alkylene oxide adducts of polyol compounds; ring-opening (co)polymers of alkylene oxide and cyclic ethers (such as tetrahydrofuran); polyethylene glycol, polypropylene glycol, ethylene glycol-propylene glycol copolymers, 1 , 4-butanediol copolymer; glycols such as glycol, polytetramethylene glycol, polyhexamethylene glycol, polyoctamethylene glycol; and the like.
  • One type of component (i) may be used alone, or two or more types may be used in combination in any ratio.
  • Examples of the component (ii) (ie, polyisocyanate component) to be reacted with the component (i) include compounds containing an average of two or more isocyanate groups in one molecule.
  • This compound may be an aliphatic compound, an alicyclic compound, or an aromatic compound.
  • the aliphatic polyisocyanate compound is preferably an aliphatic diisocyanate having 1 to 12 carbon atoms, such as hexamethylene diisocyanate, 2,2,4-trimethylhexane diisocyanate, hexane diisocyanate (HDI), and the like.
  • the alicyclic polyisocyanate compound is preferably an alicyclic diisocyanate having 4 to 18 carbon atoms, such as 1,4-cyclohexane diisocyanate, methylcyclohexylene diisocyanate, isophorone diisocyanate (IPDI), dicyclohexylmethane diisocyanate (HMDI), etc. can be mentioned.
  • aromatic polyisocyanate include tolylene diisocyanate (TDI), 4,4'-diphenylmethane diisocyanate, and xylylene diisocyanate.
  • One type of these components (ii) may be used alone, or two or more types may be used in combination in any ratio.
  • components (i) and (ii) may be appropriately selected and used depending on the use of the optical film including the cured layer of the liquid composition of the present embodiment.
  • component (i) it is preferable to use one having a bond that is difficult to hydrolyze, and specifically, polyether polyol is preferable.
  • a polyurethane using a polyether polyol as the component (i) is called a "polyether polyurethane.”
  • Polyether polyurethane has ether bonds that are difficult to hydrolyze. Therefore, since polyurethane is difficult to deteriorate in a high humidity environment, it is possible to effectively suppress a decrease in adhesiveness in a high humidity environment.
  • these polyurethanes may contain an acid structure in their molecular structure. Since polyurethane containing an acid structure can be dispersed in water even with a small amount of surfactant, it is expected to improve the water resistance of the cured layer of the liquid composition. This is called a self-emulsifying type, which means that polyurethane particles can be dispersed and stabilized in water just by molecular ionicity even without a surfactant. Furthermore, since polyurethane containing an acid structure does not require or requires a small amount of surfactant, it has excellent adhesion to the base material and can maintain high transparency.
  • the acid structure examples include acid groups such as carboxyl group (-COOH) and sulfo group (-SO 3 H). Further, the acid structure may be present in the side chain or at the end of the polyurethane. One type of acid structure may be used, or two or more types may be used in combination in any ratio.
  • the amount of acid structure is preferably 20 mgKOH/g or more, more preferably 25 mgKOH/g or more, and preferably 250 mgKOH/g or less, more preferably 150 mgKOH/g or less, in terms of acid value in the liquid composition.
  • Examples of the method for introducing an acid structure into polyurethane include a method in which a carboxyl group is introduced in advance into a polyether polyol by replacing part or all of the component (i) with dimethylolalkanoic acid.
  • Examples of the dimethylol alkanoic acid used here include dimethylol acetic acid, dimethylol propionic acid, and dimethylol butyric acid.
  • One type of dimethylolalkanoic acid may be used alone, or two or more types may be used in combination in any ratio.
  • the acid structure contained in the polyurethane be neutralized with a nonvolatile base. Because the acid structure is neutralized, even if the optical film containing the cured layer of the liquid composition has a thermal history of being exposed to high temperatures, it maintains its properties as an optical material and is compatible with any component. It is possible to bond with strong adhesive force. Further, even if the acid structure is neutralized, it is possible to disperse polyurethane particles in water even if the amount of surfactant is small.
  • the proportion of acid structures to be neutralized is preferably 20% or more, particularly preferably 50% or more.
  • the optical film containing the cured layer of the liquid composition can maintain its properties as an optical material even if it has a thermal history of being exposed to high temperatures. , it is possible to adhere to any member with strong adhesive force.
  • the polyurethane contains a polar group in order to enable reaction with a crosslinking agent.
  • the polar group include a methylol group, a carboxyl group, a carbonyloxycarbonyl group, an epoxy group, a hydroxyl group, an oxy group, an ester group, a silanol group, a silyl group, an amino group, a nitrile group, and a sulfo group.
  • a methylol group, a hydroxyl group, a carboxyl group, and an amino group are preferable, a hydroxyl group and a carboxyl group are more preferable, and a carboxyl group is particularly preferable.
  • the amount of polar groups in the polyurethane is preferably 0.0001 equivalent/1 kg or more, more preferably 0.001 equivalent/1 kg or more, and preferably 1 equivalent/1 kg or less.
  • a water-based urethane resin is a composition containing polyurethane and water, and is usually a composition in which polyurethane and optional components included are dispersed in water.
  • water-based urethane resins include the "ADEKA BONTITER” series manufactured by ADEKA, the “OLESTAR” series manufactured by Mitsui Chemicals, the “BONDIC” series manufactured by DIC, and the "Hydran (WLS201, WLS202, etc.)" series.
  • the state of the polyurethane is arbitrary, and it may be dispersed in the form of particles or dissolved in other components such as a solvent.
  • polyurethane is preferably dispersed in the form of particles.
  • the average particle diameter of the polyurethane particles is preferably 0.01 ⁇ m to 0.4 ⁇ m from the viewpoint of optical properties of the optical film including the cured layer of the liquid composition.
  • the liquid composition may contain a crosslinking agent.
  • a crosslinking agent can crosslink polyurethane by reacting with a reactive group that polyurethane has to form a bond. This crosslinking can improve the mechanical strength, adhesiveness, and heat-and-moisture resistance of the cured layer of the liquid composition.
  • crosslinking agents are contained in polyurethane, such as carboxyl groups and their anhydride groups contained as the acid structure, and hydroxyl groups remaining unreacted after the reaction of component (i) and component (ii). It can react with polar groups to form crosslinked structures.
  • crosslinking agent for example, a compound having two or more functional groups in one molecule that can react with a reactive group of polyurethane to form a bond can be used.
  • the crosslinking agent a compound having a functional group that can react with the carboxyl group or anhydride group thereof that polyurethane has is preferable.
  • Specific examples of crosslinking agents include epoxy compounds.
  • one type of crosslinking agent may be used alone, or two or more types may be used in combination in any ratio.
  • the epoxy compound a polyfunctional epoxy compound having two or more epoxy groups in one molecule can be used.
  • the epoxy compound is preferably one that is soluble in water or can be dispersed in water to form an emulsion. If the epoxy group has water solubility or can be emulsified, when the liquid composition is a water-based resin, it improves the coating properties of the water-based resin and produces a cured layer of the liquid composition. It becomes possible to do this easily.
  • the aqueous resin refers to a composition containing a solid content such as a polymer dissolved or dispersed in an aqueous solvent such as water.
  • Examples of the epoxy compounds include glycols 1 such as ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, 1,4-butanediol, 1,6-hexane glycol, and neopentyl glycol.
  • glycols 1 such as ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, 1,4-butanediol, 1,6-hexane glycol, and neopentyl glycol.
  • a diepoxy compound obtained by etherification of 1 mole of a polyhydric alcohol such as glycerin, polyglycerin, trimethylolpropane, pentaerythritol, sorbitol, etc. with 2 moles of epichlorohydrin and 2 moles or more of epichlorohydrin.
  • Polyepoxy compounds obtained by esterifying 1 mole of dicarboxylic acid such as phthalic acid, terephthalic acid, oxalic acid, adipic acid, etc. with 2 moles of epichlorohydrin; and the like.
  • epoxy compounds include 1,4-bis(2',3'-epoxypropyloxy)butane, 1,3,5-triglycidyl isocyanurate, 1,3-dicrycidyl-5-( ⁇ -acetoxy- ⁇ -oxypropyl) isocyanurate, sorbitol polyglycidyl ethers, polyglycerol polyglycidyl ethers, pentaerythritol polyglycidyl ethers, diglycerol polyglycidyl ether, 1,3,5-triglycidyl (2- Examples include hydroxyethyl) isocyanurate, glycerol polyglycerol ethers, and trimethylolpropane polyglycidyl ethers.
  • Examples of commercially available epoxy compounds include the "Denacol (Denacol EX-521, Denacol EX-512, EX-614B, etc.)" series manufactured by Nagase ChemteX.
  • One type of epoxy compound may be used alone, or two or more types may be used in combination in any ratio.
  • the amount of the epoxy compound is usually 2 parts by weight or more, preferably 5 parts by weight or more, more preferably 8 parts by weight or more, and usually 40 parts by weight or less, preferably 35 parts by weight or less, based on 100 parts by weight of the polyurethane. Preferably it is 30 parts by weight or less.
  • the amount of the epoxy compound is preferably 0.2 times or more, more preferably 0.4 times or more, particularly preferably 0.6 times, on a weight basis, relative to the amount of the epoxy compound equivalent to the polar group of the polyurethane. It is at least 5 times, preferably at most 5.0 times, more preferably at most 4.0 times, particularly preferably at most 3.0 times.
  • the amount of the epoxy compound equivalent to the polar groups of the polyurethane refers to the theoretical amount of the epoxy compound that can react with the total amount of the polar groups of the polyurethane in just the right amount.
  • the polar groups of the polyurethane can react with the epoxy groups of the epoxy compound. Therefore, by keeping the amount of the epoxy compound within the above range, the reaction between the polar group and the epoxy compound can proceed to an appropriate degree, and the mechanical strength of the cured layer of the liquid composition can be effectively improved. .
  • the liquid composition may also include a nonvolatile base.
  • a nonvolatile base when the liquid composition contains polyurethane, it is preferable that it contains a nonvolatile base.
  • the non-volatile base include bases that are substantially non-volatile under the treatment conditions when the liquid composition is applied to the substrate and then dried.
  • substantially non-volatile generally means that the amount of non-volatile base is reduced by 80% or less.
  • the treatment conditions for drying the liquid composition after coating it on the substrate include, for example, leaving it at 80° C. for 1 hour.
  • Such a non-volatile base can function as a neutralizing agent to neutralize the acid structure of the polyurethane.
  • an inorganic base or an organic base may be used as the nonvolatile base.
  • organic bases with a boiling point of 100°C or higher are preferred, amine compounds with a boiling point of 100°C or higher are more preferred, and amine compounds with a boiling point of 200°C or higher are particularly preferred.
  • the organic base may be a low molecular compound or a polymer.
  • nonvolatile bases include inorganic bases such as sodium hydroxide and potassium hydroxide.
  • organic bases include 2-amino-2-methyl-1-propanol (AMP), triethanolamine, triisopropanolamine (TIPA), monoethanolamine, diethanolamine, tri[(2-hydroxy)-1 -propyl]amine, 2-amino-2-methyl-1,3-propanediol (AMPD), 2-amino-2-hydroxymethyl-1,3-propane potassium hydroxide, zinc ammonium complex, copper ammonium complex, silver Ammonium complex, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl)- ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl)- ⁇ -aminopropyltrimethyldimethoxysilane , N-phenyl- ⁇ -aminopropyltrime
  • the amount of the nonvolatile base is usually 0.5 parts by weight or more, preferably 1 part by weight or more, more preferably 2 parts by weight or more, and usually 30 parts by weight or less, preferably 20 parts by weight, based on 100 parts by weight of the polyurethane. parts by weight or less, more preferably 10 parts by weight or less.
  • the amount of the nonvolatile base is usually 0.5 parts by weight or more, preferably 1 part by weight or more, more preferably 2 parts by weight or more, and usually 30 parts by weight or less, preferably 20 parts by weight, based on 100 parts by weight of the polyurethane. parts by weight or less, more preferably 10 parts by weight or less.
  • the liquid composition may contain particles.
  • the liquid composition contains polyurethane, it is preferable that the liquid composition contains particles.
  • the surface roughness of the cured layer formed by the cured product of the liquid composition can be increased. This improves the slipperiness of the surface of the cured layer of the liquid composition, making it possible to prevent blocking of the optical film including the cured layer and suppress the occurrence of wrinkles when winding the optical film. becomes.
  • inorganic particles either inorganic particles or organic particles may be used. However, it is preferable to use water-dispersible particles.
  • materials for inorganic particles include inorganic oxides such as silica, titania, alumina, and zirconia; calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, magnesium silicate, and calcium phosphate. etc.
  • examples of materials for the organic particles include silicone resins, fluororesins, acrylic resins, and the like. Among these, silica is preferred.
  • Silica particles have excellent ability to suppress the occurrence of wrinkles and excellent transparency, do not easily cause haze, and have no or very little coloring, so they have little effect on the optical properties of the optical film including the cured layer of the liquid composition. . Furthermore, silica has good dispersibility and dispersion stability in liquid compositions. Among silica particles, amorphous colloidal silica particles are particularly preferred.
  • the average particle diameter of the particles is usually 1 nm or more, preferably 5 nm or more, more preferably 10 nm or more, and usually 500 nm or less, preferably 300 nm or less, more preferably 200 nm or less.
  • the amount of particles is usually 1 part by weight or more, preferably 3 parts by weight or more, more preferably 5 parts by weight or more, and usually 50 parts by weight or less, preferably 40 parts by weight or less, more preferably, based on 100 parts by weight of the polyurethane. is 30 parts by weight or less.
  • liquid compositions include heat stabilizers, weather stabilizers, leveling agents, antioxidants, antistatic agents, slip agents, antiblocking agents, antifogging agents, lubricants, dyes, Examples include pigments, natural oils, synthetic oils, and waxes.
  • one type may be used alone, or two or more types may be used in combination in any ratio.
  • the liquid composition may contain a water-soluble solvent in addition to water.
  • water-soluble solvents include methanol, ethanol, isopropyl alcohol, acetone, tetrahydrofuran, N-methylpyrrolidone, dimethyl sulfoxide, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, and the like. These may be used alone or in combination of two or more in any ratio.
  • the liquid composition can be suitably used as a coating liquid for forming a layer of the liquid composition by a coating method. Any method can be used to apply the liquid composition, such as curtain coating, extrusion coating, roll coating, spin coating, dip coating, bar coating, spray coating, and slide coating. method, print coating method, gravure coating method, die coating method, and gap coating method.
  • the liquid composition can be applied over any layer. For example, the liquid composition can be coated onto a base material made of resin.
  • a cured layer of the liquid composition can be obtained by curing the layer of the liquid composition by heating and drying. Usually, by heating and drying the liquid composition layer, water contained in the liquid composition is removed and the liquid composition layer is cured.
  • the cured layer of the liquid composition may contain the components contained in the liquid composition, excluding water, as they are, or may contain a reaction product of the components contained in the liquid composition.
  • the cured layer of the liquid composition may contain a crosslinked product, polymer, condensate, etc. of the components contained in the liquid composition.
  • the cured layer of the liquid composition according to this embodiment has a good surface condition. Therefore, the liquid composition can be suitably used as a coating liquid for forming a layer constituting an optical film.
  • the liquid composition can be suitably used as a coating liquid for forming a primer layer.
  • the optical film according to one embodiment of the present invention is It includes a base material and a cured layer of the liquid composition provided on the main surface of the base material.
  • the base material may be long or may be in the form of a single leaf.
  • an operation for providing a cured layer of the liquid composition can be performed while continuously conveying the base material, so that the optical film can be efficiently manufactured.
  • a resin film containing and formed from resin can be used.
  • resin containing any polymer can be used.
  • thermoplastic resins are preferred as the resin constituting the base material, and it is particularly preferred to use cycloolefin resins.
  • the cycloolefin resin includes a polymer containing an alicyclic structure, such as a cycloolefin polymer or a hydride thereof.
  • a polymer containing an alicyclic structure will also be referred to as an alicyclic structure-containing polymer.
  • Cycloolefin resins have excellent transparency, low moisture absorption, dimensional stability, light weight, etc., and are suitable for optical films.
  • the base material may be a film with a single layer structure including only one layer, or a film with a multilayer structure including two or more layers.
  • the base material has a multilayer structure, it is preferable that one or more of the layers of the base material consist of a cycloolefin resin, and it is particularly preferable that at least one outermost layer of the base material consists of a cycloolefin resin. .
  • An alicyclic structure-containing polymer is a polymer having an alicyclic structure in the structural unit of the polymer, a polymer having an alicyclic structure in the main chain, and a polymer having an alicyclic structure in the side chain. Any polymer may be used. Further, the alicyclic structure-containing polymer may be used alone or in combination of two or more types in any ratio. Among these, from the viewpoint of mechanical strength, heat resistance, etc., polymers containing an alicyclic structure in the main chain are preferred.
  • alicyclic structure examples include a saturated alicyclic hydrocarbon (cycloalkane) structure and an unsaturated alicyclic hydrocarbon (cycloalkene, cycloalkyne) structure.
  • cycloalkane structures and cycloalkene structures are preferable, and among them, cycloalkane structures are particularly preferable.
  • the number of carbon atoms constituting the alicyclic structure is preferably 4 or more, more preferably 5 or more, and preferably 30 or less, more preferably 20 or less, particularly preferably 20 or less, per alicyclic structure. is in the range of 15 or less. This is preferable because the mechanical strength, heat resistance, and moldability of the base material are highly balanced.
  • the proportion of structural units having an alicyclic structure in the alicyclic structure-containing polymer may be appropriately selected depending on the purpose of use, and is preferably 55% by weight or more, more preferably 70% by weight or more, and particularly preferably is 90% by weight or more. It is preferable that the proportion of structural units having an alicyclic structure in the alicyclic structure-containing polymer is within this range from the viewpoint of transparency and heat resistance of the base material.
  • alicyclic structure-containing polymers examples include norbornene polymers, monocyclic olefin polymers, cyclic conjugated diene polymers, vinyl alicyclic hydrocarbon polymers, and hydrides thereof. can be mentioned. Among these, norbornene polymers are preferred because they have good transparency and moldability.
  • the norbornene polymer for example, a ring-opened polymer of a monomer having a norbornene structure, a ring-opened copolymer of a monomer having a norbornene structure and any monomer, or a hydrogenated product thereof;
  • examples include an addition polymer of a monomer having a norbornene structure, an addition copolymer of a monomer having a norbornene structure and any monomer, or a hydride thereof.
  • hydrogenated ring-opened (co)polymers of monomers having a norbornene structure are particularly preferred from the viewpoints of transparency, moldability, heat resistance, low moisture absorption, dimensional stability, and light weight. It is.
  • the term "(co)polymer” includes both polymers and copolymers.
  • Examples of monomers having a norbornene structure include bicyclo[2.2.1]hept-2-ene (common name: norbornene), tricyclo[4.3.0.1 2,5 ]dec-3,7 -diene (common name: dicyclopentadiene), 7,8-benzotricyclo[4.3.0.1 2,5 ]dec-3-ene (common name: methanotetrahydrofluorene), tetracyclo[4.4. 0.1 2,5 . 1 7,10 ] dodec-3-ene (common name: tetracyclododecene), and derivatives of these compounds (for example, those having a substituent on the ring).
  • examples of the substituent include an alkyl group, an alkylene group, and a polar group. Further, a plurality of these substituents, which are the same or different, may be bonded to the ring. Further, the monomer having a norbornene structure may be used alone or in combination of two or more in any ratio.
  • Examples of the type of polar group include a hetero atom or an atomic group having a hetero atom.
  • the heteroatom include an oxygen atom, a nitrogen atom, a sulfur atom, a silicon atom, and a halogen atom.
  • Specific examples of the polar group include carboxyl group, carbonyloxycarbonyl group, epoxy group, hydroxyl group, oxy group, ester group, silanol group, silyl group, amino group, nitrile group, sulfonic acid group, and the like.
  • Any monomer capable of ring-opening copolymerization with a monomer having a norbornene structure includes, for example, monocyclic olefins and derivatives thereof such as cyclohexene, cycloheptene, and cyclooctene; cyclic conjugates such as cyclohexadiene and cycloheptadiene; Dienes and derivatives thereof; and the like.
  • Any monomer capable of ring-opening copolymerization with a monomer having a norbornene structure may be used alone or in combination of two or more in any ratio.
  • a ring-opening polymer of a monomer having a norbornene structure, and a ring-opening copolymer of a monomer having a norbornene structure and any monomer copolymerizable with the monomer are, for example, It can be produced by polymerization or copolymerization in the presence of a polymerization catalyst.
  • Examples of arbitrary monomers that can be addition-copolymerized with a monomer having a norbornene structure include ⁇ -olefins having 2 to 20 carbon atoms such as ethylene, propylene, and 1-butene, and derivatives thereof; cyclobutene, cyclopentene, Examples include cycloolefins such as cyclohexene and derivatives thereof; non-conjugated dienes such as 1,4-hexadiene, 4-methyl-1,4-hexadiene, and 5-methyl-1,4-hexadiene; and the like. Among these, ⁇ -olefin is preferred, and ethylene is more preferred. Moreover, any monomer that can be addition-copolymerized with a monomer having a norbornene structure may be used alone or in combination of two or more types in any ratio.
  • Addition polymers of monomers having a norbornene structure and addition copolymers of monomers having a norbornene structure and any monomer copolymerizable can be produced by, for example, adding the monomers to a known addition polymerization catalyst. It can be produced by polymerization or copolymerization in the presence of
  • Examples of monocyclic cyclic olefin polymers include addition polymers of cyclic olefin monomers having a single ring such as cyclohexene, cycloheptene, and cyclooctene.
  • cyclic conjugated diene polymers include polymers obtained by cyclizing addition polymers of conjugated diene monomers such as 1,3-butadiene, isoprene, and chloroprene; cyclic conjugated polymers such as cyclopentadiene and cyclohexadiene; Examples include 1,2- or 1,4-addition polymers of diene monomers; and hydrides thereof.
  • vinyl alicyclic hydrocarbon polymers include polymers of vinyl alicyclic hydrocarbon monomers such as vinylcyclohexene and vinylcyclohexane and their hydrides; vinyl aromatic hydrocarbons such as styrene and ⁇ -methylstyrene. Hydrogenated products obtained by hydrogenating the aromatic ring moiety contained in a polymer obtained by polymerizing monomers; vinyl alicyclic hydrocarbon monomers or vinyl aromatic hydrocarbon monomers and these vinyl aromatic hydrocarbon monomers Examples include hydrides of aromatic rings of copolymers such as random copolymers or block copolymers with any monomer that can be copolymerized. Examples of the block copolymers include diblock copolymers, triblock copolymers, or higher multiblock copolymers, and tilted block copolymers.
  • the weight average molecular weight (Mw) of the polymer contained in the resin constituting the base material is usually 10,000 or more, preferably 15,000 or more, more preferably 20,000 or more, and usually 100,000 or less, preferably is 80,000 or less, more preferably 50,000 or less.
  • the above-mentioned weight average molecular weight is a weight average molecular weight in terms of polyisoprene or polystyrene measured by GPC using cyclohexane as a solvent. However, if the sample does not dissolve in cyclohexane, toluene may be used as the GPC solvent. When the weight average molecular weight is within this range, the mechanical strength and moldability of the optical film are highly balanced, which is preferable.
  • the molecular weight distribution (weight average molecular weight (Mw)/number average molecular weight (Mn)) of the polymer contained in the resin constituting the base material is usually 1.2 or more, preferably 1.5 or more, and more preferably 1.8. It is usually 3.5 or less, preferably 3.0 or less, and more preferably 2.7 or less.
  • productivity of the polymer can be increased and costs can be suppressed.
  • the amount to be below the upper limit value it is possible to reduce the low molecular weight components, so that the relaxation time can be lengthened. Therefore, relaxation during high temperature exposure can be suppressed, and the stability of the base material can be improved.
  • the polymer contained in the resin constituting the group preferably has an absolute value of photoelastic coefficient C of 10 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, more preferably 7 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less. , 4 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less is particularly preferable.
  • the saturated water absorption rate of the polymer contained in the resin constituting the base material is preferably 0.03% by weight or less, more preferably 0.02% by weight or less, particularly preferably 0.01% by weight or less.
  • the saturated water absorption rate is within the above range, changes over time in the in-plane retardation Re and the thickness direction retardation Rth of the base material can be reduced.
  • the saturated water absorption rate is a value expressed as a percentage of the mass increased by immersing a test piece in water at a constant temperature for a certain period of time with respect to the mass of the test piece before immersion. Usually, it is measured by immersing it in water at 23° C. for 24 hours.
  • the saturated water absorption rate in the polymer can be adjusted within the above range by, for example, reducing the amount of polar groups in the polymer. From the viewpoint of lowering the saturated water absorption rate, it is preferable that the above-mentioned polymer does not have a polar group.
  • the resin constituting the base material may contain any component other than the polymer, as long as it does not significantly impair the effects of the present invention.
  • optional components include colorants such as pigments and dyes; plasticizers; optical brighteners; dispersants; heat stabilizers; light stabilizers; ultraviolet absorbers; antistatic agents; antioxidants; lubricants. ;
  • additives such as surfactants.
  • One type of these components may be used alone, or two or more types may be used in combination in any ratio.
  • the amount of polymer contained in the resin constituting the base material is generally 50% to 100%, for example 70% to 100%, for example 80% to 100%, for example 90% to 100%. It is preferable to adjust the amount of any component thereof.
  • the cycloolefin resin contains substantially no particles.
  • substantially free of particles means that even if particles are included in the resin, the haze of the base film increases by 0.05% or less from the state of not containing any particles. means acceptable.
  • Alicyclic structure-containing polymers tend to lack compatibility with many organic and inorganic particles. Therefore, when a cycloolefin resin containing particles in an amount exceeding the above range is stretched, voids are likely to occur, and as a result, a significant increase in haze may occur.
  • the base material may be a film layer with a single layer structure including only one layer, or may be a film layer with a multilayer structure including two or more layers.
  • the base material By forming the base material into a film layer having a multilayer structure, optical films having various properties can be manufactured.
  • the base material When the base material has two or more layers, it may have two or more of one type of film layer, or it may have two or more different types of film layers. Further, the base material may be provided with a layer made of a resin other than the above-mentioned cycloolefin resin. Examples of the layer made of other than cycloolefin resin include a film layer having functions such as scratch prevention, antireflection, antistatic, antiglare, and antifouling.
  • the base material preferably has a total light transmittance of 80% or more, more preferably 90% or more, based on a thickness of 1 mm.
  • the total light transmittance can be measured using a spectrophotometer (UV-visible near-infrared spectrophotometer "V-570" manufactured by JASCO Corporation) in accordance with JIS K0115.
  • the haze of the base material at a thickness of 1 mm is preferably 0.3% or less, more preferably 0.2% or less.
  • haze is an average value obtained from measurements at five locations using "Turbidity Meter NDH-300A" manufactured by Nippon Denshoku Industries Co., Ltd. in accordance with JIS K7361-1997.
  • the average thickness of the base material is preferably 5 ⁇ m or more, more preferably 20 ⁇ m or more, and preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less. It is preferable that the thickness variation width of the base material is within ⁇ 3% of the average thickness in both the longitudinal direction and the width direction. By controlling the thickness variation within the above range, variations in optical properties such as retardation of the base material can be reduced.
  • the base material may be an unstretched film that has not been subjected to a stretching process, or may be a stretched film that has been subjected to a stretching process.
  • a stretched film may be obtained by bonding film layers that have been subjected to stretching treatment in advance, and a stretched film with a multilayer structure obtained by coextrusion etc.
  • a stretched film may be obtained by performing a stretching process.
  • the base material may be subjected to surface treatment such as energy ray irradiation treatment such as corona discharge treatment, plasma treatment, electron beam irradiation treatment, and ultraviolet irradiation treatment; chemical treatment; Among these, corona discharge treatment and plasma treatment are preferred from the viewpoint of treatment efficiency, and corona discharge treatment is more preferred.
  • surface treatment such as energy ray irradiation treatment such as corona discharge treatment, plasma treatment, electron beam irradiation treatment, and ultraviolet irradiation treatment; chemical treatment;
  • corona discharge treatment and plasma treatment are preferred from the viewpoint of treatment efficiency, and corona discharge treatment is more preferred.
  • the cured layer of the liquid composition is a layer obtained by curing a layer of the liquid composition.
  • the cured layer of the liquid composition may contain the components contained in the liquid composition, excluding water, as they are, or may contain reaction products of the components contained in the liquid composition. You can stay there.
  • the cured layer of the liquid composition may be provided on one of the two main surfaces of the base material, or may be provided on both main surfaces.
  • the cured layer of the liquid composition is preferably provided directly on the main surface of the base material.
  • the thickness of the cured layer of the liquid composition is not particularly limited, but may be, for example, 0.005 ⁇ m to 5 ⁇ m.
  • the optical film may include any layer in addition to the substrate and the cured layer of the liquid composition.
  • the arbitrary layer include an antireflection layer, a hard coat layer, an antistatic layer, an antiglare layer, an antifouling layer, and a separator film. These arbitrary layers may be manufactured separately from the multilayer film comprising the substrate and the cured layer of the liquid composition, and bonded to the multilayer film. Further, an arbitrary layer may be further formed on the main surface of the multilayer film by a coating method.
  • the optical film preferably has a total light transmittance of 80% or more, more preferably 90% or more, from the viewpoint of stably exhibiting its function as an optical member.
  • the haze of the optical film is preferably 5% or less, more preferably 3% or less, particularly preferably 2% or less.
  • the optical film may be a retardation film having retardation in the plane or in the thickness direction.
  • a specific range of retardation can be set depending on the use of the optical film of this embodiment.
  • the in-plane retardation Re is usually selected from the range of 10 nm to 500 nm
  • the thickness direction retardation Rth is appropriately selected from the range of -500 nm to 500 nm.
  • the optical film described above may be manufactured by any method.
  • An optical film can be manufactured by a method including, in this order, a step (3) of drying the layer to form a cured layer of the liquid composition.
  • the base material is obtained by molding a resin for forming the base material using a known film molding method.
  • film molding methods include cast molding, extrusion molding, and inflation molding.
  • a melt extrusion method that does not use a solvent is preferable from the viewpoints of being able to efficiently reduce the amount of residual volatile components and being excellent in terms of global environment, work environment, and production efficiency.
  • the melt extrusion method include an inflation method using a die, and among them, a method using a T-die is preferable because it is excellent in productivity and thickness accuracy.
  • the base material includes two or more layers
  • the base material may be manufactured by bonding separately manufactured film layers together using an adhesive as needed.
  • coextrusion molding methods such as coextrusion T-die method, coextrusion inflation method, and coextrusion lamination method
  • films such as dry lamination.
  • a lamination molding method or the like can be used.
  • a base material having two or more layers may be manufactured using, for example, a coating molding method in which the surface of one film layer is coated with a solution containing a resin constituting another film layer.
  • the coextrusion molding method is preferred from the viewpoint of production efficiency and from the viewpoint of not leaving volatile components such as solvents in the base material.
  • the coextrusion T-die method is particularly preferred.
  • the coextrusion T-die method includes a feed block method and a multi-manifold method, but the multi-manifold method is more preferable from the viewpoint of reducing variations in the thickness of the film layer.
  • Any coating method can be used to coat the liquid composition on the main surface of the base material.
  • methods for drying the layer of the liquid composition include natural drying, heat drying, vacuum drying, and combinations thereof.
  • the liquid composition of this embodiment generates less stain when dried. From the viewpoint of effectively exhibiting the advantages of the liquid composition of this embodiment, it is preferable to dry the layer of the liquid composition by a method including heat drying.
  • a heating drying device such as an oven can be used.
  • the temperature inside the heating drying device is not particularly limited, but may be, for example, Tg - 30°C or higher, for example, Tg + 30°C or lower.
  • Tg represents the glass transition temperature of the resin forming the base material.
  • the method for producing an optical film may include any steps in addition to steps (1) to (3) above. Examples of optional steps include stretching the substrate.
  • the method for producing an optical film includes a step of stretching the base material
  • the base material may be stretched before step (2), or the base material may be stretched after step (2),
  • the base material may be stretched simultaneously with step (3), or after step (3).
  • a layer provided on the main surface of the base material for example, a cured layer of a liquid composition
  • the stretching method for stretching the base material is not particularly limited, and any stretching method may be used.
  • stretching methods include uniaxial stretching methods such as a method of uniaxially stretching the film in the longitudinal direction (longitudinal uniaxial stretching method), a method of uniaxially stretching the film in the width direction (horizontal uniaxial stretching method); Biaxial stretching methods such as a simultaneous biaxial stretching method in which the film is stretched in the width direction at the same time as stretching, and a sequential biaxial stretching method in which the film is stretched in one of the longitudinal and width directions and then in the other direction; A method of stretching in the direction (oblique stretching method) can be mentioned.
  • the stretching temperature is preferably (Tg - 30°C) or higher, more preferably (Tg - 10°C) or higher, preferably (Tg + 50°C) or lower, with the glass transition temperature of the resin constituting the stretched film being Tg. , more preferably (Tg+30°C) or less.
  • the stretching ratio can be appropriately selected depending on the optical properties of the base material used.
  • the specific stretching ratio is usually 1.05 times or more, preferably 1.1 times or more, and usually 10.0 times or less, preferably 2.0 times or less.
  • optical film of this embodiment can be suitably used as, for example, a protective film for optical elements (particularly a polarizer protective film), a retardation film, and an optical compensation film.
  • a protective film for optical elements particularly a polarizer protective film
  • a retardation film particularly a retardation film
  • an optical compensation film particularly a retardation film
  • the optical film can be bonded to any member with good adhesive properties.
  • the dispersibility of silica particles was evaluated according to the following criteria. Good: The entire film is uniformly and slightly cloudy, and the silica particles are uniformly dispersed. Fair: The film has some dark cloudy areas (unevenness), but is acceptable for practical purposes. Defective: There are many dark cloudy areas (unevenness) on the film. The higher the evaluation, the higher the dispersibility of the silica particles in the liquid composition.
  • the surface condition of the cured layer of the liquid composition was evaluated according to the following criteria. Good: The entire film is uniformly thin and cloudy, and no bleeding pattern of the surfactant is observed. Fair: Bleeding patterns of surfactant are observed on the film, but there are no cloudy areas (dropouts). Defective: There is a part (missing) in the film that is not cloudy at all. If there are parts of the film that are not cloudy at all, this means that air bubbles were generated when the liquid composition was applied.
  • ⁇ Analysis Weigh 1 g of multilayer film into a 500mL container, add 100mL of cyclohexane, leave it overnight, and then stir with a magnetic stirrer to dissolve most of the multilayer film and remove some white insoluble matter. It was made into a solution. 50 mL of THF was added to the solution containing the insoluble matter, and then methanol was added until the total amount was about 400 mL to form a precipitate. The precipitate was removed by filtration through a pleated filter paper, and the solvent was distilled off from the filtrate under reduced pressure to obtain a methanol-soluble liquid. The operation of removing the solvent under reduced pressure was carried out in several batches using a 100 mL eggplant flask and an evaporator.
  • This liquid was transferred to a 10 mL volumetric flask, and the solvent: methanol was added up to the marked line to make the volume constant.
  • the fixed volume of the liquid was filtered through a 0.2 um filter, transferred to a vial, and the concentration of the surfactant was measured by HPLC measurement under the following conditions.
  • the surfactant concentration was determined based on a calibration curve prepared in advance by analyzing surfactant solutions having different concentrations. From the concentration of the surfactant obtained, the amount X1 of the surfactant remaining in 1 g of the multilayer film was calculated.
  • a larger residual ratio R means that stains are less likely to occur when heating and drying a layer of the liquid composition. Therefore, the larger the residual rate R is, the less resinous dirt adheres to the inside of the heating dryer.
  • compositions of surfactant compositions A to G used in Examples and Comparative Examples are shown in Table 1.
  • compositions A to G mean surfactant compositions A to G, respectively.
  • Surfactant compositions A to G were obtained commercially.
  • the numerical values of surfactant component Mn in Composition F and Composition G are values for components having a number average molecular weight of 500 or less.
  • Example 1 (1-1) Preparation of base material Pellets of cycloolefin resin (ZEONOR1420 manufactured by Nippon Zeon Co., Ltd.) were dried at 100° C. for 5 hours. The pellets are supplied to an extruder, melted in the extruder, passed through a polymer pipe and a polymer filter, extruded into a film from a T-die onto a casting drum, cooled, and made into a long unstretched film (thickness 80 ⁇ m, width 1600 mm) was obtained. From there, a sample was cut into A4 size (approximately 210 mm x approximately 297 mm).
  • ZEONOR1420 manufactured by Nippon Zeon Co., Ltd.
  • One side of the cut unstretched film was subjected to electrical discharge treatment using a corona treatment device, and was used as a base material for forming a cured layer of the liquid composition.
  • Snowtex MP2040 average particle diameter 200 nm); number average molecular weight of 4,660 as a nonionic surfactant;
  • a solid containing a polyurethane resin in an uncured state is prepared by blending surfactant composition A containing a surfactant and a low molecular weight component (L) having a molecular weight of 500 or less at 11% of the total; and water.
  • a liquid composition having a concentration of 4% was obtained.
  • the amount of the nonionic surfactant composition added is 1.25 wt% based on the solid content contained in the liquid composition, and 500 ppm by weight (0.05 wt%) based on the liquid composition. did.
  • the above liquid composition was coated with a bar coater on the discharge-treated surface of the unstretched film as a cut out base material so that the dry thickness was 0.08 ⁇ m.
  • the liquid composition according to the example contains 70 parts by weight or more and 100 parts by weight of nonionic surfactant (N) and 0 part by weight or more and 30 parts by weight or less of component (L).
  • Surfactant residual rate evaluation is good or fair, and surface condition evaluation is good or fair. Therefore, the liquid compositions according to Examples show that volatile stains are less likely to occur during drying, and the surface condition of the cured layer of the liquid composition is good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

This liquid composition comprises: 70 to 100 parts by weight of a nonionic surfactant having a number-average molecular weight greater than 500; 0 to 30 parts by weight of a component having a number-average molecular weight of 100 to 500; and water.

Description

液状組成物及び光学フィルムLiquid composition and optical film
 本発明は、液状組成物及び光学フィルムに関する。 The present invention relates to a liquid composition and an optical film.
 光学フィルムは、複層構造を有するフィルムとすることにより、様々な機能を付与しうる。かかる複層構造を、基材となるフィルムの表面に液状組成物を塗工する工程を含む方法により、形成する場合がある。液状組成物には、配合される液晶性化合物の配向欠陥を低減させる目的や、液状組成物の層を帯電防止層として機能させる目的で、界面活性剤を配合する場合がある(特許文献1~3参照)。 By forming the optical film into a film having a multilayer structure, various functions can be imparted. Such a multilayer structure may be formed by a method including a step of applying a liquid composition to the surface of a film serving as a base material. A surfactant may be blended into the liquid composition for the purpose of reducing alignment defects of the liquid crystalline compound blended or for the purpose of making the layer of the liquid composition function as an antistatic layer (Patent Documents 1 to 3). (See 3).
特開2017-203168号公報(対応外国公報:米国特許出願公開第2018/0002459号明細書)JP2017-203168A (corresponding foreign publication: US Patent Application Publication No. 2018/0002459) 国際公開第2016/136231号(対応外国公報:米国特許出願公開第2017/0351147号明細書)International Publication No. 2016/136231 (corresponding foreign publication: US Patent Application Publication No. 2017/0351147) 特開2011-184676号公報Japanese Patent Application Publication No. 2011-184676
 近年、環境への負荷が小さいことから、媒体として水を含む、水系の液状組成物が求められている。基材となるフィルムの表面に、水系の液状組成物を塗工して液状組成物の層を形成し、この層を乾燥させて水を除去することにより、液状組成物の硬化層を含む、複層構造を有する光学フィルムを得ることができる。
 液状組成物の層を乾燥するために、加熱乾燥装置を用いる場合、加熱乾燥装置の内部に、樹脂状の汚れが付着する場合がある。加熱乾燥装置内部の汚れは、高い品質が求められる光学フィルムの汚染を招く。そのため、加熱乾燥装置内部の汚れを清掃するために、光学フィルムの製造ラインを頻繁に停止する場合がある。したがって、乾燥させる際に、汚れの発生量の少ない液状組成物が求められる。
 また、光学フィルムには、液状組成物の硬化層が、良好な面状を有することが求められる。
 よって、乾燥させる際に、汚れの発生量が少なく、面状が良好な硬化層を得られる液状組成物;及び、かかる液状組成物の硬化層を含む光学フィルム;が求められる。
In recent years, there has been a demand for aqueous liquid compositions containing water as a medium because of their low environmental impact. A layer of the liquid composition is formed by coating the surface of the film serving as a base material with an aqueous liquid composition, and this layer is dried to remove water, thereby forming a cured layer of the liquid composition. An optical film having a multilayer structure can be obtained.
When a heating dryer is used to dry a layer of a liquid composition, resinous stains may adhere to the inside of the heating dryer. Dirt inside the heat drying device causes contamination of optical films that require high quality. Therefore, the optical film production line may be frequently stopped in order to clean the dirt inside the heating dryer. Therefore, there is a need for a liquid composition that generates less stain when dried.
Further, in the optical film, the cured layer of the liquid composition is required to have a good surface condition.
Therefore, there is a need for a liquid composition that produces a cured layer with a small amount of dirt and a good surface condition when dried; and an optical film that includes a cured layer of such a liquid composition.
 本発明者は、前記課題を解決するべく、鋭意検討した。その結果、加熱乾燥装置内部に生じる樹脂状の汚れが、液状組成物に含まれる界面活性剤に由来することを見出した。本発明者は、この知見に基づいて更に検討した結果、数平均分子量が500超であるノニオン系界面活性剤と水とを含み、前記ノニオン系界面活性剤の重量に対して、数平均分子量が100以上500以下である成分が、所定重量以下である液状組成物により、前記課題が解決できることを見出し、本発明を完成させた。
 すなわち、本発明は、以下を提供する。
The inventors of the present invention have made extensive studies to solve the above problems. As a result, it was discovered that the resinous stains occurring inside the heat drying device were derived from the surfactant contained in the liquid composition. As a result of further studies based on this knowledge, the present inventor found that a nonionic surfactant containing a nonionic surfactant with a number average molecular weight of more than 500 and water has a number average molecular weight relative to the weight of the nonionic surfactant. The inventors have discovered that the above-mentioned problems can be solved by a liquid composition in which the weight of the components is 100 or more and 500 or less, and the present invention has been completed.
That is, the present invention provides the following.
 [1] 70重量部以上100重量部以下の、数平均分子量が500超であるノニオン系界面活性剤と、
 0重量部以上30重量部以下の、数平均分子量が100以上500以下である成分と、
 水と、を含む、液状組成物。
 [2] 前記ノニオン系界面活性剤の数平均分子量が、550以上である、[1]に記載の液状組成物。
 [3] 前記ノニオン系界面活性剤を、0.02重量%以上0.10重量%以下含む、[1]又は[2]に記載の液状組成物。
 [4] 更にポリウレタンとシリカ粒子とを含む、[1]~[3]のいずれか一項に記載の液状組成物。
 [5] 基材と、前記基材の主面上に設けられた[1]~[4]のいずれか一項に記載の液状組成物の硬化層と、を含む、光学フィルム。
 [6] 前記基材が、シクロオレフィン系樹脂からなる、[5]に記載の光学フィルム。
[1] 70 parts by weight or more and 100 parts by weight or less of a nonionic surfactant having a number average molecular weight of more than 500;
0 parts by weight or more and 30 parts by weight or less of a component having a number average molecular weight of 100 or more and 500 or less;
A liquid composition containing water.
[2] The liquid composition according to [1], wherein the nonionic surfactant has a number average molecular weight of 550 or more.
[3] The liquid composition according to [1] or [2], which contains the nonionic surfactant in an amount of 0.02% by weight or more and 0.10% by weight or less.
[4] The liquid composition according to any one of [1] to [3], further comprising polyurethane and silica particles.
[5] An optical film comprising a base material and a cured layer of the liquid composition according to any one of [1] to [4] provided on the main surface of the base material.
[6] The optical film according to [5], wherein the base material is made of a cycloolefin resin.
 本発明によれば、乾燥させる際に、汚れの発生量が少なく、面状が良好な硬化層を得られる液状組成物;及び、かかる液状組成物の硬化層を含む光学フィルム;を提供できる。 According to the present invention, it is possible to provide a liquid composition that produces a cured layer with a small amount of dirt and a good surface condition when dried; and an optical film that includes a cured layer of such a liquid composition.
 以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は以下に示す実施形態及び例示物に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。以下に示す実施形態の構成要素は、適宜組み合わせうる。 Hereinafter, the present invention will be described in detail by showing embodiments and examples. However, the present invention is not limited to the embodiments and examples shown below, and may be implemented with arbitrary changes within the scope of the claims of the present invention and equivalents thereof. The components of the embodiments shown below can be combined as appropriate.
 以下の説明において、「長尺」のフィルムとは、幅に対して、5倍以上の長さを有するフィルムをいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻き取られて保管又は運搬される程度の長さを有するフィルムをいう。フィルムの長さの上限は、特に制限は無く、例えば、幅に対して10万倍以下としうる。 In the following description, a "long" film refers to a film having a length of 5 times or more, preferably 10 times or more, of the width, and specifically a roll A film that is long enough to be rolled up into a shape for storage or transportation. The upper limit of the length of the film is not particularly limited, and may be, for example, 100,000 times or less the width.
 以下の説明において、層の面内レターデーションReは、別に断らない限り、Re=(nx-ny)×dで表される値である。また、層の厚み方向のレターデーションRthは、別に断らない限り、Rth=[{(nx+ny)/2}-nz]×dで表される値である。ここで、nxは、層の厚み方向に垂直な方向(面内方向)であって最大の屈折率を与える方向の屈折率を表す。nyは、層の前記面内方向であってnxの方向に直交する方向の屈折率を表す。nzは層の厚み方向の屈折率を表す。dは、層の厚みを表す。測定波長は、別に断らない限り、590nmである。 In the following description, the in-plane retardation Re of a layer is a value expressed by Re=(nx-ny)×d, unless otherwise specified. Further, the retardation Rth in the thickness direction of the layer is a value expressed by Rth=[{(nx+ny)/2}-nz]×d, unless otherwise specified. Here, nx represents the refractive index in the direction perpendicular to the thickness direction of the layer (in-plane direction) and giving the maximum refractive index. ny represents the refractive index in the in-plane direction of the layer and perpendicular to the nx direction. nz represents the refractive index in the thickness direction of the layer. d represents the layer thickness. The measurement wavelength is 590 nm unless otherwise specified.
[1.液状組成物]
[1.1.液状組成物の概要]
 本発明の一実施形態に係る液状組成物は、
 70重量部以上100重量部以下の、数平均分子量が500超であるノニオン系界面活性剤と、
 0重量部以上30重量部以下の、数平均分子量が100以上500以下である成分と、
 水と、を含む。
 以下、数平均分子量が500超であるノニオン系界面活性剤を、ノニオン系界面活性剤(N)ともいい、数平均分子量が100以上500以下である成分を、成分(L)ともいう。
 言い換えると、本発明の一実施形態に係る液状組成物は、下記(1)又は(2)の液状組成物でありうる。
 (1)数平均分子量が100以上500以下である成分を含まず、数平均分子量が500超であるノニオン系界面活性剤(N)及び水を含む液状組成物。
 (2)70重量部以上100重量部未満の、数平均分子量が500超であるノニオン系界面活性剤(N)と、0重量部超30重量部以下の、数平均分子量が100以上500以下である成分と、水と、を含む液状組成物。
 本実施形態に係る液状組成物は、基材に塗工して液状組成物の層を形成し、この液状組成物の層を加熱乾燥して硬化させる際に、揮発性の汚れを生じにくい。そのため、加熱乾燥装置の汚染が低減され、当該装置のクリーニング頻度を小さくしうる。その結果、製造ラインを停止する時間を短くでき、効率的に、液状組成物の硬化層を含むフィルムを製造しうる。
 また、本実施形態に係る液状組成物は、これに含まれる成分が良好に液状組成物中に分散し、液状組成物の硬化層が、良好な面状を有しうる。
[1. Liquid composition]
[1.1. Overview of liquid composition]
The liquid composition according to one embodiment of the present invention is
70 parts by weight or more and 100 parts by weight or less of a nonionic surfactant having a number average molecular weight of more than 500;
0 parts by weight or more and 30 parts by weight or less of a component having a number average molecular weight of 100 or more and 500 or less;
including water.
Hereinafter, a nonionic surfactant having a number average molecular weight of more than 500 is also referred to as a nonionic surfactant (N), and a component having a number average molecular weight of 100 to 500 is also referred to as a component (L).
In other words, the liquid composition according to one embodiment of the present invention may be the following liquid composition (1) or (2).
(1) A liquid composition containing water and a nonionic surfactant (N) having a number average molecular weight of more than 500, without containing a component having a number average molecular weight of 100 or more and 500 or less.
(2) 70 parts by weight or more and less than 100 parts of a nonionic surfactant (N) with a number average molecular weight of more than 500; A liquid composition containing a certain ingredient and water.
The liquid composition according to the present embodiment is less likely to cause volatile stains when it is applied to a substrate to form a layer of the liquid composition, and the layer of the liquid composition is heated and dried to cure it. Therefore, contamination of the heating drying device is reduced, and the frequency of cleaning of the device can be reduced. As a result, the time for stopping the production line can be shortened, and a film including a cured layer of the liquid composition can be efficiently produced.
Further, in the liquid composition according to the present embodiment, the components contained therein can be well dispersed in the liquid composition, and the cured layer of the liquid composition can have a good surface condition.
[1.2.ノニオン系界面活性剤(N)]
 ノニオン系界面活性剤は、通常、水中でイオン化しない親水基を有する界面活性剤を意味する。
 ノニオン系界面活性剤の例としては、アセチレン構造を含む、アセチレン系界面活性剤;脂肪酸と多価アルコールとのエステル構造を有する化合物;ポリオキシアルキレン構造を有する化合物;などが挙げられる。ノニオン系界面活性剤は、フッ素原子を有していてもよく、フッ素原子を有していなくてもよいが、環境への負荷が小さいので、フッ素原子を有していないことが好ましい。
[1.2. Nonionic surfactant (N)]
A nonionic surfactant usually means a surfactant having a hydrophilic group that does not ionize in water.
Examples of nonionic surfactants include acetylene surfactants containing an acetylene structure; compounds having an ester structure of fatty acid and polyhydric alcohol; compounds having a polyoxyalkylene structure; and the like. The nonionic surfactant may or may not have a fluorine atom, but it is preferable that it does not have a fluorine atom because it has a small burden on the environment.
 ノニオン系界面活性剤の具体的商品名を例示すると、エアープロダクツアンドケミカルズ社製「サーフィノールシリーズ」;日信化学工業社製「ダイノール607」;共栄社化学社製「フローレンD-90」、「ポリフローKL-900」;サンノプコ社製「SNウェット980」、「SNウェット984」;日本乳化剤社製「ニューコール170」、「ニューコール85」、「ニューコール3-85」;日光ケミカルズ社製「NIKKOL」シリーズ(BT-7、BT-9、BT-12、BL-4.2、BL-9EX、BB-10、BB-20、BC-7、BC-15、BO-7V、BO-10V、SG-DTD620、SG-DTD630、SG-G2424、PBC-33、BPS-20);が挙げられる。ノニオン系界面活性剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of specific product names of nonionic surfactants include "Surfynol Series" manufactured by Air Products and Chemicals; "Dynor 607" manufactured by Nissin Chemical Co.; "Floren D-90" and "Polyflow" manufactured by Kyoeisha Chemical KL-900"; "SN Wet 980", "SN Wet 984" manufactured by Sannopco; "Nukol 170", "Nukol 85", "Nukol 3-85" manufactured by Nippon Nyukazai; "NIKKOL" manufactured by Nikko Chemicals ” series (BT-7, BT-9, BT-12, BL-4.2, BL-9EX, BB-10, BB-20, BC-7, BC-15, BO-7V, BO-10V, SG -DTD620, SG-DTD630, SG-G2424, PBC-33, BPS-20); One type of nonionic surfactant may be used alone, or two or more types may be used in combination in any ratio.
 ノニオン系界面活性剤(N)は、通常、数平均分子量が500超、好ましくは550以上であり、上限は特に限定されないが、15000以下であってもよい。
 ここで、ノニオン系界面活性剤(N)は、分子量分布を有さない化合物であってもよく、オリゴマーであってもよく、ポリマーであってもよい。ノニオン系界面活性剤(N)の数平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)を用いて測定しうる。測定条件は、下記のとおりとしうる。
 注入サンプル:0.1重量%テトラヒドロフラン(THF)溶液
 カラム温度:40℃
 展開溶媒:THF
 検出器:示差屈折計(RI)
 標準物質:ポリスチレン
The nonionic surfactant (N) usually has a number average molecular weight of more than 500, preferably 550 or more, and the upper limit is not particularly limited, but may be 15,000 or less.
Here, the nonionic surfactant (N) may be a compound having no molecular weight distribution, may be an oligomer, or may be a polymer. The number average molecular weight of the nonionic surfactant (N) can be measured using gel permeation chromatography (GPC). The measurement conditions may be as follows.
Injection sample: 0.1% by weight tetrahydrofuran (THF) solution Column temperature: 40°C
Developing solvent: THF
Detector: Differential refractometer (RI)
Standard material: polystyrene
 ノニオン系界面活性剤(N)のHLB値は、特に限定されないが、例えば7以上、例えば16以下であってよい。HLB値は、例えば、グリフィン法により求めうる。 The HLB value of the nonionic surfactant (N) is not particularly limited, but may be, for example, 7 or more and, for example, 16 or less. The HLB value can be determined, for example, by the Griffin method.
 本実施形態の液状組成物は、ノニオン系界面活性剤(N)を、一種単独で含んでいてもよく、二種以上を任意の比率で含んでいてもよい。 The liquid composition of the present embodiment may contain one kind of nonionic surfactant (N), or two or more kinds thereof in any ratio.
 本実施形態の液状組成物は、ノニオン系界面活性剤(N)以外の界面活性剤を含んでいてもよく、含んでいなくてもよい。 The liquid composition of this embodiment may or may not contain a surfactant other than the nonionic surfactant (N).
 本実施形態の液状組成物中の、ノニオン系界面活性剤(N)の含有率は、液状組成物を100重量%として、通常0重量%を超え、好ましくは0.02重量%以上であり、好ましくは0.10重量%以下である。液状組成物が、ノニオン系界面活性剤(N)を複数種含む場合、前記含有率は、複数種含まれるノニオン系界面活性剤(N)の総含有率を意味する。 The content of the nonionic surfactant (N) in the liquid composition of the present embodiment is usually more than 0% by weight, preferably 0.02% by weight or more, based on 100% by weight of the liquid composition, Preferably it is 0.10% by weight or less. When the liquid composition contains multiple types of nonionic surfactants (N), the content rate means the total content of the multiple types of nonionic surfactants (N) included.
[1.3.成分(L)]
 数平均分子量が100以上500以下である成分(L)は、液状組成物中に、含まれていてもよく、含まれていなくてもよい。
 液状組成物中における成分(L)の存在、及びノニオン系界面活性剤(N)と成分(L)との含有重量比は、GPCにより確認されうる。GPCの条件としては、前記ノニオン系界面活性剤(N)の数平均分子量の測定条件と同様の条件を用いてよい。
[1.3. Ingredients (L)]
The component (L) having a number average molecular weight of 100 or more and 500 or less may or may not be contained in the liquid composition.
The presence of component (L) in the liquid composition and the weight ratio of the nonionic surfactant (N) to component (L) can be confirmed by GPC. As the conditions for GPC, the same conditions as those for measuring the number average molecular weight of the nonionic surfactant (N) may be used.
 液状組成物は、成分(L)を、一種のみ含んでいてもよく、二種以上を任意の比率で含んでいてもよい。 The liquid composition may contain only one kind of component (L), or may contain two or more kinds in any ratio.
 成分(L)は、分子量分布を有さない物質であってもよく、オリゴマーであってもよく、ポリマーであってもよい。 Component (L) may be a substance having no molecular weight distribution, may be an oligomer, or may be a polymer.
 液状組成物において、ノニオン系界面活性剤(N)と成分(L)との含有重量比は、ノニオン系界面活性剤(N)が通常70重量部以上100重量部以下であり、成分(L)が通常0重量部以上30重量部以下である。成分(L)が0重量部以上であるとは、成分(L)が、0重量部(すなわち、成分(L)を含まない。)又は0重量部超であることを意味する。成分(L)は、0重量部であってもよく、例えば、1重量部以上であってもよく、例えば、5重量部以上であってもよい。ノニオン系界面活性剤(N)は、通常100重量部以下であり、例えば100重量部未満であってもよい。ただし、液状組成物に含まれるノニオン系界面活性剤(N)と成分(L)との総重量を、100重量部とする。
 ここで、液状組成物にノニオン系界面活性剤(N)が複数種含まれている場合、及び/又は、液状組成物に成分(L)が複数種含まれている場合、前記ノニオン系界面活性剤(N)と成分(L)との含有重量比は、ノニオン系界面活性剤の含有総重量と、成分(L)の含有総重量との比である。
In the liquid composition, the weight ratio of the nonionic surfactant (N) to the component (L) is such that the nonionic surfactant (N) is usually 70 parts by weight or more and 100 parts by weight or less, and the component (L) is usually 0 parts by weight or more and 30 parts by weight or less. Component (L) being 0 parts by weight or more means that component (L) is 0 parts by weight (that is, it does not contain component (L)) or more than 0 parts by weight. Component (L) may be 0 parts by weight, for example, 1 part by weight or more, for example, 5 parts by weight or more. The nonionic surfactant (N) is usually 100 parts by weight or less, and may be less than 100 parts by weight, for example. However, the total weight of the nonionic surfactant (N) and component (L) contained in the liquid composition is 100 parts by weight.
Here, when the liquid composition contains multiple types of nonionic surfactants (N) and/or when the liquid composition contains multiple types of components (L), the nonionic surfactant The weight ratio of the agent (N) to the component (L) is the ratio of the total weight of the nonionic surfactant to the total weight of the component (L).
 ノニオン系界面活性剤(N)と成分(L)との含有重量比は、液状組成物についてGPCを測定することにより決定しうる。具体的には、液状組成物のGPCを測定し、すべてのピークの面積を100%として、ノニオン系界面活性剤(N)のピーク面積と、成分(L)のピーク面積とに基づいて、当該含有重量比を求めうる。 The weight ratio of the nonionic surfactant (N) to the component (L) can be determined by measuring GPC of the liquid composition. Specifically, GPC of the liquid composition is measured, and the area of all peaks is set as 100%, and based on the peak area of the nonionic surfactant (N) and the peak area of the component (L), the The content weight ratio can be determined.
[1.4.水]
 本実施形態の液状組成物は、通常水を含む。水は、液状組成物に含まれる成分を溶解又は分散させる、溶媒又は分散媒でありうる。液状組成物に含まれる水の含有率は、例えば、液状組成物を、塗工法に用いる塗工液として適した粘度範囲とする観点、及び、液状組成物の硬化層の厚みを、所望の厚みとする観点から、適宜設定しうる。液状組成物に含まれる水の含有率は、特に限定されないが、液状組成物を100重量%として、例えば90重量%以上、例えば91重量%以上、例えば92重量%以上であり、例えば99重量%以下、例えば98重量%以下であり、例えば92重量%以上98重量%以下である。
[1.4. water]
The liquid composition of this embodiment usually contains water. Water can be a solvent or dispersion medium that dissolves or disperses the components contained in the liquid composition. The content of water contained in the liquid composition is determined, for example, from the viewpoint of keeping the liquid composition within a viscosity range suitable as a coating liquid used in a coating method, and from the viewpoint of adjusting the thickness of the cured layer of the liquid composition to a desired thickness. It can be set as appropriate from the viewpoint of The content of water contained in the liquid composition is not particularly limited, but is, for example, 90% by weight or more, such as 91% by weight or more, such as 92% by weight or more, such as 99% by weight, based on 100% by weight of the liquid composition. The content is, for example, 98% by weight or less, and is, for example, 92% by weight or more and 98% by weight or less.
 液状組成物は、溶媒又は分散媒として水を含む、水系塗工液として、塗工法に用いられうる。水系塗工液は、乾燥させる際の環境負荷が小さい。 The liquid composition can be used in a coating method as an aqueous coating liquid containing water as a solvent or dispersion medium. Water-based coating fluids have a small environmental impact when dried.
[1.5.その他の成分]
 本実施形態の液状組成物は、前記ノニオン系界面活性剤(N)、水、及び任意の成分(L)に加えて、更に任意の成分を含んでいてもよい。
[1.5. Other ingredients]
The liquid composition of this embodiment may further contain an arbitrary component in addition to the nonionic surfactant (N), water, and an arbitrary component (L).
 液状組成物は、重合体を含んでいてもよい。液状組成物が含みうる重合体の例としては、ポリウレタン、アクリル重合体、ポリエステル、ポリ酢酸ビニル、ポリ塩化ビニル、ポリオレフィンが挙げられる。これらの重合体は、単独重合体であってもよく、共重合体であってもよい。また重合体は、更に重合しうる重合性基を有するプレポリマーであってもよい。液状組成物は、重合体を、一種単独で含んでいてもよく、二種以上を任意の比率で含んでいてもよい。 The liquid composition may contain a polymer. Examples of polymers that the liquid composition may include include polyurethanes, acrylic polymers, polyesters, polyvinyl acetates, polyvinyl chlorides, and polyolefins. These polymers may be homopolymers or copolymers. Further, the polymer may be a prepolymer having a polymerizable group that can be further polymerized. The liquid composition may contain one kind of polymer alone, or two or more kinds of polymers in any ratio.
 液状組成物は、好ましくはポリウレタンを含む。ポリウレタンを含む液状組成物により、基材上にプライマー層を設けうる。プライマー層を、基材と偏光子層などの機能層との間に設けることにより、基材と機能層との接着性を向上させうる。 The liquid composition preferably contains polyurethane. A primer layer can be provided on a substrate using a liquid composition containing polyurethane. By providing a primer layer between the base material and a functional layer such as a polarizer layer, the adhesiveness between the base material and the functional layer can be improved.
 ポリウレタンとしては、例えば、(i)1分子中に平均2個以上の活性水素を含有する成分と、(ii)ポリイソシアネート成分とを反応させて得られるポリウレタンを用いうる。
 また、ポリウレタンとしては、例えば、前記(i)成分及び前記(ii)成分をウレタン化反応させて得たイソシアネート基含有プレポリマーを、鎖延長剤を用いて鎖延長し、水を加えて分散体とすることによって製造されるポリウレタンを用いうる。前記のプレポリマーは、前記(i)成分及び前記(ii)成分を、イソシアネート基過剰の条件下でウレタン化反応させることで得られうる。また、前記のウレタン化反応は、反応に不活性で水との親和性の大きい有機溶媒中で行いうる。さらに、前記プレポリマーの鎖延長の前には、該プレポリマーを中和させてもよい。また、イソシアネート基含有プレポリマーの鎖延長方法としては、イソシアネート基含有プレポリマーと鎖延長剤とを、必要に応じて触媒の存在下で反応させる方法が挙げられる。この際、鎖延長剤としては、水、水溶性ポリアミン、グリコール類などを用いうる。
As the polyurethane, for example, a polyurethane obtained by reacting (i) a component containing an average of two or more active hydrogens per molecule and (ii) a polyisocyanate component can be used.
In addition, as polyurethane, for example, an isocyanate group-containing prepolymer obtained by subjecting component (i) and component (ii) to a urethanization reaction is chain-extended using a chain extender, and water is added to form a dispersion. A polyurethane produced by the following method can be used. The prepolymer described above can be obtained by subjecting the component (i) and the component (ii) to a urethane reaction under conditions where an excess of isocyanate groups is present. Further, the urethanization reaction described above can be carried out in an organic solvent that is inert to the reaction and has a high affinity for water. Furthermore, the prepolymer may be neutralized before chain extension. Further, as a method for extending the chain of the isocyanate group-containing prepolymer, there may be mentioned a method of reacting the isocyanate group-containing prepolymer with a chain extender in the presence of a catalyst if necessary. At this time, water, water-soluble polyamines, glycols, etc. can be used as the chain extender.
 前記(i)成分としては、水酸基性の活性水素を有するものが好ましく、例えば1分子中に平均2個以上の水酸基を有する化合物が好ましい。 The component (i) is preferably one having a hydroxyl active hydrogen, such as a compound having an average of two or more hydroxyl groups in one molecule.
 (i)成分の具体例としては、ポリエーテルポリオールが挙げられる。 A specific example of component (i) is polyether polyol.
 ポリエーテルポリオールとしては、ポリオール化合物のアルキレンオキシド付加物;アルキレンオキシドと環状エーテル(例えばテトラヒドロフランなど)との開環(共)重合体;ポリエチレングリコール、ポリプロピレングリコール、エチレングリコール-プロピレングリコール共重合体、1,4-ブタンジオール共重合体;グリコール、ポリテトラメチレングリコール、ポリヘキサメチレングリコール、ポリオクタメチレングリコールなどのグリコール類;などが挙げられる。 Examples of polyether polyols include alkylene oxide adducts of polyol compounds; ring-opening (co)polymers of alkylene oxide and cyclic ethers (such as tetrahydrofuran); polyethylene glycol, polypropylene glycol, ethylene glycol-propylene glycol copolymers, 1 , 4-butanediol copolymer; glycols such as glycol, polytetramethylene glycol, polyhexamethylene glycol, polyoctamethylene glycol; and the like.
 ポリエーテルポリオールの製造に用いうるポリオール化合物の例としては、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、1,2-ブチレングリコール、1,3-ブチレングリコール、2,3-ブチレングリコール、1,4-ブチレングリコール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサングリコール、2,5-ヘキサンジオール、ジプロピレングリコール、2,2,4-トリメチル-1,3-ペンタンジオール、トリシクロデカンジメタノール、1,4-シクロヘキサンジメタノール、2,2-ジメチルプロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,8-オクタメチレンジオール、グリセリン、トリメチロールプロパンなどが挙げられる。 Examples of polyol compounds that can be used in the production of polyether polyols include ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 2,3-butylene glycol, 1, 4-butylene glycol, 1,5-pentanediol, neopentyl glycol, 1,6-hexane glycol, 2,5-hexanediol, dipropylene glycol, 2,2,4-trimethyl-1,3-pentanediol, tri Cyclodecanedimethanol, 1,4-cyclohexanedimethanol, 2,2-dimethylpropanediol, 1,4-butanediol, 1,6-hexanediol, 1,8-octamethylenediol, glycerin, trimethylolpropane, etc. Can be mentioned.
 (i)成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 One type of component (i) may be used alone, or two or more types may be used in combination in any ratio.
 前記(i)成分と反応させる(ii)成分(即ち、ポリイソシアネート成分)としては、例えば、1分子中に平均2個以上のイソシアネート基を含有する化合物が挙げられる。この化合物は、脂肪族化合物でもよく、脂環式化合物でもよく、芳香族化合物でもよい。
 脂肪族ポリイソシアネート化合物としては、炭素原子数1~12の脂肪族ジイソシアネートが好ましく、例えばヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサンジイソシアネート、ヘキサンジイソシアネート(HDI)などが挙げられる。
 脂環式ポリイソシアネート化合物としては、炭素原子数4~18の脂環式ジイソシアネートが好ましく、例えば、1,4-シクロヘキサンジイソシアネート、メチルシクロヘキシレンジイソシアネート、イソホロンジイソシアネート(IPDI)、ジシクロヘキシルメタンジイソシアネート(HMDI)などが挙げられる。
 芳香族ポリイソシアネートとしては、例えば、トリレンジイソシアネート(TDI)、4,4’-ジフェニルメタンジイソシアネート、キシリレンジイソシアネートなどが挙げられる。
Examples of the component (ii) (ie, polyisocyanate component) to be reacted with the component (i) include compounds containing an average of two or more isocyanate groups in one molecule. This compound may be an aliphatic compound, an alicyclic compound, or an aromatic compound.
The aliphatic polyisocyanate compound is preferably an aliphatic diisocyanate having 1 to 12 carbon atoms, such as hexamethylene diisocyanate, 2,2,4-trimethylhexane diisocyanate, hexane diisocyanate (HDI), and the like.
The alicyclic polyisocyanate compound is preferably an alicyclic diisocyanate having 4 to 18 carbon atoms, such as 1,4-cyclohexane diisocyanate, methylcyclohexylene diisocyanate, isophorone diisocyanate (IPDI), dicyclohexylmethane diisocyanate (HMDI), etc. can be mentioned.
Examples of the aromatic polyisocyanate include tolylene diisocyanate (TDI), 4,4'-diphenylmethane diisocyanate, and xylylene diisocyanate.
 これらの(ii)成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 One type of these components (ii) may be used alone, or two or more types may be used in combination in any ratio.
 前記の(i)成分及び(ii)成分は、本実施形態の液状組成物の硬化層を含む、光学フィルムの用途に応じて適切なものを任意に選択して用いうる。中でも、(i)成分としては、加水分解し難い結合を有するものを用いることが好ましく、具体的にはポリエーテルポリオールが好ましい。(i)成分としてポリエーテルポリオールを用いたポリウレタンは「ポリエーテル系ポリウレタン」と呼ばれる。ポリエーテル系ポリウレタンは、加水分解し難いエーテル結合を有する。そのため、高湿度環境においてポリウレタンが劣化し難いので、高湿度環境における接着性の低下を効果的に抑制できる。 The above-mentioned components (i) and (ii) may be appropriately selected and used depending on the use of the optical film including the cured layer of the liquid composition of the present embodiment. Among these, as component (i), it is preferable to use one having a bond that is difficult to hydrolyze, and specifically, polyether polyol is preferable. A polyurethane using a polyether polyol as the component (i) is called a "polyether polyurethane." Polyether polyurethane has ether bonds that are difficult to hydrolyze. Therefore, since polyurethane is difficult to deteriorate in a high humidity environment, it is possible to effectively suppress a decrease in adhesiveness in a high humidity environment.
 また、これらのポリウレタンは、その分子構造に酸構造を含んでいてもよい。酸構造を含むポリウレタンは、界面活性剤の量が少なくても、水中に分散させることが可能であるので、液状組成物の硬化層の耐水性を改善することが期待される。これを自己乳化型といい、界面活性剤が無くても分子イオン性のみで水中にポリウレタンの粒子が分散安定化しうることを意味する。また、酸構造を含むポリウレタンは、界面活性剤が不要又は少量で済むので、基材との接着性に優れ、かつ高い透明性を維持できる。 Furthermore, these polyurethanes may contain an acid structure in their molecular structure. Since polyurethane containing an acid structure can be dispersed in water even with a small amount of surfactant, it is expected to improve the water resistance of the cured layer of the liquid composition. This is called a self-emulsifying type, which means that polyurethane particles can be dispersed and stabilized in water just by molecular ionicity even without a surfactant. Furthermore, since polyurethane containing an acid structure does not require or requires a small amount of surfactant, it has excellent adhesion to the base material and can maintain high transparency.
 酸構造としては、例えば、カルボキシル基(-COOH)、スルホ基(-SOH)等の酸基などを挙げることができる。また、酸構造は、ポリウレタンにおいて側鎖に存在していてもよく、末端に存在していてもよい。酸構造は、1種類を用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of the acid structure include acid groups such as carboxyl group (-COOH) and sulfo group (-SO 3 H). Further, the acid structure may be present in the side chain or at the end of the polyurethane. One type of acid structure may be used, or two or more types may be used in combination in any ratio.
 酸構造の量としては、液状組成物における酸価として、好ましくは20mgKOH/g以上、より好ましくは25mgKOH/g以上であり、好ましくは250mgKOH/g以下、より好ましくは150mgKOH/g以下である。酸価を前記範囲の下限値以上にすることによりポリウレタンの水分散性を良好にできる。また、上限値以下にすることにより、液状組成物の硬化層の耐水性を良好にできる。 The amount of acid structure is preferably 20 mgKOH/g or more, more preferably 25 mgKOH/g or more, and preferably 250 mgKOH/g or less, more preferably 150 mgKOH/g or less, in terms of acid value in the liquid composition. By setting the acid value to be equal to or higher than the lower limit of the above range, the water dispersibility of the polyurethane can be improved. Further, by setting the amount to be below the upper limit, the water resistance of the cured layer of the liquid composition can be improved.
 ポリウレタンに酸構造を導入する方法としては、例えば、ジメチロールアルカン酸を、前記(i)成分の一部もしくは全部と置き換えることによって、予めポリエーテルポリオールにカルボキシル基を導入する方法が挙げられる。ここで用いられるジメチロールアルカン酸としては、例えば、ジメチロール酢酸、ジメチロールプロピオン酸、ジメチロール酪酸などが挙げられる。ジメチロールアルカン酸は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of the method for introducing an acid structure into polyurethane include a method in which a carboxyl group is introduced in advance into a polyether polyol by replacing part or all of the component (i) with dimethylolalkanoic acid. Examples of the dimethylol alkanoic acid used here include dimethylol acetic acid, dimethylol propionic acid, and dimethylol butyric acid. One type of dimethylolalkanoic acid may be used alone, or two or more types may be used in combination in any ratio.
 液状組成物において、ポリウレタンが含む酸構造の一部又は全部は、不揮発性塩基によって中和されていることが好ましい。酸構造が中和されていることにより、液状組成物の硬化層を含む光学フィルムが高温下に曝された熱履歴を有しても、光学材料としての特性を維持したり、任意の部材と強い接着力で接着したりすることが可能である。また、酸構造を中和しても、界面活性剤の量が少なくても、ポリウレタンの粒子を水中に分散させることは可能である。 In the liquid composition, it is preferable that part or all of the acid structure contained in the polyurethane be neutralized with a nonvolatile base. Because the acid structure is neutralized, even if the optical film containing the cured layer of the liquid composition has a thermal history of being exposed to high temperatures, it maintains its properties as an optical material and is compatible with any component. It is possible to bond with strong adhesive force. Further, even if the acid structure is neutralized, it is possible to disperse polyurethane particles in water even if the amount of surfactant is small.
 ポリウレタンが含む酸構造のうち、中和される酸構造の割合は、20%以上が好ましく、50%以上が特に好ましい。酸構造のうちの20%以上が中和されることにより、液状組成物の硬化層を含む光学フィルムが高温下に曝された熱履歴を有しても、光学材料としての特性を維持したり、任意の部材と強い接着力で接着したりすることが可能である。 Of the acid structures contained in polyurethane, the proportion of acid structures to be neutralized is preferably 20% or more, particularly preferably 50% or more. By neutralizing 20% or more of the acid structure, the optical film containing the cured layer of the liquid composition can maintain its properties as an optical material even if it has a thermal history of being exposed to high temperatures. , it is possible to adhere to any member with strong adhesive force.
 ポリウレタンは、架橋剤との反応を可能にするため、極性基を含むことが好ましい。極性基としては、メチロール基、カルボキシル基、カルボニルオキシカルボニル基、エポキシ基、ヒドロキシル基、オキシ基、エステル基、シラノール基、シリル基、アミノ基、ニトリル基、スルホ基などが挙げられる。中でも、メチロール基、水酸基、カルボキシル基及びアミノ基が好ましく、水酸基及びカルボキシル基がより好ましく、カルボキシル基が特に好ましい。ポリウレタン中の極性基の量は、好ましくは0.0001当量/1kg以上、より好ましくは0.001当量/1kg以上であり、好ましくは1当量/1kg以下である。 It is preferable that the polyurethane contains a polar group in order to enable reaction with a crosslinking agent. Examples of the polar group include a methylol group, a carboxyl group, a carbonyloxycarbonyl group, an epoxy group, a hydroxyl group, an oxy group, an ester group, a silanol group, a silyl group, an amino group, a nitrile group, and a sulfo group. Among these, a methylol group, a hydroxyl group, a carboxyl group, and an amino group are preferable, a hydroxyl group and a carboxyl group are more preferable, and a carboxyl group is particularly preferable. The amount of polar groups in the polyurethane is preferably 0.0001 equivalent/1 kg or more, more preferably 0.001 equivalent/1 kg or more, and preferably 1 equivalent/1 kg or less.
 ポリウレタンとしては、水系ウレタン樹脂として市販されているものを用いてもよい。水系ウレタン樹脂は、ポリウレタンと水とを含む組成物であり、通常、ポリウレタン及び必要に応じて含まれる任意の成分が水の中に分散している組成物である。水系ウレタン樹脂としては、例えば、ADEKA社製の「アデカボンタイター」シリーズ、三井化学社製の「オレスター」シリーズ、DIC社製の「ボンディック」シリーズ、「ハイドラン(WLS201,WLS202など)」シリーズ、バイエル社製の「インプラニール」シリーズ、花王社製の「ポイズ」シリーズ、三洋化成工業社製の「サンプレン」シリーズ、第一工業製薬社製の「スーパーフレックス」シリーズ、楠本化成社製の「NEOREZ(ネオレッズ)」シリーズ、ルーブリゾール社製の「Sancure」シリーズなどを用いることができる。また、ポリウレタンは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 As the polyurethane, those commercially available as water-based urethane resins may be used. A water-based urethane resin is a composition containing polyurethane and water, and is usually a composition in which polyurethane and optional components included are dispersed in water. Examples of water-based urethane resins include the "ADEKA BONTITER" series manufactured by ADEKA, the "OLESTAR" series manufactured by Mitsui Chemicals, the "BONDIC" series manufactured by DIC, and the "Hydran (WLS201, WLS202, etc.)" series. , "Inplanil" series manufactured by Bayer, "Poise" series manufactured by Kao, "Samplen" series manufactured by Sanyo Chemical Industries, "Superflex" series manufactured by Daiichi Kogyo Seiyaku, " NEOREZ series, Sancure series manufactured by Lubrizol, etc. can be used. Moreover, one type of polyurethane may be used alone, or two or more types may be used in combination in any ratio.
 液状組成物において、ポリウレタンの状態は任意であり、粒子状になって分散していてもよく、溶媒等の他の成分に溶解していてもよい。ポリウレタンは、これらの状態の中でも、粒子状となって分散していることが好ましい。この場合、ポリウレタンの粒子の平均粒子径は、液状組成物の硬化層を含む光学フィルムの光学特性の観点から、0.01μm~0.4μmであることが好ましい。 In the liquid composition, the state of the polyurethane is arbitrary, and it may be dispersed in the form of particles or dissolved in other components such as a solvent. Among these states, polyurethane is preferably dispersed in the form of particles. In this case, the average particle diameter of the polyurethane particles is preferably 0.01 μm to 0.4 μm from the viewpoint of optical properties of the optical film including the cured layer of the liquid composition.
 液状組成物は、架橋剤を含んでいてもよい。特に、液状組成物がポリウレタンを含む場合、架橋剤を含むことが好ましい。
 架橋剤は、ポリウレタンが有する反応性の基と反応して結合を形成することにより、ポリウレタンを架橋させうる。この架橋により、液状組成物の硬化層の機械的強度、接着性及び耐湿熱性を向上させることができる。通常、架橋剤は、前記酸構造として含まれるカルボキシル基及びその無水物基、並びに、(i)成分と(ii)成分との反応後に未反応で残った水酸基などのような、ポリウレタンに含まれる極性基と反応して架橋構造を形成しうる。
The liquid composition may contain a crosslinking agent. In particular, when the liquid composition contains polyurethane, it is preferable to contain a crosslinking agent.
The crosslinking agent can crosslink polyurethane by reacting with a reactive group that polyurethane has to form a bond. This crosslinking can improve the mechanical strength, adhesiveness, and heat-and-moisture resistance of the cured layer of the liquid composition. Usually, crosslinking agents are contained in polyurethane, such as carboxyl groups and their anhydride groups contained as the acid structure, and hydroxyl groups remaining unreacted after the reaction of component (i) and component (ii). It can react with polar groups to form crosslinked structures.
 架橋剤としては、例えば、ポリウレタンが有する反応性の基と反応して結合を形成できる官能基を1分子内に2個以上有する化合物を用いうる。中でも、架橋剤としては、ポリウレタンが有するカルボキシル基又はその無水物基と反応しうる官能基を有する化合物が好ましい。
 架橋剤の具体例を挙げると、エポキシ化合物が挙げられる。また、架橋剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
As the crosslinking agent, for example, a compound having two or more functional groups in one molecule that can react with a reactive group of polyurethane to form a bond can be used. Among these, as the crosslinking agent, a compound having a functional group that can react with the carboxyl group or anhydride group thereof that polyurethane has is preferable.
Specific examples of crosslinking agents include epoxy compounds. Moreover, one type of crosslinking agent may be used alone, or two or more types may be used in combination in any ratio.
 エポキシ化合物としては、1分子内に2個以上のエポキシ基を有する多官能のエポキシ化合物を用いうる。中でも、エポキシ化合物としては、水に溶解性があるか、又は水に分散してエマルジョン化しうるものが好ましい。エポキシ基が水に溶解性を有するか又はエマルジョン化しうるものであれば、液状組成物が水系樹脂である場合に、その水系樹脂の塗工性を良好にして、液状組成物の硬化層の製造を容易に行うことが可能となる。ここで、水系樹脂とは、重合体等の固形分を、水等の水系の溶媒に溶解又は分散した状態で含有する組成物のことをいう。 As the epoxy compound, a polyfunctional epoxy compound having two or more epoxy groups in one molecule can be used. Among these, the epoxy compound is preferably one that is soluble in water or can be dispersed in water to form an emulsion. If the epoxy group has water solubility or can be emulsified, when the liquid composition is a water-based resin, it improves the coating properties of the water-based resin and produces a cured layer of the liquid composition. It becomes possible to do this easily. Here, the aqueous resin refers to a composition containing a solid content such as a polymer dissolved or dispersed in an aqueous solvent such as water.
 前記エポキシ化合物の例を挙げると、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,4-ブタンジオール、1,6-ヘキサングリコール、ネオペンチルグリコール等のグリコール類1モルと、エピクロルヒドリン2モルとのエーテル化によって得られるジエポキシ化合物;グリセリン、ポリグリセリン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール等の多価アルコール類1モルと、エピクロルヒドリン2モル以上とのエーテル化によって得られるポリエポキシ化合物;フタル酸、テレフタル酸、シュウ酸、アジピン酸等のジカルボン酸1モルと、エピクロルヒドリン2モルとのエステル化によって得られるジエポキシ化合物;などが挙げられる。 Examples of the epoxy compounds include glycols 1 such as ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, 1,4-butanediol, 1,6-hexane glycol, and neopentyl glycol. A diepoxy compound obtained by etherification of 1 mole of a polyhydric alcohol such as glycerin, polyglycerin, trimethylolpropane, pentaerythritol, sorbitol, etc. with 2 moles of epichlorohydrin and 2 moles or more of epichlorohydrin. Polyepoxy compounds; diepoxy compounds obtained by esterifying 1 mole of dicarboxylic acid such as phthalic acid, terephthalic acid, oxalic acid, adipic acid, etc. with 2 moles of epichlorohydrin; and the like.
 より具体的にエポキシ化合物の例を挙げると、1,4-ビス(2’,3’-エポキシプロピルオキシ)ブタン、1,3,5-トリグリシジルイソシアヌレート、1,3-ジクリシジル-5-(γ-アセトキシ-β-オキシプロピル)イソシアヌレート、ソルビトールポリグリシジルエーテル類、ポリグリセロールポリグリシジルエーテル類、ペンタエリスリトールポリグリシジルエーテル類、ジグリセロ-ルポリグリシジルエーテル、1,3,5-トリグリシジル(2-ヒドロキシエチル)イソシアヌレート、グリセロールポリグリセロールエーテル類及びトリメチロ-ルプロパンポリグリシジルエーテル類等が挙げられる。
 また、エポキシ化合物の例を市販品で挙げると、ナガセケムテックス社製の「デナコール(デナコールEX-521,デナコールEX-512、EX-614Bなど)」シリーズ等を挙げることができる。
 エポキシ化合物は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
More specific examples of epoxy compounds include 1,4-bis(2',3'-epoxypropyloxy)butane, 1,3,5-triglycidyl isocyanurate, 1,3-dicrycidyl-5-( γ-acetoxy-β-oxypropyl) isocyanurate, sorbitol polyglycidyl ethers, polyglycerol polyglycidyl ethers, pentaerythritol polyglycidyl ethers, diglycerol polyglycidyl ether, 1,3,5-triglycidyl (2- Examples include hydroxyethyl) isocyanurate, glycerol polyglycerol ethers, and trimethylolpropane polyglycidyl ethers.
Examples of commercially available epoxy compounds include the "Denacol (Denacol EX-521, Denacol EX-512, EX-614B, etc.)" series manufactured by Nagase ChemteX.
One type of epoxy compound may be used alone, or two or more types may be used in combination in any ratio.
 エポキシ化合物の量は、ポリウレタン100重量部に対し、通常2重量部以上、好ましくは5重量部以上、より好ましくは8重量部以上であり、通常40重量部以下、好ましくは35重量部以下、より好ましくは30重量部以下である。エポキシ化合物の量を前記範囲の下限値以上にすることにより、エポキシ化合物とポリウレタンとの反応が十分に進行するので、液状組成物の硬化層の機械的強度を適切に向上させることができる。また、上限値以下にすることにより、未反応のエポキシ化合物の残留を少なくでき、液状組成物の硬化層の機械的強度を適切に向上できる。 The amount of the epoxy compound is usually 2 parts by weight or more, preferably 5 parts by weight or more, more preferably 8 parts by weight or more, and usually 40 parts by weight or less, preferably 35 parts by weight or less, based on 100 parts by weight of the polyurethane. Preferably it is 30 parts by weight or less. By setting the amount of the epoxy compound to be at least the lower limit of the above range, the reaction between the epoxy compound and the polyurethane will proceed sufficiently, so that the mechanical strength of the cured layer of the liquid composition can be appropriately improved. Further, by setting the amount to be below the upper limit, the amount of unreacted epoxy compound remaining can be reduced, and the mechanical strength of the cured layer of the liquid composition can be appropriately improved.
 また、ポリウレタンの極性基と当量になるエポキシ化合物の量に対し、エポキシ化合物の量は、重量基準で、好ましくは0.2倍以上、より好ましくは0.4倍以上、特に好ましくは0.6倍以上であり、好ましくは5.0倍以下、より好ましくは4.0倍以下、特に好ましくは3.0倍以下である。ここで、ポリウレタンの極性基と当量になるエポキシ化合物の量とは、ポリウレタンの極性基の全量と過不足無く反応できるエポキシ化合物の理論量をいう。ポリウレタンの極性基は、エポキシ化合物のエポキシ基と反応しうる。よって、エポキシ化合物の量を前記範囲に収めることにより、極性基とエポキシ化合物との反応を適切な程度に進行させて、液状組成物の硬化層の機械的強度を効果的に向上させることができる。 Furthermore, the amount of the epoxy compound is preferably 0.2 times or more, more preferably 0.4 times or more, particularly preferably 0.6 times, on a weight basis, relative to the amount of the epoxy compound equivalent to the polar group of the polyurethane. It is at least 5 times, preferably at most 5.0 times, more preferably at most 4.0 times, particularly preferably at most 3.0 times. Here, the amount of the epoxy compound equivalent to the polar groups of the polyurethane refers to the theoretical amount of the epoxy compound that can react with the total amount of the polar groups of the polyurethane in just the right amount. The polar groups of the polyurethane can react with the epoxy groups of the epoxy compound. Therefore, by keeping the amount of the epoxy compound within the above range, the reaction between the polar group and the epoxy compound can proceed to an appropriate degree, and the mechanical strength of the cured layer of the liquid composition can be effectively improved. .
 液状組成物は、不揮発性塩基を含んでいてもよい。特に、液状組成物がポリウレタンを含む場合、不揮発性塩基を含んでいることが好ましい。
 不揮発性塩基としては、液状組成物を基材に塗工した後に乾燥させる際の処理条件下において、実質的に不揮発性である塩基が挙げられる。ここで実質的に不揮発性であるとは、通常、不揮発性塩基の減少分が80%以下であることをいう。また、液状組成物を基材に塗工した後に乾燥させる際の処理条件としては、例えば、80℃で1時間放置することが挙げられる。このような不揮発性塩基は、ポリウレタンの酸構造を中和する中和剤として機能しうる。
The liquid composition may also include a nonvolatile base. In particular, when the liquid composition contains polyurethane, it is preferable that it contains a nonvolatile base.
Examples of the non-volatile base include bases that are substantially non-volatile under the treatment conditions when the liquid composition is applied to the substrate and then dried. Here, "substantially non-volatile" generally means that the amount of non-volatile base is reduced by 80% or less. In addition, the treatment conditions for drying the liquid composition after coating it on the substrate include, for example, leaving it at 80° C. for 1 hour. Such a non-volatile base can function as a neutralizing agent to neutralize the acid structure of the polyurethane.
 不揮発性塩基としては、無機塩基を用いてもよく、有機塩基を用いてよい。中でも、沸点100℃以上の有機塩基が好ましく、沸点100℃以上のアミン化合物がより好ましく、沸点200℃以上のアミン化合物が特に好ましい。また、有機塩基は低分子化合物でもよく、重合体でもよい。 As the nonvolatile base, an inorganic base or an organic base may be used. Among these, organic bases with a boiling point of 100°C or higher are preferred, amine compounds with a boiling point of 100°C or higher are more preferred, and amine compounds with a boiling point of 200°C or higher are particularly preferred. Further, the organic base may be a low molecular compound or a polymer.
 不揮発性塩基の例を挙げると、無機塩基としては、例えば、水酸化ナトリウム及び水酸化カリウムが挙げられる。また、有機塩基としては、例えば、2-アミノ-2-メチル-1-プロパノール(AMP)、トリエタノールアミン、トリイソプロパノールアミン(TIPA)、モノエタノールアミン、ジエタノールアミン、トリ[(2-ヒドロキシ)-1-プロピル]アミン、2-アミノ-2-メチル-1,3-プロパンジオール(AMPD)、2-アミノ-2-ヒドロキシメチル-1,3-プロパン水酸化カリウム、亜鉛アンモニウム錯体、銅アンモニウム錯体、銀アンモニウム錯体、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリメチルジメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、N,N-ビス(トリメチルシリル)ウレア、3-ウレイドプロピルトリメトキシシラン、3-アミノプロピル-トリス(2-メトキシ-エトキシ-エトキシ)シラン、N-メチル-3-アミノプロピルトリメトキシカルボン酸ジヒドラジド、シュウ酸ジヒドラジド、マロン酸ジヒドラジド、コハク酸ジヒドラジド、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド、ドデカン二酸ジヒドラジド、イソフタール酸ジヒドラジド、テレフタル酸ジヒドラジド、キノリン、ピコリン、ピリジン、モルホリン、ピペラジン、シクロヘキシルアミン、ヘキサメチレンジアミン、N,N-ジメチルホルムアミド、エチレンジアミン、ジエチレントリアミン、テトラエチレンペンタミン、ペンタエチレンペンタミン、イソプロパノールアミン、N,N-ジエチルメタノールアミン、N,N-ジメチルエタノールアミン、アミノエチルエタノールアミン、N-メチル-N,N-ジエタノールアミン、1,2-プロパンジアミン、1,6-ヘキサメチレンジアミン、2-メチルピペラジン、2,5-ジメチルピペラジン、イソホロンジアミン、4,4’-ジシクロヘキシルメタンジアミン、3,3’-ジメチル-ジシクロヘキシルメタンジアミン、1,2-シクロヘキサンジアミン、1,4-シクロヘキサンジアミン、アミノエチルエタノールアミン、アミノプロピルエタノールアミン、アミノヘキシルエタノールアミン、アミノエチルプロパノールアミン、アミノプロピルプロパノールアミン、アミノヘキシルプロパノールアミン、ジプロピレントリイミダゾール、1-(2-アミノエチル)-2-メチルイミダゾール、1-(2-アミノエチル)-2-エチルイミダゾール、2-アミノイミダゾールサルフェート、2-(2-アミノエチル)-ベンゾイミダゾール、ピラゾール、5-アミノピラゾール、1-メチル-5-アミノピラゾール、1-イソプロピル-5-アミノピラゾール、1-ベンジル-5-アミノピラゾール、1,3-ジメチル-5-アミノピラゾール、1-イソプロピル-3-メチル-5-アミノピラゾール、1-ベンジル-3-メチル-5-アミノピラゾール、1-メチル-4-クロロ-5-アミノピラゾール、1-メチル-4-シアノ-5-アミノピラゾール、1-イソプロピル-4-クロロ-5-アミノピラゾール、3-メチル-4-クロロ-5-アミノピラゾール、1-ベンジル-4-クロロ-5-アミノピラゾール、アミノ樹脂(例えば、1,3-ジメチル-4-クロロ-メラミン樹脂、ユリア樹脂、グアナミン樹脂等)などが挙げられる。また、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of nonvolatile bases include inorganic bases such as sodium hydroxide and potassium hydroxide. Examples of organic bases include 2-amino-2-methyl-1-propanol (AMP), triethanolamine, triisopropanolamine (TIPA), monoethanolamine, diethanolamine, tri[(2-hydroxy)-1 -propyl]amine, 2-amino-2-methyl-1,3-propanediol (AMPD), 2-amino-2-hydroxymethyl-1,3-propane potassium hydroxide, zinc ammonium complex, copper ammonium complex, silver Ammonium complex, γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, N-β(aminoethyl)-γ-aminopropyltrimethoxysilane, N-β(aminoethyl)-γ-aminopropyltrimethyldimethoxysilane , N-phenyl-γ-aminopropyltrimethoxysilane, N,N-bis(trimethylsilyl)urea, 3-ureidopropyltrimethoxysilane, 3-aminopropyl-tris(2-methoxy-ethoxy-ethoxy)silane, N- Methyl-3-aminopropyltrimethoxycarboxylic acid dihydrazide, oxalic acid dihydrazide, malonic acid dihydrazide, succinic acid dihydrazide, adipic acid dihydrazide, sebacic acid dihydrazide, dodecanedioic acid dihydrazide, isophthalic acid dihydrazide, terephthalic acid dihydrazide, quinoline, picoline, pyridine , morpholine, piperazine, cyclohexylamine, hexamethylenediamine, N,N-dimethylformamide, ethylenediamine, diethylenetriamine, tetraethylenepentamine, pentaethylenepentamine, isopropanolamine, N,N-diethylmethanolamine, N,N-dimethylethanol Amine, aminoethylethanolamine, N-methyl-N,N-diethanolamine, 1,2-propanediamine, 1,6-hexamethylenediamine, 2-methylpiperazine, 2,5-dimethylpiperazine, isophoronediamine, 4,4 '-dicyclohexylmethanediamine, 3,3'-dimethyl-dicyclohexylmethanediamine, 1,2-cyclohexanediamine, 1,4-cyclohexanediamine, aminoethylethanolamine, aminopropylethanolamine, aminohexylethanolamine, aminoethylpropanolamine , aminopropylpropanolamine, aminohexylpropanolamine, dipropylenetriimidazole, 1-(2-aminoethyl)-2-methylimidazole, 1-(2-aminoethyl)-2-ethylimidazole, 2-aminoimidazole sulfate, 2-(2-aminoethyl)-benzimidazole, pyrazole, 5-aminopyrazole, 1-methyl-5-aminopyrazole, 1-isopropyl-5-aminopyrazole, 1-benzyl-5-aminopyrazole, 1,3- Dimethyl-5-aminopyrazole, 1-isopropyl-3-methyl-5-aminopyrazole, 1-benzyl-3-methyl-5-aminopyrazole, 1-methyl-4-chloro-5-aminopyrazole, 1-methyl- 4-cyano-5-aminopyrazole, 1-isopropyl-4-chloro-5-aminopyrazole, 3-methyl-4-chloro-5-aminopyrazole, 1-benzyl-4-chloro-5-aminopyrazole, amino resin (For example, 1,3-dimethyl-4-chloro-melamine resin, urea resin, guanamine resin, etc.). Further, these may be used alone or in combination of two or more in any ratio.
 不揮発性塩基の量は、ポリウレタン100重量部に対して、通常0.5重量部以上、好ましくは1重量部以上、より好ましくは2重量部以上であり、通常30重量部以下、好ましくは20重量部以下、より好ましくは10重量部以下である。不揮発性塩基の量を前記範囲の下限値以上にすることにより、十分な接着力を得ることができる。また、上限値以下にすることにより、ポリビニルアルコール製の偏光子の色抜けの防止ができる。 The amount of the nonvolatile base is usually 0.5 parts by weight or more, preferably 1 part by weight or more, more preferably 2 parts by weight or more, and usually 30 parts by weight or less, preferably 20 parts by weight, based on 100 parts by weight of the polyurethane. parts by weight or less, more preferably 10 parts by weight or less. By controlling the amount of the nonvolatile base to be at least the lower limit of the above range, sufficient adhesive strength can be obtained. Further, by setting the amount to be below the upper limit, it is possible to prevent color fading of the polyvinyl alcohol polarizer.
 液状組成物は、粒子を含んでいてもよい。特に、液状組成物がポリウレタンを含んでいる場合、粒子を含むことが好ましい。液状組成物が粒子を含むことにより、その液状組成物の硬化物によって形成される硬化層の表面粗さを大きくできる。これにより、液状組成物の硬化層の表面の滑り性を向上させることができるので、硬化層を含む光学フィルムのブロッキングの防止、及び、光学フィルムを巻回する際のシワの発生の抑制が可能となる。 The liquid composition may contain particles. In particular, when the liquid composition contains polyurethane, it is preferable that the liquid composition contains particles. When the liquid composition contains particles, the surface roughness of the cured layer formed by the cured product of the liquid composition can be increased. This improves the slipperiness of the surface of the cured layer of the liquid composition, making it possible to prevent blocking of the optical film including the cured layer and suppress the occurrence of wrinkles when winding the optical film. becomes.
 粒子としては、無機粒子、有機粒子のいずれを用いてもよい。ただし、水分散性の粒子を用いることが好ましい。無機粒子の材料を挙げると、例えば、シリカ、チタニア、アルミナ、ジルコニア等の無機酸化物;炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成珪酸カルシウム、水和珪酸カルシウム、珪酸アルミニウム、珪酸マグネシウム、燐酸カルシウム等が挙げられる。また、有機粒子の材料を挙げると、例えば、シリコーン樹脂、フッ素樹脂、アクリル樹脂等が挙げられる。これらの中でも、シリカが好ましい。シリカの粒子は、シワの発生を抑制する能力及び透明性に優れ、ヘイズを生じ難く、着色が無いか非常に少ないため、液状組成物の硬化層を含む光学フィルムの光学特性に与える影響が小さい。また、シリカは液状組成物での分散性及び分散安定性が良好である。シリカの粒子の中でも、非晶質のコロイダルシリカ粒子が特に好ましい。 As the particles, either inorganic particles or organic particles may be used. However, it is preferable to use water-dispersible particles. Examples of materials for inorganic particles include inorganic oxides such as silica, titania, alumina, and zirconia; calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, magnesium silicate, and calcium phosphate. etc. Furthermore, examples of materials for the organic particles include silicone resins, fluororesins, acrylic resins, and the like. Among these, silica is preferred. Silica particles have excellent ability to suppress the occurrence of wrinkles and excellent transparency, do not easily cause haze, and have no or very little coloring, so they have little effect on the optical properties of the optical film including the cured layer of the liquid composition. . Furthermore, silica has good dispersibility and dispersion stability in liquid compositions. Among silica particles, amorphous colloidal silica particles are particularly preferred.
 粒子の平均粒子径は、通常1nm以上、好ましくは5nm以上、より好ましくは10nm以上であり、通常500nm以下、好ましくは300nm以下、より好ましくは200nm以下である。粒子の平均粒子径を前記範囲の下限値以上にすることにより、液状組成物の硬化層の滑り性を効果的に高めることができる。また、前記範囲の上限値以下にすることにより、液状組成物の硬化層のヘイズを低く抑えることができる。 The average particle diameter of the particles is usually 1 nm or more, preferably 5 nm or more, more preferably 10 nm or more, and usually 500 nm or less, preferably 300 nm or less, more preferably 200 nm or less. By setting the average particle diameter of the particles to be equal to or larger than the lower limit of the above range, the slipperiness of the cured layer of the liquid composition can be effectively improved. Further, by setting the amount to be equal to or less than the upper limit of the above range, the haze of the cured layer of the liquid composition can be suppressed to a low level.
 粒子の量は、ポリウレタン100重量部に対し、通常1重量部以上、好ましくは3重量部以上、より好ましくは5重量部以上であり、通常50重量部以下、好ましくは40重量部以下、より好ましくは30重量部以下である。粒子の量を前記の範囲の下限値以上にすることにより、液状組成物の硬化層を含む光学フィルムを巻回した場合にシワの発生を抑制できる。また、上限値以下にすることにより、光学フィルムの白濁の無い外観を維持できる。 The amount of particles is usually 1 part by weight or more, preferably 3 parts by weight or more, more preferably 5 parts by weight or more, and usually 50 parts by weight or less, preferably 40 parts by weight or less, more preferably, based on 100 parts by weight of the polyurethane. is 30 parts by weight or less. By controlling the amount of particles to be at least the lower limit of the above range, it is possible to suppress the generation of wrinkles when an optical film containing a cured layer of the liquid composition is wound. Further, by setting the amount to be below the upper limit, the appearance of the optical film without clouding can be maintained.
 液状組成物に含まれうる任意成分の他の例としては、耐熱安定剤、耐候安定剤、レベリング剤、酸化防止剤、帯電防止剤、スリップ剤、アンチブロッキング剤、防曇剤、滑剤、染料、顔料、天然油、合成油、ワックスなどが挙げられる。 Other examples of optional components that may be included in the liquid composition include heat stabilizers, weather stabilizers, leveling agents, antioxidants, antistatic agents, slip agents, antiblocking agents, antifogging agents, lubricants, dyes, Examples include pigments, natural oils, synthetic oils, and waxes.
 液状組成物に含まれる任意成分としては、一種類を単独で用いてもよく、二種類以上を任意の比率で組み合わせて用いてもよい。 As for the optional components contained in the liquid composition, one type may be used alone, or two or more types may be used in combination in any ratio.
 液状組成物は、水に加えて、水溶性の溶媒を含んでいてもよい。水溶性の溶媒の例としては、メタノール、エタノール、イソプロピルアルコール、アセトン、テトラヒドロフラン、N-メチルピロリドン、ジメチルスルホキシド、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテルなどが挙げられる。これらは、一種類を単独で用いてもよく、二種類以上を任意の比率で組み合わせて用いてもよい。 The liquid composition may contain a water-soluble solvent in addition to water. Examples of water-soluble solvents include methanol, ethanol, isopropyl alcohol, acetone, tetrahydrofuran, N-methylpyrrolidone, dimethyl sulfoxide, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, and the like. These may be used alone or in combination of two or more in any ratio.
[1.6.液状組成物の用途]
 液状組成物は、塗工法により液状組成物の層を形成するための塗工液として、好適に用いうる。
 液状組成物の塗工法としては、任意の方法を用いることができ、例えば、カーテンコーティング法、押し出しコーティング法、ロールコーティング法、スピンコーティング法、ディップコーティング法、バーコーティング法、スプレーコーティング法、スライドコーティング法、印刷コーティング法、グラビアコーティング法、ダイコーティング法、及びギャップコーティング法が挙げられる。
 液状組成物は、任意の層の上に塗工されうる。例えば、液状組成物は、樹脂からなる基材上に塗工されうる。
[1.6. Applications of liquid composition]
The liquid composition can be suitably used as a coating liquid for forming a layer of the liquid composition by a coating method.
Any method can be used to apply the liquid composition, such as curtain coating, extrusion coating, roll coating, spin coating, dip coating, bar coating, spray coating, and slide coating. method, print coating method, gravure coating method, die coating method, and gap coating method.
The liquid composition can be applied over any layer. For example, the liquid composition can be coated onto a base material made of resin.
 液状組成物の層を、加熱乾燥して硬化させることにより、液状組成物の硬化層を得ることができる。通常、液状組成物の層を加熱乾燥することにより、液状組成物に含まれる水が除去されて、液状組成物の層は硬化する。 A cured layer of the liquid composition can be obtained by curing the layer of the liquid composition by heating and drying. Usually, by heating and drying the liquid composition layer, water contained in the liquid composition is removed and the liquid composition layer is cured.
 液状組成物の硬化層は、液状組成物に含まれる成分であって水を除く成分を、そのまま含んでいてもよく、液状組成物に含まれる成分の反応生成物を、含んでいてもよい。例えば、液状組成物の硬化層は、液状組成物に含まれる成分の架橋物、重合物、縮合物などを含みうる。 The cured layer of the liquid composition may contain the components contained in the liquid composition, excluding water, as they are, or may contain a reaction product of the components contained in the liquid composition. For example, the cured layer of the liquid composition may contain a crosslinked product, polymer, condensate, etc. of the components contained in the liquid composition.
 本実施形態に係る液状組成物の硬化層は、良好な面状を有する。したがって、液状組成物を、光学フィルムを構成する層を形成するための塗工液として、好適に用いうる。 The cured layer of the liquid composition according to this embodiment has a good surface condition. Therefore, the liquid composition can be suitably used as a coating liquid for forming a layer constituting an optical film.
 また、液状組成物の硬化層を、基材と任意の機能層との間に設けることにより、基材と任意の機能層との接着性を向上させる、プライマー層として機能させてもよい。したがって、液状組成物を、プライマー層を形成するための塗工液として、好適に用いうる。 Furthermore, by providing a cured layer of the liquid composition between the base material and any functional layer, it may function as a primer layer that improves the adhesiveness between the base material and any functional layer. Therefore, the liquid composition can be suitably used as a coating liquid for forming a primer layer.
[2.光学フィルム]
 本発明の一実施形態に係る光学フィルムは、
 基材と、前記基材の主面上に設けられた前記液状組成物の硬化層と、を含む。
[2. Optical film]
The optical film according to one embodiment of the present invention is
It includes a base material and a cured layer of the liquid composition provided on the main surface of the base material.
 基材は、長尺であってもよく、枚葉の形態であってもよい。基材が長尺である場合、基材を連続的に搬送しながら、液状組成物の硬化層を設けるための操作を行うことができるため、効率的に光学フィルムの製造を行いうる。 The base material may be long or may be in the form of a single leaf. When the base material is long, an operation for providing a cured layer of the liquid composition can be performed while continuously conveying the base material, so that the optical film can be efficiently manufactured.
 基材としては、樹脂を含み、樹脂から形成された樹脂フィルムを用いうる。基材を構成する樹脂としては、任意の重合体を含む樹脂を用いうる。中でも、基材を構成する樹脂としては、熱可塑性樹脂が好ましく、シクロオレフィン系樹脂を用いることが特に好ましい。シクロオレフィン系樹脂は、シクロオレフィン重合体又はその水素化物などの、脂環式構造を含有する重合体を含む。以下、脂環式構造を含有する重合体を、脂環式構造含有重合体ともいう。シクロオレフィン系樹脂は、透明性、低吸湿性、寸法安定性及び軽量性などに優れ、光学フィルムに適している。 As the base material, a resin film containing and formed from resin can be used. As the resin constituting the base material, resin containing any polymer can be used. Among these, thermoplastic resins are preferred as the resin constituting the base material, and it is particularly preferred to use cycloolefin resins. The cycloolefin resin includes a polymer containing an alicyclic structure, such as a cycloolefin polymer or a hydride thereof. Hereinafter, a polymer containing an alicyclic structure will also be referred to as an alicyclic structure-containing polymer. Cycloolefin resins have excellent transparency, low moisture absorption, dimensional stability, light weight, etc., and are suitable for optical films.
 また、基材は、1層のみを含む単層構造のフィルムであってもよく、2層以上の層を備える複層構造のフィルムであってもよい。基材が複層構造を有する場合、基材が備える層のうち1層以上がシクロオレフィン系樹脂からなることが好ましく、基材の少なくとも1つの最外層がシクロオレフィン系樹脂からなることが特に好ましい。 Further, the base material may be a film with a single layer structure including only one layer, or a film with a multilayer structure including two or more layers. When the base material has a multilayer structure, it is preferable that one or more of the layers of the base material consist of a cycloolefin resin, and it is particularly preferable that at least one outermost layer of the base material consists of a cycloolefin resin. .
 脂環式構造含有重合体は、重合体の構造単位中に脂環式構造を有する重合体であり、主鎖に脂環式構造を有する重合体、及び、側鎖に脂環式構造を有する重合体のいずれを用いてもよい。また、脂環式構造含有重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。中でも、機械的強度、耐熱性などの観点から、主鎖に脂環式構造を含有する重合体が好ましい。 An alicyclic structure-containing polymer is a polymer having an alicyclic structure in the structural unit of the polymer, a polymer having an alicyclic structure in the main chain, and a polymer having an alicyclic structure in the side chain. Any polymer may be used. Further, the alicyclic structure-containing polymer may be used alone or in combination of two or more types in any ratio. Among these, from the viewpoint of mechanical strength, heat resistance, etc., polymers containing an alicyclic structure in the main chain are preferred.
 脂環式構造としては、例えば、飽和脂環式炭化水素(シクロアルカン)構造、不飽和脂環式炭化水素(シクロアルケン、シクロアルキン)構造などが挙げられる。中でも、機械強度、耐熱性などの観点から、シクロアルカン構造及びシクロアルケン構造が好ましく、中でもシクロアルカン構造が特に好ましい。 Examples of the alicyclic structure include a saturated alicyclic hydrocarbon (cycloalkane) structure and an unsaturated alicyclic hydrocarbon (cycloalkene, cycloalkyne) structure. Among these, from the viewpoint of mechanical strength, heat resistance, etc., cycloalkane structures and cycloalkene structures are preferable, and among them, cycloalkane structures are particularly preferable.
 脂環式構造を構成する炭素原子数は、一つの脂環式構造あたり、好ましくは4個以上、より好ましくは5個以上であり、好ましくは30個以下、より好ましくは20個以下、特に好ましくは15個以下の範囲である。これにより、基材の機械強度、耐熱性、及び成形性が高度にバランスされ、好適である。 The number of carbon atoms constituting the alicyclic structure is preferably 4 or more, more preferably 5 or more, and preferably 30 or less, more preferably 20 or less, particularly preferably 20 or less, per alicyclic structure. is in the range of 15 or less. This is preferable because the mechanical strength, heat resistance, and moldability of the base material are highly balanced.
 脂環式構造含有重合体中の脂環式構造を有する構造単位の割合は、使用目的に応じて適宜選択してもよく、好ましくは55重量%以上、更に好ましくは70重量%以上、特に好ましくは90重量%以上である。脂環式構造含有重合体中の脂環式構造を有する構造単位の割合がこの範囲にあると、基材の透明性及び耐熱性の観点から好ましい。 The proportion of structural units having an alicyclic structure in the alicyclic structure-containing polymer may be appropriately selected depending on the purpose of use, and is preferably 55% by weight or more, more preferably 70% by weight or more, and particularly preferably is 90% by weight or more. It is preferable that the proportion of structural units having an alicyclic structure in the alicyclic structure-containing polymer is within this range from the viewpoint of transparency and heat resistance of the base material.
 脂環式構造含有重合体としては、例えば、ノルボルネン系重合体、単環の環状オレフィン系重合体、環状共役ジエン系重合体、ビニル脂環式炭化水素系重合体、及び、これらの水素化物等を挙げることができる。これらの中で、ノルボルネン系重合体は、透明性と成形性が良好なため、好適である。 Examples of alicyclic structure-containing polymers include norbornene polymers, monocyclic olefin polymers, cyclic conjugated diene polymers, vinyl alicyclic hydrocarbon polymers, and hydrides thereof. can be mentioned. Among these, norbornene polymers are preferred because they have good transparency and moldability.
 ノルボルネン系重合体としては、例えば、ノルボルネン構造を有する単量体の開環重合体、若しくはノルボルネン構造を有する単量体と任意の単量体との開環共重合体、又はそれらの水素化物;ノルボルネン構造を有する単量体の付加重合体、若しくはノルボルネン構造を有する単量体と任意の単量体との付加共重合体、又はそれらの水素化物;等を挙げることができる。これらの中で、ノルボルネン構造を有する単量体の開環(共)重合体水素化物は、透明性、成形性、耐熱性、低吸湿性、寸法安定性、軽量性などの観点から、特に好適である。ここで「(共)重合体」とは、重合体及び共重合体の両方を包含する。 As the norbornene polymer, for example, a ring-opened polymer of a monomer having a norbornene structure, a ring-opened copolymer of a monomer having a norbornene structure and any monomer, or a hydrogenated product thereof; Examples include an addition polymer of a monomer having a norbornene structure, an addition copolymer of a monomer having a norbornene structure and any monomer, or a hydride thereof. Among these, hydrogenated ring-opened (co)polymers of monomers having a norbornene structure are particularly preferred from the viewpoints of transparency, moldability, heat resistance, low moisture absorption, dimensional stability, and light weight. It is. Here, the term "(co)polymer" includes both polymers and copolymers.
 ノルボルネン構造を有する単量体としては、例えば、ビシクロ[2.2.1]ヘプト-2-エン(慣用名:ノルボルネン)、トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(慣用名:ジシクロペンタジエン)、7,8-ベンゾトリシクロ[4.3.0.12,5]デカ-3-エン(慣用名:メタノテトラヒドロフルオレン)、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(慣用名:テトラシクロドデセン)、及びこれらの化合物の誘導体(例えば、環に置換基を有するもの)などを挙げることができる。ここで、置換基としては、例えばアルキル基、アルキレン基、極性基などを挙げることができる。また、これらの置換基は、同一又は相異なって、複数個が環に結合していてもよい。また、ノルボルネン構造を有する単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of monomers having a norbornene structure include bicyclo[2.2.1]hept-2-ene (common name: norbornene), tricyclo[4.3.0.1 2,5 ]dec-3,7 -diene (common name: dicyclopentadiene), 7,8-benzotricyclo[4.3.0.1 2,5 ]dec-3-ene (common name: methanotetrahydrofluorene), tetracyclo[4.4. 0.1 2,5 . 1 7,10 ] dodec-3-ene (common name: tetracyclododecene), and derivatives of these compounds (for example, those having a substituent on the ring). Here, examples of the substituent include an alkyl group, an alkylene group, and a polar group. Further, a plurality of these substituents, which are the same or different, may be bonded to the ring. Further, the monomer having a norbornene structure may be used alone or in combination of two or more in any ratio.
 極性基の種類としては、例えば、ヘテロ原子、又はヘテロ原子を有する原子団などが挙げられる。ヘテロ原子としては、例えば、酸素原子、窒素原子、硫黄原子、ケイ素原子、ハロゲン原子などが挙げられる。極性基の具体例としては、カルボキシル基、カルボニルオキシカルボニル基、エポキシ基、ヒドロキシル基、オキシ基、エステル基、シラノール基、シリル基、アミノ基、ニトリル基、スルホン酸基などが挙げられる。 Examples of the type of polar group include a hetero atom or an atomic group having a hetero atom. Examples of the heteroatom include an oxygen atom, a nitrogen atom, a sulfur atom, a silicon atom, and a halogen atom. Specific examples of the polar group include carboxyl group, carbonyloxycarbonyl group, epoxy group, hydroxyl group, oxy group, ester group, silanol group, silyl group, amino group, nitrile group, sulfonic acid group, and the like.
 ノルボルネン構造を有する単量体と開環共重合可能な任意の単量体としては、例えば、シクロヘキセン、シクロヘプテン、シクロオクテンなどのモノ環状オレフィン類及びその誘導体;シクロヘキサジエン、シクロヘプタジエンなどの環状共役ジエン及びその誘導体;などが挙げられる。ノルボルネン構造を有する単量体と開環共重合可能な任意の単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Any monomer capable of ring-opening copolymerization with a monomer having a norbornene structure includes, for example, monocyclic olefins and derivatives thereof such as cyclohexene, cycloheptene, and cyclooctene; cyclic conjugates such as cyclohexadiene and cycloheptadiene; Dienes and derivatives thereof; and the like. Any monomer capable of ring-opening copolymerization with a monomer having a norbornene structure may be used alone or in combination of two or more in any ratio.
 ノルボルネン構造を有する単量体の開環重合体、及びノルボルネン構造を有する単量体と共重合可能な任意の単量体との開環共重合体は、例えば、単量体を公知の開環重合触媒の存在下に重合又は共重合することにより製造しうる。 A ring-opening polymer of a monomer having a norbornene structure, and a ring-opening copolymer of a monomer having a norbornene structure and any monomer copolymerizable with the monomer are, for example, It can be produced by polymerization or copolymerization in the presence of a polymerization catalyst.
 ノルボルネン構造を有する単量体と付加共重合可能な任意の単量体としては、例えば、エチレン、プロピレン、1-ブテンなどの炭素数2~20のα-オレフィン及びこれらの誘導体;シクロブテン、シクロペンテン、シクロヘキセンなどのシクロオレフィン及びこれらの誘導体;1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエンなどの非共役ジエン;などが挙げられる。これらの中でも、α-オレフィンが好ましく、エチレンがより好ましい。また、ノルボルネン構造を有する単量体と付加共重合可能な任意の単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of arbitrary monomers that can be addition-copolymerized with a monomer having a norbornene structure include α-olefins having 2 to 20 carbon atoms such as ethylene, propylene, and 1-butene, and derivatives thereof; cyclobutene, cyclopentene, Examples include cycloolefins such as cyclohexene and derivatives thereof; non-conjugated dienes such as 1,4-hexadiene, 4-methyl-1,4-hexadiene, and 5-methyl-1,4-hexadiene; and the like. Among these, α-olefin is preferred, and ethylene is more preferred. Moreover, any monomer that can be addition-copolymerized with a monomer having a norbornene structure may be used alone or in combination of two or more types in any ratio.
 ノルボルネン構造を有する単量体の付加重合体、及びノルボルネン構造を有する単量体と共重合可能な任意の単量体との付加共重合体は、例えば、単量体を公知の付加重合触媒の存在下に重合又は共重合することにより製造しうる。 Addition polymers of monomers having a norbornene structure and addition copolymers of monomers having a norbornene structure and any monomer copolymerizable can be produced by, for example, adding the monomers to a known addition polymerization catalyst. It can be produced by polymerization or copolymerization in the presence of
 単環の環状オレフィン系重合体としては、例えば、シクロヘキセン、シクロヘプテン、シクロオクテン等の単環を有する環状オレフィン系モノマーの付加重合体を挙げることができる。 Examples of monocyclic cyclic olefin polymers include addition polymers of cyclic olefin monomers having a single ring such as cyclohexene, cycloheptene, and cyclooctene.
 環状共役ジエン系重合体としては、例えば、1,3-ブタジエン、イソプレン、クロロプレン等の共役ジエン系モノマーの付加重合体を環化反応して得られる重合体;シクロペンタジエン、シクロヘキサジエン等の環状共役ジエン系モノマーの1,2-又は1,4-付加重合体;及びこれらの水素化物;などを挙げることができる。 Examples of cyclic conjugated diene polymers include polymers obtained by cyclizing addition polymers of conjugated diene monomers such as 1,3-butadiene, isoprene, and chloroprene; cyclic conjugated polymers such as cyclopentadiene and cyclohexadiene; Examples include 1,2- or 1,4-addition polymers of diene monomers; and hydrides thereof.
 ビニル脂環式炭化水素重合体としては、例えば、ビニルシクロヘキセン、ビニルシクロヘキサン等のビニル脂環式炭化水素系モノマーの重合体及びその水素化物;スチレン、α-メチルスチレン等のビニル芳香族炭化水素系モノマーを重合してなる重合体に含まれる芳香環部分を水素化してなる水素化物;ビニル脂環式炭化水素系モノマー、又はビニル芳香族炭化水素系モノマーとこれらビニル芳香族炭化水素系モノマーに対して共重合可能な任意のモノマーとのランダム共重合体若しくはブロック共重合体等の共重合体の、芳香環の水素化物;等を挙げることができる。前記のブロック共重合体としては、例えば、ジブロック共重合体、トリブロック共重合体又はそれ以上のマルチブロック共重合体、並びに傾斜ブロック共重合体等を挙げることもできる。 Examples of vinyl alicyclic hydrocarbon polymers include polymers of vinyl alicyclic hydrocarbon monomers such as vinylcyclohexene and vinylcyclohexane and their hydrides; vinyl aromatic hydrocarbons such as styrene and α-methylstyrene. Hydrogenated products obtained by hydrogenating the aromatic ring moiety contained in a polymer obtained by polymerizing monomers; vinyl alicyclic hydrocarbon monomers or vinyl aromatic hydrocarbon monomers and these vinyl aromatic hydrocarbon monomers Examples include hydrides of aromatic rings of copolymers such as random copolymers or block copolymers with any monomer that can be copolymerized. Examples of the block copolymers include diblock copolymers, triblock copolymers, or higher multiblock copolymers, and tilted block copolymers.
 基材を構成する樹脂に含まれる重合体の重量平均分子量(Mw)は、通常10,000以上、好ましくは15,000以上、より好ましくは20,000以上であり、通常100,000以下、好ましくは80,000以下、より好ましくは50,000以下である。ここで、前記の重量平均分子量は、溶媒としてシクロヘキサンを用いてGPCで測定したポリイソプレン又はポリスチレン換算の重量平均分子量である。但し、試料がシクロヘキサンに溶解しない場合には、GPCの溶媒としてトルエンを用いてもよい。重量平均分子量がこのような範囲にあるときに、光学フィルムの機械的強度及び成型加工性が高度にバランスされ、好適である。 The weight average molecular weight (Mw) of the polymer contained in the resin constituting the base material is usually 10,000 or more, preferably 15,000 or more, more preferably 20,000 or more, and usually 100,000 or less, preferably is 80,000 or less, more preferably 50,000 or less. Here, the above-mentioned weight average molecular weight is a weight average molecular weight in terms of polyisoprene or polystyrene measured by GPC using cyclohexane as a solvent. However, if the sample does not dissolve in cyclohexane, toluene may be used as the GPC solvent. When the weight average molecular weight is within this range, the mechanical strength and moldability of the optical film are highly balanced, which is preferable.
 基材を構成する樹脂に含まれる重合体の分子量分布(重量平均分子量(Mw)/数平均分子量(Mn))は、通常1.2以上、好ましくは1.5以上、更に好ましくは1.8以上であり、通常3.5以下、好ましくは3.0以下、更に好ましくは2.7以下である。分子量分布を前記範囲の下限値以上にすることにより、重合体の生産性を高め、コストを抑制することができる。また、上限値以下にすることにより、低分子量成分を減らすことができるので、緩和時間を長くできる。そのため、高温曝露時の緩和を抑制でき、基材の安定性を高めることができる。 The molecular weight distribution (weight average molecular weight (Mw)/number average molecular weight (Mn)) of the polymer contained in the resin constituting the base material is usually 1.2 or more, preferably 1.5 or more, and more preferably 1.8. It is usually 3.5 or less, preferably 3.0 or less, and more preferably 2.7 or less. By controlling the molecular weight distribution to be equal to or higher than the lower limit of the above range, productivity of the polymer can be increased and costs can be suppressed. Further, by setting the amount to be below the upper limit value, it is possible to reduce the low molecular weight components, so that the relaxation time can be lengthened. Therefore, relaxation during high temperature exposure can be suppressed, and the stability of the base material can be improved.
 基を構成する樹脂に含まれる重合体は、光弾性係数Cの絶対値が10×10-12Pa-1以下であることが好ましく、7×10-12Pa-1以下であることがより好ましく、4×10-12Pa-1以下であることが特に好ましい。光弾性係数Cは、複屈折をΔn、応力をσとしたとき、「C=Δn/σ」で表される値である。重合体の光弾性係数を前記範囲に納めることにより、基材の面内レターデーションReのバラツキを小さくできる。 The polymer contained in the resin constituting the group preferably has an absolute value of photoelastic coefficient C of 10×10 −12 Pa −1 or less, more preferably 7×10 −12 Pa −1 or less. , 4×10 −12 Pa −1 or less is particularly preferable. The photoelastic coefficient C is a value expressed by "C=Δn/σ", where birefringence is Δn and stress is σ. By keeping the photoelastic coefficient of the polymer within the above range, variations in the in-plane retardation Re of the base material can be reduced.
 基材を構成する樹脂に含まれる重合体の飽和吸水率は、好ましくは0.03重量%以下、更に好ましくは0.02重量%以下、特に好ましくは0.01重量%以下である。飽和吸水率が前記範囲であると、基材の面内レターデーションRe及び厚み方向のレターデーションRthの経時変化を小さくすることができる。 The saturated water absorption rate of the polymer contained in the resin constituting the base material is preferably 0.03% by weight or less, more preferably 0.02% by weight or less, particularly preferably 0.01% by weight or less. When the saturated water absorption rate is within the above range, changes over time in the in-plane retardation Re and the thickness direction retardation Rth of the base material can be reduced.
 飽和吸水率は、試験片を一定温度の水中に一定時間浸漬して増加した質量を、浸漬前の試験片の質量に対する百分率で表した値である。通常は、23℃の水中に24時間、浸漬して測定される。重合体における飽和吸水率は、例えば、重合体中の極性基の量を減少させることにより、前記の範囲に調節することができる。飽和吸水率をより低くする観点から、前記の重合体は、極性基を有さないことが好ましい。 The saturated water absorption rate is a value expressed as a percentage of the mass increased by immersing a test piece in water at a constant temperature for a certain period of time with respect to the mass of the test piece before immersion. Usually, it is measured by immersing it in water at 23° C. for 24 hours. The saturated water absorption rate in the polymer can be adjusted within the above range by, for example, reducing the amount of polar groups in the polymer. From the viewpoint of lowering the saturated water absorption rate, it is preferable that the above-mentioned polymer does not have a polar group.
 基材を構成する樹脂は、本発明の効果を著しく損なわない限り、重合体以外に任意の成分を含んでいてもよい。その任意の成分の例を挙げると、顔料、染料等の着色剤;可塑剤;蛍光増白剤;分散剤;熱安定剤;光安定剤;紫外線吸収剤;帯電防止剤;酸化防止剤;滑剤;界面活性剤などの添加剤が挙げられる。これらの成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The resin constituting the base material may contain any component other than the polymer, as long as it does not significantly impair the effects of the present invention. Examples of optional components include colorants such as pigments and dyes; plasticizers; optical brighteners; dispersants; heat stabilizers; light stabilizers; ultraviolet absorbers; antistatic agents; antioxidants; lubricants. ; Examples include additives such as surfactants. One type of these components may be used alone, or two or more types may be used in combination in any ratio.
 ただし、基材を構成する樹脂に含まれる重合体の量が、一般的には50%~100%、例えば70%~100%、例えば80%~100%、例えば90%~100%となるように、その任意の成分の量を調整することが好ましい。 However, the amount of polymer contained in the resin constituting the base material is generally 50% to 100%, for example 70% to 100%, for example 80% to 100%, for example 90% to 100%. It is preferable to adjust the amount of any component thereof.
 ただし、シクロオレフィン系樹脂は、実質的に粒子を含まないことが好ましい。ここで、実質的に粒子を含まないとは、樹脂に粒子を含ませても、粒子を全く含まない状態からの基材フィルムのヘイズの上昇幅が0.05%以下の範囲である量までは許容できることを意味する。脂環式構造含有重合体は、多くの有機粒子及び無機粒子との親和性に欠ける傾向がある。そのため、前記範囲を超えた量の粒子を含むシクロオレフィン系樹脂を延伸すると、空隙が発生しやすく、その結果として、ヘイズの著しい上昇が生じる可能性がある。 However, it is preferable that the cycloolefin resin contains substantially no particles. Here, "substantially free of particles" means that even if particles are included in the resin, the haze of the base film increases by 0.05% or less from the state of not containing any particles. means acceptable. Alicyclic structure-containing polymers tend to lack compatibility with many organic and inorganic particles. Therefore, when a cycloolefin resin containing particles in an amount exceeding the above range is stretched, voids are likely to occur, and as a result, a significant increase in haze may occur.
 前述の通り、基材は、一層のみを備える単層構造のフィルム層であってもよく、2層以上の層を備える複層構造のフィルム層であってもよい。基材を複層構造のフィルム層とすることにより、様々な特性を有する光学フィルムを製造できる。 As mentioned above, the base material may be a film layer with a single layer structure including only one layer, or may be a film layer with a multilayer structure including two or more layers. By forming the base material into a film layer having a multilayer structure, optical films having various properties can be manufactured.
 基材が2層以上の層を備える場合、一種類のフィルム層を2層以上備えていてもよく、異なる二種類以上のフィルム層を備えていてもよい。また、基材には、上述したシクロオレフィン系樹脂以外の樹脂からなる層を設けてもよい。シクロオレフィン系樹脂以外からなる層としては、例えば、傷付防止、反射防止、帯電防止、防眩、防汚などの機能を有するフィルム層が挙げられる。 When the base material has two or more layers, it may have two or more of one type of film layer, or it may have two or more different types of film layers. Further, the base material may be provided with a layer made of a resin other than the above-mentioned cycloolefin resin. Examples of the layer made of other than cycloolefin resin include a film layer having functions such as scratch prevention, antireflection, antistatic, antiglare, and antifouling.
 基材は、1mm厚換算での全光線透過率が、80%以上であることが好ましく、90%以上がより好ましい。全光線透過率は、JIS K0115に準拠して、分光光度計(日本分光社製、紫外可視近赤外分光光度計「V-570」)を用いて測定できる。
 また、基材は、1mm厚でのヘイズが、0.3%以下であることが好ましく、0.2%以下であることがより好ましい。ここで、ヘイズは、JIS K7361-1997に準拠して、日本電色工業社製「濁度計 NDH-300A」を用いて、5箇所測定し、それから求めた平均値である。
The base material preferably has a total light transmittance of 80% or more, more preferably 90% or more, based on a thickness of 1 mm. The total light transmittance can be measured using a spectrophotometer (UV-visible near-infrared spectrophotometer "V-570" manufactured by JASCO Corporation) in accordance with JIS K0115.
Further, the haze of the base material at a thickness of 1 mm is preferably 0.3% or less, more preferably 0.2% or less. Here, haze is an average value obtained from measurements at five locations using "Turbidity Meter NDH-300A" manufactured by Nippon Denshoku Industries Co., Ltd. in accordance with JIS K7361-1997.
 基材の平均厚みは、好ましくは5μm以上、より好ましくは20μm以上であり、好ましくは500μm以下、より好ましくは300μm以下である。基材の厚み変動幅は、長尺方向及び幅方向にわたって、前記平均厚みの±3%以内であることが好ましい。厚み変動を前記範囲にすることにより、基材のレターデーションなどの光学特性のバラツキを小さくできる。 The average thickness of the base material is preferably 5 μm or more, more preferably 20 μm or more, and preferably 500 μm or less, more preferably 300 μm or less. It is preferable that the thickness variation width of the base material is within ±3% of the average thickness in both the longitudinal direction and the width direction. By controlling the thickness variation within the above range, variations in optical properties such as retardation of the base material can be reduced.
 基材は、延伸処理を施されていない未延伸フィルムであってもよく、延伸処理を施された延伸フィルムであってもよい。また、基材が2層以上の層を備える場合、予め延伸処理を施されたフィルム層を貼り合せて延伸フィルムを得てもよく、共押出等により得られた複層構造の延伸前フィルムに延伸処理を施して延伸フィルムを得てもよい。 The base material may be an unstretched film that has not been subjected to a stretching process, or may be a stretched film that has been subjected to a stretching process. In addition, when the base material has two or more layers, a stretched film may be obtained by bonding film layers that have been subjected to stretching treatment in advance, and a stretched film with a multilayer structure obtained by coextrusion etc. A stretched film may be obtained by performing a stretching process.
 基材は、コロナ放電処理、プラズマ処理、電子線照射処理、紫外線照射処理などのエネルギー線照射処理;薬品処理;などの、表面処理がされていてもよい。中でも、処理効率の点などからコロナ放電処理及びプラズマ処理が好ましく、コロナ放電処理がより好ましい。 The base material may be subjected to surface treatment such as energy ray irradiation treatment such as corona discharge treatment, plasma treatment, electron beam irradiation treatment, and ultraviolet irradiation treatment; chemical treatment; Among these, corona discharge treatment and plasma treatment are preferred from the viewpoint of treatment efficiency, and corona discharge treatment is more preferred.
 液状組成物の硬化層は、液状組成物の層を硬化させて得られる層である。 The cured layer of the liquid composition is a layer obtained by curing a layer of the liquid composition.
 前記のとおり、液状組成物の硬化層は、液状組成物に含まれる成分であって水を除く成分を、そのまま含んでいてもよく、液状組成物に含まれる成分の反応生成物を、含んでいてもよい。 As mentioned above, the cured layer of the liquid composition may contain the components contained in the liquid composition, excluding water, as they are, or may contain reaction products of the components contained in the liquid composition. You can stay there.
 液状組成物の硬化層は、基材が有する二つの主面のうちの一方の主面上に設けられていてもよく、両方の主面上に設けられていてもよい。 The cured layer of the liquid composition may be provided on one of the two main surfaces of the base material, or may be provided on both main surfaces.
 液状組成物の硬化層は、基材が有する主面に直接設けられていることが好ましい。 The cured layer of the liquid composition is preferably provided directly on the main surface of the base material.
 液状組成物の硬化層の厚みは、特に限定されないが、例えば、0.005μm~5μmとしうる。 The thickness of the cured layer of the liquid composition is not particularly limited, but may be, for example, 0.005 μm to 5 μm.
 光学フィルムは、基材及び液状組成物の硬化層に加えて、任意の層を含んでいてもよい。任意の層の例としては、反射防止層、ハードコート層、帯電防止層、防眩層、防汚層、セパレーターフィルムが挙げられる。これらの任意の層を、基材及び液状組成物の硬化層を備える複層フィルムとは別に製造して、前記複層フィルムと貼合してもよい。また、前記複層フィルムの主面上に、塗工法により更に任意の層を形成してもよい。 The optical film may include any layer in addition to the substrate and the cured layer of the liquid composition. Examples of the arbitrary layer include an antireflection layer, a hard coat layer, an antistatic layer, an antiglare layer, an antifouling layer, and a separator film. These arbitrary layers may be manufactured separately from the multilayer film comprising the substrate and the cured layer of the liquid composition, and bonded to the multilayer film. Further, an arbitrary layer may be further formed on the main surface of the multilayer film by a coating method.
 光学フィルムは、光学部材としての機能を安定して発揮させる観点から、全光線透過率が、80%以上であることが好ましく、90%以上であることがより好ましい。 The optical film preferably has a total light transmittance of 80% or more, more preferably 90% or more, from the viewpoint of stably exhibiting its function as an optical member.
 光学フィルムは、ヘイズが、好ましくは5%以下、より好ましくは3%以下、特に好ましくは2%以下である。ヘイズを低い値とすることにより、光学フィルムを表示装置に組み込んだ場合に、表示装置の表示画像の鮮明性を高めることができる。 The haze of the optical film is preferably 5% or less, more preferably 3% or less, particularly preferably 2% or less. By setting the haze to a low value, when the optical film is incorporated into a display device, the clarity of the displayed image on the display device can be improved.
 光学フィルムは、面内又は厚み方向にレターデーションを有する位相差フィルムであってもよい。具体的なレターデーションの範囲は、本実施形態の光学フィルムの用途に応じて設定しうる。具体的な範囲を挙げると、通常は、面内レターデーションReで10nm~500nm、厚み方向のレターデーションRthで-500nm~500nmの範囲から適宜選択される。 The optical film may be a retardation film having retardation in the plane or in the thickness direction. A specific range of retardation can be set depending on the use of the optical film of this embodiment. Specifically, the in-plane retardation Re is usually selected from the range of 10 nm to 500 nm, and the thickness direction retardation Rth is appropriately selected from the range of -500 nm to 500 nm.
[3.光学フィルムの製造方法]
 前記の光学フィルムは、任意の方法で製造されうる。
 好ましくは、基材を用意する工程(1)、前記基材の主面上に、液状組成物を塗工して液状組成物の層を形成する工程(2)、及び、前記液状組成物の層を乾燥させて、前記液状組成物の硬化層を形成する工程(3)、をこの順で含む方法により、光学フィルムを製造しうる。
[3. Optical film manufacturing method]
The optical film described above may be manufactured by any method.
Preferably, a step (1) of preparing a base material, a step (2) of coating a liquid composition on the main surface of the base material to form a layer of the liquid composition, and a step (2) of forming a layer of the liquid composition on the main surface of the base material. An optical film can be manufactured by a method including, in this order, a step (3) of drying the layer to form a cured layer of the liquid composition.
 基材の製造方法に制限はない。基材は、当該基材を形成するための樹脂を公知のフィルム成形法で成形することによって得られる。フィルム成形法としては、例えば、キャスト成形法、押出成形法、インフレーション成形法などが挙げられる。中でも、溶媒を使用しない溶融押出法が、残留揮発性成分の量を効率よく低減させることができ、地球環境の観点、作業環境の観点、及び製造効率に優れる観点から好ましい。溶融押出法としては、ダイスを用いるインフレーション法などが挙げられ、中でも生産性や厚み精度に優れる点でTダイを用いる方法が好ましい。 There are no restrictions on the manufacturing method of the base material. The base material is obtained by molding a resin for forming the base material using a known film molding method. Examples of film molding methods include cast molding, extrusion molding, and inflation molding. Among these, a melt extrusion method that does not use a solvent is preferable from the viewpoints of being able to efficiently reduce the amount of residual volatile components and being excellent in terms of global environment, work environment, and production efficiency. Examples of the melt extrusion method include an inflation method using a die, and among them, a method using a T-die is preferable because it is excellent in productivity and thickness accuracy.
 基材が2層以上の層を備える場合、基材の製造方法に制限は無い。例えば、別々に製造したフィルム層を必要に応じて接着剤を用いて貼り合せて基材を製造してもよい。
 接着剤を使用せずに2層以上の層を備える基材を製造する場合、例えば、共押出Tダイ法、共押出インフレーション法、共押出ラミネーション法などの共押出成形法;ドライラミネーションなどのフィルムラミネーション成形法などを用いうる。
When the base material includes two or more layers, there are no restrictions on the method of manufacturing the base material. For example, the base material may be manufactured by bonding separately manufactured film layers together using an adhesive as needed.
When manufacturing a base material with two or more layers without using an adhesive, for example, coextrusion molding methods such as coextrusion T-die method, coextrusion inflation method, and coextrusion lamination method; films such as dry lamination. A lamination molding method or the like can be used.
 また、例えば、あるフィルム層の表面に、別のフィルム層を構成する樹脂を含む溶液をコーティングするコーティング成形法などを用いて、2層以上の層を備える基材を製造してもよい。 Furthermore, a base material having two or more layers may be manufactured using, for example, a coating molding method in which the surface of one film layer is coated with a solution containing a resin constituting another film layer.
 これらの中でも、製造効率の観点、及び、基材中に溶媒などの揮発性成分を残留させないという観点からは、共押出成形法が好ましい。共押出成形法の中でも、共押出Tダイ法が特に好ましい。さらに、共押出Tダイ法にはフィードブロック方式とマルチマニホールド方式が挙げられるが、フィルム層の厚みのばらつきを少なくできる点からは、マルチマニホールド方式がさらに好ましい。 Among these, the coextrusion molding method is preferred from the viewpoint of production efficiency and from the viewpoint of not leaving volatile components such as solvents in the base material. Among the coextrusion molding methods, the coextrusion T-die method is particularly preferred. Furthermore, the coextrusion T-die method includes a feed block method and a multi-manifold method, but the multi-manifold method is more preferable from the viewpoint of reducing variations in the thickness of the film layer.
 基材の主面上に液状組成物を塗工する方法としては、任意の塗工法を用いうる。
 液状組成物の層を乾燥させる方法の例としては、自然乾燥、加熱乾燥、減圧乾燥、及びこれらの組み合わせが挙げられる。
 本実施形態の液状組成物は、乾燥させる際に汚れの発生量が少ない。本実施形態の液状組成物の利点を効果的に発揮させる観点から、液状組成物の層を加熱乾燥を含む方法により乾燥させることが好ましい。
Any coating method can be used to coat the liquid composition on the main surface of the base material.
Examples of methods for drying the layer of the liquid composition include natural drying, heat drying, vacuum drying, and combinations thereof.
The liquid composition of this embodiment generates less stain when dried. From the viewpoint of effectively exhibiting the advantages of the liquid composition of this embodiment, it is preferable to dry the layer of the liquid composition by a method including heat drying.
 液状組成物の層を加熱乾燥させる場合、オーブンなどの加熱乾燥装置を用いうる。加熱乾燥装置内の温度は、特に限定されないが、例えば、例えばTg-30℃以上、例えばTg+30℃以下としてよい。ここで、Tgは基材を形成する樹脂のガラス転移温度を表す。 When drying the layer of the liquid composition by heating, a heating drying device such as an oven can be used. The temperature inside the heating drying device is not particularly limited, but may be, for example, Tg - 30°C or higher, for example, Tg + 30°C or lower. Here, Tg represents the glass transition temperature of the resin forming the base material.
 光学フィルムの製造方法は、前記工程(1)~(3)に加えて、任意の工程を含んでいてもよい。任意の工程の例としては、基材を延伸する工程が挙げられる。光学フィルムの製造方法が、基材を延伸する工程を含む場合、工程(2)の前に、基材を延伸してもよく、工程(2)の後に、基材を延伸してもよく、工程(3)と同時に基材を延伸してもよく、工程(3)の後に、基材を延伸してもよい。
 工程(2)の後に基材を延伸する場合、通常、基材の主面上に設けられた層(例えば、液状組成物の硬化層)も基材と同時に延伸される。
The method for producing an optical film may include any steps in addition to steps (1) to (3) above. Examples of optional steps include stretching the substrate. When the method for producing an optical film includes a step of stretching the base material, the base material may be stretched before step (2), or the base material may be stretched after step (2), The base material may be stretched simultaneously with step (3), or after step (3).
When stretching the base material after step (2), a layer provided on the main surface of the base material (for example, a cured layer of a liquid composition) is usually also stretched at the same time as the base material.
 基材を延伸する延伸方法は、特に限定されず、任意の延伸方法を用いてよい。延伸方法の例としては、フィルムを長手方向に一軸延伸する方法(縦一軸延伸法)、フィルムを幅方向に一軸延伸する方法(横一軸延伸法)等の、一軸延伸法;フィルムを長手方向に延伸すると同時に幅方向に延伸する同時二軸延伸法、フィルムを長手方向及び幅方向の一方に延伸した後で他方に延伸する逐次二軸延伸法等の、二軸延伸法;及び、フィルムを斜め方向に延伸する方法(斜め延伸法);が挙げられる。 The stretching method for stretching the base material is not particularly limited, and any stretching method may be used. Examples of stretching methods include uniaxial stretching methods such as a method of uniaxially stretching the film in the longitudinal direction (longitudinal uniaxial stretching method), a method of uniaxially stretching the film in the width direction (horizontal uniaxial stretching method); Biaxial stretching methods such as a simultaneous biaxial stretching method in which the film is stretched in the width direction at the same time as stretching, and a sequential biaxial stretching method in which the film is stretched in one of the longitudinal and width directions and then in the other direction; A method of stretching in the direction (oblique stretching method) can be mentioned.
 延伸温度は、延伸されるフィルムを構成する樹脂のガラス転移温度をTgとして、好ましくは(Tg-30℃)以上、より好ましくは(Tg-10℃)以上であり、好ましくは(Tg+50℃)以下、より好ましくは(Tg+30℃)以下である。延伸倍率は、使用する基材の光学特性に応じて適宜選択しうる。具体的な延伸倍率は、通常1.05倍以上、好ましくは1.1倍以上であり、通常10.0倍以下、好ましくは2.0倍以下である。 The stretching temperature is preferably (Tg - 30°C) or higher, more preferably (Tg - 10°C) or higher, preferably (Tg + 50°C) or lower, with the glass transition temperature of the resin constituting the stretched film being Tg. , more preferably (Tg+30°C) or less. The stretching ratio can be appropriately selected depending on the optical properties of the base material used. The specific stretching ratio is usually 1.05 times or more, preferably 1.1 times or more, and usually 10.0 times or less, preferably 2.0 times or less.
[4.光学フィルムの用途]
 本実施形態の光学フィルムは、例えば、光学要素の保護フィルム(特に、偏光子保護フィルム)、位相差フィルム、光学補償フィルムとして好適に用いうる。特に、光学フィルムが備える硬化層を、接着性を有する層として形成した場合、光学フィルムを任意の部材と接着性よく貼り合わせることができる。
[4. Applications of optical film]
The optical film of this embodiment can be suitably used as, for example, a protective film for optical elements (particularly a polarizer protective film), a retardation film, and an optical compensation film. In particular, when the cured layer included in the optical film is formed as a layer having adhesive properties, the optical film can be bonded to any member with good adhesive properties.
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。 Hereinafter, the present invention will be specifically described with reference to Examples. However, the present invention is not limited to the embodiments shown below, and may be implemented with arbitrary changes within the scope of the claims of the present invention and equivalents thereof.
 以下の説明において、量を表す「%」及び「部」は、別に断らない限り、重量基準である。また、以下に説明する操作は、別に断らない限り、常温(20℃±15℃)及び常圧(1atm)の条件において行った。 In the following description, "%" and "part" expressing amounts are based on weight, unless otherwise specified. Further, the operations described below were performed at room temperature (20° C.±15° C.) and normal pressure (1 atm) unless otherwise specified.
[評価方法]
 (数平均分子量の測定、成分(L)の重量割合)
 実施例及び比較例で用いた界面活性剤組成物を下記条件によるGPCにより測定した。測定に際して、検量線を、ポリスチレンを標準物質として作成した。
 注入サンプル:0.1重量%テトラヒドロフラン(THF)溶液
 カラム温度:40℃
 展開溶媒:THF
 検出器:示差屈折計(RI)
 GPCの測定結果に基づき、数平均分子量が100以上500以下の成分(L)の重量割合、並びに、数平均分子量が500超の界面活性剤成分の数平均分子量及びその重量割合を、求めた。
 具体的には、実施例及び比較例で用いた界面活性剤組成物のクロマトグラムにおいて、すべてのピークの面積の和を100%として、数平均分子量が100以上500以下である成分のピークの面積(ピークが複数存在する場合には、それらの面積の和)の割合R(%)を算出し、また、数平均分子量が500超である界面活性剤成分のピークの面積の割合R(%)を算出した。そして、これらの割合に基づき、界面活性剤組成物における、数平均分子量が100以上500以下である成分(L)の重量割合を、R重量%であるとし、数平均分子量が500超である界面活性剤成分の重量割合を、R重量%であるとした。
[Evaluation method]
(Measurement of number average molecular weight, weight ratio of component (L))
The surfactant compositions used in Examples and Comparative Examples were measured by GPC under the following conditions. During the measurement, a calibration curve was created using polystyrene as a standard substance.
Injection sample: 0.1% by weight tetrahydrofuran (THF) solution Column temperature: 40°C
Developing solvent: THF
Detector: Differential refractometer (RI)
Based on the GPC measurement results, the weight proportion of the component (L) with a number average molecular weight of 100 or more and 500 or less, and the number average molecular weight of the surfactant component with a number average molecular weight of more than 500 and its weight proportion were determined.
Specifically, in the chromatograms of the surfactant compositions used in Examples and Comparative Examples, the area of the peak of the component whose number average molecular weight is 100 or more and 500 or less, with the sum of the areas of all peaks taken as 100%. (If there are multiple peaks, the sum of their areas) R L (%) is calculated, and the area ratio R N ( %) was calculated. Based on these proportions, the weight proportion of the component (L) with a number average molecular weight of 100 or more and 500 or less in the surfactant composition is defined as R L weight %, and the number average molecular weight is more than 500. The weight proportion of the surfactant component was defined as R N weight %.
 (シリカ粒子の分散性、液状組成物の硬化層の面状)
 実施例及び比較例で得られた複層フィルムに対して、高輝度ライト(ポラリオンクリーンルームライト)を照射してフィルム表面の状態(面状)を目視により観察した。
(Dispersibility of silica particles, surface condition of cured layer of liquid composition)
The multilayer films obtained in Examples and Comparative Examples were irradiated with high-intensity light (Polarion clean room light) and the state of the film surface (surface shape) was visually observed.
 シリカ粒子の分散性を、下記基準により評価した。
 良:フィルム全体が均一にごく薄く白濁し、シリカ粒子が均一に分散している。
 可:フィルムに濃く白濁した部分(ムラ)が多少あるが、実用上許容される。
 不良:フィルムに濃く白濁した部分(ムラ)が多数ある。
 評価が高いほど、液状組成物におけるシリカ粒子の分散性が高いことを意味する。
The dispersibility of silica particles was evaluated according to the following criteria.
Good: The entire film is uniformly and slightly cloudy, and the silica particles are uniformly dispersed.
Fair: The film has some dark cloudy areas (unevenness), but is acceptable for practical purposes.
Defective: There are many dark cloudy areas (unevenness) on the film.
The higher the evaluation, the higher the dispersibility of the silica particles in the liquid composition.
 液状組成物の硬化層についての面状を、下記基準により評価した。
 良:フィルム全体が均一に薄く白濁し、かつ、界面活性剤のブリード模様が観察されない。
 可:フィルムに界面活性剤のブリード模様が観察されるが、まったく白濁していない部分(抜け)はない。
 不良:フィルムに全く白濁していない部分(抜け)がある。
 フィルムに全く白濁していない部分がある場合は、液状組成物を塗工する際に気泡が発生したことを意味する。
The surface condition of the cured layer of the liquid composition was evaluated according to the following criteria.
Good: The entire film is uniformly thin and cloudy, and no bleeding pattern of the surfactant is observed.
Fair: Bleeding patterns of surfactant are observed on the film, but there are no cloudy areas (dropouts).
Defective: There is a part (missing) in the film that is not cloudy at all.
If there are parts of the film that are not cloudy at all, this means that air bubbles were generated when the liquid composition was applied.
 (液状組成物の硬化層中の界面活性剤の残存率)
 実施例及び比較例で得られた複層フィルムの厚み及び界面活性剤の仕込み量から、基材(ゼオノアフィルム)を含む複層フィルム1gを製造するために用いた界面活性剤の量X0を計算した。
 また、下記分析結果を用いて、複層フィルム1gに残存する界面活性剤の量X1を計算した。下記の式により、液状組成物の硬化層中の界面活性剤の残存率Rを算出した。
  R=X1/X0*100(%)
 また、下記の基準に従い、残存率Rを分類した。
 良:90%≦R
 可:70%≦R<90%
 不良:R<70%
(Residual rate of surfactant in cured layer of liquid composition)
Calculate the amount of surfactant X0 used to produce 1 g of multilayer film including the base material (Zeonor film) from the thickness of the multilayer film obtained in the examples and comparative examples and the amount of surfactant charged. did.
Further, the amount X1 of surfactant remaining in 1 g of the multilayer film was calculated using the following analysis results. The residual ratio R of the surfactant in the cured layer of the liquid composition was calculated using the following formula.
R=X1/X0*100(%)
Further, the residual rate R was classified according to the following criteria.
Good: 90%≦R
Possible: 70%≦R<90%
Defective: R<70%
・分析
 複層フィルム1gを500mL容量の容器に秤量し、シクロヘキサン100mLを加えて一晩放置し、次いでマグネチックスターラーで撹拌し、複層フィルムの大部分を溶解し、白色の若干の不溶分を含む、溶液とした。不溶分を含む溶液に、THFを50mL添加し、次いで全量が400mL程度となるまでメタノールを添加して、沈殿物を生じさせた。
 沈殿物をひだ付きろ紙でろ別して除き、ろ液から溶媒を減圧留去して、メタノール可溶分である液体を得た。溶媒の減圧留去操作は、100mLナスフラスコ及びエバポレーターを用い、数回に分けて行った。この液体を10mLのメスフラスコへ移し、標線まで溶媒:メタノールを加えて、定容した。
 定容した液体を、0.2umフィルターでろ過して、バイアルへ移し、下記条件のHPLC測定により界面活性剤の濃度を測定した。界面活性剤の濃度の決定は、異なる濃度を有する界面活性剤の溶液を分析してあらかじめ作成された検量線に基づいて行った。
 得られた界面活性剤の濃度から、複層フィルム1gに残存する界面活性剤の量X1を計算した。
・Analysis Weigh 1 g of multilayer film into a 500mL container, add 100mL of cyclohexane, leave it overnight, and then stir with a magnetic stirrer to dissolve most of the multilayer film and remove some white insoluble matter. It was made into a solution. 50 mL of THF was added to the solution containing the insoluble matter, and then methanol was added until the total amount was about 400 mL to form a precipitate.
The precipitate was removed by filtration through a pleated filter paper, and the solvent was distilled off from the filtrate under reduced pressure to obtain a methanol-soluble liquid. The operation of removing the solvent under reduced pressure was carried out in several batches using a 100 mL eggplant flask and an evaporator. This liquid was transferred to a 10 mL volumetric flask, and the solvent: methanol was added up to the marked line to make the volume constant.
The fixed volume of the liquid was filtered through a 0.2 um filter, transferred to a vial, and the concentration of the surfactant was measured by HPLC measurement under the following conditions. The surfactant concentration was determined based on a calibration curve prepared in advance by analyzing surfactant solutions having different concentrations.
From the concentration of the surfactant obtained, the amount X1 of the surfactant remaining in 1 g of the multilayer film was calculated.
・HPLC条件
使用カラム:ZORBAX Eclipse XDB-C8
カラム温度:40℃
展開溶媒:アセトニトリル/ギ酸アンモニウムからアセトニトリルへのグラジエント溶離
流速:0.5mL/min
注入量:2μL
検出器:質量分析装置
・HPLC conditions Column used: ZORBAX Eclipse XDB-C8
Column temperature: 40℃
Developing solvent: acetonitrile/gradient elution from ammonium formate to acetonitrile flow rate: 0.5 mL/min
Injection volume: 2μL
Detector: Mass spectrometer
 残存率Rが大きいほど、液状組成物の層を加熱乾燥させる際に、汚れが生じにくいことを意味する。したがって、残存率Rが大きいほど、加熱乾燥装置内部に付着する樹脂状の汚れが少ない。 A larger residual ratio R means that stains are less likely to occur when heating and drying a layer of the liquid composition. Therefore, the larger the residual rate R is, the less resinous dirt adheres to the inside of the heating dryer.
[実施例及び比較例で用いた界面活性剤組成物]
 実施例及び比較例で用いた界面活性剤組成物A~Gの組成は、表1のとおりである。表1中、組成物A~Gはそれぞれ、界面活性剤組成物A~Gを意味する。表面活性剤組成物A~Gは、市場より入手した。表1において、組成物F及び組成物Gにおける界面活性剤成分Mnの数値は、数平均分子量500以下である成分についての値である。
[Surfactant composition used in Examples and Comparative Examples]
The compositions of surfactant compositions A to G used in Examples and Comparative Examples are shown in Table 1. In Table 1, compositions A to G mean surfactant compositions A to G, respectively. Surfactant compositions A to G were obtained commercially. In Table 1, the numerical values of surfactant component Mn in Composition F and Composition G are values for components having a number average molecular weight of 500 or less.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実施例1]
 (1-1)基材の用意
 シクロオレフィン系樹脂(日本ゼオン社製「ZEONOR1420」)のペレットを100℃で5時間乾燥した。このペレットを押出機に供給し、押出機内で溶融させ、ポリマーパイプ及びポリマーフィルターを経て、Tダイからキャスティングドラム上にフィルム状に押出し、冷却して、長尺の未延伸フィルム(厚み80μm、幅1600mm)を得た。そこから、A4サイズ(約210mm×約297mm)にサンプルを切り出した。
[Example 1]
(1-1) Preparation of base material Pellets of cycloolefin resin (ZEONOR1420 manufactured by Nippon Zeon Co., Ltd.) were dried at 100° C. for 5 hours. The pellets are supplied to an extruder, melted in the extruder, passed through a polymer pipe and a polymer filter, extruded into a film from a T-die onto a casting drum, cooled, and made into a long unstretched film (thickness 80 μm, width 1600 mm) was obtained. From there, a sample was cut into A4 size (approximately 210 mm x approximately 297 mm).
 切り出した未延伸フィルムの片面に、コロナ処理装置を用いて放電処理を施し、液状組成物の硬化層を形成するための基材とした。 One side of the cut unstretched film was subjected to electrical discharge treatment using a corona treatment device, and was used as a base material for forming a cured layer of the liquid composition.
 (1-2)液状組成物の層の形成
 ポリウレタンの水分散体(ポリウレタンエマルジョン)として、スーパーフレックス870(第一工業製薬社製、エーテル系ポリウレタン、Tg78℃、固形分30%)を用い、当該水分散体をポリウレタンが100部となる量だけ取り分けた。この水分散体に、エポキシ化合物であるグリセロールポリグリシジルエーテル(ナガセケムテックス社製「デナコールEX-512」)20部と;平均粒子径80nmのシリカ微粒子(日産化学社製「スノーテックスZL」)8部と;シリカ粒子の水分散液(日産化学社製「スノーテックスMP2040」;平均粒子径200nm)をシリカ粒子の量で2.5部と;ノニオン系界面活性剤として数平均分子量が4,660である界面活性剤と分子量が500以下の低分子量成分(L)を全体の11%とを含む界面活性剤組成物Aと;水と;を配合して、未硬化状態のポリウレタン樹脂を含む固形分濃度4%の液状組成物を得た。ここで、ノニオン系界面活性剤組成物の添加量は、液状組成物に含まれる固形分に対し1.25wt%、液状組成物に対して、500重量ppm(0.05wt%)となる量とした。
(1-2) Formation of layer of liquid composition Superflex 870 (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., ether polyurethane, Tg 78°C, solid content 30%) was used as an aqueous dispersion of polyurethane (polyurethane emulsion). An amount of the water dispersion containing 100 parts of polyurethane was taken out. To this aqueous dispersion, 20 parts of glycerol polyglycidyl ether (“Denacol EX-512” manufactured by Nagase ChemteX), which is an epoxy compound; and 8 parts of silica fine particles with an average particle diameter of 80 nm (“Snowtex ZL” manufactured by Nissan Chemical Co., Ltd.) 2.5 parts of an aqueous dispersion of silica particles (Nissan Chemical Co., Ltd. "Snowtex MP2040"; average particle diameter 200 nm); number average molecular weight of 4,660 as a nonionic surfactant; A solid containing a polyurethane resin in an uncured state is prepared by blending surfactant composition A containing a surfactant and a low molecular weight component (L) having a molecular weight of 500 or less at 11% of the total; and water. A liquid composition having a concentration of 4% was obtained. Here, the amount of the nonionic surfactant composition added is 1.25 wt% based on the solid content contained in the liquid composition, and 500 ppm by weight (0.05 wt%) based on the liquid composition. did.
 切り出した基材としての未延伸フィルムの、放電処理を施した面に、前記の液状組成物を、乾燥厚みが0.08μmになるようにバーコーターで塗工した。 The above liquid composition was coated with a bar coater on the discharge-treated surface of the unstretched film as a cut out base material so that the dry thickness was 0.08 μm.
 (1-3) 液状組成物の硬化層の形成
 その後、加熱により液状組成物の層を乾燥して、未延伸フィルム上にプライマー層となる、液状組成物の硬化層を形成した。これにより、基材及び液状組成物の硬化層を備える、光学フィルムとしての複層フィルムを得た。得られた複層フィルムを、前記の方法により評価した。結果を表2に示す。
(1-3) Formation of cured layer of liquid composition Thereafter, the layer of the liquid composition was dried by heating to form a cured layer of the liquid composition to serve as a primer layer on the unstretched film. As a result, a multilayer film as an optical film including a base material and a cured layer of the liquid composition was obtained. The obtained multilayer film was evaluated by the method described above. The results are shown in Table 2.
[実施例2~9、比較例1~2]
 界面活性剤組成物Aの代わりに、表2~4に示す界面活性剤組成物を用いた。
 界面活性剤組成物の添加量を、表2~4に示す添加量に変更した。
 以上の事項以外は、実施例1と同様に操作して、光学フィルムとしての複層フィルムを得て、実施例1と同様にして評価した。結果を表2~4に示す。
[Examples 2 to 9, Comparative Examples 1 to 2]
Surfactant compositions shown in Tables 2 to 4 were used instead of surfactant composition A.
The amount of the surfactant composition added was changed to the amount shown in Tables 2 to 4.
Except for the above matters, the same operations as in Example 1 were carried out to obtain a multilayer film as an optical film, and evaluation was performed in the same manner as in Example 1. The results are shown in Tables 2 to 4.
[結果]
 評価結果を表2~4に示す。
 表2~4における略号などは、下記の意味を表す。
「界面活性剤組成物添加量」:液状組成物を100重量%とした、界面活性剤組成物の添加量。
「界面活性剤(正味)添加量」:液状組成物を100重量%とした、界面活性剤組成物中の数平均分子量500超である界面活性剤成分の添加量。
「界面活性剤(N)/成分(L)」:液状組成物に配合されている、界面活性剤組成物中の数平均分子量が500超であるノニオン系界面活性剤(N)の、界面活性剤組成物中の成分(L)に対する重量比率。
 表4における注釈*1:アニオン系界面活性剤が含まれ、ノニオン系界面活性剤(N)は含まれていない。
 表4における注釈*2:数平均分子量が500超のノニオン系界面活性剤(N)は含まれていない。
[result]
The evaluation results are shown in Tables 2 to 4.
Abbreviations in Tables 2 to 4 have the following meanings.
"Additional amount of surfactant composition": Addition amount of surfactant composition based on 100% by weight of the liquid composition.
"Surfactant (net) addition amount": Addition amount of the surfactant component having a number average molecular weight of more than 500 in the surfactant composition, based on 100% by weight of the liquid composition.
"Surfactant (N)/component (L)": The surfactant of the nonionic surfactant (N) with a number average molecular weight of more than 500 in the surfactant composition, which is blended into the liquid composition. weight ratio to component (L) in the agent composition.
Note in Table 4 *1: Anionic surfactant is included, nonionic surfactant (N) is not included.
Note *2 in Table 4: Nonionic surfactant (N) with a number average molecular weight of more than 500 is not included.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 以上の結果に示すように、数平均分子量が500を超えるノニオン系界面活性剤(N)を含み、ノニオン系界面活性剤(N)の成分(L)に対する重量比率が、70/30以上である(すなわち、70重量部以上100重量部以下のノニオン系界面活性剤(N)と、0重量部以上30重量部以下の成分(L)とを含む。)、実施例に係る液状組成物は、界面活性剤残存率評価が良又は可であり、かつ、面状の評価が良又は可である。したがって、実施例に係る液状組成物は、乾燥の際に揮発性の汚れが生じにくく、かつ、液状組成物の硬化層の面状が、良好であることを示す。 As shown in the above results, it contains a nonionic surfactant (N) with a number average molecular weight exceeding 500, and the weight ratio of the nonionic surfactant (N) to the component (L) is 70/30 or more. (That is, the liquid composition according to the example contains 70 parts by weight or more and 100 parts by weight of nonionic surfactant (N) and 0 part by weight or more and 30 parts by weight or less of component (L).) Surfactant residual rate evaluation is good or fair, and surface condition evaluation is good or fair. Therefore, the liquid compositions according to Examples show that volatile stains are less likely to occur during drying, and the surface condition of the cured layer of the liquid composition is good.
 一方、アニオン系界面活性剤を用いた比較例1の液状組成物は、液状組成物の硬化層の面状が不良である。また、数平均分子量が500以下であるノニオン系界面活性剤を用いた比較例2の液状組成物は、界面活性剤残存率評価が不良であり、乾燥の際に発生する揮発性の汚れの量が多いことを示す。 On the other hand, in the liquid composition of Comparative Example 1 using an anionic surfactant, the surface condition of the cured layer of the liquid composition was poor. In addition, the liquid composition of Comparative Example 2 using a nonionic surfactant with a number average molecular weight of 500 or less had a poor surfactant residual rate evaluation, and the amount of volatile stains generated during drying was poor. Indicates that there are many

Claims (6)

  1.  70重量部以上100重量部以下の、数平均分子量が500超であるノニオン系界面活性剤と、
     0重量部以上30重量部以下の、数平均分子量が100以上500以下である成分と、
     水と、を含む、液状組成物。
    70 parts by weight or more and 100 parts by weight or less of a nonionic surfactant having a number average molecular weight of more than 500;
    0 parts by weight or more and 30 parts by weight or less of a component having a number average molecular weight of 100 or more and 500 or less;
    A liquid composition containing water.
  2.  前記ノニオン系界面活性剤の数平均分子量が、550以上である、請求項1に記載の液状組成物。 The liquid composition according to claim 1, wherein the nonionic surfactant has a number average molecular weight of 550 or more.
  3.  前記ノニオン系界面活性剤を、0.02重量%以上0.10重量%以下含む、請求項1に記載の液状組成物。 The liquid composition according to claim 1, containing the nonionic surfactant at 0.02% by weight or more and 0.10% by weight or less.
  4.  更にポリウレタンとシリカ粒子とを含む、請求項1に記載の液状組成物。 The liquid composition according to claim 1, further comprising polyurethane and silica particles.
  5.  基材と、前記基材の主面上に設けられた請求項1~4のいずれか一項に記載の液状組成物の硬化層と、を含む、光学フィルム。 An optical film comprising a base material and a cured layer of the liquid composition according to any one of claims 1 to 4 provided on the main surface of the base material.
  6.  前記基材が、シクロオレフィン系樹脂からなる、請求項5に記載の光学フィルム。 The optical film according to claim 5, wherein the base material is made of a cycloolefin resin.
PCT/JP2023/025399 2022-07-28 2023-07-10 Liquid composition and optical film WO2024024467A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-120948 2022-07-28
JP2022120948 2022-07-28

Publications (1)

Publication Number Publication Date
WO2024024467A1 true WO2024024467A1 (en) 2024-02-01

Family

ID=89706176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025399 WO2024024467A1 (en) 2022-07-28 2023-07-10 Liquid composition and optical film

Country Status (1)

Country Link
WO (1) WO2024024467A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256145A (en) * 2001-03-01 2002-09-11 Okamoto Ind Inc Aqueous anionic polyurethane resin composition for condom and method for producing condom
JP2013132871A (en) * 2011-12-27 2013-07-08 Nippon Zeon Co Ltd Double-layered film and method for forming the same
JP2014195763A (en) * 2013-03-29 2014-10-16 日本ゼオン株式会社 Method of manufacturing multilayer film, polarizer protecting film, and polarizer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256145A (en) * 2001-03-01 2002-09-11 Okamoto Ind Inc Aqueous anionic polyurethane resin composition for condom and method for producing condom
JP2013132871A (en) * 2011-12-27 2013-07-08 Nippon Zeon Co Ltd Double-layered film and method for forming the same
JP2014195763A (en) * 2013-03-29 2014-10-16 日本ゼオン株式会社 Method of manufacturing multilayer film, polarizer protecting film, and polarizer

Similar Documents

Publication Publication Date Title
TWI635155B (en) Multilayer film and manufacturing method thereof
JP5305129B2 (en) LAMINATED FILM MANUFACTURING METHOD AND LAMINATED FILM
JP5845891B2 (en) Multi-layer film and method for producing the same
KR20110038680A (en) Polarizer-protecting film, and polarizing plate and image display device each comprising polarizer-protecting film
TW201733787A (en) Long film
CN110229366B (en) Multilayer film and method for producing same
JP5716571B2 (en) Multilayer film, method for producing multilayer film, polarizing plate protective film and polarizing plate
JP6497063B2 (en) Multi-layer film, method for producing the same, and polarizing plate
JP5573707B2 (en) Method for producing retardation film
JP5168427B2 (en) Laminated film, polarizing plate protective film, polarizing plate and method for producing laminated film
WO2024024467A1 (en) Liquid composition and optical film
JP6155761B2 (en) Multilayer film manufacturing method
JP2015042388A (en) Apparatus and method for manufacturing film
TW202413558A (en) Liquid compositions and optical films
JP5845895B2 (en) Multilayer film manufacturing method
JP2010149323A (en) Method for manufacturing laminated film and laminated film
WO2017164045A1 (en) Method for manufacturing and device for manufacturing multilayer film
TW201932295A (en) Polarizing plate-carrier film laminate, manufacturing method thereof, method for manufacturing polarizing plate using the same, and polarizing plate
JP6536116B2 (en) Method of manufacturing multilayer film
JP2017187454A (en) Method for measuring the thickness of thin layer and method for forming multilayer film
WO2023054256A1 (en) Multilayer film, optical multilayer film, and manufacturing method
WO2023233958A1 (en) Multilayer film and method for manufacturing same, polarizing plate, and organic electroluminescent image display device
KR20240072123A (en) Multilayer film, optical multilayer film, and manufacturing method
JP2020179890A (en) Film roll
JP2018051894A (en) Laminated film and polarizing plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846199

Country of ref document: EP

Kind code of ref document: A1