WO2024024458A1 - 無線アクセスネットワークノード、ue、ネットワークノード、及びこれらの方法 - Google Patents

無線アクセスネットワークノード、ue、ネットワークノード、及びこれらの方法 Download PDF

Info

Publication number
WO2024024458A1
WO2024024458A1 PCT/JP2023/025338 JP2023025338W WO2024024458A1 WO 2024024458 A1 WO2024024458 A1 WO 2024024458A1 JP 2023025338 W JP2023025338 W JP 2023025338W WO 2024024458 A1 WO2024024458 A1 WO 2024024458A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
ran
ran node
route information
information
Prior art date
Application number
PCT/JP2023/025338
Other languages
English (en)
French (fr)
Inventor
尚 二木
貞福 林
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2024024458A1 publication Critical patent/WO2024024458A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/42Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for mass transport vehicles, e.g. buses, trains or aircraft
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate

Definitions

  • the present disclosure relates to wireless communication systems, and in particular to signaling between radio access network nodes regarding mobility or dual connectivity for wireless terminals.
  • UE aerial user equipment
  • 3GPP registered trademark
  • the current 3GPP specifications require an Evolved Universal Terrestrial Radio Access Network (EUTRAN)-based mechanism to provide Long Term Evolution (LTE) connectivity to aerial-capable UEs.
  • EUTRAN Evolved Universal Terrestrial Radio Access Network
  • LTE Long Term Evolution
  • ⁇ Height reporting based on the event that the UE's altitude exceeds a reference altitude threshold set in the network
  • - interference detection based on measurement reports triggered if a set number of cells (i.e. greater than 1) simultaneously meet the trigger criteria
  • the E-UTRAN may request the UE to report flight path information that includes a number of waypoints defined as Three Dimensional (3D) locations. If flight path information is available at the UE, the UE reports waypoints up to the number configured in the request. If configured on request and available at the UE, the report may include a timestamp for each waypoint.
  • 3D Three Dimensional
  • Section 4.3.31 of Non-Patent Document 2 stipulates the following: An eNodeB that supports handling of aerial UE functions uses per-user information provided by the Mobility Management Entity (MME) to decide whether to allow the UE to use aerial UE functions. do.
  • MME Mobility Management Entity
  • Support for Aerial UE functionality is stored in the user's subscription information on the Home Subscriber Server (HSS).
  • HSS Home Subscriber Server
  • the HSS forwards this information to the MME in the Update Location message during the attach and tracking area update procedures.
  • the home operator may revoke the user's subscription authorization to operate the aerial UEs at any time.
  • the MME supporting aerial UE functionality provides the user's subscription information regarding aerial UE authorization to the eNodeB through S1 AP Initial Context Setup Request during the attach, tracking area update, and service request procedures.
  • the user's aerial UE subscription information is sent to the target eNodeB after the handover procedure of the S1 Application Protocol (S1AP) UE Included in the Context Modification Request message.
  • S1AP S1 Application Protocol
  • the user's aerial UE subscription information is sent to the target eNodeB as follows. If the source eNodeB supports aerial UE functionality and the user's aerial UE subscription information is included in the UE context, the source eNodeB needs to include this information in the X2AP Handover Request message to the target eNodeB.
  • the MME needs to send the aerial UE's subscription information to the target eNodeB in the S1AP Path Switch Request Acknowledge message.
  • the updated aerial UE subscription information is included in the S1AP UE Context Modification Request message sent from the MME to the eNodeB.
  • Non-Patent Document 3 stipulate the following matters. If the UE has flight path information available, the UE can make it available to the E-UTRTAN in Radio Resource Control (RRC) connection establishment, RRC connection reconfiguration, or RRC connection re-establishment. Notify that there is flight path information. Specifically, the UE may include the flightPathInfoAvailable field set to the value true in the RRC Connection Setup Complete message, RRC Connection Resume Complete message, RRC Connection Reconfiguration Complete message, and RRC Connection Reestablishment Complete message.
  • RRC Radio Resource Control
  • the E-UTRTAN may use the UE Information procedure to request the UE to report information. Specifically, the E-UTRTAN may send a UE Information Request message including a flightPathInfoReq field to the UE.
  • the flightPathInfoReq field indicates a FlightPathInfoReportConfig information element (Information Element (IE)).
  • FlightPathInfoReportConfig IE indicates the maximum number of waypoints that the UE can include in the flight path information report. Additionally, the FlightPathInfoReportConfig IE optionally indicates whether the timestamp of each waypoint can be reported in the flight path information report if timestamp information is available at the UE. To that end, the FlightPathInfoReportConfig IE includes a maxWayPointNumber field and an includeTimeStamp field.
  • the UE includes the flightPathInfoReport field in the UE Information Response message and sends the UE Information Response message to the E-UTRTAN.
  • the flightPathInfoReport field contains FlightPathInfoReport IE.
  • FlightPathInfoReport IE indicates a sequence of WayPointLocation IEs.
  • the WayPointLocation IE contains a wayPointLocation field and optionally a timeStamp field.
  • the wayPointLocation field contains the UE location coordinates for aerial UE operations. Waypoints describe the planned (or scheduled) locations of a UE.
  • the timeStamp field contains time stamps of waypoints indicating the planned location of the UE.
  • Non-patent document 4 stipulates the following matters. Section 8.2.1.2 states that if the Aerial UE subscription information IE is included in the X2AP Handover Request message received from the source eNB, the target eNB shall store this information in the UE context, if supported, and the 3GPP TS It is stated that it must be used as defined in 36.300 (Non-Patent Document 1). Section 9.1.1.1 states that the Handover Request message optionally includes the Aerial UE subscription information IE. Section 9.2.129 states that the Aerial UE subscription information IE is used by the eNodeB (eNB) to know whether the UE is allowed to use aerial UE functionality. In addition, it is described that the Aerial UE subscription information IE is an enumerated type and indicates “allowed” or “not allowed”.
  • Non-Patent Document 5 In 3GPP Release 18, functions similar to those described above are scheduled to be supported in order to provide New Radio (NR) communication to aerial UEs (see, for example, Non-Patent Document 5).
  • NR New Radio
  • Patent Document 1 describes handover of a mobile station (UE). More specifically, in the handover described in Patent Document 1, a target control device (e.g., base station, eNodeB) receives a request message indicating a target cell as a handover destination of the UE from a source control device. . If the handover request to the target cell is not allowed, the target control device may send a handover acceptance response message back to the source control device indicating another cell different from the target cell that is acceptable for handover. In other words, the target control device informs the source control device via the handover acceptance response message that it can accept a handover to a cell that is not specified in the handover request message from the source control device.
  • a target control device e.g., base station, eNodeB
  • 3GPP TS 36.300 V17.0.0 (2022-03), "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E -UTRAN); Overall description ; Stage 2 (Release 17)", April 2022 3GPP TS 23.401 V17.5.0 (2022-06), "3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; General Packet Radio Service (GPRS) enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access (Release 17) )", June 2022 3GPP TS 36.331 V17.0.0 (2022-03), "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification (Release 1) 7)” , April 2022 3GPP TS 36.423 V17.1.0 (2022-06), "3r
  • One issue is that current 3GPP specifications do not specify that a source Radio Access Network (RAN) node provides flight path information to a target RAN node in UE mobility-related procedures.
  • RAN Radio Access Network
  • MN Master Node
  • SN Secondary Node
  • UE mobility may be, but is not limited to, handover or conditional handover.
  • UE mobility includes dual connectivity inter-MN handover, Master Node to eNB/gNB Change, or eNB/gNB to Master Node Master Node Change).
  • the dual connectivity related procedure may be, but is not limited to, an SN addition procedure, a conditional SN addition procedure, a SN change procedure, or a conditional SN change procedure.
  • the (conditional) SN addition procedure may be referred to as the (conditional) Primary Secondary Cell Group (SCG) Cell (PSCell) addition procedure.
  • SCG Primary Secondary Cell Group
  • PSCell Packet Cell
  • the (conditional) SN modification procedure may be referred to as the (conditional) inter-SN (inter-SN) PSCell modification procedure.
  • the above-mentioned dual connectivity-related procedures involve adding or changing one or more serving cells of the UE, and therefore can be said to be included in UE mobility in a broad sense. Accordingly, as defined herein, the term mobility or mobility-related procedures may refer generically to handover procedures and dual connectivity-related procedures described above.
  • the source RAN node e.g., gNB
  • the controller associated with the source RAN node e.g., Near-Real-Time RAN Intelligent Controller (Near-RT RIC)
  • the target cell determines the target cell.
  • the UE's flight path information will be taken into account for the purpose of handover optimization.
  • a similar problem exists with dual connectivity For example, it may be difficult for the MN to map three-dimensional location information indicated by flight path information to the actual coverage of one or more candidate PSCells provided by the SN.
  • conditional mobility includes, but is not limited to, conditional handover, conditional PSCell addition (CPA), inter-SN conditional PSCell change (CPC), Or includes inter-SN CPC.
  • conditional mobility may also be referred to as conditional reconfiguration.
  • the CPA, intra-SN CPC, and inter-SN CPC regarding dual connectivity may be referred to as conditional dual connectivity procedures or conditional dual connectivity related procedures.
  • a land-based vehicle also called a land vehicle or a ground vehicle
  • Land-based vehicle travel route information describes the planned or anticipated locations of the land-based vehicle. These positions may be two dimensional (2D) positions.
  • planned route information refers to the planned or expected position (such as flight route information and travel route information) of a UE or a vehicle, flying object, or mobile robot in which a UE is implemented. Used to mean information that describes (locations).
  • One of the objectives of the embodiments disclosed in this specification is to provide an apparatus, method, and program that contribute to solving at least one of a plurality of problems including the above-mentioned problems. That's true. It should be noted that this objective is only one of the objectives that the embodiments disclosed herein seek to achieve. Other objects or objects and novel features will become apparent from the description of this specification or the accompanying drawings.
  • a first aspect is directed to a first radio access network (RAN) node.
  • the first RAN node includes at least one memory and at least one processor coupled to the at least one memory.
  • the at least one processor is configured to send planned route information indicative of a plurality of planned locations of the UE to a second RAN node in a mobility related procedure or a dual connectivity related procedure for the UE.
  • a second aspect is directed to a method performed by a first RAN node.
  • the method includes sending planned route information indicative of a plurality of planned locations of the UE to a second RAN node in a mobility-related procedure or a dual connectivity-related procedure for the UE.
  • the third aspect is directed to the second RAN node.
  • the second RAN node includes at least one memory and at least one processor coupled to the at least one memory.
  • the at least one processor is configured to receive planned route information from a first RAN node indicative of a plurality of planned locations of the UE in a mobility-related procedure or a dual connectivity-related procedure for the UE.
  • a fourth aspect is directed to a method performed by a second RAN node.
  • the method includes receiving from a first RAN node planned route information indicative of a plurality of planned locations of the UE in a mobility-related procedure or a dual connectivity-related procedure for the UE.
  • a fifth aspect is directed to a RAN node configured to act as a MN in dual connectivity for a UE.
  • the RAN node includes at least one memory and at least one processor coupled to the at least one memory.
  • the at least one processor is configured to send planned route information to the dual connectivity SN indicating a plurality of planned locations of the UE.
  • a sixth aspect is directed to a method performed by a RAN node configured to act as a MN in dual connectivity for a UE.
  • the method includes sending planned route information to the dual connectivity SN indicating a plurality of planned locations of the UE.
  • a seventh aspect is directed to a RAN node configured to act as an SN in dual connectivity for a UE.
  • the RAN node includes at least one memory and at least one processor coupled to the at least one memory.
  • the at least one processor is configured to receive planned route information from the dual connectivity MN indicating a plurality of planned locations of the UE.
  • An eighth aspect is directed to a method performed by a RAN node configured to act as an SN in dual connectivity for a UE.
  • the method includes receiving planned route information from the dual connectivity MN indicating a plurality of planned locations of the UE.
  • a ninth aspect is directed to a RAN node configured to act as a MN in dual connectivity for a UE.
  • the RAN node includes at least one memory and at least one processor coupled to the at least one memory.
  • the at least one processor is configured to receive planned route information from the dual connectivity SN indicating a plurality of planned locations of the UE.
  • a tenth aspect is directed to a method performed by a RAN node configured to operate as a MN in dual connectivity for a UE.
  • the method includes receiving planned route information from the dual connectivity SN indicating a plurality of planned locations of the UE.
  • An eleventh aspect is directed to a RAN node configured to act as an SN in dual connectivity for a UE.
  • the RAN node includes at least one memory and at least one processor coupled to the at least one memory.
  • the at least one processor is configured to send planned route information to the dual connectivity MN indicating a plurality of planned locations of the UE.
  • a twelfth aspect is directed to a method performed by a RAN node configured to act as an SN in dual connectivity for a UE.
  • the method includes sending planned route information to the dual connectivity MN indicating a plurality of planned locations of the UE.
  • a thirteenth aspect is directed to a RAN node configured to operate as a MN in dual connectivity for a UE.
  • the RAN node includes at least one memory and at least one processor coupled to the at least one memory.
  • the at least one processor is configured to send aerial UE subscription information of the UE or information derived therefrom to a secondary node (SN) of the dual connectivity.
  • SN secondary node
  • a fourteenth aspect is directed to a method performed by a RAN node configured to operate as a MN in dual connectivity for a UE.
  • the method includes sending aerial UE subscription information of the UE or information derived therefrom to a secondary node (SN) of the dual connectivity.
  • SN secondary node
  • a fifteenth aspect is directed to a RAN node configured to act as an SN in dual connectivity for a UE.
  • the RAN node includes at least one memory and at least one processor coupled to the at least one memory.
  • the at least one processor is configured to receive aerial UE subscription information of the UE or information derived therefrom from the dual connectivity MN.
  • a sixteenth aspect is directed to a method performed by a RAN node configured to act as an SN in dual connectivity for a UE.
  • the method includes receiving aerial UE subscription information of the UE or information derived therefrom from the dual connectivity MN.
  • a seventeenth aspect is directed to RAN nodes.
  • the RAN node includes at least one memory and at least one processor coupled to the at least one memory.
  • the at least one processor is configured to determine one or more execution conditions for conditional mobility of a UE based on planned route information indicative of a plurality of planned locations of the UE.
  • An eighteenth aspect is directed to a method performed by a RAN node.
  • the method includes determining one or more performance conditions for conditional mobility of a UE based on planned route information indicative of a plurality of planned locations of the UE.
  • the nineteenth aspect is directed to RAN nodes.
  • the RAN node includes at least one memory and at least one processor coupled to the at least one memory.
  • the at least one processor is configured to receive a UE handover request from a source RAN node indicating one or more target cells. the at least one processor, if the handover request message includes one or both of planned route information indicating a plurality of planned locations of the UE and an explicit indication indicating that alternative cell proposals are allowed;
  • the device is configured to send a handover request response to the source RAN node indicating other cells that are handover acceptable and different from the one or more target cells.
  • a twentieth aspect is directed to a method performed by a RAN node.
  • the method includes the following steps: (a) receiving a handover request for a UE from a source RAN node indicating one or more target cells; and (b) planned route information and alternates in which the handover request message indicates a plurality of planned locations of the UE; If the source includes one or both of the explicit indications indicating that the cell proposal is allowed, the source sends a handover request response indicating another cell that is acceptable for handover and that is different from the one or more target cells. to be sent to a RAN node.
  • a twenty-first aspect is directed to a program.
  • the program when loaded into a computer, performs the method according to the second, fourth, sixth, eighth, tenth, twelfth, fourteenth, sixteenth, eighteenth, or twentieth aspect described above.
  • FIG. 1 is a diagram illustrating a configuration example of a wireless communication system according to an embodiment.
  • 1 is a diagram illustrating a configuration example of a wireless communication system according to an embodiment.
  • 1 is a diagram illustrating a configuration example of a wireless communication system according to an embodiment.
  • FIG. 3 is a diagram illustrating a configuration example of a RAN node according to an embodiment.
  • FIG. 3 is a sequence diagram illustrating an example of signaling between RAN nodes according to the embodiment. It is a flowchart which shows an example of operation of the RAN node concerning an embodiment. It is a flowchart which shows an example of operation of the RAN node concerning an embodiment. It is a flowchart which shows an example of operation of the RAN node concerning an embodiment.
  • FIG. 3 is a diagram illustrating an example format of a HandoverPreparation Information message according to the embodiment.
  • FIG. 3 is a diagram illustrating an example of a format of a HANDOVER REQUEST message according to an embodiment.
  • FIG. 3 is a diagram illustrating an example of a format of a CG-ConfigInfo message according to the embodiment.
  • FIG. 3 is a diagram illustrating an example of the format of an S-NODE ADDITION REQUEST message according to the embodiment.
  • FIG. 2 is a sequence diagram illustrating an example of dual connectivity-related signaling between RAN nodes according to the embodiment.
  • FIG. 2 is a sequence diagram illustrating an example of dual connectivity-related signaling between RAN nodes according to the embodiment.
  • FIG. 2 is a sequence diagram illustrating an example of dual connectivity-related signaling between RAN nodes according to the embodiment.
  • FIG. 3 is a diagram illustrating an example of the format of an S-NODE ADDITION REQUEST message according to the embodiment. It is a flowchart which shows an example of operation of the RAN node concerning an embodiment.
  • FIG. 3 is a sequence diagram illustrating an example of handover-related signaling between RAN nodes according to the embodiment.
  • FIG. 3 is a sequence diagram illustrating an example of handover-related signaling between RAN nodes according to the embodiment.
  • FIG. 2 is a block diagram illustrating a configuration example of a RAN node according to an embodiment.
  • FIG. 2 is a block diagram illustrating a configuration example of a UE according to an embodiment.
  • LTE Long Term Evolution
  • 5G system 5th generation mobile communication system
  • LTE Long Term Evolution
  • LTE-Advanced improvements and developments of LTE and LTE-Advanced to enable interworking with the 5G System.
  • if means “when,” “at or around the time,” and “after,” depending on the context. "after”, “upon”, “in response to determining", “in accordance with a determination", or “detecting” may be interpreted to mean “in response to detecting”. These expressions may be interpreted to have the same meaning, depending on the context.
  • FIG. 1 shows a configuration example of a wireless communication system according to a plurality of embodiments.
  • the wireless communication system includes RAN node 1, RAN node 2, RAN node 4, and UE3.
  • Each element (network function) shown in Figure 1 can be implemented, for example, as a network element on dedicated hardware, as a software instance running on dedicated hardware, or as an application platform. It can be implemented as an instantiated virtualization function.
  • the RAN node 1 may be a Central Unit (e.g., eNB-CU, or gNB-CU) in a cloud RAN (C-RAN) deployment, or a CU and one or more Distributed Units (e.g., eNB -DUs or gNB-DUs). C-RAN is also called CU/DU split. Furthermore, the CU may include a Control Plane (CP) Unit (e.g. gNB-CU-CP) and one or more User Plane (UP) Units (e.g. gNB-CU-UP). Therefore, the RAN node 1 may be a CU-CP or a combination of a CU-CP and a CU-UP.
  • CP Control Plane
  • UP User Plane
  • each of RAN nodes 2 and 4 may be a CU or a combination of a CU and one or more DUs.
  • Each of RAN nodes 2 and 4 may be a CU-CP or a combination of CU-CP and CU-UP.
  • Each of the RAN nodes 1, 2, and 4 may be an Evolved Universal Terrestrial Radio Access Network (E-UTRAN) node or a Next generation Radio Access Network (NG-RAN) node.
  • the E-UTRAN node may be an eNB or en-gNB.
  • the NG-RAN node may be a gNB or ng-eNB.
  • en-gNB is a node that provides NR user plane and control plane protocol termination to the UE and operates as an SN for E-UTRA-NR Dual Connectivity (EN-DC).
  • ng-eNB is a node that provides E-UTRA user plane and control plane protocol termination to the UE and is connected to the 5GC via the NG interface.
  • the Radio Access Technology (RAT) of RAN node 1 may be different from that of RAN nodes 2 and 4.
  • RAT Radio Access Technology
  • RAN node 1 and RAN node 2 communicate with each other via an inter-node interface (i.e., X2 interface or Xn interface) 103.
  • RAN node 1 and RAN node 2 operate as MN and SN of dual connectivity, respectively.
  • the RAN node 1 and the RAN node 4 communicate with each other via an inter-node interface (i.e., X2 interface or Xn interface) 105.
  • RAN node 1 and RAN node 4 can operate as the MN and SN of the DC, respectively.
  • An inter-node interface (i.e., X2 interface or Xn interface) 106 may be set between the RAN node 2 and the RAN node 4.
  • RAN nodes 1, 2, and 4 and UE3 support inter-SN CPC from the SCG provided by RAN node 2 to the SCG provided by RAN node 4. Therefore, in the following, RAN node 1 may be referred to as MN1, RAN node 2 may be referred to as source SN (S-SN) 2, RAN node 4 may be referred to as target SN (T-SN) 4, candidate SN 4, Alternatively, it may be called target candidate SN4. Inter-SN CPC may be referred to as conditional SN change.
  • Inter-SN CPC is an inter-SN PSCell change procedure (or SN change procedure) that is executed only when one or more CPC execution conditions are met or satisfied. Even after receiving the instruction to change the SN from the MN1, the UE3 maintains the connection with the source SN2 and the source SCG, and starts evaluating the execution conditions set by the instruction. Then, the UE3 starts accessing the target candidate SN4 and the selected candidate PSCell in response to the execution condition being satisfied.
  • the Inter-SN CPC can be initiated by MN1 or source SN2.
  • the inter-SN CPC initiated by MN1 is called MN initiated inter-SN CPC.
  • the inter-SN CPC initiated by source SN2 is called SN initiated inter-SN CPC.
  • MN initiated inter-SN CPC MN1 generates CPC execution conditions.
  • the source SN2 in SN initiated inter-SN CPC, the source SN2 generates CPC execution conditions and sends them to MN1.
  • target candidate SN4 generates the SCG configuration and sends it to the MN.
  • the MN1 transmits the CPC configuration (e.g., ConditionalReconfiguration IE) including the CPC execution conditions and the SCG configuration to the UE3 via an RRC (Connection) Reconfiguration message.
  • CPC configuration e.g., ConditionalReconfiguration IE
  • multiple candidate cells i.e., candidate PSCells
  • the UE3 configures one or more candidate PSCells (i.e., one or more SCG configurations) prepared by one or more candidate SNs and one or more SCG configurations associated with these.
  • Further CPC execution conditions are received from MN1. More specifically, the configuration of each candidate PSCell is included in the information element (e.g., condRRCReconfig) of the RRC message of MN1, and the configuration of one or more candidate PSCells and the associated CPC execution conditions are generated by MN1. Included in conditional mobility configuration information (e.g., conditionalReconfiguration IE).
  • conditional mobility configuration information e.g., conditionalReconfiguration IE
  • the settings (i.e., SCG settings) of each candidate PSCell are generated by the candidate SN (e.g., candidate SN4) that provides (or has prepared) this candidate PSCell.
  • the configuration of each candidate PSCell includes at least configuration information for the candidate PSCell.
  • the configuration of each candidate PSCell may further include configuration information for one or more SCells that is attached to the candidate PSCell (that is, configured together with or associated with the candidate PSCell).
  • the settings for each candidate PSCell may be radio bearer (RB) settings, cell group (CG) settings, SCG settings, SCG radio resource settings, or any combination thereof.
  • each candidate PSCell may be an SN RRC Reconfiguration message generated by a candidate SN (e.g., candidate SN4) that provides (or has prepared) this candidate PSCell.
  • a candidate SN e.g., candidate SN4
  • Part or all of the configuration of one or more candidate PSCells is included in the CPC configuration sent from MN1 to UE3.
  • the CPC configuration of the Inter-SN CPC includes a list of one or more MN RRC Reconfiguration messages and associated execution conditions.
  • Each MN RRC Reconfiguration message includes the configuration of the candidate PSCell received from the candidate SN (e.g., RB configuration, CG configuration, SCG configuration, SCG radio resource configuration, and one or any combination of the SN RRC Reconfiguration message) .
  • the CPC execution condition is generated by MN1 in the case of MN-initiated inter-SN CPC, and generated by the source SN2 in the case of SN-initiated inter-SN CPC.
  • a CPC execution condition may be comprised of one or more trigger conditions.
  • the conditions or criteria that trigger a CPC event may be similar to those for measurement reporting events, such as CondEvent B1, CondEvent A3, CondEvent A4, or CondEvent A5.
  • CondEvent B1 is “Conditional reconfiguration candidate becomes better than absolute threshold.”
  • CondEvent A3 is “Conditional reconfiguration candidate becomes amount of offset better than PCell/PSCell”.
  • CondEvent A4 is “Conditional reconfiguration candidate becomes better than absolute threshold.”
  • CondEvent A5 is “PCell/PSCell becomes worse than absolute threshold1 AND Conditional reconfiguration candidate becomes better than another absolute threshold2”.
  • UE3 evaluates CPC execution conditions. If the execution conditions for one candidate PSCell are met, the UE 3 configures the PSCell settings (e.g., RB settings, CG settings, SCG configuration, SCG radio resource configuration, and SN RRC Reconfiguration message, or any combination thereof). If a bearer requiring SCG radio resources is configured, UE3 performs synchronization to the selected PSCell. If the execution conditions for two or more candidate PSCells are met, the UE 3 may select one of the candidate PSCells and perform the operations described above.
  • PSCell settings e.g., RB settings, CG settings, SCG configuration, SCG radio resource configuration, and SN RRC Reconfiguration message, or any combination thereof.
  • UE3 performs synchronization to the
  • UE3 communicates with MN1 and S-SN2 via air interfaces 101 and 102, and performs dual connectivity of MCG provided by MN1 and SCG provided by S-SN2. Also, by performing inter-SN CPC, UE3 communicates with MN1 and T-SN4 via air interfaces 101 and 104, and provides dual connectivity of MCG provided by MN1 and SCG provided by T-SN4. conduct.
  • MN1 may be a master eNB (in EN-DC), a master ng-eNB (in NGEN-DC), or a master gNB (in NR-DC and NE-DC).
  • each of S-SN2 and T-SN4 is a It may be.
  • UE3 is connected to the eNB that operates as MN1, and also to the en-gNB that operates as S-SN2 or T-SN4.
  • UE3 is connected to ng-eNB that operates as MN1, and also connected to gNB that operates as S-SN2 or T-SN4.
  • the NE-DC is connected to the gNB that operates as MN1, and also to the ng-eNB that operates as S-SN2 or T-SN4.
  • UE3 is connected to one gNB (or gNB-DU) that operates as MN1 and to another gNB (or gNB-DU) that operates as S-SN2 or T-SN4. .
  • the MCG is a group of serving cells associated with (or provided with) MN1, including an SpCell (i.e., Primary Cell (PCell)) and optionally one or more secondary cells ( Secondary Cells (SCells)).
  • SCG is a group of serving cells associated with (or provided with) S-SN2 or T-SN4, including a Primary SCG Cell (PSCell) and optionally one or more serving cells.
  • PSCell Primary SCG Cell
  • SCells Primary SCG Cell
  • SCells Primary SCG Cell
  • PSCell is a Special Cell (SpCell) of SCG and supports Physical Uplink Control Channel (PUCCH) transmission and contention-based Random Access.
  • PSCell may be an abbreviation for Primary SCell.
  • primary SCG cell and its abbreviation “PSCell” as used herein refers to a cell group that is included in a cell group provided by a dual connectivity SN and that has an uplink component carrier and an uplink control channel (e.g. PUCCH) means a cell for which resources are configured.
  • PUCCH uplink control channel
  • primary SCG cell and its abbreviation “PSCell” refer to the term “primary SCG cell” and its abbreviation “PSCell” used by SNs that support 5G NR (e.g. en-gNB in EN-DC, gNB in NGEN-DC, or gNB in NR-DC). It may refer to the Primary SCG Cell of a cell group provided by an SN that supports E-UTRA (e.g. eNB in LTE DC, or ng-eNB in NE-DC). You may.
  • FIG. 2 shows another example configuration of a wireless communication system according to multiple embodiments.
  • the wireless communication system includes RAN node 1, RAN node 2, and UE3.
  • Each element (network function) shown in Figure 2 may be, for example, a network element on dedicated hardware, a software instance running on dedicated hardware, or a virtualized function instantiated on an application platform. It can be implemented as
  • RAN node 1, RAN node 2, and UE 3 in the example of FIG. 2 may have configurations and functions similar to those in the example of FIG. Specifically, RAN node 1 and RAN node 2 communicate with each other via an inter-node interface (i.e., X2 interface or Xn interface) 103. RAN node 1 and RAN node 2 operate as MN and SN of dual connectivity, respectively. UE3 communicates with MN1 and SN2 via air interfaces 101 and 102, and performs dual connectivity of MCG and SCG. This dual connectivity may be Multi-Radio Dual Connectivity (MR-DC).
  • MR-DC Multi-Radio Dual Connectivity
  • RAN nodes 1 and 2 and UE3 support conditional PSCell addition (CPA) that adds the SCG provided by RAN node 2 for UE3. Therefore, below, RAN node 1 may be referred to as MN1, and RAN node 2 may be referred to as candidate SN2. CPA may also be referred to as conditional SN addition. CPA (or conditional SN addition) is a PSCell addition procedure (or SN addition procedure) that is executed only when the CPA execution conditions are met.
  • CPA conditional SN addition
  • MN1 generates CPA execution conditions.
  • Candidate SN2 generates an SCG configuration and sends it to MN1.
  • the MN1 sends the CPA configuration (e.g., ConditionalReconfiguration IE), which includes both the CPA execution conditions and the SCG configuration, to the UE3 via an RRC (Connection) Reconfiguration message.
  • CPA configuration e.g., ConditionalReconfiguration IE
  • multiple candidate PSCells provided by multiple candidate SN2 may be prepared for CPA.
  • the UE 3 configures one or more candidate PSCells (i.e., one or more SCG configurations) prepared by one or more candidate SNs and one or more associated SCG configurations.
  • conditional mobility configuration information e.g., conditionalReconfiguration IE).
  • the settings of each candidate PSCell are generated by the candidate SN (e.g., candidate SN2) that provides (or prepares) this candidate PSCell.
  • the configuration of each candidate PSCell includes at least configuration information for the candidate PSCell.
  • the configuration of each candidate PSCell may further include configuration information for one or more SCells that is attached to the candidate PSCell (that is, configured together with or associated with the candidate PSCell).
  • the configuration of each candidate PSCell may be one or any combination of RB configuration, CG configuration, SCG configuration, and SCG radio resource configuration. More specifically, the configuration of each candidate PSCell may be an SN RRC Reconfiguration message generated by a candidate SN (e.g., candidate SN4) that provides (or has prepared) this candidate PSCell.
  • a CPA configuration includes a list of one or more MN RRC Reconfiguration messages and associated execution conditions.
  • Each MN RRC Reconfiguration message includes the configuration of the candidate PSCell received from the candidate SN (e.g., one or any combination of RB configuration, CG configuration, SCG configuration, SCG radio resource configuration, and SN RRC Reconfiguration message) .
  • the CPA execution conditions are generated by MN1.
  • a CPA execution condition may be composed of one or more trigger conditions.
  • the conditions or criteria that trigger a CPA event may be similar to those for measurement reporting events, such as CondEvent A3, CondEvent A4, or CondEvent A5.
  • UE3 evaluates the CPA execution conditions. When the execution condition of one candidate PSCell is satisfied, the UE 3 configures the PSCell settings (i.e., CG settings, SCG settings, SCG radio resource configuration or SN RRC Reconfiguration message). If a bearer requiring SCG radio resources is configured, UE3 performs synchronization to the selected PSCell. If the execution conditions for two or more candidate PSCells are met, the UE 3 may select one of the candidate PSCells and perform the operations described above.
  • the PSCell settings i.e., CG settings, SCG settings, SCG radio resource configuration or SN RRC Reconfiguration message. If a bearer requiring SCG radio resources is configured,
  • Intra-SN CPC may be referred to as SN-initiated Conditional SN Modification without MN involvement.
  • Intra-SN CPC is an intra-SN PSCell modification procedure that is executed only when the CPC execution conditions are met.
  • the UE3 receives from the SN2 the configurations of one or more candidate PSCells prepared by the SN2 and one or more CPC execution conditions associated therewith.
  • the settings of each candidate PSCell and the associated CPC execution conditions are included in the CPC settings for intra-SN CPC.
  • SN2 may send these to UE3 via MN1 or via a direct signaling radio bearer (i.e., Signaling Radio Bearer 3 (SRB3)) between SN2 and UE3.
  • SRB3 Signaling Radio Bearer 3
  • each candidate PSCell is an information element (IE) (e.g., condRRCReconfig) in SN2's RRC message, and the configuration of one or more candidate PSCells and the associated CPC execution conditions are configured by SN2. Included in the generated conditional mobility configuration information (e.g., conditionalReconfiguration IE).
  • IE information element
  • conditionalReconfiguration IE conditionalReconfiguration IE
  • the configuration of each candidate PSCell includes at least configuration information for the candidate PSCell.
  • the configuration of each candidate PSCell may further include configuration information for one or more SCells that is attached to the candidate PSCell (that is, configured together with or associated with the candidate PSCell).
  • the settings for each candidate PSCell may be radio bearer (RB) settings, cell group (CG) settings, SCG settings, SCG radio resource settings, or any combination thereof.
  • the configuration of each candidate PSCell may be an SN RRC Reconfiguration message generated by SN2.
  • the CPC execution conditions for Intra-SN CPC may be composed of one or more trigger conditions.
  • the conditions or criteria that trigger a CPC event may be similar to those for measurement reporting events, such as CondEvent A3, CondEvent A4, or CondEvent A5.
  • UE3 evaluates CPC execution conditions. Once the execution conditions for one candidate PSCell are met, the UE3 detaches from the source PSCell, applies the settings corresponding to the selected candidate PSCell (i.e., the candidate PSCell whose execution conditions are met), and Synchronize with the candidate PSCell. If the execution conditions for two or more candidate PSCells are met, the UE 3 may select one of the candidate PSCells and perform the above-described operation.
  • FIG. 3 shows still another configuration example of the wireless communication system according to multiple embodiments.
  • the wireless communication system includes a RAN node 6, a RAN node 7, and a UE 3.
  • Each element (network function) shown in FIG. 3 may be, for example, a network element on dedicated hardware, a software instance running on dedicated hardware, or a virtualized function instantiated on an application platform. It can be implemented as
  • Each of RAN nodes 6 and 7 may be a EUTRAN node or an NG-RAN node.
  • the EUTRAN node may be an eNB or en-gNB.
  • the NG-RAN node may be a gNB or ng-eNB.
  • the RAT of RAN node 6 may be different from that of RAN node 7.
  • the RAN node 6 provides at least one cell 61.
  • a RAN node 7 provides one or more cells (e.g. four cells 71-74).
  • cell 61 provided by RAN node 6 is the current serving cell of UE3, and UE3 is handed over from cell 61 to any cell provided by RAN node 7. Therefore, in the following, RAN node 6 may be referred to as a source node or source RAN node, and RAN node 7 may be referred to as a target node or target RAN node.
  • Cell 61 is called a source cell.
  • the source node 6, target node 7, and UE3 support conditional handover (CHO). CHO is a handover procedure that is executed only when CHO execution conditions are met.
  • multiple candidate target cells provided by multiple candidate target nodes 7 may be prepared for the CHO.
  • the UE 3 configures one or more candidate target cells prepared by one or more candidate target nodes and one or more CHO execution conditions (e.g., condExecutionCond) associated with these. Receive from source node 6.
  • the configuration of one or more candidate target cells and associated CHO execution conditions are included in the CHO configuration. More specifically, the configuration of each candidate target cell is an information element (IE) (e.g., condRRCReconfig) of the RRC message of the source node 6, which includes the configuration of one or more candidate target cells and the associated CHO execution conditions. is included in the conditional mobility configuration information (e.g., conditionalReconfiguration IE) generated by the source node 6.
  • IE information element
  • conditional mobility configuration information e.g., conditionalReconfiguration IE
  • the configuration of each candidate target cell is generated by the candidate target node (e.g., target node 7) that provides (or prepares) this candidate target cell.
  • the configuration of each candidate target cell is determined by the radio bearer (RB) configuration, radio resource configuration, or RRC Reconfiguration message generated by the candidate target node (e.g., target node 7) that provides (or prepares) this candidate target cell. , or any combination thereof.
  • RB radio bearer
  • the CHO execution condition is generated by the source node 6.
  • the CHO execution condition may be composed of one or more trigger conditions.
  • the conditions or criteria that trigger a CHO event may be similar to those for measurement reporting events, such as CondEvent A3, CondEvent A4, or CondEvent A5.
  • UE3 evaluates CHO execution conditions (conditions). If the execution condition of one candidate target cell is satisfied, the UE 3 detaches from the source node 6 and applies the configuration corresponding to the selected candidate target cell (i.e., the candidate target cell whose execution condition is satisfied). and synchronize to the selected candidate target cell. If the execution conditions for two or more candidate target cells are met, the UE 3 may select one of the candidate target cells and perform the operations described above.
  • CHO supports dual connectivity inter-MN handover, Master Node to eNB/gNB Change, or eNB/gNB to Master Node Change).
  • One or more of RAN nodes 1, 2, 4, 6, and 7 may have the configuration shown in FIG. 4.
  • Each element (network function) shown in FIG. 4 may be, for example, a network element on dedicated hardware, a software instance running on dedicated hardware, or a virtualized function instantiated on an application platform. It can be implemented as One or more of RAN nodes 1, 2, 4, 6, and 7 may include, but are not limited to, a CU 41 and one or more DUs 42 as shown in FIG. 4.
  • the CU 41 and each DU 42 are connected by an interface 401.
  • the UE 3 is connected to at least one DU 42 via at least one air interface 402 .
  • the CU 41 may be a logical node that hosts the gNB's RRC, Service Data Adaptation Protocol (SDAP), and Packet Data Convergence Protocol (PDCP) protocols (or the gNB's RRC and PDCP protocols).
  • the DU 42 may be a logical node that hosts the Radio Link Control (RLC), Medium Access Control (MAC), and Physical (PHY) layers of the gNB. If the CU 41 is a gNB-CU and the DUs 42 are gNB-DUs, the interface 401 may be an F1 interface.
  • CU41 may include CU-CP and CU-UP.
  • conditional mobility may include, but is not limited to, one or more of the following: CHO, CPA, intra-SN CPC (or conditional SN modification), and inter-SN CPC (or conditional SN modification). It is a general term referring to.
  • Conditional mobility may also be referred to as conditional reconfiguration.
  • the CPA, intra-SN CPC, and inter-SN CPC regarding dual connectivity may be referred to as conditional dual connectivity procedures or conditional dual connectivity related procedures.
  • the RAN nodes and UEs described in these figures can of course also support non-conditional mobility, i.e. normal UE mobility. to support.
  • non-conditional mobility i.e. normal UE mobility. to support.
  • mobility or mobility-related procedures may refer generically to conditional and non-conditional handover procedures and conditional and non-conditional dual connectivity procedures.
  • MN RRC message MN RRC (Connection) Reconfiguration message
  • SN RRC message SN RRC Reconfiguration message
  • SN RRC Reconfiguration message SN RRC Reconfiguration message
  • the UE 3 described with reference to FIGS. 1 to 4 may be an aerial UE.
  • Aerial UE means UE that supports aerial UE communication or UE that is capable of aerial communication.
  • the aerial UE may be a UE implemented in an unmanned or uncrewed aerial vehicle (UAV).
  • UAV uncrewed aerial vehicle
  • the UE 3 may provide the functions and operations described in Non-Patent Documents 1 to 3 that should be supported by the LTE aerial UE.
  • the UE 3 may be an NR aerial UE that provides functions and operations similar to those provided by an LTE aerial UE.
  • the RAN (e.g., RAN nodes 1, 2, 4, 6, and 7) has the functions described in Non-Patent Documents 1 to 3 that the E-UTRAN should support in order to provide LTE connectivity to the aerial UE. and operations may be provided.
  • the RAN may also be an NG-RAN that provides functionality and operations similar to those provided by the E-UTRAN to support aerial UE communications.
  • the RAN e.g., RAN nodes 1, 2, 4, 6, or 7 may request the UE3 to report flight path information that includes a number of waypoints defined as 3D locations. .
  • the UE3 reports the configured number of waypoints if flight path information is available at the UE3. If configured on request and available in UE3, the report may include timestamps for each waypoint.
  • the embodiments described below provide improved signaling between RAN nodes for UE mobility or dual connectivity.
  • This embodiment provides improvements in RAN inter-node signaling in UE mobility-related procedures or dual connectivity-related procedures.
  • the configuration example of the wireless communication system according to this embodiment may be the same as any of the multiple configuration examples described with reference to FIGS. 1 to 4.
  • Figure 5 shows an example of RAN inter-node signaling.
  • the RAN node 501 sends the planned route information of the UE3 to the RAN node 502 in a mobility related procedure or a dual connectivity related procedure for the UE3.
  • the RAN node 501 sends a mobility-related or dual connectivity-related message to the RAN node 502 containing the planned route information of the UE3.
  • the planned route information may be information reported from the UE 3 to the RAN node 501 based on a request from the RAN node 501.
  • the RAN node 501 may receive planned route information from the UE3.
  • the planned route information indicates the planned or expected locations of the UE.
  • the planned route information may relate to an aerial UE (i.e., UE3 with aerial UE capabilities) and may be flight path information including waypoints defined as 3D locations. good.
  • the planned route information may describe planned or expected 2D locations of the UE 3 embedded in a land-based vehicle or mobile robot.
  • the mobility-related procedure may be a handover procedure or a conditional handover (CHO) procedure.
  • RAN nodes 501 and 502 may be a source RAN node (e.g., RAN node 6) and a target RAN node (e.g., RAN node 7) of a handover or CHO, respectively.
  • the message of step 520 carrying the planned route information may be a HANDOVER REQUEST message.
  • Planned route information may be included in inter-node RRC messages. More specifically, RAN node 501 may send planned route information to RAN node 502 via an inter-node RRC message within a HANDOVER REQUEST message.
  • an inter-node RRC message is an RRC message sent between RAN nodes via an inter-node interface such as an X2 interface or an Xn interface.
  • the dual connectivity related procedure may be an SN addition procedure, a conditional SN addition (or CPA) procedure, an SN change procedure, or a conditional SN change (or inter-SN CPC) procedure.
  • RAN nodes 501 and 502 may be MN and SN in an SN addition procedure or a conditional SN addition procedure, respectively.
  • RAN nodes 501 and 502 may be the MN and target SN in an SN change procedure or a conditional SN change procedure, respectively.
  • the message of step 520 carrying the planned route information may be an S-NODE ADDITION REQUEST message.
  • RAN nodes 501 and 502 may be the source SN and MN in an SN change procedure or a conditional SN change procedure, respectively.
  • the message of step 520 may be an S-NODE CHANGE REQUIRED message.
  • RAN node 501 provides planned route information of UE3 to other RAN nodes 502. This allows, for example, the RAN node 502 to use the planned route information to optimize the (conditional) handover or (conditional) dual connectivity procedure for the UE3.
  • the RAN node 502 can use the received planned route information for various purposes. For example, the RAN node 502 may predict or determine the current or future location of the UE 3 considering the planned location of the UE 3 and optionally a timestamp for each location. The RAN node 502 may consider the predicted or determined location of the UE 3 based on the planned route information in various decisions regarding the mobility of the UE 3. Examples of these applications are described below.
  • FIG. 6 shows a first example of the operation of the RAN node 502.
  • Step 601 corresponds to step 520 in FIG.
  • the RAN node 502 receives planned route information from other RAN nodes 501 indicating multiple planned locations of the UE 3 in a mobility-related or dual connectivity-related procedure for the UE 3.
  • the RAN node 502 uses the received planned route information to determine whether to accept the (conditional) handover of UE3 to the target cell or the (conditional) addition or change of SN for UE3.
  • the RAN node 502 may predict or determine the current or future location of the UE 3 considering the planned location of the UE 3 and optionally a timestamp for each location.
  • the RAN node 502 may consider the predicted or determined location of the UE 3 based on the planned route information to determine whether to accept the (conditional) handover requested by the RAN node 501.
  • the RAN node 502 may (conditionally) accept the handover if the requested (candidate) target cell covers the predicted or determined location of UE3.
  • the RAN node 502 determines whether to accept the (conditional) SCG addition or modification requested from the RAN node 501 by determining whether to accept the predicted or determined UE3 based on the planned route information. You may also consider the location of The RAN node 502 may (conditionally) accept the SCG addition or modification if the requested (candidate) PSCell covers the predicted or determined location of UE3.
  • FIG. 7 shows a second example of the operation of the RAN node 502.
  • Step 701 is similar to step 601 in FIG.
  • the RAN node 502 uses the received planned route information to determine acceptable at least one of one or more target cells or candidate cells.
  • the RAN node 502 may predict or determine the current or future location of the UE 3 considering the planned location of the UE 3 and optionally a timestamp for each location.
  • RAN node 502 may accept at least one cell covering or located around the predicted or determined location of UE3.
  • FIG. 8 shows a third example of the operation of the RAN node 502.
  • Step 801 is similar to step 601 in FIG.
  • the RAN node 502 uses the planned route information to generate or prepare a target cell or candidate cell configuration.
  • the RAN node 502 may predict or determine the current or future location of the UE 3 considering the planned location of the UE 3 and optionally a timestamp for each location.
  • the RAN node 502 may generate a target cell or candidate cell configuration (e.g., serving cell configuration, MCG configuration, SCG configuration) taking into account the predicted or determined location of the UE 3.
  • a target cell or candidate cell configuration e.g., serving cell configuration, MCG configuration, SCG configuration
  • FIG. 9 shows a fourth example of the operation of the RAN node 502.
  • Step 901 is similar to step 601 in FIG.
  • the RAN node 502 uses the planned route information to select a secondary cell for carrier aggregation.
  • the RAN node 502 uses the planned route information to determine one or more secondary cells (SCells) within the MCG or SCG.
  • SCells secondary cells
  • the RAN node 502 may predict or determine the current or future location of the UE 3 considering the planned location of the UE 3 and optionally a timestamp for each location.
  • the RAN node 502 may select at least one cell covering or located around the predicted or determined location of the UE 3 as a secondary cell.
  • FIG. 10 shows an example of the format of the HandoverPreparationInformation message, which is one of the inter-node RRC messages.
  • the HandoverPreparationInformation message can be sent from the source RAN node (e.g., RAN node 6 or 501) to the target RAN node (e.g., RAN node 7 or 502) via a HANDOVER REQUEST message.
  • the HandoverPreparationInformation message may include a flightPathInfo information element or field 1002 within an AS-Context information element or field 1001.
  • the flightPathInfo information element or field 1002 indicates location coordinates representing planned or expected locations of the UE.
  • a flightPathInfo information element or field 1002 optionally indicates a timestamp for each location.
  • FIG. 11 shows an example of the format of the HANDOVER REQUEST message.
  • the HANDOVER REQUEST message optionally includes a new information element “Flight Path Information List”.
  • the Flight Path Information List IE includes up to a predetermined maximum number of Flight Path Information Items IEs.
  • the Flight Path Information Items IE includes the Waypoint Location IE and optionally the Time Stamp IE.
  • the Waypoint Location IE indicates the location coordinates of the UE's planned location.
  • Time Stamp IE indicates the timestamp for each location.
  • FIG. 12 shows an example of the format of the CG-ConfigInfo message, which is one of the inter-node RRC messages.
  • the CG-ConfigInfo message can be sent from the MN (e.g., MN1 or RAN node 501) to the SN (e.g., SN2, SN4, or RAN node 502) via an S-NODE ADDITION REQUEST message.
  • the CG-ConfigInfo message may include a flightPathInfo information element or field 1201.
  • the flightPathInfo information element or field 1201 indicates location coordinates representing the planned or expected locations of the UE (1202).
  • a flightPathInfo information element or field 1201 optionally indicates a timestamp for each location (1203).
  • FIG. 13 shows an example of the format of the S-NODE ADDITION REQUEST message.
  • the S-NODE ADDITION REQUEST message optionally includes a new information element “Flight Path Information List”.
  • the Flight Path Information List IE includes up to a predetermined maximum number of Flight Path Information Items IEs.
  • the Flight Path Information Items IE includes the Waypoint Location IE and optionally the Time Stamp IE.
  • the Waypoint Location IE indicates the location coordinates of the UE's planned location.
  • Time Stamp IE indicates the timestamp for each location.
  • FIGS. 10 to 13 can be modified as appropriate.
  • the names of information elements or fields shown in FIGS. 10 to 13 are examples and are not limiting.
  • the planned route information may be sent from the source DU of the handover to the target DU via the CU.
  • the planned route information may be sent from the source DU to the CU and from the CU to the target DU by a HandoverPreparationInformation message similar to that shown in FIG. 10.
  • the planned route information may be sent from the source CU of the handover (via the target CU) to the target DU.
  • the planned route information may be sent from the source CU (via the target CU) to the target DU by a HandoverPreparationInformation message similar to that shown in FIG. 10.
  • HandoverPreparationInformation may be transmitted while being included in the DU to CU RRC Information IE from DU to CU or the CU to DU RRC Information IE from CU to DU.
  • This embodiment provides improvements in RAN inter-node signaling related to dual connectivity.
  • the configuration example of the wireless communication system according to this embodiment may be the same as any of the multiple configuration examples described with reference to FIGS. 1, 2, and 4.
  • FIG. 14 shows an example of RAN inter-node signaling.
  • the MN 1401 sends UE3's planned route information to the SN 1402.
  • the planned route information may be information reported from the UE 3 to the MN 1401 based on a request from the MN 1401.
  • MN 1401 may receive planned route information from UE3.
  • the planned route information indicates the planned or expected locations of the UE. These positions may be 3D positions or 2D positions.
  • the planned route information may relate to an aerial UE (i.e., UE3 with aerial UE capabilities) and may be flight path information including waypoints defined as 3D locations. good.
  • the planned route information may describe planned or expected 2D locations of the UE 3 embedded in a land-based vehicle or mobile robot.
  • the message of step 1420 carrying the planned route information may be sent in a dual connectivity related procedure.
  • the dual connectivity related procedure may be an SN addition procedure or a conditional SN addition (or CPA) procedure. This (conditional) SN addition procedure may be performed between the MN and the target SN within the SN modification procedure.
  • the message of step 1420 carrying the planned route information may be an S-NODE ADDITION REQUEST message.
  • Planned route information may be included in inter-node RRC messages. More specifically, RAN node 1401 may send planned route information to RAN node 1402 via an inter-node RRC message within an S-NODE ADDITION REQUEST message.
  • the message of step 1420 carrying the planned route information may be other messages related to dual connectivity.
  • the message of step 1420 may be an S-NODE MODIFICATION REQUEST or an S-NODE MODIFICATION CONFIRM message.
  • the MN 1401 provides the planned route information of the UE 3 to the SN 1402. This allows, for example, the SN 1402 to use the planned route information to optimize the (conditional) SN addition for UE3 or to optimize the SCG settings for UE3.
  • the SN 1402 can use the received planned route information for various purposes. For example, the SN 1402 may predict or determine the current or future location of the UE 3 considering the planned location of the UE 3 and optionally a timestamp for each location. The SN 1402 may consider the predicted or determined location of the UE 3 based on the planned route information in various decisions regarding dual connectivity for the UE 3. These applications may be similar to those described with respect to dual connectivity in the first embodiment.
  • FIG. 15 shows an example of RAN inter-node signaling.
  • the SN 1502 sends UE3's planned route information to the MN 1501.
  • the planned route information may be information reported from the UE 3 to the SN 1502 based on a request from the SN 1502.
  • SN 1502 may receive planned route information from UE3. Definitions and examples of planned route information may be similar to those described with respect to FIG.
  • the message of step 1520 carrying the planned route information may be, for example, an S-NODE MODIFICATION REQUEST ACKNOWLEDGE, S-NODE MODIFICATION REQUIRED, or S-NODE CHANGE REQUIRED message.
  • Planned route information may be included in inter-node RRC messages included in these messages.
  • the Inter-node RRC message may be, for example, a CG-Config message or a CG-CandidateList message included in the S-NG-RAN node to M-NG-RAN node Container IE.
  • SN1502 provides planned route information of UE3 to MN1501. This allows, for example, the MN 1501 to make a plan to optimize dual connectivity for UE 3, or to optimize MCG settings for UE 3, or to optimize mobility (e.g., handover) of UE 3. Route information can be used.
  • the MN 1501 can use the received planned route information for various purposes. For example, the MN 1501 may predict or determine the current or future location of the UE 3, taking into account the planned location of the UE 3 and optionally a timestamp for each location. The MN 1501 may consider the predicted or determined location of the UE 3 based on the planned route information in various decisions regarding mobility and dual connectivity for the UE 3.
  • the MN 1501 may consider the planned route information or the predicted location of the UE 3 based on the planned route information in order to determine the handover target cell of the UE 3.
  • the handover is inter-MN handover, Master Node to eNB/gNB Change, or eNB/gNB to Master Node Change. ).
  • the MN 1501 may consider the planned route information or the predicted location of the UE 3 based on the planned route information in order to determine the addition or modification of the SN for the UE 3. In other words, the MN 1501 may consider the planned route information or the predicted position of the UE 3 based on the planned route information in order to determine a new PSell or SN for the UE 3.
  • the SN addition or modification may be a conditional SN addition or modification.
  • ⁇ Third embodiment> This embodiment provides improvements in RAN inter-node signaling related to dual connectivity.
  • the configuration example of the wireless communication system according to this embodiment may be the same as any of the multiple configuration examples described with reference to FIGS. 1, 2, and 4.
  • FIG. 16 shows an example of RAN inter-node signaling.
  • MN 1601 sends aerial UE subscription information regarding UE3 or information derived therefrom to SN 1602.
  • the aerial UE subscription information regarding the UE3 may be the aerial UE subscription information of the user of the UE3.
  • the aerial UE subscription information may be information sent from the HSS or Unified Data Management (UDM) of the core network to the MN1 via a core network node (e.g., MME or Access and Mobility Management Function (AMF)).
  • the aerial UE subscription information may be information sent to the MN 1601 from another RAN node in a past handover.
  • UDM Unified Data Management
  • AMF Access and Mobility Management Function
  • Aerial UE subscription information indicates a user's subscription authorization for operating aerial UEs.
  • the aerial UE subscription information can be used by the RAN node to know whether the UE 3 (or its user) is allowed to use the aerial UE functionality.
  • the aerial UE subscription information sent from MN 1601 to SN 1602 in step 1620, or information derived therefrom, may indicate whether UE 3 (or its user) is authorized to use aerial UE functionality. Additionally or alternatively, the information may indicate whether the UE 3 is an aerial UE. Additionally or alternatively, the information may indicate whether the UE 3 supports aerial UE functionality.
  • the message of step 1620 carrying the aerial UE subscription information may be a dual connectivity related message.
  • the MN 1601 may send aerial UE subscription information to the SN 1602 in the SN addition procedure.
  • This SN addition procedure may be a conditional SN addition procedure.
  • the message in step 1620 may be an S-NODE ADDITION REQUEST message.
  • the message in step 1620 may be an S-NODE MODIFICATION REQUEST message.
  • MN 1601 provides aerial UE subscription information regarding UE 3 to SN 1602.
  • the SN 1602 can use the aerial UE subscription information to determine whether to perform an operation related to the aerial UE for the UE 3.
  • MN 1601 may send flight path information indicating multiple planned locations of UE 3 to SN 1602 along with aerial UE subscription information or information derived therefrom. Transmission of flight route information from MN 1601 to SN 1602 may be similar to that described with reference to FIG. 14 in the second embodiment.
  • FIG. 17 shows an example of the format of the S-NODE ADDITION REQUEST message.
  • the S-NODE ADDITION REQUEST message optionally includes a new information element “Aerial UE subscription information”.
  • the Aerial UE subscription information IE can be used by the SN to know whether the UE 3 or its user is allowed to use the aerial UE functionality.
  • Aerial UE subscription information IE is an enumerated type and may indicate “allowed” or “not allowed”.
  • the S-NODE ADDITION REQUEST message optionally includes a new information element “Flight Path Information List”.
  • the information element is similar to that shown in FIG.
  • ⁇ Fourth embodiment> This embodiment provides improvements in the operation of RAN nodes with respect to conditional mobility.
  • the configuration example of the wireless communication system according to this embodiment may be the same as any of the multiple configuration examples described with reference to FIGS. 1 to 4.
  • FIG. 18 shows an example of the operation of the RAN node according to this embodiment.
  • the RAN node may provide one or more conditions to the UE3 for conditional handover, conditional SN addition, conditional SN change (or inter-SN CPC), or conditional SN modification (or intra-SN CPC). This is a node that determines the execution conditions.
  • the RAN node is the source RAN node for conditional handover (e.g., RAN node 6 in Figure 3), the MN for conditional SN addition (e.g., MN1 in Figure 2), the MN initiated by the MN (MN -initiated) MN of conditional SN change (e.g., MN1 in Figure 1), source SN of (SN-initiated) conditional SN change (e.g., SN2 in Figure 1), or conditional SN modification of It may be SN (e.g., SN2 in Figure 2).
  • the MN for conditional SN addition e.g., MN1 in Figure 2
  • MN initiated by the MN (MN -initiated) MN of conditional SN change e.g., MN1 in Figure 1
  • source SN of (SN-initiated) conditional SN change e.g., SN2 in Figure 1
  • conditional SN modification of It may be SN
  • the RAN node obtains planned route information indicating multiple planned locations of the UE3.
  • the planned route information may be information reported from the UE 3 to the RAN node based on a request from the RAN node.
  • the RAN node may read the planned route information stored in memory or storage.
  • a RAN node may receive planned route information from other RAN nodes.
  • the planned route information indicates the planned or expected locations of the UE. These positions may be 3D positions or 2D positions.
  • the planned route information may relate to an aerial UE (i.e., UE3 with aerial UE capabilities) and may be flight path information including waypoints defined as 3D locations. good.
  • the planned route information may describe planned or expected 2D locations of the UE 3 embedded in a land-based vehicle or mobile robot.
  • the RAN node determines one or more execution conditions for conditional mobility of the UE3 based on the planned route information.
  • the one or more execution conditions may include that the position of the UE 3 is at a reference position, within a set distance from the reference position, or within a reference area.
  • the RAN node may determine the reference location or region based on the planned location indicated by the planned route information.
  • the RAN node may predict or determine the current or future location of the UE3, taking into account the planned location of the UE3 and optionally a timestamp for each location. Then, the RAN node may determine or set the reference position or reference area so as to correspond to the predicted or determined position of UE3.
  • the one or more execution conditions may include that the distance between the UE 3 and the reference position of the conditional reconfiguration candidate has become shorter than a set threshold.
  • the one or more execution conditions may include that the scheduled time has arrived.
  • the scheduled time can be associated with the predicted future location of the UE 3 based on the planned route information.
  • the RAN node can determine the conditions for executing conditional mobility of the UE3 based on the planned route information of the UE3. This can contribute to improving conditional mobility suitable for UE3 (e.g., aerial UE) that moves according to planned route information.
  • UE3 e.g., aerial UE
  • This embodiment provides improvements in handover and conditional handover.
  • the configuration example of the wireless communication system according to this embodiment may be the same as any of the multiple configuration examples described with reference to FIGS. 3 and 4.
  • FIG. 19 shows an example of a signaling procedure for handover of UE3.
  • the handover may be a conditional handover.
  • source RAN node 1901 sends a handover request to target RAN node 1902.
  • source RAN node 1901 sends a HANDOVER REQUEST message to target RAN node 1902.
  • the HANDOVER REQUEST message requests handover of UE3 and indicates one or more target cells.
  • the HANDOVER REQUEST message further includes planned route information indicating multiple planned locations of the UE3.
  • the planned route information may be information reported from the UE 3 to the source RAN node 1901 based on the request of the source RAN node 1901.
  • the planned route information indicates the planned or expected locations of the UE. These positions may be 3D positions or 2D positions.
  • the planned route information may relate to an aerial UE (i.e., UE3 with aerial UE capabilities) and may be flight path information including waypoints defined as 3D locations. good.
  • the planned route information may describe planned or expected 2D locations of the UE 3 embedded in a land-based vehicle or mobile robot.
  • the target RAN node 1902 selects a target cell. Specifically, target RAN node 1902 may determine whether a handover request to one or more target cells indicated in the HANDOVER REQUEST message is allowed. If the handover request to the target cell indicated in the HANDOVER REQUEST message is not allowed, the target RAN node 1902 may select another cell different from the target cell indicated in the HANDOVER REQUEST message as an alternative target cell. . Alternatively, if there are cells more suitable to accommodate UE3 than one or more target cells indicated in the HANDOVER REQUEST message, the target RAN node 1902 may select such cells as alternative or additional target cells. good.
  • the target RAN node 1902 may select or determine an alternative or additional target cell based on, using, or considering the planned route information of the UE3. For example, the target RAN node 1902 may predict or determine the current or future location of the UE 3 considering the planned location of the UE 3 and optionally a timestamp for each location. Target RAN node 1902 may select at least one cell covering or located around the predicted or determined location of UE 3 as an alternative or additional target cell.
  • the target RAN node 1902 may select or determine an alternative or additional target cell, at least on the condition that the HANDOVER REQUEST message includes planned route information. In other words, if the HANDOVER REQUEST message includes planned route information, the target RAN node 1902 may select or determine an alternative or additional target cell.
  • the target RAN node 1902 sends a handover request response to the source RAN node 1901. Specifically, target RAN node 1902 sends a HANDOVER REQUEST ACKNOWLEDGE message to source RAN node 1901.
  • the HANDOVER REQUEST ACKNOWLEDGE message indicates one or more alternative or additional target cells that can accept the handover of the UE3.
  • the HANDOVER REQUEST ACKNOWLEDGE message may indicate an alternative or additional target cell identifier.
  • FIG. 20 shows a modification of the signaling procedure described using FIG. 19.
  • the HANDOVER REQUEST message of step 2020 includes an explicit indication that alternate cell proposals are allowed.
  • the name of the display may be, but is not limited to, the Alternative Target Cell Allowed information element, for example.
  • Steps 2020 and 2060 are similar to steps 1940 and 1960 in FIG. However, in step 2040, the target RAN node 1902 selects or determines an alternative or additional target cell, provided that the HANDOVER REQUEST message includes the above indication that alternative cell proposals are allowed.
  • the target RAN node 1902 can only propose an alternative or additional target cell under certain circumstances or conditions where it is useful.
  • the UE 3 may perform measurements specified by the network (RAN node) at each location indicated in the planned route information, and may save the measurement results and the location information of the UE 3 as a log. Alternatively, the UE 3 may store the measurement results held at that time and the location information of the UE 3 as a log at each location indicated in the planned route information. UE3 may report the saved logs to the network. These may be Immediate Minimization of Drive Tests (MDTs) or Logged MDTs. Immediate In the case of MDT, it may be reported by a measurement report procedure. For example, upon reaching (or staying at) each location indicated in the planned route information, the UE 3 may report the measurement results held at that time and the location information of the UE 3 to the network.
  • MDTs Minimization of Drive Tests
  • Logged MDTs Logged MDTs. Immediate In the case of MDT, it may be reported by a measurement report procedure. For example, upon reaching (or staying at) each location indicated in the planned route information,
  • RAN nodes may perform highly correlated beam management. Specifically, the RAN node may associate settings regarding beams or beam control with altitude/height. For example, if the UE 3 is an aerial UE, the RAN node may preset settings regarding a beam or beam control according to altitude in the UE 3. The UE 3 may select a beam or beam control settings according to its altitude.
  • the beam control configuration may be a Transmission Configuration Indicator (TCI) state IE, a MeasConfig IE, a BeamFailureRecoveryConfig IE, a BeamFailureRecoveryServingCellConfig IE, or any combination thereof.
  • TCI Transmission Configuration Indicator
  • the TCI state IE may relate to Multiple Transmission and Reception Point (mTRP) operations.
  • mTRP Multiple Transmission and Reception Point
  • the RAN node may preset in the UE 3 settings regarding beams or beam control according to altitudes corresponding to each of the TRPs associated with a plurality of cells.
  • the UE 3 may select a beam or beam control settings according to its altitude.
  • each RAN node in the mobility-related procedures or dual connectivity-related procedures may perform these.
  • RAN nodes may perform beam management associated with waypoints. Specifically, the RAN node may link settings related to beams or beam control to waypoints. For example, if the UE 3 is an aerial UE, the RAN node may preset settings regarding a beam or beam control in the UE 3 according to the waypoint. The UE 3 may select a beam or beam control settings according to its 3D location.
  • the beam control configuration may be a TCI state IE, a MeasConfig IE, a BeamFailureRecoveryConfig IE, a BeamFailureRecoveryServingCellConfig IE, or any combination thereof.
  • the TCI state IE may be related to mTRP operation.
  • the RAN node may preset in the UE 3 settings regarding beams or beam control according to waypoints associated with each of the TRPs associated with a plurality of cells, based on the planned route information.
  • the UE 3 may select a beam or beam control settings according to its 3D location.
  • each RAN node in the mobility-related procedures or dual connectivity-related procedures may perform these.
  • the UE 3 disconnects the radio link (eg, Radio Link Failure (RLF)) due to deterioration of the radio quality (eg, Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ)) of the serving cell. , and the execution of the mobility-related procedure may fail.
  • the UE 3 attempts to re-establish a radio link (eg, RRC (connection) re-establishment), for example, in a cell with the best radio quality or a cell with a high priority.
  • RRC connection
  • the cell to be reconnected that is, the RAN node that manages the cell
  • the RAN node may share support information for the aerial UE with other RAN nodes that manage neighboring cells (eg, neighboring cells) of the serving cell.
  • the support information of the aerial UE may indicate support in each cell (eg, Served Cell) or may indicate support in a RAN node. These may also be sent in, for example, Xn Setup Request and Xn Setup Response messages.
  • the RAN node may send information regarding support for aerial UEs in neighboring cells to the UE3. Additionally or alternatively, the RAN node may send information to the UE 3 regarding support for aerial UEs on peripheral frequencies (i.e. different frequencies than the serving cell). The UE 3 may consider information regarding support for aerial UEs in determining the cell to reconnect to. For example, if reconnection occurs while UE 3 is performing an aerial function, UE 3 may preferentially select a cell (or frequency) that supports aerial UE. Alternatively, the UE 3 may preferentially select cells (or frequencies) that support aerial UE, regardless of whether it was performing an aerial function at or before the reconnection occurred. Information regarding the support of aerial UEs may be sent in broadcast information (e.g., any System Information Block (SIB), SIBx) or individual signaling (e.g., RRC message).
  • SIB System Information Block
  • RRC message e.g., RRC message
  • the UE 3 may use information regarding support for aerial UEs in mobility (e.g., cell reselection) in the RRC_IDLE state or the RRC_INACTIVE state. For example, the UE 3 may consider information regarding support for aerial UEs in selecting a target cell for cell reselection in a similar manner as for reconnection. Specifically, the UE 3 may preferentially reselect a cell (or frequency) that supports aerial UE. Note that the support information for the aerial UE and the information regarding the support for the aerial UE may be support information for the aerial function, information regarding the support for the aerial function, or information similar thereto.
  • a RAN node may be a CU (e.g., gNB-CU) in a C-RAN arrangement, or may be a combination of a CU and one or more DUs (e.g., eNB-DUs or gNB-DUs). If the RAN node is a combination of a CU and one or more DUs, the aerial UE support information may be sent from the CU to the one or more DUs, or from each of the one or more DUs to the CU. Good too. Furthermore, in the latter case, the CU may transmit (forward) the aerial UE support information received from a certain DU to one or more other DUs. On the other hand, information regarding support for aerial UEs may be transmitted from the CU to the UE (via the DU), or from the DU to the UE (once via the CU).
  • a CU e.g., gNB-CU
  • the aerial UE support information may be sent from the CU to the one or more
  • the target RAN node transmits configuration information regarding the target cell (eg, target cell for handover, target PSCell for dual connectivity) to the UE3 in mobility-related procedures
  • the target RAN node transmits information on future candidate cells linked to the planned route information to the UE3.
  • Information on future candidate cells linked to planned route information may include, for example, information on recommended cells for each of one or more waypoints included in the planned route information (eg, information showing correspondence between waypoints and cells, or a list thereof). May be included.
  • the recommended cell information may include only cells managed by the target RAN node itself, or may also include information about cells managed by other RAN nodes owned by the target RAN node.
  • radio link re-establishment eg, RRC (connection) re-establishment
  • RRC connection re-establishment
  • a serving cell eg, source cell, target cell
  • the UE 3 may check the waypoint closest to its own location at the time of attempting reconnection, and may preferentially select a cell recommended for that waypoint, or You may try increasing the degree. Thereby, UE3 can appropriately select a cell with which to attempt reconnection.
  • the RAN node when the RAN node sends an RRC message (e.g., RRC (Connection) Release) to release the radio connection (e.g., RRC Connection) to move the UE3 to the RRC_IDLE state or the RRC_INACTIVE state, the RAN node Information on future candidate cells linked to the route information may be transmitted to the UE3. The UE3 may then use this in mobility (e.g. cell reselection) in the RRC_IDLE state or the RRC_INACTIVE state.
  • RRC message e.g., RRC (Connection) Release
  • RRC Connection e.g., RRC Connection
  • the UE 3 may detect a radio link disconnection (eg, RLF) due to degradation of the serving cell's radio quality (eg, RSRP, RSRQ), etc. There is. Furthermore, even if the UE 3 attempts to reconnect the radio link, it may fail. In these cases, UE3 may need to perform emergency actions. For example, if UE3 is an aerial UE and the movement of UE3 is controlled by wireless communication with a RAN node, it is necessary to execute an emergency landing in response to the disconnection of the wireless communication. It might be.
  • RLF radio link disconnection
  • RSRP Radio quality
  • RSRQ Radio quality
  • the emergency landing point information associated with the planned route information may indicate or include location information of a point where an emergency landing is permitted or recommended corresponding to each of the one or more waypoints.
  • the information of the emergency landing point linked to the planned route information is the emergency landing point within the serving cell or within the UE3's location registration area (e.g., Tracking Area (TA)), or associated with the serving cell or location registration area. It may also be location information of one or more points where landing is permitted or recommended.
  • TA Tracking Area
  • the RAN node providing the serving cell may send this to the UE 3 in advance, for example, in an RRC message, while the UE 3 is staying in the serving cell. Good too.
  • the emergency landing point information indicates a point within the UE3's location registration area or a point linked to it, when the core network node (e.g., AMF or MME) is in the UE3's location (re)registration procedure (e.g., TA update) This may be sent to UE3 in advance.
  • the core network node e.g., AMF or MME
  • the UE 3 may start an emergency landing operation and determine a target point to attempt an emergency landing based on the information on the emergency landing point. This allows the UE 3 to quickly and safely perform an emergency landing if it detects a radio link disconnection (e.g. RLF) during mobility-related procedures or while staying in the serving cell.
  • a radio link disconnection e.g. RLF
  • FIG. 21 is a block diagram showing a configuration example of the RAN node 1 according to the above embodiment.
  • the configurations of other RAN nodes 2, 4, 6, and 7 may also be similar to the configuration shown in FIG. 21.
  • the configurations of other RAN nodes e.g., RAN nodes 501, 502, 1401, 1402, 1501, 1502, 1601, 1602, 1901, and 1902 described in the above embodiments are also shown in FIG.
  • the configuration may be the same as that described above.
  • the RAN node 1 includes a Radio Frequency (RF) transceiver 2101, a network interface 2103, a processor 2104, and a memory 2105.
  • RF transceiver 2101 performs analog RF signal processing to communicate with UEs, including UE3.
  • RF transceiver 2101 may include multiple transceivers.
  • RF transceiver 2101 is coupled to antenna array 2102 and processor 2104.
  • RF transceiver 2101 receives modulation symbol data from processor 2104, generates a transmit RF signal, and provides the transmit RF signal to antenna array 2102. Further, RF transceiver 2101 generates a baseband reception signal based on the reception RF signal received by antenna array 2102 and supplies this to processor 2104.
  • RF transceiver 2101 may include analog beamformer circuitry for beamforming.
  • the analog beamformer circuit includes, for example, multiple phase shifters and multiple power amplifiers.
  • the network interface 2103 is used to communicate with network nodes (e.g. RAN nodes 2 and 4 and the control and forwarding nodes of the core network).
  • the network interface 2103 may include, for example, a network interface card (NIC) compliant with the IEEE 802.3 series.
  • NIC network interface card
  • the processor 2104 performs digital baseband signal processing (data plane processing) and control plane processing for wireless communication.
  • Processor 2104 may include multiple processors.
  • the processor 2104 includes a modem processor (e.g. Digital Signal Processor (DSP)) that performs digital baseband signal processing and a protocol stack processor (e.g. Central Processing Unit (CPU) or Micro Processing Unit (MPU)) that performs control plane processing. ) may also be included.
  • DSP Digital Signal Processor
  • MPU Micro Processing Unit
  • digital baseband signal processing by processor 2104 includes the Service Data Adaptation Protocol (SDAP) layer, Packet Data Convergence Protocol (PDCP) layer, Radio Link Control (RLC) layer, Medium Access Control (MAC) layer, and Physical (PHY) layer. ) layer signal processing.
  • SDAP Service Data Adaptation Protocol
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • PHY Physical
  • control plane processing by the processor 2104 may include processing of Non-Access Stratum (NAS) messages, RRC messages, MAC Control Elements (CE), and Downlink Control Information (DCI).
  • NAS Non-Access Stratum
  • RRC Radio Link Control
  • CE Medium Access Control
  • DCI Downlink Control Information
  • Processor 2104 may include a digital beamformer module for beamforming.
  • the digital beamformer module may include a Multiple Input Multiple Output (MIMO) encoder and precoder.
  • MIMO Multiple Input Multiple Output
  • the memory 2105 is configured by a combination of volatile memory and nonvolatile memory.
  • Volatile memory is, for example, Static Random Access Memory (SRAM) or Dynamic RAM (DRAM) or a combination thereof.
  • Non-volatile memory is masked Read Only Memory (MROM), Electrically Erasable Programmable ROM (EEPROM), flash memory, or a hard disk drive, or any combination thereof.
  • Memory 2105 may include storage located remotely from processor 2104. In this case, processor 2104 may access memory 2105 via network interface 2103 or an I/O interface (not shown).
  • the memory 2105 may store one or more software modules (computer programs) 2106 containing instructions and data for processing by the RAN node 1 described in the embodiments above.
  • the processor 2104 may be configured to read and execute the software module 2106 from the memory 2105 to perform the processing of the RAN node 1 described in the embodiments above.
  • the RAN node 1 is a CU (e.g. eNB-CU or gNB-CU) or CU-CP, the RAN node 1 does not need to include the RF transceiver 2101 (and antenna array 2102).
  • FIG. 22 is a block diagram showing a configuration example of the UE3.
  • Radio Frequency (RF) transceiver 2201 performs analog RF signal processing to communicate with RAN nodes.
  • RF transceiver 2201 may include multiple transceivers.
  • Analog RF signal processing performed by RF transceiver 2201 includes frequency upconversion, frequency downconversion, and amplification.
  • RF transceiver 2201 is coupled with antenna array 2202 and baseband processor 2203.
  • RF transceiver 2201 receives modulation symbol data (or OFDM symbol data) from baseband processor 2203, generates a transmit RF signal, and provides the transmit RF signal to antenna array 2202.
  • RF transceiver 2201 generates a baseband reception signal based on the reception RF signal received by antenna array 2202 and supplies this to baseband processor 2203.
  • RF transceiver 2201 may include analog beamformer circuitry for beamforming.
  • the analog beamformer circuit includes, for example, multiple phase shifters and multiple power amplifiers.
  • the baseband processor 2203 performs digital baseband signal processing (data plane processing) and control plane processing for wireless communication.
  • Digital baseband signal processing consists of (a) data compression/decompression, (b) data segmentation/concatenation, (c) transmission format (transmission frame) generation/decomposition, and (d) transmission path encoding/decoding. , (e) modulation (symbol mapping)/demodulation, and (f) generation of OFDM symbol data (baseband OFDM signal) by Inverse Fast Fourier Transform (IFFT).
  • Control plane processing consists of Layer 1 (e.g. transmit power control), Layer 2 (e.g. radio resource management and hybrid automatic repeat request (HARQ) processing), and Layer 3 (e.g. signaling for attach, mobility, and call management). including communications management.
  • Layer 1 e.g. transmit power control
  • Layer 2 e.g. radio resource management and hybrid automatic repeat request (HARQ) processing
  • Layer 3 e.g. signaling for attach, mobility, and call management. including communications
  • the digital baseband signal processing by the baseband processor 2203 may include signal processing of an SDAP layer, a PDCP layer, an RLC layer, a MAC layer, and a PHY layer.
  • the control plane processing by the baseband processor 2203 may include processing of Non-Access Stratum (NAS) protocol, RRC protocol, MAC CEs, and DCIs.
  • NAS Non-Access Stratum
  • the baseband processor 2203 may perform MIMO encoding and precoding for beamforming.
  • the baseband processor 2203 may include a modem processor (e.g. DSP) that performs digital baseband signal processing and a protocol stack processor (e.g. CPU or MPU) that performs control plane processing.
  • a modem processor e.g. DSP
  • a protocol stack processor e.g. CPU or MPU
  • the protocol stack processor that performs control plane processing may be shared with the application processor 2204, which will be described later.
  • the application processor 2204 is also called a CPU, MPU, microprocessor, or processor core.
  • Application processor 2204 may include multiple processors (multiple processor cores).
  • the application processor 2204 executes a system software program (Operating System (OS)) read from the memory 2206 or a memory not shown, and various application programs (for example, a telephone call application, a web browser, a mailer, a camera operation application, a music playback application, etc.). By executing the application), various functions of UE3 are realized.
  • OS Operating System
  • baseband processor 2203 and application processor 2204 may be integrated on one chip, as shown by the dashed line (2205) in FIG. 22.
  • the baseband processor 2203 and the application processor 2204 may be implemented as one System on Chip (SoC) device 2205.
  • SoC devices are sometimes called system Large Scale Integration (LSI) or chipsets.
  • Memory 2206 is volatile memory, non-volatile memory, or a combination thereof. Memory 2206 may include multiple physically independent memory devices. Volatile memory is, for example, SRAM or DRAM or a combination thereof. Non-volatile memory is MROM, EEPROM, flash memory, or hard disk drive, or any combination thereof. For example, memory 2206 may include external memory devices accessible from baseband processor 2203, application processor 2204, and SoC 2205. Memory 2206 may include an embedded memory device integrated within baseband processor 2203, within application processor 2204, or within SoC 2205. Additionally, memory 2206 may include memory within a Universal Integrated Circuit Card (UICC).
  • UICC Universal Integrated Circuit Card
  • the memory 2206 may store one or more software modules (computer programs) 2207 containing instructions and data for processing by the UE 3 described in the above embodiments.
  • the baseband processor 2203 or the application processor 2204 is configured to read and execute the software module 2207 from the memory 2206 to perform the UE3 processing described in the drawings in the above embodiments. may be done.
  • control plane processing and operations performed by the UE 3 described in the above embodiments are performed by other elements other than the RF transceiver 2201 and the antenna array 2202, that is, at least one of the baseband processor 2203 and the application processor 2204, and the software module 2207.
  • This can be realized by a memory 2206 that stores .
  • each of the processors included in the plurality of RAN nodes and the UE 3 according to the above embodiment executes a group of instructions for causing a computer to execute the algorithm explained using the drawings.
  • One or more programs can be executed.
  • the program includes instructions (or software code) that, when loaded into a computer, cause the computer to perform one or more of the functions described in the embodiments.
  • the program may be stored on a non-transitory computer readable medium or a tangible storage medium.
  • computer readable or tangible storage media may include random-access memory (RAM), read-only memory (ROM), flash memory, solid-state drive (SSD) or other memory technology, CD - Including ROM, digital versatile disk (DVD), Blu-ray disk or other optical disk storage, magnetic cassette, magnetic tape, magnetic disk storage or other magnetic storage device.
  • the program may be transmitted on a transitory computer-readable medium or a communication medium.
  • transitory computer-readable or communication media includes electrical, optical, acoustic, or other forms of propagating signals.
  • a first radio access network (RAN) node comprising: at least one memory; coupled to the at least one memory and configured to send planned route information indicative of a plurality of planned locations of the UE to a second RAN node in a mobility-related procedure or a dual connectivity-related procedure for a User Equipment (UE); at least one processor configured to Equipped with First RAN node.
  • the planned route information is flight route information indicating a plurality of waypoints defined as three-dimensional locations.
  • the UE is a UE having an aerial UE function, The first RAN node according to appendix 1 or 2.
  • the at least one processor is configured to send the planned route information to the second RAN node in the mobility-related procedure; the mobility-related procedure is a handover procedure or a conditional handover procedure; The first RAN node according to any one of Supplementary Notes 1 to 3.
  • the at least one processor is configured to send the planned route information to the second RAN node in the dual connectivity related procedure;
  • the dual connectivity related procedure is a secondary node (SN) addition procedure, a conditional SN addition procedure, an SN change procedure, or a conditional SN change procedure, The first RAN node according to any one of Supplementary Notes 1 to 3.
  • the first RAN node and the second RAN node are the master node (MN) and SN in the SN addition procedure or the conditional SN addition procedure, respectively, or the SN change procedure or the conditional SN change the MN and the target SN in the procedure, or the source SN and the MN in the SN change procedure or the conditional SN change procedure;
  • the at least one processor is configured to send the planned route information to the second RAN node in a conditional handover procedure, a conditional secondary node (SN) addition procedure, or a conditional SN change procedure;
  • the first RAN node according to any one of Supplementary Notes 1 to 3.
  • the at least one processor is configured to send the planned route information to the second RAN node via a HANDOVER REQUEST, S-NODE ADDITION REQUEST, or S-NODE CHANGE REQUIRED message; The first RAN node according to any one of Supplementary Notes 1 to 7.
  • the at least one processor is configured to send the planned route information to the second RAN node via an inter-node Radio Resource Control (RRC) message; The first RAN node according to any one of Supplementary Notes 1 to 7.
  • RRC Radio Resource Control
  • the planned route information is used by the second RAN node to determine whether to accept handover of the UE to a target cell or addition or modification of a secondary node (SN) for the UE.
  • the first RAN node according to any one of Supplementary Notes 1 to 9. (Appendix 11) the planned route information is used by the second RAN node to determine acceptable at least one of one or more target cells or candidate cells; The first RAN node according to any one of Supplementary Notes 1 to 9. (Appendix 12) the planned route information is used by the second RAN node to generate or prepare the configuration of target cells or candidate cells; The first RAN node according to any one of Supplementary Notes 1 to 9. (Appendix 13) the planned route information is used by the second RAN node to select a secondary cell for carrier aggregation; The first RAN node according to any one of Supplementary Notes 1 to 9.
  • a method performed by a first radio access network (RAN) node comprising: In a mobility-related procedure or a dual connectivity-related procedure for a User Equipment (UE), comprising sending planned route information indicative of a plurality of planned locations of the UE to a second RAN node; Method.
  • a program for causing a computer to perform a method for a first radio access network (RAN) node comprising: The method comprises, in a mobility-related procedure or a dual connectivity-related procedure for a User Equipment (UE), sending planned route information indicating a plurality of planned locations of the UE to a second RAN node. program.
  • the planned route information is flight route information indicating a plurality of waypoints defined as three-dimensional locations.
  • the UE is a UE having an aerial UE function, The second RAN node according to appendix 16 or 17.
  • the at least one processor is configured to receive the planned route information from the first RAN node in the mobility-related procedure; the mobility-related procedure is a handover procedure or a conditional handover procedure; The second RAN node according to any one of Supplementary Notes 16 to 18.
  • the at least one processor is configured to receive the planned route information from a first RAN node in the dual connectivity related procedure;
  • the dual connectivity related procedure is secondary node addition, conditional secondary node addition, secondary node change, or conditional secondary node change.
  • the second RAN node according to any one of Supplementary Notes 16 to 18.
  • the first RAN node and the second RAN node are the master node (MN) and SN in the SN addition procedure or the conditional SN addition procedure, respectively, or the SN change procedure or the conditional SN change the MN and the target SN in the procedure, or the source SN and the MN in the SN change procedure or the conditional SN change procedure;
  • the second RAN node according to Appendix 20.
  • the at least one processor is configured to receive the planned route information from the first RAN node in a conditional handover procedure, a conditional secondary node (SN) addition procedure, or a conditional SN change procedure;
  • the second RAN node according to any one of Supplementary Notes 16 to 18.
  • the at least one processor is configured to receive the planned route information from the first RAN node via a HANDOVER REQUEST, S-NODE ADDITION REQUEST, or S-NODE CHANGE REQUIRED message; The second RAN node according to any one of Supplementary Notes 16 to 22.
  • the at least one processor is configured to receive the planned route information from the first RAN node via an inter-node Radio Resource Control (RRC) message; The second RAN node according to any one of Supplementary Notes 16 to 22.
  • RRC Radio Resource Control
  • the at least one processor is configured to use the planned route information to determine whether to accept handover of the UE to a target cell or addition or modification of a secondary node (SN) for the UE.
  • the second RAN node according to any one of Supplementary Notes 16 to 24.
  • the at least one processor is configured to use the planned route information to determine acceptable at least one of one or more target cells or candidate cells;
  • the second RAN node according to any one of Supplementary Notes 16 to 24.
  • the at least one processor is configured to use the planned route information to generate or prepare a target cell or candidate cell configuration;
  • the second RAN node according to any one of Supplementary Notes 16 to 24.
  • the at least one processor is configured to use the planned route information to select a secondary cell for carrier aggregation;
  • the second RAN node according to any one of Supplementary Notes 16 to 24.
  • a method performed by a second radio access network (RAN) node the method comprising: A mobility-related procedure or a dual connectivity-related procedure for a User Equipment (UE), comprising receiving from a first RAN node planned route information indicative of a plurality of planned locations of the UE; Method.
  • RAN radio access network
  • a program for causing a computer to perform a method for a second radio access network (RAN) node comprising: The method comprises, in a mobility-related procedure or a dual connectivity-related procedure for a User Equipment (UE), receiving from a first RAN node planned route information indicative of a plurality of planned locations of the UE. program.
  • RAN radio access network
  • a radio access network (RAN) node configured to operate as a master node (MN) in dual connectivity for user equipment (UE), comprising: at least one memory; at least one processor coupled to the at least one memory and configured to send planned route information indicative of a plurality of planned locations of the UE to a secondary node (SN) of the dual connectivity; Equipped with RAN node.
  • MN master node
  • UE user equipment
  • the planned route information is flight route information indicating a plurality of waypoints defined as three-dimensional locations.
  • the UE is a UE having an aerial UE function, RAN node according to appendix 31 or 32.
  • the UE is a UE implemented in an unmanned or uncrewed aerial vehicle (UAV), RAN node according to any one of Supplementary Notes 31 to 33.
  • UAV unmanned or uncrewed aerial vehicle
  • the at least one processor is configured to send aerial UE subscription information or information derived therefrom to the SN along with the planned route information;
  • the aerial UE subscription information or information derived therefrom may include whether the UE or its user is authorized to use aerial UE functionality, whether the UE is an aerial UE, or whether the UE has aerial UE functionality.
  • the at least one processor is configured to send the planned route information to the SN in an SN addition procedure; RAN node according to any one of Supplementary Notes 31 to 35.
  • the at least one processor is configured to send the planned route information to the SN via an S-NODE ADDITION REQUEST message; RAN node according to any one of Supplementary Notes 31 to 36.
  • the at least one processor is configured to send the planned route information to the SN via an inter-node Radio Resource Control (RRC) message; RAN node according to any one of Supplementary Notes 31 to 36.
  • RRC Radio Resource Control
  • RAN radio access network
  • SN secondary node
  • the planned route information is flight route information indicating a plurality of waypoints defined as three-dimensional locations.
  • the UE is a UE having an aerial UE function, RAN node according to appendix 41 or 42.
  • the UE is a UE implemented in an unmanned or uncrewed aerial vehicle (UAV), RAN node according to any one of Supplementary Notes 41 to 43.
  • UAV unmanned or uncrewed aerial vehicle
  • the at least one processor is configured to receive aerial UE subscription information or information derived therefrom from the MN along with the planned route information;
  • the aerial UE subscription information or information derived therefrom may include whether the UE or its user is authorized to use aerial UE functionality, whether the UE is an aerial UE, or whether the UE has aerial UE functionality.
  • the at least one processor is configured to receive the planned route information from the MN in an SN addition procedure; RAN node according to any one of appendices 41 to 45.
  • the at least one processor is configured to receive the planned route information from the previous MN via an S-NODE ADDITION REQUEST message; RAN node according to any one of appendices 41 to 46.
  • the at least one processor is configured to receive the planned route information from the MN via an inter-node Radio Resource Control (RRC) message; RAN node according to any one of appendices 41 to 46.
  • RRC Radio Resource Control
  • MN dual connectivity master node
  • MN dual connectivity master node
  • the planned route information is flight route information indicating a plurality of waypoints defined as three-dimensional locations.
  • the UE is a UE having an aerial UE function, RAN node according to appendix 51 or 52.
  • Appendix 54 A method performed by a radio access network (RAN) node configured to act as a master node (MN) in dual connectivity for user equipment (UE), the method comprising: receiving from a secondary node (SN) of the dual connectivity planned route information indicating a plurality of planned locations of the UE; Method.
  • MN master node
  • SN secondary node
  • the planned route information is flight route information indicating a plurality of waypoints defined as three-dimensional locations.
  • the UE is a UE having an aerial UE function, RAN node according to appendix 56 or 57.
  • Appendix 59 A method performed by a radio access network (RAN) node configured to act as a secondary node (SN) in dual connectivity for user equipment (UE), the method comprising: sending planned route information indicating a plurality of planned locations of the UE to the dual connectivity master node (MN); Method.
  • RAN radio access network
  • MN dual connectivity master node
  • RAN radio access network
  • the aerial UE subscription information or information derived therefrom may include whether the UE or its user is authorized to use aerial UE functionality, whether the UE is an aerial UE, or whether the UE has aerial UE functionality. Indicate whether or not to support RAN node described in Appendix 61.
  • the at least one processor is configured to send the aerial UE subscription information or information derived therefrom to the SN in an SN addition procedure; RAN node according to appendix 61 or 62.
  • the at least one processor is configured to send the aerial UE subscription information or information derived therefrom to the SN via an S-NODE ADDITION REQUEST message; RAN node according to any one of Supplementary Notes 61 to 63.
  • the at least one processor is configured to send flight path information indicative of a plurality of planned locations of the UE to the SN along with the aerial UE subscription information or information derived therefrom; RAN node according to any one of Supplementary Notes 61 to 64.
  • (Appendix 66) A method performed by a radio access network (RAN) node configured to act as a master node (MN) in dual connectivity for user equipment (UE), the method comprising: sending aerial UE subscription information or information derived therefrom regarding the UE to a secondary node (SN) of the dual connectivity; Method. (Appendix 67) A program for causing a computer to perform a method for a radio access network (RAN) node configured to operate as a master node (MN) in dual connectivity for user equipment (UE), comprising: The method comprises sending aerial UE subscription information or information derived therefrom to a secondary node (SN) of the dual connectivity. program.
  • RAN radio access network
  • SN secondary node
  • a radio access network (RAN) node configured to operate as a secondary node (SN) in dual connectivity for user equipment (UE), comprising: at least one memory; at least one processor coupled to the at least one memory and configured to receive aerial UE subscription information or information derived therefrom regarding the UE from the dual connectivity master node (MN); Equipped with RAN node.
  • the aerial UE subscription information or information derived therefrom may include whether the UE or its user is authorized to use aerial UE functionality, whether the UE is an aerial UE, or whether the UE has aerial UE functionality. Indicate whether or not to support RAN node described in Appendix 68.
  • the at least one processor is configured to receive the aerial UE subscription information or information derived therefrom from the MN in an SN addition procedure; RAN node according to appendix 68 or 69.
  • the at least one processor is configured to receive the aerial UE subscription information or information derived therefrom from the MN via an S-NODE ADDITION REQUEST message; RAN node according to any one of appendices 68 to 70.
  • the at least one processor is configured to receive from the MN flight path information indicative of a plurality of planned locations of the UE along with the aerial UE subscription information or information derived therefrom; RAN node according to any one of Supplementary Notes 68 to 71.
  • a radio access network (RAN) node at least one memory; coupled to the at least one memory and configured to determine one or more execution conditions for conditional mobility of a User Equipment (UE) based on planned route information indicative of a plurality of planned locations of the UE; at least one processor configured; Equipped with RAN node.
  • the planned route information is flight route information indicating a plurality of waypoints defined as three-dimensional locations.
  • the UE is a UE having an aerial UE function, RAN node according to appendix 75 or 76.
  • the one or more execution conditions include that the position of the UE is at a reference position, within a set distance from a reference position, or within a reference area. RAN node according to any one of Supplementary Notes 75 to 77.
  • the one or more execution conditions include that the scheduled time has arrived; RAN node according to any one of appendices 75 to 78.
  • the conditional mobility is a conditional handover, a conditional Primary Secondary Cell Group (SCG) Cell (PSCell) addition, a conditional PSCell change within a secondary node (SN), or a conditional PSCell change between SNs, RAN node according to any one of Supplementary Notes 75 to 79.
  • the RAN node is the source node for conditional handover, the master node (MN) for conditional PSCell addition, the SN for intra-SN conditional PSCell change, the source SN for inter-SN conditional PSCell change initiated by SN, or the MN for conditional PSCell addition. is the MN of the SN-to-SN conditional PSCell change initiated, RAN node described in Appendix 80.
  • MN master node
  • UE User Equipment
  • RAN radio access network
  • a radio access network (RAN) node at least one memory; receiving a user equipment (UE) handover request from a source RAN node coupled to the at least one memory and indicating one or more target cells; If the handover request includes one or both of planned route information indicating a plurality of planned locations of the UE and an explicit indication indicating that alternative cell proposals are allowed, then the handover is acceptable and the first or sending a handover request response to the source RAN node indicating another cell different from the target cell; at least one processor configured to Equipped with RAN node.
  • the at least one processor sends the handover request response indicating the other cell to the source RAN node, at least with the condition that the handover request includes planned route information indicating a plurality of planned locations of the UE. configured like this, RAN node described in Appendix 84.
  • the at least one processor is configured to determine the other handover-acceptable cell based on the planned route information; RAN node according to appendix 84 or 85.
  • the planned route information is flight route information indicating a plurality of waypoints defined as three-dimensional locations. RAN node according to any one of appendices 84 to 86.
  • the handover request is a conditional handover request, RAN node according to any one of Supplementary Notes 84 to 87.
  • a method performed by a radio access network (RAN) node the method comprising: receiving a handover request for a User Equipment (UE) from a source RAN node indicating one or more target cells; and planning route information and alternative cell suggestions, wherein the handover request indicates a plurality of planned locations of the UE.
  • a handover request response indicating another cell different from the one or more target cells to which the handover is acceptable and which is different from the one or more target cells; to send, A method of providing.
  • UE User Equipment
  • a program for causing a computer to perform a method for a radio access network (RAN) node includes: receiving a handover request for a User Equipment (UE) from a source RAN node indicating one or more target cells; and planning route information and alternative cell suggestions, wherein the handover request indicates a plurality of planned locations of the UE. a handover request response indicating another cell different from the one or more target cells to which the handover is acceptable and which is different from the one or more target cells; to send, A program with.
  • UE User Equipment
  • a radio access network (RAN) node at least one memory; at least one processor coupled to the at least one memory and configured to transmit information regarding the UE's support in surrounding cells or frequencies to the UE; Equipped with RAN node.
  • RAN Radio access network
  • Appendix 92 User Equipment (UE), at least one memory; at least one processor coupled to the at least one memory and configured to receive information from a radio access network (RAN) node regarding support for aerial UEs in surrounding cells or frequencies; Equipped with U.E.
  • the at least one processor is configured to determine, based on the information, a cell to which to attempt reconnection when reconnection of a wireless link is required; UE described in Appendix 92.
  • the at least one processor is configured to consider the information in cell reselection in a Radio Resource Control (RRC)_IDLE state or an RRC_INACTIVE state; UE described in appendix 92 or 93.
  • RRC Radio Resource Control
  • a radio access network (RAN) node at least one memory; coupled to the at least one memory and configured to transmit to the UE information of one or more future candidate cells associated with planned route information indicative of a plurality of planned locations of the User Equipment (UE); at least one processor; Equipped with RAN node.
  • the one or more future candidate cell information indicates recommended cell information at each of a plurality of locations included in the planned route information; RAN node described in Appendix 95.
  • Appendix 97 User Equipment (UE), at least one memory; receiving from a radio access network (RAN) node information of one or more future candidate cells coupled to the at least one memory and associated with planned route information indicative of a plurality of planned locations of the UE; at least one processor configured; Equipped with U.E. (Appendix 98)
  • the one or more future candidate cell information indicates recommended cell information at each of a plurality of locations included in the planned route information; UE described in Appendix 97.
  • the at least one processor is configured to determine a cell to attempt reconnection to when reconnection of a radio link is required based on information of the one or more future candidate cells; UE described in appendix 97 or 98.
  • the at least one processor is configured to consider information of the one or more future candidate cells in cell reselection in a Radio Resource Control (RRC)_IDLE state or an RRC_INACTIVE state; UE described in appendix 97 or 98.
  • RRC Radio Resource Control
  • a network node at least one memory; at least one processor coupled to the at least one memory and configured to send to the UE emergency landing point information associated with planned route information indicative of a plurality of planned locations of the UE; , Equipped with network node.
  • the emergency landing point information indicates location information of one or more locations where emergency landing is permitted or recommended corresponding to each of the plurality of planned locations; The network node according to appendix 101.
  • the emergency landing point information includes one or more points within the serving cell of the UE, within the location registration area of the UE, or associated with the serving cell or the location registration area, where emergency landing is permitted or recommended. shows the location information of The network node according to appendix 101.
  • the network node is a radio access network (RAN) node or a core network node; The network node according to any one of Supplementary Notes 101 to 103.
  • RAN radio access network
  • UE User Equipment
  • RAN radio access network
  • RAN radio access network
  • the emergency landing point information indicates location information of one or more locations where emergency landing is permitted or recommended corresponding to each of the plurality of planned locations; UE described in Appendix 105.
  • the emergency landing point information includes one or more points within the serving cell of the UE, within the location registration area of the UE, or associated with the serving cell or the location registration area, where emergency landing is permitted or recommended. shows the location information of UE described in Appendix 105.
  • the at least one processor is configured to determine a target point for attempting an emergency landing based on the emergency landing point information; The UE according to any one of Supplementary Notes 105 to 107.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

第1のRANノード(501)は、User Equipment(UE)(3)に関するモビリティ関連手順又はデュアルコネクティビティ関連手順において、UE(3)の複数の計画された位置を示す計画経路情報を第2のRANノード(502)に送る。これは、例えば、モビリティ関連又はデュアルコネクティビティ関連手順に関するシグナリングの改良を提供できる。

Description

無線アクセスネットワークノード、UE、ネットワークノード、及びこれらの方法
 本開示は、無線通信システムに関し、特に無線端末のためのモビリティ又はデュアルコネクティビティに関する無線アクセスネットワークノード間のシグナリングに関する。
 3rd Generation Partnership Project (3GPP(登録商標)) Release 15以降は、エアリアル(Aerial) User Equipment (UE) 通信をサポートしている(例えば、非特許文献1-4を参照)。非特許文献1のセクション23.17に記載されているように、現在の3GPP仕様では、エアリアル通信が可能なUEsにLong Term Evolution (LTE) 接続を提供するEvolved Universal Terrestrial Radio Access Network (EUTRAN) ベースのメカニズムは、以下の機能(functionalities)を通じてサポートされている:
・サブスクリプション・ベースのエアリアルUEの識別および認可(identification and authorization)、
・UEの高度がネットワークで設定された基準高度の閾値を超えたというイベントに基づく高度報告(height reporting)、
・設定された数のセル(すなわち1より大きい)が同時にトリガー基準を満たした場合にトリガーされる測定報告に基づいた干渉検出(interference detection)、
・UEからE-UTRANへの飛行経路(flight path)情報のシグナリング、
・UEの水平および垂直速度(UE's horizontal and vertical velocity)を含む位置情報報告(location information reporting)。
 飛行経路情報シグナリングに関して、E-UTRANは、3次元(Three Dimensional (3D))位置(locations)として定義される多数のウェイポイントを含む飛行経路情報を報告するようUEに要求することができる。UEで飛行経路情報が利用可能であれば、UEは、要求に設定された数までのウェイポイントを報告する。要求に設定され且つUEで利用可能であれば、レポートはウェイポイントごとのタイムスタンプを含むことができる。
 非特許文献2のセクション4.3.31には以下の事項が規定されている。エアリアルUE機能の取り扱い(handling)をサポートするeNodeBは、Mobility Management Entity (MME) から供給されるユーザごとの情報を使用して、UEにエアリアルUE機能の使用を許可(allow)するかどうかを決定する。エアリアルUE機能のサポートは、Home Subscriber Server (HSS) のユーザの加入情報(user's subscription information)に格納される。HSSは、アタッチ及びトラッキング・エリア更新の手順の間にUpdate Locationメッセージでこの情報をMMEに転送する。ホーム・オペレータは、エアリアルUEsを操作するためのユーザの加入認可(user's subscription authorisation)をいつでも取り消す(revoke)ことができる。エアリアルUE機能をサポートするMMEは、アタッチ、トラッキング・エリア更新、及びサービス要求の手順の間に、S1 AP Initial Context Setup Requestを通じて、エアリアルUE認可(authorisation)に関するユーザの加入情報をeNodeBに提供する。
 MME内およびMME間のS1ベースのハンドオーバ(intra RAT)またはE-UTRANへのRAT間ハンドオーバでは、ユーザのエアリアルUE加入情報が、ハンドオーバ手順の後にターゲットeNodeBに送信されるS1 Application Protocol (S1AP) UE Context Modification Requestメッセージに含まれる。一方、X2ベースのハンドオーバの場合、ユーザのエアリアルUE加入情報は、以下のようにターゲットeNodeBに送信される。ソースeNodeBがエアリアルUE機能をサポートしており且つユーザのエアリアルUE加入情報がUEコンテキストに含まれている場合、ソースeNodeBは、ターゲットeNodeBへのX2AP Handover Requestメッセージに当該情報を含める必要がある。MMEは、S1AP Path Switch Request Acknowledge メッセージでエアリアルUEの加入情報をターゲットeNodeBに送信する必要がある。
 エアリアルUE加入情報が変更された場合、更新されたエアリアルUE加入情報は、MMEからeNodeBに送信されるS1AP UE Context Modification Requestメッセージに含まれる。
 非特許文献3のセクション5.3.3、5.3.5、5.3.7、及び5.6.5には以下の事項が規定されている。UEが利用可能な飛行経路情報(flight path information available)を持っているなら、UEは、Radio Resource Control (RRC) connection establishment、RRC connection reconfiguration、又はRRC connection re-establishmentにおいて、E-UTRTANに利用可能なflight path informationがあることを知らせる。具体的には、UEは、RRC Connection Setup Completeメッセージ、RRC Connection Resume Completeメッセージ、RRC Connection Reconfiguration Completeメッセージ、及びRRC Connection Reestablishment Completeメッセージに、値trueにセットされたflightPathInfoAvailable フィールドを含めることができる。
 E-UTRTANは、UEに情報の報告を要求するためにUE Information手順を使用できる。具体的には、E-UTRTANは、flightPathInfoReqフィールドを含むUE Information RequestメッセージをUEに送ることができる。flightPathInfoReqフィールドは、FlightPathInfoReportConfig情報要素(Information Element (IE))を示す。FlightPathInfoReportConfig IEは、UEが飛行経路情報レポートに含めることができるウェイポイントの最大数を示す。さらに、FlightPathInfoReportConfig IEは、オプションで、タイムスタンプ情報がUEで利用可能な場合に各ウェイポイントのタイムスタンプが飛行経路情報レポートで報告されることができるかどうかを示す。そのために、FlightPathInfoReportConfig IEは、maxWayPointNumberフィールド及びincludeTimeStampフィールドを含む。
 flightPathInfoReqフィールドがUE Information Requestメッセージ内に存在し、UEが利用可能な飛行経路情報を持っている場合、UEはflightPathInfoReportフィールドをUE Information Responseメッセージに含め、当該UE Information ResponseメッセージをE-UTRTANに送る。flightPathInfoReportフィールドは、FlightPathInfoReport IEを含む。FlightPathInfoReport IEは、WayPointLocation IEのシーケンスを示す。WayPointLocation IEは、wayPointLocationフィールドを含み、オプションでtimeStampフィールドを含む。wayPointLocationフィールドは、Aerial UEオペレーションのためのUEの位置座標(location coordinates)を含む。ウェイポイント(waypoints)は、UEの計画された(planned)(又は予定の(scheduled))位置(locations)を記述する。timeStampフィールドは、UEの計画された位置を示すウェイポイントのタイムスタンプ(time stamps)を含む。
 非特許文献4には以下の事項が規定されている。セクション8.2.1.2には、Aerial UE subscription information IEがソースeNBから受信したX2AP Handover Requestメッセージに含まれているなら、ターゲットeNBは、サポートされていれば、この情報をUEコンテキストに格納し、3GPP TS 36.300(非特許文献1)で定義されているように使用する必要があることが記載されている。セクション9.1.1.1には、Handover RequestメッセージがオプションでAerial UE subscription information IEを含むことが記載されている。セクション9.2.129には、Aerial UE subscription information IEは、UEがエアリアルUE機能の使用を許可(allowed)されているかどうかを知るためにeNodeB (eNB) によって使用されることが記載されている。加えて、Aerial UE subscription information IEは、列挙(enumerated)型であり、“allowed”又は“not allowed”を示すことが記載されている。
 3GPP Release 18では、エアリアルUEにNew Radio (NR)通信を提供するために上記の機能と同様の機能がサポートされる予定である(例えば非特許文献5を参照)。
 特許文献1には、移動局(UE)のハンドオーバについて記載されている。より具体的には、特許文献1に記載されたハンドオーバでは、ターゲット制御装置(e.g., 基地局、eNodeB)は、UEのハンドオーバ先(destination)としてターゲットセルを示す要求メッセージをソース制御装置から受信する。ターゲットセルへのハンドオーバ要求が許容されない場合に、ターゲット制御装置は、ハンドオーバ受け入れ可能であってターゲットセルとは異なる他のセルを示すハンドオーバ承認応答メッセージをソース制御装置に返信することができる。言い換えると、ターゲット制御装置は、ソース制御装置からのハンドオーバ要求メッセージで指定されていないセルへのハンドオーバを受け入れ可能であることを、ハンドオーバ承認応答メッセージを介してソース制御装置に知らせる。
国際公開第2011/018890号
 発明者等は、エアリアルUEsのモビリティ及びエアリアルUEsのためのデュアルコネクティビティについて検討し様々な課題を見出した。1つの課題として、現在の3GPP仕様は、UEモビリティ関連手順において、ソース無線アクセスネットワーク(Radio Access Network (RAN))ノードがターゲットRANノードに飛行経路情報を提供することを規定していない。同様に、現在の3GPP仕様は、デュアルコネクティビティ関連手順において、マスターノード(Master Node (MN))がセカンダリノード(Secondary Node (SN))に、又はその反対に、飛行経路情報を提供することを規定していない。
 ここで、UEモビリティは、限定されないが、ハンドオーバまたは条件付きハンドオーバであってもよい。UEモビリティは、デュアルコネクティビティのMN間(inter-MN)ハンドオーバ、マスターノードからeNB/gNBへの変更(Master Node to eNB/gNB Change)、又はeNB/gNBからマスターノードへの変更(eNB/gNB to Master Node Change)であってもよい。デュアルコネクティビティ関連手順は、限定されないが、SN追加手順、条件付きSN追加手順、SN変更(change)手順、又は条件付きSN変更手順であってもよい。(条件付き)SN追加手順は、(条件付き)Primary Secondary Cell Group (SCG) Cell (PSCell) 追加手順と呼ばれてもよい。同様に、(条件付き)SN変更手順は、(条件付き)SN間(inter-SN) PSCell変更手順と呼ばれてもよい。上述のデュアルコネクティビティ関連手順は、UEの1又はそれ以上のサービングセルの追加又は変更を伴うから、広義ではUEモビリティに含まれると言える。したがって、本明細書の定義では、モビリティ又はモビリティ関連手順との用語は、ハンドオーバ手順及び上述のデュアルコネクティビティ関連手順を包括的に指す場合がある。
 例えば、ハンドオーバ又は条件付きハンドオーバにおいて、ソースRANノード(e.g., gNB)又はソースRANノードに関連付けられたコントローラ(e.g., Near-Real-Time RAN Intelligent Controller (Near-RT RIC))がターゲットセルを決定するためにUEの飛行経路情報を考慮し、これによりハンドオーバ最適化をもたらすことも期待される。しかし、1又はそれ以上のターゲット(候補)セルの実際のカバレッジに飛行経路情報で示される3次元位置情報をマッピングすることはソースRANノードには困難であり、したがって飛行経路情報は十分に有効に活用されないかもしれない。デュアルコネクティビティに関しても同様の問題がある。例えば、SNによって提供される1又はそれ以上の候補PSCellの実際のカバレッジに飛行経路情報で示される3次元位置情報をマッピングすることはMNには困難であるかもしれない。
 他の課題として、現在の3GPP仕様は、デュアルコネクティビティに関して、MNがSNに、エアリアルUE加入情報を送ることは規定されていない。エアリアルUEに関連した操作を行うか否かを決めるために、SNがエアリアルUE加入情報を利用できることは有効であるかもしれない。
 さらに他の課題として、現在の3GPP仕様では、条件付きモビリティの実行条件は、飛行経路情報に基づいていない。言い換えると、条件付きモビリティの実行条件は、エアリアルUEの計画された飛行経路に関係していない。飛行経路情報は、エアリアルUEに適した条件付きモビリティの実行条件を提供するために考慮され得る。ここで、条件付きモビリティは、限定されないが例えば、条件付きハンドオーバ、条件付きPSCell追加(Conditional PSCell Addition (CPA))、SN内(inter-SN)条件付きPSCell変更(Conditional PSCell Change (CPC))、又はSN間CPCを含む。条件付きモビリティは、条件付き再構成と呼ばれてもよい。デュアルコネクティビティに関するCPA、intra-SN CPC、及びinter-SN CPCは、条件付きデュアルコネクティビティ手順又は条件付きデュアルコネクティビティ関連手順と呼ばれてもよい。
 さらなる課題として、特許文献1に記載されているようなハンドオーバ、具体的にはターゲットノードによる代替ターゲットセルの提案は、それが有用である特定の状況又は条件下でのみ許可されることが有効であるかもしれない。特許文献1は、そのような特定の状況又は条件を提供していない。
 なお、上述された複数の課題の一部又は全ては、エアリアルUEに関する飛行経路情報が利用されるケースでのみ生じるのではなく、他のケースでも生じ得る。例えば、これらの課題は、陸上ベース車両(land-based vehicle)に実装されるUEの走行経路情報が利用可能である場合にも生じ得る。陸上ベース車両(land-based vehicle)は、陸上車両(land vehicle)又は地上車両(ground vehicle)とも呼ばれ、陸上又は地上を走行する車両の一種である。陸上ベース車両の走行経路情報は、陸上ベース車両の計画された又は予定の位置(locations)を記述する。これらの位置は、2次元(two dimensional (2D))位置であってもよい。本明細書では、「計画経路情報」との用語は、飛行経路情報及び走行経路情報といった、UE又はUEが実装された車両、飛行体、又は移動ロボット等の計画された又は予定された位置(locations)を記述する情報を意味するために使用される。
 本明細書に開示される実施形態が達成しようとする目的の1つは、上述された課題を含む複数の課題のうち少なくとも1つを解決することに寄与する装置、方法、及びプログラムを提供することである。なお、この目的は、本明細書に開示される複数の実施形態が達成しようとする複数の目的の1つに過ぎないことに留意されるべきである。その他の目的又は課題と新規な特徴は、本明細書の記述又は添付図面から明らかにされる。
 第1の態様は、第1の無線アクセスネットワーク(RAN)ノードに向けられる。当該第1のRANノードは、少なくとも1つのメモリ及び前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサを含む。前記少なくとも1つのプロセッサは、UEに関するモビリティ関連手順又はデュアルコネクティビティ関連手順において、前記UEの複数の計画された位置を示す計画経路情報を第2のRANノードに送るよう構成される。
 第2の態様は、第1のRANノードにより行われる方法に向けられる。当該方法は、UEに関するモビリティ関連手順又はデュアルコネクティビティ関連手順において、前記UEの複数の計画された位置を示す計画経路情報を第2のRANノードに送ることを含む。
 第3の態様は、第2のRANノードに向けられる。当該第2のRANノードは、少なくとも1つのメモリ及び前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサを含む。前記少なくとも1つのプロセッサは、UEに関するモビリティ関連手順又はデュアルコネクティビティ関連手順において、前記UEの複数の計画された位置を示す計画経路情報を第1のRANノードから受信するよう構成される。
 第4の態様は、第2のRANノードにより行われる方法に向けられる。当該方法は、UEに関するモビリティ関連手順又はデュアルコネクティビティ関連手順において、前記UEの複数の計画された位置を示す計画経路情報を第1のRANノードから受信することを含む。
 第5の態様は、UEのためのデュアルコネクティビティにおいてMNとして動作するよう構成されたRANノードに向けられる。当該RANノードは、少なくとも1つのメモリ及び前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサを含む。前記少なくとも1つのプロセッサは、前記UEの複数の計画された位置を示す計画経路情報を前記デュアルコネクティビティのSNに送るよう構成される。
 第6の態様は、UEのためのデュアルコネクティビティにおいてMNとして動作するよう構成されたRANノードにより行われる方法に向けられる。当該方法は、前記UEの複数の計画された位置を示す計画経路情報を前記デュアルコネクティビティのSNに送ることを含む。
 第7の態様は、UEのためのデュアルコネクティビティにおいてSNとして動作するよう構成されたRANノードに向けられる。当該RANノードは、少なくとも1つのメモリ及び前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサを含む。前記少なくとも1つのプロセッサは、前記UEの複数の計画された位置を示す計画経路情報を前記デュアルコネクティビティのMNから受信するよう構成される。
 第8の態様は、UEのためのデュアルコネクティビティにおいてSNとして動作するよう構成されたRANノードにより行われる方法に向けられる。当該方法は、前記UEの複数の計画された位置を示す計画経路情報を前記デュアルコネクティビティのMNから受信することを含む。
 第9の態様は、UEのためのデュアルコネクティビティにおいてMNとして動作するよう構成されたRANノードに向けられる。当該RANノードは、少なくとも1つのメモリ及び前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサを含む。前記少なくとも1つのプロセッサは、前記UEの複数の計画された位置を示す計画経路情報を前記デュアルコネクティビティのSNから受信するよう構成される。
 第10の態様は、UEのためのデュアルコネクティビティにおいてMNとして動作するよう構成されたRANノードにより行われる方法に向けられる。当該方法は、前記UEの複数の計画された位置を示す計画経路情報を前記デュアルコネクティビティのSNから受信することを含む。
 第11の態様は、UEのためのデュアルコネクティビティにおいてSNとして動作するよう構成されたRANノードに向けられる。当該RANノードは、少なくとも1つのメモリ及び前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサを含む。前記少なくとも1つのプロセッサは、前記UEの複数の計画された位置を示す計画経路情報を前記デュアルコネクティビティのMNに送るよう構成される。
 第12の態様は、UEのためのデュアルコネクティビティにおいてSNとして動作するよう構成されたRANノードにより行われる方法に向けられる。当該方法は、前記UEの複数の計画された位置を示す計画経路情報を前記デュアルコネクティビティのMNに送ることを含む。
 第13の態様は、UEのためのデュアルコネクティビティにおいてMNとして動作するよう構成されたRANノードに向けられる。当該RANノードは、少なくとも1つのメモリ及び前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサを含む。前記少なくとも1つのプロセッサは、前記UEのエアリアルUE加入情報又はこれから導かれた情報を前記デュアルコネクティビティのセカンダリノード(SN)に送るよう構成される。
 第14の態様は、UEのためのデュアルコネクティビティにおいてMNとして動作するよう構成されたRANノードにより行われる方法に向けられる。当該方法は、前記UEのエアリアルUE加入情報又はこれから導かれた情報を前記デュアルコネクティビティのセカンダリノード(SN)に送ることを含む。
 第15の態様は、UEのためのデュアルコネクティビティにおいてSNとして動作するよう構成されたRANノードに向けられる。当該RANノードは、少なくとも1つのメモリ及び前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサを含む。前記少なくとも1つのプロセッサは、前記UEのエアリアルUE加入情報又はこれから導かれた情報を前記デュアルコネクティビティのMNから受信するよう構成される。
 第16の態様は、UEのためのデュアルコネクティビティにおいてSNとして動作するよう構成されたRANノードにより行われる方法に向けられる。当該方法は、前記UEのエアリアルUE加入情報又はこれから導かれた情報を前記デュアルコネクティビティのMNから受信することを含む。
 第17の態様は、RANノードに向けられる。当該RANノードは、少なくとも1つのメモリ及び前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサを含む。前記少なくとも1つのプロセッサは、UEの条件付きモビリティのための1又はそれ以上の実行条件を前記UEの複数の計画された位置を示す計画経路情報に基づいて決定するよう構成される。
 第18の態様は、RANノードにより行われる方法に向けられる。当該方法は、UEの条件付きモビリティのための1又はそれ以上の実行条件を前記UEの複数の計画された位置を示す計画経路情報に基づいて決定することを含む。
 第19の態様は、RANノードに向けられる。当該RANノードは、少なくとも1つのメモリ及び前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサを含む。前記少なくとも1つのプロセッサは、1又はそれ以上のターゲットセルを示すUEのハンドオーバ要求をソースRANノードから受信するよう構成される。前記少なくとも1つのプロセッサは、前記ハンドオーバ要求メッセージが前記UEの複数の計画された位置を示す計画経路情報及び代替セルの提案を許可することを示す明示的な表示のうち一方又は両方を含むなら、ハンドオーバ受け入れ可能であって前記1又はそれ以上のターゲットセルとは異なる他のセルを示すハンドオーバ要求応答を前記ソースRANノードに送るよう構成される。
 第20の態様は、RANノードにより行われる方法に向けられる。当該方法は、以下のステップを含む:
(a)1又はそれ以上のターゲットセルを示すUEのハンドオーバ要求をソースRANノードから受信すること、及び
(b)前記ハンドオーバ要求メッセージが前記UEの複数の計画された位置を示す計画経路情報及び代替セルの提案を許可することを示す明示的な表示のうち一方又は両方を含むなら、ハンドオーバ受け入れ可能であって前記1又はそれ以上のターゲットセルとは異なる他のセルを示すハンドオーバ要求応答を前記ソースRANノードに送ること。
 第21の態様は、プログラムに向けられる。当該プログラムは、コンピュータに読み込まれた場合に、上述の第2、第4、第6、第8、第10、第12、第14、第16、第18、又は第20の態様に係る方法をコンピュータに行わせるための命令群(ソフトウェアコード)を含む。
 上述の態様によれば、上述された課題を含む複数の課題のうち少なくとも1つを解決することに寄与する装置、方法、及びプログラムを提供できる。
実施形態に係る無線通信システムの構成例を示す図である。 実施形態に係る無線通信システムの構成例を示す図である。 実施形態に係る無線通信システムの構成例を示す図である。 実施形態に係るRANノードの構成例を示す図である。 実施形態に係るRANノード間のシグナリングの一例を示すシーケンス図である。 実施形態に係るRANノードの動作の一例を示すフローチャートである。 実施形態に係るRANノードの動作の一例を示すフローチャートである。 実施形態に係るRANノードの動作の一例を示すフローチャートである。 実施形態に係るRANノードの動作の一例を示すフローチャートである。 実施形態に係るHandoverPreparationInformationメッセージのフォーマットの一例を示す図である。 実施形態に係るHANDOVER REQUESTメッセージのフォーマットの一例を示す図である。 実施形態に係るCG-ConfigInfoメッセージのフォーマットの一例を示す図である。 実施形態に係るS-NODE ADDITION REQUESTメッセージのフォーマットの一例を示す図である。 実施形態に係るRANノード間のデュアルコネクティビティ関連シグナリングの一例を示すシーケンス図である。 実施形態に係るRANノード間のデュアルコネクティビティ関連シグナリングの一例を示すシーケンス図である。 実施形態に係るRANノード間のデュアルコネクティビティ関連シグナリングの一例を示すシーケンス図である。 実施形態に係るS-NODE ADDITION REQUESTメッセージのフォーマットの一例を示す図である。 実施形態に係るRANノードの動作の一例を示すフローチャートである。 実施形態に係るRANノード間のハンドオーバ関連シグナリングの一例を示すシーケンス図である。 実施形態に係るRANノード間のハンドオーバ関連シグナリングの一例を示すシーケンス図である。 実施形態に係るRANノードの構成例を示すブロック図である。 実施形態に係るUEの構成例を示すブロック図である。
 以下では、具体的な実施形態について、図面を参照しながら詳細に説明する。各図面において、同一又は対応する要素には同一の符号が付されており、説明の明確化のため、必要に応じて重複説明は省略される。
 以下に説明される複数の実施形態は、独立に実施されることもできるし、適宜組み合わせて実施されることもできる。これら複数の実施形態は、互いに異なる新規な特徴を有している。したがって、これら複数の実施形態は、互いに異なる目的又は課題を解決することに寄与し、互いに異なる効果を奏することに寄与する。
 以下に示される複数の実施形態は、3GPP Long Term Evolution (LTE)システム及び第5世代移動通信システム(5G system)を主な対象として説明される。しかしながら、これらの実施形態は、3GPPのモビリティ関連手順又はデュアルコネクティビティ関連手順と類似の技術をサポートする他の無線通信システムに適用されてもよい。なお、本明細書で使用されるLTEとの用語は、特に断らない限り、5G Systemとのインターワーキングを可能とするためのLTE及びLTE-Advancedの改良・発展を含む。
 本明細書で使用される場合、文脈に応じて、「(もし)~なら(if)」は、「場合(when)」、「その時またはその前後(at or around the time)」、「後に(after)」、「に応じて(upon)」、「判定(決定)に応答して(in response to determining)」、「判定(決定)に従って(in accordance with a determination)」、又は「検出することに応答して(in response to detecting)」を意味するものとして解釈されてもよい。これらの表現は、文脈に応じて、同じ意味を持つと解釈されてもよい。
 初めに、複数の実施形態に共通である複数のネットワーク要素の構成及び動作が説明される。図1は、複数の実施形態に係る無線通信システムの構成例を示している。図1の例では、無線通信システムは、RANノード1、RANノード2、RANノード4、及びUE3を含む。図1に示された各要素(ネットワーク機能)は、例えば、専用ハードウェア(dedicated hardware)上のネットワークエレメントとして、専用ハードウェア上で動作する(running)ソフトウェア・インスタンスとして、又はアプリケーション・プラットフォーム上にインスタンス化(instantiated)された仮想化機能として実装されることができる。
 RANノード1は、cloud RAN (C-RAN) 配置(deployment)におけるCentral Unit(e.g., eNB-CU、又はgNB-CU)であってもよいし、CU及び1又は複数のDistributed Units(e.g., eNB-DUs又はgNB-DUs)の組み合わせであってもよい。C-RANは、CU/DU splitとも呼ばれる。さらに、CUは、Control Plane (CP) Unit(e.g. gNB-CU-CP)及び1又はそれ以上のUser Plane (UP) Unit(e.g. gNB-CU-UP)を含んでもよい。したがって、RANノード1は、CU-CPであってもよく、CU-CP及びCU-UPの組み合わせであってもよい。同様に、RANノード2及び4の各々は、CUであってもよいし、CU及び1又は複数のDUsの組み合わせであってもよい。RANノード2及び4の各々は、CU-CPであってもよく、CU-CP及びCU-UPの組み合わせであってもよい。
 RANノード1、2、及び4の各々は、Evolved Universal Terrestrial Radio Access Network (E-UTRAN) ノード又はNext generation Radio Access Network (NG-RAN) ノードであってもよい。E-UTRANノードは、eNB又はen-gNBであってもよい。NG-RANノードは、gNB又はng-eNBであってもよい。en-gNBは、UEへのNRユーザープレーン及びコントールプレーン・プロトコル終端を提供し、E-UTRA-NR Dual Connectivity (EN-DC) のSNとして動作するノードである。ng-eNBは、UEへのE-UTRAユーザープレーン及びコントールプレーン・プロトコル終端を提供し、NGインタフェースを介して5GCに接続されるノードである。RANノード1の無線アクセス技術(Radio Access Technology (RAT))は、RANノード2及び4のそれと異なっていてもよい。
 RANノード1及びRANノード2は、ノード間インタフェース(i.e., X2インタフェース又はXnインタフェース)103を介して互いに通信する。RANノード1及びRANノード2は、それぞれデュアルコネクティビティのMN及びSNとして動作する。さらに、RANノード1及びRANノード4は、ノード間インタフェース(i.e., X2インタフェース又はXnインタフェース)105を介して互いに通信する。RANノード1及びRANノード4は、それぞれDCのMN及びSNとして動作することができる。RANノード2とRANノード4の間にノード間インタフェース(i.e., X2インタフェース又はXnインタフェース)106が設定されてもよい。
 RANノード1、2、及び4並びにUE3は、RANノード2によって提供されるSCGからRANノード4によって提供されるSCGへのinter-SN CPCをサポートする。したがって、以下では、RANノード1をMN1と呼ぶことがあり、RANノード2をソースSN(S-SN)2と呼ぶことがあり、RANノード4をターゲットSN(T-SN)4、候補SN4、又はターゲット候補SN4と呼ぶことがある。Inter-SN CPCは、条件付きSN変更と呼ばれてもよい。
 Inter-SN CPC(又は条件付きSN変更)は、1又はそれ以上のCPC実行条件が成立(met or satisfied)したときにのみ実行されるinter-SN PSCell変更手順(又はSN変更手順)である。UE3は、MN1からSN変更の指示を受信した後もソースSN2及びソースSCGとのコネクションを維持し、当該指示により設定された実行条件の評価を開始する。そして、UE3は、実行条件が成立したことに応じて、ターゲット候補SN4及び選択された候補PSCellへのアクセスを開始する。
 Inter-SN CPCは、MN1又はソースSN2によって開始されることができる。MN1によって開始されるinter-SN CPCは、MN initiated inter-SN CPCと呼ばれる。一方、ソースSN2によって開始されるinter-SN CPCは、SN initiated inter-SN CPCと呼ばれる。MN initiated inter-SN CPCでは、MN1がCPC実行条件を生成する。これに対して、SN initiated inter-SN CPCでは、ソースSN2がCPC実行条件を生成してこれをMN1に送る。MN-initiated inter-SN CPC及びSN-initiated inter-SN CPCのどちらの場合でも、ターゲット候補SN4がSCG設定を生成し、これをMNに送る。そして、MN1は、CPC実行条件及びSCG設定を包含するCPC設定(e.g., ConditionalReconfiguration IE)を、RRC (Connection) Reconfigurationメッセージを介してUE3に送信する。
 図1には示されていないが、複数の候補SN4によって提供される複数の候補セル(i.e., 候補PSCells)がinter-SN CPCのために準備されてもよい。Inter-SN CPC手順では、UE3は、1又はそれ以上の候補SNによって準備された1又はそれ以上の候補PSCellsの設定(i.e., 1又はそれ以上のSCG設定)と、これらに関連付けられた1又はそれ以上のCPC実行条件をMN1から受信する。より具体的には、各候補PSCellの設定はMN1のRRCメッセージの情報要素(e.g., condRRCReconfig)に包含され、1又はそれ以上の候補PSCellの設定及び関連付けられたCPC実行条件は、MN1により生成される条件付きモビリティ設定情報(e.g., conditionalReconfiguration IE)に包含される。
 各候補PSCellの設定(i.e., SCG設定)は、この候補PSCellを提供する(又は準備した)候補SN(e.g., 候補SN4)によって生成される。各候補PSCellの設定は、候補PSCellに対する設定情報を少なくとも含む。各候補PSCellの設定は、候補PSCellに付随する(つまり、候補PSCellと一緒に又は関連付けられて設定される)1又はそれ以上のSCellsに対する設定情報をさらに含んでもよい。各候補PSCellの設定は、radio bearer(RB)設定、cell group(CG)設定、SCG設定、若しくはSCG無線リソース設定、又はこれらの任意の組み合わせであってもよい。より具体的には、各候補PSCellの設定は、この候補PSCellを提供する(又は準備した)候補SN(e.g., 候補SN4)によって生成されたSN RRC Reconfigurationメッセージであってもよい。1又はそれ以上の候補PSCellの設定の一部又は全部は、MN1からUE3に送られるCPC設定に包含される。Inter-SN CPCのCPC設定は、1又はそれ以上のMN RRC Reconfigurationメッセージのリストと、関連付けられた実行条件(conditions)とを含む。各MN RRC Reconfigurationメッセージは、候補SNから受信した候補PSCellの設定(e.g., RB設定、CG設定、SCG設定、SCG無線リソース設定、及びSN RRC Reconfigurationメッセージのうち1つ又は任意の組み合わせ)を包含する。
 一方、CPC実行条件は、MN-initiated inter-SN CPCの場合にMN1により生成され、SN-initiated inter-SN CPCの場合にソースSN2により生成される。CPC実行条件は、1又はそれ以上のトリガー条件により構成されてもよい。CPCイベントをトリガーする条件又は基準は、測定報告イベントのためのそれと類似してもよく、例えばCondEvent B1、CondEvent A3、CondEvent A4、又はCondEvent A5であってもよい。CondEvent B1は、“Conditional reconfiguration candidate becomes better than absolute threshold”である。CondEvent A3は、“Conditional reconfiguration candidate becomes amount of offset better than PCell/PSCell”である。CondEvent A4は、“Conditional reconfiguration candidate becomes better than absolute threshold”である。CondEvent A5は、“PCell/PSCell becomes worse than absolute threshold1 AND Conditional reconfiguration candidate becomes better than another absolute threshold2”である。UE3は、CPC実行条件(conditions)を評価する。1つの候補PSCellの実行条件が満たされたなら、UE3は、選択された候補PSCell(i.e., その実行条件が満たされた候補PSCell)に対応するPSCellの設定(e.g., RB設定、CG設定、SCG設定、SCG無線リソース設定、及びSN RRC Reconfigurationメッセージのうち1つ又は任意の組み合わせ)を適用する。SCG無線リソースを必要とするベアラを設定されているなら、UE3は、選択されたPSCellへの同期を行う。2つ以上の候補PSCellsの実行条件が満たされたなら、UE3はそれら候補PSCellsから1つを選択し、上述の動作を実行してもよい。
 UE3は、エアインタフェース101及び102を介してMN1及びS-SN2と通信し、MN1によって提供されるMCG及びS-SN2によって提供されるSCGのデュアルコネクティビティを行う。また、inter-SN CPCを行うことによって、UE3は、エアインタフェース101及び104を介してMN1及びT-SN4と通信し、MN1によって提供されるMCG及びT-SN4によって提供されるSCGのデュアルコネクティビティを行う。
 このデュアルコネクティビティは、Multi-Radio Dual Connectivity (MR-DC)であってもよい。MR-DCは、E-UTRA-NR Dual Connectivity(EN-DC)、NG-RAN E-UTRA-NR Dual Connectivity(NGEN-DC)、NR-E-UTRA Dual Connectivity(NE-DC)、及びNR-NR Dual Connectivity(NR-DC)を含む。これに応じて、MN1は、マスターeNB(in EN-DC)、マスターng-eNB(in NGEN-DC)、及びマスターgNB(in NR-DC and NE-DC)のいずれであってもよい。同様に、S-SN2及びT-SN4の各々は、en-gNB(in EN-DC)、セカンダリng-eNB(in NE-DC)、及びセカンダリgNB(in NR-DC and NGEN-DC)のいずれであってもよい。EN-DCでは、UE3は、MN1として動作するeNBに接続されるとともに、S-SN2又はT-SN4として動作するen-gNBに接続される。NGEN-DCでは、UE3は、MN1として動作するng-eNBに接続されるとともに、S-SN2又はT-SN4として動作するgNBに接続される。NE-DCでは、MN1として動作するgNBに接続されるとともに、S-SN2又はT-SN4として動作するng-eNBに接続される。NR-DCでは、UE3は、MN1として動作する1つのgNB(又はgNB-DU)に接続されるとともに、S-SN2又はT-SN4として動作する他のgNB(又はgNB-DU)に接続される。
 MCGは、MN1に関連付けられた(又は提供される)サービングセルのグループであり、SpCell(i.e., プライマリセル(Primary Cell(PCell)))及び必要に応じて(optionally)1又はそれ以上のセカンダリセル(Secondary Cells(SCells))を含む。一方、SCGは、S-SN2又はT-SN4に関連付けられた(又は提供される)サービングセルのグループであり、プライマリSCGセル(Primary SCG Cell (PSCell))及び必要に応じて(optionally)1又はそれ以上のセカンダリセル(Secondary Cells(SCells))を含む。PSCellは、SCGのSpecial Cell(SpCell)であり、Physical Uplink Control Channel(PUCCH)送信及びcontention-based Random Accessをサポートする。なお、LTE(e.g. LTE-DC及びNE-DC)では、PSCellは、Primary SCellの略語であってもよい。
 本明細書で使用される用語“プライマリSCGセル”及びその略語“PSCell”は、デュアルコネクティビティのSNによって提供されるセルグループに含まれ、アップリンク・コンポーネントキャリアを持ち、且つアップリンク制御チャネル(e.g. PUCCH)リソースを設定されるセルを意味する。具体的には、用語“プライマリSCGセル”及びその略語“PSCell”は、5G NRをサポートするSN(e.g. en-gNB in EN-DC, gNB in NGEN-DC, or gNB in NR-DC)によって提供されるセルグループのPrimary SCG Cellを意味してもよいし、E-UTRAをサポートするSN(e.g. eNB in LTE DC, or ng-eNB in NE-DC)によって提供されるセルグループのPrimary SCellを意味してもよい。
 図2は、複数の実施形態に係る無線通信システムの他の構成例を示している。図2の例では、無線通信システムは、RANノード1、RANノード2、及びUE3を含む。図2に示された各要素(ネットワーク機能)は、例えば、専用ハードウェア上のネットワークエレメントとして、専用ハードウェア上で動作するソフトウェア・インスタンスとして、又はアプリケーション・プラットフォーム上にインスタンス化された仮想化機能として実装されることができる。
 図2の例でのRANノード1、RANノード2、及びUE3は、図1の例でのそれらと同様の構成及び機能を有してもよい。具体的には、RANノード1及びRANノード2は、ノード間インタフェース(i.e., X2インタフェース又はXnインタフェース)103を介して互いに通信する。RANノード1及びRANノード2は、それぞれデュアルコネクティビティのMN及びSNとして動作する。UE3は、エアインタフェース101及び102を介してMN1及びSN2と通信し、MCG及びSCGのデュアルコネクティビティを行う。このデュアルコネクティビティは、Multi-Radio Dual Connectivity (MR-DC)であってもよい。
 RANノード1及び2並びにUE3は、RANノード2によって提供されるSCGをUE3のために追加する条件付きPSCell追加(CPA)をサポートする。したがって、以下では、RANノード1をMN1と呼ぶことがあり、RANノード2を候補SN2と呼ぶことがある。CPAは、条件付きSN追加と呼ばれてもよい。CPA(又は条件付きSN追加)は、CPA実行条件が満たされた場合にのみ実行されるPSCell追加手順(又はSN追加手順)である。
 CPA(又は条件付きSN追加)は、1又はそれ以上のCPA実行条件が成立(met or satisfied)したときにのみ実行されるPSCell追加手順(又はSN追加手順)である。UE3は、MN1からPSCell追加の指示を受信した後、当該指示により設定された1又はそれ以上の候補PSCellsの実行条件の評価を開始する。そして、いずれかの候補PSCellの実行条件が成立したことに応じて、UE3は、当該PSCellへの同期を開始する。CPAでは、MN1がCPA実行条件を生成する。候補SN2は、SCG設定(configuration)を生成し、これをMN1に送る。MN1は、CPA実行条件及びSCG設定の両方を包含するCPA設定(e.g., ConditionalReconfiguration IE)を、RRC (Connection) Reconfigurationメッセージを介してUE3に送信する。
 図2には示されていないが、複数の候補SN2によって提供される複数の候補PSCellがCPAのために準備されてもよい。CPA手順では、UE3は、1又はそれ以上の候補SNによって準備された1又はそれ以上の候補PSCellの設定(i.e., 1又はそれ以上のSCG設定)と、これらに関連付けられた1又はそれ以上のCPA実行条件をMN1から受信する。より具体的には、各候補PSCellの設定はMN1のRRCメッセージの情報要素(e.g., condRRCReconfig)に包含され、1又はそれ以上の候補PSCellの設定及び関連付けられたCPA実行条件は、MN1により生成される条件付きモビリティ設定情報(e.g., conditionalReconfiguration IE)に包含される。
 各候補PSCellの設定は、この候補PSCellを提供する(又は準備した)候補SN(e.g., 候補SN2)によって生成される。各候補PSCellの設定は、候補PSCellに対する設定情報を少なくとも含む。各候補PSCellの設定は、候補PSCellに付随する(つまり、候補PSCellと一緒に又は関連付けられて設定される)1又はそれ以上のSCellsに対する設定情報をさらに含んでもよい。各候補PSCellの設定は、RB設定、CG設定、SCG設定、及びSCG無線リソース設定のうち1つ又は任意の組み合わせであってもよい。より具体的には、各候補PSCellの設定は、この候補PSCellを提供する(又は準備した)候補SN(e.g., 候補SN4)によって生成されたSN RRC Reconfigurationメッセージであってもよい。1又はそれ以上の候補PSCellの設定の一部又は全部は、MN1からUE3に送られるCPA設定に包含される。CPA設定は、1又はそれ以上のMN RRC Reconfigurationメッセージのリストと、関連付けられた実行条件(conditions)とを含む。各MN RRC Reconfigurationメッセージは、候補SNから受信した候補PSCellの設定(e.g., RB設定、CG設定、SCG設定、SCG無線リソース設定、及びSN RRC Reconfigurationメッセージのうち1つ又は任意の組み合わせ)を包含する。
 一方、CPA実行条件は、MN1により生成される。CPA実行条件は、1又はそれ以上のトリガー条件により構成されてもよい。CPAイベントをトリガーする条件又は基準は、測定報告イベントのためのそれと類似してもよく、例えばCondEvent A3、CondEvent A4、又はCondEvent A5であってもよい。UE3は、CPA実行条件(conditions)を評価する。1つの候補PSCellの実行条件が満たされたなら、UE3は、選択された候補PSCell(i.e., その実行条件が満たされた候補PSCell)に対応するPSCellの設定(i.e., CG設定、SCG設定、SCG無線リソース設定、又はSN RRC Reconfigurationメッセージ)を適用する。SCG無線リソースを必要とするベアラを設定されているなら、UE3は、選択されたPSCellへの同期を行う。2つ以上の候補PSCellsの実行条件が満たされたなら、UE3はそれら候補PSCellsから1つを選択し、上述の動作を実行してもよい。
 加えて、RANノード2及びUE3は、intra-SN CPCをサポートする。Intra-SN CPCは、MNが関与せず且つSNにより開始される条件付きSN修正(SN-initiated Conditional SN Modification without MN involvement)と呼ばれてもよい。Intra-SN CPCは、CPC実行条件が満たされた場合にのみ実行されるintra-SN PSCell変更手順である。
 Intra-SN CPC手順では、UE3は、SN2によって準備された1又はそれ以上の候補PSCellの設定と、これらに関連付けられた1又はそれ以上のCPC実行条件をSN2から受信する。各候補PSCellの設定及び関連付けられたCPC実行条件は、intra-SN CPCのためのCPC設定に包含される。SN2は、これらをUE3にMN1を介して送ってもよいし、SN2とUE3の間の直接シグナリング無線ベアラ(i.e., Signalling Radio Bearer 3 (SRB3))を介してUE3に送ってもよい。より具体的には、各候補PSCellの設定はSN2のRRCメッセージの情報要素(IE)(e.g., condRRCReconfig)であり、1又はそれ以上の候補PSCellの設定及び関連付けられたCPC実行条件は、SN2により生成される条件付きモビリティ設定情報(e.g., conditionalReconfiguration IE)に包含される。
 各候補PSCellの設定は、候補PSCellに対する設定情報を少なくとも含む。各候補PSCellの設定は、候補PSCellに付随する(つまり、候補PSCellと一緒に又は関連付けられて設定される)1又はそれ以上のSCellsに対する設定情報をさらに含んでもよい。各候補PSCellの設定は、radio bearer(RB)設定、cell group(CG)設定、SCG設定、若しくはSCG無線リソース設定、又はこれらの任意の組み合わせであってもよい。具体的には、各候補PSCellの設定は、SN2によって生成されたSN RRC Reconfigurationメッセージであってもよい。
 Intra-SN CPCのCPC実行条件は、1又はそれ以上のトリガー条件により構成されてもよい。CPCイベントをトリガーする条件又は基準は、測定報告イベントのためのそれと類似してもよく、例えばCondEvent A3、CondEvent A4、又はCondEvent A5であってもよい。UE3は、CPC実行条件(conditions)を評価する。1つの候補PSCellの実行条件が満たされたなら、UE3は、ソースPSCellからデタッチし、選択された候補PSCell(i.e., その実行条件が満たされた候補PSCell)に対応する設定を適用し、選択された候補PSCellに同期する。2つ以上の候補PSCellsの実行条件が満たされたなら、UE3はそれら候補PSCellsから1つを選択し、上述の動作を実行してもよい。
 図3は、複数の実施形態に係る無線通信システムのさらに他の構成例を示している。図3の例では、無線通信システムは、RANノード6、RANノード7、及びUE3を含む。図3に示された各要素(ネットワーク機能)は、例えば、専用ハードウェア上のネットワークエレメントとして、専用ハードウェア上で動作するソフトウェア・インスタンスとして、又はアプリケーション・プラットフォーム上にインスタンス化された仮想化機能として実装されることができる。RANノード6及び7の各々は、EUTRANノード又はNG-RANノードであってもよい。EUTRANノードは、eNB又はen-gNBであってもよい。NG-RANノードは、gNB又はng-eNBであってもよい。RANノード6のRATは、RANノード7のそれと異なっていてもよい。
 RANノード6は、少なくとも1つのセル61を提供する。RANノード7は、1又はそれ以上のセル(e.g., 4つのセル71~74)を提供する。図3の例では、RANノード6により提供されるセル61がUE3の現在のサービングセルであり、UE3はセル61からRANノード7により提供されるいずれかのセルにハンドオーバされる。したがって、以下では、RANノード6はソースノード又はソースRANノードと呼ばれ、RANノード7はターゲットノード又はターゲットRANノードと呼ばれることがある。セル61はソースセルと呼ばれる。ソースノード6、ターゲットノード7、及びUE3は、条件付きハンドオーバ(CHO)をサポートする。CHOは、CHO実行条件が満たされた場合にのみ実行されるハンドオーバ手順である。
 図3には示されていないが、複数の候補ターゲットノード7によって提供される複数の候補ターゲットセルがCHOのために準備されてもよい。CHO手順では、UE3は、1又はそれ以上の候補ターゲットノードによって準備された1又はそれ以上の候補ターゲットセルの設定と、これらに関連付けられた1又はそれ以上のCHO実行条件(e.g., condExecutionCond)をソースノード6から受信する。1又はそれ以上の候補ターゲットセルの設定及び関連付けられたCHO実行条件は、CHO設定に包含される。より具体的には、各候補ターゲットセルの設定はソースノード6のRRCメッセージの情報要素(IE)(e.g., condRRCReconfig)であり、1又はそれ以上の候補ターゲットセルの設定及び関連付けられたCHO実行条件は、ソースノード6により生成される条件付きモビリティ設定情報(e.g., conditionalReconfiguration IE)に包含される。
 各候補ターゲットセルの設定は、この候補ターゲットセルを提供する(又は準備した)候補ターゲットノード(e.g., ターゲットノード7)によって生成される。各候補ターゲットセルの設定は、この候補ターゲットセルを提供する(又は準備した)候補ターゲットノード(e.g., ターゲットノード7)によって生成された、radio bearer(RB)設定、無線リソース設定、若しくはRRC Reconfigurationメッセージ、又はこれらの任意の組み合わせであってもよい。
 一方、CHO実行条件は、ソースノード6により生成される。CHO実行条件は、1又はそれ以上のトリガー条件により構成されてもよい。CHOイベントをトリガーする条件又は基準は、測定報告イベントのためのそれと類似してもよく、例えばCondEvent A3、CondEvent A4、又はCondEvent A5であってもよい。UE3は、CHO実行条件(conditions)を評価する。1つの候補ターゲットセルの実行条件が満たされたなら、UE3は、ソースノード6からデタッチし、選択された候補ターゲットセル(i.e., その実行条件が満たされた候補ターゲットセル)に対応する設定を適用し、選択された候補ターゲットセルに同期する。2つ以上の候補ターゲットセルの実行条件が満たされたなら、UE3はそれら候補ターゲットセルから1つを選択し、上述の動作を実行してもよい。
 CHOは、デュアルコネクティビティのMN間(inter-MN)ハンドオーバ、マスターノードからeNB/gNBへの変更(Master Node to eNB/gNB Change)、又はeNB/gNBからマスターノードへの変更(eNB/gNB to Master Node Change)であってもよい。
 RANノード1、2、4、6、及び7のうち1つ又はそれ以上は、図4に示される構成を有してもよい。図4に示された各要素(ネットワーク機能)は、例えば、専用ハードウェア上のネットワークエレメントとして、専用ハードウェア上で動作するソフトウェア・インスタンスとして、又はアプリケーション・プラットフォーム上にインスタンス化された仮想化機能として実装されることができる。RANノード1、2、4、6、及び7のうち1つ又はそれ以上は、これには限定されないが、図4に示されるようにCU41及び1又はそれ以上のDUs42を含んでもよい。CU41及び各DU42の間はインタフェース401によって接続される。UE3は、少なくとも1つのエアインタフェース402を介して、少なくとも1つのDU42に接続される。
 CU41は、gNBのRRC、Service Data Adaptation Protocol(SDAP)、及びPacket Data Convergence Protocol(PDCP)protocols(又はgNBのRRC及びPDCP protocols)をホストする論理ノードであってもよい。DU42は、gNBのRadio Link Control(RLC)、Medium Access Control(MAC)、及びPhysical(PHY)layersをホストする論理ノードであってもよい。CU41がgNB-CUでありDUs42がgNB-DUsであるなら、インタフェース401はF1インタフェースであってもよい。CU41は、CU-CP及びCU-UPを含んでもよい。
 本明細書では、条件付きモビリティとの用語が使用される。既に説明したように、条件付きモビリティは、限定されないが例えば、CHO、CPA、intra-SN CPC(又は条件付きSN modification)、及びinter-SN CPC(又は条件付きSN変更)のうち1又はそれ以上を指す総称である。条件付きモビリティは、条件付き再構成と呼ばれてもよい。デュアルコネクティビティに関するCPA、intra-SN CPC、及びinter-SN CPCは、条件付きデュアルコネクティビティ手順又は条件付きデュアルコネクティビティ関連手順と呼ばれてもよい。
 図1~図3を参照した上述の説明は、主に条件付きモビリティに関するものであるが、これらの図面に記載されたRANノード及びUEは、非条件付きモビリティ、つまり通常のUEモビリティも当然にサポートする。既に説明したように、本明細書の定義では、モビリティ又はモビリティ関連手順との用語は、条件付き及び非条件付きハンドオーバ手順及び条件付き及び非条件付きデュアルコネクティビティ手順を包括的に指す場合がある。
 本明細書では、MN RRCメッセージ、MN RRC (Connection) Reconfigurationメッセージ、SN RRCメッセージ、SN RRC Reconfigurationメッセージとの用語が使用される。これらの用語は、MNによって生成されるRRCメッセージをSNによって生成されるRRCメッセージから区別するために便宜的に使用される。したがって、MN RRCメッセージ及びMN RRC (Connection) Reconfigurationメッセージは、単にRRCメッセージ及びRRC Reconfigurationメッセージ(又はRRC Connection Reconfigurationメッセージ)と呼ばれてもよい。同様に、SN RRCメッセージ及びSN RRC Reconfigurationメッセージは、単にRRCメッセージ及びRRC Reconfigurationメッセージと呼ばれてもよい。
 図1~図4を参照して説明されたUE3は、エアリアルUEであってもよい。エアリアルUEは、エアリアルUE通信をサポートするUE、またはエアリアル通信が可能なUEを意味する。エアリアルUEは、unmanned or uncrewed aerial vehicle (UAV) に実装されたUEであってもよい。この場合、UE3は、LTEエアリアルUEがサポートするべき非特許文献1乃至3に記載された機能及び動作を提供してもよい。また、UE3は、LTEエアリアルUEが提供するそれらと同様の機能及び動作を提供するNRエアリアルUEであってもよい。同様に、RAN(e.g., RANノード1、2、4、6、及び7)は、エアリアルUEにLTE接続を提供するためにE-UTRANがサポートするべき非特許文献1乃至3に記載された機能及び動作を提供してもよい。また、RANは、エアリアルUE通信をサポートするためにE-UTRANが提供するそれらと同様の機能及び動作を提供するNG-RANであってもよい。例えば、RAN(e.g., RANノード1、2、4、6、又は7)は、3D位置(locations)として定義される多数のウェイポイントを含む飛行経路情報を報告するようUE3に要求してもよい。UE3は、UE3で飛行経路情報が利用可能であれば、設定された数のウェイポイントを報告する。要求に設定され且つUE3で利用可能であれば、レポートはウェイポイントごとのタイムスタンプを含むことができる。
 以下で説明される実施形態は、UEモビリティ又はデュアルコネクティビティに関するRANノード間のシグナリングの改良を提供する。
<第1の実施形態>
 本実施形態は、UEモビリティ関連手順又はデュアルコネクティビティ関連手順におけるRANノード間シグナリングの改良を提供する。本実施形態に係る無線通信システムの構成例は、図1乃至4を参照して説明された複数の構成例のいずれかと同様であってもよい。
 図5は、RANノード間シグナリングの一例を示している。ステップ520では、RANノード501は、UE3に関するモビリティ関連手順又はデュアルコネクティビティ関連手順において、UE3の計画経路情報をRANノード502に送る。言い換えると、RANノード501は、UE3の計画経路情報を含むモビリティ関連又はデュアルコネクティビティ関連メッセージをRANノード502に送る。計画経路情報は、RANノード501の要求に基づいて、UE3からRANノード501に報告された情報であってもよい。ステップ520の前に、RANノード501はUE3から計画経路情報を受信してもよい。計画経路情報は、UEの計画された又は予定の位置(locations)を示す。これらの位置は、3D位置であってもよいし、2D位置であってもよい。一例では、計画経路情報は、エアリアルUE(i.e., エアリアルUE機能を有するUE3)に関係してもよく、3D位置(locations)として定義されるウェイポイント(waypoints)を含む飛行経路情報であってもよい。他の例では、計画経路情報は、陸上ベース車両又は移動ロボットに埋め込まれたUE3の計画された又は予定の2D位置(locations)を記述してもよい。
 モビリティ関連手順は、ハンドオーバ手順又は条件付きハンドオーバ(CHO)手順であってもよい。RANノード501及び502は、それぞれ、ハンドオーバ又はCHOのソースRANノード(e.g., RANノード6)及びターゲットRANノード(e.g., RANノード7)であってもよい。この場合、計画経路情報を運ぶステップ520のメッセージは、HANDOVER REQUESTメッセージであってもよい。計画経路情報は、inter-node RRCメッセージに包含されてもよい。より具体的には、RANノード501は、HANDOVER REQUESTメッセージ内のinter-node RRCメッセージを介して、計画経路情報をRANノード502に送ってもよい。一般的にinter-node RRCメッセージは、X2インタフェース又はXnインタフェース等のノード間インタフェースを介してRANノード間で送信されるRRCメッセージである。
 デュアルコネクティビティ関連手順は、SN追加手順、条件付きSN追加(又はCPA)手順、SN変更手順、又は条件付きSN変更(若しくはinter-SN CPC)手順であってもよい。RANノード501及び502は、それぞれ、SN追加手順又は条件付きSN追加手順におけるMN及びSNであってもよい。RANノード501及び502は、それぞれ、SN変更手順又は条件付きSN変更手順におけるMN及びターゲットSNであってもよい。これらの場合、計画経路情報を運ぶステップ520のメッセージは、S-NODE ADDITION REQUESTメッセージであってもよい。あるいは、RANノード501及び502は、それぞれ、SN変更手順又は条件付きSN変更手順におけるソースSN及びMNであってもよい。この場合、ステップ520のメッセージは、S-NODE CHANGE REQUIREDメッセージであってもよい。
 図5を参照して説明されたシグナリングによれば、UE3のためのモビリティ関連又はデュアルコネクティビティ関連手順において、RANノード501はUE3の計画経路情報を他のRANノード502に提供する。これにより、例えば、RANノード502は、UE3のための(条件付き)ハンドオーバ又は(条件付き)デュアルコネクティビティ手順を最適化するために計画経路情報を使用できる。
 RANノード502は、受信した計画経路情報を様々な用途に用いることができる。例えば、RANノード502は、UE3の計画された位置とオプションで位置毎のタイムスタンプを考慮して、現在又は将来のUE3の位置を予測又は決定してもよい。RANノード502は、UE3のモビリティに関する様々な判定において、計画経路情報に基づいて予測又は決定されたUE3の位置を考慮してもよい。これらの用途の例が以下に説明される。
 図6は、RANノード502の動作の第1の例を示している。ステップ601は、図5のステップ520に相当する。具体的には、RANノード502は、UE3に関するモビリティ関連又はデュアルコネクティビティ関連手順において、UE3の複数の計画された位置を示す計画経路情報を他のRANノード501から受信する。
 ステップ602では、RANノード502は、ターゲットセルへのUE3の(条件付き)ハンドオーバ又はUE3のための(条件付き)SN追加若しくは変更を受け入れるか否かを判定するために、受信した計画経路情報を用いる。例えば、RANノード502は、UE3の計画された位置とオプションで位置毎のタイムスタンプを考慮して、現在又は将来のUE3の位置を予測又は決定してもよい。RANノード502は、RANノード501から要求された(条件付き)ハンドオーバを受け入れるか否かを判定するために、計画経路情報に基づいて予測又は決定されたUE3の位置を考慮してもよい。要求された(候補)ターゲットセルが予測又は決定されたUE3の位置をカバーしているなら、RANノード502は、(条件付き)ハンドオーバを受け入れてもよい。さらに又はこれに代えて、RANノード502は、RANノード501から要求された(条件付き)SCG追加又は変更を受け入れるか否かを判定するために、計画経路情報に基づいて予測又は決定されたUE3の位置を考慮してもよい。要求された(候補)PSCellが予測又は決定されたUE3の位置をカバーしているなら、RANノード502は(条件付き)SCG追加又は変更を受け入れてもよい。
 図7は、RANノード502の動作の第2の例を示している。ステップ701は、図6のステップ601と同様である。ステップ702では、RANノード502は、1又はそれ以上のターゲットセル又は候補セルのうち受け入れ可能な少なくとも1つのセルを決定するために、受信した計画経路情報を用いる。例えば、RANノード502は、UE3の計画された位置とオプションで位置毎のタイムスタンプを考慮して、現在又は将来のUE3の位置を予測又は決定してもよい。RANノード502は、予測又は決定されたUE3の位置をカバーする又はその周囲に位置する少なくとも1つのセルを受け入れてもよい。
 図8は、RANノード502の動作の第3の例を示している。ステップ801は、図6のステップ601と同様である。ステップ802では、RANノード502は、ターゲットセル又は候補セルの設定を生成又は準備するために計画経路情報を用いる。例えば、RANノード502は、UE3の計画された位置とオプションで位置毎のタイムスタンプを考慮して、現在又は将来のUE3の位置を予測又は決定してもよい。RANノード502は、予測又は決定されたUE3の位置を考慮して、ターゲットセル又は候補セルの設定(e.g., サービングセル設定、MCG設定、SCG設定)を生成してもよい。
 図9は、RANノード502の動作の第4の例を示している。ステップ901は、図6のステップ601と同様である。ステップ902では、RANノード502は、キャリアアグリゲーションのセカンダリセルを選択するために計画経路情報を用いる。言い換えると、RANノード502は、MCG内又はSCG内の1又はそれ以上のセカンダリセル(SCells)を決定するために計画経路情報を用いる。例えば、RANノード502は、UE3の計画された位置とオプションで位置毎のタイムスタンプを考慮して、現在又は将来のUE3の位置を予測又は決定してもよい。RANノード502は、予測又は決定されたUE3の位置をカバーする又はその周囲に位置する少なくとも1つのセルをセカンダリセルとして選択してもよい。
 以下は、ステップ520のメッセージの幾つかの具体例を提供する。図10は、inter-node RRCメッセージの1つであるHandoverPreparationInformationメッセージのフォーマットの一例を示している。HandoverPreparationInformationメッセージは、HANDOVER REQUESTメッセージを介してソースRANノード(e.g., RANノード6又は501)からターゲットRANノード(e.g., RANノード7又は502)に送られることができる。図10の例では、HandoverPreparationInformationメッセージは、AS-Context情報要素又はフィールド1001内にflightPathInfo情報要素又はフィールド1002を含むことができる。flightPathInfo情報要素又はフィールド1002は、UEの計画された又は予定の位置(locations)を表す位置座標(location coordinates)を示す。flightPathInfo情報要素又はフィールド1002は、オプションで、位置ごとのタイムスタンプを示す。
 図11は、HANDOVER REQUESTメッセージのフォーマットの一例を示している。図11の例では、HANDOVER REQUESTメッセージは、オプションで、新たな情報要素“Flight Path Information List”を含む。Flight Path Information List IEは、所定の最大数までのFlight Path Information Items IEを含む。Flight Path Information Items IEは、Waypoint Location IEを含み、オプションでTime Stamp IEを含む。Waypoint Location IEは、UEの計画された位置(location)の位置座標(location coordinates)を示す。Time Stamp IEは、位置ごとのタイムスタンプを示す。
 図12は、inter-node RRCメッセージの1つであるCG-ConfigInfoメッセージのフォーマットの一例を示している。CG-ConfigInfoメッセージは、S-NODE ADDITION REQUESTメッセージを介してMN(e.g., MN1又はRANノード501)からSN(e.g., SN2、SN4、又はRANノード502)に送られることができる。図12の例では、CG-ConfigInfoメッセージは、flightPathInfo情報要素又はフィールド1201を含むことができる。flightPathInfo情報要素又はフィールド1201は、UEの計画された又は予定の位置(locations)を表す位置座標(location coordinates)を示す(1202)。flightPathInfo情報要素又はフィールド1201は、オプションで、位置ごとのタイムスタンプを示す(1203)。
 図13は、S-NODE ADDITION REQUESTメッセージのフォーマットの一例を示している。図13の例では、S-NODE ADDITION REQUESTメッセージは、オプションで、新たな情報要素“Flight Path Information List”を含む。Flight Path Information List IEは、所定の最大数までのFlight Path Information Items IEを含む。Flight Path Information Items IEは、Waypoint Location IEを含み、オプションでTime Stamp IEを含む。Waypoint Location IEは、UEの計画された位置(location)の位置座標(location coordinates)を示す。Time Stamp IEは、位置ごとのタイムスタンプを示す。
 図10から図13に示されたフォーマットは適宜変形されることができる。例えば、図10から図13に示された情報要素又はフィールドの名称は一例であって限定されたものではない。
 C-RAN配置が使用される場合、計画経路情報は、ハンドオーバのソースDUからCUを介してターゲットDUに送られてもよい。この場合、計画経路情報は、図10に示されたのと同様のHandoverPreparationInformationメッセージによってソースDUからCUに、且つCUからターゲットDUに送られてもよい。これに代えて、計画経路情報は、ハンドオーバのソースCUから(ターゲットCUを介して)ターゲットDUに送られてもよい。この場合、計画経路情報は、図10に示されたのと同様のHandoverPreparationInformationメッセージによってソースCUから(ターゲットCUを介して)ターゲットDUに送られてもよい。なお、HandoverPreparationInformationは、DUからCUへのDU to CU RRC Information IEまたはCUからDUへのCU to DU RRC Information IEに包含されて送信されてもよい。
<第2の実施形態>
 本実施形態は、デュアルコネクティビティに関係するRANノード間シグナリングの改良を提供する。本実施形態に係る無線通信システムの構成例は、図1、2、及び4を参照して説明された複数の構成例のいずれかと同様であってもよい。
 図14は、RANノード間シグナリングの一例を示している。ステップ1420では、MN1401は、UE3の計画経路情報をSN1402に送る。計画経路情報は、MN1401の要求に基づいて、UE3からMN1401に報告された情報であってもよい。ステップ1420の前に、MN1401はUE3から計画経路情報を受信してもよい。計画経路情報は、UEの計画された又は予定の位置(locations)を示す。これらの位置は、3D位置であってもよいし、2D位置であってもよい。一例では、計画経路情報は、エアリアルUE(i.e., エアリアルUE機能を有するUE3)に関係してもよく、3D位置(locations)として定義されるウェイポイント(waypoints)を含む飛行経路情報であってもよい。他の例では、計画経路情報は、陸上ベース車両又は移動ロボットに埋め込まれたUE3の計画された又は予定の2D位置(locations)を記述してもよい。
 計画経路情報を運ぶステップ1420のメッセージは、デュアルコネクティビティ関連手順において送信されてもよい。デュアルコネクティビティ関連手順は、SN追加手順又は条件付きSN追加(又はCPA)手順であってもよい。この(条件付き)SN追加手順は、SN変更手順内でMNとターゲットSNの間で行われてもよい。計画経路情報を運ぶステップ1420のメッセージは、S-NODE ADDITION REQUESTメッセージであってもよい。計画経路情報は、inter-node RRCメッセージに包含されてもよい。より具体的には、RANノード1401は、S-NODE ADDITION REQUESTメッセージ内のinter-node RRCメッセージを介して、計画経路情報をRANノード1402に送ってもよい。これらのフォーマットは、図12及び図13を用いて説明された例と同様であってもよい。
 計画経路情報を運ぶステップ1420のメッセージは、デュアルコネクティビティに関する他のメッセージであってもよい。例えば、ステップ1420のメッセージは、S-NODE MODIFICATION REQUEST又はS-NODE MODIFICATION CONFIRMメッセージであってもよい。
 図14を参照して説明されたシグナリングによれば、MN1401はUE3の計画経路情報をSN1402に提供する。これにより、例えば、SN1402は、UE3のための(条件付き)SN追加を最適化するため、又はUE3のためのSCG設定を最適化するために計画経路情報を使用できる。
 SN1402は、受信した計画経路情報を様々な用途に用いることができる。例えば、SN1402は、UE3の計画された位置とオプションで位置毎のタイムスタンプを考慮して、現在又は将来のUE3の位置を予測又は決定してもよい。SN1402は、UE3のためのデュアルコネクティビティに関する様々な判定において、計画経路情報に基づいて予測又は決定されたUE3の位置を考慮してもよい。これらの用途は、第1の実施形態でデュアルコネクティビティに関して説明されたそれらと同様であってもよい。
 図15は、RANノード間シグナリングの一例を示している。ステップ1520では、SN1502は、UE3の計画経路情報をMN1501に送る。計画経路情報は、SN1502の要求に基づいて、UE3からSN1502に報告された情報であってもよい。ステップ1520の前に、SN1502はUE3から計画経路情報を受信してもよい。計画経路情報の定義及び例は、図14に関して説明されたそれらと同様であってもよい。
 計画経路情報を運ぶステップ1520のメッセージは、例えば、S-NODE MODIFICATION REQUEST ACKNOWLEDGE、S-NODE MODIFICATION REQUIRED、又はS-NODE CHANGE REQUIREDメッセージであってもよい。計画経路情報は、これらのメッセージに含まれるinter-node RRCメッセージに包含されてもよい。Inter-node RRCメッセージは、例えば、S-NG-RAN node to M-NG-RAN node Container IEに含まれるCG-ConfigメッセージまたはCG-CandidateListメッセージでもよい。
 図15を参照して説明されたシグナリングによれば、UE3のためのデュアルコネクティビティ関連手順において、SN1502はUE3の計画経路情報をMN1501に提供する。これにより、例えば、MN1501は、UE3のためのデュアルコネクティビティを最適化するため、又はUE3のためのMCG設定を最適化するため、又はUE3のモビリティ(e.g., ハンドオーバ)を最適化するために、計画経路情報を使用できる。
 MN1501は、受信した計画経路情報を様々な用途に用いることができる。例えば、MN1501は、UE3の計画された位置とオプションで位置毎のタイムスタンプを考慮して、現在又は将来のUE3の位置を予測又は決定してもよい。MN1501は、UE3のためのモビリティ及びデュアルコネクティビティに関する様々な判定において、計画経路情報に基づいて予測又は決定されたUE3の位置を考慮してもよい。
 例えば、MN1501は、UE3のハンドオーバのターゲットセルを決定するために、計画経路情報又は計画経路情報に基づいて予測されたUE3の位置を考慮してもよい。当該ハンドオーバは、MN間(inter-MN)ハンドオーバ、マスターノードからeNB/gNBへの変更(Master Node to eNB/gNB Change)、又はeNB/gNBからマスターノードへの変更(eNB/gNB to Master Node Change)であってもよい。
 さらに又はこれに代えて、MN1501は、UE3のためのSN追加又は変更を決定するために、計画経路情報又は計画経路情報に基づいて予測されたUE3の位置を考慮してもよい。言い換えると、MN1501は、UE3のための新たなPSCell又はSNを決定するために、計画経路情報又は計画経路情報に基づいて予測されたUE3の位置を考慮してもよい。SN追加又は変更は、条件付きSN追加又は変更であってもよい。
<第3の実施形態>
 本実施形態は、デュアルコネクティビティに関係するRANノード間シグナリングの改良を提供する。本実施形態に係る無線通信システムの構成例は、図1、2、及び4を参照して説明された複数の構成例のいずれかと同様であってもよい。
 図16は、RANノード間シグナリングの一例を示している。ステップ1620では、MN1601は、UE3に関するエアリアルUE加入情報又はこれから導かれた情報をSN1602に送る。UE3に関するエアリアルUE加入情報は、UE3のユーザのエアリアルUE加入情報であってもよい。エアリアルUE加入情報は、コアネットワークのHSS又はUnified Data Management (UDM) からコアネットワークノード(e.g., MME又はAccess and Mobility Management Function (AMF))を介してMN1に送られた情報であってもよい。エアリアルUE加入情報は、過去のハンドオーバにおいて、他のRANノードからMN1601に送られた情報であってもよい。
 エアリアルUE加入情報は、エアリアルUEsを操作するためのユーザの加入認可(user's subscription authorisation)を示す。エアリアルUE加入情報は、UE3(又はそのユーザ)がエアリアルUE機能の使用を許可(allowed)されているかどうかを知るためにRANノードによって使用されることができる。ステップ1620でMN1601からSN1602に送られるエアリアルUE加入情報又はこれから導かれた情報は、UE3(又はそのユーザ)がエアリアルUE機能の使用を許可されているか否か示してもよい。さらに又はこれに代えて、当該情報は、UE3がエアリアルUEであるか否かを示してもよい。さらに又はこれに代えて、当該情報は、UE3がエアリアルUE機能をサポートするか否かを示してもよい。
 エアリアルUE加入情報を運ぶステップ1620のメッセージはデュアルコネクティビティ関連メッセージであってもよい。MN1601は、SN追加手順において、エアリアルUE加入情報をSN1602に送ってもよい。このSN追加手順は、条件付きSN追加手順であってもよい。この場合、ステップ1620のメッセージは、S-NODE ADDITION REQUESTメッセージであってもよい。これに代えて、ステップ1620のメッセージは、S-NODE MODIFICATION REQUESTメッセージであってもよい。
 図16を参照して説明されたシグナリングによれば、MN1601は、UE3に関するエアリアルUE加入情報をSN1602に提供する。これにより、例えば、SN1602は、エアリアルUEに関連した操作をUE3のために行うか否かを決めるために、エアリアルUE加入情報を利用できる。
 図16の手順は以下のように変形されてもよい。MN1601は、UE3の複数の計画された位置を示す飛行経路情報を、エアリアルUE加入情報又はこれから導かれた情報と共にSN1602に送ってもよい。MN1601からSN1602への飛行経路情報の送信は、第2の実施形態で図14を参照して説明されたそれと同様であってもよい。
 図17は、S-NODE ADDITION REQUESTメッセージのフォーマットの一例を示している。図17の例では、S-NODE ADDITION REQUESTメッセージは、オプションで、新たな情報要素“Aerial UE subscription information”を含む。Aerial UE subscription information IEは、UE3又はそのユーザがエアリアルUE機能の使用を許可(allowed)されているかどうかを知るためにSNによって使用されることができる。Aerial UE subscription information IEは、列挙(enumerated)型であり、“allowed”又は“not allowed”を示してもよい。
 図17の例では、S-NODE ADDITION REQUESTメッセージは、オプションで、新たな情報要素“Flight Path Information List”を含む。当該情報要素は、図13に示されたそれと同様である。
<第4の実施形態>
 本実施形態は、条件付きモビリティに関するRANノードの動作の改良を提供する。本実施形態に係る無線通信システムの構成例は、図1乃至4を参照して説明された複数の構成例のいずれかと同様であってもよい。
 図18は、本実施形態に係るRANノードの動作の一例を示している。当該RANノードは、条件付きハンドオーバ、条件付きSN追加、条件付きSN変更(若しくはinter-SN CPC)、又は条件付きSN修正(若しくはintra-SN CPC)のためにUE3に提供される1又はそれ以上の実行条件を決定するノードである。具体的には、当該RANノードは、条件付きハンドオーバのソースRANノード(e.g., 図3のRANノード6)、条件付きSN追加のMN(e.g., 図2のMN1)、MNにより開始される(MN-initiated)条件付きSN変更のMN(e.g., 図1のMN1)、SNによって開始される(SN-initiated)条件付きSN変更のソースSN(e.g., 図1のSN2)、又は条件付きSN修正のSN(e.g., 図2のSN2)であってもよい。
 ステップ1801では、RANノードは、UE3の複数の計画された位置を示す計画経路情報を取得する。計画経路情報は、RANノードの要求に基づいて、UE3からRANノードに報告された情報であってもよい。RANノードは、メモリ又はストレージにストアされていた計画経路情報を読み出してもよい。RANノードは、他のRANノードから計画経路情報を受信してもよい。
 計画経路情報は、UEの計画された又は予定の位置(locations)を示す。これらの位置は、3D位置であってもよいし、2D位置であってもよい。一例では、計画経路情報は、エアリアルUE(i.e., エアリアルUE機能を有するUE3)に関係してもよく、3D位置(locations)として定義されるウェイポイント(waypoints)を含む飛行経路情報であってもよい。他の例では、計画経路情報は、陸上ベース車両又は移動ロボットに埋め込まれたUE3の計画された又は予定の2D位置(locations)を記述してもよい。
 ステップ1802では、RANノードは、UE3の条件付きモビリティのための1又はそれ以上の実行条件を計画経路情報に基づいて決定する。
 1又はそれ以上の実行条件は、UE3の位置が、基準位置にあること、基準位置から設定された距離内にあること、又は基準領域内にあることを含んでもよい。RANノードは、基準位置又は基準領域を、計画経路情報により示される計画された位置に基づいて決定してもよい。RANノードは、UE3の計画された位置とオプションで位置毎のタイムスタンプを考慮して、現在又は将来のUE3の位置を予測又は決定してもよい。そして、RANノードは、予測又は決定されたUE3の位置に対応するように、基準位置又は基準領域を決定又は設定してもよい。
 さらに又はこれに代えて、1又はそれ以上の実行条件は、UE3と条件付き再設定候補の基準位置との距離が設定された閾値よりも短くなったことを含んでもよい。
 さらに又はこれに代えて、1又はそれ以上の実行条件は、予定時刻になったことを含んでもよい。予定時刻は、計画経路情報に基づいて予測されたUE3の将来の位置に関連付けられることができる。
 本実施形態で説明された動作によれば、RANノードは、UE3の計画経路情報にもとづいてUE3の条件付きモビリティの実行条件を決定できる。これは、計画経路情報に従って移動するUE3(e.g., エアリアルUE)に適した条件付きモビリティの改良に寄与できる。
<第5の実施形態>
 本実施形態は、ハンドオーバ及び条件付きハンドオーバの改良を提供する。本実施形態に係る無線通信システムの構成例は、図3及び図4を参照して説明された複数の構成例のいずれかと同様であってもよい。
 図19は、UE3のハンドオーバのためのシグナリング手順の一例を示している。当該ハンドオーバは、条件付きハンドオーバであってもよい。ステップ1920では、ソースRANノード1901は、ハンドオーバ要求をターゲットRANノード1902に送る。具体的には、ソースRANノード1901は、HANDOVER REQUESTメッセージをターゲットRANノード1902に送る。当該HANDOVER REQUESTメッセージは、UE3のハンドオーバを要求し、1又はそれ以上のターゲットセルを示す。当該HANDOVER REQUESTメッセージは、さらに、UE3の複数の計画された位置を示す計画経路情報を含む。計画経路情報は、ソースRANノード1901の要求に基づいて、UE3からソースRANノード1901に報告された情報であってもよい。計画経路情報は、UEの計画された又は予定の位置(locations)を示す。これらの位置は、3D位置であってもよいし、2D位置であってもよい。一例では、計画経路情報は、エアリアルUE(i.e., エアリアルUE機能を有するUE3)に関係してもよく、3D位置(locations)として定義されるウェイポイント(waypoints)を含む飛行経路情報であってもよい。他の例では、計画経路情報は、陸上ベース車両又は移動ロボットに埋め込まれたUE3の計画された又は予定の2D位置(locations)を記述してもよい。
 ステップ1940では、ターゲットRANノード1902は、ターゲットセルを選択する。具体的には、ターゲットRANノード1902は、HANDOVER REQUESTメッセージに示された1又はそれ以上のターゲットセルへのハンドオーバ要求が許容されるか否かを判定してもよい。HANDOVER REQUESTメッセージに示されたターゲットセルへのハンドオーバ要求が許容されない場合に、ターゲットRANノード1902は、HANDOVER REQUESTメッセージに示されたターゲットセルとは異なる他のセルを代替ターゲットセルとして選択してもよい。あるいは、HANDOVER REQUESTメッセージに示された1又はそれ以上のターゲットセルよりもUE3を受け入れるために相応しいセルがあるなら、ターゲットRANノード1902は、そのようなセルを代替又は追加ターゲットセルとして選択してもよい。
 ターゲットRANノード1902は、UE3の計画経路情報に基づいて、使用して、又は考慮して、代替又は追加ターゲットセルを選択又は決定してもよい。例えば、ターゲットRANノード1902は、UE3の計画された位置とオプションで位置毎のタイムスタンプを考慮して、現在又は将来のUE3の位置を予測又は決定してもよい。ターゲットRANノード1902は、予測又は決定されたUE3の位置をカバーする又はその周囲に位置する少なくとも1つのセルを代替又は追加ターゲットセルとして選択してもよい。
 ターゲットRANノード1902は、HANDOVER REQUESTメッセージが計画経路情報を含むことを少なくとも条件として、代替又は追加ターゲットセルの選択又は決定を行ってもよい。言い換えると、HANDOVER REQUESTメッセージが計画経路情報を含むなら、ターゲットRANノード1902は、代替又は追加ターゲットセルの選択又は決定してもよい。
 ステップ1960では、ターゲットRANノード1902は、ハンドオーバ要求応答をソースRANノード1901に送る。具体的には、ターゲットRANノード1902は、HANDOVER REQUEST ACKNOWLEDGEメッセージをソースRANノード1901に送る。当該HANDOVER REQUEST ACKNOWLEDGEメッセージは、UE3のハンドオーバを受け入れ可能な1又はそれ以上の代替又は追加ターゲットセルを示す。当該HANDOVER REQUEST ACKNOWLEDGEメッセージは、代替又は追加ターゲットセルの識別子を示してもよい。
 図20は、図19を用いて説明されたシグナリング手順の変形例を示している。図20の例では、ステップ2020のHANDOVER REQUESTメッセージは、代替セルの提案を許可することを示す明示的な表示を含む。当該表示の名称は、限定されないが例えば、Alternative Target Cell Allowed 情報要素であってもよい。ステップ2020及び2060は、図19のステップ1940及び1960と同様である。ただし、ステップ2040では、HANDOVER REQUESTメッセージが代替セルの提案を許可することを示す上記の表示を含むことを条件として、ターゲットRANノード1902は、代替又は追加ターゲットセルの選択又は決定を行う。
 図19及び図20を参照して説明されたハンドオーバ手順によれば、ターゲットRANノード1902は、それが有用である特定の状況又は条件下でのみ、代替又は追加ターゲットセルを提案できる。
<その他の実施形態1>
 UE3は、計画経路情報に示された各位置において、ネットワーク(RANノード)により指定された測定を行い、測定結果とUE3の位置情報とをログとして保存してもよい。これに代えて、UE3は計画経路情報に示された各位置において、その時点で保有する測定結果とUE3の位置情報とをログとして保存してもよい。UE3は、保存されたログをネットワークに報告してもよい。これらは、即時(Immediate) Minimization of Drive Test (MDT) 又はログ(Logged)MDTであってもよい。即時(Immediate) MDTの場合、測定報告手順(measurement report)によって報告されてもよい。例えば、UE3は計画経路情報に示された各位置に到達したこと(または滞在すること)を契機に、その時点で保有する測定結果とUE3の位置情報をネットワークに報告してもよい。
<その他の実施形態2>
 RANノードは、高度に関連づけたビーム・マネジメントを行ってもよい。具体的には、RANノードは、ビームまたはビーム制御に関する設定を高度(altitude/height)に紐づけてもよい。例えば、UE3がエアリアルUEであるなら、RANノードは、高度に応じたビーム又はビーム制御に関する設定をUE3に予め設定してもよい。UE3は、自身の高度に合わせてビーム又はビーム制御設定を選択してもよい。ビーム制御設定は、Transmission Configuration Indicator (TCI) state IE、MeasConfig IE、BeamFailureRecoveryConfig IE、BeamFailureRecoveryServingCellConfig IE、又はこれらの任意の組み合わせであってもよい。さらに、TCI state IEは、Multiple Transmission and Reception Point (mTRP) 動作に関係してもよい。例えば、RANノードは計画経路情報を基に、複数のセルに紐づくTRPsのそれぞれに対応させた高度に応じたビーム又はビーム制御に関する設定をUE3に予め設定してもよい。UE3は、自身の高度に合わせてビーム又はビーム制御設定を選択してもよい。上述の実施形態において、モビリティ関連手順又はデュアルコネクティビティ関連手順におけるそれぞれのRANノードは、これらを実行してもよい。
<その他の実施形態3>
 RANノードは、ウェイポイントに関連づけたビーム・マネジメントを行ってもよい。具体的には、RANノードは、ビームまたはビーム制御に関する設定をウェイポイントに紐づけてもよい。例えば、UE3がエアリアルUEであるなら、RANノードは、ウェイポイントに応じたビーム又はビーム制御に関する設定をUE3に予め設定してもよい。UE3は、自身の3D位置に合わせてビーム又はビーム制御設定を選択してもよい。ビーム制御設定は、TCI state IE、MeasConfig IE、BeamFailureRecoveryConfig IE、BeamFailureRecoveryServingCellConfig IE、又はこれらの任意の組み合わせであってもよい。さらに、TCI state IEは、mTRP動作に関係してもよい。例えば、RANノードは計画経路情報を基に、複数のセルに紐づくTRPsのそれぞれに対応させたウェイポイントに応じたビーム又はビーム制御に関する設定をUE3に予め設定してもよい。UE3は、自身の3D位置に合わせてビーム又はビーム制御設定を選択してもよい。上述の実施形態において、モビリティ関連手順又はデュアルコネクティビティ関連手順におけるそれぞれのRANノードは、これらを実行してもよい。
<その他の実施形態4>
 モビリティ関連手順の間、UE3はサービングセルの無線品質(e.g., Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ))の劣化などのために無線リンク切断(e.g., Radio Link Failure (RLF))を検出し、当該モビリティ関連手順の実行に失敗する可能性がある。この場合、UE3は例えば無線品質が最も良好なセルまたは優先度の高いセルにおいて無線リンクの再接続(e.g., RRC (connection) re-establishment)を試みる。UE3がエアリアルUEである場合、再接続されるセル(つまり当該セルを管理するRANノード)がエアリアルUEをサポートしていることが好ましい。そこで、RANノードはサービングセルの周辺セル(e.g., 隣接セル)を管理する他のRANノードとの間で、エアリアルUEのサポート情報を共有してもよい。エアリアルUEのサポート情報は、それぞれのセル(e.g., Served Cell)におけるサポートを示してもよいし、RANノードにおけるサポートを示してもよい。また、これらは例えばXn Setup RequestおよびXn Setup Responseメッセージで送信されてもよい。
 RANノードは、周辺セルにおけるエアリアルUEのサポートに関する情報をUE3に送信してもよい。さらに又はこれに代えて、RANノードは、周辺周波数(つまりサービングセルと異なる周波数)におけるエアリアルUEのサポートに関する情報をUE3に送信してもよい。UE3は再接続を行うセルの決定においてエアリアルUEのサポートに関する情報を考慮してもよい。例えば、UE3がエアリアル機能を実行中に再接続が発生した場合、UE3はエアリアルUEをサポートしているセル(または周波数)を優先的に選択してもよい。あるいは、UE3は、再接続が発生したとき又はその前にエアリアル機能を実行していたか否かにかかわらず、エアリアルUEをサポートしているセル(または周波数)を優先的に選択してもよい。エアリアルUEのサポートに関する情報は、報知情報(e.g., いずれかのSystem Information Block (SIB), SIBx)または個別シグナリング(e.g.、 RRCメッセージ)で送信されてもよい。
 さらに、UE3はエアリアルUEのサポートに関する情報を、RRC_IDLE状態またはRRC_INACTIVE状態におけるモビリティ(e.g., cell reselection)において使用してもよい。例えば、UE3はcell reselectionのターゲットセルの選択において、再接続の場合と同様な方法で、エアリアルUEのサポートに関する情報を考慮してもよい。具体的には、UE3は、UE3はエアリアルUEをサポートしているセル(または周波数)を優先的に再選択してもよい。なお、エアリアルUEのサポート情報およびエアリアルUEのサポートに関する情報は、それぞれエアリアル機能のサポート情報およびエアリアル機能のサポートに関する情報、またはそれに準ずる情報でもよい。
 RANノードがC-RAN配置におけるCU(e.g., gNB-CU)であってもよいし、CU及び1又は複数のDUs(e.g., eNB-DUs又はgNB-DUs)の組み合わせであってもよい。RANノードがCU及び1又は複数のDUsの組み合わせの場合、エアリアルUEのサポート情報は、CUから1又は複数のDUsへ送信されてもよいし、1又は複数のDUsのそれぞれからCUへ送信されてもよい。さらに後者の場合、CUはあるDUから受信したエアリアルUEのサポート情報を、他の1又は複数のDUsへ送信(転送)してもよい。一方、エアリアルUEのサポートに関する情報は、CUから(DUを介して)UEへ送信されてもよいし、DUから(一旦CUを介して)UEへ送信されてもよい。
<その他の実施形態5>
 ターゲットRANノードは、モビリティ関連手順におけるターゲットセル(e.g., ハンドオーバのターゲットセル、デュアルコネクティビティのターゲットPSCell)に関する設定情報をUE3に送信するとき、計画経路情報に紐づく将来の候補セルの情報をUE3に送信してもよい。計画経路情報に紐づく将来の候補セルの情報は、例えば計画経路情報に含まれる1つ以上のwaypointsそれぞれにおける推奨されるセルの情報(e.g., waypointとセルの対応を示す情報またはそのリスト)を包含してもよい。さらに、当該推奨されるセルの情報は、ターゲットRANノード自身が管理するセルのみを含んでもよいし、ターゲットRANノードが保有する他のRANノードが管理するセルの情報も含んでもよい。UE3は、モビリティ関連手順の実行中またはサービングセル(e.g., ソースセル、ターゲットセル)に滞在中に無線リンクの再接続(e.g., RRC (connection) re-establishment)が必要になった場合に、それらの情報を基に再接続を試みるセルを決定してもよい。例えば、UE3は再接続を試みる時点の自身の位置に最も近いwaypointを確認し、当該waypointに対して推奨されるセルを優先的に選択するようにしてもよいし、当該セルが選択される優先度を上げるようにしてもよい。これにより、UE3は再接続を試みるセルを適切に選択することができる。
 さらに又はこれに代えて、RANノードは、UE3をRRC_IDLE状態またはRRC_INACTIVE状態に移すために無線接続(e.g., RRC Connection)を解放するRRCメッセージ(e.g., RRC (Connection) Release)を送信するとき、計画経路情報に紐づく将来の候補セルの情報をUE3に送信してもよい。そして、UE3はRRC_IDLE状態またはRRC_INACTIVE状態におけるモビリティ(e.g. cell reselection)においてこれを使用してもよい。
<その他の実施形態6>
 既に述べたように、モビリティ関連手順の間またはサービングセルに滞在中に、UE3はサービングセルの無線品質(e.g., RSRP, RSRQ)の劣化などのために無線リンク切断(e.g., RLF)を検出する可能性がある。さらに、UE3が無線リンクの再接続を試みても失敗する可能性もある。これらの場合、UE3は緊急動作の実行が必要になるかもしれない。例えば、UE3がエアリアルUEであり、RANノードとの間の無線通信によりUE3の移動が制御されている場合、当該無線通信が切断されたことに応じて緊急着陸(emergency landing)の実行が必要になるかもしれない。
 そこで、計画経路情報に紐づく緊急着陸ポイントの情報が、予めUE3に送信されてもよい。計画経路情報に紐づく緊急着陸ポイントの情報は、1又はそれ以上のwaypointsの各々に対応する緊急着陸が許可される又は推奨される地点の位置情報を示してもよい又は含んでもよい。これに代えて、計画経路情報に紐づく緊急着陸ポイントの情報は、サービングセル内若しくはUE3の位置登録エリア内(e.g., Tracking Area (TA))の、又はサービングセル若しくは位置登録エリアに関連付けられた、緊急着陸が許可又は推奨される1又はそれ以上の地点の位置情報でもよい。緊急着陸ポイントの情報がサービングセル内又はそれに紐づく地点を示す場合、サービングセルを提供するRANノードは、UE3がサービングセルに滞在している間に、例えばRRCメッセージでこれをUE3に予め送信しておいてもよい。一方、緊急着陸ポイントの情報がUE3の位置登録エリア内又はそれに紐づく地点を示す場合、コアネットワークノード(e.g., AMF又はMME)がUE3の位置(再)登録手順(e.g., TA update)のときにこれをUE3に予め送信しておいてもよい。
 UE3は、例えば無線リンクの再接続に失敗したなら緊急着陸動作を開始し、際緊急着陸ポイントの情報に基づいて緊急着陸を試みる目標地点を決定してもよい。これにより、UE3は、モビリティ関連手順の間またはサービングセルに滞在中に無線リンク切断(e.g., RLF)を検出した場合、緊急着陸を迅速にかつ安全に実行することができる。
 続いて以下では、上述の複数の実施形態に係るRANノード1、2、4、6、及び7、並びにUE3の構成例について説明する。図21は、上述の実施形態に係るRANノード1の構成例を示すブロック図である。他のRANノード2、4、6、及び7の構成も、図21に示された構成と同様であってもよい。加えて、上述の実施形態で説明された他のRANノード(e.g., RANノード501、502、1401、1402、1501、1502、1601、1602、1901、及び1902)の構成も、図21に示された構成と同様であってもよい。
 図21を参照すると、RANノード1は、Radio Frequency (RF) トランシーバ2101、ネットワークインターフェース2103、プロセッサ2104、及びメモリ2105を含む。RFトランシーバ2101は、UE3を含むUEsと通信するためにアナログRF信号処理を行う。RFトランシーバ2101は、複数のトランシーバを含んでもよい。RFトランシーバ2101は、アンテナアレイ2102及びプロセッサ2104と結合される。RFトランシーバ2101は、変調シンボルデータをプロセッサ2104から受信し、送信RF信号を生成し、送信RF信号をアンテナアレイ2102に供給する。また、RFトランシーバ2101は、アンテナアレイ2102によって受信された受信RF信号に基づいてベースバンド受信信号を生成し、これをプロセッサ2104に供給する。RFトランシーバ2101は、ビームフォーミングのためのアナログビームフォーマ回路を含んでもよい。アナログビームフォーマ回路は、例えば複数の移相器及び複数の電力増幅器を含む。
 ネットワークインターフェース2103は、ネットワークノード(e.g. RANノード2及び4、並びにコアネットワークの制御ノード及び転送ノード)と通信するために使用される。ネットワークインターフェース2103は、例えば、IEEE 802.3 seriesに準拠したネットワークインターフェースカード(NIC)を含んでもよい。
 プロセッサ2104は、無線通信のためのデジタルベースバンド信号処理(データプレーン処理)とコントロールプレーン処理を行う。プロセッサ2104は、複数のプロセッサを含んでもよい。例えば、プロセッサ2104は、デジタルベースバンド信号処理を行うモデム・プロセッサ(e.g. Digital Signal Processor(DSP))とコントロールプレーン処理を行うプロトコルスタック・プロセッサ(e.g. Central Processing Unit(CPU)又はMicro Processing Unit(MPU))を含んでもよい。
 例えば、プロセッサ2104によるデジタルベースバンド信号処理は、Service Data Adaptation Protocol(SDAP)レイヤ、Packet Data Convergence Protocol(PDCP)レイヤ、Radio Link Control(RLC)レイヤ、Medium Access Control(MAC)レイヤ、およびPhysical(PHY)レイヤの信号処理を含んでもよい。また、プロセッサ2104によるコントロールプレーン処理は、Non-Access Stratum(NAS)messages、RRC messages、MAC Control Elements(CE)、及びDownlink Control Information(DCI)の処理を含んでもよい。
 プロセッサ2104は、ビームフォーミングのためのデジタルビームフォーマ・モジュールを含んでもよい。デジタルビームフォーマ・モジュールは、Multiple Input Multiple Output(MIMO)エンコーダ及びプリコーダを含んでもよい。
 メモリ2105は、揮発性メモリ及び不揮発性メモリの組み合わせによって構成される。揮発性メモリは、例えば、Static Random Access Memory(SRAM)若しくはDynamic RAM(DRAM)又はこれらの組み合わせである。不揮発性メモリは、マスクRead Only Memory(MROM)、Electrically Erasable Programmable ROM(EEPROM)、フラッシュメモリ、若しくはハードディスクドライブ、又はこれらの任意の組合せである。メモリ2105は、プロセッサ2104から離れて配置されたストレージを含んでもよい。この場合、プロセッサ2104は、ネットワークインターフェース2103又は図示されていないI/Oインタフェースを介してメモリ2105にアクセスしてもよい。
 メモリ2105は、上述の複数の実施形態で説明されたRANノード1による処理を行うための命令群およびデータを含む1又はそれ以上のソフトウェアモジュール(コンピュータプログラム)2106を格納してもよい。いくつかの実装において、プロセッサ2104は、当該ソフトウェアモジュール2106をメモリ2105から読み出して実行することで、上述の実施形態で説明されたRANノード1の処理を行うよう構成されてもよい。
 なお、RANノード1がCU(e.g. eNB-CU又はgNB-CU)又はCU-CPである場合、RANノード1は、RFトランシーバ2101(及びアンテナアレイ2102)を含まなくてもよい。
 図22は、UE3の構成例を示すブロック図である。Radio Frequency(RF)トランシーバ2201は、RANノードと通信するためにアナログRF信号処理を行う。RFトランシーバ2201は、複数のトランシーバを含んでもよい。RFトランシーバ2201により行われるアナログRF信号処理は、周波数アップコンバージョン、周波数ダウンコンバージョン、及び増幅を含む。RFトランシーバ2201は、アンテナアレイ2202及びベースバンドプロセッサ2203と結合される。RFトランシーバ2201は、変調シンボルデータ(又はOFDMシンボルデータ)をベースバンドプロセッサ2203から受信し、送信RF信号を生成し、送信RF信号をアンテナアレイ2202に供給する。また、RFトランシーバ2201は、アンテナアレイ2202によって受信された受信RF信号に基づいてベースバンド受信信号を生成し、これをベースバンドプロセッサ2203に供給する。RFトランシーバ2201は、ビームフォーミングのためのアナログビームフォーマ回路を含んでもよい。アナログビームフォーマ回路は、例えば複数の移相器及び複数の電力増幅器を含む。
 ベースバンドプロセッサ2203は、無線通信のためのデジタルベースバンド信号処理(データプレーン処理)とコントロールプレーン処理を行う。デジタルベースバンド信号処理は、(a) データ圧縮/復元、(b) データのセグメンテーション/コンカテネーション、(c) 伝送フォーマット(伝送フレーム)の生成/分解、(d) 伝送路符号化/復号化、(e) 変調(シンボルマッピング)/復調、及び(f) Inverse Fast Fourier Transform(IFFT)によるOFDMシンボルデータ(ベースバンドOFDM信号)の生成などを含む。一方、コントロールプレーン処理は、レイヤ1(e.g. 送信電力制御)、レイヤ2(e.g. 無線リソース管理、及びhybrid automatic repeat request(HARQ)処理)、及びレイヤ3(e.g. アタッチ、モビリティ、及び通話管理に関するシグナリング)の通信管理を含む。
 例えば、ベースバンドプロセッサ2203によるデジタルベースバンド信号処理は、SDAPレイヤ、PDCPレイヤ、RLCレイヤ、MACレイヤ、およびPHYレイヤの信号処理を含んでもよい。また、ベースバンドプロセッサ2203によるコントロールプレーン処理は、Non-Access Stratum(NAS)プロトコル、RRCプロトコル、MAC CEs、及びDCIsの処理を含んでもよい。
 ベースバンドプロセッサ2203は、ビームフォーミングのためのMIMOエンコーディング及びプリコーディングを行ってもよい。
 ベースバンドプロセッサ2203は、デジタルベースバンド信号処理を行うモデム・プロセッサ(e.g. DSP)とコントロールプレーン処理を行うプロトコルスタック・プロセッサ(e.g. CPU又はMPU)を含んでもよい。この場合、コントロールプレーン処理を行うプロトコルスタック・プロセッサは、後述するアプリケーションプロセッサ2204と共通化されてもよい。
 アプリケーションプロセッサ2204は、CPU、MPU、マイクロプロセッサ、又はプロセッサコアとも呼ばれる。アプリケーションプロセッサ2204は、複数のプロセッサ(複数のプロセッサコア)を含んでもよい。アプリケーションプロセッサ2204は、メモリ2206又は図示されていないメモリから読み出されたシステムソフトウェアプログラム(Operating System(OS))及び様々なアプリケーションプログラム(例えば、通話アプリケーション、WEBブラウザ、メーラ、カメラ操作アプリケーション、音楽再生アプリケーション)を実行することによって、UE3の各種機能を実現する。
 幾つかの実装において、図22に破線(2205)で示されているように、ベースバンドプロセッサ2203及びアプリケーションプロセッサ2204は、1つのチップ上に集積されてもよい。言い換えると、ベースバンドプロセッサ2203及びアプリケーションプロセッサ2204は、1つのSystem on Chip(SoC)デバイス2205として実装されてもよい。SoCデバイスは、システムLarge Scale Integration(LSI)またはチップセットと呼ばれることもある。
 メモリ2206は、揮発性メモリ若しくは不揮発性メモリ又はこれらの組合せである。メモリ2206は、物理的に独立した複数のメモリデバイスを含んでもよい。揮発性メモリは、例えば、SRAM若しくはDRAM又はこれらの組み合わせである。不揮発性メモリは、MROM、EEPROM、フラッシュメモリ、若しくはハードディスクドライブ、又はこれらの任意の組合せである。例えば、メモリ2206は、ベースバンドプロセッサ2203、アプリケーションプロセッサ2204、及びSoC2205からアクセス可能な外部メモリデバイスを含んでもよい。メモリ2206は、ベースバンドプロセッサ2203内、アプリケーションプロセッサ2204内、又はSoC2205内に集積された内蔵メモリデバイスを含んでもよい。さらに、メモリ2206は、Universal Integrated Circuit Card(UICC)内のメモリを含んでもよい。
 メモリ2206は、上述の複数の実施形態で説明されたUE3による処理を行うための命令群およびデータを含む1又はそれ以上のソフトウェアモジュール(コンピュータプログラム)2207を格納してもよい。幾つかの実装において、ベースバンドプロセッサ2203又はアプリケーションプロセッサ2204は、当該ソフトウェアモジュール2207をメモリ2206から読み出して実行することで、上述の実施形態で図面を用いて説明されたUE3の処理を行うよう構成されてもよい。
 なお、上述の実施形態で説明されたUE3によって行われるコントロールプレーン処理及び動作は、RFトランシーバ2201及びアンテナアレイ2202を除く他の要素、すなわちベースバンドプロセッサ2203及びアプリケーションプロセッサ2204の少なくとも一方とソフトウェアモジュール2207を格納したメモリ2206とによって実現されることができる。
 図21及び図22を用いて説明したように、上述の実施形態に係る複数のRANノード並びにUE3が有するプロセッサの各々は、図面を用いて説明されたアルゴリズムをコンピュータに行わせるための命令群を含む1又は複数のプログラムを実行することができる。プログラムは、コンピュータに読み込まれた場合に、実施形態で説明された1又はそれ以上の機能をコンピュータに行わせるための命令群(又はソフトウェアコード)を含む。プログラムは、非一時的なコンピュータ可読媒体又は実体のある記憶媒体に格納されてもよい。限定ではなく例として、コンピュータ可読媒体又は実体のある記憶媒体は、random-access memory(RAM)、read-only memory(ROM)、フラッシュメモリ、solid-state drive(SSD)又はその他のメモリ技術、CD-ROM、digital versatile disk(DVD)、Blu-ray(登録商標)ディスク又はその他の光ディスクストレージ、磁気カセット、磁気テープ、磁気ディスクストレージ又はその他の磁気ストレージデバイスを含む。プログラムは、一時的なコンピュータ可読媒体又は通信媒体上で送信されてもよい。限定ではなく例として、一時的なコンピュータ可読媒体又は通信媒体は、電気的、光学的、音響的、またはその他の形式の伝搬信号を含む。
 上述した実施形態は本件発明者により得られた技術思想の適用に関する例に過ぎない。すなわち、当該技術思想は、上述した実施形態のみに限定されるものではなく、種々の変更が可能であることは勿論である。
 例えば、上記の実施形態の一部又は全部は、以下の付記のようにも記載され得るが、以下には限られない。
(付記1)
 第1の無線アクセスネットワーク(RAN)ノードであって、
 少なくとも1つのメモリと、
 前記少なくとも1つのメモリに結合され、且つUser Equipment(UE)に関するモビリティ関連手順又はデュアルコネクティビティ関連手順において、前記UEの複数の計画された位置を示す計画経路情報を第2のRANノードに送るよう構成された少なくとも1つのプロセッサと、
を備える、
第1のRANノード。
(付記2)
 前記計画経路情報は、3次元ロケーションとして定義された複数のウェイポイントを示す飛行経路情報である、
付記1に記載の第1のRANノード。
(付記3)
 前記UEは、エアリアルUE機能を有するUEである、
付記1又は2に記載の第1のRANノード。
(付記4)
 前記少なくとも1つのプロセッサは、前記モビリティ関連手順において、前記計画経路情報を前記第2のRANノードに送るよう構成され、
 前記モビリティ関連手順はハンドオーバ手順又は条件付きハンドオーバ手順である、
付記1~3のいずれか1項に記載の第1のRANノード。
(付記5)
 前記少なくとも1つのプロセッサは、前記デュアルコネクティビティ関連手順において、前記計画経路情報を前記第2のRANノードに送るよう構成され、
 前記デュアルコネクティビティ関連手順は、セカンダリノード(SN)追加手順、条件付きSN追加手順、SN変更手順、又は条件付きSN変更手順である、
付記1~3のいずれか1項に記載の第1のRANノード。
(付記6)
 前記第1のRANノード及び前記第2のRANノードは、それぞれ、前記SN追加手順若しくは前記条件付きSN追加手順におけるマスターノード(MN)及びSNであるか、前記SN変更手順若しくは前記条件付きSN変更手順におけるMN及びターゲットSNであるか、又は前記SN変更手順若しくは前記条件付きSN変更手順におけるソースSN及びMNである、
付記5に記載の第1のRANノード。
(付記7)
 前記少なくとも1つのプロセッサは、条件付きハンドオーバ手順、条件付きセカンダリノード(SN)追加手順、又は条件付きSN変更手順において、前記計画経路情報を前記第2のRANノードに送るよう構成される、
付記1~3のいずれか1項に記載の第1のRANノード。
(付記8)
 前記少なくとも1つのプロセッサは、前記計画経路情報を前記第2のRANノードにHANDOVER REQUEST、S-NODE ADDITION REQUEST、又はS-NODE CHANGE REQUIREDメッセージを介して送るよう構成される、
付記1~7のいずれか1項に記載の第1のRANノード。
(付記9)
 前記少なくとも1つのプロセッサは、前記計画経路情報を前記第2のRANノードにinter-node Radio Resource Control (RRC) メッセージを介して送るよう構成される、
付記1~7のいずれか1項に記載の第1のRANノード。
(付記10)
 前記計画経路情報は、ターゲットセルへの前記UEのハンドオーバ又は前記UEのためのセカンダリノード(SN)追加若しくは変更を受け入れるか否かを判定するために前記第2のRANノードにより使用される、
付記1~9のいずれか1項に記載の第1のRANノード。
(付記11)
 前記計画経路情報は、1又はそれ以上のターゲットセル又は候補セルのうち受け入れ可能な少なくとも1つのセルを決定するために前記第2のRANノードにより使用される、
付記1~9のいずれか1項に記載の第1のRANノード。
(付記12)
 前記計画経路情報は、ターゲットセル又は候補セルの設定を生成又は準備するために前記第2のRANノードにより使用される、
付記1~9のいずれか1項に記載の第1のRANノード。
(付記13)
 前記計画経路情報は、キャリアアグリゲーションのセカンダリセルを選択するために前記第2のRANノードにより使用される、
付記1~9のいずれか1項に記載の第1のRANノード。
(付記14)
 第1の無線アクセスネットワーク(RAN)ノードにより行われる方法であって、
 User Equipment(UE)に関するモビリティ関連手順又はデュアルコネクティビティ関連手順において、前記UEの複数の計画された位置を示す計画経路情報を第2のRANノードに送ることを備える、
方法。
(付記15)
 第1の無線アクセスネットワーク(RAN)ノードのための方法をコンピュータに行わせるためのプログラムであって、
 前記方法は、User Equipment(UE)に関するモビリティ関連手順又はデュアルコネクティビティ関連手順において、前記UEの複数の計画された位置を示す計画経路情報を第2のRANノードに送ることを備える、
プログラム。
(付記16)
 第2の無線アクセスネットワーク(RAN)ノードであって、
 少なくとも1つのメモリと、
 前記少なくとも1つのメモリに結合され、且つUser Equipment(UE)に関するモビリティ関連手順又はデュアルコネクティビティ関連手順において、前記UEの複数の計画された位置を示す計画経路情報を第1のRANノードから受信するよう構成された少なくとも1つのプロセッサと、
を備える、
第2のRANノード。
(付記17)
 前記計画経路情報は、3次元ロケーションとして定義された複数のウェイポイントを示す飛行経路情報である、
付記16に記載の第2のRANノード。
(付記18)
 前記UEは、エアリアルUE機能を有するUEである、
付記16又は17に記載の第2のRANノード。
(付記19)
 前記少なくとも1つのプロセッサは、前記モビリティ関連手順において、前記計画経路情報を前記第1のRANノードから受信するよう構成され、
 前記モビリティ関連手順はハンドオーバ手順又は条件付きハンドオーバ手順である、
付記16~18のいずれか1項に記載の第2のRANノード。
(付記20)
 前記少なくとも1つのプロセッサは、前記デュアルコネクティビティ関連手順において、前記計画経路情報を第1のRANノードから受信するよう構成され、
 前記デュアルコネクティビティ関連手順は、セカンダリノード追加、条件付きセカンダリノード追加、セカンダリノード変更、又は条件付きセカンダリノード変更である、
付記16~18のいずれか1項に記載の第2のRANノード。
(付記21)
 前記第1のRANノード及び前記第2のRANノードは、それぞれ、前記SN追加手順若しくは前記条件付きSN追加手順におけるマスターノード(MN)及びSNであるか、前記SN変更手順若しくは前記条件付きSN変更手順におけるMN及びターゲットSNであるか、又は前記SN変更手順若しくは前記条件付きSN変更手順におけるソースSN及びMNである、
付記20に記載の第2のRANノード。
(付記22)
 前記少なくとも1つのプロセッサは、条件付きハンドオーバ手順、条件付きセカンダリノード(SN)追加手順、又は条件付きSN変更手順において、前記計画経路情報を前記第1のRANノードから受信するよう構成される、
付記16~18のいずれか1項に記載の第2のRANノード。
(付記23)
 前記少なくとも1つのプロセッサは、前記計画経路情報を前記第1のRANノードからHANDOVER REQUEST、S-NODE ADDITION REQUEST、又はS-NODE CHANGE REQUIREDメッセージを介して受信するよう構成される、
付記16~22のいずれか1項に記載の第2のRANノード。
(付記24)
 前記少なくとも1つのプロセッサは、前記計画経路情報を前記第1のRANノードからinter-node Radio Resource Control (RRC) メッセージを介して受信するよう構成される、
付記16~22のいずれか1項に記載の第2のRANノード。
(付記25)
 前記少なくとも1つのプロセッサは、ターゲットセルへの前記UEのハンドオーバ又は前記UEのためのセカンダリノード(SN)追加若しくは変更を受け入れるか否かを判定するために前記計画経路情報を用いるよう構成される、
付記16~24のいずれか1項に記載の第2のRANノード。
(付記26)
 前記少なくとも1つのプロセッサは、1又はそれ以上のターゲットセル又は候補セルのうち受け入れ可能な少なくとも1つのセルを決定するために前記計画経路情報を用いるよう構成される、
付記16~24のいずれか1項に記載の第2のRANノード。
(付記27)
 前記少なくとも1つのプロセッサは、ターゲットセル又は候補セルの設定を生成又は準備するために前記計画経路情報を用いるよう構成される、
付記16~24のいずれか1項に記載の第2のRANノード。
(付記28)
 前記少なくとも1つのプロセッサは、キャリアアグリゲーションのセカンダリセルを選択するために前記計画経路情報を用いるよう構成される、
付記16~24のいずれか1項に記載の第2のRANノード。
(付記29)
 第2の無線アクセスネットワーク(RAN)ノードにより行われる方法であって、
 User Equipment(UE)に関するモビリティ関連手順又はデュアルコネクティビティ関連手順において、前記UEの複数の計画された位置を示す計画経路情報を第1のRANノードから受信することを備える、
方法。
(付記30)
 第2の無線アクセスネットワーク(RAN)ノードのための方法をコンピュータに行わせるためのプログラムであって、
 前記方法は、User Equipment(UE)に関するモビリティ関連手順又はデュアルコネクティビティ関連手順において、前記UEの複数の計画された位置を示す計画経路情報を第1のRANノードから受信することを備える、
プログラム。
(付記31)
 User Equipment (UE) のためのデュアルコネクティビティにおいてマスターノード(MN)として動作するよう構成された無線アクセスネットワーク(RAN)ノードであって、
 少なくとも1つのメモリと、
 前記少なくとも1つのメモリに結合され、且つ前記UEの複数の計画された位置を示す計画経路情報を前記デュアルコネクティビティのセカンダリノード(SN)に送るよう構成された少なくとも1つのプロセッサと、
を備える、
RANノード。
(付記32)
 前記計画経路情報は、3次元ロケーションとして定義された複数のウェイポイントを示す飛行経路情報である、
付記31に記載のRANノード。
(付記33)
 前記UEは、エアリアルUE機能を有するUEである、
付記31又は32に記載のRANノード。
(付記34)
 前記UEは、unmanned or uncrewed aerial vehicle (UAV) に実装されたUEである、
付記31~33のいずれか1項に記載のRANノード。
(付記35)
 前記少なくとも1つのプロセッサは、エアリアルUE加入情報又はこれから導かれた情報を前記計画経路情報と共に前記SNに送るよう構成され、
 前記エアリアルUE加入情報又はこれから導かれた情報は、前記UE又はそのユーザがエアリアルUE機能の使用を許可されているか否か、前記UEがエアリアルUEであるか否か、又は前記UEがエアリアルUE機能をサポートするか否かを示す、
付記32~34のいずれか1項に記載のRANノード。
(付記36)
 前記少なくとも1つのプロセッサは、前記計画経路情報を前記SNにSN追加手順において送るよう構成される、
付記31~35のいずれか1項に記載のRANノード。
(付記37)
 前記少なくとも1つのプロセッサは、前記計画経路情報を前記SNにS-NODE ADDITION REQUESTメッセージを介して送るよう構成される、
付記31~36のいずれか1項に記載のRANノード。
(付記38)
 前記少なくとも1つのプロセッサは、前記計画経路情報を前記SNにinter-node Radio Resource Control (RRC) メッセージを介して送るよう構成される、
付記31~36のいずれか1項に記載のRANノード。
(付記39)
 User Equipment (UE) のためのデュアルコネクティビティにおいてマスターノード(MN)として動作するよう構成された無線アクセスネットワーク(RAN)ノードにより行われる方法であって、
 前記UEの複数の計画された位置を示す計画経路情報を前記デュアルコネクティビティのセカンダリノード(SN)に送ることを備える、
方法。
(付記40)
 User Equipment (UE) のためのデュアルコネクティビティにおいてマスターノード(MN)として動作するよう構成された無線アクセスネットワーク(RAN)ノードのための方法をコンピュータに行わせるためのプログラムであって、
 前記方法は、前記UEの複数の計画された位置を示す計画経路情報を前記デュアルコネクティビティのセカンダリノード(SN)に送ることを備える、
プログラム。
(付記41)
 User Equipment (UE) のためのデュアルコネクティビティにおいてセカンダリノード(SN)として動作するよう構成された無線アクセスネットワーク(RAN)ノードであって、
 少なくとも1つのメモリと、
 前記少なくとも1つのメモリに結合され、且つ前記UEの複数の計画された位置を示す計画経路情報を前記デュアルコネクティビティのマスターノード(MN)から受信するよう構成された少なくとも1つのプロセッサと、
を備える、
RANノード。
(付記42)
 前記計画経路情報は、3次元ロケーションとして定義された複数のウェイポイントを示す飛行経路情報である、
付記41に記載のRANノード。
(付記43)
 前記UEは、エアリアルUE機能を有するUEである、
付記41又は42に記載のRANノード。
(付記44)
 前記UEは、unmanned or uncrewed aerial vehicle (UAV) に実装されたUEである、
付記41~43のいずれか1項に記載のRANノード。
(付記45)
 前記少なくとも1つのプロセッサは、エアリアルUE加入情報又はこれから導かれた情報を前記計画経路情報と共に前記MNから受信するよう構成され、
 前記エアリアルUE加入情報又はこれから導かれた情報は、前記UE又はそのユーザがエアリアルUE機能の使用を許可されているか否か、前記UEがエアリアルUEであるか否か、又は前記UEがエアリアルUE機能をサポートするか否かを示す、
付記42~44のいずれか1項に記載のRANノード。
(付記46)
 前記少なくとも1つのプロセッサは、前記計画経路情報を前記MNからSN追加手順において受信するよう構成される、
付記41~45のいずれか1項に記載のRANノード。
(付記47)
 前記少なくとも1つのプロセッサは、前記計画経路情報を前MNからS-NODE ADDITION REQUESTメッセージを介して受信するよう構成される、
付記41~46のいずれか1項に記載のRANノード。
(付記48)
 前記少なくとも1つのプロセッサは、前記計画経路情報を前記MNからinter-node Radio Resource Control (RRC) メッセージを介して受信するよう構成される、
付記41~46のいずれか1項に記載のRANノード。
(付記49)
 User Equipment (UE) のためのデュアルコネクティビティにおいてセカンダリノード(SN)として動作するよう構成された無線アクセスネットワーク(RAN)ノードにより行われる方法であって、
 前記UEの複数の計画された位置を示す計画経路情報を前記デュアルコネクティビティのマスターノード(MN)から受信することを備える、
方法。
(付記50)
 User Equipment (UE) のためのデュアルコネクティビティにおいてセカンダリノード(SN)として動作するよう構成された無線アクセスネットワーク(RAN)ノードのための方法をコンピュータに行わせるためのプログラムであって、
 前記方法は、前記UEの複数の計画された位置を示す計画経路情報を前記デュアルコネクティビティのマスターノード(MN)から受信することを備える、
プログラム。
(付記51)
 User Equipment (UE) のためのデュアルコネクティビティにおいてマスターノード(MN)として動作するよう構成された無線アクセスネットワーク(RAN)ノードであって、
 少なくとも1つのメモリと、
 前記少なくとも1つのメモリに結合され、且つ前記UEの複数の計画された位置を示す計画経路情報を前記デュアルコネクティビティのセカンダリノード(SN)から受信するよう構成された少なくとも1つのプロセッサと、
を備える、
RANノード。
(付記52)
 前記計画経路情報は、3次元ロケーションとして定義された複数のウェイポイントを示す飛行経路情報である、
付記51に記載のRANノード。
(付記53)
 前記UEは、エアリアルUE機能を有するUEである、
付記51又は52に記載のRANノード。
(付記54)
 User Equipment (UE) のためのデュアルコネクティビティにおいてマスターノード(MN)として動作するよう構成された無線アクセスネットワーク(RAN)ノードにより行われる方法であって、
 前記UEの複数の計画された位置を示す計画経路情報を前記デュアルコネクティビティのセカンダリノード(SN)から受信することを備える、
方法。
(付記55)
 User Equipment (UE) のためのデュアルコネクティビティにおいてマスターノード(MN)として動作するよう構成された無線アクセスネットワーク(RAN)ノードのための方法をコンピュータに行わせるためのプログラムであって、
 前記方法は、前記UEの複数の計画された位置を示す計画経路情報を前記デュアルコネクティビティのセカンダリノード(SN)から受信することを備える、
プログラム。
(付記56)
 User Equipment (UE) のためのデュアルコネクティビティにおいてセカンダリノード(SN)として動作するよう構成された無線アクセスネットワーク(RAN)ノードであって、
 少なくとも1つのメモリと、
 前記少なくとも1つのメモリに結合され、且つ前記UEの複数の計画された位置を示す計画経路情報を前記デュアルコネクティビティのマスターノード(MN)に送るよう構成された少なくとも1つのプロセッサと、
を備える、
RANノード。
(付記57)
 前記計画経路情報は、3次元ロケーションとして定義された複数のウェイポイントを示す飛行経路情報である、
付記56に記載のRANノード。
(付記58)
 前記UEは、エアリアルUE機能を有するUEである、
付記56又は57に記載のRANノード。
(付記59)
 User Equipment (UE) のためのデュアルコネクティビティにおいてセカンダリノード(SN)として動作するよう構成された無線アクセスネットワーク(RAN)ノードにより行われる方法であって、
 前記UEの複数の計画された位置を示す計画経路情報を前記デュアルコネクティビティのマスターノード(MN)に送ることを備える、
方法。
(付記60)
 User Equipment (UE) のためのデュアルコネクティビティにおいてセカンダリノード(SN)として動作するよう構成された無線アクセスネットワーク(RAN)ノードのための方法をコンピュータに行わせるためのプログラムであって、
 前記方法は、前記UEの複数の計画された位置を示す計画経路情報を前記デュアルコネクティビティのマスターノード(MN)に送ることを備える、
プログラム。
(付記61)
 User Equipment (UE) のためのデュアルコネクティビティにおいてマスターノード(MN)として動作するよう構成された無線アクセスネットワーク(RAN)ノードであって、
 少なくとも1つのメモリと、
 前記少なくとも1つのメモリに結合され、且つ前記UEに関するエアリアルUE加入情報又はこれから導かれた情報を前記デュアルコネクティビティのセカンダリノード(SN)に送るよう構成された少なくとも1つのプロセッサと、
を備える、
RANノード。
(付記62)
 前記エアリアルUE加入情報又はこれから導かれた情報は、前記UE又はそのユーザがエアリアルUE機能の使用を許可されているか否か、前記UEがエアリアルUEであるか否か、又は前記UEがエアリアルUE機能をサポートするか否かを示す、
付記61に記載のRANノード。
(付記63)
 前記少なくとも1つのプロセッサは、前記前記エアリアルUE加入情報又はこれから導かれた情報を前記SNにSN追加手順において送るよう構成される、
付記61又は62に記載のRANノード。
(付記64)
 前記少なくとも1つのプロセッサは、前記エアリアルUE加入情報又はこれから導かれた情報を前記SNにS-NODE ADDITION REQUESTメッセージを介して送るよう構成される、
付記61~63のいずれか1項に記載のRANノード。
(付記65)
 前記少なくとも1つのプロセッサは、前記UEの複数の計画された位置を示す飛行経路情報を前記エアリアルUE加入情報又はこれから導かれた情報と共に前記SNに送るよう構成される、
付記61~64のいずれか1項に記載のRANノード。
(付記66)
 User Equipment (UE) のためのデュアルコネクティビティにおいてマスターノード(MN)として動作するよう構成された無線アクセスネットワーク(RAN)ノードにより行われる方法であって、
 前記UEに関するエアリアルUE加入情報又はこれから導かれた情報を前記デュアルコネクティビティのセカンダリノード(SN)に送ることを備える、
方法。
(付記67)
 User Equipment (UE) のためのデュアルコネクティビティにおいてマスターノード(MN)として動作するよう構成された無線アクセスネットワーク(RAN)ノードのための方法をコンピュータに行わせるためのプログラムであって、
 前記方法は、エアリアルUE加入情報又はこれから導かれた情報を前記デュアルコネクティビティのセカンダリノード(SN)に送ることを備える、
プログラム。
(付記68)
 User Equipment (UE) のためのデュアルコネクティビティにおいてセカンダリノード(SN)として動作するよう構成された無線アクセスネットワーク(RAN)ノードであって、
 少なくとも1つのメモリと、
 前記少なくとも1つのメモリに結合され、且つ前記UEに関するエアリアルUE加入情報又はこれから導かれた情報を前記デュアルコネクティビティのマスターノード(MN)から受信するよう構成された少なくとも1つのプロセッサと、
を備える、
RANノード。
(付記69)
 前記エアリアルUE加入情報又はこれから導かれた情報は、前記UE又はそのユーザがエアリアルUE機能の使用を許可されているか否か、前記UEがエアリアルUEであるか否か、又は前記UEがエアリアルUE機能をサポートするか否かを示す、
付記68に記載のRANノード。
(付記70)
 前記少なくとも1つのプロセッサは、前記前記エアリアルUE加入情報又はこれから導かれた情報を前記MNからSN追加手順において受信するよう構成される、
付記68又は69に記載のRANノード。
(付記71)
 前記少なくとも1つのプロセッサは、前記エアリアルUE加入情報又はこれから導かれた情報を前記MNからS-NODE ADDITION REQUESTメッセージを介して受信するよう構成される、
付記68~70のいずれか1項に記載のRANノード。
(付記72)
 前記少なくとも1つのプロセッサは、前記UEの複数の計画された位置を示す飛行経路情報を前記エアリアルUE加入情報又はこれから導かれた情報と共に前記MNから受信するよう構成される、
付記68~71のいずれか1項に記載のRANノード。
(付記73)
 User Equipment (UE) のためのデュアルコネクティビティにおいてセカンダリノード(SN)として動作するよう構成された無線アクセスネットワーク(RAN)ノードにより行われる方法であって、
 前記UEに関するエアリアルUE加入情報又はこれから導かれた情報を前記デュアルコネクティビティのマスターノード(MN)から受信することを備える、
方法。
(付記74)
 User Equipment (UE) のためのデュアルコネクティビティにおいてセカンダリノード(SN)として動作するよう構成された無線アクセスネットワーク(RAN)ノードのための方法をコンピュータに行わせるためのプログラムであって、
 前記方法は、エアリアルUE加入情報又はこれから導かれた情報を前記デュアルコネクティビティのマスターノード(MN)から受信することを備える、
プログラム。
(付記75)
 無線アクセスネットワーク(RAN)ノードであって、
 少なくとも1つのメモリと、
 前記少なくとも1つのメモリに結合され、且つUser Equipment(UE)の条件付きモビリティのための1又はそれ以上の実行条件を前記UEの複数の計画された位置を示す計画経路情報に基づいて決定するよう構成された少なくとも1つのプロセッサと、
を備える、
RANノード。
(付記76)
 前記計画経路情報は、3次元ロケーションとして定義された複数のウェイポイントを示す飛行経路情報である、
付記75に記載のRANノード。
(付記77)
 前記UEは、エアリアルUE機能を有するUEである、
付記75又は76に記載のRANノード。
(付記78)
 前記1又はそれ以上の実行条件は、前記UEの位置が、基準位置にあること、基準位置から設定された距離内にあること、又は基準領域内にあることを含む、
付記75~77のいずれか1項に記載のRANノード。
(付記79)
 前記1又はそれ以上の実行条件は、予定時刻になったことを含む、
付記75~78のいずれか1項に記載のRANノード。
(付記80)
 前記条件付きモビリティは、条件付きハンドオーバ、条件付きPrimary Secondary Cell Group (SCG) Cell (PSCell)追加、セカンダリノード(SN)内条件付きPSCell変更、又はSN間条件付きPSCell変更である、
付記75~79のいずれか1項に記載のRANノード。
(付記81)
 前記RANノードは、条件付きハンドオーバのソースノード、条件付きPSCell追加のマスターノード(MN)、SN内条件付きPSCell変更のSN、SNにより開始されるSN間条件付きPSCell変更のソースSN、又はMNにより開始されるSN間条件付きPSCell変更のMNである、
付記80に記載のRANノード。
(付記82)
 無線アクセスネットワーク(RAN)ノードにより行われる方法であって、
 User Equipment(UE)の条件付きモビリティのための1又はそれ以上の実行条件を前記UEの複数の計画された位置を示す計画経路情報に基づいて決定することを備える、
方法。
(付記83)
 無線アクセスネットワーク(RAN)ノードのための方法をコンピュータに行わせるためのプログラムであって、
 前記方法は、User Equipment(UE)の条件付きモビリティのための1又はそれ以上の実行条件を前記UEの複数の計画された位置を示す計画経路情報に基づいて決定することを備える、
プログラム。
(付記84)
 無線アクセスネットワーク(RAN)ノードであって、
 少なくとも1つのメモリと、
 前記少なくとも1つのメモリに結合され、且つ
 1又はそれ以上のターゲットセルを示すUser Equipment(UE)のハンドオーバ要求をソースRANノードから受信し、
 前記ハンドオーバ要求が前記UEの複数の計画された位置を示す計画経路情報及び代替セルの提案を許可することを示す明示的な表示のうち一方又は両方を含むなら、ハンドオーバ受け入れ可能であって前記1又はそれ以上のターゲットセルとは異なる他のセルを示すハンドオーバ要求応答を前記ソースRANノードに送る、
よう構成された少なくとも1つのプロセッサと、
を備える、
RANノード。
(付記85)
 前記少なくとも1つのプロセッサは、前記ハンドオーバ要求が前記UEの複数の計画された位置を示す計画経路情報を含むことを少なくとも条件として、前記他のセルを示す前記ハンドオーバ要求応答を前記ソースRANノードに送るよう構成される、
付記84に記載のRANノード。
(付記86)
 前記少なくとも1つのプロセッサは、ハンドオーバ受け入れ可能な前記他のセルを前記計画経路情報に基づいて決定するよう構成される、
付記84又は85に記載のRANノード。
(付記87)
 前記計画経路情報は、3次元ロケーションとして定義された複数のウェイポイントを示す飛行経路情報である、
付記84~86のいずれか1項に記載のRANノード。
(付記88)
 前記ハンドオーバ要求は、条件付きハンドオーバの要求である、
付記84~87のいずれか1項に記載のRANノード。
(付記89)
 無線アクセスネットワーク(RAN)ノードにより行われる方法であって、
 1又はそれ以上のターゲットセルを示すUser Equipment(UE)のハンドオーバ要求をソースRANノードから受信すること、及び
 前記ハンドオーバ要求が前記UEの複数の計画された位置を示す計画経路情報及び代替セルの提案を許可することを示す明示的な表示のうち一方又は両方を含むなら、ハンドオーバ受け入れ可能であって前記1又はそれ以上のターゲットセルとは異なる他のセルを示すハンドオーバ要求応答を前記ソースRANノードに送ること、
を備える、方法。
(付記90)
 無線アクセスネットワーク(RAN)ノードのための方法をコンピュータに行わせるためのプログラムあって、
 前記方法は、
 1又はそれ以上のターゲットセルを示すUser Equipment(UE)のハンドオーバ要求をソースRANノードから受信すること、及び
 前記ハンドオーバ要求が前記UEの複数の計画された位置を示す計画経路情報及び代替セルの提案を許可することを示す明示的な表示のうち一方又は両方を含むなら、ハンドオーバ受け入れ可能であって前記1又はそれ以上のターゲットセルとは異なる他のセルを示すハンドオーバ要求応答を前記ソースRANノードに送ること、
を備える、プログラム。
(付記91)
 無線アクセスネットワーク(RAN)ノードであって、
 少なくとも1つのメモリと、
 前記少なくとも1つのメモリに結合され、且つ周辺セル又は周辺周波数におけるエアリアルUser Equipment(UE)のサポートに関する情報を、UEに送信するよう構成された少なくとも1つのプロセッサと、
を備える、
RANノード。
(付記92)
 User Equipment(UE)であって、
 少なくとも1つのメモリと、
 前記少なくとも1つのメモリに結合され、且つ周辺セル又は周辺周波数におけるエアリアルUEのサポートに関する情報を無線アクセスネットワーク(RAN)ノードから受信するよう構成された少なくとも1つのプロセッサと、
を備える、
UE。
(付記93)
 前記少なくとも1つのプロセッサは、無線リンクの再接続が必要であるときに、再接続を試みるセルを前記情報に基づいて決定するよう構成される、
付記92に記載のUE。
(付記94)
 前記少なくとも1つのプロセッサは、Radio Resource Control (RRC)_IDLE状態またはRRC_INACTIVE状態でのセル再選択において前記情報を考慮するよう構成される、
付記92又は93に記載のUE。
(付記95)
 無線アクセスネットワーク(RAN)ノードであって、
 少なくとも1つのメモリと、
 前記少なくとも1つのメモリに結合され、且つUser Equipment(UE)の複数の計画された位置を示す計画経路情報に紐づく1又はそれ以上の将来の候補セルの情報を前記UEに送信するよう構成された少なくとも1つのプロセッサと、
を備える、
RANノード。
(付記96)
 前記1又はそれ以上の将来の候補セルの情報は、計画経路情報に含まれる複数の位置それぞれにおける推奨されるセルの情報を示す、
付記95に記載のRANノード。
(付記97)
 User Equipment(UE)であって、
 少なくとも1つのメモリと、
 前記少なくとも1つのメモリに結合され、且つ前記UEの複数の計画された位置を示す計画経路情報に紐づく1又はそれ以上の将来の候補セルの情報を無線アクセスネットワーク(RAN)ノードから受信するよう構成された少なくとも1つのプロセッサと、
を備える、
UE。
(付記98)
 前記1又はそれ以上の将来の候補セルの情報は、計画経路情報に含まれる複数の位置それぞれにおける推奨されるセルの情報を示す、
付記97に記載のUE。
(付記99)
 前記少なくとも1つのプロセッサは、無線リンクの再接続が必要であるときに、再接続を試みるセルを前記1又はそれ以上の将来の候補セルの情報に基づいて決定するよう構成される、
付記97又は98に記載のUE。
(付記100)
 前記少なくとも1つのプロセッサは、Radio Resource Control (RRC)_IDLE状態またはRRC_INACTIVE状態でのセル再選択において前記1又はそれ以上の将来の候補セルの情報を考慮するよう構成される、
付記97又は98に記載のUE。
(付記101)
 ネットワークノードであって、
 少なくとも1つのメモリと、
 前記少なくとも1つのメモリに結合され、且つUser Equipment(UE)の複数の計画された位置を示す計画経路情報に紐づく緊急着陸ポイントの情報を前記UEに送信するよう構成された少なくとも1つのプロセッサと、
を備える、
ネットワークノード。
(付記102)
 前記緊急着陸ポイントの情報は、前記複数の計画された位置の各々に対応する緊急着陸が許可される又は推奨される1又はそれ以上の地点の位置情報を示す、
付記101に記載のネットワークノード。
(付記103)
 前記緊急着陸ポイントの情報は、前記UEのサービングセル内若しくは前記UEの位置登録エリア内の、又は前記サービングセル若しくは前記位置登録エリアに関連付けられた、緊急着陸が許可又は推奨される1又はそれ以上の地点の位置情報を示す、
付記101に記載のネットワークノード。
(付記104)
 前記ネットワークノードは、無線アクセスネットワーク(RAN)ノード又はコアネットワークノードである、
付記101~103のいずれか1項に記載のネットワークノード。
(付記105)
 User Equipment(UE)であって、
 少なくとも1つのメモリと、
 前記少なくとも1つのメモリに結合され、且つ前記UEの複数の計画された位置を示す計画経路情報に紐づく緊急着陸ポイントの情報を、無線アクセスネットワーク(RAN)ノード又は前記RANノードを介してコアネットワークノードから受信するよう構成された少なくとも1つのプロセッサと、
を備える、
UE。
(付記106)
 前記緊急着陸ポイントの情報は、前記複数の計画された位置の各々に対応する緊急着陸が許可される又は推奨される1又はそれ以上の地点の位置情報を示す、
付記105に記載のUE。
(付記107)
 前記緊急着陸ポイントの情報は、前記UEのサービングセル内若しくは前記UEの位置登録エリア内の、又は前記サービングセル若しくは前記位置登録エリアに関連付けられた、緊急着陸が許可又は推奨される1又はそれ以上の地点の位置情報を示す、
付記105に記載のUE。
(付記108)
 前記少なくとも1つのプロセッサは、緊急着陸を試みる目標地点を前記緊急着陸ポイントの情報に基づいて決定するよう構成される、
付記105~107のいずれか1項に記載のUE。
 この出願は、2022年7月26日に出願された日本出願特願2022-118616を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1 マスターノード(Master Node(MN))
2 ソース・セカンダリノード(Source Secondary Node(S-SN))
3 User Equipment(UE)
4 ターゲット・セカンダリノード(Target Secondary Node(T-SN))
6 ソースRANノード
7 ターゲットRANノード
2104 プロセッサ
2105 メモリ
2106 モジュール(modules)
2203 ベースバンドプロセッサ
2204 アプリケーションプロセッサ
2206 メモリ
2207 モジュール(modules)

Claims (108)

  1.  第1の無線アクセスネットワーク(RAN)ノードであって、
     少なくとも1つのメモリと、
     前記少なくとも1つのメモリに結合され、且つUser Equipment(UE)に関するモビリティ関連手順又はデュアルコネクティビティ関連手順において、前記UEの複数の計画された位置を示す計画経路情報を第2のRANノードに送るよう構成された少なくとも1つのプロセッサと、
    を備える、
    第1のRANノード。
  2.  前記計画経路情報は、3次元ロケーションとして定義された複数のウェイポイントを示す飛行経路情報である、
    請求項1に記載の第1のRANノード。
  3.  前記UEは、エアリアルUE機能を有するUEである、
    請求項1又は2に記載の第1のRANノード。
  4.  前記少なくとも1つのプロセッサは、前記モビリティ関連手順において、前記計画経路情報を前記第2のRANノードに送るよう構成され、
     前記モビリティ関連手順はハンドオーバ手順又は条件付きハンドオーバ手順である、
    請求項1~3のいずれか1項に記載の第1のRANノード。
  5.  前記少なくとも1つのプロセッサは、前記デュアルコネクティビティ関連手順において、前記計画経路情報を前記第2のRANノードに送るよう構成され、
     前記デュアルコネクティビティ関連手順は、セカンダリノード(SN)追加手順、条件付きSN追加手順、SN変更手順、又は条件付きSN変更手順である、
    請求項1~3のいずれか1項に記載の第1のRANノード。
  6.  前記第1のRANノード及び前記第2のRANノードは、それぞれ、前記SN追加手順若しくは前記条件付きSN追加手順におけるマスターノード(MN)及びSNであるか、前記SN変更手順若しくは前記条件付きSN変更手順におけるMN及びターゲットSNであるか、又は前記SN変更手順若しくは前記条件付きSN変更手順におけるソースSN及びMNである、
    請求項5に記載の第1のRANノード。
  7.  前記少なくとも1つのプロセッサは、条件付きハンドオーバ手順、条件付きセカンダリノード(SN)追加手順、又は条件付きSN変更手順において、前記計画経路情報を前記第2のRANノードに送るよう構成される、
    請求項1~3のいずれか1項に記載の第1のRANノード。
  8.  前記少なくとも1つのプロセッサは、前記計画経路情報を前記第2のRANノードにHANDOVER REQUEST、S-NODE ADDITION REQUEST、又はS-NODE CHANGE REQUIREDメッセージを介して送るよう構成される、
    請求項1~7のいずれか1項に記載の第1のRANノード。
  9.  前記少なくとも1つのプロセッサは、前記計画経路情報を前記第2のRANノードにinter-node Radio Resource Control (RRC) メッセージを介して送るよう構成される、
    請求項1~7のいずれか1項に記載の第1のRANノード。
  10.  前記計画経路情報は、ターゲットセルへの前記UEのハンドオーバ又は前記UEのためのセカンダリノード(SN)追加若しくは変更を受け入れるか否かを判定するために前記第2のRANノードにより使用される、
    請求項1~9のいずれか1項に記載の第1のRANノード。
  11.  前記計画経路情報は、1又はそれ以上のターゲットセル又は候補セルのうち受け入れ可能な少なくとも1つのセルを決定するために前記第2のRANノードにより使用される、
    請求項1~9のいずれか1項に記載の第1のRANノード。
  12.  前記計画経路情報は、ターゲットセル又は候補セルの設定を生成又は準備するために前記第2のRANノードにより使用される、
    請求項1~9のいずれか1項に記載の第1のRANノード。
  13.  前記計画経路情報は、キャリアアグリゲーションのセカンダリセルを選択するために前記第2のRANノードにより使用される、
    請求項1~9のいずれか1項に記載の第1のRANノード。
  14.  第1の無線アクセスネットワーク(RAN)ノードにより行われる方法であって、
     User Equipment(UE)に関するモビリティ関連手順又はデュアルコネクティビティ関連手順において、前記UEの複数の計画された位置を示す計画経路情報を第2のRANノードに送ることを備える、
    方法。
  15.  第1の無線アクセスネットワーク(RAN)ノードのための方法をコンピュータに行わせるためのプログラムを格納した非一時的なコンピュータ可読媒体であって、
     前記方法は、User Equipment(UE)に関するモビリティ関連手順又はデュアルコネクティビティ関連手順において、前記UEの複数の計画された位置を示す計画経路情報を第2のRANノードに送ることを備える、
    非一時的なコンピュータ可読媒体。
  16.  第2の無線アクセスネットワーク(RAN)ノードであって、
     少なくとも1つのメモリと、
     前記少なくとも1つのメモリに結合され、且つUser Equipment(UE)に関するモビリティ関連手順又はデュアルコネクティビティ関連手順において、前記UEの複数の計画された位置を示す計画経路情報を第1のRANノードから受信するよう構成された少なくとも1つのプロセッサと、
    を備える、
    第2のRANノード。
  17.  前記計画経路情報は、3次元ロケーションとして定義された複数のウェイポイントを示す飛行経路情報である、
    請求項16に記載の第2のRANノード。
  18.  前記UEは、エアリアルUE機能を有するUEである、
    請求項16又は17に記載の第2のRANノード。
  19.  前記少なくとも1つのプロセッサは、前記モビリティ関連手順において、前記計画経路情報を前記第1のRANノードから受信するよう構成され、
     前記モビリティ関連手順はハンドオーバ手順又は条件付きハンドオーバ手順である、
    請求項16~18のいずれか1項に記載の第2のRANノード。
  20.  前記少なくとも1つのプロセッサは、前記デュアルコネクティビティ関連手順において、前記計画経路情報を第1のRANノードから受信するよう構成され、
     前記デュアルコネクティビティ関連手順は、セカンダリノード追加、条件付きセカンダリノード追加、セカンダリノード変更、又は条件付きセカンダリノード変更である、
    請求項16~18のいずれか1項に記載の第2のRANノード。
  21.  前記第1のRANノード及び前記第2のRANノードは、それぞれ、前記SN追加手順若しくは前記条件付きSN追加手順におけるマスターノード(MN)及びSNであるか、前記SN変更手順若しくは前記条件付きSN変更手順におけるMN及びターゲットSNであるか、又は前記SN変更手順若しくは前記条件付きSN変更手順におけるソースSN及びMNである、
    請求項20に記載の第2のRANノード。
  22.  前記少なくとも1つのプロセッサは、条件付きハンドオーバ手順、条件付きセカンダリノード(SN)追加手順、又は条件付きSN変更手順において、前記計画経路情報を前記第1のRANノードから受信するよう構成される、
    請求項16~18のいずれか1項に記載の第2のRANノード。
  23.  前記少なくとも1つのプロセッサは、前記計画経路情報を前記第1のRANノードからHANDOVER REQUEST、S-NODE ADDITION REQUEST、又はS-NODE CHANGE REQUIREDメッセージを介して受信するよう構成される、
    請求項16~22のいずれか1項に記載の第2のRANノード。
  24.  前記少なくとも1つのプロセッサは、前記計画経路情報を前記第1のRANノードからinter-node Radio Resource Control (RRC) メッセージを介して受信するよう構成される、
    請求項16~22のいずれか1項に記載の第2のRANノード。
  25.  前記少なくとも1つのプロセッサは、ターゲットセルへの前記UEのハンドオーバ又は前記UEのためのセカンダリノード(SN)追加若しくは変更を受け入れるか否かを判定するために前記計画経路情報を用いるよう構成される、
    請求項16~24のいずれか1項に記載の第2のRANノード。
  26.  前記少なくとも1つのプロセッサは、1又はそれ以上のターゲットセル又は候補セルのうち受け入れ可能な少なくとも1つのセルを決定するために前記計画経路情報を用いるよう構成される、
    請求項16~24のいずれか1項に記載の第2のRANノード。
  27.  前記少なくとも1つのプロセッサは、ターゲットセル又は候補セルの設定を生成又は準備するために前記計画経路情報を用いるよう構成される、
    請求項16~24のいずれか1項に記載の第2のRANノード。
  28.  前記少なくとも1つのプロセッサは、キャリアアグリゲーションのセカンダリセルを選択するために前記計画経路情報を用いるよう構成される、
    請求項16~24のいずれか1項に記載の第2のRANノード。
  29.  第2の無線アクセスネットワーク(RAN)ノードにより行われる方法であって、
     User Equipment(UE)に関するモビリティ関連手順又はデュアルコネクティビティ関連手順において、前記UEの複数の計画された位置を示す計画経路情報を第1のRANノードから受信することを備える、
    方法。
  30.  第2の無線アクセスネットワーク(RAN)ノードのための方法をコンピュータに行わせるためのプログラムを格納した非一時的なコンピュータ可読媒体であって、
     前記方法は、User Equipment(UE)に関するモビリティ関連手順又はデュアルコネクティビティ関連手順において、前記UEの複数の計画された位置を示す計画経路情報を第1のRANノードから受信することを備える、
    非一時的なコンピュータ可読媒体。
  31.  User Equipment (UE) のためのデュアルコネクティビティにおいてマスターノード(MN)として動作するよう構成された無線アクセスネットワーク(RAN)ノードであって、
     少なくとも1つのメモリと、
     前記少なくとも1つのメモリに結合され、且つ前記UEの複数の計画された位置を示す計画経路情報を前記デュアルコネクティビティのセカンダリノード(SN)に送るよう構成された少なくとも1つのプロセッサと、
    を備える、
    RANノード。
  32.  前記計画経路情報は、3次元ロケーションとして定義された複数のウェイポイントを示す飛行経路情報である、
    請求項31に記載のRANノード。
  33.  前記UEは、エアリアルUE機能を有するUEである、
    請求項31又は32に記載のRANノード。
  34.  前記UEは、unmanned or uncrewed aerial vehicle (UAV) に実装されたUEである、
    請求項31~33のいずれか1項に記載のRANノード。
  35.  前記少なくとも1つのプロセッサは、エアリアルUE加入情報又はこれから導かれた情報を前記計画経路情報と共に前記SNに送るよう構成され、
     前記エアリアルUE加入情報又はこれから導かれた情報は、前記UE又はそのユーザがエアリアルUE機能の使用を許可されているか否か、前記UEがエアリアルUEであるか否か、又は前記UEがエアリアルUE機能をサポートするか否かを示す、
    請求項32~34のいずれか1項に記載のRANノード。
  36.  前記少なくとも1つのプロセッサは、前記計画経路情報を前記SNにSN追加手順において送るよう構成される、
    請求項31~35のいずれか1項に記載のRANノード。
  37.  前記少なくとも1つのプロセッサは、前記計画経路情報を前記SNにS-NODE ADDITION REQUESTメッセージを介して送るよう構成される、
    請求項31~36のいずれか1項に記載のRANノード。
  38.  前記少なくとも1つのプロセッサは、前記計画経路情報を前記SNにinter-node Radio Resource Control (RRC) メッセージを介して送るよう構成される、
    請求項31~36のいずれか1項に記載のRANノード。
  39.  User Equipment (UE) のためのデュアルコネクティビティにおいてマスターノード(MN)として動作するよう構成された無線アクセスネットワーク(RAN)ノードにより行われる方法であって、
     前記UEの複数の計画された位置を示す計画経路情報を前記デュアルコネクティビティのセカンダリノード(SN)に送ることを備える、
    方法。
  40.  User Equipment (UE) のためのデュアルコネクティビティにおいてマスターノード(MN)として動作するよう構成された無線アクセスネットワーク(RAN)ノードのための方法をコンピュータに行わせるためのプログラムを格納した非一時的なコンピュータ可読媒体であって、
     前記方法は、前記UEの複数の計画された位置を示す計画経路情報を前記デュアルコネクティビティのセカンダリノード(SN)に送ることを備える、
    非一時的なコンピュータ可読媒体。
  41.  User Equipment (UE) のためのデュアルコネクティビティにおいてセカンダリノード(SN)として動作するよう構成された無線アクセスネットワーク(RAN)ノードであって、
     少なくとも1つのメモリと、
     前記少なくとも1つのメモリに結合され、且つ前記UEの複数の計画された位置を示す計画経路情報を前記デュアルコネクティビティのマスターノード(MN)から受信するよう構成された少なくとも1つのプロセッサと、
    を備える、
    RANノード。
  42.  前記計画経路情報は、3次元ロケーションとして定義された複数のウェイポイントを示す飛行経路情報である、
    請求項41に記載のRANノード。
  43.  前記UEは、エアリアルUE機能を有するUEである、
    請求項41又は42に記載のRANノード。
  44.  前記UEは、unmanned or uncrewed aerial vehicle (UAV) に実装されたUEである、
    請求項41~43のいずれか1項に記載のRANノード。
  45.  前記少なくとも1つのプロセッサは、エアリアルUE加入情報又はこれから導かれた情報を前記計画経路情報と共に前記MNから受信するよう構成され、
     前記エアリアルUE加入情報又はこれから導かれた情報は、前記UE又はそのユーザがエアリアルUE機能の使用を許可されているか否か、前記UEがエアリアルUEであるか否か、又は前記UEがエアリアルUE機能をサポートするか否かを示す、
    請求項42~44のいずれか1項に記載のRANノード。
  46.  前記少なくとも1つのプロセッサは、前記計画経路情報を前記MNからSN追加手順において受信するよう構成される、
    請求項41~45のいずれか1項に記載のRANノード。
  47.  前記少なくとも1つのプロセッサは、前記計画経路情報を前MNからS-NODE ADDITION REQUESTメッセージを介して受信するよう構成される、
    請求項41~46のいずれか1項に記載のRANノード。
  48.  前記少なくとも1つのプロセッサは、前記計画経路情報を前記MNからinter-node Radio Resource Control (RRC) メッセージを介して受信するよう構成される、
    請求項41~46のいずれか1項に記載のRANノード。
  49.  User Equipment (UE) のためのデュアルコネクティビティにおいてセカンダリノード(SN)として動作するよう構成された無線アクセスネットワーク(RAN)ノードにより行われる方法であって、
     前記UEの複数の計画された位置を示す計画経路情報を前記デュアルコネクティビティのマスターノード(MN)から受信することを備える、
    方法。
  50.  User Equipment (UE) のためのデュアルコネクティビティにおいてセカンダリノード(SN)として動作するよう構成された無線アクセスネットワーク(RAN)ノードのための方法をコンピュータに行わせるためのプログラムを格納した非一時的なコンピュータ可読媒体であって、
     前記方法は、前記UEの複数の計画された位置を示す計画経路情報を前記デュアルコネクティビティのマスターノード(MN)から受信することを備える、
    非一時的なコンピュータ可読媒体。
  51.  User Equipment (UE) のためのデュアルコネクティビティにおいてマスターノード(MN)として動作するよう構成された無線アクセスネットワーク(RAN)ノードであって、
     少なくとも1つのメモリと、
     前記少なくとも1つのメモリに結合され、且つ前記UEの複数の計画された位置を示す計画経路情報を前記デュアルコネクティビティのセカンダリノード(SN)から受信するよう構成された少なくとも1つのプロセッサと、
    を備える、
    RANノード。
  52.  前記計画経路情報は、3次元ロケーションとして定義された複数のウェイポイントを示す飛行経路情報である、
    請求項51に記載のRANノード。
  53.  前記UEは、エアリアルUE機能を有するUEである、
    請求項51又は52に記載のRANノード。
  54.  User Equipment (UE) のためのデュアルコネクティビティにおいてマスターノード(MN)として動作するよう構成された無線アクセスネットワーク(RAN)ノードにより行われる方法であって、
     前記UEの複数の計画された位置を示す計画経路情報を前記デュアルコネクティビティのセカンダリノード(SN)から受信することを備える、
    方法。
  55.  User Equipment (UE) のためのデュアルコネクティビティにおいてマスターノード(MN)として動作するよう構成された無線アクセスネットワーク(RAN)ノードのための方法をコンピュータに行わせるためのプログラムを格納した非一時的なコンピュータ可読媒体であって、
     前記方法は、前記UEの複数の計画された位置を示す計画経路情報を前記デュアルコネクティビティのセカンダリノード(SN)から受信することを備える、
    非一時的なコンピュータ可読媒体。
  56.  User Equipment (UE) のためのデュアルコネクティビティにおいてセカンダリノード(SN)として動作するよう構成された無線アクセスネットワーク(RAN)ノードであって、
     少なくとも1つのメモリと、
     前記少なくとも1つのメモリに結合され、且つ前記UEの複数の計画された位置を示す計画経路情報を前記デュアルコネクティビティのマスターノード(MN)に送るよう構成された少なくとも1つのプロセッサと、
    を備える、
    RANノード。
  57.  前記計画経路情報は、3次元ロケーションとして定義された複数のウェイポイントを示す飛行経路情報である、
    請求項56に記載のRANノード。
  58.  前記UEは、エアリアルUE機能を有するUEである、
    請求項56又は57に記載のRANノード。
  59.  User Equipment (UE) のためのデュアルコネクティビティにおいてセカンダリノード(SN)として動作するよう構成された無線アクセスネットワーク(RAN)ノードにより行われる方法であって、
     前記UEの複数の計画された位置を示す計画経路情報を前記デュアルコネクティビティのマスターノード(MN)に送ることを備える、
    方法。
  60.  User Equipment (UE) のためのデュアルコネクティビティにおいてセカンダリノード(SN)として動作するよう構成された無線アクセスネットワーク(RAN)ノードのための方法をコンピュータに行わせるためのプログラムを格納した非一時的なコンピュータ可読媒体であって、
     前記方法は、前記UEの複数の計画された位置を示す計画経路情報を前記デュアルコネクティビティのマスターノード(MN)に送ることを備える、
    非一時的なコンピュータ可読媒体。
  61.  User Equipment (UE) のためのデュアルコネクティビティにおいてマスターノード(MN)として動作するよう構成された無線アクセスネットワーク(RAN)ノードであって、
     少なくとも1つのメモリと、
     前記少なくとも1つのメモリに結合され、且つ前記UEに関するエアリアルUE加入情報又はこれから導かれた情報を前記デュアルコネクティビティのセカンダリノード(SN)に送るよう構成された少なくとも1つのプロセッサと、
    を備える、
    RANノード。
  62.  前記エアリアルUE加入情報又はこれから導かれた情報は、前記UE又はそのユーザがエアリアルUE機能の使用を許可されているか否か、前記UEがエアリアルUEであるか否か、又は前記UEがエアリアルUE機能をサポートするか否かを示す、
    請求項61に記載のRANノード。
  63.  前記少なくとも1つのプロセッサは、前記前記エアリアルUE加入情報又はこれから導かれた情報を前記SNにSN追加手順において送るよう構成される、
    請求項61又は62に記載のRANノード。
  64.  前記少なくとも1つのプロセッサは、前記エアリアルUE加入情報又はこれから導かれた情報を前記SNにS-NODE ADDITION REQUESTメッセージを介して送るよう構成される、
    請求項61~63のいずれか1項に記載のRANノード。
  65.  前記少なくとも1つのプロセッサは、前記UEの複数の計画された位置を示す飛行経路情報を前記エアリアルUE加入情報又はこれから導かれた情報と共に前記SNに送るよう構成される、
    請求項61~64のいずれか1項に記載のRANノード。
  66.  User Equipment (UE) のためのデュアルコネクティビティにおいてマスターノード(MN)として動作するよう構成された無線アクセスネットワーク(RAN)ノードにより行われる方法であって、
     前記UEに関するエアリアルUE加入情報又はこれから導かれた情報を前記デュアルコネクティビティのセカンダリノード(SN)に送ることを備える、
    方法。
  67.  User Equipment (UE) のためのデュアルコネクティビティにおいてマスターノード(MN)として動作するよう構成された無線アクセスネットワーク(RAN)ノードのための方法をコンピュータに行わせるためのプログラムを格納した非一時的なコンピュータ可読媒体であって、
     前記方法は、エアリアルUE加入情報又はこれから導かれた情報を前記デュアルコネクティビティのセカンダリノード(SN)に送ることを備える、
    非一時的なコンピュータ可読媒体。
  68.  User Equipment (UE) のためのデュアルコネクティビティにおいてセカンダリノード(SN)として動作するよう構成された無線アクセスネットワーク(RAN)ノードであって、
     少なくとも1つのメモリと、
     前記少なくとも1つのメモリに結合され、且つ前記UEに関するエアリアルUE加入情報又はこれから導かれた情報を前記デュアルコネクティビティのマスターノード(MN)から受信するよう構成された少なくとも1つのプロセッサと、
    を備える、
    RANノード。
  69.  前記エアリアルUE加入情報又はこれから導かれた情報は、前記UE又はそのユーザがエアリアルUE機能の使用を許可されているか否か、前記UEがエアリアルUEであるか否か、又は前記UEがエアリアルUE機能をサポートするか否かを示す、
    請求項68に記載のRANノード。
  70.  前記少なくとも1つのプロセッサは、前記前記エアリアルUE加入情報又はこれから導かれた情報を前記MNからSN追加手順において受信するよう構成される、
    請求項68又は69に記載のRANノード。
  71.  前記少なくとも1つのプロセッサは、前記エアリアルUE加入情報又はこれから導かれた情報を前記MNからS-NODE ADDITION REQUESTメッセージを介して受信するよう構成される、
    請求項68~70のいずれか1項に記載のRANノード。
  72.  前記少なくとも1つのプロセッサは、前記UEの複数の計画された位置を示す飛行経路情報を前記エアリアルUE加入情報又はこれから導かれた情報と共に前記MNから受信するよう構成される、
    請求項68~71のいずれか1項に記載のRANノード。
  73.  User Equipment (UE) のためのデュアルコネクティビティにおいてセカンダリノード(SN)として動作するよう構成された無線アクセスネットワーク(RAN)ノードにより行われる方法であって、
     前記UEに関するエアリアルUE加入情報又はこれから導かれた情報を前記デュアルコネクティビティのマスターノード(MN)から受信することを備える、
    方法。
  74.  User Equipment (UE) のためのデュアルコネクティビティにおいてセカンダリノード(SN)として動作するよう構成された無線アクセスネットワーク(RAN)ノードのための方法をコンピュータに行わせるためのプログラムを格納した非一時的なコンピュータ可読媒体であって、
     前記方法は、エアリアルUE加入情報又はこれから導かれた情報を前記デュアルコネクティビティのマスターノード(MN)から受信することを備える、
    非一時的なコンピュータ可読媒体。
  75.  無線アクセスネットワーク(RAN)ノードであって、
     少なくとも1つのメモリと、
     前記少なくとも1つのメモリに結合され、且つUser Equipment(UE)の条件付きモビリティのための1又はそれ以上の実行条件を前記UEの複数の計画された位置を示す計画経路情報に基づいて決定するよう構成された少なくとも1つのプロセッサと、
    を備える、
    RANノード。
  76.  前記計画経路情報は、3次元ロケーションとして定義された複数のウェイポイントを示す飛行経路情報である、
    請求項75に記載のRANノード。
  77.  前記UEは、エアリアルUE機能を有するUEである、
    請求項75又は76に記載のRANノード。
  78.  前記1又はそれ以上の実行条件は、前記UEの位置が、基準位置にあること、基準位置から設定された距離内にあること、又は基準領域内にあることを含む、
    請求項75~77のいずれか1項に記載のRANノード。
  79.  前記1又はそれ以上の実行条件は、予定時刻になったことを含む、
    請求項75~78のいずれか1項に記載のRANノード。
  80.  前記条件付きモビリティは、条件付きハンドオーバ、条件付きPrimary Secondary Cell Group (SCG) Cell (PSCell)追加、セカンダリノード(SN)内条件付きPSCell変更、又はSN間条件付きPSCell変更である、
    請求項75~79のいずれか1項に記載のRANノード。
  81.  前記RANノードは、条件付きハンドオーバのソースノード、条件付きPSCell追加のマスターノード(MN)、SN内条件付きPSCell変更のSN、SNにより開始されるSN間条件付きPSCell変更のソースSN、又はMNにより開始されるSN間条件付きPSCell変更のMNである、
    請求項80に記載のRANノード。
  82.  無線アクセスネットワーク(RAN)ノードにより行われる方法であって、
     User Equipment(UE)の条件付きモビリティのための1又はそれ以上の実行条件を前記UEの複数の計画された位置を示す計画経路情報に基づいて決定することを備える、
    方法。
  83.  無線アクセスネットワーク(RAN)ノードのための方法をコンピュータに行わせるためのプログラムを格納した非一時的なコンピュータ可読媒体であって、
     前記方法は、User Equipment(UE)の条件付きモビリティのための1又はそれ以上の実行条件を前記UEの複数の計画された位置を示す計画経路情報に基づいて決定することを備える、
    非一時的なコンピュータ可読媒体。
  84.  無線アクセスネットワーク(RAN)ノードであって、
     少なくとも1つのメモリと、
     前記少なくとも1つのメモリに結合され、且つ
     1又はそれ以上のターゲットセルを示すUser Equipment(UE)のハンドオーバ要求をソースRANノードから受信し、
     前記ハンドオーバ要求が前記UEの複数の計画された位置を示す計画経路情報及び代替セルの提案を許可することを示す明示的な表示のうち一方又は両方を含むなら、ハンドオーバ受け入れ可能であって前記1又はそれ以上のターゲットセルとは異なる他のセルを示すハンドオーバ要求応答を前記ソースRANノードに送る、
    よう構成された少なくとも1つのプロセッサと、
    を備える、
    RANノード。
  85.  前記少なくとも1つのプロセッサは、前記ハンドオーバ要求が前記UEの複数の計画された位置を示す計画経路情報を含むことを少なくとも条件として、前記他のセルを示す前記ハンドオーバ要求応答を前記ソースRANノードに送るよう構成される、
    請求項84に記載のRANノード。
  86.  前記少なくとも1つのプロセッサは、ハンドオーバ受け入れ可能な前記他のセルを前記計画経路情報に基づいて決定するよう構成される、
    請求項84又は85に記載のRANノード。
  87.  前記計画経路情報は、3次元ロケーションとして定義された複数のウェイポイントを示す飛行経路情報である、
    請求項84~86のいずれか1項に記載のRANノード。
  88.  前記ハンドオーバ要求は、条件付きハンドオーバの要求である、
    請求項84~87のいずれか1項に記載のRANノード。
  89.  無線アクセスネットワーク(RAN)ノードにより行われる方法であって、
     1又はそれ以上のターゲットセルを示すUser Equipment(UE)のハンドオーバ要求をソースRANノードから受信すること、及び
     前記ハンドオーバ要求が前記UEの複数の計画された位置を示す計画経路情報及び代替セルの提案を許可することを示す明示的な表示のうち一方又は両方を含むなら、ハンドオーバ受け入れ可能であって前記1又はそれ以上のターゲットセルとは異なる他のセルを示すハンドオーバ要求応答を前記ソースRANノードに送ること、
    を備える、方法。
  90.  無線アクセスネットワーク(RAN)ノードのための方法をコンピュータに行わせるためのプログラムを格納した非一時的なコンピュータ可読媒体あって、
     前記方法は、
     1又はそれ以上のターゲットセルを示すUser Equipment(UE)のハンドオーバ要求をソースRANノードから受信すること、及び
     前記ハンドオーバ要求が前記UEの複数の計画された位置を示す計画経路情報及び代替セルの提案を許可することを示す明示的な表示のうち一方又は両方を含むなら、ハンドオーバ受け入れ可能であって前記1又はそれ以上のターゲットセルとは異なる他のセルを示すハンドオーバ要求応答を前記ソースRANノードに送ること、
    を備える、非一時的なコンピュータ可読媒体。
  91.  無線アクセスネットワーク(RAN)ノードであって、
     少なくとも1つのメモリと、
     前記少なくとも1つのメモリに結合され、且つ周辺セル又は周辺周波数におけるエアリアルUser Equipment(UE)のサポートに関する情報を、UEに送信するよう構成された少なくとも1つのプロセッサと、
    を備える、
    RANノード。
  92.  User Equipment(UE)であって、
     少なくとも1つのメモリと、
     前記少なくとも1つのメモリに結合され、且つ周辺セル又は周辺周波数におけるエアリアルUEのサポートに関する情報を無線アクセスネットワーク(RAN)ノードから受信するよう構成された少なくとも1つのプロセッサと、
    を備える、
    UE。
  93.  前記少なくとも1つのプロセッサは、無線リンクの再接続が必要であるときに、再接続を試みるセルを前記情報に基づいて決定するよう構成される、
    請求項92に記載のUE。
  94.  前記少なくとも1つのプロセッサは、Radio Resource Control (RRC)_IDLE状態またはRRC_INACTIVE状態でのセル再選択において前記情報を考慮するよう構成される、
    請求項92又は93に記載のUE。
  95.  無線アクセスネットワーク(RAN)ノードであって、
     少なくとも1つのメモリと、
     前記少なくとも1つのメモリに結合され、且つUser Equipment(UE)の複数の計画された位置を示す計画経路情報に紐づく1又はそれ以上の将来の候補セルの情報を前記UEに送信するよう構成された少なくとも1つのプロセッサと、
    を備える、
    RANノード。
  96.  前記1又はそれ以上の将来の候補セルの情報は、計画経路情報に含まれる複数の位置それぞれにおける推奨されるセルの情報を示す、
    請求項95に記載のRANノード。
  97.  User Equipment(UE)であって、
     少なくとも1つのメモリと、
     前記少なくとも1つのメモリに結合され、且つ前記UEの複数の計画された位置を示す計画経路情報に紐づく1又はそれ以上の将来の候補セルの情報を無線アクセスネットワーク(RAN)ノードから受信するよう構成された少なくとも1つのプロセッサと、
    を備える、
    UE。
  98.  前記1又はそれ以上の将来の候補セルの情報は、計画経路情報に含まれる複数の位置それぞれにおける推奨されるセルの情報を示す、
    請求項97に記載のUE。
  99.  前記少なくとも1つのプロセッサは、無線リンクの再接続が必要であるときに、再接続を試みるセルを前記1又はそれ以上の将来の候補セルの情報に基づいて決定するよう構成される、
    請求項97又は98に記載のUE。
  100.  前記少なくとも1つのプロセッサは、Radio Resource Control (RRC)_IDLE状態またはRRC_INACTIVE状態でのセル再選択において前記1又はそれ以上の将来の候補セルの情報を考慮するよう構成される、
    請求項97又は98に記載のUE。
  101.  ネットワークノードであって、
     少なくとも1つのメモリと、
     前記少なくとも1つのメモリに結合され、且つUser Equipment(UE)の複数の計画された位置を示す計画経路情報に紐づく緊急着陸ポイントの情報を前記UEに送信するよう構成された少なくとも1つのプロセッサと、
    を備える、
    ネットワークノード。
  102.  前記緊急着陸ポイントの情報は、前記複数の計画された位置の各々に対応する緊急着陸が許可される又は推奨される1又はそれ以上の地点の位置情報を示す、
    請求項101に記載のネットワークノード。
  103.  前記緊急着陸ポイントの情報は、前記UEのサービングセル内若しくは前記UEの位置登録エリア内の、又は前記サービングセル若しくは前記位置登録エリアに関連付けられた、緊急着陸が許可又は推奨される1又はそれ以上の地点の位置情報を示す、
    請求項101に記載のネットワークノード。
  104.  前記ネットワークノードは、無線アクセスネットワーク(RAN)ノード又はコアネットワークノードである、
    請求項101~103のいずれか1項に記載のネットワークノード。
  105.  User Equipment(UE)であって、
     少なくとも1つのメモリと、
     前記少なくとも1つのメモリに結合され、且つ前記UEの複数の計画された位置を示す計画経路情報に紐づく緊急着陸ポイントの情報を、無線アクセスネットワーク(RAN)ノード又は前記RANノードを介してコアネットワークノードから受信するよう構成された少なくとも1つのプロセッサと、
    を備える、
    UE。
  106.  前記緊急着陸ポイントの情報は、前記複数の計画された位置の各々に対応する緊急着陸が許可される又は推奨される1又はそれ以上の地点の位置情報を示す、
    請求項105に記載のUE。
  107.  前記緊急着陸ポイントの情報は、前記UEのサービングセル内若しくは前記UEの位置登録エリア内の、又は前記サービングセル若しくは前記位置登録エリアに関連付けられた、緊急着陸が許可又は推奨される1又はそれ以上の地点の位置情報を示す、
    請求項105に記載のUE。
  108.  前記少なくとも1つのプロセッサは、緊急着陸を試みる目標地点を前記緊急着陸ポイントの情報に基づいて決定するよう構成される、
    請求項105~107のいずれか1項に記載のUE。
PCT/JP2023/025338 2022-07-26 2023-07-07 無線アクセスネットワークノード、ue、ネットワークノード、及びこれらの方法 WO2024024458A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-118616 2022-07-26
JP2022118616 2022-07-26

Publications (1)

Publication Number Publication Date
WO2024024458A1 true WO2024024458A1 (ja) 2024-02-01

Family

ID=89706193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025338 WO2024024458A1 (ja) 2022-07-26 2023-07-07 無線アクセスネットワークノード、ue、ネットワークノード、及びこれらの方法

Country Status (1)

Country Link
WO (1) WO2024024458A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021517437A (ja) * 2018-04-04 2021-07-15 華為技術有限公司Huawei Technologies Co.,Ltd. 無線通信方法及び装置
US20210256855A1 (en) * 2018-06-14 2021-08-19 Beijing Xiaomi Mobile Software Co., Ltd. Information transmission methods and apparatuses

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021517437A (ja) * 2018-04-04 2021-07-15 華為技術有限公司Huawei Technologies Co.,Ltd. 無線通信方法及び装置
US20210256855A1 (en) * 2018-06-14 2021-08-19 Beijing Xiaomi Mobile Software Co., Ltd. Information transmission methods and apparatuses

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON, CMCC, FRAUNHOFER, NOKIA, NOKIA SHANGHAI BELL, LENOVO, MOTOROLA MOBILITY, INTERDIGITAL, KDDI: "Discussion on flight path information", 3GPP DRAFT; R2-1805125 INTRODUCTION OF FLIGHT PATH FOR AERIAL VEHICLES, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Sanya, China; 20180416 - 20180420, 6 April 2018 (2018-04-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051415864 *

Similar Documents

Publication Publication Date Title
US11653276B2 (en) Apparatus and method in wireless communication system and computer readable storage medium
US11265749B2 (en) Device, method, and computer readable storage medium in wireless communication system
KR101891934B1 (ko) 제1 드론 기지국의 제2 드론 기지국으로의 끊김 없는 교체
CN109451833B (zh) 用于无人机切换的方法、装置及基站
US9369981B2 (en) Method and apparatus for sending user equipment location information
US10517123B2 (en) Radio network node, network node and methods performed therein
KR101814510B1 (ko) 무선국, 무선 단말, 및 그 방법
JP2019022241A (ja) 無線通信システム、第1の無線局、第2の無線局、及び通信制御方法
US9591439B2 (en) Method and device for transmitting location information of user equipment
US10660099B2 (en) Communication control device, communication control method, and terminal device
EP4049481A1 (en) User equipment, first network node, second network node and methods for handling a conditional handover in a wireless communications network
US20230164685A1 (en) Access Control Method and Apparatus for Terminal Device
WO2024024458A1 (ja) 無線アクセスネットワークノード、ue、ネットワークノード、及びこれらの方法
US20160119863A1 (en) Terminal device, communication control device, and communication control method
US20230171608A1 (en) Dynamic relocation of nodes in a cellular network
WO2017081360A1 (en) Multi-connectivity of terminal device in cellular system
WO2019159306A1 (ja) ユーザ装置及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846190

Country of ref document: EP

Kind code of ref document: A1