WO2024024342A1 - Printing device, control device, and printing method - Google Patents

Printing device, control device, and printing method Download PDF

Info

Publication number
WO2024024342A1
WO2024024342A1 PCT/JP2023/022806 JP2023022806W WO2024024342A1 WO 2024024342 A1 WO2024024342 A1 WO 2024024342A1 JP 2023022806 W JP2023022806 W JP 2023022806W WO 2024024342 A1 WO2024024342 A1 WO 2024024342A1
Authority
WO
WIPO (PCT)
Prior art keywords
droplet
volume
brightness
orthogonal projection
image
Prior art date
Application number
PCT/JP2023/022806
Other languages
French (fr)
Japanese (ja)
Inventor
智 長田
幸也 臼井
真弘 室
悌一 木村
修平 中谷
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024024342A1 publication Critical patent/WO2024024342A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers

Definitions

  • the present disclosure relates to a printing device and a printing method.
  • a liquid containing a functional material is ejected as droplets from multiple nozzles using an inkjet method, and a film of the functional material is formed on the object to be ejected.
  • an important step is to obtain the correspondence between the settings of the control device that controls the droplet ejection amount and the actual droplet ejection amount, and to control the ejection amount to a constant value. This is because if the discharge amount becomes non-uniform, a difference will occur in the film thickness of the functional material, leading to device failure. For example, in the case of a color filter or an organic EL display, differences in film thickness are observed as color unevenness or brightness unevenness.
  • the shape of the droplets after drying the solvent in the ink is measured using a confocal laser microscope, and the shape of the droplets after drying is measured. Obtain the volume value of the drop. Then, based on the solid content concentration in the ink, the volume value of the droplet after solvent drying is converted to the volume of the droplet in the wet state before solvent drying (hereinafter sometimes referred to as "droplet volume"). , obtain the volume value of droplets ejected from each nozzle of the inkjet head.
  • a method is known in which printing with a uniform coating amount is achieved by adjusting the droplet volume value in a wet state between nozzles (for example, see Patent Document 3).
  • a printing device includes an inkjet head including a plurality of nozzles and a plurality of piezoelectric elements, and a camera that captures an image of a droplet ejected from one of the plurality of nozzles and landing on a target surface. , based on the image, obtain droplet brightness, which is the brightness of the droplet, and an orthogonal projection shape, which is the shape of the orthogonal projection of the droplet onto the target surface, and obtain the droplet brightness and the orthogonal projection.
  • a control device that calculates the volume of the droplet based on the shape and adjusts the voltage applied to at least one of the plurality of piezoelectric elements based on the calculated volume.
  • a control device includes an inkjet head including a plurality of nozzles and a plurality of piezoelectric elements, and a camera that captures an image of a droplet ejected from one of the plurality of nozzles and landing on a target surface.
  • a control device for controlling a printing device comprising: an image acquisition unit that acquires the image from the camera; and a droplet brightness that is the brightness of the droplet by analyzing the image, and a droplet brightness that is the brightness of the droplet.
  • an image analysis unit that obtains an orthogonal projection shape that is a shape of orthogonal projection onto the target surface; a volume calculation unit that calculates the volume of the droplet based on the droplet brightness and the orthogonal projection shape;
  • a voltage adjustment section that adjusts a voltage applied to at least one of the plurality of piezoelectric elements based on the volume.
  • a printing method is a printing method of printing by ejecting droplets from an inkjet head including a plurality of nozzles and a plurality of piezoelectric elements, the printing method being a printing method in which droplets are ejected from one of the plurality of nozzles to a target.
  • An image of the droplet that has landed on the surface is captured, and the image is analyzed to determine the droplet brightness, which is the brightness of the droplet, and the orthogonal projection, which is the shape of the orthogonal projection of the droplet onto the target surface. obtaining the shape, calculating the volume of the droplet based on the droplet brightness and the orthogonal projection shape, and adjusting the voltage applied to at least one of the plurality of piezoelectric elements based on the calculated volume. Including doing.
  • Diagram showing a state in which ink is applied to a line bank in conventional technology Diagram showing a state in which ink is applied to a pixel bank in conventional technology
  • Cross-sectional view taken along line AA in Figure 2 A diagram showing the overall configuration of a printing device according to an embodiment of the present disclosure
  • Functional block diagram of a printing device according to an embodiment of the present disclosure A cross-sectional view showing the internal configuration of a head section of an inkjet head according to an embodiment of the present disclosure.
  • a diagram showing the configuration of a coating unevenness observation device according to an embodiment of the present disclosure A diagram showing the arrangement of an optical system of a coating unevenness observation device according to an embodiment of the present disclosure
  • a diagram showing a method for measuring the area of a droplet according to an embodiment of the present disclosure Graph showing area measurement results of droplets according to embodiments of the present disclosure 13 is a graph showing the area measurement results of a droplet according to an embodiment of the present disclosure, in which the horizontal axis of the graph in FIG. 12 is corrected to the elapsed time from when the droplet lands until observation is performed.
  • Graph showing the results of correcting the area measurement results of droplets according to the embodiment of the present disclosure A model diagram of a droplet landing on a substrate according to an embodiment of the present disclosure Graph showing the relationship between the area of a droplet and the elapsed time from landing to observation according to an embodiment of the present disclosure
  • a diagram showing a method for measuring the area of a droplet according to a modification of the present disclosure A diagram showing a state in which droplets are printed on a substrate according to a modified example of the present disclosure.
  • a diagram showing a process flow of a method for adjusting coating unevenness according to an embodiment of the present disclosure A diagram showing a state in which printing is performed on a display panel in a coating unevenness adjustment flow according to an embodiment of the present disclosure.
  • FIG. 1 A diagram showing how ink applied in a cell according to an embodiment of the present disclosure spreads within the cell.
  • Cross-sectional view taken along line AA in Figure 21 A diagram showing a state in which two patterns with different coating amounts are printed in a cell according to an embodiment of the present disclosure
  • Block diagram of main parts of a printing device according to the present disclosure Top view of landed droplet Side view of landed droplet Graph showing the relationship between droplet volume and time Graph showing the relationship between the area and time of orthogonal projection of a droplet onto the target surface
  • Diagram showing the side view shape of a droplet whose volume gradually decreases as it dries in CCR mode, arranged in chronological order.
  • Diagram showing the plan view shapes of droplets dried in CCR mode arranged in chronological order An example of the relationship between the ratio of the size of the concentric circle to the size of the outer circle and the volume correction coefficient Diagram showing the plan view shapes of droplets dried in CCR mode arranged in chronological order
  • Diagram showing the plan view shapes of droplets dried in CCA mode arranged in chronological order Diagram showing the process flow of how to calculate droplet volume using brightness
  • the area to which ink is applied is sometimes formed as a line-shaped bank (hereinafter sometimes referred to as a "line bank").
  • the display panel 5006 is arranged so that the long axis direction of the line bank 2 formed on the display panel 5006 is parallel to the arrangement direction of the plurality of nozzles 101 of the inkjet head 30.
  • a plurality of nozzles 101 are assigned to the line bank 2 and ink is ejected to form a coating film.
  • many nozzles 101 eject ink over a wide area formed in a line, so variations in the volume of droplets 310 between nozzles 101 are averaged out.
  • variations in the thickness of the coating film formed within the line bank 2 do not pose much of a problem.
  • FIG. 1 shows an example of printing with 14 nozzles 101.
  • the variation in the volume of droplets discharged from the 14 nozzles 101 is generally about 3%. However, since the droplets 310 from each nozzle 101 mix within the line bank 1, the originally existing variations in droplet volume are averaged out.
  • ⁇ 1 n/3 1/2
  • ⁇ 1 n/14 1/2
  • pixel bank inside the bank 2 divided into pixels (hereinafter sometimes referred to as "pixel bank") (hereinafter, the area surrounded by pixel bank 2 is referred to as "cell 2A").
  • cell 2A the area surrounded by pixel bank 2
  • the variations in droplet volume of the droplets 310 discharged into each cell 2A increase, and the influence of the variations in droplet volume on the variations in the thickness of the coating film increases.
  • FIG. 3 shows a cross-sectional view taken along line AA in FIG. 2 immediately after coating and before the ink solvent dries.
  • the amount of ink in the coating films 311, 312, 313 formed by the droplets 310 ejected into each cell 2A changes depending on the variation in volume of the droplets 310 ejected from the inkjet head 30.
  • the number of nozzles 101 assigned to each cell 2A is three, so the effect of averaging the variations in droplet volume is small, and the amount of ink applied to each cell 2A is The dispersion becomes noticeable.
  • This variation in the amount of ink is directly linked to the variation in the thickness of the coating film that remains after the ink solvent dries.
  • the droplet volume is measured before drying. Variations in film thickness result in variations in luminance in organic EL displays, for example, and have a large impact on the display quality of the display. In particular, variations in luminance between adjacent cells 2A have a noticeable effect on the senses, and appear as streak-like unevenness in luminescence. Therefore, when printing on the pixel bank 2, it is necessary to suppress variations in droplet volume between the nozzles 101 more than ever. However, even at present, the variation in droplet volume is suppressed to about 3%, and it is not easy to further reduce the variation in droplet volume.
  • an object of the present disclosure is to provide a printing device and a printing method that can suppress uneven light emission of a display panel.
  • FIG. 4 is a diagram showing the overall configuration of a printing device used in this embodiment.
  • FIG. 5 is a functional block diagram of the printing device.
  • the printing apparatus 1000 includes a control device (PC) 15, an inkjet table 20, an inkjet head 30, a droplet observation device 40, and a coating unevenness observation device 50.
  • PC control device
  • the control device 15 includes a CPU 150, a storage means 151 (including a large capacity storage means such as an HDD), an input means 152, and a display means 153.
  • a personal computer PC
  • the storage unit 151 stores each control program for driving the inkjet table 20, inkjet head 30, droplet observation device 40, and coating unevenness observation device 50 connected to the control device 15, as well as characteristic data (all information) of the inkjet head 30. Characteristic data regarding the applied voltage of the piezoelectric element of the nozzle and the droplet volume) are stored.
  • the CPU 150 performs predetermined control based on instructions input by the operator through the input means 152 and each control program stored in the storage means 151.
  • the inkjet table 20 is a so-called gantry-type work table, and two gantry units (movable frames) are disposed on a base table so as to be movable along a pair of guide shafts.
  • the plate-shaped base 200 has column-shaped stands 201A, 201B, 202A, and 202B arranged at the four corners of its upper surface.
  • these stands 201A, 201B, 202A, and 202B there is a fixed stage ST for placing the object to be coated, and an ink pan (dish-shaped) used to stabilize ink ejection immediately before coating. container) 60 are provided, respectively.
  • guide shafts 203A and 203B are supported in parallel on the base 200 by the stands 201A, 201B, 202A and 202B along a pair of both sides along the longitudinal direction (Y direction).
  • Two linear motors 204A and 204B are inserted through one guide shaft 203A.
  • Two linear motors 205A and 205B are inserted through the other guide shaft 203B.
  • a gantry section 210A is mounted on the linear motor 204A and the linear motor 205A so as to cross the base 200.
  • a gantry section 210B is mounted on the linear motor 204B and the linear motor 205B so as to cross the base 200.
  • the linear motors 204A, 205A, 204B, and 205B are driven so that the two gantry sections 210A and 210B are independently moved in the longitudinal direction of the guide shafts 203A and 203B. Move back and forth along the line.
  • a movable body (carriage) 220A, 220B consisting of an L-shaped pedestal is disposed in each of the gantry parts 210A, 210B.
  • Servo motors (moving body motors) 221A, 221B are provided in the moving bodies 220A, 220B.
  • a gear (not shown) is arranged at the tip of the shaft of each servo motor 221A, 221B.
  • the gears are fitted into guide grooves 211A, 211B formed along the longitudinal direction (X direction) of the gantry parts 210A, 210B. Inside the guide grooves 211A and 211B, minute racks (not shown) are formed along the longitudinal direction. The rack meshes with the gears.
  • the movable bodies 220A, 220B are reciprocated and precisely moved along the X direction by a so-called pinion rack mechanism.
  • the movable bodies 220A and 220B are each equipped with an inkjet head 30 and a coating unevenness observation device 50, and are driven independently of each other.
  • linear motors 204A, 205A, 204B, 205B and the servo motors 221A, 221B are each connected to a control unit 213 for controlling driving.
  • the control unit 213 is connected to the CPU 150 within the control device 15.
  • the CPU 150 that has read the control program controls the driving of the linear motors 204A, 205A, 204B, 205B and the servo motors 221A, 221B via the control unit 213 (FIG. 5).
  • linear motors 204A, 205A, 204B, 205B and the servo motors 221A, 221B are merely examples of means for moving the gantry sections 210A, 210B and the movable bodies 220A, 220B, respectively, and their use is not essential.
  • at least one of the gantry section and the moving body may be moved using a timing belt mechanism or a ball screw mechanism.
  • the inkjet head 30 is configured to move relative to the fixed stage ST, but the present invention is not limited to this. Alternatively, a configuration in which both the inkjet head 30 and the stage move may be used. Note that the number of inkjet heads 30 mounted on the movable body 220A does not need to be one, and a plurality of inkjet heads 30 may be mounted, or a line head in which a plurality of inkjet heads 30 are unitized is mounted. It's okay.
  • the inkjet head 30 is a head that employs a piezo system, and is composed of a head section 301 and a main body section 302 shown in FIG. 4, and a control section 300 shown in FIG. 5.
  • a servo motor 304 is built into the main body 302 .
  • the inkjet head 30 is fixed to the moving body 220A via the main body 302.
  • the head section 301 has a rectangular parallelepiped external shape, and is suspended from the shaft tip of the servo motor 304 of the main body section 302 near the center of its upper surface.
  • the plurality of nozzles 3030 formed on the bottom surface of the head section 301 rotate above the fixed stage ST in accordance with the shaft rotation of the servo motor 304.
  • FIG. 6 is a cross-sectional view showing the internal configuration of the head section of the inkjet head.
  • FIG. 6 partially shows three ink ejection mechanism sections formed adjacent to each other in the head section 301.
  • FIG. 6 is a cross-sectional view showing the internal configuration of the head section of the inkjet head.
  • FIG. 6 partially shows three ink ejection mechanism sections formed adjacent to each other in the head section 301.
  • each ink ejection mechanism section includes a piezoelectric element 3010 (3010a, 3010b, 3010c), a liquid chamber 3020 (3020a, 3020b, 3020c), a nozzle 3030 (3030a, 3030b, 3030c), and a diaphragm 3040.
  • the diaphragm 3040 is arranged to cover the liquid chamber 3020.
  • a piezoelectric element 3010 is stacked on the diaphragm 3040.
  • the ink ejection mechanisms are each independently driven by applying a voltage to each of the piezoelectric elements 3010a, 3010b, and 3010c.
  • the liquid chamber 3020 and the nozzle 3030 are made of, for example, a metal material such as SUS or a ceramic material.
  • the liquid chamber 3020 and the nozzle 3030 are each formed by machining, etching, or electrical discharge machining.
  • the liquid chamber 3020 is a space that stores ink just before being ejected, and its volume is reversibly reduced and restored by driving the piezoelectric element 3010.
  • the nozzles 3030 are formed in a line at a constant pitch so as to communicate with the liquid chamber 3020.
  • the pitch of each nozzle 3030 is structurally constant, but by adjusting the rotation angle of the shaft of the servo motor 304, the pitch of ink application on the object to be applied can be adjusted. .
  • the arrangement of the nozzles 3030 is not limited to the one row described above.
  • the pitch between the nozzles 3030 can be adjusted narrowly by forming the nozzles 3030 in multiple rows, or by forming the nozzles 3030 in multiple rows in a staggered manner.
  • the diaphragm 3040 is a thin plate made of stainless steel or nickel, and is arranged to be deformable together with the piezoelectric element 3010 laminated thereon.
  • the piezoelectric element 3010 is a known piezo element, and has a laminate structure in which a plate-shaped piezoelectric body made of, for example, lead zirconate titanate is sandwiched between one or more pairs of electrodes. The energization of the electrodes is managed by the CPU 150 via the control unit 300, as shown in FIG.
  • a rectangular pulse voltage with a width of several tens of ⁇ s is continuously applied to the electrodes at a driving frequency of several hundred Hz to several tens of kHz during ink ejection. .
  • the piezoelectric element 3010 deforms in accordance with the rise of each rectangular pulse voltage, and as the piezoelectric element 3010 deforms, the diaphragm 3040 deforms so that the volume of the liquid chamber 3020 decreases or restores. When the volume of the liquid chamber 3020 decreases, ink is ejected from the nozzle 3030.
  • the pulse voltage is not limited to a rectangular shape, and may have a step shape or a partially curved waveform.
  • the CPU 150 When driving each piezoelectric element 3010, the CPU 150 reads a predetermined control program from the storage means 151, and instructs the control unit 300 to apply a predetermined voltage to the target piezoelectric element 3010. As will be described later, in the printing apparatus 1000, if unevenness is confirmed when printing on an object to be coated, the printing apparatus 1000 controls the droplet volume to be corrected for each nozzle 3030. In this embodiment, an example is shown in which one inkjet head 30 is provided, but the number of inkjet heads 30 provided is not limited, and a plurality of inkjet heads 30 may be provided.
  • the droplet observation device 40 is configured using an ink discharge confirmation camera.
  • the droplet observation device 40 includes a droplet observation camera (CCD camera) 402 with a built-in light emitting light, a zoom lens 403 attached to the tip of the droplet observation camera in the objective direction, and a droplet observation camera (CCD camera) 402 that has a built-in light emitting light.
  • It is composed of a control unit 400 for controlling the drive of a drop observation camera and a zoom lens 403, and the like.
  • the droplet observation camera is fixed to the fixed base 401, but the fixing method is not limited to this, and the droplet observation camera may be fixed directly to the base 200. Good too.
  • the droplet observation camera is connected to the control unit 400 via a cable 404.
  • the control unit 400 is connected to the CPU 150, as shown in FIG.
  • the droplet observation camera is directed to a position where it can image the state of droplets discharged from each nozzle 3030 of the head section 301, as shown in FIG.
  • the CPU 150 of the control device 15 stores captured image data in the storage means 151 and displays it on the display means 153 based on a predetermined control program.
  • the droplet observation device 40 measures the velocity of droplets (hereinafter sometimes referred to as "droplet velocity"). If the droplet speed is too fast, secondary droplets called satellites will be generated, and if the droplet speed is too slow, the accuracy of the landing position will deteriorate due to air resistance during flight, so it is important to make sure that the droplet is flying at an appropriate speed. It is necessary to confirm that. Further, the droplet observation device 40 can measure the droplet volume for each nozzle 3030. Assuming that the flying droplet is spherical, the volume is estimated from the diameter of the droplet observed two-dimensionally. As described later, the droplet volume can be measured by coating on a droplet volume adjustment substrate, but it is also possible to measure the droplet volume using the droplet observation device 40.
  • droplet velocity the velocity of droplets
  • droplet volume adjustment substrate used is one whose surface area on which ink is applied has been treated to be water-repellent by fluorine coating, plasma treatment, or the like. Such water-repellent finishing is a device for accurately measuring the volume of dropped ink droplets.
  • a predetermined number of droplets are applied from all nozzles 3030 onto the droplet volume adjustment substrate. After drying the solvent contained in the applied droplets by vacuum drying or the like, the volume of the remaining solute is measured. The volume is measured using a confocal laser microscope, a white interference microscope, or the like.
  • a confocal laser microscope or a white interference microscope an image of only the focal portion can be obtained, so by changing the focal length, the area of the image at the height of each focal length can be measured.
  • the ink droplet to be measured has a hemispherical shape, so its shape when viewed from above is approximately circular.
  • each droplet portion divided at predetermined fine constant height h intervals is regarded as a disk shape, and from the radius r of the disk at a constant height h, the partial volume of the disk shape ( ⁇ r 2 ⁇ h) seek. This disc-shaped partial volume is calculated up to the total height H of the droplet. Thereafter, by summing up each of the partial volumes previously determined, the ink droplet volume V can be calculated as an approximate value.
  • voltage determination data as shown in FIG. 7 can be obtained.
  • This voltage determination data is stored in the storage means 151 as a table for each nozzle 3030. This allows the voltage adjustment value when adjusting the droplet volume to be determined. Specifically, it can be seen that in order to change the droplet volume by 0.1 pL, it is sufficient to adjust the voltage applied to the piezoelectric element 3010 by 0.24V.
  • the coating unevenness observation device 50 is one of the main features of the printing apparatus 1000, and is a means for observing unevenness in a coating film on a display panel, which is an object to be coated, placed on a fixed stage ST.
  • FIG. 8 is a diagram showing the configuration of a coating unevenness observation device.
  • FIG. 9 is a diagram showing the arrangement of the optical system of the coating unevenness observation device.
  • the coating unevenness observation device 50 is composed of a photographing unit 501 and a control section 500, as shown in FIG.
  • the photographing unit 501 includes a lighting 5001, a camera 5002, a lens 5003, a cylindrical lens 5004, and a rod lighting 5005.
  • the cylindrical lens 5004 is provided with a lens function only in one direction.
  • the cylindrical lens 5004 can uniformly illuminate the light in a straight line while condensing the light.
  • illumination light from a rod illumination 5005 is irradiated obliquely onto a coating film 5008 applied within a bank pattern 5007 (cell 5007A) on a display panel 5006.
  • Reflected light is generated on the surface of the coating film 5008 according to the amount of coating liquid on the coating film 5008, and the reflected light is received by the camera 5002 arranged perpendicularly to the display panel 5006 via the lens 5003. .
  • the camera and illumination are not limited to those mentioned above, and any camera and illumination may be used as long as the coating film 5008 can be observed.
  • the reason for using such a coating unevenness observation device 50 is as follows.
  • the volume of droplets discharged from the nozzle 3030 is adjusted in advance to a predetermined volume.
  • the volume of droplets discharged from the nozzle 3030 can be adjusted to an optimal state by directly observing the coating unevenness.
  • the workpiece may be a portion of the display panel other than the cells, or may be a glass substrate whose surface area, on which droplets are to land, has been treated to be liquid repellent by a fluororesin coating, plasma treatment, or the like.
  • FIG. 10 shows a state in which droplets 321 are printed on a substrate 5010.
  • the surface of the substrate 5010 is coated with a water-repellent material. Note that the surface of the display panel 5006 is also coated with a water-repellent material.
  • the substrate 5010 has the property of repelling ink. When ink wets and spreads on the substrate 5010, adjacent droplets may connect with each other. In order to prevent such adjacent droplets from connecting, ink is prevented from getting wet and spread on the substrate 5010. There is a need.
  • the contact angle of the ink to the substrate 5010 is approximately 30° to 70°.
  • a dummy droplet 320 is printed in order to make the drying state of the droplet 321 that lands first and the droplet 321 that lands after that as similar as possible.
  • the dummy droplets 320 are obtained by landing several to several tens of droplets from each nozzle 3030.
  • the droplet 321 is printed. If the density between the droplets 321 on the substrate 5010 is too high, it will be susceptible to drying, and there is a possibility that adjacent droplets 321 will connect with each other. In order to eliminate such effects of drying and to prevent adjacent droplets 321 from connecting with each other, printing is performed with a certain distance between droplets 321 secured.
  • the CPU 150 of the control device 15 prints the droplets 321 while moving the inkjet head 30 in the printing direction so as to eject the droplets 321 from adjacent nozzles 3030 at different times. Due to the actual positional relationship between the plurality of nozzles 3030, each droplet 321 is spread isotropically and applied. In this embodiment, when the row direction is the direction perpendicular to the printing direction, droplets 321 ejected from adjacent nozzles 3030 are printed in different rows on the substrate 5010.
  • FIG. 11 is an explanatory diagram of a method for measuring the area of the droplet 321 on the substrate 5010.
  • the area of the droplet 321 is measured by observing the droplet 321 that has landed on the substrate 5010 from above with a camera 5011. Note that the area here refers not to the surface area but to the area of the shadow when the droplet 321 is viewed from above (the projected area of the droplet 321 on the substrate 5010).
  • the camera 5011 is scanned to sequentially observe the droplets 321 in each row starting from the droplet 321 at the end of each row. After the observation of the droplets 321 in the first row is completed, the droplets 321 in the second row and the droplets 321 in the third row are observed in order.
  • the CPU 150 of the control device 15 measures the area of the droplet 321 before the landed droplet 321 dries.
  • the ink contains about 0.5 to 10% solid content, such as organic EL light-emitting materials. Although solid content remains after the ink solvent dries, the amount of solid content is very small, so the area of the droplet 321 becomes small. If the area of the droplet 321 becomes smaller, it becomes difficult to understand the difference in volume of the droplet 321 for each nozzle 3030, so the area of the droplet 321 is measured before the droplet 321 dries.
  • FIG. 13 shows the results in which the horizontal axis of the results shown in FIG. 12 is corrected to the elapsed time from when the droplet 321 lands until observation is performed. From the relationship shown in FIG. 13, it can be seen that the longer the elapsed time after the droplet 321 lands, the smaller the area of the droplet 321 becomes.
  • the area of the landed droplet 321 also changes depending on the volume of the droplet 321 discharged from the nozzle 3030.
  • the drying of the droplet 321 on the substrate 5010 was considered using a model as shown in FIG.
  • the mode is called CCR (Constant Contact Radius) mode, in which the diameter of the droplet 321 remains constant at D 0 and the contact angle changes from ⁇ C shown in the upper and left side of FIG. It decreases until it reaches ⁇ 1 as shown in the figure.
  • CCR Constant Contact Radius
  • the mode shifts to CCA (Constant Contact Angle) mode, and the contact angle remains constant at ⁇ 1 , and the diameter of the droplet 321 changes from D 0 shown in the upper and center figure of FIG. 15 to the upper and right figure. It decreases until it reaches D2 as shown.
  • the droplet 321 that landed on the substrate 5010 was considered as a spherical crown (a part of a sphere cut by a plane) shown in the lower diagram of FIG.
  • the radius of the sphere is r
  • the radius of the spherical crown is a (that is, the radius of the circle when the droplet 321 is observed from above)
  • the line from the center of the sphere to the apex (pole) of the spherical crown and the bottom of the spherical crown are Let the polar angle between the ends be ⁇ .
  • is equal to the contact angle ⁇ C of the landed droplet 321 with respect to the substrate 5010.
  • the surface area of the spherical crown is expressed by the following equation (6)
  • the volume of the spherical crown is expressed by the following equation (7).
  • FIG. 14 shows the results obtained by correcting the results shown in FIG. 13 using the above linear equation.
  • the CPU 150 of the control device 15 sets conditions for ejecting ink from the inkjet head 30 (for example, driving voltage ), it is possible to reduce variations in the volume of droplets 321 for each nozzle 3030.
  • the area of the droplet 321 for each line is corrected.
  • the first, second, and third rows are corrected separately.
  • dummy droplets 320 are initially placed in order to equalize the drying conditions of the droplets 321, there is still a possibility that the drying conditions differ slightly from row to row. Therefore, it is possible to correct the area more accurately by correcting each row.
  • dummy droplets 320 may be placed at both ends of each row, as shown in FIG. 17.
  • the nozzle 3030 corresponding to the droplet 321 at the end of each row may be treated as a dummy nozzle and operated as a nozzle 3030 whose volume is not adjusted.
  • dummy droplets 320 may be placed before and after the droplets 321 printed row by row in the printing direction. In this way, the dry state of the droplet 321 becomes almost uniform within the plane.
  • FIG. 19 is a diagram showing a process flow of the coating unevenness adjustment method.
  • FIG. 20 is a diagram showing a state in which the display panel is printed in the coating unevenness adjustment flow.
  • FIG. 21 is a diagram showing how ink applied inside a cell spreads within the cell.
  • FIG. 22 is a cross-sectional view taken along line AA in FIG. 21.
  • FIG. 23 is a diagram showing a state in which two patterns with different coating amounts are printed in a cell.
  • the display panel before printing is observed (step S1). Specifically, by observing the display panel before printing with the coating unevenness observation device 50 and acquiring image information from the panel before printing ink, information on the base is acquired, and later cell observation is performed. The background noise of the coating unevenness observation device 50 is removed.
  • the printing device 1000 performs printing on the display panel observed in step S1 (step S2). Specifically, as shown in FIG. 20, ink is applied inside the cells 2A formed in the bank 2 and to locations other than the cells 2A.
  • the CPU 150 of the control device 15 calculates the volume of droplets for each nozzle 3030 (step S3).
  • the droplet 310 When the droplet 310 is applied inside the cell 2A as shown in FIG. 20, the droplet 310 immediately spreads to form coating films 311, 312, 313 filling the inside of the cell 2A as shown in FIG.
  • the volume of the droplet 310 for each nozzle 3030 cannot be calculated based on the coating films 311, 312, and 313 in the cell 2A. Therefore, the CPU 150 calculates the volume of droplets applied to locations other than the cell 2A for each nozzle 3030. As shown in FIG. 22, it is desirable that the droplet 315 applied to areas other than the cell 2A be placed above the bank 2.
  • the upper part of the bank 2 is highly liquid repellent to the droplets 315, and the applied droplets 315 are likely to be stably formed into a hemispherical shape.
  • the shape of the droplet 315 By making the shape of the droplet 315 into such a hemispherical shape, the diameter and height of the droplet 315 tend to change regularly according to the droplet volume of the droplet 315, and the droplet 315 can be viewed from above by the camera 5002.
  • the droplet volume can be accurately measured when observed at .
  • the intensity of the reflected light correlates with the height of the droplet 315. Therefore, the CPU 150 calculates the volume of the droplet 315 as follows.
  • droplet height calculation data indicating the relationship between the intensity of reflected light from a droplet applied to a location other than the cell 2A and the height of the droplet is created in a database and stored in the storage means 151. I'll keep it.
  • the coating unevenness observation device 50 observes the droplets 315 on the bank 2 and outputs image data indicating the observation results to the control device 15. By observation using the coating unevenness observation device 50, image data of a gray scale of 256 gradations from 0 to 255 is obtained. Note that the image data is not limited to grayscale, and may be color.
  • the CPU 150 of the control device 15 calculates the area of the droplet 315 (the area of the orthogonal projection of the droplet onto the coating surface, that is, the cross-sectional area of the droplet, in other words, the circular area visible to the observer). , and the intensity of reflected light from the droplet 315.
  • the CPU 150 calculates the volume of the droplet 315 based on the area and reflected light intensity of the droplet 315 calculated based on the image data and the droplet height calculation data. Note that as a simple method for measuring the droplet 315, it is also possible to estimate the volume from only the area of the droplet 315 described above. This is because the height of the droplet is determined by the contact angle of the droplet 315 on the bank 2, and is considered to be approximately constant regardless of the droplet volume.
  • the nozzle 3030 to be adjusted when adjusting the droplet volume of each cell 2A is determined. This is because it is difficult to make a droplet that originally has a large volume even larger, or to make a droplet that originally has a small volume even smaller.
  • the coating unevenness observation device 50 observes the printed cells 2A (step S4). It is desirable that the printed cell 2A be observed before the ink solvent dries. This is because if the cell 2A is observed after the ink solvent has dried, the volume of the droplet ejected from the nozzle 3030 cannot be accurately calculated.
  • the CPU 150 of the control device 15 calculates the volume of the droplets applied in each area of each cell 2A based on the image data obtained in step S4 (step S5).
  • the area of the droplet displayed in the image data (the area of the orthogonal projection of the droplet onto the coating surface, that is, the cross-sectional area of the droplet, in other words The area of the circle visible to the observer is determined by the size of the cell 2A and is constant. Therefore, the volume of the droplet can be estimated based on the difference in the intensity of the reflected light, which varies depending on the height of the applied droplet.
  • the intensity of the reflected light can be determined from the image data obtained in step S4.
  • the data for calculating the cell coating amount representing the relationship between the intensity of reflected light from the coating film in the cell 2A (image data) and the volume of the droplet is created in advance into a database, and the data is stored in the storage means 151. By accumulating the droplet volume, the droplet volume can be calculated. Note that creating a database of droplet volumes may use supervised machine learning in which input information is cell image data and output information is volume numerical data for each cell.
  • the diagram at the left end of FIG. 23 shows the cell 2A before printing, and the diagrams at the center and right end of FIG. 23 show the state in which the coating film 316 is printed on the cell 2A with different amounts of ink.
  • the shape of the four corners of the coating area in cell 2A which is the area surrounded by the dashed-dotted line, the measured values of the horizontal width and vertical width of the coating area, and the gray scale. It is also possible to estimate the shape of the coating film 316 and calculate the droplet volume from the contrast of the image data.
  • data for calculating the cell coating amount representing the relationship between the shapes of the four corners, the measured values of the horizontal and vertical widths of the coating area, the contrast, and the droplet volume obtained from the image data are compiled into a database and stored in the storage unit 151. You can store it in
  • the CPU 150 of the control device 15 calculates the value of the droplet volume to be adjusted for each cell 2A, based on the above-mentioned calculated value of the droplet volume for each cell 2A, so that the droplet volume for each cell 2A becomes equal (Ste S6).
  • the volume of each cell 2A is determined so that uneven streaks do not occur, that is, so that the difference in droplet volume between the cells 2A calculated in step S5 disappears (reduces).
  • the CPU 150 of the control device 15 uses the position information of the nozzle 3030 assigned to each cell 2A, the droplet volume value of each nozzle 3030 calculated in step S3, and the droplet volume value to be adjusted for each cell 2A calculated in step S6.
  • the adjusted droplet volume value is determined for each nozzle 3030 from the volume value and the voltage determination data shown in FIG. 7 (step S7).
  • the droplet volume can be adjusted by voltage; however, increasing the applied voltage increases the droplet velocity.
  • sub-droplets called satellites are generated in addition to the main droplet. Since satellites may reduce the accuracy of droplet landing positions, it is necessary to eject droplets without generating satellites. Also, when the voltage is reduced, the droplet velocity becomes slower.
  • the droplet speed becomes slower than a certain level, the droplet will wander due to air resistance during flight, which may reduce the accuracy of the landing position. Therefore, although it is possible to adjust the droplet volume by applying voltage, the adjustment range is limited from the viewpoint of droplet velocity. Therefore, it is difficult to adjust the volume of a droplet with a high droplet velocity to a larger value or to make the volume of a droplet with a lower droplet velocity smaller. Therefore, the CPU 150 of the control device 15 needs to select an appropriate nozzle 3030 for adjusting the droplet volume from the viewpoint of the droplet speed. In other words, it is necessary to select a nozzle 3030 whose droplet volume can be adjusted within a droplet volume adjustable range excluding the range in which volume adjustment is difficult.
  • the CPU 150 of the control device 15 determines the nozzle 3030 whose droplet volume is to be adjusted, taking into account the arrangement of the nozzles 3030 assigned to the cell 2A and the balance of the droplet volume ejected from each nozzle 3030. For example, in FIG. 20, three nozzles 3030 are assigned to one cell 2A, and the CPU 150 of the control device 15 makes sure that the total volume of droplets 310 ejected from these three nozzles 3030 is as equal as possible.
  • the nozzle 3030 whose volume is to be adjusted is determined.
  • the volume of which nozzle 3030 is adjusted is determined based on the original droplet volume value (preset value of the droplet volume) of each nozzle 3030 assigned to the cell 2A.
  • the CPU 150 of the control device 15 calculates the volumes of the three droplets 310 arranged in one cell 2A.
  • (Pattern 1) Decrease the volume of the droplet on the left side, reduce the volume of the droplet in the center, and increase the volume of the droplet on the right side.
  • (Pattern 2) It is conceivable to select a nozzle 3030 that adjusts the droplet volume so that the droplet volume on the left side is small, the center droplet volume is large, and the right droplet volume is small.
  • the volume of droplets printed to the left of the center in cell 2A becomes smaller, and the volume of droplets printed to the right becomes larger, which may result in an asymmetrical shape within cell 2A. There is.
  • the droplet volume distribution within the cell 2A becomes symmetrical on the left and right sides. From the above, from the viewpoint of the distribution of the film shape formed in the cell 2A, it is desirable to select the nozzle 3030 that adjusts the droplet volume like pattern 2.
  • the CPU 150 of the control device 15 determines the adjusted droplet volume of the selected nozzle 3030.
  • the CPU 150 of the control device 15 rewrites the applied voltage data for each nozzle 3030 (step S8). Specifically, the CPU 150 of the control device 15 determines the adjusted application voltage for each nozzle 3030 based on the adjusted droplet volume of the nozzle 3030 determined in step S7 and the voltage determination data shown in FIG. Determine the voltage. The CPU 150 of the control device 15 transmits the determined applied voltage value to the control unit 300 of the inkjet head 30, and rewrites the applied voltage data in real time. The applied voltage data is rewritten by directly rewriting the memory (RAM) mounted on the head control board of the control unit 300.
  • RAM memory
  • the printing device 1000 prints on the cells of the display panel based on the rewritten applied voltage data.
  • the coating unevenness observation device 50 observes coating unevenness on the display panel. If the CPU 150 of the control device 15 determines that there is a coating unevenness based on the observation result of the coating unevenness observation device 50 (step S9: YES), it performs the process of step S1, and if it determines that there is no coating unevenness ( Step S9: NO), the coating unevenness adjustment is ended.
  • the coating unevenness observation device 50 observes the ink coating state (coating film formation state) within the cell 2A. Based on the observation results of the coating unevenness observation device 50, the CPU 150 of the control device 15 calculates the droplet volume for each nozzle 3030 that ejects ink into the cell 2A so that the difference in droplet volume for each cell 2A becomes small. adjust. In this way, by adjusting the droplet volume for each nozzle 3030 based on the observation results of the droplet volume for each cell 2A to which ink is actually applied, variations in droplet volume between cells 2A are suppressed. be able to. As a result, uneven light emission of the display panel can be suppressed.
  • the printing apparatus 1000 includes the inkjet head 30 including a plurality of nozzles 3030 and a plurality of piezoelectric elements 3010. Furthermore, the printing apparatus 1000 includes at least one of the camera 5002 (see FIG. 8) and the camera 5011 (see FIG. 11) of the coating unevenness observation device 50. The printing apparatus 1000 also includes a control device 15 . Such a printing apparatus 1000 may adjust the volume of the droplet discharged from the nozzle 3030 using the brightness of the droplet that landed on the target surface (for example, the surface of the substrate 5010 or the pixel bank 2). A printing apparatus and a printing method that adjust the volume of droplets ejected from the nozzle 3030 using the brightness of the droplets will be described below.
  • Print device configuration The main parts of the printing apparatus 1000 that function when adjusting the volume of droplets discharged from the nozzle 3030 using the brightness of the droplets are as follows. Note that content that overlaps with the previous explanation will be omitted as appropriate. In other words, the printing apparatus 1000 described below also includes the components described above using FIGS. 4, 5, and the like. Also, the same components are given the same reference numerals.
  • FIG. 24 is a block diagram of the main parts of the printing apparatus 1000.
  • the main parts of the printing apparatus 1000 include a control device 15, an inkjet head 30, and a camera 5002.
  • the main part of the printing apparatus 1000 may include a camera 5011 instead of the camera 5002. That is, the functions of the camera 5002 described below may be performed by the camera 5011.
  • the main parts of the printing apparatus 1000 include a camera 5002 and a camera 5011, and these may be switched and used for each process.
  • the camera 5002 detects the dummy droplet 320 (see FIGS. 10 to 11) that landed on the surface of the substrate 5010 (an example of the target surface) or the droplet 315 that landed on the surface of the pixel bank 2 (see FIGS. 20 to 22). ) is used for observation.
  • the camera 5002 captures an image of the droplet 315.
  • Camera 5002 transmits the captured image to control device 15.
  • the control device 15 includes a CPU 150 and a storage means 151.
  • the CPU 150 functions as an image acquisition section 154, an image analysis section 155, a volume calculation section 156, and a voltage adjustment section 157 by reading and executing a program stored in the storage means 151.
  • the storage unit 151 stores the volume correction coefficient of the droplet 315 that landed on the target surface in association with a parameter that has a correlation with the brightness of the droplet.
  • the image acquisition unit 154 acquires an image from the camera 5002.
  • the image analysis unit 155 analyzes the image acquired by the image acquisition unit 154.
  • the volume calculation unit 156 calculates the volume of the droplet 315 using the image analysis result by the image analysis unit 155 and the volume correction coefficient acquired from the storage unit 151.
  • the voltage adjustment unit 157 transmits a signal to the inkjet head 30, specifically, the control unit 300, based on the volume of the droplet 315 calculated by the volume calculation unit 156.
  • the signal transmitted at this time is a signal for adjusting the voltage applied to the piezoelectric element 3010 corresponding to the nozzle 3030 whose ejection amount needs to be adjusted, that is, at least one of the plurality of piezoelectric elements 3010.
  • the inkjet head 30 includes a plurality of nozzles 3030 and a plurality of piezoelectric elements 3010 corresponding to each nozzle 3030 on a one-to-one basis.
  • the control unit 300 controls each piezoelectric element 3010 based on instructions (that is, signals) from the control device 15.
  • FIGS. 25 and 26 are a plan view and a side view of a droplet 315 that has landed on the surface of the bank 2, which is an example of the target surface.
  • 315A, 315B, and 315C shown in FIGS. 25 and 26 are minute regions on the surface of the droplet 315.
  • the micro region 315A is located near the center of the droplet 315
  • the micro region 315C is located near the edge of the droplet 315
  • the micro region 315B is located between the micro region 315A and the micro region 315C. positioned.
  • the brightness differs depending on the position of the surface of the droplet 315. Specifically, the brightness is higher at a position where the angle between the plane in contact with the surface of the droplet 315 and the target surface is smaller, and the brightness is higher at a position where the angle between the plane in contact with the surface of the droplet 315 and the target surface is larger. It gets expensive. Furthermore, since the droplet 315 has a spherical crown shape, the plane that is in contact with the center of the droplet 315 is parallel to the object plane.
  • the angle between the plane in contact with the surface of the droplet 315 and the object plane is the minimum 0, and the brightness is the highest. Furthermore, at the outermost periphery of the droplet 315, the angle between the plane in contact with the surface of the droplet 315 and the target surface is maximum (contact angle), and the brightness is the lowest.
  • the brightness of the minute area 315A is high, the brightness of the minute area 315C is low, and the brightness of the minute area 315B is between the brightness of the minute area 315A and the brightness of the minute area 315C. becomes.
  • the volume of the droplet ejected from the nozzle 3030 differs, the shape of the spherical crown formed on the target surface will also differ, and the brightness distribution will also differ. Further, while the droplet landed on the target surface is observed, as the droplet dries and the volume of the droplet decreases, the shape of the spherical crown also changes, and the brightness distribution also changes. By using this property, the volume of the droplet can be determined with high accuracy based on the brightness.
  • FIG. 27 is a diagram showing an example of a change in volume of an ejected droplet over time.
  • droplets 315 are first dried in CCR mode and then in CCA mode. When drying through these modes, the droplet 315 decreases in volume as shown in FIG. 27. That is, in the CCR mode, the volume gradually decreases over time. Furthermore, in the example shown in FIG. 27, the volume decreases at a slower pace in the CCA mode than in the CCR mode. That is, the rate of volume reduction is different between the CCR mode and the CCA mode.
  • the area of the orthogonal projection of the droplet 315 onto the target surface changes as shown in FIG. 28. That is, in the CCR mode, the area of the orthogonal projection of the droplet 315 onto the target surface does not change. Furthermore, in the CCA mode, the area of the orthogonal projection of the droplet 315 onto the target surface decreases as time passes.
  • FIG. 29 is a diagram chronologically arranging the side view shape of a droplet 315 whose volume gradually decreases as it dries in the CCR mode.
  • FIG. 30 is a diagram chronologically arranging the plan view shapes of droplets 315 dried in the CCR mode.
  • Each droplet 315 shown in FIG. 30 corresponds one-to-one with each droplet 315 shown in FIG. 29.
  • FIG. 29 shows only the outline of the droplet 315.
  • FIG. 30 also shows the level of brightness; the closer the color is to white, the higher the brightness, and the closer to black, the lower the brightness.
  • the contact angle of the droplet 315 with respect to the surface of the pixel bank 2, which is an example of the target surface decreases over time.
  • the orthogonal projection shape which is the shape of the orthogonal projection of the droplet 315 onto the target surface, does not change over time.
  • the size (ie, area, diameter, radius, etc.) of the outer circumferential circle 315D, which is the outline of the orthogonal projection shape does not change.
  • the brightness of the droplet 315 dried in the CCR mode changes as the volume of the droplet 315 decreases (that is, changes in shape). Specifically, as the contact angle decreases and the droplet 315 becomes flat, the region of high brightness spreads from the center toward the periphery.
  • This circle 315E is a concentric circle of the outer circumferential circle 315D.
  • the ratio of the size of the concentric circle 315E to the size of the outer circumferential circle 315D changes when the volume of the droplet 315 changes and the brightness of the droplet changes.
  • the ratio of the size of the concentric circle 315E to the size of the outer circumferential circle 315D is one of the parameters that has a correlation with the droplet brightness.
  • the predetermined brightness may be an absolute value of brightness, or a relative value between the maximum value (that is, the brightness at the center) and the minimum value (that is, the brightness at the outer periphery) of the brightness of the droplet 315. It may be.
  • the ratio of the size of the concentric circle 315E to the size of the outer circumferential circle 315D changes as the volume of the droplet 315 changes, that is, it is determined according to the volume of the droplet 315, so it is an index indicating the volume of the droplet 315. becomes. Therefore, by determining the relationship between the ratio of the size of the concentric circle 315E to the size of the outer circumferential circle 315D and the volume correction coefficient, which is a coefficient for correcting the volume of the droplet 315, in advance through experiments, etc. A volume correction factor can be obtained from the ratio.
  • FIG. 31 shows an example of the relationship between the ratio of the size of the concentric circle 315E to the size of the outer circumferential circle 315D and the volume correction coefficient.
  • the volume correction coefficient becomes smaller as the ratio of the size of the concentric circle 315E to the size of the outer circumferential circle 315D becomes larger (the height of the droplet 315 becomes lower and the volume becomes smaller).
  • a more accurate volume of the droplet 315 can be calculated by calculating the provisional volume, which is the provisional volume of the droplet 315, based on the above-mentioned formula (7), and multiplying the provisional volume by a volume correction coefficient. can. That is, by using the brightness of the droplet 315, the volume of the droplet 315 can be calculated more accurately.
  • FIG. 32 is a diagram in which the plan view shapes of droplets 315 dried in the CCR mode are arranged in chronological order.
  • Each droplet 315 shown in FIG. 32 corresponds one-to-one with each droplet 315 shown in FIG. 29.
  • FIG. 32 shows a concentric circle 315F whose diameter is the value obtained by multiplying the diameter of the outer circumferential circle 315D by a predetermined value.
  • the predetermined value can be any value greater than 0 and less than or equal to 1.
  • the diameter of the outer circle 315D does not change. Therefore, the diameter of the concentric circle 315F also does not change. In other words, the shape of the concentric circle 315F does not change, and the area surrounded by the concentric circle 315F also does not change.
  • the brightness of the droplet 315 that dries in the CCR mode changes as the volume of the droplet 315 decreases (that is, the shape changes).
  • the average value of the brightness of the area surrounded by the concentric circle 315F changes when the volume of the droplet 315 changes and the brightness of the droplet changes. That is, the average value of the brightness of the area surrounded by the concentric circle 315F is one of the parameters that has a correlation with the droplet brightness.
  • the average value of the brightness of the area surrounded by the concentric circles 315F changes as the volume of the droplet 315 changes, that is, it is determined according to the volume of the droplet 315, and therefore serves as an index indicating the volume of the droplet 315. Therefore, by determining the relationship between the average value of the brightness of the area surrounded by the concentric circle 315F and the volume correction coefficient, which is a coefficient for correcting the volume of the droplet 315, in advance through experiments, etc., it is possible to calculate the relationship from this average value. A volume correction factor can be obtained.
  • FIG. 33 shows an example of the relationship between the average brightness of the area surrounded by the concentric circle 315F and the volume correction coefficient.
  • the volume correction coefficient becomes smaller as the average value of the brightness of the area surrounded by the concentric circle 315F becomes larger (the height of the droplet 315 becomes lower and the volume becomes smaller).
  • a more accurate volume of the droplet 315 can be calculated by calculating the provisional volume, which is the provisional volume of the droplet 315, based on the above-mentioned formula (7), and multiplying the provisional volume by a volume correction coefficient. can. That is, by using the brightness of the droplet 315, the volume of the droplet 315 can be calculated more accurately.
  • FIG. 34 is a diagram chronologically arranging the side view shape of a droplet 315 whose volume gradually decreases as it dries in the CCA mode.
  • FIG. 35 is a diagram chronologically arranging the plan view shapes of droplets 315 dried in the CCA mode.
  • Each droplet 315 shown in FIG. 35 corresponds one-to-one with each droplet 315 shown in FIG. 34. Note that only the outline of the droplet 315 is shown in FIG. FIG. 35 also shows the level of brightness; the closer the color is to white, the higher the brightness, and the closer to black, the lower the brightness.
  • FIG. 35 shows a concentric circle 315F whose diameter is the value obtained by multiplying the diameter of the outer circumferential circle 315D by a predetermined value.
  • the predetermined value can be any value greater than 0 and less than or equal to 1.
  • the contact angle of the droplet 315 with the surface of the pixel bank 2, which is an example of the target surface does not change over time.
  • the orthogonal projection shape which is the shape of the orthogonal projection of the droplet 315 onto the target surface, changes over time.
  • the size (that is, the area, diameter, radius, etc.) of the outer circumferential circle 315D, which is the outline of the orthogonal projection shape decreases over time.
  • the shapes of the droplets 315 at each time are similar to each other.
  • the average value of the brightness of the area surrounded by the concentric circle 315F does not change while the droplet 315 dries in the CCA mode.
  • the higher the height of the droplet 315 when the drying mode is switched from the CCR mode to the CCA mode that is, the larger the contact angle
  • the higher the average value of the brightness of the area surrounded by the concentric circle 315F the lower the height of the droplet 315 and the smaller the volume of the droplet 315.
  • the average value of the brightness of the area surrounded by the concentric circle 315F is one of the parameters that has a correlation with the droplet brightness.
  • the relationship between the average brightness of the area surrounded by the concentric circle 315F and the volume correction coefficient which is a coefficient for correcting the volume of the droplet 315, can be determined in advance through experiments, etc. , a volume correction coefficient can be obtained from this average value.
  • the relationship between the average brightness value of the area surrounded by the concentric circle 315F and the volume correction coefficient is similar to the relationship shown in FIG. 33.
  • step S3 is the step of calculating the volume of the droplet 315 (see FIGS. 20 to 22) for each nozzle 3030
  • step S3 is the step of calculating the volume of the droplet 315 (see FIGS. 20 to 22) for each nozzle 3030
  • step S3 is the step of calculating the volume of the droplet 315 (see FIGS. 20 to 22) for each nozzle 3030
  • the steps shown in FIG. 36 are performed. Therefore, first, a method of calculating the droplet volume executed by the printing apparatus 1000 will be described with reference to FIG. 36.
  • an image of the droplet 315 is captured by the camera 5002 (S11).
  • the control device 15 specifically the image acquisition unit 154, acquires the image from the camera 5002.
  • the camera 5002 may take an image with the optical axis of the camera 5002 perpendicular to the target surface, or may take an image with the optical axis of the camera 5002 inclined with respect to the target surface. Good too.
  • the image is analyzed by the image analysis unit 155, and the droplet brightness, which is the brightness of the droplet 315, and the orthogonal projection shape, which is the shape of the orthogonal projection of the droplet 315 onto the target surface, are obtained (S12). .
  • the image analysis unit 155 can obtain the droplet brightness and orthographic shape by image analysis. Needless to say.
  • the image analysis unit 155 further analyzes the image, and obtains the value of a parameter that has a correlation with the brightness of the droplet 315 (S13). Specifically, it is a concentric circle of the outer circumferential circle that is the outline of the orthogonal projection shape that is the shape of the orthogonal projection of the droplet 315 onto the target surface, and has a predetermined brightness. The ratio of the sizes of concentric circles connecting the points is obtained (see FIG. 30).
  • it is a concentric circle of the outer circumferential circle that is the outline of the orthogonal projection shape that is the shape of the orthogonal projection of the droplet 315 onto the target surface, and the diameter is the value obtained by multiplying the diameter of the outer circumferential circle by a predetermined value.
  • the average value of the brightness of the area surrounded by concentric circles is obtained (see FIG. 32 and FIG. 35).
  • the volume calculation unit 156 obtains a volume correction coefficient (S14). Specifically, the volume calculation unit 156 calculates the volume correction coefficient based on the value of the parameter acquired by the image analysis unit 155 and the relationship between the volume correction coefficient and the parameter, which is stored in advance in the storage unit 151. get.
  • the volume calculation unit 156 calculates a provisional volume that is a provisional volume of the droplet 315 (S15).
  • the temporary volume is, for example, the volume assuming that the shape of the droplet 315 is a hemisphere. From the orthogonal projection shape acquired by the image analysis unit 155, the radius of this hemisphere can be determined and the temporary volume can be calculated.
  • the tentative volume may be determined from equation (7) by predetermining the contact angle of the droplet 315 with respect to the target surface based on experiments or the like.
  • the volume calculation unit 156 calculates the volume of the droplet 315 by multiplying the temporary volume by the volume correction coefficient (S16).
  • the printing apparatus 1000 can accurately calculate the volume of the droplet 315 using the brightness of the droplet 315. By performing these steps for each droplet 315 ejected from each nozzle 3030, the volume of the droplet 315 for each nozzle 3030 can be accurately calculated. Then, by going through steps S4 to S8 described above, the voltage applied to at least one of the plurality of piezoelectric elements 3010 is adjusted based on the calculated volume of the droplet 315.
  • the type of parameter that has a correlation with the brightness of the droplet 315 may be changed depending on the drying mode of the droplet 315 at the time when the image is captured by the camera 5002. That is, in step S13, if the drying mode of the droplet 315 at the time of imaging is the CCR mode, the image analysis unit 155 sets the value of the first parameter as the value of the parameter having a correlation with the brightness of the droplet 315. You may obtain it. Further, in step S13, if the drying mode of the droplet 315 at the time of imaging is the CCA mode, the image analysis unit 155 determines that the first parameter is the type You may acquire the value of the second parameter which is different.
  • the first parameter is, for example, the average brightness of an area surrounded by concentric circles of an outer circumferential circle that is the outline of an orthogonal projection shape, and whose diameter is a value obtained by multiplying the diameter of the outer circumferential circle by a predetermined value. Can be a value.
  • the second parameter is, for example, the ratio of the size of a concentric circle of the outer circumferential circle that connects points having a predetermined brightness to the size of the outer circumferential circle that is the outline of the orthogonal projection shape. can do.
  • the image analysis unit 155 determines whether the drying mode of the droplet 315 is the CCR mode or the CCA mode based on the elapsed time from when the droplet 315 is ejected from the nozzle 3030 until it is imaged by the camera 5002. can do. That is, if the elapsed time is less than a predetermined time, it is determined that the drying mode is the CCR mode, and if the elapsed time is greater than or equal to the predetermined time, the drying mode is determined to be the CCA mode. It can be determined that
  • the orthogonally projected shape of the droplet 315 does not change when the drying mode is the CCR mode, but changes and gradually becomes smaller when the drying mode is the CCA mode. Therefore, the image analysis unit 155 analyzes a plurality of still images of the droplet 315 or a moving image of the droplet 315, and determines that the drying mode of the droplet 315 is the CCR mode based on the change in the orthogonal projection shape of the droplet 315. or CCA mode.
  • the volume of the droplet 315 can be calculated more accurately for each drying mode.
  • uneven light emission of the display panel can be suppressed.
  • the printing apparatus and printing method of the present disclosure can suppress uneven light emission even when display panels are manufactured by printing on pixel banks, and can be applied to display panel manufacturing.

Landscapes

  • Coating Apparatus (AREA)

Abstract

This printing device comprises: an inkjet head provided with a plurality of nozzles and a plurality of piezoelectric elements; a camera that captures an image of a droplet that is ejected from one of the plurality of nozzles and that lands on a target surface; and a control device that, on the basis of the image, acquires droplet brightness, which is the brightness of the droplet, and an orthographic projection shape, which is the shape of the orthographic projection of the droplet onto the target surface, calculates the volume of the droplet on the basis of on the droplet brightness and the orthographic projection shape, and adjusts a voltage applied to at least one of the plurality of piezoelectric elements on the basis of the calculated volume.

Description

印刷装置、制御装置及び印刷方法Printing device, control device and printing method
 本開示は、印刷装置及び印刷方法に関する。 The present disclosure relates to a printing device and a printing method.
 液晶ディスプレイのカラーフィルターや、有機ELディスプレイ等のデバイスを製造する方法として、例えば機能性材料を含む液状体をインクジェット法により複数のノズルから液滴として吐出し、被吐出体に機能性材料の膜を形成する方法が知られている。この場合、液滴の吐出量を制御する制御装置の設定と、液滴の実際の吐出量と、の対応関係を取得し、吐出量を一定の値に制御することが重要な工程となる。なぜなら、吐出量が不均一になると、機能性材料の膜厚に差が生じてしまい、デバイスの不良へと繋がるからである。例えば、カラーフィルターや有機ELディスプレイであれば、膜厚の差が色ムラや輝度ムラとして観察される。 As a method for manufacturing devices such as color filters for liquid crystal displays and organic EL displays, for example, a liquid containing a functional material is ejected as droplets from multiple nozzles using an inkjet method, and a film of the functional material is formed on the object to be ejected. There are known methods of forming . In this case, an important step is to obtain the correspondence between the settings of the control device that controls the droplet ejection amount and the actual droplet ejection amount, and to control the ejection amount to a constant value. This is because if the discharge amount becomes non-uniform, a difference will occur in the film thickness of the functional material, leading to device failure. For example, in the case of a color filter or an organic EL display, differences in film thickness are observed as color unevenness or brightness unevenness.
 実際の吐出量を調べる方法として、例えばガラス基板に、高分子系の溶質を含有するインクを所定の液滴数塗布し、溶媒を乾燥させた後、白色干渉顕微鏡などの測定器を用いて溶質の体積を測定する方法が知られている(例えば、特許文献1参照)。 To check the actual discharge amount, for example, apply a predetermined number of droplets of ink containing a polymeric solute to a glass substrate, dry the solvent, and then measure the solute using a measuring instrument such as a white interference microscope. A method of measuring the volume of is known (for example, see Patent Document 1).
 また、実際の吐出量を調べる方法として、レーザー式距離測定器を用いて液滴の高さを測定し、液滴の体積を算出する方法が知られている(例えば、特許文献2参照)。 Furthermore, as a method of checking the actual discharge amount, a method is known in which the height of the droplet is measured using a laser distance measuring device and the volume of the droplet is calculated (see, for example, Patent Document 2).
 また、インクジェット法で有機ELディスプレイを製造する方法として、ガラス基板上にインクを塗布した後に、インク中の溶媒を乾燥させた液滴の形状を共焦点レーザー顕微鏡で測定して、乾燥後の液滴の体積値を得る。そして、インク中の固形分濃度に基づいて、溶媒乾燥後の液滴の体積値を溶媒乾燥前のウェット状態の液滴の体積(以下、「液滴体積」という場合がある)に換算して、インクジェットヘッドの各ノズルから吐出される液滴体積値を得る。そして、ウェット状態の液滴体積値をノズル間で調整することで、均一な塗布量での印刷を実現する方法が知られている(例えば、特許文献3参照)。 In addition, as a method for manufacturing organic EL displays using the inkjet method, after coating ink on a glass substrate, the shape of the droplets after drying the solvent in the ink is measured using a confocal laser microscope, and the shape of the droplets after drying is measured. Obtain the volume value of the drop. Then, based on the solid content concentration in the ink, the volume value of the droplet after solvent drying is converted to the volume of the droplet in the wet state before solvent drying (hereinafter sometimes referred to as "droplet volume"). , obtain the volume value of droplets ejected from each nozzle of the inkjet head. A method is known in which printing with a uniform coating amount is achieved by adjusting the droplet volume value in a wet state between nozzles (for example, see Patent Document 3).
特開平9-48111号公報Japanese Patent Application Publication No. 9-48111 特許第6524407号公報Patent No. 6524407 特開2011-044340号公報Japanese Patent Application Publication No. 2011-044340
 本開示の一態様に係る印刷装置は、複数のノズルと複数の圧電素子を備えるインクジェットヘッドと、前記複数のノズルの1つから吐出されて対象面に着弾した液滴の画像を撮像するカメラと、前記画像に基づいて、前記液滴の輝度である液滴輝度、および、前記液滴の前記対象面への正射影の形状である正射影形状を取得し、前記液滴輝度および前記正射影形状に基づいて前記液滴の体積を算出し、算出された前記体積に基づいて前記複数の圧電素子の少なくとも1つに印加される電圧を調整する制御装置と、を備える。 A printing device according to one aspect of the present disclosure includes an inkjet head including a plurality of nozzles and a plurality of piezoelectric elements, and a camera that captures an image of a droplet ejected from one of the plurality of nozzles and landing on a target surface. , based on the image, obtain droplet brightness, which is the brightness of the droplet, and an orthogonal projection shape, which is the shape of the orthogonal projection of the droplet onto the target surface, and obtain the droplet brightness and the orthogonal projection. A control device that calculates the volume of the droplet based on the shape and adjusts the voltage applied to at least one of the plurality of piezoelectric elements based on the calculated volume.
 本開示の一態様に係る制御装置は、複数のノズルと複数の圧電素子を備えるインクジェットヘッドと、前記複数のノズルの1つから吐出されて対象面に着弾した液滴の画像を撮像するカメラとを備える印刷装置を制御する制御装置であって、前記カメラから前記画像を取得する画像取得部と、前記画像を解析して、前記液滴の輝度である液滴輝度、および、前記液滴の前記対象面への正射影の形状である正射影形状を取得する画像解析部と、前記液滴輝度および前記正射影形状に基づいて前記液滴の体積を算出する体積算出部と、算出された前記体積に基づいて前記複数の圧電素子の少なくとも1つに印加される電圧を調整する電圧調整部と、を備える。 A control device according to one aspect of the present disclosure includes an inkjet head including a plurality of nozzles and a plurality of piezoelectric elements, and a camera that captures an image of a droplet ejected from one of the plurality of nozzles and landing on a target surface. A control device for controlling a printing device comprising: an image acquisition unit that acquires the image from the camera; and a droplet brightness that is the brightness of the droplet by analyzing the image, and a droplet brightness that is the brightness of the droplet. an image analysis unit that obtains an orthogonal projection shape that is a shape of orthogonal projection onto the target surface; a volume calculation unit that calculates the volume of the droplet based on the droplet brightness and the orthogonal projection shape; A voltage adjustment section that adjusts a voltage applied to at least one of the plurality of piezoelectric elements based on the volume.
 本開示の一態様に係る印刷方法は、複数のノズルと複数の圧電素子を備えるインクジェットヘッドから液滴を吐出して印刷する印刷方法であって、前記複数のノズルの1つから吐出されて対象面に着弾した前記液滴の画像を撮像し、前記画像を解析して、前記液滴の輝度である液滴輝度、および、前記液滴の前記対象面への正射影の形状である正射影形状を取得し、前記液滴輝度および前記正射影形状に基づいて前記液滴の体積を算出し、算出された前記体積に基づいて前記複数の圧電素子の少なくとも1つに印加される電圧を調整する、ことを含む。 A printing method according to one aspect of the present disclosure is a printing method of printing by ejecting droplets from an inkjet head including a plurality of nozzles and a plurality of piezoelectric elements, the printing method being a printing method in which droplets are ejected from one of the plurality of nozzles to a target. An image of the droplet that has landed on the surface is captured, and the image is analyzed to determine the droplet brightness, which is the brightness of the droplet, and the orthogonal projection, which is the shape of the orthogonal projection of the droplet onto the target surface. obtaining the shape, calculating the volume of the droplet based on the droplet brightness and the orthogonal projection shape, and adjusting the voltage applied to at least one of the plurality of piezoelectric elements based on the calculated volume. Including doing.
従来技術におけるラインバンクにインクを塗布をした状態を示す図Diagram showing a state in which ink is applied to a line bank in conventional technology 従来技術におけるピクセルバンクにインクを塗布をした状態を示す図Diagram showing a state in which ink is applied to a pixel bank in conventional technology 図2のA-A線に沿う断面図Cross-sectional view taken along line AA in Figure 2 本開示の実施の形態に係る印刷装置の全体構成を示す図A diagram showing the overall configuration of a printing device according to an embodiment of the present disclosure 本開示の実施の形態に係る印刷装置の機能ブロック図Functional block diagram of a printing device according to an embodiment of the present disclosure 本開示の実施の形態に係るインクジェットヘッドのヘッド部の内部構成を示す断面図A cross-sectional view showing the internal configuration of a head section of an inkjet head according to an embodiment of the present disclosure. 本開示の実施の形態に係るインクジェットヘッドのノズルから吐出される液滴体積と圧電素子の印加電圧との関係を示す図A diagram showing the relationship between the volume of a droplet ejected from a nozzle of an inkjet head and the voltage applied to a piezoelectric element according to an embodiment of the present disclosure. 本開示の実施の形態に係る塗布ムラ観察装置の構成を示す図A diagram showing the configuration of a coating unevenness observation device according to an embodiment of the present disclosure 本開示の実施の形態に係る塗布ムラ観察装置光学系の配置を示す図A diagram showing the arrangement of an optical system of a coating unevenness observation device according to an embodiment of the present disclosure 本開示の実施の形態に係る基板上に液滴を印刷した状態を示す図A diagram showing a state in which droplets are printed on a substrate according to an embodiment of the present disclosure 本開示の実施の形態に係る液滴の面積測定方法を示す図A diagram showing a method for measuring the area of a droplet according to an embodiment of the present disclosure 本開示の実施の形態に係る液滴の面積測定結果を示すグラフGraph showing area measurement results of droplets according to embodiments of the present disclosure 本開示の実施の形態に係る液滴の面積測定結果を示すグラフであって、図12のグラフの横軸を液滴が着弾してから観察が行われるまでの経過時間に修正したグラフ13 is a graph showing the area measurement results of a droplet according to an embodiment of the present disclosure, in which the horizontal axis of the graph in FIG. 12 is corrected to the elapsed time from when the droplet lands until observation is performed. 本開示の実施の形態に係る液滴の面積測定結果を補正した結果を示すグラフGraph showing the results of correcting the area measurement results of droplets according to the embodiment of the present disclosure 本開示の実施の形態に係る基板上に着弾した液滴のモデル図A model diagram of a droplet landing on a substrate according to an embodiment of the present disclosure 本開示の実施の形態に係る液滴の面積と着弾してから観察までの経過時間との関係を示すグラフGraph showing the relationship between the area of a droplet and the elapsed time from landing to observation according to an embodiment of the present disclosure 本開示の変形例に係る液滴の面積測定方法を示す図A diagram showing a method for measuring the area of a droplet according to a modification of the present disclosure. 本開示の変形例に係る基板上に液滴を印刷した状態を示す図A diagram showing a state in which droplets are printed on a substrate according to a modified example of the present disclosure. 本開示の実施の形態に係る塗布ムラ調整方法のプロセスフローを示す図A diagram showing a process flow of a method for adjusting coating unevenness according to an embodiment of the present disclosure 本開示の実施の形態に係る塗布ムラ調整フローにおいてディスプレイパネルに印刷をした状態を示す図A diagram showing a state in which printing is performed on a display panel in a coating unevenness adjustment flow according to an embodiment of the present disclosure. 本開示の実施の形態に係るセルの中に塗布したインクがセル内で広がった様子を示す図A diagram showing how ink applied in a cell according to an embodiment of the present disclosure spreads within the cell. 図21のA-A線に沿う断面図Cross-sectional view taken along line AA in Figure 21 本開示の実施の形態に係るセル内に塗布量が異なる2つのパターンが印刷された状態を示す図A diagram showing a state in which two patterns with different coating amounts are printed in a cell according to an embodiment of the present disclosure 本開示に係る印刷装置の要部のブロック図Block diagram of main parts of a printing device according to the present disclosure 着弾した液滴の平面図Top view of landed droplet 着弾した液滴の側面図Side view of landed droplet 液滴の体積と時間の関係を示すグラフGraph showing the relationship between droplet volume and time 液滴の対象面への正射影の面積と時間の関係を示すグラフGraph showing the relationship between the area and time of orthogonal projection of a droplet onto the target surface CCRモードで乾燥して徐々に体積が減少する液滴の側面視形状を、時系列に並べた図Diagram showing the side view shape of a droplet whose volume gradually decreases as it dries in CCR mode, arranged in chronological order. CCRモードで乾燥する液滴の平面視形状を、時系列に並べた図Diagram showing the plan view shapes of droplets dried in CCR mode arranged in chronological order 外周円の大きさに対する同心円の大きさの比率と、体積補正係数との関係の一例An example of the relationship between the ratio of the size of the concentric circle to the size of the outer circle and the volume correction coefficient CCRモードで乾燥する液滴の平面視形状を、時系列に並べた図Diagram showing the plan view shapes of droplets dried in CCR mode arranged in chronological order 同心円に囲まれる領域の輝度の平均値と、体積補正係数との関係の一例An example of the relationship between the average brightness of the area surrounded by concentric circles and the volume correction coefficient CCAモードで乾燥して徐々に体積が減少する液滴の側面視形状を、時系列に並べた図Diagram showing the side view shape of a droplet whose volume gradually decreases as it dries in CCA mode, arranged in chronological order. CCAモードで乾燥する液滴の平面視形状を、時系列に並べた図Diagram showing the plan view shapes of droplets dried in CCA mode arranged in chronological order 輝度を用いて液滴の体積を算出する方法のプロセスフローを示す図Diagram showing the process flow of how to calculate droplet volume using brightness
 インクジェット法で有機ELディスプレイを製造する際に、インクを塗布する領域がライン状のバンク(以下、「ラインバンク」と言う場合がある)で形成されていることがある。この場合、図1に示すように、ディスプレイパネル5006上に形成されたラインバンク2の長軸方向が、インクジェットヘッド30の複数のノズル101の配列方向と平行になるように、ディスプレイパネル5006を配置することによって、ラインバンク2に対して複数のノズル101を割り当てて、インクを吐出して塗布膜を形成する。この状態においては、多くのノズル101でライン状に形成された広い領域にインクを吐出するため、ノズル101間の液滴310の体積のばらつきは平均化される。結果的に、ラインバンク2内に形成される塗布膜の膜厚のばらつきは、それほど問題にならない。 When manufacturing an organic EL display using an inkjet method, the area to which ink is applied is sometimes formed as a line-shaped bank (hereinafter sometimes referred to as a "line bank"). In this case, as shown in FIG. 1, the display panel 5006 is arranged so that the long axis direction of the line bank 2 formed on the display panel 5006 is parallel to the arrangement direction of the plurality of nozzles 101 of the inkjet head 30. By doing so, a plurality of nozzles 101 are assigned to the line bank 2 and ink is ejected to form a coating film. In this state, many nozzles 101 eject ink over a wide area formed in a line, so variations in the volume of droplets 310 between nozzles 101 are averaged out. As a result, variations in the thickness of the coating film formed within the line bank 2 do not pose much of a problem.
 図1では、14個のノズル101で印刷する場合を例示している。14個のノズル101から吐出される液滴体積のばらつきは、一般的に3%くらいである。しかし、各ノズル101からの液滴310がラインバンク1の中で混合するため、もともと存在する液滴体積のばらつきは、平均化される。 FIG. 1 shows an example of printing with 14 nozzles 101. The variation in the volume of droplets discharged from the 14 nozzles 101 is generally about 3%. However, since the droplets 310 from each nozzle 101 mix within the line bank 1, the originally existing variations in droplet volume are averaged out.
 複数のノズルからの塗布により液滴体積のばらつきが緩和される事象を詳細に説明する。例えば3個のノズルで塗布する場合、全体の液滴体積のばらつきの標準偏差をσmean、異なる3個のノズルの液滴体積のばらつきの標準偏差をσ、σ、σとすると、以下の式(1)が成立する。 A phenomenon in which variation in droplet volume is alleviated by application from a plurality of nozzles will be explained in detail. For example, when coating with three nozzles, let σ mean be the standard deviation of the overall droplet volume variation, and σ 1 , σ 2 , σ 3 be the standard deviation of the droplet volume variation of three different nozzles. The following formula (1) holds true.
 σ +σ +σ =σmean ・・・(1)
 以下の式(2)のように、各ノズルの液滴体積のばらつきが等しいと仮定すると、式(1)と式(2)とから、以下の式(3)が得られる。また、式(3)から、以下の式(4)が得られ、式(4)から、以下の式(5)が得られる。
σ 1 22 23 2mean 2 ...(1)
Assuming that the variations in droplet volume of each nozzle are equal, as in the following equation (2), the following equation (3) can be obtained from equations (1) and (2). Further, from equation (3), the following equation (4) is obtained, and from equation (4), the following equation (5) is obtained.
 σ=σ=σ・・・(2)
 3σ =σmean ・・・(3)
 σ =σmean /3・・・(4)
 σ=σmean/31/2・・・(5)
 ここで、標準偏差の平均値のばらつきをn%(ただし、nは10以下)とすると、各ノズルでの液滴体積のばらつきは、式(5)から、σ=n/31/2となり、例えばn=3%とすると、σ=1.7%となる。一方、異なる14個のノズルで塗布すると、σ=n/141/2となり、例えばn=3%とすると、σ=0.8%となる。つまり、ノズルの液滴体積を同程度に調整しても、ノズル数が多い方法で塗布する方が、液滴体積のばらつきを抑制することができる。
σ 1 = σ 2 = σ 3 ...(2)
1 2mean 2 ...(3)
σ 1 2 = σ mean 2 /3...(4)
σ 1 = σ mean /3 1/2 ...(5)
Here, if the variation in the average value of the standard deviation is n% (however, n is 10 or less), the variation in droplet volume at each nozzle is calculated from equation (5) as follows: σ 1 = n/3 1/2 For example, if n=3%, σ 1 =1.7%. On the other hand, when applying with 14 different nozzles, σ 1 =n/14 1/2 , and for example, if n=3%, σ 1 =0.8%. In other words, even if the droplet volumes of the nozzles are adjusted to the same level, variations in the droplet volumes can be suppressed by applying the coating using a method using a larger number of nozzles.
 ここで、図2に示すように、ピクセル状に区切られたバンク(以下、「ピクセルバンク」と言う場合がある)2の中(以下、ピクセルバンク2で囲まれた領域を「セル2A」という場合がある)に液滴310を吐出して塗布膜を形成する場合は、1個のセル2Aに割り当てられるノズル101の数が減る。その結果、前述の通り各セル2A内に吐出される液滴310の液滴体積のばらつきは大きくなり、塗布膜の膜厚ばらつきに対する液滴体積のばらつきの影響が大きくなる。 Here, as shown in FIG. 2, inside the bank 2 divided into pixels (hereinafter sometimes referred to as "pixel bank") (hereinafter, the area surrounded by pixel bank 2 is referred to as "cell 2A"). When forming a coating film by discharging droplets 310 (in some cases), the number of nozzles 101 allocated to one cell 2A is reduced. As a result, as described above, the variations in droplet volume of the droplets 310 discharged into each cell 2A increase, and the influence of the variations in droplet volume on the variations in the thickness of the coating film increases.
 塗布直後でインクの溶媒が乾燥する前における、図2のA-A線に沿う断面図を図3に示している。各セル2A内に吐出された液滴310により形成された塗布膜311,312,313のインクの量は、インクジェットヘッド30から吐出された液滴310の体積のばらつきに応じて変化する。図2に示した例では、一つのセル2A当たりに割り当てたノズル101の数は3つであるため、液滴体積のばらつきを平均化する効果は小さくなり、セル2A毎に塗布されるインク量のばらつきが顕著になる。このインク量のばらつきは、インクの溶媒が乾燥した後に残る塗布膜の膜厚のばらつきに直結する。 FIG. 3 shows a cross-sectional view taken along line AA in FIG. 2 immediately after coating and before the ink solvent dries. The amount of ink in the coating films 311, 312, 313 formed by the droplets 310 ejected into each cell 2A changes depending on the variation in volume of the droplets 310 ejected from the inkjet head 30. In the example shown in FIG. 2, the number of nozzles 101 assigned to each cell 2A is three, so the effect of averaging the variations in droplet volume is small, and the amount of ink applied to each cell 2A is The dispersion becomes noticeable. This variation in the amount of ink is directly linked to the variation in the thickness of the coating film that remains after the ink solvent dries.
 このため、乾燥前に、液滴体積を測定する。膜厚のばらつきは、例えば有機ELディスプレイにおいては発光輝度のばらつきとなり、ディスプレイの表示品質に大きな影響を与える。特に、隣接するセル2A間の発光輝度のばらつきは官能的には顕著に影響して、発光のスジ状のムラとして見える。よって、ピクセルバンク2に印刷する場合においては、これまで以上にノズル101間の液滴体積のばらつきを抑える必要がある。しかしながら、現状でも液滴体積のばらつきは3%程度にまで抑えられている状態であり、これ以上の液滴体積のばらつきの低減は容易ではない。 For this reason, the droplet volume is measured before drying. Variations in film thickness result in variations in luminance in organic EL displays, for example, and have a large impact on the display quality of the display. In particular, variations in luminance between adjacent cells 2A have a noticeable effect on the senses, and appear as streak-like unevenness in luminescence. Therefore, when printing on the pixel bank 2, it is necessary to suppress variations in droplet volume between the nozzles 101 more than ever. However, even at present, the variation in droplet volume is suppressed to about 3%, and it is not easy to further reduce the variation in droplet volume.
 本開示はこのような状況に鑑み、ディスプレイパネルの発光ムラを抑制することができる印刷装置及び印刷方法を提供することを目的とする。 In view of this situation, an object of the present disclosure is to provide a printing device and a printing method that can suppress uneven light emission of a display panel.
 以下、本開示の一実施の形態について説明する。 An embodiment of the present disclosure will be described below.
 〔印刷装置の構成〕
 まず、印刷装置の構成について説明する。図4は、本実施の形態で使用する印刷装置の全体構成を示す図である。図5は、印刷装置の機能ブロック図である。
[Printing device configuration]
First, the configuration of the printing device will be explained. FIG. 4 is a diagram showing the overall configuration of a printing device used in this embodiment. FIG. 5 is a functional block diagram of the printing device.
 図4及び図5に示すように、印刷装置1000は、制御装置(PC)15、インクジェットテーブル20、インクジェットヘッド30、液滴観察装置40、塗布ムラ観察装置50で構成される。 As shown in FIGS. 4 and 5, the printing apparatus 1000 includes a control device (PC) 15, an inkjet table 20, an inkjet head 30, a droplet observation device 40, and a coating unevenness observation device 50.
 (制御装置)
 制御装置15は、CPU150、記憶手段151(HDD等の大容量記憶手段を含む)、入力手段152、表示手段(ディスプレイ)153で構成される。制御装置15としては、具体的にはパーソナルコンピューター(PC)を用いることができる。記憶手段151には、制御装置15に接続されたインクジェットテーブル20、インクジェットヘッド30、液滴観察装置40及び塗布ムラ観察装置50を駆動するための各制御プログラムと、インクジェットヘッド30の特性データ(全ノズルの圧電素子の印加電圧と液滴体積に関する特性データ)と、が格納されている。印刷装置1000の駆動時には、CPU150は、入力手段152を通じてオペレータにより入力された指示と、記憶手段151に格納された各制御プログラムと、に基づいて所定の制御を行う。
(Control device)
The control device 15 includes a CPU 150, a storage means 151 (including a large capacity storage means such as an HDD), an input means 152, and a display means 153. Specifically, a personal computer (PC) can be used as the control device 15. The storage unit 151 stores each control program for driving the inkjet table 20, inkjet head 30, droplet observation device 40, and coating unevenness observation device 50 connected to the control device 15, as well as characteristic data (all information) of the inkjet head 30. Characteristic data regarding the applied voltage of the piezoelectric element of the nozzle and the droplet volume) are stored. When the printing apparatus 1000 is driven, the CPU 150 performs predetermined control based on instructions input by the operator through the input means 152 and each control program stored in the storage means 151.
 (インクジェットテーブル)
 インクジェットテーブル20は、いわゆるガントリー式の作業テーブルであって、基台のテーブルの上に、2基のガントリー部(移動架台)がそれぞれ一対のガイドシャフトに沿って移動可能に配されている。
(inkjet table)
The inkjet table 20 is a so-called gantry-type work table, and two gantry units (movable frames) are disposed on a base table so as to be movable along a pair of guide shafts.
 具体的に、板状の基台200には、その上面の四隅に柱状のスタンド201A,201B,202A,202Bが配設されている。これらのスタンド201A,201B,202A,202Bに囲まれた領域には、塗布対象物を載置するための固定ステージSTと、塗布直前のインクの吐出を安定化させるために用いるインクパン(皿状容器)60と、がそれぞれ配設されている。 Specifically, the plate-shaped base 200 has column-shaped stands 201A, 201B, 202A, and 202B arranged at the four corners of its upper surface. In the area surrounded by these stands 201A, 201B, 202A, and 202B, there is a fixed stage ST for placing the object to be coated, and an ink pan (dish-shaped) used to stabilize ink ejection immediately before coating. container) 60 are provided, respectively.
 また、基台200には、その長手方向(Y方向)に沿った一対の両側部に沿って、ガイドシャフト203A,203Bが前記スタンド201A,201B,202A,202Bによって、平行に支持されている。一方のガイドシャフト203Aには、2つのリニアモーター204A,204Bが挿通されている。他方のガイドシャフト203Bには、2つのリニアモーター205A,205Bが挿通されている。リニアモーター204Aとリニアモーター205Aとには、基台200を横断するようにガントリー部210Aが搭載されている。リニアモーター204Bとリニアモーター205Bとには、基台200を横断するようにガントリー部210Bが搭載されている。このような構成により、印刷装置1000の駆動時には、リニアモーター204A,205A,204B,205Bが駆動することで、2基のガントリー部210A,210Bがそれぞれ独立に、ガイドシャフト203A,203Bの長手方向に沿って、往復移動する。 Furthermore, guide shafts 203A and 203B are supported in parallel on the base 200 by the stands 201A, 201B, 202A and 202B along a pair of both sides along the longitudinal direction (Y direction). Two linear motors 204A and 204B are inserted through one guide shaft 203A. Two linear motors 205A and 205B are inserted through the other guide shaft 203B. A gantry section 210A is mounted on the linear motor 204A and the linear motor 205A so as to cross the base 200. A gantry section 210B is mounted on the linear motor 204B and the linear motor 205B so as to cross the base 200. With this configuration, when the printing apparatus 1000 is driven, the linear motors 204A, 205A, 204B, and 205B are driven so that the two gantry sections 210A and 210B are independently moved in the longitudinal direction of the guide shafts 203A and 203B. Move back and forth along the line.
 各々のガントリー部210A,210Bのそれぞれには、L字型の台座からなる移動体(キャリッジ)220A,220Bが配設されている。移動体220A,220Bには、サーボモーター(移動体モーター)221A,221Bが配設されている。各サーボモーター221A,221Bの軸の先端には、不図示のギヤが配されている。ギヤは、ガントリー部210A,210Bの長手方向(X方向)に沿って形成されたガイド溝211A,211Bに嵌合されている。ガイド溝211A,211Bの内部には、それぞれ長手方向に沿って微細な不図示のラックが形成されている。ラックは、ギヤに噛み合っている。このため、サーボモーター221A,221Bが駆動すると、移動体220A,220Bは、いわゆるピニオンラック機構によって、X方向に沿って往復自在に精密に移動する。ここで、移動体220A,220Bには、それぞれインクジェットヘッド30、塗布ムラ観察装置50が装備されており、互いに独立して駆動される。 A movable body (carriage) 220A, 220B consisting of an L-shaped pedestal is disposed in each of the gantry parts 210A, 210B. Servo motors (moving body motors) 221A, 221B are provided in the moving bodies 220A, 220B. A gear (not shown) is arranged at the tip of the shaft of each servo motor 221A, 221B. The gears are fitted into guide grooves 211A, 211B formed along the longitudinal direction (X direction) of the gantry parts 210A, 210B. Inside the guide grooves 211A and 211B, minute racks (not shown) are formed along the longitudinal direction. The rack meshes with the gears. Therefore, when the servo motors 221A, 221B are driven, the movable bodies 220A, 220B are reciprocated and precisely moved along the X direction by a so-called pinion rack mechanism. Here, the movable bodies 220A and 220B are each equipped with an inkjet head 30 and a coating unevenness observation device 50, and are driven independently of each other.
 なお、リニアモーター204A,205A,204B,205B及びサーボモーター221A,221Bは、それぞれ駆動を制御するための制御部213に接続されている。制御部213は、制御装置15内のCPU150に接続されている。印刷装置1000の駆動時には、制御プログラムを読み込んだCPU150により、制御部213を介してリニアモーター204A,205A,204B,205B及びサーボモーター221A,221Bの各駆動が制御される(図5)。 Note that the linear motors 204A, 205A, 204B, 205B and the servo motors 221A, 221B are each connected to a control unit 213 for controlling driving. The control unit 213 is connected to the CPU 150 within the control device 15. When the printing apparatus 1000 is driven, the CPU 150 that has read the control program controls the driving of the linear motors 204A, 205A, 204B, 205B and the servo motors 221A, 221B via the control unit 213 (FIG. 5).
 また、リニアモーター204A,205A,204B,205B及びサーボモーター221A,221Bは、それぞれガントリー部210A,210B及び移動体220A,220Bの移動手段の例示にすぎず、これらの利用は必須ではない。例えばタイミングベルト機構やボールネジ機構を利用してガントリー部または移動体の少なくともいずれかを移動させてもよい。 Further, the linear motors 204A, 205A, 204B, 205B and the servo motors 221A, 221B are merely examples of means for moving the gantry sections 210A, 210B and the movable bodies 220A, 220B, respectively, and their use is not essential. For example, at least one of the gantry section and the moving body may be moved using a timing belt mechanism or a ball screw mechanism.
 なお、本実施の形態では、固定ステージSTに対してインクジェットヘッド30が移動する構成であるが、これに限らず、インクジェットヘッド30は固定されて、塗布対象物を載せるステージが移動する構成であっても良いし、インクジェットヘッド30とステージの両方が移動する構成であっても良い。なお、移動体220Aに搭載されるインクジェットヘッド30は1つでなくてもよく、複数のインクジェットヘッド30が搭載されても良いし、複数のインクジェットヘッド30がユニット化されたラインヘッドが搭載されていても良い。 Note that in this embodiment, the inkjet head 30 is configured to move relative to the fixed stage ST, but the present invention is not limited to this. Alternatively, a configuration in which both the inkjet head 30 and the stage move may be used. Note that the number of inkjet heads 30 mounted on the movable body 220A does not need to be one, and a plurality of inkjet heads 30 may be mounted, or a line head in which a plurality of inkjet heads 30 are unitized is mounted. It's okay.
 (インクジェットヘッド)
 インクジェットヘッド30は、ピエゾ方式を採用したヘッドであって、図4に示すヘッド部301及び本体部302と、図5に示す制御部300と、で構成されている。本体部302には、サーボモーター304が内蔵されている。インクジェットヘッド30は、移動体220Aに本体部302を介して固定されている。ヘッド部301は、図4に示すように、直方体の外観形状を有し、その上面中央部付近において、本体部302のサーボモーター304の軸先端から垂下されている。これにより、当該ヘッド部301の底面に形成された複数のノズル3030(図6参照)は、サーボモーター304の軸回転に応じて固定ステージSTの上方で回転する。
(inkjet head)
The inkjet head 30 is a head that employs a piezo system, and is composed of a head section 301 and a main body section 302 shown in FIG. 4, and a control section 300 shown in FIG. 5. A servo motor 304 is built into the main body 302 . The inkjet head 30 is fixed to the moving body 220A via the main body 302. As shown in FIG. 4, the head section 301 has a rectangular parallelepiped external shape, and is suspended from the shaft tip of the servo motor 304 of the main body section 302 near the center of its upper surface. Thereby, the plurality of nozzles 3030 (see FIG. 6) formed on the bottom surface of the head section 301 rotate above the fixed stage ST in accordance with the shaft rotation of the servo motor 304.
 図6は、インクジェットヘッドのヘッド部の内部構成を示す断面図である。図6では、ヘッド部301において隣接して形成された3つのインク吐出機構部を部分的に示す。 FIG. 6 is a cross-sectional view showing the internal configuration of the head section of the inkjet head. FIG. 6 partially shows three ink ejection mechanism sections formed adjacent to each other in the head section 301. In FIG.
 図6に示すように、ヘッド部301には、長手方向に沿って、インクを吐出するための複数のインク吐出機構部が配置されている。インク吐出機構部は、一定間隔毎に一列に並んで配置されている。各々のインク吐出機構部は、圧電素子3010(3010a,3010b,3010c)、液室3020(3020a,3020b,3020c)、ノズル3030(3030a,3030b,3030c)、振動板3040で構成されている。 As shown in FIG. 6, a plurality of ink ejection mechanisms for ejecting ink are arranged in the head section 301 along the longitudinal direction. The ink ejection mechanisms are arranged in a line at regular intervals. Each ink ejection mechanism section includes a piezoelectric element 3010 (3010a, 3010b, 3010c), a liquid chamber 3020 (3020a, 3020b, 3020c), a nozzle 3030 (3030a, 3030b, 3030c), and a diaphragm 3040.
 振動板3040は、液室3020を覆うように配設されている。振動板3040の上には、圧電素子3010が積層されている。個々の圧電素子3010a,3010b,3010cへの電圧印加によって、インク吐出機構部は、それぞれ独立に駆動する。 The diaphragm 3040 is arranged to cover the liquid chamber 3020. A piezoelectric element 3010 is stacked on the diaphragm 3040. The ink ejection mechanisms are each independently driven by applying a voltage to each of the piezoelectric elements 3010a, 3010b, and 3010c.
 液室3020及びノズル3030は、例えばSUS等の金属材料やセラミック材料で構成されている。液室3020及びノズル3030は、機械加工やエッチング、あるいは放電加工によって、それぞれ形成されている。液室3020は、吐出される直前のインクを貯留する空間であって、圧電素子3010の駆動により可逆的に体積が縮小・復元する。ノズル3030は、液室3020と連通するように一定のピッチで一列に形成されている。ここで、各々のノズル3030のピッチは、構成的には一定であるが、サーボモーター304の軸の回転角度を調節することで、塗布対象物上でのインクの塗布ピッチを調節することができる。なお、ノズル3030の配列は、上記した1列に限定されない。例えばノズル3030を複数列にわたって形成したり、複数列で且つ千鳥状にノズル3030を形成したりして、ノズル3030間のピッチを狭く調節することもできる。 The liquid chamber 3020 and the nozzle 3030 are made of, for example, a metal material such as SUS or a ceramic material. The liquid chamber 3020 and the nozzle 3030 are each formed by machining, etching, or electrical discharge machining. The liquid chamber 3020 is a space that stores ink just before being ejected, and its volume is reversibly reduced and restored by driving the piezoelectric element 3010. The nozzles 3030 are formed in a line at a constant pitch so as to communicate with the liquid chamber 3020. Here, the pitch of each nozzle 3030 is structurally constant, but by adjusting the rotation angle of the shaft of the servo motor 304, the pitch of ink application on the object to be applied can be adjusted. . Note that the arrangement of the nozzles 3030 is not limited to the one row described above. For example, the pitch between the nozzles 3030 can be adjusted narrowly by forming the nozzles 3030 in multiple rows, or by forming the nozzles 3030 in multiple rows in a staggered manner.
 振動板3040は、ステンレスやニッケルからなる薄板であり、上に積層された圧電素子3010とともに変形可能に配設されている。圧電素子3010は、公知のピエゾ素子であって、例えばチタン酸ジルコン酸鉛等からなる板状の圧電体を、一対以上の電極で挟設した積層体の構成を持つ。電極への通電は、図5に示すように、制御部300を介してCPU150によって管理されている。電極には、記憶手段151に格納された所定の制御プログラムに基づいて、インク吐出時に、数百Hzから数十kHzの駆動周波数で、数十μs幅の矩形パルス電圧が継続して印加される。この各々の矩形パルス電圧の立ち上がり時に合わせて圧電素子3010が変形し、この圧電素子3010の変形に伴って、振動板3040は、液室3020の体積が減少または復元するように変形する。液室3020の体積減少時に、インクがノズル3030から吐出されることとなる。なお、前記パルス電圧は、矩形に限定するものではなく、ステップ状や一部曲線状を取り入れた波形等であってもよい。 The diaphragm 3040 is a thin plate made of stainless steel or nickel, and is arranged to be deformable together with the piezoelectric element 3010 laminated thereon. The piezoelectric element 3010 is a known piezo element, and has a laminate structure in which a plate-shaped piezoelectric body made of, for example, lead zirconate titanate is sandwiched between one or more pairs of electrodes. The energization of the electrodes is managed by the CPU 150 via the control unit 300, as shown in FIG. Based on a predetermined control program stored in the storage means 151, a rectangular pulse voltage with a width of several tens of μs is continuously applied to the electrodes at a driving frequency of several hundred Hz to several tens of kHz during ink ejection. . The piezoelectric element 3010 deforms in accordance with the rise of each rectangular pulse voltage, and as the piezoelectric element 3010 deforms, the diaphragm 3040 deforms so that the volume of the liquid chamber 3020 decreases or restores. When the volume of the liquid chamber 3020 decreases, ink is ejected from the nozzle 3030. Note that the pulse voltage is not limited to a rectangular shape, and may have a step shape or a partially curved waveform.
 各圧電素子3010を駆動する際には、CPU150が所定の制御プログラムを記憶手段151から読み出し、制御部300に対して、所定の電圧を対象の圧電素子3010に印加するように指示する。印刷装置1000では、後述するように、塗布対象物に印刷した状態において、ムラが確認される場合には、その液滴体積をノズル3030毎に修正するように制御する。なお、本実施の形態では、インクジェットヘッド30を1個備える例を示したが、配設するインクジェットヘッド30の数は限定されず、複数のインクジェットヘッド30を配設することもできる。 When driving each piezoelectric element 3010, the CPU 150 reads a predetermined control program from the storage means 151, and instructs the control unit 300 to apply a predetermined voltage to the target piezoelectric element 3010. As will be described later, in the printing apparatus 1000, if unevenness is confirmed when printing on an object to be coated, the printing apparatus 1000 controls the droplet volume to be corrected for each nozzle 3030. In this embodiment, an example is shown in which one inkjet head 30 is provided, but the number of inkjet heads 30 provided is not limited, and a plurality of inkjet heads 30 may be provided.
 (液滴観察装置40)
 液滴観察装置40は、インク吐出確認用カメラを用いて構成される。液滴観察装置40は、図4に示すように、発光ライトが内蔵された液滴観察カメラ(CCDカメラ)402と、液滴観察カメラの対物方向の先端に装着されたズームレンズ403と、液滴観察カメラ及びズームレンズ403の駆動を制御するための制御部400等で構成される。図4に示す構成では、液滴観察カメラが固定台401に固定された様子を示しているが、固定方法はこれに限定されず、基台200に液滴観察カメラを直接固定するようにしてもよい。液滴観察カメラは、ケーブル404で制御部400と接続されている。制御部400は、図5に示すように、CPU150に接続されている。
(Droplet observation device 40)
The droplet observation device 40 is configured using an ink discharge confirmation camera. As shown in FIG. 4, the droplet observation device 40 includes a droplet observation camera (CCD camera) 402 with a built-in light emitting light, a zoom lens 403 attached to the tip of the droplet observation camera in the objective direction, and a droplet observation camera (CCD camera) 402 that has a built-in light emitting light. It is composed of a control unit 400 for controlling the drive of a drop observation camera and a zoom lens 403, and the like. In the configuration shown in FIG. 4, the droplet observation camera is fixed to the fixed base 401, but the fixing method is not limited to this, and the droplet observation camera may be fixed directly to the base 200. Good too. The droplet observation camera is connected to the control unit 400 via a cable 404. The control unit 400 is connected to the CPU 150, as shown in FIG.
 印刷装置1000において、液滴観察カメラは、図4に示すように、ヘッド部301の各ノズル3030から吐出される液滴の様子を撮像できる位置に向けられている。このような構成により、撮像時には、液滴観察カメラに内蔵されている発光ライトのストロボ発光と同期して、連続的に静止画及び動画の画像データが得られる。制御装置15のCPU150は、所定の制御プログラムに基づき、撮像した画像データを記憶手段151に格納するとともに、表示手段153に表示する。 In the printing apparatus 1000, the droplet observation camera is directed to a position where it can image the state of droplets discharged from each nozzle 3030 of the head section 301, as shown in FIG. With such a configuration, when capturing images, image data of still images and moving images can be continuously obtained in synchronization with the strobe light emission of the light emitting light built into the droplet observation camera. The CPU 150 of the control device 15 stores captured image data in the storage means 151 and displays it on the display means 153 based on a predetermined control program.
 なお、液滴観察装置40は、液滴の速度(以下、「液滴速度」という場合がある)を測定する。液滴速度が速すぎるとサテライトと呼ばれる副液滴が発生し、液滴速度が遅すぎると飛翔中に空気抵抗によって着弾位置精度が悪化してしまうため、適切な液滴速度で飛翔していることを確認することが必要である。また、液滴観察装置40は、ノズル3030毎の液滴体積を測定することが可能である。飛翔する液滴が球状であると仮定して、2次元状に観察される液滴の直径から体積を推算する。液滴体積の測定は、後に記した通り、液滴体積調整基板上に塗布して測定することができるが、液滴観察装置40を用いて測定することも可能である。 Note that the droplet observation device 40 measures the velocity of droplets (hereinafter sometimes referred to as "droplet velocity"). If the droplet speed is too fast, secondary droplets called satellites will be generated, and if the droplet speed is too slow, the accuracy of the landing position will deteriorate due to air resistance during flight, so it is important to make sure that the droplet is flying at an appropriate speed. It is necessary to confirm that. Further, the droplet observation device 40 can measure the droplet volume for each nozzle 3030. Assuming that the flying droplet is spherical, the volume is estimated from the diameter of the droplet observed two-dimensionally. As described later, the droplet volume can be measured by coating on a droplet volume adjustment substrate, but it is also possible to measure the droplet volume using the droplet observation device 40.
 (ノズル毎の液滴体積データ取得方法)
 ノズル3030毎の液滴体積調整を行うために、圧電素子3010の印加電圧と液滴体積の相関関係を示す電圧決定用データを用いる。当該電圧決定用データを得るために、液滴体積調整基板を用いる。液滴体積調整基板としては、少なくともインクを塗布する表面領域がフッ素コートやプラズマ処理等で撥水加工されたものを用いる。このような撥水加工は、滴下されたインクの液滴体積を正確に測定するための工夫である。
(How to obtain droplet volume data for each nozzle)
In order to adjust the droplet volume for each nozzle 3030, voltage determination data indicating the correlation between the voltage applied to the piezoelectric element 3010 and the droplet volume is used. In order to obtain the voltage determination data, a droplet volume adjustment board is used. The droplet volume adjustment substrate used is one whose surface area on which ink is applied has been treated to be water-repellent by fluorine coating, plasma treatment, or the like. Such water-repellent finishing is a device for accurately measuring the volume of dropped ink droplets.
 まず、液滴体積調整基板上に、全てのノズル3030から液滴を所定の液滴数だけ塗布する。塗布した液滴に含まれる溶媒を真空乾燥などで乾燥させた後に、残った溶質の体積を測定する。体積の測定は、共焦点レーザー顕微鏡や白色干渉顕微鏡などで行う。ここで、一般に共焦点レーザー顕微鏡や白色干渉顕微鏡では、焦点部分のみの画像が得られるため、焦点距離を変化させることで、各焦点距離の高さにおける画像の面積を測定できる。測定するインク液滴は、半球状なので、上から見た形状はほぼ円形である。そこで、予め定めた微細な一定高さh間隔で分割した各液滴部分の形状を円盤状とみなし、一定高さhにおける円盤の半径rから、前記円盤状の部分体積(πr×h)を求める。この円盤状の部分体積を液滴の全高Hまでそれぞれ計算する。その後、先に求めた各部分体積を合計すれば、近似値としてインクの液滴体積Vを算出できる。 First, a predetermined number of droplets are applied from all nozzles 3030 onto the droplet volume adjustment substrate. After drying the solvent contained in the applied droplets by vacuum drying or the like, the volume of the remaining solute is measured. The volume is measured using a confocal laser microscope, a white interference microscope, or the like. Here, in general, with a confocal laser microscope or a white interference microscope, an image of only the focal portion can be obtained, so by changing the focal length, the area of the image at the height of each focal length can be measured. The ink droplet to be measured has a hemispherical shape, so its shape when viewed from above is approximately circular. Therefore, the shape of each droplet portion divided at predetermined fine constant height h intervals is regarded as a disk shape, and from the radius r of the disk at a constant height h, the partial volume of the disk shape (πr 2 × h) seek. This disc-shaped partial volume is calculated up to the total height H of the droplet. Thereafter, by summing up each of the partial volumes previously determined, the ink droplet volume V can be calculated as an approximate value.
 なお、液滴の一滴分の液滴体積は非常に微量であるため、上記演算では、一定数の液滴を併せた大きな液滴の体積Vsum(例えば4滴分の液滴体積)に基づいて計算する。すなわち、各ノズル3030から液滴体積調整基板上の同一位置に4滴分のインクを滴下し、大きな液滴を作る。この大きな液滴の体積Vsumを液滴数(4滴)で割れば、1滴当たりのインク体積Vdr(=Vsum/4)が算出される。 In addition, since the droplet volume of one droplet is very small, in the above calculation, the volume of a large droplet including a certain number of droplets is calculated based on the volume Vsum (for example, the droplet volume of 4 drops). calculate. That is, four drops of ink are dropped from each nozzle 3030 at the same position on the droplet volume adjustment substrate to form large droplets. By dividing the volume Vsum of this large droplet by the number of droplets (4 drops), the ink volume per droplet Vdr (=Vsum/4) is calculated.
 上記の方法で電圧を変えてノズル3030毎の液滴体積を測定することで、図7に示すような電圧決定用データを得ることができる。この電圧決定用データをノズル3030毎のテーブルとして記憶手段151に格納する。これによって、液滴体積調整時の電圧調整値が分かる。具体的には、液滴体積を0.1pL変化させるためには、圧電素子3010の印加電圧を0.24V調整すれば良いことが分かる。 By changing the voltage and measuring the droplet volume for each nozzle 3030 using the above method, voltage determination data as shown in FIG. 7 can be obtained. This voltage determination data is stored in the storage means 151 as a table for each nozzle 3030. This allows the voltage adjustment value when adjusting the droplet volume to be determined. Specifically, it can be seen that in order to change the droplet volume by 0.1 pL, it is sufficient to adjust the voltage applied to the piezoelectric element 3010 by 0.24V.
 (塗布ムラ観察装置50)
 塗布ムラ観察装置50は、印刷装置1000の主たる特徴部分の一つであって、固定ステージSTに載置された塗布対象物であるディスプレイパネル上の塗布膜のムラを観察する手段である。図8は、塗布ムラ観察装置の構成を示す図である。図9は、塗布ムラ観察装置光学系の配置を示す図である。
(Coating unevenness observation device 50)
The coating unevenness observation device 50 is one of the main features of the printing apparatus 1000, and is a means for observing unevenness in a coating film on a display panel, which is an object to be coated, placed on a fixed stage ST. FIG. 8 is a diagram showing the configuration of a coating unevenness observation device. FIG. 9 is a diagram showing the arrangement of the optical system of the coating unevenness observation device.
 塗布ムラ観察装置50は、図5に示すように、撮影ユニット501と、制御部500で構成される。撮影ユニット501は、図8に示すように、照明5001と、カメラ5002と、レンズ5003と、シリンドリカルレンズ5004と、ロッド照明5005とで構成される。シリンドリカルレンズ5004には、一方向にのみレンズの機能が設けられている。シリンドリカルレンズ5004は、光を集光させつつ、直線に光を一様にあてることができる。図9に示すように、ロッド照明5005からの照明光を、ディスプレイパネル5006上のバンクパターン5007の中(セル5007A)に塗布された塗布膜5008に対して、斜めから照射する。塗布膜5008の塗布液量に応じて、当該塗布膜5008の表面で反射光が発生し、その反射光をディスプレイパネル5006に対して垂直方向に配置されるカメラ5002でレンズ5003を介して受光する。照明光を斜めから照射することで、塗布膜5008の表面で全反射して反射光のロスがなくなり、観察感度が向上する。カメラと照明は上記のものに限らず、塗布膜5008を観察できるものであれば良い。 The coating unevenness observation device 50 is composed of a photographing unit 501 and a control section 500, as shown in FIG. As shown in FIG. 8, the photographing unit 501 includes a lighting 5001, a camera 5002, a lens 5003, a cylindrical lens 5004, and a rod lighting 5005. The cylindrical lens 5004 is provided with a lens function only in one direction. The cylindrical lens 5004 can uniformly illuminate the light in a straight line while condensing the light. As shown in FIG. 9, illumination light from a rod illumination 5005 is irradiated obliquely onto a coating film 5008 applied within a bank pattern 5007 (cell 5007A) on a display panel 5006. Reflected light is generated on the surface of the coating film 5008 according to the amount of coating liquid on the coating film 5008, and the reflected light is received by the camera 5002 arranged perpendicularly to the display panel 5006 via the lens 5003. . By irradiating the illumination light obliquely, it is totally reflected on the surface of the coating film 5008, eliminating loss of reflected light and improving observation sensitivity. The camera and illumination are not limited to those mentioned above, and any camera and illumination may be used as long as the coating film 5008 can be observed.
 このような塗布ムラ観察装置50を用いる理由は、次の通りである。ノズル3030から吐出される液滴体積は、あらかじめ所定の体積になるように調整されている。しかしながら、調整された状態で印刷を行っても、セルに対して割り当てるノズル3030の位置や数によっては、隣接セル間の液滴体積に違いが生じて、塗布ムラが発生することがある。このようなときに、塗布ムラを直接観察することで、ノズル3030から吐出される液滴体積を最適な状態に調整するためのものである。 The reason for using such a coating unevenness observation device 50 is as follows. The volume of droplets discharged from the nozzle 3030 is adjusted in advance to a predetermined volume. However, even if printing is performed in an adjusted state, depending on the position and number of nozzles 3030 assigned to the cells, there may be a difference in droplet volume between adjacent cells, resulting in uneven coating. In such a case, the volume of droplets discharged from the nozzle 3030 can be adjusted to an optimal state by directly observing the coating unevenness.
 (着弾液滴面積測定による液滴体積調整)
 ワーク上に着弾した液滴を上方からカメラで観察して液滴の面積を測定し、液滴の体積調整をすることが可能であり、その方法を説明する。ワークとは、ディスプレイパネルのセル以外の部分でも良いし、少なくとも液滴を着弾させる表面領域がフッ素樹脂コートやプラズマ処理等で撥液加工されたガラス基板であっても良い。
(Adjustment of droplet volume by measuring the area of landed droplets)
It is possible to adjust the volume of the droplet by observing the droplet that has landed on the workpiece from above with a camera and measuring the area of the droplet.This method will be explained below. The workpiece may be a portion of the display panel other than the cells, or may be a glass substrate whose surface area, on which droplets are to land, has been treated to be liquid repellent by a fluororesin coating, plasma treatment, or the like.
 図10は、基板5010上に液滴321を印刷した状態を示す。基板5010の表面には、撥水材料がコーティングされている。なお、ディスプレイパネル5006の表面にも、撥水材料がコーティングされている。基板5010は、インクをはじく特性を有する。基板5010上でインクが濡れ広がると、隣接する液滴同士が繋がることがある、このような隣接する液滴同士が繋がることを防止するために、基板5010上でインクが濡れ広がらないようにする必要がある。基板5010に対するインクの接触角は、30°~70°程度である。 FIG. 10 shows a state in which droplets 321 are printed on a substrate 5010. The surface of the substrate 5010 is coated with a water-repellent material. Note that the surface of the display panel 5006 is also coated with a water-repellent material. The substrate 5010 has the property of repelling ink. When ink wets and spreads on the substrate 5010, adjacent droplets may connect with each other. In order to prevent such adjacent droplets from connecting, ink is prevented from getting wet and spread on the substrate 5010. There is a need. The contact angle of the ink to the substrate 5010 is approximately 30° to 70°.
 まず、液滴321を基板5010上に着弾させる前に、初めに着弾させる液滴321と、その後に着弾させる液滴321との乾燥状態をできるだけ同等にするために、ダミー液滴320を印刷する。ダミー液滴320は、数滴から数十滴の液滴を各ノズル3030から着弾させたものである。 First, before the droplet 321 lands on the substrate 5010, a dummy droplet 320 is printed in order to make the drying state of the droplet 321 that lands first and the droplet 321 that lands after that as similar as possible. . The dummy droplets 320 are obtained by landing several to several tens of droplets from each nozzle 3030.
 ダミー液滴320を印刷した後、液滴321を印刷する。液滴321間の基板5010上での密度が高すぎると乾燥の影響を受け易くなるし、隣接する液滴321同士が繋がる可能性がある。このような乾燥の影響を無くしたり、隣接する液滴321同士が繋がったりすることを防止するために、液滴321間の距離を一定程度確保して印刷する。例えば、制御装置15のCPU150は、インクジェットヘッド30を印刷方向へ移動させつつ、隣接するノズル3030から時間をずらして液滴321を吐出するように、液滴321を印刷する。液滴321は、実際の複数のノズル3030間の位置関係より、それぞれの液滴321が等方的に広がって塗布される。本実施の形態では、印刷方向と直交する方向を行方向とした場合、隣接するノズル3030から吐出する液滴321を、基板5010上で異なる行に印刷する。 After printing the dummy droplet 320, the droplet 321 is printed. If the density between the droplets 321 on the substrate 5010 is too high, it will be susceptible to drying, and there is a possibility that adjacent droplets 321 will connect with each other. In order to eliminate such effects of drying and to prevent adjacent droplets 321 from connecting with each other, printing is performed with a certain distance between droplets 321 secured. For example, the CPU 150 of the control device 15 prints the droplets 321 while moving the inkjet head 30 in the printing direction so as to eject the droplets 321 from adjacent nozzles 3030 at different times. Due to the actual positional relationship between the plurality of nozzles 3030, each droplet 321 is spread isotropically and applied. In this embodiment, when the row direction is the direction perpendicular to the printing direction, droplets 321 ejected from adjacent nozzles 3030 are printed in different rows on the substrate 5010.
 図11は、基板5010上の液滴321の面積測定方法の説明図である。図11に示すように、基板5010上に着弾した液滴321を上方からカメラ5011で観察することで、液滴321の面積を測定する。なお、ここで、面積とは、表面積でなく、液滴321を上方から見たときの影の面積(液滴321の基板5010上の投影面積)のことである。 FIG. 11 is an explanatory diagram of a method for measuring the area of the droplet 321 on the substrate 5010. As shown in FIG. 11, the area of the droplet 321 is measured by observing the droplet 321 that has landed on the substrate 5010 from above with a camera 5011. Note that the area here refers not to the surface area but to the area of the shadow when the droplet 321 is viewed from above (the projected area of the droplet 321 on the substrate 5010).
 まず、カメラ5011を走査して、各行の液滴321を各行の端の液滴321から順に観察する。1行目の液滴321の観察が終了した後、2行目の液滴321、3行目の液滴321の観察を順番に行う。制御装置15のCPU150は、液滴321の面積の測定を、着弾した液滴321が乾燥する前に行う。インクには、有機ELの発光材料などの固形分が0.5~10%程度で入っている。インクの溶媒が乾燥した後には固形分が残るが、その固形分の量は非常に少ないため、液滴321の面積が小さくなる。液滴321の面積が小さくなると、ノズル3030毎の液滴321の体積の差異が分かりにくくなるため、液滴321が乾燥する前に、液滴321の面積の測定を行う。 First, the camera 5011 is scanned to sequentially observe the droplets 321 in each row starting from the droplet 321 at the end of each row. After the observation of the droplets 321 in the first row is completed, the droplets 321 in the second row and the droplets 321 in the third row are observed in order. The CPU 150 of the control device 15 measures the area of the droplet 321 before the landed droplet 321 dries. The ink contains about 0.5 to 10% solid content, such as organic EL light-emitting materials. Although solid content remains after the ink solvent dries, the amount of solid content is very small, so the area of the droplet 321 becomes small. If the area of the droplet 321 becomes smaller, it becomes difficult to understand the difference in volume of the droplet 321 for each nozzle 3030, so the area of the droplet 321 is measured before the droplet 321 dries.
 上記の方法を用いた実験を行い、液滴321の面積を測定した。液滴321の面積の測定結果を図12に示す。図12のグラフの横軸は液滴321の測定順序を示し、縦軸は液滴321の面積を示す。図12で示される結果の横軸を、液滴321が着弾してから観察が行われるまでの経過時間に修正した結果を図13に示す。図13に示す関係から、液滴321が着弾してからの経過時間が長くなるほど、液滴321の面積が小さくなっていくことがわかる。一方、ノズル3030から吐出された液滴321の体積に応じて、着弾した液滴321の面積も変化する。ノズル3030から吐出された液滴321の体積に応じた正しい面積を得るためには、乾燥で液滴321が小さくなり面積が変化することを考慮に入れて、値を補正することが必要である。 An experiment was conducted using the above method, and the area of the droplet 321 was measured. The measurement results of the area of the droplet 321 are shown in FIG. The horizontal axis of the graph in FIG. 12 indicates the measurement order of the droplets 321, and the vertical axis indicates the area of the droplets 321. FIG. 13 shows the results in which the horizontal axis of the results shown in FIG. 12 is corrected to the elapsed time from when the droplet 321 lands until observation is performed. From the relationship shown in FIG. 13, it can be seen that the longer the elapsed time after the droplet 321 lands, the smaller the area of the droplet 321 becomes. On the other hand, the area of the landed droplet 321 also changes depending on the volume of the droplet 321 discharged from the nozzle 3030. In order to obtain the correct area according to the volume of the droplet 321 discharged from the nozzle 3030, it is necessary to correct the value by taking into account that the droplet 321 becomes smaller due to drying and the area changes. .
 そこで、基板5010上の液滴321の乾燥を、図15に示すようなモデルで考えた。初期段階は、CCR(Constant Contact Radius)モードと呼ばれるモードとなり、液滴321の直径はDで一定のままで、接触角が図15の上側かつ左側の図に示すθから、上側かつ中央の図に示すθになるまで減少する。その後、CCA(Constant Contact Angle)モードに移行し、接触角はθで一定のままで、液滴321の直径が図15の上側かつ中央の図に示すDから、上側かつ右側の図に示すDになるまで減少する。 Therefore, the drying of the droplet 321 on the substrate 5010 was considered using a model as shown in FIG. In the initial stage, the mode is called CCR (Constant Contact Radius) mode, in which the diameter of the droplet 321 remains constant at D 0 and the contact angle changes from θ C shown in the upper and left side of FIG. It decreases until it reaches θ 1 as shown in the figure. After that, the mode shifts to CCA (Constant Contact Angle) mode, and the contact angle remains constant at θ 1 , and the diameter of the droplet 321 changes from D 0 shown in the upper and center figure of FIG. 15 to the upper and right figure. It decreases until it reaches D2 as shown.
 また、基板5010上に着弾した液滴321を、図15の下側の図に示す球冠(平面により切断された球の一部)として考えた。球の半径をr、球冠の半径をa(すなわち、液滴321を上方から観察したときの円の半径)、球の中心から球冠の頂点(極)までの線と球冠の底面の端との間の極角をθとする。ここで、θは、着弾した液滴321の基板5010に対する接触角θと等しくなる。また、球冠の表面積は、以下の式(6)で表され、球冠の体積は、以下の式(7)で表される。 Furthermore, the droplet 321 that landed on the substrate 5010 was considered as a spherical crown (a part of a sphere cut by a plane) shown in the lower diagram of FIG. The radius of the sphere is r, the radius of the spherical crown is a (that is, the radius of the circle when the droplet 321 is observed from above), and the line from the center of the sphere to the apex (pole) of the spherical crown and the bottom of the spherical crown are Let the polar angle between the ends be θ. Here, θ is equal to the contact angle θ C of the landed droplet 321 with respect to the substrate 5010. Further, the surface area of the spherical crown is expressed by the following equation (6), and the volume of the spherical crown is expressed by the following equation (7).
  球冠の表面積A=2πr(1-cosθ) … (6)
  球冠の体積V=(πr/3)×(2+cosθ)(1-cosθ) … (7)
 今回の実験で、ノズル3030から吐出された液滴321の体積は4100μm、接触角θは61°である。式(6)、式(7)と実験値を用いて計算すると、液滴321が着弾してから経過時間と液滴321を上方から見た時の面積との関係は、図16のように表される。図16から、経過時間が短い領域では、液滴321の面積は、経過時間に対する1次関数として表されることがわかる。よって、制御装置15のCPU150が、着弾してからの経過時間の1次式を用いて、液滴321の面積を補正できることがわかる。図13に示す結果を、上記1次式を用いて補正をした結果を図14に示す。制御装置15のCPU150は、図14に示す面積値を用いて、各ノズル3030の面積値の差が小さくなる(均一になる)ように、インクジェットヘッド30でインクを吐出する条件(例えば、駆動電圧)を変更することで、ノズル3030毎の液滴321の体積のばらつきを小さくすることができる。
Surface area of spherical crown A = 2πr 2 (1-cosθ) … (6)
Volume of the spherical crown V = (πr 2 /3) × (2 + cos θ) (1 - cos θ) 2 ... (7)
In this experiment, the volume of the droplet 321 discharged from the nozzle 3030 was 4100 μm 3 , and the contact angle θ C was 61°. When calculated using equations (6) and (7) and experimental values, the relationship between the elapsed time after the droplet 321 lands and the area of the droplet 321 when viewed from above is as shown in FIG. expressed. From FIG. 16, it can be seen that in a region where the elapsed time is short, the area of the droplet 321 is expressed as a linear function with respect to the elapsed time. Therefore, it can be seen that the CPU 150 of the control device 15 can correct the area of the droplet 321 using the linear expression of the elapsed time after landing. FIG. 14 shows the results obtained by correcting the results shown in FIG. 13 using the above linear equation. Using the area values shown in FIG. 14, the CPU 150 of the control device 15 sets conditions for ejecting ink from the inkjet head 30 (for example, driving voltage ), it is possible to reduce variations in the volume of droplets 321 for each nozzle 3030.
 また、液滴321の面積の補正は、印刷する行ごとに行う方が望ましい。例えば、図11において、1行目、2行目、3行目を分けて補正する。液滴321の乾燥の条件を均一化するために、初めにダミー液滴320を配置しているが、それでもわずかに行ごとに乾燥状態が異なる可能性がある。そのため、行ごとに補正する方が、より正確な面積の補正が可能となる。 Furthermore, it is preferable to correct the area of the droplet 321 for each line to be printed. For example, in FIG. 11, the first, second, and third rows are corrected separately. Although dummy droplets 320 are initially placed in order to equalize the drying conditions of the droplets 321, there is still a possibility that the drying conditions differ slightly from row to row. Therefore, it is possible to correct the area more accurately by correcting each row.
 また、乾燥状態を均一化するために、図17に示すように、各行の両端にもダミー液滴320を配置しても構わない。各行の端の方の液滴321に対応するノズル3030をダミーノズルとして扱い、体積調整を行わないノズル3030として運用しても構わない。また、図18に示すように、ダミー液滴320を、行ごとに印刷する液滴321に対して印刷方向の前後に配置してもよい。このようにすると、液滴321の乾燥状態が面内でほぼ均一になる。 Furthermore, in order to make the drying state uniform, dummy droplets 320 may be placed at both ends of each row, as shown in FIG. 17. The nozzle 3030 corresponding to the droplet 321 at the end of each row may be treated as a dummy nozzle and operated as a nozzle 3030 whose volume is not adjusted. Further, as shown in FIG. 18, dummy droplets 320 may be placed before and after the droplets 321 printed row by row in the printing direction. In this way, the dry state of the droplet 321 becomes almost uniform within the plane.
 また、インクの種類ごとに、面積の補正を行うことが望ましい。インクの溶媒が異なると乾燥状態が変わり、面積の補正式が変わるためである。溶媒が同じでも固形分の種類や濃度が異なるだけでも、補正式が変わることがあるため、インクごとに補正をすることが望ましい。また、1つのノズル3030から吐出する液滴321を複数行に渡って数滴着弾させて、その平均値を補正する液滴面積として用いても良い。複数液滴の面積値を平均することで、吐出の繰り返し再現性のばらつきや基板5010の場所による濡れ性のばらつきによる、補正する液滴面積への影響を緩和することが可能となる。 Additionally, it is desirable to correct the area for each type of ink. This is because if the ink solvent is different, the drying state changes and the area correction formula changes. Even if the solvent is the same, the correction formula may change even if the type or concentration of the solid content differs, so it is desirable to perform correction for each ink. Alternatively, several droplets 321 ejected from one nozzle 3030 may be landed in multiple rows, and the average value may be used as the droplet area to be corrected. By averaging the area values of multiple droplets, it is possible to alleviate the influence on the corrected droplet area due to variations in repeatability of ejection and variations in wettability depending on the location of the substrate 5010.
 〔塗布ムラ調整方法〕
 次に、印刷装置1000を用いた塗布ムラ調整方法について説明する。図19は、塗布ムラ調整方法のプロセスフローを示す図である。図20は、塗布ムラ調整フローにおいてディスプレイパネルに印刷をした状態を示す図である。図21は、セルの中に塗布したインクがセル内で広がった様子を示す図である。図22は、図21のA-A線に沿う断面図である。図23は、セル内に塗布量が異なる2つのパターンが印刷された状態を示す図である。
[Method for adjusting coating unevenness]
Next, a coating unevenness adjustment method using the printing apparatus 1000 will be described. FIG. 19 is a diagram showing a process flow of the coating unevenness adjustment method. FIG. 20 is a diagram showing a state in which the display panel is printed in the coating unevenness adjustment flow. FIG. 21 is a diagram showing how ink applied inside a cell spreads within the cell. FIG. 22 is a cross-sectional view taken along line AA in FIG. 21. FIG. 23 is a diagram showing a state in which two patterns with different coating amounts are printed in a cell.
 まず、図19に示すように、印刷前ディスプレイパネルの観察を行う(ステップS1)。具体的には、印刷する前のディスプレイパネルを、塗布ムラ観察装置50で観察して、インクを印刷する前のパネルから画像情報を取得することで、下地の情報を取得し、後のセル観察における塗布ムラ観察装置50のバックグラウンドノイズを除去する。 First, as shown in FIG. 19, the display panel before printing is observed (step S1). Specifically, by observing the display panel before printing with the coating unevenness observation device 50 and acquiring image information from the panel before printing ink, information on the base is acquired, and later cell observation is performed. The background noise of the coating unevenness observation device 50 is removed.
 次に、印刷装置1000は、ステップS1で観察されたディスプレイパネルへの印刷を行う(ステップS2)。具体的には、図20に示すように、バンク2で形成されたセル2Aの中とセル2A以外の場所にインクを塗布する。 Next, the printing device 1000 performs printing on the display panel observed in step S1 (step S2). Specifically, as shown in FIG. 20, ink is applied inside the cells 2A formed in the bank 2 and to locations other than the cells 2A.
 次に、制御装置15のCPU150は、ノズル3030毎の液滴の体積を算出する(ステップS3)。液滴310を図20に示すようにセル2A内に塗布すると、液滴310がすぐに広がり、図21に示すようなセル2A内を充填する塗布膜311,312,313が形成される。このようなセル2A内の塗布膜311,312,313に基づいて、ノズル3030毎の液滴310の体積を算出することはできない。このため、CPU150は、セル2A以外の場所に塗布されたノズル3030毎の液滴の体積を算出する。図22に示すように、セル2A以外に塗布する液滴315の場所は、バンク2の上であることが望ましい。バンク2の上は液滴315に対して撥液性が高く、塗布した液滴315が安定して半球状に形成されやすいからである。液滴315の形状を、このような半球状にすることで、液滴315の液滴体積に応じて液滴315の直径や高さが規則的に変わりやすく、液滴315を上方からカメラ5002で観察したときに、液滴体積を正確に測定することができる。反射光の強度は、液滴315の高さと相関がある。そこで、CPU150は、以下のようにして、液滴315の体積を算出する。 Next, the CPU 150 of the control device 15 calculates the volume of droplets for each nozzle 3030 (step S3). When the droplet 310 is applied inside the cell 2A as shown in FIG. 20, the droplet 310 immediately spreads to form coating films 311, 312, 313 filling the inside of the cell 2A as shown in FIG. The volume of the droplet 310 for each nozzle 3030 cannot be calculated based on the coating films 311, 312, and 313 in the cell 2A. Therefore, the CPU 150 calculates the volume of droplets applied to locations other than the cell 2A for each nozzle 3030. As shown in FIG. 22, it is desirable that the droplet 315 applied to areas other than the cell 2A be placed above the bank 2. This is because the upper part of the bank 2 is highly liquid repellent to the droplets 315, and the applied droplets 315 are likely to be stably formed into a hemispherical shape. By making the shape of the droplet 315 into such a hemispherical shape, the diameter and height of the droplet 315 tend to change regularly according to the droplet volume of the droplet 315, and the droplet 315 can be viewed from above by the camera 5002. The droplet volume can be accurately measured when observed at . The intensity of the reflected light correlates with the height of the droplet 315. Therefore, the CPU 150 calculates the volume of the droplet 315 as follows.
 まず、事前に、セル2A以外の場所に塗布された液滴からの反射光強度と、当該液滴の高さと関係を示す液滴高さ算出用データをデータベース化して、記憶手段151に蓄積しておく。塗布ムラ観察装置50は、バンク2上の液滴315を観察し、観察結果を示す画像データを制御装置15に出力する。塗布ムラ観察装置50による観察により、0~255の256階調のグレースケールの画像データが得られる。なお、画像データは、グレースケールに限らずカラーであっても良い。制御装置15のCPU150は、画像データに基づいて、液滴315の面積(液滴の塗布面への正射影の面積、つまり液滴の断面積、換言すれば観察者から見える円形の面積)と、液滴315からの反射光強度とを算出する。CPU150は、画像データに基づき算出した液滴315の面積及び反射光強度と、液滴高さ算出用データと、に基づいて、液滴315の体積を算出する。なお、液滴315の簡易的な測定方法としては、上記の液滴315の面積のみから体積を推測することも可能である。バンク2上での液滴315の接触角により液滴の高さは決まり、液滴体積の大きさによらずほぼ一定の高さとなると考えられるためである。 First, in advance, droplet height calculation data indicating the relationship between the intensity of reflected light from a droplet applied to a location other than the cell 2A and the height of the droplet is created in a database and stored in the storage means 151. I'll keep it. The coating unevenness observation device 50 observes the droplets 315 on the bank 2 and outputs image data indicating the observation results to the control device 15. By observation using the coating unevenness observation device 50, image data of a gray scale of 256 gradations from 0 to 255 is obtained. Note that the image data is not limited to grayscale, and may be color. Based on the image data, the CPU 150 of the control device 15 calculates the area of the droplet 315 (the area of the orthogonal projection of the droplet onto the coating surface, that is, the cross-sectional area of the droplet, in other words, the circular area visible to the observer). , and the intensity of reflected light from the droplet 315. The CPU 150 calculates the volume of the droplet 315 based on the area and reflected light intensity of the droplet 315 calculated based on the image data and the droplet height calculation data. Note that as a simple method for measuring the droplet 315, it is also possible to estimate the volume from only the area of the droplet 315 described above. This is because the height of the droplet is determined by the contact angle of the droplet 315 on the bank 2, and is considered to be approximately constant regardless of the droplet volume.
 以上の方法で測定したノズル3030毎の液滴体積を参考に、セル2A毎の液滴体積調整時に調整するノズル3030が決定される。もともと体積が大きい液滴をさらに大きくすることや、もともと体積が小さい液滴をさらに小さくすることは困難であるからである。 With reference to the droplet volume of each nozzle 3030 measured by the above method, the nozzle 3030 to be adjusted when adjusting the droplet volume of each cell 2A is determined. This is because it is difficult to make a droplet that originally has a large volume even larger, or to make a droplet that originally has a small volume even smaller.
 次に、塗布ムラ観察装置50は、印刷したセル2Aの観察を行う(ステップS4)。印刷したセル2Aの観察は、インクの溶媒が乾燥する前に行われることが望ましい。インクの溶媒が乾燥してからセル2Aの観察を行うと、ノズル3030から吐出された液滴体積を正確に算出できないからである。 Next, the coating unevenness observation device 50 observes the printed cells 2A (step S4). It is desirable that the printed cell 2A be observed before the ink solvent dries. This is because if the cell 2A is observed after the ink solvent has dried, the volume of the droplet ejected from the nozzle 3030 cannot be accurately calculated.
 次に、制御装置15のCPU150は、ステップS4で得られた画像データを元に、セル2A毎のエリアに分けて塗布された液滴の体積を算出する(ステップS5)。塗布ムラ観察装置50のカメラ5002で上方からセル2Aを観察したときに、画像データに表示された液滴の面積(液滴の塗布面への正射影の面積、つまり液滴の断面積、換言すれば観察者から見える円形の面積)は、セル2Aの大きさによって決まり一定である。このため、塗布された液滴の高さによって変わる反射光の強度の違いによって、液滴体積の推定が可能となる。反射光の強度は、ステップS4で得られた画像データから求めることができる。以上のような方法を用いて、事前に、セル2A内の塗布膜からの反射光強度(画像データ)と、液滴体積の関係を表すセル塗布量算出用データをデータベース化して、記憶手段151に蓄積しておくことで、液滴体積の算出が可能となる。なお、液滴体積のデータベース化は、入力情報をセル画像データ、出力情報をセル毎の体積数値データとした、教師ありによる機械学習を用いても良い。 Next, the CPU 150 of the control device 15 calculates the volume of the droplets applied in each area of each cell 2A based on the image data obtained in step S4 (step S5). When the cell 2A is observed from above with the camera 5002 of the coating unevenness observation device 50, the area of the droplet displayed in the image data (the area of the orthogonal projection of the droplet onto the coating surface, that is, the cross-sectional area of the droplet, in other words The area of the circle visible to the observer is determined by the size of the cell 2A and is constant. Therefore, the volume of the droplet can be estimated based on the difference in the intensity of the reflected light, which varies depending on the height of the applied droplet. The intensity of the reflected light can be determined from the image data obtained in step S4. Using the method described above, the data for calculating the cell coating amount representing the relationship between the intensity of reflected light from the coating film in the cell 2A (image data) and the volume of the droplet is created in advance into a database, and the data is stored in the storage means 151. By accumulating the droplet volume, the droplet volume can be calculated. Note that creating a database of droplet volumes may use supervised machine learning in which input information is cell image data and output information is volume numerical data for each cell.
 図23の左端の図は印刷前のセル2Aを示し、図23の中央及び右端の図はセル2Aに異なる塗布量のインクにより塗布膜316が印刷された状態を示す。図23の中央及び右端の図に示すように、一点鎖線で囲んだ領域であるセル2A内の塗布領域の4つのコーナーの形状と、塗布領域の横幅と、縦幅の測定値と、グレースケール画像データのコントラストから、塗布膜316の形状を推定し、液滴体積を算出することも可能である。この場合、画像データからそれぞれ得られる4つのコーナーの形状、塗布領域の横幅、縦幅の測定値、コントラストと、液滴体積の関係を表すセル塗布量算出用データをデータベース化して、記憶手段151に蓄積しておけばよい。 The diagram at the left end of FIG. 23 shows the cell 2A before printing, and the diagrams at the center and right end of FIG. 23 show the state in which the coating film 316 is printed on the cell 2A with different amounts of ink. As shown in the center and rightmost diagrams of FIG. 23, the shape of the four corners of the coating area in cell 2A, which is the area surrounded by the dashed-dotted line, the measured values of the horizontal width and vertical width of the coating area, and the gray scale. It is also possible to estimate the shape of the coating film 316 and calculate the droplet volume from the contrast of the image data. In this case, data for calculating the cell coating amount representing the relationship between the shapes of the four corners, the measured values of the horizontal and vertical widths of the coating area, the contrast, and the droplet volume obtained from the image data are compiled into a database and stored in the storage unit 151. You can store it in
 制御装置15のCPU150は、前述のセル2A毎の液滴体積の算出値より、セル2A毎の液滴体積が均等になるように、セル2A毎に調整する液滴体積の値を算出する(ステップS6)。このとき、スジムラが発生しないように、つまりステップS5で算出されたセル2A毎の液滴体積の差がなくなる(小さくなる)ように、セル2A毎の体積を決定する。特に隣接するセル2A間の液滴体積ばらつきはスジムラに繋がるため、高精度に調整する必要がある。 The CPU 150 of the control device 15 calculates the value of the droplet volume to be adjusted for each cell 2A, based on the above-mentioned calculated value of the droplet volume for each cell 2A, so that the droplet volume for each cell 2A becomes equal ( Step S6). At this time, the volume of each cell 2A is determined so that uneven streaks do not occur, that is, so that the difference in droplet volume between the cells 2A calculated in step S5 disappears (reduces). In particular, since droplet volume variations between adjacent cells 2A lead to uneven streaks, it is necessary to adjust with high precision.
 制御装置15のCPU150は、セル2A毎に割り当てられているノズル3030の位置情報と、ステップS3で算出したノズル3030毎の液滴体積値と、ステップS6で算出したセル2A毎に調整する液滴体積値と、図7に示す電圧決定用データから、ノズル3030毎に調整後の液滴体積の値を決定する(ステップS7)。液滴体積は電圧によって調整可能であるが、印加電圧を大きくすると液滴速度は速くなる。液滴速度が一定以上に速くなると、主滴以外にもサテライトと呼ばれる副液滴が発生する。サテライトは液滴の着弾位置精度を低下させる可能性があるため、サテライトは発生しない状態で液滴を吐出することが必要である。また、電圧を小さくすると液滴速度は遅くなる。液滴速度が一定以下に遅くなると、液滴が飛翔中に空気抵抗によりふらついてしまい、着弾位置精度を低下させる可能性がある。よって、印加電圧で液滴体積の調整は可能であるが、液滴速度の観点から調整範囲は制限される。よって、液滴速度が速い液滴の体積をより大きく調整したり、液滴速度が遅い液滴の体積をより小さくしたりする調整は困難である。このため、制御装置15のCPU150は、液滴体積を調整するノズル3030として、液滴速度の観点で適切なものを選択する必要がある。つまり、上記体積の調整が困難な範囲を除く液滴体積調整可能範囲内で液滴体積を調整できるノズル3030を、選択する必要がある。 The CPU 150 of the control device 15 uses the position information of the nozzle 3030 assigned to each cell 2A, the droplet volume value of each nozzle 3030 calculated in step S3, and the droplet volume value to be adjusted for each cell 2A calculated in step S6. The adjusted droplet volume value is determined for each nozzle 3030 from the volume value and the voltage determination data shown in FIG. 7 (step S7). The droplet volume can be adjusted by voltage; however, increasing the applied voltage increases the droplet velocity. When the droplet speed increases beyond a certain level, sub-droplets called satellites are generated in addition to the main droplet. Since satellites may reduce the accuracy of droplet landing positions, it is necessary to eject droplets without generating satellites. Also, when the voltage is reduced, the droplet velocity becomes slower. If the droplet speed becomes slower than a certain level, the droplet will wander due to air resistance during flight, which may reduce the accuracy of the landing position. Therefore, although it is possible to adjust the droplet volume by applying voltage, the adjustment range is limited from the viewpoint of droplet velocity. Therefore, it is difficult to adjust the volume of a droplet with a high droplet velocity to a larger value or to make the volume of a droplet with a lower droplet velocity smaller. Therefore, the CPU 150 of the control device 15 needs to select an appropriate nozzle 3030 for adjusting the droplet volume from the viewpoint of the droplet speed. In other words, it is necessary to select a nozzle 3030 whose droplet volume can be adjusted within a droplet volume adjustable range excluding the range in which volume adjustment is difficult.
 また、制御装置15のCPU150は、セル2Aに割り当てられたノズル3030の配置と、各ノズル3030から吐出される液滴体積のバランスも考慮して、液滴体積を調整するノズル3030を決定する。制御装置15のCPU150は、例えば図20において、一つのセル2Aに三つのノズル3030が割り当てられているが、この三つのノズル3030から吐出される液滴310の体積の合計ができるだけ均等になるように体積を調整するノズル3030を決定する。どのノズル3030の体積を調整するかは、セル2Aに割り当てられた各ノズル3030の元々の液滴体積値(液滴の体積の予め設定された設定値)により決定する。具体的には、制御装置15のCPU150は、一つのセル2Aに配置された三つの液滴310の体積について、
 (パターン1)
  左側の液滴体積を、小さく
  中央の液滴体積を、小さく
  右側の液滴体積を、大きく
するよりは、
 (パターン2)
  左側の液滴体積を、小さく
  中央の液滴体積を、大きく
  右側の液滴体積を、小さく
するように、液滴体積を調整するノズル3030を選択することが考えられる。しかし、パターン1の条件の場合、セル2A内で中央から左寄りに印刷する液滴体積が小さくなり、逆に右寄りに印刷する液滴体積が大きくなり、セル2A内で非対称の形状になる可能性がある。一方、パターン2の条件では、セル2A内の液滴体積の分布は左右で対称になる。以上のことから、セル2A内に形成する膜形状の分布の観点で、パターン2のように液滴体積を調整するノズル3030を選択することが望ましい。制御装置15のCPU150は、選択したノズル3030の調整後の液滴体積を決定する。
Further, the CPU 150 of the control device 15 determines the nozzle 3030 whose droplet volume is to be adjusted, taking into account the arrangement of the nozzles 3030 assigned to the cell 2A and the balance of the droplet volume ejected from each nozzle 3030. For example, in FIG. 20, three nozzles 3030 are assigned to one cell 2A, and the CPU 150 of the control device 15 makes sure that the total volume of droplets 310 ejected from these three nozzles 3030 is as equal as possible. The nozzle 3030 whose volume is to be adjusted is determined. The volume of which nozzle 3030 is adjusted is determined based on the original droplet volume value (preset value of the droplet volume) of each nozzle 3030 assigned to the cell 2A. Specifically, the CPU 150 of the control device 15 calculates the volumes of the three droplets 310 arranged in one cell 2A.
(Pattern 1)
Decrease the volume of the droplet on the left side, reduce the volume of the droplet in the center, and increase the volume of the droplet on the right side.
(Pattern 2)
It is conceivable to select a nozzle 3030 that adjusts the droplet volume so that the droplet volume on the left side is small, the center droplet volume is large, and the right droplet volume is small. However, in the case of pattern 1, the volume of droplets printed to the left of the center in cell 2A becomes smaller, and the volume of droplets printed to the right becomes larger, which may result in an asymmetrical shape within cell 2A. There is. On the other hand, under the conditions of pattern 2, the droplet volume distribution within the cell 2A becomes symmetrical on the left and right sides. From the above, from the viewpoint of the distribution of the film shape formed in the cell 2A, it is desirable to select the nozzle 3030 that adjusts the droplet volume like pattern 2. The CPU 150 of the control device 15 determines the adjusted droplet volume of the selected nozzle 3030.
 制御装置15のCPU150は、ノズル3030毎の印加電圧データを書き換える(ステップS8)。具体的には、制御装置15のCPU150は、ステップS7で決定されたノズル3030の調整後の液滴体積と、図7に示す電圧決定用データとに基づいて、ノズル3030毎の調整後の印加電圧を決定する。制御装置15のCPU150は、決定した印加電圧の値を、インクジェットヘッド30の制御部300に送信して、リアルタイムに印加電圧データの書き換えを行う。印加電圧データの書き換えは、制御部300のヘッド制御基板に実装されているメモリー(RAM)を直接書き換えることで行う。 The CPU 150 of the control device 15 rewrites the applied voltage data for each nozzle 3030 (step S8). Specifically, the CPU 150 of the control device 15 determines the adjusted application voltage for each nozzle 3030 based on the adjusted droplet volume of the nozzle 3030 determined in step S7 and the voltage determination data shown in FIG. Determine the voltage. The CPU 150 of the control device 15 transmits the determined applied voltage value to the control unit 300 of the inkjet head 30, and rewrites the applied voltage data in real time. The applied voltage data is rewritten by directly rewriting the memory (RAM) mounted on the head control board of the control unit 300.
 固定ステージST上のディスプレイパネルが新しいディスプレイパネルに交換された後、印刷装置1000は、書き換えられた印加電圧データに基づいて、当該ディスプレイパネルのセルに対する印刷を行う。塗布ムラ観察装置50は、ディスプレイパネルの塗布ムラを観察する。制御装置15のCPU150は、塗布ムラ観察装置50の観察結果に基づいて、塗布ムラがあると判定した場合(ステップS9:YES)、ステップS1の処理を行い、塗布ムラがないと判定した場合(ステップS9:NO)、塗布ムラ調整を終了する。 After the display panel on the fixed stage ST is replaced with a new display panel, the printing device 1000 prints on the cells of the display panel based on the rewritten applied voltage data. The coating unevenness observation device 50 observes coating unevenness on the display panel. If the CPU 150 of the control device 15 determines that there is a coating unevenness based on the observation result of the coating unevenness observation device 50 (step S9: YES), it performs the process of step S1, and if it determines that there is no coating unevenness ( Step S9: NO), the coating unevenness adjustment is ended.
 以上のように、塗布ムラ観察装置50は、セル2A内のインクの塗布状態(塗布膜の形成状態)を観察する。制御装置15のCPU150は、塗布ムラ観察装置50の観察結果に基づいて、セル2A毎の液滴体積の差が小さくなるように、当該セル2Aにインクを吐出するノズル3030毎の液滴体積を調整する。このように、実際にインクが塗布されたセル2A毎の液滴体積の観察結果に基づいて、ノズル3030毎の液滴体積を調整することによって、セル2A間の液滴体積のばらつきを抑制することができる。その結果、ディスプレイパネルの発光ムラを抑制することができる。 As described above, the coating unevenness observation device 50 observes the ink coating state (coating film formation state) within the cell 2A. Based on the observation results of the coating unevenness observation device 50, the CPU 150 of the control device 15 calculates the droplet volume for each nozzle 3030 that ejects ink into the cell 2A so that the difference in droplet volume for each cell 2A becomes small. adjust. In this way, by adjusting the droplet volume for each nozzle 3030 based on the observation results of the droplet volume for each cell 2A to which ink is actually applied, variations in droplet volume between cells 2A are suppressed. be able to. As a result, uneven light emission of the display panel can be suppressed.
 [インクの輝度を用いる体積調整]
 既述の通り、本開示に係る印刷装置1000は、複数のノズル3030と複数の圧電素子3010を備えるインクジェットヘッド30を備えている。また、印刷装置1000は、塗布ムラ観察装置50のカメラ5002(図8参照)およびカメラ5011(図11参照)の少なくとも一方を備えている。また、印刷装置1000は、制御装置15を備えている。このような印刷装置1000は、対象面(例えば、基板5010またはピクセルバンク2の表面)に着弾した液滴の輝度を用いて、ノズル3030から吐出される液滴の体積を調整してもよい。以下、液滴の輝度を用いてノズル3030から吐出される液滴の体積を調整する印刷装置および印刷方法について説明する。
[Volume adjustment using ink brightness]
As described above, the printing apparatus 1000 according to the present disclosure includes the inkjet head 30 including a plurality of nozzles 3030 and a plurality of piezoelectric elements 3010. Furthermore, the printing apparatus 1000 includes at least one of the camera 5002 (see FIG. 8) and the camera 5011 (see FIG. 11) of the coating unevenness observation device 50. The printing apparatus 1000 also includes a control device 15 . Such a printing apparatus 1000 may adjust the volume of the droplet discharged from the nozzle 3030 using the brightness of the droplet that landed on the target surface (for example, the surface of the substrate 5010 or the pixel bank 2). A printing apparatus and a printing method that adjust the volume of droplets ejected from the nozzle 3030 using the brightness of the droplets will be described below.
 〔印刷装置の構成〕
 液滴の輝度を用いてノズル3030から吐出される液滴の体積を調整する際に機能する印刷装置1000の要部は次の通りである。なお、これまでの説明と重複する内容は、適宜省略される。換言すれば、以下に説明される印刷装置1000も、図4および図5等を用いてこれまでに説明された各構成要素を備えている。また、同じ構成には同じ符号が付されている。
[Printing device configuration]
The main parts of the printing apparatus 1000 that function when adjusting the volume of droplets discharged from the nozzle 3030 using the brightness of the droplets are as follows. Note that content that overlaps with the previous explanation will be omitted as appropriate. In other words, the printing apparatus 1000 described below also includes the components described above using FIGS. 4, 5, and the like. Also, the same components are given the same reference numerals.
 図24は、印刷装置1000の要部のブロック図である。印刷装置1000の要部は、制御装置15、インクジェットヘッド30およびカメラ5002を備えている。なお、印刷装置1000の要部は、カメラ5002に代えてカメラ5011を備えてもよい。すなわち、以下に説明されるカメラ5002の機能は、カメラ5011が担ってもよい。また、印刷装置1000の要部は、カメラ5002とカメラ5011を備え、これらを工程毎に切り替えて使用してもよい。 FIG. 24 is a block diagram of the main parts of the printing apparatus 1000. The main parts of the printing apparatus 1000 include a control device 15, an inkjet head 30, and a camera 5002. Note that the main part of the printing apparatus 1000 may include a camera 5011 instead of the camera 5002. That is, the functions of the camera 5002 described below may be performed by the camera 5011. Further, the main parts of the printing apparatus 1000 include a camera 5002 and a camera 5011, and these may be switched and used for each process.
 カメラ5002は、基板5010(対象面の一例)の表面に着弾したダミー液滴320(図10~図11参照)、または、ピクセルバンク2の表面に着弾した液滴315(図20~図22参照)の観察に用いられる。以下、液滴315の観察に用いられる場合を例に挙げる。このとき、カメラ5002は、液滴315の画像を撮像する。カメラ5002は、撮像した画像を制御装置15に送信する。 The camera 5002 detects the dummy droplet 320 (see FIGS. 10 to 11) that landed on the surface of the substrate 5010 (an example of the target surface) or the droplet 315 that landed on the surface of the pixel bank 2 (see FIGS. 20 to 22). ) is used for observation. Hereinafter, a case where the liquid droplet 315 is observed will be exemplified. At this time, the camera 5002 captures an image of the droplet 315. Camera 5002 transmits the captured image to control device 15.
 制御装置15は、CPU150および記憶手段151を備えている。CPU150は、記憶手段151に記憶されているプログラムを読み出して実行することにより、画像取得部154、画像解析部155、体積算出部156および電圧調整部157として機能する。 The control device 15 includes a CPU 150 and a storage means 151. The CPU 150 functions as an image acquisition section 154, an image analysis section 155, a volume calculation section 156, and a voltage adjustment section 157 by reading and executing a program stored in the storage means 151.
 記憶手段151は、対象面に着弾した液滴315の体積補正係数を、液滴の輝度と相関関係を有するパラメータと関連付けて記憶している。 The storage unit 151 stores the volume correction coefficient of the droplet 315 that landed on the target surface in association with a parameter that has a correlation with the brightness of the droplet.
 画像取得部154は、カメラ5002から画像を取得する。 The image acquisition unit 154 acquires an image from the camera 5002.
 画像解析部155は、画像取得部154が取得した画像を解析する。 The image analysis unit 155 analyzes the image acquired by the image acquisition unit 154.
 体積算出部156は、画像解析部155による画像解析結果、および、記憶手段151から取得される体積補正係数を用いて、液滴315の体積を算出する。 The volume calculation unit 156 calculates the volume of the droplet 315 using the image analysis result by the image analysis unit 155 and the volume correction coefficient acquired from the storage unit 151.
 電圧調整部157は、体積算出部156によって算出された液滴315の体積に基づいて、信号をインクジェットヘッド30、具体的には、制御部300に送信する。このとき送信される信号は、吐出量の調整が必要なノズル3030に対応する圧電素子3010、つまり、複数の圧電素子3010の少なくとも1つに印可される電圧を調整するための信号である。 The voltage adjustment unit 157 transmits a signal to the inkjet head 30, specifically, the control unit 300, based on the volume of the droplet 315 calculated by the volume calculation unit 156. The signal transmitted at this time is a signal for adjusting the voltage applied to the piezoelectric element 3010 corresponding to the nozzle 3030 whose ejection amount needs to be adjusted, that is, at least one of the plurality of piezoelectric elements 3010.
 インクジェットヘッド30は、図6に示されるように、複数のノズル3030と、各ノズル3030に1対1で対応する複数の圧電素子3010とを備える。制御部300は、制御装置15からの指示(つまり信号)に基づいて、各圧電素子3010を制御する。 As shown in FIG. 6, the inkjet head 30 includes a plurality of nozzles 3030 and a plurality of piezoelectric elements 3010 corresponding to each nozzle 3030 on a one-to-one basis. The control unit 300 controls each piezoelectric element 3010 based on instructions (that is, signals) from the control device 15.
 (輝度と体積の関係)
 以上のような要部を有する印刷装置1000による具体的な印刷方法について説明する前に、対象面に着弾した液滴の輝度と体積の関係について説明する。
(Relationship between brightness and volume)
Before describing a specific printing method using the printing apparatus 1000 having the main parts as described above, the relationship between the brightness and volume of droplets that have landed on the target surface will be described.
 図25および図26は、対象面の一例であるバンク2の表面に着弾した液滴315の平面図および側面図である。図25および図26に示される315A、315Bおよび315Cは、液滴315の表面における微小領域である。微小領域315Aは、液滴315の中心付近に位置しており、微小領域315Cは、液滴315の縁部付近に位置しており、微小領域315Bは、微小領域315Aと微小領域315Cの間に位置している。 FIGS. 25 and 26 are a plan view and a side view of a droplet 315 that has landed on the surface of the bank 2, which is an example of the target surface. 315A, 315B, and 315C shown in FIGS. 25 and 26 are minute regions on the surface of the droplet 315. The micro region 315A is located near the center of the droplet 315, the micro region 315C is located near the edge of the droplet 315, and the micro region 315B is located between the micro region 315A and the micro region 315C. positioned.
 液滴315が着弾した対象面に直交する方向に沿って液滴315を観察すると、液滴315の表面の位置によって、輝度は異なる。具体的には、液滴315の表面に接する平面と対象面とのなす角度が小さい位置ほど輝度は高くなり、液滴315の表面に接する平面と対象面とのなす角度が大きい位置ほど輝度は高くなる。また、液滴315は球冠形状を有しているので、液滴315の中心に接する平面は対象面と平行となる。よって、液滴315の中心において、液滴315の表面に接する平面と対象面とのなす角度は最小の0となり、輝度は最も高くなる。また、液滴315の最外周部において、液滴315の表面に接する平面と対象面とのなす角度は最大(接触角)となり、輝度は最も低くなる。 When observing the droplet 315 along the direction perpendicular to the target surface on which the droplet 315 landed, the brightness differs depending on the position of the surface of the droplet 315. Specifically, the brightness is higher at a position where the angle between the plane in contact with the surface of the droplet 315 and the target surface is smaller, and the brightness is higher at a position where the angle between the plane in contact with the surface of the droplet 315 and the target surface is larger. It gets expensive. Furthermore, since the droplet 315 has a spherical crown shape, the plane that is in contact with the center of the droplet 315 is parallel to the object plane. Therefore, at the center of the droplet 315, the angle between the plane in contact with the surface of the droplet 315 and the object plane is the minimum 0, and the brightness is the highest. Furthermore, at the outermost periphery of the droplet 315, the angle between the plane in contact with the surface of the droplet 315 and the target surface is maximum (contact angle), and the brightness is the lowest.
 図25および図26に示される例の場合、微小領域315Aの輝度は高く、微小領域315Cの輝度は低く、微小領域315Bの輝度は、微小領域315Aの輝度と微小領域315Cの輝度の間の輝度となる。 In the case of the example shown in FIGS. 25 and 26, the brightness of the minute area 315A is high, the brightness of the minute area 315C is low, and the brightness of the minute area 315B is between the brightness of the minute area 315A and the brightness of the minute area 315C. becomes.
 ノズル3030から吐出された液滴の体積が異なれば、対象面に形成される球冠形状も異なり、輝度分布も異なる。また、対象面に着弾した液滴を観察する間に液滴が乾燥して液滴の体積が減少するにつれて、球冠形状も変化し、輝度分布も変化する。この性質を用いることで、輝度に基づいて液滴の体積を精度よく求めることができる。 If the volume of the droplet ejected from the nozzle 3030 differs, the shape of the spherical crown formed on the target surface will also differ, and the brightness distribution will also differ. Further, while the droplet landed on the target surface is observed, as the droplet dries and the volume of the droplet decreases, the shape of the spherical crown also changes, and the brightness distribution also changes. By using this property, the volume of the droplet can be determined with high accuracy based on the brightness.
 (乾燥モードと体積および正射影面積の関係)
 図27は、吐出された液滴の体積の時間変化の一例を表す図である。図27に示すように、液滴315は、まずCCRモードで乾燥し、その後CCAモードで乾燥する。これらのモードを経て乾燥するとき、液滴315は、図27に示されるように体積が減少する。すなわち、CCRモードにおいては、時間の経過とともに緩やかに体積が減少する。また、図27に示す例では、CCAモードにおいては、CCRモードよりも遅いペースで体積が減少する。すなわち、CCRモードとCCAモードとで、体積の減少速度が異なる。
(Relationship between drying mode, volume and orthographic area)
FIG. 27 is a diagram showing an example of a change in volume of an ejected droplet over time. As shown in FIG. 27, droplets 315 are first dried in CCR mode and then in CCA mode. When drying through these modes, the droplet 315 decreases in volume as shown in FIG. 27. That is, in the CCR mode, the volume gradually decreases over time. Furthermore, in the example shown in FIG. 27, the volume decreases at a slower pace in the CCA mode than in the CCR mode. That is, the rate of volume reduction is different between the CCR mode and the CCA mode.
 また、液滴315の対象面への正射影の面積は、図28に示されるように変化する。すなわち、CCRモードにおいては、液滴315の対象面への正射影の面積は変化しない。また、CCAモードにおいては、時間の経過とともに液滴315の対象面への正射影の面積が減少する。 Furthermore, the area of the orthogonal projection of the droplet 315 onto the target surface changes as shown in FIG. 28. That is, in the CCR mode, the area of the orthogonal projection of the droplet 315 onto the target surface does not change. Furthermore, in the CCA mode, the area of the orthogonal projection of the droplet 315 onto the target surface decreases as time passes.
 (CCRモードにおける輝度と体積の関係)
 図29は、CCRモードで乾燥して徐々に体積が減少する液滴315の側面視形状を、時系列に並べた図である。また、図30は、CCRモードで乾燥する液滴315の平面視形状を、時系列に並べた図である。図30に示される各液滴315は、図29に示される各液滴315と1対1で対応する。なお、図29には液滴315の輪郭のみが示されている。また、図30には、輝度の高低も示されており、白色に近いほど輝度は高く、黒色に近いほど輝度は低い。
(Relationship between brightness and volume in CCR mode)
FIG. 29 is a diagram chronologically arranging the side view shape of a droplet 315 whose volume gradually decreases as it dries in the CCR mode. Moreover, FIG. 30 is a diagram chronologically arranging the plan view shapes of droplets 315 dried in the CCR mode. Each droplet 315 shown in FIG. 30 corresponds one-to-one with each droplet 315 shown in FIG. 29. Note that FIG. 29 shows only the outline of the droplet 315. FIG. 30 also shows the level of brightness; the closer the color is to white, the higher the brightness, and the closer to black, the lower the brightness.
 図29に示されるように、CCRモードにおいて、対象面の一例であるピクセルバンク2の表面に対する液滴315の接触角は時間の経過とともに小さくなる。図30に示されるように、CCRモードにおいて、液滴315の対象面への正射影の形状である正射影形状は、時間が経過しても変化しない。換言すれば、正射影形状の輪郭である外周円315Dの大きさ(つまり、面積、直径および半径等)は変化しない。 As shown in FIG. 29, in the CCR mode, the contact angle of the droplet 315 with respect to the surface of the pixel bank 2, which is an example of the target surface, decreases over time. As shown in FIG. 30, in the CCR mode, the orthogonal projection shape, which is the shape of the orthogonal projection of the droplet 315 onto the target surface, does not change over time. In other words, the size (ie, area, diameter, radius, etc.) of the outer circumferential circle 315D, which is the outline of the orthogonal projection shape, does not change.
 また、図30に示されるように、CCRモードで乾燥する液滴315の輝度は、液滴315の体積減少(つまり形状変化)とともに、変化する。具体的には、接触角が減少して液滴315が扁平な形状になるにつれて、輝度が高い領域が中心から周辺に向かって広がっていく。 Further, as shown in FIG. 30, the brightness of the droplet 315 dried in the CCR mode changes as the volume of the droplet 315 decreases (that is, changes in shape). Specifically, as the contact angle decreases and the droplet 315 becomes flat, the region of high brightness spreads from the center toward the periphery.
 よって、CCRモードでは、液滴315の体積減少(つまり形状変化)とともに、予め定められた所定の輝度を結ぶ円315Eは大きくなる。この円315Eは、外周円315Dの同心円である。 Therefore, in the CCR mode, as the volume of the droplet 315 decreases (that is, the shape changes), the circle 315E connecting the predetermined brightness increases. This circle 315E is a concentric circle of the outer circumferential circle 315D.
 したがって、外周円315Dの大きさに対する同心円315Eの大きさの比率(例えば、面積比、直径比および半径比等)は、液滴315の体積が変化して液滴の輝度が変化すると変化する。つまり、外周円315Dの大きさに対する同心円315Eの大きさの比率は、液滴輝度と相関関係を有するパラメータの1つである。 Therefore, the ratio of the size of the concentric circle 315E to the size of the outer circumferential circle 315D (for example, area ratio, diameter ratio, radius ratio, etc.) changes when the volume of the droplet 315 changes and the brightness of the droplet changes. In other words, the ratio of the size of the concentric circle 315E to the size of the outer circumferential circle 315D is one of the parameters that has a correlation with the droplet brightness.
 なお、予め定められた所定の輝度は、輝度の絶対値でもよいし、液滴315の輝度の最大値(つまり中心の輝度)と最小値(つまり再外周部の輝度)との間における相対値であってもよい。 Note that the predetermined brightness may be an absolute value of brightness, or a relative value between the maximum value (that is, the brightness at the center) and the minimum value (that is, the brightness at the outer periphery) of the brightness of the droplet 315. It may be.
 外周円315Dの大きさに対する同心円315Eの大きさの比率は、液滴315の体積の変化に伴って変化する、つまり、液滴315の体積に応じて定まるので、液滴315の体積を示す指標となる。よって、外周円315Dの大きさに対する同心円315Eの大きさの比率と、液滴315の体積を補正するための係数である体積補正係数との関係を、予め実験等で求めておくことで、この比率から体積補正係数を得ることができる。 The ratio of the size of the concentric circle 315E to the size of the outer circumferential circle 315D changes as the volume of the droplet 315 changes, that is, it is determined according to the volume of the droplet 315, so it is an index indicating the volume of the droplet 315. becomes. Therefore, by determining the relationship between the ratio of the size of the concentric circle 315E to the size of the outer circumferential circle 315D and the volume correction coefficient, which is a coefficient for correcting the volume of the droplet 315, in advance through experiments, etc. A volume correction factor can be obtained from the ratio.
 図31は、外周円315Dの大きさに対する同心円315Eの大きさの比率と、体積補正係数との関係の一例を示す。体積補正係数は、外周円315Dの大きさに対する同心円315Eの大きさの比率が大きくなる(液滴315の高さが低くなり体積が小さくなる)ほど小さくなる。 FIG. 31 shows an example of the relationship between the ratio of the size of the concentric circle 315E to the size of the outer circumferential circle 315D and the volume correction coefficient. The volume correction coefficient becomes smaller as the ratio of the size of the concentric circle 315E to the size of the outer circumferential circle 315D becomes larger (the height of the droplet 315 becomes lower and the volume becomes smaller).
 例えば前掲の式(7)に基づいて液滴315の暫定的な体積である仮体積を算出し、仮体積に体積補正係数を乗じることで、液滴315のより正確な体積を算出することができる。つまり、液滴315の輝度を用いることで液滴315のより正確な体積を算出することができる。 For example, a more accurate volume of the droplet 315 can be calculated by calculating the provisional volume, which is the provisional volume of the droplet 315, based on the above-mentioned formula (7), and multiplying the provisional volume by a volume correction coefficient. can. That is, by using the brightness of the droplet 315, the volume of the droplet 315 can be calculated more accurately.
 図32は、図30と同様に、CCRモードで乾燥する液滴315の平面視形状を、時系列に並べた図である。図32に示される各液滴315は、図29に示される各液滴315と1対1で対応する。図32には、外周円315Dの直径に予め定められた所定値を乗じた価を直径とする同心円315Fが示されている。なお、所定値は0よりも大きく1以下の任意の値とすることができる。 Similar to FIG. 30, FIG. 32 is a diagram in which the plan view shapes of droplets 315 dried in the CCR mode are arranged in chronological order. Each droplet 315 shown in FIG. 32 corresponds one-to-one with each droplet 315 shown in FIG. 29. FIG. 32 shows a concentric circle 315F whose diameter is the value obtained by multiplying the diameter of the outer circumferential circle 315D by a predetermined value. Note that the predetermined value can be any value greater than 0 and less than or equal to 1.
 CCRモードにおいて、外周円315Dの直径は変化しない。よって、同心円315Fの直径も変化しない。つまり、同心円315Fの形状は変化せず、同心円315Fに囲まれる領域も変化しない。 In the CCR mode, the diameter of the outer circle 315D does not change. Therefore, the diameter of the concentric circle 315F also does not change. In other words, the shape of the concentric circle 315F does not change, and the area surrounded by the concentric circle 315F also does not change.
 しかしながら、CCRモードで乾燥する液滴315の輝度は、液滴315の体積減少(つまり形状変化)とともに、変化する。 However, the brightness of the droplet 315 that dries in the CCR mode changes as the volume of the droplet 315 decreases (that is, the shape changes).
 よって、同心円315Fに囲まれる領域の輝度の平均値は、液滴315の体積が変化して液滴の輝度が変化すると変化する。つまり、同心円315Fに囲まれる領域の輝度の平均値は、液滴輝度と相関関係を有するパラメータの1つである。 Therefore, the average value of the brightness of the area surrounded by the concentric circle 315F changes when the volume of the droplet 315 changes and the brightness of the droplet changes. That is, the average value of the brightness of the area surrounded by the concentric circle 315F is one of the parameters that has a correlation with the droplet brightness.
 同心円315Fに囲まれる領域の輝度の平均値は、液滴315の体積の変化に伴って変化する、つまり、液滴315の体積に応じて定まるので、液滴315の体積を示す指標となる。よって、同心円315Fに囲まれる領域の輝度の平均値と、液滴315の体積を補正するための係数である体積補正係数との関係を、予め実験等で求めておくことで、この平均値から体積補正係数を得ることができる。 The average value of the brightness of the area surrounded by the concentric circles 315F changes as the volume of the droplet 315 changes, that is, it is determined according to the volume of the droplet 315, and therefore serves as an index indicating the volume of the droplet 315. Therefore, by determining the relationship between the average value of the brightness of the area surrounded by the concentric circle 315F and the volume correction coefficient, which is a coefficient for correcting the volume of the droplet 315, in advance through experiments, etc., it is possible to calculate the relationship from this average value. A volume correction factor can be obtained.
 図33は、同心円315Fに囲まれる領域の輝度の平均値と、体積補正係数との関係の一例を示す。体積補正係数は、同心円315Fに囲まれる領域の輝度の平均値が大きくなる(液滴315の高さが低くなり体積が小さくなる)ほど小さくなる。 FIG. 33 shows an example of the relationship between the average brightness of the area surrounded by the concentric circle 315F and the volume correction coefficient. The volume correction coefficient becomes smaller as the average value of the brightness of the area surrounded by the concentric circle 315F becomes larger (the height of the droplet 315 becomes lower and the volume becomes smaller).
 例えば前掲の式(7)に基づいて液滴315の暫定的な体積である仮体積を算出し、仮体積に体積補正係数を乗じることで、液滴315のより正確な体積を算出することができる。つまり、液滴315の輝度を用いることで液滴315のより正確な体積を算出することができる。 For example, a more accurate volume of the droplet 315 can be calculated by calculating the provisional volume, which is the provisional volume of the droplet 315, based on the above-mentioned formula (7), and multiplying the provisional volume by a volume correction coefficient. can. That is, by using the brightness of the droplet 315, the volume of the droplet 315 can be calculated more accurately.
 (CCAモードにおける輝度と体積の関係)
 図34は、CCAモードで乾燥して徐々に体積が減少する液滴315の側面視形状を、時系列に並べた図である。また、図35は、CCAモードで乾燥する液滴315の平面視形状を、時系列に並べた図である。図35に示される各液滴315は、図34に示される各液滴315と1対1で対応する。なお、図34には液滴315の輪郭のみが示されている。また、図35には、輝度の高低も示されており、白色に近いほど輝度は高く、黒色に近いほど輝度は低い。
(Relationship between brightness and volume in CCA mode)
FIG. 34 is a diagram chronologically arranging the side view shape of a droplet 315 whose volume gradually decreases as it dries in the CCA mode. Moreover, FIG. 35 is a diagram chronologically arranging the plan view shapes of droplets 315 dried in the CCA mode. Each droplet 315 shown in FIG. 35 corresponds one-to-one with each droplet 315 shown in FIG. 34. Note that only the outline of the droplet 315 is shown in FIG. FIG. 35 also shows the level of brightness; the closer the color is to white, the higher the brightness, and the closer to black, the lower the brightness.
 また、図35には、外周円315Dの直径に予め定められた所定値を乗じた価を直径とする同心円315Fが示されている。なお、所定値は0よりも大きく1以下の任意の値とすることができる。 Further, FIG. 35 shows a concentric circle 315F whose diameter is the value obtained by multiplying the diameter of the outer circumferential circle 315D by a predetermined value. Note that the predetermined value can be any value greater than 0 and less than or equal to 1.
 図34に示されるように、CCAモードにおいて、対象面の一例であるピクセルバンク2の表面に対する液滴315の接触角は時間が経過しても変化しない。図35に示されるように、CCAモードにおいて、液滴315の対象面への正射影の形状である正射影形状は、時間の経過とともに変化する。換言すれば、正射影形状の輪郭である外周円315Dの大きさ(つまり、面積、直径および半径等)は時間の経過とともに小さくなる。 As shown in FIG. 34, in the CCA mode, the contact angle of the droplet 315 with the surface of the pixel bank 2, which is an example of the target surface, does not change over time. As shown in FIG. 35, in the CCA mode, the orthogonal projection shape, which is the shape of the orthogonal projection of the droplet 315 onto the target surface, changes over time. In other words, the size (that is, the area, diameter, radius, etc.) of the outer circumferential circle 315D, which is the outline of the orthogonal projection shape, decreases over time.
 すなわち、CCAモードで乾燥するとき、各時間における液滴315の形状は、互いに対して相似となっている。 That is, when drying in the CCA mode, the shapes of the droplets 315 at each time are similar to each other.
 よって、同心円315Fに囲まれる領域の輝度の平均値は、液滴315がCCAモードで乾燥する間、変化しない。 Therefore, the average value of the brightness of the area surrounded by the concentric circle 315F does not change while the droplet 315 dries in the CCA mode.
 ただし、乾燥モードがCCRモードからCCAモードに切り替わるときの液滴315の高さが高いほど(つまり、接触角が大きいほど)、同心円315Fに囲まれる領域の輝度の平均値は小さくなる。換言すれば、CCAモードで液滴315が乾燥しているとき、同心円315Fに囲まれる領域の輝度の平均値が大きくなるほど、液滴315の高さは低く、液滴315の体積は小さくなる。 However, the higher the height of the droplet 315 when the drying mode is switched from the CCR mode to the CCA mode (that is, the larger the contact angle), the smaller the average value of the brightness of the area surrounded by the concentric circle 315F becomes. In other words, when the droplet 315 is drying in the CCA mode, the higher the average value of the brightness of the area surrounded by the concentric circle 315F, the lower the height of the droplet 315 and the smaller the volume of the droplet 315.
 よって、CCAモードにおいても、同心円315Fに囲まれる領域の輝度の平均値は、液滴輝度と相関関係を有するパラメータの1つである。また、CCAモードにおいても、同心円315Fに囲まれる領域の輝度の平均値と、液滴315の体積を補正するための係数である体積補正係数との関係を、予め実験等で求めておくことで、この平均値から体積補正係数を得ることができる。CCAモードにおける、同心円315Fに囲まれる領域の輝度の平均値と、体積補正係数との関係は、図33に示される関係と同様である。 Therefore, also in the CCA mode, the average value of the brightness of the area surrounded by the concentric circle 315F is one of the parameters that has a correlation with the droplet brightness. Also, in the CCA mode, the relationship between the average brightness of the area surrounded by the concentric circle 315F and the volume correction coefficient, which is a coefficient for correcting the volume of the droplet 315, can be determined in advance through experiments, etc. , a volume correction coefficient can be obtained from this average value. In the CCA mode, the relationship between the average brightness value of the area surrounded by the concentric circle 315F and the volume correction coefficient is similar to the relationship shown in FIG. 33.
 (輝度を用いた体積調整を伴う印刷方法)
 続いて、印刷装置1000による、輝度を用いた体積調整を伴う印刷方法について説明する。
(Printing method with volume adjustment using brightness)
Next, a printing method using the printing apparatus 1000 that involves volume adjustment using brightness will be described.
 印刷方法の基本的な流れは、図19を参照しながら先に説明された流れと同じである。ただし、ノズル3030毎の液滴315(図20~図22参照)の体積を算出する工程であるステップS3に代えて、図36で示される各工程が行われる。そこで、まず、図36を参照しながら、印刷装置1000によって実行される液滴体積の算出方法を説明する。 The basic flow of the printing method is the same as that described above with reference to FIG. However, instead of step S3, which is the step of calculating the volume of the droplet 315 (see FIGS. 20 to 22) for each nozzle 3030, the steps shown in FIG. 36 are performed. Therefore, first, a method of calculating the droplet volume executed by the printing apparatus 1000 will be described with reference to FIG. 36.
 まず、カメラ5002によって、液滴315の画像が撮像される(S11)。画像が撮像されると、制御装置15、具体的には画像取得部154は、カメラ5002から画像を取得する。なお、カメラ5002は、カメラ5002の光軸が対象面に対して直交する姿勢で画像を撮像してもよいし、カメラ5002の光軸が対象面に対して傾斜する姿勢で画像を撮像してもよい。 First, an image of the droplet 315 is captured by the camera 5002 (S11). When the image is captured, the control device 15, specifically the image acquisition unit 154, acquires the image from the camera 5002. Note that the camera 5002 may take an image with the optical axis of the camera 5002 perpendicular to the target surface, or may take an image with the optical axis of the camera 5002 inclined with respect to the target surface. Good too.
 次に、画像解析部155によって画像が解析され、液滴315の輝度である液滴輝度、および、液滴315の対象面への正射影の形状である正射影形状が取得される(S12)。カメラ5002の光軸が対象面に対して傾斜する姿勢で画像が撮像された場合であっても、画像解析部155が画像解析によって液滴輝度および正射影形状を取得することができるということは言うまでもない。 Next, the image is analyzed by the image analysis unit 155, and the droplet brightness, which is the brightness of the droplet 315, and the orthogonal projection shape, which is the shape of the orthogonal projection of the droplet 315 onto the target surface, are obtained (S12). . This means that even if an image is captured with the optical axis of the camera 5002 tilted with respect to the target surface, the image analysis unit 155 can obtain the droplet brightness and orthographic shape by image analysis. Needless to say.
 次に、画像解析部155によってさらに画像が解析され、液滴315の輝度と相関関係を有するパラメータの値が取得される(S13)。具体的には、液滴315の対象面への正射影の形状である正射影形状の輪郭である外周円の大きさに対する、外周円の同心円であって、予め定められた所定の輝度である点を結ぶ同心円の大きさの比率が取得される(図30参照)。または、液滴315の対象面への正射影の形状である正射影形状の輪郭である外周円の同心円であって、外周円の直径に予め定められた所定値を乗じた値を直径とする同心円に囲まれる領域の輝度の平均値が取得される(図32および図35参照)。 Next, the image analysis unit 155 further analyzes the image, and obtains the value of a parameter that has a correlation with the brightness of the droplet 315 (S13). Specifically, it is a concentric circle of the outer circumferential circle that is the outline of the orthogonal projection shape that is the shape of the orthogonal projection of the droplet 315 onto the target surface, and has a predetermined brightness. The ratio of the sizes of concentric circles connecting the points is obtained (see FIG. 30). Alternatively, it is a concentric circle of the outer circumferential circle that is the outline of the orthogonal projection shape that is the shape of the orthogonal projection of the droplet 315 onto the target surface, and the diameter is the value obtained by multiplying the diameter of the outer circumferential circle by a predetermined value. The average value of the brightness of the area surrounded by concentric circles is obtained (see FIG. 32 and FIG. 35).
 続いて、体積算出部156によって、体積補正係数が取得される(S14)。具体的には、体積算出部156は、画像解析部155によって取得されたパラメータの値と、記憶手段151に予め記憶されている体積補正係数とパラメータとの関係とに基づいて、体積補正係数を取得する。 Subsequently, the volume calculation unit 156 obtains a volume correction coefficient (S14). Specifically, the volume calculation unit 156 calculates the volume correction coefficient based on the value of the parameter acquired by the image analysis unit 155 and the relationship between the volume correction coefficient and the parameter, which is stored in advance in the storage unit 151. get.
 次に、体積算出部156によって、液滴315の暫定的な体積である仮体積が算出される(S15)。仮体積は、例えば、液滴315の形状が半球であると仮定した場合の体積である。画像解析部155によって取得された正射影形状から、この半球の半径を求め、仮体積を算出することができる。 Next, the volume calculation unit 156 calculates a provisional volume that is a provisional volume of the droplet 315 (S15). The temporary volume is, for example, the volume assuming that the shape of the droplet 315 is a hemisphere. From the orthogonal projection shape acquired by the image analysis unit 155, the radius of this hemisphere can be determined and the temporary volume can be calculated.
 また、液滴315の対象面に対する接触角を実験等に基づいて予め定めておくことで、仮体積を式(7)から求めてもよい。この場合、正射影形状が描く円の半径は、図15に示される球冠の半径a(=rsinθ)となる。よって、正射影形状から図15に示される球の半径rを算出することができる。そして、この半径rと予め定められた接触角を式(7)に代入することで、液滴315の仮体積を算出することができる。 Alternatively, the tentative volume may be determined from equation (7) by predetermining the contact angle of the droplet 315 with respect to the target surface based on experiments or the like. In this case, the radius of the circle drawn by the orthogonal projection shape is the radius a (=rsinθ) of the spherical crown shown in FIG. Therefore, the radius r of the sphere shown in FIG. 15 can be calculated from the orthogonal projection shape. Then, by substituting this radius r and a predetermined contact angle into equation (7), the tentative volume of the droplet 315 can be calculated.
 次に、体積算出部156が、仮体積に体積補正係数を乗じることで、液滴315の体積を算出する(S16)。 Next, the volume calculation unit 156 calculates the volume of the droplet 315 by multiplying the temporary volume by the volume correction coefficient (S16).
 以上の流れにより、印刷装置1000は、液滴315の輝度を用いて液滴315の体積を正確に算出することができる。そして、各ノズル3030から吐出された液滴315毎にこれらの工程を行うことにより、ノズル3030毎の液滴315の体積を正確に算出することができる。そして、先に説明されたステップS4からステップS8を経ることで、算出された液滴315の体積に基づいて、複数の圧電素子3010の少なくとも1つに印加される電圧が調整される。 Through the above flow, the printing apparatus 1000 can accurately calculate the volume of the droplet 315 using the brightness of the droplet 315. By performing these steps for each droplet 315 ejected from each nozzle 3030, the volume of the droplet 315 for each nozzle 3030 can be accurately calculated. Then, by going through steps S4 to S8 described above, the voltage applied to at least one of the plurality of piezoelectric elements 3010 is adjusted based on the calculated volume of the droplet 315.
 なお、カメラ5002によって撮像された時点における液滴315の乾燥モードに応じて、液滴315の輝度と相関関係を有するパラメータの種類は変更されてもよい。つまり、画像解析部155は、ステップS13において、撮像時点における液滴315の乾燥モードがCCRモードである場合は、液滴315の輝度と相関関係を有するパラメータの値として、第1パラメータの値を取得してもよい。また、画像解析部155は、ステップS13において、撮像時点における液滴315の乾燥モードがCCAモードである場合は、液滴315の輝度と相関関係を有するパラメータの値として、第1パラメータとは種類が異なる第2パラメータの値を取得してもよい。第1パラメータは、例えば、正射影形状の輪郭である外周円の同心円であって、外周円の直径に予め定められた所定値を乗じた値を直径とする同心円に囲まれる領域の輝度の平均値とすることができる。また、第2パラメータは、例えば、正射影形状の輪郭である外周円の大きさに対する、外周円の同心円であって、予め定められた所定の輝度である点を結ぶ同心円の大きさの比率とすることができる。 Note that the type of parameter that has a correlation with the brightness of the droplet 315 may be changed depending on the drying mode of the droplet 315 at the time when the image is captured by the camera 5002. That is, in step S13, if the drying mode of the droplet 315 at the time of imaging is the CCR mode, the image analysis unit 155 sets the value of the first parameter as the value of the parameter having a correlation with the brightness of the droplet 315. You may obtain it. Further, in step S13, if the drying mode of the droplet 315 at the time of imaging is the CCA mode, the image analysis unit 155 determines that the first parameter is the type You may acquire the value of the second parameter which is different. The first parameter is, for example, the average brightness of an area surrounded by concentric circles of an outer circumferential circle that is the outline of an orthogonal projection shape, and whose diameter is a value obtained by multiplying the diameter of the outer circumferential circle by a predetermined value. Can be a value. Further, the second parameter is, for example, the ratio of the size of a concentric circle of the outer circumferential circle that connects points having a predetermined brightness to the size of the outer circumferential circle that is the outline of the orthogonal projection shape. can do.
 画像解析部155は、液滴315がノズル3030から吐出されてからカメラ5002によって撮像されるまでの経過時間に基づいて、液滴315の乾燥モードがCCRモードであるかCCAモードであるかを判断することができる。すなわち、経過時間が予め定められた所定時間未満である場合は、乾燥モードがCCRモードであると判断し、経過時間が予め定められた所定時間以上である場合は、乾燥モードがCCAモードであると判断することができる。 The image analysis unit 155 determines whether the drying mode of the droplet 315 is the CCR mode or the CCA mode based on the elapsed time from when the droplet 315 is ejected from the nozzle 3030 until it is imaged by the camera 5002. can do. That is, if the elapsed time is less than a predetermined time, it is determined that the drying mode is the CCR mode, and if the elapsed time is greater than or equal to the predetermined time, the drying mode is determined to be the CCA mode. It can be determined that
 また、液滴315の正射影形状は、乾燥モードがCCRモードである場合は、変化せず、乾燥モードがCCAモードである場合は、変化して徐々に小さくなる。よって、画像解析部155は、液滴315の複数の静止画または液滴315の動画を解析し、液滴315の正射影形状の変化に基づいて、液滴315の乾燥モードがCCRモードであるかCCAモードであるかを判断することができる。 Further, the orthogonally projected shape of the droplet 315 does not change when the drying mode is the CCR mode, but changes and gradually becomes smaller when the drying mode is the CCA mode. Therefore, the image analysis unit 155 analyzes a plurality of still images of the droplet 315 or a moving image of the droplet 315, and determines that the drying mode of the droplet 315 is the CCR mode based on the change in the orthogonal projection shape of the droplet 315. or CCA mode.
 乾燥モードに応じて使用するパラメータの種類を切り替えることにより、乾燥モード毎により適切なパラメータを用いることができ、ひいては、より精度が高い体積補正係数を取得することができる。よって、乾燥モード毎により正確に液滴315の体積を算出することができる。 By switching the types of parameters used depending on the drying mode, more appropriate parameters can be used for each drying mode, and as a result, a more accurate volume correction coefficient can be obtained. Therefore, the volume of the droplet 315 can be calculated more accurately for each drying mode.
 本開示の印刷装置、制御装置および印刷方法によれば、ディスプレイパネルの発光ムラを抑制することができる。 According to the printing device, control device, and printing method of the present disclosure, uneven light emission of the display panel can be suppressed.
 本開示の印刷装置及び印刷方法は、ピクセルバンクに印刷してディスプレイパネルを製造する場合においても、発光ムラを抑制することができ、ディスプレイパネル製造に適用することができる。 The printing apparatus and printing method of the present disclosure can suppress uneven light emission even when display panels are manufactured by printing on pixel banks, and can be applied to display panel manufacturing.
 1 ラインバンク
 2 ピクセルバンク
 2A,5007A セル
 15 制御装置
 20 インクジェットテーブル
 30 インクジェットヘッド
 40 液滴観察装置
 50 塗布ムラ観察装置
 60 インクパン(皿状容器)
 101 ノズル
 150 CPU
 151 記憶手段
 152 入力手段
 153 表示手段(ディスプレイ)
 154 画像取得部
 155 画像解析部
 156 体積算出部
 157 電圧調整部
 200 基台
 201A,201B,202A,202B スタンド
 203A,203B ガイドシャフト
 204A,204B リニアモーター
 204A,204B,205A,205B リニアモーター
 210A,210B ガントリー部
 211A,211B ガイド溝
 213 制御部
 220A,220B 移動体
 221A,221B サーボモーター
 300 制御部
 301 ヘッド部
 302 本体部
 304 サーボモーター
 310,315 液滴
 315A,315B,315C 微小領域
 315D 外周円
 315E,315F 同心円
 311,312,313,316 塗布膜
 320 ダミー液滴
 321 液滴
 400 制御部
 401 固定台
 402 液滴観察カメラ(CCDカメラ)
 403 ズームレンズ
 404 ケーブル
 500 制御部
 501 撮影ユニット
 1000 印刷装置
 3010,3010a,3010b,3010c 圧電素子
 3020,3020a,3020b,3020c 液室
 3030,3030a,3030b,3030c ノズル
 3040 振動板
 5001 照明
 5002 カメラ
 5003 レンズ
 5004 シリンドリカルレンズ
 5005 ロッド照明
 5006 ディスプレイパネル
 5007 バンクパターン
 5008 塗布膜
 5010 基板
 5011 カメラ
 ST 固定ステージ
1 Line bank 2 Pixel bank 2A, 5007A Cell 15 Control device 20 Inkjet table 30 Inkjet head 40 Droplet observation device 50 Application unevenness observation device 60 Ink pan (dish-shaped container)
101 Nozzle 150 CPU
151 Storage means 152 Input means 153 Display means (display)
154 Image acquisition unit 155 Image analysis unit 156 Volume calculation unit 157 Voltage adjustment unit 200 Base 201A, 201B, 202A, 202B Stand 203A, 203B Guide shaft 204A, 204B Linear motor 204A, 204B, 205A, 205B Linear motor 210A, 210B Gantry Parts 211A, 211B Guide groove 213 Control part 220A, 220B Moving body 221A, 221B Servo motor 300 Control part 301 Head part 302 Main part 304 Servo motor 310, 315 Droplet 315A, 315B, 315C Micro area 315D Outer circle 315E, 3 15F concentric circles 311, 312, 313, 316 Coating film 320 Dummy droplet 321 Droplet 400 Control unit 401 Fixed stand 402 Droplet observation camera (CCD camera)
403 Zoom lens 404 Cable 500 Control unit 501 Photographing unit 1000 Printing device 3010, 3010a, 3010b, 3010c Piezoelectric element 3020, 3020a, 3020b, 3020c Liquid chamber 3030, 3030a, 3030b, 3030c Nozzle 3040 Vibration plate 5001 Lighting 5002 Camera 5003 Lens 5004 Cylindrical lens 5005 Rod illumination 5006 Display panel 5007 Bank pattern 5008 Coating film 5010 Substrate 5011 Camera ST Fixed stage

Claims (9)

  1.  複数のノズルと複数の圧電素子を備えるインクジェットヘッドと、
     前記複数のノズルの1つから吐出されて対象面に着弾した液滴の画像を撮像するカメラと、
      前記画像に基づいて、前記液滴の輝度である液滴輝度、および、前記液滴の前記対象面への正射影の形状である正射影形状を取得し、
      前記液滴輝度および前記正射影形状に基づいて前記液滴の体積を算出し、
      算出された前記体積に基づいて前記複数の圧電素子の少なくとも1つに印加される電圧を調整する
     制御装置と、を備える
     印刷装置。
    an inkjet head including multiple nozzles and multiple piezoelectric elements;
    a camera that captures an image of a droplet ejected from one of the plurality of nozzles and landing on a target surface;
    Based on the image, obtain droplet brightness, which is the brightness of the droplet, and an orthogonal projection shape, which is the shape of the orthogonal projection of the droplet onto the target surface,
    calculating the volume of the droplet based on the droplet brightness and the orthogonal projection shape;
    A printing apparatus, comprising: a control device that adjusts a voltage applied to at least one of the plurality of piezoelectric elements based on the calculated volume.
  2.  前記制御装置は、
      前記液滴の体積補正係数を、前記液滴輝度と相関関係を有するパラメータと関連付けて記憶しており、
      前記正射影形状から前記液滴の仮体積を算出し、
      前記液滴輝度および前記正射影形状から前記パラメータの値を取得し、
      取得された前記パラメータの値から前記体積補正係数を取得し、
      前記仮体積と取得された前記体積補正係数とに基づいて前記体積を算出する、
     請求項1に記載の印刷装置。
    The control device includes:
    The volume correction coefficient of the droplet is stored in association with a parameter having a correlation with the droplet brightness,
    Calculating the temporary volume of the droplet from the orthogonal projection shape,
    obtaining the value of the parameter from the droplet brightness and the orthogonal projection shape;
    obtaining the volume correction coefficient from the obtained value of the parameter;
    calculating the volume based on the provisional volume and the acquired volume correction coefficient;
    The printing device according to claim 1.
  3.  前記パラメータは、前記正射影形状の輪郭である外周円の同心円であって、前記外周円の直径に予め定められた所定値を乗じた値を直径とする同心円に囲まれる領域の輝度の平均値である、
     請求項2に記載の印刷装置。
    The parameter is an average value of luminance of an area surrounded by concentric circles of an outer circumferential circle that is the outline of the orthogonal projection shape, and whose diameter is a value obtained by multiplying the diameter of the outer circumferential circle by a predetermined value. is,
    The printing device according to claim 2.
  4.  前記パラメータは、前記正射影形状の輪郭である外周円の大きさに対する、前記外周円の同心円であって、予め定められた所定の輝度である点を結ぶ同心円の大きさの比率である、
     請求項2に記載の印刷装置。
    The parameter is a ratio of the size of a concentric circle of the outer circumferential circle connecting points having a predetermined brightness to the size of the outer circumferential circle that is the outline of the orthographic projection shape.
    The printing device according to claim 2.
  5.  前記制御装置は、前記液滴の乾燥モードがCCRモードである場合は、前記パラメータの値として第1パラメータの値を取得し、前記液滴の乾燥モードがCCAモードである場合は、前記パラメータの値として前記第1パラメータとは種類が異なる第2パラメータの値を取得する、
     請求項2に記載の印刷装置。
    The control device obtains a first parameter value as the parameter value when the droplet drying mode is the CCR mode, and obtains the first parameter value as the parameter value when the droplet drying mode is the CCA mode. obtaining a value of a second parameter different in type from the first parameter as a value;
    The printing device according to claim 2.
  6.  前記制御装置は、前記液滴が吐出されてから前記カメラによって前記画像が撮像されるまでの経過時間に基づいて、前記乾燥モードがCCRモードであるかCCAモードであるかを判断する、
     請求項5に記載の印刷装置。
    The control device determines whether the drying mode is a CCR mode or a CCA mode based on an elapsed time from when the droplet is ejected until when the image is captured by the camera.
    The printing device according to claim 5.
  7.  前記制御装置は、前記正射影形状の変化に基づいて、前記乾燥モードがCCRモードであるかCCAモードであるかを判断する、
     請求項5に記載の印刷装置。
    The control device determines whether the drying mode is a CCR mode or a CCA mode based on a change in the orthogonal projection shape.
    The printing device according to claim 5.
  8.  複数のノズルと複数の圧電素子を備えるインクジェットヘッドと、前記複数のノズルの1つから吐出されて対象面に着弾した液滴の画像を撮像するカメラとを備える印刷装置を制御する制御装置であって、
     前記カメラから前記画像を取得する画像取得部と、
     前記画像を解析して、前記液滴の輝度である液滴輝度、および、前記液滴の前記対象面への正射影の形状である正射影形状を取得する画像解析部と、
     前記液滴輝度および前記正射影形状に基づいて前記液滴の体積を算出する体積算出部と、
     算出された前記体積に基づいて前記複数の圧電素子の少なくとも1つに印加される電圧を調整する電圧調整部と、を備える、
     制御装置。
    A control device for controlling a printing device including an inkjet head including a plurality of nozzles and a plurality of piezoelectric elements, and a camera that captures an image of a droplet ejected from one of the plurality of nozzles and landing on a target surface. hand,
    an image acquisition unit that acquires the image from the camera;
    an image analysis unit that analyzes the image to obtain droplet brightness that is the brightness of the droplet and an orthogonal projection shape that is the shape of the orthogonal projection of the droplet onto the target surface;
    a volume calculation unit that calculates the volume of the droplet based on the droplet brightness and the orthogonal projection shape;
    a voltage adjustment unit that adjusts a voltage applied to at least one of the plurality of piezoelectric elements based on the calculated volume;
    Control device.
  9.  複数のノズルと複数の圧電素子を備えるインクジェットヘッドから液滴を吐出して印刷する印刷方法であって、
     前記複数のノズルの1つから吐出されて対象面に着弾した前記液滴の画像を撮像し、
     前記画像を解析して、前記液滴の輝度である液滴輝度、および、前記液滴の前記対象面への正射影の形状である正射影形状を取得し、
     前記液滴輝度および前記正射影形状に基づいて前記液滴の体積を算出し、
     算出された前記体積に基づいて前記複数の圧電素子の少なくとも1つに印加される電圧を調整する、ことを含む、
     印刷方法。
    A printing method in which droplets are ejected from an inkjet head including a plurality of nozzles and a plurality of piezoelectric elements, the method comprising:
    capturing an image of the droplet ejected from one of the plurality of nozzles and landing on the target surface;
    Analyzing the image to obtain droplet brightness, which is the brightness of the droplet, and an orthogonal projection shape, which is the shape of the orthogonal projection of the droplet onto the target surface,
    calculating the volume of the droplet based on the droplet brightness and the orthogonal projection shape;
    adjusting a voltage applied to at least one of the plurality of piezoelectric elements based on the calculated volume;
    Printing method.
PCT/JP2023/022806 2022-07-25 2023-06-20 Printing device, control device, and printing method WO2024024342A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-118216 2022-07-25
JP2022118216 2022-07-25

Publications (1)

Publication Number Publication Date
WO2024024342A1 true WO2024024342A1 (en) 2024-02-01

Family

ID=89706066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022806 WO2024024342A1 (en) 2022-07-25 2023-06-20 Printing device, control device, and printing method

Country Status (1)

Country Link
WO (1) WO2024024342A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010036388A (en) * 2008-08-01 2010-02-18 Ricoh Printing Systems Ltd Droplet amount measuring method and droplet discharging system employing thereof
JP2016191636A (en) * 2015-03-31 2016-11-10 東京エレクトロン株式会社 Liquid droplet volume measurement device, liquid droplet volume measurement method, liquid droplet volume measurement substrate and ink jet drawing device
JP2019124666A (en) * 2018-01-19 2019-07-25 パナソニックIpマネジメント株式会社 Droplet cubic volume measuring method and droplet cubic volume measuring device
JP2022061945A (en) * 2020-10-07 2022-04-19 パナソニックIpマネジメント株式会社 Printer and printing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010036388A (en) * 2008-08-01 2010-02-18 Ricoh Printing Systems Ltd Droplet amount measuring method and droplet discharging system employing thereof
JP2016191636A (en) * 2015-03-31 2016-11-10 東京エレクトロン株式会社 Liquid droplet volume measurement device, liquid droplet volume measurement method, liquid droplet volume measurement substrate and ink jet drawing device
JP2019124666A (en) * 2018-01-19 2019-07-25 パナソニックIpマネジメント株式会社 Droplet cubic volume measuring method and droplet cubic volume measuring device
JP2022061945A (en) * 2020-10-07 2022-04-19 パナソニックIpマネジメント株式会社 Printer and printing method

Similar Documents

Publication Publication Date Title
KR101643217B1 (en) Ejection amount correction method and coating apparatus
JP2022061945A (en) Printer and printing method
JPWO2013069257A1 (en) Ink jet apparatus and droplet measuring method
US20210231429A1 (en) Liquid droplet measurement method and liquid droplet measurement device, and method and apparatus for manufacturing device
JP2008264608A (en) Liquid droplet coating apparatus and liquid droplet coating method
JP2007256449A (en) Droplet jetting inspecting device, droplet jetting device, and manufacturing method for coating body
JP6245726B2 (en) Ink jet apparatus and droplet measuring method
JP2015125125A (en) Method of measuring liquid droplet and liquid droplet measurement system
TWI442979B (en) Method and apparatus for droplet coating
KR20220148982A (en) System for droplet measurement
WO2024024342A1 (en) Printing device, control device, and printing method
TWI531417B (en) Paste method of paste
JP5200887B2 (en) Discharge amount evaluation method for droplet discharge device
JP4424165B2 (en) Droplet applicator
JP2006167534A (en) Measuring method of amount of liquid droplet, method for optimizing driving signal of liquid droplet discharging head, and apparatus for discharging liquid droplet
KR20240003727A (en) Inkjet apparatus, control method, and substrate
JP2009030977A (en) System for droplet observation
JP5761896B2 (en) Droplet application method and apparatus
JP2008221183A (en) Liquid droplet ejection/coating apparatus and method for preparing coated article
JP2005238787A (en) Ink ejection amount measuring method, and ink ejection amount control method and ink-jet device using the same
JP2007075767A (en) Delivery weight measuring method, delivery weight measuring device, color filter manufacturing method and color filter manufacturing equipment
JP6868844B2 (en) Droplet measurement method
JP2008298727A (en) Measuring device for droplet quantity, adjusting device for droplet quantity, measuring method of droplet quantity, adjusting method of droplet quantity, and manufacturing method of drawing substrate
JP2007107933A (en) Droplet quantity measuring method and droplet quantity measuring device
TW202339978A (en) Printing apparatus and printing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846076

Country of ref document: EP

Kind code of ref document: A1