WO2024024213A1 - Thermosetting resin composition and molded article - Google Patents

Thermosetting resin composition and molded article Download PDF

Info

Publication number
WO2024024213A1
WO2024024213A1 PCT/JP2023/017976 JP2023017976W WO2024024213A1 WO 2024024213 A1 WO2024024213 A1 WO 2024024213A1 JP 2023017976 W JP2023017976 W JP 2023017976W WO 2024024213 A1 WO2024024213 A1 WO 2024024213A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermosetting resin
mass
resin composition
parts
ethylenically unsaturated
Prior art date
Application number
PCT/JP2023/017976
Other languages
French (fr)
Japanese (ja)
Inventor
涼平 伊藤
審史 田村
大輔 西島
大輔 井上
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Publication of WO2024024213A1 publication Critical patent/WO2024024213A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/01Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to unsaturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to a thermosetting resin composition, a molded article containing a cured product of the thermosetting resin composition, a method for producing a molded article, an electrical and electronic component, and a method for producing an electrical and electronic component.
  • a configuration is generally used in which the entire electronic component is sealed and fixed using a material called a sealing material.
  • An object of the present invention is to provide a thermosetting resin composition that provides a cured product that has excellent releasability from a mold and particularly has good adhesive strength to metal components.
  • thermosetting resin (A) thermosetting resin, (B) ethylenically unsaturated monomer, (C) ethylenically unsaturated group-containing phosphoric acid ester compound, (D) a low shrinkage agent; (E) A thermosetting resin composition containing an inorganic filler and (F) a thermal polymerization initiator.
  • ethylenically unsaturated group-containing phosphoric acid ester compound (C) is one or more selected from monoesters and diesters, and has one or two ethylenically unsaturated groups. Curable resin composition.
  • the content of the (C) ethylenically unsaturated group-containing phosphoric acid ester compound is 0.1 to 70 parts by mass based on 100 parts by mass of the (A) thermosetting resin [1] or [2] The thermosetting resin composition described in .
  • thermosetting resin composition according to any one of [1] to [5], further comprising glass fiber.
  • thermosetting resin (A) Containing 50 to 200 parts by mass of the (B) ethylenically unsaturated monomer, Containing 0.1 to 70 parts by mass of the (C) ethylenically unsaturated group-containing phosphoric acid ester compound, Containing 1 to 150 parts by mass of the low shrinkage agent (D), Containing 80 to 1500 parts by mass of the (E) inorganic filler,
  • thermosetting resin composition A molded article containing a cured product of the thermosetting resin composition according to any one of [1] to [8].
  • [10] [1] A method for producing a molded article, comprising a step of curing the thermosetting resin composition according to any one of items 1 to 8 by heating and pressurizing it.
  • An electrical and electronic component comprising a cured product of the thermosetting resin composition according to any one of [1] to [8].
  • Compression molding, transfer molding, or injection molding the thermosetting resin composition according to any one of [1] to [8] to encapsulate components of electrical and electronic parts, and the thermosetting resin composition A method for manufacturing electrical and electronic components, including a step of heating and curing the product.
  • thermosetting resin composition that provides a cured product that exhibits excellent releasability from a mold and particularly has good adhesive strength to metal components. Furthermore, it is possible to provide a molded article containing a cured product of the above thermosetting resin composition, and a method for producing the same, as well as an electric/electronic component containing a cured product of the above thermosetting resin composition, and a method for producing the same.
  • (meth)acrylic acid means methacrylic acid or acrylic acid
  • (meth)acrylate means acrylate or methacrylate
  • (meth)acryloyloxy means acryloyloxy or methacryloyloxy. means oxy.
  • thermosetting resin refers to a resin that forms a crosslinked structure and cures when heated, and refers to a resin in a state before curing.
  • ethylenically unsaturated bond refers to a double bond formed between carbon atoms other than those forming an aromatic ring
  • ethylenic unsaturated monomer refers to A monomer having an ethylenically unsaturated bond
  • weight average molecular weight and “number average molecular weight” are measured at room temperature (23°C) using gel permeation chromatography (GPC) under the following conditions, and a standard polystyrene calibration curve is used.
  • GPC gel permeation chromatography
  • the thermosetting resin composition includes (A) a thermosetting resin, (B) an ethylenically unsaturated monomer, (C) an ethylenically unsaturated group-containing phosphoric acid ester compound, (D) a low shrinkage agent, and (E ) an inorganic filler, and (F) a thermal polymerization initiator.
  • the thermosetting resin composition may further contain at least one member selected from the group consisting of (G) glass fiber and (H) a mold release agent, if necessary.
  • thermosetting resin is not particularly limited as long as it is a thermosetting resin commonly used for sealing materials.
  • a resin having a functional group that can form a crosslinked structure when heat-cured as a thermosetting resin composition is preferred.
  • resins having a plurality of ethylenically unsaturated groups as functional groups are preferred from the viewpoint of being able to react with (B) the ethylenically unsaturated monomer and (C) the ethylenically unsaturated group-containing phosphoric acid ester compound.
  • thermosetting resin examples include (A-1) unsaturated polyester resin, (A-2) vinyl ester resin, (A-3) urethane (meth)acrylate resin, and (A-4) diallyl resin. Examples include phthalate resin and (A-5) epoxy resin.
  • the thermosetting resin preferably contains at least (A-1) an unsaturated polyester resin from the viewpoints of moldability, fluidity, cure shrinkage, and dispersibility of the adhesion imparting agent.
  • the thermosetting resin may be used alone or in combination of two or more.
  • the thermosetting resin preferably contains (A-1) unsaturated polyester resin as an essential component from the viewpoint of moldability, fluidity, and curing shrinkage.
  • thermosetting resin also falls under (C) a phosphoric acid ester compound containing an ethylenically unsaturated group, it is treated as (C) a phosphoric acid ester compound containing an ethylenically unsaturated group. shall be.
  • the unsaturated polyester resin is a polycondensate of a polyhydric alcohol and an unsaturated polybasic acid, or a polycondensate of a polyhydric alcohol, an unsaturated polybasic acid, and a saturated polybasic acid, and especially Not limited.
  • the unsaturated polyester resin may be used alone or in combination of two or more.
  • A-1) By using an unsaturated polyester resin, a cured product with excellent mechanical strength and heat resistance can be obtained.
  • styrene monomers and the like contained in commercially available unsaturated polyester resins are classified as (B) ethylenically unsaturated monomers.
  • the polyhydric alcohol is not particularly limited as long as it is a compound having two or more hydroxyl groups.
  • polyhydric alcohols include ethylene glycol, propylene glycol, butanediol, diethylene glycol, dipropylene glycol, triethylene glycol, pentanediol, hexanediol, neopentyl glycol, tetraethylene glycol, polyethylene glycol, 2-methyl-1, Alkylene glycols such as 3-propanediol, 1,4-cyclohexanedimethanol, and hydrogenated bisphenol A; Bisphenol A; Alkylene oxide-modified bisphenol A such as ethylene oxide adducts of bisphenol A and propylene oxide adducts of bisphenol A; Glycerin, etc.
  • thermosetting resin composition can be mentioned. From the viewpoint of the heat resistance and mechanical strength of the cured product and the fluidity of the thermosetting resin composition during molding, propylene glycol, dipropylene glycol, neopentyl glycol, hydrogenated bisphenol A, and bisphenol A are preferred, and propylene Glycol and neopentyl glycol are more preferred.
  • Polyhydric alcohols may be used alone or in combination of two or more.
  • the unsaturated polybasic acid is not particularly limited as long as it is a compound having an ethylenically unsaturated bond and two or more carboxyl groups or its acid anhydride, and any known one can be used.
  • unsaturated polybasic acids having 4 to 6 carbon atoms or their acid anhydrides are preferred because they are lower in cost and provide a thermosetting resin composition with better mechanical strength and heat resistance of the cured product.
  • examples of the unsaturated polybasic acid include maleic acid, maleic anhydride, fumaric acid, citraconic acid, itaconic acid, and chloromaleic acid. More preferably, it is an unsaturated polybasic acid selected from fumaric acid, maleic acid, maleic anhydride, and itaconic acid.
  • the unsaturated polybasic acids may be used alone or in combination of two or more.
  • Preferred combinations of polyhydric alcohols and unsaturated polybasic acids include, for example, fumaric acid and neopentyl glycol, maleic acid and dipropylene glycol, maleic anhydride and propylene glycol, and fumaric acid. and propylene glycol, a combination of fumaric acid, hydrogenated bisphenol A, and propylene glycol, and a combination of maleic anhydride, propylene glycol, and neopentyl glycol.
  • Combinations of fumaric acid and propylene glycol, combinations of fumaric acid, hydrogenated bisphenol A, and propylene glycol, and combinations of maleic anhydride, propylene glycol, and neopentyl glycol are lower in cost, and are less expensive to heat than the cured product. This is preferred because a thermosetting resin composition having a higher deformation temperature and superior mechanical strength and heat resistance can be obtained.
  • the saturated polybasic acid is not particularly limited as long as it does not have an ethylenically unsaturated bond and has two or more carboxy groups or its acid anhydride, and any known one can be used.
  • saturated polybasic acids include aromatic saturated polybasic acids such as phthalic acid, phthalic anhydride, isophthalic acid, terephthalic acid, tetrachlorophthalic anhydride, tetrabromo phthalic anhydride, nitrophthalic acid, and halogenated phthalic anhydride;
  • Its acid anhydrides include aliphatic saturated polybasic acids such as succinic acid, adipic acid, sebacic acid, oxalic acid, malonic acid, azelaic acid, and glutaric acid; and cyclic aliphatic saturated polybasic acids such as hexahydrophthalic anhydride. It will be done.
  • the saturated polybasic acids may be used alone or in combination of two or more.
  • the weight average molecular weight (Mw) of the unsaturated polyester resin is not particularly limited.
  • the weight average molecular weight of the unsaturated polyester resin is preferably 2,000 to 50,000, more preferably 3,000 to 40,000, and still more preferably 3,500 to 30,000. It is. If the weight average molecular weight is 2,000 to 50,000, the moldability of the thermosetting resin composition will be even better.
  • the degree of unsaturation of the unsaturated polyester resin is preferably 50 to 100 mol%, more preferably 60 to 100 mol%, and still more preferably 70 to 100 mol%. When the degree of unsaturation is within the above range, the moldability of the thermosetting resin composition containing the unsaturated polyester resin (A-1) will be better.
  • the degree of unsaturation of the unsaturated polyester resin can be calculated by the following formula using the number of moles of the unsaturated polybasic acid and the saturated polybasic acid used as raw materials.
  • Degree of unsaturation (mol%) ⁇ (Number of moles of unsaturated polybasic acid x number of ethylenically unsaturated bonds per molecule of unsaturated polybasic acid) / (Number of moles of unsaturated polybasic acid + saturated polybasic acid) number of moles of acid) ⁇ 100
  • (A-1) Method for synthesizing unsaturated polyester resin) (A-1)
  • the unsaturated polyester resin can be synthesized by a known method using the above raw materials.
  • (A-1) Various conditions in the synthesis of the unsaturated polyester resin are appropriately set depending on the raw materials used and their amounts.
  • an esterification reaction can be carried out at a temperature of 140° C. to 230° C. under increased pressure or reduced pressure in a stream of inert gas such as nitrogen gas.
  • an esterification catalyst can be used as necessary.
  • esterification catalysts include known catalysts such as manganese acetate, dibutyltin oxide, stannous oxalate, zinc acetate, and cobalt acetate.
  • the esterification catalysts may be used alone or in combination of two or more.
  • the unreacted unsaturated polybasic acid after synthesizing the unsaturated polyester resin (A-1) is regarded as the ethylenically unsaturated monomer (B) described below.
  • the equivalent weight of the hydroxyl group of the polyhydric alcohol is 0.9 with respect to the total amount of carboxyl groups of the unsaturated polybasic acid and any saturated polybasic acid.
  • the range is preferably 1.2 to 1.2.
  • the content of (A-1) unsaturated polyester resin in (A) thermosetting resin is preferably 75% by mass or more, more preferably 80% by mass or more, and more preferably 90% by mass or more. More preferably.
  • (A-1) When the content of the unsaturated polyester resin is 75% by mass or more, appropriate moldability, fluidity, curing shrinkage, and dispersibility of the adhesion imparting agent can be ensured.
  • the upper limit of the content of (A-1) unsaturated polyester resin in (A) thermosetting resin is not particularly limited. For example, it may be 100% by mass, 97% by mass, or 95% by mass.
  • Vinyl ester resin generally consists of (a) an epoxy group in an epoxy compound having two or more epoxy groups, and (b) an unsaturated monobase having an ethylenically unsaturated bond and a carboxyl group. It is a compound containing an ethylenically unsaturated bond obtained by a ring-opening reaction with the carboxy group of an acid.
  • A-2) Vinyl ester resins are described, for example, in the Polyester Resin Handbook (published by Nikkan Kogyo Shimbun, 1988).
  • Vinyl ester resins may be used alone or in combination of two or more.
  • (A-2) Vinyl ester resin is generally used diluted with (B) ethylenically unsaturated monomer from the viewpoint of handling.
  • the number average molecular weight (Mn) of the vinyl ester resin can be adjusted depending on the desired physical properties, but from the viewpoint of handling, it is preferably in the range of 500 to 5,000.
  • Epoxy compound (a)
  • the epoxy compound is not particularly limited as long as it is a compound having two or more epoxy groups. Preferably, it is at least one selected from the group consisting of bisphenol-type epoxy compounds and novolac phenol-type epoxy compounds, and more preferably bisphenol-type epoxy compounds.
  • A-2 Using an epoxy compound as a raw material (A-2) By using a vinyl ester resin, the mechanical strength and corrosion resistance of the cured product are further improved.
  • Examples of bisphenol-type epoxy compounds include those obtained by reacting bisphenol compounds such as bisphenol A, bisphenol F, bisphenol S, and tetrabromobisphenol A with epichlorohydrin and/or methylepichlorohydrin; any of the above bisphenol compounds.
  • Examples include those obtained by reacting a compound obtained by glycidyl etherification of one or more of them, a condensate of one or more of the above bisphenol compounds, and epichlorohydrin and/or methylepichlorohydrin. From the viewpoint of durability, a reaction product of a bisphenol compound and epichlorohydrin is preferred, and a reaction product of bisphenol A and epichlorohydrin is more preferred.
  • novolak phenol-type epoxy compound examples include those obtained by reacting phenol novolak or cresol novolak with epichlorohydrin and/or methylepichlorohydrin.
  • the unsaturated monobasic acid is not particularly limited as long as it is a monocarboxylic acid having an ethylenically unsaturated bond. Preferred are methacrylic acid, acrylic acid, crotonic acid, cinnamic acid, etc., more preferred are acrylic acid or methacrylic acid, and even more preferred is methacrylic acid from the viewpoint of corrosion resistance of the cured product.
  • (A-2) Method for synthesizing vinyl ester resin (A-2)
  • Vinyl ester resin can be synthesized by a known synthesis method. For example, in a heat-stirable reaction vessel, (b) an unsaturated monobasic acid is added in the presence of an esterification catalyst and (a) an epoxy compound, and the temperature is 70 to 150°C, preferably 80 to 140°C, more preferably Examples include a method of reacting at 90 to 130°C.
  • esterification catalyst for example, known catalysts such as triethylamine, N,N-dimethylbenzylamine, N,N-dimethylaniline, tertiary amines such as diazabicyclooctane, triphenylphosphine, and diethylamine hydrochloride can be used. .
  • the blending ratio of (a) the epoxy compound and (b) the unsaturated monobasic acid is such that the total amount of carboxy groups in the (b) unsaturated monobasic acid is 0 to 1 mole of the epoxy groups in the (a) epoxy compound. It is preferable to mix it so that it is 0.3 to 1.2 mol, more preferably 0.4 to 1.1 mol, and even more preferably 0.5 to 1.0 mol. (b) When the total amount of carboxyl groups in the unsaturated monobasic acid is 0.3 mol or more, a cured product having sufficient hardness can be obtained when the thermosetting resin composition is cured.
  • the unreacted (b) unsaturated monobasic acid is not removed and remains as the (B) ethylenically unsaturated monomer of the thermosetting resin composition.
  • unreacted (b) unsaturated monobasic acid may evaporate or bleed out, affecting the adhesiveness of the cured product. It is better to reduce the content of (b) unsaturated monobasic acid in the reaction as much as possible.
  • the content of unreacted (b) unsaturated monobasic acid is 5% by mass or less with respect to the total amount of (A-2) vinyl ester resin and unreacted (b) unsaturated monobasic acid. It is preferably 3% by mass or less, and more preferably 3% by mass or less.
  • the content of (A-2) vinyl ester resin in the thermosetting resin (A) is preferably 1% by mass or more, more preferably 3% by mass or more, and 5% by mass or more. is even more preferable.
  • the upper limit of the content of the vinyl ester resin (A-2) in the thermosetting resin (A) is not particularly limited. For example, it may be 25% by mass, 20% by mass, or 10% by mass.
  • Urethane (meth)acrylate resin for example, a (meth)acryloyl group is added to the hydroxyl group or isocyanato group at both ends of the polyurethane obtained by reacting a polyvalent isocyanate and a polyhydric alcohol.
  • the resin obtained by the introduction can be used.
  • the compounds described as raw materials for the unsaturated polyester resin (A-1) above can be used without particular limitation.
  • polyvalent isocyanate examples include aliphatic polyvalent isocyanates such as hexamethylene diisocyanate, lysine diisocyanate, lysine triisocyanate, and trimethylhexane diisocyanate; hydrogenated xylylene diisocyanate, isophorone diisocyanate, and methylcyclohexane-2,4 (or 2,6); )-diisocyanate, 4,4'-methylenebis(cyclohexyl isocyanate), cycloaliphatic polyisocyanate such as 1,3-(isocyanatomethyl)cyclohexane; tolylene diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate, naphthalene diisocyanate, triphenyl Examples include aromatic polyvalent isocyanates such as methane triisocyanate; and adducts, isocyanurates, and biurets of these
  • a (meth)acryloyl group for example, a method of reacting a terminal isocyanato group with a hydroxyl group-containing (meth)acrylic compound, or a method of reacting a terminal hydroxyl group with 2-(meth)acryloyloxyethyl isocyanate, 2-(meth)acryloyl
  • a method of reacting an isocyanato group-containing (meth)acrylic compound such as oxypropyl isocyanate and 1,1-bis(acryloyloxymethyl)ethyl isocyanate can be used.
  • hydroxyl group-containing (meth)acrylic compounds examples include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxybutyl (meth)acrylate, caprolactone-modified hydroxyalkyl (meth)acrylate, and polyethylene glycol.
  • Mono(meth)acrylate, polypropylene glycol mono(meth)acrylate, tris(hydroxyethyl)isocyanuric acid di(meth)acrylate, pentaesritol tri(meth)acrylate, glycerin mono(meth)acrylate, and hydroxyethyl acrylamide are mentioned.
  • 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, caprolactone-modified hydroxyalkyl (meth)acrylate, and hydroxyethyl acrylamide are preferred.
  • the isocyanato group-containing (meth)acrylic compound and the hydroxyl group-containing (meth)acrylic compound may be used alone or in combination of two or more.
  • the unreacted hydroxyl group-containing (meth)acrylic compound or the unreacted isocyanato group-containing (meth)acrylic compound after synthesizing the (A-3) urethane (meth)acrylate resin is the (B) ethylenic compound described below. Considered as an unsaturated monomer.
  • the content of (A-3) urethane (meth)acrylate resin in the thermosetting resin (A) is preferably 1% by mass or more, more preferably 3% by mass or more, and 5% by mass or more. It is more preferable that The upper limit of the content of (A-3) urethane (meth)acrylate resin in (A) thermosetting resin is not particularly limited. For example, it may be 25% by mass, 20% by mass, or 10% by mass.
  • the diallyl phthalate resin is an oligomer obtained by an esterification reaction between diallyl phthalate and a polyhydric alcohol, and conventionally known resins can be used without particular limitation.
  • the diallyl phthalate resin may be used alone or in combination of two or more types.
  • diallyl phthalate after synthesizing (A-4) diallyl phthalate resin may exist in the thermosetting resin composition without being removed.
  • the content of (A-4) diallyl phthalate resin in the (A) thermosetting resin is preferably 1% by mass or more, more preferably 3% by mass or more, and 5% by mass or more. is even more preferable.
  • the upper limit of the content of (A-4) diallyl phthalate resin in (A) thermosetting resin is not particularly limited. For example, it may be 25% by mass, 20% by mass, or 10% by mass.
  • Epoxy resin As the epoxy resin, the compounds described in the section (a) Epoxy compound can be used. (A-5) Epoxy resins may be used alone or in combination of two or more.
  • the content of the epoxy resin (A-5) in the thermosetting resin (A) is preferably 1% by mass or more, more preferably 3% by mass or more, and preferably 5% by mass or more. More preferred.
  • the upper limit of the content of the epoxy resin (A-5) in the thermosetting resin (A) is not particularly limited. For example, it may be 25% by mass, 20% by mass, or 10% by mass.
  • the ethylenically unsaturated monomer is not particularly limited as long as it is a monomer having an ethylenically unsaturated bond that does not fall under (C) the ethylenically unsaturated group-containing phosphoric acid ester compound described below.
  • Ethylenically unsaturated monomers may be used alone or in combination of two or more.
  • vinyl compounds compounds having a vinyl group
  • styrene vinyltoluene, t-butylstyrene, methoxystyrene, divinylbenzene, and vinylnaphthalene
  • methyl (meth)acrylate ethyl (meth)acrylate
  • propyl (meth)acrylate etc.
  • acrylate n-butyl (meth)acrylate, t-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isodecyl (meth)acrylate, lauryl (meth)acrylate, tridecyl (meth)acrylate, stearyl (meth)acrylate , cyclohexyl (meth)acrylate, furfuryl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, phenyl (meth)acrylate, benzyl (meth)acrylate, phenoxyethyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclo Pentenyloxyethyl (meth)acrylate, allyl (meth)acrylate, isobornyl (meth)acrylate, acetoacetoxyethyl (meth)acrylate, ethylene glycol di(meth)acrylate,
  • vinyl compounds are preferred, one or more selected from styrene, vinyltoluene, t-butylstyrene, and methoxystyrene are more preferred, and styrene is even more preferred.
  • the content of the ethylenically unsaturated monomer is preferably 50 parts by mass or more, more preferably 70 parts by mass or more, based on 100 parts by mass of the (A) thermosetting resin. More preferably, the amount is 90 parts by mass or more.
  • the content of the ethylenically unsaturated monomer is preferably 200 parts by mass or less, more preferably 150 parts by mass or less, based on 100 parts by mass of the (A) thermosetting resin. More preferably, it is 120 parts by mass or less. Any combination of these lower limit values and upper limit values may be used.
  • the content of the (B) ethylenically unsaturated monomer is preferably 50 to 200 parts by mass, more preferably 70 to 150 parts by mass, based on 100 parts by mass of the (A) thermosetting resin.
  • the amount is preferably 90 to 120 parts by mass, and more preferably 90 to 120 parts by mass.
  • the viscosity of the thermosetting resin composition can be adjusted to an appropriate range, and moldability is good.
  • the content of the ethylenically unsaturated monomer is 200 parts by mass or less, the mechanical strength of the cured product is good.
  • the ethylenically unsaturated group-containing phosphoric ester compound is not particularly limited as long as it is a compound having an ethylenically unsaturated group and a phosphoric ester structure.
  • the cured product of the thermosetting resin composition has good adhesion to metal.
  • Ethylenically unsaturated group-containing phosphoric acid ester compound has, for example, a phosphorus compound such as phosphoric acid, polyphosphoric acid, phosphorus pentoxide, or phosphorus oxychloride, and an ethylenically unsaturated group, and an alcoholic hydroxyl group.
  • a phosphorus compound such as phosphoric acid, polyphosphoric acid, phosphorus pentoxide, or phosphorus oxychloride
  • an ethylenically unsaturated group and an alcoholic hydroxyl group.
  • it can be obtained by carrying out an esterification reaction with an organic compound having an epoxy group.
  • organic compounds having an ethylenically unsaturated group and an alcoholic hydroxyl group or an epoxy group include hydroxymethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, and 3-hydroxypropyl (meth)acrylate.
  • hydroxyalkyl (meth)acrylates such as methyl- ⁇ -hydroxymethyl acrylate, ethyl- ⁇ -hydroxymethyl acrylate, n-butyl- ⁇ -hydroxymethyl acrylate, 2-ethylhexyl- ⁇ -hydroxymethyl acrylate, and alkylene oxide additions thereof (meth)acrylates such as glycidyl (meth)acrylate and N-methylol (meth)acrylamide; unsaturated alcohols such as allyl alcohol, crotyl alcohol, and isocrotyl alcohol, and alkylene oxide adducts thereof.
  • hydroxymethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, methyl- ⁇ -hydroxymethylacrylate, ethyl- ⁇ -hydroxymethylacrylate, n- Hydroxyalkyl (meth)acrylates such as butyl- ⁇ -hydroxymethyl acrylate and 2-ethylhexyl- ⁇ -hydroxymethyl acrylate are preferred, from the viewpoint of combination with other ethylenically unsaturated monomers that affect strength and dispersibility.
  • hydroxymethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, and 3-hydroxypropyl (meth)acrylate are more preferred.
  • the phosphoric acid ester compound containing an ethylenically unsaturated group is one or more selected from monoesters and diesters from the viewpoint of adhesiveness and dispersibility in resin, and has one ethylenically unsaturated group. Or a compound having two is preferable.
  • the ethylenically unsaturated group-containing phosphoric ester compound is preferably a phosphoric ester having a (meth)acryloyloxy group from the viewpoint of adhesiveness and dispersibility in resin. Specific examples of such compounds include 2-(meth)acryloyloxyethyl acid phosphate, di[2-(meth)acryloyloxyethyl]acid phosphate, and the like.
  • the content of the ethylenically unsaturated group-containing phosphoric acid ester compound is preferably 0.1 parts by mass or more, and preferably 0.8 parts by mass or more, based on 100 parts by mass of the (A) thermosetting resin. It is more preferably 1 part by mass or more, even more preferably 5 parts by mass or more.
  • the content of the ethylenically unsaturated group-containing phosphoric acid ester compound is preferably 70 parts by mass or less, and preferably 50 parts by mass or less, based on 100 parts by mass of the (A) thermosetting resin. More preferably, the amount is 30 parts by mass or less. Any combination of these lower limit values and upper limit values may be used.
  • the content of the (C) ethylenically unsaturated group-containing phosphoric acid ester compound is preferably 0.1 to 70 parts by mass, and 0.8 to 50 parts by mass, based on 100 parts by mass of the (A) thermosetting resin. It is more preferably 1 to 30 parts by weight, even more preferably 5 to 30 parts by weight.
  • the content of the ethylenically unsaturated group-containing phosphoric acid ester compound is 0.1 parts by mass or more, the adhesive strength of the cured product of the thermosetting resin composition to metals is good.
  • the content of the ethylenically unsaturated group-containing phosphoric acid ester compound is 70 parts by mass or less, the releasability from the mold during molding is good.
  • the low shrinkage agent is not particularly limited, and those known in the technical field of the present invention can be used.
  • a thermoplastic resin is preferable.
  • Low shrinkage agents include, for example, polystyrene, polyethylene, polymethyl methacrylate, polyvinyl acetate, saturated polyester, polycaprolactone, styrene-butadiene rubber, and the like.
  • the low shrinkage agent may be used alone or in combination of two or more.
  • the content of the low shrinkage agent is preferably 1 part by mass or more, more preferably 15 parts by mass or more, and 30 parts by mass or more based on 100 parts by mass of the (A) thermosetting resin. It is more preferable that (D) The content of the low shrinkage agent is preferably 150 parts by mass or less, more preferably 130 parts by mass or less, and 110 parts by mass or less based on 100 parts by mass of the (A) thermosetting resin. It is more preferable that Any combination of these lower limit values and upper limit values may be used. (D) The content of the low shrinkage agent is preferably 1 to 150 parts by mass, more preferably 15 to 130 parts by mass, and 30 to 130 parts by mass, based on 100 parts by mass of (A) thermosetting resin.
  • the amount is 110 parts by mass.
  • the content of the low shrinkage agent is 1 part by mass or more, the shrinkage rate of the cured product will be small, and the desired dimensional accuracy can be obtained in the molded product.
  • the content of the low shrinkage agent is 150 parts by mass or less, the moldability of the thermosetting resin composition and the mechanical properties of the cured product are better.
  • (E) Inorganic filler As the inorganic filler, particulate substances known in the technical field of the present invention can be used. (E) By using an inorganic filler, it is possible to reduce the molding shrinkage rate of the molded product, improve workability by adjusting the viscosity of the thermosetting resin composition, or improve the strength of the molded product. can.
  • inorganic fillers examples include calcium carbonate, silica, aluminum oxide, aluminum hydroxide, barium sulfate, calcium sulfate, calcium hydroxide, calcium oxide, magnesium oxide, magnesium hydroxide, wollastonite, clay, and kaolin. , mica, gypsum, silicic anhydride, glass powder, etc. Calcium carbonate, aluminum oxide, and aluminum hydroxide are preferred because they are inexpensive.
  • the inorganic filler may be used alone or in combination of two or more.
  • the average particle diameter of the inorganic filler (E) is preferably 1 to 100 ⁇ m, more preferably 1 to 60 ⁇ m, and even more preferably 1 to 50 ⁇ m. (E) When the average particle diameter of the inorganic filler is 1 ⁇ m or more, agglomeration of particles can be suppressed. On the other hand, if the average particle diameter of the inorganic filler (E) is 100 ⁇ m or less, the moldability of the thermosetting resin composition is good.
  • average particle diameter refers to the 50% particle diameter ( D50).
  • the shape of the inorganic filler is not particularly limited. For example, it may be approximately spherical, ellipsoidal, scaly, amorphous, or the like.
  • the blending amount of the inorganic filler is preferably 80 parts by mass or more, more preferably 200 parts by mass or more, and 500 parts by mass or more with respect to 100 parts by mass of the (A) thermosetting resin. It is more preferable that (E) The blending amount of the inorganic filler is preferably 1,500 parts by mass or less, more preferably 1,300 parts by mass or less, and 1,200 parts by mass or less with respect to 100 parts by mass of the (A) thermosetting resin. It is more preferable that Any combination of these lower limit values and upper limit values may be used.
  • the blending amount of the inorganic filler is preferably 80 to 1,500 parts by mass, more preferably 200 to 1,300 parts by mass, and 500 to 1,300 parts by mass, based on 100 parts by mass of (A) thermosetting resin. More preferably, it is 1200 parts by mass.
  • the amount of the inorganic filler is 80 parts by mass or more, the mechanical properties of the cured product will be better. When the amount of the inorganic filler (E) is 1500 parts by mass or less, the inorganic filler (E) is more uniformly dispersed in the thermosetting resin composition, and a homogeneous molded article can be produced.
  • the thermal polymerization initiator is not particularly limited as long as it is a polymerization initiator that generates radicals when heated.
  • examples include organic peroxides such as diacyl peroxide, peroxy ester, hydroperoxide, dialkyl peroxide, ketone peroxide, peroxyketal, alkyl perester, and percarbonate.
  • thermo polymerization initiator among these peroxides, 1,1-di-t-hexylperoxy-cyclohexane, t-hexylperoxyisopropyl carbonate, t-butylperoxyoctoate, t- Butylperoxy-2-ethylhexanoate, t-hexylperoxy-2-ethylhexanoate, t-amylperoxy-2-ethylhexanoate, benzoyl peroxide, 1,1-di-t-butyl Peroxy-3,3,5-trimethylcyclohexane, t-butylperoxyisopropyl carbonate, t-butylperoxybenzoate, dicumyl peroxide, and di-t-butyl peroxide are preferred.
  • the thermal polymerization initiator may be used alone or in combination of two or more.
  • the blending amount of the thermal polymerization initiator is preferably 0.1 part by mass or more, more preferably 1 part by mass or more, based on 100 parts by mass of the (A) thermosetting resin. It is more preferable that the amount is at least 1 part by mass.
  • the blending amount of the thermal polymerization initiator is preferably 30 parts by mass or less, more preferably 25 parts by mass or less, and 20 parts by mass based on 100 parts by mass of the (A) thermosetting resin. It is more preferable that it is the following. Any combination of these lower limit values and upper limit values may be used.
  • the blending amount of the thermal polymerization initiator is preferably 0.1 to 30 parts by mass, more preferably 1 to 25 parts by mass, based on 100 parts by mass of (A) thermosetting resin. , more preferably 5 to 20 parts by mass.
  • the blending amount of the thermal polymerization initiator is 0.1 part by mass or more, the curing reaction during molding of the thermosetting resin composition proceeds uniformly, and the physical properties and appearance of the cured product become good.
  • the blending amount of the thermal polymerization initiator is 30 parts by mass or less, the storage stability of the thermosetting resin composition will be good and the handleability will be improved.
  • thermosetting resin composition may contain (G) glass fiber as necessary.
  • the glass fiber is not particularly limited as long as it is a fibrous material with an aspect ratio of 3 or more. Specifically, chopped strand glass and the like can be mentioned.
  • the fiber length of the glass fiber is preferably 20 mm or less, more preferably 10 mm or less, and even more preferably 5 mm or less. When the fiber length is 20 mm or less, the moldability of the thermosetting resin composition is good, and the appearance of the cured product is good.
  • the fiber length is preferably 0.1 mm or more, more preferably 0.5 mm or more, and even more preferably 1 mm or more. When the fiber length is 0.1 mm or more, the strength of the cured product is good.
  • the average fiber diameter of the glass fiber (G) is preferably 3 to 100 ⁇ m, more preferably 5 to 30 ⁇ m.
  • the content is preferably 10 to 300 parts by mass, more preferably 50 to 250 parts by mass, based on 100 parts by mass of (A) thermosetting resin, More preferably, it is 80 to 210 parts by mass.
  • the content of glass fiber is 10 parts by mass or more, the mechanical properties of the molded article obtained from the thermosetting resin composition will be better.
  • the content of the glass fiber (G) is 300 parts by mass or less, the glass fiber (G) is more uniformly dispersed in the thermosetting resin composition, and a homogeneous molded article can be produced.
  • the thermosetting resin composition may contain (H) a mold release agent as necessary.
  • the mold release agent is not particularly limited, and those known in the technical field of the present invention can be used. Examples of the mold release agent (H) include stearic acid, oleic acid, zinc stearate, calcium stearate, aluminum stearate, magnesium stearate, stearamide, oleic acid amide, silicone oil, and synthetic wax.
  • the mold release agent may be used alone or in combination of two or more types.
  • the content is preferably 0.1 to 40 parts by mass, and preferably 5 to 30 parts by mass, based on 100 parts by mass of (A) thermosetting resin. The amount is more preferably 8 to 25 parts by mass.
  • the content of the mold release agent is 0.1 parts by mass or more, the mold release properties of the cured product when molded are good and the productivity of the product is good.
  • the content of the mold release agent (H) is 40 parts by mass or less, a cured product with a good appearance can be obtained without the excessive mold release agent contaminating the surface of the cured product.
  • thermosetting resin composition contains components known in the technical field of the present invention, such as viscosity modifiers such as thickeners and thinners, colorants, polymerization inhibitors, and molding aids. can be included within a range that does not impede the effects of the present invention.
  • the thickener is a compound other than the inorganic filler (E) that exhibits a thickening effect, and includes, for example, an isocyanate compound.
  • the thickeners may be used alone or in combination of two or more. The amount of the thickener added can be adjusted as appropriate depending on the handleability, fluidity, etc. required of the thermosetting resin composition.
  • a coloring agent is used when coloring a cured product.
  • the colorant include various dyes, inorganic pigments, and organic pigments.
  • the coloring agents may be used alone or in combination of two or more. The amount of the colorant added can be adjusted as appropriate depending on the desired degree of coloring of the cured product.
  • polymerization inhibitor examples include hydroquinone, trimethylhydroquinone, p-benzoquinone, naphthoquinone, t-butylhydroquinone, catechol, pt-butylcatechol, 2,6-di-t-butyl-4-methylphenol, and the like. It will be done. Polymerization inhibitors may be used alone or in combination of two or more. The amount of the polymerization inhibitor added can be adjusted as appropriate depending on the storage environment, storage period, curing conditions, etc. of the thermosetting resin composition.
  • thermosetting resin composition includes (A) a thermosetting resin, (B) an ethylenically unsaturated monomer, (C) an ethylenically unsaturated group-containing phosphoric acid ester compound, (D) a low shrinkage agent, and (E ) Manufactured by mixing an inorganic filler and (F) a thermal polymerization initiator with, if necessary, optional components (G) glass fiber, (H) a mold release agent, and other additives. Can be done.
  • Examples of the mixing method include kneading. There are no particular restrictions on the kneading method, and for example, a kneader, a disperser, a planetary mixer, etc. can be used.
  • the kneading temperature is preferably 5°C to 50°C, more preferably 10°C to 40°C.
  • thermosetting resin composition there is no particular restriction on the order in which the components are mixed when producing the thermosetting resin composition. For example, if you mix part or all of (A) thermosetting resin and (B) ethylenically unsaturated monomer and then mix other components, each component will be sufficiently dispersed or mixed uniformly. This is preferred because a thermosetting resin composition can be easily obtained. At least a portion of the ethylenically unsaturated monomer (B) may be mixed in advance with the thermosetting resin (A) so as to act as a solvent, dispersion medium, or the like.
  • thermosetting resin composition can be cured by heating.
  • Conditions for curing the thermosetting resin composition can be appropriately set depending on the material used and the decomposition temperature of the thermal polymerization initiator (F).
  • An example of preferable conditions is a temperature of 120 to 180°C, more preferably a temperature of 120 to 160°C, and a curing time of 1 to 30 minutes.
  • thermosetting resin composition By molding the thermosetting resin composition into a desired shape and heating it, a molded article containing a cured product of the thermosetting resin composition can be manufactured.
  • the molding and curing method is not particularly limited, and includes methods commonly performed in the technical field of the present invention, such as compression molding, transfer molding, and injection molding.
  • thermosetting resin composition for molding and curing the thermosetting resin composition
  • Methods for molding and curing the thermosetting resin composition include, for example, opening a mold, pouring the thermosetting resin composition into the mold, and curing the composition, and placing the inside of the mold under reduced pressure or by injection molding.
  • a thermosetting resin composition is injected from the outside into a closed mold through a hole in the mold, such as a sprue, while applying pressure from the outside of the mold and allowed to harden.
  • Conditions for curing the thermosetting resin composition within the mold can be appropriately set depending on the material used.
  • An example of preferable conditions is a temperature of 120 to 180°C, more preferably a temperature of 120 to 160°C, and a curing time of 1 to 30 minutes.
  • an electrical and electronic component including a cured product of a thermosetting resin composition is provided.
  • Electrical and electronic components can be manufactured, for example, by encapsulating the components of the electrical and electronic components with a thermosetting resin composition and heating and curing the thermosetting resin composition. Encapsulation of the components of the electric/electronic component can be performed, for example, by injecting a thermosetting resin composition into a casing having the components inside.
  • thermosetting resin A synthesis example of the thermosetting resin is shown below.
  • styrene monomer was added in an amount of 40% by mass based on the total of the unsaturated polyester resin and styrene monomer to obtain a mixture of the unsaturated polyester resin and styrene.
  • the obtained unsaturated polyester resin had an unsaturation degree of 100 mol% and a weight average molecular weight of 20,000.
  • (D) Low shrinkage agent: ⁇ MS-200 (polystyrene, manufactured by Sekisui Plastics Co., Ltd., weight average molecular weight 200,000, specific gravity 1.05), ⁇ Asaprene (trademark) T-411G (styrene-butadiene rubber, manufactured by Asahi Kasei Corporation, styrene/butadiene ratio 30/70, specific gravity 0.95)
  • Inorganic filler ⁇ Softon 1200 (calcium carbonate, average particle size 1.80 ⁇ m, manufactured by Bihoku Funka Kogyo Co., Ltd.) ⁇ B103 (aluminum hydroxide, average particle size 7 ⁇ m, manufactured by Nippon Light Metal Co., Ltd.)
  • Tetraethoxysilane-containing triazine (triazine-based adhesion promoter, manufactured by Shikoku Kasei Kogyo Co., Ltd.), ⁇ 3-methacryloxypropyltrimethoxysilane (silane-based adhesion agent, manufactured by Shin-Etsu Chemical Co., Ltd.)
  • thermosetting resin composition 167 parts by mass of a mixture of the unsaturated polyester resin obtained in Synthesis Example 1 and styrene as (A) thermosetting resin and (B) ethylenically unsaturated monomer (100 parts by mass of unsaturated polyester resin, 67 parts by mass of styrene) ), (B) further 41 parts by mass of styrene as an ethylenically unsaturated monomer, (C) 0.8 parts by mass of Light Ester P-1M as an ethylenically unsaturated group-containing phosphoric acid ester compound, (D) low 54.2 parts by mass each of MS-200 and Asaprene (trademark) T-411G as a shrinking agent, (E) 1000 parts by mass of Softon 1200 as an inorganic filler, (F) Perhexyl (trademark) I as a thermal polymerization initiator.
  • thermosetting resin composition was prepared by kneading.
  • the fluidity was evaluated by the flow length (spiral flow value) by a spiral flow test. Specifically, a semicircular spiral flow mold with a cross-sectional shape of ⁇ 3 mm was attached to a 50 t transfer molding machine, and the thermosetting resin composition was molded under conditions of a raw material charge of 50 g, a molding temperature of 150°C, and a molding pressure of 10 MPa. The spiral flow value (cm) was measured. The results are shown in Table 1.
  • thermosetting resin composition (Evaluation of adhesion to metal) Using the prepared thermosetting resin composition, it was molded using a transfer molding machine (manufactured by Press Machinery Co., Ltd., model MF-070) under conditions of a mold temperature of 140°C, a molding pressure of 16 kgf/cm 2 , and a curing time of 180 seconds. Molding was performed to obtain a molded product in which a cured product in the shape of a pudding cup (diameter on the substrate side: 5 mm, height: 3 mm) was bonded to a substrate of SPCC, copper (C1100), aluminum alloy (A6061), and SUS (SUS304).
  • a transfer molding machine manufactured by Press Machinery Co., Ltd., model MF-070
  • thermosetting resin composition was produced in the same manner as in Example 1, except that the type and composition of the raw materials were changed as shown in Table 1.
  • various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • thermosetting resin composition that provides a cured product that has excellent releasability from a mold and particularly has good adhesive strength to metal components. Furthermore, according to the present invention, there is provided a molded article containing a cured product of a thermosetting resin composition, specifically an electric/electronic component containing a cured product of a thermosetting resin composition.
  • the thermosetting resin composition can be preferably used as a sealing material for electrical and electronic components.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

A thermosetting resin composition containing (A) a thermosetting resin, (B) an ethylenically unsaturated monomer, (C) an ethylenically unsaturated group-containing phosphoric acid ester compound, (D) a low shrinkage agent, (E) an inorganic filler, and (F) a thermal polymerization initiator.

Description

熱硬化性樹脂組成物、及び成形品Thermosetting resin compositions and molded products
 本発明は、熱硬化性樹脂組成物、熱硬化性樹脂組成物の硬化物を含む成形品、成形品の製造方法、電気電子部品及び電気電子部品の製造方法に関する。 The present invention relates to a thermosetting resin composition, a molded article containing a cured product of the thermosetting resin composition, a method for producing a molded article, an electrical and electronic component, and a method for producing an electrical and electronic component.
 モーター、コイル、自動車等に搭載されるエレクトロニックコントロールユニットなどの電子機器では、配線基板及びその配線基板上に実装された電子部品等を保護するために、構成部品を固定して振動による部品の破損を防止したり、水及び腐食性ガス等の侵入を防止したりすることのできる構成が求められる。その際には、封止材と呼ばれる材料にて、電子部品全体を封止し、固定する構成が一般的に用いられる。 In electronic devices such as motors, coils, and electronic control units installed in automobiles, components are fixed to protect wiring boards and electronic components mounted on the wiring boards to prevent damage to parts due to vibration. There is a need for a structure that can prevent water and corrosive gases from entering. In this case, a configuration is generally used in which the entire electronic component is sealed and fixed using a material called a sealing material.
国際公開第2021/124626号International Publication No. 2021/124626
 この時、封止材の接着力が不足すると、成形時の熱や衝撃などの外部応力の影響で構成部品と封止材との間に空隙ができてしまい、構成部品の固定機能の低下、水及び腐食性ガス等の侵入を防止する機能の低下、熱伝達率の低下による放熱機能の低下などを引き起こす。 At this time, if the adhesive strength of the sealant is insufficient, a gap will be created between the component and the sealant due to the effects of external stress such as heat and impact during molding, resulting in a decrease in the fixing function of the component. This causes a decline in the function of preventing the intrusion of water and corrosive gases, etc., and a decline in the heat dissipation function due to a decrease in heat transfer coefficient.
 本発明は、金型からの離型性に優れると共に、特に金属製の構成部品に対する接着力が良好な硬化物が得られる熱硬化性樹脂組成物を提供することを目的とする。 An object of the present invention is to provide a thermosetting resin composition that provides a cured product that has excellent releasability from a mold and particularly has good adhesive strength to metal components.
 本発明は以下の態様を含む。
[1]
 (A)熱硬化性樹脂、
 (B)エチレン性不飽和単量体、
 (C)エチレン性不飽和基含有リン酸エステル化合物、
 (D)低収縮剤、
 (E)無機充填材、及び
 (F)熱重合開始剤
を含有する、熱硬化性樹脂組成物。
[2]
 前記(C)エチレン性不飽和基含有リン酸エステル化合物が、モノエステル体及びジエステル体から選択される一種以上であり、エチレン性不飽和基を1つ又は2つ有する[1]に記載の熱硬化性樹脂組成物。
[3]
 前記(C)エチレン性不飽和基含有リン酸エステル化合物の含有量が、前記(A)熱硬化性樹脂100質量部に対して、0.1~70質量部である[1]又は[2]に記載の熱硬化性樹脂組成物。
[4]
 前記(C)エチレン性不飽和基含有リン酸エステル化合物が、(メタ)アクリロイルオキシ基を有するリン酸エステルである[1]~[3]のいずれかに記載の熱硬化性樹脂組成物。
[5]
 前記(A)熱硬化性樹脂が、不飽和ポリエステル樹脂である[1]~[4]のいずれかに記載の熱硬化性樹脂組成物。
[6]
 (G)ガラス繊維を更に含む[1]~[5]のいずれかに記載の熱硬化性樹脂組成物。
[7]
 (H)離型剤を更に含む[1]~[6]のいずれかに記載の熱硬化性樹脂組成物。
[8]
 前記(A)熱硬化性樹脂100質量部に対して、
 前記(B)エチレン性不飽和単量体を50~200質量部含有し、
 前記(C)エチレン性不飽和基含有リン酸エステル化合物を0.1~70質量部含有し、
 前記(D)低収縮剤を1~150質量部含有し、
 前記(E)無機充填材を80~1500質量部含有し、
 前記(F)熱重合開始剤を0.1~30質量部含有する
[1]~[7]のいずれかに記載の熱硬化性樹脂組成物。
[9]
 [1]~[8]のいずれかに記載の熱硬化性樹脂組成物の硬化物を含む成形品。
[10]
 [1]~[8]のいずれかに記載の熱硬化性樹脂組成物を加熱及び加圧して硬化させる工程を含む成形品の製造方法。
[11]
 [1]~[8]のいずれかに記載の熱硬化性樹脂組成物の硬化物を含む電気電子部品。
[12]
 [1]~[8]のいずれかに記載の熱硬化性樹脂組成物を圧縮成形、トランスファー成形、又は射出成形して、電気電子部品の構成部品を封入する工程、及び
 前記熱硬化性樹脂組成物を加熱硬化する工程
を含む、電気電子部品の製造方法。
The present invention includes the following aspects.
[1]
(A) thermosetting resin,
(B) ethylenically unsaturated monomer,
(C) ethylenically unsaturated group-containing phosphoric acid ester compound,
(D) a low shrinkage agent;
(E) A thermosetting resin composition containing an inorganic filler and (F) a thermal polymerization initiator.
[2]
The heat according to [1], wherein the ethylenically unsaturated group-containing phosphoric acid ester compound (C) is one or more selected from monoesters and diesters, and has one or two ethylenically unsaturated groups. Curable resin composition.
[3]
The content of the (C) ethylenically unsaturated group-containing phosphoric acid ester compound is 0.1 to 70 parts by mass based on 100 parts by mass of the (A) thermosetting resin [1] or [2] The thermosetting resin composition described in .
[4]
The thermosetting resin composition according to any one of [1] to [3], wherein the ethylenically unsaturated group-containing phosphoric ester compound (C) is a phosphoric ester having a (meth)acryloyloxy group.
[5]
The thermosetting resin composition according to any one of [1] to [4], wherein the thermosetting resin (A) is an unsaturated polyester resin.
[6]
(G) The thermosetting resin composition according to any one of [1] to [5], further comprising glass fiber.
[7]
(H) The thermosetting resin composition according to any one of [1] to [6], further comprising a mold release agent.
[8]
With respect to 100 parts by mass of the thermosetting resin (A),
Containing 50 to 200 parts by mass of the (B) ethylenically unsaturated monomer,
Containing 0.1 to 70 parts by mass of the (C) ethylenically unsaturated group-containing phosphoric acid ester compound,
Containing 1 to 150 parts by mass of the low shrinkage agent (D),
Containing 80 to 1500 parts by mass of the (E) inorganic filler,
The thermosetting resin composition according to any one of [1] to [7], containing 0.1 to 30 parts by mass of the thermal polymerization initiator (F).
[9]
A molded article containing a cured product of the thermosetting resin composition according to any one of [1] to [8].
[10]
[1] A method for producing a molded article, comprising a step of curing the thermosetting resin composition according to any one of items 1 to 8 by heating and pressurizing it.
[11]
An electrical and electronic component comprising a cured product of the thermosetting resin composition according to any one of [1] to [8].
[12]
Compression molding, transfer molding, or injection molding the thermosetting resin composition according to any one of [1] to [8] to encapsulate components of electrical and electronic parts, and the thermosetting resin composition A method for manufacturing electrical and electronic components, including a step of heating and curing the product.
 本発明によれば、金型からの離型性に優れると共に、特に金属製の構成部品に対する接着力が良好な硬化物が得られる熱硬化性樹脂組成物を提供することができる。さらに、上記熱硬化性樹脂組成物の硬化物を含む成形品、及びその製造方法、並びに上記熱硬化性樹脂組成物の硬化物を含む電気電子部品、及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a thermosetting resin composition that provides a cured product that exhibits excellent releasability from a mold and particularly has good adhesive strength to metal components. Furthermore, it is possible to provide a molded article containing a cured product of the above thermosetting resin composition, and a method for producing the same, as well as an electric/electronic component containing a cured product of the above thermosetting resin composition, and a method for producing the same.
 以下、本発明の実施形態について詳細に説明する。ただし、本発明は、以下に示す実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the embodiments shown below.
 本明細書では、数値範囲について「~」を使用する場合には、両端の数値は、それぞれ上限値及び下限値であり、数値範囲に含まれる。 In this specification, when "~" is used for a numerical range, the numerical values at both ends are the upper limit and lower limit, respectively, and are included in the numerical range.
 本明細書において、「(メタ)アクリル酸」は、メタクリル酸又はアクリル酸を意味し、「(メタ)アクリレート」は、アクリレート又はメタクリレートを意味し、「(メタ)アクリロイルオキシ」はアクリロイルオキシ又はメタクリロイルオキシを意味する。 As used herein, "(meth)acrylic acid" means methacrylic acid or acrylic acid, "(meth)acrylate" means acrylate or methacrylate, and "(meth)acryloyloxy" means acryloyloxy or methacryloyloxy. means oxy.
 本明細書において、「熱硬化性樹脂」とは、加熱したときに、架橋構造を形成して硬化する樹脂をいい、硬化前の状態のものを示す。 In this specification, the term "thermosetting resin" refers to a resin that forms a crosslinked structure and cures when heated, and refers to a resin in a state before curing.
 本明細書において、「エチレン性不飽和結合」とは、芳香環を形成する炭素原子を除く炭素原子間で形成される二重結合を意味し、「エチレン性不飽和単量体」とは、エチレン性不飽和結合を有する単量体を意味する。 As used herein, the term "ethylenically unsaturated bond" refers to a double bond formed between carbon atoms other than those forming an aromatic ring, and the term "ethylenic unsaturated monomer" refers to A monomer having an ethylenically unsaturated bond.
 本明細書において「重量平均分子量」及び「数平均分子量」は、ゲルパーミエーションクロマトグラフィー(GPC:gel permeation chromatography)を用いて下記条件にて常温(23℃)で測定し、標準ポリスチレン検量線を用いて求めた値とする。
 装置:Shodex(商標) GPC-101(昭和電工株式会社)
 カラム:Shodex(商標) LF-804(昭和電工株式会社)
 カラム温度:40℃
 試料:試料の0.2質量%テトラヒドロフラン溶液
 流量:1mL/分
 溶離液:テトラヒドロフラン
 検出器:Shodex(商標) RI-71S(昭和電工株式会社)
In this specification, "weight average molecular weight" and "number average molecular weight" are measured at room temperature (23°C) using gel permeation chromatography (GPC) under the following conditions, and a standard polystyrene calibration curve is used. The value obtained using
Equipment: Shodex (trademark) GPC-101 (Showa Denko K.K.)
Column: Shodex (trademark) LF-804 (Showa Denko K.K.)
Column temperature: 40℃
Sample: 0.2% by mass solution of sample in tetrahydrofuran Flow rate: 1 mL/min Eluent: Tetrahydrofuran Detector: Shodex (trademark) RI-71S (Showa Denko K.K.)
〈熱硬化性樹脂組成物〉
 熱硬化性樹脂組成物は、(A)熱硬化性樹脂、(B)エチレン性不飽和単量体、(C)エチレン性不飽和基含有リン酸エステル化合物、(D)低収縮剤、(E)無機充填材、及び(F)熱重合開始剤を含有する。熱硬化性樹脂組成物は、必要に応じて(G)ガラス繊維、及び(H)離型剤からなる群から選択される少なくとも一種を更に含有してもよい。
<Thermosetting resin composition>
The thermosetting resin composition includes (A) a thermosetting resin, (B) an ethylenically unsaturated monomer, (C) an ethylenically unsaturated group-containing phosphoric acid ester compound, (D) a low shrinkage agent, and (E ) an inorganic filler, and (F) a thermal polymerization initiator. The thermosetting resin composition may further contain at least one member selected from the group consisting of (G) glass fiber and (H) a mold release agent, if necessary.
[(A)熱硬化性樹脂]
 (A)熱硬化性樹脂は、封止材用途に一般的に用いられる熱硬化性樹脂であれば特に限定されない。例えば、熱硬化性樹脂組成物として加熱硬化したときに、架橋構造を形成できる官能基を有する樹脂が好ましい。特に、(B)エチレン性不飽和単量体、及び(C)エチレン性不飽和基含有リン酸エステル化合物とも反応できるという観点から官能基としてエチレン性不飽和基を複数有する樹脂が好ましい。(A)熱硬化性樹脂の具体例としては、(A-1)不飽和ポリエステル樹脂、(A-2)ビニルエステル樹脂、(A-3)ウレタン(メタ)アクリレート樹脂、(A-4)ジアリルフタレート樹脂、(A-5)エポキシ樹脂等が挙げられる。(A)熱硬化性樹脂は、成形性、流動性、硬化収縮、及び接着性付与剤の分散性の観点から、少なくとも(A-1)不飽和ポリエステル樹脂を含むことが好ましい。(A)熱硬化性樹脂は、単独で使用してもよいし、二種以上を併用してもよい。(A)熱硬化性樹脂は、成形性、流動性、及び硬化収縮の観点から(A-1)不飽和ポリエステル樹脂を必須成分として含むことが好ましい。
[(A) Thermosetting resin]
(A) The thermosetting resin is not particularly limited as long as it is a thermosetting resin commonly used for sealing materials. For example, a resin having a functional group that can form a crosslinked structure when heat-cured as a thermosetting resin composition is preferred. In particular, resins having a plurality of ethylenically unsaturated groups as functional groups are preferred from the viewpoint of being able to react with (B) the ethylenically unsaturated monomer and (C) the ethylenically unsaturated group-containing phosphoric acid ester compound. (A) Specific examples of the thermosetting resin include (A-1) unsaturated polyester resin, (A-2) vinyl ester resin, (A-3) urethane (meth)acrylate resin, and (A-4) diallyl resin. Examples include phthalate resin and (A-5) epoxy resin. (A) The thermosetting resin preferably contains at least (A-1) an unsaturated polyester resin from the viewpoints of moldability, fluidity, cure shrinkage, and dispersibility of the adhesion imparting agent. (A) The thermosetting resin may be used alone or in combination of two or more. (A) The thermosetting resin preferably contains (A-1) unsaturated polyester resin as an essential component from the viewpoint of moldability, fluidity, and curing shrinkage.
 本開示においては、(A)熱硬化性樹脂が、(C)エチレン性不飽和基含有リン酸エステル化合物にも該当する場合は、(C)エチレン性不飽和基含有リン酸エステル化合物として扱うものとする。 In the present disclosure, if (A) the thermosetting resin also falls under (C) a phosphoric acid ester compound containing an ethylenically unsaturated group, it is treated as (C) a phosphoric acid ester compound containing an ethylenically unsaturated group. shall be.
<(A-1)不飽和ポリエステル樹脂>
 (A-1)不飽和ポリエステル樹脂は、多価アルコールと不飽和多塩基酸との重縮合体、又は多価アルコールと不飽和多塩基酸と飽和多塩基酸との重縮合体であり、特に限定されない。
<(A-1) Unsaturated polyester resin>
(A-1) The unsaturated polyester resin is a polycondensate of a polyhydric alcohol and an unsaturated polybasic acid, or a polycondensate of a polyhydric alcohol, an unsaturated polybasic acid, and a saturated polybasic acid, and especially Not limited.
 (A-1)不飽和ポリエステル樹脂は、単独で使用してもよいし、二種以上を併用してもよい。(A-1)不飽和ポリエステル樹脂を用いることにより、機械的強度及び耐熱性に優れる硬化物を得ることができる。 (A-1) The unsaturated polyester resin may be used alone or in combination of two or more. (A-1) By using an unsaturated polyester resin, a cured product with excellent mechanical strength and heat resistance can be obtained.
 なお、本開示では、市販の不飽和ポリエステル樹脂に含有されるスチレンモノマー等は(B)エチレン性不飽和単量体に分類される。 In the present disclosure, styrene monomers and the like contained in commercially available unsaturated polyester resins are classified as (B) ethylenically unsaturated monomers.
 多価アルコールは、2個以上の水酸基を有する化合物であれば特に制限はない。多価アルコールとしては、例えば、エチレングリコール、プロピレングリコール、ブタンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、ペンタンジオール、ヘキサンジオール、ネオペンチルグリコール、テトラエチレングリコール、ポリエチレングリコール、2-メチル-1,3-プロパンジオール、1,4-シクロヘキサンジメタノール、水素化ビスフェノールA等のアルキレングリコール;ビスフェノールA;ビスフェノールAのエチレンオキサイド付加物、ビスフェノールAのプロピレンオキサイド付加物等のアルキレンオキサイド変性ビスフェノールA;グリセリンなどが挙げられる。硬化物の耐熱性及び機械的強度、並びに成形時の熱硬化性樹脂組成物の流動性の観点から、プロピレングリコール、ジプロピレングリコール、ネオペンチルグリコール、水素化ビスフェノールA、及びビスフェノールAが好ましく、プロピレングリコール及びネオペンチルグリコールがより好ましい。多価アルコールは、単独で使用してもよいし、二種以上を併用してもよい。 The polyhydric alcohol is not particularly limited as long as it is a compound having two or more hydroxyl groups. Examples of polyhydric alcohols include ethylene glycol, propylene glycol, butanediol, diethylene glycol, dipropylene glycol, triethylene glycol, pentanediol, hexanediol, neopentyl glycol, tetraethylene glycol, polyethylene glycol, 2-methyl-1, Alkylene glycols such as 3-propanediol, 1,4-cyclohexanedimethanol, and hydrogenated bisphenol A; Bisphenol A; Alkylene oxide-modified bisphenol A such as ethylene oxide adducts of bisphenol A and propylene oxide adducts of bisphenol A; Glycerin, etc. can be mentioned. From the viewpoint of the heat resistance and mechanical strength of the cured product and the fluidity of the thermosetting resin composition during molding, propylene glycol, dipropylene glycol, neopentyl glycol, hydrogenated bisphenol A, and bisphenol A are preferred, and propylene Glycol and neopentyl glycol are more preferred. Polyhydric alcohols may be used alone or in combination of two or more.
 不飽和多塩基酸は、エチレン性不飽和結合を有し、かつ、2個以上のカルボキシ基を有する化合物又はその酸無水物であれば特に限定されず、公知ものを用いることができる。特に、炭素原子数4~6の不飽和多塩基酸又はその酸無水物が、より低コストであり、かつ硬化物の機械的強度及び耐熱性により優れる熱硬化性樹脂組成物が得られるため好ましい。不飽和多塩基酸としては、例えば、マレイン酸、無水マレイン酸、フマル酸、シトラコン酸、イタコン酸、クロロマレイン酸等が挙げられる。より好ましくは、フマル酸、マレイン酸、無水マレイン酸、及びイタコン酸から選ばれる不飽和多塩基酸である。不飽和多塩基酸は、単独で使用してもよいし、二種以上を併用してもよい。 The unsaturated polybasic acid is not particularly limited as long as it is a compound having an ethylenically unsaturated bond and two or more carboxyl groups or its acid anhydride, and any known one can be used. In particular, unsaturated polybasic acids having 4 to 6 carbon atoms or their acid anhydrides are preferred because they are lower in cost and provide a thermosetting resin composition with better mechanical strength and heat resistance of the cured product. . Examples of the unsaturated polybasic acid include maleic acid, maleic anhydride, fumaric acid, citraconic acid, itaconic acid, and chloromaleic acid. More preferably, it is an unsaturated polybasic acid selected from fumaric acid, maleic acid, maleic anhydride, and itaconic acid. The unsaturated polybasic acids may be used alone or in combination of two or more.
 多価アルコールと不飽和多塩基酸との好ましい組み合わせとしては、例えば、フマル酸とネオペンチルグリコールとの組み合わせ、マレイン酸とジプロピレングリコールとの組み合わせ、無水マレイン酸とプロピレングリコールとの組み合わせ、フマル酸とプロピレングリコールとの組み合わせ、フマル酸と水素化ビスフェノールAとプロピレングリコールとの組み合わせ、無水マレイン酸とプロピレングリコールとネオペンチルグリコールとの組み合わせ等が挙げられる。フマル酸とプロピレングリコールとの組み合わせ、フマル酸と水素化ビスフェノールAとプロピレングリコールとの組み合わせ、及び無水マレイン酸とプロピレングリコールとネオペンチルグリコールとの組み合わせは、より低コストであり、かつ硬化物の熱変形温度がより高く、機械的強度及び耐熱性により優れる熱硬化性樹脂組成物が得られるため好ましい。 Preferred combinations of polyhydric alcohols and unsaturated polybasic acids include, for example, fumaric acid and neopentyl glycol, maleic acid and dipropylene glycol, maleic anhydride and propylene glycol, and fumaric acid. and propylene glycol, a combination of fumaric acid, hydrogenated bisphenol A, and propylene glycol, and a combination of maleic anhydride, propylene glycol, and neopentyl glycol. Combinations of fumaric acid and propylene glycol, combinations of fumaric acid, hydrogenated bisphenol A, and propylene glycol, and combinations of maleic anhydride, propylene glycol, and neopentyl glycol are lower in cost, and are less expensive to heat than the cured product. This is preferred because a thermosetting resin composition having a higher deformation temperature and superior mechanical strength and heat resistance can be obtained.
 飽和多塩基酸は、エチレン性不飽和結合を有さず、かつ、2個以上のカルボキシ基を有する化合物又はその酸無水物であれば特に限定されず、公知ものを用いることができる。飽和多塩基酸としては、例えば、フタル酸、無水フタル酸、イソフタル酸、テレフタル酸、テトラクロロ無水フタル酸、テトラブロモ無水フタル酸、ニトロフタル酸、ハロゲン化無水フタル酸等の芳香族飽和多塩基酸又はその酸無水物;コハク酸、アジピン酸、セバシン酸、シュウ酸、マロン酸、アゼライン酸、グルタル酸等の脂肪族飽和多塩基酸;及びヘキサヒドロ無水フタル酸等の環状脂肪族飽和多塩基酸が挙げられる。飽和多塩基酸は、単独で使用してもよいし、二種以上を併用してもよい。 The saturated polybasic acid is not particularly limited as long as it does not have an ethylenically unsaturated bond and has two or more carboxy groups or its acid anhydride, and any known one can be used. Examples of saturated polybasic acids include aromatic saturated polybasic acids such as phthalic acid, phthalic anhydride, isophthalic acid, terephthalic acid, tetrachlorophthalic anhydride, tetrabromo phthalic anhydride, nitrophthalic acid, and halogenated phthalic anhydride; Its acid anhydrides include aliphatic saturated polybasic acids such as succinic acid, adipic acid, sebacic acid, oxalic acid, malonic acid, azelaic acid, and glutaric acid; and cyclic aliphatic saturated polybasic acids such as hexahydrophthalic anhydride. It will be done. The saturated polybasic acids may be used alone or in combination of two or more.
 (A-1)不飽和ポリエステル樹脂の重量平均分子量(Mw)は、特に限定されない。(A-1)不飽和ポリエステル樹脂の重量平均分子量は、好ましくは2,000~50,000であり、より好ましくは3,000~40,000であり、更に好ましくは3,500~30,000である。重量平均分子量が2,000~50,000であれば、熱硬化性樹脂組成物の成形性がより一層良好となる。 (A-1) The weight average molecular weight (Mw) of the unsaturated polyester resin is not particularly limited. (A-1) The weight average molecular weight of the unsaturated polyester resin is preferably 2,000 to 50,000, more preferably 3,000 to 40,000, and still more preferably 3,500 to 30,000. It is. If the weight average molecular weight is 2,000 to 50,000, the moldability of the thermosetting resin composition will be even better.
 (A-1)不飽和ポリエステル樹脂の不飽和度は、50~100モル%であることが好ましく、より好ましくは60~100モル%であり、更に好ましくは70~100モル%である。不飽和度が上記範囲であると、(A-1)不飽和ポリエステル樹脂を含む熱硬化性樹脂組成物の成形性がより良好となる。 (A-1) The degree of unsaturation of the unsaturated polyester resin is preferably 50 to 100 mol%, more preferably 60 to 100 mol%, and still more preferably 70 to 100 mol%. When the degree of unsaturation is within the above range, the moldability of the thermosetting resin composition containing the unsaturated polyester resin (A-1) will be better.
 (A-1)不飽和ポリエステル樹脂の不飽和度は、原料として用いた不飽和多塩基酸及び飽和多塩基酸のモル数を用いて、以下の式により算出可能である。
 不飽和度(モル%)={(不飽和多塩基酸のモル数×不飽和多塩基酸1分子あたりのエチレン性不飽和結合の数)/(不飽和多塩基酸のモル数+飽和多塩基酸のモル数)}×100
(A-1) The degree of unsaturation of the unsaturated polyester resin can be calculated by the following formula using the number of moles of the unsaturated polybasic acid and the saturated polybasic acid used as raw materials.
Degree of unsaturation (mol%) = {(Number of moles of unsaturated polybasic acid x number of ethylenically unsaturated bonds per molecule of unsaturated polybasic acid) / (Number of moles of unsaturated polybasic acid + saturated polybasic acid) number of moles of acid)}×100
((A-1)不飽和ポリエステル樹脂の合成方法)
 (A-1)不飽和ポリエステル樹脂は、上記の原料を用いて、公知の方法で合成することができる。(A-1)不飽和ポリエステル樹脂の合成における各種条件は、使用する原料やその量に応じて適宜設定される。
((A-1) Method for synthesizing unsaturated polyester resin)
(A-1) The unsaturated polyester resin can be synthesized by a known method using the above raw materials. (A-1) Various conditions in the synthesis of the unsaturated polyester resin are appropriately set depending on the raw materials used and their amounts.
 一般的に、窒素ガス等の不活性ガス気流中、140℃~230℃の温度にて加圧又は減圧下でのエステル化反応を用いることができる。エステル化反応では、必要に応じて、エステル化触媒を用いることができる。エステル化触媒の例としては、酢酸マンガン、ジブチル錫オキサイド、シュウ酸第一錫、酢酸亜鉛、酢酸コバルト等の公知の触媒が挙げられる。エステル化触媒は、単独で使用してもよいし、二種以上を併用してもよい。 In general, an esterification reaction can be carried out at a temperature of 140° C. to 230° C. under increased pressure or reduced pressure in a stream of inert gas such as nitrogen gas. In the esterification reaction, an esterification catalyst can be used as necessary. Examples of esterification catalysts include known catalysts such as manganese acetate, dibutyltin oxide, stannous oxalate, zinc acetate, and cobalt acetate. The esterification catalysts may be used alone or in combination of two or more.
 なお、(A-1)不飽和ポリエステル樹脂を合成した後の未反応の不飽和多塩基酸は、後述する(B)エチレン性不飽和単量体とみなす。 Note that the unreacted unsaturated polybasic acid after synthesizing the unsaturated polyester resin (A-1) is regarded as the ethylenically unsaturated monomer (B) described below.
 反応率向上による分子量増大、及び酸価の低減による接着性向上のため、不飽和多塩基酸及び任意の飽和多塩基酸のカルボキシ基の総量に対し、多価アルコールの水酸基の当量は0.9~1.2の範囲とすることが好ましい。 In order to increase the molecular weight by improving the reaction rate and improve adhesion by reducing the acid value, the equivalent weight of the hydroxyl group of the polyhydric alcohol is 0.9 with respect to the total amount of carboxyl groups of the unsaturated polybasic acid and any saturated polybasic acid. The range is preferably 1.2 to 1.2.
 (A-1)不飽和ポリエステル樹脂を合成した後の未反応の不飽和多塩基酸及び任意の飽和多塩基酸は、除去されることなく、熱硬化性樹脂組成物中に存在してよい。 (A-1) Unreacted unsaturated polybasic acid and any saturated polybasic acid after synthesizing the unsaturated polyester resin may remain in the thermosetting resin composition without being removed.
 (A)熱硬化性樹脂中の(A-1)不飽和ポリエステル樹脂の含有量は、75質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることが更に好ましい。(A-1)不飽和ポリエステル樹脂の含有量が、75質量%以上であると、適切な成形性、流動性、硬化収縮、及び接着性付与剤の分散性を確保することができる。(A)熱硬化性樹脂中の(A-1)不飽和ポリエステル樹脂の含有量の上限は、特に限定されない。例えば、100質量%、97質量%、又は95質量%としてよい。 The content of (A-1) unsaturated polyester resin in (A) thermosetting resin is preferably 75% by mass or more, more preferably 80% by mass or more, and more preferably 90% by mass or more. More preferably. (A-1) When the content of the unsaturated polyester resin is 75% by mass or more, appropriate moldability, fluidity, curing shrinkage, and dispersibility of the adhesion imparting agent can be ensured. The upper limit of the content of (A-1) unsaturated polyester resin in (A) thermosetting resin is not particularly limited. For example, it may be 100% by mass, 97% by mass, or 95% by mass.
<(A-2)ビニルエステル樹脂>
 (A-2)ビニルエステル樹脂は、一般的に、(a)2個以上のエポキシ基を有するエポキシ化合物中のエポキシ基と、(b)エチレン性不飽和結合及びカルボキシ基を有する不飽和一塩基酸のカルボキシ基との開環反応によって得られる、エチレン性不飽和結合を有する化合物である。(A-2)ビニルエステル樹脂に関しては、例えば、ポリエステル樹脂ハンドブック(日刊工業新聞社、1988年発行)等に記載がある。
<(A-2) Vinyl ester resin>
(A-2) Vinyl ester resin generally consists of (a) an epoxy group in an epoxy compound having two or more epoxy groups, and (b) an unsaturated monobase having an ethylenically unsaturated bond and a carboxyl group. It is a compound containing an ethylenically unsaturated bond obtained by a ring-opening reaction with the carboxy group of an acid. (A-2) Vinyl ester resins are described, for example, in the Polyester Resin Handbook (published by Nikkan Kogyo Shimbun, 1988).
 (A-2)ビニルエステル樹脂は、単独で使用してもよいし、二種以上を併用してもよい。(A-2)ビニルエステル樹脂は、取り扱いの面から一般には、(B)エチレン性不飽和単量体で希釈して使用される。(A-2)ビニルエステル樹脂を用いることにより、熱硬化性樹脂組成物の材料コストを抑えることができ、かつ、接着性に優れた硬化物を得ることができる。 (A-2) Vinyl ester resins may be used alone or in combination of two or more. (A-2) Vinyl ester resin is generally used diluted with (B) ethylenically unsaturated monomer from the viewpoint of handling. (A-2) By using a vinyl ester resin, the material cost of the thermosetting resin composition can be reduced, and a cured product with excellent adhesiveness can be obtained.
 (A-2)ビニルエステル樹脂の数平均分子量(Mn)は、所望する物性によって調整することができるが、取り扱いの面からは500~5,000の範囲が好ましい。 (A-2) The number average molecular weight (Mn) of the vinyl ester resin can be adjusted depending on the desired physical properties, but from the viewpoint of handling, it is preferably in the range of 500 to 5,000.
((a)エポキシ化合物)
 (a)エポキシ化合物は、2個以上のエポキシ基を有する化合物であれば特に制限はない。好ましくは、ビスフェノール型エポキシ化合物及びノボラックフェノール型エポキシ化合物からなる群から選択される少なくとも一種であり、より好ましくはビスフェノール型エポキシ化合物である。(a)エポキシ化合物を原料に用いる(A-2)ビニルエステル樹脂を使用することにより、硬化物の機械的強度及び耐食性がより一層向上する。
((a) Epoxy compound)
(a) The epoxy compound is not particularly limited as long as it is a compound having two or more epoxy groups. Preferably, it is at least one selected from the group consisting of bisphenol-type epoxy compounds and novolac phenol-type epoxy compounds, and more preferably bisphenol-type epoxy compounds. (a) Using an epoxy compound as a raw material (A-2) By using a vinyl ester resin, the mechanical strength and corrosion resistance of the cured product are further improved.
 ビスフェノール型エポキシ化合物としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS、及びテトラブロモビスフェノールA等のビスフェノール化合物と、エピクロルヒドリン及び/又はメチルエピクロルヒドリンとを反応させて得られるもの;上記ビスフェノール化合物のいずれか1つ又は複数をグリシジルエーテル化した化合物と、上記ビスフェノール化合物のいずれか1つ又は複数との縮合物と、エピクロルヒドリン及び/又はメチルエピクロルヒドリンとを反応させて得られるものなどが挙げられる。耐久性の観点から、ビスフェノール化合物とエピクロルヒドリンとの反応物が好ましく、ビスフェノールAとエピクロルヒドリンとの反応物がより好ましい。 Examples of bisphenol-type epoxy compounds include those obtained by reacting bisphenol compounds such as bisphenol A, bisphenol F, bisphenol S, and tetrabromobisphenol A with epichlorohydrin and/or methylepichlorohydrin; any of the above bisphenol compounds. Examples include those obtained by reacting a compound obtained by glycidyl etherification of one or more of them, a condensate of one or more of the above bisphenol compounds, and epichlorohydrin and/or methylepichlorohydrin. From the viewpoint of durability, a reaction product of a bisphenol compound and epichlorohydrin is preferred, and a reaction product of bisphenol A and epichlorohydrin is more preferred.
 ノボラックフェノール型エポキシ化合物としては、例えば、フェノールノボラック又はクレゾールノボラックと、エピクロルヒドリン及び/又はメチルエピクロルヒドリンとを反応させて得られるものが挙げられる。 Examples of the novolak phenol-type epoxy compound include those obtained by reacting phenol novolak or cresol novolak with epichlorohydrin and/or methylepichlorohydrin.
((b)不飽和一塩基酸)
 (b)不飽和一塩基酸は、エチレン性不飽和結合を有するモノカルボン酸であれば特に制限はない。好ましくは、メタクリル酸、アクリル酸、クロトン酸、桂皮酸等であり、より好ましくは、アクリル酸又はメタクリル酸であり、硬化物の耐食性の観点から更に好ましくは、メタクリル酸である。
((b) Unsaturated monobasic acid)
(b) The unsaturated monobasic acid is not particularly limited as long as it is a monocarboxylic acid having an ethylenically unsaturated bond. Preferred are methacrylic acid, acrylic acid, crotonic acid, cinnamic acid, etc., more preferred are acrylic acid or methacrylic acid, and even more preferred is methacrylic acid from the viewpoint of corrosion resistance of the cured product.
((A-2)ビニルエステル樹脂の合成方法)
 (A-2)ビニルエステル樹脂は、公知の合成方法により合成することができる。例えば、加熱撹拌可能な反応容器内において、エステル化触媒及び(a)エポキシ化合物の存在下で(b)不飽和一塩基酸を添加し、70~150℃、好ましくは80~140℃、更に好ましくは90~130℃で反応させる方法が挙げられる。
((A-2) Method for synthesizing vinyl ester resin)
(A-2) Vinyl ester resin can be synthesized by a known synthesis method. For example, in a heat-stirable reaction vessel, (b) an unsaturated monobasic acid is added in the presence of an esterification catalyst and (a) an epoxy compound, and the temperature is 70 to 150°C, preferably 80 to 140°C, more preferably Examples include a method of reacting at 90 to 130°C.
 なお、(A-2)ビニルエステル樹脂を合成した後の未反応の(b)不飽和一塩基酸は、後述する(B)エチレン性不飽和単量体とみなす。 Note that the unreacted (b) unsaturated monobasic acid after synthesizing the (A-2) vinyl ester resin is regarded as the (B) ethylenically unsaturated monomer described below.
 エステル化触媒としては、例えば、トリエチルアミン、N,N-ジメチルベンジルアミン、N,N-ジメチルアニリン、ジアザビシクロオクタン等の三級アミン、トリフェニルホスフィン、ジエチルアミン塩酸塩などの公知の触媒が使用できる。 As the esterification catalyst, for example, known catalysts such as triethylamine, N,N-dimethylbenzylamine, N,N-dimethylaniline, tertiary amines such as diazabicyclooctane, triphenylphosphine, and diethylamine hydrochloride can be used. .
 (a)エポキシ化合物と(b)不飽和一塩基酸の配合比は、(a)エポキシ化合物のエポキシ基の総量1モルに対して、(b)不飽和一塩基酸のカルボキシ基の総量が0.3~1.2モルとなるように配合することが好ましく、0.4~1.1モルがより好ましく、0.5~1.0モルが更に好ましい。(b)不飽和一塩基酸のカルボキシ基の総量が0.3モル以上であると、熱硬化性樹脂組成物を硬化した際に、十分な硬度を持つ硬化物を得ることができる。一方で、(b)不飽和一塩基酸のカルボキシ基の総量が1.2モル以下であると、(A-2)ビニルエステル樹脂を合成する際に、未反応の(b)不飽和一塩基酸を低減できるため、機械強度に優れた硬化物を得ることができる。 The blending ratio of (a) the epoxy compound and (b) the unsaturated monobasic acid is such that the total amount of carboxy groups in the (b) unsaturated monobasic acid is 0 to 1 mole of the epoxy groups in the (a) epoxy compound. It is preferable to mix it so that it is 0.3 to 1.2 mol, more preferably 0.4 to 1.1 mol, and even more preferably 0.5 to 1.0 mol. (b) When the total amount of carboxyl groups in the unsaturated monobasic acid is 0.3 mol or more, a cured product having sufficient hardness can be obtained when the thermosetting resin composition is cured. On the other hand, if the total amount of carboxyl groups in (b) unsaturated monobasic acid is 1.2 mol or less, unreacted (b) unsaturated monobasic acid may be removed during synthesis of (A-2) vinyl ester resin. Since acid can be reduced, a cured product with excellent mechanical strength can be obtained.
 (A-2)ビニルエステル樹脂を合成した後の未反応の(b)不飽和一塩基酸は、除去されることなく、そのまま熱硬化性樹脂組成物の(B)エチレン性不飽和単量体として使用できる。熱硬化性樹脂組成物を加熱硬化させる際に、未反応の(b)不飽和一塩基酸が揮発したり、ブリードアウトしたりして硬化物の接着性に影響を与えることがあるため、未反応の(b)不飽和一塩基酸の含有量はできるだけ低減した方がよい。例えば、(A-2)ビニルエステル樹脂と未反応の(b)不飽和一塩基酸の合計量に対して、未反応の(b)不飽和一塩基酸の含有量は、5質量%以下が好ましく、3質量%以下がより好ましい。 (A-2) After synthesizing the vinyl ester resin, the unreacted (b) unsaturated monobasic acid is not removed and remains as the (B) ethylenically unsaturated monomer of the thermosetting resin composition. Can be used as When heat curing a thermosetting resin composition, unreacted (b) unsaturated monobasic acid may evaporate or bleed out, affecting the adhesiveness of the cured product. It is better to reduce the content of (b) unsaturated monobasic acid in the reaction as much as possible. For example, the content of unreacted (b) unsaturated monobasic acid is 5% by mass or less with respect to the total amount of (A-2) vinyl ester resin and unreacted (b) unsaturated monobasic acid. It is preferably 3% by mass or less, and more preferably 3% by mass or less.
 (A)熱硬化性樹脂中の(A-2)ビニルエステル樹脂の含有量は、1質量%以上であることが好ましく、3質量%以上であることがより好ましく、5質量%以上であることが更に好ましい。(A)熱硬化性樹脂中の(A-2)ビニルエステル樹脂の含有量の上限は、特に限定されない。例えば、25質量%、20質量%、又は10質量%としてよい。 The content of (A-2) vinyl ester resin in the thermosetting resin (A) is preferably 1% by mass or more, more preferably 3% by mass or more, and 5% by mass or more. is even more preferable. The upper limit of the content of the vinyl ester resin (A-2) in the thermosetting resin (A) is not particularly limited. For example, it may be 25% by mass, 20% by mass, or 10% by mass.
<(A-3)ウレタン(メタ)アクリレート樹脂>
 (A-3)ウレタン(メタ)アクリレート樹脂としては、例えば、多価イソシアネートと多価アルコールとを反応させて得られるポリウレタンの、両末端の水酸基又はイソシアナト基に対して、(メタ)アクリロイル基を導入して得られた樹脂を用いることができる。
<(A-3) Urethane (meth)acrylate resin>
(A-3) As the urethane (meth)acrylate resin, for example, a (meth)acryloyl group is added to the hydroxyl group or isocyanato group at both ends of the polyurethane obtained by reacting a polyvalent isocyanate and a polyhydric alcohol. The resin obtained by the introduction can be used.
 多価アルコールとしては、上記(A-1)不飽和ポリエステル樹脂の原料として記載されている化合物を、特に制限なく使用することができる。 As the polyhydric alcohol, the compounds described as raw materials for the unsaturated polyester resin (A-1) above can be used without particular limitation.
 多価イソシアネートとしては、例えば、ヘキサメチレンジイソシアネート、リジンジイソシアネート、リジントリイソシアネート、トリメチルヘキサンジイソシアネート等の脂肪族多価イソシアネート;水素添加キシリレンジイソシアネート、イソホロンジイソシアネート、メチルシクロヘキサン-2,4(又は2,6)-ジイソシアネート、4,4’-メチレンビス(シクロヘキシルイソシアネート)、1,3-(イソシアナトメチル)シクロヘキサン等の環状脂肪族多価イソシアネート;トリレンジイソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート、ナフタレンジイソシアネート、トリフェニルメタントリイソシアネート等の芳香族多価イソシアネート;並びにこれらの多価イソシアネートの付加物、イソシアヌレート体、及びビウレット体が挙げられる。多価イソシアネートは、単独で使用してもよいし、二種以上を併用してもよい。 Examples of the polyvalent isocyanate include aliphatic polyvalent isocyanates such as hexamethylene diisocyanate, lysine diisocyanate, lysine triisocyanate, and trimethylhexane diisocyanate; hydrogenated xylylene diisocyanate, isophorone diisocyanate, and methylcyclohexane-2,4 (or 2,6); )-diisocyanate, 4,4'-methylenebis(cyclohexyl isocyanate), cycloaliphatic polyisocyanate such as 1,3-(isocyanatomethyl)cyclohexane; tolylene diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate, naphthalene diisocyanate, triphenyl Examples include aromatic polyvalent isocyanates such as methane triisocyanate; and adducts, isocyanurates, and biurets of these polyisocyanates. Polyvalent isocyanates may be used alone or in combination of two or more.
 (メタ)アクリロイル基を導入する際には、例えば、末端イソシアナト基に水酸基含有(メタ)アクリル化合物を反応させる方法、又は末端水酸基に2-(メタ)アクリロイルオキシエチルイソシアネート、2-(メタ)アクリロイルオキシプロピルイソシアネート、1,1-ビス(アクリロイルオキシメチル)エチルイソシアネート等のイソシアナト基含有(メタ)アクリル化合物を反応させる方法を使用することができる。水酸基含有(メタ)アクリル化合物としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、カプロラクトン変性ヒドロキシアルキル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、トリス(ヒドロキシエチル)イソシアヌル酸ジ(メタ)アクリレート、ペンタエスリトールトリ(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、及びヒドロキシエチルアクリルアミドが挙げられ、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、カプロラクトン変性ヒドロキシアルキル(メタ)アクリレート、及びヒドロキシエチルアクリルアミドが好ましい。イソシアナト基含有(メタ)アクリル化合物及び水酸基含有(メタ)アクリル化合物は、それぞれ、単独で使用してもよいし、二種以上を併用してもよい。 When introducing a (meth)acryloyl group, for example, a method of reacting a terminal isocyanato group with a hydroxyl group-containing (meth)acrylic compound, or a method of reacting a terminal hydroxyl group with 2-(meth)acryloyloxyethyl isocyanate, 2-(meth)acryloyl A method of reacting an isocyanato group-containing (meth)acrylic compound such as oxypropyl isocyanate and 1,1-bis(acryloyloxymethyl)ethyl isocyanate can be used. Examples of hydroxyl group-containing (meth)acrylic compounds include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxybutyl (meth)acrylate, caprolactone-modified hydroxyalkyl (meth)acrylate, and polyethylene glycol. Mono(meth)acrylate, polypropylene glycol mono(meth)acrylate, tris(hydroxyethyl)isocyanuric acid di(meth)acrylate, pentaesritol tri(meth)acrylate, glycerin mono(meth)acrylate, and hydroxyethyl acrylamide are mentioned. 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, caprolactone-modified hydroxyalkyl (meth)acrylate, and hydroxyethyl acrylamide are preferred. The isocyanato group-containing (meth)acrylic compound and the hydroxyl group-containing (meth)acrylic compound may be used alone or in combination of two or more.
 なお、(A-3)ウレタン(メタ)アクリレート樹脂を合成した後の未反応の水酸基含有(メタ)アクリル化合物、又は未反応のイソシアナト基含有(メタ)アクリル化合物は、後述する(B)エチレン性不飽和単量体とみなす。 In addition, the unreacted hydroxyl group-containing (meth)acrylic compound or the unreacted isocyanato group-containing (meth)acrylic compound after synthesizing the (A-3) urethane (meth)acrylate resin is the (B) ethylenic compound described below. Considered as an unsaturated monomer.
 (A)熱硬化性樹脂中の(A-3)ウレタン(メタ)アクリレート樹脂の含有量は、1質量%以上であることが好ましく、3質量%以上であることがより好ましく、5質量%以上であることが更に好ましい。(A)熱硬化性樹脂中の(A-3)ウレタン(メタ)アクリレート樹脂の含有量の上限は、特に限定されない。例えば、25質量%、20質量%、又は10質量%としてよい。 The content of (A-3) urethane (meth)acrylate resin in the thermosetting resin (A) is preferably 1% by mass or more, more preferably 3% by mass or more, and 5% by mass or more. It is more preferable that The upper limit of the content of (A-3) urethane (meth)acrylate resin in (A) thermosetting resin is not particularly limited. For example, it may be 25% by mass, 20% by mass, or 10% by mass.
<(A-4)ジアリルフタレート樹脂>
 (A-4)ジアリルフタレート樹脂は、ジアリルフタレートと多価アルコールとのエステル化反応により得られるオリゴマーであり、従来公知のものを特に制限なく使用することができる。(A-4)ジアリルフタレート樹脂は、単独で使用してもよいし、二種以上を併用してもよい。
<(A-4) Diallyl phthalate resin>
(A-4) The diallyl phthalate resin is an oligomer obtained by an esterification reaction between diallyl phthalate and a polyhydric alcohol, and conventionally known resins can be used without particular limitation. (A-4) The diallyl phthalate resin may be used alone or in combination of two or more types.
 なお、(A-4)ジアリルフタレート樹脂を合成した後の未反応のジアリルフタレートは、除去されることなく、熱硬化性樹脂組成物中に存在してよい。 Note that unreacted diallyl phthalate after synthesizing (A-4) diallyl phthalate resin may exist in the thermosetting resin composition without being removed.
 (A-4)ジアリルフタレート樹脂を合成した後の未反応のジアリルフタレートは、後述する(B)エチレン性不飽和単量体とみなす。 (A-4) Unreacted diallyl phthalate after synthesizing the diallyl phthalate resin is regarded as the (B) ethylenically unsaturated monomer described below.
 (A)熱硬化性樹脂中の(A-4)ジアリルフタレート樹脂の含有量は、1質量%以上であることが好ましく、3質量%以上であることがより好ましく、5質量%以上であることが更に好ましい。(A)熱硬化性樹脂中の(A-4)ジアリルフタレート樹脂の含有量の上限は、特に限定されない。例えば、25質量%、20質量%、又は10質量%としてよい。 The content of (A-4) diallyl phthalate resin in the (A) thermosetting resin is preferably 1% by mass or more, more preferably 3% by mass or more, and 5% by mass or more. is even more preferable. The upper limit of the content of (A-4) diallyl phthalate resin in (A) thermosetting resin is not particularly limited. For example, it may be 25% by mass, 20% by mass, or 10% by mass.
<(A-5)エポキシ樹脂>
 (A-5)エポキシ樹脂としては、(a)エポキシ化合物の項に記載の化合物を使用することができる。(A-5)エポキシ樹脂は、単独で使用してもよいし、二種以上を併用してもよい。
<(A-5) Epoxy resin>
(A-5) As the epoxy resin, the compounds described in the section (a) Epoxy compound can be used. (A-5) Epoxy resins may be used alone or in combination of two or more.
 (A)熱硬化性樹脂中の(A-5)エポキシ樹脂の含有量は、1質量%以上であることが好ましく、3質量%以上であることがより好ましく、5質量%以上であることが更に好ましい。(A)熱硬化性樹脂中の(A-5)エポキシ樹脂の含有量の上限は、特に限定されない。例えば、25質量%、20質量%、又は10質量%としてよい。 The content of the epoxy resin (A-5) in the thermosetting resin (A) is preferably 1% by mass or more, more preferably 3% by mass or more, and preferably 5% by mass or more. More preferred. The upper limit of the content of the epoxy resin (A-5) in the thermosetting resin (A) is not particularly limited. For example, it may be 25% by mass, 20% by mass, or 10% by mass.
[(B)エチレン性不飽和単量体]
 (B)エチレン性不飽和単量体は、後述する(C)エチレン性不飽和基含有リン酸エステル化合物に該当しない、エチレン性不飽和結合を有する単量体であれば、特に制限はない。(B)エチレン性不飽和単量体は、単独で使用してもよいし、二種以上を併用してもよい。
[(B) Ethylenically unsaturated monomer]
(B) The ethylenically unsaturated monomer is not particularly limited as long as it is a monomer having an ethylenically unsaturated bond that does not fall under (C) the ethylenically unsaturated group-containing phosphoric acid ester compound described below. (B) Ethylenically unsaturated monomers may be used alone or in combination of two or more.
 具体的には、スチレン、ビニルトルエン、t-ブチルスチレン、メトキシスチレン、ジビニルベンゼン、ビニルナフタレン等のビニル化合物(ビニル基を有する化合物);メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、フルフリル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、アリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、アセトアセトキシエチル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリシクロデカノールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート等の(メタ)アクリレート、アセナフチレン、ノルボルネン等の環式不飽和化合物などが挙げられる。(A)熱硬化性樹脂との共重合性の観点から、ビニル化合物が好ましく、スチレン、ビニルトルエン、t-ブチルスチレン、及びメトキシスチレンから選択される一種以上がより好ましく、スチレンが更に好ましい。 Specifically, vinyl compounds (compounds having a vinyl group) such as styrene, vinyltoluene, t-butylstyrene, methoxystyrene, divinylbenzene, and vinylnaphthalene; methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, etc. ) acrylate, n-butyl (meth)acrylate, t-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isodecyl (meth)acrylate, lauryl (meth)acrylate, tridecyl (meth)acrylate, stearyl (meth)acrylate , cyclohexyl (meth)acrylate, furfuryl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, phenyl (meth)acrylate, benzyl (meth)acrylate, phenoxyethyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclo Pentenyloxyethyl (meth)acrylate, allyl (meth)acrylate, isobornyl (meth)acrylate, acetoacetoxyethyl (meth)acrylate, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate , (meth)acrylates such as neopentyl glycol di(meth)acrylate, tricyclodecanol di(meth)acrylate, and trimethylolpropane tri(meth)acrylate, and cyclic unsaturated compounds such as acenaphthylene and norbornene. (A) From the viewpoint of copolymerizability with the thermosetting resin, vinyl compounds are preferred, one or more selected from styrene, vinyltoluene, t-butylstyrene, and methoxystyrene are more preferred, and styrene is even more preferred.
 (B)エチレン性不飽和単量体の含有量は、(A)熱硬化性樹脂100質量部に対して、50質量部以上であることが好ましく、70質量部以上であることがより好ましく、90質量部以上であることが更に好ましい。(B)エチレン性不飽和単量体の含有量は、(A)熱硬化性樹脂100質量部に対して、200質量部以下であることが好ましく、150質量部以下であることがより好ましく、120質量部以下であることが更に好ましい。これらの下限値と上限値の組み合わせは、いかなる組み合わせでもよい。(B)エチレン性不飽和単量体の含有量は、(A)熱硬化性樹脂100質量部に対して、50~200質量部であることが好ましく、70~150質量部であることがより好ましく、90~120質量部であることが更に好ましい。(B)エチレン性不飽和単量体の含有量が50質量部以上であると、熱硬化性樹脂組成物の粘度を適正範囲に調整することができ、成形性が良好である。(B)エチレン性不飽和単量体の含有量が200質量部以下であると、硬化物の機械的強度が良好である。 (B) The content of the ethylenically unsaturated monomer is preferably 50 parts by mass or more, more preferably 70 parts by mass or more, based on 100 parts by mass of the (A) thermosetting resin. More preferably, the amount is 90 parts by mass or more. (B) The content of the ethylenically unsaturated monomer is preferably 200 parts by mass or less, more preferably 150 parts by mass or less, based on 100 parts by mass of the (A) thermosetting resin. More preferably, it is 120 parts by mass or less. Any combination of these lower limit values and upper limit values may be used. The content of the (B) ethylenically unsaturated monomer is preferably 50 to 200 parts by mass, more preferably 70 to 150 parts by mass, based on 100 parts by mass of the (A) thermosetting resin. The amount is preferably 90 to 120 parts by mass, and more preferably 90 to 120 parts by mass. (B) When the content of the ethylenically unsaturated monomer is 50 parts by mass or more, the viscosity of the thermosetting resin composition can be adjusted to an appropriate range, and moldability is good. (B) When the content of the ethylenically unsaturated monomer is 200 parts by mass or less, the mechanical strength of the cured product is good.
[(C)エチレン性不飽和基含有リン酸エステル化合物]
 (C)エチレン性不飽和基含有リン酸エステル化合物は、エチレン性不飽和基とリン酸エステル構造を有する化合物であれば、特に限定されない。(C)エチレン性不飽和基含有リン酸エステル化合物を用いることにより、熱硬化性樹脂組成物の硬化物の金属に対する接着力が良好となる。(C)エチレン性不飽和基含有リン酸エステル化合物は、例えば、リン酸、ポリリン酸、五酸化リン、オキシ塩化リン等のリン化合物と、エチレン性不飽和基を有し、かつ、アルコール性水酸基又はエポキシ基を有する有機化合物とを、エステル化反応させることにより得ることができる。
[(C) Ethylenically unsaturated group-containing phosphoric acid ester compound]
(C) The ethylenically unsaturated group-containing phosphoric ester compound is not particularly limited as long as it is a compound having an ethylenically unsaturated group and a phosphoric ester structure. (C) By using the ethylenically unsaturated group-containing phosphoric acid ester compound, the cured product of the thermosetting resin composition has good adhesion to metal. (C) Ethylenically unsaturated group-containing phosphoric acid ester compound has, for example, a phosphorus compound such as phosphoric acid, polyphosphoric acid, phosphorus pentoxide, or phosphorus oxychloride, and an ethylenically unsaturated group, and an alcoholic hydroxyl group. Alternatively, it can be obtained by carrying out an esterification reaction with an organic compound having an epoxy group.
 エチレン性不飽和基を有し、かつ、アルコール性水酸基又はエポキシ基を有する有機化合物としては、例えば、ヒドロキシメチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、メチル-α-ヒドロキシメチルアクリレート、エチル-α-ヒドロキシメチルアクリレート、n-ブチル-α-ヒドロキシメチルアクリレート、2-エチルヘキシル-α-ヒドロキシメチルアクリレート等のヒドロキシアルキル(メタ)アクリレート及びこれらのアルキレンオキサイド付加物、グリシジル(メタ)アクリレート、N-メチロール(メタ)アクリルアミドなどの(メタ)アクリレート;並びにアリルアルコール、クロチルアルコール、イソクロチルアルコール等の不飽和アルコール及びこれらのアルキレンオキサイド付加物が挙げられる。中でも接着強度の観点から、ヒドロキシメチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、メチル-α-ヒドロキシメチルアクリレート、エチル-α-ヒドロキシメチルアクリレート、n-ブチル-α-ヒドロキシメチルアクリレート、2-エチルヘキシル-α-ヒドロキシメチルアクリレート等のヒドロキシアルキル(メタ)アクリレートが好ましく、強度及び分散性に影響する他のエチレン性不飽和単量体との組み合わせの観点から、ヒドロキシメチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、及び3-ヒドロキシプロピル(メタ)アクリレートがより好ましい。 Examples of organic compounds having an ethylenically unsaturated group and an alcoholic hydroxyl group or an epoxy group include hydroxymethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, and 3-hydroxypropyl (meth)acrylate. , hydroxyalkyl (meth)acrylates such as methyl-α-hydroxymethyl acrylate, ethyl-α-hydroxymethyl acrylate, n-butyl-α-hydroxymethyl acrylate, 2-ethylhexyl-α-hydroxymethyl acrylate, and alkylene oxide additions thereof (meth)acrylates such as glycidyl (meth)acrylate and N-methylol (meth)acrylamide; unsaturated alcohols such as allyl alcohol, crotyl alcohol, and isocrotyl alcohol, and alkylene oxide adducts thereof. Among them, from the viewpoint of adhesive strength, hydroxymethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, methyl-α-hydroxymethylacrylate, ethyl-α-hydroxymethylacrylate, n- Hydroxyalkyl (meth)acrylates such as butyl-α-hydroxymethyl acrylate and 2-ethylhexyl-α-hydroxymethyl acrylate are preferred, from the viewpoint of combination with other ethylenically unsaturated monomers that affect strength and dispersibility. , hydroxymethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, and 3-hydroxypropyl (meth)acrylate are more preferred.
 (C)エチレン性不飽和基含有リン酸エステル化合物は、接着性、及び樹脂に対する分散性の観点から、モノエステル体及びジエステル体から選択される一種以上であり、エチレン性不飽和基を1つ又は2つ有する化合物であることが好ましい。(C)エチレン性不飽和基含有リン酸エステル化合物は、接着性、及び樹脂に対する分散性の観点から、(メタ)アクリロイルオキシ基を有するリン酸エステルであることが好ましい。このような化合物の具体例としては、2-(メタ)アクリロイルオキシエチルアシッドホスフェート、ジ[2-(メタ)アクリロイルオキシエチル]アシッドホスフェート等が挙げられる。 (C) The phosphoric acid ester compound containing an ethylenically unsaturated group is one or more selected from monoesters and diesters from the viewpoint of adhesiveness and dispersibility in resin, and has one ethylenically unsaturated group. Or a compound having two is preferable. (C) The ethylenically unsaturated group-containing phosphoric ester compound is preferably a phosphoric ester having a (meth)acryloyloxy group from the viewpoint of adhesiveness and dispersibility in resin. Specific examples of such compounds include 2-(meth)acryloyloxyethyl acid phosphate, di[2-(meth)acryloyloxyethyl]acid phosphate, and the like.
 (C)エチレン性不飽和基含有リン酸エステル化合物の含有量は、(A)熱硬化性樹脂100質量部に対して、0.1質量部以上であることが好ましく、0.8質量部以上であることがより好ましく、1質量部以上であることが更に好ましく、5質量部以上であることが更に好ましい。(C)エチレン性不飽和基含有リン酸エステル化合物の含有量は、(A)熱硬化性樹脂100質量部に対して、70質量部以下であることが好ましく、50質量部以下であることがより好ましく、30質量部以下であることが更に好ましい。これらの下限値と上限値の組み合わせは、いかなる組み合わせでもよい。(C)エチレン性不飽和基含有リン酸エステル化合物の含有量は、(A)熱硬化性樹脂100質量部に対して、0.1~70質量部であることが好ましく、0.8~50質量部であることがより好ましく、1~30質量部であることが更に好ましく、5~30質量部であることが更に好ましい。(C)エチレン性不飽和基含有リン酸エステル化合物の含有量が0.1質量部以上であると、熱硬化性樹脂組成物の硬化物の金属への接着力が良好である。(C)エチレン性不飽和基含有リン酸エステル化合物の含有量が70質量部以下であると、成形時の金型からの離型性が良好である。 (C) The content of the ethylenically unsaturated group-containing phosphoric acid ester compound is preferably 0.1 parts by mass or more, and preferably 0.8 parts by mass or more, based on 100 parts by mass of the (A) thermosetting resin. It is more preferably 1 part by mass or more, even more preferably 5 parts by mass or more. (C) The content of the ethylenically unsaturated group-containing phosphoric acid ester compound is preferably 70 parts by mass or less, and preferably 50 parts by mass or less, based on 100 parts by mass of the (A) thermosetting resin. More preferably, the amount is 30 parts by mass or less. Any combination of these lower limit values and upper limit values may be used. The content of the (C) ethylenically unsaturated group-containing phosphoric acid ester compound is preferably 0.1 to 70 parts by mass, and 0.8 to 50 parts by mass, based on 100 parts by mass of the (A) thermosetting resin. It is more preferably 1 to 30 parts by weight, even more preferably 5 to 30 parts by weight. (C) When the content of the ethylenically unsaturated group-containing phosphoric acid ester compound is 0.1 parts by mass or more, the adhesive strength of the cured product of the thermosetting resin composition to metals is good. (C) When the content of the ethylenically unsaturated group-containing phosphoric acid ester compound is 70 parts by mass or less, the releasability from the mold during molding is good.
[(D)低収縮剤]
 (D)低収縮剤としては、特に限定されず、本発明の技術分野において公知のものを用いることができる。(D)低収縮剤としては、熱可塑性樹脂が好ましい。(D)低収縮剤としては、例えば、ポリスチレン、ポリエチレン、ポリメチルメタクリレート、ポリ酢酸ビニル、飽和ポリエステル、ポリカプロラクトン、スチレン-ブタジエンゴム等が挙げられる。(D)低収縮剤は、単独で使用してもよいし、二種以上を併用してもよい。
[(D) Low shrinkage agent]
(D) The low shrinkage agent is not particularly limited, and those known in the technical field of the present invention can be used. (D) As the low shrinkage agent, a thermoplastic resin is preferable. (D) Low shrinkage agents include, for example, polystyrene, polyethylene, polymethyl methacrylate, polyvinyl acetate, saturated polyester, polycaprolactone, styrene-butadiene rubber, and the like. (D) The low shrinkage agent may be used alone or in combination of two or more.
 (D)低収縮剤の含有量は、(A)熱硬化性樹脂100質量部に対して、1質量部以上であることが好ましく、15質量部以上であることがより好ましく、30質量部以上であることが更に好ましい。(D)低収縮剤の含有量は、(A)熱硬化性樹脂100質量部に対して、150質量部以下であることが好ましく、130質量部以下であることがより好ましく、110質量部以下であることが更に好ましい。これらの下限値と上限値の組み合わせは、いかなる組み合わせでもよい。(D)低収縮剤の含有量は、(A)熱硬化性樹脂100質量部に対して、1~150質量部であることが好ましく、15~130質量部であることがより好ましく、30~110質量部であることが更に好ましい。(D)低収縮剤の含有量が1質量部以上であれば、硬化物の収縮率が小さくなり、成形体において所望の寸法精度を得ることができる。(D)低収縮剤の含有量が150質量部以下であれば、熱硬化性樹脂組成物の成形性及び硬化物の機械的特性がより良好である。 (D) The content of the low shrinkage agent is preferably 1 part by mass or more, more preferably 15 parts by mass or more, and 30 parts by mass or more based on 100 parts by mass of the (A) thermosetting resin. It is more preferable that (D) The content of the low shrinkage agent is preferably 150 parts by mass or less, more preferably 130 parts by mass or less, and 110 parts by mass or less based on 100 parts by mass of the (A) thermosetting resin. It is more preferable that Any combination of these lower limit values and upper limit values may be used. (D) The content of the low shrinkage agent is preferably 1 to 150 parts by mass, more preferably 15 to 130 parts by mass, and 30 to 130 parts by mass, based on 100 parts by mass of (A) thermosetting resin. More preferably, the amount is 110 parts by mass. (D) If the content of the low shrinkage agent is 1 part by mass or more, the shrinkage rate of the cured product will be small, and the desired dimensional accuracy can be obtained in the molded product. (D) When the content of the low shrinkage agent is 150 parts by mass or less, the moldability of the thermosetting resin composition and the mechanical properties of the cured product are better.
[(E)無機充填材]
 (E)無機充填材としては、本発明の技術分野において公知の粒子状物質を用いることができる。(E)無機充填材を使用することで、成形品の成形収縮率を小さくする、熱硬化性樹脂組成物の粘度を調整して作業性を向上させる、あるいは成形品の強度を向上させることができる。
[(E) Inorganic filler]
(E) As the inorganic filler, particulate substances known in the technical field of the present invention can be used. (E) By using an inorganic filler, it is possible to reduce the molding shrinkage rate of the molded product, improve workability by adjusting the viscosity of the thermosetting resin composition, or improve the strength of the molded product. can.
 (E)無機充填材としては、例えば、炭酸カルシウム、シリカ、酸化アルミニウム、水酸化アルミニウム、硫酸バリウム、硫酸カルシウム、水酸化カルシウム、酸化カルシウム、酸化マグネシウム、水酸化マグネシウム、ワラストナイト、クレー、カオリン、マイカ、石膏、無水ケイ酸、ガラス粉末等が挙げられる。炭酸カルシウム、酸化アルミニウム、及び水酸化アルミニウムが、安価であるため好ましい。(E)無機充填材は、単独で使用してもよいし、二種以上を併用してもよい。 (E) Examples of inorganic fillers include calcium carbonate, silica, aluminum oxide, aluminum hydroxide, barium sulfate, calcium sulfate, calcium hydroxide, calcium oxide, magnesium oxide, magnesium hydroxide, wollastonite, clay, and kaolin. , mica, gypsum, silicic anhydride, glass powder, etc. Calcium carbonate, aluminum oxide, and aluminum hydroxide are preferred because they are inexpensive. (E) The inorganic filler may be used alone or in combination of two or more.
 (E)無機充填材の平均粒子径は、1~100μmであることが好ましく、1~60μmであることがより好ましく、1~50μmであることが更に好ましい。(E)無機充填材の平均粒子径が1μm以上であれば、粒子の凝集を抑制することができる。一方、(E)無機充填材の平均粒子径が100μm以下であれば、熱硬化性樹脂組成物の成形性が良好である。 The average particle diameter of the inorganic filler (E) is preferably 1 to 100 μm, more preferably 1 to 60 μm, and even more preferably 1 to 50 μm. (E) When the average particle diameter of the inorganic filler is 1 μm or more, agglomeration of particles can be suppressed. On the other hand, if the average particle diameter of the inorganic filler (E) is 100 μm or less, the moldability of the thermosetting resin composition is good.
 なお、本明細書において「平均粒子径」とは、レーザー回折・散乱式粒子径分布測定装置(マイクロトラック・ベル株式会製、FRA)によって測定される体積基準累積粒度分布における50%粒子径(D50)である。 In addition, in this specification, "average particle diameter" refers to the 50% particle diameter ( D50).
 (E)無機充填材の形状は、特に制限されない。例えば、略真球、楕円体、鱗片状、無定形等が挙げられる。 (E) The shape of the inorganic filler is not particularly limited. For example, it may be approximately spherical, ellipsoidal, scaly, amorphous, or the like.
 (E)無機充填材の配合量は、(A)熱硬化性樹脂100質量部に対して、80質量部以上であることが好ましく、200質量部以上であることがより好ましく、500質量部以上であることが更に好ましい。(E)無機充填材の配合量は、(A)熱硬化性樹脂100質量部に対して、1500質量部以下であることが好ましく、1300質量部以下であることがより好ましく、1200質量部以下であることが更に好ましい。これらの下限値と上限値の組み合わせは、いかなる組み合わせでもよい。(E)無機充填材の配合量は、(A)熱硬化性樹脂100質量部に対して、80~1500質量部であることが好ましく、200~1300質量部であることがより好ましく、500~1200質量部であることが更に好ましい。(E)無機充填材の配合量が80質量部以上であれば、硬化物の機械的特性がより良好である。(E)無機充填材の配合量が1500質量部以下であれば、熱硬化性樹脂組成物中で(E)無機充填材がより均一に分散し、均質な成形体を製造することができる。 (E) The blending amount of the inorganic filler is preferably 80 parts by mass or more, more preferably 200 parts by mass or more, and 500 parts by mass or more with respect to 100 parts by mass of the (A) thermosetting resin. It is more preferable that (E) The blending amount of the inorganic filler is preferably 1,500 parts by mass or less, more preferably 1,300 parts by mass or less, and 1,200 parts by mass or less with respect to 100 parts by mass of the (A) thermosetting resin. It is more preferable that Any combination of these lower limit values and upper limit values may be used. (E) The blending amount of the inorganic filler is preferably 80 to 1,500 parts by mass, more preferably 200 to 1,300 parts by mass, and 500 to 1,300 parts by mass, based on 100 parts by mass of (A) thermosetting resin. More preferably, it is 1200 parts by mass. (E) If the amount of the inorganic filler is 80 parts by mass or more, the mechanical properties of the cured product will be better. When the amount of the inorganic filler (E) is 1500 parts by mass or less, the inorganic filler (E) is more uniformly dispersed in the thermosetting resin composition, and a homogeneous molded article can be produced.
[(F)熱重合開始剤]
 (F)熱重合開始剤としては、加熱によりラジカルを発生する重合開始剤であれば特に限定されない。例えば、ジアシルパーオキサイド、パーオキシエステル、ハイドロパーオキサイド、ジアルキルパーオキサイド、ケトンパーオキサイド、パーオキシケタール、アルキルパーエステル、パーカーボネート等の有機過酸化物が挙げられる。
[(F) Thermal polymerization initiator]
(F) The thermal polymerization initiator is not particularly limited as long as it is a polymerization initiator that generates radicals when heated. Examples include organic peroxides such as diacyl peroxide, peroxy ester, hydroperoxide, dialkyl peroxide, ketone peroxide, peroxyketal, alkyl perester, and percarbonate.
 (F)熱重合開始剤としては、これらの過酸化物の中でも、1,1-ジ-t-ヘキシルパーオキシ-シクロヘキサン、t-ヘキシルパーオキシイソプロピルカーボネート、t-ブチルパーオキシオクトエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシ-2-エチルヘキサノエート、t-アミルパーオキシ-2-エチルヘキサノエート、ベンゾイルパーオキサイド、1,1-ジ-t-ブチルパーオキシ-3,3,5-トリメチルシクロヘキサン、t-ブチルパーオキシイソプロピルカーボネート、t-ブチルパーオキシベンゾエート、ジクミルパーオキサイド、及びジ-t-ブチルパーオキサイドが好ましい。(F)熱重合開始剤は、単独で使用してもよいし、二種以上を併用してもよい。 (F) As the thermal polymerization initiator, among these peroxides, 1,1-di-t-hexylperoxy-cyclohexane, t-hexylperoxyisopropyl carbonate, t-butylperoxyoctoate, t- Butylperoxy-2-ethylhexanoate, t-hexylperoxy-2-ethylhexanoate, t-amylperoxy-2-ethylhexanoate, benzoyl peroxide, 1,1-di-t-butyl Peroxy-3,3,5-trimethylcyclohexane, t-butylperoxyisopropyl carbonate, t-butylperoxybenzoate, dicumyl peroxide, and di-t-butyl peroxide are preferred. (F) The thermal polymerization initiator may be used alone or in combination of two or more.
 (F)熱重合開始剤の配合量は、(A)熱硬化性樹脂100質量部に対して、0.1質量部以上であることが好ましく、1質量部以上であることがより好ましく、5質量部以上であることが更に好ましい。(F)熱重合開始剤の配合量は、(A)熱硬化性樹脂100質量部に対して、30質量部以下であることが好ましく、25質量部以下であることがより好ましく、20質量部以下であることが更に好ましい。これらの下限値と上限値の組み合わせは、いかなる組み合わせでもよい。(F)熱重合開始剤の配合量は、(A)熱硬化性樹脂100質量部に対して、0.1~30質量部であることが好ましく、1~25質量部であることがより好ましく、5~20質量部であることが更に好ましい。(F)熱重合開始剤の配合量が0.1質量部以上であると、熱硬化性樹脂組成物の成形時の硬化反応が均一に進行し、硬化物の物性及び外観が良好となる。(F)熱重合開始剤の配合量が30質量部以下であると、熱硬化性樹脂組成物の保存安定性が良好となり、取り扱い性が向上する。 (F) The blending amount of the thermal polymerization initiator is preferably 0.1 part by mass or more, more preferably 1 part by mass or more, based on 100 parts by mass of the (A) thermosetting resin. It is more preferable that the amount is at least 1 part by mass. (F) The blending amount of the thermal polymerization initiator is preferably 30 parts by mass or less, more preferably 25 parts by mass or less, and 20 parts by mass based on 100 parts by mass of the (A) thermosetting resin. It is more preferable that it is the following. Any combination of these lower limit values and upper limit values may be used. (F) The blending amount of the thermal polymerization initiator is preferably 0.1 to 30 parts by mass, more preferably 1 to 25 parts by mass, based on 100 parts by mass of (A) thermosetting resin. , more preferably 5 to 20 parts by mass. (F) When the blending amount of the thermal polymerization initiator is 0.1 part by mass or more, the curing reaction during molding of the thermosetting resin composition proceeds uniformly, and the physical properties and appearance of the cured product become good. (F) When the blending amount of the thermal polymerization initiator is 30 parts by mass or less, the storage stability of the thermosetting resin composition will be good and the handleability will be improved.
[(G)ガラス繊維]
 熱硬化性樹脂組成物は、必要に応じて(G)ガラス繊維を含有してもよい。(G)ガラス繊維としては、アスペクト比が3以上の繊維状物質であれば特に限定されない。具体的には、チョップドストランドガラス等が挙げられる。
[(G) Glass fiber]
The thermosetting resin composition may contain (G) glass fiber as necessary. (G) The glass fiber is not particularly limited as long as it is a fibrous material with an aspect ratio of 3 or more. Specifically, chopped strand glass and the like can be mentioned.
 (G)ガラス繊維の繊維長は、20mm以下が好ましく、10mm以下がより好ましく、5mm以下が更に好ましい。繊維長が20mm以下であると、熱硬化性樹脂組成物の成形性が良好であり、硬化物の外観が良好である。繊維長は、0.1mm以上が好ましく、0.5mm以上がより好ましく、1mm以上が更に好ましい。繊維長が0.1mm以上であると、硬化物の強度が良好である。(G)ガラス繊維の平均繊維径は、3~100μmが好ましく、5~30μmがより好ましい。 (G) The fiber length of the glass fiber is preferably 20 mm or less, more preferably 10 mm or less, and even more preferably 5 mm or less. When the fiber length is 20 mm or less, the moldability of the thermosetting resin composition is good, and the appearance of the cured product is good. The fiber length is preferably 0.1 mm or more, more preferably 0.5 mm or more, and even more preferably 1 mm or more. When the fiber length is 0.1 mm or more, the strength of the cured product is good. The average fiber diameter of the glass fiber (G) is preferably 3 to 100 μm, more preferably 5 to 30 μm.
 (G)ガラス繊維を使用する場合の含有量は、(A)熱硬化性樹脂100質量部に対して、10~300質量部であることが好ましく、より好ましくは50~250質量部であり、更に好ましくは80~210質量部である。(G)ガラス繊維の含有量が10質量部以上であれば、熱硬化性樹脂組成物により得られる成形体の機械的特性がより良好である。(G)ガラス繊維の含有量が300質量部以下であれば、熱硬化性樹脂組成物中で(G)ガラス繊維がより均一に分散し、均質な成形体を製造することができる。 (G) When using glass fiber, the content is preferably 10 to 300 parts by mass, more preferably 50 to 250 parts by mass, based on 100 parts by mass of (A) thermosetting resin, More preferably, it is 80 to 210 parts by mass. (G) If the content of glass fiber is 10 parts by mass or more, the mechanical properties of the molded article obtained from the thermosetting resin composition will be better. When the content of the glass fiber (G) is 300 parts by mass or less, the glass fiber (G) is more uniformly dispersed in the thermosetting resin composition, and a homogeneous molded article can be produced.
[(H)離型剤]
 熱硬化性樹脂組成物は、必要に応じて(H)離型剤を含有してもよい。(H)離型剤としては、特に限定されず、本発明の技術分野において公知のものを用いることができる。(H)離型剤としては、例えば、ステアリン酸、オレイン酸、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸マグネシウム、ステアリン酸アミド、オレイン酸アミド、シリコーンオイル、合成ワックス等が挙げられる。(H)離型剤は、単独で使用してもよいし、2種以上を併用してもよい。
[(H) Mold release agent]
The thermosetting resin composition may contain (H) a mold release agent as necessary. (H) The mold release agent is not particularly limited, and those known in the technical field of the present invention can be used. Examples of the mold release agent (H) include stearic acid, oleic acid, zinc stearate, calcium stearate, aluminum stearate, magnesium stearate, stearamide, oleic acid amide, silicone oil, and synthetic wax. (H) The mold release agent may be used alone or in combination of two or more types.
 (H)離型剤を使用する場合の含有量は、(A)熱硬化性樹脂100質量部に対して0.1~40質量部であることが好ましく、5~30質量部であることがより好ましく、8~25質量部であることが更に好ましい。(H)離型剤の含有量が0.1質量部以上であれば、型成形をした際の硬化物の離型性が良好で製品の生産性が良好となる。一方、(H)離型剤の含有量が40質量部以下であれば、過剰な離型剤が硬化物の表面を汚染することなく、外観が良好な硬化物を得ることができる。 (H) When using a mold release agent, the content is preferably 0.1 to 40 parts by mass, and preferably 5 to 30 parts by mass, based on 100 parts by mass of (A) thermosetting resin. The amount is more preferably 8 to 25 parts by mass. (H) When the content of the mold release agent is 0.1 parts by mass or more, the mold release properties of the cured product when molded are good and the productivity of the product is good. On the other hand, when the content of the mold release agent (H) is 40 parts by mass or less, a cured product with a good appearance can be obtained without the excessive mold release agent contaminating the surface of the cured product.
[その他の添加剤]
 熱硬化性樹脂組成物は、上記の成分に加えて、増粘剤、減粘剤等の粘度調整剤、着色剤、重合禁止剤、成形助剤などの本発明の技術分野において公知の成分を、本発明の効果を阻害しない範囲において含むことができる。
[Other additives]
In addition to the above-mentioned components, the thermosetting resin composition contains components known in the technical field of the present invention, such as viscosity modifiers such as thickeners and thinners, colorants, polymerization inhibitors, and molding aids. can be included within a range that does not impede the effects of the present invention.
 増粘剤は、増粘効果を示す(E)無機充填材以外の化合物であり、例えば、イソシアネート化合物が挙げられる。増粘剤は、単独で使用してもよいし、二種以上を併用してもよい。増粘剤の添加量は、熱硬化性樹脂組成物に要求される取り扱い性、流動性等に応じて適宜調整することができる。 The thickener is a compound other than the inorganic filler (E) that exhibits a thickening effect, and includes, for example, an isocyanate compound. The thickeners may be used alone or in combination of two or more. The amount of the thickener added can be adjusted as appropriate depending on the handleability, fluidity, etc. required of the thermosetting resin composition.
 着色剤は、硬化物を着色する場合等に用いられる。着色剤としては、例えば、各種の染料、無機顔料、及び有機顔料が挙げられる。着色剤は、単独で使用してもよいし、二種以上を併用してもよい。着色剤の添加量は、硬化物に所望される着色度合いによって適宜調整することができる。 A coloring agent is used when coloring a cured product. Examples of the colorant include various dyes, inorganic pigments, and organic pigments. The coloring agents may be used alone or in combination of two or more. The amount of the colorant added can be adjusted as appropriate depending on the desired degree of coloring of the cured product.
 重合禁止剤としては、例えば、ハイドロキノン、トリメチルハイドロキノン、p-ベンゾキノン、ナフトキノン、t-ブチルハイドロキノン、カテコール、p-t-ブチルカテコール、2,6-ジ-t-ブチル-4-メチルフェノールなどが挙げられる。重合禁止剤は、単独で使用してもよいし、二種以上を併用してもよい。重合禁止剤の添加量は、熱硬化性樹脂組成物の保管環境、保管期間、硬化条件等に応じて適宜調整することができる。 Examples of the polymerization inhibitor include hydroquinone, trimethylhydroquinone, p-benzoquinone, naphthoquinone, t-butylhydroquinone, catechol, pt-butylcatechol, 2,6-di-t-butyl-4-methylphenol, and the like. It will be done. Polymerization inhibitors may be used alone or in combination of two or more. The amount of the polymerization inhibitor added can be adjusted as appropriate depending on the storage environment, storage period, curing conditions, etc. of the thermosetting resin composition.
〈熱硬化性樹脂組成物の製造方法〉
 熱硬化性樹脂組成物は、(A)熱硬化性樹脂、(B)エチレン性不飽和単量体、(C)エチレン性不飽和基含有リン酸エステル化合物、(D)低収縮剤、(E)無機充填材、及び(F)熱重合開始剤と、必要に応じて、任意成分である(G)ガラス繊維、(H)離型剤、及びその他の添加剤を混合することにより製造することができる。
<Method for producing thermosetting resin composition>
The thermosetting resin composition includes (A) a thermosetting resin, (B) an ethylenically unsaturated monomer, (C) an ethylenically unsaturated group-containing phosphoric acid ester compound, (D) a low shrinkage agent, and (E ) Manufactured by mixing an inorganic filler and (F) a thermal polymerization initiator with, if necessary, optional components (G) glass fiber, (H) a mold release agent, and other additives. Can be done.
 混合方法としては、例えば、混練が挙げられる。混練方法としては特に制限はなく、例えば、ニーダー、ディスパー、プラネタリーミキサー等を用いることができる。混練温度は、好ましくは5℃~50℃であり、より好ましくは10~40℃である。 Examples of the mixing method include kneading. There are no particular restrictions on the kneading method, and for example, a kneader, a disperser, a planetary mixer, etc. can be used. The kneading temperature is preferably 5°C to 50°C, more preferably 10°C to 40°C.
 熱硬化性樹脂組成物を製造する際の各成分を混合する順番については、特に制限はない。例えば、(A)熱硬化性樹脂と、(B)エチレン性不飽和単量体の一部又は全部を混合した後に他の成分を混合すると、各成分が十分に分散、あるいは均一に混合された熱硬化性樹脂組成物が得られやすいため好ましい。(B)エチレン性不飽和単量体の少なくとも一部が、溶媒、分散媒等として作用するように、(A)熱硬化性樹脂と予め混合されていてもよい。 There is no particular restriction on the order in which the components are mixed when producing the thermosetting resin composition. For example, if you mix part or all of (A) thermosetting resin and (B) ethylenically unsaturated monomer and then mix other components, each component will be sufficiently dispersed or mixed uniformly. This is preferred because a thermosetting resin composition can be easily obtained. At least a portion of the ethylenically unsaturated monomer (B) may be mixed in advance with the thermosetting resin (A) so as to act as a solvent, dispersion medium, or the like.
〈硬化物の製造方法〉
 熱硬化性樹脂組成物は、加熱することにより硬化させることができる。熱硬化性樹脂組成物を硬化させる条件は、用いる材料、及び(F)熱重合開始剤の分解温度によって適宜設定することができる。好ましい条件の一例としては、温度120~180℃、より好ましくは温度120℃~160℃及び硬化時間1~30分である。
<Production method of cured product>
The thermosetting resin composition can be cured by heating. Conditions for curing the thermosetting resin composition can be appropriately set depending on the material used and the decomposition temperature of the thermal polymerization initiator (F). An example of preferable conditions is a temperature of 120 to 180°C, more preferably a temperature of 120 to 160°C, and a curing time of 1 to 30 minutes.
〈成形品の製造方法〉
 熱硬化性樹脂組成物を、所望の形状に成形して加熱することによって、熱硬化性樹脂組成物の硬化物を含む成形品を製造することができる。成形及び硬化方法としては、特に限定されず、本発明の技術分野において通常行われる方法、例えば、圧縮成形、トランスファー成形、及び射出成形が挙げられる。
〈Production method for molded products〉
By molding the thermosetting resin composition into a desired shape and heating it, a molded article containing a cured product of the thermosetting resin composition can be manufactured. The molding and curing method is not particularly limited, and includes methods commonly performed in the technical field of the present invention, such as compression molding, transfer molding, and injection molding.
 熱硬化性樹脂組成物の成形及び硬化方法としては、例えば、金型を開き、金型内に熱硬化性樹脂組成物を注ぎ込み、硬化させる方法、及び金型内を減圧下、又は射出成形に代表されるような、金型の外側から圧力をかけた状態で、スプルー等の金型に設けられた孔を通じて、閉じた金型内に外部から熱硬化性樹脂組成物を注入し、硬化させる方法が挙げられる。金型内で熱硬化性樹脂組成物を硬化させる条件は、用いる材料によって適宜設定することができる。好ましい条件の一例としては、温度120~180℃、より好ましくは温度120℃~160℃、及び硬化時間1~30分である。 Methods for molding and curing the thermosetting resin composition include, for example, opening a mold, pouring the thermosetting resin composition into the mold, and curing the composition, and placing the inside of the mold under reduced pressure or by injection molding. Typically, a thermosetting resin composition is injected from the outside into a closed mold through a hole in the mold, such as a sprue, while applying pressure from the outside of the mold and allowed to harden. There are several methods. Conditions for curing the thermosetting resin composition within the mold can be appropriately set depending on the material used. An example of preferable conditions is a temperature of 120 to 180°C, more preferably a temperature of 120 to 160°C, and a curing time of 1 to 30 minutes.
 一実施形態では、熱硬化性樹脂組成物の硬化物を含む電気電子部品が提供される。電気電子部品は、例えば、電気電子部品の構成部品を熱硬化性樹脂組成物によって封入し、該熱硬化性樹脂組成物を加熱硬化することによって製造することができる。電気電子部品の構成部品の封入は、例えば、内部に構成部品を有する筐体内に、熱硬化性樹脂組成物を注入することによって行うことができる。 In one embodiment, an electrical and electronic component including a cured product of a thermosetting resin composition is provided. Electrical and electronic components can be manufactured, for example, by encapsulating the components of the electrical and electronic components with a thermosetting resin composition and heating and curing the thermosetting resin composition. Encapsulation of the components of the electric/electronic component can be performed, for example, by injecting a thermosetting resin composition into a casing having the components inside.
 以下、実施例及び比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.
 (A)熱硬化性樹脂の合成例を以下に示す。 (A) A synthesis example of the thermosetting resin is shown below.
[合成例1](A-1)不飽和ポリエステル樹脂の合成
 温度計、撹拌機、不活性ガス導入口、及び還流冷却器を備えた4つ口フラスコに、無水マレイン酸1.72kg(17.5モル)と、プロピレングリコール0.67kg(8.8モル)と、ネオペンチルグリコール0.91kg(8.8モル)とを仕込んだ。窒素ガス気流下で加熱撹拌しながら200℃まで昇温してエステル化反応を行い、不飽和ポリエステル樹脂を得た。その後、スチレンモノマーを、不飽和ポリエステル樹脂とスチレンモノマーの合計に対して40質量%となるように添加し、不飽和ポリエステル樹脂とスチレンとの混合物を得た。得られた不飽和ポリエステル樹脂は、不飽和度100モル%、重量平均分子量20,000であった。
[Synthesis Example 1] (A-1) Synthesis of unsaturated polyester resin 1.72 kg (17.5 kg) of maleic anhydride was placed in a 4-necked flask equipped with a thermometer, a stirrer, an inert gas inlet, and a reflux condenser. 5 mol), propylene glycol 0.67 kg (8.8 mol), and neopentyl glycol 0.91 kg (8.8 mol). The temperature was raised to 200° C. under a stream of nitrogen gas while stirring to carry out an esterification reaction to obtain an unsaturated polyester resin. Thereafter, styrene monomer was added in an amount of 40% by mass based on the total of the unsaturated polyester resin and styrene monomer to obtain a mixture of the unsaturated polyester resin and styrene. The obtained unsaturated polyester resin had an unsaturation degree of 100 mol% and a weight average molecular weight of 20,000.
 その他成分としては、以下のものを用いた。 The following were used as other ingredients.
 (B)エチレン性不飽和単量体:
 ・スチレン(出光興産株式会社)
(B) Ethylenically unsaturated monomer:
・Styrene (Idemitsu Kosan Co., Ltd.)
 (C)エチレン性不飽和基含有リン酸エステル化合物
 ・ライトエステルP-1M(2-メタクロイロキシエチルアシッドホスフェート、共栄社化学株式会社製)
(C) Ethylenically unsaturated group-containing phosphoric acid ester compound - Light Ester P-1M (2-methacryloyloxyethyl acid phosphate, manufactured by Kyoeisha Chemical Co., Ltd.)
 (D)低収縮剤:
 ・MS-200(ポリスチレン、積水化成品工業株式会社製、重量平均分子量200,000、比重1.05)、
 ・アサプレン(商標)T-411G(スチレン-ブタジエンゴム、旭化成株式会社製、スチレン/ブタジエン比=30/70、比重0.95)
(D) Low shrinkage agent:
・MS-200 (polystyrene, manufactured by Sekisui Plastics Co., Ltd., weight average molecular weight 200,000, specific gravity 1.05),
・Asaprene (trademark) T-411G (styrene-butadiene rubber, manufactured by Asahi Kasei Corporation, styrene/butadiene ratio = 30/70, specific gravity 0.95)
 (E)無機充填材:
 ・ソフトン1200(炭酸カルシウム、平均粒子径1.80μm、備北粉化工業株式会社製)
 ・B103(水酸化アルミニウム、平均粒子径7μm、日本軽金属株式会社社製)
(E) Inorganic filler:
・Softon 1200 (calcium carbonate, average particle size 1.80 μm, manufactured by Bihoku Funka Kogyo Co., Ltd.)
・B103 (aluminum hydroxide, average particle size 7 μm, manufactured by Nippon Light Metal Co., Ltd.)
 (F)熱重合開始剤:
 ・パーヘキシル(商標)I(t-へキシルパーオキシイソプロピルカーボネート、日油株式会社製)
(F) Thermal polymerization initiator:
・Perhexyl (trademark) I (t-hexyl peroxyisopropyl carbonate, manufactured by NOF Corporation)
 (G)ガラス繊維:
 ・チョップドストランド ECS-03B173/P9(ガラスチョップ、繊維径13μm、繊維長3.0mm、日本電気硝子株式会社製)
(G) Glass fiber:
・Chopped strand ECS-03B173/P9 (glass chop, fiber diameter 13 μm, fiber length 3.0 mm, manufactured by Nippon Electric Glass Co., Ltd.)
 (H)離型剤
 ・ステアリン酸カルシウム(日油株式会社製)
(H) Mold release agent - Calcium stearate (manufactured by NOF Corporation)
 その他の添加剤
 ・テトラエトキシシラン含有トリアジン(トリアジン系接着性付与剤、四国化成工業株式会社製)、
 ・3-メタクリロキシプロピルトリメトキシシラン(シラン系接着性付与剤、信越化学工業株式会社製)
Other additives - Tetraethoxysilane-containing triazine (triazine-based adhesion promoter, manufactured by Shikoku Kasei Kogyo Co., Ltd.),
・3-methacryloxypropyltrimethoxysilane (silane-based adhesion agent, manufactured by Shin-Etsu Chemical Co., Ltd.)
<実施例1>
(熱硬化性樹脂組成物の作製)
 (A)熱硬化性樹脂及び(B)エチレン性不飽和単量体として合成例1で得た不飽和ポリエステル樹脂とスチレンとの混合物167質量部(不飽和ポリエステル樹脂100質量部、スチレン67質量部)、(B)エチレン性不飽和単量体としてスチレンを更に41質量部、(C)エチレン性不飽和基含有リン酸エステル化合物としてライトエステルP-1Mを0.8質量部、(D)低収縮剤としてMS-200とアサプレン(商標)T-411Gを各54.2質量部、(E)無機充填材としてソフトン1200を1000質量部、(F)熱重合開始剤としてパーヘキシル(商標)Iを10質量部、(G)ガラス繊維としてチョップドストランドECS―03B173/P9を167質量部、並びに(H)離型剤としてステアリン酸カルシウムを25質量部双腕式ニーダーに投入し、30分間30℃にて混練して熱硬化性樹脂組成物を作製した。
<Example 1>
(Preparation of thermosetting resin composition)
167 parts by mass of a mixture of the unsaturated polyester resin obtained in Synthesis Example 1 and styrene as (A) thermosetting resin and (B) ethylenically unsaturated monomer (100 parts by mass of unsaturated polyester resin, 67 parts by mass of styrene) ), (B) further 41 parts by mass of styrene as an ethylenically unsaturated monomer, (C) 0.8 parts by mass of Light Ester P-1M as an ethylenically unsaturated group-containing phosphoric acid ester compound, (D) low 54.2 parts by mass each of MS-200 and Asaprene (trademark) T-411G as a shrinking agent, (E) 1000 parts by mass of Softon 1200 as an inorganic filler, (F) Perhexyl (trademark) I as a thermal polymerization initiator. 10 parts by mass, (G) 167 parts by mass of chopped strand ECS-03B173/P9 as glass fiber, and (H) 25 parts by mass of calcium stearate as a mold release agent were placed in a double-arm kneader, and heated at 30°C for 30 minutes. A thermosetting resin composition was prepared by kneading.
(流動性の測定)
 流動性をスパイラルフロー試験による流動長(スパイラルフロー値)で評価した。具体的には、断面形状がφ3mmの半円上のスパイラルフロー金型を50tトランスファー成形機に取り付け、原料チャージ量50g、成形温度150℃、成形圧力10MPaの条件下で、熱硬化性樹脂組成物のスパイラルフロー値(cm)を測定した。結果を表1に示す。
(Measurement of liquidity)
The fluidity was evaluated by the flow length (spiral flow value) by a spiral flow test. Specifically, a semicircular spiral flow mold with a cross-sectional shape of φ3 mm was attached to a 50 t transfer molding machine, and the thermosetting resin composition was molded under conditions of a raw material charge of 50 g, a molding temperature of 150°C, and a molding pressure of 10 MPa. The spiral flow value (cm) was measured. The results are shown in Table 1.
(成形収縮率の測定)
 JIS K-6911(2006)5.7に準拠し、円盤状の試験体(φ90mm×11mm)を、成形温度150℃、成形圧力5MPa、成形時間3分の条件下で圧縮成形(株式会社テクノマルシチ製コンプレッション成形機)により得て成形収縮率を算出した。結果を表1に示す。
(Measurement of molding shrinkage rate)
In accordance with JIS K-6911 (2006) 5.7, a disk-shaped specimen (φ90 mm x 11 mm) was compression molded under conditions of a molding temperature of 150°C, a molding pressure of 5 MPa, and a molding time of 3 minutes (produced by Techno Marushichi Co., Ltd.). The molding shrinkage rate was calculated using a compression molding machine. The results are shown in Table 1.
(金型からの離型性評価)
 成形収縮率測定用の試験体を製造した後の金型の表面に材料の貼りつきがない場合を良、金型の表面積の0.1~5%に貼りつきが見られた場合を可、金型の表面積の5%より多くに貼りつきが見られた場合を不良として評価した。結果を表1に示す。
(Evaluation of releasability from mold)
If there is no material sticking to the surface of the mold after producing the test specimen for mold shrinkage measurement, it is considered good, and if sticking is observed on 0.1 to 5% of the mold surface area, it is acceptable. A case where sticking was observed on more than 5% of the surface area of the mold was evaluated as defective. The results are shown in Table 1.
(金属への接着力評価)
 作製した熱硬化性樹脂組成物を使用し、トランスファー成形機(プレスマシナリー株式会社製、型式MF-070)にて、金型温度140℃、成形圧力16kgf/cm、硬化時間180秒の条件で成形し、SPCC、銅(C1100)、アルミ合金(A6061)、及びSUS(SUS304)基板上にプリンカップ形状(基板側の直径5mm、高さ3mm)の硬化物が結合した成形品を得た。得られた4種類の成形品に対し、ダイシェアテスター(ノードソン・デイジ社製、型式4000PXY)を用いて2mm/minの定速で横荷重をかけ、せん断破壊したときの強度を23℃及び150℃にてそれぞれ5回測定し、その平均値をそれぞれの金属に対する接着力とした。結果を表1に示す。
(Evaluation of adhesion to metal)
Using the prepared thermosetting resin composition, it was molded using a transfer molding machine (manufactured by Press Machinery Co., Ltd., model MF-070) under conditions of a mold temperature of 140°C, a molding pressure of 16 kgf/cm 2 , and a curing time of 180 seconds. Molding was performed to obtain a molded product in which a cured product in the shape of a pudding cup (diameter on the substrate side: 5 mm, height: 3 mm) was bonded to a substrate of SPCC, copper (C1100), aluminum alloy (A6061), and SUS (SUS304). A lateral load was applied to the four types of molded products obtained at a constant speed of 2 mm/min using a die shear tester (manufactured by Nordson-Dage, model 4000PXY), and the strength at 23°C and 150°C was measured at the time of shear failure. Each adhesive was measured five times at ℃, and the average value was taken as the adhesive strength to each metal. The results are shown in Table 1.
<実施例2~8、比較例1~5>
 原材料の種類及び組成を表1に記載のとおり変更した以外は、実施例1と同様にして、熱硬化性樹脂組成物を作製した。(A)熱硬化性樹脂の希釈に用いたスチレンは、(A)成分の配合量からは除いて、(B)エチレン性不飽和単量体の配合量に合算して記載した。次いで、実施例1と同様にして各種評価を行った。結果を表1に示す。
<Examples 2 to 8, Comparative Examples 1 to 5>
A thermosetting resin composition was produced in the same manner as in Example 1, except that the type and composition of the raw materials were changed as shown in Table 1. (A) The styrene used for diluting the thermosetting resin was excluded from the blending amount of the component (A) and was added to the blending amount of the (B) ethylenically unsaturated monomer. Next, various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
 本発明によれば、金型からの離型性に優れると共に、特に金属製の構成部品に対する接着力が良好な硬化物が得られる熱硬化性樹脂組成物が提供される。さらに、本発明によれば、熱硬化性樹脂組成物の硬化物を含む成形品、具体的には熱硬化性樹脂組成物の硬化物を含む電気電子部品が提供される。熱硬化性樹脂組成物は、電気電子部品の封止材として好ましく用いることができる。 According to the present invention, there is provided a thermosetting resin composition that provides a cured product that has excellent releasability from a mold and particularly has good adhesive strength to metal components. Furthermore, according to the present invention, there is provided a molded article containing a cured product of a thermosetting resin composition, specifically an electric/electronic component containing a cured product of a thermosetting resin composition. The thermosetting resin composition can be preferably used as a sealing material for electrical and electronic components.

Claims (12)

  1.  (A)熱硬化性樹脂、
     (B)エチレン性不飽和単量体、
     (C)エチレン性不飽和基含有リン酸エステル化合物、
     (D)低収縮剤、
     (E)無機充填材、及び
     (F)熱重合開始剤
    を含有する、熱硬化性樹脂組成物。
    (A) thermosetting resin,
    (B) ethylenically unsaturated monomer,
    (C) ethylenically unsaturated group-containing phosphoric acid ester compound,
    (D) a low shrinkage agent;
    (E) A thermosetting resin composition containing an inorganic filler and (F) a thermal polymerization initiator.
  2.  前記(C)エチレン性不飽和基含有リン酸エステル化合物が、モノエステル体及びジエステル体から選択される一種以上であり、エチレン性不飽和基を1つ又は2つ有する請求項1に記載の熱硬化性樹脂組成物。 The heat according to claim 1, wherein the (C) ethylenically unsaturated group-containing phosphoric acid ester compound is one or more selected from monoesters and diesters, and has one or two ethylenically unsaturated groups. Curable resin composition.
  3.  前記(C)エチレン性不飽和基含有リン酸エステル化合物の含有量が、前記(A)熱硬化性樹脂100質量部に対して、0.1~70質量部である請求項1又は2に記載の熱硬化性樹脂組成物。 According to claim 1 or 2, the content of the (C) ethylenically unsaturated group-containing phosphoric acid ester compound is 0.1 to 70 parts by mass based on 100 parts by mass of the (A) thermosetting resin. thermosetting resin composition.
  4.  前記(C)エチレン性不飽和基含有リン酸エステル化合物が、(メタ)アクリロイルオキシ基を有するリン酸エステルである請求項1又は2に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 1 or 2, wherein the (C) ethylenically unsaturated group-containing phosphoric ester compound is a phosphoric ester having a (meth)acryloyloxy group.
  5.  前記(A)熱硬化性樹脂が、不飽和ポリエステル樹脂である請求項1又は2に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 1 or 2, wherein the thermosetting resin (A) is an unsaturated polyester resin.
  6.  (G)ガラス繊維を更に含む請求項1又は2に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 1 or 2, further comprising (G) glass fiber.
  7.  (H)離型剤を更に含む請求項1又は2に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 1 or 2, further comprising (H) a mold release agent.
  8.  前記(A)熱硬化性樹脂100質量部に対して、
     前記(B)エチレン性不飽和単量体を50~200質量部含有し、
     前記(C)エチレン性不飽和基含有リン酸エステル化合物を0.1~70質量部含有し、
     前記(D)低収縮剤を1~150質量部含有し、
     前記(E)無機充填材を80~1500質量部含有し、
     前記(F)熱重合開始剤を0.1~30質量部含有する
    請求項1又は2に記載の熱硬化性樹脂組成物。
    With respect to 100 parts by mass of the thermosetting resin (A),
    Containing 50 to 200 parts by mass of the (B) ethylenically unsaturated monomer,
    Containing 0.1 to 70 parts by mass of the (C) ethylenically unsaturated group-containing phosphoric acid ester compound,
    Containing 1 to 150 parts by mass of the low shrinkage agent (D),
    Containing 80 to 1500 parts by mass of the (E) inorganic filler,
    The thermosetting resin composition according to claim 1 or 2, containing 0.1 to 30 parts by mass of the thermal polymerization initiator (F).
  9.  請求項1又は2に記載の熱硬化性樹脂組成物の硬化物を含む成形品。 A molded article comprising a cured product of the thermosetting resin composition according to claim 1 or 2.
  10.  請求項1又は2に記載の熱硬化性樹脂組成物を加熱及び加圧して硬化させる工程を含む成形品の製造方法。 A method for producing a molded article, comprising a step of curing the thermosetting resin composition according to claim 1 or 2 by heating and pressurizing.
  11.  請求項1又は2に記載の熱硬化性樹脂組成物の硬化物を含む電気電子部品。 An electrical and electronic component comprising a cured product of the thermosetting resin composition according to claim 1 or 2.
  12.  請求項1又は2に記載の熱硬化性樹脂組成物を圧縮成形、トランスファー成形、又は射出成形して、電気電子部品の構成部品を封入する工程、及び
     前記熱硬化性樹脂組成物を加熱硬化する工程
    を含む、電気電子部品の製造方法。
    Compression molding, transfer molding, or injection molding the thermosetting resin composition according to claim 1 or 2 to encapsulate components of electrical and electronic parts, and heating and curing the thermosetting resin composition. A method of manufacturing electrical and electronic components, including a process.
PCT/JP2023/017976 2022-07-29 2023-05-12 Thermosetting resin composition and molded article WO2024024213A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-121566 2022-07-29
JP2022121566 2022-07-29

Publications (1)

Publication Number Publication Date
WO2024024213A1 true WO2024024213A1 (en) 2024-02-01

Family

ID=89705992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017976 WO2024024213A1 (en) 2022-07-29 2023-05-12 Thermosetting resin composition and molded article

Country Status (1)

Country Link
WO (1) WO2024024213A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300365A (en) * 2003-04-01 2004-10-28 Asahi Fiber Glass Co Ltd Flame-retardant resin composition and molding intermediate and molded product using the same
JP2005105171A (en) * 2003-09-30 2005-04-21 Asahi Fiber Glass Co Ltd Composition for molding flame-retardant resin
JP2007217500A (en) * 2006-02-15 2007-08-30 Kyocera Chemical Corp Black vinyl ester resin molding material
JP2020079358A (en) * 2018-11-13 2020-05-28 昭和電工株式会社 Thermosetting resin composition and cured product thereof
JP2021091805A (en) * 2019-12-11 2021-06-17 昭和電工株式会社 Thermosetting resin composition
WO2022059647A1 (en) * 2020-09-15 2022-03-24 昭和電工マテリアルズ株式会社 Adhesive film for circuit connection and manufacturing method thereof, and circuit connection structure manufacturing
JP2022098813A (en) * 2020-12-22 2022-07-04 昭和電工株式会社 Curable resin composition, cured product of the same and artificial marble
JP2023045785A (en) * 2021-09-22 2023-04-03 日本ユピカ株式会社 Crystalline radically polymerizable composition for electric/electronic component excellent in metal adhesion, electric/electronic component using the composition, and manufacturing method of the electric/electronic component

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300365A (en) * 2003-04-01 2004-10-28 Asahi Fiber Glass Co Ltd Flame-retardant resin composition and molding intermediate and molded product using the same
JP2005105171A (en) * 2003-09-30 2005-04-21 Asahi Fiber Glass Co Ltd Composition for molding flame-retardant resin
JP2007217500A (en) * 2006-02-15 2007-08-30 Kyocera Chemical Corp Black vinyl ester resin molding material
JP2020079358A (en) * 2018-11-13 2020-05-28 昭和電工株式会社 Thermosetting resin composition and cured product thereof
JP2021091805A (en) * 2019-12-11 2021-06-17 昭和電工株式会社 Thermosetting resin composition
WO2022059647A1 (en) * 2020-09-15 2022-03-24 昭和電工マテリアルズ株式会社 Adhesive film for circuit connection and manufacturing method thereof, and circuit connection structure manufacturing
JP2022098813A (en) * 2020-12-22 2022-07-04 昭和電工株式会社 Curable resin composition, cured product of the same and artificial marble
JP2023045785A (en) * 2021-09-22 2023-04-03 日本ユピカ株式会社 Crystalline radically polymerizable composition for electric/electronic component excellent in metal adhesion, electric/electronic component using the composition, and manufacturing method of the electric/electronic component

Similar Documents

Publication Publication Date Title
CN109415524B (en) Fiber-reinforced molding material and molded article using same
EP3423508A1 (en) Curable urethane acrylate composition
JP4482463B2 (en) Radical curable resin composition
JP5057879B2 (en) Molding materials and molded products
JP6708312B2 (en) Fiber-reinforced molding material and molded product using the same
JP7087358B2 (en) Fiber reinforced molding material and molded products using it
WO2024024213A1 (en) Thermosetting resin composition and molded article
US20220298336A1 (en) Composition comprising a compound with two polyermizable groups, a multistage polymer and a thermoplastic polymer, its method of preparation, its use and article comprising it
JP7173734B2 (en) Molding materials and their molded products
JP7003583B2 (en) Fiber reinforced molding material and molded products using it
TW202248275A (en) Resin composition, prepreg, and fiber-reinforced plastic
JP2024066874A (en) Thermosetting resin composition and molded article
JP2003138165A (en) Composition for applying in mold, and method for producing applied molded product in mold
JP2024066883A (en) Thermosetting resin composition and molded article
JP2024066880A (en) Thermosetting resin composition and molded article
WO2022044507A1 (en) Curable resin composition, electric/electronic component, and method for manufacturing electric/electronic component
WO2022030115A1 (en) Curable resin composition, electric/electronic component, and method for manufacturing electric/electronic component
JP2023119908A (en) Curable resin composition, and electric-electronic component
EP3838936A1 (en) Curable compositions comprising multistage polymers
JP2022026595A (en) Curable resin composition and electric/electronic component
WO2020230662A1 (en) Fiber-reinforced molding material and molded article using same
JP4392591B2 (en) Cast molding resin composition and cast molding product
JPH10120736A (en) Curable resin composition, frp molded material and coating material
JPH09302010A (en) (meth)acrylic resin composition and its manufacture
JP2000169532A (en) Vinyl ester resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845952

Country of ref document: EP

Kind code of ref document: A1