WO2024024125A1 - Winding device and stator manufacturing method - Google Patents

Winding device and stator manufacturing method Download PDF

Info

Publication number
WO2024024125A1
WO2024024125A1 PCT/JP2022/046652 JP2022046652W WO2024024125A1 WO 2024024125 A1 WO2024024125 A1 WO 2024024125A1 JP 2022046652 W JP2022046652 W JP 2022046652W WO 2024024125 A1 WO2024024125 A1 WO 2024024125A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
winding
winding frame
stator
reversing
Prior art date
Application number
PCT/JP2022/046652
Other languages
French (fr)
Japanese (ja)
Inventor
宏明 牧野
大介 森
Original Assignee
株式会社 東芝
東芝インフラシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝インフラシステムズ株式会社 filed Critical 株式会社 東芝
Publication of WO2024024125A1 publication Critical patent/WO2024024125A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/08Forming windings by laying conductors into or around core parts
    • H02K15/085Forming windings by laying conductors into or around core parts by laying conductors into slotted stators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a winding device and a stator manufacturing method.
  • Electric vehicles will become more popular towards the realization of a low-carbon and decarbonized society. Since these drive motors and generators are required to operate at variable speeds over a wide range, a configuration is used that has a small number of turns and allows a large current to flow. Due to motor efficiency and thermal constraints, it is necessary to design a conductor with a large cross-sectional area per turn. In this case, from the viewpoint of storage efficiency in the stator slot, a para-winding made by bundling a plurality of wires with a small diameter is often used. Para-winding has a small cross-sectional area per strand, and can be expected to suppress loss due to the skin proximity effect.
  • the bundled wires are electrically connected in parallel to form a closed circuit between the neutral point and the coil terminal. It is known that when parallel wires are placed in a stator slot, variations in inductance occur due to differences in the wire positions, and this causes circulating current between the parallel wires, resulting in loss. .
  • para windings are mechanically manufactured through the following steps. (1) Send out the para wires in an aligned state. (2) For example, the para-wires sent out by a mechanism for reversing the front and back sides are alternately reversed. (3) Grasp the end point of the para-strand wire at the beginning of winding, and use a mechanism that rotates the outer periphery of the winding frame to wind a coil for one pole. (4) Drop the wound coil between the claws of the insertion jig. Between the nails, the bare wires line up in a row. (5) Wind the next pole. (6) After all poles are attached to the insertion jig, insert the insertion jig into the stator and attach the coil to the stator.
  • the para-wire is sent out in a twisted state when it is reversed, so there is a concern that the insulation coating may be damaged accordingly.
  • An object of the present invention is to provide a winding device capable of reversing a coil without sending out a para-strand wire in a twisted state, and a method for manufacturing a stator using the winding device.
  • a winding device forms a coil using a predetermined number of wires, and attaches the coil to a stator core in which a plurality of stator slots are formed.
  • a winding device for winding a wire comprising: a bobbin around which the plurality of parallel wires are wound; a winding frame around which the plurality of parallel wires supplied from the bobbin are wound to form a coil; a flyer for winding the number of wires around the winding frame; and a coil inserter disposed below the winding frame for receiving the coil that has fallen from the winding frame and inserting the coil into the stator slot.
  • a device interposed as necessary between the winding frame and the coil insertion device, receives the coil that has fallen from the winding frame, reverses the coil, and then drops the coil into the coil insertion device.
  • the invention is characterized by comprising a reversing device for causing
  • FIG. 1 is a longitudinal cross-sectional view showing an example of a rotating electric machine including a stator that is a target of the stator manufacturing method according to the first embodiment.
  • FIG. 2 is a perspective view showing the relationship between a stator core and coils of a stator that is a target of the stator manufacturing method according to the first embodiment.
  • FIG. 1 is a conceptual diagram showing the configuration of a winding device according to a first embodiment.
  • FIG. 2 is a front view conceptually showing a reversing device in the winding device according to the first embodiment.
  • 5 is a plan view taken along the line VV in FIG. 4 conceptually showing the reversing device in the winding device according to the first embodiment.
  • FIG. 6 is a plan view taken along the line VI-VI in FIG.
  • FIG. 5 conceptually showing the reversing device in the winding device according to the first embodiment.
  • FIG. FIG. 3 is a flow diagram showing the steps of the stator manufacturing method according to the first embodiment.
  • FIG. 3 is a flowchart showing detailed steps of manufacturing a coil in the stator manufacturing method according to the first embodiment.
  • FIG. 3 is an explanatory diagram showing a first state of a coil reversal step in the procedure of the stator manufacturing method according to the first embodiment.
  • FIG. 7 is an explanatory diagram showing a second state of a coil reversal step in the procedure of the stator manufacturing method according to the first embodiment.
  • FIG. 6 is an explanatory diagram showing a third state of a coil reversal step in the procedure of the stator manufacturing method according to the first embodiment.
  • FIG. 7 is an explanatory diagram showing a fourth state of a coil reversal step in the procedure of the stator manufacturing method according to the first embodiment.
  • FIG. 3 is an explanatory diagram showing the order of coils of a stator that is a target of the stator manufacturing method according to the first embodiment.
  • FIG. 3 is an explanatory diagram showing the reversal of the coils of the stator, which is the object of the stator manufacturing method according to the first embodiment.
  • FIG. 3 is a partial explanatory diagram showing coils housed in slots of a stator that is a target of the stator manufacturing method according to the first embodiment.
  • FIG. 16 is an explanatory diagram showing details of part A in FIG.
  • FIG. 16 is an explanatory diagram showing details of part B in FIG. 15 of a coil housed in a slot of a stator, which is a target of the stator manufacturing method according to the first embodiment.
  • FIG. 6 is an explanatory diagram showing a state before falling from the winding frame to the reversing device in the stator manufacturing method according to the first embodiment.
  • FIG. 6 is an explanatory diagram showing a state before falling from the winding frame to the coil insertion device in the stator manufacturing method according to the first embodiment.
  • FIG. 7 is a front view conceptually showing a reversing device in a winding device according to a second embodiment.
  • 21 is a plan view taken along the line XXI-XXI in FIG. 20 conceptually showing a reversing device in a winding device according to a second embodiment;
  • FIG. 21 is a side view taken along the line XXII-XXII in FIG. 20 conceptually showing a reversing device in a winding device according to a second embodiment.
  • FIG. 7 is an explanatory diagram showing a first state of a coil reversal step in the procedure of the stator manufacturing method according to the second embodiment.
  • FIG. 7 is an explanatory diagram showing a second state of a coil reversal step in the procedure of the stator manufacturing method according to the second embodiment.
  • FIG. 7 is an explanatory diagram showing a third state of a coil reversal step in the procedure of the stator manufacturing method according to the second embodiment.
  • FIG. 7 is an explanatory diagram showing a fourth state of a coil reversal step in the procedure of the stator manufacturing method according to the second embodiment.
  • FIG. 1 is a longitudinal cross-sectional view showing an example of a rotating electrical machine 1 including a stator 20 that is a target of the stator manufacturing method according to the first embodiment.
  • the rotating electrical machine 1 has a rotor 10, a stator 20, a frame 31, and two bearings 32.
  • the rotor 10 includes a rotor shaft 11 that is rotatably supported by bearings 32 on both sides in the axial direction and extends in the axial direction, a rotor core 12 that is attached to the outside of the rotor shaft 11 in the radial direction, and a rotor core 12 that is rotatably supported by bearings 32 on both sides in the axial direction. It has two inner fans 13 attached to the rotor shaft 11 on both sides in the axial direction.
  • the stator 20 is housed in a frame 31 and has a cylindrical stator core 21 disposed radially outside of the rotor core 12 and a stator winding 22 wound around the stator core 21.
  • FIG. 2 is a perspective view showing the relationship between the stator core 21 and the coil 50 of the stator 20, which is the object of the stator manufacturing method according to the first embodiment.
  • Stator core 21 is shown with a portion cut away in the circumferential direction. Further, for convenience of explanation, the coil 50 housed in the slot 25 of the stator core 21 is shown at a position separated from the stator core 21. Further, the coil 50 is displayed larger than the width of the slot 25 in which it is housed.
  • the stator core 21 has a plurality of electromagnetic steel plates 21a formed into a predetermined shape by punching and stacked in the axial direction. Therefore, the cross-sectional shape of the stator core 21 is based on the shape of each electromagnetic steel sheet 21a.
  • a plurality of stator slots 25 are provided on the radial inner surface of the stator core 21, that is, on the surface facing the outer surface of the rotor core 12, extending in the axial direction and extending over the entire circumference at equal intervals in the circumferential direction. It is formed.
  • the coil 50 is formed by winding a predetermined number (para number) of parallel wires 51 made up of wires 52 a plurality of times.
  • the coil 50 has a first lead-out part 55, which is a para-wire 51 connected to the beginning of winding of the coiled part, and a second lead-out part 56, which is the para-wire 51 connected to the end of the coil-shaped part. and has.
  • the coiled portion has coil sides 50a and 50b that are linear portions facing each other, and a first coil end 50c and a second coil end 50d that connect the coil sides 50a and 50b.
  • the coil side 50a is housed in a first slot 25a of the stator slots 25, and the coil side 50b is housed in a second slot 25b of the stator slots 25, respectively.
  • the first coil end 50c and the second coil end 50d are each arranged outside the stator core 21 in the axial direction.
  • the first drawer part 55 and the second drawer part 56 are connected to the first coil end 50c side.
  • the drawn-out parts of each coil, including the first drawn-out part 55 and the second drawn-out part 56, are connected by a predetermined connection method to form the stator winding 22 as a whole.
  • the expression of direction is defined.
  • the direction in which the electromagnetic steel sheets 21a are laminated in other words, the direction in which the rotor shaft 11 extends in the assembled state is referred to as the z direction.
  • the direction from the radially inner side to the outer side of the stator core 21, in other words, the direction away from the rotation axis of the rotor shaft 11 in the assembled state is called the r direction.
  • the circumferential direction is called the ⁇ direction.
  • the coil 50 is expressed in the same direction as the stator core 21, assuming that it is housed in the stator core 21.
  • the same expression will be used even if it is not housed in the stator core 21.
  • the tangential direction of, for example, the central portion of the first coil end 50c or the second coil end 50d may be referred to as the ⁇ direction.
  • FIG. 3 is a conceptual diagram showing the configuration of the winding device 100 according to the first embodiment.
  • the winding device 100 includes a tension device 101, a bobbin 103, a winding device main body 110, a reversing device 120, and a coil insertion device 130.
  • the bobbin 103 has a cylindrical shape, receives the para-strand wire 51, and winds the para-strand wire 51 around its side surface. At this time, the para-wire 51 supplied to the bobbin 103 is maintained under constant tension by the tension device 101. The height position of the bobbin 103 is adjusted by the lifting drive motor 102 in accordance with the height position of the winding device main body 110.
  • the winding device main body 110 has a winding frame 111, a lifting drive motor 112, a pulley 113, and a flyer 114.
  • the flyer 114 includes a guide reel 114b that receives and guides the para-wire 51 from the bobbin 103 while rotating around the reel 111, and a clamp that supplies the para-wire 51 to the reel 111 while maintaining the para-wire 51 at a predetermined height position. 114c, a winding frame 111 around which the para-wire 51 from the clamp 114c can be wound, and a support frame 114a that supports these.
  • the support frame 114a of the fryer 114 is directly connected to a pulley 113 which is rotatably driven by an externally provided rotary drive motor 104 via a belt 113a, and is rotationally driven by the rotary drive motor 104.
  • the winding frame 111 is provided at the center of the rotation center of the support frame 114a, and can be moved up and down by a lift drive motor 112. Further, the winding frame 111 is attached with a scraping part 115 which is movable up and down and is used to shake off the coil 50 wound around the winding frame 111 downward.
  • the reversing device 120 has a rotating plate 122 that receives the coil 50 that has been dropped downward from the winding frame 111, and reverses the coil 50.
  • the reversing device 120 is configured to be movable between a position below the winding frame 111 and a position away from the bottom. The reversing device 120 will be described in detail later with reference to FIGS. 4 to 6.
  • the coil insertion device 130 includes a coil receiving portion 131, a coil insertion portion 132, a plurality of guide rods 133, and a support frame 134 that supports these.
  • the coil receiving section 131 receives the coil 50 that has been reversed by the reversing device 120 or the coil 50 that has been directly removed from the winding frame 111 without going through the reversing device 120.
  • the coil insertion part 132 is a part for inserting the coil 50 received by the coil receiving part 131 into the stator slot 25 (FIG. 2) of the stator core 21.
  • the guide rod 133 guides the coil 50 so that the coil 50 is at an appropriate position in the coil receiving part 131 when the coil receiving part 131 directly receives the coil 50 that has been thrown off from the winding frame 111. Although the length of the guide rod 133 does not need to reach the winding frame 111 at its tip, it should be long enough to ensure this function.
  • the guide rod 133 is housed in the support frame 134 when the reversing device 120 is in a state to receive the coil 50, and when the coil receiving portion 131 directly receives the coil 50 that has been removed from the winding frame 111. is configured to extend upward.
  • illustration of a mechanism for extending the plurality of guide rods 133 upward is omitted.
  • a cover or a stopper (not shown) is provided so that it can be opened after the reversing. You may.
  • the coil insertion device 130 is already known except for the part having a plurality of guide rods 133 that can move up and down, and this part may have other methods, configurations, or forms.
  • FIG. 3 shows an example in which the coil insertion device 130 has a plurality of guide rods 133 and the plurality of guide rods 133 extend upward from the coil insertion device 130 toward the winding frame 111, this is not the case. but not limited to.
  • the winding device main body 110 may have a plurality of guide bars, and the plurality of guide bars may extend downward toward the coil insertion device 130.
  • FIG. 4 is a front view conceptually showing the reversing device in the winding device according to the first embodiment.
  • FIG. 5 is a plan view taken along the line VV in FIG. 4 conceptually showing the reversing device in the winding device according to the first embodiment.
  • FIG. 6 is a plan view taken along the line VI-VI in FIG. 5, conceptually showing the reversing device in the winding device according to the first embodiment.
  • the reversing device 120 has a rotation shaft 121, a rotation plate 122, a plurality of claws 124, a rotation drive section 125, an axial drive section 126, and two bearings 127.
  • a plurality of claws 124 are provided on the upper surface of the rotary plate 122, which receives the coil 50 thrown downward from the winding frame 111, so as to receive and hold the coil 50 within a predetermined range.
  • the rotating plate 122 is connected via a coupling portion 123 to a rotating shaft 121 extending in the axial direction thereof.
  • the rotation shaft 121 is rotatably supported by bearings 127 at two locations in the axial direction.
  • the rotation shaft 121 is rotationally driven around the rotation axis by a rotation drive section 125 .
  • the rotation shaft 121 performs a rotation operation of rotating 180 degrees and returning 180 degrees in the opposite direction, for example, but is not limited to this, and may be of a type in which the rotation proceeds in one direction.
  • the rotation shaft 121 has a position where the rotation plate 122 is directly under the winding frame 111 and a position where the reversing device 120 is out of the space between the winding frame 111 and the coil receiving part 131 of the coil insertion device 130. It is driven by an axial drive section 126 so as to be movable between positions.
  • the relative relationship between the winding frame 111 and the reversing device 120 is as follows.
  • the coil 50 has the first lead-out part 55 and the second lead-out part 56.
  • the upper surface of the rotating plate 122 is divided into a first half surface 122a and a second half surface 122b. Specifically, the region is divided into two regions with the center axis of the rotation shaft 121 as a boundary when viewed in a plan view. At this time, it is assumed that both the first drawer part 55 and the second drawer part 56 are in a positional relationship such that they are on the first half surface 122a.
  • the rotation shaft 121 is provided in a direction such that both the first drawer part 55 and the second drawer part 56 are on the same half plane.
  • a plurality of claws 124 provided on the upper surface of the rotating plate 122 are attached at inner and outer positions on each of the four sides of the rotating plate 122.
  • the coil 50 is guided to be located between the inner claw 124 and the outer claw 124 at each position.
  • the number and arrangement of the plurality of claws 124 are merely examples, and are not limited to the example shown in FIG. 5. If the coil 50 from the winding frame 111 can be received, reversed, and dropped to the appropriate position of the coil receiving part 131 of the coil insertion device 130, the number of the plurality of claws 124 can be increased or decreased, or the arrangement can be changed. You may. Further, the claw 124 may be attached at an angle from the upper surface of the rotating plate 122 instead of being perpendicular to the upper surface. Alternatively, the claw 124 may have a curved portion.
  • FIG. 7 is a flowchart showing the steps of the stator manufacturing method according to the first embodiment.
  • stator core 21 is assembled (step S10). Specifically, first, a required number of electromagnetic steel sheets 21a are manufactured (step S11). Next, the stator core 21 is assembled by laminating the electromagnetic steel plates 21a (step S12).
  • stator winding 22 is as follows.
  • the coil number index n is set to 1 (step S21).
  • step S30 the coil 50 is manufactured (step S30). Regarding the manufacturing step S30 of the coil 50, the detailed procedure will be explained with reference to FIG. 8 below.
  • step S22 the manufactured coil 50 is inserted into the stator core 21 (step S22).
  • a coil insertion device 130 is used to insert the coil 50 into the stator core 21.
  • step S23 the coil number index n is set to n+1 (step S23), and it is determined whether the total number of coils N has been exceeded (step S24). If it is not determined that the total number of coils N has been exceeded (step S24: NO), the process returns to step S30 for manufacturing the coil 50, and the next coil 50 is manufactured.
  • step S24 If it is determined that the total number of coils N has been exceeded (step S24 YES), the first coil end 50c side (welding side) is connected (step S25). Specifically, between the respective coils 50 having the first drawer part 55 and the second drawer part 56, the connection between the coils 50 using the first drawer part 55 and the second drawer part 56 is performed based on a predetermined connection policy. Make the connection. As a result, stator windings 22 of stator 20 are formed.
  • stator 20 with the stator winding 22 wound around the stator core 21 is tested after assembly (step S26). After this, for example, accessories are attached as necessary.
  • step S30 the coil 50 is manufactured (step S30) immediately before the step S22 of inserting the coil 50, but the present invention is not limited to this.
  • all the coils 50 may be manufactured in advance and inserted one after another.
  • the coil manufacturing step S30 is completed before step S21, and only the insertion of the coil 50 (step S22) is repeated.
  • FIG. 8 is a flowchart showing the detailed procedure of manufacturing step S30 of the coil 50 in the procedure of the stator manufacturing method according to the first embodiment.
  • the coil 50 is formed by winding the parallel wire 51 consisting of the same number of wires 52 around the winding frame 111 (step S31).
  • step S32 it is determined whether or not to reverse.
  • step S32 If it is determined in step S32 that it is not reversed (step S32 NO), first, the plurality of guide rods 133 are extended from the coil insertion device 130 toward the winding frame 111 (step S33). Thereafter, the coil 50 is separated from the winding frame 111 by the scraping section 115 and dropped onto the coil receiving section 131 of the coil insertion device 130 located below (step S34).
  • step S32 If it is determined in step S32 that the rotation is to be reversed (step S32 YES), first, the axial drive unit 126 moves the rotation shaft 121 to a position where the rotation plate 122 of the reversing device 120 is directly below the winding frame 111. (Step S35). Thereafter, the coil 50 is separated from the winding frame 111 by the scraper 115 and dropped downward (step S36). Next, the coil 50 is reversed by the reversing device 120 (step S37). Next, the coil 50 is dropped from the reversing device 120 onto the coil receiving portion 131 of the coil insertion device 130 located below (step S38). At this time, if the reversing device 120 is provided with a cover or a stopper, the coil 50 is dropped by opening this cover.
  • step S32 the coil 50 is placed on the coil receiving part 131 of the coil insertion device 130 in step S34 or step S38 (step S39).
  • FIG. 9 is an explanatory diagram showing the first state of the coil reversal step in the procedure of the stator manufacturing method according to the first embodiment. This is a state corresponding to step S36 in the flow diagram of FIG.
  • the coil 50 is wound so that the first coil end 50c of the coil 50 is on the front side in FIG. 9, and the second coil end 50d is on the back side in FIG. It is formed in a frame 111. Therefore, the first drawer part 55 and the second drawer part 56 are arranged on the front side in FIG. 9, that is, in the z direction. Further, in FIG. 9, when the coil 50 is viewed from above, the current flow is in a clockwise direction.
  • FIG. 10 is an explanatory diagram showing the second state of the coil reversal step in the procedure of the stator manufacturing method according to the first embodiment. This is a state corresponding to the stage immediately after step S36 and before step S37 in the flow diagram of FIG.
  • the coil 50 is placed between the plurality of claws 124 on the rotating plate 122 of the reversing device 120 .
  • FIG. 11 is an explanatory diagram showing the third state of the coil reversal step in the procedure of the stator manufacturing method according to the first embodiment, and is the state after step S37 in the flow diagram of FIG. 8 has been completed.
  • FIG. 12 is an explanatory diagram showing the fourth state of the coil reversal step in the procedure of the stator manufacturing method according to the first embodiment, which is the state of step S38 in the flow diagram of FIG. 8.
  • the first coil end 50c of the coil 50 is on the back side in FIGS. 11 and 12, and the second coil end 50d is on the near side in FIGS. 11 and 12. Therefore, the first drawer part 55 and the second drawer part 56 are arranged on the back side in FIGS. 11 and 12, that is, on the opposite side to the z direction. It also reverses in the r direction.
  • the positions of the coil 50 in the z direction and the r direction are reversed, and the current flows in the opposite direction. In other words, the polarity is also reversed.
  • FIG. 13 is an explanatory diagram showing the order of the coils 50 of the stator 20, which is the target of the stator manufacturing method according to the first embodiment.
  • FIG. 13 shows the polarity and arrangement when the coil 50 for one phase is loaded on the stator core 21, and is an example of a configuration in which the number of parallel circuits is 1, 8 poles, and concentric winding.
  • the odd-numbered coils face the same direction in the circumferential direction. Moreover, the even numbered ones face the same direction in the circumferential direction, and the direction is opposite to the odd numbered one.
  • FIG. 14 is an explanatory diagram showing the reversal of the coil 50 of the stator 20, which is the object of the stator manufacturing method according to the first embodiment.
  • the reversing device 120 according to this embodiment can be used.
  • FIG. 15 is a partial explanatory diagram showing the coil 50 housed in the slot 25 of the stator 20, which is the object of the stator manufacturing method according to the first embodiment. Note that FIG. 15 and FIGS. 16 and 17 cited later are based on FIG. 24 of Patent Document 1 for explanation of similar effects.
  • the coil 50 labeled C1 has a para-strand wire 51 wound in eight layers, and is housed in the slots 25a and 25b. Layer numbers 1 to 8 indicate the order in which the para-wire 51 is wound around the winding frame 111. Therefore, in the coil 50 labeled C1, the para-strand wire 51 is wound from the inside in the radial direction to the outside in the radial direction.
  • the coil 50 labeled C2 has the same phase as the coil 50 labeled C1, and is housed in the slot 25f and the slot 25g. In the coil 50 labeled C2, a para-wire 51 is wound from the outside in the radial direction to the inside in the radial direction.
  • the coil 50 labeled C1 and the coil 50 labeled C2 are connected in series to each other by a connecting wire Wa.
  • FIG. 16 is an explanatory diagram showing details of part A in FIG. 15 of the coil 50 housed in the slot 25 of the stator 20, which is the target of the stator manufacturing method according to the first embodiment. That is, it is a partial view of the coil 50 labeled C1 in FIG. 15.
  • FIG. 17 is an explanatory diagram showing details of part B in FIG. 15 of the coil accommodated in the slot 25 of the stator 20, which is the object of the stator manufacturing method according to the first embodiment. That is, it is a partial view of the coil 50 labeled C2 in FIG. 15.
  • These figures show a case where the number of strands 52 in the para wire 51 (para number) is 17.
  • FIG. 16 is a partial diagram of the coil 50 labeled C1
  • FIG. 16 Comparing FIG. 16, which is a partial diagram of the coil 50 labeled C1, with FIG. The distributions are almost opposite to each other.
  • FIG. 18 is an explanatory diagram showing a state before falling from the winding frame 111 to the reversing device 120 in the stator manufacturing method according to the first embodiment.
  • the reversing device 120 receives the coil 50 falling from the winding frame 111 and reverses the coil 50.
  • the reversing device 120 drops the reversed coil 50 onto the coil insertion device 130.
  • FIG. 19 is an explanatory diagram showing a state before falling from the winding frame 111 to the coil insertion device 130 in the stator manufacturing method according to the first embodiment.
  • the reversing device 120 is not used. Therefore, the coil 50 will fall directly from the winding frame 111 to the coil insertion device 130.
  • a plurality of guide rods 133 extend upward from the coil insertion device 130 to guide the coil 50 so that the coil 50 falls to an appropriate location on the coil insertion device 130.
  • the coil 50 in a single unit state after winding is reversed. Therefore, the coil 50 can be reversed without the step of sending out the para-wire 51 in a twisted state. As a result, the risk of damage to the insulation coating of the wire 52 can be reduced.
  • FIG. 20 is a front view conceptually showing the reversing device 120a in the winding device 100 according to the second embodiment.
  • FIG. 21 is a plan view taken along the line XXI-XXI in FIG. 20 conceptually showing the reversing device 120a in the winding device 100 according to the second embodiment.
  • FIG. 22 is a side view taken along the line XXII-XXII in FIG. 20 conceptually showing the reversing device 120a in the winding device 100 according to the second embodiment.
  • This embodiment is a modification of the first embodiment.
  • the direction of the rotation axis 121a is different from the rotation axis 121 in the first embodiment.
  • the coil 50 that has been removed from the winding frame 111 and placed on the rotating plate 122 has a positional relationship with the rotating shaft 121 as shown in FIG. 21.
  • the relative relationship between the winding frame 111 and the reversing device 120a is as follows.
  • the upper surface of the rotating plate 122 is divided into a first half surface 122c and a second half surface 122d. Specifically, the region is divided into two regions with the central axis of the rotation shaft 121a as a boundary when viewed in a plan view. At this time, the first drawer part 55 is on the first half surface 122c, and the second drawer part 56 is on the first half surface 122c. In other words, in this embodiment, the rotation shaft 121a is provided in a direction such that the first drawer part 55 and the second drawer part 56 are on different halves.
  • FIG. 23 is an explanatory diagram showing the first state of the coil reversal step in the procedure of the stator manufacturing method according to the second embodiment.
  • the coil 50 is wound so that the first coil end 50c of the coil 50 is on the left front side in FIG. 23, and the second coil end 50d is on the right front side in FIG. It is formed in a frame 111. Therefore, the first drawer part 55 is arranged on the left front side in FIG. 23, and the second drawer part 56 is arranged on the left rear side. Further, in FIG. 23, when the coil 50 is viewed from above, the current flow is in a counterclockwise direction.
  • FIG. 24 is an explanatory diagram showing the second state of the coil reversal step in the procedure of the stator manufacturing method according to the second embodiment. This is a state corresponding to the stage immediately after step S36 and before step S37 in the flow diagram of FIG.
  • the coil 50 is placed between the plurality of claws 124 on the rotating plate 122 of the reversing device 120 .
  • FIG. 25 is an explanatory diagram showing the third state of the coil reversal step in the procedure of the stator manufacturing method according to the second embodiment.
  • FIG. 26 is an explanatory diagram showing a fourth state of the coil reversal step in the procedure of the stator manufacturing method according to the second embodiment, which is the state of step S38 in the flow diagram of FIG. 8.
  • the first coil end 50c of the coil 50 is on the near side in FIGS. 25 and 26, and the second coil end 50d is on the near side in FIGS. 25 and 26. This is the same state as before rotation. Note that due to the rotation, the first drawer part 55 moves from the right side to the left side in the figure, and the second drawer part 56 moves from the left side to the right side in the figure, but both are on the front side before and after the rotation. There is no change.
  • the positions of the coil 50 in the ⁇ direction and the r direction are reversed by the reversing operation by the reversing device 120a. Also, the polarity is reversed.
  • the winding device 100 is capable of reversing the coil 50 without using the step of feeding out the para-wire in a twisted state, and without sending out the para-wire in a twisted state. And a method of manufacturing the stator 20 using the same can be provided.
  • SYMBOLS 1 Rotating electric machine, 10... Rotor, 11... Rotor shaft, 12... Rotor core, 13... Inner fan, 20... Stator, 21... Stator core, 21a... Electromagnetic steel plate, 22... Stator winding, 25 ... Stator slot, 25a... First slot, 25b... Second slot, 31... Frame, 32... Bearing, 50... Coil, 50a, 50b... Coil side, 50c, 50d... Coil end, 51... Parallel wire , 52... Element wire, 55... First drawer part, 56... Second drawer part, 100... Winding device, 101... Tension device, 102... Lifting drive motor, 103... Bobbin, 104... Rotation drive motor, 110... Winding Wire device main body, 111...
  • Winding frame 112... Lifting drive motor, 113... Pulley, 113a... Belt, 114... Flyer, 114a... Support frame, 114b... Guide reel, 114c... Clamp, 115... Wiping off part, 120, 120a ...Reversing device, 121, 121a... Rotating shaft, 122... Rotating plate, 122a... First half surface, 122b... Second half surface, 122c... First half surface, 122d... Second half surface, 123... Joint part , 124...nail, 125...rotation drive section, 126...axial drive section, 127...bearing, 130...coil insertion device, 131...coil receiving section, 132...coil insertion section, 133...guide bar, 134...support frame

Abstract

A winding device (100) according to an embodiment of the present invention forms a coil (50) by means of parallel strands (51) and winds the coil around a stator core having a plurality of stator slots formed therein. The winding device (100) comprises: a bobbin (103) that winds the parallel strands (51); a winding frame (111) around which the parallel strands (51) supplied from the bobbin (103) are wound to form the coil (50); a flyer (114) that winds the parallel strands (51) around the winding frame (111); a coil insertion device (130) which is disposed below the winding frame (111) and which inserts the coil (50) dropped from the winding frame (111) into the stator slots; and a reversing device (120) that intervenes as necessary between the winding frame (111) and the coil insertion device (130) to receive and reverse the coil (50) dropped from the winding frame (111), and then drop the coil (50) onto the coil insertion device (130).

Description

巻線装置および固定子製造方法Winding device and stator manufacturing method
 本発明は、巻線装置および固定子製造方法に関する。 The present invention relates to a winding device and a stator manufacturing method.
 低・脱炭素化社会の実現に向け、電動車両の普及が進む。これらの駆動モータおよび発電機は広域な可変速運転が求められるため、ターン数が小さく大電流を流す構成が用いられる。モータの効率および熱的な制約のため、1ターンあたりの導体断面積を大きく設計する必要がある。この場合、ステータスロットへの収納効率の観点から、径の小さい素線を複数本束ねたパラ巻線がしばしば用いられる。パラ巻線は、素線1本あたりの断面積が小さく、表皮近接効果による損失の抑制が期待できる。一方、束ねられた素線(パラ素線)は電気的には並列接続され、中性点とコイル端子の間に閉回路が形成される。パラ素線がステータスロット内に収められたとき、素線位置の違いによるインダクタンスのばらつきが生じ、これに起因して、並列素線間の循環電流が生じ、損失となることが知られている。 Electric vehicles will become more popular towards the realization of a low-carbon and decarbonized society. Since these drive motors and generators are required to operate at variable speeds over a wide range, a configuration is used that has a small number of turns and allows a large current to flow. Due to motor efficiency and thermal constraints, it is necessary to design a conductor with a large cross-sectional area per turn. In this case, from the viewpoint of storage efficiency in the stator slot, a para-winding made by bundling a plurality of wires with a small diameter is often used. Para-winding has a small cross-sectional area per strand, and can be expected to suppress loss due to the skin proximity effect. On the other hand, the bundled wires (para wires) are electrically connected in parallel to form a closed circuit between the neutral point and the coil terminal. It is known that when parallel wires are placed in a stator slot, variations in inductance occur due to differences in the wire positions, and this causes circulating current between the parallel wires, resulting in loss. .
特許第5441478号公報Patent No. 5441478
パラ巻線の循環電流による損失を抑制する手段として、束の中での素線の位置関係を入れ替える方法(転位)が知られている。これにより、局所的に(例えば1スロット内の単位で見た場合)素線間のインダクタンスのばらつきが生じても、端子から中性点までの合計インダクタンスを見た時にこれが減少し、循環電流による損失の抑制が期待される。 As a means of suppressing loss due to circulating current in a para-winding, a method of changing the positional relationship of strands in a bundle (transposition) is known. As a result, even if there is a local variation in inductance between wires (for example, when looking at the unit within one slot), this decreases when looking at the total inductance from the terminal to the neutral point, and due to the circulating current. It is expected that losses will be reduced.
 代表的な例として、パラ巻線は機械的に以下の工程で製造される。
 (1)パラ素線を整列させた状態で送り出す。
 (2)表裏反転させる機構により送り出されるパラ素線をたとえば交互に反転させる。
 (3)パラ素線の巻き始めの端点を掴み、巻き枠の外周を回転する機構によって、1極分のコイルを巻く。
 (4)巻いたコイルを挿入ジグの爪の間に落とす。爪の間では、素線が一列に並ぶ。
 (5)次の極を巻く。
 (6)すべての極を挿入ジグに装着したら、ステータに挿入ジグを挿入し、コイルをステータに装着する。
As a typical example, para windings are mechanically manufactured through the following steps.
(1) Send out the para wires in an aligned state.
(2) For example, the para-wires sent out by a mechanism for reversing the front and back sides are alternately reversed.
(3) Grasp the end point of the para-strand wire at the beginning of winding, and use a mechanism that rotates the outer periphery of the winding frame to wind a coil for one pole.
(4) Drop the wound coil between the claws of the insertion jig. Between the nails, the bare wires line up in a row.
(5) Wind the next pole.
(6) After all poles are attached to the insertion jig, insert the insertion jig into the stator and attach the coil to the stator.
 このように、(2)においてパラ素線反転させることにより、コイル挿入ジグの爪の間に整列する素線の順序を逆転させることができる。 In this way, by reversing the para-strand wires in (2), the order of the strands arranged between the claws of the coil insertion jig can be reversed.
 しかしながら、この方法では、反転させる際に、捻じれた状態でパラ素線が送り出されるため、これに伴い、絶縁被膜の損傷が懸念される。 However, in this method, the para-wire is sent out in a twisted state when it is reversed, so there is a concern that the insulation coating may be damaged accordingly.
 本発明の目的は、捻じれた状態でパラ素線を送り出すことなく、コイルを反転可能な巻線装置およびこれを用いた固定子の製造方法を提供することである。 An object of the present invention is to provide a winding device capable of reversing a coil without sending out a para-strand wire in a twisted state, and a method for manufacturing a stator using the winding device.
 上述の目的を達成するため、本発明の実施形態に係る巻線装置は、所定のパラ数の素線によりコイルを形成し、前記コイルを、複数の固定子スロットが形成された固定子鉄心に巻き付ける巻線装置であって、前記複パラ数の素線を巻き付けるボビンと、前記ボビンから供給される前記パラ数の素線が巻き付けられてコイルが形成される巻枠と、前記ボビンから供給される前記パラ数の素線を前記巻枠に巻き付けるフライヤと、前記巻枠の下方に配されて、前記巻枠から落下した前記コイルを受けて、前記コイルを前記固定子スロットに挿入するコイル挿入装置と、前記巻枠と前記コイル挿入装置との間に必要に応じて介在して、前記巻枠から落下したコイルを受けて前記コイルを反転させた上で前記コイル挿入装置に前記コイルを落下させる反転装置と、を備えることを特徴とする。 In order to achieve the above object, a winding device according to an embodiment of the present invention forms a coil using a predetermined number of wires, and attaches the coil to a stator core in which a plurality of stator slots are formed. A winding device for winding a wire, comprising: a bobbin around which the plurality of parallel wires are wound; a winding frame around which the plurality of parallel wires supplied from the bobbin are wound to form a coil; a flyer for winding the number of wires around the winding frame; and a coil inserter disposed below the winding frame for receiving the coil that has fallen from the winding frame and inserting the coil into the stator slot. A device, interposed as necessary between the winding frame and the coil insertion device, receives the coil that has fallen from the winding frame, reverses the coil, and then drops the coil into the coil insertion device. The invention is characterized by comprising a reversing device for causing
第1の実施形態に係る固定子の製造方法の対象とする固定子を含む回転電機の例を示す縦断面図である。1 is a longitudinal cross-sectional view showing an example of a rotating electric machine including a stator that is a target of the stator manufacturing method according to the first embodiment. 第1の実施形態に係る固定子の製造方法の対象とする固定子の固定子鉄心とコイルとの関係を示す斜視図である。FIG. 2 is a perspective view showing the relationship between a stator core and coils of a stator that is a target of the stator manufacturing method according to the first embodiment. 第1の実施形態に係る巻線装置の構成を示す概念図である。FIG. 1 is a conceptual diagram showing the configuration of a winding device according to a first embodiment. 第1の実施形態に係る巻線装置における反転装置を概念的に示す正面図である。FIG. 2 is a front view conceptually showing a reversing device in the winding device according to the first embodiment. 第1の実施形態に係る巻線装置における反転装置を概念的に示す図4のV-V線矢視平面図である。5 is a plan view taken along the line VV in FIG. 4 conceptually showing the reversing device in the winding device according to the first embodiment. FIG. 第1の実施形態に係る巻線装置における反転装置を概念的に示す図5のVI-VI線矢視平面図である。6 is a plan view taken along the line VI-VI in FIG. 5 conceptually showing the reversing device in the winding device according to the first embodiment. FIG. 第1の実施形態に係る固定子の製造方法の手順を示すフロー図である。FIG. 3 is a flow diagram showing the steps of the stator manufacturing method according to the first embodiment. 第1の実施形態に係る固定子の製造方法の手順におけるコイルの製造ステップの詳細な手順を示すフロー図である。FIG. 3 is a flowchart showing detailed steps of manufacturing a coil in the stator manufacturing method according to the first embodiment. 第1の実施形態に係る固定子の製造方法の手順におけるコイルの反転ステップの第1の状態を示す説明図である。FIG. 3 is an explanatory diagram showing a first state of a coil reversal step in the procedure of the stator manufacturing method according to the first embodiment. 第1の実施形態に係る固定子の製造方法の手順におけるコイルの反転ステップの第2の状態を示す説明図である。FIG. 7 is an explanatory diagram showing a second state of a coil reversal step in the procedure of the stator manufacturing method according to the first embodiment. 第1の実施形態に係る固定子の製造方法の手順におけるコイルの反転ステップの第3の状態を示す説明図である。FIG. 6 is an explanatory diagram showing a third state of a coil reversal step in the procedure of the stator manufacturing method according to the first embodiment. 第1の実施形態に係る固定子の製造方法の手順におけるコイルの反転ステップの第4の状態を示す説明図である。FIG. 7 is an explanatory diagram showing a fourth state of a coil reversal step in the procedure of the stator manufacturing method according to the first embodiment. 第1の実施形態に係る固定子の製造方法の対象となる固定子のコイルの順序を示す説明図である。FIG. 3 is an explanatory diagram showing the order of coils of a stator that is a target of the stator manufacturing method according to the first embodiment. 第1の実施形態に係る固定子の製造方法の対象となる固定子のコイルの反転を示す説明図である。FIG. 3 is an explanatory diagram showing the reversal of the coils of the stator, which is the object of the stator manufacturing method according to the first embodiment. 第1の実施形態に係る固定子の製造方法の対象となる固定子のスロットに収納されたコイルを示す部分的な説明図である。FIG. 3 is a partial explanatory diagram showing coils housed in slots of a stator that is a target of the stator manufacturing method according to the first embodiment. 第1の実施形態に係る固定子の製造方法の対象となる固定子のスロットに収納されたコイルの図15のA部の詳細を示す説明図である。FIG. 16 is an explanatory diagram showing details of part A in FIG. 15 of a coil housed in a slot of a stator, which is a target of the stator manufacturing method according to the first embodiment. 第1の実施形態に係る固定子の製造方法の対象となる固定子のスロットに収納されたコイルの図15のB部の詳細を示す説明図である。FIG. 16 is an explanatory diagram showing details of part B in FIG. 15 of a coil housed in a slot of a stator, which is a target of the stator manufacturing method according to the first embodiment. 第1の実施形態に係る固定子の製造方法における巻枠から反転装置への落下前の状態を示す説明図である。FIG. 6 is an explanatory diagram showing a state before falling from the winding frame to the reversing device in the stator manufacturing method according to the first embodiment. 第1の実施形態に係る固定子の製造方法における巻枠からコイル挿入装置への落下前の状態を示す説明図である。FIG. 6 is an explanatory diagram showing a state before falling from the winding frame to the coil insertion device in the stator manufacturing method according to the first embodiment. 第2の実施形態に係る巻線装置における反転装置を概念的に示す正面図である。FIG. 7 is a front view conceptually showing a reversing device in a winding device according to a second embodiment. 第2の実施形態に係る巻線装置における反転装置を概念的に示す図20のXXI-XXI線矢視平面図である。21 is a plan view taken along the line XXI-XXI in FIG. 20 conceptually showing a reversing device in a winding device according to a second embodiment; FIG. 第2の実施形態に係る巻線装置における反転装置を概念的に示す図20のXXII-XXII線矢視側面図である。FIG. 21 is a side view taken along the line XXII-XXII in FIG. 20 conceptually showing a reversing device in a winding device according to a second embodiment. 第2の実施形態に係る固定子の製造方法の手順におけるコイルの反転ステップの第1の状態を示す説明図である。FIG. 7 is an explanatory diagram showing a first state of a coil reversal step in the procedure of the stator manufacturing method according to the second embodiment. 第2の実施形態に係る固定子の製造方法の手順におけるコイルの反転ステップの第2の状態を示す説明図である。FIG. 7 is an explanatory diagram showing a second state of a coil reversal step in the procedure of the stator manufacturing method according to the second embodiment. 第2の実施形態に係る固定子の製造方法の手順におけるコイルの反転ステップの第3の状態を示す説明図である。FIG. 7 is an explanatory diagram showing a third state of a coil reversal step in the procedure of the stator manufacturing method according to the second embodiment. 第2の実施形態に係る固定子の製造方法の手順におけるコイルの反転ステップの第4の状態を示す説明図である。FIG. 7 is an explanatory diagram showing a fourth state of a coil reversal step in the procedure of the stator manufacturing method according to the second embodiment.
 以下、図面を参照して、本発明の実施形態に係る巻線装置および固定子製造方法について説明する。ここで、互いに同一または類似の部分には、共通の符号を付して、重複説明は省略する。 Hereinafter, a winding device and a stator manufacturing method according to an embodiment of the present invention will be described with reference to the drawings. Here, parts that are the same or similar to each other are given the same reference numerals, and redundant explanation will be omitted.
 [第1の実施形態]
 図1は、第1の実施形態に係る固定子の製造方法の対象とする固定子20を含む回転電機1の例を示す縦断面図である。
[First embodiment]
FIG. 1 is a longitudinal cross-sectional view showing an example of a rotating electrical machine 1 including a stator 20 that is a target of the stator manufacturing method according to the first embodiment.
 回転電機1は、回転子10、固定子20、フレーム31および2つの軸受32を有する。 The rotating electrical machine 1 has a rotor 10, a stator 20, a frame 31, and two bearings 32.
 回転子10は、軸方向の両側を軸受32により回転可能に支持されて軸方向に延びたロータシャフト11、ロータシャフト11の径方向外側に取り付けられた回転子鉄心12、および回転子鉄心12の軸方向の両側でロータシャフト11に取り付けられた2つの内扇13を有する。 The rotor 10 includes a rotor shaft 11 that is rotatably supported by bearings 32 on both sides in the axial direction and extends in the axial direction, a rotor core 12 that is attached to the outside of the rotor shaft 11 in the radial direction, and a rotor core 12 that is rotatably supported by bearings 32 on both sides in the axial direction. It has two inner fans 13 attached to the rotor shaft 11 on both sides in the axial direction.
 固定子20は、フレーム31内に収納され、回転子鉄心12の径方向外側に配された円筒状の固定子鉄心21と、固定子鉄心21に巻回された固定子巻線22を有する。 The stator 20 is housed in a frame 31 and has a cylindrical stator core 21 disposed radially outside of the rotor core 12 and a stator winding 22 wound around the stator core 21.
 図2は、第1の実施形態に係る固定子の製造方法の対象とする固定子20の固定子鉄心21とコイル50との関係を示す斜視図である。固定子鉄心21は、周方向の一部を切り取って示している。また、説明の便宜上、固定子鉄心21のスロット25に収納されているコイル50を、固定子鉄心21から離した位置で示している。また、コイル50を、収納されているスロット25の幅よりも大きく表示している。 FIG. 2 is a perspective view showing the relationship between the stator core 21 and the coil 50 of the stator 20, which is the object of the stator manufacturing method according to the first embodiment. Stator core 21 is shown with a portion cut away in the circumferential direction. Further, for convenience of explanation, the coil 50 housed in the slot 25 of the stator core 21 is shown at a position separated from the stator core 21. Further, the coil 50 is displayed larger than the width of the slot 25 in which it is housed.
 固定子鉄心21は、打ち抜きにより所定の形状に形成されて軸方向に積層された複数の電磁鋼板21aを有する。したがって、固定子鉄心21の断面形状は、各電磁鋼板21aの形状に基づいている。 The stator core 21 has a plurality of electromagnetic steel plates 21a formed into a predetermined shape by punching and stacked in the axial direction. Therefore, the cross-sectional shape of the stator core 21 is based on the shape of each electromagnetic steel sheet 21a.
 固定子鉄心21の径方向の内面、すなわち、回転子鉄心12の外側表面に対向する面には、軸方向に延びて、周方向に互いに等しい間隔で全周にわたり、複数の固定子スロット25が形成されている。 A plurality of stator slots 25 are provided on the radial inner surface of the stator core 21, that is, on the surface facing the outer surface of the rotor core 12, extending in the axial direction and extending over the entire circumference at equal intervals in the circumferential direction. It is formed.
 コイル50は、所定の本数(パラ数)の素線52からなるパラ素線51が、複数回巻かれて形成されている。コイル50は、コイル状部分の巻き始めの部分に接続するパラ素線51である第1引き出し部55と、コイル状部分の巻き終わりの部分に接続するパラ素線51である第2引き出し部56とを有する。 The coil 50 is formed by winding a predetermined number (para number) of parallel wires 51 made up of wires 52 a plurality of times. The coil 50 has a first lead-out part 55, which is a para-wire 51 connected to the beginning of winding of the coiled part, and a second lead-out part 56, which is the para-wire 51 connected to the end of the coil-shaped part. and has.
 コイル状部分は、互いに対向した直線的な部分のコイルサイド50a、50bと、コイルサイド50aとコイルサイド50bを接続する第1のコイルエンド50cおよび第2のコイルエンド50dを有する。コイルサイド50aは固定子スロット25のうちの第1のスロット25aに、また、コイルサイド50bは固定子スロット25のうちの第2のスロット25bに、それぞれ収納されている。第1のコイルエンド50cおよび第2のコイルエンド50dは、それぞれ固定子鉄心21の軸方向の外側に配される。 The coiled portion has coil sides 50a and 50b that are linear portions facing each other, and a first coil end 50c and a second coil end 50d that connect the coil sides 50a and 50b. The coil side 50a is housed in a first slot 25a of the stator slots 25, and the coil side 50b is housed in a second slot 25b of the stator slots 25, respectively. The first coil end 50c and the second coil end 50d are each arranged outside the stator core 21 in the axial direction.
 第1引き出し部55と第2引き出し部56は、第1のコイルエンド50c側に接続されている。第1引き出し部55と第2引き出し部56を含む各コイルの引き出し部が、所定の接続方式により接続されて、全体として、固定子巻線22が形成される。 The first drawer part 55 and the second drawer part 56 are connected to the first coil end 50c side. The drawn-out parts of each coil, including the first drawn-out part 55 and the second drawn-out part 56, are connected by a predetermined connection method to form the stator winding 22 as a whole.
 ここで、説明の便宜上、方向の表現を定義する。まず、固定子鉄心21については、電磁鋼板21aの積層方向、言い換えれば組立て状態においてロータシャフト11の延びる方向を、z方向と呼ぶ。また、固定子鉄心21の径方向内側から外側に向かう方向、言い換えれば、組立て状態においてロータシャフト11の回転軸から離れる方向を、r方向と呼ぶ。また、周方向をΘ方向と呼ぶ。 Here, for convenience of explanation, the expression of direction is defined. First, regarding the stator core 21, the direction in which the electromagnetic steel sheets 21a are laminated, in other words, the direction in which the rotor shaft 11 extends in the assembled state is referred to as the z direction. Further, the direction from the radially inner side to the outer side of the stator core 21, in other words, the direction away from the rotation axis of the rotor shaft 11 in the assembled state is called the r direction. Further, the circumferential direction is called the Θ direction.
 コイル50についても同様に、固定子鉄心21に収納された状態を想定して、固定子鉄心21と同様の方向で表現する。コイル50については、固定子鉄心21に収納されていない状態であっても、同様の表現をするものとする。なお、Θ方向については、第1のコイルエンド50cあるいは第2のコイルエンド50dのたとえば中央部の接線方向をΘ方向と呼ぶ場合もある。 Similarly, the coil 50 is expressed in the same direction as the stator core 21, assuming that it is housed in the stator core 21. Regarding the coil 50, the same expression will be used even if it is not housed in the stator core 21. Regarding the Θ direction, the tangential direction of, for example, the central portion of the first coil end 50c or the second coil end 50d may be referred to as the Θ direction.
 図3は、第1の実施形態に係る巻線装置100の構成を示す概念図である。 FIG. 3 is a conceptual diagram showing the configuration of the winding device 100 according to the first embodiment.
 巻線装置100は、テンション装置101、ボビン103、巻線装置本体110、反転装置120、およびコイル挿入装置130を備える。 The winding device 100 includes a tension device 101, a bobbin 103, a winding device main body 110, a reversing device 120, and a coil insertion device 130.
 ボビン103は円筒状であり、パラ素線51の供給を受けて、パラ素線51をその側面に巻き付ける。この際、ボビン103に供給されるパラ素線51は、テンション装置101によって一定の張力を受ける状態に維持されている。ボビン103は、昇降駆動モータ102によって、巻線装置本体110の高さ位置に対応して高さ位置が調節される。 The bobbin 103 has a cylindrical shape, receives the para-strand wire 51, and winds the para-strand wire 51 around its side surface. At this time, the para-wire 51 supplied to the bobbin 103 is maintained under constant tension by the tension device 101. The height position of the bobbin 103 is adjusted by the lifting drive motor 102 in accordance with the height position of the winding device main body 110.
 巻線装置本体110は、巻枠111、昇降駆動モータ112、プーリ113、およびフライヤ114を有する。 The winding device main body 110 has a winding frame 111, a lifting drive motor 112, a pulley 113, and a flyer 114.
 フライヤ114は、巻枠111の周囲を旋回しながらボビン103からパラ素線51を受け入れてガイドするガイドリール114bおよびパラ素線51を所定の高さ位置に維持しながら巻枠111に供給するクランプ114c、クランプ114cからのパラ素線51をその周囲に巻き付け可能な巻枠111、およびこれらを支持する支持枠114aを有する。 The flyer 114 includes a guide reel 114b that receives and guides the para-wire 51 from the bobbin 103 while rotating around the reel 111, and a clamp that supplies the para-wire 51 to the reel 111 while maintaining the para-wire 51 at a predetermined height position. 114c, a winding frame 111 around which the para-wire 51 from the clamp 114c can be wound, and a support frame 114a that supports these.
 フライヤ114の支持枠114aは、外部に設けられた回転駆動モータ104によりベルト113aを介して回転駆動されるプーリ113に直結し、回転駆動モータ104により回転駆動される。巻枠111は支持枠114aの回転中心の中央に設けられ、昇降駆動モータ112により上下動が可能である。また、巻枠111には、上下動可能で、巻枠111に巻回されたコイル50を下方に払い落とすための払い落し部115が取り付けられている。 The support frame 114a of the fryer 114 is directly connected to a pulley 113 which is rotatably driven by an externally provided rotary drive motor 104 via a belt 113a, and is rotationally driven by the rotary drive motor 104. The winding frame 111 is provided at the center of the rotation center of the support frame 114a, and can be moved up and down by a lift drive motor 112. Further, the winding frame 111 is attached with a scraping part 115 which is movable up and down and is used to shake off the coil 50 wound around the winding frame 111 downward.
 以上が、巻枠111にパラ素線51を巻き付けるまでの工程に係る部分であるが、この部分についてはすでに知られている技術であり、図3に示す例に限定されず、すでに知られている他の方式、構成あるいは形態であってもよい。 The above is the part related to the process of winding the para-wire 51 around the winding frame 111, but this part is an already known technique and is not limited to the example shown in FIG. Other methods, configurations, or forms may also be used.
 反転装置120は、巻枠111から下方に払い落とされたコイル50を受ける回動板122を有し、コイル50を反転させる。反転装置120は、巻枠111の下方の位置および下方から外れた位置の間を移動可能に構成されている。反転装置120については、後に図4ないし図6を引用しながら詳細を説明する。 The reversing device 120 has a rotating plate 122 that receives the coil 50 that has been dropped downward from the winding frame 111, and reverses the coil 50. The reversing device 120 is configured to be movable between a position below the winding frame 111 and a position away from the bottom. The reversing device 120 will be described in detail later with reference to FIGS. 4 to 6.
 コイル挿入装置130は、コイル受け部131、コイル挿入部132、複数のガイド棒133、およびこれらを支持する支持枠134を有する。 The coil insertion device 130 includes a coil receiving portion 131, a coil insertion portion 132, a plurality of guide rods 133, and a support frame 134 that supports these.
 コイル受け部131は、反転装置120で反転されたコイル50を、あるいは反転装置120を介さずに直接に巻枠111から払い落とされたコイル50を、それぞれ受ける。 The coil receiving section 131 receives the coil 50 that has been reversed by the reversing device 120 or the coil 50 that has been directly removed from the winding frame 111 without going through the reversing device 120.
 コイル挿入部132は、コイル受け部131で受け取ったコイル50を、固定子鉄心21の固定子スロット25(図2)に挿入するための部分である。 The coil insertion part 132 is a part for inserting the coil 50 received by the coil receiving part 131 into the stator slot 25 (FIG. 2) of the stator core 21.
 ガイド棒133は、コイル受け部131が巻枠111から払い落とされたコイル50を直接に受ける際に、コイル50がコイル受け部131の適切な位置となるように、コイル50をガイドする。ガイド棒133の長さは、その先端が巻枠111に届く必要はないが、この機能が確保できるに十分な長さとする。ガイド棒133は、反転装置120がコイル50を受ける状態の場合には、支持枠134内に収納されており、コイル受け部131が巻枠111から払い落とされたコイル50を直接に受ける際には、上方に延びるように構成されている。ここで、複数のガイド棒133を上方に伸ばすための機構については、図示を省略している。 The guide rod 133 guides the coil 50 so that the coil 50 is at an appropriate position in the coil receiving part 131 when the coil receiving part 131 directly receives the coil 50 that has been thrown off from the winding frame 111. Although the length of the guide rod 133 does not need to reach the winding frame 111 at its tip, it should be long enough to ensure this function. The guide rod 133 is housed in the support frame 134 when the reversing device 120 is in a state to receive the coil 50, and when the coil receiving portion 131 directly receives the coil 50 that has been removed from the winding frame 111. is configured to extend upward. Here, illustration of a mechanism for extending the plurality of guide rods 133 upward is omitted.
 なお、反転装置120が回動中に、コイル50が完全に反転しないうちにガイド棒133から外れて落下することを防止するために、図示しないカバーあるいはストッパを設けて、反転後に開放可能に構成してもよい。 In addition, in order to prevent the coil 50 from coming off the guide rod 133 and falling before it is completely reversed while the reversing device 120 is rotating, a cover or a stopper (not shown) is provided so that it can be opened after the reversing. You may.
 コイル挿入装置130については、上下動可能な複数のガイド棒133を有する部分以外は、すでに知られている部分であり、この部分については、他の方式、構成あるいは形態であってもよい。 The coil insertion device 130 is already known except for the part having a plurality of guide rods 133 that can move up and down, and this part may have other methods, configurations, or forms.
 なお、図3では、コイル挿入装置130が複数のガイド棒133を有し、複数のガイド棒133が、コイル挿入装置130から巻枠111に向かって上方に延びる場合を例にとって示したが、これに限定されない。以下では、この場合を例にとって説明するが、たとえば、巻線装置本体110が複数のガイド棒を有し、複数のガイド棒がコイル挿入装置130に向かって下方に延びることでもよい。 Note that although FIG. 3 shows an example in which the coil insertion device 130 has a plurality of guide rods 133 and the plurality of guide rods 133 extend upward from the coil insertion device 130 toward the winding frame 111, this is not the case. but not limited to. This case will be described below as an example, but for example, the winding device main body 110 may have a plurality of guide bars, and the plurality of guide bars may extend downward toward the coil insertion device 130.
 図4は、第1の実施形態に係る巻線装置における反転装置を概念的に示す正面図である。図5は、第1の実施形態に係る巻線装置における反転装置を概念的に示す図4のV-V線矢視平面図である。図6は、第1の実施形態に係る巻線装置における反転装置を概念的に示す図5のVI-VI線矢視平面図である。 FIG. 4 is a front view conceptually showing the reversing device in the winding device according to the first embodiment. FIG. 5 is a plan view taken along the line VV in FIG. 4 conceptually showing the reversing device in the winding device according to the first embodiment. FIG. 6 is a plan view taken along the line VI-VI in FIG. 5, conceptually showing the reversing device in the winding device according to the first embodiment.
 反転装置120は、回動軸121、回動板122、複数のツメ124、回動駆動部125、軸方向駆動部126、および2つの軸受127を有する。 The reversing device 120 has a rotation shaft 121, a rotation plate 122, a plurality of claws 124, a rotation drive section 125, an axial drive section 126, and two bearings 127.
 巻枠111から下方に払い落とされたコイル50を受ける回動板122には、コイル50を所定の範囲に受けて保持するように、上面に複数のツメ124が設けられている。回動板122は、結合部123を介してその軸方向に延びた回動軸121に接続されている。 A plurality of claws 124 are provided on the upper surface of the rotary plate 122, which receives the coil 50 thrown downward from the winding frame 111, so as to receive and hold the coil 50 within a predetermined range. The rotating plate 122 is connected via a coupling portion 123 to a rotating shaft 121 extending in the axial direction thereof.
 回動軸121は、軸方向の2か所でそれぞれ軸受127により回転可能に支持されている。回動軸121は、回動駆動部125により回転軸周りを回動駆動される。なお、回動軸121は、たとえば180度回転し、また180度逆方向に戻るような回動動作を行うが、これに限定せず、一方向に回転を進める方式であってもよい。また、回動軸121は、回動板122が、巻枠111の直下となる位置と、反転装置120が、巻枠111とコイル挿入装置130のコイル受け部131との間の空間から外れた位置との間を移動可能に、軸方向駆動部126によって駆動される。 The rotation shaft 121 is rotatably supported by bearings 127 at two locations in the axial direction. The rotation shaft 121 is rotationally driven around the rotation axis by a rotation drive section 125 . Note that the rotation shaft 121 performs a rotation operation of rotating 180 degrees and returning 180 degrees in the opposite direction, for example, but is not limited to this, and may be of a type in which the rotation proceeds in one direction. Further, the rotation shaft 121 has a position where the rotation plate 122 is directly under the winding frame 111 and a position where the reversing device 120 is out of the space between the winding frame 111 and the coil receiving part 131 of the coil insertion device 130. It is driven by an axial drive section 126 so as to be movable between positions.
 ここで、巻枠111から払い落とされて回動板122上に載ったコイル50は、回動軸121とは図5に示すような位置関係にあるものとする。言い換えれば、巻枠111と反転装置120との相対関係が、以下となるような関係にある。 Here, it is assumed that the coil 50 that has been removed from the winding frame 111 and placed on the rotating plate 122 is in a positional relationship with the rotating shaft 121 as shown in FIG. In other words, the relative relationship between the winding frame 111 and the reversing device 120 is as follows.
 前述(図2)の様に、コイル50には、第1引き出し部55および第2引き出し部56が存在する。今、便宜上、回動板122の上面を、第1の半面122aと第2の半面122bとに区分する。具体的には、平面的に透視して回動軸121の中心軸を境界として、2つの領域に区分する。このとき、第1引き出し部55および第2引き出し部56の両方が、第1の半面122aにあるような位置関係にあるものとする。これを言い換えれば、本実施形態においては、第1引き出し部55および第2引き出し部56の両方が、同じ半面にあるような方向に、回動軸121を設けるものとする。 As mentioned above (FIG. 2), the coil 50 has the first lead-out part 55 and the second lead-out part 56. For convenience, the upper surface of the rotating plate 122 is divided into a first half surface 122a and a second half surface 122b. Specifically, the region is divided into two regions with the center axis of the rotation shaft 121 as a boundary when viewed in a plan view. At this time, it is assumed that both the first drawer part 55 and the second drawer part 56 are in a positional relationship such that they are on the first half surface 122a. In other words, in this embodiment, the rotation shaft 121 is provided in a direction such that both the first drawer part 55 and the second drawer part 56 are on the same half plane.
 回動板122の上面に設けられた複数のツメ124は、回動板122の4つの辺のそれぞれにおいて、内側と外側の位置に取り付けられている。コイル50は、それぞれの位置での内側のツメ124と外側のツメ124の間に位置するようにガイドされる。なお、複数のツメ124の数および配置は例示であり、図5に示した例に限定されない。巻枠111からのコイル50を受けて、反転させて、コイル挿入装置130のコイル受け部131の適正な位置に落下させられるのであれば、複数のツメ124の数を増減し、あるいは配置を変更してもよい。また、ツメ124は、回動板122の上面から垂直方向ではなく、傾斜をもって取り付けられてもよい。あるいは、ツメ124は、曲がり部を有していてもよい。 A plurality of claws 124 provided on the upper surface of the rotating plate 122 are attached at inner and outer positions on each of the four sides of the rotating plate 122. The coil 50 is guided to be located between the inner claw 124 and the outer claw 124 at each position. Note that the number and arrangement of the plurality of claws 124 are merely examples, and are not limited to the example shown in FIG. 5. If the coil 50 from the winding frame 111 can be received, reversed, and dropped to the appropriate position of the coil receiving part 131 of the coil insertion device 130, the number of the plurality of claws 124 can be increased or decreased, or the arrangement can be changed. You may. Further, the claw 124 may be attached at an angle from the upper surface of the rotating plate 122 instead of being perpendicular to the upper surface. Alternatively, the claw 124 may have a curved portion.
 図7は、第1の実施形態に係る固定子の製造方法の手順を示すフロー図である。 FIG. 7 is a flowchart showing the steps of the stator manufacturing method according to the first embodiment.
 まず、固定子鉄心21の組み立てを行う(ステップS10)。具体的には、まず、必要数の電磁鋼板21aを製作する(ステップS11)。次に、電磁鋼板21aを積層して固定子鉄心21を組み立てる(ステップS12)。 First, the stator core 21 is assembled (step S10). Specifically, first, a required number of electromagnetic steel sheets 21a are manufactured (step S11). Next, the stator core 21 is assembled by laminating the electromagnetic steel plates 21a (step S12).
 一方、固定子巻線22については以下の通りである。 On the other hand, the stator winding 22 is as follows.
 まず、最初のステップS21で、コイル数指標nを1とする(ステップS21)。 First, in the first step S21, the coil number index n is set to 1 (step S21).
 次に、コイル50の製造を行う(ステップS30)。コイル50の製造ステップS30については、次の図8を引用しながら詳細な手順を説明する。 Next, the coil 50 is manufactured (step S30). Regarding the manufacturing step S30 of the coil 50, the detailed procedure will be explained with reference to FIG. 8 below.
 次に、製造されたコイル50を固定子鉄心21に挿入する(ステップS22)。コイル50の固定子鉄心21への挿入には、コイル挿入装置130を用いる。 Next, the manufactured coil 50 is inserted into the stator core 21 (step S22). A coil insertion device 130 is used to insert the coil 50 into the stator core 21.
 次にコイル数指標nをn+1とし(ステップS23)、コイル総数Nを超えたか否かを判定する(ステップS24)。コイル総数Nを超えたと判定されなかった場合(ステップS24 NO)は、コイル50の製造ステップS30に戻り、次のコイル50を製造する。 Next, the coil number index n is set to n+1 (step S23), and it is determined whether the total number of coils N has been exceeded (step S24). If it is not determined that the total number of coils N has been exceeded (step S24: NO), the process returns to step S30 for manufacturing the coil 50, and the next coil 50 is manufactured.
 コイル総数Nを超えたと判定され場合(ステップS24 YES)は、第1のコイルエンド50c側(溶接側)の接続を行う(ステップS25)。具体的には、第1引き出し部55および第2引き出し部56を有するそれぞれのコイル50間で、所定の接続方針に基づいて、第1引き出し部55、第2引き出し部56を用いたコイル50間の接続を行う。この結果、固定子20の固定子巻線22が形成される。 If it is determined that the total number of coils N has been exceeded (step S24 YES), the first coil end 50c side (welding side) is connected (step S25). Specifically, between the respective coils 50 having the first drawer part 55 and the second drawer part 56, the connection between the coils 50 using the first drawer part 55 and the second drawer part 56 is performed based on a predetermined connection policy. Make the connection. As a result, stator windings 22 of stator 20 are formed.
 以上のように、固定子鉄心21に固定子巻線22が巻回された固定子20について、組立て後の試験を行う(ステップS26)。この後、必要に応じて例えばアクセサリ類の取り付け等を行う。 As described above, the stator 20 with the stator winding 22 wound around the stator core 21 is tested after assembly (step S26). After this, for example, accessories are attached as necessary.
 なお、以上に述べた手順では、コイル50の挿入ステップS22の直前にコイル50の製造を行う(ステップS30)場合を例にとって示しているがこれに限定されない。たとえば、全てのコイル50をあらかじめ製造しておき、順次、挿入することでもよい。この場合は、図7において、コイルの製造ステップS30は、ステップS21の前に終了しておくこととなり、繰り返しは、コイル50の挿入(ステップS22)のみとなる。 Note that in the procedure described above, an example is shown in which the coil 50 is manufactured (step S30) immediately before the step S22 of inserting the coil 50, but the present invention is not limited to this. For example, all the coils 50 may be manufactured in advance and inserted one after another. In this case, in FIG. 7, the coil manufacturing step S30 is completed before step S21, and only the insertion of the coil 50 (step S22) is repeated.
 図8は、第1の実施形態に係る固定子の製造方法の手順におけるコイル50の製造ステップS30の詳細な手順を示すフロー図である。 FIG. 8 is a flowchart showing the detailed procedure of manufacturing step S30 of the coil 50 in the procedure of the stator manufacturing method according to the first embodiment.
 まず、パラ数の素線52からなるパラ素線51を巻枠111に巻付けてコイル50を形成する(ステップS31)。 First, the coil 50 is formed by winding the parallel wire 51 consisting of the same number of wires 52 around the winding frame 111 (step S31).
 次に、反転するか否かを判定する(ステップS32)。 Next, it is determined whether or not to reverse (step S32).
 ステップS32において反転すると判定されなかった場合(ステップS32 NO)には、まず、コイル挿入装置130から複数のガイド棒133を巻枠111に向かって延ばす(ステップS33)。その後に、払い落し部115によってコイル50を巻枠111から切り離し下方にあるコイル挿入装置130のコイル受け部131に落下させる(ステップS34)。 If it is determined in step S32 that it is not reversed (step S32 NO), first, the plurality of guide rods 133 are extended from the coil insertion device 130 toward the winding frame 111 (step S33). Thereafter, the coil 50 is separated from the winding frame 111 by the scraping section 115 and dropped onto the coil receiving section 131 of the coil insertion device 130 located below (step S34).
 ステップS32において反転すると判定された場合(ステップS32 YES)には、まず、反転装置120の回動板122が巻枠111の直下となる位置に軸方向駆動部126が回動軸121を移動させる(ステップS35)。その後に、払い落し部115によってコイル50を巻枠111から切り離し下方に落下させる(ステップS36)。次に、反転装置120により、コイル50を反転させる(ステップS37)。次に、反転装置120からコイル50を、下方にあるコイル挿入装置130のコイル受け部131に落下させる(ステップS38)。この際、反転装置120にカバーあるいはストッパを設けている場合はこれを開放することによりコイル50を落下させる。 If it is determined in step S32 that the rotation is to be reversed (step S32 YES), first, the axial drive unit 126 moves the rotation shaft 121 to a position where the rotation plate 122 of the reversing device 120 is directly below the winding frame 111. (Step S35). Thereafter, the coil 50 is separated from the winding frame 111 by the scraper 115 and dropped downward (step S36). Next, the coil 50 is reversed by the reversing device 120 (step S37). Next, the coil 50 is dropped from the reversing device 120 onto the coil receiving portion 131 of the coil insertion device 130 located below (step S38). At this time, if the reversing device 120 is provided with a cover or a stopper, the coil 50 is dropped by opening this cover.
 以上のように、ステップS32における判定結果によって、ステップS34またはステップS38により、コイル50が、コイル挿入装置130のコイル受け部131上に載った状態となる(ステップS39)。 As described above, depending on the determination result in step S32, the coil 50 is placed on the coil receiving part 131 of the coil insertion device 130 in step S34 or step S38 (step S39).
 次に、反転装置120によるコイル50の反転の状況を、ステップを追って説明する。 Next, the situation of reversing the coil 50 by the reversing device 120 will be explained step by step.
 図9は、第1の実施形態に係る固定子の製造方法の手順におけるコイルの反転ステップの第1の状態を示す説明図である。これは、図8のフロー図におけるステップS36に対応する状態である。 FIG. 9 is an explanatory diagram showing the first state of the coil reversal step in the procedure of the stator manufacturing method according to the first embodiment. This is a state corresponding to step S36 in the flow diagram of FIG.
 図5を引用しながら説明したように、コイル50の第1のコイルエンド50cは図9においての手前側、第2のコイルエンド50dは図9においての奥側となるように、コイル50は巻枠111において形成されている。したがって、第1引き出し部55および第2引き出し部56は、図9において手前側、すなわちz方向に配されている。また、図9において、コイル50の上方からコイル50を見た場合の電流の流れは、時計回りの方向である。 As described with reference to FIG. 5, the coil 50 is wound so that the first coil end 50c of the coil 50 is on the front side in FIG. 9, and the second coil end 50d is on the back side in FIG. It is formed in a frame 111. Therefore, the first drawer part 55 and the second drawer part 56 are arranged on the front side in FIG. 9, that is, in the z direction. Further, in FIG. 9, when the coil 50 is viewed from above, the current flow is in a clockwise direction.
 図10は、第1の実施形態に係る固定子の製造方法の手順におけるコイルの反転ステップの第2の状態を示す説明図である。これは、図8のフロー図におけるステップS36の直後で、ステップS37の前の段階に対応する状態である。コイル50は、反転装置120の回動板122上で、複数のツメ124の間に治まった状態である。 FIG. 10 is an explanatory diagram showing the second state of the coil reversal step in the procedure of the stator manufacturing method according to the first embodiment. This is a state corresponding to the stage immediately after step S36 and before step S37 in the flow diagram of FIG. The coil 50 is placed between the plurality of claws 124 on the rotating plate 122 of the reversing device 120 .
 この状態から、図10に示すように、回動軸121を回動させると、コイル50は、r-z平面に沿って回動する。すなわち、コイル50の各部分は、原点を点Cとしてr軸およびz軸を含む平面に平行な平面内を移動する。 From this state, as shown in FIG. 10, when the rotation shaft 121 is rotated, the coil 50 is rotated along the rz plane. That is, each part of the coil 50 moves in a plane parallel to a plane including the r-axis and the z-axis, with the origin being the point C.
 図11は、第1の実施形態に係る固定子の製造方法の手順におけるコイルの反転ステップの第3の状態を示す説明図であり、図8のフロー図におけるステップS37を終了した状態である。また、図12は、第1の実施形態に係る固定子の製造方法の手順におけるコイルの反転ステップの第4の状態を示す説明図であり、図8のフロー図におけるステップS38の状態である。 FIG. 11 is an explanatory diagram showing the third state of the coil reversal step in the procedure of the stator manufacturing method according to the first embodiment, and is the state after step S37 in the flow diagram of FIG. 8 has been completed. Further, FIG. 12 is an explanatory diagram showing the fourth state of the coil reversal step in the procedure of the stator manufacturing method according to the first embodiment, which is the state of step S38 in the flow diagram of FIG. 8.
 反転装置120による回動後の状態を、回動前の状態を示す図10と比較すると、以下の変化がある。 Comparing the state after rotation by the reversing device 120 with FIG. 10, which shows the state before rotation, there are the following changes.
 (1)コイル50の第1のコイルエンド50cは図11、12においての奥側、第2のコイルエンド50dは図11、12においての手前側となっている。したがって、第1引き出し部55および第2引き出し部56は、図11、12において奥側、すなわちz方向と反対側に配されている。また、r方向にも逆転する。 (1) The first coil end 50c of the coil 50 is on the back side in FIGS. 11 and 12, and the second coil end 50d is on the near side in FIGS. 11 and 12. Therefore, the first drawer part 55 and the second drawer part 56 are arranged on the back side in FIGS. 11 and 12, that is, on the opposite side to the z direction. It also reverses in the r direction.
 (2)図11、12において、コイル50の上方からコイル50を見た場合の電流の流れは、反時計回りの方向に変化している。 (2) In FIGS. 11 and 12, when the coil 50 is viewed from above, the current flow changes in a counterclockwise direction.
 以上のように、反転装置120による反転動作によって、コイル50は、z方向およびr方向の位置が逆転し、かつ、電流の流れも逆方向となっている。すなわち、極性も逆転している。 As described above, due to the reversing operation by the reversing device 120, the positions of the coil 50 in the z direction and the r direction are reversed, and the current flows in the opposite direction. In other words, the polarity is also reversed.
 図13は、第1の実施形態に係る固定子の製造方法の対象となる固定子20のコイル50の順序を示す説明図である。図13は、1相分のコイル50が固定子鉄心21に装填されたときの極性と配置を示しており、並列回路数が1で、8極、同心巻の構成の例である。 FIG. 13 is an explanatory diagram showing the order of the coils 50 of the stator 20, which is the target of the stator manufacturing method according to the first embodiment. FIG. 13 shows the polarity and arrangement when the coil 50 for one phase is loaded on the stator core 21, and is an example of a configuration in which the number of parallel circuits is 1, 8 poles, and concentric winding.
 コイル50のコイル番号n(n=1~8)について、奇数番目は、周方向に互いに同じ方向を向いている。また、偶数番目は、周方向に互いに同じ方向を向いており、その方向は、奇数番目とは反対方向である。 Regarding the coil numbers n (n=1 to 8) of the coils 50, the odd-numbered coils face the same direction in the circumferential direction. Moreover, the even numbered ones face the same direction in the circumferential direction, and the direction is opposite to the odd numbered one.
 図14は、第1の実施形態に係る固定子の製造方法の対象となる固定子20のコイル50の反転を示す説明図である。図13に示すような配置とするために、偶数番目のコイル50を、反転させる必要がある。その反転のために、本実施形態による反転装置120を用いることができる。 FIG. 14 is an explanatory diagram showing the reversal of the coil 50 of the stator 20, which is the object of the stator manufacturing method according to the first embodiment. In order to obtain the arrangement shown in FIG. 13, it is necessary to reverse the even numbered coils 50. For the reversal, the reversing device 120 according to this embodiment can be used.
 図15は、第1の実施形態に係る固定子の製造方法の対象となる固定子20のスロット25に収納されたコイル50を示す部分的な説明図である。なお、図15および後に引用する図16および図17は、同様の効果の説明のために特許文献1の図24に基づいている。 FIG. 15 is a partial explanatory diagram showing the coil 50 housed in the slot 25 of the stator 20, which is the object of the stator manufacturing method according to the first embodiment. Note that FIG. 15 and FIGS. 16 and 17 cited later are based on FIG. 24 of Patent Document 1 for explanation of similar effects.
 C1と表示されたコイル50は、パラ素線51が8層に巻かれており、スロット25aとスロット25bに収納されている。1から8までの層番号は、パラ素線51が巻枠111に巻かれた順序を示す。したがって、C1と表示されたコイル50は、パラ素線51が径方向内側から径方向外側に向かって巻かれている。一方、C2と表示されたコイル50は、C1と表示されたコイル50と同相のコイルであり、スロット25fとスロット25gに収納されている。C2と表示されたコイル50は、パラ素線51が径方向外側から径方向内側に向かって巻かれている。 The coil 50 labeled C1 has a para-strand wire 51 wound in eight layers, and is housed in the slots 25a and 25b. Layer numbers 1 to 8 indicate the order in which the para-wire 51 is wound around the winding frame 111. Therefore, in the coil 50 labeled C1, the para-strand wire 51 is wound from the inside in the radial direction to the outside in the radial direction. On the other hand, the coil 50 labeled C2 has the same phase as the coil 50 labeled C1, and is housed in the slot 25f and the slot 25g. In the coil 50 labeled C2, a para-wire 51 is wound from the outside in the radial direction to the inside in the radial direction.
 C1と表示されたコイル50とC2と表示されたコイル50は、渡り線Waにより互いに直列に接続されている。 The coil 50 labeled C1 and the coil 50 labeled C2 are connected in series to each other by a connecting wire Wa.
 図16は、第1の実施形態に係る固定子の製造方法の対象となる固定子20のスロット25に収納されたコイル50の図15のA部の詳細を示す説明図である。すなわち、図15でC1と表示されたコイル50の部分図である。また、図17は、第1の実施形態に係る固定子の製造方法の対象となる固定子20のスロット25に収納されたコイルの図15のB部の詳細を示す説明図である。すなわち、図15でC2と表示されたコイル50の部分図である。これらの図では、パラ素線51内の素線52の数(パラ数)が17の場合を示している。 FIG. 16 is an explanatory diagram showing details of part A in FIG. 15 of the coil 50 housed in the slot 25 of the stator 20, which is the target of the stator manufacturing method according to the first embodiment. That is, it is a partial view of the coil 50 labeled C1 in FIG. 15. Further, FIG. 17 is an explanatory diagram showing details of part B in FIG. 15 of the coil accommodated in the slot 25 of the stator 20, which is the object of the stator manufacturing method according to the first embodiment. That is, it is a partial view of the coil 50 labeled C2 in FIG. 15. These figures show a case where the number of strands 52 in the para wire 51 (para number) is 17.
 C1と表示されたコイル50の部分図である図16と、C2と表示されたコイル50の部分図である図17とを比較すると、それぞれのパラ素線51内の素線52の径方向の分布が、互いにほぼ逆の分布となっている。 Comparing FIG. 16, which is a partial diagram of the coil 50 labeled C1, with FIG. The distributions are almost opposite to each other.
 パラ素線51がスロット25内に収められたとき、素線52のスロット25内における径方向の位置の違いによりインダクタンスの差が生ずる。しかしながら、素線52のスロット25内における径方向の位置が互いに逆転するコイル50を直列に接続したことにより、素線52のスロット25内における径方向の位置の違いによりインダクタンスの差が相殺され、ほぼ均一の状態に近づくこととなる。 When the para wire 51 is housed in the slot 25, a difference in inductance occurs due to the difference in the radial position of the wire 52 in the slot 25. However, by connecting the coils 50 in series in which the radial positions of the wires 52 in the slots 25 are reversed, the difference in inductance is canceled out due to the difference in the radial positions of the wires 52 in the slots 25. This results in a nearly uniform state.
 図18は、第1の実施形態に係る固定子の製造方法における巻枠111から反転装置120への落下前の状態を示す説明図である。反転装置120は巻枠111から落下するコイル50を受け取り、コイル50を反転させる。反転装置120は、反転したコイル50を、コイル挿入装置130に落下させる。 FIG. 18 is an explanatory diagram showing a state before falling from the winding frame 111 to the reversing device 120 in the stator manufacturing method according to the first embodiment. The reversing device 120 receives the coil 50 falling from the winding frame 111 and reverses the coil 50. The reversing device 120 drops the reversed coil 50 onto the coil insertion device 130.
 図19は、第1の実施形態に係る固定子の製造方法における巻枠111からコイル挿入装置130への落下前の状態を示す説明図である。この場合は、コイル50を反転させないため、反転装置120は用いられない。したがって、コイル50は、巻枠111から直接にコイル挿入装置130に落下することになる。この際、コイル50が、コイル挿入装置130上の適切な場所に落下するように、コイル挿入装置130から複数のガイド棒133が上方に延びて、コイル50をガイドする。 FIG. 19 is an explanatory diagram showing a state before falling from the winding frame 111 to the coil insertion device 130 in the stator manufacturing method according to the first embodiment. In this case, since the coil 50 is not reversed, the reversing device 120 is not used. Therefore, the coil 50 will fall directly from the winding frame 111 to the coil insertion device 130. At this time, a plurality of guide rods 133 extend upward from the coil insertion device 130 to guide the coil 50 so that the coil 50 falls to an appropriate location on the coil insertion device 130.
 以上のように、本実施形態によれば、巻き終えた単体の状態のコイル50を反転させる。したがって、パラ素線51に捻り加えた状態で送り出す工程なしに、コイル50を反転させることができる。この結果、素線52の絶縁被膜が損傷するリスクを軽減することができる。 As described above, according to the present embodiment, the coil 50 in a single unit state after winding is reversed. Therefore, the coil 50 can be reversed without the step of sending out the para-wire 51 in a twisted state. As a result, the risk of damage to the insulation coating of the wire 52 can be reduced.
 この結果、パラ素線51内の素線52間のインダクタンスのばらつきが生じても、必要な範囲のコイル50を確実に反転させることによって、端子から中性点までを通してみれば、インダクタンスのばらつきが減少し、循環電流による損失を抑制することができる。 As a result, even if variations in inductance occur between the wires 52 in the para wire 51, by reliably inverting the coil 50 in the necessary range, the variation in inductance can be reduced by passing from the terminal to the neutral point. The loss due to circulating current can be suppressed.
 [第2の実施形態]
 図20は、第2の実施形態に係る巻線装置100における反転装置120aを概念的に示す正面図である。図21は、第2の実施形態に係る巻線装置100における反転装置120aを概念的に示す図20のXXI-XXI線矢視平面図である。また、図22は、第2の実施形態に係る巻線装置100における反転装置120aを概念的に示す図20のXXII-XXII線矢視側面図である。
[Second embodiment]
FIG. 20 is a front view conceptually showing the reversing device 120a in the winding device 100 according to the second embodiment. FIG. 21 is a plan view taken along the line XXI-XXI in FIG. 20 conceptually showing the reversing device 120a in the winding device 100 according to the second embodiment. Further, FIG. 22 is a side view taken along the line XXII-XXII in FIG. 20 conceptually showing the reversing device 120a in the winding device 100 according to the second embodiment.
 本実施形態は、第1の実施形態の変形である。本実施形態における反転装置120aにおいては、回動軸121aの方向が、第1の実施形態における回動軸121と異なる。 This embodiment is a modification of the first embodiment. In the reversing device 120a in this embodiment, the direction of the rotation axis 121a is different from the rotation axis 121 in the first embodiment.
 すなわち、巻枠111から払い落とされて回動板122上に載ったコイル50は、回動軸121とは図21に示すような位置関係にある。言い換えれば、巻枠111と反転装置120aとの相対関係が、以下となるような関係にある。 That is, the coil 50 that has been removed from the winding frame 111 and placed on the rotating plate 122 has a positional relationship with the rotating shaft 121 as shown in FIG. 21. In other words, the relative relationship between the winding frame 111 and the reversing device 120a is as follows.
 今、便宜上、回動板122の上面を、第1の半面122cと第2の半面122dとに区分する。具体的には、平面的に透視して回動軸121aの中心軸を境界として、2つの領域に区分する。このとき、第1引き出し部55は第1の半面122cに、また、第2引き出し部56は第1の半面122cにある。これを言い換えれば、本実施形態においては、第1引き出し部55および第2引き出し部56が、それぞれ異なる半面にあるような方向に、回動軸121aを設けるものとする。 For convenience, the upper surface of the rotating plate 122 is divided into a first half surface 122c and a second half surface 122d. Specifically, the region is divided into two regions with the central axis of the rotation shaft 121a as a boundary when viewed in a plan view. At this time, the first drawer part 55 is on the first half surface 122c, and the second drawer part 56 is on the first half surface 122c. In other words, in this embodiment, the rotation shaft 121a is provided in a direction such that the first drawer part 55 and the second drawer part 56 are on different halves.
 図23は、第2の実施形態に係る固定子の製造方法の手順におけるコイルの反転ステップの第1の状態を示す説明図である。 FIG. 23 is an explanatory diagram showing the first state of the coil reversal step in the procedure of the stator manufacturing method according to the second embodiment.
 図21を引用しながら説明したように、コイル50の第1のコイルエンド50cは図23においての左手前側、第2のコイルエンド50dは図23においての右手前側となるように、コイル50は巻枠111において形成されている。したがって、第1引き出し部55は、図23において左手前側、および第2引き出し部56は左奥側に配されている。また、図23において、コイル50の上方からコイル50を見た場合の電流の流れは、反時計回りの方向である。 As described with reference to FIG. 21, the coil 50 is wound so that the first coil end 50c of the coil 50 is on the left front side in FIG. 23, and the second coil end 50d is on the right front side in FIG. It is formed in a frame 111. Therefore, the first drawer part 55 is arranged on the left front side in FIG. 23, and the second drawer part 56 is arranged on the left rear side. Further, in FIG. 23, when the coil 50 is viewed from above, the current flow is in a counterclockwise direction.
 図24は、第2の実施形態に係る固定子の製造方法の手順におけるコイルの反転ステップの第2の状態を示す説明図である。これは、図8のフロー図におけるステップS36の直後で、ステップS37の前の段階に対応する状態である。コイル50は、反転装置120の回動板122上で、複数のツメ124の間に治まった状態である。 FIG. 24 is an explanatory diagram showing the second state of the coil reversal step in the procedure of the stator manufacturing method according to the second embodiment. This is a state corresponding to the stage immediately after step S36 and before step S37 in the flow diagram of FIG. The coil 50 is placed between the plurality of claws 124 on the rotating plate 122 of the reversing device 120 .
 この状態から、図24に示すように、回動軸121aを回動させると、コイル50は、r-Θ平面に沿って回動する。すなわち、コイル50の各部分は、原点を点C1としてr軸およびΘ軸を含む平面に平行な平面内を移動する。 From this state, as shown in FIG. 24, when the rotation shaft 121a is rotated, the coil 50 is rotated along the r-Θ plane. That is, each part of the coil 50 moves in a plane parallel to a plane including the r-axis and the Θ-axis, with the origin as the point C1.
 図25は、第2の実施形態に係る固定子の製造方法の手順におけるコイルの反転ステップの第3の状態を示す説明図である。また、図26は、第2の実施形態に係る固定子の製造方法の手順におけるコイルの反転ステップの第4の状態を示す説明図であり、図8のフロー図におけるステップS38の状態である。 FIG. 25 is an explanatory diagram showing the third state of the coil reversal step in the procedure of the stator manufacturing method according to the second embodiment. Further, FIG. 26 is an explanatory diagram showing a fourth state of the coil reversal step in the procedure of the stator manufacturing method according to the second embodiment, which is the state of step S38 in the flow diagram of FIG. 8.
 反転装置120aによる回動後の状態を、回動前の状態を示す図24と比較すると、以下の変化がある。 Comparing the state after rotation by the reversing device 120a with FIG. 24 showing the state before rotation, there are the following changes.
 (1)コイル50の第1のコイルエンド50cは図25、26においての手前側、第2のコイルエンド50dは図25、26においての手前側となっている。これは、回動前の状態と同じである。なお、回動によって、第1引き出し部55は図中の右側から左側に、また第2引き出し部56は図中の左側から右側となるが、回動の前後で、いずれも手前側にある状態には変化がない。 (1) The first coil end 50c of the coil 50 is on the near side in FIGS. 25 and 26, and the second coil end 50d is on the near side in FIGS. 25 and 26. This is the same state as before rotation. Note that due to the rotation, the first drawer part 55 moves from the right side to the left side in the figure, and the second drawer part 56 moves from the left side to the right side in the figure, but both are on the front side before and after the rotation. There is no change.
 (2)図25、26において、コイル50の上方からコイル50を見た場合の電流の流れは、反時計回りの方向に変化している。 (2) In FIGS. 25 and 26, when the coil 50 is viewed from above, the current flow changes in a counterclockwise direction.
 以上のように、反転装置120aによる反転動作によって、コイル50は、Θ方向およびr方向の位置が逆転する。また、極性は逆転する。 As described above, the positions of the coil 50 in the Θ direction and the r direction are reversed by the reversing operation by the reversing device 120a. Also, the polarity is reversed.
 このように、本実施形態においては、z方向には逆転しないことから、引き出し線の位置は図中の手前側のままで、固定子鉄心21に対する軸方向の位置は変わらずに、極性およびr方向の配列を逆転させることができる。この結果、コイルエンドの結線処理を、固定子鉄心21の一方の端部側のみで実施できるというメリットがある。 In this way, in this embodiment, since the rotation is not reversed in the z direction, the position of the lead wire remains on the front side in the figure, and the position in the axial direction with respect to the stator core 21 remains unchanged, and the polarity and r The orientation can be reversed. As a result, there is an advantage that the coil end connection process can be performed only on one end side of the stator core 21.
 以上、説明した実施形態によれば、パラ素線に捻りを加えた状態で送り出す工程を用いずに、捻じれた状態でパラ素線を送り出すことなく、コイル50を反転可能な巻線装置100およびこれを用いた固定子20の製造方法を提供することができる。 According to the embodiment described above, the winding device 100 is capable of reversing the coil 50 without using the step of feeding out the para-wire in a twisted state, and without sending out the para-wire in a twisted state. And a method of manufacturing the stator 20 using the same can be provided.
 [その他の実施形態] [Other embodiments]
 以上、本発明の実施形態を説明したが、実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。また、各実施形態の特徴を組み合わせてもよい。さらに、実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although the embodiments of the present invention have been described above, the embodiments are presented as examples and are not intended to limit the scope of the invention. Moreover, the features of each embodiment may be combined. Furthermore, the embodiments can be implemented in various other forms, and various omissions, substitutions, and changes can be made without departing from the gist of the invention. The embodiments and their modifications are included within the scope and gist of the invention as well as within the scope of the invention described in the claims and its equivalents.
 1…回転電機、10…回転子、11…ロータシャフト、12…回転子鉄心、13…内扇、20…固定子、21…固定子鉄心、21a…電磁鋼板、22…固定子巻線、25…固定子スロット、25a…第1のスロット、25b…第2のスロット、31…フレーム、32…軸受、50…コイル、50a、50b…コイルサイド、50c、50d…コイルエンド、51…パラ素線、52…素線、55…第1引き出し部、56…第2引き出し部、100…巻線装置、101…テンション装置、102…昇降駆動モータ、103…ボビン、104…回転駆動モータ、110…巻線装置本体、111…巻枠、112…昇降駆動モータ、113…プーリ、113a…ベルト、114…フライヤ、114a…支持枠、114b…ガイドリール、114c…クランプ、115…払い落し部、120、120a…反転装置、121、121a…回動軸、122…回動板、122a…第1の半面、122b…第2の半面、122c…第1の半面、122d…第2の半面、123…結合部、124…ツメ、125…回動駆動部、126…軸方向駆動部、127…軸受、130…コイル挿入装置、131…コイル受け部、132…コイル挿入部、133…ガイド棒、134…支持枠 DESCRIPTION OF SYMBOLS 1... Rotating electric machine, 10... Rotor, 11... Rotor shaft, 12... Rotor core, 13... Inner fan, 20... Stator, 21... Stator core, 21a... Electromagnetic steel plate, 22... Stator winding, 25 ... Stator slot, 25a... First slot, 25b... Second slot, 31... Frame, 32... Bearing, 50... Coil, 50a, 50b... Coil side, 50c, 50d... Coil end, 51... Parallel wire , 52... Element wire, 55... First drawer part, 56... Second drawer part, 100... Winding device, 101... Tension device, 102... Lifting drive motor, 103... Bobbin, 104... Rotation drive motor, 110... Winding Wire device main body, 111... Winding frame, 112... Lifting drive motor, 113... Pulley, 113a... Belt, 114... Flyer, 114a... Support frame, 114b... Guide reel, 114c... Clamp, 115... Wiping off part, 120, 120a ...Reversing device, 121, 121a... Rotating shaft, 122... Rotating plate, 122a... First half surface, 122b... Second half surface, 122c... First half surface, 122d... Second half surface, 123... Joint part , 124...nail, 125...rotation drive section, 126...axial drive section, 127...bearing, 130...coil insertion device, 131...coil receiving section, 132...coil insertion section, 133...guide bar, 134...support frame

Claims (6)

  1.  所定のパラ数の素線を有するパラ素線によりコイルを形成し、前記コイルを、複数の固定子スロットが形成された固定子鉄心に巻き付ける巻線装置であって、
     前記パラ素線を巻き付けるボビンと、
     前記ボビンから供給される前記パラ素線が巻き付けられて前記コイルが形成される巻枠と、
     前記ボビンから供給される前記パラ素線を前記巻枠に巻き付けるフライヤと、
     前記巻枠の下方に配されて、前記巻枠から落下した前記コイルを受けて、前記コイルを前記固定子スロットに挿入するコイル挿入装置と、
     前記巻枠と前記コイル挿入装置との間に必要に応じて介在して、前記巻枠から落下した前記コイルを受けて前記コイルを反転させた上で前記コイル挿入装置に前記コイルを落下させる反転装置と、
     を備えることを特徴とする巻線装置。
    A winding device in which a coil is formed by a parallel wire having a predetermined number of parallel wires, and the coil is wound around a stator core in which a plurality of stator slots are formed,
    a bobbin around which the para-wire is wound;
    a winding frame around which the para-strand wire supplied from the bobbin is wound to form the coil;
    a flyer for winding the para-wire supplied from the bobbin around the winding frame;
    a coil insertion device disposed below the winding frame to receive the coil that has fallen from the winding frame and insert the coil into the stator slot;
    Reversing, which is interposed between the winding frame and the coil insertion device as necessary, receives the coil that has fallen from the winding frame, reverses the coil, and then drops the coil into the coil insertion device. a device;
    A winding device comprising:
  2.  前記反転装置は、
     前記巻枠から落下した前記コイルを受ける回動板と、
     前記回動板を反転させる回動軸と、
     前記回動軸を回動させる軸回動駆動部と、
     前記回動軸を軸方向に駆動する軸方向駆動部と、
     を有することを特徴とする請求項1に記載の巻線装置。
    The reversing device is
    a rotating plate that receives the coil that has fallen from the winding frame;
    a rotation shaft for reversing the rotation plate;
    a shaft rotation drive unit that rotates the rotation shaft;
    an axial drive unit that drives the rotation shaft in the axial direction;
    The winding device according to claim 1, characterized in that it has:
  3.  前記反転装置は、前記コイルが前記固定子鉄心に巻き付けられた状態を想定したときに前記固定子鉄心の径方向および軸方向に平行な仮想平面に沿って前記コイルを反転させることを特徴とする請求項2に記載の巻線装置。 The reversing device is characterized in that, assuming a state in which the coil is wound around the stator core, the reversing device reverses the coil along a virtual plane parallel to a radial direction and an axial direction of the stator core. The winding device according to claim 2.
  4.  前記反転装置は、前記コイルが前記固定子鉄心に巻き付けられた状態を想定したときに前記固定子鉄心の径方向および周方向に平行な仮想平面に沿って前記コイルを反転させることを特徴とする請求項2に記載の巻線装置。 The reversing device is characterized by reversing the coil along a virtual plane parallel to a radial direction and a circumferential direction of the stator core, assuming that the coil is wound around the stator core. The winding device according to claim 2.
  5.  前記コイル挿入装置または前記巻枠は、
     前記巻枠から前記コイル挿入装置に直接に前記コイルを落とす場合に、前記コイルをガイドするために落下の経路の一部に伸ばすように構成された複数のガイド棒を有することを特徴とする請求項1ないし請求項4のいずれか一項に記載の巻線装置。
    The coil insertion device or the winding frame is
    A claim characterized in that the coil includes a plurality of guide bars configured to extend along a part of the falling path to guide the coil when the coil is dropped directly from the winding frame to the coil insertion device. The winding device according to any one of claims 1 to 4.
  6.  固定子鉄心の組立てを行う固定子鉄心組立てステップと、
     巻線の製造を行う巻線製造ステップと、
     前記巻線を前記固定子鉄心に挿入する挿入ステップと、
     を有し、
     前記巻線製造ステップは、
     所定のパラ数の素線を有するパラ素線を巻枠に巻き付けてコイルを形成するコイル形成ステップと、
     前記コイルを反転させるか否かを判定するステップと、
     反転させると判定されなかった場合は、複数のガイド棒を伸ばし、前記巻枠から前記コイルをコイル挿入装置に落とす第1のケースのステップと、
     反転させると判定された場合は、反転装置を前記巻枠の下方に移動させ、前記巻枠から前記コイルを前記反転装置に落とした後に、前記コイルを前記コイル挿入装置に落とす第2のケースのステップと、
     を有することを特徴とする固定子製造方法。
    a stator core assembly step for assembling the stator core;
    a winding manufacturing step for manufacturing the winding;
    an insertion step of inserting the winding into the stator core;
    has
    The winding manufacturing step includes:
    a coil forming step of forming a coil by winding a Para wire having a predetermined number of Para wires around a winding frame;
    determining whether to invert the coil;
    If it is not determined that the coil should be reversed, extending a plurality of guide rods and dropping the coil from the winding frame into a coil insertion device;
    If it is determined that the coil should be reversed, the reversing device is moved below the winding frame, and the coil is dropped from the winding frame onto the reversing device, and then the coil is dropped into the coil insertion device. step and
    A method for manufacturing a stator, comprising:
PCT/JP2022/046652 2022-07-29 2022-12-19 Winding device and stator manufacturing method WO2024024125A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-121471 2022-07-29
JP2022121471A JP7330334B1 (en) 2022-07-29 2022-07-29 Winding device and stator manufacturing method

Publications (1)

Publication Number Publication Date
WO2024024125A1 true WO2024024125A1 (en) 2024-02-01

Family

ID=87577108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046652 WO2024024125A1 (en) 2022-07-29 2022-12-19 Winding device and stator manufacturing method

Country Status (2)

Country Link
JP (1) JP7330334B1 (en)
WO (1) WO2024024125A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1198779A (en) * 1997-09-24 1999-04-09 Odawara Engineering Co Ltd Wire twist preventing device in winding machine
JP2010172108A (en) * 2009-01-22 2010-08-05 Sanko Kiki Co Ltd Coil insertion method and coil turnover device
JP2010246245A (en) * 2009-04-03 2010-10-28 Komatsu Ltd Parallel winding apparatus
JP2015195634A (en) * 2014-03-31 2015-11-05 三工機器株式会社 Coil winding/setting method and device
US20200091801A1 (en) * 2017-04-27 2020-03-19 Elmotec Statomat Holding GmbH Coil former, winding device and method for the operation thereof to produce coil windings intended for insertion in a stator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1198779A (en) * 1997-09-24 1999-04-09 Odawara Engineering Co Ltd Wire twist preventing device in winding machine
JP2010172108A (en) * 2009-01-22 2010-08-05 Sanko Kiki Co Ltd Coil insertion method and coil turnover device
JP2010246245A (en) * 2009-04-03 2010-10-28 Komatsu Ltd Parallel winding apparatus
JP2015195634A (en) * 2014-03-31 2015-11-05 三工機器株式会社 Coil winding/setting method and device
US20200091801A1 (en) * 2017-04-27 2020-03-19 Elmotec Statomat Holding GmbH Coil former, winding device and method for the operation thereof to produce coil windings intended for insertion in a stator

Also Published As

Publication number Publication date
JP7330334B1 (en) 2023-08-21
JP2024018257A (en) 2024-02-08

Similar Documents

Publication Publication Date Title
US4426771A (en) Method of fabricating a stator for a multiple-pole dynamoelectric machine
US8581460B2 (en) Armature for rotating electrical machine
US6894418B2 (en) Nested stator coils for permanent magnet machines
WO2021237991A1 (en) Flat wire stator assembly and motor
US4619040A (en) Method of fabricating stator for a multiple pole dynamoelectric machine
WO2012147475A1 (en) Stator for rotating electric machine
US6373164B1 (en) Stator for dynamo-electric machine
US7646131B2 (en) Permanent magnet synchronous machine with flat-wire windings
US8461738B2 (en) Single-layer coil with one bent endwinding and one straight endwinding
US11404927B2 (en) Stator
US8704420B2 (en) Stator for electric machine
US10116179B2 (en) Three-phase alternating current motor
JP5948850B2 (en) Wave winding of rotating electric machine
JP2009524389A (en) Method for forming stator windings for an electric rotating device and stator obtained by this method
EP2680412B1 (en) Arrangement of coil wires in a rotor of an electric motor
JP2010115031A (en) Stator of rotary electric machine and method of manufacturing the same
JP6707860B2 (en) Rotary electric machine and method of manufacturing the same
WO2015162643A1 (en) Stator of rotary electrical machine and rotary electrical machine using such stator
KR102656510B1 (en) Motor
US20220302783A1 (en) Rotating electric machine stator and rotating electric machine
WO2015001670A1 (en) Electric fan and electric vacuum cleaner
US8914967B2 (en) Method for producing a distributed lap winding for polyphase systems
JP2007336725A (en) Stator of rotating electric machine
WO2024024125A1 (en) Winding device and stator manufacturing method
US20130285502A1 (en) Single-Layer Coil With One Bent Endwinding and One Straight Endwinding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953213

Country of ref document: EP

Kind code of ref document: A1