WO2024024044A1 - Articulated robot - Google Patents

Articulated robot Download PDF

Info

Publication number
WO2024024044A1
WO2024024044A1 PCT/JP2022/029151 JP2022029151W WO2024024044A1 WO 2024024044 A1 WO2024024044 A1 WO 2024024044A1 JP 2022029151 W JP2022029151 W JP 2022029151W WO 2024024044 A1 WO2024024044 A1 WO 2024024044A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
axis
base
articulated robot
rotational force
Prior art date
Application number
PCT/JP2022/029151
Other languages
French (fr)
Japanese (ja)
Inventor
俊文 馬目
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to PCT/JP2022/029151 priority Critical patent/WO2024024044A1/en
Publication of WO2024024044A1 publication Critical patent/WO2024024044A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/06Programme-controlled manipulators characterised by multi-articulated arms

Definitions

  • the present invention relates to an articulated robot.
  • a horizontal articulated robot as disclosed in Patent Document 1 is known.
  • This horizontal articulated robot includes a base portion fixed on a base, and an articulated arm supported by the base portion.
  • the arm is connected to a first arm part supported so as to be pivotable about a first axis perpendicular to the base part, and to a tip of the first arm part so as to be pivotable about a second axis perpendicular to the base part.
  • the device includes a second arm portion and an operating shaft disposed at the tip of the second arm portion.
  • Various end effectors are attached to the tip of the operating shaft.
  • the first arm portion is driven by a motor (first motor) placed on the first axis
  • the second arm portion is driven by a motor (second motor) placed on the second axis.
  • the arm moves the end effector (operating shaft) in the horizontal direction within a certain area centered on the base part by driving the first arm part and the second arm part by these motors.
  • the present invention has been made in view of the above-mentioned problems, and an object thereof is to further reduce the inertia (moment of inertia) about the rotation axis of the arm.
  • An articulated robot includes a first arm rotatable about a first axis, and a first arm rotatably connected to the first arm about a second axis parallel to the first axis.
  • a first motor that generates a rotational force for rotating the first arm about the first axis; and a first motor that generates a rotational force that rotates the first arm about the first axis;
  • a second motor that is disposed at a position closer to the first axis than the second axis in the section and generates a rotational force that rotates the second arm; and the first arm and the second arm.
  • a rotational force transmitting part that connects the two motors to transmit the rotational force generated by the second motor to the second arm, and deforms in accordance with the rotation of the second arm part with respect to the first arm part.
  • FIG. 1 is a perspective view of a horizontal articulated robot (of an articulated robot) according to the first embodiment.
  • FIG. 2 is a plan view (partially sectional view) of the horizontal articulated robot.
  • FIG. 3 is a sectional view of the horizontal articulated robot.
  • FIG. 4 is an explanatory diagram (perspective view) of the operation of the horizontal articulated robot.
  • FIG. 5 is an explanatory diagram (plan view) of the operation of the horizontal articulated robot.
  • FIG. 6 is a planar model (neutral state) of the horizontal articulated robot.
  • FIG. 7 is a planar model of the horizontal articulated robot (when the arm is in operation).
  • FIG. 8 is a schematic perspective view of a horizontal articulated robot according to the second embodiment.
  • FIG. 8 is a schematic perspective view of a horizontal articulated robot according to the second embodiment.
  • FIG. 9 is a schematic perspective view of a horizontal articulated robot according to the third embodiment.
  • FIG. 10 is a side view (X arrow view in FIG. 9) of the horizontal articulated robot according to the third embodiment.
  • FIG. 11 is a schematic perspective view of a horizontal articulated robot according to the fourth embodiment.
  • FIG. 12 is a sectional view of a horizontal articulated robot according to the fifth embodiment.
  • FIG. 13 is a sectional view of a horizontal articulated robot according to the sixth embodiment.
  • FIG. 14 is a sectional view of main parts of a horizontal articulated robot according to a seventh embodiment.
  • FIG. 15 is a sectional view of main parts of a horizontal articulated robot according to the eighth embodiment.
  • FIG. 16 is a sectional view of a horizontal articulated robot according to the ninth embodiment.
  • FIG. 10 is a side view (X arrow view in FIG. 9) of the horizontal articulated robot according to the third embodiment.
  • FIG. 11 is a schematic perspective view of a horizontal articulated
  • FIG. 17 is a sectional view of a horizontally articulated robot according to the tenth embodiment.
  • FIG. 18 is a perspective view of a horizontally articulated robot according to the eleventh embodiment.
  • FIG. 19 is a plan view (partially sectional view) of a horizontally articulated robot according to the eleventh embodiment.
  • FIG. 20 is a perspective view of a horizontal articulated robot according to the twelfth embodiment.
  • FIG. 21 is a plan view (partially sectional view) of a horizontal articulated robot according to the twelfth embodiment.
  • FIG. 22 is a sectional view of a horizontal articulated robot according to the twelfth embodiment.
  • FIG. 23 is an explanatory diagram (perspective view) of the operation of the horizontal articulated robot according to the twelfth embodiment.
  • FIG. 24 is an explanatory diagram (plan view) of the operation of the horizontal articulated robot according to the twelfth embodiment.
  • FIG. 25 is a schematic perspective view of a horizontal articulated robot according to the thirteenth embodiment.
  • FIG. 26 is a sectional view of a horizontal articulated robot according to the fourteenth embodiment.
  • FIG. 27 is a schematic perspective view of a horizontal articulated robot according to the fourteenth embodiment.
  • FIG. 28 is a plan view (partially sectional view) of a horizontal articulated robot according to the fifteenth embodiment.
  • FIG. 29 is a plan view (partially sectional view) of a horizontal articulated robot according to the sixteenth embodiment.
  • FIG. 30 is a plan view (partially sectional view) of a horizontal articulated robot according to the seventeenth embodiment.
  • FIG. 31 is a plan view (partially sectional view) of a horizontal articulated robot according to a modification of the seventeenth embodiment.
  • FIG. 32 is a perspective view of a vertically articulated robot (18th embodiment).
  • FIG. 33 is a sectional view of the distal end portion of the robot arm of the vertical articulated robot.
  • FIG. 1 is a perspective view showing a first embodiment of a horizontal multi-joint robot, which is an example of the multi-joint robot of the present invention
  • FIG. 2 is a plan view (partially sectional view) of the horizontal multi-joint robot.
  • FIG. 3 is a sectional view along a vertical plane of the horizontal articulated robot.
  • the horizontal articulated robot 1 (hereinafter abbreviated as robot 1) shown in FIGS. 1 to 3 includes a base part 2, which is a part installed on a base BP, and a robot arm 3 supported by this base part 2.
  • the robot arm 3 includes a work shaft 7 provided at the tip thereof.
  • the robot arm 3 includes a first arm part 4 rotatably connected to the base part 2 around an axis A1, and a second arm part 4 rotatably connected to the first arm part 4 around an axis A2. 5, and a rotational force transmission section 6 for rotating the second arm section 5 with respect to the first arm section 4.
  • the axis A1 and the axis A2 are perpendicular axes parallel to each other. Note that the axis A1 is an example of the "first axis" of the present invention, and the axis A2 is an example of the "second axis" of the present invention.
  • the base portion 2 is a hollow, rectangular parallelepiped-shaped rigid structure.
  • a first motor M1 is provided inside the base portion 2.
  • the first motor M1 is a motor that drives the first arm portion 4.
  • the first motor M1 is a reducer-integrated servo motor in which a reducer M1b is integrally provided in a motor main body M1a.
  • the reduction gear M1b is an RV reduction gear, a cyclo reduction gear (registered trademark), a harmonic drive (registered trademark), or the like.
  • the second and fourth motors M2 and M4, which will be described later, are similarly speed reducer-integrated servo motors in which a speed reducer is integrally provided in the motor body. Note that a third motor M3, which will be described later, and a fourth motor M4, which will be described later, in a ninth embodiment, are not equipped with a reduction gear.
  • the first motor M1 is fixed to the upper wall portion 2a of the base portion 2 in an upward posture with the reducer M1b located on the upper side.
  • An opening is formed in the upper wall portion 2a, and the output shaft of the reducer M1b is fixed to the lower wall portion 4b of one longitudinal end (base end) of the first arm portion 4 through this opening. ing.
  • the first arm portion 4 is rotated (swiveled) around the axis A1 by the first motor M1, with its base end portion serving as a fulcrum.
  • the second arm part 5 is located above the first arm part 4, and one longitudinal end (base end) thereof is rotatable to the other longitudinal end (tip part) of the first arm part 4. connected.
  • the hollow shaft 5c provided on the lower wall portion 5b of the second arm portion 5 is held by the inner ring of a bearing B4 provided on the upper wall portion 4a of the first arm portion 4.
  • the second arm portion 5 is rotatably connected to the first arm portion 4 about the axis A2 with its base end portion as a fulcrum.
  • both the first arm portion 4 and the second arm portion 5 have a hollow structure, and the internal spaces of both arm portions 4 and 5 communicate with each other through the hollow shaft 5c.
  • the work shaft 7 is disposed at the other longitudinal end (tip) of the second arm portion 5, that is, at the tip of the robot arm 3.
  • the working shaft 7 is a vertically extending spline shaft.
  • the work shaft 7 passes through the second arm portion 5 and is supported so as to be movable in the vertical direction (axial direction) and rotated about the axis relative to the second arm portion 5, and is connected to the drive mechanism portion 8. driven by.
  • the drive mechanism section 8 includes a third motor M3, a screw shaft 34 arranged parallel to the work shaft 7 and rotatably supported by the third motor M3, a nut member 35 attached to the screw shaft 34, It includes a connecting member 32 that connects the upper end portion of the shaft 7 and the nut member 35. Further, the drive mechanism section 8 includes a fourth motor M4 and a spline nut 31 mounted on the work shaft 7 and connected to a speed reducer M4b of the fourth motor M4. That is, when the screw shaft 34 is rotated by the drive of the third motor M3, this rotational movement is converted into a vertical movement of the working shaft 7 via the nut member 35 and the connecting member 36, so that the working shaft 7 moves in the vertical direction.
  • the work shaft 7 is rotated by driving the fourth motor M4.
  • the fourth motor M4 is a hollow motor having a through hole penetrating in the vertical direction, and the work shaft 7 is provided so as to pass through the center of the fourth motor M4 and the spline nut 31.
  • a vertically elongated hollow cover member 30 is fixed to the tip of the second arm portion 5.
  • the cover member 30 is fixed to the upper wall portion 5a of the second arm portion 5, and covers a portion of the drive mechanism portion 8 and the second arm portion 5 that protrudes upward from the upper wall portion 5a.
  • a work tool (end effector) not shown is attached to the tip (lower end) of the work shaft 7.
  • a chuck device for gripping and transporting a workpiece a processing device for performing various processing such as welding on a workpiece, or a measuring device for measuring a workpiece, etc.
  • a working tool is attached to the tip of the working shaft 7.
  • a rotational force about the axis A3 parallel to the axis A1 and the axis A2 is applied to a position in the first arm part 4 closer to the axis A1 than the axis A2, that is, a position from the axis A2 to the axis A1 excluding the area on the axis A2.
  • a second motor M2 is arranged to generate the power.
  • the second motor M2 is a motor that drives the second arm portion 5.
  • the second motor M2 is not arranged on the axis A2, but is arranged at a position shifted from the axis A2 toward the axis A1. Therefore, the second arm portion 5 rotates around the axis A2 with the base end portion of the second arm portion 5 as a fulcrum as the rotational force of the second motor M2 is transmitted via the rotational force transmission portion 6. (swivel) driven.
  • the rotational force transmission section 6 connects the first arm section 4 and the second arm section 5 to transmit the rotational force, and deforms following the rotation of the second arm section 5 with respect to the first arm section 4. It is configured as follows. This point will be explained in detail below.
  • the rotational force transmission unit 6 includes a first base 10 that rotates around an axis A3 due to the rotational force of a second motor M2, and a second base 12 that is rotatably supported around an axis A4 with respect to the second arm 5. , an extensible portion 13 that connects the first base 10 and the second base 12 and expands and contracts (deforms) in accordance with changes in the distance between the first base 10 and the second base 12.
  • the axis A3 and the axis A4 are perpendicular axes parallel to each other, and the axis A3 is an example of the "third axis" of the present invention, and the axis A4 is an example of the "fourth axis" of the present invention.
  • the first base 10 is a hollow box-shaped member including a frame 20 and a cover 21, and is configured to surround the second motor M2.
  • the frame 20 has a cross section including a plate-shaped horizontal part 20a along the upper wall part 4a of the first arm part 4, and a plate-shaped upright part 20b rising vertically upward from one end of the horizontal part 20a. It has an L-shaped shape.
  • the horizontal portion 20a is fixed to the motor main body M2a of the second motor M2 or the body of the reducer M2b (the part joined to the motor main body M2a).
  • the output shaft of the speed reducer M2b of the second motor M2 is fixed to the first arm portion 4. Therefore, when the second motor M2 operates, the motor main body M2a and the first base portion 10 (frame 20) rotate together around the axis A3 with respect to the first arm portion 4.
  • the second base 12 is arranged between the work shaft 7 and the axis A2 in the longitudinal direction of the second arm 5, and is rotatable around the axis A4 with respect to the upper surface (upper wall 5a) of the second arm 5. is supported by Like the first base 10, the second base 12 is also a hollow box-shaped member including a frame 22 and a cover 23.
  • the frame 22 has an L-shaped cross section and includes a plate-shaped horizontal portion 22a along the upper wall portion 5a of the second arm portion 5, and a plate-shaped upright portion 22b rising vertically upward from one end of the horizontal portion 22a. It has the shape of
  • the horizontal portion 22a of the frame 22 is formed with a circular opening 22c penetrating vertically along the axis A4, and a sleeve portion 22d extending downward from the periphery of the opening 22c.
  • This sleeve portion 22d is held by an inner ring of a bearing B5 provided on the upper wall portion 5a of the second arm portion 5.
  • the telescopic section 13 is a link mechanism consisting of a first link 14 and a second link 15.
  • the first link 14 is an example of the "first link member” of the present invention
  • the second link 15 is an example of the "second link member” of the present invention.
  • Both links 14 and 15 are elongated hollow plates that have a thickness in the width direction (vertical direction in FIG. 2) of the first link 14 and the second link 15 (hereinafter sometimes referred to as arm bodies).
  • the first link 14 and the second link 15 are overlapped in the thickness direction at one end in the longitudinal direction, and are connected to each other at the one end so as to be rotatable around an axis A5 extending in the horizontal direction.
  • the hollow shaft 14a provided on the side wall of the first link 14 is held by the inner ring of the bearing B13 provided on the second link 15, so that the first link 14 and the second link 15 are connected to each other. are rotatably connected.
  • the first arm part 4 and the second arm part 5 are aligned in a straight line (hereinafter sometimes referred to as the neutral state of the robot arm 3 or the neutral state of the arm body)
  • the first The link 14 is located outside the second link 15 (on the side opposite to the arm body). Both links 14 and 15 are connected to the respective bases 10 and 12 in the following manner in a side view, in an upwardly convex bent state. Note that the first link 14 may be located inside the second link 15.
  • the other end of the first link 14 is rotatably connected to the upright portion 20b of the frame 20 of the first base 10 about an axis A6 parallel to the axis A5.
  • the other end of the second link 15 is rotatably connected to the upright portion 22b of the frame 22 of the second base 12 about an axis A7 parallel to the axis A5.
  • the hollow shaft 14b provided on the side surface of the first link 14 is held by the inner ring of a bearing B14 provided on the upright portion 20b of the first base 10.
  • a hollow shaft 15a provided on the side wall portion of the second link 15 is held by an inner ring of a bearing B15 provided on the upright portion 22b of the second base portion 12.
  • the second link 15 is rotatably connected to the second base 12, and the first link 14 is rotatably connected to the first base 10.
  • the axis A5 is an example of the "fifth axis" of the present invention.
  • a cable 100 such as an electric wire for driving the first to fourth motors M1 to M4 is introduced inside the base portion 2.
  • the cable pipe L1 is provided in an arch shape.
  • the cable pipe L1 is, for example, a flexible tube made of resin.
  • the cable 100 is guided from the base portion 2 to the inside of the rotational force transmission portion 6 through the cable piping L1, and is guided to the tip of the second arm portion 5 through the inside of the rotational force transmission portion 6. Specifically, the cable 100 is guided from the first base 10 of the rotational force transmission unit 6 into the first link 14 through the hollow shaft 14b, and from the first link 14 into the second link 15 through the hollow shaft 14a. . Further, the cable 100 is guided from the second link 15 through the hollow shaft 15a into the second base 12, and from the second base 12 into the second arm portion 5 through the opening 22c and the sleeve portion 22d.
  • the cable for the first motor is connected to the first motor M1 within the base portion 2
  • the cable for the second motor is connected to the second motor M2 within the first base portion 10.
  • cables for the third motor and the fourth motor are connected to the third motor M3 and the fourth motor M4, respectively, inside the second arm portion 5.
  • FIG. 4 is a perspective view
  • FIG. 5 is a plan view, each showing the operation of the robot 1. 4 and 5, some members such as the covers 21 and 23 of the bases 10 and 12 of the rotational force transmitting unit 6 and the cable pipe L1 are omitted.
  • the first arm portion 4 is rotationally driven around the axis A1 by the first motor M1.
  • the work shaft 7 end effector moves in the horizontal direction to an arbitrary position within the movable region indicated by the symbol Ar in FIG. 5(a).
  • the second arm section 5 is moved from (e) in FIG. It is possible to operate non-stop from d) ⁇ (a) ⁇ (b) ⁇ (c) or from (c) ⁇ (b) ⁇ (a) ⁇ (d) ⁇ (e).
  • the second arm part 5 rotates clockwise (R1 direction) or counterclockwise (R2 direction) relative to the first arm part 4, that is, in a so-called right-handed system. It is possible to continuously switch from an arm state to a left-handed arm state, or from a left-handed arm state to a right-handed arm state.
  • the second motor M2 which is conventionally arranged on the axis A2 of rotation of the second arm part 5 (Patent Document 1), is arranged at a position closer to the axis A1 than the axis A2. ing. Therefore, the center of gravity of the robot arm 3 is closer to the axis A1, thereby reducing the inertia (moment of inertia) of the robot arm 3 about the axis A1.
  • the rotational force of the second motor M2 since the rotational force of the second motor M2 is transmitted to the second arm section 5 via the rotational force transmission section 6, the influence on the inertia due to the increased weight of the rotational force transmission section 6 is taken into consideration. There is a need to.
  • the weight of the rotational force transmission section 6 is sufficiently small compared to the weight of the second motor M2 including the motor main body M2a and the speed reducer M2b, and the influence of the rotational force transmission section 6 on the inertia is extremely low. Therefore, according to the configuration of the robot 1 described above, it can be said that it is possible to reduce the inertia of the robot arm 3 around the axis A1 compared to a conventional horizontal articulated robot.
  • FIG. 6 is a plan view of the robot 1 in a neutral state.
  • FIG. 7 is a plan view of the second arm portion 5 when it is in operation. Specifically, a state is shown in which the second arm part 5 is driven in reverse and the work shaft 7 is brought into contact with an obstacle to restrict the rotation of the second arm part 5.
  • the link lengths B of the respective links 14 and 15 of the telescopic section 13 of the rotational force transmission section 6 are equal to each other, and the rotational force transmission section 6 has the second arm It is assumed that the unit 5 is configured to move by 2 ⁇ around the axis A2.
  • the torque around the axis A3 generated by the second motor M2 is T1
  • the torque around the axis A2 in that case is T2
  • the torque around the axis A2 is transmitted to the second arm via the rotational force transmission section 6.
  • the reduction ratio of the speed reducer M2b of the second motor M2 is set to twice that when the second motor M2 is arranged on the axis A2, the torque T2 around the axis A2 will be doubled, and the torque T2 around the axis A2 will be doubled.
  • the speed (angular velocity) of the second arm portion 5 becomes 1/2, and the second arm portion 5 is moved around the axis A2 with torque and speed (angular velocity) comparable to those when the second motor M2 is arranged on the axis A2. It becomes possible to drive the In this case, changing the reduction ratio of the reduction gear M2b hardly involves an increase in the weight of the second motor M2.
  • the inertia (moment of inertia) seen from the second motor M2 is reduced by the square of the reduction ratio, so if the reduction ratio is doubled as described above, the inertia around the axis A2 becomes 1/4. Therefore, according to the robot 1 described above, in addition to the inertia around the axis A1, compared to the case where the second motor M2 is arranged on the axis A2, the inertia when the position of the second motor M2 is taken as a reference is can be reduced to the same level or less, and it is possible to increase the torque of the second motor M2 without worrying about the inertia around the axis A1.
  • FIG. 8 is a schematic perspective view of the robot 1 according to the second embodiment. (a) in the figure shows the robot 1 with the robot arm 3 in a neutral state. The robot 1 according to the second embodiment differs from the first embodiment in the configuration of the rotational force transmission section 6 in the following points.
  • each link 14, 15 of the extensible portion 13 is bent upwardly and connected to each base portion 10, 12.
  • the first link 14 and the second link 15 are connected to each base 10 and 12 in a downwardly convex bent state.
  • the rotational force transmission section 6 transmits the rotational force of the second motor M2 to the second arm section 5, and deforms following the rotation of the second arm section 5. In other words, it expands and contracts.
  • each base 10 and 12 of the second embodiment is configured to have a higher height than that of the first embodiment, and when the extendable part 13 is folded as the second arm part 5 rotates, the arm part Each link 14, 15 is supported at a height position where 4, 5 and the expandable portion 13 do not interfere with each other.
  • FIG. 9 is a schematic perspective view of the robot 1 according to the third embodiment. (a) in the figure shows the robot 1 with the robot arm 3 in a neutral state. Moreover, FIG. 10 is a side view of the robot 1 (X arrow view of FIG. 9). The robot 1 according to the third embodiment differs from the first embodiment in the configuration of the rotational force transmission section 6 in the following points.
  • the axis A6 is perpendicular to the axis A3, and similarly the axis A7 is perpendicular to the axis A4. That is, the angle that the axis A6 makes with the axis A3 and the angle that the axis A7 makes with the axis A4 are both 90 degrees.
  • the angle ⁇ a formed by the axis A6 with respect to the axis A3 and the angle ⁇ b formed by the axis A7 with respect to the axis A4 are set to be the same acute angle. has been done. Therefore, the upright portion 20b of the frame 20 at the first base 10 and the upright portion 22b of the frame 22 at the second base 12 are both inclined with respect to the vertical axis.
  • the rotational force transmission section 6 transmits the rotational force of the second motor M2 to the second arm section 5, and deforms following the rotation of the second arm section 5. In other words, it expands and contracts.
  • the angle ⁇ a formed by the axis A6 with respect to the axis A3 and the angle ⁇ b formed by the axis A7 with respect to the axis A4 are the same as in the first embodiment from the viewpoint of avoiding interference between the second arm portion 5 and the telescopic portion 13. It is desirable that the angle be 90°. If the angles ⁇ a and ⁇ b become smaller than 90°, there is a concern that interference between the second arm portion 5 and the extendable portion 13 may occur. Therefore, in the third embodiment, the angles ⁇ a and ⁇ b are set within a range where the second arm portion 5 and the extendable portion 13 do not interfere, for example, within a range of 10° or more and less than 90°.
  • FIG. 11 is a schematic perspective view of the robot 1 according to the fourth embodiment. (a) in the figure shows the robot 1 with the robot arm 3 in a neutral state.
  • the robot 1 according to the fourth embodiment differs from the first embodiment in the configuration of the rotational force transmitting section 6 in the following points.
  • the rotational force transmitting section 6 is configured such that the extensible section 13 is arranged along the widthwise center of the arm body, that is, on a straight line intersecting the axes A2 to A4. There is.
  • the frames 20 and 22 of each base 10 and 12 have horizontal portions 20a and 22a formed in a disk shape, and upright portions 20b and 22b are provided at the center thereof.
  • One end of the first link 14 and the second link 15 is bifurcated, and when the other end is inserted into the fork, the first link 14 and the second link 15 are connected. are rotatably connected.
  • the end of the first link 14 on the first base 10 side is formed into two forks, and the first link 14 is rotated by the upright part 20b with the upright part 20b inserted into the forked part. possible to be connected.
  • the end of the second link 15 on the second base 12 side is formed into two forks, and the second link 15 is attached to the upright part 22b with the upright part 22b inserted into the forked part. Rotatably connected.
  • the second motor M2 is arranged inside the first arm section 4.
  • the second motor M2 is fixed to the upper wall portion 4a in an upward posture with the reducer M2b located on the upper side, and the output shaft of the reducer M2b is fixed to the frame 20 of the first base 10.
  • the wiring structure of the cable 100 can be the same as in the fifth and sixth embodiments described later.
  • the rotational force transmitting section 6 is configured such that when the robot arm 3 is in the neutral state, the extensible section 13 is disposed inside the arm body in the width direction. , there is an advantage that the entire robot is more compact than the robot 1 of the first embodiment.
  • FIG. 12 is a sectional view along a vertical plane showing the robot 1 according to the fifth embodiment.
  • the robot 1 according to the fifth embodiment differs from the first embodiment mainly in the wiring structure of the cable 100 in the following points.
  • the cable 100 was guided from the base section 2 to the rotational force transmission section 6 through the cable piping L1, and was guided to the tip of the second arm section 5 through the inside of the rotational force transmission section 6.
  • a cable pipe L1 is provided between the base part 2 and the second arm part 5.
  • the cable 100 is guided from the base part 2 into the second arm part 5 through the cable pipe L1. Specifically, the cable 100 is guided inside the second arm section 5 at a position between the work shaft 7 and the second base section 12 of the rotational force transmission section 6 .
  • cables for the third motor and for the fourth motor are connected to the third motor M3 and the fourth motor M4 inside the second arm portion 5, respectively.
  • a cable for the second motor is introduced from the second arm section 5 to the first arm section 4 through the hollow shaft 5c, and is connected to the second motor M2 inside the first arm section 4.
  • the cable for the first motor is connected to the first motor M1 within the base portion 2, as in the first embodiment.
  • the second motor M2 is in an upward posture with the reducer M2b located on the upper side, and the reducer M2b is fixed to the upper wall portion 4a of the first arm portion 4. ing.
  • the output shaft of the speed reducer M2b is fixed to the frame 20 of the first base 10 of the rotational force transmitting section 6.
  • the basic structure of the robot 1 of the fifth embodiment is the same as that of the first embodiment, so the robot 1 of the fifth embodiment can also enjoy the same effects as the first embodiment.
  • FIG. 13 is a sectional view taken along a vertical plane of the robot 1 according to the sixth embodiment.
  • the robot 1 according to the sixth embodiment differs from the first embodiment mainly in the wiring structure of the cable 100 in the following points.
  • a flexible cable pipe L1 (not shown in FIG. 1) made of a flexible tube is provided, and the cable 100 is guided from the base part 2 to the rotational force transmitting part 6 through the cable pipe L1.
  • a cable guide section 40 made of a rigid hollow structure is provided at the upper part of the base section 2 in place of the cable pipe L1 of the first embodiment.
  • the cable guide section 40 has an inverted L-shape including a vertical guide section 41 extending upward from the upper surface of the base section 2 and a horizontal guide section 42 extending horizontally from the upper end thereof.
  • the vertical guide portion 41 is provided on the upper surface of the base portion 2 at a position outside the movable region of the first arm portion 4 .
  • the lateral guide portion 42 is located above the upper surface of the first arm portion 4, and is provided such that its tip portion is located on the axis A1.
  • An opening 42a is formed on the lower surface of the distal end of the horizontal guide portion 42 at a position corresponding to the axis A1. Furthermore, an opening 4c is formed on the upper surface (upper wall 4a) of the first arm portion 4 to face the opening 42a.
  • the cable 100 is introduced into the cable guide section 40 through an opening 2b formed in the upper wall section 2a of the base section 2, and is introduced from the cable guide section 40 through the openings 42a and 4c. It is guided into the interior of the first arm section 4, and further guided from the first arm section 4 to the distal end of the second arm section 5 through the hollow shaft 5c.
  • the cable for the second motor is connected to the second motor M2 inside the first arm section 4, and the cables for the third motor and the fourth motor are connected inside the second arm section 5. , are connected to a third motor M3 and a fourth motor M4, respectively.
  • the cable for the first motor is connected to the first motor M1 within the base portion 2 as in the first embodiment.
  • the second motor M2 is in an upward posture as in the fifth embodiment, and the reducer M2b is fixed to the upper wall part 4a of the first arm part 4. ing.
  • the output shaft of the speed reducer M2b is fixed to the frame 20 of the first base 10 of the rotational force transmitting section 6.
  • the basic structure of the robot 1 of the sixth embodiment is the same as that of the first embodiment, so the robot 1 of the sixth embodiment can also enjoy the same effects as the first embodiment.
  • the robot 1 of the sixth embodiment since the cable piping L1 is omitted, there is an advantage that the risk of interference between the cable piping L1 and external equipment is reduced.
  • FIG. 14 is a sectional view of a main part of the robot 1 according to the seventh embodiment along a vertical plane.
  • the robot 1 according to the seventh embodiment differs from the first embodiment in the wiring structure of the rotational force transmission section 6 and the cable 100 in the following points.
  • the second motor M2 is arranged on the axis A1. That is, the second motor M2 is arranged with respect to the first arm part 4 so as to generate a rotational force about the axis A1, and the rotational force transmission part 6 is arranged so as to correspond to the arrangement of the second motor M2. It is provided.
  • the basic configuration of the rotational force transmitting section 6 is the same as in the first embodiment, but the link lengths of the links 14 and 15 are different from the first embodiment.
  • a cable guide section 40 similar to the sixth embodiment is provided at the upper part of the base section 2 in place of the cable piping L1 of the first embodiment.
  • the lateral guide section 42 of the cable guide section 40 is provided above the top surface of the first base section 10 of the rotational force transmission section 6, that is, above the top surface of the cover 21.
  • the cover 21 is provided with an opening 21a at a position opposite to the opening 42a of the cable guide section 40 (lateral guide section 42), that is, on the axis A1.
  • the cable 100 is introduced into the cable guide section 40 through an opening 2b formed in the upper wall section 2a of the base section 2, and rotated from the cable guide section 40 through the openings 42a and 21a. It is guided inside the first base 10 of the force transmitting part 6 . As in the first embodiment, it is guided to the distal end portion of the second arm portion 5 through the inside of the rotational force transmitting portion 6.
  • the basic structure of the robot 1 of the seventh embodiment is the same as that of the first embodiment, so the robot 1 of the seventh embodiment can also enjoy the same effects as the first embodiment.
  • the second motor M2 is arranged on the axis A1 which is the rotation center of the first arm part 4, compared to the case where the second motor M2 is arranged on the axis A3, , the center of gravity of the robot arm 3 becomes closer to the axis A1. Therefore, according to the robot 1 of the seventh embodiment, the inertia (moment of inertia) of the robot arm 3 about the axis A1 is reduced compared to the robot 1 of the first embodiment.
  • FIG. 15 is a sectional view of a main part of the robot 1 according to the eighth embodiment along a vertical plane.
  • the robot 1 according to the eighth embodiment has a configuration in which the second motor M2 is arranged on the axis A1 in the robot 1 according to the already described sixth embodiment (see FIG. 13).
  • a rotational force transmission section 6 is provided to correspond to the arrangement of the second motor M2.
  • the basic configuration of the rotational force transmission section 6 is the same as in the first embodiment.
  • the second motor M2 moves the lateral guide section 42 of the cable guide section 40 through the opening 4c of the first arm section 4 and the opening 42a of the lateral guide section 42. It is arranged so as to penetrate in the vertical direction.
  • the first base part 10 of the rotational force transmitting part 6 is arranged above the horizontal guide part 42, and the output shaft of the speed reducer M2b of the second motor M2 is attached to the frame 20 (horizontal part 20a) of the first base part 10. is fixed.
  • the cable 100 is introduced from the base part 2 into the cable guide part 40, and is led from the cable guide part 40 through the openings 42a and 4c to the first arm part 4 along the second motor M2. You will be guided inside. Then, it is guided to the distal end portion of the second arm portion 5 through the interior of each of the first arm portion 4 and the second arm portion 5.
  • the basic structure of the robot 1 of the eighth embodiment is the same as that of the first embodiment, so the robot 1 of the eighth embodiment can also enjoy the same effects as the first embodiment. Further, in the eighth embodiment, since the second motor M2 is arranged on the axis A1, which is the rotation center of the first arm part 4, the robot arm around the axis A1, similar to the robot 1 of the seventh embodiment, It becomes possible to reduce the inertia (moment of inertia) of 3 compared to the robot 1 of the first embodiment.
  • FIG. 16 is a sectional view taken along a vertical plane of the robot 1 according to the ninth embodiment.
  • the robot 1 according to the ninth embodiment has the same basic structure as the robot 1 according to the already described sixth embodiment (see FIG. 13), but the specifics of the work shaft 7 and the drive mechanism section 8 are different in the following points.
  • the configuration is different from the sixth embodiment.
  • the work shaft 7 is a ball screw spline shaft, and the work shaft 7 is arranged on the axis A4 so as to vertically penetrate the second base 12 of the rotational force transmission section 6. There is. Specifically, the working shaft 7 passes through the second base 12 in the vertical direction through the bearing B5, the opening 22c of the frame 22 of the second base 12, and the opening 23a formed in the cover 23.
  • the work shaft 7 includes a ball screw nut 36a rotatably supported on the upper wall portion 5a of the second arm portion 5 via a bearing B20, and a ball rotatably supported on the lower wall portion 5b via a bearing B21.
  • the spline nut 38a is inserted into the spline nut 38a.
  • the ball screw nut 36a is driven by a third motor M3, and the ball spline nut 38a is driven by a fourth motor M4 by a belt transmission mechanism.
  • the third motor M3 and the fourth motor M4 are arranged at a position between the axis A4 and the axis A2 in the second arm part 5 so that each output shaft is located inside the second arm part 5. They are arranged vertically facing each other.
  • a transmission belt 36d is attached across a pulley 36b attached to the ball screw nut 36a and a pulley 36c fixed to the output shaft of the third motor M3, and a pulley 38b attached to the ball spline nut 38a.
  • a transmission belt 38d is attached across the motor and a pulley 38c fixed to the output shaft of the fourth motor M4.
  • the drive mechanism section 8 is thus configured by the third motor M3, the fourth motor M4, the ball screw nut 36a, the ball spline nut 38a, and the belt transmission mechanism described above.
  • the basic structure of the robot 1 of the ninth embodiment is the same as that of the first embodiment, so the robot 1 of the ninth embodiment can also enjoy the same effects as the first embodiment.
  • the work shaft 7 is arranged on the axis A4 and is configured to vertically penetrate the second base 12 of the rotational force transmitting section 6.
  • the rotational force transmission section 6 does not interfere with the drive mechanism section 8 of the work shaft 7. Therefore, there is an advantage that the movable area Ar of the second arm portion 5 is not restricted in order to avoid the interference, in other words, it contributes to increasing the movable area Ar.
  • FIG. 17 is a sectional view taken along a vertical plane of the robot 1 according to the tenth embodiment.
  • the robot 1 according to the tenth embodiment differs from the first embodiment in the specific configuration of the rotational force transmission section 6 in the following points.
  • the telescoping section 13 of the rotational force transmitting section 6 had a configuration in which two links 14 and 15 were interconnected at their ends, but the telescoping section 13 of the tenth embodiment As shown in FIG. 17, it consists of a magic hand type link mechanism (rage tongue) in which a plurality of parallel link mechanisms are combined.
  • the individual links constituting the telescoping section 13 have a hollow structure, and the cable 100 guided from the base section 2 to the rotational force transmitting section 6 through the cable piping L1 is inside the links of the telescoping section 13. It is guided to the distal end of the second arm part 5 through. This point is the same as the first embodiment.
  • the basic structure of the robot 1 of the tenth embodiment is the same as that of the first embodiment, so the robot 1 of the tenth embodiment can also enjoy the same effects as the first embodiment.
  • the telescopic portion 13 (rage tongue) as described above, as the second arm portion 5 rotates, the axis A4 and the axis A3 are brought closest to each other, that is, the telescopic portion 13 is folded to the smallest size.
  • the upper end height of the stretchable section 13 in the extended state is suppressed to be lower than that of the stretchable section 13 of the first embodiment. Therefore, it is possible to keep the height occupied by the telescopic section 13 during operation low.
  • FIG. 18 is a perspective view of the robot 1 according to the eleventh embodiment
  • FIG. 19 is a plan view (partially sectional view) of the robot 1.
  • the robot 1 according to the eleventh embodiment differs from the first embodiment in the specific configuration of the rotational force transmission section 6 in the following points.
  • the first link 14 constituting the telescopic section 13 of the rotational force transmitting section 6 is connected to the first section 141 connected to the second link 15. , a second portion 142 connected to the first base portion 10 (frame 20), and a connecting portion 16 that connects these portions so as to be relatively rotatable around the axis A8.
  • the axis A8 is an axis extending in the longitudinal direction of the first link 14, orthogonal to the axes A5 to A7.
  • the connecting portion 16 is composed of a bearing such as a cross roller bearing, and the inner ring of the bearing is fixed to the first portion 141 and the outer ring portion of the bearing is fixed to the second portion 142.
  • the rotational force generated by the second motor M2 can be more smoothly transmitted to the second arm section 5 via the rotational force transmission section 6.
  • unnecessary force will act on each link 14, 15 and each bearing B5, B13 to B15, causing deformation and rotation. It is conceivable that this may result in resistance when the force transmission section 6 is operated.
  • relative rotation between the first portion 141 and the second portion 142 is allowed, thereby making it possible to release unnecessary forces as described above. Therefore, the rotational force transmission section 6 can operate smoothly, and as a result, the rotational force generated by the second motor M2 can be transmitted to the second arm section 5 more smoothly.
  • the connecting portion 16 is provided on the first link 14 side, but the connecting portion 16 may be provided on the second link 15 side.
  • the connecting portion 16 is constituted by a bearing, it is not limited to a bearing as long as the first portion 141 and the second portion 142 can be connected so as to be relatively rotatable around the axis A8.
  • the connecting portion 16 is configured with a bearing, as shown in FIG. 19, the cable 100 can be easily routed inside the expandable portion 13.
  • the connecting portion 16 is provided in the link member connected to the first base 10 or the link member connected to the second base 12 among the link members constituting the plurality of parallel link mechanisms of the extensible portion 13. be able to.
  • FIG. 20 is a perspective view of the robot 1 according to the twelfth embodiment
  • FIG. 21 is a plan view (partially sectional view) of the robot 1.
  • FIG. 22 is a sectional view of the robot 1 taken along a vertical plane.
  • the robot 1 according to the twelfth embodiment differs from the first embodiment in the specific configuration of the rotational force transmission section 6 in the following points.
  • the extensible portion 13 of the rotational force transmitting portion 6 is composed of a linear motion member instead of a link mechanism.
  • the extensible portion 13 includes a shaft member 50 connected to the second base 12 and a guide member 52 connected to the first base 10.
  • the shaft member 50 is a spline shaft
  • the guide member 52 is a cylindrical spline nut.
  • the telescopic portion 13 has a telescopic structure in which one end side (distal end side) of the shaft member 50 is inserted into the inside of the guide member 52 from one end side (distal end side).
  • the axial length L52 of the guide member 52 is set to be slightly longer than the axial length L50 of the shaft member 50, and each of the axial lengths L50 and L52 is at a position approximately midway between the axis A6 and the axis A7 when the robot arm 3 is in a neutral state.
  • the tip of the shaft member 50 is inserted into the tip of the guide member 52, while the tip of the shaft member 50 is inserted into the innermost part of the guide member 52 when the second arm portion 5 is rotated the most from the neutral state. It is set so as to be located at the end (that is, not protrude outward from the guide member 52).
  • the other end (base end) of the shaft member 50 is held by a holder member 51, and the shaft member 50 is attached to the frame 22 (standing portion 22b) of the second base 12 via the holder member 51. They are connected to be rotatable around the axis A7.
  • the other end (base end) of the guide member 52 is held by a holder member 53, and the guide member 52 is attached to the frame 20 (erected portion 20b) of the first base 10 via the holder member 53. On the other hand, it is rotatably connected around the axis A6. Specifically, as shown in FIG. 21, the shaft portion 51a provided on the holder member 51 is held by the inner ring of the bearing B15 provided on the upright portion 22b.
  • a shaft portion 53a provided on the holder member 53 is held by an inner ring of the bearing B14 provided on the upright portion 20b.
  • the shaft member 50 is rotatably connected to the second base 12, and the guide member 52 is rotatably connected to the first base 10.
  • the second motor M2 is in an upward posture as in the sixth embodiment (see FIG. 13), and the reducer M2b is fixed to the upper wall portion 4a of the first arm portion 4. has been done.
  • the output shaft of the speed reducer M2b is fixed to the frame 20 of the first base 10 of the rotational force transmitting section 6.
  • the wiring structure of the cable 100 in the robot 1 of the twelfth embodiment is the same as the wiring structure of the sixth embodiment (see FIG. 13). That is, the cable guide section 40 is provided on the upper part of the base section 2. The cable 100 is introduced into the cable guide section 40 from the base section 2. The cable is guided into the first arm part 4 through the cable guide part 40, and further guided from the first arm part 4 to the tip of the second arm part 5 through the hollow shaft 5c.
  • FIGS. 23 and 24 are explanatory diagrams of the operation of the robot 1 of the twelfth embodiment, with FIG. 23 being a perspective view and FIG. 24 being a plan view, each showing the operation of the robot 1. Note that in FIGS. 23 and 24, the covers 21 and 23 of the bases 10 and 12 of the rotational force transmission section 6 and the cable guide section 40 are omitted.
  • the second arm portion 5 when the second arm portion 5 is reversely driven by the second motor M2, the second arm portion 5 rotates counterclockwise (in the direction of arrow R2) in plan view.
  • the guide member 52 changes as shown in FIGS.
  • the shaft member 50 enters into the inside of the telescopic portion 13, and the total length of the extensible portion 13 is reduced. That is, the extensible portion 13 expands and contracts in accordance with the rotation of the second arm portion 5 with respect to the first arm portion 4 .
  • the first arm portion 4 is rotationally driven around the axis A1 by the first motor M1.
  • the work shaft 7 end effector moves in the horizontal direction to any position within the movable area Ar shown in FIG. 24(a).
  • the basic structure of the robot 1 of the twelfth embodiment is the same as that of the first embodiment, so the robot 1 of the twelfth embodiment can also enjoy the same effects as the first embodiment.
  • the telescopic part 13 of the rotational force transmitting part 6 is composed of the shaft member 50 and the guide member 52 as described above. There is no large variation in the height of the expandable part 13. Therefore, it is possible to keep the height occupied by the telescopic section 13 during operation low.
  • the shaft member 50 is a spline shaft
  • the guide member 52 is a cylindrical spline nut.
  • the shaft member 50 with a rail member such as a linear guide
  • the guide member 52 with a sliding member such as a slider that slides along the rail member.
  • the telescopic portion 13 may have a structure (double row) in which pairs of shaft members 50 (spline shafts or rail members) and guide members 52 (spline nuts or sliding members) are provided in multiple rows.
  • FIG. 25 is a schematic perspective view of the robot 1 according to the thirteenth embodiment. (a) in the figure shows the robot 1 with the robot arm 3 in a neutral state.
  • the robot 1 according to the thirteenth embodiment has the same basic configuration as the robot 1 according to the twelfth embodiment, but differs in the configuration of the rotational force transmission section 6 in the following points.
  • the angle that the axis A6 makes with the axis A3 and the angle that the axis A7 makes with the axis A4 are the same acute angle. is set to . Therefore, the upright portion 20b of the frame 20 on the first base 10 and the upright portion 22b of the frame 22 on the second base 12 are both provided to be inclined with respect to the vertical.
  • the basic structure of the robot 1 of the thirteenth embodiment is the same as that of the twelfth embodiment. Therefore, the robot 1 of the thirteenth embodiment can also enjoy the same effects as the twelfth embodiment.
  • the angle formed by the axis A6 with respect to the axis A3 and the angle formed by the axis A7 with respect to the axis A4 are as in the twelfth embodiment from the viewpoint of avoiding interference between the second arm part 5 and the telescopic part 13.
  • the angle is 90°. If the angle is smaller than 90°, there is a concern that there will be interference between the second arm portion 5 and the extendable portion 13. Therefore, in the thirteenth embodiment, the angle is set within a range where the second arm portion 5 and the telescopic portion 13 do not interfere, for example, within a range of 10° or more and less than 90°. This point is similar to the third embodiment described above.
  • FIG. 26 is a sectional view taken along a vertical plane of the robot 1 according to the fourteenth embodiment. Further, FIG. 27 is a perspective view of the robot 1, and (a) in the figure shows the robot 1 with the robot arm 3 in a neutral state.
  • the robot 1 according to the fourteenth embodiment has the same basic configuration as the robot 1 of the twelfth embodiment (see FIGS. 20 to 24), but differs in the configuration of the rotational force transmission section 6 in the following points.
  • the rotational force transmitting section 6 is configured such that the extensible section 13 is parallel to a plane orthogonal to the axis A2 to the axis A4.
  • the first base 10 and the second base 12 are provided with box-shaped frames 20 and 22, the base end of the shaft member 50 is fixed to the frame 22 of the second base 12, and the guide member 52 is fixed to the frame 22 of the second base 12.
  • the base end portion of is fixed to the frame 20 of the first base portion 10. That is, in the robot 1 of the fourteenth embodiment, the shaft member 50 around the axis A7 is restricted, and the rotation of the guide member 52 around the axis A6 is restricted.
  • the basic structure of the robot 1 of the fourteenth embodiment is the same as that of the twelfth embodiment, so the robot 1 of the fourteenth embodiment can also enjoy the same effects as the twelfth embodiment.
  • the rotational force transmitting portion when the robot arm 3 is in the neutral state, includes the extendable portion 13 on the inner side in the width direction of the arm body (the first arm portion 4 and the second arm portion 5).
  • the configuration of the robot arm 3 including the rotational force transmitting section 6 becomes compact. Furthermore, the configuration is simplified because members for rotatably supporting the shaft member 50 and the guide member 52 (the bearings B14, 15, the holder members 51, 53) are not required.
  • FIG. 28 is a plan view (partially sectional view) of the robot 1 according to the fifteenth embodiment, showing the robot 1 with the robot arm 3 in a neutral state.
  • the robot 1 according to the fifteenth embodiment has the same basic configuration as the robot 1 according to the twelfth embodiment (see FIGS. 20 to 24), but differs in the configuration of the rotational force transmission section 6 in the following points.
  • a shaft member 50 in the telescopic portion 13 is rotatably supported by a holder member 51 via a bearing B30.
  • this configuration allows the rotational force generated by the second motor M2 to be more smoothly transmitted to the second arm portion 5 via the rotational force transmission portion 6.
  • the shaft member 50, the guide member 52, or the bearing B5 , B14, and B15 may be deformed due to unnecessary force acting on them, resulting in resistance when the rotational force transmitting section 6 is operated.
  • unnecessary force acting on the rotational force transmitting section 6 can be released. . Therefore, the rotational force transmission section 6 can operate smoothly, and as a result, the rotational force generated by the second motor M2 can be transmitted to the second arm section 5 more smoothly.
  • the shaft member 50 is rotatably supported with respect to the holder member 51, but the guide member 52 may be rotatably supported with respect to the holder member 53. In this case as well, similar effects can be enjoyed.
  • the configuration may be such that relative rotation between the shaft member 50 and the guide member 52 is allowed while maintaining the structure in which the shaft member 50 is fixed to the holder member 51 and the guide member 52 to the holder member 53.
  • the shaft member 50 with a ball bush shaft and constructing the guide member 52 with a ball bush nut, smooth operation is possible.
  • the same effects as the configuration in FIG. 28 can be achieved.
  • the configuration in which the shaft member 50 is a ball bush shaft and the guide member 52 is a ball bush nut can also be applied to the fourteenth embodiment described above.
  • the fourteenth embodiment since the shaft member 50 around the axis A7 is restricted and the rotation of the guide member 52 around the axis A6 is restricted, the rotational force generated by the second motor M2 is The effect of smoothly transmitting the signal to the second arm portion 5 is low.
  • FIG. 29 is a plan view (partially sectional view) of the robot 1 according to the sixteenth embodiment.
  • the robot 1 according to the sixteenth embodiment has the same basic configuration as the robot 1 according to the twelfth embodiment (see FIGS. 20 to 24), but differs in the configuration of the rotational force transmission section 6 in the following points.
  • the tip of the shaft member 50 is inserted into the guide member 52 only at the position of the first base 10, that is, approximately only at the position of the axis A3.
  • the axial length L50 of the shaft member 50 and the axial length L52 of the guide member 52 in the telescoping portion 13 are set so as to be guided (guided).
  • the shaft member 50 penetrates the guide member 52, and the shaft member 50 rotates.
  • the tip protrudes to the rear of the first arm portion 4, that is, to the axis A1 side (base portion 2 side).
  • the movable area Ar of the robot arm 3 is not easily restricted by the axial lengths L50 and L52 of the shaft member 50 and the guide member 52. Therefore, the robot 1 of the sixteenth embodiment contributes to increasing the movable range of the robot arm 3.
  • FIG. 30 is a plan sectional view (partial sectional view) of the robot 1 according to the seventeenth embodiment.
  • the robot 1 according to the seventeenth embodiment has the same basic configuration as the robot 1 according to the twelfth embodiment, but differs in the configuration of the rotational force transmission section 6 in the following points.
  • the guide member 52 constituting the telescopic part 13 of the rotational force transmitting part 6 has two unit guide members 52a and 52b (outer guide member 52a, inner guide member 52b). That is, the extensible portion 13 has a telescopic structure that is expandable and retractable in two stages, in which the outer guide member 52a and the inner guide member 52b are slidably arranged concentrically with respect to the shaft member 50.
  • the shaft member 50 is made of a spline shaft.
  • the inner guide member 52b is made of a composite cylindrical body having a spline groove on the inner circumferential surface and a spline on the outer circumferential surface
  • the outer guide member 52a is made of a cylindrical spline nut.
  • the extensible portion 13 further includes biasing members that bias the inner guide member 52b from both sides in the axial direction.
  • a coil spring 55 is arranged between the holder member 51 and one end of the inner guide member 52b, and on the first base 10 side, the coil spring 55 is arranged between the holder member 53 and the inner side.
  • a coil spring 56 is arranged between the guide member 52b and the other end thereof.
  • the coil spring 55 on the second base 12 side is arranged on the outer periphery of the shaft member 50.
  • the coil spring 56 on the first base 10 side is arranged in a spring accommodating recess 531 formed in the holder member 53.
  • the inner guide member 52b is urged toward the first base 10 side by the elastic force of the coil spring 55 with respect to the holder member 51 on the second base 12 side, and the holder member 51 on the first base 10 side
  • the inner guide member 52b is urged toward the second base 12 by the elastic force of the coil spring 56 with respect to the member 53.
  • the extendable part 13 since the extendable part 13 has a structure that can be extended and contracted in two stages, the degree of freedom in the length of extension and contraction of the extendable part 13 is higher than that of the robot 1 of the twelfth embodiment. That is, when the second arm portion 5 rotates, it becomes possible to contract the extendable portion 13 shorter. Therefore, it contributes to expanding the movable area Ar of the robot arm 3.
  • the inner guide member 52b is biased in opposite directions from both sides in the axial direction by the coil springs 55 and 56, its position relative to the shaft member 50 and the outer guide member 52a is maintained stably. . Therefore, during the operation of the robot arm 3, unstable movement of the inner guide member 52b is suppressed or prevented.
  • the coil spring 56 on the first base 10 side corresponds to the "first biasing member” of the present invention
  • the coil spring 55 on the second base 12 side corresponds to the "second biasing member” of the present invention. This corresponds to "parts”.
  • the guide member 52 includes three unit guide members 52a, 52b, and 52c (referred to as an outer guide member 52a, a first inner guide member 52b, and a second inner guide member 52c) that are slidable along their axes. It consists of That is, in the extensible portion 13, the outer guide member 52a, the first inner guide member 52b, and the second inner guide member 52c are slidably arranged concentrically with respect to the shaft member 50.
  • the shaft member 50 is made of a spline shaft
  • the first and second inner guide members 52b and 52c are made of the composite cylindrical body
  • the outer guide member 52a is made of a cylindrical spline nut.
  • a coil spring 55a is arranged between the holder member 51 on the second base 12 side and the end of the first inner guide member 52b, and A coil spring 55b having a smaller diameter than the coil spring 55a is arranged between the ends.
  • a coil spring 56a is arranged between the holder member 53 on the first base 10 side and the end of the first inner guide member 52b, and between the holder member 53 and the end of the second inner guide member 52c.
  • a coil spring 56b having a smaller diameter than the coil spring 56a is arranged.
  • the small diameter coil spring 55b is arranged inside the large diameter coil spring 55a and on the outer periphery of the shaft member 50, and the small diameter coil spring 55b is arranged on the outer periphery of the shaft member 50.
  • the spring 55a is arranged around the outer periphery of the second inner guide member 52c.
  • the large diameter coil spring 55a is formed in the holder member 53 and arranged in the first spring housing recess 531
  • the small diameter coil spring 56b is It is arranged inside a second spring accommodating recess 532 which is inside the large diameter coil spring 55a and is further formed at the inner bottom of the first spring accommodating recess 531.
  • the degree of freedom in the length of expansion and contraction of the expansion and contraction portion 13 can be further increased. Moreover, the positions of the first and second inner guide members 52b and 52c can be stably maintained with respect to the shaft member 50 and the outer guide member 52a by the stepped force of the coil springs 55a, 55b, 56a, and 56b.
  • the coil springs 56a and 56b on the first base 10 side each correspond to the "first biasing member” of the present invention
  • the coil springs 55a and 55b on the second base 12 side each correspond to the "first biasing member” of the present invention. This corresponds to the "second biasing member”.
  • the 18th embodiment is an example of application of the present invention to a vertically articulated robot.
  • FIG. 32 is a perspective view of a vertically articulated robot.
  • the vertical articulated robot 1' shown in the figure includes a base part 200 installed on a base BP, and a robot arm 300 supported by this base part 200.
  • the robot arm 300 includes a first arm part 210 connected to the base part 200 so as to be rotatable about an axis A11 perpendicular to the base part 200, and a first arm part 210 rotatable about an axis A12 perpendicular to the axis A11 relative to the first arm part 210.
  • a second arm part 220 whose base end is connected to the distal end of the second arm part 220, and a third arm part 230 whose base end is rotatably connected to the distal end of the second arm part 220 about an axis A13 parallel to the axis A12.
  • a fourth arm part 240 whose base end is connected to the distal end of the third arm part 230 so as to be rotatable about an axis A14 perpendicular to the axis A13; and a fifth arm portion 250 rotatably connected around an axis A15.
  • a tool motor M6 that generates a rotational force around an axis A16 orthogonal to the axis A15 is attached to the fifth arm section 250, and an end effector 400, which is a work tool such as a robot hand, is attached to the tool motor M6. is assembled.
  • the first arm part 210 is rotationally driven around the axis A11 by a first arm motor (not shown) arranged in the base part 200, and the second arm part 220 is driven to rotate around the axis A11 by a first arm motor (not shown) arranged in the first arm part 210.
  • the third arm portion 230 is rotationally driven around the axis A12 by a second arm motor, and the third arm portion 230 is rotationally driven around the axis A13 by a third arm motor (not shown) disposed within the third arm portion 230, and the fourth arm
  • the section 240 is rotationally driven around the axis A14 by a fourth arm motor (not shown) disposed within the third arm section 230, and the fifth arm section 250 is driven to rotate around the axis A14 by a fourth arm motor (not shown) disposed within the third arm section 230. It is rotationally driven around an axis A15 by a motor M5 (shown in FIG. 33).
  • FIG. 33 is a cross-sectional view of the tip portion of the robot arm 300, specifically, a cross-sectional view of the fourth arm portion 240 and the fifth arm portion 250.
  • the fourth arm portion 240 has an arm support portion 241 extending forward at one end in the width direction (vertical direction in FIG. 33) at its distal end.
  • a fifth arm portion 250 is rotatably supported by this arm support portion 241 .
  • a hollow shaft 251 provided on the side wall of the fifth arm portion 250 is held by an inner ring of a bearing B40 provided on the arm support portion 241.
  • the fifth arm section 250 is rotatably connected to the fourth arm section 240 about the axis A15.
  • the fifth arm motor M5 that drives the fifth arm part 250 is not arranged on the axis A15, that is, in the fifth arm part 250, but inside the fourth arm part 240, from the axis A15 to the axis A14. (a position spaced apart toward the proximal end of the fourth arm portion 240) on the opposite side of the fourth arm portion 240.
  • the fifth arm section 250 is rotationally driven around the axis A15 by transmitting the rotational force generated by the fifth arm motor M5 via the rotational force transmission section 60.
  • the configuration of the rotational force transmission section 60 is substantially the same as the configuration of the rotational force transmission section 6 already described in the fourteenth embodiment (FIG. 26). That is, the rotational force transmission section 60 is rotatable around the axis A18 via the bearing B42 with respect to the first base 110 which rotates around the axis A17 by the rotational force of the fifth arm motor M5 and the fifth arm section 250.
  • An extensible part 130 that connects the supported second base 120, the first base 110, and the second base 120, and deforms (expands and contracts) in accordance with changes in the distance between the first base 110 and the second base 120. and, including.
  • the axis A17 and the axis A18 are both axes parallel to the axis A15.
  • the telescopic section 130 is composed of a shaft member 150 made of a spline shaft and a guide member 152 made of a spline nut.
  • the parts are each fixed to the first base part 110.
  • the shaft member 150 and the guide member 152 may be a combination of a ball bush shaft and a ball bush nut, or may be a combination of a rail member such as a linear guide and a sliding member such as a linear guide slider.
  • the fifth arm motor M5 that drives the fifth arm section 250 is not disposed in the fifth arm section 250, but is located inside the fourth arm section 240, and is located along the axis A15. It is arranged at a position shifted to the opposite side along the axis A14. Therefore, the weight of the fifth arm section 250 is reduced, and the inertia (moment of inertia) of the fifth arm section 250 about the axis A15 is reduced. Furthermore, the fifth arm portion 250 can be made more compact.
  • the fourth arm section 240 corresponds to the "first arm section” and the fifth arm section 250 corresponds to the "second arm section” of the present invention (claim 17).
  • the axis A15 corresponds to the "first axis”
  • the axis A17 corresponds to the "second axis”
  • the axis A18 corresponds to the "third axis” of the present invention.
  • the fifth arm motor M5 corresponds to the "motor” of the present invention.
  • the present invention can be summarized as follows.
  • the articulated robot of the present invention includes a first arm rotatable about a first axis, and a second arm rotatably connected to the first arm rotatable about a second axis parallel to the first axis.
  • An articulated robot having an arm including a first motor that generates a rotational force that rotates the first arm about the first axis; a second motor that is disposed at a position closer to the first axis than the second axis and generates a rotational force that rotates the second arm; and the first arm and the second arm are connected to each other.
  • a rotational force transmitting section is provided that transmits the rotational force generated by the second motor to the second arm section and deforms in accordance with the rotation of the second arm section with respect to the first arm section.
  • the second motor for driving the second arm is disposed at a position closer to the first axis than the second axis in the first arm.
  • the inertia (moment of inertia) of the arm about the first axis can be reduced compared to conventional multi-joint robots in which the second motor is disposed at the second motor.
  • the second arm portion it is possible to reduce the inertia based on the position of the second motor compared to the case where the second motor is arranged on the second axis. Therefore, with this configuration of the multi-joint robot, it is possible to effectively reduce the inertia around the rotation axis of the arm of the multi-joint robot.
  • the second motor generates a rotational force about a third axis parallel to the first axis and the second axis
  • the rotational force transmission section is configured to generate rotational force of the second motor.
  • the second arm can be smoothly rotated with respect to the first arm while transmitting the rotational force of the second motor to the second arm via the rotational force transmission section.
  • the extensible portion comprises a link mechanism. According to this configuration, with a relatively simple configuration, while transmitting the rotational force of the second motor to the second arm section, the rotational force transmission section can be smoothly deformed (expanded and contracted) as the second arm section rotates. becomes possible.
  • the link mechanism includes a first link and a second link whose ends on one side are connected to each other so as to be rotatable about a fifth linear axis forming a predetermined angle with the first axis,
  • the other end of the first link is rotatably connected to the first base about an axis parallel to the fifth axis, and the other end of the second link is connected to the second base.
  • the predetermined angle is preferably 90°.
  • the rotational force of the second motor is transmitted to the second motor via the rotational force transmission section while avoiding interference between the first arm section and the second arm section and the rotational force transmission section. becomes possible.
  • the extendable part is a link mechanism
  • one end of the link mechanism is rotatably connected to the first base about an axis perpendicular to the third axis.
  • the link mechanism may be a magic hand type link mechanism, in which the other end is rotatably connected to the second base about an axis perpendicular to the fourth axis.
  • This configuration is advantageous in keeping the height occupied by the link mechanism low when the link mechanism is folded as the second arm rotates.
  • one of the plurality of links constituting the link mechanism includes a first part and a second part that are separated from each other in the longitudinal direction of the link, and a first part and a second part that are separated from each other in the longitudinal direction of the link, and the third part that is arranged around an axis extending in the longitudinal direction of the link.
  • the first part and the second part may be configured to include a connecting part that connects the second part so as to be relatively rotatable.
  • the rotational force of the second motor can be more smoothly transmitted to the second arm section via the rotational force transmission section. That is, if the accuracy of the rotational force transmission section is not sufficiently ensured, it is conceivable that unnecessary force acts on each link, deforming it, and creating resistance when the rotational force transmission section operates. According to the above configuration, relative rotation between the first portion and the second portion is allowed, thereby making it possible to release unnecessary forces as described above. Therefore, the rotational force transmission section can operate smoothly, and as a result, the rotational force generated by the second motor can be more smoothly transmitted to the second arm section.
  • the articulated robot described above includes a cable routed from the base section to the second arm section, at least a portion of the cable is routed through the inside of the rotational force transmission section. It may be searched.
  • the telescoping section includes a shaft member supported on one side of the first base and the second base, and a shaft member supported on the other side to move the shaft member in the axial direction. It may also be configured to include a guide member that is slidably held.
  • the shaft member is rotatably supported on one side of the first base and the second base about a sixth axis forming a predetermined angle with the first axis
  • the holder member is rotatably supported by the other of the first base and the second base about an axis parallel to the sixth axis.
  • the predetermined angle is 90°.
  • the rotational force of the second motor is transmitted to the second motor via the rotational force transmission section while avoiding interference between the first arm section and the second arm section and the rotational force transmission section. becomes possible.
  • the extensible part includes the shaft member and the guide member, it is preferable that the extensible part is provided parallel to a plane orthogonal to the second axis and the third axis.
  • the rotational force transmitting part can be smoothly deformed (expanded and contracted) as the second arm part rotates without rotatably supporting the shaft member and the guide member with respect to the first base part and the second base part. becomes possible.
  • one side of the shaft member and the guide member is rotatably provided around an axis relative to the first base or the second base that supports the one side.
  • the shaft member may be provided so as to be rotatable relative to the guide member.
  • the rotational force of the second motor can be more smoothly transmitted to the second arm section via the rotational force transmission section. That is, if the accuracy of the rotational force transmission section is not sufficiently ensured, unnecessary force may act on the shaft member or the guide member, deforming it and causing resistance during operation of the rotational force transmission section. According to the above configuration, it is possible to release the unnecessary force as described above, so that the rotational force transmission section can operate smoothly, and as a result, the rotational force generated by the second motor can be transferred more smoothly to the second motor. It becomes possible to transmit the signal to the two arm sections.
  • the guide member may be composed of a plurality of unit guide members of a telescopic structure that are arranged coaxially with the shaft member so as to be slidable with respect to each other.
  • the extendable part can be extended and contracted in multiple stages, so the degree of freedom in the length of extension and contraction of the extendable part is increased. That is, it becomes possible to reduce the length of the telescopic portion to a shorter length when the second arm portion rotates. Therefore, it contributes to expanding the movable range of the arm.
  • the outer guide member when the outermost unit guide member among the plurality of unit guide members is defined as the outer guide member, and the unit guide member arranged inside the outer unit guide member is defined as the inner guide member.
  • the outer guide member is connected to the base on the other side, and the extensible portion is a biasing member disposed on both sides of the inner guide member in the axial direction, , a first biasing member that biases the base on the other side toward the base on the one side; and a second biasing member that biases the base on the one side toward the base on the other side. It may also include a member.
  • the position of the inner guide member is stably maintained with respect to the shaft member and the outer guide member. Therefore, unstable movement of the inner guide member during operation of the robot arm 3 is suppressed or prevented.
  • an articulated robot includes an arm including a first arm section and a second arm section rotatably connected to the first arm section about a first axis.
  • the articulated robot is arranged at a position spaced apart from the first axis of the first arm toward the proximal end of the first arm, and generates a rotational force that rotates the second arm.
  • the rotational force transmission section generates a rotational force about a second axis parallel to the first axis
  • the rotational force transmission section has a first base that rotates about the second axis due to the rotational force of the second motor, and a rotational force that rotates about the second axis parallel to the first axis.
  • a second base supported by the second arm so as to be rotatable about a parallel third axis; and a second arm that connects the first base and the second base, and is connected to the first arm. and an extensible portion that expands and contracts in accordance with a change in the distance between the first base and the second base due to rotation of the base.
  • the inertia (moment of inertia) with respect to the second arm based on the position of the second motor is higher than that when the second motor is arranged on the second axis. It becomes possible to reduce the amount effectively.

Abstract

This articulated robot comprises an arm which includes a first arm portion that is rotatable about a first axis line, and a second arm portion that is linked with the first arm portion so as to be rotatable about a second axis line parallel with the first axis line. The articulated robot further comprises: a first motor that generates a rotational force for rotating the first arm portion about the first axis line; a second motor that is disposed in a position closer to the first axis line than the second axis line on the first arm portion, and that generates a rotational force for rotating the second arm portion; and a rotational force transmission portion that links the first arm portion and the second arm portion to transmit the rotational force generated by the second motor to the second arm portion, and that deforms to follow the rotation of the second arm portion relative to the first arm portion.

Description

多関節ロボットarticulated robot
 本発明は、多関節ロボットに関する。 The present invention relates to an articulated robot.
 特許文献1に開示されるような水平多関節ロボット(スカラロボット)が公知である。この水平多関節ロボットは、基台上に固定されるベース部と、当該ベース部に支持される多関節型のアームとを備える。アームは、ベース部に対して、垂直な第1軸線回りに旋回可能に支持される第1アーム部と、この第1アーム部の先端に、垂直な第2軸線回りに旋回可能に連結される第2アーム部と、この第2アーム部の先端に配置される作動軸と、を備える。各種エンドエフェクタが作動軸の先端に組付けられる。 A horizontal articulated robot (SCARA robot) as disclosed in Patent Document 1 is known. This horizontal articulated robot includes a base portion fixed on a base, and an articulated arm supported by the base portion. The arm is connected to a first arm part supported so as to be pivotable about a first axis perpendicular to the base part, and to a tip of the first arm part so as to be pivotable about a second axis perpendicular to the base part. The device includes a second arm portion and an operating shaft disposed at the tip of the second arm portion. Various end effectors are attached to the tip of the operating shaft.
 第1アーム部は、第1軸線上に配置されたモータ(第1モータ)により駆動され、第2アーム部は、第2軸線上に配置されたモータ(第2モータ)により駆動される。アームは、これらモータによる第1アーム部及び第2アーム部の駆動により、ベース部を中心とする一定領域内でエンドエフェクタ(作動軸)を水平方向に移動させる。 The first arm portion is driven by a motor (first motor) placed on the first axis, and the second arm portion is driven by a motor (second motor) placed on the second axis. The arm moves the end effector (operating shaft) in the horizontal direction within a certain area centered on the base part by driving the first arm part and the second arm part by these motors.
 水平多関節ロボットでは、より高速で精度良くアームを駆動することが求められる。そのためには、アームの回転軸線回りのイナーシャ(慣性モーメント)がより小さいのが望ましい。 Horizontal articulated robots are required to drive their arms at higher speeds and with greater precision. For this purpose, it is desirable that the inertia (moment of inertia) of the arm around the axis of rotation be smaller.
特開2009-226567号公報JP2009-226567A
 本発明は、上述した課題に鑑みて成されたものであって、アームの回転軸線回りのイナーシャ(慣性モーメント)をより一層低減することを目的とする。 The present invention has been made in view of the above-mentioned problems, and an object thereof is to further reduce the inertia (moment of inertia) about the rotation axis of the arm.
 本発明の一局面に係る多関節ロボットは、第1軸回りに回転可能な第1アーム部と、第1アーム部に対して、前記第1軸線と平行な第2軸線回りに回転可能に連結された第2アーム部と、を含むアームを備えた多関節ロボットであって、前記第1アーム部を、前記第1軸線回りに回転させる回転力を発生する第1モータと、前記第1アーム部における前記第2軸線よりも前記第1軸線寄りの位置に配置されて、前記第2アーム部を回転させる回転力を発生する第2モータと、前記第1アーム部と前記第2アーム部とを連結して前記第2モータが発生する回転力を前記第2アームに伝達するとともに、前記第1アーム部に対する前記第2アーム部の回転に追従して変形する回転力伝達部と、を備える。 An articulated robot according to an aspect of the present invention includes a first arm rotatable about a first axis, and a first arm rotatably connected to the first arm about a second axis parallel to the first axis. a first motor that generates a rotational force for rotating the first arm about the first axis; and a first motor that generates a rotational force that rotates the first arm about the first axis; a second motor that is disposed at a position closer to the first axis than the second axis in the section and generates a rotational force that rotates the second arm; and the first arm and the second arm. a rotational force transmitting part that connects the two motors to transmit the rotational force generated by the second motor to the second arm, and deforms in accordance with the rotation of the second arm part with respect to the first arm part. .
図1は、第1実施形態に係る水平多関節ロボット(多関節ロボットの)の斜視図である。FIG. 1 is a perspective view of a horizontal articulated robot (of an articulated robot) according to the first embodiment. 図2は、前記水平多関節ロボットの平面図(一部断面図)である。FIG. 2 is a plan view (partially sectional view) of the horizontal articulated robot. 図3は、前記水平多関節ロボットの断面図である。FIG. 3 is a sectional view of the horizontal articulated robot. 図4は、前記水平多関節ロボットの動作説明図(斜視図)である。FIG. 4 is an explanatory diagram (perspective view) of the operation of the horizontal articulated robot. 図5は、前記水平多関節ロボットの動作説明図(平面図)である。FIG. 5 is an explanatory diagram (plan view) of the operation of the horizontal articulated robot. 図6は、前記水平多関節ロボットの平面モデル(中立状態)である。FIG. 6 is a planar model (neutral state) of the horizontal articulated robot. 図7は、前記水平多関節ロボットの平面モデル(アーム作動時)である。FIG. 7 is a planar model of the horizontal articulated robot (when the arm is in operation). 図8は、第2実施形態に係る水平多関節ロボットの概略斜視図である。FIG. 8 is a schematic perspective view of a horizontal articulated robot according to the second embodiment. 図9は、第3実施形態に係る水平多関節ロボットの概略斜視図である。FIG. 9 is a schematic perspective view of a horizontal articulated robot according to the third embodiment. 図10は、第3実施形態に係る水平多関節ロボットの側面図(図9のX矢視図)である。FIG. 10 is a side view (X arrow view in FIG. 9) of the horizontal articulated robot according to the third embodiment. 図11は、第4実施形態に係る水平多関節ロボットの概略斜視図である。FIG. 11 is a schematic perspective view of a horizontal articulated robot according to the fourth embodiment. 図12は、第5実施形態に係る水平多関節ロボットの断面図である。FIG. 12 is a sectional view of a horizontal articulated robot according to the fifth embodiment. 図13は、第6実施形態に係る水平多関節ロボットの断面図である。FIG. 13 is a sectional view of a horizontal articulated robot according to the sixth embodiment. 図14は、第7実施形態に係る水平多関節ロボットの要部断面図である。FIG. 14 is a sectional view of main parts of a horizontal articulated robot according to a seventh embodiment. 図15は、第8実施形態に係る水平多関節ロボットの要部断面図である。FIG. 15 is a sectional view of main parts of a horizontal articulated robot according to the eighth embodiment. 図16は、第9実施形態に係る水平多関節ロボットの断面図である。FIG. 16 is a sectional view of a horizontal articulated robot according to the ninth embodiment. 図17は、第10実施形態に係る水平関節ロボットの断面図である。FIG. 17 is a sectional view of a horizontally articulated robot according to the tenth embodiment. 図18は、第11実施形態に係る水平関節ロボットの斜視図である。FIG. 18 is a perspective view of a horizontally articulated robot according to the eleventh embodiment. 図19は、第11実施形態に係る水平関節ロボットの平面図(一部断面図)である。FIG. 19 is a plan view (partially sectional view) of a horizontally articulated robot according to the eleventh embodiment. 図20は、第12実施形態に係る水平多関節ロボットの斜視図である。FIG. 20 is a perspective view of a horizontal articulated robot according to the twelfth embodiment. 図21は、第12実施形態に係る水平多関節ロボットの平面図(一部断面図)である。FIG. 21 is a plan view (partially sectional view) of a horizontal articulated robot according to the twelfth embodiment. 図22は、第12実施形態に係る水平多関節ロボットの断面図である。FIG. 22 is a sectional view of a horizontal articulated robot according to the twelfth embodiment. 図23は、第12実施形態に係る水平多関節ロボットの動作説明図(斜視図)である。FIG. 23 is an explanatory diagram (perspective view) of the operation of the horizontal articulated robot according to the twelfth embodiment. 図24は、第12実施形態に係る水平多関節ロボットの動作説明図(平面図)である。FIG. 24 is an explanatory diagram (plan view) of the operation of the horizontal articulated robot according to the twelfth embodiment. 図25は、第13実施形態に係る水平多関節ロボットの概略斜視図である。FIG. 25 is a schematic perspective view of a horizontal articulated robot according to the thirteenth embodiment. 図26は、第14実施形態に係る水平多関節ロボットの断面図である。FIG. 26 is a sectional view of a horizontal articulated robot according to the fourteenth embodiment. 図27は、第14実施形態に係る水平多関節ロボットの概略斜視図である。FIG. 27 is a schematic perspective view of a horizontal articulated robot according to the fourteenth embodiment. 図28は、第15実施形態に係る水平多関節ロボットの平面図(一部断面図)である。FIG. 28 is a plan view (partially sectional view) of a horizontal articulated robot according to the fifteenth embodiment. 図29は、第16実施形態に係る水平多関節ロボットの平面図(一部断面図)である。FIG. 29 is a plan view (partially sectional view) of a horizontal articulated robot according to the sixteenth embodiment. 図30は、第17実施形態に係る水平多関節ロボットの平面図(一部断面図)である。FIG. 30 is a plan view (partially sectional view) of a horizontal articulated robot according to the seventeenth embodiment. 図31は、第17実施形態の変形例に係る水平多関節ロボットの平面図(一部断面図)である。FIG. 31 is a plan view (partially sectional view) of a horizontal articulated robot according to a modification of the seventeenth embodiment. 図32は、垂直多関節ロボット(第18実施形態)の斜視図である。FIG. 32 is a perspective view of a vertically articulated robot (18th embodiment). 図33は、垂直多関節ロボットのロボットアーム先端部分の断面図でる。FIG. 33 is a sectional view of the distal end portion of the robot arm of the vertical articulated robot.
 以下、添付図面を参照しながら本発明の好ましい実施形態について詳述する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
 [多関節ロボットの構成]
 図1は、本発明の多関節ロボットの一例である水平多関節ロボットの第1実施形態を示す斜視図であり、図2は、水平多関節ロボットの平面図(一部断面図)である。また、図3は、水平多関節ロボットの垂直面に沿った断面図である。
[Configuration of articulated robot]
FIG. 1 is a perspective view showing a first embodiment of a horizontal multi-joint robot, which is an example of the multi-joint robot of the present invention, and FIG. 2 is a plan view (partially sectional view) of the horizontal multi-joint robot. Moreover, FIG. 3 is a sectional view along a vertical plane of the horizontal articulated robot.
 図1~図3に示す水平多関節ロボット1(以下、ロボット1と略す)は、基台BPに設置される部位であるベース部2と、このベース部2に支持されるロボットアーム3と、このロボットアーム3の先端部に備えられる作業軸7とを備える。 The horizontal articulated robot 1 (hereinafter abbreviated as robot 1) shown in FIGS. 1 to 3 includes a base part 2, which is a part installed on a base BP, and a robot arm 3 supported by this base part 2. The robot arm 3 includes a work shaft 7 provided at the tip thereof.
 ロボットアーム3は、ベース部2に対して軸線A1回りに回転可能に連結された第1アーム部4と、第1アーム部4に対して軸線A2回りに回転可能に連結された第2アーム部5と、第1アーム部4に対して第2アーム部5を回転させるための回転力伝達部6とを備える。軸線A1及び軸線A2は、互いに平行な垂直な軸線である。なお、軸線A1は、本発明の「第1軸線」の一例であり、軸線A2は、本発明の「第2軸線」の一例である。 The robot arm 3 includes a first arm part 4 rotatably connected to the base part 2 around an axis A1, and a second arm part 4 rotatably connected to the first arm part 4 around an axis A2. 5, and a rotational force transmission section 6 for rotating the second arm section 5 with respect to the first arm section 4. The axis A1 and the axis A2 are perpendicular axes parallel to each other. Note that the axis A1 is an example of the "first axis" of the present invention, and the axis A2 is an example of the "second axis" of the present invention.
 前記ベース部2は、中空かつ直方体形状の剛性を有した構造体である。ベース部2の内部には、第1モータM1が備えられている。第1モータM1は、第1アーム部4を駆動するモータである。第1モータM1は、モータ本体M1aに減速機M1bが一体に備えられた減速機一体型のサーボモータである。減速機M1bは、RV減速機、サイクロ減速機(登録商標)、ハーモニックドライブ(登録商標)等である。後述する第2、第4のモータM2、M4も、同様にモータ本体に減速機が一体に備えられた減速機一体型のサーボモータである。なお、後述する第3モータM3及び後述する第9実施形態の第4モータM4は、減速機を備えていない。 The base portion 2 is a hollow, rectangular parallelepiped-shaped rigid structure. A first motor M1 is provided inside the base portion 2. The first motor M1 is a motor that drives the first arm portion 4. The first motor M1 is a reducer-integrated servo motor in which a reducer M1b is integrally provided in a motor main body M1a. The reduction gear M1b is an RV reduction gear, a cyclo reduction gear (registered trademark), a harmonic drive (registered trademark), or the like. The second and fourth motors M2 and M4, which will be described later, are similarly speed reducer-integrated servo motors in which a speed reducer is integrally provided in the motor body. Note that a third motor M3, which will be described later, and a fourth motor M4, which will be described later, in a ninth embodiment, are not equipped with a reduction gear.
 第1モータM1は、減速機M1bが上側に位置する上向きの姿勢でベース部2の上壁部2aに固定されている。上壁部2aには開口部が形成されており、この開口部を通じて、減速機M1bの出力軸が、第1アーム部4の長手方向一端部(基端部)の下壁部4bに固定されている。この構成により、第1アーム部4がその基端部を支点として、第1モータM1により軸線A1回りに回転(旋回)駆動される。 The first motor M1 is fixed to the upper wall portion 2a of the base portion 2 in an upward posture with the reducer M1b located on the upper side. An opening is formed in the upper wall portion 2a, and the output shaft of the reducer M1b is fixed to the lower wall portion 4b of one longitudinal end (base end) of the first arm portion 4 through this opening. ing. With this configuration, the first arm portion 4 is rotated (swiveled) around the axis A1 by the first motor M1, with its base end portion serving as a fulcrum.
 第2アーム部5は、第1アーム部4の上側に位置し、その長手方向の一端部(基端部)が第1アーム部4の長手方向の他端部(先端部)に回転可能に連結されている。詳しくは、第2アーム部5の下壁部5bに設けられた中空シャフト5cが、第1アーム部4の上壁部4aに設けられたベアリングB4の内輪に保持されている。この構成により、第1アーム部4に対して、第2アーム部5がその基端部を支点として軸線A2回りに回転可能に連結されている。なお、第1アーム部4及び第2アーム部5は何れも中空構造であり、両アーム部4、5の内部空間は、前記中空シャフト5cを通じて互いに連通している。 The second arm part 5 is located above the first arm part 4, and one longitudinal end (base end) thereof is rotatable to the other longitudinal end (tip part) of the first arm part 4. connected. Specifically, the hollow shaft 5c provided on the lower wall portion 5b of the second arm portion 5 is held by the inner ring of a bearing B4 provided on the upper wall portion 4a of the first arm portion 4. With this configuration, the second arm portion 5 is rotatably connected to the first arm portion 4 about the axis A2 with its base end portion as a fulcrum. Note that both the first arm portion 4 and the second arm portion 5 have a hollow structure, and the internal spaces of both arm portions 4 and 5 communicate with each other through the hollow shaft 5c.
 前記作業軸7は、第2アーム部5の長手方向の他端部(先端部)、つまりロボットアーム3の先端部に配置されている。作業軸7は、垂直に延びるスプライン軸である。作業軸7は、第2アーム部5を貫通するとともに、当該第2アーム部5に対して上下方向(軸方向)の移動及び軸心回りの回転が可能に支持されており、駆動機構部8によって駆動される。 The work shaft 7 is disposed at the other longitudinal end (tip) of the second arm portion 5, that is, at the tip of the robot arm 3. The working shaft 7 is a vertically extending spline shaft. The work shaft 7 passes through the second arm portion 5 and is supported so as to be movable in the vertical direction (axial direction) and rotated about the axis relative to the second arm portion 5, and is connected to the drive mechanism portion 8. driven by.
 駆動機構部8は、第3モータM3と、作業軸7と平行に配置されて第3モータM3に回転自在に支持されたねじ軸34と、ねじ軸34に装着されたナット部材35と、作業軸7の上端部分と前記ナット部材35とを連結する連結部材32とを含む。また、駆動機構部8は、第4モータM4と、作業軸7に装着されて、第4モータM4の減速機M4bに連結されたスプラインナット31とを含む。すなわち、第3モータM3の駆動によりねじ軸34が回転すると、この回転運動がナット部材35及び連結部材36を介して作業軸7の上下運動に変換されて作業軸7が上下方向に移動する。また、第4モータM4の駆動により作業軸7が回転する。なお、第4モータM4は、上下方向に貫通する貫通孔を備えた中空モータであり、作業軸7は第4モータM4及びスプラインナット31の中心を貫通するように設けられている。 The drive mechanism section 8 includes a third motor M3, a screw shaft 34 arranged parallel to the work shaft 7 and rotatably supported by the third motor M3, a nut member 35 attached to the screw shaft 34, It includes a connecting member 32 that connects the upper end portion of the shaft 7 and the nut member 35. Further, the drive mechanism section 8 includes a fourth motor M4 and a spline nut 31 mounted on the work shaft 7 and connected to a speed reducer M4b of the fourth motor M4. That is, when the screw shaft 34 is rotated by the drive of the third motor M3, this rotational movement is converted into a vertical movement of the working shaft 7 via the nut member 35 and the connecting member 36, so that the working shaft 7 moves in the vertical direction. Further, the work shaft 7 is rotated by driving the fourth motor M4. Note that the fourth motor M4 is a hollow motor having a through hole penetrating in the vertical direction, and the work shaft 7 is provided so as to pass through the center of the fourth motor M4 and the spline nut 31.
 第2アーム部5の先端部には、上下方向に細長い中空のカバー部材30が固定されている。カバー部材30は、第2アーム部5の上壁部5aに固定されており、駆動機構部8及び第2アーム部5のうち、上壁部5aから上方に突出する部分を覆っている。 A vertically elongated hollow cover member 30 is fixed to the tip of the second arm portion 5. The cover member 30 is fixed to the upper wall portion 5a of the second arm portion 5, and covers a portion of the drive mechanism portion 8 and the second arm portion 5 that protrudes upward from the upper wall portion 5a.
 作業軸7の先端部(下端部)には、図外の作業用ツール(エンドエフェクタ)が装着される。例えば、ワークを把持して搬送するためのチャック装置、ワークに対して溶接等の各種加工を施す加工装置、若しくはワークの測定を行うための測定装置など、ワークに対して所定の作業を行うための作業用ツールが作業軸7の先端部分に装着される。 A work tool (end effector) not shown is attached to the tip (lower end) of the work shaft 7. For example, a chuck device for gripping and transporting a workpiece, a processing device for performing various processing such as welding on a workpiece, or a measuring device for measuring a workpiece, etc. A working tool is attached to the tip of the working shaft 7.
 第1アーム部4における軸線A2よりも軸線A1寄りの位置、すなわち、軸線A2上を除く、軸線A2から軸線A1までの位置には、軸線A1及び軸線A2と平行な軸線A3回りの回転力を発生する第2モータM2が配置されている。第2モータM2は、第2アーム部5を駆動するモータである。 A rotational force about the axis A3 parallel to the axis A1 and the axis A2 is applied to a position in the first arm part 4 closer to the axis A1 than the axis A2, that is, a position from the axis A2 to the axis A1 excluding the area on the axis A2. A second motor M2 is arranged to generate the power. The second motor M2 is a motor that drives the second arm portion 5.
 既述の通り、第2モータM2は軸線A2上には配置されておらず、軸線A2から軸線A1側にずれた位置に配置されている。そのため、第2アーム部5は、第2モータM2の回転力が前記回転力伝達部6を介して伝達されることによって、当該第2アーム部5の基端部を支点として軸線A2回りに回転(旋回)駆動される。 As already mentioned, the second motor M2 is not arranged on the axis A2, but is arranged at a position shifted from the axis A2 toward the axis A1. Therefore, the second arm portion 5 rotates around the axis A2 with the base end portion of the second arm portion 5 as a fulcrum as the rotational force of the second motor M2 is transmitted via the rotational force transmission portion 6. (swivel) driven.
 回転力伝達部6は、第1アーム部4と第2アーム部5とを連結して前記回転力を伝達するとともに、第1アーム部4に対する第2アーム部5の回転に追従して変形するように構成されている。以下、この点について詳しく説明する。 The rotational force transmission section 6 connects the first arm section 4 and the second arm section 5 to transmit the rotational force, and deforms following the rotation of the second arm section 5 with respect to the first arm section 4. It is configured as follows. This point will be explained in detail below.
[回転力伝達部の構成]
 第2アーム部5を駆動する第2モータM2は、減速機M2bが下側に位置する下向きの姿勢とされ、第1アーム部4の上壁部4aに対して減速機M2bの出力軸が固定されている。
[Configuration of rotational force transmission section]
The second motor M2 that drives the second arm section 5 is in a downward posture with the reducer M2b located below, and the output shaft of the reducer M2b is fixed to the upper wall section 4a of the first arm section 4. has been done.
 回転力伝達部6は、第2モータM2の回転力により軸線A3回りに回転する第1基部10と、第2アーム部5に対して軸線A4回りに回転可能に支持された第2基部12と、第1基部10と第2基部12とを連結し、これら第1基部10と第2基部12との距離の変化に追従して伸縮(変形)する伸縮部13と、を含む。軸線A3及び軸線A4は、互いに平行な垂直な軸線であり、軸線A3は、本発明の「第3軸線」の一例であり、軸線A4は、本発明の「第4軸線」の一例である。 The rotational force transmission unit 6 includes a first base 10 that rotates around an axis A3 due to the rotational force of a second motor M2, and a second base 12 that is rotatably supported around an axis A4 with respect to the second arm 5. , an extensible portion 13 that connects the first base 10 and the second base 12 and expands and contracts (deforms) in accordance with changes in the distance between the first base 10 and the second base 12. The axis A3 and the axis A4 are perpendicular axes parallel to each other, and the axis A3 is an example of the "third axis" of the present invention, and the axis A4 is an example of the "fourth axis" of the present invention.
 第1基部10は、フレーム20とカバー21とを備えた中空の箱形部材であり、第2モータM2を包囲するように構成されている。フレーム20は、第1アーム部4の上壁部4aに沿うプレート状の水平部20aと、当該水平部20aの端部の一端部から垂直上方に立ち上がるプレート状の起立部20bとを備えた断面L字型の形状を有する。水平部20aは、第2モータM2のモータ本体M2a、又は減速機M2bのボディ(モータ本体M2aに接合された部分)に固定されている。既述の通り、第2モータM2の減速機M2bの出力軸は第1アーム部4に固定されている。そのため、第2モータM2が作動すると、第1アーム部4に対して、モータ本体M2aと第1基部10(フレーム20)とが一体に軸線A3回りに回転する。 The first base 10 is a hollow box-shaped member including a frame 20 and a cover 21, and is configured to surround the second motor M2. The frame 20 has a cross section including a plate-shaped horizontal part 20a along the upper wall part 4a of the first arm part 4, and a plate-shaped upright part 20b rising vertically upward from one end of the horizontal part 20a. It has an L-shaped shape. The horizontal portion 20a is fixed to the motor main body M2a of the second motor M2 or the body of the reducer M2b (the part joined to the motor main body M2a). As described above, the output shaft of the speed reducer M2b of the second motor M2 is fixed to the first arm portion 4. Therefore, when the second motor M2 operates, the motor main body M2a and the first base portion 10 (frame 20) rotate together around the axis A3 with respect to the first arm portion 4.
 第2基部12は、第2アーム部5の長手方向における作業軸7と軸線A2との間に配置され、第2アーム部5の上面(上壁部5a)に対して軸線A4回りに回転可能に支持されている。第2基部12も、第1基部10と同様に、フレーム22とカバー23とを備えた中空の箱形部材である。フレーム22は、第2アーム部5の上壁部5aに沿うプレート状の水平部22aと、当該水平部22aの一端部から垂直上方に立ち上がるプレート状の起立部22bとを備えた断面L字型の形状を有する。 The second base 12 is arranged between the work shaft 7 and the axis A2 in the longitudinal direction of the second arm 5, and is rotatable around the axis A4 with respect to the upper surface (upper wall 5a) of the second arm 5. is supported by Like the first base 10, the second base 12 is also a hollow box-shaped member including a frame 22 and a cover 23. The frame 22 has an L-shaped cross section and includes a plate-shaped horizontal portion 22a along the upper wall portion 5a of the second arm portion 5, and a plate-shaped upright portion 22b rising vertically upward from one end of the horizontal portion 22a. It has the shape of
 フレーム22の水平部22aには、軸線A4に沿って上下方向に貫通する円形の開口部22cと、当該開口部22cの周縁部から下向きに延びるスリーブ部22dとが形成されている。このスリーブ部22dは、第2アーム部5の上壁部5aに設けられたベアリングB5の内輪に保持されている。この構成により、第2基部12は、第2アーム部5に対して軸線A4回りに回転可能に支持されている。 The horizontal portion 22a of the frame 22 is formed with a circular opening 22c penetrating vertically along the axis A4, and a sleeve portion 22d extending downward from the periphery of the opening 22c. This sleeve portion 22d is held by an inner ring of a bearing B5 provided on the upper wall portion 5a of the second arm portion 5. With this configuration, the second base portion 12 is supported to be rotatable about the axis A4 with respect to the second arm portion 5.
 伸縮部13は、第1リンク14及び第2リンク15からなるリンク機構である。第1リンク14は、本発明の「第1リンク部材」の一例であり、第2リンク15は、本発明の「第2リンク部材」の一例である。 The telescopic section 13 is a link mechanism consisting of a first link 14 and a second link 15. The first link 14 is an example of the "first link member" of the present invention, and the second link 15 is an example of the "second link member" of the present invention.
 両リンク14、15は、第1リンク14及び第2リンク15(以下、アーム本体と称する場合がる)の幅方向(図2の上下方向)に厚みを有する、細長い中空のプレート状である。第1リンク14と第2リンク15とは、長手方向一端部同士が厚み方向に重ね合され、水平方向に延びる軸線A5回りに回転可能となるように当該一端部で互いに連結されている。具体的には、第1リンク14の側壁部に設けられた中空シャフト14aが、第2リンク15に設けられたベアリングB13の内輪に保持されることで、第1リンク14と第2リンク15とが回転可能に連結されている。 Both links 14 and 15 are elongated hollow plates that have a thickness in the width direction (vertical direction in FIG. 2) of the first link 14 and the second link 15 (hereinafter sometimes referred to as arm bodies). The first link 14 and the second link 15 are overlapped in the thickness direction at one end in the longitudinal direction, and are connected to each other at the one end so as to be rotatable around an axis A5 extending in the horizontal direction. Specifically, the hollow shaft 14a provided on the side wall of the first link 14 is held by the inner ring of the bearing B13 provided on the second link 15, so that the first link 14 and the second link 15 are connected to each other. are rotatably connected.
 図2に示すように、第1アーム部4と第2アーム部5とが一直線に並んだ状態、(以下、ロボットアーム3の中立状態又はアーム本体の中立状態という場合がある)において、第1リンク14は、第2リンク15の外側(反アーム本体側)に位置する。両リンク14、15は、側面視で、上向きに凸となるように屈曲した状態で、各基部10、12に対して、以下のように連結されている。なお、第1リンク14は、第2リンク15の内側に位置していてもよい。 As shown in FIG. 2, when the first arm part 4 and the second arm part 5 are aligned in a straight line (hereinafter sometimes referred to as the neutral state of the robot arm 3 or the neutral state of the arm body), the first The link 14 is located outside the second link 15 (on the side opposite to the arm body). Both links 14 and 15 are connected to the respective bases 10 and 12 in the following manner in a side view, in an upwardly convex bent state. Note that the first link 14 may be located inside the second link 15.
 第1リンク14の他端部は、第1基部10のフレーム20の起立部20bに対して、軸線A5と平行な軸線A6回りに回転可能に連結されている。また、第2リンク15の他端部は、第2基部12のフレーム22の起立部22bに対して、軸線A5と平行な軸線A7回りに回転可能に連結されている。詳しくは、第1リンク14の側面部に設けられた中空シャフト14bが、第1基部10の起立部20bに設けられたベアリングB14の内輪に保持されている。また、第2リンク15の側壁部に設けられた中空シャフト15aが、第2基部12の起立部22bに設けられたベアリングB15の内輪に保持されている。これにより、第2基部12に対して第2リンク15が、第1基部10に対して第1リンク14が、各々回転可能に連結されている。なお、軸線A5は、本発明の「第5軸線」の一例である。 The other end of the first link 14 is rotatably connected to the upright portion 20b of the frame 20 of the first base 10 about an axis A6 parallel to the axis A5. The other end of the second link 15 is rotatably connected to the upright portion 22b of the frame 22 of the second base 12 about an axis A7 parallel to the axis A5. Specifically, the hollow shaft 14b provided on the side surface of the first link 14 is held by the inner ring of a bearing B14 provided on the upright portion 20b of the first base 10. Further, a hollow shaft 15a provided on the side wall portion of the second link 15 is held by an inner ring of a bearing B15 provided on the upright portion 22b of the second base portion 12. Thereby, the second link 15 is rotatably connected to the second base 12, and the first link 14 is rotatably connected to the first base 10. Note that the axis A5 is an example of the "fifth axis" of the present invention.
 なお、図2及び図3に示すように、第1~第4のモータM1~M4を駆動するための電線等のケーブル100は、ベース部2の内部に導入されている。ベース部2とロボットアーム3との間、具体的にはベース部2と回転力伝達部6における第1基部10のカバー21との間には、ロボット外部でこれらを繋ぐ、可撓性を有したケーブル配管L1がアーチ状に設けられている。ケーブル配管L1は、例えば樹脂製のフレキシブルチューブである。 Note that, as shown in FIGS. 2 and 3, a cable 100 such as an electric wire for driving the first to fourth motors M1 to M4 is introduced inside the base portion 2. Between the base part 2 and the robot arm 3, specifically between the base part 2 and the cover 21 of the first base part 10 in the rotational force transmitting part 6, there is a flexible structure that connects them outside the robot. The cable pipe L1 is provided in an arch shape. The cable pipe L1 is, for example, a flexible tube made of resin.
 ケーブル100は、ケーブル配管L1を通じてベース部2から回転力伝達部6の内部に案内され、当該回転力伝達部6の内部を通じて第2アーム部5の先端部に案内されている。詳しくは、ケーブル100は、回転力伝達部6の第1基部10から中空シャフト14bを通じて第1リンク14内に案内され、第1リンク14から中空シャフト14aを通じて第2リンク15内に案内されている。さらに、ケーブル100は、第2リンク15から中空シャフト15aを通じて第2基部12内に案内され、第2基部12から前記開口部22c及びスリーブ部22dを通じて第2アーム部5内に案内されている。そして、ケーブル100のうち、第1モータ用のケーブルがベース部2内で第1モータM1に接続され、第2モータ用のケーブルが第1基部10内で第2モータM2に接続されている。また、第3モータ用及び第4モータ用のケーブルが、第2アーム部5の内部で、各々、第3モータM3及び第4モータM4に接続されている。 The cable 100 is guided from the base portion 2 to the inside of the rotational force transmission portion 6 through the cable piping L1, and is guided to the tip of the second arm portion 5 through the inside of the rotational force transmission portion 6. Specifically, the cable 100 is guided from the first base 10 of the rotational force transmission unit 6 into the first link 14 through the hollow shaft 14b, and from the first link 14 into the second link 15 through the hollow shaft 14a. . Further, the cable 100 is guided from the second link 15 through the hollow shaft 15a into the second base 12, and from the second base 12 into the second arm portion 5 through the opening 22c and the sleeve portion 22d. Of the cables 100, the cable for the first motor is connected to the first motor M1 within the base portion 2, and the cable for the second motor is connected to the second motor M2 within the first base portion 10. Further, cables for the third motor and the fourth motor are connected to the third motor M3 and the fourth motor M4, respectively, inside the second arm portion 5.
 なお、作業軸7に作業用ツール(エンドエフェクタ)が装着されている場合には、作業用ツール駆動用のケーブルを、前記ケーブル100と共に配索することも可能である。 Note that when a work tool (end effector) is attached to the work shaft 7, a cable for driving the work tool can be routed together with the cable 100.
 [ロボット1の動作]
 図4及び図5は、ロボット1の動作説明図であり、図4は斜視図で、図5は平面図で、各々ロボット1の動作を示している。なお、図4及び図5では、回転力伝達部6の各基部10、12のカバー21、23及びケーブル配管L1等の一部の部材は省略されている。
[Operation of robot 1]
4 and 5 are explanatory views of the operation of the robot 1. FIG. 4 is a perspective view, and FIG. 5 is a plan view, each showing the operation of the robot 1. 4 and 5, some members such as the covers 21 and 23 of the bases 10 and 12 of the rotational force transmitting unit 6 and the cable pipe L1 are omitted.
 図4(a)及び図5(a)は、ロボットアーム3の中立状態を示している。この中立状態において、第2モータM2が駆動されると、その回転力が回転力伝達部6を介して第2アーム部5に伝達される。これにより第1アーム部4に対して第2アーム部5が軸線A2を中心に回転する。既述の通り、第2モータM2は、減速機M2bの出力軸が第1アーム部4に固定され、モータ本体M2aが回転力伝達部6の第1基部10に固定されている。そのため、第2モータM2が駆動されると、モータ本体M2aが第1基部10と一体に軸線A3回りに回転する。 4(a) and 5(a) show the robot arm 3 in a neutral state. In this neutral state, when the second motor M2 is driven, its rotational force is transmitted to the second arm section 5 via the rotational force transmission section 6. As a result, the second arm section 5 rotates about the axis A2 with respect to the first arm section 4. As described above, in the second motor M2, the output shaft of the speed reducer M2b is fixed to the first arm part 4, and the motor main body M2a is fixed to the first base part 10 of the rotational force transmitting part 6. Therefore, when the second motor M2 is driven, the motor main body M2a rotates together with the first base 10 around the axis A3.
 ロボットアーム3の中立状態において、第2アーム部5が第2モータM2により正転駆動されると、第2アーム部5が平面視で時計回り(図中の矢印R1の方向)に回転する。この際、中立状態から第2アーム部5の回転角度が大きくなり、軸線A4と軸線A3とが接近すると、これに伴い、図4(b)、(c)及び図5(b)、(c)に示すように、第1リンク14と第2リンク15の屈曲角度が小さくなるように伸縮部13が折り畳まれる。 In the neutral state of the robot arm 3, when the second arm part 5 is driven to rotate normally by the second motor M2, the second arm part 5 rotates clockwise (in the direction of arrow R1 in the figure) in plan view. At this time, when the rotation angle of the second arm part 5 increases from the neutral state and the axis A4 and the axis A3 approach each other, this causes ), the extendable portion 13 is folded so that the bending angle of the first link 14 and the second link 15 becomes smaller.
 一方、第2アーム部5が第2モータM2により反転駆動されると、第2アーム部5が平面視で反時計回り(図中の矢印R2の方向)に回転する。この場合も同様に、中立状態から第2アーム部5の回転角度が大きくなると、図4(d)、(e)及び図5(d)、(e)に示すように、第1リンク14と第2リンク15の屈曲角度が小さくなるように伸縮部13が折り畳まれる。つまり、第1アーム部4に対する第2アーム部5の回転に追従して伸縮部13が伸縮する。 On the other hand, when the second arm portion 5 is reversely driven by the second motor M2, the second arm portion 5 rotates counterclockwise (in the direction of arrow R2 in the figure) in plan view. Similarly in this case, when the rotation angle of the second arm portion 5 increases from the neutral state, as shown in FIGS. 4(d), (e) and 5(d), (e), the first link 14 The extendable portion 13 is folded so that the bending angle of the second link 15 becomes small. That is, the extensible portion 13 expands and contracts in accordance with the rotation of the second arm portion 5 with respect to the first arm portion 4 .
 そして、図示を省略しているが、このような第2モータM2による第2アーム部5の回転駆動に加えて、第1モータM1により第1アーム部4が軸線A1を中心に回転駆動されることにより、当該ロボット1では、図5(a)の符号Arで示す可動領域内の任意の位置に作業軸7(エンドエフェクタ)が水平方向に移動する。 Although not shown, in addition to such rotational driving of the second arm portion 5 by the second motor M2, the first arm portion 4 is rotationally driven around the axis A1 by the first motor M1. As a result, in the robot 1, the work shaft 7 (end effector) moves in the horizontal direction to an arbitrary position within the movable region indicated by the symbol Ar in FIG. 5(a).
 図4及び図5では、ロボットアーム3の中立状態からの第2アーム部5の動作について説明したが、第2アーム部5は、第2モータM2の駆動により、図4の(e)→(d)→(a)→(b)→(c)又は(c)→(b)→(a)→(d)→(e)にノンストップで作動することが可能である。つまり、ロボット1の平面視において、第1アーム部4に対して第2アーム部5が時計回り(R1方向)に回転、又は、反時計回り(R2方向)に回転、つまり、いわゆる右手系のアーム状態から左手系のアーム状態への切替え、又は、左手系のアーム状態から右手系のアーム状態への切替えを連続的に行うことが可能である。 4 and 5, the operation of the second arm section 5 from the neutral state of the robot arm 3 has been described. The second arm section 5 is moved from (e) in FIG. It is possible to operate non-stop from d)→(a)→(b)→(c) or from (c)→(b)→(a)→(d)→(e). In other words, in a plan view of the robot 1, the second arm part 5 rotates clockwise (R1 direction) or counterclockwise (R2 direction) relative to the first arm part 4, that is, in a so-called right-handed system. It is possible to continuously switch from an arm state to a left-handed arm state, or from a left-handed arm state to a right-handed arm state.
[効果]
 以上説明したロボット1によれば、従来(特許文献1)、第2アーム部5の回転の軸線A2上に配置されている第2モータM2が、軸線A2よりも軸線A1寄りの位置に配置されている。そのため、ロボットアーム3の重心がより軸線A1に近く、これにより軸線A1回りのロボットアーム3のイナーシャ(慣性モーメント)が低減される。この場合、当該ロボット1では、第2モータM2の回転力が回転力伝達部6を介して第2アーム部5に伝達されるため、回転力伝達部6の重量増加によるイナーシャへの影響を考慮する必要がある。しかし、モータ本体M2aと減速機M2bとを含む第2モータM2の重量に比べると回転力伝達部6の重量は十分に小さく、この回転力伝達部6によるイナーシャへの影響度は極めて低い。そのため、上記ロボット1の構成によると、従来の水平多関節ロボットに比して、軸線A1回りのロボットアーム3のイナーシャを低減することが可能と言える。
[effect]
According to the robot 1 described above, the second motor M2, which is conventionally arranged on the axis A2 of rotation of the second arm part 5 (Patent Document 1), is arranged at a position closer to the axis A1 than the axis A2. ing. Therefore, the center of gravity of the robot arm 3 is closer to the axis A1, thereby reducing the inertia (moment of inertia) of the robot arm 3 about the axis A1. In this case, in the robot 1, since the rotational force of the second motor M2 is transmitted to the second arm section 5 via the rotational force transmission section 6, the influence on the inertia due to the increased weight of the rotational force transmission section 6 is taken into consideration. There is a need to. However, the weight of the rotational force transmission section 6 is sufficiently small compared to the weight of the second motor M2 including the motor main body M2a and the speed reducer M2b, and the influence of the rotational force transmission section 6 on the inertia is extremely low. Therefore, according to the configuration of the robot 1 described above, it can be said that it is possible to reduce the inertia of the robot arm 3 around the axis A1 compared to a conventional horizontal articulated robot.
 しかも、このロボット1では、軸線A2上に第2モータM2を配置した場合と遜色ないトルク及び速度(角速度)で、第2アーム部5を軸線A2回りに駆動することが可能である。以下、この点について図面を用いて説明する。 Moreover, in this robot 1, it is possible to drive the second arm portion 5 around the axis A2 with torque and speed (angular velocity) comparable to those when the second motor M2 is arranged on the axis A2. This point will be explained below using the drawings.
 図6は、ロボット1の中立状態における平面モデル図である。また、図7は、第2アーム部5の作動時の平面モデル図である。詳しくは、第2アーム部5を反転駆動し、作業軸7を障害物に当接させて第2アーム部5の回転を規制した状態を示している。ここで、回転力伝達部6の伸縮部13の各リンク14、15のリンク長Bは互いに等しく、また、回転力伝達部6は、第2モータM2の回転角度θに対して、第2アーム部5を軸線A2回りに2θだけ移動させるように構成されているものとする。 FIG. 6 is a plan view of the robot 1 in a neutral state. Further, FIG. 7 is a plan view of the second arm portion 5 when it is in operation. Specifically, a state is shown in which the second arm part 5 is driven in reverse and the work shaft 7 is brought into contact with an obstacle to restrict the rotation of the second arm part 5. Here, the link lengths B of the respective links 14 and 15 of the telescopic section 13 of the rotational force transmission section 6 are equal to each other, and the rotational force transmission section 6 has the second arm It is assumed that the unit 5 is configured to move by 2θ around the axis A2.
 ここで、図6及び図7に示すように、第2モータM2が発生する軸線A3回りのトルクをT1、その場合の軸線A2回りのトルクをT2、回転力伝達部6を介して第2アーム部5に伝達される回転力をFとすると、T1=F×2B×cosθである。よって、この式を変形すると
 F=T1/(2B×cosθ)……(式1)
となる。一方、軸線A2回りの第2アーム部5の回転力をF′とすると、
 F′=F×cosθ=T1/(2B)……(式2)
 であるため、式1より、
 T2=F′×B=T1/2……(式3)
となる。つまり、軸線A2回りのトルクT2は、軸線A3回りのトルクT1の1/2となる。要するに、第2モータM2を軸線A3上に配置した場合の軸線A2回りのトルクT2は、第2モータM2を軸線A2上に配置した場合のトルクの1/2となる。
Here, as shown in FIGS. 6 and 7, the torque around the axis A3 generated by the second motor M2 is T1, the torque around the axis A2 in that case is T2, and the torque around the axis A2 is transmitted to the second arm via the rotational force transmission section 6. If the rotational force transmitted to the portion 5 is F, then T1=F×2B×cosθ. Therefore, if we transform this formula, F=T1/(2B×cosθ)...(Formula 1)
becomes. On the other hand, if the rotational force of the second arm portion 5 around the axis A2 is F', then
F'=F×cosθ=T1/(2B)...(Formula 2)
Therefore, from equation 1,
T2=F'×B=T1/2...(Formula 3)
becomes. In other words, the torque T2 around the axis A2 is 1/2 of the torque T1 around the axis A3. In short, the torque T2 around the axis A2 when the second motor M2 is arranged on the axis A3 is 1/2 of the torque when the second motor M2 is arranged on the axis A2.
 従って、第2モータM2の減速機M2bの減速比を、第2モータM2が軸線A2上に配置された場合の2倍に設定すれば、軸線A2回りのトルクT2が2倍に、軸線A2回りの第2アーム部5の速度(角速度)が1/2になり、軸線A2上に第2モータM2を配置した場合と遜色ないトルク及び速度(角速度)で、第2アーム部5を軸線A2回りに駆動することが可能となる。この場合、減速機M2bの減速比の変更は、第2モータM2の重量増加を殆ど伴わない。 Therefore, if the reduction ratio of the speed reducer M2b of the second motor M2 is set to twice that when the second motor M2 is arranged on the axis A2, the torque T2 around the axis A2 will be doubled, and the torque T2 around the axis A2 will be doubled. The speed (angular velocity) of the second arm portion 5 becomes 1/2, and the second arm portion 5 is moved around the axis A2 with torque and speed (angular velocity) comparable to those when the second motor M2 is arranged on the axis A2. It becomes possible to drive the In this case, changing the reduction ratio of the reduction gear M2b hardly involves an increase in the weight of the second motor M2.
 なお、第2モータM2から見たイナーシャ(慣性モーメント)は減速比の二乗分だけ小さくなるため、上記の通り減速比を2倍にすると、軸線A2回りのイナーシャは1/4となる。従って、既述のロボット1によると、第2モータM2を軸線A2上に配置した場合に比して、軸線A1回りのイナーシャに加えて、第2モータM2の位置を基準とした場合のイナーシャについても同等以下に低減することが可能となり、軸線A1回りのイナーシャを気にすることなく第2モータM2のトルクアップを図ることが可能となる。 Note that the inertia (moment of inertia) seen from the second motor M2 is reduced by the square of the reduction ratio, so if the reduction ratio is doubled as described above, the inertia around the axis A2 becomes 1/4. Therefore, according to the robot 1 described above, in addition to the inertia around the axis A1, compared to the case where the second motor M2 is arranged on the axis A2, the inertia when the position of the second motor M2 is taken as a reference is can be reduced to the same level or less, and it is possible to increase the torque of the second motor M2 without worrying about the inertia around the axis A1.
 [第2実施形態]
 図8は、第2実施形態に係るロボット1の概略斜視図である。図中の(a)は、ロボットアーム3が中立状態にあるロボット1を示している。第2実施形態に係るロボット1は、回転力伝達部6の構成が、以下の点で第1実施形態と異なる。
[Second embodiment]
FIG. 8 is a schematic perspective view of the robot 1 according to the second embodiment. (a) in the figure shows the robot 1 with the robot arm 3 in a neutral state. The robot 1 according to the second embodiment differs from the first embodiment in the configuration of the rotational force transmission section 6 in the following points.
 第1実施形態では、伸縮部13の各リンク14、15は、上向きに凸となるように屈曲した状態で、各基部10、12に対して連結されていた。これに対して第2実施形態では、第1リンク14と第2リンク15が下向きに凸となるように屈曲した状態で、各基部10、12に対して連結されている。 In the first embodiment, each link 14, 15 of the extensible portion 13 is bent upwardly and connected to each base portion 10, 12. On the other hand, in the second embodiment, the first link 14 and the second link 15 are connected to each base 10 and 12 in a downwardly convex bent state.
 第2実施形態のロボット1では、第1アーム部4に対して第2アーム部5が回転すると、図8(b)、(c)に示すように、第1リンク14と第2リンク15の屈曲角度が小さくなるように伸縮部13が折り畳まれる。従って、回転力伝達部6は、第1実施形態と同様に、第2モータM2の回転力を第2アーム部5に伝達するとともに、第2アーム部5の回転に追従して変形する。すなわち伸縮する。 In the robot 1 of the second embodiment, when the second arm section 5 rotates with respect to the first arm section 4, as shown in FIGS. 8(b) and 8(c), the first link 14 and the second link 15 are The extendable portion 13 is folded so that the bending angle becomes small. Therefore, similarly to the first embodiment, the rotational force transmission section 6 transmits the rotational force of the second motor M2 to the second arm section 5, and deforms following the rotation of the second arm section 5. In other words, it expands and contracts.
 このような第2実施形態のロボット1の構成によっても、第1実施形態と同様の効果を享受することができる。なお、第2実施形態の各基部10、12は、第1実施形態に比べて高さが高く構成されており、第2アーム部5の回転に伴い伸縮部13が折り畳まれる際に、アーム部4、5と伸縮部13とが干渉しない高さ位置に各リンク14、15が支持されている。 With this configuration of the robot 1 of the second embodiment, it is possible to enjoy the same effects as in the first embodiment. Note that each base 10 and 12 of the second embodiment is configured to have a higher height than that of the first embodiment, and when the extendable part 13 is folded as the second arm part 5 rotates, the arm part Each link 14, 15 is supported at a height position where 4, 5 and the expandable portion 13 do not interfere with each other.
 [第3実施形態]
 図9は、第3実施形態に係るロボット1の概略斜視図である。図中の(a)は、ロボットアーム3が中立状態にあるロボット1を示している。また、図10は、ロボット1の側面図(図9のX矢視図)である。第3実施形態に係るロボット1は、回転力伝達部6の構成が以下の点で第1実施形態と異なる。
[Third embodiment]
FIG. 9 is a schematic perspective view of the robot 1 according to the third embodiment. (a) in the figure shows the robot 1 with the robot arm 3 in a neutral state. Moreover, FIG. 10 is a side view of the robot 1 (X arrow view of FIG. 9). The robot 1 according to the third embodiment differs from the first embodiment in the configuration of the rotational force transmission section 6 in the following points.
 第1実施形態では、伸縮部13の各リンク14、15に関し、軸線A6は軸線A3に直交し、同様に軸線A7は軸線A4に直交している。つまり、軸線A3に対して軸線A6が成す角度、及び軸線A4に対して軸線A7が成す角度は共に90°である。これに対して、第3実施形態では、図10に示すように、軸線A3に対して軸線A6が成す角度θa、及び軸線A4に対して軸線A7が成す角度θbは、鋭角の同一角度に設定されている。そのため、第1基部10におけるフレーム20の起立部20b、及び第2基部12におけるフレーム22の起立部22bは、共に垂直な軸線に対して傾いている。 In the first embodiment, regarding each of the links 14 and 15 of the expandable portion 13, the axis A6 is perpendicular to the axis A3, and similarly the axis A7 is perpendicular to the axis A4. That is, the angle that the axis A6 makes with the axis A3 and the angle that the axis A7 makes with the axis A4 are both 90 degrees. On the other hand, in the third embodiment, as shown in FIG. 10, the angle θa formed by the axis A6 with respect to the axis A3 and the angle θb formed by the axis A7 with respect to the axis A4 are set to be the same acute angle. has been done. Therefore, the upright portion 20b of the frame 20 at the first base 10 and the upright portion 22b of the frame 22 at the second base 12 are both inclined with respect to the vertical axis.
 第3実施形態の構成の場合も、第1アーム部4に対して第2アーム部5が回転すると、この回転に伴い、図9(b)、(c)に示すように、第1リンク14と第2リンク15の屈曲角度が小さくなるように伸縮部13が折り畳まれる。従って、回転力伝達部6は、第1実施形態と同様に、第2モータM2の回転力を第2アーム部5に伝達するとともに、第2アーム部5の回転に追従して変形する。すなわち伸縮する。 Also in the case of the configuration of the third embodiment, when the second arm part 5 rotates with respect to the first arm part 4, as shown in FIGS. 9(b) and 9(c), the first link 14 The extendable portion 13 is folded so that the bending angle of the second link 15 becomes small. Therefore, similarly to the first embodiment, the rotational force transmission section 6 transmits the rotational force of the second motor M2 to the second arm section 5, and deforms following the rotation of the second arm section 5. In other words, it expands and contracts.
 このような第3実施形態のロボット1の構成によっても、第1実施形態と同様の効果を享受することができる。なお、軸線A3に対して軸線A6が成す角度θa、及び軸線A4に対して軸線A7が成す角度θbは、第2アーム部5と伸縮部13との干渉回避の観点からは第1実施形態のように90°であるのが望ましい。当該角度θa、θbが90°よりも小さくなると、第2アーム部5と伸縮部13との干渉が懸念される。そのため、第3実施形態において、前記角度θa、θbは、第2アーム部5と伸縮部13とが干渉しない範囲、例えば10°以上90°未満の範囲で設定される。 With the configuration of the robot 1 of the third embodiment as well, it is possible to enjoy the same effects as the first embodiment. Note that the angle θa formed by the axis A6 with respect to the axis A3 and the angle θb formed by the axis A7 with respect to the axis A4 are the same as in the first embodiment from the viewpoint of avoiding interference between the second arm portion 5 and the telescopic portion 13. It is desirable that the angle be 90°. If the angles θa and θb become smaller than 90°, there is a concern that interference between the second arm portion 5 and the extendable portion 13 may occur. Therefore, in the third embodiment, the angles θa and θb are set within a range where the second arm portion 5 and the extendable portion 13 do not interfere, for example, within a range of 10° or more and less than 90°.
 [第4実施形態]
 図11は、第4実施形態に係るロボット1の概略斜視図である。図中の(a)は、ロボットアーム3が中立状態にあるロボット1を示している。第4実施形態に係るロボット1は、回転力伝達部6の構成が以下の点で第1実施形態と異なる。
[Fourth embodiment]
FIG. 11 is a schematic perspective view of the robot 1 according to the fourth embodiment. (a) in the figure shows the robot 1 with the robot arm 3 in a neutral state. The robot 1 according to the fourth embodiment differs from the first embodiment in the configuration of the rotational force transmitting section 6 in the following points.
 第1実施形態では、ロボットアーム3の中立状態では、アーム本体(第1アーム部4及び第2アーム部5)の平面視において、その幅方向外側に伸縮部13が配置されるように回転力伝達部6が構成されていた(図2参照)。これに対して、第4実施形態では、アーム本体の幅方向中央に沿って、すなわち、軸線A2~A4に交わる直線上に伸縮部13が配置されるように回転力伝達部6が構成されている。 In the first embodiment, when the robot arm 3 is in a neutral state, rotational force is applied so that the extendable part 13 is disposed on the outside in the width direction of the arm main body (the first arm part 4 and the second arm part 5) when viewed from above. A transmission section 6 was configured (see FIG. 2). On the other hand, in the fourth embodiment, the rotational force transmitting section 6 is configured such that the extensible section 13 is arranged along the widthwise center of the arm body, that is, on a straight line intersecting the axes A2 to A4. There is.
 具体的には、各基部10、12のフレーム20、22は、水平部20a、22aが円盤状に形成され、その中央に起立部20b、22bが設けられている。第1リンク14及び第2リンク15のうち一方側の端部は二股に形成されており、他方側の端部が前記二股部分に挿入された状態で、第1リンク14と第2リンク15とが回転可能に連結されている。また、第1リンク14の第1基部10側の端部は二股に形成されており、第1リンク14は、当該二股部分に前記起立部20bが挿入された状態で、当該起立部20bに回転可能に連結されている。同様に、第2リンク15の第2基部12側の端部は二股に形成されており、第2リンク15は、当該二股部分に前記起立部22bが挿入された状態で、当該起立部22bに回転可能に連結されている。 Specifically, the frames 20 and 22 of each base 10 and 12 have horizontal portions 20a and 22a formed in a disk shape, and upright portions 20b and 22b are provided at the center thereof. One end of the first link 14 and the second link 15 is bifurcated, and when the other end is inserted into the fork, the first link 14 and the second link 15 are connected. are rotatably connected. Further, the end of the first link 14 on the first base 10 side is formed into two forks, and the first link 14 is rotated by the upright part 20b with the upright part 20b inserted into the forked part. possible to be connected. Similarly, the end of the second link 15 on the second base 12 side is formed into two forks, and the second link 15 is attached to the upright part 22b with the upright part 22b inserted into the forked part. Rotatably connected.
 なお、第4実施形態のロボット1では、第2モータM2は、第1アーム部4の内部に配置されている。第2モータM2は、減速機M2bが上側に位置する上向きの姿勢で上壁部4aに固定され、減速機M2bの出力軸が第1基部10のフレーム20に固定さている。なお、図示を省略しているが、ケーブル100の配線構造は、後述する第5、第6実施形態と同様の配線構造を適用することができる。 Note that in the robot 1 of the fourth embodiment, the second motor M2 is arranged inside the first arm section 4. The second motor M2 is fixed to the upper wall portion 4a in an upward posture with the reducer M2b located on the upper side, and the output shaft of the reducer M2b is fixed to the frame 20 of the first base 10. Although not shown in the drawings, the wiring structure of the cable 100 can be the same as in the fifth and sixth embodiments described later.
 この第4実施形態の構成の場合も、第1実施形態と同様に、第1アーム部4に対して第2アーム部5が回転すると、図11(b)、(c)、(d)及び(e)に示すように、第1リンク14と第2リンク15の屈曲角度が小さくなるように伸縮部13が折り畳まれる。 Also in the case of the configuration of the fourth embodiment, when the second arm part 5 rotates with respect to the first arm part 4, as in the first embodiment, as shown in FIGS. As shown in (e), the extensible portion 13 is folded so that the bending angle of the first link 14 and the second link 15 becomes small.
 このような第4実施形態のロボット1の構成によっても、第1実施形態と同様の効果を享受することができる。加えて、この第4実施形態のロボット1によれば、ロボットアーム3の中立状態において、アーム本体の幅方向内側に伸縮部13が配置されるように回転力伝達部6が構成されているため、第1実施形態のロボット1に比べてロボット全体がコンパクトになるという利点がある。 With this configuration of the robot 1 of the fourth embodiment, it is possible to enjoy the same effects as the first embodiment. In addition, according to the robot 1 of the fourth embodiment, the rotational force transmitting section 6 is configured such that when the robot arm 3 is in the neutral state, the extensible section 13 is disposed inside the arm body in the width direction. , there is an advantage that the entire robot is more compact than the robot 1 of the first embodiment.
 [第5実施形態]
 図12は、第5実施形態に係るロボット1を示す垂直面に沿った断面図である。第5実施形態に係るロボット1は、以下の点で、主にケーブル100の配線構造が第1実施形態と異なる。
[Fifth embodiment]
FIG. 12 is a sectional view along a vertical plane showing the robot 1 according to the fifth embodiment. The robot 1 according to the fifth embodiment differs from the first embodiment mainly in the wiring structure of the cable 100 in the following points.
 第1実施形態では、ケーブル100は、ケーブル配管L1を通じてベース部2から回転力伝達部6に案内され、当該回転力伝達部6の内部を通じて第2アーム部5の先端部に案内されていた。第5実施形態では、図12に示すように、ベース部2と第2アーム部5との間にケーブル配管L1が設けられている。 In the first embodiment, the cable 100 was guided from the base section 2 to the rotational force transmission section 6 through the cable piping L1, and was guided to the tip of the second arm section 5 through the inside of the rotational force transmission section 6. In the fifth embodiment, as shown in FIG. 12, a cable pipe L1 is provided between the base part 2 and the second arm part 5.
 ケーブル100は、ケーブル配管L1を通じてベース部2から第2アーム部5の内部に案内されている。詳しくは、ケーブル100は、作業軸7と回転力伝達部6の第2基部12との間の位置で第2アーム部5の内部に案内されている。そして、ケーブル100のうち、第3モータ用及び第4モータ用のケーブルが、各々、第2アーム部5の内部で第3モータM3及び第4モータM4に接続されている。また、第2モータ用のケーブルが、中空シャフト5cを通じて第2アーム部5から第1アーム部4に導入され、当該第1アーム部4の内部で第2モータM2に接続されている。第1モータ用のケーブルは、第1実施形態と同様に、ベース部2内で第1モータM1に接続されている。 The cable 100 is guided from the base part 2 into the second arm part 5 through the cable pipe L1. Specifically, the cable 100 is guided inside the second arm section 5 at a position between the work shaft 7 and the second base section 12 of the rotational force transmission section 6 . Of the cables 100, cables for the third motor and for the fourth motor are connected to the third motor M3 and the fourth motor M4 inside the second arm portion 5, respectively. Further, a cable for the second motor is introduced from the second arm section 5 to the first arm section 4 through the hollow shaft 5c, and is connected to the second motor M2 inside the first arm section 4. The cable for the first motor is connected to the first motor M1 within the base portion 2, as in the first embodiment.
 なお、第5実施形態のロボット1では、第2モータM2は、減速機M2bが上側に位置する上向きの姿勢とされ、第1アーム部4の上壁部4aに対して減速機M2bが固定されている。そして、回転力伝達部6の第1基部10のフレーム20に対して減速機M2bの出力軸が固定されている。 In the robot 1 of the fifth embodiment, the second motor M2 is in an upward posture with the reducer M2b located on the upper side, and the reducer M2b is fixed to the upper wall portion 4a of the first arm portion 4. ing. The output shaft of the speed reducer M2b is fixed to the frame 20 of the first base 10 of the rotational force transmitting section 6.
 第5実施形態のロボット1の基本構造は、第1実施形態と同じであり、よって、第5実施形態のロボット1も第1実施形態と同様の効果を享受することができる。 The basic structure of the robot 1 of the fifth embodiment is the same as that of the first embodiment, so the robot 1 of the fifth embodiment can also enjoy the same effects as the first embodiment.
 [第6実施形態]
 図13は、第6実施形態に係るロボット1の垂直面に沿った断面図である。第6実施形態に係るロボット1は、以下の点で、主にケーブル100の配線構造が第1実施形態と異なる。
[Sixth embodiment]
FIG. 13 is a sectional view taken along a vertical plane of the robot 1 according to the sixth embodiment. The robot 1 according to the sixth embodiment differs from the first embodiment mainly in the wiring structure of the cable 100 in the following points.
 第1実施形態では、フレキシブルチューブからなる可撓性を有したケーブル配管L1(図1では図示省略)が設けられ、当該ケーブル配管L1を通じてケーブル100がベース部2から回転力伝達部6に案内されていた。第6実施形態では、第1実施形態のケーブル配管L1に代えて、剛性を有する中空構造体からなるケーブル案内部40がベース部2の上部に設けられている。 In the first embodiment, a flexible cable pipe L1 (not shown in FIG. 1) made of a flexible tube is provided, and the cable 100 is guided from the base part 2 to the rotational force transmitting part 6 through the cable pipe L1. was. In the sixth embodiment, a cable guide section 40 made of a rigid hollow structure is provided at the upper part of the base section 2 in place of the cable pipe L1 of the first embodiment.
 ケーブル案内部40は、ベース部2の上面から上方に延びる縦案内部41と、その上端から水平方向に延びる横案内部42とを備えた逆L字型の形状を有する。縦案内部41は、ベース部2の上面のうち、第1アーム部4の可動領域から外れた位置に設けられている。また、横案内部42は、第1アーム部4の上面よりも上方に位置し、その先端部が軸線A1上に位置するように設けられている。 The cable guide section 40 has an inverted L-shape including a vertical guide section 41 extending upward from the upper surface of the base section 2 and a horizontal guide section 42 extending horizontally from the upper end thereof. The vertical guide portion 41 is provided on the upper surface of the base portion 2 at a position outside the movable region of the first arm portion 4 . Further, the lateral guide portion 42 is located above the upper surface of the first arm portion 4, and is provided such that its tip portion is located on the axis A1.
 横案内部42の先端部下面には、軸線A1に対応する位置に開口部42aが形成されている。また、第1アーム部4の上面(上壁部4a)には、当該開口部42aに対向する開口部4cが形成されている。 An opening 42a is formed on the lower surface of the distal end of the horizontal guide portion 42 at a position corresponding to the axis A1. Furthermore, an opening 4c is formed on the upper surface (upper wall 4a) of the first arm portion 4 to face the opening 42a.
 ケーブル100は、図13に示すように、ベース部2の上壁部2aに形成された開口部2bを通じてケーブル案内部40に導入され、前記開口部42a、4cを介してケーブル案内部40から第1アーム部4の内部に案内され、さらに中空シャフト5cを通じて第1アーム部4から第2アーム部5の先端部に案内されている。そして、ケーブル100のうち、第2モータ用のケーブルが第1アーム部4内で第2モータM2に接続され、第3モータ用及び第4モータ用のケーブルが、第2アーム部5の内部で、各々、第3モータM3及び第4モータM4に接続されている。第1モータ用のケーブルは、第1実施形態と同様にベース部2内で第1モータM1に接続されている。 As shown in FIG. 13, the cable 100 is introduced into the cable guide section 40 through an opening 2b formed in the upper wall section 2a of the base section 2, and is introduced from the cable guide section 40 through the openings 42a and 4c. It is guided into the interior of the first arm section 4, and further guided from the first arm section 4 to the distal end of the second arm section 5 through the hollow shaft 5c. Of the cables 100, the cable for the second motor is connected to the second motor M2 inside the first arm section 4, and the cables for the third motor and the fourth motor are connected inside the second arm section 5. , are connected to a third motor M3 and a fourth motor M4, respectively. The cable for the first motor is connected to the first motor M1 within the base portion 2 as in the first embodiment.
 なお、第6実施形態のロボット1では、第2モータM2は、第5実施形態と同様に上向きの姿勢とされて、第1アーム部4の上壁部4aに対して減速機M2bが固定されている。そして、回転力伝達部6の第1基部10のフレーム20に対して減速機M2bの出力軸が固定されている。 In addition, in the robot 1 of the sixth embodiment, the second motor M2 is in an upward posture as in the fifth embodiment, and the reducer M2b is fixed to the upper wall part 4a of the first arm part 4. ing. The output shaft of the speed reducer M2b is fixed to the frame 20 of the first base 10 of the rotational force transmitting section 6.
 第6実施形態のロボット1の基本構造は、第1実施形態と同じであり、よって、第6実施形態のロボット1も第1実施形態と同様の効果を享受することができる。加えて、第6実施形態のロボット1によれば、ケーブル配管L1が省略されるため、当該ケーブル配管L1と外部設備との干渉リスクが軽減されるという利点がある。 The basic structure of the robot 1 of the sixth embodiment is the same as that of the first embodiment, so the robot 1 of the sixth embodiment can also enjoy the same effects as the first embodiment. In addition, according to the robot 1 of the sixth embodiment, since the cable piping L1 is omitted, there is an advantage that the risk of interference between the cable piping L1 and external equipment is reduced.
 [第7実施形態]
 図14は、第7実施形態に係るロボット1の垂直面に沿った要部断面図である。第7実施形態に係るロボット1は、以下の点で、回転力伝達部6及びケーブル100の配線構造が第1実施形態と異なる。
[Seventh embodiment]
FIG. 14 is a sectional view of a main part of the robot 1 according to the seventh embodiment along a vertical plane. The robot 1 according to the seventh embodiment differs from the first embodiment in the wiring structure of the rotational force transmission section 6 and the cable 100 in the following points.
 第7実施形態のロボット1では、軸線A1上に第2モータM2が配置されている。すなわち、軸線A1回りの回転力を発生するように、第1アーム部4に対して第2モータM2が配置されており、この第2モータM2の配置に対応するように回転力伝達部6が設けられている。回転力伝達部6の基本構成は第1実施形態と同じであるが、各リンク14、15のリンク長が第1実施形態と異なる。 In the robot 1 of the seventh embodiment, the second motor M2 is arranged on the axis A1. That is, the second motor M2 is arranged with respect to the first arm part 4 so as to generate a rotational force about the axis A1, and the rotational force transmission part 6 is arranged so as to correspond to the arrangement of the second motor M2. It is provided. The basic configuration of the rotational force transmitting section 6 is the same as in the first embodiment, but the link lengths of the links 14 and 15 are different from the first embodiment.
 また、第7実施形態では、第1実施形態のケーブル配管L1に代えて、第6実施形態と同様のケーブル案内部40がベース部2の上部に設けられている。ケーブル案内部40の横案内部42は、回転力伝達部6の第1基部10の上面よりも上方、すなわちカバー21の上面よりも上方に設けられている。カバー21には、ケーブル案内部40(横案内部42)の前記開口部42aに対向する位置、すなわち軸線A1上に開口部21aが設けられている。 Furthermore, in the seventh embodiment, a cable guide section 40 similar to the sixth embodiment is provided at the upper part of the base section 2 in place of the cable piping L1 of the first embodiment. The lateral guide section 42 of the cable guide section 40 is provided above the top surface of the first base section 10 of the rotational force transmission section 6, that is, above the top surface of the cover 21. The cover 21 is provided with an opening 21a at a position opposite to the opening 42a of the cable guide section 40 (lateral guide section 42), that is, on the axis A1.
 ケーブル100は、図14に示すように、ベース部2の上壁部2aに形成された開口部2bを通じてケーブル案内部40に導入され、前記開口部42a、21aを介してケーブル案内部40から回転力伝達部6の第1基部10の内部に案内されていている。そして、第1実施形態と同様に、回転力伝達部6の内部を通じて第2アーム部5の先端部に案内されている。 As shown in FIG. 14, the cable 100 is introduced into the cable guide section 40 through an opening 2b formed in the upper wall section 2a of the base section 2, and rotated from the cable guide section 40 through the openings 42a and 21a. It is guided inside the first base 10 of the force transmitting part 6 . As in the first embodiment, it is guided to the distal end portion of the second arm portion 5 through the inside of the rotational force transmitting portion 6.
 第7実施形態のロボット1の基本構造は、第1実施形態と同じであり、よって、第7実施形態のロボット1も第1実施形態と同様の効果を享受することができる。しかも、第7実施形態では、第1アーム部4の回転中心となる軸線A1上に第2モータM2が配置されているため、軸線A3上に第2モータM2が配置されている場合に比べて、ロボットアーム3の重心がより軸線A1に近くなる。よって、第7実施形態のロボット1によれば、軸線A1回りのロボットアーム3のイナーシャ(慣性モーメント)が第1実施形態のロボット1に比して低減される。 The basic structure of the robot 1 of the seventh embodiment is the same as that of the first embodiment, so the robot 1 of the seventh embodiment can also enjoy the same effects as the first embodiment. Moreover, in the seventh embodiment, since the second motor M2 is arranged on the axis A1 which is the rotation center of the first arm part 4, compared to the case where the second motor M2 is arranged on the axis A3, , the center of gravity of the robot arm 3 becomes closer to the axis A1. Therefore, according to the robot 1 of the seventh embodiment, the inertia (moment of inertia) of the robot arm 3 about the axis A1 is reduced compared to the robot 1 of the first embodiment.
 [第8実施形態]
 図15は、第8実施形態に係るロボット1の垂直面に沿った要部断面図である。第8実施形態に係るロボット1は、既述の第6実施形態(図13参照)のロボット1において、第2モータM2が軸線A1上に配置された構成を有している。そして、この第2モータM2の配置に対応するように回転力伝達部6が設けられている。回転力伝達部6の基本構成は第1実施形態と同じである。
[Eighth embodiment]
FIG. 15 is a sectional view of a main part of the robot 1 according to the eighth embodiment along a vertical plane. The robot 1 according to the eighth embodiment has a configuration in which the second motor M2 is arranged on the axis A1 in the robot 1 according to the already described sixth embodiment (see FIG. 13). A rotational force transmission section 6 is provided to correspond to the arrangement of the second motor M2. The basic configuration of the rotational force transmission section 6 is the same as in the first embodiment.
 具体的には、第8実施形態では、第2モータM2が、第1アーム部4の前記開口部4c、及び横案内部42の前記開口部42aを通じて、ケーブル案内部40の横案内部42を上下方向に貫通するように配置されている。そして、横案内部42の上方に、回転力伝達部6の第1基部10が配置され、この第1基部10のフレーム20(水平部20a)に、第2モータM2の減速機M2bの出力軸が固定されている。 Specifically, in the eighth embodiment, the second motor M2 moves the lateral guide section 42 of the cable guide section 40 through the opening 4c of the first arm section 4 and the opening 42a of the lateral guide section 42. It is arranged so as to penetrate in the vertical direction. The first base part 10 of the rotational force transmitting part 6 is arranged above the horizontal guide part 42, and the output shaft of the speed reducer M2b of the second motor M2 is attached to the frame 20 (horizontal part 20a) of the first base part 10. is fixed.
 ケーブル100は、第6実施形態と同様に、ベース部2からケーブル案内部40に導入され、前記開口部42a、4cを介してケーブル案内部40から第2モータM2に沿って第1アーム部4の内部に案内されている。そして、第1アーム部4及び第2アーム部5の各々内部を通じて第2アーム部5の先端部に案内されている。 Similarly to the sixth embodiment, the cable 100 is introduced from the base part 2 into the cable guide part 40, and is led from the cable guide part 40 through the openings 42a and 4c to the first arm part 4 along the second motor M2. You will be guided inside. Then, it is guided to the distal end portion of the second arm portion 5 through the interior of each of the first arm portion 4 and the second arm portion 5.
 第8実施形態のロボット1の基本構造は、第1実施形態と同じであり、よって、第8実施形態のロボット1も第1実施形態と同様の効果を享受することができる。また、第8実施形態では、第1アーム部4の回転中心となる軸線A1上に第2モータM2が配置されているため、第7実施形態のロボット1と同様に、軸線A1回りのロボットアーム3のイナーシャ(慣性モーメント)を第1実施形態のロボット1に比して低減することが可能となる。 The basic structure of the robot 1 of the eighth embodiment is the same as that of the first embodiment, so the robot 1 of the eighth embodiment can also enjoy the same effects as the first embodiment. Further, in the eighth embodiment, since the second motor M2 is arranged on the axis A1, which is the rotation center of the first arm part 4, the robot arm around the axis A1, similar to the robot 1 of the seventh embodiment, It becomes possible to reduce the inertia (moment of inertia) of 3 compared to the robot 1 of the first embodiment.
 [第9実施形態]
 図16は、第9実施形態に係るロボット1の垂直面に沿った断面図である。第9実施形態に係るロボット1は、既述の第6実施形態(図13参照)のロボット1と基本的な構造は共通するが、以下の点で、作業軸7及び駆動機構部8の具体的な構成が第6実施形態と異なる。
[Ninth embodiment]
FIG. 16 is a sectional view taken along a vertical plane of the robot 1 according to the ninth embodiment. The robot 1 according to the ninth embodiment has the same basic structure as the robot 1 according to the already described sixth embodiment (see FIG. 13), but the specifics of the work shaft 7 and the drive mechanism section 8 are different in the following points. The configuration is different from the sixth embodiment.
 第9実施形態のロボット1では、作業軸7がボールねじスプライン軸であり、回転力伝達部6の第2基部12を上下方向に貫通するように、軸線A4上に作業軸7が配置されている。詳しくは、前記ベアリングB5、第2基部12のフレーム22の開口部22c及びカバー23に形成された開口部23aを通じて、作業軸7が第2基部12を上下方向に貫通している。 In the robot 1 of the ninth embodiment, the work shaft 7 is a ball screw spline shaft, and the work shaft 7 is arranged on the axis A4 so as to vertically penetrate the second base 12 of the rotational force transmission section 6. There is. Specifically, the working shaft 7 passes through the second base 12 in the vertical direction through the bearing B5, the opening 22c of the frame 22 of the second base 12, and the opening 23a formed in the cover 23.
 作業軸7は、第2アーム部5の上壁部5aにベアリングB20を介して回転可能に支持されたボールねじナット36aと、下壁部5bにベアリングB21を介して回転可能に支持されたボールスプラインナット38aとに挿入されている。そして、ボールねじナット36aが第3モータM3により、ボールスプラインナット38aを第4モータM4により各々ベルト伝動機構により駆動される。 The work shaft 7 includes a ball screw nut 36a rotatably supported on the upper wall portion 5a of the second arm portion 5 via a bearing B20, and a ball rotatably supported on the lower wall portion 5b via a bearing B21. The spline nut 38a is inserted into the spline nut 38a. The ball screw nut 36a is driven by a third motor M3, and the ball spline nut 38a is driven by a fourth motor M4 by a belt transmission mechanism.
 具体的には、第2アーム部5における軸線A4と軸線A2軸との間の位置に、各出力軸が第2アーム部5内に位置するように、第3モータM3及び第4モータM4が上下向かい合わせに配置されている。そして、ボールねじナット36aに装着されたプーリ36bと、第3モータM3の出力軸に固定されたプーリ36cとに亘って伝動ベルト36dが装着されるとともに、ボールスプラインナット38aに装着されたプーリ38bと、第4モータM4の出力軸に固定されたプーリ38cとに亘って伝動ベルト38dが装着されている。この構成により、第3モータM3によりボールねじナット36aが回転駆動されると、作業軸7が第2アーム部5に対して上下方向に移動し、第3モータM3及び第4モータM4によりボールねじナット36aとボールスプラインナット38aとが同期して回転駆動されると、作業軸7が軸線A4回りに回転する。 Specifically, the third motor M3 and the fourth motor M4 are arranged at a position between the axis A4 and the axis A2 in the second arm part 5 so that each output shaft is located inside the second arm part 5. They are arranged vertically facing each other. A transmission belt 36d is attached across a pulley 36b attached to the ball screw nut 36a and a pulley 36c fixed to the output shaft of the third motor M3, and a pulley 38b attached to the ball spline nut 38a. A transmission belt 38d is attached across the motor and a pulley 38c fixed to the output shaft of the fourth motor M4. With this configuration, when the ball screw nut 36a is rotationally driven by the third motor M3, the work shaft 7 moves in the vertical direction with respect to the second arm part 5, and the ball screw nut 36a is driven by the third motor M3 and the fourth motor M4. When the nut 36a and the ball spline nut 38a are rotationally driven in synchronization, the work shaft 7 rotates around the axis A4.
 第9実施形態では、このように、第3モータM3、第4モータM4、ボールねじナット36a、ボールスプラインナット38a及び既述のベルト伝動機構により、駆動機構部8が構成されている。 In the ninth embodiment, the drive mechanism section 8 is thus configured by the third motor M3, the fourth motor M4, the ball screw nut 36a, the ball spline nut 38a, and the belt transmission mechanism described above.
 第9実施形態のロボット1の基本構造は、第1実施形態と同じであり、よって、第9実施形態のロボット1も第1実施形態と同様の効果を享受することができる。 The basic structure of the robot 1 of the ninth embodiment is the same as that of the first embodiment, so the robot 1 of the ninth embodiment can also enjoy the same effects as the first embodiment.
 加えて、第9実施形態のロボット1では、作業軸7が、軸線A4上に配置されて、回転力伝達部6の第2基部12を上下方向に貫通するように構成されているので、第2アーム部5の作動時に、回転力伝達部6が作業軸7の駆動機構部8と干渉することが無い。そのため、当該干渉を避けるために第2アーム部5の可動領域Arが制約を受けることが無い、換言すると、可動領域Arの増大に寄与するという利点がある。 In addition, in the robot 1 of the ninth embodiment, the work shaft 7 is arranged on the axis A4 and is configured to vertically penetrate the second base 12 of the rotational force transmitting section 6. When the two-arm section 5 operates, the rotational force transmission section 6 does not interfere with the drive mechanism section 8 of the work shaft 7. Therefore, there is an advantage that the movable area Ar of the second arm portion 5 is not restricted in order to avoid the interference, in other words, it contributes to increasing the movable area Ar.
 [第10実施形態]
 図17は、第10実施形態に係るロボット1の垂直面に沿った断面図である。第10実施形態に係るロボット1は、以下の点で、回転力伝達部6の具体的な構成が第1実施形態と異なる。
[Tenth embodiment]
FIG. 17 is a sectional view taken along a vertical plane of the robot 1 according to the tenth embodiment. The robot 1 according to the tenth embodiment differs from the first embodiment in the specific configuration of the rotational force transmission section 6 in the following points.
 第1実施形態では、回転力伝達部6の伸縮部13は、2つのリンク14、15がそれらの端部で相互に連結された構成であったが、第10実施形態の伸縮部13は、図17に示すように、複数の平行リンク機構が組み合わされたマジックハンド型のリンク機構(レージトング)からなる。 In the first embodiment, the telescoping section 13 of the rotational force transmitting section 6 had a configuration in which two links 14 and 15 were interconnected at their ends, but the telescoping section 13 of the tenth embodiment As shown in FIG. 17, it consists of a magic hand type link mechanism (rage tongue) in which a plurality of parallel link mechanisms are combined.
 なお、伸縮部13を構成する個々のリンクの一部又は全部は中空構造であり、ケーブル配管L1を通じてベース部2から回転力伝達部6に案内されたケーブル100は、伸縮部13のリンクの内部を通じて第2アーム部5の先端部に案内されている。この点は、第1実施形態と同じである。 Note that some or all of the individual links constituting the telescoping section 13 have a hollow structure, and the cable 100 guided from the base section 2 to the rotational force transmitting section 6 through the cable piping L1 is inside the links of the telescoping section 13. It is guided to the distal end of the second arm part 5 through. This point is the same as the first embodiment.
 第10実施形態のロボット1の基本構造は、第1実施形態と同じであり、よって、第10実施形態のロボット1も第1実施形態と同様の効果を享受することができる。 The basic structure of the robot 1 of the tenth embodiment is the same as that of the first embodiment, so the robot 1 of the tenth embodiment can also enjoy the same effects as the first embodiment.
 しかも、既述のようなマジックハンド型の伸縮部13(レージトング)によると、第2アーム部5の回転に伴い軸線A4と軸線A3とが最も接近した状態、つまり、伸縮部13が最も小さく折り畳まれた状態の当該伸縮部13の上端高さが、第1実施形態の伸縮部13に比べて低く抑えられる。そのため、稼働中の伸縮部13の占有高さを低く抑えることが可能になる。 Moreover, according to the magic hand type telescopic portion 13 (rage tongue) as described above, as the second arm portion 5 rotates, the axis A4 and the axis A3 are brought closest to each other, that is, the telescopic portion 13 is folded to the smallest size. The upper end height of the stretchable section 13 in the extended state is suppressed to be lower than that of the stretchable section 13 of the first embodiment. Therefore, it is possible to keep the height occupied by the telescopic section 13 during operation low.
 [第11実施形態]
 図18は、第11実施形態に係るロボット1の斜視図であり、図19は、ロボット1の平面図(一部断面図)である。第11実施形態に係るロボット1は、以下の点で、回転力伝達部6の具体的な構成が第1実施形態と異なる。
[Eleventh embodiment]
FIG. 18 is a perspective view of the robot 1 according to the eleventh embodiment, and FIG. 19 is a plan view (partially sectional view) of the robot 1. The robot 1 according to the eleventh embodiment differs from the first embodiment in the specific configuration of the rotational force transmission section 6 in the following points.
 図18及び図19に示すように、第11実施形態のロボット1では、回転力伝達部6の伸縮部13を構成する第1リンク14が、第2リンク15に連結される第1部分141と、第1基部10(フレーム20)に連結される第2部分142と、これらを軸線A8回りに相対回転可能に連結する連結部16とで構成されている。軸線A8は、軸線A5~軸線A7と直交して第1リンク14の長手方向に延びる軸線である。連結部16は、例えばクロスローラベアリング等のベアリングで構成されており、当該ベアリングの内輪が第1部分141に、外輪部が第2部分142に各々固定されている。 As shown in FIGS. 18 and 19, in the robot 1 of the eleventh embodiment, the first link 14 constituting the telescopic section 13 of the rotational force transmitting section 6 is connected to the first section 141 connected to the second link 15. , a second portion 142 connected to the first base portion 10 (frame 20), and a connecting portion 16 that connects these portions so as to be relatively rotatable around the axis A8. The axis A8 is an axis extending in the longitudinal direction of the first link 14, orthogonal to the axes A5 to A7. The connecting portion 16 is composed of a bearing such as a cross roller bearing, and the inner ring of the bearing is fixed to the first portion 141 and the outer ring portion of the bearing is fixed to the second portion 142.
 第11実施形態のロボット1によると、第2モータM2が発生する回転力を、回転力伝達部6を介してより円滑に第2アーム部5に伝達することが可能となる。すなわち、回転力伝達部6における軸線A3~軸線A7の精度が十分に確保されていない場合には、各リンク14、15や各ベアリングB5、B13~B15に不要な力が働いて変形し、回転力伝達部6の作動時の抵抗となることが考えられる。第11実施形態の構成によると、第1部分141と第2部分142との相対回転が許容されることで、既述のような不要な力を逃がすことができる。そのため、回転力伝達部6の円滑な作動が可能となり、その結果、第2モータM2が発生する回転力をより円滑に第2アーム部5に伝達することが可能となる。 According to the robot 1 of the eleventh embodiment, the rotational force generated by the second motor M2 can be more smoothly transmitted to the second arm section 5 via the rotational force transmission section 6. In other words, if the accuracy of the axes A3 to A7 in the rotational force transmission section 6 is not sufficiently ensured, unnecessary force will act on each link 14, 15 and each bearing B5, B13 to B15, causing deformation and rotation. It is conceivable that this may result in resistance when the force transmission section 6 is operated. According to the configuration of the eleventh embodiment, relative rotation between the first portion 141 and the second portion 142 is allowed, thereby making it possible to release unnecessary forces as described above. Therefore, the rotational force transmission section 6 can operate smoothly, and as a result, the rotational force generated by the second motor M2 can be transmitted to the second arm section 5 more smoothly.
 なお、図18の例では、第1リンク14側に連結部16が設けられた構成であるが、第2リンク15側に連結部16が設けられた構成であってもよい。また、前記連結部16は、ベアリングで構成されているが、第1部分141と第2部分142とを軸線A8回りに相対回転可能に連結可能であればベアリングには限定されない。但し、ベアリングにより連結部16が構成される場合には、図19に示すように、伸縮部13の内部にケーブル100を難なく配索することが可能となる。 Note that in the example of FIG. 18, the connecting portion 16 is provided on the first link 14 side, but the connecting portion 16 may be provided on the second link 15 side. Furthermore, although the connecting portion 16 is constituted by a bearing, it is not limited to a bearing as long as the first portion 141 and the second portion 142 can be connected so as to be relatively rotatable around the axis A8. However, when the connecting portion 16 is configured with a bearing, as shown in FIG. 19, the cable 100 can be easily routed inside the expandable portion 13.
 図示を省略するが、第10実施形態(図17参照)についても、第11実施形態と同様の構成を採用することが可能である。この場合には、伸縮部13の前記複数の平行リンク機構を構成するリンク部材のうち、第1基部10に連結されたリンク部材又は第2基部12に連結されたリンク部材に連結部16を設けることができる。 Although not shown, it is possible to adopt the same configuration as the eleventh embodiment for the tenth embodiment (see FIG. 17). In this case, the connecting portion 16 is provided in the link member connected to the first base 10 or the link member connected to the second base 12 among the link members constituting the plurality of parallel link mechanisms of the extensible portion 13. be able to.
[第12実施形態]
 図20は、第12実施形態に係るロボット1の斜視図であり、図21は、ロボット1の平面図(一部断面図)である。また、図22は、ロボット1の垂直面に沿った断面図である。第12実施形態に係るロボット1は、以下の点で、回転力伝達部6の具体的な構成が第1実施形態と異なる。
[Twelfth embodiment]
FIG. 20 is a perspective view of the robot 1 according to the twelfth embodiment, and FIG. 21 is a plan view (partially sectional view) of the robot 1. Further, FIG. 22 is a sectional view of the robot 1 taken along a vertical plane. The robot 1 according to the twelfth embodiment differs from the first embodiment in the specific configuration of the rotational force transmission section 6 in the following points.
 図20~図22に示すように、第12実施形態では、回転力伝達部6の伸縮部13が、リンク機構に代えて直動部材で構成されている。具体的には、伸縮部13は、第2基部12に連結される軸部材50と、第1基部10に連結されるガイド部材52とを備える。当例では、軸部材50はスプライン軸であり、ガイド部材52は、筒状のスプラインナットである。 As shown in FIGS. 20 to 22, in the twelfth embodiment, the extensible portion 13 of the rotational force transmitting portion 6 is composed of a linear motion member instead of a link mechanism. Specifically, the extensible portion 13 includes a shaft member 50 connected to the second base 12 and a guide member 52 connected to the first base 10. In this example, the shaft member 50 is a spline shaft, and the guide member 52 is a cylindrical spline nut.
 伸縮部13は、軸部材50の一端側(先端側)がガイド部材52の一端側(先端側)からその内部に挿入されたテレスコピック構造である。ガイド部材52の軸長L52は、軸部材50の軸長L50より若干長く設定されており、各軸長L50、L52は、ロボットアーム3の中立状態において、軸線A6と軸線A7とのほぼ中間位置で、軸部材50の先端部がガイド部材52の先端部に挿入された状態となる一方、中立状態から最も第2アーム部5が回転した状態において、軸部材50の先端がガイド部材52の奥端部に位置するように(すなわち、ガイド部材52から外部に突出しない)ように設定されている。 The telescopic portion 13 has a telescopic structure in which one end side (distal end side) of the shaft member 50 is inserted into the inside of the guide member 52 from one end side (distal end side). The axial length L52 of the guide member 52 is set to be slightly longer than the axial length L50 of the shaft member 50, and each of the axial lengths L50 and L52 is at a position approximately midway between the axis A6 and the axis A7 when the robot arm 3 is in a neutral state. The tip of the shaft member 50 is inserted into the tip of the guide member 52, while the tip of the shaft member 50 is inserted into the innermost part of the guide member 52 when the second arm portion 5 is rotated the most from the neutral state. It is set so as to be located at the end (that is, not protrude outward from the guide member 52).
 軸部材50の他端部(基端部)はホルダ部材51に保持されており、軸部材50は、このホルダ部材51を介して、第2基部12のフレーム22(起立部22b)に対して軸線A7回りに回転可能に連結されている。また、ガイド部材52の他端部(基端部)はホルダ部材53に保持されており、ガイド部材52は、このホルダ部材53を介して、第1基部10のフレーム20(起立部20b)に対して軸線A6回りに回転可能に連結されている。詳しくは、図21に示すように、ホルダ部材51に設けられた軸部51aが起立部22bに設けられた前記ベアリングB15の内輪に保持されている。また、ホルダ部材53に設けられた軸部53aが起立部20bに設けられた前記ベアリングB14の内輪に保持されている。これにより、第2基部12に対して軸部材50が、第1基部10に対してガイド部材52が、各々回転可能に連結されている。 The other end (base end) of the shaft member 50 is held by a holder member 51, and the shaft member 50 is attached to the frame 22 (standing portion 22b) of the second base 12 via the holder member 51. They are connected to be rotatable around the axis A7. The other end (base end) of the guide member 52 is held by a holder member 53, and the guide member 52 is attached to the frame 20 (erected portion 20b) of the first base 10 via the holder member 53. On the other hand, it is rotatably connected around the axis A6. Specifically, as shown in FIG. 21, the shaft portion 51a provided on the holder member 51 is held by the inner ring of the bearing B15 provided on the upright portion 22b. Further, a shaft portion 53a provided on the holder member 53 is held by an inner ring of the bearing B14 provided on the upright portion 20b. Thereby, the shaft member 50 is rotatably connected to the second base 12, and the guide member 52 is rotatably connected to the first base 10.
 図22に示すように、第2モータM2は、第6実施形態(図13参照)と同様に上向きの姿勢とされて、第1アーム部4の上壁部4aに対して減速機M2bが固定されている。そして、回転力伝達部6の第1基部10のフレーム20に対して減速機M2bの出力軸が固定されている。 As shown in FIG. 22, the second motor M2 is in an upward posture as in the sixth embodiment (see FIG. 13), and the reducer M2b is fixed to the upper wall portion 4a of the first arm portion 4. has been done. The output shaft of the speed reducer M2b is fixed to the frame 20 of the first base 10 of the rotational force transmitting section 6.
 第12実施形態のロボット1におけるケーブル100の配線構造は、第6実施形態(図13参照)の配線構造と同じである。すなわち、ベース部2の上部に前記ケーブル案内部40が設けられている。ケーブル100は、ベース部2からケーブル案内部40に導入されている。そして、ケーブル案内部40を通じて第1アーム部4の内部に案内され、さらに中空シャフト5cを通じて第1アーム部4から第2アーム部5の先端部に案内されている。 The wiring structure of the cable 100 in the robot 1 of the twelfth embodiment is the same as the wiring structure of the sixth embodiment (see FIG. 13). That is, the cable guide section 40 is provided on the upper part of the base section 2. The cable 100 is introduced into the cable guide section 40 from the base section 2. The cable is guided into the first arm part 4 through the cable guide part 40, and further guided from the first arm part 4 to the tip of the second arm part 5 through the hollow shaft 5c.
 図23及び図24は、第12実施形態のロボット1の動作説明図であり、図23は斜視図で、図24は平面図で、各々、ロボット1の動作を示している。なお、図23及び図24では、回転力伝達部6の各基部10、12のカバー21、23及びケーブル案内部40は省略されている。 23 and 24 are explanatory diagrams of the operation of the robot 1 of the twelfth embodiment, with FIG. 23 being a perspective view and FIG. 24 being a plan view, each showing the operation of the robot 1. Note that in FIGS. 23 and 24, the covers 21 and 23 of the bases 10 and 12 of the rotational force transmission section 6 and the cable guide section 40 are omitted.
 図23(a)及び図24(a)は、ロボットアーム3が中立状態のロボット1を示している。ロボットアーム3の中立状態において、第2アーム部5が第2モータM2により正転駆動されると、第2アーム部5が平面視で時計回り(矢印R1の方向)に回転する。この際、中立状態から第2アーム部5の回転角度が大きくなるに伴い、図23(b)、(c)及び図24(b)、(c)に示すように、軸部材50がガイド部材52の内部に入り込んで伸縮部13の全長が縮小する。 23(a) and 24(a) show the robot 1 with the robot arm 3 in a neutral state. In the neutral state of the robot arm 3, when the second arm section 5 is driven to rotate normally by the second motor M2, the second arm section 5 rotates clockwise (in the direction of arrow R1) in plan view. At this time, as the rotation angle of the second arm portion 5 increases from the neutral state, as shown in FIGS. 23(b), (c) and 24(b), (c), the shaft member 50 becomes 52, and the total length of the expandable portion 13 is reduced.
 一方、第2アーム部5が第2モータM2により反転駆動されると、第2アーム部5が平面視で反時計回り(矢印R2の方向)に回転する。この場合も同様に、中立状態から第2アーム部5の回転角度が大きくなるに伴い、図23(d)、(e)及び図24(d)、(e)に示すように、ガイド部材52の内部に軸部材50が入り込んで伸縮部13の全長が縮小する。つまり、第1アーム部4に対する第2アーム部5の回転に追従して伸縮部13が伸縮する。 On the other hand, when the second arm portion 5 is reversely driven by the second motor M2, the second arm portion 5 rotates counterclockwise (in the direction of arrow R2) in plan view. In this case as well, as the rotation angle of the second arm portion 5 increases from the neutral state, the guide member 52 changes as shown in FIGS. The shaft member 50 enters into the inside of the telescopic portion 13, and the total length of the extensible portion 13 is reduced. That is, the extensible portion 13 expands and contracts in accordance with the rotation of the second arm portion 5 with respect to the first arm portion 4 .
 そして、図示を省略しているが、このような第2モータM2による第2アーム部5の回転駆動に加えて、第1モータM1により第1アーム部4が軸線A1を中心に回転駆動されることにより、図24(a)に示した可動領域Ar内の任意の位置に、作業軸7(エンドエフェクタ)が水平方向に移動する。 Although not shown, in addition to such rotational driving of the second arm portion 5 by the second motor M2, the first arm portion 4 is rotationally driven around the axis A1 by the first motor M1. As a result, the work shaft 7 (end effector) moves in the horizontal direction to any position within the movable area Ar shown in FIG. 24(a).
 第12実施形態のロボット1の基本構造は、第1実施形態と同じであり、よって、第12実施形態のロボット1も第1実施形態と同様の効果を享受することができる。しかも、第12実施形態のロボット1では、回転力伝達部6の伸縮部13が、既述のように軸部材50とガイド部材52とで構成されるため、第2アーム部5の回転に伴う伸縮部13の高さに大きな変動が無い。従って、稼働中の伸縮部13の占有高さを低く抑えることが可能になる。 The basic structure of the robot 1 of the twelfth embodiment is the same as that of the first embodiment, so the robot 1 of the twelfth embodiment can also enjoy the same effects as the first embodiment. Moreover, in the robot 1 of the twelfth embodiment, the telescopic part 13 of the rotational force transmitting part 6 is composed of the shaft member 50 and the guide member 52 as described above. There is no large variation in the height of the expandable part 13. Therefore, it is possible to keep the height occupied by the telescopic section 13 during operation low.
 なお、当例では、軸部材50がスプライン軸で、ガイド部材52が筒状のスプラインナットで構成されている。しかし、軸部材50をリニアガイド等のレール部材で構成し、ガイド部材52を当該レール部材に沿って摺動するスライダ等の摺動部材で構成することも可能である。 In this example, the shaft member 50 is a spline shaft, and the guide member 52 is a cylindrical spline nut. However, it is also possible to configure the shaft member 50 with a rail member such as a linear guide, and the guide member 52 with a sliding member such as a slider that slides along the rail member.
 また、伸縮部13は、軸部材50(スプライン軸やレール部材)とガイド部材52(スプラインナットや摺動部材)の組が複数列設けられた構造(複列化)であってもよい。 Furthermore, the telescopic portion 13 may have a structure (double row) in which pairs of shaft members 50 (spline shafts or rail members) and guide members 52 (spline nuts or sliding members) are provided in multiple rows.
[第13実施形態]
 図25は、第13実施形態に係るロボット1の概略斜視図である。図中の(a)は、ロボットアーム3が中立状態にあるロボット1を示している。第13実施形態に係るロボット1は、第12施形態のロボット1と基本構成は共通するが、以下の点で回転力伝達部6の構成が異なる。
[13th embodiment]
FIG. 25 is a schematic perspective view of the robot 1 according to the thirteenth embodiment. (a) in the figure shows the robot 1 with the robot arm 3 in a neutral state. The robot 1 according to the thirteenth embodiment has the same basic configuration as the robot 1 according to the twelfth embodiment, but differs in the configuration of the rotational force transmission section 6 in the following points.
 第13実施形態では、既述の第3実施形態(図9参照)と同様に、軸線A3に対して軸線A6が成す角度、及び軸線A4に対して軸線A7が成す角度が、鋭角の同一角度に設定されている。そのため、第1基部10におけるフレーム20の起立部20b、及び第2基部12におけるフレーム22の起立部22bが共に垂直に対して傾いて設けられている。 In the thirteenth embodiment, as in the third embodiment described above (see FIG. 9), the angle that the axis A6 makes with the axis A3 and the angle that the axis A7 makes with the axis A4 are the same acute angle. is set to . Therefore, the upright portion 20b of the frame 20 on the first base 10 and the upright portion 22b of the frame 22 on the second base 12 are both provided to be inclined with respect to the vertical.
 第13実施形態の構成の場合も、第12実施形態と同様に、第1アーム部4に対して第2アーム部5が回転すると、これに追従して、図25(b)、(c)に示すように伸縮部13が縮小する。従って、回転力伝達部6は、第12実施形態のロボット1と同様に、第2モータM2の回転力を第2アーム部5に伝達するとともに、第2アーム部5の回転に追従して伸縮する。 In the case of the configuration of the thirteenth embodiment as well, as in the twelfth embodiment, when the second arm part 5 rotates with respect to the first arm part 4, it follows this and is shown in FIGS. 25(b) and 25(c). The extensible portion 13 contracts as shown in FIG. Therefore, similarly to the robot 1 of the twelfth embodiment, the rotational force transmission section 6 transmits the rotational force of the second motor M2 to the second arm section 5, and expands and contracts in accordance with the rotation of the second arm section 5. do.
 第13実施形態のロボット1の基本構造は、第12実施形態と同じである。よって、第13実施形態のロボット1も第12実施形態と同様の効果を享受することができる。 The basic structure of the robot 1 of the thirteenth embodiment is the same as that of the twelfth embodiment. Therefore, the robot 1 of the thirteenth embodiment can also enjoy the same effects as the twelfth embodiment.
 なお、軸線A3に対して軸線A6が成す角度、及び軸線A4に対して軸線A7が成す角度は、第2アーム部5と伸縮部13との干渉回避の観点からは第12実施形態のように90°であるのが望ましい。当該角度が90°よりも小さくなると、第2アーム部5と伸縮部13との干渉が懸念される。そのため、第13実施形態において、前記角度は、第2アーム部5と伸縮部13とが干渉しない範囲、例えば10°以上90°未満の範囲で設定される。この点は、既述の第3実施形態と同様である。 Note that the angle formed by the axis A6 with respect to the axis A3 and the angle formed by the axis A7 with respect to the axis A4 are as in the twelfth embodiment from the viewpoint of avoiding interference between the second arm part 5 and the telescopic part 13. Preferably, the angle is 90°. If the angle is smaller than 90°, there is a concern that there will be interference between the second arm portion 5 and the extendable portion 13. Therefore, in the thirteenth embodiment, the angle is set within a range where the second arm portion 5 and the telescopic portion 13 do not interfere, for example, within a range of 10° or more and less than 90°. This point is similar to the third embodiment described above.
 [第14実施形態]
 図26は、第14実施形態に係るロボット1の垂直面に沿った断面図である。また、図27は、ロボット1の斜視図であり、図中の(a)は、ロボットアーム3が中立状態にあるロボット1を示している。第14実施形態に係るロボット1は、第12実施形態(図20~図24参照)のロボット1と基本構成は共通するが、以下の点で、回転力伝達部6の構成が異なる。
[Fourteenth embodiment]
FIG. 26 is a sectional view taken along a vertical plane of the robot 1 according to the fourteenth embodiment. Further, FIG. 27 is a perspective view of the robot 1, and (a) in the figure shows the robot 1 with the robot arm 3 in a neutral state. The robot 1 according to the fourteenth embodiment has the same basic configuration as the robot 1 of the twelfth embodiment (see FIGS. 20 to 24), but differs in the configuration of the rotational force transmission section 6 in the following points.
 当例では、軸線A2~軸線A4に直交する平面に対して伸縮部13が平行となるように回転力伝達部6が構成されている。 In this example, the rotational force transmitting section 6 is configured such that the extensible section 13 is parallel to a plane orthogonal to the axis A2 to the axis A4.
 具体的には、第1基部10及び第2基部12に箱型のフレーム20、22が設けられ、軸部材50の基端部が第2基部12のフレーム22に固定されるとともに、ガイド部材52の基端部が第1基部10のフレーム20に固定されている。すなわち、第14実施形態のロボット1では、軸線A7回りの軸部材50が規制されるとともに、軸線A6回りのガイド部材52の回転が規制された構成となっている。 Specifically, the first base 10 and the second base 12 are provided with box-shaped frames 20 and 22, the base end of the shaft member 50 is fixed to the frame 22 of the second base 12, and the guide member 52 is fixed to the frame 22 of the second base 12. The base end portion of is fixed to the frame 20 of the first base portion 10. That is, in the robot 1 of the fourteenth embodiment, the shaft member 50 around the axis A7 is restricted, and the rotation of the guide member 52 around the axis A6 is restricted.
 この第14実施形態の構成の場合も、第12実施形態と同様に、図27(a)に示すロボットアーム3の中立状態から第2アーム部5が回転すると、図27(b)、(c)に示すように、軸部材50がガイド部材52の内部に入り込んで伸縮部13が縮小することとなる。 In the case of the configuration of the fourteenth embodiment, as in the twelfth embodiment, when the second arm section 5 rotates from the neutral state of the robot arm 3 shown in FIG. 27(a), FIGS. ), the shaft member 50 enters the inside of the guide member 52, and the expandable portion 13 contracts.
 なお、第14実施形態では、軸部材50の軸線A7回りの回転も、ガイド部材52の軸線A6回りの回転も規制された構成であるが、その理由は以下の通りである。 Note that in the fourteenth embodiment, the rotation of the shaft member 50 around the axis A7 and the rotation of the guide member 52 around the axis A6 are restricted, and the reason for this is as follows.
 図20~図24に示した第12実施形態のように、伸縮部13の両端の高さ(すなわち軸線A6と軸線A7との高さ)が異なる構成では、第2アーム部5の回転に伴い、軸部材50の上下方向の傾きとガイド部材52の上下方向の傾きとに差が生じる。そのため、軸線A7回りの軸部材50の回転、及び軸線A6回りのガイド部材52の回転を許容して、軸部材50とガイド部材52との傾きの差を吸収する必要がある。一方、伸縮部13の両端の高さが等しい第14実施形態の構成では、第2アーム部5が回転しても軸部材50とガイド部材52との間に傾きの差が生じない。そのため、軸部材50の軸線A7回りの回転、及びガイド部材52の軸線A6回りの回転が共に規制されていても、回転力伝達部6の作動に支障が無い。 As in the twelfth embodiment shown in FIGS. 20 to 24, in a configuration in which the heights of both ends of the extensible portion 13 (that is, the heights of the axis A6 and the axis A7) are different, as the second arm portion 5 rotates, , a difference occurs between the vertical inclination of the shaft member 50 and the vertical inclination of the guide member 52. Therefore, it is necessary to allow the rotation of the shaft member 50 around the axis A7 and the rotation of the guide member 52 around the axis A6 to absorb the difference in inclination between the shaft member 50 and the guide member 52. On the other hand, in the configuration of the fourteenth embodiment in which the heights of both ends of the extensible portion 13 are equal, no difference in inclination occurs between the shaft member 50 and the guide member 52 even if the second arm portion 5 rotates. Therefore, even if the rotation of the shaft member 50 about the axis A7 and the rotation of the guide member 52 about the axis A6 are both restricted, there is no problem in the operation of the rotational force transmission section 6.
 第14実施形態のロボット1の基本構造は、第12実施形態と同じであり、よって、第14実施形態のロボット1も第12実施形態と同様の効果を享受することができる。 The basic structure of the robot 1 of the fourteenth embodiment is the same as that of the twelfth embodiment, so the robot 1 of the fourteenth embodiment can also enjoy the same effects as the twelfth embodiment.
 また、第14実施形態のロボット1によれば、ロボットアーム3の中立状態において、アーム本体(第1アーム部4及び第2アーム部5)の幅方向内側に伸縮部13を含む回転力伝達部6の全体を配置した場合に、回転力伝達部6を含めたロボットアーム3の構成がコンパクトになる。また、軸部材50やガイド部材52を回転可能に支持するための部材(前記ベアリングB14、15、前記ホルダ部材51、53)が不要となる分、構成が簡素化される。 Further, according to the robot 1 of the fourteenth embodiment, when the robot arm 3 is in the neutral state, the rotational force transmitting portion includes the extendable portion 13 on the inner side in the width direction of the arm body (the first arm portion 4 and the second arm portion 5). When the entire robot arm 6 is arranged, the configuration of the robot arm 3 including the rotational force transmitting section 6 becomes compact. Furthermore, the configuration is simplified because members for rotatably supporting the shaft member 50 and the guide member 52 (the bearings B14, 15, the holder members 51, 53) are not required.
 [第15実施形態]
 図28は、第15実施形態に係るロボット1の平面図(一部断面図)であり、ロボットアーム3が中立状態にあるロボット1を示している。第15実施形態に係るロボット1は、第12実施形態(図20~図24参照)のロボット1と基本構成は共通するが、以下の点で、回転力伝達部6の構成が異なる。
[15th embodiment]
FIG. 28 is a plan view (partially sectional view) of the robot 1 according to the fifteenth embodiment, showing the robot 1 with the robot arm 3 in a neutral state. The robot 1 according to the fifteenth embodiment has the same basic configuration as the robot 1 according to the twelfth embodiment (see FIGS. 20 to 24), but differs in the configuration of the rotational force transmission section 6 in the following points.
 第15実施形態では、図28に示すように、伸縮部13において軸部材50がベアリングB30を介してホルダ部材51に回転可能に支持されている。第15実施形態では、この構成により、第2モータM2が発生する回転力を、回転力伝達部6を介してより円滑に第2アーム部5に伝達することが可能となっている。 In the fifteenth embodiment, as shown in FIG. 28, a shaft member 50 in the telescopic portion 13 is rotatably supported by a holder member 51 via a bearing B30. In the fifteenth embodiment, this configuration allows the rotational force generated by the second motor M2 to be more smoothly transmitted to the second arm portion 5 via the rotational force transmission portion 6.
 第11実施形態で説明した通り、回転力伝達部6において軸線A3、軸線A4、軸線A6、軸線A7の精度が十分に確保されていない場合には、軸部材50やガイド部材52、若しくはベアリングB5、B14、B15に不要な力が働いて変形し、回転力伝達部6の作動時の抵抗となることが考えられる。第15実施形態の既述の構成によると、ホルダ部材51に対する軸部材50の相対回転(軸回りの回転)が許容されることで、回転力伝達部6に働く不要な力を逃がすことができる。そのため、回転力伝達部6の円滑な作動が可能となり、その結果、第2モータM2が発生する回転力をより円滑に第2アーム部5に伝達することが可能となる。 As described in the eleventh embodiment, if the accuracy of the axis A3, A4, A6, and A7 in the rotational force transmitting section 6 is not sufficiently ensured, the shaft member 50, the guide member 52, or the bearing B5 , B14, and B15 may be deformed due to unnecessary force acting on them, resulting in resistance when the rotational force transmitting section 6 is operated. According to the above-described configuration of the fifteenth embodiment, by allowing relative rotation (rotation around the axis) of the shaft member 50 with respect to the holder member 51, unnecessary force acting on the rotational force transmitting section 6 can be released. . Therefore, the rotational force transmission section 6 can operate smoothly, and as a result, the rotational force generated by the second motor M2 can be transmitted to the second arm section 5 more smoothly.
 なお、図28の例では、軸部材50がホルダ部材51に対して回転可能に支持されているが、ガイド部材52がホルダ部材53に対して回転可能に支持される構成であってもよい。この場合も同様の効果を享受できる。 Note that in the example of FIG. 28, the shaft member 50 is rotatably supported with respect to the holder member 51, but the guide member 52 may be rotatably supported with respect to the holder member 53. In this case as well, similar effects can be enjoyed.
 また、軸部材50をホルダ部材51に、ガイド部材52をホルダ部材53に固定する構造は維持したまま、軸部材50とガイド部材52との相対回転が許容されるように構成してもよい。この場合、例えば軸部材50をボールブッシュシャフトで構成し、ガイド部材52をボールブッシュナットで構成することにより円滑な動作が可能となる。このような構成によっても、図28の構成と同様の効果を享受できる。 Further, the configuration may be such that relative rotation between the shaft member 50 and the guide member 52 is allowed while maintaining the structure in which the shaft member 50 is fixed to the holder member 51 and the guide member 52 to the holder member 53. In this case, for example, by constructing the shaft member 50 with a ball bush shaft and constructing the guide member 52 with a ball bush nut, smooth operation is possible. With such a configuration as well, the same effects as the configuration in FIG. 28 can be achieved.
 なお、第15実施形態では、軸部材50とガイド部材52との相対回転が必要なため、軸部材50及びガイド部材52の複数列化は難しい。また、軸部材50をボールブッシュシャフトとし、ガイド部材52をボールブッシュナットとする構成は、既述の第14実施形態においても適用が可能である。但し、第14実施形態は、軸線A7回りの軸部材50が規制されるとともに、軸線A6回りのガイド部材52の回転が規制される構成であるから、第2モータM2が発生する回転力を第2アーム部5に円滑に伝達する効果は低い。 Note that in the fifteenth embodiment, since relative rotation between the shaft member 50 and the guide member 52 is required, it is difficult to arrange the shaft member 50 and the guide member 52 in multiple rows. Further, the configuration in which the shaft member 50 is a ball bush shaft and the guide member 52 is a ball bush nut can also be applied to the fourteenth embodiment described above. However, in the fourteenth embodiment, since the shaft member 50 around the axis A7 is restricted and the rotation of the guide member 52 around the axis A6 is restricted, the rotational force generated by the second motor M2 is The effect of smoothly transmitting the signal to the second arm portion 5 is low.
 [第16実施形態]
 図29は、第16実施形態に係るロボット1の平面図(一部断面図)である。第16実施形態に係るロボット1は、第12実施形態(図20~図24参照)のロボット1と基本構成は共通するが、以下の点で、回転力伝達部6の構成が異なる。
[Sixteenth embodiment]
FIG. 29 is a plan view (partially sectional view) of the robot 1 according to the sixteenth embodiment. The robot 1 according to the sixteenth embodiment has the same basic configuration as the robot 1 according to the twelfth embodiment (see FIGS. 20 to 24), but differs in the configuration of the rotational force transmission section 6 in the following points.
 第16実施形態では、図29に示すように、ロボットアーム3の中立状態において、軸部材50の先端部が第1基部10の位置のみ、すなわちほぼ軸線A3の位置のみでガイド部材52に挿入される(ガイドされる)ように、伸縮部13における軸部材50の軸長L50と、ガイド部材52の軸長L52が設定されている。 In the 16th embodiment, as shown in FIG. 29, when the robot arm 3 is in the neutral state, the tip of the shaft member 50 is inserted into the guide member 52 only at the position of the first base 10, that is, approximately only at the position of the axis A3. The axial length L50 of the shaft member 50 and the axial length L52 of the guide member 52 in the telescoping portion 13 are set so as to be guided (guided).
 図示を省略するが、第16実施形態のロボット1では、ロボットアーム3の中立状態から第2アーム部5が回転すると、これに伴い、軸部材50がガイド部材52を貫通し、軸部材50の先端が第1アーム部4の後方、すなわち軸線A1側(ベース部2側)に突出することとなる。 Although not shown, in the robot 1 of the sixteenth embodiment, when the second arm portion 5 rotates from the neutral state of the robot arm 3, the shaft member 50 penetrates the guide member 52, and the shaft member 50 rotates. The tip protrudes to the rear of the first arm portion 4, that is, to the axis A1 side (base portion 2 side).
 なお、既述の第12実施形態(図20~図24参照)では、ロボットアーム3の中立状態においてガイド部材52に対する挿入状態を維持しながら、第2アーム部5の回転時には、ガイド部材52からの軸部材50の先端飛び出しが無いように、軸部材50及びガイド部材52の軸長L50、L52が設定される。そのため、軸部材50及びガイド部材52の軸長L50、L52によってロボットアーム3の可動領域Arが制約されることが考えられる。これに対して、第16実施形態の構成では、第2アーム部5の回転時の、ガイド部材52からの軸部材50の先端飛び出しが許容される。つまり、ロボットアーム3の可動領域Arが軸部材50及びガイド部材52の軸長L50、L52による制約を受け難い。従って、第16実施形態のロボット1によれば、ロボットアーム3の可動領域の増大に寄与する。 Note that in the twelfth embodiment described above (see FIGS. 20 to 24), while the robot arm 3 maintains the insertion state with respect to the guide member 52 in the neutral state, when the second arm section 5 rotates, the robot arm 3 is inserted into the guide member 52. The axial lengths L50 and L52 of the shaft member 50 and the guide member 52 are set so that the tip of the shaft member 50 does not protrude. Therefore, it is conceivable that the movable range Ar of the robot arm 3 is restricted by the axial lengths L50 and L52 of the shaft member 50 and the guide member 52. In contrast, in the configuration of the sixteenth embodiment, the tip of the shaft member 50 is allowed to protrude from the guide member 52 when the second arm portion 5 rotates. In other words, the movable area Ar of the robot arm 3 is not easily restricted by the axial lengths L50 and L52 of the shaft member 50 and the guide member 52. Therefore, the robot 1 of the sixteenth embodiment contributes to increasing the movable range of the robot arm 3.
[第17実施形態]
 図30は、第17実施形態に係るロボット1の平断面図(一部断面図)である。第17実施形態に係るロボット1は、第12施形態のロボット1と基本構成は共通するが、以下の点で回転力伝達部6の構成が異なる。
[Seventeenth embodiment]
FIG. 30 is a plan sectional view (partial sectional view) of the robot 1 according to the seventeenth embodiment. The robot 1 according to the seventeenth embodiment has the same basic configuration as the robot 1 according to the twelfth embodiment, but differs in the configuration of the rotational force transmission section 6 in the following points.
 第17実施形態では、回転力伝達部6の伸縮部13を構成するガイド部材52が、その軸心に沿ってスライド可能な内外2つの単位ガイド部材52a、52b(外側ガイド部材52a、内側ガイド部材52bという)で構成されている。つまり、伸縮部13は、外側ガイド部材52aと内側ガイド部材52bとが軸部材50の同心上にスライド可能に配置された、2段階に伸縮可能なテレスコピック構造である。当例では、軸部材50はスプライン軸からなる。また、内側ガイド部材52bは、内周面にスプライン溝を備えかつ外周面にスプラインを備えた複合筒状体からなり、外側ガイド部材52aは筒状のスプラインナットからなる。 In the seventeenth embodiment, the guide member 52 constituting the telescopic part 13 of the rotational force transmitting part 6 has two unit guide members 52a and 52b (outer guide member 52a, inner guide member 52b). That is, the extensible portion 13 has a telescopic structure that is expandable and retractable in two stages, in which the outer guide member 52a and the inner guide member 52b are slidably arranged concentrically with respect to the shaft member 50. In this example, the shaft member 50 is made of a spline shaft. Further, the inner guide member 52b is made of a composite cylindrical body having a spline groove on the inner circumferential surface and a spline on the outer circumferential surface, and the outer guide member 52a is made of a cylindrical spline nut.
 ガイド部材52のうち、外側ガイド部材52aの基端部はホルダ部材53に固定されている。伸縮部13は、さらに内側ガイド部材52bをその軸線方向の両側から付勢する付勢部材を備えている。具体的は、第2基部12側において、ホルダ部材51と内側ガイド部材52bの一方側の端部との間にコイルばね55が配置されるとともに、第1基部10側において、ホルダ部材53と内側ガイド部材52bの他方側の端部との間にコイルばね56が配置されている。第2基部12側のコイルばね55は、軸部材50の外周に配置されている。また、第1基部10側のコイルばね56は、ホルダ部材53に形成された、ばね収容凹部531内に配置されている。この構成により、第2基部12側のホルダ部材51に対して内側ガイド部材52bがコイルばね55の弾発力により第1基部10側に向かって付勢されるとともに、第1基部10側のホルダ部材53に対して内側ガイド部材52bがコイルばね56の弾発力により第2基部12側に向かって付勢されている。 Among the guide members 52, the base end portion of the outer guide member 52a is fixed to the holder member 53. The extensible portion 13 further includes biasing members that bias the inner guide member 52b from both sides in the axial direction. Specifically, on the second base 12 side, a coil spring 55 is arranged between the holder member 51 and one end of the inner guide member 52b, and on the first base 10 side, the coil spring 55 is arranged between the holder member 53 and the inner side. A coil spring 56 is arranged between the guide member 52b and the other end thereof. The coil spring 55 on the second base 12 side is arranged on the outer periphery of the shaft member 50. Further, the coil spring 56 on the first base 10 side is arranged in a spring accommodating recess 531 formed in the holder member 53. With this configuration, the inner guide member 52b is urged toward the first base 10 side by the elastic force of the coil spring 55 with respect to the holder member 51 on the second base 12 side, and the holder member 51 on the first base 10 side The inner guide member 52b is urged toward the second base 12 by the elastic force of the coil spring 56 with respect to the member 53.
 第17実施形態のロボット1によると、伸縮部13が2段階に伸縮可能な構造であるため、第12実施形態のロボット1に比して、伸縮部13の伸縮長さの自由度が高い。すなわち、第2アーム部5の回転時に、伸縮部13をより短く縮小させることが可能となる。そのため、ロボットアーム3の前記可動領域Arの拡大に寄与する。 According to the robot 1 of the seventeenth embodiment, since the extendable part 13 has a structure that can be extended and contracted in two stages, the degree of freedom in the length of extension and contraction of the extendable part 13 is higher than that of the robot 1 of the twelfth embodiment. That is, when the second arm portion 5 rotates, it becomes possible to contract the extendable portion 13 shorter. Therefore, it contributes to expanding the movable area Ar of the robot arm 3.
 しかも、内側ガイド部材52bは、その軸線方向の両側からコイルばね55、56によって互いに反対向きに付勢されているため、軸部材50や外側ガイド部材52aに対して位置が安定的に保たれる。そのため、ロボットアーム3の作動中に、内側ガイド部材52bが不安定に移動することが抑制ないし防止される。 Moreover, since the inner guide member 52b is biased in opposite directions from both sides in the axial direction by the coil springs 55 and 56, its position relative to the shaft member 50 and the outer guide member 52a is maintained stably. . Therefore, during the operation of the robot arm 3, unstable movement of the inner guide member 52b is suppressed or prevented.
 なお、図30の構成では、第1基部10側のコイルばね56が本発明の「第1付勢部材」に相当し、第2基部12側のコイルばね55が本発明の「第2付勢部材」に相当する。 In the configuration of FIG. 30, the coil spring 56 on the first base 10 side corresponds to the "first biasing member" of the present invention, and the coil spring 55 on the second base 12 side corresponds to the "second biasing member" of the present invention. This corresponds to "parts".
 図30の例は、伸縮部13が2段階に伸縮可能な構成であるが、図31に示すように、伸縮部13は、3段階に伸縮可能な構成であってもよい。具体的には、ガイド部材52が、その軸心に沿ってスライド可能な3つの単位ガイド部材52a、52b、52c(外側ガイド部材52a、第1内側ガイド部材52b、第2内側ガイド部材52cという)で構成されている。つまり、伸縮部13は、外側ガイド部材52aと第1内側ガイド部材52bと第2内側ガイド部材52cとが軸部材50の同心上にスライド可能に配置されている。当例では、軸部材50はスプライン軸からなり、第1、第2内側ガイド部材52b、52cは、前記複合筒状体からなり、外側ガイド部材52aは筒状のスプラインナットからなる。 The example in FIG. 30 has a configuration in which the extensible part 13 can be expanded and contracted in two stages, but as shown in FIG. 31, the extensible part 13 may have a configuration in which it can be expanded and contracted in three stages. Specifically, the guide member 52 includes three unit guide members 52a, 52b, and 52c (referred to as an outer guide member 52a, a first inner guide member 52b, and a second inner guide member 52c) that are slidable along their axes. It consists of That is, in the extensible portion 13, the outer guide member 52a, the first inner guide member 52b, and the second inner guide member 52c are slidably arranged concentrically with respect to the shaft member 50. In this example, the shaft member 50 is made of a spline shaft, the first and second inner guide members 52b and 52c are made of the composite cylindrical body, and the outer guide member 52a is made of a cylindrical spline nut.
 また、付勢部材として、第2基部12側のホルダ部材51と第1内側ガイド部材52bの端部との間にコイルばね55aが配置されるとともに、ホルダ部材51と第2内側ガイド部材52cの端部との間に、コイルばね55aよりも小径のコイルばね55bが配置されている。また、第1基部10側のホルダ部材53と第1内側ガイド部材52bの端部との間にコイルばね56aが配置されるとともに、ホルダ部材53と第2内側ガイド部材52cの端部との間に、コイルばね56aよりも小径のコイルばね56bが配置されている。第2基部12側の2つのコイルばね55a、55bのうち、小径のコイルばね55bは、大径のコイルばね55aの内側であってかつ軸部材50の外周に配置されており、大径のコイルばね55aは、第2内側ガイド部材52cの外周に配置されている。一方、第1基部10側の2つのコイルばね56a、56bのうち、大径のコイルばね55aはホルダ部材53に形成され第1ばね収容凹部531内に配置されており、小径のコイルばね56bは大径のコイルばね55aの内側であってかつ、第1ばね収容凹部531の内底部にさらに形成された第2ばね収容凹部532内に配置されている。 Further, as a biasing member, a coil spring 55a is arranged between the holder member 51 on the second base 12 side and the end of the first inner guide member 52b, and A coil spring 55b having a smaller diameter than the coil spring 55a is arranged between the ends. Further, a coil spring 56a is arranged between the holder member 53 on the first base 10 side and the end of the first inner guide member 52b, and between the holder member 53 and the end of the second inner guide member 52c. A coil spring 56b having a smaller diameter than the coil spring 56a is arranged. Among the two coil springs 55a and 55b on the second base 12 side, the small diameter coil spring 55b is arranged inside the large diameter coil spring 55a and on the outer periphery of the shaft member 50, and the small diameter coil spring 55b is arranged on the outer periphery of the shaft member 50. The spring 55a is arranged around the outer periphery of the second inner guide member 52c. On the other hand, among the two coil springs 56a and 56b on the first base 10 side, the large diameter coil spring 55a is formed in the holder member 53 and arranged in the first spring housing recess 531, and the small diameter coil spring 56b is It is arranged inside a second spring accommodating recess 532 which is inside the large diameter coil spring 55a and is further formed at the inner bottom of the first spring accommodating recess 531.
 このような図31の構成によると、伸縮部13の伸縮長さの自由度を更に高めることができる。また、コイルばね55a、55b、56a、56bの段発力により、第1、第2内側ガイド部材52b、52cの位置を軸部材50や外側ガイド部材52aに対して安定的に保つこともできる。 According to the configuration of FIG. 31, the degree of freedom in the length of expansion and contraction of the expansion and contraction portion 13 can be further increased. Moreover, the positions of the first and second inner guide members 52b and 52c can be stably maintained with respect to the shaft member 50 and the outer guide member 52a by the stepped force of the coil springs 55a, 55b, 56a, and 56b.
 なお、図31の構成では、第1基部10側のコイルばね56a、56bが各々本発明の「第1付勢部材」に相当し、第2基部12側のコイルばね55a、55bが各々本発明の「第2付勢部材」に相当する。 In the configuration of FIG. 31, the coil springs 56a and 56b on the first base 10 side each correspond to the "first biasing member" of the present invention, and the coil springs 55a and 55b on the second base 12 side each correspond to the "first biasing member" of the present invention. This corresponds to the "second biasing member".
 [第18実施形態]
 第18実施形態は、本発明の垂直多関節ロボットへの適用例である。
[18th embodiment]
The 18th embodiment is an example of application of the present invention to a vertically articulated robot.
 図32は、垂直多関節ロボットの斜視図である。同図に示す垂直多関節ロボット1´は、基台BPに設置されるベース部200と、このベース部200に支持されたロボットアーム300とを備える。 FIG. 32 is a perspective view of a vertically articulated robot. The vertical articulated robot 1' shown in the figure includes a base part 200 installed on a base BP, and a robot arm 300 supported by this base part 200.
 ロボットアーム300は、ベース部200に対し、垂直な軸線A11回りに回転可能に連結された第1アーム部210と、第1アーム部210に対し、軸線A11と直交する軸線A12回りに回転可能に基端部が連結された第2アーム部220と、第2アーム部220の先端部に対し、軸線A12と平行な軸線A13回りに基端部が回転可能に連結された第3アーム部230と、第3アーム部230の先端部に対し、軸線A13と直交する軸線A14回りに回転可能に基端部が連結された第4アーム部240と、第4アーム部240に対し、軸線A14と垂直な軸線A15回りに回転可能に連結された第5アーム部250と、を含む。第5アーム部250には、軸線A15と直交する軸線A16回りの回転力を発生するツールモータM6が組付けられており、当該ツールモータM6に、ロボットハンド等の作業用ツールであるエンドエフェクタ400が組付けられる。 The robot arm 300 includes a first arm part 210 connected to the base part 200 so as to be rotatable about an axis A11 perpendicular to the base part 200, and a first arm part 210 rotatable about an axis A12 perpendicular to the axis A11 relative to the first arm part 210. A second arm part 220 whose base end is connected to the distal end of the second arm part 220, and a third arm part 230 whose base end is rotatably connected to the distal end of the second arm part 220 about an axis A13 parallel to the axis A12. , a fourth arm part 240 whose base end is connected to the distal end of the third arm part 230 so as to be rotatable about an axis A14 perpendicular to the axis A13; and a fifth arm portion 250 rotatably connected around an axis A15. A tool motor M6 that generates a rotational force around an axis A16 orthogonal to the axis A15 is attached to the fifth arm section 250, and an end effector 400, which is a work tool such as a robot hand, is attached to the tool motor M6. is assembled.
 第1アーム部210は、ベース部200に配置された図外の第1アームモータにより軸線A11回りに回転駆動され、第2アーム部220は、第1アーム部210内に配置された図外の第2アームモータにより軸線A12回りに回転駆動され、第3アーム部230は、当該第3アーム部230内に配置された図外の第3アームモータにより軸線A13回りに回転駆動され、第4アーム部240は、第3アーム部230内に配置された図外の第4アームモータにより軸線A14回りに回転駆動され、第5アーム部250は、第4アーム部240内に配置された第5アームモータM5(図33に示す)により軸線A15回りに回転駆動される。 The first arm part 210 is rotationally driven around the axis A11 by a first arm motor (not shown) arranged in the base part 200, and the second arm part 220 is driven to rotate around the axis A11 by a first arm motor (not shown) arranged in the first arm part 210. The third arm portion 230 is rotationally driven around the axis A12 by a second arm motor, and the third arm portion 230 is rotationally driven around the axis A13 by a third arm motor (not shown) disposed within the third arm portion 230, and the fourth arm The section 240 is rotationally driven around the axis A14 by a fourth arm motor (not shown) disposed within the third arm section 230, and the fifth arm section 250 is driven to rotate around the axis A14 by a fourth arm motor (not shown) disposed within the third arm section 230. It is rotationally driven around an axis A15 by a motor M5 (shown in FIG. 33).
 図33は、ロボットアーム300の先端部分の断面図、具体的には、第4アーム部240及び第5アーム部250の断面図である。 FIG. 33 is a cross-sectional view of the tip portion of the robot arm 300, specifically, a cross-sectional view of the fourth arm portion 240 and the fifth arm portion 250.
 同図に示すように、第4アーム部240は、その先端部における幅方向(図33では上下方向)一端側に、前方に延びるアーム支持部241を有する。このアーム支持部241に、第5アーム部250が回転可能に支持されている。具体的には、第5アーム部250の側壁部に設けられた中空シャフト251が、アーム支持部241に設けられたベアリングB40の内輪に保持されている。これにより、第5アーム部250が、第4アーム部240に対して軸線A15回りに回転可能に連結されている。 As shown in the figure, the fourth arm portion 240 has an arm support portion 241 extending forward at one end in the width direction (vertical direction in FIG. 33) at its distal end. A fifth arm portion 250 is rotatably supported by this arm support portion 241 . Specifically, a hollow shaft 251 provided on the side wall of the fifth arm portion 250 is held by an inner ring of a bearing B40 provided on the arm support portion 241. Thereby, the fifth arm section 250 is rotatably connected to the fourth arm section 240 about the axis A15.
 第5アーム部250を駆動する第5アームモータM5は軸線A15の軸上、すなわち第5アーム部250には配置されておらず、第4アーム部240の内部であって、軸線A15から軸線A14に沿った反対側のずれた位置(第4アーム部240の基端部側に離間した位置)に配置されている。 The fifth arm motor M5 that drives the fifth arm part 250 is not arranged on the axis A15, that is, in the fifth arm part 250, but inside the fourth arm part 240, from the axis A15 to the axis A14. (a position spaced apart toward the proximal end of the fourth arm portion 240) on the opposite side of the fourth arm portion 240.
 第5アーム部250は、第5アームモータM5が発生する回転力が回転力伝達部60を介して伝達されることにより、軸線A15回りに回転駆動される。 The fifth arm section 250 is rotationally driven around the axis A15 by transmitting the rotational force generated by the fifth arm motor M5 via the rotational force transmission section 60.
 回転力伝達部60の構成は、第14実施形態(図26)で既述した回転力伝達部6の構成と実質的に同じである。すなわち、回転力伝達部60は、第5アームモータM5の回転力により軸線A17回りに回転する第1基部110と、第5アーム部250に対してベアリングB42を介して軸線A18回りに回転可能に支持された第2基部120と、第1基部110と第2基部120とを連結し、これら第1基部110と第2基部120との距離の変化に追従して変形(伸縮)する伸縮部130と、を含む。軸線A17及び軸線A18は、共に軸線A15と平行な軸線である。 The configuration of the rotational force transmission section 60 is substantially the same as the configuration of the rotational force transmission section 6 already described in the fourteenth embodiment (FIG. 26). That is, the rotational force transmission section 60 is rotatable around the axis A18 via the bearing B42 with respect to the first base 110 which rotates around the axis A17 by the rotational force of the fifth arm motor M5 and the fifth arm section 250. An extensible part 130 that connects the supported second base 120, the first base 110, and the second base 120, and deforms (expands and contracts) in accordance with changes in the distance between the first base 110 and the second base 120. and, including. The axis A17 and the axis A18 are both axes parallel to the axis A15.
 また、伸縮部130は、スプライン軸からなる軸部材150及びスプラインナットからなるガイド部材152とで構成されており、軸部材150の基端部は、第2基部120に、ガイド部材152の基端部は第1基部110に、各々固定されている。軸部材150及びガイド部材152は、ボールブッシュシャフト及びボールブッシュナットの組合せでもよく、また、リニアガイド等のレール部材及びリニアガイドスライダ等の摺動部材の組合せでもよい。 Furthermore, the telescopic section 130 is composed of a shaft member 150 made of a spline shaft and a guide member 152 made of a spline nut. The parts are each fixed to the first base part 110. The shaft member 150 and the guide member 152 may be a combination of a ball bush shaft and a ball bush nut, or may be a combination of a rail member such as a linear guide and a sliding member such as a linear guide slider.
 つまり、第5アームモータM5が駆動されると、その回転力が回転力伝達部60を介して第5アーム部250に伝達される。これにより第4アーム部240に対して第5アーム部250が軸線A15回りに回転する。この際、第5アーム部250が回転すると、これに伴い伸縮部13が伸縮する。 That is, when the fifth arm motor M5 is driven, its rotational force is transmitted to the fifth arm section 250 via the rotational force transmission section 60. As a result, the fifth arm section 250 rotates about the axis A15 with respect to the fourth arm section 240. At this time, when the fifth arm section 250 rotates, the extensible section 13 expands and contracts accordingly.
 このロボット1′の構成によると、第5アーム部250を駆動する第5アームモータM5が、第5アーム部250には配置されておらず、第4アーム部240の内部であって、軸線A15から軸線A14に沿った反対側にずれた位置に配置されている。そのため、第5アーム部250の軽量化が達成され、第5アーム部250の軸線A15回りのイナーシャ(慣性モーメント)が低減される。また、第5アーム部250のコンパクト化が達成される。 According to the configuration of this robot 1', the fifth arm motor M5 that drives the fifth arm section 250 is not disposed in the fifth arm section 250, but is located inside the fourth arm section 240, and is located along the axis A15. It is arranged at a position shifted to the opposite side along the axis A14. Therefore, the weight of the fifth arm section 250 is reduced, and the inertia (moment of inertia) of the fifth arm section 250 about the axis A15 is reduced. Furthermore, the fifth arm portion 250 can be made more compact.
 なお、第18実施形態では、第4アーム部240が本発明(請求項17)の「第1アーム部」に、第5アーム部250が「第2アーム部」に各々相当する。また、軸線A15が本発明の「第1軸線」に、軸線A17が「第2軸線」に、軸線A18が「第3軸線」に各々相当する。また、第5アームモータM5が本発明の「モータ」に相当する。 In the eighteenth embodiment, the fourth arm section 240 corresponds to the "first arm section" and the fifth arm section 250 corresponds to the "second arm section" of the present invention (claim 17). Further, the axis A15 corresponds to the "first axis", the axis A17 corresponds to the "second axis", and the axis A18 corresponds to the "third axis" of the present invention. Furthermore, the fifth arm motor M5 corresponds to the "motor" of the present invention.
 以上、本発明に係る第1~第18実施形態に係る多関節ロボットについて説明したが、当該実施形態に係る多関節ロボットは、本発明の好ましい実施形態の例示であってその具体的な構成は、本発明の要旨を逸脱しない範囲で変更が可能である。特に、第1~第18実施形態で開示された特徴的な構成を適宜組み合わせた構成は本発明の範疇である。 The articulated robots according to the first to eighteenth embodiments of the present invention have been described above, but the articulated robots according to the embodiments are merely examples of preferred embodiments of the present invention, and their specific configurations are as follows. , changes can be made without departing from the gist of the invention. In particular, configurations in which the characteristic configurations disclosed in the first to eighteenth embodiments are appropriately combined are within the scope of the present invention.
 本発明をまとめると以下の通りである。 The present invention can be summarized as follows.
 本発明の多関節ロボットは、第1軸線回りに回転可能な第1アーム部と、第1アーム部に対して、前記第1軸線と平行な第2軸線回りに回転可能に連結された第2アーム部と、を含むアームを備えた多関節ロボットであって、前記第1アーム部を、前記第1軸線回りに回転させる回転力を発生する第1モータと、前記第1アーム部における前記第2軸線よりも前記第1軸線寄りの位置に配置されて、前記第2アーム部を回転させる回転力を発生する第2モータと、前記第1アーム部と前記第2アーム部とを連結して前記第2モータが発生する回転力を前記第2アーム部に伝達するとともに、前記第1アーム部に対する前記第2アーム部の回転に追従して変形する回転力伝達部と、を備える。 The articulated robot of the present invention includes a first arm rotatable about a first axis, and a second arm rotatably connected to the first arm rotatable about a second axis parallel to the first axis. An articulated robot having an arm including a first motor that generates a rotational force that rotates the first arm about the first axis; a second motor that is disposed at a position closer to the first axis than the second axis and generates a rotational force that rotates the second arm; and the first arm and the second arm are connected to each other. A rotational force transmitting section is provided that transmits the rotational force generated by the second motor to the second arm section and deforms in accordance with the rotation of the second arm section with respect to the first arm section.
 この多関節ロボットの構成によると、第2アーム部を駆動するための第2モータが、第1アーム部における第2軸線よりも第1軸線寄りの位置に配置されているため、第2軸線上に第2モータが配置される、従来の多関節ロボットに比べて、第1軸線回りのアームのイナーシャ(慣性モーメント)を低減することが可能となる。また、第2アーム部に関して、第2モータの位置を基準とした場合のイナーシャを、第2軸線上に第2モータが配置されている場合に比べて低減することが可能となる。従って、この多関節ロボットの構成によると、多関節ロボットのアームの回転軸回りのイナーシャを効果的に低減することが可能となる。 According to the configuration of this articulated robot, the second motor for driving the second arm is disposed at a position closer to the first axis than the second axis in the first arm. The inertia (moment of inertia) of the arm about the first axis can be reduced compared to conventional multi-joint robots in which the second motor is disposed at the second motor. Further, regarding the second arm portion, it is possible to reduce the inertia based on the position of the second motor compared to the case where the second motor is arranged on the second axis. Therefore, with this configuration of the multi-joint robot, it is possible to effectively reduce the inertia around the rotation axis of the arm of the multi-joint robot.
 上記の多関節ロボットにおいて、前記第2モータは、前記第1軸線及び第2軸線と平行な第3軸線回りの回転力を発生するものであり、前記回転力伝達部は、前記第2モータの回転力により前記第3軸線回りに回転する第1基部と、前記第3軸線と平行な第4軸線回りに回転可能に、前記第2アーム部に支持された第2基部と、前記第1基部と前記第2基部とを連結し、前記第1アーム部に対する前記第2アーム部の回転による前記第1基部と前記第2基部との距離の変化に追従して伸縮する伸縮部と、を含む。 In the above-mentioned articulated robot, the second motor generates a rotational force about a third axis parallel to the first axis and the second axis, and the rotational force transmission section is configured to generate rotational force of the second motor. a first base that rotates around the third axis due to rotational force; a second base that is supported by the second arm so as to be rotatable around a fourth axis that is parallel to the third axis; and the first base. and the second base, and expands and contracts in accordance with changes in the distance between the first base and the second base due to rotation of the second arm with respect to the first arm. .
 この構成によると、第2モータの回転力を、回転力伝達部を介して第2アーム部に伝達しながら、当該第2アーム部を第1アーム部に対して円滑に回転させることが可能となる。 According to this configuration, the second arm can be smoothly rotated with respect to the first arm while transmitting the rotational force of the second motor to the second arm via the rotational force transmission section. Become.
 この場合、前記伸縮部は、リンク機構からなるのが好適である。この構成によれば、比較的簡単な構成で、第2モータの回転力を第2アーム部に伝達しながら、第2アーム部の回転に伴い回転力伝達部を円滑に変形(伸縮)させることが可能となる。 In this case, it is preferable that the extensible portion comprises a link mechanism. According to this configuration, with a relatively simple configuration, while transmitting the rotational force of the second motor to the second arm section, the rotational force transmission section can be smoothly deformed (expanded and contracted) as the second arm section rotates. becomes possible.
 より具体的に、前記リンク機構は、一方側の端部同士が前記第1軸線と所定角度を成す第5線軸回りに互いに回転可能に連結された第1リンク及び第2リンクを含み、前記第1リンクの他方側の端部は、前記第1基部に対して前記第5軸線と平行な軸線回りに回転可能に連結され、前記第2リンクの他方側の端部は、前記第2基部に対して前記第5軸線と平行な軸線回りに回転可能に連結されている。この場合、前記所定角度は、90°であるのが好適である。 More specifically, the link mechanism includes a first link and a second link whose ends on one side are connected to each other so as to be rotatable about a fifth linear axis forming a predetermined angle with the first axis, The other end of the first link is rotatably connected to the first base about an axis parallel to the fifth axis, and the other end of the second link is connected to the second base. On the other hand, it is connected rotatably around an axis parallel to the fifth axis. In this case, the predetermined angle is preferably 90°.
 この構成によれば、第1アーム部及び第2アーム部と回転力伝達部との干渉を回避しながら、第2モータの回転力を、当該回転力伝達部を介して第2モータに伝達することが可能となる。 According to this configuration, the rotational force of the second motor is transmitted to the second motor via the rotational force transmission section while avoiding interference between the first arm section and the second arm section and the rotational force transmission section. becomes possible.
 また、上記の多関節ロボットにおいて、前記伸縮部がリンク機構の場合には、当該リンク機構は、一端部が前記第1基部に対して前記第3軸線に直交する軸線回りに回動可能に連結され、かつ他端部が前記第2基部に対して前記第4軸線と直交する軸線回りに回転可能に連結された、マジックハンド型のリンク機構であってもよい。 Further, in the above-mentioned articulated robot, when the extendable part is a link mechanism, one end of the link mechanism is rotatably connected to the first base about an axis perpendicular to the third axis. The link mechanism may be a magic hand type link mechanism, in which the other end is rotatably connected to the second base about an axis perpendicular to the fourth axis.
 この構成によれば、第2アーム部の回転に伴いリンク機構が折り畳まれるときの、当該リンク機構の占有高さを低く抑える上で有利となる。 This configuration is advantageous in keeping the height occupied by the link mechanism low when the link mechanism is folded as the second arm rotates.
 また、上記の多関節ロボットにおいて、前記リンク機構を構成する複数のリンクの一つは、リンク長手方向に互いに分割された第1部分及び第2部分と、リンク長手方向に延びる軸回りに前記第1部分と前記第2部分とを相対回転可能に連結する連結部と、を備える構成であってもよい。 Further, in the above-mentioned articulated robot, one of the plurality of links constituting the link mechanism includes a first part and a second part that are separated from each other in the longitudinal direction of the link, and a first part and a second part that are separated from each other in the longitudinal direction of the link, and the third part that is arranged around an axis extending in the longitudinal direction of the link. The first part and the second part may be configured to include a connecting part that connects the second part so as to be relatively rotatable.
 この構成によると、第2モータの回転力を、回転力伝達部を介してより円滑に第2アーム部に伝達することが可能となる。すなわち、回転力伝達部の精度が十分に確保されていない場合には、各リンクに不要な力が働いて変形し、回転力伝達部の作動時の抵抗となることが考えられる。上記構成によると、第1部分と第2部分との相対回転が許容されることで、既述のような不要な力を逃がすことができる。そのため、回転力伝達部の円滑な作動が可能となり、その結果、第2モータが発生する回転力をより円滑に第2アーム部に伝達することが可能となる。 According to this configuration, the rotational force of the second motor can be more smoothly transmitted to the second arm section via the rotational force transmission section. That is, if the accuracy of the rotational force transmission section is not sufficiently ensured, it is conceivable that unnecessary force acts on each link, deforming it, and creating resistance when the rotational force transmission section operates. According to the above configuration, relative rotation between the first portion and the second portion is allowed, thereby making it possible to release unnecessary forces as described above. Therefore, the rotational force transmission section can operate smoothly, and as a result, the rotational force generated by the second motor can be more smoothly transmitted to the second arm section.
 また、上記の多関節ロボットにおいて、前記ベース部から前記第2アーム部に至るように配索されるケーブルを含む場合には、前記ケーブルは、少なくとも一部が前記回転力伝達部の内部を通じて配索されていてもよい。 Further, in the case where the articulated robot described above includes a cable routed from the base section to the second arm section, at least a portion of the cable is routed through the inside of the rotational force transmission section. It may be searched.
 この構成によれば、回転力伝達部の内部をケーブルの配策スペースとして利用した合理的な構成が達成される。 According to this configuration, a rational configuration is achieved in which the inside of the rotational force transmission section is used as a cable routing space.
 また、上記の多関節ロボットにおいて、前記伸縮部は、前記第1基部及び前記第2基部のうち一方側に支持される軸部材と、他方側に支持されて、当該軸部材をその軸方向へスライド可能に保持するガイド部材とを備える構成であってもよい。 Moreover, in the above-mentioned articulated robot, the telescoping section includes a shaft member supported on one side of the first base and the second base, and a shaft member supported on the other side to move the shaft member in the axial direction. It may also be configured to include a guide member that is slidably held.
 この構成の場合も、比較的簡単な構成で、第2モータの回転力を第2アーム部に伝達しながら、第2アーム部の回転に伴い回転力伝達部を円滑に変形(伸縮)させることが可能となる。 In the case of this configuration as well, it is a relatively simple configuration, and while transmitting the rotational force of the second motor to the second arm section, the rotational force transmission section can be smoothly deformed (expanded and contracted) as the second arm section rotates. becomes possible.
 より具体的に、前記軸部材は、前記第1基部及び前記第2基部のうち一方側に対して、前記第1軸線と所定角度を成す第6軸線回りに回転可能に支持され、前記ホルダ部材は、前記第1基部及び前記第2基部のうち他方側に対して前記第6軸と平行な軸線回りに回転可能に支持されている。この場合、前記所定角度は、90°であるのが好適である。 More specifically, the shaft member is rotatably supported on one side of the first base and the second base about a sixth axis forming a predetermined angle with the first axis, and the holder member is rotatably supported by the other of the first base and the second base about an axis parallel to the sixth axis. In this case, it is preferable that the predetermined angle is 90°.
 この構成によれば、第1アーム部及び第2アーム部と回転力伝達部との干渉を回避しながら、第2モータの回転力を、当該回転力伝達部を介して第2モータに伝達することが可能となる。 According to this configuration, the rotational force of the second motor is transmitted to the second motor via the rotational force transmission section while avoiding interference between the first arm section and the second arm section and the rotational force transmission section. becomes possible.
 前記伸縮部が、前記軸部材と前記ガイド部材とを備える場合、前記第2軸線及び前記第3軸線に直交する平面に対して前記伸縮部が平行に設けられているのが好適である。 When the extensible part includes the shaft member and the guide member, it is preferable that the extensible part is provided parallel to a plane orthogonal to the second axis and the third axis.
 この構成によると、軸部材及びガイド部材を第1基部及び第2基部に対して回転可能に支持することなく、第2アーム部の回転に伴い回転力伝達部を円滑に変形(伸縮)させることが可能となる。 According to this configuration, the rotational force transmitting part can be smoothly deformed (expanded and contracted) as the second arm part rotates without rotatably supporting the shaft member and the guide member with respect to the first base part and the second base part. becomes possible.
 上記の多関節ロボットにおいて、前記軸部材及び前記ガイド部材の一方側は、当該一方側を支持する前記第1基部又は前記第2基部に対して軸回りに回転可能に回転可能に設けられていてもよい。また、前記軸部材は、前記ガイド部材に対して相対回転可能に設けられていてもよい。 In the articulated robot described above, one side of the shaft member and the guide member is rotatably provided around an axis relative to the first base or the second base that supports the one side. Good too. Further, the shaft member may be provided so as to be rotatable relative to the guide member.
 この構成によると、第2モータの回転力を、回転力伝達部を介してより円滑に第2アーム部に伝達することが可能となる。すなわち、回転力伝達部の精度が十分に確保されていない場合には、軸部材やガイド部材に不要な力が働いて変形し、回転力伝達部の作動時の抵抗となることが考えられる。上記構成によると、既述のような不要な力を逃がすことが可能となるため、回転力伝達部の円滑な作動が可能となり、その結果、第2モータが発生する回転力をより円滑に第2アーム部に伝達することが可能となる。 According to this configuration, the rotational force of the second motor can be more smoothly transmitted to the second arm section via the rotational force transmission section. That is, if the accuracy of the rotational force transmission section is not sufficiently ensured, unnecessary force may act on the shaft member or the guide member, deforming it and causing resistance during operation of the rotational force transmission section. According to the above configuration, it is possible to release the unnecessary force as described above, so that the rotational force transmission section can operate smoothly, and as a result, the rotational force generated by the second motor can be transferred more smoothly to the second motor. It becomes possible to transmit the signal to the two arm sections.
 また、上記の多関節ロボットにおいて、前記ガイド部材は、前記軸部材の同心上に互いにスライド可能に配置されたテレスコピック構造の複数の単位ガイド部材から構成されていてもよい。 Furthermore, in the above-mentioned articulated robot, the guide member may be composed of a plurality of unit guide members of a telescopic structure that are arranged coaxially with the shaft member so as to be slidable with respect to each other.
 この構成によると、伸縮部が複数段階に伸縮可能となるため、伸縮部の伸縮長さの自由度が高くなる。すなわち、第2アーム部の回転時に伸縮部をより短く縮小させることが可能となる。そのため、アームの可動領域の拡大に寄与する。 According to this configuration, the extendable part can be extended and contracted in multiple stages, so the degree of freedom in the length of extension and contraction of the extendable part is increased. That is, it becomes possible to reduce the length of the telescopic portion to a shorter length when the second arm portion rotates. Therefore, it contributes to expanding the movable range of the arm.
 この場合、前記複数の単位ガイド部材のうち、最も外側の単位ガイド部材を外側ガイド部材と定義するとともに、当該外側の単位ガイド部材の内側に配置される単位ガイド部材を内側ガイド部材と定義したときに、前記外側ガイド部材は、前記他方側の基部に連結されており、前記伸縮部は、前記内側ガイド部材の軸線方向の両側に各々配置される付勢部材であって、前記内側ガイド部材を、前記他方側の基部に対して前記一方側の基部に向かって付勢する第1付勢部材と、前記一方側の基部に対して前記他方側の基部に向かって付勢する第2付勢部材とを含んでいてもよい。 In this case, when the outermost unit guide member among the plurality of unit guide members is defined as the outer guide member, and the unit guide member arranged inside the outer unit guide member is defined as the inner guide member. The outer guide member is connected to the base on the other side, and the extensible portion is a biasing member disposed on both sides of the inner guide member in the axial direction, , a first biasing member that biases the base on the other side toward the base on the one side; and a second biasing member that biases the base on the one side toward the base on the other side. It may also include a member.
 この構成によれば、軸部材や外側ガイド部材に対して内側ガイド部材の位置が安定的に保たれる。そのため、ロボットアーム3の作動中に、内側ガイド部材が不安定に移動することが抑制ないし防止される。 According to this configuration, the position of the inner guide member is stably maintained with respect to the shaft member and the outer guide member. Therefore, unstable movement of the inner guide member during operation of the robot arm 3 is suppressed or prevented.
 また、本発明の他の一局面に係る多関節ロボットは、第1アーム部と、第1アーム部に対して第1軸線回りに回転可能に連結された第2アーム部と、を含むアームを備えた多関節ロボットであって、前記第1アーム部における前記第1軸線から当該第1アーム部の基端側に離間する位置に配置されて、前記第2アーム部を回転させる回転力を発生するモータと、前記第1アーム部と前記第2アーム部とを連結して前記モータが発生する回転力を前記第2アーム部に伝達する回転力伝達部と、を備え、前記モータは、前記第1軸線と平行な第2軸線回りの回転力を発生し、前記回転力伝達部は、前記第2モータの回転力により前記第2軸線回りに回転する第1基部と、前記第2軸線と平行な第3軸線回りに回転可能に、前記第2アーム部に支持された第2基部と、前記第1基部と前記第2基部とを連結し、前記第1アーム部に対する前記第2アーム部の回転による前記第1基部と前記第2基部との距離の変化に追従して伸縮する伸縮部と、を含むものである。 Further, an articulated robot according to another aspect of the present invention includes an arm including a first arm section and a second arm section rotatably connected to the first arm section about a first axis. The articulated robot is arranged at a position spaced apart from the first axis of the first arm toward the proximal end of the first arm, and generates a rotational force that rotates the second arm. and a rotational force transmission section that connects the first arm section and the second arm section and transmits the rotational force generated by the motor to the second arm section, the motor The rotational force transmission section generates a rotational force about a second axis parallel to the first axis, and the rotational force transmission section has a first base that rotates about the second axis due to the rotational force of the second motor, and a rotational force that rotates about the second axis parallel to the first axis. a second base supported by the second arm so as to be rotatable about a parallel third axis; and a second arm that connects the first base and the second base, and is connected to the first arm. and an extensible portion that expands and contracts in accordance with a change in the distance between the first base and the second base due to rotation of the base.
 この多関節ロボットの構成によると、第2アーム部に関して、第2モータの位置を基準とした場合のイナーシャ(慣性モーメント)を、第2軸線上に第2モータが配置されている場合に比べて効果的に低減することが可能となる。 According to the configuration of this articulated robot, the inertia (moment of inertia) with respect to the second arm based on the position of the second motor is higher than that when the second motor is arranged on the second axis. It becomes possible to reduce the amount effectively.

Claims (17)

  1.  第1軸線回りに回転可能な第1アーム部と、第1アーム部に対して、前記第1軸線と平行な第2軸線回りに回転可能に連結された第2アーム部と、を含むアームを備えた多関節ロボットであって、
     前記第1アーム部を、前記第1軸線回りに回転させる回転力を発生する第1モータと、
     前記第1アーム部における前記第2軸線よりも前記第1軸線寄りの位置に配置されて、前記第2アーム部を回転させる回転力を発生する第2モータと、
     前記第1アーム部と前記第2アーム部とを連結して前記第2モータが発生する回転力を前記第2アーム部に伝達するとともに、前記第1アーム部に対する前記第2アーム部の回転に追従して変形する回転力伝達部と、を備える、ことを特徴とする多関節ロボット。
    An arm including a first arm part rotatable about a first axis, and a second arm part connected to the first arm part so as to be rotatable about a second axis parallel to the first axis. An articulated robot equipped with
    a first motor that generates a rotational force that rotates the first arm about the first axis;
    a second motor that is disposed at a position closer to the first axis than the second axis in the first arm and generates a rotational force that rotates the second arm;
    The first arm portion and the second arm portion are connected to transmit the rotational force generated by the second motor to the second arm portion, and the rotation of the second arm portion with respect to the first arm portion is controlled. An articulated robot characterized by comprising: a rotational force transmitting part that follows and deforms.
  2.  請求項1に記載の多関節ロボットにおいて、
     前記第2モータは、前記第1軸線及び第2軸線と平行な第3軸線回りの回転力を発生し、
     前記回転力伝達部は、
     前記第2モータの回転力により前記第3軸線回りに回転する第1基部と、
     前記第3軸線と平行な第4軸線回りに回転可能に、前記第2アーム部に支持された第2基部と、
     前記第1基部と前記第2基部とを連結し、前記第1アーム部に対する前記第2アーム部の回転による前記第1基部と前記第2基部との距離の変化に追従して伸縮する伸縮部と、を含む、ことを特徴とする多関節ロボット。
    The articulated robot according to claim 1,
    The second motor generates a rotational force about a third axis parallel to the first axis and the second axis,
    The rotational force transmission section is
    a first base that rotates around the third axis due to the rotational force of the second motor;
    a second base supported by the second arm so as to be rotatable about a fourth axis parallel to the third axis;
    an extensible part that connects the first base and the second base and expands and contracts in accordance with a change in distance between the first base and the second base due to rotation of the second arm with respect to the first arm; An articulated robot comprising:
  3.  請求項2に記載の多関節ロボットにおいて、
     前記伸縮部は、リンク機構からなる、ことを特徴とする多関節ロボット。
    The articulated robot according to claim 2,
    The articulated robot is characterized in that the telescoping section includes a link mechanism.
  4.  請求項3に記載の多関節ロボットにおいて、
     前記リンク機構は、一方側の端部同士が前記第1軸線と所定角度を成す第5線軸回りに互いに回転可能に連結された第1リンク部材及び第2リンク部材を含み、
     前記第1リンク部材の他方側の端部は、前記第1基部に対して前記第5軸線と平行な軸線回りに回転可能に連結され、
     前記第2リンク部材の他方側の端部は、前記第2基部に対して前記第5軸線と平行な軸線回りに回転可能に連結されている、ことを特徴とする多関節ロボット。
    The articulated robot according to claim 3,
    The link mechanism includes a first link member and a second link member that are rotatably connected to each other around a fifth line axis whose ends on one side form a predetermined angle with the first axis,
    The other end of the first link member is rotatably connected to the first base about an axis parallel to the fifth axis,
    The articulated robot is characterized in that the other end of the second link member is rotatably connected to the second base about an axis parallel to the fifth axis.
  5.  請求項4に記載の多関節ロボットにおいて、
     前記所定角度は、90°であることを特徴とする、多関節ロボット。
    The articulated robot according to claim 4,
    The articulated robot, wherein the predetermined angle is 90°.
  6.  請求項3に記載の多関節ロボットにおいて、
     前記リンク機構は、一端部が前記第1基部に対して前記第3軸線に直交する軸線回りに回動可能に連結され、かつ他端部が前記第2基部に対して前記第4軸線と直交する軸線回りに回転可能に連結された、マジックハンド型のリンク機構である、ことを特徴とする多関節ロボット。
    The articulated robot according to claim 3,
    The link mechanism has one end connected to the first base so as to be rotatable around an axis perpendicular to the third axis, and the other end connected to the second base so as to be rotatable around an axis perpendicular to the fourth axis. An articulated robot characterized by a magic hand type link mechanism that is rotatably connected around an axis.
  7.  請求項3乃至6の何れか一項に記載の多関節ロボットにおいて、
     前記リンク機構を構成する複数のリンク部材の一つは、リンク長手方向に互いに分割された第1部分及び第2部分と、リンク長手方向に延びる軸回りに前記第1部分と前記第2部分とを相対回転可能に連結する連結部と、を備える、ことを特徴とする多関節ロボット。
    The articulated robot according to any one of claims 3 to 6,
    One of the plurality of link members constituting the link mechanism includes a first portion and a second portion that are separated from each other in the longitudinal direction of the link, and the first portion and the second portion that are separated from each other in the longitudinal direction of the link. An articulated robot comprising: a connecting portion that connects the two in a relatively rotatable manner.
  8.  請求項1乃至6の何れか一項に記載の多関節ロボットにおいて、
     前記ベース部から前記第2アーム部に至るように配索されるケーブルを含み、
     前記ケーブルは、少なくとも一部が前記回転力伝達部の内部を通じて配索されている、ことを特徴とする多関節ロボット。
    The articulated robot according to any one of claims 1 to 6,
    including a cable routed from the base part to the second arm part,
    The articulated robot is characterized in that at least a portion of the cable is routed through the inside of the rotational force transmission section.
  9.  請求項2に記載の多関節ロボットにおいて、
     前記伸縮部は、前記第1基部及び前記第2基部のうち一方側に支持される軸部材と、他方側に支持されて、当該軸部材をその軸方向へスライド可能に保持するガイド部材とを備える、ことを特徴とする多関節ロボット。
    The articulated robot according to claim 2,
    The extensible portion includes a shaft member supported on one side of the first base and the second base, and a guide member supported on the other side to slidably hold the shaft member in the axial direction. An articulated robot characterized by:
  10.  請求項9に記載の多関節ロボットにおいて、
     前記軸部材は、前記第1基部及び前記第2基部のうち前記一方側に対して、前記第1軸線と所定角度を成す第6軸線回りに回転可能に支持され、
     前記ホルダ部材は、前記第1基部及び前記第2基部のうち前記他方側に対して前記第6軸と平行な軸線回りに回転可能に支持されている、ことを特徴とする多関節ロボット。
    The articulated robot according to claim 9,
    The shaft member is supported to be rotatable about a sixth axis forming a predetermined angle with the first axis with respect to the one side of the first base and the second base,
    The articulated robot is characterized in that the holder member is rotatably supported on the other side of the first base and the second base about an axis parallel to the sixth axis.
  11.  請求項10に記載の多関節ロボットにおいて、
     前記所定角度は、90°である、ことを特徴とする多関節ロボット。
    The articulated robot according to claim 10,
    The articulated robot, wherein the predetermined angle is 90°.
  12.  請求項9に記載の多関節ロボットにおいて、
     前記第2軸線及び前記第3軸線に直交する平面に対して前記伸縮部が平行に設けられている、ことを特徴とする多関節ロボット。
    The articulated robot according to claim 9,
    The articulated robot is characterized in that the telescopic portion is provided parallel to a plane orthogonal to the second axis and the third axis.
  13.  請求項9乃至12に記載の多関節ロボットにおいて、
     前記軸部材及び前記ガイド部材の一方側は、当該一方側を支持する前記第1基部又は前記第2基部に対して軸回りに回転可能に回転可能に設けられている、ことを特徴とする多関節ロボット。
    The articulated robot according to claims 9 to 12,
    One side of the shaft member and the guide member is rotatably provided around an axis with respect to the first base or the second base that supports the one side. jointed robot.
  14.  請求項9乃至12の何れか一項に記載の多関節ロボットにおいて、
     前記軸部材は、前記ガイド部材に対して相対回転可能に設けられている、ことを特徴とする多関節ロボット。
    The articulated robot according to any one of claims 9 to 12,
    The articulated robot is characterized in that the shaft member is provided so as to be rotatable relative to the guide member.
  15.  請求項9乃至14の何れか一項に記載の多関節ロボットにおいて、
     前記ガイド部材は、前記軸部材の同心上に互いにスライド可能に配置されたテレスコピック構造の複数の単位ガイド部材からなる、ことを特徴とする多関節ボット。
    The articulated robot according to any one of claims 9 to 14,
    The articulated bot is characterized in that the guide member is comprised of a plurality of unit guide members of a telescopic structure that are arranged concentrically with respect to the shaft member so as to be slidable relative to each other.
  16.  請求項15に記載の多関節ロボットにおいて、
     前記複数の単位ガイド部材のうち、最も外側の単位ガイド部材を外側ガイド部材と定義するとともに、当該外側の単位ガイド部材の内側に配置される単位ガイド部材を内側ガイド部材と定義したときに、
     前記外側ガイド部材は、前記他方側の基部に連結されており、
     前記伸縮部は、前記内側ガイド部材の軸線方向の両側に各々配置される付勢部材であって、前記内側ガイド部材を、前記他方側の基部に対して前記一方側の基部に向かって付勢する第1付勢部材と、前記一方側の基部に対して前記他方側の基部に向かって付勢する第2付勢部材とを含む、ことを特徴とする多関節ロボット。
    The articulated robot according to claim 15,
    When the outermost unit guide member among the plurality of unit guide members is defined as an outer guide member, and the unit guide member disposed inside the outer unit guide member is defined as an inner guide member,
    The outer guide member is connected to the base on the other side,
    The extensible portion is a biasing member disposed on both sides of the inner guide member in the axial direction, and biases the inner guide member toward the base on the one side relative to the base on the other side. An articulated robot comprising: a first biasing member that biases the base on the one side toward the base on the other side.
  17.  第1アーム部と、第1アーム部に対して第1軸線回りに回転可能に連結された第2アーム部と、を含むアームを備えた多関節ロボットであって、
     前記第1アーム部における前記第1軸線から当該第1アーム部の基端側に離間する位置に配置されて、前記第2アーム部を回転させる回転力を発生するモータと、
     前記第1アーム部と前記第2アーム部とを連結して前記モータが発生する回転力を前記第2アーム部に伝達する回転力伝達部と、を備え、
     前記モータは、前記第1軸線と平行な第2軸線回りの回転力を発生し、
     前記回転力伝達部は、
     前記モータの回転力により前記第2軸線回りに回転する第1基部と、
     前記第2軸線と平行な第3軸線回りに回転可能に、前記第2アーム部に支持された第2基部と、
     前記第1基部と前記第2基部とを連結し、前記第1アーム部に対する前記第2アーム部の回転による前記第1基部と前記第2基部との距離の変化に追従して伸縮する伸縮部と、を含む、ことを特徴とする多関節ロボット。
    An articulated robot comprising an arm including a first arm part and a second arm part rotatably connected to the first arm part about a first axis,
    a motor that is disposed at a position spaced apart from the first axis of the first arm toward the proximal end of the first arm and generates a rotational force that rotates the second arm;
    a rotational force transmission section that connects the first arm section and the second arm section and transmits the rotational force generated by the motor to the second arm section;
    The motor generates a rotational force about a second axis parallel to the first axis,
    The rotational force transmission section is
    a first base that rotates around the second axis due to the rotational force of the motor;
    a second base supported by the second arm so as to be rotatable about a third axis parallel to the second axis;
    an extensible part that connects the first base and the second base and expands and contracts in accordance with a change in distance between the first base and the second base due to rotation of the second arm with respect to the first arm; An articulated robot comprising:
PCT/JP2022/029151 2022-07-28 2022-07-28 Articulated robot WO2024024044A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/029151 WO2024024044A1 (en) 2022-07-28 2022-07-28 Articulated robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/029151 WO2024024044A1 (en) 2022-07-28 2022-07-28 Articulated robot

Publications (1)

Publication Number Publication Date
WO2024024044A1 true WO2024024044A1 (en) 2024-02-01

Family

ID=89705811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029151 WO2024024044A1 (en) 2022-07-28 2022-07-28 Articulated robot

Country Status (1)

Country Link
WO (1) WO2024024044A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3703968A (en) * 1971-09-20 1972-11-28 Us Navy Linear linkage manipulator arm
JPH11156769A (en) * 1997-11-28 1999-06-15 Tescon Co Ltd Double-arm type scalar robot
JP2005012139A (en) * 2003-06-23 2005-01-13 Jel:Kk Substrate carrier
JP2006082178A (en) * 2004-09-16 2006-03-30 Nihon Bisoh Co Ltd Outside wall surface working device for building
JP2016537215A (en) * 2013-11-11 2016-12-01 フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. Articulated arm robot type device
JP2018182157A (en) * 2017-04-18 2018-11-15 トヨタ自動車株式会社 Processing device of wafer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3703968A (en) * 1971-09-20 1972-11-28 Us Navy Linear linkage manipulator arm
JPH11156769A (en) * 1997-11-28 1999-06-15 Tescon Co Ltd Double-arm type scalar robot
JP2005012139A (en) * 2003-06-23 2005-01-13 Jel:Kk Substrate carrier
JP2006082178A (en) * 2004-09-16 2006-03-30 Nihon Bisoh Co Ltd Outside wall surface working device for building
JP2016537215A (en) * 2013-11-11 2016-12-01 フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. Articulated arm robot type device
JP2018182157A (en) * 2017-04-18 2018-11-15 トヨタ自動車株式会社 Processing device of wafer

Similar Documents

Publication Publication Date Title
US8047093B2 (en) Parallel robot
JP7077300B2 (en) Surgical robot arm
US8109173B2 (en) Parallel robot provided with wrist section having three degrees of freedom
US5673595A (en) Four degree-of-freedom manipulator
US20130142608A1 (en) Parallel mechanism
JP4628602B2 (en) Robot arm
JP6914568B2 (en) Industrial robot arm
EP2999572B1 (en) Compact parallel kinematics robot
US20120060637A1 (en) Parallel robot provided with wrist section having three degrees of freedom
KR101462250B1 (en) Robotic manipulator using rotary drives
JP4964190B2 (en) Parallel mechanism
WO2006101893A2 (en) Parallel robot
JP6630727B2 (en) Horizontal articulated robot
JP6494647B2 (en) Articulated arm robot type device
JP5205504B2 (en) Parallel mechanism
CN111989191A (en) Parallel motion robot
WO2024024044A1 (en) Articulated robot
US20210197407A1 (en) Robot joint device
JP2020015152A (en) Robot arm
JP2020179470A (en) Joint mechanism and robot arm mechanism
JP4995295B2 (en) Robot arm
JPWO2017098981A1 (en) Robot arm mechanism
JP5798005B2 (en) Link actuator
JP6309889B2 (en) Electric gripper device
JPH06134682A (en) Scalar robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953133

Country of ref document: EP

Kind code of ref document: A1