WO2024023960A1 - Internal combustion engine control device - Google Patents

Internal combustion engine control device Download PDF

Info

Publication number
WO2024023960A1
WO2024023960A1 PCT/JP2022/028888 JP2022028888W WO2024023960A1 WO 2024023960 A1 WO2024023960 A1 WO 2024023960A1 JP 2022028888 W JP2022028888 W JP 2022028888W WO 2024023960 A1 WO2024023960 A1 WO 2024023960A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
internal combustion
combustion engine
acceleration
pressure
Prior art date
Application number
PCT/JP2022/028888
Other languages
French (fr)
Japanese (ja)
Inventor
哲志 市橋
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to PCT/JP2022/028888 priority Critical patent/WO2024023960A1/en
Publication of WO2024023960A1 publication Critical patent/WO2024023960A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00

Definitions

  • the present invention relates to an internal combustion engine control device that controls an internal combustion engine based on the angular velocity of a crankshaft and the angular acceleration obtained based on the angular velocity.
  • the operating state of the internal combustion engine is controlled based on the difference, sum, or ratio of the two angular velocities obtained based on the signal from the crank angle sensor. Then, for example, the fuel injection amount in the internal combustion engine is controlled according to the stroke generation torque difference based on the compression resistance torque and the expansion generation torque obtained from these angular velocities. This eliminates the need for a throttle opening sensor or the like, which increases the cost of the internal combustion engine.
  • an object of the present invention is to provide an internal combustion engine control device that can perform fuel cut control without any trouble based on a signal from a crank angle sensor.
  • the internal combustion engine control device of the present invention includes: an angular velocity calculation unit that calculates the angular velocity of the crankshaft in each stroke of intake, compression, combustion expansion, and exhaust of the internal combustion engine; an angular acceleration calculation unit that calculates angular acceleration based on the two angular velocities arranged in time series, An internal combustion engine control device that controls the internal combustion engine based on the angular velocity and the angular acceleration, Determining the acceleration/deceleration state of the internal combustion engine according to the angular acceleration in the intake stroke immediately before a predetermined bottom dead center (BDC) of the internal combustion engine and the angular acceleration in the compression stroke immediately after the bottom dead center.
  • BDC bottom dead center
  • the present invention is characterized by having an acceleration/deceleration determining section.
  • the acceleration/deceleration state of the internal combustion engine determined by the acceleration/deceleration determination section includes, for example, when the throttle valve of the internal combustion engine is opened, the intake resistance of the intake passage of the internal combustion engine decreases, so the angular acceleration of the intake stroke This corresponds to a situation in which the angular acceleration of the compression stroke changes in the decreasing direction because the compression resistance increases due to the increase in intake air amount, while the angular acceleration in the compression stroke changes in the decreasing direction.
  • the acceleration/deceleration state determined by the acceleration/deceleration determining section satisfactorily represents the opening/closing state of the throttle valve, that is, the control required of the internal combustion engine, regardless of the combustion state of the internal combustion engine. Therefore, according to the present invention, the internal combustion engine can be favorably controlled based on the acceleration/deceleration state determined by the acceleration/deceleration determining section.
  • the acceleration/deceleration determining section may determine that the acceleration state or the deceleration state is present when the difference between the angular acceleration in the intake stroke and the angular acceleration in the compression stroke changes.
  • the acceleration/deceleration state is determined based on the difference in angular acceleration between the above strokes, that is, the jerk, so that the throttle opening, which has traditionally been a problem with torque control according to angular acceleration, is It is possible to solve problems caused by the presence of a torque value dead zone when the combustion chamber is close to closing or when the combustion chamber is in a smoldering state (misfire state). This makes it possible to eliminate the throttle sensor and intake pressure sensor that were conventionally installed for fuel cut control, contributing to cost reduction.
  • the intake pressure torque is calculated according to the angular acceleration in the intake stroke immediately before a predetermined bottom dead center (BDC) of the internal combustion engine, and It has a torque calculation unit that calculates pressure-swelling torque according to angular acceleration, and the acceleration/deceleration determining unit is configured to:
  • BDC bottom dead center
  • the suction pressure torque is the difference between the maximum and minimum values of the composite torque (gas pressure torque + inertia torque) in the section from the intake stroke to the compression stroke immediately after it
  • the pressure-expansion torque is the difference between the maximum and minimum values of the composite torque (gas pressure torque + inertia torque)
  • the pressure-expansion torque is the difference between the maximum and minimum values of the composite torque (gas pressure torque + inertia torque)
  • the pressure torque + inertia torque is the difference between the maximum value and the minimum value of the composite torque (gas pressure torque + inertia torque) in the section from the compression stroke to the immediately following expansion stroke.
  • the torque calculation section calculates the suction-pressure torque and the pressure-expansion torque to determine the acceleration/deceleration state according to the angular acceleration in the above-mentioned intake stroke and the angular acceleration in the compression stroke immediately thereafter. This can be done by
  • a map for setting a map search torque value (DCBCP) based on the acceleration/deceleration determination result by the acceleration/deceleration determination section and the suction pressure torque or the pressure/expansion torque calculated by the torque calculation section.
  • a search torque setting section The engine may include a control amount setting section that sets a control amount of the internal combustion engine according to the map search torque value (DCBCP) and the angular velocity of the crankshaft (rotational speed NE of the internal combustion engine).
  • the map search torque value is applied to a torque map that associates the map search torque, the angular velocity of the crankshaft or the rotational speed of the internal combustion engine, and a predetermined control amount of the internal combustion engine, such as the amount of fuel injection.
  • This is a value used to determine the control amount according to the angular velocity of the shaft or the rotational speed of the internal combustion engine. Therefore, the control amount setting section can use this torque map to obtain and set the control amount.
  • the map search torque setting unit adjusts the suction calculated by the torque calculation unit accordingly. - Increase or decrease the pressure torque or pressure-swelling torque and set it as a map search torque value (DCBCP). Based on this map search torque value, the control amount setting section sets the control amount.
  • DCBCP map search torque value
  • the torque value (DCBCP) based on angular acceleration becomes immobile and stagnates, and does not respond to throttle operation.
  • the torque value (DCBCP) is dynamically determined by the map search torque setting unit based on the acceleration/deceleration determination result based on the jerk from the intake stroke to the compression stroke, which is not easily affected by the combustion state of the internal combustion engine. Since the torque value is corrected, it is possible to eliminate the problem of stagnation of the torque value (dead zone of the torque map).
  • a misfire in which the suction pressure torque value and the pressure-swelling torque value corresponding to a state where fuel supply or ignition is stopped based on the control amount to the internal combustion engine are prepared in advance as a misfire torque value.
  • a torque memory section a moving average unit that performs moving average processing on the suction pressure torque value and the pressure-expansion torque value in time series in a state where fuel supply to the internal combustion engine or ignition is stopped;
  • the engine may further include a misfire torque learning section that updates the misfire torque value based on the output value from the moving average section.
  • the suction pressure torque value and the pressure-expansion torque value corresponding to the state in which fuel supply or ignition is stopped are stored as misfire torque values in the misfire torque storage section, so that the misfire torque values can be used as misfire torque values. Based on this, it is possible to determine whether to start or stop a fuel cut.
  • this misfire torque value is calculated based on a moving average value obtained by processing the suction torque value and the pressure-expansion torque value in time series in a state where fuel supply or ignition is stopped by a moving average unit. Since it is updated by the learning section, it is possible to more accurately determine whether to start or stop fuel cut.
  • a first threshold setting unit that sets a first determination threshold from the misfire torque;
  • the engine may include a cutoff determination unit capable of stopping fuel supply or ignition to the internal combustion engine.
  • the cutoff determination unit can easily transition from a state in which fuel supply and ignition are executed to a state in which fuel supply or ignition is stopped based on the first determination threshold. can.
  • a threshold value setting unit that sets a second determination threshold value from the misfire torque; a restart capable of restarting the fuel supply or ignition when the suction pressure torque or the pressure-expansion torque moves away from the set second determination threshold while the fuel supply and ignition are stopped;
  • the determination unit may also include a determination unit.
  • the restart determination unit can easily transition from a state in which fuel supply and ignition are stopped to a state in which fuel supply or ignition is performed based on the second determination threshold value.
  • FIG. 1 is a block diagram showing the configuration of an internal combustion engine control device according to an embodiment of the present invention.
  • 2 is a graph showing an example of determining whether the internal combustion engine control device of FIG. 1 is in an acceleration state or a deceleration state.
  • 2 is a graph illustrating the suction pressure torque SCCPTQ and the pressure-expansion torque CPCBTQ in the internal combustion engine control device of FIG. 1.
  • FIG. 2 is a flowchart showing a firing determination routine that performs fuel-related control in the internal combustion engine control device of FIG. 1.
  • FIG. 1 shows an internal combustion engine control device according to an embodiment of the present invention.
  • this internal combustion engine control device 1 is configured by an ECU 2 (electronic control unit), and is an angular velocity calculator that calculates the angular velocity of the crankshaft in each stroke of intake, compression, combustion expansion, and exhaust of the internal combustion engine. section 3, and an angular acceleration calculation section 4 that calculates angular acceleration based on each angular velocity of two strokes arranged in time series.
  • ECU 2 electronic control unit
  • the internal combustion engine control device 1 controls the internal combustion engine. Then, the internal combustion engine control device 1 controls the internal combustion engine according to the angular acceleration ATCSC during the intake stroke immediately before a predetermined bottom dead center (BDC) of the internal combustion engine, and the angular acceleration ATCCP during the compression stroke immediately after the predetermined bottom dead center (BDC) of the internal combustion engine. , an acceleration/deceleration determining section 6 that determines the acceleration/deceleration state of the internal combustion engine.
  • the acceleration/deceleration determining unit 6 determines that the state is an acceleration state or a deceleration state when the difference between the angular acceleration ATCSC in the intake stroke and the angular acceleration ATCCP in the compression stroke changes.
  • FIG. 2 shows an example of this determination. As shown in FIG. 2, when the engine speed NE decreases and the fuel cut state is entered at timing ta, the generated torque DCBCP of the internal combustion engine becomes zero as indicated by arrow Y1.
  • the jerk of the intake pressure ATCSCMCP becomes as the throttle opening TH increases as shown by the arrow Y2. It increases as shown by arrow Y3.
  • the internal combustion engine control device 1 calculates the intake pressure torque SCCPTQ according to the angular acceleration ATCSC in the intake stroke immediately before a predetermined bottom dead center (BDC) of the internal combustion engine, and ) is provided with a torque calculation unit 7 that calculates a compression-expansion torque CPCBTQ according to the angular acceleration ATCCP in the compression stroke immediately after the compression stroke.
  • the acceleration/deceleration determination section 6 determines the acceleration/deceleration state of the internal combustion engine according to the suction pressure torque SCCPTQ and the pressure/expansion torque CPCBTQ calculated by the torque calculation section 7.
  • the suction pressure torque SCCPTQ is the difference between the maximum value and the minimum value of the composite torque (gas pressure torque + inertia torque) in the stroke section from the intake stroke to the next compression stroke.
  • the pressure-expansion torque CPCBTQ is the difference between the maximum value and the minimum value of the composite torque in the stroke section from the compression stroke to the expansion stroke.
  • FIG. 3 illustrates this suction pressure torque SCCPTQ and pressure expansion torque CPCBTQ.
  • FIG. 3 shows changes in each torque (Nm) acting on the crankshaft with respect to the crank angle (deg.) of the internal combustion engine in a normal traveling state of a vehicle equipped with the internal combustion engine. That is, curve A shows changes in gas pressure torque, curve B shows changes in inertia torque, and curve C shows changes in composite torque.
  • the internal combustion engine control device 1 sets a map search torque value DCBCP based on the result of acceleration/deceleration determination by the acceleration/deceleration determination section 6 and the suction pressure torque SCCPTQ or pressure-expansion torque CPCBTQ calculated by the torque calculation section 7.
  • a map search torque setting unit 8 that sets a control amount of the internal combustion engine based on a torque map in accordance with the map search torque value DCBCP and the angular velocity of the crankshaft (rotational speed value NE of the internal combustion engine); 9.
  • the torque map used by the control amount setting unit 9 when setting the control amount stores the map search torque value DCBCP, the rotational speed value NE, and each control amount in association with each other.
  • the controlled variable includes fuel injection amount, ignition timing, and the like.
  • the internal combustion engine control device 1 determines that the initial values of the suction pressure torque SCCPTQ and the pressure-expansion torque CPCBTQ, which correspond to a state in which the supply of fuel or ignition to the internal combustion engine is stopped based on the control amount, are the suction pressure
  • the misfire torque storage unit 10 is prepared in advance as a misfire torque value and pressure-swelling misfire torque value, and the suction-pressure torque SCCPTQ and pressure-swelling torque in a time series in a state where fuel supply to the internal combustion engine or ignition is stopped.
  • the moving average section 11 processes the moving average of each torque CPCBTQ, and the suction pressure misfire torque value and
  • the misfire torque learning unit 12 updates the pressure-expansion misfire torque value.
  • the misfire torque storage unit 10 may be configured using a nonvolatile memory.
  • EEPROM etc. correspond to non-volatile memory.
  • the internal combustion engine control device 1 also includes a first threshold setting unit 13 that sets first determination thresholds a1 and b1 from the misfire torque value in the misfire torque storage unit 10, and a first threshold setting unit 13 that sets the first determination thresholds a1 and b1 from the misfire torque value in the misfire torque storage unit 10, and supplies fuel to the internal combustion engine and ignites based on the control amount.
  • a first threshold setting unit 13 that sets first determination thresholds a1 and b1 from the misfire torque value in the misfire torque storage unit 10
  • the pressure-expansion torque CPCBTQ and the suction pressure torque SCCPTQ calculated by the torque calculation unit 7 approach the first threshold values a1 and b1 set above in the state in which the A cutoff determination section 14 capable of stopping supply or ignition is provided.
  • the internal combustion engine control device 1 also includes a second threshold setting unit 15 that sets the second determination thresholds a2 and b2 from the misfire torque value in the misfire torque storage unit 10, and a second threshold setting unit 15 that sets the second determination thresholds a2 and b2 in a state where fuel supply and ignition are stopped.
  • the resumption determination unit 16 is capable of restarting fuel supply or ignition when the pressure-expansion torque CPCBTQ or the suction pressure torque SCCPTQ moves away from the second threshold values a2 and b2, respectively.
  • the first threshold value setting unit 13 and the second threshold value setting unit 15 adopt different values as the threshold values for determining whether to stop or restart ignition so that hysteresis occurs when approaching the threshold value and when moving away from the threshold value. do. Therefore, different first threshold values a1 and second threshold values a2 are set for the pressure-expansion torque CPCBTQ, and different first threshold values b1 and second threshold values b2 are set for the suction-pressure torque SCCPTQ.
  • the first thresholds a1 and b1 are larger than the second thresholds a2 and b2, respectively (first threshold a1>second threshold a2, first threshold b1>second threshold b2).
  • FIG. 4 shows a firing determination routine that performs fuel-related control in the internal combustion engine control device 1. Processing by this routine is executed at every predetermined control cycle.
  • the torque calculation unit 7 calculates the compression-expansion torque CPCBTQ and the suction-pressure torque SCCPTQ (steps S1 and S2).
  • the pressure-expansion torque CPCBTQ and the suction pressure torque SCCPT are calculated according to the angular acceleration ATCCP in the most recent compression stroke and each acceleration ATCSC in the intake stroke calculated by the angular acceleration calculation unit 4.
  • step S3 it is determined whether the rotational speed NE of the internal combustion engine is within a predetermined implementation NE range, which is a range in which fuel cut should be implemented (step S3), and if the value is not within the range, step The process proceeds to S4, and if the value is within the range, the process proceeds to step S5.
  • step S5 it is determined whether the pressure-expansion torque CPCBTQ is near the threshold a. If not, the process proceeds to step S4; if it is, the process proceeds to step S6. Note that the value of the threshold a is different depending on whether the pressure-expansion torque CPCBTQ changes from one side of the threshold a to the other side or from the other side to the one side. A determination threshold a1 and a second determination threshold a2 smaller than this are used (first threshold a1>second threshold a2).
  • step S6 it is determined whether or not the suction pressure torque SCCPTQ is close to the threshold value b. If it is not close, the process proceeds to step S4, and if it is close, the process proceeds to step S7.
  • the threshold value b as in the case of the threshold value a, the above-mentioned first determination threshold value b1 and the smaller second determination threshold value b2 are used, which differ depending on the direction of change in the suction pressure torque SCCPTQ ( (first threshold b1>second threshold b2).
  • step S4 the process advances to step S8 to cancel the fuel cut. Note that when the fuel cut is canceled, the ignition of the ignition coil 17 is also restarted immediately.
  • step S7 it is determined whether or not the fuel is being cut. If the fuel is not being cut, the process proceeds to step S9, and if the fuel is being cut, the process proceeds to step S10.
  • step S9 it is determined whether the amount of decrease in the pressure-expansion torque CPCBTQ per unit time is greater than or equal to a predetermined value. In this determination, the presence or absence of a closing operation of the throttle valve is detected. That is, if it is determined that the amount of decrease is not equal to or greater than the predetermined value (there is no closing operation), the process advances to step S8. If it is determined that the amount of decrease is equal to or greater than the predetermined value (the closing operation has been performed), the process proceeds to step S11, where fuel cut is started and this routine is ended.
  • the fuel cut is started by setting the control amount setting unit 9 so that fuel injection and ignition are not performed, and in accordance with this setting, the operation of the fuel injection valve 18 and the ignition coil 17 of the internal combustion engine is stopped. .
  • the map search torque setting section 8 calculates and sets the map search torque DCBCP based on the pressure-expansion torque CPCBTQ and the suction pressure torque SCCPTQ obtained in steps S1 and S2.
  • the control amount setting unit 9 sets the fuel injection amount from the torque map according to the map search torque DCBCP and the rotational speed NE of the internal combustion engine from the crank angle sensor 5, and the fuel injection amount is set by the fuel injection amount by the fuel injection valve 18. Fuel injection is performed (step S12), and this routine ends.
  • step S10 the fuel cut is continued and the pressure-swelling misfire torque in the misfire torque storage section 10 is updated using the pressure-swelling torque CPCBTQ obtained in step S1 (step S13). Then, based on this pressure-expansion misfire torque, the first threshold value setting section 13 and the second threshold value setting section 15 respectively set the first threshold value a1 and the second threshold value a2 (step S14).
  • the moving average section 11 calculates the time-series pressure-swelling torque CPCBTQ in the state where fuel cut is being performed. Moving average processing is performed, and the pressure-swelling misfire torque in the misfire torque storage section 10 is updated by the misfire torque learning section 12 based on the value.
  • the suction pressure misfire torque in the misfire torque storage unit 10 is updated using the suction pressure torque SCCPTQ obtained in step S2 (step S15), and based on this suction pressure misfire torque, the first threshold value setting unit 13 and the The second threshold setting unit 15 sets the first threshold b1 and the second threshold b2 (step S16), and this routine ends.
  • the moving average section 11 calculates the time series suction pressure torque SCCPTQ in the state where fuel cut is being performed. Moving average processing is performed, and the suction-pressure misfire torque in the misfire torque storage section 10 is updated by the misfire torque learning section 12 based on the value.
  • steps S3 to S6, S7, S9, and S11 are performed by the shutoff determination unit 14 and the restart determination unit 16.
  • the acceleration/deceleration state of the internal combustion engine determined by the acceleration/deceleration determination unit 6 is determined by the open/closed state of the throttle valve, that is, the request to the internal combustion engine, regardless of the combustion state of the internal combustion engine. Since the control amount to be controlled is expressed well, the internal combustion engine can be well controlled based on the acceleration/deceleration state.
  • the acceleration/deceleration determination unit 6 determines that the internal combustion engine is in an acceleration state or a deceleration state when the difference between the angular acceleration ATCSC in the intake stroke and the angular acceleration ATCCP in the compression stroke immediately thereafter changes, Since the control amount of the internal combustion engine is set, the dead zone of the torque value when the throttle opening is close to fully closed or when the combustion chamber is in a smoldering state (misfire state), which has traditionally been a problem with torque control according to angular acceleration, is eliminated. The problem caused by the existence of can be solved. This makes it possible to eliminate the throttle sensor and intake pressure sensor that were conventionally installed for fuel cut control, contributing to cost reduction.
  • the acceleration/deceleration determination unit 6 can determine the acceleration/deceleration state according to the angular acceleration in the intake stroke and the angular acceleration in the compression stroke immediately after. This can be done by using a suction torque and a pressure-expansion torque.
  • the map search torque setting unit 8 dynamically corrects the torque value DCBCP based on angular acceleration based on the acceleration/deceleration determination result based on jerk from the intake stroke to the compression stroke, which is not easily affected by the combustion state of the internal combustion engine. Therefore, when the throttle is fully closed or when the combustion chamber is smoldering (misfire condition), the torque value DCBCP becomes immobile and stagnates, resulting in the inconvenience of not responding to throttle operation (torque map dead zone). It can be resolved.
  • suction pressure torque SCCPTQ value and the pressure-expansion torque CPCBTQ value corresponding to the state in which the supply of fuel to the fuel injection valve 18 or the ignition of the ignition coil 17 is stopped are stored in the misfire torque storage unit 10 as misfire torque values. Since it is stored, it is possible to determine whether to start or stop fuel cut based on this misfire torque value.
  • this misfire torque value is based on a value obtained by processing a moving average of the suction pressure torque SCCPTQ value and the pressure-expansion torque CPCBTQ value in time series in a state where fuel supply or ignition is stopped by a moving average unit. Since it is updated by the misfire torque learning section 12, it is possible to more accurately determine whether to start or stop fuel cut.
  • the suction pressure torque SCCPTQ and the pressure expansion torque CPCBTQ approach the first determination threshold values a1 and b1 while fuel supply and ignition are being executed, it is possible to stop the fuel supply or ignition. Since the shutoff determination unit 14 is provided, the transition from the execution state of fuel supply and ignition to the stop state can be easily carried out based on the first determination threshold values a1 and b1.
  • the suction pressure torque SCCPTQ or the pressure-expansion torque CPCBTQ moves away from the second determination threshold values a2 and b2 in a state where the fuel supply and ignition are stopped, fuel supply or ignition can be restarted. Since the determination unit 16 is provided, it is possible to easily transition the fuel supply and ignition from the stopped state to the execution state based on the second determination thresholds a2 and b2.
  • the present invention is not limited thereto.
  • the angular velocity calculation unit 3 instead of calculating each speed in each stroke by the angular velocity calculation unit 3 based on the crank angle (180°) that progresses throughout each stroke and the required time, , based on the required time.
  • SYMBOLS 1 Internal combustion engine control device, 2... ECU, 3... Angular velocity calculation section, 4... Angular acceleration calculation section, 5... Crank angle sensor, 6... Acceleration/deceleration determination section, 7... Torque calculation section, 8... Map search torque setting section , 9... Controlled amount setting section, 10... Misfire torque storage section, 11... Moving average section, 12... Misfire torque learning section, 13... First threshold value setting section, 14... Shutdown determination section, 15... Second threshold value setting section, 16...Restart determination unit, 17...Ignition coil, 18...Fuel injection valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Provided is an internal combustion engine control device that can perform fuel cut control without any trouble on the basis of a signal from a crank angle sensor. An internal combustion engine control device (1) comprises an angular speed calculation unit (3) that calculates the angular speed of a crank shaft in each stroke of an internal combustion engine, and an angular acceleration calculation unit (4) that calculates an angular acceleration on the basis of two of the angular speeds that are successive chronologically, the internal combustion engine control device (1) controlling the internal combustion engine on the basis of the angular speeds and the angular acceleration. The internal combustion engine control device (1) comprises an acceleration/deceleration determination unit (6) that determines an acceleration/deceleration state of the internal combustion engine in accordance with an angular acceleration in the intake stroke immediately before a predetermined bottom dead center of the internal combustion engine, and an angular acceleration in the compression stroke immediately after the bottom dead center.

Description

内燃機関制御装置Internal combustion engine control device
 本発明は、内燃機関をクランク軸の角速度及びこれに基づいて得られる角加速度に基づいて制御する内燃機関制御装置に関する。 The present invention relates to an internal combustion engine control device that controls an internal combustion engine based on the angular velocity of a crankshaft and the angular acceleration obtained based on the angular velocity.
 従来、吸気、圧縮、燃焼膨張、排気の各行程を有する内燃機関を制御する内燃機関制御装置として、連続する2つの行程のそれぞれに対応したクランク軸の2つの角速度に基づいて内燃機関を制御するものが知られている(例えば、特許文献1参照)。 Conventionally, as an internal combustion engine control device that controls an internal combustion engine that has each stroke of intake, compression, combustion expansion, and exhaust, the internal combustion engine is controlled based on two angular velocities of the crankshaft corresponding to each of two consecutive strokes. Some are known (for example, see Patent Document 1).
 特許文献1の内燃機関制御装置では、例えば、クランク角センサからの信号に基づいて得られる上記2つの角速度の差、和又は比率に基づき、内燃機関の運転状態が制御される。そして、例えば、これらの角速度から得られる圧縮抵抗トルク及び膨張発生トルクに基づく行程発生トルク差に応じて内燃機関における燃料噴射量が制御される。これにより、内燃機関のコスト増大を招来するスロットル開度センサ等を不要としている。 In the internal combustion engine control device of Patent Document 1, for example, the operating state of the internal combustion engine is controlled based on the difference, sum, or ratio of the two angular velocities obtained based on the signal from the crank angle sensor. Then, for example, the fuel injection amount in the internal combustion engine is controlled according to the stroke generation torque difference based on the compression resistance torque and the expansion generation torque obtained from these angular velocities. This eliminates the need for a throttle opening sensor or the like, which increases the cost of the internal combustion engine.
特開2017-180370号公報Japanese Patent Application Publication No. 2017-180370
 しかしながら、上記特許文献1の内燃機関制御装置における行程発生トルク差に基づく燃料噴射量の制御によれば、直前の行程発生トルク差に応じた燃料噴射を行うため、失火が発生すると、本来の行程発生トルク差が得られず、必要な燃料供給ができなくなり、連鎖的にエンストに至るという問題がある。また、スロットル開度センサがなく、ライダの操作によるスロットル開度がわからないので、燃料カット等の無駄な燃料を削減する制御を行うことができない。 However, according to the control of the fuel injection amount based on the stroke generated torque difference in the internal combustion engine control device of Patent Document 1, fuel injection is performed according to the immediately previous stroke generated torque difference, so if a misfire occurs, the original stroke There is a problem in that the generated torque difference cannot be obtained, and the necessary fuel supply cannot be achieved, leading to a chain reaction that leads to engine stall. Furthermore, since there is no throttle opening sensor and the throttle opening determined by the rider's operation is not known, it is not possible to perform control to reduce wasteful fuel, such as fuel cut.
 本発明の目的は、かかる従来技術の課題に鑑み、クランク角センサからの信号に基づいて燃料カット制御を支障なく行うことができる内燃機関制御装置を提供することにある。 In view of the problems of the prior art, an object of the present invention is to provide an internal combustion engine control device that can perform fuel cut control without any trouble based on a signal from a crank angle sensor.
 本発明の内燃機関制御装置は、
 内燃機関の吸気、圧縮、燃焼膨張、排気の各行程でのクランク軸の角速度を算出する角速度算出部と、
 時系列で並ぶ2つの前記角速度に基づき角加速度を算出する角加速度算出部とを備え、
 前記角速度及び前記角加速度に基づき前記内燃機関を制御する内燃機関制御装置であって、
 前記内燃機関の所定の下死点(BDC)の直前の吸気行程での前記角加速度と、同下死点の直後の圧縮行程での角加速度とに応じて、内燃機関の加減速状態を判別する加減速判別部を有することを特徴とする。
The internal combustion engine control device of the present invention includes:
an angular velocity calculation unit that calculates the angular velocity of the crankshaft in each stroke of intake, compression, combustion expansion, and exhaust of the internal combustion engine;
an angular acceleration calculation unit that calculates angular acceleration based on the two angular velocities arranged in time series,
An internal combustion engine control device that controls the internal combustion engine based on the angular velocity and the angular acceleration,
Determining the acceleration/deceleration state of the internal combustion engine according to the angular acceleration in the intake stroke immediately before a predetermined bottom dead center (BDC) of the internal combustion engine and the angular acceleration in the compression stroke immediately after the bottom dead center. The present invention is characterized by having an acceleration/deceleration determining section.
 本発明において、加減速判別部によって判別される内燃機関の加減速状態としては、例えば、内燃機関のスロットル弁が開かれると、内燃機関の吸気通路の吸気抵抗が減少するので吸気行程の角加速度が増加方向に変化する一方、吸気量の増加により圧縮抵抗が増加するので圧縮行程の角加速度は減少方向に変化するような状態が該当する。 In the present invention, the acceleration/deceleration state of the internal combustion engine determined by the acceleration/deceleration determination section includes, for example, when the throttle valve of the internal combustion engine is opened, the intake resistance of the intake passage of the internal combustion engine decreases, so the angular acceleration of the intake stroke This corresponds to a situation in which the angular acceleration of the compression stroke changes in the decreasing direction because the compression resistance increases due to the increase in intake air amount, while the angular acceleration in the compression stroke changes in the decreasing direction.
 このような原理により、加減速判別部が判別する加減速状態は、内燃機関の燃焼状態にかかわらず、スロットル弁の開閉状態、すなわち内燃機関に要求される制御を良好に現わしている。したがって、本発明によれば、加減速判別部が判別する加減速状態に基づいて、内燃機関を良好に制御することができる。 Based on such a principle, the acceleration/deceleration state determined by the acceleration/deceleration determining section satisfactorily represents the opening/closing state of the throttle valve, that is, the control required of the internal combustion engine, regardless of the combustion state of the internal combustion engine. Therefore, according to the present invention, the internal combustion engine can be favorably controlled based on the acceleration/deceleration state determined by the acceleration/deceleration determining section.
 本発明において、前記加減速判別部は、前記吸気行程での角加速度と前記圧縮行程での角加速度との差が変動する場合に加速状態又は減速状態であるものと判別してもよい。 In the present invention, the acceleration/deceleration determining section may determine that the acceleration state or the deceleration state is present when the difference between the angular acceleration in the intake stroke and the angular acceleration in the compression stroke changes.
 これによれば、上記行程間での角加速度の差、すなわち加加速度に基づいて加減速状態が判別されるので、従来、角加速度に応じたトルク制御で問題となっていたスロットル開度が全閉近傍にあるときや燃焼室のくすぶり状態(失火状態)におけるトルク値の不感帯の存在による問題を解消することができる。これにより、従来燃料カット制御のために装備していたスロットルセンサや吸気圧センサを廃止し、コストダウンに寄与することができる。 According to this, the acceleration/deceleration state is determined based on the difference in angular acceleration between the above strokes, that is, the jerk, so that the throttle opening, which has traditionally been a problem with torque control according to angular acceleration, is It is possible to solve problems caused by the presence of a torque value dead zone when the combustion chamber is close to closing or when the combustion chamber is in a smoldering state (misfire state). This makes it possible to eliminate the throttle sensor and intake pressure sensor that were conventionally installed for fuel cut control, contributing to cost reduction.
 本発明において、前記内燃機関の所定の下死点(BDC)の直前の吸気行程での前記角加速度に応じて吸-圧トルクを算出し、かつ、同下死点の直後の圧縮行程での角加速度に応じて圧-膨トルクを算出するトルク算出部を有し、前記加減速判別部は、前記トルク算出部の算出した前記吸-圧トルクと、前記圧-膨トルクとに応じて、前記内燃機関の加減速状態を判別してもよい。 In the present invention, the intake pressure torque is calculated according to the angular acceleration in the intake stroke immediately before a predetermined bottom dead center (BDC) of the internal combustion engine, and It has a torque calculation unit that calculates pressure-swelling torque according to angular acceleration, and the acceleration/deceleration determining unit is configured to: The acceleration/deceleration state of the internal combustion engine may be determined.
 ここで、吸-圧トルクとは、吸気行程からその直後の圧縮行程までの区間における合成トルク(ガス圧トルク+慣性トルク)の最大値と最小値との差であり、圧-膨トルクとは、圧縮行程からその直後の膨張行程までの区間における合成トルク(ガス圧トルク+慣性トルク)の最大値と最小値との差である。 Here, the suction pressure torque is the difference between the maximum and minimum values of the composite torque (gas pressure torque + inertia torque) in the section from the intake stroke to the compression stroke immediately after it, and the pressure-expansion torque is the difference between the maximum and minimum values of the composite torque (gas pressure torque + inertia torque) , is the difference between the maximum value and the minimum value of the composite torque (gas pressure torque + inertia torque) in the section from the compression stroke to the immediately following expansion stroke.
 これによれば、上述の吸気行程での角加速度と、その直後の圧縮行程での角加速度とに応じた加減速状態の判別を、トルク算出部が算出する吸-圧トルク及び圧-膨トルクにより行うことができる。 According to this, the torque calculation section calculates the suction-pressure torque and the pressure-expansion torque to determine the acceleration/deceleration state according to the angular acceleration in the above-mentioned intake stroke and the angular acceleration in the compression stroke immediately thereafter. This can be done by
 本発明において、前記加減速判別部による加減速判定の結果と、前記トルク算出部の算出した前記吸-圧トルク又は前記圧-膨トルクとに基づき、マップ検索トルク値(DCBCP)を設定するマップ検索トルク設定部と、
 前記マップ検索トルク値(DCBCP)と、前記クランク軸の角速度(内燃機関の回転速度NE)とに応じて前記内燃機関の制御量を設定する制御量設定部とを有してもよい。
In the present invention, a map for setting a map search torque value (DCBCP) based on the acceleration/deceleration determination result by the acceleration/deceleration determination section and the suction pressure torque or the pressure/expansion torque calculated by the torque calculation section. a search torque setting section;
The engine may include a control amount setting section that sets a control amount of the internal combustion engine according to the map search torque value (DCBCP) and the angular velocity of the crankshaft (rotational speed NE of the internal combustion engine).
 ここで、マップ検索トルク値とは、マップ検索トルクと、クランク軸の角速度又は内燃機関の回転速度と、内燃機関の所定の制御量例えば燃料噴射量とを対応付けたトルクマップに適用され、クランク軸の角速度又は内燃機関の回転速度に応じて該制御量を求めるために使用される値である。したがって、制御量設定部は、このトルクマップを利用して制御量を求め、設定することができる。 Here, the map search torque value is applied to a torque map that associates the map search torque, the angular velocity of the crankshaft or the rotational speed of the internal combustion engine, and a predetermined control amount of the internal combustion engine, such as the amount of fuel injection. This is a value used to determine the control amount according to the angular velocity of the shaft or the rotational speed of the internal combustion engine. Therefore, the control amount setting section can use this torque map to obtain and set the control amount.
 これによれば、マップ検索トルク設定部は、加減速判別部による加減速判定の結果が、例えば、スロットル弁が操作されたことを示している場合、これに応じてトルク算出部の算出した吸-圧トルク又は圧-膨トルクを増減補正し、マップ検索トルク値(DCBCP)として設定する。このマップ検索トルク値に基づき、制御量設定部による制御量の設定が行われる。 According to this, when the result of the acceleration/deceleration determination by the acceleration/deceleration determination unit indicates that the throttle valve has been operated, the map search torque setting unit adjusts the suction calculated by the torque calculation unit accordingly. - Increase or decrease the pressure torque or pressure-swelling torque and set it as a map search torque value (DCBCP). Based on this map search torque value, the control amount setting section sets the control amount.
 これによれば、スロットル全閉付近や燃焼室のくすぶり状態(失火状態)において、従来、角加速度に基づくトルク値(DCBCP)が不動状態となって停滞してしまい、スロットル操作に対して応答しなくなるという不都合があるところ、内燃機関の燃焼状態に影響されにくい吸気行程から圧縮行程に至るまでの加加速度による加減速判定結果に基づいてトルク値(DCBCP)がマップ検索トルク設定部により動的に補正されるので、当該のトルク値が停滞する不都合(トルクマップの不感帯)を解消することができる。 According to this, conventionally, when the throttle is fully closed or when the combustion chamber is in a smoldering state (misfire state), the torque value (DCBCP) based on angular acceleration becomes immobile and stagnates, and does not respond to throttle operation. However, the torque value (DCBCP) is dynamically determined by the map search torque setting unit based on the acceleration/deceleration determination result based on the jerk from the intake stroke to the compression stroke, which is not easily affected by the combustion state of the internal combustion engine. Since the torque value is corrected, it is possible to eliminate the problem of stagnation of the torque value (dead zone of the torque map).
 本発明において、前記内燃機関に対する前記制御量に基づく燃料の供給又は点火を停止している状態に対応する前記吸-圧トルク値及び前記圧-膨トルク値が失火トルク値としてあらかじめ準備される失火トルク記憶部と、
 前記内燃機関に対する燃料の供給又は点火を停止している状態における時系列上の前記吸-圧トルク値及び前記圧-膨トルク値をそれぞれ移動平均処理する移動平均部と、
 該移動平均部からの出力値に基づき前記失火トルク値を更新する失火トルク学習部とを有してもよい。
In the present invention, a misfire in which the suction pressure torque value and the pressure-swelling torque value corresponding to a state where fuel supply or ignition is stopped based on the control amount to the internal combustion engine are prepared in advance as a misfire torque value. a torque memory section;
a moving average unit that performs moving average processing on the suction pressure torque value and the pressure-expansion torque value in time series in a state where fuel supply to the internal combustion engine or ignition is stopped;
The engine may further include a misfire torque learning section that updates the misfire torque value based on the output value from the moving average section.
 これによれば、燃料の供給又は点火を停止している状態に対応する吸-圧トルク値及び圧-膨トルク値を失火トルク値として失火トルク記憶部に記憶されるので、この失火トルク値に基づき、燃料カットの開始や中止を判定することができる。また、この失火トルク値は、燃料の供給又は点火を停止している状態における時系列上の吸-圧トルク値及び圧-膨トルク値を移動平均部により移動平均処理した値に基づいて失火トルク学習部により更新されるので、燃料カットの開始や中止の判定をより正確に行うことができる。 According to this, the suction pressure torque value and the pressure-expansion torque value corresponding to the state in which fuel supply or ignition is stopped are stored as misfire torque values in the misfire torque storage section, so that the misfire torque values can be used as misfire torque values. Based on this, it is possible to determine whether to start or stop a fuel cut. In addition, this misfire torque value is calculated based on a moving average value obtained by processing the suction torque value and the pressure-expansion torque value in time series in a state where fuel supply or ignition is stopped by a moving average unit. Since it is updated by the learning section, it is possible to more accurately determine whether to start or stop fuel cut.
 この場合、前記失火トルクから第1判定閾値を設定する第1閾値設定部と、
 内燃機関へ前記制御量に基づく燃料の供給及び点火を実行している状態において前記設定した第1判定閾値に前記トルク算出部の算出した吸-圧トルク及び前記圧-膨トルクが近づく場合に、前記内燃機関への燃料の供給または点火を停止することが可能な遮断判定部を有してもよい。
In this case, a first threshold setting unit that sets a first determination threshold from the misfire torque;
When the suction pressure torque and the pressure-expansion torque calculated by the torque calculation unit approach the set first determination threshold while supplying fuel to the internal combustion engine and ignition based on the control amount, The engine may include a cutoff determination unit capable of stopping fuel supply or ignition to the internal combustion engine.
 これによれば、遮断判定部により、燃料の供給及び点火を実行している状態から燃料の供給または点火を停止する状態への移行を、第1判定閾値に基づいて、容易に実施することができる。 According to this, the cutoff determination unit can easily transition from a state in which fuel supply and ignition are executed to a state in which fuel supply or ignition is stopped based on the first determination threshold. can.
 また、この場合、前記失火トルクから第2判定閾値を設定する閾値設定部と、
 前記燃料の供給及び点火を停止している状態において前記設定した第2判定閾値から前記吸-圧トルク又は前記圧-膨トルクが遠ざかる場合に前記燃料の供給または点火を再開させる事が可能な再開判定部とを有してもよい。
Further, in this case, a threshold value setting unit that sets a second determination threshold value from the misfire torque;
a restart capable of restarting the fuel supply or ignition when the suction pressure torque or the pressure-expansion torque moves away from the set second determination threshold while the fuel supply and ignition are stopped; The determination unit may also include a determination unit.
 これによれば、再開判定部により、燃料の供給及び点火を停止している状態から燃料の供給または点火を行う状態への移行を、第2判定閾値に基づいて、容易に実施することができる。 According to this, the restart determination unit can easily transition from a state in which fuel supply and ignition are stopped to a state in which fuel supply or ignition is performed based on the second determination threshold value. .
本発明の一実施形態に係る内燃機関制御装置の構成を示すブロック図である。1 is a block diagram showing the configuration of an internal combustion engine control device according to an embodiment of the present invention. 図1の内燃機関制御装置において加速状態又は減速状態であると判別する一例を示すグラフである。2 is a graph showing an example of determining whether the internal combustion engine control device of FIG. 1 is in an acceleration state or a deceleration state. 図1の内燃機関制御装置における吸-圧トルクSCCPTQ及び圧-膨トルクCPCBTQを例示するグラフである。2 is a graph illustrating the suction pressure torque SCCPTQ and the pressure-expansion torque CPCBTQ in the internal combustion engine control device of FIG. 1. FIG. 図1の内燃機関制御装置において燃料に関する制御を行うファイヤリング判断ルーチンを示すフローチャートである。2 is a flowchart showing a firing determination routine that performs fuel-related control in the internal combustion engine control device of FIG. 1. FIG.
 以下、図面を用いて本発明の実施形態を説明する。図1は、本発明の一実施形態に係る内燃機関制御装置を示す。図1に示すように、この内燃機関制御装置1は、ECU2(電子制御装置)により構成され、内燃機関の吸気、圧縮、燃焼膨張、排気の各行程でのクランク軸の角速度を算出する角速度算出部3と、時系列で並ぶ2つの行程の各角速度に基づき角加速度を算出する角加速度算出部4とを備える。 Hereinafter, embodiments of the present invention will be described using the drawings. FIG. 1 shows an internal combustion engine control device according to an embodiment of the present invention. As shown in FIG. 1, this internal combustion engine control device 1 is configured by an ECU 2 (electronic control unit), and is an angular velocity calculator that calculates the angular velocity of the crankshaft in each stroke of intake, compression, combustion expansion, and exhaust of the internal combustion engine. section 3, and an angular acceleration calculation section 4 that calculates angular acceleration based on each angular velocity of two strokes arranged in time series.
 角速度算出部3及び角加速度算出部4は、内燃機関のクランク角センサ5からの信号に基づき、各行程でのクランク軸の角速度を及び角加速度を算出する。例えば、時系列で並ぶ2つの行程のうちの前の行程の所要時間をt1、後の行程の所要時間をt2、前の行程の角速度をω1、後の行程の角速度をω2、前の行程の角加速度をαとすれば、ω1=π/t1、ω2=π/t2、α=(ω1-ω2)/t1となる。 The angular velocity calculation unit 3 and the angular acceleration calculation unit 4 calculate the angular velocity and angular acceleration of the crankshaft in each stroke based on the signal from the crank angle sensor 5 of the internal combustion engine. For example, of two strokes lined up in chronological order, the time required for the previous stroke is t1, the time required for the next stroke is t2, the angular velocity of the previous stroke is ω1, the angular velocity of the next stroke is ω2, and the time required for the next stroke is t2. If the angular acceleration is α, then ω1=π/t1, ω2=π/t2, and α=(ω1−ω2)/t1.
 かかる角速度算出部3により算出される角速度及び角加速度算出部4により算出される角加速度に基づき、内燃機関制御装置1は、内燃機関を制御する。そして、内燃機関制御装置1は、内燃機関の所定の下死点(BDC)の直前の吸気行程での角加速度ATCSCと、同下死点の直後の圧縮行程での角加速度ATCCPとに応じて、内燃機関の加減速状態を判別する加減速判別部6を備える。 Based on the angular velocity calculated by the angular velocity calculation unit 3 and the angular acceleration calculated by the angular acceleration calculation unit 4, the internal combustion engine control device 1 controls the internal combustion engine. Then, the internal combustion engine control device 1 controls the internal combustion engine according to the angular acceleration ATCSC during the intake stroke immediately before a predetermined bottom dead center (BDC) of the internal combustion engine, and the angular acceleration ATCCP during the compression stroke immediately after the predetermined bottom dead center (BDC) of the internal combustion engine. , an acceleration/deceleration determining section 6 that determines the acceleration/deceleration state of the internal combustion engine.
 例えば、加減速判別部6は、吸気行程での角加速度ATCSCと圧縮行程での角加速度ATCCPとの差が変動する場合に加速状態又は減速状態であると判別する。 For example, the acceleration/deceleration determining unit 6 determines that the state is an acceleration state or a deceleration state when the difference between the angular acceleration ATCSC in the intake stroke and the angular acceleration ATCCP in the compression stroke changes.
 図2は、この判別の一例を示す。図2に示すように、エンジン回転数NEが低下してタイミングtaにおいて燃料カット状態に移行すると、矢印Y1のように内燃機関の発生トルクDCBCPがゼロの状態になる。 FIG. 2 shows an example of this determination. As shown in FIG. 2, when the engine speed NE decreases and the fuel cut state is entered at timing ta, the generated torque DCBCP of the internal combustion engine becomes zero as indicated by arrow Y1.
 この状態において、内燃機関の吸気通路におけるスロットル弁が開く方向に操作されてスロットル開度THが矢印Y2のように大きくなると、内燃機関の吸気通路の吸気抵抗が減少するので吸気行程での角加速度が増加方向に変化する一方、吸気量の増加により圧縮行程での抵抗が増加するので圧縮行程での角加速度は減少方向に変化する。 In this state, when the throttle valve in the intake passage of the internal combustion engine is operated in the opening direction and the throttle opening TH increases as shown by arrow Y2, the intake resistance in the intake passage of the internal combustion engine decreases, so the angular acceleration during the intake stroke increases. changes in the increasing direction, while the resistance in the compression stroke increases due to the increase in the amount of intake air, so the angular acceleration in the compression stroke changes in the decreasing direction.
 したがって、吸気行程から圧縮行程に移行する際の角加速度の変化を吸-圧の加加速度ATCSCMCPとすれば、吸-圧の加加速度ATCSCMCPは、スロットル開度THが矢印Y2のように大きくなると、矢印Y3のように増大する。 Therefore, if the change in angular acceleration when transitioning from the intake stroke to the compression stroke is defined as the jerk of the intake pressure ATCSCMCP, then the jerk of the intake pressure ATCSCMCP becomes as the throttle opening TH increases as shown by the arrow Y2. It increases as shown by arrow Y3.
 この原理から、下死点(BDC)前後、すなわち吸気行程から圧縮行程に移行する際の角加速度差(=加加速度ATCSCMCP)の変動に基づいて、内燃機関の燃焼状態にかかわらず良好な加減速判定結果を得ることができる。すなわち、吸-圧の加加速度ATCSCMCPが変動する場合には、加速状態又は減速状態にあると判別することができる。なお、吸気行程から圧縮行程に移行する際の角加速度の比の変動に基づいて加減速判定を行ってもよい。 Based on this principle, good acceleration/deceleration is achieved regardless of the combustion state of the internal combustion engine, based on the fluctuation of the angular acceleration difference (= jerk ATCSCMCP) before and after the bottom dead center (BDC), that is, when transitioning from the intake stroke to the compression stroke. Judgment results can be obtained. That is, when the jerk ATCSCMCP of suction pressure fluctuates, it can be determined that the engine is in an acceleration state or a deceleration state. Note that the acceleration/deceleration determination may be made based on a change in the ratio of angular acceleration when transitioning from the intake stroke to the compression stroke.
 あるいは、内燃機関制御装置1は、内燃機関の所定の下死点(BDC)の直前の吸気行程での角加速度ATCSCに応じて吸-圧トルクSCCPTQを算出し、かつ、同下死点(BDC)の直後の圧縮行程での角加速度ATCCPに応じて圧-膨トルクCPCBTQを算出するトルク算出部7を備える。この場合、加減速判別部6は、トルク算出部7の算出した吸-圧トルクSCCPTQと、圧-膨トルクCPCBTQとに応じて、内燃機関の加減速状態を判別する。 Alternatively, the internal combustion engine control device 1 calculates the intake pressure torque SCCPTQ according to the angular acceleration ATCSC in the intake stroke immediately before a predetermined bottom dead center (BDC) of the internal combustion engine, and ) is provided with a torque calculation unit 7 that calculates a compression-expansion torque CPCBTQ according to the angular acceleration ATCCP in the compression stroke immediately after the compression stroke. In this case, the acceleration/deceleration determination section 6 determines the acceleration/deceleration state of the internal combustion engine according to the suction pressure torque SCCPTQ and the pressure/expansion torque CPCBTQ calculated by the torque calculation section 7.
 吸-圧トルクSCCPTQは、吸気行程から次の圧縮行程までの行程区間における合成トルク(ガス圧トルク+慣性トルク)の最大値と最小値との差である。圧-膨トルクCPCBTQは、圧縮行程から膨張行程までの行程区間における合成トルクの最大値と最小値との差である。 The suction pressure torque SCCPTQ is the difference between the maximum value and the minimum value of the composite torque (gas pressure torque + inertia torque) in the stroke section from the intake stroke to the next compression stroke. The pressure-expansion torque CPCBTQ is the difference between the maximum value and the minimum value of the composite torque in the stroke section from the compression stroke to the expansion stroke.
 図3は、この吸-圧トルクSCCPTQ及び圧-膨トルクCPCBTQを例示する。図3では、内燃機関が搭載された車両の通常の進行状態における内燃機関のクランク角度(deg.)に対するクランク軸に作用する各トルク(Nm)の変化が示されている。すなわち、曲線Aはガス圧トルク、曲線Bは慣性トルク、曲線Cは合成トルクの変化を示している。 FIG. 3 illustrates this suction pressure torque SCCPTQ and pressure expansion torque CPCBTQ. FIG. 3 shows changes in each torque (Nm) acting on the crankshaft with respect to the crank angle (deg.) of the internal combustion engine in a normal traveling state of a vehicle equipped with the internal combustion engine. That is, curve A shows changes in gas pressure torque, curve B shows changes in inertia torque, and curve C shows changes in composite torque.
 また、内燃機関制御装置1は、加減速判別部6による加減速判定の結果と、トルク算出部7の算出した吸-圧トルクSCCPTQ又は圧-膨トルクCPCBTQとに基づきマップ検索トルク値DCBCPを設定するマップ検索トルク設定部8と、マップ検索トルク値DCBCPと、前記クランク軸の角速度(内燃機関の回転速度値NE)とに応じて内燃機関の制御量をトルクマップに基づいて設定する制御量設定部9とを備える。 Further, the internal combustion engine control device 1 sets a map search torque value DCBCP based on the result of acceleration/deceleration determination by the acceleration/deceleration determination section 6 and the suction pressure torque SCCPTQ or pressure-expansion torque CPCBTQ calculated by the torque calculation section 7. a map search torque setting unit 8 that sets a control amount of the internal combustion engine based on a torque map in accordance with the map search torque value DCBCP and the angular velocity of the crankshaft (rotational speed value NE of the internal combustion engine); 9.
 制御量設定部9が制御量を設定する際に使用するトルクマップは、マップ検索トルク値DCBCPと、回転速度値NEと、各制御量とを関連付けて記憶している。制御量としては、燃料噴射量、点火時期等が該当する。 The torque map used by the control amount setting unit 9 when setting the control amount stores the map search torque value DCBCP, the rotational speed value NE, and each control amount in association with each other. The controlled variable includes fuel injection amount, ignition timing, and the like.
 また、内燃機関制御装置1は、内燃機関に対する前記制御量に基づく燃料の供給又は点火を停止している状態に対応する吸-圧トルクSCCPTQ及び圧-膨トルクCPCBTQの初期値がそれぞれ吸-圧失火トルク値及び圧-膨失火トルク値としてあらかじめ準備される失火トルク記憶部10と、内燃機関に対する燃料の供給又は点火を停止している状態における時系列上の吸-圧トルクSCCPTQ及び圧-膨トルクCPCBTQをそれぞれ移動平均処理する移動平均部11と、移動平均部11で移動平均された吸-圧トルクSCCPTQ及び圧-膨トルクCPCBTQに基づき、失火トルク記憶部10の吸-圧失火トルク値及び圧-膨失火トルク値を更新する失火トルク学習部12とを備える。 Further, the internal combustion engine control device 1 determines that the initial values of the suction pressure torque SCCPTQ and the pressure-expansion torque CPCBTQ, which correspond to a state in which the supply of fuel or ignition to the internal combustion engine is stopped based on the control amount, are the suction pressure The misfire torque storage unit 10 is prepared in advance as a misfire torque value and pressure-swelling misfire torque value, and the suction-pressure torque SCCPTQ and pressure-swelling torque in a time series in a state where fuel supply to the internal combustion engine or ignition is stopped. The moving average section 11 processes the moving average of each torque CPCBTQ, and the suction pressure misfire torque value and The misfire torque learning unit 12 updates the pressure-expansion misfire torque value.
 失火トルク記憶部10は、不揮発メモリを用いて構成してもよい。不揮発メモリとしては、EEPROM等が該当する。 The misfire torque storage unit 10 may be configured using a nonvolatile memory. EEPROM etc. correspond to non-volatile memory.
 また、内燃機関制御装置1は、失火トルク記憶部10の失火トルク値から第1判定閾値a1、b1を設定する第1閾値設定部13と、内燃機関へ前記制御量に基づく燃料の供給及び点火を実行している状態において前記設定した第1閾値a1及びb1に対して、トルク算出部7が算出した圧-膨トルクCPCBTQ及び吸-圧トルクSCCPTQがそれぞれ近づく場合に、内燃機関への燃料の供給又は点火を停止することが可能な遮断判定部14を備える。 The internal combustion engine control device 1 also includes a first threshold setting unit 13 that sets first determination thresholds a1 and b1 from the misfire torque value in the misfire torque storage unit 10, and a first threshold setting unit 13 that sets the first determination thresholds a1 and b1 from the misfire torque value in the misfire torque storage unit 10, and supplies fuel to the internal combustion engine and ignites based on the control amount. When the pressure-expansion torque CPCBTQ and the suction pressure torque SCCPTQ calculated by the torque calculation unit 7 approach the first threshold values a1 and b1 set above in the state in which the A cutoff determination section 14 capable of stopping supply or ignition is provided.
 また、内燃機関制御装置1は、失火トルク記憶部10の失火トルク値から第2判定閾値a2、b2を設定する第2閾値設定部15と、燃料の供給及び点火を停止している状態において設定した第2閾値a2、b2から圧-膨トルクCPCBTQ又は吸-圧トルクSCCPTQがそれぞれ遠ざかる場合に燃料の供給又は点火を再開させることが可能な再開判定部16とを備える。 The internal combustion engine control device 1 also includes a second threshold setting unit 15 that sets the second determination thresholds a2 and b2 from the misfire torque value in the misfire torque storage unit 10, and a second threshold setting unit 15 that sets the second determination thresholds a2 and b2 in a state where fuel supply and ignition are stopped. The resumption determination unit 16 is capable of restarting fuel supply or ignition when the pressure-expansion torque CPCBTQ or the suction pressure torque SCCPTQ moves away from the second threshold values a2 and b2, respectively.
 すなわち、第1閾値設定部13及び第2閾値設定部15は、点火を停止又は再開させるかを判定するための閾値として、閾値に近づく場合と遠ざかる場合とでヒステリシスが生じるように異なる値を採用する。したがって、圧-膨トルクCPCBTQについて、異なる第1閾値a1及び第2閾値a2を設定し、吸-圧トルクSCCPTQについて、異なる第1閾値b1及び第2閾値b2を設定する。第1閾値a1、b1は、それぞれ第2閾値a2、b2よりも大きい(第1閾値a1>第2閾値a2、第1閾値b1>第2閾値b2)。 That is, the first threshold value setting unit 13 and the second threshold value setting unit 15 adopt different values as the threshold values for determining whether to stop or restart ignition so that hysteresis occurs when approaching the threshold value and when moving away from the threshold value. do. Therefore, different first threshold values a1 and second threshold values a2 are set for the pressure-expansion torque CPCBTQ, and different first threshold values b1 and second threshold values b2 are set for the suction-pressure torque SCCPTQ. The first thresholds a1 and b1 are larger than the second thresholds a2 and b2, respectively (first threshold a1>second threshold a2, first threshold b1>second threshold b2).
 図4は、内燃機関制御装置1において燃料に関する制御を行うファイヤリング判断ルーチンを示す。このルーチンによる処理は、所定の制御周期毎に実行される。 FIG. 4 shows a firing determination routine that performs fuel-related control in the internal combustion engine control device 1. Processing by this routine is executed at every predetermined control cycle.
 処理が開始されると、まず、トルク算出部7により、圧-膨トルクCPCBTQ及び吸-圧トルクSCCPTQを算出する(ステップS1、S2)。圧-膨トルクCPCBTQ及び吸-圧トルクSCCPTの算出は、角加速度算出部4が算出する直近の圧縮行程での角加速度ATCCP及び吸気行程での各加速度ATCSCに応じてそれぞれ行われる。 When the process is started, first, the torque calculation unit 7 calculates the compression-expansion torque CPCBTQ and the suction-pressure torque SCCPTQ (steps S1 and S2). The pressure-expansion torque CPCBTQ and the suction pressure torque SCCPT are calculated according to the angular acceleration ATCCP in the most recent compression stroke and each acceleration ATCSC in the intake stroke calculated by the angular acceleration calculation unit 4.
 次に、内燃機関の回転数NEが、燃料カットを実施すべき領域である所定の実施NE領域内の値であるか否かを判定し(ステップS3)、該領域内の値でなければステップS4に進み、該領域内の値であればステップS5に進む。 Next, it is determined whether the rotational speed NE of the internal combustion engine is within a predetermined implementation NE range, which is a range in which fuel cut should be implemented (step S3), and if the value is not within the range, step The process proceeds to S4, and if the value is within the range, the process proceeds to step S5.
 ステップS5では、圧-膨トルクCPCBTQが閾値aの近傍であるか否かを判定し、近傍でなければステップS4に進み、近傍であればステップS6に進む。なお、閾値aの値として、圧-膨トルクCPCBTQが閾値aの一方の側から他方の側に変化する場合と、該他方の側から該一方の側に変化する場合とで異なる上述の第1判定閾値a1及びこれより小さい第2判定閾値a2が用いられる(第1閾値a1>第2閾値a2)。 In step S5, it is determined whether the pressure-expansion torque CPCBTQ is near the threshold a. If not, the process proceeds to step S4; if it is, the process proceeds to step S6. Note that the value of the threshold a is different depending on whether the pressure-expansion torque CPCBTQ changes from one side of the threshold a to the other side or from the other side to the one side. A determination threshold a1 and a second determination threshold a2 smaller than this are used (first threshold a1>second threshold a2).
 ステップS6では、吸-圧トルクSCCPTQが閾値bの近傍の値であるか否かを判定し、近傍でなければステップS4に進み、近傍であればステップS7に進む。なお、閾値bの場合も、閾値aの場合と同様に、吸-圧トルクSCCPTQの変化の方向性に応じて異なる上述の第1判定閾値b1及びこれより小さい第2判定閾値b2が用いられる(第1閾値b1>第2閾値b2)。 In step S6, it is determined whether or not the suction pressure torque SCCPTQ is close to the threshold value b. If it is not close, the process proceeds to step S4, and if it is close, the process proceeds to step S7. In addition, in the case of the threshold value b, as in the case of the threshold value a, the above-mentioned first determination threshold value b1 and the smaller second determination threshold value b2 are used, which differ depending on the direction of change in the suction pressure torque SCCPTQ ( (first threshold b1>second threshold b2).
 ステップS4では、燃料カットを中止するために、ステップS8に進む。なお、燃料カットを中止する場合には、点火コイル17の点火も即時再開する。 In step S4, the process advances to step S8 to cancel the fuel cut. Note that when the fuel cut is canceled, the ignition of the ignition coil 17 is also restarted immediately.
 ステップS7では、燃料カット中か否かを判定し、燃料カット中でなければステップS9に進み、燃料カット中であればステップS10に進む。 In step S7, it is determined whether or not the fuel is being cut. If the fuel is not being cut, the process proceeds to step S9, and if the fuel is being cut, the process proceeds to step S10.
 ステップS9では、圧-膨トルクCPCBTQの単位時間当たりの低下量が所定値以上であるか否かを判定する。この判定では、スロットル弁の閉操作の有無が検出される。すなわち、該低下量が所定値以上でない(該閉操作無し)と判定された場合にはステップS8に進む。該低下量が所定値以上である(該閉操作有り)と判定された場合にはステップS11に進み、燃料カットを開始し、このルーチンを終了する。 In step S9, it is determined whether the amount of decrease in the pressure-expansion torque CPCBTQ per unit time is greater than or equal to a predetermined value. In this determination, the presence or absence of a closing operation of the throttle valve is detected. That is, if it is determined that the amount of decrease is not equal to or greater than the predetermined value (there is no closing operation), the process advances to step S8. If it is determined that the amount of decrease is equal to or greater than the predetermined value (the closing operation has been performed), the process proceeds to step S11, where fuel cut is started and this routine is ended.
 燃料カットの開始は、制御量設定部9において燃料噴射及び点火が行われないように設定し、これに従って、内燃機関の燃料噴射弁18及び点火コイル17の動作が停止されることにより実施される。 The fuel cut is started by setting the control amount setting unit 9 so that fuel injection and ignition are not performed, and in accordance with this setting, the operation of the fuel injection valve 18 and the ignition coil 17 of the internal combustion engine is stopped. .
 ステップS8に進むと、ステップS1、S2で求めた圧-膨トルクCPCBTQ及び吸-圧トルクSCCPTQに基づき、マップ検索トルク設定部8により、マップ検索トルクDCBCPを算出し、設定する。次に、制御量設定部9により、マップ検索トルクDCBCP及びクランク角センサ5からの内燃機関の回転速度NEに応じてトルクマップから燃料噴射量を設定し、この燃料噴射量で燃料噴射弁18による燃料噴射を実行し(ステップS12)、このルーチンを終了する。 Proceeding to step S8, the map search torque setting section 8 calculates and sets the map search torque DCBCP based on the pressure-expansion torque CPCBTQ and the suction pressure torque SCCPTQ obtained in steps S1 and S2. Next, the control amount setting unit 9 sets the fuel injection amount from the torque map according to the map search torque DCBCP and the rotational speed NE of the internal combustion engine from the crank angle sensor 5, and the fuel injection amount is set by the fuel injection amount by the fuel injection valve 18. Fuel injection is performed (step S12), and this routine ends.
 一方、ステップS7からステップS10に進んだ場合には、燃料カットを継続し、ステップS1で求めた圧-膨トルクCPCBTQにより失火トルク記憶部10の圧-膨失火トルクを更新する(ステップS13)。そして、この圧-膨失火トルクに基づき、第1閾値設定部13及び第2閾値設定部15により、第1閾値a1及び第2閾値a2をそれぞれ設定する(ステップS14)。 On the other hand, if the process advances from step S7 to step S10, the fuel cut is continued and the pressure-swelling misfire torque in the misfire torque storage section 10 is updated using the pressure-swelling torque CPCBTQ obtained in step S1 (step S13). Then, based on this pressure-expansion misfire torque, the first threshold value setting section 13 and the second threshold value setting section 15 respectively set the first threshold value a1 and the second threshold value a2 (step S14).
 ステップS13における失火トルク記憶部10の圧-膨失火トルクの更新に際しては、移動平均部11により、燃料カットが行われている状態での時系列上の圧-膨トルクCPCBTQが移動平均部11により移動平均処理され、その値により、失火トルク学習部12によって失火トルク記憶部10の圧-膨失火トルクが更新される。 When updating the pressure-swelling misfire torque in the misfire torque storage section 10 in step S13, the moving average section 11 calculates the time-series pressure-swelling torque CPCBTQ in the state where fuel cut is being performed. Moving average processing is performed, and the pressure-swelling misfire torque in the misfire torque storage section 10 is updated by the misfire torque learning section 12 based on the value.
 さらに、ステップS2で求めた吸-圧トルクSCCPTQにより失火トルク記憶部10の吸-圧失火トルクを更新し(ステップS15)、この吸-圧の失火トルクに基づき、第1閾値設定部13及び第2閾値設定部15により、第1閾値b1及び第2閾値b2をそれぞれ設定し(ステップS16)、このルーチンを終了する。 Furthermore, the suction pressure misfire torque in the misfire torque storage unit 10 is updated using the suction pressure torque SCCPTQ obtained in step S2 (step S15), and based on this suction pressure misfire torque, the first threshold value setting unit 13 and the The second threshold setting unit 15 sets the first threshold b1 and the second threshold b2 (step S16), and this routine ends.
 ステップS15における失火トルク記憶部10の吸-圧失火トルクの更新に際しては、移動平均部11により、燃料カットが行われている状態での時系列上の吸-圧トルクSCCPTQが移動平均部11により移動平均処理され、その値により、失火トルク学習部12によって失火トルク記憶部10の吸-圧失火トルクが更新される。 When updating the suction pressure misfire torque in the misfire torque storage section 10 in step S15, the moving average section 11 calculates the time series suction pressure torque SCCPTQ in the state where fuel cut is being performed. Moving average processing is performed, and the suction-pressure misfire torque in the misfire torque storage section 10 is updated by the misfire torque learning section 12 based on the value.
 なお、ステップS3~S6、S7、S9及びS11の処理は、遮断判定部14及び再開判定部16により行われる。 Note that the processes of steps S3 to S6, S7, S9, and S11 are performed by the shutoff determination unit 14 and the restart determination unit 16.
 以上説明したように、本実施形態によれば、加減速判別部6により判別される内燃機関の加減速状態は、内燃機関の燃焼状態にかかわらず、スロットル弁の開閉状態、すなわち内燃機関に要求される制御量を良好に現わしているので、該加減速状態に基づいて、内燃機関を良好に制御することができる。 As explained above, according to the present embodiment, the acceleration/deceleration state of the internal combustion engine determined by the acceleration/deceleration determination unit 6 is determined by the open/closed state of the throttle valve, that is, the request to the internal combustion engine, regardless of the combustion state of the internal combustion engine. Since the control amount to be controlled is expressed well, the internal combustion engine can be well controlled based on the acceleration/deceleration state.
 また、加減速判別部6は、吸気行程での角加速度ATCSCとその直後の圧縮行程での角加速度ATCCPとの差が変動する場合に内燃機関が加速状態又は減速状態であるものと判別し、内燃機関の制御量を設定するので、従来、角加速度に応じたトルク制御で問題となっていたスロットル開度が全閉近傍にあるときや燃焼室のくすぶり状態(失火状態)におけるトルク値の不感帯の存在による問題を解消することができる。これにより、従来燃料カット制御のために装備していたスロットルセンサや吸気圧センサを廃止し、コストダウンに寄与することができる。 Further, the acceleration/deceleration determination unit 6 determines that the internal combustion engine is in an acceleration state or a deceleration state when the difference between the angular acceleration ATCSC in the intake stroke and the angular acceleration ATCCP in the compression stroke immediately thereafter changes, Since the control amount of the internal combustion engine is set, the dead zone of the torque value when the throttle opening is close to fully closed or when the combustion chamber is in a smoldering state (misfire state), which has traditionally been a problem with torque control according to angular acceleration, is eliminated. The problem caused by the existence of can be solved. This makes it possible to eliminate the throttle sensor and intake pressure sensor that were conventionally installed for fuel cut control, contributing to cost reduction.
 また、トルク算出部7を有するので、加減速判別部6は、吸気行程での角加速度と、その直後の圧縮行程での角加速度とに応じた加減速状態の判別を、トルク算出部が算出する吸-圧トルク及び圧-膨トルクにより行うことができる。 In addition, since it has the torque calculation unit 7, the acceleration/deceleration determination unit 6 can determine the acceleration/deceleration state according to the angular acceleration in the intake stroke and the angular acceleration in the compression stroke immediately after. This can be done by using a suction torque and a pressure-expansion torque.
 また、マップ検索トルク設定部8により、内燃機関の燃焼状態に影響されにくい吸気行程から圧縮行程に至るまでの加加速度による加減速判定結果に基づいて角加速度に基づくトルク値DCBCPが動的に補正されるので、スロットル全閉付近や燃焼室のくすぶり状態(失火状態)においてトルク値DCBCPが不動状態となって停滞してしまい、スロットル操作に対して応答しなくなるという不都合(トルクマップの不感帯)を解消することができる。 In addition, the map search torque setting unit 8 dynamically corrects the torque value DCBCP based on angular acceleration based on the acceleration/deceleration determination result based on jerk from the intake stroke to the compression stroke, which is not easily affected by the combustion state of the internal combustion engine. Therefore, when the throttle is fully closed or when the combustion chamber is smoldering (misfire condition), the torque value DCBCP becomes immobile and stagnates, resulting in the inconvenience of not responding to throttle operation (torque map dead zone). It can be resolved.
 また、燃料噴射弁18への燃料の供給又は点火コイル17の点火を停止している状態に対応する吸-圧トルクSCCPTQ値及び圧-膨トルクCPCBTQ値を失火トルク値として失火トルク記憶部10に記憶するので、この失火トルク値に基づき、燃料カットの開始や中止を判定することができる。 Further, the suction pressure torque SCCPTQ value and the pressure-expansion torque CPCBTQ value corresponding to the state in which the supply of fuel to the fuel injection valve 18 or the ignition of the ignition coil 17 is stopped are stored in the misfire torque storage unit 10 as misfire torque values. Since it is stored, it is possible to determine whether to start or stop fuel cut based on this misfire torque value.
 また、この失火トルク値は、燃料の供給又は点火を停止している状態における時系列上の吸-圧トルクSCCPTQ値及び圧-膨トルクCPCBTQ値を移動平均部により移動平均処理した値に基づいて失火トルク学習部12により更新されるので、燃料カットの開始や中止の判定をより正確に行うことができる。 Further, this misfire torque value is based on a value obtained by processing a moving average of the suction pressure torque SCCPTQ value and the pressure-expansion torque CPCBTQ value in time series in a state where fuel supply or ignition is stopped by a moving average unit. Since it is updated by the misfire torque learning section 12, it is possible to more accurately determine whether to start or stop fuel cut.
 また、燃料の供給及び点火を実行している状態において第1判定閾値a1、b1に吸-圧トルクSCCPTQ及び圧-膨トルクCPCBTQが近づく場合に、燃料の供給又は点火を停止することが可能な遮断判定部14を有するので、燃料の供給及び点火の実行状態から停止状態への移行を、第1判定閾値a1、b1に基づいて、容易に実施することができる。 Further, when the suction pressure torque SCCPTQ and the pressure expansion torque CPCBTQ approach the first determination threshold values a1 and b1 while fuel supply and ignition are being executed, it is possible to stop the fuel supply or ignition. Since the shutoff determination unit 14 is provided, the transition from the execution state of fuel supply and ignition to the stop state can be easily carried out based on the first determination threshold values a1 and b1.
 また、燃料の供給及び点火を停止している状態において第2判定閾値a2、b2から吸-圧トルクSCCPTQ又は圧-膨トルクCPCBTQが遠ざかる場合に燃料の供給又は点火を再開させることが可能な再開判定部16を有するので、燃料の供給及び点火の停止状態から実行状態への移行を、第2判定閾値a2、b2に基づいて、容易に行うことができる。 Further, when the suction pressure torque SCCPTQ or the pressure-expansion torque CPCBTQ moves away from the second determination threshold values a2 and b2 in a state where the fuel supply and ignition are stopped, fuel supply or ignition can be restarted. Since the determination unit 16 is provided, it is possible to easily transition the fuel supply and ignition from the stopped state to the execution state based on the second determination thresholds a2 and b2.
 以上,本発明の実施形態について説明したが,本発明はこれに限定されない。例えば、角速度算出部3による各行程での各速度の算出は、各行程全体で進行するクランク角(180°)とその所要時間基づいて行う代わりに、該クランク角のうちの一部の角度と、その所要時間に基づいて行ってもよい。 Although the embodiments of the present invention have been described above, the present invention is not limited thereto. For example, instead of calculating each speed in each stroke by the angular velocity calculation unit 3 based on the crank angle (180°) that progresses throughout each stroke and the required time, , based on the required time.
 1…内燃機関制御装置、2…ECU、3…角速度算出部、4…角加速度算出部、5…クランク角センサ、6…加減速判別部、7…トルク算出部、8…マップ検索トルク設定部、9…制御量設定部、10…失火トルク記憶部、11…移動平均部、12…失火トルク学習部、13…第1閾値設定部、14…遮断判定部、15…第2閾値設定部、16…再開判定部、17…点火コイル、18…燃料噴射弁。
 
DESCRIPTION OF SYMBOLS 1... Internal combustion engine control device, 2... ECU, 3... Angular velocity calculation section, 4... Angular acceleration calculation section, 5... Crank angle sensor, 6... Acceleration/deceleration determination section, 7... Torque calculation section, 8... Map search torque setting section , 9... Controlled amount setting section, 10... Misfire torque storage section, 11... Moving average section, 12... Misfire torque learning section, 13... First threshold value setting section, 14... Shutdown determination section, 15... Second threshold value setting section, 16...Restart determination unit, 17...Ignition coil, 18...Fuel injection valve.

Claims (7)

  1.  内燃機関の吸気、圧縮、燃焼膨張、排気の各行程でのクランク軸の角速度を算出する角速度算出部と、
     時系列で並ぶ2つの前記角速度に基づき角加速度を算出する角加速度算出部とを備え、
     前記角速度及び前記角加速度に基づき前記内燃機関を制御する内燃機関制御装置であって、
     前記内燃機関の所定の下死点の直前の吸気行程での前記角加速度と、同下死点の直後の圧縮行程での角加速度とに応じて、内燃機関の加減速状態を判別する加減速判別部を有することを特徴とする内燃機関制御装置。
    an angular velocity calculation unit that calculates the angular velocity of the crankshaft in each stroke of intake, compression, combustion expansion, and exhaust of the internal combustion engine;
    an angular acceleration calculation unit that calculates angular acceleration based on the two angular velocities arranged in time series,
    An internal combustion engine control device that controls the internal combustion engine based on the angular velocity and the angular acceleration,
    acceleration/deceleration for determining the acceleration/deceleration state of the internal combustion engine according to the angular acceleration in the intake stroke immediately before a predetermined bottom dead center of the internal combustion engine and the angular acceleration in the compression stroke immediately after the bottom dead center; An internal combustion engine control device comprising a determination section.
  2.  前記加減速判別部は、前記吸気行程での角加速度と前記圧縮行程での角加速度との差が変動する場合に加速状態又は減速状態であるものと判別することを特徴とする請求項1に記載の内燃機関制御装置。 2. The acceleration/deceleration determining unit determines that the engine is in an acceleration state or a deceleration state when a difference between an angular acceleration in the intake stroke and an angular acceleration in the compression stroke changes. The internal combustion engine control device described.
  3.  前記内燃機関の所定の下死点の直前の吸気行程での前記角加速度に応じて吸-圧トルクを算出し、かつ、同下死点の直後の圧縮行程での角加速度に応じて圧-膨トルクを算出するトルク算出部を有し、
     前記加減速判別部は、前記トルク算出部の算出した前記吸-圧トルクと、前記圧-膨トルクとに応じて、前記内燃機関の加減速状態を判別することを特徴とする請求項1に記載の内燃機関制御装置。
    The intake pressure torque is calculated according to the angular acceleration in the intake stroke immediately before a predetermined bottom dead center of the internal combustion engine, and the pressure is calculated according to the angular acceleration in the compression stroke immediately after the bottom dead center. It has a torque calculation unit that calculates expansion torque,
    2. The acceleration/deceleration determination unit determines the acceleration/deceleration state of the internal combustion engine according to the suction pressure torque and the pressure-expansion torque calculated by the torque calculation unit. The internal combustion engine control device described.
  4.  前記加減速判別部による加減速判定の結果と、前記トルク算出部の算出した前記吸-圧トルク又は前記圧-膨トルクと、に基づきマップ検索トルク値を設定するマップ検索トルク設定部と、
     前記マップ検索トルク値と、前記クランク軸の角速度とに応じて前記内燃機関の制御量を設定する制御量設定部とを有することを特徴とする請求項3に記載の内燃機関制御装置。
    a map search torque setting unit that sets a map search torque value based on the acceleration/deceleration determination result by the acceleration/deceleration determination unit and the suction pressure torque or the pressure/expansion torque calculated by the torque calculation unit;
    The internal combustion engine control device according to claim 3, further comprising a control amount setting section that sets a control amount of the internal combustion engine according to the map search torque value and the angular velocity of the crankshaft.
  5.  前記内燃機関に対する前記制御量に基づく燃料の供給または点火を停止している状態に対応する前記吸-圧トルク及び前記圧-膨トルクが失火トルク値の初期値としてあらかじめ準備される失火トルク記憶部と、
     前記内燃機関に対する燃料の供給又は点火を停止している状態における時系列上の前記吸-圧トルク及び前記圧-膨トルクをそれぞれ移動平均処理する移動平均部と、該移動平均部からの出力値に基づき前記失火トルク値を更新する失火トルク学習部とを有することを特徴とする請求項4に記載の内燃機関制御装置。
    a misfire torque storage unit in which the suction pressure torque and the pressure-expansion torque corresponding to a state where fuel supply or ignition is stopped based on the control amount to the internal combustion engine are prepared in advance as initial values of the misfire torque value; and,
    a moving average unit that performs moving average processing on the suction pressure torque and the pressure-expansion torque in time series in a state where fuel supply to the internal combustion engine or ignition is stopped; and an output value from the moving average unit. The internal combustion engine control device according to claim 4, further comprising a misfire torque learning section that updates the misfire torque value based on the misfire torque value.
  6.  前記失火トルク値から第1判定閾値を設定する第1閾値設定部と、
     内燃機関へ前記制御量に基づく燃料の供給及び点火を実行している状態において前記設定した第1判定閾値に前記トルク算出部の算出した前記吸-圧トルク及び前記圧-膨トルクが近づく場合に、前記内燃機関への燃料の供給又は点火を停止することが可能な遮断判定部を有していることを特徴とする請求項5に記載の内燃機関制御装置。
    a first threshold setting unit that sets a first determination threshold from the misfire torque value;
    When the suction pressure torque and the pressure-expansion torque calculated by the torque calculation unit approach the set first determination threshold while supplying fuel to the internal combustion engine and igniting based on the control amount 6. The internal combustion engine control device according to claim 5, further comprising a cutoff determination unit capable of stopping fuel supply or ignition to the internal combustion engine.
  7.  前記失火トルク値から第2判定閾値を設定する第2閾値設定部と、
     前記燃料の供給及び点火を停止している状態において前記設定した第2判定閾値から前記吸-圧トルク又は前記圧-膨トルクが遠ざかる場合に前記燃料の供給または点火を再開させることが可能な再開判定部とを有することを特徴とする請求項5に記載の内燃機関制御装置。
     
    a second threshold setting unit that sets a second determination threshold from the misfire torque value;
    restarting which allows restarting the fuel supply or ignition when the suction pressure torque or the pressure-expansion torque moves away from the set second determination threshold while the fuel supply and ignition are stopped; The internal combustion engine control device according to claim 5, further comprising a determination section.
PCT/JP2022/028888 2022-07-27 2022-07-27 Internal combustion engine control device WO2024023960A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/028888 WO2024023960A1 (en) 2022-07-27 2022-07-27 Internal combustion engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/028888 WO2024023960A1 (en) 2022-07-27 2022-07-27 Internal combustion engine control device

Publications (1)

Publication Number Publication Date
WO2024023960A1 true WO2024023960A1 (en) 2024-02-01

Family

ID=89705631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028888 WO2024023960A1 (en) 2022-07-27 2022-07-27 Internal combustion engine control device

Country Status (1)

Country Link
WO (1) WO2024023960A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09329049A (en) * 1996-06-11 1997-12-22 Hitachi Ltd Engine control method and engine controller
JP2008190458A (en) * 2007-02-06 2008-08-21 Nippon Soken Inc Controller of multi-cylinder internal combustion engine
JP2017180370A (en) * 2016-03-31 2017-10-05 株式会社ケーヒン Internal combustion engine control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09329049A (en) * 1996-06-11 1997-12-22 Hitachi Ltd Engine control method and engine controller
JP2008190458A (en) * 2007-02-06 2008-08-21 Nippon Soken Inc Controller of multi-cylinder internal combustion engine
JP2017180370A (en) * 2016-03-31 2017-10-05 株式会社ケーヒン Internal combustion engine control device

Similar Documents

Publication Publication Date Title
EP2357340B1 (en) Device and method for controlling timing at which ignition is stopped when internal combustion engine becomes stopped
US6491022B2 (en) Fail-safe processing system and method for internal combustion engine
EP1288468B1 (en) Control device of an internal combustion engine
EP2345807A1 (en) Internal combustion engine stop control device
WO2024023960A1 (en) Internal combustion engine control device
US6276341B1 (en) Internal-combustion engine control system
US8434453B2 (en) Electronic throttle control system and method
KR20080039108A (en) Method for diagonsing valve of variable valve timing apparatus
WO2000060230A1 (en) Device for controlling rotational speed of internal combustion engine
JPH09310627A (en) Torque reduction control device for automatic transmission
JP2008163792A (en) Stop position control device for internal combustion engine
JP5020220B2 (en) Device for controlling the throttle valve when the internal combustion engine is stopped
US6886531B1 (en) Control apparatus for an internal combustion engine
JP5178634B2 (en) Air-fuel ratio control method for internal combustion engine
JP2002161786A (en) Fuel injection control device
JP5398994B2 (en) Operation control method for internal combustion engine
JP3478175B2 (en) Engine speed control device for internal combustion engine
JP4133288B2 (en) Variable valve timing control method for internal combustion engine
JP4753050B2 (en) Engine control device
JP4779738B2 (en) Control device and control method for internal combustion engine provided with turbocharger
JP4357388B2 (en) Control method for internal combustion engine
JP3236049B2 (en) Fuel injection control method for engine with variable valve timing control mechanism
JP2002089338A (en) Fuel injection control device for internal combustion engine
JP2004060578A (en) Control device of internal combustion engine
JP4252913B2 (en) Engine control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953055

Country of ref document: EP

Kind code of ref document: A1