WO2024023958A1 - Heat exchanger, and refrigeration cycle device - Google Patents

Heat exchanger, and refrigeration cycle device Download PDF

Info

Publication number
WO2024023958A1
WO2024023958A1 PCT/JP2022/028884 JP2022028884W WO2024023958A1 WO 2024023958 A1 WO2024023958 A1 WO 2024023958A1 JP 2022028884 W JP2022028884 W JP 2022028884W WO 2024023958 A1 WO2024023958 A1 WO 2024023958A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
heat exchanger
exchanger tube
header
opening
Prior art date
Application number
PCT/JP2022/028884
Other languages
French (fr)
Japanese (ja)
Inventor
悟 梁池
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/028884 priority Critical patent/WO2024023958A1/en
Publication of WO2024023958A1 publication Critical patent/WO2024023958A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates

Definitions

  • the present disclosure relates to a heat exchanger and a refrigeration cycle device including a stacked header.
  • Patent Document 1 includes a plurality of heat exchange sections having a plurality of heat exchanger tubes provided in a plurality of stages in a direction perpendicular to the air flow direction, and one end side of each of the plurality of heat exchange sections is A heat exchanger connected with one header is disclosed.
  • the refrigerant flowing through the heat exchanger tubes of one heat exchange section flows into a header, and from the header flows into the heat exchanger tubes of another heat exchange section.
  • the refrigerant that enters a gas-liquid two-phase state in one heat exchange section and flows into the header is divided into a liquid-rich refrigerant with a high liquid phase ratio and a gas-rich refrigerant with a high gas phase ratio. No consideration was given to sufficient separation.
  • the heat exchange efficiency in other heat exchange parts located downstream of the flow of refrigerant with respect to one heat exchange part differs depending on whether the refrigerant is in a liquid state or a gas state.
  • the present disclosure was made against the background of the above-mentioned problems, and by separating the refrigerant into a liquid-rich refrigerant and a gas-rich refrigerant using a laminated header, it is possible to efficiently exchange heat between air and refrigerant.
  • the purpose of the present invention is to provide a heat exchanger and a refrigeration cycle device that can improve heat transfer performance.
  • the heat exchanger includes a first heat exchange section, a second heat exchange section disposed in parallel with the first heat exchange section in a first direction that is a direction in which air flows, and a second heat exchange section disposed in parallel with the first heat exchange section; A laminated header that connects the first heat exchange part and the second heat exchange part and allows a refrigerant to flow between the first heat exchange part and the second heat exchange part, the first heat exchange part having a laminated type header.
  • a liquid header disposed at a distance from the mold header; and a liquid header extending along a second direction that is directed from the liquid header to the laminated header and intersecting the first direction, the first end being connected to the liquid header.
  • first heat exchanger tube having a second end connected to the laminated header, the second heat exchanger having a gas header spaced apart from the laminated header, and a gas header extending along the second direction.
  • a second heat exchanger tube having a first end connected to the gas header and a second end connected to the laminated header, the laminated header having a heat exchanger tube through which the first heat exchanger tube and the second heat exchanger tube penetrate.
  • the first plate has a first opening that penetrates the first plate in the second direction and forms a part of the flow path, and a first plate that is wider than the first opening.
  • a second opening located on the upstream side of the air flow and penetrating the first plate in the second direction to form a part of the flow path; and a second opening provided between the first opening and the second opening.
  • the second plate passes through the second plate in the second direction, and is arranged to overlap the first opening, the second opening, and the obstruction to form a part of the flow path. It has a first communicating hole.
  • the heat exchanger includes a first heat exchange section, a second heat exchange section disposed in parallel with the first heat exchange section in a first direction that is a direction in which air flows, and a second heat exchange section disposed in parallel with the first heat exchange section; A laminated header that connects the first heat exchange part and the second heat exchange part and allows a refrigerant to flow between the first heat exchange part and the second heat exchange part, the first heat exchange part having a laminated type header.
  • a liquid header disposed at a distance from the mold header; and a liquid header extending along a second direction that is directed from the liquid header to the laminated header and intersecting the first direction, the first end being connected to the liquid header.
  • first heat exchanger tube having a second end connected to the laminated header, the second heat exchanger having a gas header spaced apart from the laminated header, and a gas header extending along the second direction.
  • a second heat exchanger tube having a first end connected to the gas header and a second end connected to the laminated header, the laminated header having a heat exchanger tube through which the first heat exchanger tube and the second heat exchanger tube penetrate.
  • the end plate forms a flow path for circulating a refrigerant between the first heat exchanger tube and the second heat exchanger tube, and the first plate penetrates the first plate in the second direction to form a part of the flow path.
  • a first opening that forms a flow path a second opening that is located upstream of the first opening in the air flow, penetrates the first plate in the second direction, and forms a part of the flow path; an obstruction provided between the first opening and the second opening; the end plate is recessed in the second direction; the end plate is recessed in the second direction; It has a recessed part that is placed overlapping the part and forms part of the flow path.
  • a refrigeration cycle device includes a compressor that compresses a refrigerant, a radiator that radiates heat from the refrigerant flowing out from the compressor, an expansion mechanism that reduces the pressure of the refrigerant that flows out from the radiator, and a radiator that reduces the pressure of the refrigerant that flows out from the expansion mechanism. It includes an evaporator for evaporating air and a blower for sending air to the evaporator, and the evaporator is the heat exchanger described above.
  • heat exchange between air and the refrigerant can be efficiently performed by separating the refrigerant into a liquid-rich refrigerant and a gas-rich refrigerant using the laminated header. Therefore, the heat transfer performance of the heat exchanger can be improved.
  • FIG. 1 is a schematic configuration diagram of a refrigeration cycle device 100 according to Embodiment 1.
  • FIG. 1 is a plan view of a heat exchanger 1 according to Embodiment 1.
  • FIG. 2 is a schematic cross-sectional view of the first heat exchange section 10 and the second heat exchange section 20 of the heat exchanger 1 according to the first embodiment.
  • FIG. 3 is a diagram illustrating the configuration of a stacked header 3 according to the first embodiment.
  • FIG. 3 is a developed view of the laminated header 3 according to the first embodiment.
  • FIG. 3 is a schematic exploded perspective view of the laminated header 3 according to the first embodiment.
  • FIG. 3 is a diagram illustrating the configuration of a stacked header 3A according to a first modification of the first embodiment.
  • FIG. 7 is a diagram illustrating the configuration of a laminated header 3B according to a second modification of the first embodiment.
  • FIG. 7 is a diagram illustrating the configuration of a stacked header 3C according to a third modification of the first embodiment.
  • FIG. 3 is a diagram illustrating the configuration of a stacked header 3D according to a second embodiment.
  • FIG. 3 is a developed view of a stacked header 3D according to a second embodiment.
  • FIG. 7 is a diagram illustrating the configuration of a stacked header 3E according to a first modification of the second embodiment.
  • FIG. 7 is a developed view of a stacked header 3E according to a second modification of the second embodiment.
  • FIG. 7 is a diagram illustrating the configuration of a stacked header 3F according to a second modification of the second embodiment.
  • FIG. 7 is a diagram illustrating the configuration of a laminated header 3G according to a third modification of the second embodiment.
  • FIG. 3 is a plan view of a heat exchanger 1 according to a third embodiment.
  • FIG. 3 is a schematic cross-sectional view of a first heat exchange section 10 and a second heat exchange section 20 of a heat exchanger 1 according to a third embodiment.
  • FIG. 7 is a diagram illustrating the configuration of a stacked header 3D according to Embodiment 3.
  • FIG. 7 is a diagram illustrating the configuration of a laminated header 3H according to Modification 1 of Embodiment 3.
  • FIG. 7 is a diagram illustrating the configuration of a stacked header 3I according to a second modification of the third embodiment.
  • FIG. 7 is a diagram illustrating the configuration of a stacked header 3J according to a third modification of the third embodiment.
  • FIG. 1 is a schematic configuration diagram of a refrigeration cycle device 100 according to the first embodiment.
  • the refrigeration cycle device 100 of this embodiment includes a compressor 101, a radiator 102, an expansion mechanism 103, an evaporator 104, a blower 106, and a blower 107.
  • Compressor 101, radiator 102, expansion mechanism 103, and evaporator 104 are connected by refrigerant piping 105, thereby forming a refrigerant circuit in which refrigerant circulates.
  • the compressor 101 is a fluid machine that sucks in low-pressure gas refrigerant, compresses it, and discharges it as high-pressure gas refrigerant.
  • the compressor 101 is, for example, an inverter-driven compressor whose operating frequency can be adjusted.
  • the radiator 102 exchanges heat between the refrigerant flowing inside the heat transfer tube and another fluid, and condenses and liquefies the refrigerant.
  • the blower 106 supplies air as a heat exchange fluid to the radiator 102 .
  • the expansion mechanism 103 is, for example, an electronic expansion valve whose opening degree can be controlled.
  • the expansion mechanism 103 reduces the pressure of the refrigerant flowing out from the radiator 102 and expands it.
  • the expansion mechanism 103 may be a temperature-sensitive expansion valve, or a capillary tube may be provided instead of the expansion mechanism 103.
  • the evaporator 104 exchanges heat between the refrigerant flowing inside the heat transfer tube and another fluid, and evaporates and gasifies the refrigerant.
  • the blower 107 supplies air as a heat exchange fluid to the evaporator 104 .
  • the operation of the refrigeration cycle device 100 of this embodiment will be explained based on the flow of refrigerant circulating in the refrigerant circuit.
  • the compressor 101 compresses the refrigerant, converts it into a high-temperature, high-pressure gas state, and discharges the refrigerant.
  • the gas refrigerant discharged by the compressor 101 flows into the radiator 102 through the refrigerant pipe 105.
  • the radiator 102 the refrigerant exchanges heat with other fluids and is condensed and liquefied. At this time, the refrigerant radiates heat to the other fluid, thereby heating the other fluid.
  • the refrigerant condensed and liquefied in the radiator 102 passes through the expansion mechanism 103.
  • the expansion mechanism 103 reduces the pressure of the refrigerant.
  • the refrigerant whose pressure has been reduced by the expansion mechanism 103 flows into the evaporator 104 .
  • the refrigerant exchanges heat with other fluids and evaporates into gas.
  • the other fluid is cooled by the refrigerant absorbing heat from the other fluid.
  • the refrigerant evaporated and gasified in the evaporator 104 is sucked into the compressor 101 again.
  • the refrigeration cycle device 100 is, for example, an air conditioner that heats or cools a room, a refrigeration device that cools a freezer compartment such as a warehouse, a showcase, or a refrigerator, or a water heater that heats water in a tank.
  • the heat exchanger 1 described later is employed as either or both of the radiator 102 and the evaporator 104. In each embodiment and each modification shown in this disclosure, a case will be described in which the heat exchanger 1 is employed as the evaporator 104.
  • FIG. 2 is a plan view of the heat exchanger 1 according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view of the first heat exchange section 10 and the second heat exchange section 20 of the heat exchanger 1 according to the first embodiment.
  • the first direction X is the direction in which air flows.
  • the first direction X is the direction from the bottom to the top of the page.
  • the second direction Y is a direction orthogonal to the first direction X, and is a direction in which the first heat exchanger tube 11 and the second heat exchanger tube 21 head from the liquid header 12 and the gas header 22 toward the laminated header 3.
  • the direction from left to right in the paper is the second direction Y.
  • the third direction Z is a direction perpendicular to the first direction X and the second direction Y, and in this embodiment is the direction of gravity.
  • the third direction Z is the direction from the front to the back of the page.
  • the forward directions of the first direction X, the second direction Y, and the third direction Z are indicated by the directions pointed by the arrows.
  • the forward directions of the first direction X, the second direction Y, and the third direction Z are simply referred to as the first direction X, the second direction Y, and the third direction Z.
  • the opposite directions are respectively referred to as a first reverse direction, a second reverse direction, and a third reverse direction.
  • FIG. 3 shows cross sections of the first heat exchange section 10 and the second heat exchange section 20 along the second direction Y and the third direction Z, arranged one above the other.
  • the flow of refrigerant is shown by solid line arrows, and the flow of air is shown by broken line arrows.
  • the heat exchanger 1 includes a first heat exchange section 10, a second heat exchange section 20, and a laminated header 3.
  • the first heat exchange section 10 includes a plurality of first heat exchanger tubes 11 and a liquid header 12.
  • the second heat exchange section 20 includes a plurality of second heat exchanger tubes 21 and a gas header 22.
  • Each of the first heat exchanger tubes 11 has a first end 11a and a second end 11b. The first end 11a is connected to the liquid header 12, and the second end 11b is connected to the laminated header 3.
  • Each of the second heat exchanger tubes 21 has a first end 21a and a second end 21b. The first end 21a is connected to the gas header 22, and the second end 21b is connected to the laminated header 3.
  • the laminated header 3 connects the first heat exchange section 10 and the second heat exchange section 20.
  • the refrigerant passes through the laminated header 3 and flows between the first heat exchange section 10 and the second heat exchange section 20.
  • the laminated header 3 is illustrated for the purpose of showing the position of the laminated header 3, and the structure of the laminated header 3 will be explained from FIG. 4 onwards.
  • the second heat exchange section 20 is arranged upstream of the first heat exchange section 10 in the first direction X in which the air flows. Air is sent to the heat exchanger 1 from the blower 107 (see FIG. 1). As shown in FIGS. 2 and 3, the first heat exchanger tube 11 and the second heat exchanger tube 21 extend in the second direction Y.
  • the first heat exchanger tube 11 and the second heat exchanger tube 21 are, for example, flat tubes.
  • the flat tube may be formed by bending one or more plates multiple times.
  • the refrigerant branches into a plurality of channels formed inside the flat tube and flows in the second direction Y or in the opposite direction to the second direction.
  • the flat surfaces of the first heat exchanger tubes 11 located adjacent to each other in the third direction Z are parallel to each other and are arranged in opposite directions
  • the flat surfaces of the second heat exchanger tubes 21 located adjacent to each other in the third direction Z are parallel to each other and are arranged in opposite directions.
  • the first heat exchanger tube 11 and the second heat exchanger tube 21 are not limited to flat tubes, but may be circular tubes.
  • Each of the first heat exchange section 10 and the second heat exchange section 20 has a plurality of plate-shaped fins 2.
  • the first heat exchanger tube 11 passes through a plurality of plate-shaped fins 2 that the first heat exchanger 10 has.
  • the second heat exchanger tube 21 passes through the plurality of plate-shaped fins 2 that the second heat exchange section 20 has.
  • the plurality of fins 2 are provided at intervals between the liquid header 12 and the laminated header 3 and between the gas header 22 and the laminated header 3 so that the flat plate surfaces are along the first direction X and the third direction Z.
  • the first heat exchange section 10 and the second heat exchange section 20 may have a configuration in which they share a fin. good.
  • a plurality of fins 2 thermally connected to both the first heat exchanger tube 11 and the second heat exchanger tube 21 are provided.
  • the first heat exchanger tube 11 and the second heat exchanger tube 21 can be configured to penetrate the flat plate surface of the fin 2 along the first direction X.
  • the refrigerant flows through the first heat exchange section 10, then flows through the second heat exchange section 20, and flows out from the heat exchanger 1. More specifically, the refrigerant flows from the liquid header 12 into the plurality of first heat exchanger tubes 11 , passes through the plurality of first heat exchanger tubes 11 , and flows into the laminated header 3 . The refrigerant that has flowed into the laminated header 3 flows in the opposite direction to the first direction, and then flows into the plurality of second heat exchanger tubes 21 . The refrigerant that has flowed into the plurality of second heat exchanger tubes 21 passes through the gas header 22 and flows out from the second heat exchange section 20 .
  • the refrigerant flowing from the liquid header 12 toward the laminated header 3 flows from the laminated header 3 to the gas header 22.
  • the air flows downstream of the refrigerant flowing towards it.
  • the flow of refrigerant in the laminated header 3 will be described later.
  • FIG. 4 is a diagram illustrating the configuration of the laminated header 3 according to the first embodiment.
  • FIG. 4 shows a cross section of the first heat exchange section 10, the second heat exchange section 20, and the laminated header 3 taken along the line AA shown in FIG.
  • the flow path 360 of the laminated header 3 is shown in a dotted pattern for easy visual recognition, and the hatching of each plate constituting the laminated header 3 is omitted.
  • FIG. 5 is a developed view of the laminated header 3 according to the first embodiment.
  • FIG. 6 is a schematic exploded perspective view of the laminated header 3 according to the first embodiment.
  • each laminated header the first heat exchange part 10, the second heat exchange part 20, and the position of each laminated header at a position corresponding to line AA of each laminated header are shown. A cross section is shown.
  • the flow path 360 of each laminated header is shown in a dot pattern to make it easier to see, and the hatching of each plate constituting the laminated header is omitted. .
  • the laminated header 3 in this embodiment includes a heat exchanger tube side plate 31, a first plate 33, a second plate 34, and an end plate 32.
  • the heat exchanger tube side plate 31 constitutes the end portion of the laminated header 3 on the heat exchanger tube side.
  • the end plate 32 constitutes the end of the laminated header 3 on the second direction side.
  • a first plate 33 and a second plate 34 are provided between the heat exchanger tube side plate 31 and the end plate 32.
  • Each plate of the laminated header 3 makes surface contact with an adjacent plate.
  • the heat exchanger tube side plate 31, the first plate 33, the second plate 34, and the end plate 32 are arranged along the second direction Y.
  • the first heat exchanger tube 11 and the second heat exchanger tube 21 penetrate the heat exchanger tube side plate 31.
  • the interior of the first heat exchanger tube 11 and the second heat exchanger tube 21 is divided by broken lines into an upwind area UWA, which is the upstream side of the air flow, and a leeward area DWA, which is the downstream side of the air flow. It shows. Note that, in the following description, the upstream side of the air flow may be referred to as the windward side, and the downstream side of the air flow may be referred to as the leeward side.
  • the heat exchanger tube side plate 31 has a plurality of heat exchanger tube insertion ports 31a and a plurality of heat exchanger tube insertion ports 31b.
  • the plurality of heat exchanger tube insertion ports 31a are provided along the third direction Z at intervals from each other.
  • the plurality of heat exchanger tube insertion ports 31b are provided along the third direction Z at intervals from each other.
  • Each of the plurality of heat exchanger tube insertion ports 31a and the plurality of heat exchanger tube insertion ports 31b penetrates the heat exchanger tube side plate 31 in the second direction Y.
  • a heat exchanger tube arranged on the upstream side of the air flow is inserted into the heat exchanger tube insertion port 31b, and a heat exchanger tube arranged on the downstream side of the air flow is inserted into the heat exchanger tube insertion port 31a.
  • one second heat exchanger tube 21 is inserted into one heat exchanger tube insertion port 31b, and one first heat exchanger tube 11 is inserted into one heat exchanger tube insertion port 31a.
  • the first plate 33 has a plurality of first openings 331 and a plurality of second openings 332.
  • the plurality of first openings 331 are provided at intervals along the third direction Z.
  • the plurality of second openings 332 are provided at intervals along the third direction Z.
  • Each of the plurality of first openings and the plurality of second openings 332 penetrates the first plate 33 in the second direction Y.
  • the second end of the heat exchanger tube disposed on the upstream side of the air flow is inserted into the second opening 332, and the second end of the heat exchanger tube disposed on the downstream side of the air flow is inserted into the first opening 331. inserted into.
  • the second end 21b of one second heat exchanger tube 21 is inserted into one second opening 332, and the second end of one first heat exchanger tube 11 is inserted into one first opening 331. Section 11b is inserted.
  • a blocking portion 333 is provided between the first opening 331 and the second opening 332 that are adjacent to each other in the first direction X.
  • the outer size of the first opening 331 is larger than the outer size of the second end 11b of the first heat exchanger tube 11, and the outer size of the second opening 332 is larger than the outer size of the second end 11b of the second heat exchanger tube 21. It is larger than the external size of the second end portion 21b.
  • the outer shape of the opening refers to the shape of the edge of the opening when the opening is viewed in the second direction Y or in the opposite direction to the second direction.
  • the outer shape of the second end of the heat exchanger tube refers to the shape of the outer edge when the second end is viewed in the second direction Y or in the opposite direction to the second direction.
  • the second plate 34 has a plurality of first communication holes 341.
  • the plurality of first communication holes 341 are provided at intervals along the third direction Z.
  • Each of the plurality of first communication holes 341 penetrates the second plate 34 in the second direction Y.
  • the first communication hole 341 overlaps with the first opening 331, the second opening 332, and the obstructing part 333 of the first plate 33, which are oppositely adjacent in the second direction.
  • one first communication hole 341 faces one first opening 331 , one second opening 332 , and one obstruction portion 333 .
  • the end plate 32 is arranged adjacent to the second plate 34 in the second direction Y.
  • the end plate 32 has a flat plate shape.
  • the end surface 32a of the end plate 32 on the second direction Y side is the end of the laminated header 3 on the second direction Y side.
  • one second opening 332 and one first opening 331 are lined up along the first direction
  • One first communication hole 341 of the two plates forms a flow path 360 through which the refrigerant flows.
  • the end plate 32 becomes a wall surface on the second direction Y side that forms the flow path 360.
  • a surface of the first plate 33 where the obstruction portion 333 contacts the first opening 331, the second opening 332, and the first communication hole 341 becomes a part of the wall surface forming the flow path 360.
  • the flow of refrigerant in the laminated header 3 according to this embodiment will be described with reference to FIG. 4.
  • the refrigerant that flows into the first heat exchange section 10 from the liquid header 12 (see FIG. 3) and flows through the first heat exchanger tubes 11 in the second direction Y flows from the second end 11b of the first heat exchanger tubes 11 to the laminated header. 3.
  • the refrigerant flowing out from the second end 11b of the first heat exchanger tube 11 flows into the first opening 331 of the first plate 33.
  • the refrigerant that has flowed into the first opening 331 flows in the second direction Y and flows into the first communication hole 341 of the second plate 34 .
  • the refrigerant flowing into the first communication hole 341 flows in the opposite direction to the first direction.
  • the refrigerant flowing in the opposite direction to the first direction flows in the opposite direction to the flow of air. That is, the refrigerant and air flow in countercurrents to each other.
  • the refrigerant flows in the first communication hole 341 in the opposite direction in the first direction, and then flows in the opposite direction in the second direction.
  • the refrigerant that has flowed into the laminated header 3 in the second direction Y is turned around at the first communication hole 341 and flows in the opposite direction in the second direction.
  • the extra-tubular heat transfer coefficient is high on the upstream side of the air flow, and the extra-tubular heat transfer coefficient is low on the downstream side of the air flow.
  • the leading edge effect refers to the effect that the heat transfer coefficient is highest at the portion of the heat exchanger tube where air first collides.
  • the extra-tube heat transfer coefficient refers to the heat transfer coefficient when the refrigerant flowing through the heat exchanger tube exchanges heat with air. Normally, in an evaporator, the refrigerant gradually evaporates as it flows through the heat exchanger tubes, so that the phase changes from a gas-liquid two-phase refrigerant to a single-phase gas inside the heat exchanger tubes.
  • the external heat transfer coefficient is high on the upstream side of the air flow, so the refrigerant flowing on the windward side evaporates more easily than the refrigerant flowing on the leeward side.
  • a gas single-phase refrigerant has a lower heat transfer coefficient than a gas-liquid two-phase refrigerant, so if the gas single-phase refrigerant flows on the windward side, where the heat transfer coefficient outside the tube is high, the heat exchanger heats up. Replacement performance will deteriorate. In other words, when the gas-liquid two-phase and liquid single-phase refrigerants flow on the windward side inside the heat exchanger tube, the heat exchange performance of the heat exchanger improves.
  • the portion located most upwind has the highest extra-tube heat transfer coefficient, and the extra-tube heat transfer coefficient decreases toward the leeward. Furthermore, due to the leading edge effect, the extra-tube heat transfer coefficient of the portion of the first heat exchanger tube 11 located in the upwind area UWA is higher than the extra-tube heat transfer coefficient of the portion of the second heat exchanger tube 21 located in the leeward area DWA. expensive.
  • the structure of the diagram showing the extra-tubular heat transfer coefficient is the same as the diagram showing the extra-tubular heat transfer coefficient in FIG. 4. Therefore, description of the extratubular heat transfer coefficient in the figures after FIG. 4 will be omitted.
  • the refrigerant flowing in the second direction Y inside the first heat exchanger tube 11 distributes gas-rich refrigerant in the upwind area UWA as it approaches the stacked header 3, and the refrigerant in the leeward area A liquid-rich refrigerant will be distributed in the DWA.
  • the first opening of the first plate 33 is opened from the second end 11b. Refrigerant flows into 331.
  • the liquid-rich refrigerant that has flowed into the first opening 331 flows into the first communication hole 341 of the second plate 34 and flows in the opposite direction to the first direction, the liquid-rich refrigerant flows toward the end plate 32 due to the action of centrifugal force. flows.
  • the gas-rich refrigerant that has flowed into the first opening 331 flows on the obstruction portion 333 side.
  • the liquid-rich refrigerant refers to a refrigerant with a high liquid phase ratio
  • the gas-rich refrigerant refers to a refrigerant with a high gas phase ratio.
  • the refrigerant changes its flow direction to the second opposite direction and flows into the second opening 332 of the first plate 33.
  • the refrigerant flowing into the second opening 332 flows in the opposite second direction and flows into the second end 21b of the second heat exchanger tube 21.
  • the liquid-rich refrigerant that has flowed on the end plate 32 side of the first communication hole 341 flows on the windward side of the second opening 332 and flows into the windward region UWA of the second heat exchanger tube 21 .
  • the gas-rich refrigerant that has flowed on the obstructing portion 333 side of the first communication hole 341 flows on the leeward side of the second opening 332, that is, on the obstructing portion 333 side, and flows into the leeward region DWA of the second heat exchanger tube 21.
  • a flow path 360 is formed in the laminated header 3 from the first opening 331 to the second opening 332 via the first communication hole 341.
  • a blocking portion 333 is provided between the second opening portion 332 and the second opening portion 332 . Therefore, the cross-sectional shape of the flow path 360 along the first direction X and the second direction Y is a U-shape having two right-angled corners, or an arch shape. More specifically, the wall surface of the obstructing portion 333 that extends substantially along the second direction Y causes the refrigerant flowing into the first opening 331 to move straight along the second direction Y.
  • the end face of the obstruction portion 333 on the second direction Y side changes the flow direction of the refrigerant from the second direction Y to the opposite direction to the first direction.
  • the refrigerant that has flowed into the second heat exchange section 20 from the second end 21 b of the second heat exchanger tube 21 flows through the second heat exchanger tube 21 in the opposite second direction and flows out from the laminated header 3 .
  • the refrigerant flowing out from the laminated header 3 flows through the second heat exchanger tube 21 in the second opposite direction, passes through the gas header 22 (see FIG. 3), and flows out from the second heat exchange section 20. Note that the refrigerant flows out from the heat exchanger 1 by flowing out from the second heat exchange section 20.
  • the second plate 34 is arranged between the first plate 33 and the end plate 32, and the external size of the first opening 331 of the first plate 33 is , the second end 11b of the first heat exchanger tube 11 is inserted into the first opening 331 of the first plate 33, and the second end 11b of the first heat exchanger tube 11 is inserted into the first opening 331 of the first plate 33.
  • the external size of the second opening 332 of 33 is larger than the external size of the second end 21b of the second heat exchanger tube 21, and the second end 21b of the second heat exchanger tube 21 is It is inserted into the second opening 332.
  • the first heat exchange section 10 is located downstream of the second heat exchange section 20 in the air flow.
  • the refrigerant that has become gas-rich while flowing from the liquid header 12 toward the laminated header 3 flows into the first opening 331 of the first plate 33 on the side of the obstruction portion 333 .
  • the liquid-rich refrigerant flows into the leeward side of the first opening 331 of the first plate 33 .
  • the centrifugal force acts on the refrigerant flowing through the flow path 360 of the laminated header 3 due to the obstruction portion 333 of the first plate 33 . Therefore, the liquid-rich refrigerant flowing through the flow path 360 flows along the wall surface on the end plate 32 side and the wall surface on the windward side of the second opening 332 of the first plate 33, and It becomes easier to flow into the upper area UWA.
  • the laminated header 3 allows liquid-rich refrigerant to easily flow into the upwind area UWA of the second heat exchanger tube 21. That is, the liquid-rich refrigerant flows in the opposite direction to the second direction through the upwind region UWA of the second heat exchanger tube 21 where the extra-tube heat transfer coefficient is high, and the heat exchange performance of the heat exchanger 1 is improved.
  • FIG. 7 is a diagram illustrating the configuration of a stacked header 3A according to Modification 1 of Embodiment 1.
  • the only difference between this modification and the first embodiment is the shape of the obstructing portion of the first plate. Since the other configurations are the same as those in Embodiment 1, their description will be omitted here.
  • the obstructing portion 333-1 of the first plate 33-1 of the laminated header 3A of Modification 1 has a tip end face in the second direction Y that is curved in the second direction Y. It has become. Therefore, the surface of the obstruction portion 333-1 that is in contact with the first opening 331-1 of the first plate 33-1, that is, a part of the wall surface forming the flow path 360, is oriented in the opposite direction in the first direction and in the second direction. It is curved in direction Y. Further, the surface of the obstruction portion 333-1 in contact with the second opening 332-1 of the first plate 33-1, that is, a part of the wall surface forming the flow path 360 is It is curved towards. In other words, in the cross-sectional shape of the flow path 360 of this modification along the first direction X and the second direction Y, the U-shaped or arch-shaped portion does not have two right-angled corners.
  • the liquid-rich refrigerant that has flowed into the flow path 360 from the leeward region DWA of the first heat exchanger tube 11 is caused by centrifugal force to cause damage to the wall surface on the end plate 32 side and the second opening 332-1 of the first plate 33-2.
  • the heat exchanger flows along the windward wall surface of the heat exchanger tube 21 and easily flows into the windward region UWA of the second heat exchanger tube 21 . Therefore, the liquid-rich refrigerant flows in the opposite second direction through the upwind region UWA of the second heat exchanger tube 21 where the extra-tube heat transfer coefficient is high, and the heat exchange performance of the heat exchanger 1 is improved.
  • FIG. 8 is a diagram illustrating the configuration of a stacked header 3B according to a second modification of the first embodiment.
  • the only difference between this modification and Modification 1 of Embodiment 1 is the shape of the end plate.
  • the other configurations are the same as those in Modification 1 of Embodiment 1, so description thereof will be omitted here.
  • the end plate 32-1 of the laminated header 3B of Modification 2 has a recess 321 that is curved in the second direction Y.
  • the recess 321 overlaps the first communication hole 341 of the second plate 34 in the second direction Y, and forms a part of the flow path 360.
  • the end surface 32a of the end plate 32-1 is curved and convex in the second direction Y. That is, the end surface 32a of the end plate 32-1 is convex in the second direction Y, like the wall surface of the recess 321 on the second direction Y side.
  • the end plate 32-1 is recessed in a curved shape in the second direction Y, and is arranged to overlap the first communication hole 341 to form a part of the flow path 360. It has a recess 321.
  • the cross-sectional area of the flow path 360 is increased by the recess 321, and the refrigerant can easily flow between the first heat exchanger tube 11 and the second heat exchanger tube 21.
  • the refrigerant flowing in the second direction Y through the flow path 360 collides with the opposing surface perpendicularly, the generation of centrifugal force is suppressed.
  • the recess 321 since the recess 321 has a curved shape, the refrigerant flowing from the first heat exchanger tube 11 does not collide perpendicularly with the end plate 32-1, but flows into the first heat exchanger along the curved surface of the recess 321. It tends to flow in the opposite direction. Therefore, centrifugal force is more likely to occur.
  • the liquid-rich refrigerant that has flowed into the flow path 360 from the leeward region DWA of the first heat transfer tube 11 easily flows through the recess 321 of the end plate 32-1 due to the centrifugal force. Therefore, the liquid-rich refrigerant flows along the windward wall surface of the second opening 332 and easily flows into the windward region UWA of the second heat exchanger tube 21. Therefore, the liquid-rich refrigerant flows in the opposite second direction through the upwind region UWA of the second heat exchanger tube 21 where the extra-tube heat transfer coefficient is high, and the heat exchange performance of the heat exchanger 1 is improved.
  • the first plate 33-1 of Modification 1 is shown as the first plate.
  • the first plate may be the first plate 33 of the first embodiment.
  • the laminated header having the first plate 33-1 and the end plate 32-1 has a stronger centrifugal force on the refrigerant flowing through the flow path 360 than the laminated header having the first plate 33 and the end plate 32-1. act.
  • the end surface 32a opposite to the end surface where the recess 321 is provided is curved and convex in the second direction Y.
  • the entire end plate 32-1 is bent by press working, thereby forming the recess 321 and the convex end surface 32a.
  • FIG. 9 is a diagram illustrating the configuration of a stacked header 3C according to the third modification of the first embodiment.
  • the differences between this modification and the second modification of the first embodiment are that the laminated header 3C does not have the second plate 34, and the end plate 32-1 has a recess 321. It is a point.
  • the configurations described in Embodiment 1, Modification 1 of Embodiment 1, and Modification 2 of Embodiment 1 can be used, so the description will be omitted here.
  • the first plate 33-1 of Modification 1 is shown as the first plate.
  • the first plate may be the first plate 33 of the first embodiment.
  • the laminated header 3C of this modification includes a heat exchanger tube side plate 31, a first plate 33, and an end plate 32-1.
  • the heat exchanger tube side plate 31, the first plate 33, and the end plate 32-1 are arranged.
  • the recess 321 of the end plate 32-1 replaces the first communication hole 341 of the second plate 34. That is, the end plate 32-1 replaces the second plate, and a flow path 360 similar to that of the laminated header 3B according to the second modification is formed in the laminated header 3C.
  • the stacked header 3C does not have a second plate
  • the refrigerant is separated into a liquid-rich refrigerant and a gas-rich refrigerant in the flow path 360, and the liquid-rich refrigerant has an extra-tube heat transfer coefficient. It can be made to flow into the windward area UWA of the second heat exchanger tube 21, which is high.
  • the manufacturing cost of the laminated header can be lower than the manufacturing cost of the laminated header according to the first embodiment and the first and second modified examples.
  • Embodiment 2 differs from Embodiment 1 and each modification of Embodiment 1 in the structure of the laminated header.
  • the other configurations are the same as those of the first embodiment and each modification of the first embodiment, so the description thereof will be omitted here.
  • FIG. 10 is a diagram illustrating the configuration of a stacked header 3D according to the second embodiment.
  • FIG. 11 is a developed view of the stacked header 3D according to the second embodiment.
  • the stacked header 3D includes a heat exchanger tube side plate 31, a second plate 34, a first plate 33-2, a third plate 35, and an end plate 32.
  • the heat exchanger tube side plate 31, the second plate 34, the first plate 33-2, the third plate 35, and the end plate 32 are arranged.
  • the configurations of the heat exchanger tube side plate 31 and the end plate 32 are the same as in the first embodiment.
  • the heat exchanger tube side plate 31 and the second plate 34 are arranged adjacent to each other.
  • the second end 11b of the first heat exchanger tube 11 and the second end 21b of the second heat exchanger tube 21 are inserted into the first communication hole 341 of the second plate 34. More specifically, the second end 11b of the first heat exchanger tube 11 is inserted into the leeward side of the first communication hole 341 of the second plate 34, and the second end 21b of the second heat exchanger tube 21 is inserted into the leeward side of the first communication hole 341 of the second plate 34. It is inserted into the windward side of the first communication hole 341 of the plate 34.
  • the first plate 33-2 is arranged adjacent to the second plate 34 in the second direction Y.
  • the first plate 33-2 has a plurality of first openings 331-2 and a plurality of second openings 332-2.
  • the configuration in which the first plate 33-2 is provided with the plurality of first openings 331-2 and the plurality of second openings 332-2 is different from the configuration in which the first plate 33 of the first embodiment is provided with the plurality of first openings 331 and the plurality of second openings 332-2. This is the same configuration as that in which the second opening 332 is provided.
  • a blocking portion 333-2 is provided between the first opening 331-2 and the second opening 332-2 that are adjacent to each other in the first direction X.
  • the external size of the first opening 331-2 is smaller than the external size of the second end 11b of the first heat exchanger tube 11, and the external size of the second opening 332-2 is smaller than the external size of the second end 11b of the first heat exchanger tube 11. It is smaller than the external size of the second end portion 21b of the heat tube 21.
  • a region of the second end portion 11b of the first heat exchanger tube 11 projected onto the first plate 33-2 is indicated by a dashed dotted line as a projection region 40.
  • a region in which the second end portion 21b of the second heat exchanger tube 21 is projected onto the first plate 33-2 is indicated by a dashed dotted line as a projection region 41. As shown in FIG.
  • the obstructing portion 333-2 of the first plate 33-2 is projected onto a projection area 40 where the upwind area UWA of the first heat exchanger tube 11 is projected and a projection area 41 where the leeward area DWA of the second heat exchanger tube 21 is projected.
  • one obstructing portion 333-2 is arranged across the projection area 40 of the first heat exchanger tube 11 and the projection area 41 of the second heat exchanger tube 21 that are lined up in the first direction X.
  • the first opening 331-2 of the first plate 33-2 is located in the projection area 40 in which the leeward area DWA of the first heat exchanger tube 11 is projected.
  • the second opening 332-2 of the first plate 33-2 is located in a projection area 41 in which the windward area UWA of the second heat exchanger tube 21 is projected.
  • the third plate 35 has a plurality of second communication holes 351.
  • the plurality of second communication holes 351 are provided at intervals along the third direction Z. Each of the plurality of second communication holes 351 penetrates the third plate 35 in the second direction Y.
  • the second communication hole 351 overlaps with the first opening 331-2, the second opening 332-2, and the obstruction portion 333-2 of the first plate 33-2, which are oppositely adjacent in the second direction. In other words, one second communication hole 351 faces one first opening 331, one second opening 332, and one obstructing portion 333-2.
  • the end plate 32 is arranged adjacent to the third plate 35 in the second direction Y.
  • the first communication hole 341 of the second plate 34, the first opening 331-2 and the second opening 332-2 of the first plate 33-2, and the second The communication hole 351 forms a flow path 360 through which the refrigerant flows.
  • the end plate 32 becomes a wall surface on the second direction Y side that forms the flow path 360.
  • the surface where the obstruction portion 333-2 of the first plate 33-2 contacts the first communication hole 341, the first opening 331-2, the second opening 332-2, and the second communication hole 351 is It becomes part of the wall surface forming the channel 360.
  • the refrigerant flowing in the opposite direction to the first direction passes through the first communication hole 341 and flows into the second end portion 21b of the second heat exchanger tube 21.
  • the refrigerant flowing in the second direction Y through the first communication hole 341 flows into the first opening 331-2 of the first plate 33-2, continues to flow in the second direction Y, and then flows into the second direction Y of the third plate 35.
  • the water flows into the communication hole 351 and flows in the opposite direction to the first direction.
  • the refrigerant flowing in the opposite direction to the first direction flows in the opposite direction to the flow of air. That is, the refrigerant and air flow in countercurrents to each other.
  • the refrigerant flowing into the second communication hole 351 flows in the opposite direction to the first direction, and then flows in the opposite direction to the second direction.
  • the refrigerant that has flowed into the stacked header 3D in the second direction Y is turned around at the second communication hole 351 and flows in the opposite direction in the second direction.
  • the liquid-rich refrigerant is distributed in the leeward area DWA of the first heat exchanger tube 11, and the gas-rich refrigerant is distributed in the upwind area UWA, and the second plate 34 is Refrigerant flows into the first communication hole 341 .
  • the liquid-rich refrigerant that has flowed into the first communication hole 341 flows in the second direction Y and flows into the first opening 331-2.
  • the gas-rich refrigerant that has flowed into the first communication hole 341 flows in the second direction Y, but collides with the obstruction portion 333-2 and changes its flow direction to the opposite direction to the first direction.
  • the liquid-rich refrigerant that has flowed into the first opening 331-2 flows directly in the second direction Y, and flows into the second communication hole 351 of the third plate 35.
  • the liquid-rich refrigerant that has flowed into the second communication hole 351 of the third plate 35 flows on the end plate 32 side due to the action of centrifugal force when flowing in the opposite direction to the first direction.
  • the liquid-rich refrigerant that has flowed on the end plate 32 side of the second communication hole 351 flows into the second opening 332-2 of the first plate 33-2.
  • the liquid-rich refrigerant that has flowed into the second opening 332-2 flows in the opposite second direction and flows into the first communication hole 341 of the second plate 34.
  • the liquid-rich refrigerant travels in the opposite second direction on the windward side of the first communication hole 341 and flows into the second end portion 21b of the second heat exchanger tube 21.
  • the liquid-rich refrigerant flows in the opposite direction in the second direction through the region of the first communication hole 341 that faces the upwind region UWA of the second heat exchanger tube 21, the upwind region UWA of the second heat exchanger tube 21 easy to flow into.
  • gas-rich refrigerant flows in the region of the first communication hole 341 facing the leeward region DWA of the second heat exchanger tube 21, liquid-rich refrigerant flows into the leeward region DWA of the second heat exchanger tube 21. It's hard to do.
  • the gas-rich refrigerant flowing in the first communication hole 341 in the opposite direction to the first direction flows into the second heat exchanger tube 21 from the second end 21b of the second heat exchanger tube 21.
  • the liquid-rich refrigerant that flows into the first communication hole 341 from the second opening 332-2 flows into the upwind area UWA of the second heat transfer tube 21. Therefore, the gas-rich refrigerant more easily flows into the leeward region DWA of the second heat exchanger tube 21 than the windward region UWA.
  • the liquid-rich refrigerant and the gas-rich refrigerant that have flowed into the second heat exchange section 20 from the second end 21b of the second heat exchanger tube 21 flow through the second heat exchanger tube 21 in the second direction opposite to the stacked header 3D. flows out from.
  • the refrigerant flowing out of the laminated header 3D flows through the second heat exchanger tube 21 in the second opposite direction, passes through the gas header 22 (see FIG. 3), and flows out from the second heat exchange section 20. Note that the refrigerant flows out from the heat exchanger 1 by flowing out from the second heat exchange section 20.
  • the second plate 34 is arranged between the heat exchanger tube side plate 31 and the first plate 33-2, and is arranged between the second end 11b of the first heat exchanger tube 11 and the The second end portion 21 b of the second heat exchanger tube 21 is inserted into the first communication hole 341 of the second plate 34 .
  • the second direction Y when the second end 11b of the first heat exchanger tube 11 and the second end 21b of the second heat exchanger tube 21 are projected onto the first plate 33-2, the second end of the first heat exchanger tube 11 A portion of the projection area 40 of the portion 11b and a portion of the projection area 41 of the second end portion 21b of the second heat exchanger tube 21 overlap the obstructing portion 333-2.
  • the gas-rich refrigerant flowing into the stacked header 3D collides with the obstruction portion 333-2 of the first plate 33-2, and moves the first communication hole 341 of the second plate 34 in the first direction. flows in the opposite direction.
  • the liquid-rich refrigerant flowing into the stacked header 3D flows in the second direction Y without colliding with the obstruction portion 333-2. Therefore, separation of the gas-rich refrigerant and the liquid-rich refrigerant is facilitated by the obstruction portion 333-2. Note that the size of the area where the projection area 40 and the obstruction part 333-2 overlap and the size of the area where the projection area 41 and the obstruction part 333-2 overlap are planned in the laminated header of the heat exchanger.
  • the stacked header 3D includes a third plate 35 provided between the first plate 33-2 and the end plate 32, and the third plate 35 35 in the second direction Y, and is arranged to overlap the first opening 331-2, the second opening 332-2, and the obstruction part 333-2, and forms a part of the flow path 360. It has a communication hole 351.
  • the liquid-rich refrigerant can flow through the first communication hole 341 of the second plate 34, the first opening 331-2 of the first plate 33-2, the second communication hole 351 of the third plate 35, and the first communication hole 341 of the second plate 34, the first opening 331-2 of the first plate 33-2, It flows through the second opening 332-2 of the first plate 33-2 and the first communication hole 341 of the second plate 34 in order.
  • the liquid-rich refrigerant easily flows into the upwind area UWA of the second heat exchanger tube 21 due to centrifugal force when flowing through each plate of the stacked header 3D.
  • the gas-rich refrigerant flowing in the opposite direction to the first communication hole 341 flows into the windward area UWA of the second heat exchanger tube 21 because the liquid-rich refrigerant flows into the windward area UWA of the second heat exchanger tube 21. It is easier to flow into the leeward region DWA of the second heat exchanger tube 21 than in the second heat exchanger tube 21 . Therefore, the liquid-rich refrigerant flows in the opposite second direction through the upwind region UWA of the second heat exchanger tube 21 where the extra-tube heat transfer coefficient is high, and the heat exchange performance of the heat exchanger 1 is improved.
  • FIG. 12 is a diagram illustrating the configuration of a stacked header 3E according to the first modification of the second embodiment.
  • FIG. 13 is a developed view of a stacked header 3E according to a second modification of the second embodiment. The only difference between this modification and the second embodiment is the thickness of the third plate.
  • the other configurations are the same as those in Embodiment 2, so their description will be omitted here.
  • the thickness of the third plate 35-1 of the laminated header 3E of this modification is the same as that of the heat exchanger tube side plate 31, the first plate 33-2, the second plate 34, and the end plate 32. Thinner than each thickness.
  • the thickness of each plate refers to the length in the second direction Y.
  • the area (hereinafter referred to as , simply referred to as flow passage cross-sectional area SA2) is smaller than the area of the first communicating hole 341 of the second plate 34 in the flow passage cross-section SA1 (hereinafter simply referred to as flow passage cross-sectional area SA1).
  • the first Refrigerant flows into the communication hole 341 .
  • the pressure loss of the gas-rich refrigerant is greater than the pressure loss of the liquid-rich refrigerant.
  • a gas-rich refrigerant flows through the first communication hole 341, which has a larger flow path cross-sectional area SA1, than the second communication hole 351-1, which has a smaller flow path cross-sectional area SA2. flows easily. Since the gas-rich refrigerant flows through the first communication hole 341, the liquid-rich refrigerant easily flows through the second communication hole 351-1. Therefore, separation of the liquid-rich refrigerant and the gas-rich refrigerant in the flow path 360 is facilitated.
  • the third plate 35-1 has a different thickness from the other plates, but as shown in FIG. 13, the lengths of the third plate 35-1 in the first direction X and the third direction Z are different from the other plates. do not. Moreover, since the difference between the second embodiment and this modification is only the thickness of the third plate, the developed view of the laminated header 3D according to the second embodiment shown in FIG. 11 and the present modification shown in FIG. There is no difference in the developed view of the laminated header 3E.
  • the thickness of the third plate 35-1 is reduced to reduce the flow passage cross-sectional area SA2 of the second communication hole 351-1.
  • the length of the second communication hole in the third direction Z may be changed to reduce the passage cross-sectional area SA2 of the second communication hole.
  • liquid-rich refrigerant more easily flows into the windward region UWA of the second heat exchanger tube 21. Therefore, the liquid-rich refrigerant flows in the opposite second direction through the upwind region UWA of the second heat exchanger tube 21 where the extra-tube heat transfer coefficient is high, and the heat exchange performance of the heat exchanger 1 is improved.
  • FIG. 14 is a diagram illustrating the configuration of a stacked header 3F according to a second modification of the second embodiment.
  • the only difference between this modification and the first modification of the second embodiment is the shape of the first plate.
  • the other configurations are the same as those in Modification 1 of Embodiment 2, so description thereof will be omitted here.
  • the obstructing portion 333-3 of the first plate 33-3 of the laminated header 3F of this modification has a tip end face in the second direction Y that is curved in the second direction Y. It has become. Therefore, the surface of the obstruction portion 333-3 that is in contact with the first opening 331-3 of the first plate 33-3, that is, a part of the wall surface forming the flow path 360, is oriented in the opposite direction in the first direction and in the second direction. It is curved in direction Y. Further, the surface of the obstruction portion 333-3 in contact with the second opening 332-3 of the first plate 33-3, that is, a part of the wall surface forming the flow path 360 is It is curved towards. In other words, in the cross-sectional shape of the flow path 360 of this modification along the first direction X and the second direction Y, the U-shaped or arch-shaped portion does not have two right-angled corners.
  • the liquid-rich refrigerant that has flowed into the flow path 360 from the leeward region DWA of the first heat exchanger tube 11 is caused by centrifugal force to flow into the wall surface on the end plate 32 side and the second opening 332-3 of the first plate 33-3.
  • the heat exchanger flows along the windward wall surface and easily flows into the region of the first communication hole 341 of the second plate 34 facing the windward region UWA of the second heat exchanger tube 21 .
  • Gas-rich refrigerant flows in the opposite direction to the first direction into the region of the first communication hole 341 facing the leeward region DWA of the second heat exchanger tube 21 .
  • the liquid-rich refrigerant flows into the upwind area UWA of the second end portion 21b of the second heat exchanger tube 21 from the area of the first communication hole 341 facing the upwind area UWA of the second heat exchanger tube 21. It's easy to do. Therefore, the liquid-rich refrigerant flows in the opposite second direction through the upwind region UWA of the second heat exchanger tube 21 where the extra-tube heat transfer coefficient is high, and the heat exchange performance of the heat exchanger 1 is improved.
  • FIG. 15 is a diagram illustrating the configuration of a stacked header 3G according to a third modification of the second embodiment.
  • the differences between this modification and the second modification of the second embodiment are that the laminated header 3G does not have the third plate 35, and the end plate 32-1 has a recess 321. It is a point.
  • the end plate 32-1 has been described in the second modification of the first embodiment, so its description will be omitted here.
  • the configurations described in Embodiment 2, Modification 1 of Embodiment 2, and Modification 2 of Embodiment 2 can be used, so only the differences of this modification will be described. .
  • the laminated header 3G of this modification includes a heat exchanger tube side plate 31, a second plate 34, a first plate 33-3, and an end plate 32-1.
  • the heat exchanger tube side plate 31, the second plate 34, the first plate 33-3, and the end plate 32-1 are arranged.
  • the recess 321 of the end plate 32-1 replaces the second communication hole 351-1 of the third plate 35-1. That is, the end plate 32-1 replaces the third plate 35-1 to form the flow path 360 in the laminated header 3G.
  • the liquid-rich refrigerant flows along the windward wall surface of the second opening 332-3 of the first plate 33-3, and the liquid-rich refrigerant flows to the second plate facing the windward area UWA of the second heat exchanger tube 21. It becomes easier to flow into the area of the first communication hole 341 of No. 34. Furthermore, gas-rich refrigerant flows in the opposite direction to the first direction into the region of the first communication hole 341 facing the leeward region DWA of the second heat exchanger tube 21 . Therefore, the liquid-rich refrigerant flows into the upwind area UWA of the second end portion 21b of the second heat exchanger tube 21 from the area of the first communication hole 341 facing the upwind area UWA of the second heat exchanger tube 21. It's easy to do. Therefore, the liquid-rich refrigerant flows in the opposite second direction through the upwind region UWA of the second heat exchanger tube 21 where the extra-tube heat transfer coefficient is high, and the heat exchange performance of the heat exchanger 1 is improved.
  • the laminated header 3G of this modification does not include the third plate 35, manufacturing costs can be suppressed more than the laminated header according to the second embodiment and the first and second modifications of the second embodiment.
  • the first plate 33-3 of Modification 2 is shown as the first plate.
  • the first plate may be the first plate 33-2 of the second embodiment.
  • the laminated header having the first plate 33-3 and the end plate 32-1 has a stronger centrifugal force than the laminated header having the first plate 33-2 and the end plate 32-1 because of the refrigerant flowing through the flow path 360. Force acts.
  • Embodiment 3 differs from Embodiment 1, Embodiment 2, and each modification in the arrangement of the first heat exchange section 10 and the second heat exchange section 20. Descriptions of configurations similar to those of Embodiment 1, Embodiment 2, and each modification will be omitted or simplified.
  • FIG. 16 is a plan view of the heat exchanger 1 according to the third embodiment.
  • FIG. 17 is a schematic cross-sectional view of the first heat exchange section 10 and the second heat exchange section 20 of the heat exchanger 1 according to the third embodiment.
  • FIG. 17 shows cross sections of the first heat exchange section 10 and the second heat exchange section 20 along the second direction Y and the third direction Z, arranged vertically.
  • the first heat exchange section 10 is arranged upstream of the second heat exchange section 20 in the first direction X in which the air flows.
  • the first heat exchange section 10 and the second heat exchange section 20 are connected by the same laminated header 3D as in the second embodiment.
  • the refrigerant that has flowed into the first heat exchange section 10 from the liquid header 12 passes through the plurality of first heat exchanger tubes 11 and flows into the stacked header 3D.
  • the refrigerant that has flowed into the stacked header 3D flows in the first direction X, and then flows into the plurality of second heat exchanger tubes 21.
  • the refrigerant that has flowed into the plurality of second heat exchanger tubes 21 passes through the gas header 22 and flows out from the second heat exchange section 20 .
  • the refrigerant flowing from the liquid header 12 toward the laminated header 3D flows from the laminated header 3D to the gas header 22.
  • the refrigerant flows upwind from the refrigerant flowing towards it. The flow of refrigerant in the stacked header 3D will be described later.
  • FIG. 18 is a diagram illustrating the configuration of a stacked header 3D according to the third embodiment.
  • the stacked header 3D is the stacked header 3D of the second embodiment.
  • the first heat exchanger tube 11 disposed on the upstream side of the air flow is inserted into the heat exchanger tube insertion port 31b (see FIG. 11) of the heat exchanger tube side plate 31, and the first heat exchanger tube 11 is placed on the downstream side of the air flow.
  • the second heat exchanger tube 21 to be arranged is inserted into the heat exchanger tube insertion opening 31a (see FIG. 11) of the heat exchanger tube side plate 31.
  • the difference between the laminated header 3D of this embodiment and the laminated header 3D of Embodiment 2 is that in this embodiment, the first heat exchanger tube 11 is connected to the windward side of the laminated header 3D, and the first heat exchanger tube 11 is connected to the leeward side of the laminated header 3D. This is the point where the second heat exchanger tube 21 is connected.
  • the second end portion 11b of the first heat exchanger tube 11 inserted into the heat exchanger tube insertion port 31b is inserted into the windward side of the first communication hole 341 of the second plate 34.
  • the second end portion 21b of the second heat exchanger tube 21 inserted into the heat exchanger tube insertion port 31a is inserted into the leeward side of the first communication hole 341 of the second plate 34.
  • the external size of the first opening 331-2 is smaller than the external size of the second end 21b of the second heat transfer tube 21, and the external size of the second opening 332-2 is smaller than the external size of the second end 21b of the second heat transfer tube 21. It is smaller than the external size of the second end portion 11b of the heat tube 11.
  • a region of the second end portion 21b of the second heat exchanger tube 21 projected onto the first plate 33-2 is indicated by a dashed dotted line as a projection region 40.
  • a region where the second end portion 11b of the first heat exchanger tube 11 is projected onto the first plate 33-2 is indicated by a dashed dotted line as a projection region 41. As shown in FIG.
  • the obstructing portion 333-2 of the first plate 33-2 is projected onto a projection area 40 where the upwind area UWA of the second heat exchanger tube 21 is projected and a projection area 41 where the leeward area DWA of the first heat exchanger tube 11 is projected.
  • one obstructing portion 333-2 is arranged across the projection area 40 of the second heat exchanger tube 21 and the projection area 41 of the first heat exchanger tube 11 that are lined up in the first direction X.
  • the first opening 331-2 of the first plate 33-2 is located in the projection area 40 in which the leeward area DWA of the second heat exchanger tube 21 is projected.
  • the second opening 332-2 of the first plate 33-2 is located in a projection area 41 in which the windward area UWA of the first heat exchanger tube 11 is projected.
  • the flow of refrigerant in the stacked header 3D will be described with reference to FIG. 18.
  • the refrigerant flows from the liquid header 12 (see FIG. 17) into the first heat exchange section 10 and flows through the first heat exchanger tubes 11 in the second direction Y from the second end 11b of the first heat exchanger tubes 11 to the laminated header. Flow into 3D.
  • the refrigerant flowing out from the second end portion 11b of the first heat exchanger tube 11 flows into the first communication hole 341 of the second plate 34.
  • the refrigerant flowing into the first communication hole 341 branches into a first direction X and a second direction Y to flow.
  • the refrigerant flowing in the first direction X passes through the first communication hole 341 and flows into the second end portion 21b of the second heat exchanger tube 21.
  • the refrigerant flowing in the second direction Y through the first communication hole 341 flows into the second opening 332-2 of the first plate 33-2, continues to flow in the second direction Y, and then flows into the second opening 332-2 of the third plate 35.
  • the water flows into the communication hole 351 and flows in the first direction X.
  • the refrigerant flowing in the first direction X flows in parallel with the flow of air. That is, the refrigerant and air flow in parallel to each other.
  • the refrigerant flowing into the second communication hole 351 flows in the first direction X, and then flows in the opposite direction in the second direction.
  • the refrigerant that has flowed into the stacked header 3D in the second direction Y is turned around at the second communication hole 351 and flows in the opposite direction in the second direction.
  • the liquid-rich refrigerant is distributed in the leeward area DWA of the first heat exchanger tube 11, and the gas-rich refrigerant is distributed in the upwind area UWA, and the second plate 34 is Refrigerant flows into the first communication hole 341 .
  • the gas-rich refrigerant that has flowed into the first communication hole 341 flows in the second direction Y and flows into the second opening 332-2 of the first plate 33-2.
  • the liquid-rich refrigerant that has flowed into the first communication hole 341 flows in the second direction Y, but collides with the obstruction portion 333-2 and changes its flow direction to the first direction X.
  • the gas-rich refrigerant that has flowed into the second opening 332-2 flows directly in the second direction Y, and flows into the second communication hole 351 of the third plate 35.
  • the gas-rich refrigerant that has flowed into the second communication hole 351 of the third plate 35 flows in the first direction X, it flows on the end plate 32 side due to the action of centrifugal force.
  • the gas-rich refrigerant that has flowed on the end plate 32 side of the second communication hole 351 flows into the first opening 331-2 of the first plate 33-2.
  • the gas-rich refrigerant that has flowed into the first opening 331-2 flows in the opposite second direction and flows into the first communication hole 341 of the second plate 34.
  • the gas-rich refrigerant travels in the opposite second direction on the leeward side of the first communication hole 341 and flows into the second end portion 21b of the second heat exchanger tube 21.
  • the gas-rich refrigerant flows in the opposite direction in the second direction through the region of the first communication hole 341 facing the leeward region DWA of the second heat exchanger tube 21 , so it flows into the leeward region DWA of the second heat exchanger tube 21 .
  • Cheap since the liquid-rich refrigerant flows in the region of the first communication hole 341 facing the windward region UWA of the second heat exchanger tube 21, the gas-rich refrigerant flows into the windward region UWA of the second heat exchanger tube 21. is difficult to enter.
  • the liquid-rich refrigerant flowing in the first direction X through the first communication hole 341 flows into the second heat exchanger tube 21 from the second end 21b of the second heat exchanger tube 21.
  • the gas-rich refrigerant that flows into the first communication hole 341 from the first opening 331-2 flows into the leeward region DWA of the second heat transfer tube 21. Therefore, the liquid-rich refrigerant more easily flows into the upwind area UWA of the second heat transfer tube 21 than the leeward area DWA.
  • the liquid-rich refrigerant and the gas-rich refrigerant that have flowed into the second heat exchange section 20 from the second end 21b of the second heat exchanger tube 21 flow through the second heat exchanger tube 21 in the second direction opposite to the stacked header 3D. flows out from.
  • the refrigerant flowing out of the laminated header 3D flows through the second heat exchanger tube 21 in the second opposite direction, passes through the gas header 22 (see FIG. 17), and flows out from the second heat exchange section 20. Note that the refrigerant flows out from the heat exchanger 1 by flowing out from the second heat exchange section 20.
  • the second plate 34 is arranged between the heat exchanger tube side plate 31 and the first plate 33-2, and the second plate 34 is arranged between the heat exchanger tube side plate 31 and the first plate 33-2.
  • the second end 11b of the heat exchanger tube 11 and the second end 21b of the second heat exchanger tube 21 are inserted into the first communication hole 341 of the second plate 34.
  • the liquid-rich refrigerant flowing into the stacked header 3D collides with the obstruction portion 333-2 of the first plate 33-2, and the first communication hole 341 of the second plate 34 is moved in the first direction flows to
  • the gas-rich refrigerant flowing into the stacked header 3D flows in the second direction Y without colliding with the obstruction portion 333-2. Therefore, separation of the gas-rich refrigerant and the liquid-rich refrigerant is facilitated by the obstruction portion 333-2.
  • the stacked header 3D includes a third plate 35 provided between the first plate 33-2 and the end plate 32, and the third plate 35 35 in the second direction Y, and is arranged to overlap the first opening 331-2, the second opening 332-2, and the obstruction part 333-2, and forms a part of the flow path 360. It has a communication hole 351.
  • the gas-rich refrigerant can flow through the first communication hole 341 of the second plate 34, the second opening 332-2 of the first plate 33-2, the second communication hole 351 of the third plate 35, and the first
  • the water flows through the first opening 331-2 of the plate 33-2 and the first communication hole 341 of the second plate 34 in this order. Therefore, the gas-rich refrigerant easily flows into the leeward region DWA of the second heat exchanger tube 21 due to the centrifugal force when flowing through each plate of the laminated header 3D.
  • the liquid-rich refrigerant flowing through the first communication hole 341 in the first direction It is easy to flow into the windward area UWA of the second heat exchanger tube 21. Therefore, the liquid-rich refrigerant flows in the opposite second direction through the upwind region UWA of the second heat exchanger tube 21 where the extra-tube heat transfer coefficient is high, and the heat exchange performance of the heat exchanger 1 is improved.
  • FIG. 19 is a diagram illustrating the configuration of a stacked header 3H according to Modification 1 of Embodiment 3.
  • the only difference between this modification and the third embodiment is the thickness of the second plate.
  • the other configurations are the same as those in Embodiment 3, so their description will be omitted here.
  • the thickness of the second plate 34-1 of the laminated header 3H of this modification is the same as that of the heat exchanger tube side plate 31, the first plate 33-2, the third plate 35, and the end plate 32. Thinner than each thickness.
  • the thickness of each plate refers to the length in the second direction Y.
  • the second plate 34-1 since the thickness of the second plate 34-1 is thinner than the thickness of the third plate 35, the flow passage cross-sectional area SA1 of the first communication hole 341-1 of the second plate 34-1 is It is smaller than the flow passage cross-sectional area SA2 of the second communication hole 351 of the third plate 35.
  • the second plate 34-1 Refrigerant flows into the communication hole 341-1 of No. 1.
  • the pressure loss of the gas-rich refrigerant is greater than the pressure loss of the liquid-rich refrigerant.
  • a gas-rich refrigerant flows through the second communication hole 351, which has a larger flow path cross-sectional area SA2 than the first communication hole 341-1, which has a smaller flow path cross-sectional area SA1. flows easily. Since the gas-rich refrigerant flows through the second communication hole 351, the liquid-rich refrigerant easily flows through the first communication hole 341-1. Therefore, separation of the liquid-rich refrigerant and the gas-rich refrigerant in the flow path 360 is facilitated.
  • the second plate 34-1 has a different thickness from the other plates, the lengths of the second plate 34-1 in the first direction X and the third direction Z are the same as those of the other plates. Moreover, the only difference between the laminated header 3D according to the third embodiment and the laminated header 3D according to this modification is the thickness of the second plate. Therefore, there is no difference between the developed view of the laminated header 3D according to the second embodiment shown in FIG. 11 and the developed view (not shown) of the laminated header 3H according to this modification.
  • the flow passage cross-sectional area SA1 of the first communication hole 341-1 is reduced by reducing the thickness of the second plate 34-1.
  • the length of the first communication hole in the third direction Z may be changed to reduce the flow passage cross-sectional area of the first communication hole.
  • liquid-rich refrigerant more easily flows into the windward region UWA of the second heat exchanger tube 21. Therefore, the liquid-rich refrigerant flows in the opposite second direction through the upwind region UWA of the second heat exchanger tube 21 where the extra-tube heat transfer coefficient is high, and the heat exchange performance of the heat exchanger 1 is improved.
  • FIG. 20 is a diagram illustrating the configuration of a stacked header 3I according to a second modification of the third embodiment.
  • the only difference between this modification and the first modification of the third embodiment is the shape of the first plate.
  • the other configurations are the same as those in Modification 1 of Embodiment 3, so descriptions thereof will be omitted here.
  • the first plate 33-3 of this modification is the same as the first plate 33-1 described in the second modification of the second embodiment. That is, as shown in FIG. 20, the obstructing portion 333-3 of the first plate 33-3 of the laminated header 3I of this modification has a tip end face in the second direction Y that is curved in the second direction Y. It is convex. Therefore, the surface of the obstruction portion 333-3 that is in contact with the first opening 331-3 of the first plate 33-3, that is, a part of the wall surface forming the flow path 360, is oriented in the opposite direction in the first direction and in the second direction. It is curved in direction Y.
  • the surface of the obstruction portion 333-3 in contact with the second opening 332-3 of the first plate 33-3, that is, a part of the wall surface forming the flow path 360 is It is curved towards.
  • the U-shaped or arch-shaped portion does not have two right-angled corners.
  • the gas-rich refrigerant flowing into the flow path 360 from the windward area UWA of the first heat exchanger tube 11 is caused by centrifugal force to cause the gas-rich refrigerant to flow into the wall surface on the end plate 32 side and the first opening 331-3 of the first plate 33-3. It flows along the leeward wall surface of the heat exchanger tube 21 and easily flows into the region of the first communication hole 341 of the second plate 34-1 facing the leeward region DWA of the second heat exchanger tube 21. Liquid-rich refrigerant flows in the first direction X into the region of the first communication hole 341-1 facing the upwind region UWA of the second heat exchanger tube 21.
  • the gas-rich refrigerant flows into the leeward area DWA of the second end portion 21b of the second heat exchanger tube 21 from the area of the first communication hole 341-1 facing the leeward area DWA of the second heat exchanger tube 21.
  • the liquid-rich refrigerant flows in the opposite second direction through the upwind region UWA of the second heat exchanger tube 21 where the extra-tube heat transfer coefficient is high, and the heat exchange performance of the heat exchanger 1 is improved.
  • FIG. 21 is a diagram illustrating the configuration of a stacked header 3J according to a third modification of the third embodiment.
  • the differences between this modification and the second modification of the third embodiment are that the laminated header 3J does not have the third plate 35, and the end plate 32-1 has a recess 321. It is a point.
  • the end plate 32-1 has been described in the second modification of the first embodiment, so its description will be omitted here.
  • the configurations described in Embodiment 3, Modification 1 of Embodiment 3, and Modification 2 of Embodiment 3 can be used, so only the differences of this modification will be explained. .
  • the laminated header 3J of this modification includes a heat exchanger tube side plate 31, a second plate 34-1, a first plate 33-3, and an end plate 32-1.
  • the heat exchanger tube side plate 31, the second plate 34-1, the first plate 33-3, and the end plate 32-1 are arranged.
  • the recess 321 of the end plate 32-1 replaces the second communication hole 351 of the third plate 35. That is, the end plate 32-1 replaces the third plate 35 and forms the flow path 360 in the laminated header 3J.
  • the gas-rich refrigerant flows along the leeward wall surface of the first opening 331-3 of the first plate 33-3, and the second plate 34-, which faces the leeward area DWA of the second heat exchanger tube 21, flows along the leeward wall surface of the first opening 331-3 of the first plate 33-3. It becomes easier to flow into the region of the first communication hole 341-1. Furthermore, liquid-rich refrigerant flows in the first direction X into the region of the first communication hole 341-1 facing the upwind region UWA of the second heat transfer tube 21.
  • the gas-rich refrigerant flows into the leeward area DWA of the second end portion 21b of the second heat exchanger tube 21 from the area of the first communication hole 341-1 facing the leeward area DWA of the second heat exchanger tube 21.
  • the liquid-rich refrigerant flows in the opposite second direction through the upwind region UWA of the second heat exchanger tube 21 where the extra-tube heat transfer coefficient is high, and the heat exchange performance of the heat exchanger 1 is improved.
  • the laminated header 3J of this modification does not have the third plate 35, manufacturing costs can be suppressed more than the laminated header according to the third embodiment and the first and second modifications of the third embodiment.
  • the first plate 33-3 of Modification 2 is shown as the first plate.
  • the first plate may be the first plate 33-2 of the third embodiment.
  • the laminated header having the first plate 33-3 and the end plate 32-1 has a stronger centrifugal force than the laminated header having the first plate 33-2 and the end plate 32-1 because of the refrigerant flowing through the flow path 360. Force acts.
  • the laminated header 3C described in the third modification of the first embodiment may be applied.
  • the second end 21b of the second heat exchanger tube 21 is inserted into the first opening 331-1 of the first plate 33-1 of the laminated header 3C, and -1, the second end portion 11b of the first heat exchanger tube 11 is inserted.
  • the heat exchanger 1 according to Embodiments 1 to 3, Modification 1 and Modification 2 of Embodiment 1, and Modifications of Embodiments 2 and 3 has a first heat exchange section. 10, a second heat exchange section 20 arranged side by side with the first heat exchange section 10 in the first direction X, which is the direction in which air flows; It includes stacked headers 3, 3A, 3B, 3D to 3J that connect the heat exchange section 20 and allow the refrigerant to flow between the first heat exchange section 10 and the second heat exchange section 20.
  • the first heat exchange section 10 includes a liquid header 12 arranged at a distance from the laminated headers 3, 3A, 3B, 3D to 3J, and a liquid header 12 that connects the liquid header 12 to the laminated headers 3, 3A, 3B, 3D to 3J.
  • the first end 11a is connected to the liquid header 12, and the second end 11b is connected to the laminated header 3, 3A, 3B, 3D. ⁇ 3J.
  • the second heat exchange section 20 extends along the second direction Y with a gas header 22 arranged at intervals from the stacked headers 3, 3A, 3B, 3D to 3J, and has a first end 21a connected to the gas header 22.
  • the laminated headers 3, 3A, 3B, 3D to 3J have a heat exchanger tube side plate 31 through which the first heat exchanger tube 11 and the second heat exchanger tube 21 penetrate, and in the second direction Y, the laminated header 3, 3A, 3B, End plates 32, 32-1 forming the ends of 3D to 3J, and first plates 33, 33-1, 33 arranged between the heat exchanger tube side plate 31 and the end plates 32, 32-1.
  • the second plates 34 and 34-1 form a flow path 360 through which the refrigerant flows between the first heat exchanger tube 11 and the second heat exchanger tube 21.
  • the first plates 33, 33-1, 33-2, 33-3 penetrate the first plates 33, 33-1, 33-2, 33-3 in the second direction Y to partially form the flow path 360.
  • the first openings 331, 331-1, 331-2, 331-3 to be formed are located upstream of the air flow than the first openings 331, 331-1, 331-2, 331-3, Second openings 332, 332-1, 332-2, 332- that penetrate the first plates 33, 33-1, 33-2, 33-3 in the second direction Y and form part of the flow path 360. 3, and interfering parts 333, 333 provided between the first openings 331, 331-1, 331-2, 331-3 and the second openings 332, 332-1, 332-2, 332-3. -1, 333-2, and 333-3.
  • the second plate 34, 34-1 penetrates the second plate 34, 34-1 in the second direction Y, and includes the first openings 331, 331-1, 331-2, 331-3, and the second opening 332. , 332-1, 332-2, 332-3, and the first communication hole 341 that is arranged to overlap the obstructing parts 333, 333-1, 333-2, 333-3 and forms a part of the flow path 360. , 341-1.
  • the refrigerant can be separated into liquid-rich refrigerant and gas-rich refrigerant using the stacked header. Therefore, heat exchange between air and refrigerant can be performed efficiently. Therefore, the heat transfer performance of the heat exchanger 1 can be improved.
  • the first heat exchange section 10 is different from the second heat exchange section 20. located downstream of the air flow.
  • the refrigerant that has become gas-rich while flowing from the liquid header 12 toward the laminated headers 3, 3A, 3B, 3D to 3G is transferred to the lee of the second heat transfer tube 21 by the laminated headers 3, 3A, 3B, 3D to 3G. It flows into area DWA.
  • the liquid-rich refrigerant is transferred upwind of the second heat transfer tube 21, which is located on the windward side of the heat exchanger 1 and has the highest extra-tube heat transfer coefficient, by the laminated headers 3, 3A, 3B, 3D to 3G. It flows through area UWA. Therefore, in the second heat exchanger tube 21, heat exchange between the liquid-rich refrigerant and air is performed more efficiently, and the heat exchange performance of the heat exchanger 1 is improved.
  • the first heat exchange section 10 is located upstream of the second heat exchange section 20 in the air flow.
  • the windward area UWA of the first heat exchanger tube 11 which is located on the windward side of the heat exchanger 1 and has the highest extra-tube heat transfer coefficient.
  • the flowing refrigerant flows into the stacked headers 3D, 3H to 3J in a gas-rich state.
  • the gas-rich refrigerant flows into the leeward region DWA of the second heat transfer tube 21 on the most leeward side of the heat exchanger 1 through the stacked headers 3D, 3H to 3J.
  • the liquid-rich refrigerant flows through the upwind region UWA of the second heat transfer tube 21 through the laminated headers 3D, 3H to 3J. Therefore, in the second heat exchanger tube 21, heat exchange between the liquid-rich refrigerant and air is performed more efficiently, and the heat exchange performance of the heat exchanger 1 is improved.
  • the heat exchanger 1 includes a first heat exchange section 10 and a first heat exchange section 10 arranged in parallel with the first heat exchange section 10 in the first direction X, which is the direction in which air flows.
  • the first heat exchange section 10 and the second heat exchange section 20 are connected along the first direction X, and the refrigerant is transferred between the first heat exchange section 10 and the second heat exchange section 20. It is equipped with a laminated header 3C for circulating the flow.
  • the first heat exchange section 10 includes a liquid header 12 arranged at a distance from the laminated header 3C, and a second direction which is directed from the liquid header 12 toward the laminated header 3C and intersects with the first direction X.
  • the laminated header 3C includes a heat exchanger tube side plate 31 through which the first heat exchanger tube 11 and the second heat exchanger tube 21 pass, and an end plate 32-1 forming an end of the laminated header 3C in the second direction Y.
  • a flow path 360 is formed between the first heat exchanger tube 11 and the second heat exchanger tube 21 to allow the refrigerant to flow therethrough.
  • the first plate 33, 33-1 has a first opening 331, 331-1 that penetrates the first plate 33, 33-1 in the second direction Y and forms a part of the flow path 360, and a first opening a second opening 332 located on the upstream side of the air flow than the sections 331, 331-1, penetrating the first plates 33, 33-1 in the second direction Y and forming a part of the flow path 360; 332-1, and obstructing portions 333, 333-1 provided between the first openings 331, 331-1 and the second openings 332, 332-1.
  • the end plate 32-1 is recessed in the second direction Y, and is arranged to overlap the first openings 331, 331-1, the second openings 332, 332-1, and the obstructing parts 333, 333-1. It has a recess 321 that forms a part of the flow path 360.
  • the laminated header 3C can separate the refrigerant into liquid-rich refrigerant and gas-rich refrigerant. Therefore, heat exchange between air and refrigerant can be performed efficiently. Therefore, the heat transfer performance of the heat exchanger 1 can be improved.
  • the laminated header 3C can be constructed from a total of three plates: the heat exchanger tube side plate, the first plate, and the end plate, it is easier to manufacture than the laminated header that is composed of four or more plates. Costs can be controlled.
  • the refrigeration cycle device 100 includes a compressor 101 that compresses refrigerant, a radiator 102 that radiates heat from the refrigerant flowing out from the compressor 101, and a radiator 102 that radiates heat from the refrigerant flowing out from the radiator 102.
  • the evaporator 104 includes an expansion mechanism 103 that reduces the pressure of the refrigerant, an evaporator 104 that evaporates the refrigerant flowing out from the expansion mechanism 103, and a blower 107 that sends air to the evaporator 104. This is a heat exchanger 1 according to a modification.
  • the heat exchanger according to the present disclosure is not limited to the embodiments and modifications described above, and can be modified in various ways.
  • the third direction Z is the gravity direction
  • the second direction Y in which the plurality of first heat exchanger tubes 11 and the plurality of second heat exchanger tubes 21 extend is the horizontal direction.
  • the heat exchanger 1 has been described.
  • the second direction Y in which the plurality of heat exchanger tubes extend may be in the direction of gravity or opposite to the direction of gravity
  • the third direction Z may be the horizontal direction.
  • the first heat exchange section 10 and the second heat exchange section 20 each have a plurality of plate-shaped fins 2.
  • the plurality of fins may be corrugated fins having a corrugated shape.
  • the first heat exchange section and the second heat exchange section may be finless heat exchangers that do not have fins.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

This heat exchanger comprises a first heat exchanging unit, a second heat exchanging unit, and a stacked-type header which connects the first heat exchanging unit and the second heat exchanging unit and which allows a refrigerant to flow between the first heat exchanging unit and the second heat exchanging unit, wherein: the first heat exchanging unit includes a liquid header and first heat transfer pipes; the second heat exchanging unit includes a gas header and second heat transfer pipes; the stacked-type header includes a heat-transfer-pipe-side plate, an end portion plate, a first plate and a second plate; the first plate and the second plate form a flow passage that allows the refrigerant to flow between the first heat transfer pipes and the second heat transfer pipes; the first plate includes a first opening portion forming a portion of the flow passage, a second opening portion forming a portion of the flow passage, and an interfering portion provided between the first opening portion and the second opening portion; and the second plate includes a first communicating hole which forms a portion of the flow passage and which is disposed overlapping the first opening portion, the second opening portion and the interfering portion.

Description

熱交換器及び冷凍サイクル装置Heat exchanger and refrigeration cycle equipment
 本開示は、積層型ヘッダを備える熱交換器及び冷凍サイクル装置に関する。 The present disclosure relates to a heat exchanger and a refrigeration cycle device including a stacked header.
 例えば、特許文献1には、空気流れ方向に対して直交方向の段方向へ複数段設けられた複数の伝熱管を有する複数の熱交換部を備え、複数の熱交換部のそれぞれの一端側が、1つのヘッダで接続されている熱交換器が開示されている。特許文献1では、一の熱交換部の伝熱管を流れる冷媒は、ヘッダに流入し、ヘッダから他の熱交換部の伝熱管に流入する。 For example, Patent Document 1 includes a plurality of heat exchange sections having a plurality of heat exchanger tubes provided in a plurality of stages in a direction perpendicular to the air flow direction, and one end side of each of the plurality of heat exchange sections is A heat exchanger connected with one header is disclosed. In Patent Document 1, the refrigerant flowing through the heat exchanger tubes of one heat exchange section flows into a header, and from the header flows into the heat exchanger tubes of another heat exchange section.
国際公開第2015/025702号International Publication No. 2015/025702
 特許文献1に記載の熱交換器では、一の熱交換部において気液二相状態となりヘッダに流入した冷媒を、液相比率の高い液リッチな冷媒とガス相比率の高いガスリッチな冷媒とに十分に分離することについて考慮されていない。ここで、一の熱交換部に対して冷媒の流れの下流側にある他の熱交換部での熱交換効率は、冷媒が液状態であるかガス状態であるかによって異なる。このため、液リッチな冷媒とガスリッチな冷媒とに分離されていない冷媒が流入した他の熱交換部では、空気と冷媒との熱交換が効率的に行えず、熱交換器の伝熱性能が向上できないという課題があった。 In the heat exchanger described in Patent Document 1, the refrigerant that enters a gas-liquid two-phase state in one heat exchange section and flows into the header is divided into a liquid-rich refrigerant with a high liquid phase ratio and a gas-rich refrigerant with a high gas phase ratio. No consideration was given to sufficient separation. Here, the heat exchange efficiency in other heat exchange parts located downstream of the flow of refrigerant with respect to one heat exchange part differs depending on whether the refrigerant is in a liquid state or a gas state. Therefore, in other heat exchange parts into which refrigerant that has not been separated into liquid-rich refrigerant and gas-rich refrigerant flows, heat exchange between air and refrigerant cannot be performed efficiently, and the heat transfer performance of the heat exchanger deteriorates. There was a problem with not being able to improve.
 本開示は、上記のような課題を背景としてなされたものであり、積層型ヘッダで冷媒を液リッチな冷媒とガスリッチな冷媒とに分離することで、空気と冷媒との熱交換を効率的に行い、伝熱性能の向上を図ることが可能な、熱交換器及び冷凍サイクル装置を提供するものである。 The present disclosure was made against the background of the above-mentioned problems, and by separating the refrigerant into a liquid-rich refrigerant and a gas-rich refrigerant using a laminated header, it is possible to efficiently exchange heat between air and refrigerant. The purpose of the present invention is to provide a heat exchanger and a refrigeration cycle device that can improve heat transfer performance.
 本開示に係る熱交換器は、第1熱交換部と、空気の流れる向きである第1方向において、第1熱交換部と並べて配置される第2熱交換部と、第1方向に沿って第1熱交換部と第2熱交換部とを接続し、第1熱交換部と第2熱交換部との間で冷媒を流通させる積層型ヘッダとを備え、第1熱交換部は、積層型ヘッダと間隔を空けて配置される液ヘッダと、液ヘッダから積層型ヘッダに向かう方向であって、第1方向と交差する第2方向に沿って延び、第1端部が液ヘッダに接続され第2端部が積層型ヘッダに接続される第1伝熱管とを有し、第2熱交換部は、積層型ヘッダと間隔を空けて配置されるガスヘッダと、第2方向に沿って延び、第1端部がガスヘッダに接続され第2端部が積層型ヘッダに接続される第2伝熱管とを有し、積層型ヘッダは、第1伝熱管及び第2伝熱管が貫通する伝熱管側プレートと、第2方向において、積層型ヘッダの端部を形成する端部プレートと、伝熱管側プレートと端部プレートとの間に配置される第1プレートと、伝熱管側プレートと第1プレートとの間、又は第1プレートと端部プレートとの間のいずれかに配置される第2プレートとを有し、第1プレートと第2プレートとは、第1伝熱管と第2伝熱管との間で冷媒を流通させる流路を形成し、第1プレートは、第1プレートを第2方向に貫通して流路の一部を形成する第1開口部と、第1開口部よりも空気の流れの上流側に位置し、第1プレートを第2方向に貫通して流路の一部を形成する第2開口部と、第1開口部と第2開口部との間に設けられた妨害部とを有し、第2プレートは、第2プレートを第2方向に貫通し、第1開口部、第2開口部、及び妨害部に重ねて配置されて流路の一部を形成する第1の連通穴を有する。 The heat exchanger according to the present disclosure includes a first heat exchange section, a second heat exchange section disposed in parallel with the first heat exchange section in a first direction that is a direction in which air flows, and a second heat exchange section disposed in parallel with the first heat exchange section; A laminated header that connects the first heat exchange part and the second heat exchange part and allows a refrigerant to flow between the first heat exchange part and the second heat exchange part, the first heat exchange part having a laminated type header. a liquid header disposed at a distance from the mold header; and a liquid header extending along a second direction that is directed from the liquid header to the laminated header and intersecting the first direction, the first end being connected to the liquid header. and a first heat exchanger tube having a second end connected to the laminated header, the second heat exchanger having a gas header spaced apart from the laminated header, and a gas header extending along the second direction. , a second heat exchanger tube having a first end connected to the gas header and a second end connected to the laminated header, the laminated header having a heat exchanger tube through which the first heat exchanger tube and the second heat exchanger tube penetrate. a side plate; an end plate forming an end of the laminated header in the second direction; a first plate disposed between the heat exchanger tube side plate and the end plate; a second plate disposed either between the first plate and the end plate, and the first plate and the second plate are arranged between the first heat exchanger tube and the second heat exchanger tube. The first plate has a first opening that penetrates the first plate in the second direction and forms a part of the flow path, and a first plate that is wider than the first opening. a second opening located on the upstream side of the air flow and penetrating the first plate in the second direction to form a part of the flow path; and a second opening provided between the first opening and the second opening. the second plate passes through the second plate in the second direction, and is arranged to overlap the first opening, the second opening, and the obstruction to form a part of the flow path. It has a first communicating hole.
 本開示に係る熱交換器は、第1熱交換部と、空気の流れる向きである第1方向において、第1熱交換部と並べて配置される第2熱交換部と、第1方向に沿って第1熱交換部と第2熱交換部とを接続し、第1熱交換部と第2熱交換部との間で冷媒を流通させる積層型ヘッダとを備え、第1熱交換部は、積層型ヘッダと間隔を空けて配置される液ヘッダと、液ヘッダから積層型ヘッダに向かう方向であって、第1方向と交差する第2方向に沿って延び、第1端部が液ヘッダに接続され第2端部が積層型ヘッダに接続される第1伝熱管とを有し、第2熱交換部は、積層型ヘッダと間隔を空けて配置されるガスヘッダと、第2方向に沿って延び、第1端部がガスヘッダに接続され第2端部が積層型ヘッダに接続される第2伝熱管とを有し、積層型ヘッダは、第1伝熱管及び第2伝熱管が貫通する伝熱管側プレートと、第2方向において、積層型ヘッダの端部を形成する端部プレートと、伝熱管側プレートと端部プレートとの間に配置される第1プレートとを有し、第1プレートと端部プレートとは、第1伝熱管と第2伝熱管との間で冷媒を流通させる流路を形成し、第1プレートは、第1プレートを第2方向に貫通して流路の一部を形成する第1開口部と、第1開口部よりも空気の流れの上流側に位置し、第1プレートを第2方向に貫通して流路の一部を形成する第2開口部と、第1開口部と第2開口部との間に設けられた妨害部とを有し、端部プレートは、第2方向に凹んでおり、第1の開口部、第2の開口部、及び妨害部に重ねて配置されて流路の一部を形成する凹部を有する。 The heat exchanger according to the present disclosure includes a first heat exchange section, a second heat exchange section disposed in parallel with the first heat exchange section in a first direction that is a direction in which air flows, and a second heat exchange section disposed in parallel with the first heat exchange section; A laminated header that connects the first heat exchange part and the second heat exchange part and allows a refrigerant to flow between the first heat exchange part and the second heat exchange part, the first heat exchange part having a laminated type header. a liquid header disposed at a distance from the mold header; and a liquid header extending along a second direction that is directed from the liquid header to the laminated header and intersecting the first direction, the first end being connected to the liquid header. and a first heat exchanger tube having a second end connected to the laminated header, the second heat exchanger having a gas header spaced apart from the laminated header, and a gas header extending along the second direction. , a second heat exchanger tube having a first end connected to the gas header and a second end connected to the laminated header, the laminated header having a heat exchanger tube through which the first heat exchanger tube and the second heat exchanger tube penetrate. a side plate, an end plate forming an end of the laminated header in the second direction, and a first plate disposed between the heat exchanger tube side plate and the end plate; The end plate forms a flow path for circulating a refrigerant between the first heat exchanger tube and the second heat exchanger tube, and the first plate penetrates the first plate in the second direction to form a part of the flow path. a first opening that forms a flow path; a second opening that is located upstream of the first opening in the air flow, penetrates the first plate in the second direction, and forms a part of the flow path; an obstruction provided between the first opening and the second opening; the end plate is recessed in the second direction; the end plate is recessed in the second direction; It has a recessed part that is placed overlapping the part and forms part of the flow path.
 本開示に係る冷凍サイクル装置は、冷媒を圧縮する圧縮機と、圧縮機から流出した冷媒を放熱させる放熱器と、放熱器から流出した冷媒を減圧させる膨張機構と、膨張機構から流出した冷媒を蒸発させる蒸発器と、蒸発器に空気を送る送風機とを備え、蒸発器は、上記熱交換器である。 A refrigeration cycle device according to the present disclosure includes a compressor that compresses a refrigerant, a radiator that radiates heat from the refrigerant flowing out from the compressor, an expansion mechanism that reduces the pressure of the refrigerant that flows out from the radiator, and a radiator that reduces the pressure of the refrigerant that flows out from the expansion mechanism. It includes an evaporator for evaporating air and a blower for sending air to the evaporator, and the evaporator is the heat exchanger described above.
 本開示によれば、積層型ヘッダで冷媒を液リッチな冷媒とガスリッチな冷媒とに分離することで、空気と冷媒との熱交換を効率的に行うことができる。したがって、熱交換器の伝熱性能を向上できる。 According to the present disclosure, heat exchange between air and the refrigerant can be efficiently performed by separating the refrigerant into a liquid-rich refrigerant and a gas-rich refrigerant using the laminated header. Therefore, the heat transfer performance of the heat exchanger can be improved.
実施の形態1に係る冷凍サイクル装置100の概略構成図である。1 is a schematic configuration diagram of a refrigeration cycle device 100 according to Embodiment 1. FIG. 実施の形態1に係る熱交換器1の平面図である。1 is a plan view of a heat exchanger 1 according to Embodiment 1. FIG. 実施の形態1に係る熱交換器1の第1熱交換部10及び第2熱交換部20の断面模式図である。FIG. 2 is a schematic cross-sectional view of the first heat exchange section 10 and the second heat exchange section 20 of the heat exchanger 1 according to the first embodiment. 実施の形態1に係る積層型ヘッダ3の構成を説明する図である。FIG. 3 is a diagram illustrating the configuration of a stacked header 3 according to the first embodiment. 実施の形態1に係る積層型ヘッダ3の展開図である。FIG. 3 is a developed view of the laminated header 3 according to the first embodiment. 実施の形態1に係る積層型ヘッダ3の概略的な分解斜視図である。FIG. 3 is a schematic exploded perspective view of the laminated header 3 according to the first embodiment. 実施の形態1の変形例1に係る積層型ヘッダ3Aの構成を説明する図である。FIG. 3 is a diagram illustrating the configuration of a stacked header 3A according to a first modification of the first embodiment. 実施の形態1の変形例2に係る積層型ヘッダ3Bの構成を説明する図である。FIG. 7 is a diagram illustrating the configuration of a laminated header 3B according to a second modification of the first embodiment. 実施の形態1の変形例3に係る積層型ヘッダ3Cの構成を説明する図である。FIG. 7 is a diagram illustrating the configuration of a stacked header 3C according to a third modification of the first embodiment. 実施の形態2に係る積層型ヘッダ3Dの構成を説明する図である。FIG. 3 is a diagram illustrating the configuration of a stacked header 3D according to a second embodiment. 実施の形態2に係る積層型ヘッダ3Dの展開図である。FIG. 3 is a developed view of a stacked header 3D according to a second embodiment. 実施の形態2の変形例1に係る積層型ヘッダ3Eの構成を説明する図である。FIG. 7 is a diagram illustrating the configuration of a stacked header 3E according to a first modification of the second embodiment. 実施の形態2の変形例2に係る積層型ヘッダ3Eの展開図である。FIG. 7 is a developed view of a stacked header 3E according to a second modification of the second embodiment. 実施の形態2の変形例2に係る積層型ヘッダ3Fの構成を説明する図である。FIG. 7 is a diagram illustrating the configuration of a stacked header 3F according to a second modification of the second embodiment. 実施の形態2の変形例3に係る積層型ヘッダ3Gの構成を説明する図である。FIG. 7 is a diagram illustrating the configuration of a laminated header 3G according to a third modification of the second embodiment. 実施の形態3に係る熱交換器1の平面図である。FIG. 3 is a plan view of a heat exchanger 1 according to a third embodiment. 実施の形態3に係る熱交換器1の第1熱交換部10及び第2熱交換部20の断面模式図である。FIG. 3 is a schematic cross-sectional view of a first heat exchange section 10 and a second heat exchange section 20 of a heat exchanger 1 according to a third embodiment. 実施の形態3に係る積層型ヘッダ3Dの構成を説明する図である。FIG. 7 is a diagram illustrating the configuration of a stacked header 3D according to Embodiment 3. 実施の形態3の変形例1に係る積層型ヘッダ3Hの構成を説明する図である。FIG. 7 is a diagram illustrating the configuration of a laminated header 3H according to Modification 1 of Embodiment 3. 実施の形態3の変形例2に係る積層型ヘッダ3Iの構成を説明する図である。FIG. 7 is a diagram illustrating the configuration of a stacked header 3I according to a second modification of the third embodiment. 実施の形態3の変形例3に係る積層型ヘッダ3Jの構成を説明する図である。FIG. 7 is a diagram illustrating the configuration of a stacked header 3J according to a third modification of the third embodiment.
 以下、本開示に係る熱交換器及び冷凍サイクル装置を、図面を参照して説明する。本開示は、以下の実施の形態及びその変形例に限定されるものではなく、本開示の主旨を逸脱しない範囲で種々に変形することが可能である。また、本開示は、以下の各実施の形態及び各変形例に示す構成のうち、組合せ可能な構成のあらゆる組合せを含むものである。また、図面に示す冷凍サイクル装置は、本開示の冷凍サイクル装置が適用される機器の一例を示すものであり、図面に示された冷凍サイクル装置によって本開示の適用機器が限定されるものではない。また、以下の説明において、理解を容易にするために方向を表す用語(例えば「上」、「下」、「右」、「左」、「前」、「後」など)を適宜用いるが、これらは説明のためのものであって、本開示を限定するものではない。また、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。なお、各図面では、各構成部材の相対的な寸法関係又は形状等が実際のものとは異なる場合がある。さらに、以下の説明における温度及び圧力等の高低については、特に絶対的な値との関係で高低等が定まっているものではなく、システム又は装置等における状態又は動作等において相対的に定まるものとする。 Hereinafter, a heat exchanger and a refrigeration cycle device according to the present disclosure will be described with reference to the drawings. The present disclosure is not limited to the following embodiments and modifications thereof, and can be variously modified without departing from the gist of the present disclosure. Further, the present disclosure includes all combinations of configurations that can be combined among the configurations shown in each embodiment and each modification example below. Furthermore, the refrigeration cycle device shown in the drawings is an example of equipment to which the refrigeration cycle device of the present disclosure is applied, and the refrigeration cycle device shown in the drawings is not intended to limit the equipment to which the present disclosure is applied. . In addition, in the following explanation, terms indicating directions (for example, "upper", "lower", "right", "left", "front", "rear", etc.) are used as appropriate to facilitate understanding. These are for illustrative purposes only and are not intended to limit this disclosure. Furthermore, in each figure, the same reference numerals are the same or equivalent, and this is common throughout the entire specification. Note that in each drawing, the relative dimensional relationship or shape of each component may differ from the actual one. Furthermore, in the following explanation, the height of temperature and pressure, etc. is not determined in relation to absolute values, but is determined relatively depending on the state or operation of the system or device, etc. do.
実施の形態1.
(冷凍サイクル装置の構成)
 図1は、実施の形態1に係る冷凍サイクル装置100の概略構成図である。図1に示すように、本実施の形態の冷凍サイクル装置100は、圧縮機101と、放熱器102と、膨張機構103と、蒸発器104と、送風機106と、送風機107とを備える。圧縮機101と、放熱器102と、膨張機構103と、蒸発器104とが冷媒配管105によって接続されることにより、冷媒が循環する冷媒回路が構成される。
Embodiment 1.
(Configuration of refrigeration cycle device)
FIG. 1 is a schematic configuration diagram of a refrigeration cycle device 100 according to the first embodiment. As shown in FIG. 1, the refrigeration cycle device 100 of this embodiment includes a compressor 101, a radiator 102, an expansion mechanism 103, an evaporator 104, a blower 106, and a blower 107. Compressor 101, radiator 102, expansion mechanism 103, and evaporator 104 are connected by refrigerant piping 105, thereby forming a refrigerant circuit in which refrigerant circulates.
 圧縮機101は、低圧のガス冷媒を吸入して圧縮し、高圧のガス冷媒として吐出する流体機械である。圧縮機101は、例えば運転周波数を調整可能なインバータ駆動の圧縮機である。 The compressor 101 is a fluid machine that sucks in low-pressure gas refrigerant, compresses it, and discharges it as high-pressure gas refrigerant. The compressor 101 is, for example, an inverter-driven compressor whose operating frequency can be adjusted.
 放熱器102は、伝熱管の内部を流通する冷媒と他の流体とを熱交換させ、冷媒を凝縮して液化させる。送風機106は、放熱器102に対して熱交換流体としての空気を供給する。 The radiator 102 exchanges heat between the refrigerant flowing inside the heat transfer tube and another fluid, and condenses and liquefies the refrigerant. The blower 106 supplies air as a heat exchange fluid to the radiator 102 .
 膨張機構103は、例えば開度を制御可能な電子式膨張弁である。膨張機構103は、放熱器102から流出した冷媒を減圧して膨張させる。なお、膨張機構103は感温式膨張弁であってもよいし、膨張機構103の代わりに毛細管を設けてもよい。 The expansion mechanism 103 is, for example, an electronic expansion valve whose opening degree can be controlled. The expansion mechanism 103 reduces the pressure of the refrigerant flowing out from the radiator 102 and expands it. Note that the expansion mechanism 103 may be a temperature-sensitive expansion valve, or a capillary tube may be provided instead of the expansion mechanism 103.
 蒸発器104は、伝熱管の内部を流通する冷媒と、他の流体とを熱交換させ、冷媒を蒸発してガス化させる。送風機107は、蒸発器104に対して熱交換流体としての空気を供給する。 The evaporator 104 exchanges heat between the refrigerant flowing inside the heat transfer tube and another fluid, and evaporates and gasifies the refrigerant. The blower 107 supplies air as a heat exchange fluid to the evaporator 104 .
(冷凍サイクル装置の動作)
 本実施の形態の冷凍サイクル装置100の動作を、冷媒回路を循環する冷媒の流れに基づいて説明する。冷凍サイクル装置100の運転開始が指示されると、圧縮機101が冷媒を圧縮し、高温高圧のガス状態にして吐出する。圧縮機101が吐出したガス冷媒は、冷媒配管105を通って放熱器102へ流入する。放熱器102において冷媒は、他の流体と熱交換し、凝縮液化する。このとき、冷媒が他の流体に放熱することによって、他の流体が加熱される。
(Operation of refrigeration cycle equipment)
The operation of the refrigeration cycle device 100 of this embodiment will be explained based on the flow of refrigerant circulating in the refrigerant circuit. When the refrigeration cycle apparatus 100 is instructed to start operating, the compressor 101 compresses the refrigerant, converts it into a high-temperature, high-pressure gas state, and discharges the refrigerant. The gas refrigerant discharged by the compressor 101 flows into the radiator 102 through the refrigerant pipe 105. In the radiator 102, the refrigerant exchanges heat with other fluids and is condensed and liquefied. At this time, the refrigerant radiates heat to the other fluid, thereby heating the other fluid.
 放熱器102で凝縮液化した冷媒は、膨張機構103を通過する。膨張機構103は冷媒を減圧する。膨張機構103が減圧した冷媒は、蒸発器104に流入する。蒸発器104において冷媒は、他の流体と熱交換し、蒸発ガス化する。このとき、冷媒が他の流体から吸熱することによって、他の流体が冷却される。蒸発器104で蒸発ガス化した冷媒は、圧縮機101に再び吸入される。 The refrigerant condensed and liquefied in the radiator 102 passes through the expansion mechanism 103. The expansion mechanism 103 reduces the pressure of the refrigerant. The refrigerant whose pressure has been reduced by the expansion mechanism 103 flows into the evaporator 104 . In the evaporator 104, the refrigerant exchanges heat with other fluids and evaporates into gas. At this time, the other fluid is cooled by the refrigerant absorbing heat from the other fluid. The refrigerant evaporated and gasified in the evaporator 104 is sucked into the compressor 101 again.
 冷凍サイクル装置100は、例えば、室内を暖房又は冷房する空気調和装置、倉庫、ショーケース又は冷蔵庫などの冷凍室の冷却を行う冷凍装置、タンク内の水を加熱する給湯装置である。 The refrigeration cycle device 100 is, for example, an air conditioner that heats or cools a room, a refrigeration device that cools a freezer compartment such as a warehouse, a showcase, or a refrigerator, or a water heater that heats water in a tank.
 放熱器102と蒸発器104のいずれか又は両方は、後述する熱交換器1が採用される。本開示で示す各実施の形態及び各変形例では、熱交換器1が蒸発器104として採用される場合について説明する。 The heat exchanger 1 described later is employed as either or both of the radiator 102 and the evaporator 104. In each embodiment and each modification shown in this disclosure, a case will be described in which the heat exchanger 1 is employed as the evaporator 104.
(熱交換器1の構成)
 図2は、実施の形態1に係る熱交換器1の平面図である。図3は、実施の形態1に係る熱交換器1の第1熱交換部10及び第2熱交換部20の断面模式図である。
(Configuration of heat exchanger 1)
FIG. 2 is a plan view of the heat exchanger 1 according to the first embodiment. FIG. 3 is a schematic cross-sectional view of the first heat exchange section 10 and the second heat exchange section 20 of the heat exchanger 1 according to the first embodiment.
 ここで、本実施の形態、これ以降の実施の形態、及び各変形例において説明に使用する方向を定義する。第1方向Xは、空気が流れる方向である。図2では、紙面下から上に向かう方向が、第1方向Xである。第2方向Yは、第1方向Xと直交する方向であり、第1伝熱管11及び第2伝熱管21が、液ヘッダ12及びガスヘッダ22から積層型ヘッダ3へ向かう方向である。図2では、紙面左から右に向かう方向が、第2方向Yである。第3方向Zは、第1方向X及び第2方向Yと直交する方向であり、本実施の形態では重力方向である。図2では、紙面手前から奥に向かう方向が、第3方向Zである。図面では、矢印の指す向きによって第1方向X、第2方向Y及び第3方向Zの順向きを示す。また、これ以降の説明では、第1方向X、第2方向Y及び第3方向Zの順向きを、単に第1方向X、第2方向Y、及び第3方向Z、と称する。また、各方向の逆向きを、それぞれ、第1方向逆向き、第2方向逆向き、及び第3方向逆向きと称する。 Here, directions used for explanation in this embodiment, subsequent embodiments, and each modification will be defined. The first direction X is the direction in which air flows. In FIG. 2, the first direction X is the direction from the bottom to the top of the page. The second direction Y is a direction orthogonal to the first direction X, and is a direction in which the first heat exchanger tube 11 and the second heat exchanger tube 21 head from the liquid header 12 and the gas header 22 toward the laminated header 3. In FIG. 2, the direction from left to right in the paper is the second direction Y. The third direction Z is a direction perpendicular to the first direction X and the second direction Y, and in this embodiment is the direction of gravity. In FIG. 2, the third direction Z is the direction from the front to the back of the page. In the drawings, the forward directions of the first direction X, the second direction Y, and the third direction Z are indicated by the directions pointed by the arrows. In addition, in the following description, the forward directions of the first direction X, the second direction Y, and the third direction Z are simply referred to as the first direction X, the second direction Y, and the third direction Z. Further, the opposite directions are respectively referred to as a first reverse direction, a second reverse direction, and a third reverse direction.
 図3は、第1熱交換部10及び第2熱交換部20それぞれの第2方向Y及び第3方向Zに沿った断面を、上下に並べて示している。なお、図2及びこれ以降で示す図面では、冷媒の流れを実線矢印で示し、空気の流れを破線矢印で示している。 FIG. 3 shows cross sections of the first heat exchange section 10 and the second heat exchange section 20 along the second direction Y and the third direction Z, arranged one above the other. In addition, in FIG. 2 and the subsequent drawings, the flow of refrigerant is shown by solid line arrows, and the flow of air is shown by broken line arrows.
 熱交換器1は、第1熱交換部10と、第2熱交換部20と、積層型ヘッダ3とを備えている。第1熱交換部10は、複数の第1伝熱管11と、液ヘッダ12とを有する。第2熱交換部20は、複数の第2伝熱管21と、ガスヘッダ22とを有する。第1伝熱管11のそれぞれは、第1端部11aと第2端部11bとを有する。第1端部11aが液ヘッダ12に接続され、第2端部11bが積層型ヘッダ3に接続される。第2伝熱管21のそれぞれは、第1端部21aと第2端部21bとを有する。第1端部21aがガスヘッダ22に接続され、第2端部21bが積層型ヘッダ3に接続される。積層型ヘッダ3は、第1熱交換部10と第2熱交換部20とを接続する。冷媒は、積層型ヘッダ3を通って、第1熱交換部10と第2熱交換部20との間を流れる。図2及び図3では、積層型ヘッダ3の位置を示すことを目的として積層型ヘッダ3を図示しており、積層型ヘッダ3の構造は図4以降で説明する。 The heat exchanger 1 includes a first heat exchange section 10, a second heat exchange section 20, and a laminated header 3. The first heat exchange section 10 includes a plurality of first heat exchanger tubes 11 and a liquid header 12. The second heat exchange section 20 includes a plurality of second heat exchanger tubes 21 and a gas header 22. Each of the first heat exchanger tubes 11 has a first end 11a and a second end 11b. The first end 11a is connected to the liquid header 12, and the second end 11b is connected to the laminated header 3. Each of the second heat exchanger tubes 21 has a first end 21a and a second end 21b. The first end 21a is connected to the gas header 22, and the second end 21b is connected to the laminated header 3. The laminated header 3 connects the first heat exchange section 10 and the second heat exchange section 20. The refrigerant passes through the laminated header 3 and flows between the first heat exchange section 10 and the second heat exchange section 20. 2 and 3, the laminated header 3 is illustrated for the purpose of showing the position of the laminated header 3, and the structure of the laminated header 3 will be explained from FIG. 4 onwards.
 本実施の形態では、空気が流れる第1方向Xにおいて、第2熱交換部20が、第1熱交換部10よりも空気の流れの上流側に配置される。空気は、送風機107(図1参照)から熱交換器1に送られる。図2及び図3に示すように、第1伝熱管11及び第2伝熱管21は、第2方向Yに延びる。第1伝熱管11及び第2伝熱管21は、例えば、扁平管である。第1伝熱管11及び第2伝熱管21が扁平管である場合、扁平管の加工方法及び形状については特に限定はない。扁平管が一枚又は複数枚の板材を複数回折り曲げることによって形成されていてもよい。また、扁平管の内部に隔壁によって複数の流路が形成された扁平多穴管でもよい。扁平管が多穴管の場合、冷媒は扁平管の内部に複数形成されている流路に分岐して、第2方向Y又は第2方向逆向きに流れる。また、第1伝熱管11及び第2伝熱管21が扁平管の場合、第3方向Zに隣り合って位置する第1伝熱管11の扁平面が、互いに平行で、対向する向きに配置され、第3方向Zに隣り合って位置する第2伝熱管21の扁平面が、互いに平行で、対向する向きに配置される。なお、第1伝熱管11及び第2伝熱管21は、扁平管に限定されず、円管であってもよい。 In the present embodiment, the second heat exchange section 20 is arranged upstream of the first heat exchange section 10 in the first direction X in which the air flows. Air is sent to the heat exchanger 1 from the blower 107 (see FIG. 1). As shown in FIGS. 2 and 3, the first heat exchanger tube 11 and the second heat exchanger tube 21 extend in the second direction Y. The first heat exchanger tube 11 and the second heat exchanger tube 21 are, for example, flat tubes. When the first heat exchanger tube 11 and the second heat exchanger tube 21 are flat tubes, there are no particular limitations on the processing method and shape of the flat tubes. The flat tube may be formed by bending one or more plates multiple times. Alternatively, it may be a flat multi-hole tube in which a plurality of channels are formed by partition walls inside the flat tube. When the flat tube is a multi-hole tube, the refrigerant branches into a plurality of channels formed inside the flat tube and flows in the second direction Y or in the opposite direction to the second direction. Further, when the first heat exchanger tube 11 and the second heat exchanger tube 21 are flat tubes, the flat surfaces of the first heat exchanger tubes 11 located adjacent to each other in the third direction Z are parallel to each other and are arranged in opposite directions, The flat surfaces of the second heat exchanger tubes 21 located adjacent to each other in the third direction Z are parallel to each other and are arranged in opposite directions. Note that the first heat exchanger tube 11 and the second heat exchanger tube 21 are not limited to flat tubes, but may be circular tubes.
 第1熱交換部10及び第2熱交換部20のそれぞれは、複数の板状のフィン2を有する。第1伝熱管11は第1熱交換部10が有する複数の板状のフィン2を貫通している。第2伝熱管21は、第2熱交換部20が有する複数の板状のフィン2を貫通している。複数のフィン2は平板面が第1方向X及び第3方向Zに沿うように、液ヘッダ12と積層型ヘッダ3との間及びガスヘッダ22と積層型ヘッダ3との間に間隔を空けて設けられている。なお、第1熱交換部10及び第2熱交換部20が、それぞれ複数のフィン2を有する構成ではなく、第1熱交換部10及び第2熱交換部20が、フィンを共有する構成としてもよい。具体的には、第1伝熱管11と第2伝熱管21の両方に熱的に接続されたフィン2を、複数設ける。例えば、板状のフィン2を採用する場合、第1方向Xに沿ったフィン2の平板面を、第1伝熱管11及び第2伝熱管21が貫通する構成とすることができる。 Each of the first heat exchange section 10 and the second heat exchange section 20 has a plurality of plate-shaped fins 2. The first heat exchanger tube 11 passes through a plurality of plate-shaped fins 2 that the first heat exchanger 10 has. The second heat exchanger tube 21 passes through the plurality of plate-shaped fins 2 that the second heat exchange section 20 has. The plurality of fins 2 are provided at intervals between the liquid header 12 and the laminated header 3 and between the gas header 22 and the laminated header 3 so that the flat plate surfaces are along the first direction X and the third direction Z. It is being Note that instead of the configuration in which the first heat exchange section 10 and the second heat exchange section 20 each have a plurality of fins 2, the first heat exchange section 10 and the second heat exchange section 20 may have a configuration in which they share a fin. good. Specifically, a plurality of fins 2 thermally connected to both the first heat exchanger tube 11 and the second heat exchanger tube 21 are provided. For example, when plate-shaped fins 2 are employed, the first heat exchanger tube 11 and the second heat exchanger tube 21 can be configured to penetrate the flat plate surface of the fin 2 along the first direction X.
 本実施の形態では、冷媒は、第1熱交換部10を流れた後に、第2熱交換部20を流れて熱交換器1から流出する。より詳しくは、冷媒は、液ヘッダ12から複数の第1伝熱管11に流入し、複数の第1伝熱管11を通って、積層型ヘッダ3に流入する。積層型ヘッダ3に流入した冷媒は、第1方向逆向きに流れ、その後、複数の第2伝熱管21に流入する。複数の第2伝熱管21に流入した冷媒は、ガスヘッダ22を通って第2熱交換部20から流出する。第1熱交換部10は第2熱交換部20よりも空気の流れの下流側に配置されるので、液ヘッダ12から積層型ヘッダ3へ向かって流れる冷媒は、積層型ヘッダ3からガスヘッダ22へ向かって流れる冷媒よりも空気の流れの下流側を流れる。積層型ヘッダ3での冷媒の流れについては後述する。 In this embodiment, the refrigerant flows through the first heat exchange section 10, then flows through the second heat exchange section 20, and flows out from the heat exchanger 1. More specifically, the refrigerant flows from the liquid header 12 into the plurality of first heat exchanger tubes 11 , passes through the plurality of first heat exchanger tubes 11 , and flows into the laminated header 3 . The refrigerant that has flowed into the laminated header 3 flows in the opposite direction to the first direction, and then flows into the plurality of second heat exchanger tubes 21 . The refrigerant that has flowed into the plurality of second heat exchanger tubes 21 passes through the gas header 22 and flows out from the second heat exchange section 20 . Since the first heat exchange section 10 is arranged downstream of the second heat exchange section 20 in the flow of air, the refrigerant flowing from the liquid header 12 toward the laminated header 3 flows from the laminated header 3 to the gas header 22. The air flows downstream of the refrigerant flowing towards it. The flow of refrigerant in the laminated header 3 will be described later.
 次に、図4~図6を参照しながら、積層型ヘッダ3の構造について説明する。図4は、実施の形態1に係る積層型ヘッダ3の構成を説明する図である。図4は、図3に示すA-A線位置における第1熱交換部10、第2熱交換部20、及び積層型ヘッダ3の断面を示している。図4では、積層型ヘッダ3の流路360を視認しやすいようにドット柄で示し、積層型ヘッダ3を構成する各プレートのハッチングを省略している。図5は、実施の形態1に係る積層型ヘッダ3の展開図である。図6は、実施の形態1に係る積層型ヘッダ3の概略的な分解斜視図である。なお、以降の各積層型ヘッダの構成を説明する図でも、各積層型ヘッダのA-A線に相当する位置における第1熱交換部10、第2熱交換部20、及び各積層型ヘッダの断面を示している。また、以降の各積層型ヘッダの構成を説明する図でも、各積層型ヘッダの流路360を視認しやすいようにドット柄で示し、積層型ヘッダを構成する各プレートのハッチングを省略している。 Next, the structure of the laminated header 3 will be explained with reference to FIGS. 4 to 6. FIG. 4 is a diagram illustrating the configuration of the laminated header 3 according to the first embodiment. FIG. 4 shows a cross section of the first heat exchange section 10, the second heat exchange section 20, and the laminated header 3 taken along the line AA shown in FIG. In FIG. 4, the flow path 360 of the laminated header 3 is shown in a dotted pattern for easy visual recognition, and the hatching of each plate constituting the laminated header 3 is omitted. FIG. 5 is a developed view of the laminated header 3 according to the first embodiment. FIG. 6 is a schematic exploded perspective view of the laminated header 3 according to the first embodiment. In addition, in the subsequent diagrams explaining the configuration of each laminated header, the first heat exchange part 10, the second heat exchange part 20, and the position of each laminated header at a position corresponding to line AA of each laminated header are shown. A cross section is shown. In addition, in the subsequent diagrams explaining the configuration of each laminated header, the flow path 360 of each laminated header is shown in a dot pattern to make it easier to see, and the hatching of each plate constituting the laminated header is omitted. .
 本実施の形態における積層型ヘッダ3は、伝熱管側プレート31と、第1プレート33と、第2プレート34と、端部プレート32とを有する。伝熱管側プレート31は、積層型ヘッダ3の、伝熱管側の端部を構成する。端部プレート32は、積層型ヘッダ3の、第2方向側の端部を構成する。伝熱管側プレート31と端部プレート32との間に、第1プレート33及び第2プレート34が設けられる。積層型ヘッダ3の各プレートは、隣り合うプレートと面接触する。本実施の形態では、第2方向Yに沿って、伝熱管側プレート31、第1プレート33、第2プレート34、及び端部プレート32が配置されている。 The laminated header 3 in this embodiment includes a heat exchanger tube side plate 31, a first plate 33, a second plate 34, and an end plate 32. The heat exchanger tube side plate 31 constitutes the end portion of the laminated header 3 on the heat exchanger tube side. The end plate 32 constitutes the end of the laminated header 3 on the second direction side. A first plate 33 and a second plate 34 are provided between the heat exchanger tube side plate 31 and the end plate 32. Each plate of the laminated header 3 makes surface contact with an adjacent plate. In this embodiment, the heat exchanger tube side plate 31, the first plate 33, the second plate 34, and the end plate 32 are arranged along the second direction Y.
 図4に示すように、第1伝熱管11及び第2伝熱管21は、伝熱管側プレート31を貫通している。図4では、第1伝熱管11及び第2伝熱管21の内部を、空気の流れの上流側である風上領域UWAと、空気の流れの下流側である風下領域DWAとして、破線で分割して示している。なお、以下の説明において、空気の流れの上流側を風上側と称し、空気の流れの下流側を風下側と称することがある。 As shown in FIG. 4, the first heat exchanger tube 11 and the second heat exchanger tube 21 penetrate the heat exchanger tube side plate 31. In FIG. 4, the interior of the first heat exchanger tube 11 and the second heat exchanger tube 21 is divided by broken lines into an upwind area UWA, which is the upstream side of the air flow, and a leeward area DWA, which is the downstream side of the air flow. It shows. Note that, in the following description, the upstream side of the air flow may be referred to as the windward side, and the downstream side of the air flow may be referred to as the leeward side.
 伝熱管側プレート31は、図5及び図6に示すように、複数の伝熱管挿入口31a及び複数の伝熱管挿入口31bを有する。複数の伝熱管挿入口31aは、第3方向Zに沿って、互いに間隔を空けて設けられている。複数の伝熱管挿入口31bは、第3方向Zに沿って、互いに間隔を空けて設けられている。複数の伝熱管挿入口31a及び複数の伝熱管挿入口31bのそれぞれは、伝熱管側プレート31を、第2方向Yに貫通している。空気の流れの上流側に配置される伝熱管が伝熱管挿入口31bに挿入され、空気の流れの下流側に配置される伝熱管が伝熱管挿入口31aに挿入される。本実施の形態では、1つの伝熱管挿入口31bに1つの第2伝熱管21が挿入され、1つの伝熱管挿入口31aに1つの第1伝熱管11が挿入される。 As shown in FIGS. 5 and 6, the heat exchanger tube side plate 31 has a plurality of heat exchanger tube insertion ports 31a and a plurality of heat exchanger tube insertion ports 31b. The plurality of heat exchanger tube insertion ports 31a are provided along the third direction Z at intervals from each other. The plurality of heat exchanger tube insertion ports 31b are provided along the third direction Z at intervals from each other. Each of the plurality of heat exchanger tube insertion ports 31a and the plurality of heat exchanger tube insertion ports 31b penetrates the heat exchanger tube side plate 31 in the second direction Y. A heat exchanger tube arranged on the upstream side of the air flow is inserted into the heat exchanger tube insertion port 31b, and a heat exchanger tube arranged on the downstream side of the air flow is inserted into the heat exchanger tube insertion port 31a. In this embodiment, one second heat exchanger tube 21 is inserted into one heat exchanger tube insertion port 31b, and one first heat exchanger tube 11 is inserted into one heat exchanger tube insertion port 31a.
 第1プレート33は、複数の第1開口部331及び複数の第2開口部332を有する。複数の第1開口部331は、第3方向Zに沿って、互いに間隔を空けて設けられている。複数の第2開口部332は、第3方向Zに沿って、互いに間隔を空けて設けられている。複数の第1開口部及び複数の第2開口部332のそれぞれは、第1プレート33を、第2方向Yに貫通している。空気の流れの上流側に配置される伝熱管の第2端部が第2開口部332に挿入され、空気の流れの下流側に配置される伝熱管の第2端部が第1開口部331に挿入される。本実施の形態では、1つの第2開口部332に1つの第2伝熱管21の第2端部21bが挿入され、1つの第1開口部331に1つの第1伝熱管11の第2端部11bが挿入される。第1方向Xに隣り合う第1開口部331と第2開口部332との間には、妨害部333が設けられる。 The first plate 33 has a plurality of first openings 331 and a plurality of second openings 332. The plurality of first openings 331 are provided at intervals along the third direction Z. The plurality of second openings 332 are provided at intervals along the third direction Z. Each of the plurality of first openings and the plurality of second openings 332 penetrates the first plate 33 in the second direction Y. The second end of the heat exchanger tube disposed on the upstream side of the air flow is inserted into the second opening 332, and the second end of the heat exchanger tube disposed on the downstream side of the air flow is inserted into the first opening 331. inserted into. In this embodiment, the second end 21b of one second heat exchanger tube 21 is inserted into one second opening 332, and the second end of one first heat exchanger tube 11 is inserted into one first opening 331. Section 11b is inserted. A blocking portion 333 is provided between the first opening 331 and the second opening 332 that are adjacent to each other in the first direction X.
 第1開口部331の外形の大きさは、第1伝熱管11の第2端部11bの外形の大きさよりも大きく、第2開口部332の外形の大きさは、第2伝熱管21の第2端部21bの外形の大きさよりも大きい。ここで、開口部の外形とは、開口部を第2方向Y或いは第2方向逆向きに見たときの開口部の縁の形状を指す。伝熱管の第2端部の外形とは、第2端部を第2方向Y或いは第2方向逆向きに見たときの外縁の形状を指す。 The outer size of the first opening 331 is larger than the outer size of the second end 11b of the first heat exchanger tube 11, and the outer size of the second opening 332 is larger than the outer size of the second end 11b of the second heat exchanger tube 21. It is larger than the external size of the second end portion 21b. Here, the outer shape of the opening refers to the shape of the edge of the opening when the opening is viewed in the second direction Y or in the opposite direction to the second direction. The outer shape of the second end of the heat exchanger tube refers to the shape of the outer edge when the second end is viewed in the second direction Y or in the opposite direction to the second direction.
 第2プレート34は、複数の第1の連通穴341を有する。複数の第1の連通穴341は、第3方向Zに沿って、互いに間隔を空けて設けられている。複数の第1の連通穴341のそれぞれは、第2プレート34を、第2方向Yに貫通している。第1の連通穴341は、第2方向逆向きに隣り合う、第1プレート33の第1開口部331、第2開口部332、及び妨害部333に重なる。言い換えると、1つの第1の連通穴341が、1つの第1開口部331、1つの第2開口部332、及び1つの妨害部333に対向する。 The second plate 34 has a plurality of first communication holes 341. The plurality of first communication holes 341 are provided at intervals along the third direction Z. Each of the plurality of first communication holes 341 penetrates the second plate 34 in the second direction Y. The first communication hole 341 overlaps with the first opening 331, the second opening 332, and the obstructing part 333 of the first plate 33, which are oppositely adjacent in the second direction. In other words, one first communication hole 341 faces one first opening 331 , one second opening 332 , and one obstruction portion 333 .
 端部プレート32は、第2プレート34と第2方向Yに隣り合うように配置される。端部プレート32は、平板状である。端部プレート32の第2方向Y側の端面32aが、積層型ヘッダ3の第2方向Y側の端部である。 The end plate 32 is arranged adjacent to the second plate 34 in the second direction Y. The end plate 32 has a flat plate shape. The end surface 32a of the end plate 32 on the second direction Y side is the end of the laminated header 3 on the second direction Y side.
 図4に示すように、第1プレート33の第1方向Xに沿って並ぶ1つの第2開口部332と1つの第1開口部331、及び、第1プレート33に第2方向Yに重なる第2プレートの1つの第1の連通穴341により、冷媒が流れる流路360が形成される。端部プレート32が流路360を形成する第2方向Y側の壁面となる。第1プレート33の妨害部333が、第1開口部331、第2開口部332、及び第1の連通穴341と接する面は、流路360を形成する壁面の一部となる。 As shown in FIG. 4, one second opening 332 and one first opening 331 are lined up along the first direction One first communication hole 341 of the two plates forms a flow path 360 through which the refrigerant flows. The end plate 32 becomes a wall surface on the second direction Y side that forms the flow path 360. A surface of the first plate 33 where the obstruction portion 333 contacts the first opening 331, the second opening 332, and the first communication hole 341 becomes a part of the wall surface forming the flow path 360.
(冷媒の流れと積層型ヘッダ3の作用効果)
 図4を参照して本実施の形態に係る積層型ヘッダ3での冷媒の流れを説明する。液ヘッダ12(図3参照)から第1熱交換部10に流入して、第1伝熱管11を第2方向Yに流れる冷媒は、第1伝熱管11の第2端部11bから積層型ヘッダ3に流入する。第1伝熱管11の第2端部11bから流出した冷媒は、第1プレート33の第1開口部331に流入する。第1開口部331に流入した冷媒は、第2方向Yに流れて、第2プレート34の第1の連通穴341に流入する。
(Refrigerant flow and effect of laminated header 3)
The flow of refrigerant in the laminated header 3 according to this embodiment will be described with reference to FIG. 4. The refrigerant that flows into the first heat exchange section 10 from the liquid header 12 (see FIG. 3) and flows through the first heat exchanger tubes 11 in the second direction Y flows from the second end 11b of the first heat exchanger tubes 11 to the laminated header. 3. The refrigerant flowing out from the second end 11b of the first heat exchanger tube 11 flows into the first opening 331 of the first plate 33. The refrigerant that has flowed into the first opening 331 flows in the second direction Y and flows into the first communication hole 341 of the second plate 34 .
 第1の連通穴341に流入した冷媒は、第1方向逆向きに流れる。ここで、第1方向逆向きに流れる冷媒は、空気の流れと逆方向に流れる。すなわち、冷媒と空気がお互いに対向流となって流れる。冷媒は、第1の連通穴341で第1方向逆向きに流れ、その後、第2方向逆向きに流れる。言い換えると、積層型ヘッダ3に第2方向Yに流入した冷媒は、第1の連通穴341で折り返し、第2方向逆向きに流れる。 The refrigerant flowing into the first communication hole 341 flows in the opposite direction to the first direction. Here, the refrigerant flowing in the opposite direction to the first direction flows in the opposite direction to the flow of air. That is, the refrigerant and air flow in countercurrents to each other. The refrigerant flows in the first communication hole 341 in the opposite direction in the first direction, and then flows in the opposite direction in the second direction. In other words, the refrigerant that has flowed into the laminated header 3 in the second direction Y is turned around at the first communication hole 341 and flows in the opposite direction in the second direction.
 通常、熱交換器では、前縁効果により、空気の流れの上流側で管外熱伝達率が高く、空気の流れの下流側で管外熱伝達率が低い。ここで、前縁効果とは、空気が最初に衝突する伝熱管の部位で最も熱伝達率が高くなるという効果をいう。また、管外熱伝達率とは、伝熱管を流れる冷媒が、空気と熱交換を行うときの熱伝達率をいう。通常、蒸発器において冷媒は、伝熱管を流れる過程で徐々に蒸発するので、伝熱管の内部で気液二相冷媒からガス単相に相変化する。また、伝熱管の内部において、空気の流れの上流側は管外熱伝達率が高いので、風上側を流れる冷媒は、風下側を流れる冷媒よりも蒸発しやすい。しかし、ガス単相の冷媒は、気液二相の冷媒に比べて熱伝達率が低いので、ガス単相の冷媒が、管外熱伝達率が高い風上側を流れると、熱交換器の熱交換性能が低下することになる。言い換えると、伝熱管の内部において、気液二相及び液単相の冷媒が風上側を流れると、熱交換器の熱交換性能が向上する。 Normally, in a heat exchanger, due to the leading edge effect, the extra-tubular heat transfer coefficient is high on the upstream side of the air flow, and the extra-tubular heat transfer coefficient is low on the downstream side of the air flow. Here, the leading edge effect refers to the effect that the heat transfer coefficient is highest at the portion of the heat exchanger tube where air first collides. Moreover, the extra-tube heat transfer coefficient refers to the heat transfer coefficient when the refrigerant flowing through the heat exchanger tube exchanges heat with air. Normally, in an evaporator, the refrigerant gradually evaporates as it flows through the heat exchanger tubes, so that the phase changes from a gas-liquid two-phase refrigerant to a single-phase gas inside the heat exchanger tubes. Furthermore, inside the heat transfer tube, the external heat transfer coefficient is high on the upstream side of the air flow, so the refrigerant flowing on the windward side evaporates more easily than the refrigerant flowing on the leeward side. However, a gas single-phase refrigerant has a lower heat transfer coefficient than a gas-liquid two-phase refrigerant, so if the gas single-phase refrigerant flows on the windward side, where the heat transfer coefficient outside the tube is high, the heat exchanger heats up. Replacement performance will deteriorate. In other words, when the gas-liquid two-phase and liquid single-phase refrigerants flow on the windward side inside the heat exchanger tube, the heat exchange performance of the heat exchanger improves.
 本実施の形態における第1伝熱管11及び第2伝熱管21の管外熱伝達率の変化を、図4の紙面左側の図で示している。横軸が管外熱伝達率を示しており、紙面左に向かって管外熱伝達率が上昇する。縦軸は空気が流れる方向を示し、紙面上が空気の流れの下流側である。2つの曲線のうち、紙面の上側に位置する曲線が第1伝熱管11の管外熱伝達率の変化を示し、紙面の下側に位置する曲線が第2伝熱管21の管外熱伝達率の変化を示している。第1伝熱管11及び第2伝熱管21において、最も風上に位置する部分が最も管外熱伝達率が高く、風下に向かって、管外熱伝達率が減少する。また、前縁効果により、第1伝熱管11の風上領域UWAに位置する部分の管外熱伝達率は、第2伝熱管21の風下領域DWAに位置する部分の管外熱伝達率よりも高い。なお、図4以降において、管外熱伝達率を示す図の構成は、図4の管外熱伝達率を示す図と同じである。よって、図4以降の図での管外熱伝達率についての説明は省略する。 Changes in the extratubular heat transfer coefficients of the first heat exchanger tube 11 and the second heat exchanger tube 21 in this embodiment are shown in the diagram on the left side of the paper in FIG. 4. The horizontal axis indicates the extratubular heat transfer coefficient, and the extratubular heat transfer coefficient increases toward the left in the paper. The vertical axis indicates the direction in which air flows, and the plane of the paper is on the downstream side of the air flow. Of the two curves, the curve located on the upper side of the page shows the change in the extra-tubular heat transfer coefficient of the first heat exchanger tube 11, and the curve located on the lower side of the page shows the change in the extra-tube heat transfer coefficient of the second heat exchanger tube 21. It shows the change in In the first heat exchanger tube 11 and the second heat exchanger tube 21, the portion located most upwind has the highest extra-tube heat transfer coefficient, and the extra-tube heat transfer coefficient decreases toward the leeward. Furthermore, due to the leading edge effect, the extra-tube heat transfer coefficient of the portion of the first heat exchanger tube 11 located in the upwind area UWA is higher than the extra-tube heat transfer coefficient of the portion of the second heat exchanger tube 21 located in the leeward area DWA. expensive. In addition, in FIG. 4 and subsequent figures, the structure of the diagram showing the extra-tubular heat transfer coefficient is the same as the diagram showing the extra-tubular heat transfer coefficient in FIG. 4. Therefore, description of the extratubular heat transfer coefficient in the figures after FIG. 4 will be omitted.
 本実施の形態では、第1伝熱管11の内部を第2方向Yに流れる冷媒は、前縁効果により、積層型ヘッダ3に近づくほど、風上領域UWAにガスリッチな冷媒が分布し、風下領域DWAに液リッチな冷媒が分布することになる。言い換えると、第1伝熱管11の風上領域UWAにガスリッチな冷媒が分布し、風下領域DWAに液リッチな冷媒が分布した状態で、第2端部11bから第1プレート33の第1開口部331に冷媒が流入する。第1開口部331に流入した液リッチな冷媒は、第2プレート34の第1の連通穴341に流入して第1方向逆向きに流れる際に、遠心力の作用により、端部プレート32側を流れる。第1開口部331に流入したガスリッチな冷媒は、妨害部333側を流れる。ここで、液リッチな冷媒とは液相比率が高い冷媒を指すこととし、ガスリッチな冷媒とはガス相比率が高い冷媒を指すこととする。 In the present embodiment, due to the leading edge effect, the refrigerant flowing in the second direction Y inside the first heat exchanger tube 11 distributes gas-rich refrigerant in the upwind area UWA as it approaches the stacked header 3, and the refrigerant in the leeward area A liquid-rich refrigerant will be distributed in the DWA. In other words, in a state where gas-rich refrigerant is distributed in the upwind area UWA of the first heat transfer tube 11 and liquid-rich refrigerant is distributed in the leeward area DWA, the first opening of the first plate 33 is opened from the second end 11b. Refrigerant flows into 331. When the liquid-rich refrigerant that has flowed into the first opening 331 flows into the first communication hole 341 of the second plate 34 and flows in the opposite direction to the first direction, the liquid-rich refrigerant flows toward the end plate 32 due to the action of centrifugal force. flows. The gas-rich refrigerant that has flowed into the first opening 331 flows on the obstruction portion 333 side. Here, the liquid-rich refrigerant refers to a refrigerant with a high liquid phase ratio, and the gas-rich refrigerant refers to a refrigerant with a high gas phase ratio.
 冷媒は、第1の連通穴341の下流側において、流れる方向を第2方向逆向きに変え、第1プレート33の第2開口部332に流入する。第2開口部332に流入した冷媒は、第2方向逆向きに流れて第2伝熱管21の第2端部21bに流入する。ここで、第1の連通穴341の端部プレート32側を流れた液リッチな冷媒は、第2開口部332の風上側を流れて、第2伝熱管21の風上領域UWAに流入する。第1の連通穴341の妨害部333側を流れたガスリッチな冷媒は、第2開口部332の風下側、すなわち妨害部333側を流れて、第2伝熱管21の風下領域DWAに流入する。 On the downstream side of the first communication hole 341, the refrigerant changes its flow direction to the second opposite direction and flows into the second opening 332 of the first plate 33. The refrigerant flowing into the second opening 332 flows in the opposite second direction and flows into the second end 21b of the second heat exchanger tube 21. Here, the liquid-rich refrigerant that has flowed on the end plate 32 side of the first communication hole 341 flows on the windward side of the second opening 332 and flows into the windward region UWA of the second heat exchanger tube 21 . The gas-rich refrigerant that has flowed on the obstructing portion 333 side of the first communication hole 341 flows on the leeward side of the second opening 332, that is, on the obstructing portion 333 side, and flows into the leeward region DWA of the second heat exchanger tube 21.
 本実施の形態では、積層型ヘッダ3内には、第1開口部331から第1の連通穴341を経て第2開口部332に至る流路360が形成されており、第1開口部331と第2開口部332との間には妨害部333が設けられている。このため、流路360の第1方向X及び第2方向Yに沿った断面形状は、直角の2つの角部を有するU字形状、或いはアーチ形状である。より詳しくは、妨害部333が有する実質的に第2方向Yに沿って延びる壁面により、第1開口部331に流入した冷媒に第2方向Yに沿って直進させる作用を生じさせる。そして、妨害部333の第2方向Y側の端面により、冷媒の流れ方向が、第2方向Yから第1方向逆向きに変更される。妨害部333によってこのような形状の流路360が形成されることで、流路360に流入した冷媒にはより遠心力が働く。このため、第1開口部331に流入した液リッチな冷媒は、遠心力の作用により、端部プレート32側及び第2開口部332の風上側を流れやすくなる。 In this embodiment, a flow path 360 is formed in the laminated header 3 from the first opening 331 to the second opening 332 via the first communication hole 341. A blocking portion 333 is provided between the second opening portion 332 and the second opening portion 332 . Therefore, the cross-sectional shape of the flow path 360 along the first direction X and the second direction Y is a U-shape having two right-angled corners, or an arch shape. More specifically, the wall surface of the obstructing portion 333 that extends substantially along the second direction Y causes the refrigerant flowing into the first opening 331 to move straight along the second direction Y. The end face of the obstruction portion 333 on the second direction Y side changes the flow direction of the refrigerant from the second direction Y to the opposite direction to the first direction. By forming the flow path 360 having such a shape by the obstruction portion 333, more centrifugal force acts on the refrigerant flowing into the flow path 360. Therefore, the liquid-rich refrigerant that has flowed into the first opening 331 easily flows on the end plate 32 side and on the windward side of the second opening 332 due to the action of centrifugal force.
 第2伝熱管21の第2端部21bから第2熱交換部20に流入した冷媒は、第2伝熱管21を第2方向逆向きに流れて、積層型ヘッダ3から流出する。積層型ヘッダ3から流出した冷媒は、第2伝熱管21を第2方向逆向きに流れて、ガスヘッダ22(図3参照)を通って第2熱交換部20から流出する。なお、冷媒は、第2熱交換部20から流出することで、熱交換器1から流出することになる。 The refrigerant that has flowed into the second heat exchange section 20 from the second end 21 b of the second heat exchanger tube 21 flows through the second heat exchanger tube 21 in the opposite second direction and flows out from the laminated header 3 . The refrigerant flowing out from the laminated header 3 flows through the second heat exchanger tube 21 in the second opposite direction, passes through the gas header 22 (see FIG. 3), and flows out from the second heat exchange section 20. Note that the refrigerant flows out from the heat exchanger 1 by flowing out from the second heat exchange section 20.
 本実施の形態に係る熱交換器1では、第2プレート34は、第1プレート33と端部プレート32との間に配置され、第1プレート33の第1開口部331の外形の大きさは、第1伝熱管11の第2端部11bの外形の大きさよりも大きく、第1伝熱管11の第2端部11bは、第1プレート33の第1開口部331に挿入され、第1プレート33の第2開口部332の外形の大きさは第2伝熱管21の第2端部21bの外形の大きさよりも大きく、第2伝熱管21の第2端部21bは、第1プレート33の第2開口部332に挿入されている。また、第1熱交換部10は、第2熱交換部20よりも空気の流れの下流側に位置する。 In the heat exchanger 1 according to the present embodiment, the second plate 34 is arranged between the first plate 33 and the end plate 32, and the external size of the first opening 331 of the first plate 33 is , the second end 11b of the first heat exchanger tube 11 is inserted into the first opening 331 of the first plate 33, and the second end 11b of the first heat exchanger tube 11 is inserted into the first opening 331 of the first plate 33. The external size of the second opening 332 of 33 is larger than the external size of the second end 21b of the second heat exchanger tube 21, and the second end 21b of the second heat exchanger tube 21 is It is inserted into the second opening 332. Further, the first heat exchange section 10 is located downstream of the second heat exchange section 20 in the air flow.
 本実施の形態では、液ヘッダ12から積層型ヘッダ3に向かって流れる過程でガスリッチになった冷媒は、第1プレート33の第1開口部331の妨害部333側に流入する。一方、液リッチになった冷媒は、第1プレート33の第1開口部331の風下側に流入する。積層型ヘッダ3の流路360を流れる冷媒には、第1プレート33の妨害部333により、遠心力がより働く。このため、流路360を流れる液リッチな冷媒が、端部プレート32側の壁面及び第1プレート33の第2開口部332の風上側の壁面に沿って流れて、第2伝熱管21の風上領域UWAに流入しやすくなる。 In the present embodiment, the refrigerant that has become gas-rich while flowing from the liquid header 12 toward the laminated header 3 flows into the first opening 331 of the first plate 33 on the side of the obstruction portion 333 . On the other hand, the liquid-rich refrigerant flows into the leeward side of the first opening 331 of the first plate 33 . The centrifugal force acts on the refrigerant flowing through the flow path 360 of the laminated header 3 due to the obstruction portion 333 of the first plate 33 . Therefore, the liquid-rich refrigerant flowing through the flow path 360 flows along the wall surface on the end plate 32 side and the wall surface on the windward side of the second opening 332 of the first plate 33, and It becomes easier to flow into the upper area UWA.
 本実施の形態では、積層型ヘッダ3により、液リッチな冷媒が、第2伝熱管21の風上領域UWAに流入しやすい。すなわち、液リッチな冷媒が、管外熱伝達率が高い第2伝熱管21の風上領域UWAを第2方向逆向きに流れることになり、熱交換器1の熱交換性能が向上する。 In this embodiment, the laminated header 3 allows liquid-rich refrigerant to easily flow into the upwind area UWA of the second heat exchanger tube 21. That is, the liquid-rich refrigerant flows in the opposite direction to the second direction through the upwind region UWA of the second heat exchanger tube 21 where the extra-tube heat transfer coefficient is high, and the heat exchange performance of the heat exchanger 1 is improved.
(実施の形態1の変形例1)
 図7は、実施の形態1の変形例1に係る積層型ヘッダ3Aの構成を説明する図である。本変形例と実施の形態1の相違点は、第1プレートの妨害部の形状のみである。他の構成については、実施の形態1と同じであるため、ここでは説明を省略する。
(Modification 1 of Embodiment 1)
FIG. 7 is a diagram illustrating the configuration of a stacked header 3A according to Modification 1 of Embodiment 1. The only difference between this modification and the first embodiment is the shape of the obstructing portion of the first plate. Since the other configurations are the same as those in Embodiment 1, their description will be omitted here.
 図7に示すように、変形例1の積層型ヘッダ3Aの第1プレート33-1の妨害部333-1は、第2方向Yの先端の端面が、第2方向Yに曲面状に凸となっている。このため、第1プレート33-1の第1開口部331-1と接する妨害部333-1の表面、すなわち流路360を形成している壁面の一部が、第1方向逆向き及び第2方向Yに向かって湾曲している。また、第1プレート33-1の第2開口部332-1と接する妨害部333-1の表面、すなわち流路360を形成している壁面の一部が、第1方向X及び第2方向Yに向かって湾曲している。言い換えると、本変形例の流路360の第1方向X及び第2方向Yに沿った断面形状において、U字形状或いはアーチ形状の部分は、直角の2つの角部を有しない。 As shown in FIG. 7, the obstructing portion 333-1 of the first plate 33-1 of the laminated header 3A of Modification 1 has a tip end face in the second direction Y that is curved in the second direction Y. It has become. Therefore, the surface of the obstruction portion 333-1 that is in contact with the first opening 331-1 of the first plate 33-1, that is, a part of the wall surface forming the flow path 360, is oriented in the opposite direction in the first direction and in the second direction. It is curved in direction Y. Further, the surface of the obstruction portion 333-1 in contact with the second opening 332-1 of the first plate 33-1, that is, a part of the wall surface forming the flow path 360 is It is curved towards. In other words, in the cross-sectional shape of the flow path 360 of this modification along the first direction X and the second direction Y, the U-shaped or arch-shaped portion does not have two right-angled corners.
(実施の形態1の変形例1の作用効果)
 妨害部が直角の角部を有する場合、第1プレートの第1開口部を第2方向Yに流れる冷媒は、角部に沿って直進しやすくなり、遠心力が抑制される。本変形例では、第1開口部331-1と接する妨害部333-1の表面が第1方向逆向きに湾曲にしているので、第1開口部331-1を流れる冷媒が第1方向逆向きに流れやすく、遠心力が発生しやすい。すなわち、第1伝熱管11の風下領域DWAから流路360に流入した液リッチな冷媒が、遠心力により、端部プレート32側の壁面及び第1プレート33-2の第2開口部332-1の風上側の壁面に沿って流れて、第2伝熱管21の風上領域UWAに流入しやすくなる。したがって、管外熱伝達率が高い、第2伝熱管21の風上領域UWAを液リッチな冷媒が第2方向逆向きに流れることになり、熱交換器1の熱交換性能が向上する。
(Operations and effects of Modification 1 of Embodiment 1)
When the obstruction part has a right-angled corner, the refrigerant flowing in the second direction Y through the first opening of the first plate tends to travel straight along the corner, and centrifugal force is suppressed. In this modification, the surface of the obstructing part 333-1 in contact with the first opening 331-1 is curved in the opposite direction to the first direction, so that the refrigerant flowing through the first opening 331-1 flows in the opposite direction to the first direction. It flows easily and generates centrifugal force. That is, the liquid-rich refrigerant that has flowed into the flow path 360 from the leeward region DWA of the first heat exchanger tube 11 is caused by centrifugal force to cause damage to the wall surface on the end plate 32 side and the second opening 332-1 of the first plate 33-2. The heat exchanger flows along the windward wall surface of the heat exchanger tube 21 and easily flows into the windward region UWA of the second heat exchanger tube 21 . Therefore, the liquid-rich refrigerant flows in the opposite second direction through the upwind region UWA of the second heat exchanger tube 21 where the extra-tube heat transfer coefficient is high, and the heat exchange performance of the heat exchanger 1 is improved.
(実施の形態1の変形例2)
 図8は、実施の形態1の変形例2に係る積層型ヘッダ3Bの構成を説明する図である。本変形例と実施の形態1の変形例1との相違点は、端部プレートの形状のみである。他の構成については、実施の形態1の変形例1と同じ構成であるため、ここでは説明を省略する。
(Modification 2 of Embodiment 1)
FIG. 8 is a diagram illustrating the configuration of a stacked header 3B according to a second modification of the first embodiment. The only difference between this modification and Modification 1 of Embodiment 1 is the shape of the end plate. The other configurations are the same as those in Modification 1 of Embodiment 1, so description thereof will be omitted here.
 図8に示すように、変形例2の積層型ヘッダ3Bの端部プレート32-1は、第2方向Yに曲面状に凹む凹部321を有する。凹部321は、第2プレート34の第1の連通穴341に第2方向Yに重なり、流路360の一部を形成している。また、端部プレート32-1の端面32aは、第2方向Yに曲面状に凸となっている。すなわち、端部プレート32-1の端面32aは、凹部321の第2方向Y側の壁面と同じように、第2方向Yに凸となっている。 As shown in FIG. 8, the end plate 32-1 of the laminated header 3B of Modification 2 has a recess 321 that is curved in the second direction Y. The recess 321 overlaps the first communication hole 341 of the second plate 34 in the second direction Y, and forms a part of the flow path 360. Further, the end surface 32a of the end plate 32-1 is curved and convex in the second direction Y. That is, the end surface 32a of the end plate 32-1 is convex in the second direction Y, like the wall surface of the recess 321 on the second direction Y side.
(実施の形態1の変形例2の作用効果)
 実施の形態1の変形例2において、端部プレート32-1は、第2方向Yに曲面状に凹んでおり、第1の連通穴341に重ねて配置されて流路360の一部を形成する凹部321を有する。流路360の流路断面積は、凹部321により大きくなり、第1伝熱管11と第2伝熱管21との間で冷媒が流れやすくなる。
(Operations and effects of Modification 2 of Embodiment 1)
In the second modification of the first embodiment, the end plate 32-1 is recessed in a curved shape in the second direction Y, and is arranged to overlap the first communication hole 341 to form a part of the flow path 360. It has a recess 321. The cross-sectional area of the flow path 360 is increased by the recess 321, and the refrigerant can easily flow between the first heat exchanger tube 11 and the second heat exchanger tube 21.
 また、流路360を第2方向Yに流れる冷媒が、対向する面に垂直に衝突した場合、遠心力の発生が抑制される。本変形例の構成では、凹部321が曲面状であるため、第1伝熱管11から流入した冷媒は、端部プレート32-1に垂直に衝突せずに、凹部321の曲面に沿って第1方向逆向きに流れやすい。このため、遠心力がより発生しやすい。すなわち、第1伝熱管11の風下領域DWAから流路360に流入した液リッチな冷媒は、遠心力により、端部プレート32-1の凹部321を流れやすくなる。このため、液リッチな冷媒が、第2開口部332の風上側の壁面に沿って流れて、第2伝熱管21の風上領域UWAに流入しやすくなる。したがって、管外熱伝達率が高い、第2伝熱管21の風上領域UWAを液リッチな冷媒が第2方向逆向きに流れることになり、熱交換器1の熱交換性能が向上する。 Further, when the refrigerant flowing in the second direction Y through the flow path 360 collides with the opposing surface perpendicularly, the generation of centrifugal force is suppressed. In the configuration of this modified example, since the recess 321 has a curved shape, the refrigerant flowing from the first heat exchanger tube 11 does not collide perpendicularly with the end plate 32-1, but flows into the first heat exchanger along the curved surface of the recess 321. It tends to flow in the opposite direction. Therefore, centrifugal force is more likely to occur. That is, the liquid-rich refrigerant that has flowed into the flow path 360 from the leeward region DWA of the first heat transfer tube 11 easily flows through the recess 321 of the end plate 32-1 due to the centrifugal force. Therefore, the liquid-rich refrigerant flows along the windward wall surface of the second opening 332 and easily flows into the windward region UWA of the second heat exchanger tube 21. Therefore, the liquid-rich refrigerant flows in the opposite second direction through the upwind region UWA of the second heat exchanger tube 21 where the extra-tube heat transfer coefficient is high, and the heat exchange performance of the heat exchanger 1 is improved.
 なお、図8では、第1プレートとして、変形例1の第1プレート33-1を示している。しかし、第1プレートは、実施の形態1の第1プレート33であってもよい。第1プレート33-1と端部プレート32-1を有する積層型ヘッダは、第1プレート33と端部プレート32-1を有する積層型ヘッダよりも、流路360を流れる冷媒により強い遠心力が作用する。 Note that in FIG. 8, the first plate 33-1 of Modification 1 is shown as the first plate. However, the first plate may be the first plate 33 of the first embodiment. The laminated header having the first plate 33-1 and the end plate 32-1 has a stronger centrifugal force on the refrigerant flowing through the flow path 360 than the laminated header having the first plate 33 and the end plate 32-1. act.
 また、本変形例の端部プレート32-1は、凹部321が設けられる端面とは反対側の端面32aが、第2方向Yに曲面状に凸となっている。端部プレート32-1に凹部321を形成する際に、端部プレート32-1全体をプレス加工で曲げることで、凹部321及び凸状の端面32aが形成される。プレス加工により端部プレート32-1に凹部321を形成することで、熱交換器1の製造が容易になるとともに、製造費用が抑制できる。 Furthermore, in the end plate 32-1 of this modification, the end surface 32a opposite to the end surface where the recess 321 is provided is curved and convex in the second direction Y. When forming the recess 321 in the end plate 32-1, the entire end plate 32-1 is bent by press working, thereby forming the recess 321 and the convex end surface 32a. By forming the recess 321 in the end plate 32-1 by press working, the heat exchanger 1 can be manufactured easily and manufacturing costs can be suppressed.
(実施の形態1の変形例3)
 図9は、実施の形態1の変形例3に係る積層型ヘッダ3Cの構成を説明する図である。本変形例と実施の形態1の変形例2との相違点は、積層型ヘッダ3Cが第2プレート34を有さない点、及び端部プレートが凹部321を有する端部プレート32-1である点である。他の構成については、実施の形態1、実施の形態1の変形例1、及び実施の形態1の変形例2で説明した構成を利用できるので、ここでは説明を省略する。また、図9では、第1プレートとして、変形例1の第1プレート33-1を示している。しかし、第1プレートは、実施の形態1の第1プレート33であってもよい。
(Variation 3 of Embodiment 1)
FIG. 9 is a diagram illustrating the configuration of a stacked header 3C according to the third modification of the first embodiment. The differences between this modification and the second modification of the first embodiment are that the laminated header 3C does not have the second plate 34, and the end plate 32-1 has a recess 321. It is a point. Regarding the other configurations, the configurations described in Embodiment 1, Modification 1 of Embodiment 1, and Modification 2 of Embodiment 1 can be used, so the description will be omitted here. Further, in FIG. 9, the first plate 33-1 of Modification 1 is shown as the first plate. However, the first plate may be the first plate 33 of the first embodiment.
 図9に示すように、本変形例の積層型ヘッダ3Cは、伝熱管側プレート31と、第1プレート33と、端部プレート32-1とを有する。第2方向Yに沿って、伝熱管側プレート31、第1プレート33、及び端部プレート32-1が配置されている。積層型ヘッダ3Cでは、端部プレート32-1の凹部321が、第2プレート34の第1の連通穴341を代替する。すなわち、端部プレート32-1が第2プレートを代替して、積層型ヘッダ3Cに、変形例2に係る積層型ヘッダ3Bと同じような流路360を形成する。このため、積層型ヘッダ3Cは、第2プレートを有さないが、流路360で冷媒を液リッチな冷媒とガスリッチな冷媒とに分離して、液リッチな冷媒を、管外熱伝達率が高い、第2伝熱管21の風上領域UWAに流入させることができる。また、第2プレートが不要であるため、積層型ヘッダの製造費用を、実施の形態1及び変形例1、2に係る積層型ヘッダの製造費用よりも抑制することができる。 As shown in FIG. 9, the laminated header 3C of this modification includes a heat exchanger tube side plate 31, a first plate 33, and an end plate 32-1. Along the second direction Y, the heat exchanger tube side plate 31, the first plate 33, and the end plate 32-1 are arranged. In the stacked header 3C, the recess 321 of the end plate 32-1 replaces the first communication hole 341 of the second plate 34. That is, the end plate 32-1 replaces the second plate, and a flow path 360 similar to that of the laminated header 3B according to the second modification is formed in the laminated header 3C. Therefore, although the stacked header 3C does not have a second plate, the refrigerant is separated into a liquid-rich refrigerant and a gas-rich refrigerant in the flow path 360, and the liquid-rich refrigerant has an extra-tube heat transfer coefficient. It can be made to flow into the windward area UWA of the second heat exchanger tube 21, which is high. Furthermore, since the second plate is not required, the manufacturing cost of the laminated header can be lower than the manufacturing cost of the laminated header according to the first embodiment and the first and second modified examples.
実施の形態2.
 本実施の形態では、実施の形態1及び実施の形態1の各変形例との相違点を中心に説明する。本実施の形態が、実施の形態1及び実施の形態1の各変形例と相違する点は、積層型ヘッダの構成である。他の構成については、実施の形態1及び実施の形態1の各変形例と同じであるため、ここでは説明を省略する。
Embodiment 2.
In this embodiment, differences between Embodiment 1 and each modification of Embodiment 1 will be mainly described. This embodiment differs from Embodiment 1 and each modification of Embodiment 1 in the structure of the laminated header. The other configurations are the same as those of the first embodiment and each modification of the first embodiment, so the description thereof will be omitted here.
 図10は、実施の形態2に係る積層型ヘッダ3Dの構成を説明する図である。図11は、実施の形態2に係る積層型ヘッダ3Dの展開図である。図10及び図11に示すように、積層型ヘッダ3Dは、伝熱管側プレート31、第2プレート34、第1プレート33-2、第3プレート35、及び端部プレート32を有する。第2方向Yに沿って、伝熱管側プレート31、第2プレート34、第1プレート33-2、第3プレート35、及び端部プレート32が配置されている。伝熱管側プレート31及び端部プレート32の構成は、実施の形態1と同じである。 FIG. 10 is a diagram illustrating the configuration of a stacked header 3D according to the second embodiment. FIG. 11 is a developed view of the stacked header 3D according to the second embodiment. As shown in FIGS. 10 and 11, the stacked header 3D includes a heat exchanger tube side plate 31, a second plate 34, a first plate 33-2, a third plate 35, and an end plate 32. Along the second direction Y, the heat exchanger tube side plate 31, the second plate 34, the first plate 33-2, the third plate 35, and the end plate 32 are arranged. The configurations of the heat exchanger tube side plate 31 and the end plate 32 are the same as in the first embodiment.
 本実施の形態では、伝熱管側プレート31と第2プレート34とが隣り合って配置される。第1伝熱管11の第2端部11b及び第2伝熱管21の第2端部21bは、第2プレート34の第1の連通穴341に挿入される。より詳しくは、第1伝熱管11の第2端部11bは、第2プレート34の第1の連通穴341の風下側に挿入され、第2伝熱管21の第2端部21bは、第2プレート34の第1の連通穴341の風上側に挿入される。 In this embodiment, the heat exchanger tube side plate 31 and the second plate 34 are arranged adjacent to each other. The second end 11b of the first heat exchanger tube 11 and the second end 21b of the second heat exchanger tube 21 are inserted into the first communication hole 341 of the second plate 34. More specifically, the second end 11b of the first heat exchanger tube 11 is inserted into the leeward side of the first communication hole 341 of the second plate 34, and the second end 21b of the second heat exchanger tube 21 is inserted into the leeward side of the first communication hole 341 of the second plate 34. It is inserted into the windward side of the first communication hole 341 of the plate 34.
 第1プレート33-2は、第2方向Yに、第2プレート34と隣り合うように配置される。第1プレート33-2は、複数の第1開口部331-2及び複数の第2開口部332-2を有する。複数の第1開口部331-2及び複数の第2開口部332-2が第1プレート33-2設けられる構成は、実施の形態1の第1プレート33に複数の第1開口部331及び複数の第2開口部332が設けられる構成と同じである。第1方向Xに隣り合う第1開口部331-2と第2開口部332-2との間には、妨害部333-2が設けられる。 The first plate 33-2 is arranged adjacent to the second plate 34 in the second direction Y. The first plate 33-2 has a plurality of first openings 331-2 and a plurality of second openings 332-2. The configuration in which the first plate 33-2 is provided with the plurality of first openings 331-2 and the plurality of second openings 332-2 is different from the configuration in which the first plate 33 of the first embodiment is provided with the plurality of first openings 331 and the plurality of second openings 332-2. This is the same configuration as that in which the second opening 332 is provided. A blocking portion 333-2 is provided between the first opening 331-2 and the second opening 332-2 that are adjacent to each other in the first direction X.
 第1開口部331-2の外形の大きさは、第1伝熱管11の第2端部11bの外形の大きさよりも小さく、第2開口部332-2の外形の大きさは、第2伝熱管21の第2端部21bの外形の大きさよりも小さい。図10では、第1伝熱管11の第2端部11bを、第1プレート33-2に投影した領域を投影領域40として一点鎖線で示している。また、第2伝熱管21の第2端部21bを、第1プレート33-2に投影した領域を投影領域41として一点鎖線で示している。図10に示すように、投影領域40の一部及び投影領域41の一部は、第1プレート33-2の妨害部333-2に重なる。言い換えると、第1プレート33-2の妨害部333-2は、第1伝熱管11の風上領域UWAを投影した投影領域40及び第2伝熱管21の風下領域DWAを投影した投影領域41に位置する。すなわち、一つの妨害部333-2が、第1方向Xに並んだ第1伝熱管11の投影領域40と第2伝熱管21の投影領域41とに跨がって配置されている。第1プレート33-2の第1開口部331-2は、第1伝熱管11の風下領域DWAを投影した投影領域40に位置する。第1プレート33-2の第2開口部332-2は、第2伝熱管21の風上領域UWAを投影した投影領域41に位置する。 The external size of the first opening 331-2 is smaller than the external size of the second end 11b of the first heat exchanger tube 11, and the external size of the second opening 332-2 is smaller than the external size of the second end 11b of the first heat exchanger tube 11. It is smaller than the external size of the second end portion 21b of the heat tube 21. In FIG. 10, a region of the second end portion 11b of the first heat exchanger tube 11 projected onto the first plate 33-2 is indicated by a dashed dotted line as a projection region 40. In FIG. Further, a region in which the second end portion 21b of the second heat exchanger tube 21 is projected onto the first plate 33-2 is indicated by a dashed dotted line as a projection region 41. As shown in FIG. 10, a portion of the projection area 40 and a portion of the projection area 41 overlap the obstructing portion 333-2 of the first plate 33-2. In other words, the obstructing portion 333-2 of the first plate 33-2 is projected onto a projection area 40 where the upwind area UWA of the first heat exchanger tube 11 is projected and a projection area 41 where the leeward area DWA of the second heat exchanger tube 21 is projected. To position. That is, one obstructing portion 333-2 is arranged across the projection area 40 of the first heat exchanger tube 11 and the projection area 41 of the second heat exchanger tube 21 that are lined up in the first direction X. The first opening 331-2 of the first plate 33-2 is located in the projection area 40 in which the leeward area DWA of the first heat exchanger tube 11 is projected. The second opening 332-2 of the first plate 33-2 is located in a projection area 41 in which the windward area UWA of the second heat exchanger tube 21 is projected.
 第3プレート35は、複数の第2の連通穴351を有する。複数の第2の連通穴351は、第3方向Zに沿って、互いに間隔を空けて設けられている。複数の第2の連通穴351のそれぞれは、第3プレート35を、第2方向Yに貫通している。第2の連通穴351は、第2方向逆向きに隣り合う、第1プレート33-2の第1開口部331-2、第2開口部332-2、及び妨害部333-2に重なる。言い換えると、1つの第2の連通穴351が、1つの第1開口部331、1つの第2開口部332、及び1つの妨害部333-2に対向する。 The third plate 35 has a plurality of second communication holes 351. The plurality of second communication holes 351 are provided at intervals along the third direction Z. Each of the plurality of second communication holes 351 penetrates the third plate 35 in the second direction Y. The second communication hole 351 overlaps with the first opening 331-2, the second opening 332-2, and the obstruction portion 333-2 of the first plate 33-2, which are oppositely adjacent in the second direction. In other words, one second communication hole 351 faces one first opening 331, one second opening 332, and one obstructing portion 333-2.
 端部プレート32は、第3プレート35と第2方向Yに隣り合うように配置される。 The end plate 32 is arranged adjacent to the third plate 35 in the second direction Y.
 図10に示すように、第2プレート34の第1の連通穴341、第1プレート33-2の第1開口部331-2と第2開口部332-2、及び第3プレート35の第2の連通穴351により、冷媒が流れる流路360が形成される。端部プレート32が流路360を形成する第2方向Y側の壁面となる。第1プレート33-2の妨害部333-2が、第1の連通穴341、第1開口部331-2、第2開口部332-2、及び第2の連通穴351と接する面は、流路360を形成する壁面の一部となる。 As shown in FIG. 10, the first communication hole 341 of the second plate 34, the first opening 331-2 and the second opening 332-2 of the first plate 33-2, and the second The communication hole 351 forms a flow path 360 through which the refrigerant flows. The end plate 32 becomes a wall surface on the second direction Y side that forms the flow path 360. The surface where the obstruction portion 333-2 of the first plate 33-2 contacts the first communication hole 341, the first opening 331-2, the second opening 332-2, and the second communication hole 351 is It becomes part of the wall surface forming the channel 360.
(冷媒の流れと積層型ヘッダ3Dの作用効果)
 図10を参照して、本実施の形態に係る積層型ヘッダ3Dでの冷媒の流れを説明する。液ヘッダ12(図3参照)から第1熱交換部10に流入して、第1伝熱管11を第2方向Yに流れる冷媒は、第1伝熱管11の第2端部11bから積層型ヘッダ3Dに流入する。第1伝熱管11の第2端部11bから流出した冷媒は、第2プレート34の第1の連通穴341に流入する。第1の連通穴341に流入した冷媒は、第1方向逆向き及び第2方向Yに分岐して流れる。第1方向逆向きに流れる冷媒は、第1の連通穴341を通って、第2伝熱管21の第2端部21bに流入する。第1の連通穴341を第2方向Yに流れる冷媒は、第1プレート33-2の第1開口部331-2に流入し、そのまま第2方向Yに流れて、第3プレート35の第2の連通穴351に流入し、第1方向逆向きに流れる。ここで、第1方向逆向きに流れる冷媒は、空気の流れと逆方向に流れる。すなわち、冷媒と空気がお互いに対向流となって流れる。
(Refrigerant flow and effect of 3D stacked header)
With reference to FIG. 10, the flow of refrigerant in the stacked header 3D according to this embodiment will be described. The refrigerant that flows into the first heat exchange section 10 from the liquid header 12 (see FIG. 3) and flows through the first heat exchanger tubes 11 in the second direction Y flows from the second end 11b of the first heat exchanger tubes 11 to the laminated header. Flow into 3D. The refrigerant flowing out from the second end portion 11b of the first heat exchanger tube 11 flows into the first communication hole 341 of the second plate 34. The refrigerant flowing into the first communication hole 341 flows in the opposite direction to the first direction and in the second direction Y. The refrigerant flowing in the opposite direction to the first direction passes through the first communication hole 341 and flows into the second end portion 21b of the second heat exchanger tube 21. The refrigerant flowing in the second direction Y through the first communication hole 341 flows into the first opening 331-2 of the first plate 33-2, continues to flow in the second direction Y, and then flows into the second direction Y of the third plate 35. The water flows into the communication hole 351 and flows in the opposite direction to the first direction. Here, the refrigerant flowing in the opposite direction to the first direction flows in the opposite direction to the flow of air. That is, the refrigerant and air flow in countercurrents to each other.
 第2の連通穴351に流入した冷媒は、第1方向逆向きに流れ、その後、第2方向逆向きに流れる。言い換えると、積層型ヘッダ3Dに第2方向Yに流入した冷媒は、第2の連通穴351で折り返し、第2方向逆向きに流れる。 The refrigerant flowing into the second communication hole 351 flows in the opposite direction to the first direction, and then flows in the opposite direction to the second direction. In other words, the refrigerant that has flowed into the stacked header 3D in the second direction Y is turned around at the second communication hole 351 and flows in the opposite direction in the second direction.
 本実施の形態では、第1伝熱管11の風下領域DWAに液リッチな冷媒が分布し、風上領域UWAにガスリッチな冷媒が分布した状態で、第2端部11bから第2プレート34の第1の連通穴341に冷媒が流入する。第1の連通穴341に流入した液リッチな冷媒は、第2方向Yに流れて第1開口部331-2に流入する。一方、第1の連通穴341に流入したガスリッチな冷媒は、第2方向Yに流れるが、妨害部333-2に衝突して、流れる方向が第1方向逆向きに変わる。 In this embodiment, the liquid-rich refrigerant is distributed in the leeward area DWA of the first heat exchanger tube 11, and the gas-rich refrigerant is distributed in the upwind area UWA, and the second plate 34 is Refrigerant flows into the first communication hole 341 . The liquid-rich refrigerant that has flowed into the first communication hole 341 flows in the second direction Y and flows into the first opening 331-2. On the other hand, the gas-rich refrigerant that has flowed into the first communication hole 341 flows in the second direction Y, but collides with the obstruction portion 333-2 and changes its flow direction to the opposite direction to the first direction.
 第1開口部331-2に流入した液リッチな冷媒は、そのまま第2方向Yに流れて、第3プレート35の第2の連通穴351に流入する。第3プレート35の第2の連通穴351に流入した液リッチな冷媒は、第1方向逆向きに流れる際に、遠心力の作用により、端部プレート32側を流れる。第2の連通穴351の端部プレート32側を流れた液リッチな冷媒は、第1プレート33-2の第2開口部332-2に流入する。第2開口部332-2に流入した液リッチな冷媒は、第2方向逆向きに流れて、第2プレート34の第1の連通穴341に流入する。液リッチな冷媒は、第1の連通穴341の風上側を第2方向逆向きに進み、第2伝熱管21の第2端部21bに流入する。ここで、液リッチな冷媒は、第2伝熱管21の風上領域UWAに対向する第1の連通穴341の領域を第2方向逆向きに流れるので、第2伝熱管21の風上領域UWAに流入しやすい。また、第2伝熱管21の風下領域DWAに対向する第1の連通穴341の領域は、ガスリッチな冷媒が流れているので、液リッチな冷媒は第2伝熱管21の風下領域DWAには流入しにくい。 The liquid-rich refrigerant that has flowed into the first opening 331-2 flows directly in the second direction Y, and flows into the second communication hole 351 of the third plate 35. The liquid-rich refrigerant that has flowed into the second communication hole 351 of the third plate 35 flows on the end plate 32 side due to the action of centrifugal force when flowing in the opposite direction to the first direction. The liquid-rich refrigerant that has flowed on the end plate 32 side of the second communication hole 351 flows into the second opening 332-2 of the first plate 33-2. The liquid-rich refrigerant that has flowed into the second opening 332-2 flows in the opposite second direction and flows into the first communication hole 341 of the second plate 34. The liquid-rich refrigerant travels in the opposite second direction on the windward side of the first communication hole 341 and flows into the second end portion 21b of the second heat exchanger tube 21. Here, since the liquid-rich refrigerant flows in the opposite direction in the second direction through the region of the first communication hole 341 that faces the upwind region UWA of the second heat exchanger tube 21, the upwind region UWA of the second heat exchanger tube 21 easy to flow into. Furthermore, since gas-rich refrigerant flows in the region of the first communication hole 341 facing the leeward region DWA of the second heat exchanger tube 21, liquid-rich refrigerant flows into the leeward region DWA of the second heat exchanger tube 21. It's hard to do.
 一方、第1の連通穴341を第1方向逆向きに流れるガスリッチな冷媒は、第2伝熱管21の第2端部21bから第2伝熱管21に流入する。ここで、第2伝熱管21の風上領域UWAには、第2開口部332-2から第1の連通穴341に流入する液リッチな冷媒が流入する。このため、ガスリッチな冷媒は、第2伝熱管21の風上領域UWAよりも風下領域DWAに流入しやすい。 On the other hand, the gas-rich refrigerant flowing in the first communication hole 341 in the opposite direction to the first direction flows into the second heat exchanger tube 21 from the second end 21b of the second heat exchanger tube 21. Here, the liquid-rich refrigerant that flows into the first communication hole 341 from the second opening 332-2 flows into the upwind area UWA of the second heat transfer tube 21. Therefore, the gas-rich refrigerant more easily flows into the leeward region DWA of the second heat exchanger tube 21 than the windward region UWA.
 第2伝熱管21の第2端部21bから第2熱交換部20に流入した液リッチな冷媒及びガスリッチな冷媒は、第2伝熱管21を第2方向逆向きに流れて、積層型ヘッダ3Dから流出する。積層型ヘッダ3Dから流出した冷媒は、第2伝熱管21を第2方向逆向きに流れて、ガスヘッダ22(図3参照)を通って第2熱交換部20から流出する。なお、冷媒は、第2熱交換部20から流出することで、熱交換器1から流出することになる。 The liquid-rich refrigerant and the gas-rich refrigerant that have flowed into the second heat exchange section 20 from the second end 21b of the second heat exchanger tube 21 flow through the second heat exchanger tube 21 in the second direction opposite to the stacked header 3D. flows out from. The refrigerant flowing out of the laminated header 3D flows through the second heat exchanger tube 21 in the second opposite direction, passes through the gas header 22 (see FIG. 3), and flows out from the second heat exchange section 20. Note that the refrigerant flows out from the heat exchanger 1 by flowing out from the second heat exchange section 20.
 本実施の形態に係る積層型ヘッダ3Dにおいて、第2プレート34は、伝熱管側プレート31と第1プレート33-2との間に配置され、第1伝熱管11の第2端部11b及び第2伝熱管21の第2端部21bは、第2プレート34の第1の連通穴341に挿入される。第2方向Yにおいて、第1伝熱管11の第2端部11b及び第2伝熱管21の第2端部21bを第1プレート33-2に投影した場合、第1伝熱管11の第2端部11bの投影領域40の一部及び第2伝熱管21の第2端部21bの投影領域41の一部が妨害部333-2に重なる。 In the laminated header 3D according to the present embodiment, the second plate 34 is arranged between the heat exchanger tube side plate 31 and the first plate 33-2, and is arranged between the second end 11b of the first heat exchanger tube 11 and the The second end portion 21 b of the second heat exchanger tube 21 is inserted into the first communication hole 341 of the second plate 34 . In the second direction Y, when the second end 11b of the first heat exchanger tube 11 and the second end 21b of the second heat exchanger tube 21 are projected onto the first plate 33-2, the second end of the first heat exchanger tube 11 A portion of the projection area 40 of the portion 11b and a portion of the projection area 41 of the second end portion 21b of the second heat exchanger tube 21 overlap the obstructing portion 333-2.
 本実施の形態によれば、積層型ヘッダ3Dに流入するガスリッチな冷媒は第1プレート33-2の妨害部333-2に衝突し、第2プレート34の第1の連通穴341を第1方向逆向きに流れる。一方、積層型ヘッダ3Dに流入する液リッチな冷媒は、妨害部333-2に衝突せずに、第2方向Yに流れる。このため、ガスリッチな冷媒と液リッチな冷媒の分離が、妨害部333-2により促進される。なお、投影領域40と妨害部333-2とが重なる領域の大きさ、及び投影領域41と妨害部333-2とが重なる領域の大きさは、熱交換器の積層型ヘッダで予定されているガス冷媒と液冷媒の流量の比率によって決定される。本実施の形態では、投影領域40の半分が妨害部333-2に重なり、投影領域41の半分が妨害部333-2に重なるものとして説明しているが、これは一例である。 According to this embodiment, the gas-rich refrigerant flowing into the stacked header 3D collides with the obstruction portion 333-2 of the first plate 33-2, and moves the first communication hole 341 of the second plate 34 in the first direction. flows in the opposite direction. On the other hand, the liquid-rich refrigerant flowing into the stacked header 3D flows in the second direction Y without colliding with the obstruction portion 333-2. Therefore, separation of the gas-rich refrigerant and the liquid-rich refrigerant is facilitated by the obstruction portion 333-2. Note that the size of the area where the projection area 40 and the obstruction part 333-2 overlap and the size of the area where the projection area 41 and the obstruction part 333-2 overlap are planned in the laminated header of the heat exchanger. It is determined by the ratio of flow rates of gas refrigerant and liquid refrigerant. In the present embodiment, the explanation is given on the assumption that half of the projection area 40 overlaps with the obstructing part 333-2 and half of the projection area 41 overlaps with the obstructing part 333-2, but this is just an example.
 また、本実施の形態では、積層型ヘッダ3Dは、第1プレート33-2と端部プレート32との間に設けられた、第3プレート35を有し、第3プレート35は、第3プレート35を第2方向Yに貫通し、第1開口部331-2、第2開口部332-2、及び妨害部333-2に重ねて配置されて流路360の一部を形成する第2の連通穴351を有する。 Further, in the present embodiment, the stacked header 3D includes a third plate 35 provided between the first plate 33-2 and the end plate 32, and the third plate 35 35 in the second direction Y, and is arranged to overlap the first opening 331-2, the second opening 332-2, and the obstruction part 333-2, and forms a part of the flow path 360. It has a communication hole 351.
 当該構成により、液リッチな冷媒は、第2プレート34の第1の連通穴341、第1プレート33-2の第1開口部331-2、第3プレート35の第2の連通穴351、第1プレート33-2の第2開口部332-2、第2プレート34の第1の連通穴341を順番に流れる。液リッチな冷媒は、積層型ヘッダ3Dの各プレートを流れる際の遠心力により、第2伝熱管21の風上領域UWAに流入しやすくなる。第1の連通穴341を第1方向逆向きに流れるガスリッチな冷媒は、液リッチな冷媒が、第2伝熱管21の風上領域UWAに流入するので、第2伝熱管21の風上領域UWAよりも第2伝熱管21の風下領域DWAに流入しやすい。したがって、管外熱伝達率が高い、第2伝熱管21の風上領域UWAを液リッチな冷媒が第2方向逆向きに流れることになり、熱交換器1の熱交換性能が向上する。 With this configuration, the liquid-rich refrigerant can flow through the first communication hole 341 of the second plate 34, the first opening 331-2 of the first plate 33-2, the second communication hole 351 of the third plate 35, and the first communication hole 341 of the second plate 34, the first opening 331-2 of the first plate 33-2, It flows through the second opening 332-2 of the first plate 33-2 and the first communication hole 341 of the second plate 34 in order. The liquid-rich refrigerant easily flows into the upwind area UWA of the second heat exchanger tube 21 due to centrifugal force when flowing through each plate of the stacked header 3D. The gas-rich refrigerant flowing in the opposite direction to the first communication hole 341 flows into the windward area UWA of the second heat exchanger tube 21 because the liquid-rich refrigerant flows into the windward area UWA of the second heat exchanger tube 21. It is easier to flow into the leeward region DWA of the second heat exchanger tube 21 than in the second heat exchanger tube 21 . Therefore, the liquid-rich refrigerant flows in the opposite second direction through the upwind region UWA of the second heat exchanger tube 21 where the extra-tube heat transfer coefficient is high, and the heat exchange performance of the heat exchanger 1 is improved.
(実施の形態2の変形例1)
 図12は、実施の形態2の変形例1に係る積層型ヘッダ3Eの構成を説明する図である。図13は、実施の形態2の変形例2に係る積層型ヘッダ3Eの展開図である。本変形例と実施の形態2の相違点は、第3プレートの厚さのみである。他の構成については、実施の形態2と同じであるため、ここでは説明を省略する。
(Modification 1 of Embodiment 2)
FIG. 12 is a diagram illustrating the configuration of a stacked header 3E according to the first modification of the second embodiment. FIG. 13 is a developed view of a stacked header 3E according to a second modification of the second embodiment. The only difference between this modification and the second embodiment is the thickness of the third plate. The other configurations are the same as those in Embodiment 2, so their description will be omitted here.
 図12に示すように、本変形例の積層型ヘッダ3Eの第3プレート35-1の厚さは、伝熱管側プレート31、第1プレート33-2、第2プレート34、及び端部プレート32それぞれの厚さよりも薄い。ここで、各プレートの厚さとは、第2方向Yの長さをいう。 As shown in FIG. 12, the thickness of the third plate 35-1 of the laminated header 3E of this modification is the same as that of the heat exchanger tube side plate 31, the first plate 33-2, the second plate 34, and the end plate 32. Thinner than each thickness. Here, the thickness of each plate refers to the length in the second direction Y.
 本変形例では、第3プレート35-1の厚さが第2プレート34の厚さよりも薄いため、第3プレート35-1の第2の連通穴351-1の流路断面SA2における面積(以下、単に流路断面積SA2と称する)は、第2プレート34の第1の連通穴341の流路断面SA1における面積(以下、単に流路断面積SA1と称する)よりも小さい。実施の形態2で説明したように、第1伝熱管11の風下領域DWAに液リッチな冷媒が分布し、風上領域UWAにガスリッチな冷媒が分布した状態で、第2プレート34の第1の連通穴341に冷媒が流入する。ここで、ガスリッチな冷媒の圧力損失は、液リッチな冷媒の圧力損失よりも大きい。圧力損失が大きい流体は抵抗が少ない領域を流れやすいので、ガスリッチな冷媒は、流路断面積SA2が小さい第2の連通穴351-1よりも流路断面積SA1が大きい第1の連通穴341を流れやすい。ガスリッチな冷媒が第1の連通穴341を流れるので、液リッチな冷媒は第2の連通穴351-1を流れやすい。したがって、流路360において、液リッチな冷媒とガスリッチな冷媒の分離が促進される。 In this modification, since the thickness of the third plate 35-1 is thinner than the thickness of the second plate 34, the area (hereinafter referred to as , simply referred to as flow passage cross-sectional area SA2) is smaller than the area of the first communicating hole 341 of the second plate 34 in the flow passage cross-section SA1 (hereinafter simply referred to as flow passage cross-sectional area SA1). As described in the second embodiment, with the liquid-rich refrigerant distributed in the leeward area DWA of the first heat exchanger tube 11 and the gas-rich refrigerant distributed in the upwind area UWA, the first Refrigerant flows into the communication hole 341 . Here, the pressure loss of the gas-rich refrigerant is greater than the pressure loss of the liquid-rich refrigerant. Since a fluid with a large pressure loss easily flows through a region with low resistance, a gas-rich refrigerant flows through the first communication hole 341, which has a larger flow path cross-sectional area SA1, than the second communication hole 351-1, which has a smaller flow path cross-sectional area SA2. flows easily. Since the gas-rich refrigerant flows through the first communication hole 341, the liquid-rich refrigerant easily flows through the second communication hole 351-1. Therefore, separation of the liquid-rich refrigerant and the gas-rich refrigerant in the flow path 360 is facilitated.
 第3プレート35-1は他のプレートと厚さが異なるが、図13に示すように、第3プレート35-1の第1方向X及び第3方向Zの長さは、その他のプレートと相違しない。また、実施の形態2と本変形例の相違点は、第3プレートの厚さのみなので、図11に示す実施の形態2に係る積層型ヘッダ3Dの展開図と、図13に示す本変形例に係る積層型ヘッダ3Eの展開図に違いはない。 The third plate 35-1 has a different thickness from the other plates, but as shown in FIG. 13, the lengths of the third plate 35-1 in the first direction X and the third direction Z are different from the other plates. do not. Moreover, since the difference between the second embodiment and this modification is only the thickness of the third plate, the developed view of the laminated header 3D according to the second embodiment shown in FIG. 11 and the present modification shown in FIG. There is no difference in the developed view of the laminated header 3E.
 なお、本変形例では、第3プレート35-1の厚さを薄くすることで、第2の連通穴351-1の流路断面積SA2を小さくした。しかし、第2の連通穴の第3方向Zの長さを変えて第2の連通穴の流路断面積SA2を小さくしてもよい。 Note that in this modification, the thickness of the third plate 35-1 is reduced to reduce the flow passage cross-sectional area SA2 of the second communication hole 351-1. However, the length of the second communication hole in the third direction Z may be changed to reduce the passage cross-sectional area SA2 of the second communication hole.
(実施の形態2の変形例1の作用効果)
 以上説明したように、本変形例の構成では、第2方向Yにおいて、第3プレート35の厚さは、第2プレート34の厚さよりも薄い。このため、第2プレート34の第1の連通穴341の流路断面積SA1は、第3プレート35の第2の連通穴351-1の流路断面積SA2よりも大きい。液リッチな冷媒よりも圧力損失が大きいガスリッチな冷媒が、流路断面積がより大きい第1の連通穴341を流れやすくなるので、液リッチな冷媒とガスリッチな冷媒の分離が促進できる。このため、第2伝熱管21の風上領域UWAに液リッチな冷媒がより流入しやすい。したがって、管外熱伝達率が高い、第2伝熱管21の風上領域UWAを液リッチな冷媒が第2方向逆向きに流れることになり、熱交換器1の熱交換性能が向上する。
(Operations and effects of Modification 1 of Embodiment 2)
As explained above, in the configuration of this modification, the thickness of the third plate 35 is thinner than the thickness of the second plate 34 in the second direction Y. Therefore, the passage cross-sectional area SA1 of the first communicating hole 341 of the second plate 34 is larger than the passage cross-sectional area SA2 of the second communicating hole 351-1 of the third plate 35. Since the gas-rich refrigerant, which has a larger pressure loss than the liquid-rich refrigerant, easily flows through the first communication hole 341 having a larger flow path cross-sectional area, separation of the liquid-rich refrigerant and the gas-rich refrigerant can be promoted. Therefore, liquid-rich refrigerant more easily flows into the windward region UWA of the second heat exchanger tube 21. Therefore, the liquid-rich refrigerant flows in the opposite second direction through the upwind region UWA of the second heat exchanger tube 21 where the extra-tube heat transfer coefficient is high, and the heat exchange performance of the heat exchanger 1 is improved.
(実施の形態2の変形例2)
 図14は、実施の形態2の変形例2に係る積層型ヘッダ3Fの構成を説明する図である。本変形例と実施の形態2の変形例1との相違点は、第1プレートの形状のみである。他の構成については、実施の形態2の変形例1と同じ構成であるため、ここでは説明を省略する。
(Modification 2 of Embodiment 2)
FIG. 14 is a diagram illustrating the configuration of a stacked header 3F according to a second modification of the second embodiment. The only difference between this modification and the first modification of the second embodiment is the shape of the first plate. The other configurations are the same as those in Modification 1 of Embodiment 2, so description thereof will be omitted here.
 図14に示すように、本変形例の積層型ヘッダ3Fの第1プレート33-3の妨害部333-3は、第2方向Yの先端の端面が、第2方向Yに曲面状に凸となっている。このため、第1プレート33-3の第1開口部331-3と接する妨害部333-3の表面、すなわち流路360を形成している壁面の一部が、第1方向逆向き及び第2方向Yに向かって湾曲している。また、第1プレート33-3の第2開口部332-3と接する妨害部333-3の表面、すなわち流路360を形成している壁面の一部が、第1方向X及び第2方向Yに向かって湾曲している。言い換えると、本変形例の流路360の第1方向X及び第2方向Yに沿った断面形状において、U字形状或いはアーチ形状の部分は、直角の2つの角部を有しない。 As shown in FIG. 14, the obstructing portion 333-3 of the first plate 33-3 of the laminated header 3F of this modification has a tip end face in the second direction Y that is curved in the second direction Y. It has become. Therefore, the surface of the obstruction portion 333-3 that is in contact with the first opening 331-3 of the first plate 33-3, that is, a part of the wall surface forming the flow path 360, is oriented in the opposite direction in the first direction and in the second direction. It is curved in direction Y. Further, the surface of the obstruction portion 333-3 in contact with the second opening 332-3 of the first plate 33-3, that is, a part of the wall surface forming the flow path 360 is It is curved towards. In other words, in the cross-sectional shape of the flow path 360 of this modification along the first direction X and the second direction Y, the U-shaped or arch-shaped portion does not have two right-angled corners.
(実施の形態2の変形例2の作用効果)
 妨害部が直角の角部を有する場合、第1プレートの第1開口部を第2方向Yに流れる冷媒は、角部に沿って直進しやすくなり、遠心力が抑制される。本変形例では、第1開口部331-3と接する妨害部333-3の表面が第1方向逆向きに湾曲にしているので、第1開口部331-3を流れる冷媒が第1方向逆向きに流れやすく、遠心力が発生しやすい。すなわち、第1伝熱管11の風下領域DWAから流路360に流入した液リッチな冷媒が、遠心力により、端部プレート32側の壁面及び第1プレート33-3の第2開口部332-3の風上側の壁面に沿って流れて、第2伝熱管21の風上領域UWAに対向する第2プレート34の第1の連通穴341の領域に流入しやすくなる。第2伝熱管21の風下領域DWAに対向する第1の連通穴341の領域にはガスリッチな冷媒が第1方向逆向きに流れてくる。このため、液リッチな冷媒は、第2伝熱管21の風上領域UWAに対向する第1の連通穴341の領域から、第2伝熱管21の第2端部21bの風上領域UWAに流入しやすい。したがって、管外熱伝達率が高い、第2伝熱管21の風上領域UWAを液リッチな冷媒が第2方向逆向きに流れることになり、熱交換器1の熱交換性能が向上する。
(Operations and effects of modification 2 of embodiment 2)
When the obstruction part has a right-angled corner, the refrigerant flowing in the second direction Y through the first opening of the first plate tends to travel straight along the corner, and centrifugal force is suppressed. In this modification, the surface of the obstructing part 333-3 in contact with the first opening 331-3 is curved in the opposite direction to the first direction, so that the refrigerant flowing through the first opening 331-3 flows in the opposite direction to the first direction. It flows easily and generates centrifugal force. That is, the liquid-rich refrigerant that has flowed into the flow path 360 from the leeward region DWA of the first heat exchanger tube 11 is caused by centrifugal force to flow into the wall surface on the end plate 32 side and the second opening 332-3 of the first plate 33-3. The heat exchanger flows along the windward wall surface and easily flows into the region of the first communication hole 341 of the second plate 34 facing the windward region UWA of the second heat exchanger tube 21 . Gas-rich refrigerant flows in the opposite direction to the first direction into the region of the first communication hole 341 facing the leeward region DWA of the second heat exchanger tube 21 . Therefore, the liquid-rich refrigerant flows into the upwind area UWA of the second end portion 21b of the second heat exchanger tube 21 from the area of the first communication hole 341 facing the upwind area UWA of the second heat exchanger tube 21. It's easy to do. Therefore, the liquid-rich refrigerant flows in the opposite second direction through the upwind region UWA of the second heat exchanger tube 21 where the extra-tube heat transfer coefficient is high, and the heat exchange performance of the heat exchanger 1 is improved.
(実施の形態2の変形例3)
 図15は、実施の形態2の変形例3に係る積層型ヘッダ3Gの構成を説明する図である。本変形例と実施の形態2の変形例2との相違点は、積層型ヘッダ3Gが第3プレート35を有さない点、及び端部プレートが凹部321を有する端部プレート32-1である点である。端部プレート32-1については、実施の形態1の変形例2で説明しているため、ここでは説明を省略する。また、その他の構成については、実施の形態2、実施の形態2の変形例1、及び実施の形態2の変形例2で説明した構成を利用できるので、本変形例の相違点のみを説明する。
(Variation 3 of Embodiment 2)
FIG. 15 is a diagram illustrating the configuration of a stacked header 3G according to a third modification of the second embodiment. The differences between this modification and the second modification of the second embodiment are that the laminated header 3G does not have the third plate 35, and the end plate 32-1 has a recess 321. It is a point. The end plate 32-1 has been described in the second modification of the first embodiment, so its description will be omitted here. For other configurations, the configurations described in Embodiment 2, Modification 1 of Embodiment 2, and Modification 2 of Embodiment 2 can be used, so only the differences of this modification will be described. .
 図15に示すように、本変形例の積層型ヘッダ3Gは、伝熱管側プレート31と、第2プレート34と、第1プレート33-3と、端部プレート32-1とを有する。第2方向Yに沿って、伝熱管側プレート31、第2プレート34、第1プレート33-3、及び端部プレート32-1が配置されている。積層型ヘッダ3Gでは、端部プレート32-1の凹部321が、第3プレート35-1の第2の連通穴351-1を代替する。すなわち、端部プレート32-1が第3プレート35-1を代替して、積層型ヘッダ3Gに流路360を形成する。 As shown in FIG. 15, the laminated header 3G of this modification includes a heat exchanger tube side plate 31, a second plate 34, a first plate 33-3, and an end plate 32-1. Along the second direction Y, the heat exchanger tube side plate 31, the second plate 34, the first plate 33-3, and the end plate 32-1 are arranged. In the stacked header 3G, the recess 321 of the end plate 32-1 replaces the second communication hole 351-1 of the third plate 35-1. That is, the end plate 32-1 replaces the third plate 35-1 to form the flow path 360 in the laminated header 3G.
(実施の形態2の変形例3の作用効果)
 本変形例の流路360では、端部プレート32-1の凹部321が曲面状であるため、第1伝熱管11から流入した冷媒は、端部プレート32-1に垂直に衝突せずに、凹部321の曲面に沿って第1方向逆向きに流れやすい。このため、遠心力がより発生しやすい。すなわち、第1伝熱管11の風下領域DWAから流路360に流入した液リッチな冷媒は、遠心力により、端部プレート32-1の凹部321を流れやすくなる。このため、液リッチな冷媒が、第1プレート33-3の第2開口部332-3の風上側の壁面に沿って流れて、第2伝熱管21の風上領域UWAに対向する第2プレート34の第1の連通穴341の領域に流入しやすくなる。また、第2伝熱管21の風下領域DWAに対向する第1の連通穴341の領域にはガスリッチな冷媒が第1方向逆向きに流れてくる。このため、液リッチな冷媒は、第2伝熱管21の風上領域UWAに対向する第1の連通穴341の領域から、第2伝熱管21の第2端部21bの風上領域UWAに流入しやすい。したがって、管外熱伝達率が高い、第2伝熱管21の風上領域UWAを液リッチな冷媒が第2方向逆向きに流れることになり、熱交換器1の熱交換性能が向上する。
(Operations and effects of modification 3 of embodiment 2)
In the flow path 360 of this modification, since the recess 321 of the end plate 32-1 is curved, the refrigerant flowing from the first heat transfer tube 11 does not collide perpendicularly with the end plate 32-1. It tends to flow along the curved surface of the recess 321 in the opposite direction to the first direction. Therefore, centrifugal force is more likely to occur. That is, the liquid-rich refrigerant that has flowed into the flow path 360 from the leeward region DWA of the first heat transfer tube 11 easily flows through the recess 321 of the end plate 32-1 due to the centrifugal force. Therefore, the liquid-rich refrigerant flows along the windward wall surface of the second opening 332-3 of the first plate 33-3, and the liquid-rich refrigerant flows to the second plate facing the windward area UWA of the second heat exchanger tube 21. It becomes easier to flow into the area of the first communication hole 341 of No. 34. Furthermore, gas-rich refrigerant flows in the opposite direction to the first direction into the region of the first communication hole 341 facing the leeward region DWA of the second heat exchanger tube 21 . Therefore, the liquid-rich refrigerant flows into the upwind area UWA of the second end portion 21b of the second heat exchanger tube 21 from the area of the first communication hole 341 facing the upwind area UWA of the second heat exchanger tube 21. It's easy to do. Therefore, the liquid-rich refrigerant flows in the opposite second direction through the upwind region UWA of the second heat exchanger tube 21 where the extra-tube heat transfer coefficient is high, and the heat exchange performance of the heat exchanger 1 is improved.
 また本変形例の積層型ヘッダ3Gは、第3プレート35を有さないため、実施の形態2、及び実施の形態2の変形例1、2に係る積層型ヘッダよりも製造費用を抑制できる。 Furthermore, since the laminated header 3G of this modification does not include the third plate 35, manufacturing costs can be suppressed more than the laminated header according to the second embodiment and the first and second modifications of the second embodiment.
 なお、図15では、第1プレートとして、変形例2の第1プレート33-3を示している。しかし、第1プレートは、実施の形態2の第1プレート33-2であってもよい。第1プレート33-3と端部プレート32-1を有する積層型ヘッダは、第1プレート33-2と端部プレート32-1を有する積層型ヘッダよりも、流路360を流れる冷媒により強い遠心力が作用する。 Note that in FIG. 15, the first plate 33-3 of Modification 2 is shown as the first plate. However, the first plate may be the first plate 33-2 of the second embodiment. The laminated header having the first plate 33-3 and the end plate 32-1 has a stronger centrifugal force than the laminated header having the first plate 33-2 and the end plate 32-1 because of the refrigerant flowing through the flow path 360. Force acts.
実施の形態3.
 本実施の形態では、実施の形態1、実施の形態2、及び各変形例との相違点を中心に説明する。本実施の形態が、実施の形態1、実施の形態2、及び各変形例と相違する点は、第1熱交換部10及び第2熱交換部20の配置である。実施の形態1、実施の形態2、及び各変形例と同様の構成については説明を省略したり簡略化したりする。
Embodiment 3.
In this embodiment, differences from Embodiment 1, Embodiment 2, and each modification will be mainly described. This embodiment differs from Embodiment 1, Embodiment 2, and each modification in the arrangement of the first heat exchange section 10 and the second heat exchange section 20. Descriptions of configurations similar to those of Embodiment 1, Embodiment 2, and each modification will be omitted or simplified.
 図16は、実施の形態3に係る熱交換器1の平面図である。図17は、実施の形態3に係る熱交換器1の第1熱交換部10及び第2熱交換部20の断面模式図である。図17は、第1熱交換部10及び第2熱交換部20それぞれの第2方向Y及び第3方向Zに沿った断面を、上下に並べて示している。 FIG. 16 is a plan view of the heat exchanger 1 according to the third embodiment. FIG. 17 is a schematic cross-sectional view of the first heat exchange section 10 and the second heat exchange section 20 of the heat exchanger 1 according to the third embodiment. FIG. 17 shows cross sections of the first heat exchange section 10 and the second heat exchange section 20 along the second direction Y and the third direction Z, arranged vertically.
 本実施の形態では、空気が流れる第1方向Xにおいて、第1熱交換部10が、第2熱交換部20よりも空気の流れの上流側に配置される。第1熱交換部10と第2熱交換部20は、実施の形態2と同じ積層型ヘッダ3Dにより接続される。液ヘッダ12から第1熱交換部10に流入した冷媒は、複数の第1伝熱管11を通って、積層型ヘッダ3Dに流入する。積層型ヘッダ3Dに流入した冷媒は、第1方向Xに流れ、その後、複数の第2伝熱管21に流入する。複数の第2伝熱管21に流入した冷媒は、ガスヘッダ22を通って第2熱交換部20から流出する。第1熱交換部10は第2熱交換部20よりも空気の流れの上流側に配置されるので、液ヘッダ12から積層型ヘッダ3Dに向かって流れる冷媒は、積層型ヘッダ3Dからガスヘッダ22に向かって流れる冷媒よりも風上側を流れる。積層型ヘッダ3Dでの冷媒の流れについては後述する。 In the present embodiment, the first heat exchange section 10 is arranged upstream of the second heat exchange section 20 in the first direction X in which the air flows. The first heat exchange section 10 and the second heat exchange section 20 are connected by the same laminated header 3D as in the second embodiment. The refrigerant that has flowed into the first heat exchange section 10 from the liquid header 12 passes through the plurality of first heat exchanger tubes 11 and flows into the stacked header 3D. The refrigerant that has flowed into the stacked header 3D flows in the first direction X, and then flows into the plurality of second heat exchanger tubes 21. The refrigerant that has flowed into the plurality of second heat exchanger tubes 21 passes through the gas header 22 and flows out from the second heat exchange section 20 . Since the first heat exchange section 10 is arranged upstream of the second heat exchange section 20 in the air flow, the refrigerant flowing from the liquid header 12 toward the laminated header 3D flows from the laminated header 3D to the gas header 22. The refrigerant flows upwind from the refrigerant flowing towards it. The flow of refrigerant in the stacked header 3D will be described later.
 図18は、実施の形態3に係る積層型ヘッダ3Dの構成を説明する図である。積層型ヘッダ3Dは、実施の形態2の積層型ヘッダ3Dである。本実施の形態では、空気の流れの上流側に配置される第1伝熱管11が、伝熱管側プレート31の伝熱管挿入口31b(図11参照)に挿入され、空気の流れの下流側に配置される第2伝熱管21が、伝熱管側プレート31の伝熱管挿入口31a(図11参照)に挿入される。本実施の形態の積層型ヘッダ3Dと実施の形態2の積層型ヘッダ3Dとの相違点は、本実施の形態では、積層型ヘッダ3Dの風上側に第1伝熱管11が接続され、風下側に第2伝熱管21が接続される点である。 FIG. 18 is a diagram illustrating the configuration of a stacked header 3D according to the third embodiment. The stacked header 3D is the stacked header 3D of the second embodiment. In the present embodiment, the first heat exchanger tube 11 disposed on the upstream side of the air flow is inserted into the heat exchanger tube insertion port 31b (see FIG. 11) of the heat exchanger tube side plate 31, and the first heat exchanger tube 11 is placed on the downstream side of the air flow. The second heat exchanger tube 21 to be arranged is inserted into the heat exchanger tube insertion opening 31a (see FIG. 11) of the heat exchanger tube side plate 31. The difference between the laminated header 3D of this embodiment and the laminated header 3D of Embodiment 2 is that in this embodiment, the first heat exchanger tube 11 is connected to the windward side of the laminated header 3D, and the first heat exchanger tube 11 is connected to the leeward side of the laminated header 3D. This is the point where the second heat exchanger tube 21 is connected.
 伝熱管挿入口31bに挿入された第1伝熱管11は、第2端部11bが第2プレート34の第1の連通穴341の風上側に挿入される。伝熱管挿入口31aに挿入された第2伝熱管21は、第2端部21bが第2プレート34の第1の連通穴341の風下側に挿入される。 The second end portion 11b of the first heat exchanger tube 11 inserted into the heat exchanger tube insertion port 31b is inserted into the windward side of the first communication hole 341 of the second plate 34. The second end portion 21b of the second heat exchanger tube 21 inserted into the heat exchanger tube insertion port 31a is inserted into the leeward side of the first communication hole 341 of the second plate 34.
 第1開口部331-2の外形の大きさは、第2伝熱管21の第2端部21bの外形の大きさよりも小さく、第2開口部332-2の外形の大きさは、第1伝熱管11の第2端部11bの外形の大きさよりも小さい。図18では、第2伝熱管21の第2端部21bを、第1プレート33-2に投影した領域を投影領域40として一点鎖線で示している。また、第1伝熱管11の第2端部11bを、第1プレート33-2に投影した領域を投影領域41として一点鎖線で示している。図18に示すように、投影領域40の一部及び投影領域41の一部は、第1プレート33-2の妨害部333-2に重なる。言い換えると、第1プレート33-2の妨害部333-2は、第2伝熱管21の風上領域UWAを投影した投影領域40及び第1伝熱管11の風下領域DWAを投影した投影領域41に位置する。すなわち、一つの妨害部333-2が、第1方向Xに並んだ第2伝熱管21の投影領域40と第1伝熱管11の投影領域41とに跨がって配置されている。第1プレート33-2の第1開口部331-2は、第2伝熱管21の風下領域DWAを投影した投影領域40に位置する。第1プレート33-2の第2開口部332-2は、第1伝熱管11の風上領域UWAを投影した投影領域41に位置する。 The external size of the first opening 331-2 is smaller than the external size of the second end 21b of the second heat transfer tube 21, and the external size of the second opening 332-2 is smaller than the external size of the second end 21b of the second heat transfer tube 21. It is smaller than the external size of the second end portion 11b of the heat tube 11. In FIG. 18, a region of the second end portion 21b of the second heat exchanger tube 21 projected onto the first plate 33-2 is indicated by a dashed dotted line as a projection region 40. In FIG. Further, a region where the second end portion 11b of the first heat exchanger tube 11 is projected onto the first plate 33-2 is indicated by a dashed dotted line as a projection region 41. As shown in FIG. 18, a portion of the projection area 40 and a portion of the projection area 41 overlap the obstructing portion 333-2 of the first plate 33-2. In other words, the obstructing portion 333-2 of the first plate 33-2 is projected onto a projection area 40 where the upwind area UWA of the second heat exchanger tube 21 is projected and a projection area 41 where the leeward area DWA of the first heat exchanger tube 11 is projected. To position. That is, one obstructing portion 333-2 is arranged across the projection area 40 of the second heat exchanger tube 21 and the projection area 41 of the first heat exchanger tube 11 that are lined up in the first direction X. The first opening 331-2 of the first plate 33-2 is located in the projection area 40 in which the leeward area DWA of the second heat exchanger tube 21 is projected. The second opening 332-2 of the first plate 33-2 is located in a projection area 41 in which the windward area UWA of the first heat exchanger tube 11 is projected.
(冷媒の流れと積層型ヘッダ3Dの作用効果)
 図18を参照して本実施の形態に係る積層型ヘッダ3Dでの冷媒の流れを説明する。液ヘッダ12(図17参照)から第1熱交換部10に流入して、第1伝熱管11を第2方向Yに流れる冷媒は、第1伝熱管11の第2端部11bから積層型ヘッダ3Dに流入する。第1伝熱管11の第2端部11bから流出した冷媒は、第2プレート34の第1の連通穴341に流入する。第1の連通穴341に流入した冷媒は、第1方向X及び第2方向Yに分岐して流れる。第1方向Xに流れる冷媒は、第1の連通穴341を通って、第2伝熱管21の第2端部21bに流入する。第1の連通穴341を第2方向Yに流れる冷媒は、第1プレート33-2の第2開口部332-2に流入し、そのまま第2方向Yに流れて、第3プレート35の第2の連通穴351に流入し、第1方向Xに流れる。ここで、第1方向Xに流れる冷媒は、空気の流れと並行して流れる。すなわち、冷媒と空気がお互いに並行流となって流れる。
(Refrigerant flow and effect of 3D stacked header)
The flow of refrigerant in the stacked header 3D according to this embodiment will be described with reference to FIG. 18. The refrigerant flows from the liquid header 12 (see FIG. 17) into the first heat exchange section 10 and flows through the first heat exchanger tubes 11 in the second direction Y from the second end 11b of the first heat exchanger tubes 11 to the laminated header. Flow into 3D. The refrigerant flowing out from the second end portion 11b of the first heat exchanger tube 11 flows into the first communication hole 341 of the second plate 34. The refrigerant flowing into the first communication hole 341 branches into a first direction X and a second direction Y to flow. The refrigerant flowing in the first direction X passes through the first communication hole 341 and flows into the second end portion 21b of the second heat exchanger tube 21. The refrigerant flowing in the second direction Y through the first communication hole 341 flows into the second opening 332-2 of the first plate 33-2, continues to flow in the second direction Y, and then flows into the second opening 332-2 of the third plate 35. The water flows into the communication hole 351 and flows in the first direction X. Here, the refrigerant flowing in the first direction X flows in parallel with the flow of air. That is, the refrigerant and air flow in parallel to each other.
 第2の連通穴351に流入した冷媒は、第1方向Xに流れ、その後、第2方向逆向きに流れる。言い換えると、積層型ヘッダ3Dに第2方向Yに流入した冷媒は、第2の連通穴351で折り返し、第2方向逆向きに流れる。 The refrigerant flowing into the second communication hole 351 flows in the first direction X, and then flows in the opposite direction in the second direction. In other words, the refrigerant that has flowed into the stacked header 3D in the second direction Y is turned around at the second communication hole 351 and flows in the opposite direction in the second direction.
 本実施の形態では、第1伝熱管11の風下領域DWAに液リッチな冷媒が分布し、風上領域UWAにガスリッチな冷媒が分布した状態で、第2端部11bから第2プレート34の第1の連通穴341に冷媒が流入する。第1の連通穴341に流入したガスリッチな冷媒は、第2方向Yに流れて第1プレート33-2の第2開口部332-2に流入する。一方、第1の連通穴341に流入した液リッチな冷媒は、第2方向Yに流れるが、妨害部333-2に衝突して、流れる方向が第1方向Xに変わる。 In this embodiment, the liquid-rich refrigerant is distributed in the leeward area DWA of the first heat exchanger tube 11, and the gas-rich refrigerant is distributed in the upwind area UWA, and the second plate 34 is Refrigerant flows into the first communication hole 341 . The gas-rich refrigerant that has flowed into the first communication hole 341 flows in the second direction Y and flows into the second opening 332-2 of the first plate 33-2. On the other hand, the liquid-rich refrigerant that has flowed into the first communication hole 341 flows in the second direction Y, but collides with the obstruction portion 333-2 and changes its flow direction to the first direction X.
 第2開口部332-2に流入したガスリッチな冷媒は、そのまま第2方向Yに流れて、第3プレート35の第2の連通穴351に流入する。第3プレート35の第2の連通穴351に流入したガスリッチな冷媒は、第1方向Xに流れる際に、遠心力の作用により、端部プレート32側を流れる。第2の連通穴351の端部プレート32側を流れたガスリッチな冷媒は、第1プレート33-2の第1開口部331-2に流入する。第1開口部331-2に流入したガスリッチな冷媒は、第2方向逆向きに流れて、第2プレート34の第1の連通穴341に流入する。ガスリッチな冷媒は、第1の連通穴341の風下側を第2方向逆向きに進み、第2伝熱管21の第2端部21bに流入する。ここで、ガスリッチな冷媒は、第2伝熱管21の風下領域DWAに対向する第1の連通穴341の領域を第2方向逆向きに流れるので、第2伝熱管21の風下領域DWAに流入しやすい。また、第2伝熱管21の風上領域UWAに対向する第1の連通穴341の領域は、液リッチな冷媒が流れているので、ガスリッチな冷媒は第2伝熱管21の風上領域UWAには流入しにくい。 The gas-rich refrigerant that has flowed into the second opening 332-2 flows directly in the second direction Y, and flows into the second communication hole 351 of the third plate 35. When the gas-rich refrigerant that has flowed into the second communication hole 351 of the third plate 35 flows in the first direction X, it flows on the end plate 32 side due to the action of centrifugal force. The gas-rich refrigerant that has flowed on the end plate 32 side of the second communication hole 351 flows into the first opening 331-2 of the first plate 33-2. The gas-rich refrigerant that has flowed into the first opening 331-2 flows in the opposite second direction and flows into the first communication hole 341 of the second plate 34. The gas-rich refrigerant travels in the opposite second direction on the leeward side of the first communication hole 341 and flows into the second end portion 21b of the second heat exchanger tube 21. Here, the gas-rich refrigerant flows in the opposite direction in the second direction through the region of the first communication hole 341 facing the leeward region DWA of the second heat exchanger tube 21 , so it flows into the leeward region DWA of the second heat exchanger tube 21 . Cheap. In addition, since the liquid-rich refrigerant flows in the region of the first communication hole 341 facing the windward region UWA of the second heat exchanger tube 21, the gas-rich refrigerant flows into the windward region UWA of the second heat exchanger tube 21. is difficult to enter.
 一方、第1の連通穴341を第1方向Xに流れる液リッチな冷媒は、第2伝熱管21の第2端部21bから第2伝熱管21に流入する。ここで、第2伝熱管21の風下領域DWAには、第1開口部331-2から第1の連通穴341に流入するガスリッチな冷媒が流入する。このため、液リッチな冷媒は、第2伝熱管21の風下領域DWAよりも風上領域UWAに流入しやすい。 On the other hand, the liquid-rich refrigerant flowing in the first direction X through the first communication hole 341 flows into the second heat exchanger tube 21 from the second end 21b of the second heat exchanger tube 21. Here, the gas-rich refrigerant that flows into the first communication hole 341 from the first opening 331-2 flows into the leeward region DWA of the second heat transfer tube 21. Therefore, the liquid-rich refrigerant more easily flows into the upwind area UWA of the second heat transfer tube 21 than the leeward area DWA.
 第2伝熱管21の第2端部21bから第2熱交換部20に流入した液リッチな冷媒及びガスリッチな冷媒は、第2伝熱管21を第2方向逆向きに流れて、積層型ヘッダ3Dから流出する。積層型ヘッダ3Dから流出した冷媒は、第2伝熱管21を第2方向逆向きに流れて、ガスヘッダ22(図17参照)を通って第2熱交換部20から流出する。なお、冷媒は、第2熱交換部20から流出することで、熱交換器1から流出することになる。 The liquid-rich refrigerant and the gas-rich refrigerant that have flowed into the second heat exchange section 20 from the second end 21b of the second heat exchanger tube 21 flow through the second heat exchanger tube 21 in the second direction opposite to the stacked header 3D. flows out from. The refrigerant flowing out of the laminated header 3D flows through the second heat exchanger tube 21 in the second opposite direction, passes through the gas header 22 (see FIG. 17), and flows out from the second heat exchange section 20. Note that the refrigerant flows out from the heat exchanger 1 by flowing out from the second heat exchange section 20.
 以上説明したように、本実施の形態に係る熱交換器1の積層型ヘッダ3Dにおいて、第2プレート34は、伝熱管側プレート31と第1プレート33-2との間に配置され、第1伝熱管11の第2端部11b及び第2伝熱管21の第2端部21bは、第2プレート34の第1の連通穴341に挿入される。第2方向Yにおいて、第1伝熱管11の第2端部11b及び第2伝熱管21の第2端部21bを前記第1プレート33-2に投影した場合、第1伝熱管11の第2端部11bの投影領域41の一部及び第2伝熱管21の第2端部21bの投影領域40の一部が妨害部333-2に重なる。 As explained above, in the laminated header 3D of the heat exchanger 1 according to the present embodiment, the second plate 34 is arranged between the heat exchanger tube side plate 31 and the first plate 33-2, and the second plate 34 is arranged between the heat exchanger tube side plate 31 and the first plate 33-2. The second end 11b of the heat exchanger tube 11 and the second end 21b of the second heat exchanger tube 21 are inserted into the first communication hole 341 of the second plate 34. In the second direction Y, when the second end portion 11b of the first heat exchanger tube 11 and the second end portion 21b of the second heat exchanger tube 21 are projected onto the first plate 33-2, the second end portion 11b of the first heat exchanger tube 11 A portion of the projection area 41 of the end portion 11b and a portion of the projection area 40 of the second end portion 21b of the second heat exchanger tube 21 overlap the obstructing portion 333-2.
 本実施の形態では、積層型ヘッダ3Dに流入する液リッチな冷媒は第1プレート33-2の妨害部333-2に衝突し、第2プレート34の第1の連通穴341を第1方向Xに流れる。一方、積層型ヘッダ3Dに流入するガスリッチな冷媒は、妨害部333-2に衝突せずに、第2方向Yに流れる。このため、ガスリッチな冷媒と液リッチな冷媒の分離が、妨害部333-2により促進される。 In this embodiment, the liquid-rich refrigerant flowing into the stacked header 3D collides with the obstruction portion 333-2 of the first plate 33-2, and the first communication hole 341 of the second plate 34 is moved in the first direction flows to On the other hand, the gas-rich refrigerant flowing into the stacked header 3D flows in the second direction Y without colliding with the obstruction portion 333-2. Therefore, separation of the gas-rich refrigerant and the liquid-rich refrigerant is facilitated by the obstruction portion 333-2.
 また、本実施の形態では、積層型ヘッダ3Dは、第1プレート33-2と端部プレート32との間に設けられた、第3プレート35を有し、第3プレート35は、第3プレート35を第2方向Yに貫通し、第1開口部331-2、第2開口部332-2、及び妨害部333-2に重ねて配置されて流路360の一部を形成する第2の連通穴351を有する。 Further, in the present embodiment, the stacked header 3D includes a third plate 35 provided between the first plate 33-2 and the end plate 32, and the third plate 35 35 in the second direction Y, and is arranged to overlap the first opening 331-2, the second opening 332-2, and the obstruction part 333-2, and forms a part of the flow path 360. It has a communication hole 351.
 当該構成により、ガスリッチな冷媒は、第2プレート34の第1の連通穴341、第1プレート33-2の第2開口部332-2、第3プレート35の第2の連通穴351、第1プレート33-2の第1開口部331-2、第2プレート34の第1の連通穴341を順番に流れる。このため、積層型ヘッダ3Dの各プレートを流れる際の遠心力により、ガスリッチな冷媒が第2伝熱管21の風下領域DWAに流入しやすくなる。第1の連通穴341を第1方向Xに流れる液リッチな冷媒は、ガスリッチな冷媒が、第2伝熱管21の風下領域DWAに流入するので、第2伝熱管21の風下領域DWAよりも第2伝熱管21の風上領域UWAに流入しやすい。したがって、管外熱伝達率が高い、第2伝熱管21の風上領域UWAを液リッチな冷媒が第2方向逆向きに流れることになり、熱交換器1の熱交換性能が向上する。 With this configuration, the gas-rich refrigerant can flow through the first communication hole 341 of the second plate 34, the second opening 332-2 of the first plate 33-2, the second communication hole 351 of the third plate 35, and the first The water flows through the first opening 331-2 of the plate 33-2 and the first communication hole 341 of the second plate 34 in this order. Therefore, the gas-rich refrigerant easily flows into the leeward region DWA of the second heat exchanger tube 21 due to the centrifugal force when flowing through each plate of the laminated header 3D. The liquid-rich refrigerant flowing through the first communication hole 341 in the first direction It is easy to flow into the windward area UWA of the second heat exchanger tube 21. Therefore, the liquid-rich refrigerant flows in the opposite second direction through the upwind region UWA of the second heat exchanger tube 21 where the extra-tube heat transfer coefficient is high, and the heat exchange performance of the heat exchanger 1 is improved.
(実施の形態3の変形例1)
 図19は、実施の形態3の変形例1に係る積層型ヘッダ3Hの構成を説明する図である。本変形例と実施の形態3の相違点は、第2プレートの厚さのみである。他の構成については、実施の形態3と同じであるため、ここでは説明を省略する。
(Modification 1 of Embodiment 3)
FIG. 19 is a diagram illustrating the configuration of a stacked header 3H according to Modification 1 of Embodiment 3. The only difference between this modification and the third embodiment is the thickness of the second plate. The other configurations are the same as those in Embodiment 3, so their description will be omitted here.
 図19に示すように、本変形例の積層型ヘッダ3Hの第2プレート34-1の厚さは、伝熱管側プレート31、第1プレート33-2、第3プレート35、及び端部プレート32それぞれの厚さよりも薄い。ここで、各プレートの厚さとは、第2方向Yの長さをいう。 As shown in FIG. 19, the thickness of the second plate 34-1 of the laminated header 3H of this modification is the same as that of the heat exchanger tube side plate 31, the first plate 33-2, the third plate 35, and the end plate 32. Thinner than each thickness. Here, the thickness of each plate refers to the length in the second direction Y.
 本変形例では、第2プレート34-1の厚さが第3プレート35の厚さよりも薄いため、第2プレート34-1の第1の連通穴341-1の流路断面積SA1は、第3プレート35の第2の連通穴351の流路断面積SA2よりも小さい。実施の形態3で説明したように、第1伝熱管11の風下領域DWAに液リッチな冷媒が分布し、風上領域UWAにガスリッチな冷媒が分布した状態で、第2プレート34-1の第1の連通穴341-1に冷媒が流入する。ここで、ガスリッチな冷媒の圧力損失は、液リッチな冷媒の圧力損失よりも大きい。圧力損失が大きい流体は抵抗が少ない領域を流れやすいので、ガスリッチな冷媒は、流路断面積SA1が小さい第1の連通穴341-1よりも流路断面積SA2が大きい第2の連通穴351を流れやすい。ガスリッチな冷媒が第2の連通穴351を流れるので、液リッチな冷媒は第1の連通穴341-1を流れやすい。したがって、流路360において、液リッチな冷媒とガスリッチな冷媒の分離が促進される。 In this modification, since the thickness of the second plate 34-1 is thinner than the thickness of the third plate 35, the flow passage cross-sectional area SA1 of the first communication hole 341-1 of the second plate 34-1 is It is smaller than the flow passage cross-sectional area SA2 of the second communication hole 351 of the third plate 35. As described in the third embodiment, with the liquid-rich refrigerant distributed in the leeward area DWA of the first heat exchanger tube 11 and the gas-rich refrigerant distributed in the upwind area UWA, the second plate 34-1 Refrigerant flows into the communication hole 341-1 of No. 1. Here, the pressure loss of the gas-rich refrigerant is greater than the pressure loss of the liquid-rich refrigerant. Since a fluid with a large pressure loss easily flows through a region with low resistance, a gas-rich refrigerant flows through the second communication hole 351, which has a larger flow path cross-sectional area SA2 than the first communication hole 341-1, which has a smaller flow path cross-sectional area SA1. flows easily. Since the gas-rich refrigerant flows through the second communication hole 351, the liquid-rich refrigerant easily flows through the first communication hole 341-1. Therefore, separation of the liquid-rich refrigerant and the gas-rich refrigerant in the flow path 360 is facilitated.
 第2プレート34-1は他のプレートと厚さが異なるが、第2プレート34-1の第1方向X及び第3方向Zの長さは、その他のプレートと相違しない。また、実施の形態3に係る積層型ヘッダ3Dと本変形例に係る積層型ヘッダ3Dとの相違点は、第2プレートの厚さのみである。よって、図11に示す実施の形態2に係る積層型ヘッダ3Dの展開図と、本変形例に係る積層型ヘッダ3Hの展開図(図示せず)に違いはない。 Although the second plate 34-1 has a different thickness from the other plates, the lengths of the second plate 34-1 in the first direction X and the third direction Z are the same as those of the other plates. Moreover, the only difference between the laminated header 3D according to the third embodiment and the laminated header 3D according to this modification is the thickness of the second plate. Therefore, there is no difference between the developed view of the laminated header 3D according to the second embodiment shown in FIG. 11 and the developed view (not shown) of the laminated header 3H according to this modification.
 なお、本変形例では、第2プレート34-1の厚さを薄くすることで、第1の連通穴341-1の流路断面積SA1を小さくした。しかし、第1の連通穴の第3方向Zの長さを変えて第1の連通穴の流路断面積を小さくしてもよい。 Note that in this modification, the flow passage cross-sectional area SA1 of the first communication hole 341-1 is reduced by reducing the thickness of the second plate 34-1. However, the length of the first communication hole in the third direction Z may be changed to reduce the flow passage cross-sectional area of the first communication hole.
(実施の形態3の変形例1の作用効果)
 以上説明したように、本変形例の構成では、第2方向Yにおいて、第2プレート34-1の厚さは、第3プレート35の厚さよりも薄い。このため、第3プレート35の第2の連通穴351の流路断面積SA2は、第2プレート34-1の第1の連通穴341-1の流路断面積SA1よりも大きい。液リッチな冷媒よりも圧力損失が大きいガスリッチな冷媒が、流路断面積SA2がより大きい第2の連通穴351を流れやすくなるので、液リッチな冷媒とガスリッチな冷媒の分離が促進できる。このため、第2伝熱管21の風上領域UWAに液リッチな冷媒がより流入しやすい。したがって、管外熱伝達率が高い、第2伝熱管21の風上領域UWAを液リッチな冷媒が第2方向逆向きに流れることになり、熱交換器1の熱交換性能が向上する。
(Operations and effects of Modification 1 of Embodiment 3)
As explained above, in the configuration of this modification, the thickness of the second plate 34-1 is thinner than the thickness of the third plate 35 in the second direction Y. Therefore, the passage cross-sectional area SA2 of the second communicating hole 351 of the third plate 35 is larger than the passage cross-sectional area SA1 of the first communicating hole 341-1 of the second plate 34-1. Since the gas-rich refrigerant, which has a larger pressure loss than the liquid-rich refrigerant, easily flows through the second communication hole 351, which has a larger flow path cross-sectional area SA2, separation of the liquid-rich refrigerant and the gas-rich refrigerant can be promoted. Therefore, liquid-rich refrigerant more easily flows into the windward region UWA of the second heat exchanger tube 21. Therefore, the liquid-rich refrigerant flows in the opposite second direction through the upwind region UWA of the second heat exchanger tube 21 where the extra-tube heat transfer coefficient is high, and the heat exchange performance of the heat exchanger 1 is improved.
(実施の形態3の変形例2)
 図20は、実施の形態3の変形例2に係る積層型ヘッダ3Iの構成を説明する図である。本変形例と実施の形態3の変形例1との相違点は、第1プレートの形状のみである。他の構成については、実施の形態3の変形例1と同じ構成であるため、ここでは説明を省略する。
(Modification 2 of Embodiment 3)
FIG. 20 is a diagram illustrating the configuration of a stacked header 3I according to a second modification of the third embodiment. The only difference between this modification and the first modification of the third embodiment is the shape of the first plate. The other configurations are the same as those in Modification 1 of Embodiment 3, so descriptions thereof will be omitted here.
 本変形例の第1プレート33-3は、実施の形態2の変形例2で説明した第1プレート33-1と同一である。すなわち、図20に示すように、本変形例の積層型ヘッダ3Iの第1プレート33-3の妨害部333-3は、第2方向Yの先端の端面が、第2方向Yに曲面状に凸となっている。このため、第1プレート33-3の第1開口部331-3と接する妨害部333-3の表面、すなわち流路360を形成している壁面の一部が、第1方向逆向き及び第2方向Yに向かって湾曲している。また、第1プレート33-3の第2開口部332-3と接する妨害部333-3の表面、すなわち流路360を形成している壁面の一部が、第1方向X及び第2方向Yに向かって湾曲している。言い換えると、本変形例の流路360の第1方向X及び第2方向Yに沿った断面形状において、U字形状或いはアーチ形状の部分は、直角の2つの角部を有しない。 The first plate 33-3 of this modification is the same as the first plate 33-1 described in the second modification of the second embodiment. That is, as shown in FIG. 20, the obstructing portion 333-3 of the first plate 33-3 of the laminated header 3I of this modification has a tip end face in the second direction Y that is curved in the second direction Y. It is convex. Therefore, the surface of the obstruction portion 333-3 that is in contact with the first opening 331-3 of the first plate 33-3, that is, a part of the wall surface forming the flow path 360, is oriented in the opposite direction in the first direction and in the second direction. It is curved in direction Y. Further, the surface of the obstruction portion 333-3 in contact with the second opening 332-3 of the first plate 33-3, that is, a part of the wall surface forming the flow path 360 is It is curved towards. In other words, in the cross-sectional shape of the flow path 360 of this modification along the first direction X and the second direction Y, the U-shaped or arch-shaped portion does not have two right-angled corners.
(実施の形態3の変形例2の作用効果)
 妨害部が直角の角部を有する場合、第1プレートの第2開口部を第2方向Yに流れる冷媒は、角部に沿って直進しやすくなり、遠心力が抑制される。本変形例では、第2開口部332-3が接する妨害部333-3の表面が第1方向Xに湾曲にしているので、第2開口部332-3を流れる冷媒が第1方向Xに流れやすく、遠心力が発生しやすい。すなわち、第1伝熱管11の風上領域UWAから流路360に流入したガスリッチな冷媒が、遠心力により、端部プレート32側の壁面及び第1プレート33-3の第1開口部331-3の風下側の壁面に沿って流れて、第2伝熱管21の風下領域DWAに対向する第2プレート34-1の第1の連通穴341の領域に流入しやすくなる。第2伝熱管21の風上領域UWAに対向する第1の連通穴341-1の領域には液リッチな冷媒が第1方向Xに流れてくる。このため、ガスリッチな冷媒は、第2伝熱管21の風下領域DWAに対向する第1の連通穴341-1の領域から、第2伝熱管21の第2端部21bの風下領域DWAに流入しやすい。したがって、管外熱伝達率が高い、第2伝熱管21の風上領域UWAを液リッチな冷媒が第2方向逆向きに流れることになり、熱交換器1の熱交換性能が向上する。
(Operations and effects of Modification 2 of Embodiment 3)
When the obstruction part has a right-angled corner, the refrigerant flowing in the second direction Y through the second opening of the first plate tends to travel straight along the corner, and centrifugal force is suppressed. In this modification, the surface of the obstruction part 333-3 that the second opening 332-3 contacts is curved in the first direction X, so the refrigerant flowing through the second opening 332-3 flows in the first direction X. centrifugal force is likely to occur. That is, the gas-rich refrigerant flowing into the flow path 360 from the windward area UWA of the first heat exchanger tube 11 is caused by centrifugal force to cause the gas-rich refrigerant to flow into the wall surface on the end plate 32 side and the first opening 331-3 of the first plate 33-3. It flows along the leeward wall surface of the heat exchanger tube 21 and easily flows into the region of the first communication hole 341 of the second plate 34-1 facing the leeward region DWA of the second heat exchanger tube 21. Liquid-rich refrigerant flows in the first direction X into the region of the first communication hole 341-1 facing the upwind region UWA of the second heat exchanger tube 21. Therefore, the gas-rich refrigerant flows into the leeward area DWA of the second end portion 21b of the second heat exchanger tube 21 from the area of the first communication hole 341-1 facing the leeward area DWA of the second heat exchanger tube 21. Cheap. Therefore, the liquid-rich refrigerant flows in the opposite second direction through the upwind region UWA of the second heat exchanger tube 21 where the extra-tube heat transfer coefficient is high, and the heat exchange performance of the heat exchanger 1 is improved.
(実施の形態3の変形例3)
 図21は、実施の形態3の変形例3に係る積層型ヘッダ3Jの構成を説明する図である。本変形例と実施の形態3の変形例2との相違点は、積層型ヘッダ3Jが第3プレート35を有さない点、及び端部プレートが凹部321を有する端部プレート32-1である点である。端部プレート32-1については、実施の形態1の変形例2で説明しているため、ここでは説明を省略する。また、その他の構成については、実施の形態3、実施の形態3の変形例1、及び実施の形態3の変形例2で説明した構成を利用できるので、本変形例の相違点のみを説明する。
(Variation 3 of Embodiment 3)
FIG. 21 is a diagram illustrating the configuration of a stacked header 3J according to a third modification of the third embodiment. The differences between this modification and the second modification of the third embodiment are that the laminated header 3J does not have the third plate 35, and the end plate 32-1 has a recess 321. It is a point. The end plate 32-1 has been described in the second modification of the first embodiment, so its description will be omitted here. In addition, for other configurations, the configurations described in Embodiment 3, Modification 1 of Embodiment 3, and Modification 2 of Embodiment 3 can be used, so only the differences of this modification will be explained. .
 図21に示すように、本変形例の積層型ヘッダ3Jは、伝熱管側プレート31と、第2プレート34-1と、第1プレート33-3と、端部プレート32-1とを有する。第2方向Yに沿って、伝熱管側プレート31、第2プレート34-1、第1プレート33-3、及び端部プレート32-1が配置されている。積層型ヘッダ3Jでは、端部プレート32-1の凹部321が、第3プレート35の第2の連通穴351を代替する。すなわち、端部プレート32-1が第3プレート35を代替して、積層型ヘッダ3Jに流路360を形成する。 As shown in FIG. 21, the laminated header 3J of this modification includes a heat exchanger tube side plate 31, a second plate 34-1, a first plate 33-3, and an end plate 32-1. Along the second direction Y, the heat exchanger tube side plate 31, the second plate 34-1, the first plate 33-3, and the end plate 32-1 are arranged. In the stacked header 3J, the recess 321 of the end plate 32-1 replaces the second communication hole 351 of the third plate 35. That is, the end plate 32-1 replaces the third plate 35 and forms the flow path 360 in the laminated header 3J.
(実施の形態3の変形例3の作用効果)
 本変形例の流路360では、凹部321が曲面状であるため、第1伝熱管11から流入した冷媒は、端部プレート32-1に垂直に衝突せずに、凹部321の曲面に沿って第1方向Xに流れやすい。このため、遠心力がより発生しやすい。すなわち、第1伝熱管11の風上領域UWAから流路360に流入したガスリッチな冷媒は、遠心力により、端部プレート32-1の凹部321を流れやすくなる。このため、ガスリッチな冷媒が、第1プレート33-3の第1開口部331-3の風下側の壁面に沿って流れて、第2伝熱管21の風下領域DWAに対向する第2プレート34-1の第1の連通穴341-1の領域に流入しやすくなる。また、第2伝熱管21の風上領域UWAに対向する第1の連通穴341-1の領域には液リッチな冷媒が第1方向Xに流れてくる。このため、ガスリッチな冷媒は、第2伝熱管21の風下領域DWAに対向する第1の連通穴341-1の領域から、第2伝熱管21の第2端部21bの風下領域DWAに流入しやすい。したがって、管外熱伝達率が高い、第2伝熱管21の風上領域UWAを液リッチな冷媒が第2方向逆向きに流れることになり、熱交換器1の熱交換性能が向上する。
(Operations and effects of modification 3 of embodiment 3)
In the flow path 360 of this modification, since the recess 321 has a curved shape, the refrigerant flowing from the first heat exchanger tube 11 does not collide perpendicularly with the end plate 32-1, but flows along the curved surface of the recess 321. It tends to flow in the first direction X. Therefore, centrifugal force is more likely to occur. That is, the gas-rich refrigerant flowing into the flow path 360 from the windward area UWA of the first heat transfer tube 11 easily flows through the recess 321 of the end plate 32-1 due to centrifugal force. Therefore, the gas-rich refrigerant flows along the leeward wall surface of the first opening 331-3 of the first plate 33-3, and the second plate 34-, which faces the leeward area DWA of the second heat exchanger tube 21, flows along the leeward wall surface of the first opening 331-3 of the first plate 33-3. It becomes easier to flow into the region of the first communication hole 341-1. Furthermore, liquid-rich refrigerant flows in the first direction X into the region of the first communication hole 341-1 facing the upwind region UWA of the second heat transfer tube 21. Therefore, the gas-rich refrigerant flows into the leeward area DWA of the second end portion 21b of the second heat exchanger tube 21 from the area of the first communication hole 341-1 facing the leeward area DWA of the second heat exchanger tube 21. Cheap. Therefore, the liquid-rich refrigerant flows in the opposite second direction through the upwind region UWA of the second heat exchanger tube 21 where the extra-tube heat transfer coefficient is high, and the heat exchange performance of the heat exchanger 1 is improved.
 また本変形例の積層型ヘッダ3Jは、第3プレート35を有さないため、実施の形態3、及び実施の形態3の変形例1、2に係る積層型ヘッダよりも製造費用を抑制できる。 Moreover, since the laminated header 3J of this modification does not have the third plate 35, manufacturing costs can be suppressed more than the laminated header according to the third embodiment and the first and second modifications of the third embodiment.
 なお、図21では、第1プレートとして、変形例2の第1プレート33-3を示している。しかし、第1プレートは、実施の形態3の第1プレート33-2であってもよい。第1プレート33-3と端部プレート32-1を有する積層型ヘッダは、第1プレート33-2と端部プレート32-1を有する積層型ヘッダよりも、流路360を流れる冷媒により強い遠心力が作用する。 Note that in FIG. 21, the first plate 33-3 of Modification 2 is shown as the first plate. However, the first plate may be the first plate 33-2 of the third embodiment. The laminated header having the first plate 33-3 and the end plate 32-1 has a stronger centrifugal force than the laminated header having the first plate 33-2 and the end plate 32-1 because of the refrigerant flowing through the flow path 360. Force acts.
(実施の形態3のその他の変形例)
 実施の形態3の第1熱交換部10及び第2熱交換部20の配置において、実施の形態1の変形例3で説明した積層型ヘッダ3Cを適用してもよい。この場合、積層型ヘッダ3Cの第1プレート33-1の第1開口部331-1に第2伝熱管21の第2端部21bが挿入され、第1プレート33-1の第2開口部332-1に第1伝熱管11の第2端部11bが挿入される。
(Other variations of Embodiment 3)
In the arrangement of the first heat exchange section 10 and the second heat exchange section 20 of the third embodiment, the laminated header 3C described in the third modification of the first embodiment may be applied. In this case, the second end 21b of the second heat exchanger tube 21 is inserted into the first opening 331-1 of the first plate 33-1 of the laminated header 3C, and -1, the second end portion 11b of the first heat exchanger tube 11 is inserted.
 以上説明したように、実施の形態1~3、実施の形態1の変形例1、変形例2、及び実施の形態2と3の各変形例に係る熱交換器1は、第1熱交換部10と、空気の流れる向きである第1方向Xにおいて、第1熱交換部10と並べて配置される第2熱交換部20と、第1方向Xに沿って第1熱交換部10と第2熱交換部20とを接続し第1熱交換部10と第2熱交換部20との間で冷媒を流通させる積層型ヘッダ3、3A、3B、3D~3Jとを備える。第1熱交換部10は、積層型ヘッダ3、3A、3B、3D~3Jと間隔を空けて配置される液ヘッダ12と、液ヘッダ12から積層型ヘッダ3、3A、3B、3D~3Jに向かう方向であって、第1方向Xと交差する第2方向Yに沿って延び、第1端部11aが液ヘッダ12に接続され第2端部11bが積層型ヘッダ3、3A、3B、3D~3Jに接続される第1伝熱管11とを有する。第2熱交換部20は、積層型ヘッダ3、3A、3B、3D~3Jと間隔を空けて配置されるガスヘッダ22と、第2方向Yに沿って延び、第1端部21aがガスヘッダ22に接続され第2端部21bが積層型ヘッダ3、3A、3B、3D~3Jに接続される第2伝熱管21とを有する。積層型ヘッダ3、3A、3B、3D~3Jは、第1伝熱管11及び第2伝熱管21が貫通する伝熱管側プレート31と、第2方向Yにおいて、積層型ヘッダ3、3A、3B、3D~3Jの端部を形成する端部プレート32、32-1と、伝熱管側プレート31と端部プレート32、32-1との間に配置される第1プレート33、33-1、33-2、33-3と、伝熱管側プレート31と第1プレート33、33-1、33-2、33-3との間、又は第1プレート33、33-1、33-2、33-3と端部プレート32、32-1との間のいずれかに配置される第2プレート34、34-1とを有し、第1プレート33、33-1、33-2、33-3と第2プレート34、34-1とは、第1伝熱管11と第2伝熱管21との間で冷媒を流通させる流路360を形成する。第1プレート33、33-1、33-2、33-3は、第1プレート33、33-1、33-2、33-3を第2方向Yに貫通して流路360の一部を形成する第1開口部331、331-1、331-2、331-3と、第1開口部331、331-1、331-2、331-3よりも空気の流れの上流側に位置し、第1プレート33、33-1、33-2、33-3を第2方向Yに貫通して流路360の一部を形成する第2開口部332、332-1、332-2、332-3と、第1開口部331、331-1、331-2、331-3と第2開口部332、332-1、332-2、332-3との間に設けられた妨害部333、333-1、333-2、333-3とを有する。第2プレート34、34-1は、第2プレート34、34-1を第2方向Yに貫通し、第1開口部331、331-1、331-2、331-3、第2開口部332、332-1、332-2、332-3、及び妨害部333、333-1、333-2、333-3に重ねて配置されて流路360の一部を形成する第1の連通穴341、341-1を有する。 As explained above, the heat exchanger 1 according to Embodiments 1 to 3, Modification 1 and Modification 2 of Embodiment 1, and Modifications of Embodiments 2 and 3 has a first heat exchange section. 10, a second heat exchange section 20 arranged side by side with the first heat exchange section 10 in the first direction X, which is the direction in which air flows; It includes stacked headers 3, 3A, 3B, 3D to 3J that connect the heat exchange section 20 and allow the refrigerant to flow between the first heat exchange section 10 and the second heat exchange section 20. The first heat exchange section 10 includes a liquid header 12 arranged at a distance from the laminated headers 3, 3A, 3B, 3D to 3J, and a liquid header 12 that connects the liquid header 12 to the laminated headers 3, 3A, 3B, 3D to 3J. The first end 11a is connected to the liquid header 12, and the second end 11b is connected to the laminated header 3, 3A, 3B, 3D. ~3J. The second heat exchange section 20 extends along the second direction Y with a gas header 22 arranged at intervals from the stacked headers 3, 3A, 3B, 3D to 3J, and has a first end 21a connected to the gas header 22. and a second heat transfer tube 21 whose second end portion 21b is connected to the laminated header 3, 3A, 3B, 3D to 3J. The laminated headers 3, 3A, 3B, 3D to 3J have a heat exchanger tube side plate 31 through which the first heat exchanger tube 11 and the second heat exchanger tube 21 penetrate, and in the second direction Y, the laminated header 3, 3A, 3B, End plates 32, 32-1 forming the ends of 3D to 3J, and first plates 33, 33-1, 33 arranged between the heat exchanger tube side plate 31 and the end plates 32, 32-1. -2, 33-3 and between the heat exchanger tube side plate 31 and the first plate 33, 33-1, 33-2, 33-3, or the first plate 33, 33-1, 33-2, 33- and a second plate 34, 34-1 disposed between the end plate 32, 32-1, and the first plate 33, 33-1, 33-2, 33-3. The second plates 34 and 34-1 form a flow path 360 through which the refrigerant flows between the first heat exchanger tube 11 and the second heat exchanger tube 21. The first plates 33, 33-1, 33-2, 33-3 penetrate the first plates 33, 33-1, 33-2, 33-3 in the second direction Y to partially form the flow path 360. The first openings 331, 331-1, 331-2, 331-3 to be formed are located upstream of the air flow than the first openings 331, 331-1, 331-2, 331-3, Second openings 332, 332-1, 332-2, 332- that penetrate the first plates 33, 33-1, 33-2, 33-3 in the second direction Y and form part of the flow path 360. 3, and interfering parts 333, 333 provided between the first openings 331, 331-1, 331-2, 331-3 and the second openings 332, 332-1, 332-2, 332-3. -1, 333-2, and 333-3. The second plate 34, 34-1 penetrates the second plate 34, 34-1 in the second direction Y, and includes the first openings 331, 331-1, 331-2, 331-3, and the second opening 332. , 332-1, 332-2, 332-3, and the first communication hole 341 that is arranged to overlap the obstructing parts 333, 333-1, 333-2, 333-3 and forms a part of the flow path 360. , 341-1.
 当該構成により、積層型ヘッダで冷媒を液リッチな冷媒とガスリッチな冷媒とに分離することができる。このため、空気と冷媒との熱交換を効率的に行うことができる。したがって、熱交換器1の伝熱性能を向上できる。 With this configuration, the refrigerant can be separated into liquid-rich refrigerant and gas-rich refrigerant using the stacked header. Therefore, heat exchange between air and refrigerant can be performed efficiently. Therefore, the heat transfer performance of the heat exchanger 1 can be improved.
 また、実施の形態1、実施の形態1の変形例1、2、並びに実施の形態2及びその各変形例に係る熱交換器1では、第1熱交換部10は、第2熱交換部20よりも空気の流れの下流側に位置する。液ヘッダ12から積層型ヘッダ3、3A、3B、3D~3Gに向かって流れる過程でガスリッチになった冷媒は、積層型ヘッダ3、3A、3B、3D~3Gにより、第2伝熱管21の風下領域DWAに流入する。一方、液リッチな冷媒は、積層型ヘッダ3、3A、3B、3D~3Gにより、熱交換器1において最も風上側に位置する、管外熱伝達率が最も高い第2伝熱管21の風上領域UWAを流れる。このため、第2伝熱管21において、液リッチな冷媒と空気との熱交換がより効率的に行われ、熱交換器1の熱交換性能が向上する。 Further, in the heat exchanger 1 according to the first embodiment, the first and second modifications of the first embodiment, and the second embodiment and each modification thereof, the first heat exchange section 10 is different from the second heat exchange section 20. located downstream of the air flow. The refrigerant that has become gas-rich while flowing from the liquid header 12 toward the laminated headers 3, 3A, 3B, 3D to 3G is transferred to the lee of the second heat transfer tube 21 by the laminated headers 3, 3A, 3B, 3D to 3G. It flows into area DWA. On the other hand, the liquid-rich refrigerant is transferred upwind of the second heat transfer tube 21, which is located on the windward side of the heat exchanger 1 and has the highest extra-tube heat transfer coefficient, by the laminated headers 3, 3A, 3B, 3D to 3G. It flows through area UWA. Therefore, in the second heat exchanger tube 21, heat exchange between the liquid-rich refrigerant and air is performed more efficiently, and the heat exchange performance of the heat exchanger 1 is improved.
 また、実施の形態3に係る熱交換器1では、第1熱交換部10は、第2熱交換部20よりも空気の流れの上流側に位置する。液ヘッダ12から積層型ヘッダ3D、3H~3Jに向かって流れる過程で、熱交換器1において最も風上側に位置する、管外熱伝達率が最も高い第1伝熱管11の風上領域UWAを流れた冷媒は、ガスリッチな状態で積層型ヘッダ3D、3H~3Jに流入する。ガスリッチな状態の冷媒は、積層型ヘッダ3D、3H~3Jにより、熱交換器1の最も風下側の第2伝熱管21の風下領域DWAに流入する。一方、液リッチな冷媒は、積層型ヘッダ3D、3H~3Jにより、第2伝熱管21の風上領域UWAを流れる。このため、第2伝熱管21において、液リッチな冷媒と空気との熱交換がより効率的に行われ、熱交換器1の熱交換性能が向上する。 Furthermore, in the heat exchanger 1 according to the third embodiment, the first heat exchange section 10 is located upstream of the second heat exchange section 20 in the air flow. In the process of flowing from the liquid header 12 toward the laminated headers 3D, 3H to 3J, the windward area UWA of the first heat exchanger tube 11, which is located on the windward side of the heat exchanger 1 and has the highest extra-tube heat transfer coefficient, is The flowing refrigerant flows into the stacked headers 3D, 3H to 3J in a gas-rich state. The gas-rich refrigerant flows into the leeward region DWA of the second heat transfer tube 21 on the most leeward side of the heat exchanger 1 through the stacked headers 3D, 3H to 3J. On the other hand, the liquid-rich refrigerant flows through the upwind region UWA of the second heat transfer tube 21 through the laminated headers 3D, 3H to 3J. Therefore, in the second heat exchanger tube 21, heat exchange between the liquid-rich refrigerant and air is performed more efficiently, and the heat exchange performance of the heat exchanger 1 is improved.
 また、実施の形態1の変形例3に係る熱交換器1は、第1熱交換部10と、空気の流れる向きである第1方向Xにおいて、第1熱交換部10と並べて配置される第2熱交換部20と、第1方向Xに沿って第1熱交換部10と第2熱交換部20とを接続し、第1熱交換部10と第2熱交換部20との間で冷媒を流通させる積層型ヘッダ3Cとを備える。第1熱交換部10は、積層型ヘッダ3Cと間隔を空けて配置される液ヘッダ12と、液ヘッダ12から積層型ヘッダ3Cに向かう方向であって、第1方向Xと交差する第2方向Yに沿って延び、第1端部11aが液ヘッダ12に接続され第2端部11bが積層型ヘッダ3Cに接続される第1伝熱管11とを有する。第2熱交換部20は、積層型ヘッダ3Cと間隔を空けて配置されるガスヘッダ22と、第2方向Yに沿って延び、第1端部21aがガスヘッダ22に接続され第2端部21bが積層型ヘッダ3Cに接続される第2伝熱管21とを有する。積層型ヘッダ3Cは、第1伝熱管11及び第2伝熱管21が貫通する伝熱管側プレート31と、第2方向Yにおいて、積層型ヘッダ3Cの端部を形成する端部プレート32-1と、伝熱管側プレート31と端部プレート32-1との間に配置される第1プレート33、33-1とを有し、第1プレート33、33-1と端部プレート32-1とは、第1伝熱管11と第2伝熱管21との間で冷媒を流通させる流路360を形成する。第1プレート33、33-1は、第1プレート33、33-1を第2方向Yに貫通して流路360の一部を形成する第1開口部331、331-1と、第1開口部331、331-1よりも空気の流れの上流側に位置し、第1プレート33、33-1を第2方向Yに貫通して流路360の一部を形成する第2開口部332、332-1と、第1開口部331、331-1と第2開口部332、332-1との間に設けられた妨害部333、333-1とを有する。端部プレート32-1は、第2方向Yに凹んでおり、第1開口部331、331-1、第2開口部332、332-1、及び妨害部333、333-1に重ねて配置されて流路360の一部を形成する凹部321を有する。 Furthermore, the heat exchanger 1 according to the third modification of the first embodiment includes a first heat exchange section 10 and a first heat exchange section 10 arranged in parallel with the first heat exchange section 10 in the first direction X, which is the direction in which air flows. The first heat exchange section 10 and the second heat exchange section 20 are connected along the first direction X, and the refrigerant is transferred between the first heat exchange section 10 and the second heat exchange section 20. It is equipped with a laminated header 3C for circulating the flow. The first heat exchange section 10 includes a liquid header 12 arranged at a distance from the laminated header 3C, and a second direction which is directed from the liquid header 12 toward the laminated header 3C and intersects with the first direction X. It has a first heat exchanger tube 11 that extends along Y, and has a first end 11a connected to the liquid header 12 and a second end 11b connected to the laminated header 3C. The second heat exchange section 20 extends along the second direction Y with a gas header 22 arranged at a distance from the stacked header 3C, and has a first end 21a connected to the gas header 22 and a second end 21b. It has a second heat exchanger tube 21 connected to the laminated header 3C. The laminated header 3C includes a heat exchanger tube side plate 31 through which the first heat exchanger tube 11 and the second heat exchanger tube 21 pass, and an end plate 32-1 forming an end of the laminated header 3C in the second direction Y. , has first plates 33, 33-1 disposed between the heat exchanger tube side plate 31 and the end plate 32-1, and the first plates 33, 33-1 and the end plate 32-1 are , a flow path 360 is formed between the first heat exchanger tube 11 and the second heat exchanger tube 21 to allow the refrigerant to flow therethrough. The first plate 33, 33-1 has a first opening 331, 331-1 that penetrates the first plate 33, 33-1 in the second direction Y and forms a part of the flow path 360, and a first opening a second opening 332 located on the upstream side of the air flow than the sections 331, 331-1, penetrating the first plates 33, 33-1 in the second direction Y and forming a part of the flow path 360; 332-1, and obstructing portions 333, 333-1 provided between the first openings 331, 331-1 and the second openings 332, 332-1. The end plate 32-1 is recessed in the second direction Y, and is arranged to overlap the first openings 331, 331-1, the second openings 332, 332-1, and the obstructing parts 333, 333-1. It has a recess 321 that forms a part of the flow path 360.
 当該構成により、積層型ヘッダ3Cで冷媒を液リッチな冷媒とガスリッチな冷媒とに分離することができる。このため、空気と冷媒との熱交換を効率的に行うことができる。したがって、熱交換器1の伝熱性能を向上できる。また、積層型ヘッダ3Cは、伝熱管側プレートと、第1プレートと、端部プレートとの、計3枚のプレートから構成できるので、4枚以上のプレートから構成される積層型ヘッダよりも製造費用を抑制できる。 With this configuration, the laminated header 3C can separate the refrigerant into liquid-rich refrigerant and gas-rich refrigerant. Therefore, heat exchange between air and refrigerant can be performed efficiently. Therefore, the heat transfer performance of the heat exchanger 1 can be improved. In addition, since the laminated header 3C can be constructed from a total of three plates: the heat exchanger tube side plate, the first plate, and the end plate, it is easier to manufacture than the laminated header that is composed of four or more plates. Costs can be controlled.
 また、上記の各実施の形態及び各変形例に係る冷凍サイクル装置100は、冷媒を圧縮する圧縮機101と、圧縮機101から流出した冷媒を放熱させる放熱器102と、放熱器102から流出した冷媒を減圧させる膨張機構103と、膨張機構103から流出した冷媒を蒸発させる蒸発器104と、蒸発器104に空気を送る送風機107とを備え、蒸発器104は、実施の形態1~3及び各変形例に記載の熱交換器1である。蒸発器104の積層型ヘッダで冷媒を液リッチな冷媒とガスリッチな冷媒とに分離することで、蒸発器104での空気と冷媒との熱交換が効率的に行われる。したがって、伝熱性能が向上された蒸発器104を有する、冷凍サイクル装置100を提供することができる。 In addition, the refrigeration cycle device 100 according to each of the above embodiments and modifications includes a compressor 101 that compresses refrigerant, a radiator 102 that radiates heat from the refrigerant flowing out from the compressor 101, and a radiator 102 that radiates heat from the refrigerant flowing out from the radiator 102. The evaporator 104 includes an expansion mechanism 103 that reduces the pressure of the refrigerant, an evaporator 104 that evaporates the refrigerant flowing out from the expansion mechanism 103, and a blower 107 that sends air to the evaporator 104. This is a heat exchanger 1 according to a modification. By separating the refrigerant into a liquid-rich refrigerant and a gas-rich refrigerant using the laminated header of the evaporator 104, heat exchange between the air and the refrigerant in the evaporator 104 is performed efficiently. Therefore, it is possible to provide a refrigeration cycle device 100 having an evaporator 104 with improved heat transfer performance.
 本開示に係る熱交換器は、上記実施の形態及び変形例に限らず種々の変形が可能である。例えば、上記の各実施の形態及び各変形例においては、第3方向Zが重力方向であって、複数の第1伝熱管11及び複数の第2伝熱管21が延びる第2方向Yが水平方向である熱交換器1について説明した。しかし、複数の伝熱管が延びる第2方向Yが重力方向或いは重力方向逆向きであって、第3方向Zが水平方向であってもよい。また、上記の各実施の形態及び各変形例においては、第1熱交換部10及び第2熱交換部20がそれぞれ複数の板状のフィン2を有する構成について説明した。しかし、複数のフィンが、波形の形状のコルゲートフィンであってもよい。さらに、第1熱交換部及び第2熱交換部がフィンを有しないフィンレスの熱交換器であってもよい。 The heat exchanger according to the present disclosure is not limited to the embodiments and modifications described above, and can be modified in various ways. For example, in each of the above embodiments and modifications, the third direction Z is the gravity direction, and the second direction Y in which the plurality of first heat exchanger tubes 11 and the plurality of second heat exchanger tubes 21 extend is the horizontal direction. The heat exchanger 1 has been described. However, the second direction Y in which the plurality of heat exchanger tubes extend may be in the direction of gravity or opposite to the direction of gravity, and the third direction Z may be the horizontal direction. Furthermore, in each of the above embodiments and modifications, the first heat exchange section 10 and the second heat exchange section 20 each have a plurality of plate-shaped fins 2. However, the plurality of fins may be corrugated fins having a corrugated shape. Furthermore, the first heat exchange section and the second heat exchange section may be finless heat exchangers that do not have fins.
 1 熱交換器、2 フィン、3 積層型ヘッダ、3A 積層型ヘッダ、3B 積層型ヘッダ、3C 積層型ヘッダ、3D 積層型ヘッダ、3E 積層型ヘッダ、3F 積層型ヘッダ、3G 積層型ヘッダ、3H 積層型ヘッダ、3I 積層型ヘッダ、3J 積層型ヘッダ、10 第1熱交換部、11 第1伝熱管、11a 第1端部、11b 第2端部、12 液ヘッダ、20 第2熱交換部、21 第2伝熱管、21a 第1端部、21b 第2端部、22 ガスヘッダ、31 伝熱管側プレート、31a 伝熱管挿入口、31b 伝熱管挿入口、32 端部プレート、32a 端面、32-1 端部プレート、33 第1プレート、33-1 第1プレート、33-2 第1プレート、33-3 第1プレート、34 第2プレート、34-1 第2プレート、35 第3プレート、35-1 第3プレート、40 投影領域、41 投影領域、100 冷凍サイクル装置、101 圧縮機、102 放熱器、103 膨張機構、104 蒸発器、105 冷媒配管、106 送風機、107 送風機、321 凹部、331 第1開口部、331-1 第1開口部、331-2 第1開口部、331-3 第1開口部、332 第2開口部、332-1 第2開口部、332-2 第2開口部、332-3 第2開口部、333 妨害部、333-1 妨害部、333-2 妨害部、333-3 妨害部、341 第1の連通穴、341-1 第1の連通穴、351 第2の連通穴、351-1 第2の連通穴、360 流路、X 第1方向、Y 第2方向、Z 第3方向、SA1 流路断面、SA2 流路断面、UWA 風上領域、DWA 風下領域。 1 heat exchanger, 2 fins, 3 laminated header, 3A laminated header, 3B laminated header, 3C laminated header, 3D laminated header, 3E laminated header, 3F laminated header, 3G laminated header, 3H laminated Type header, 3I Stacked header, 3J Stacked header, 10 First heat exchange section, 11 First heat exchanger tube, 11a First end, 11b Second end, 12 Liquid header, 20 Second heat exchange section, 21 2nd heat exchanger tube, 21a first end, 21b second end, 22 gas header, 31 heat exchanger tube side plate, 31a heat exchanger tube insertion port, 31b heat exchanger tube insertion port, 32 end plate, 32a end face, 32-1 end part plate, 33 first plate, 33-1 first plate, 33-2 first plate, 33-3 first plate, 34 second plate, 34-1 second plate, 35 third plate, 35-1 second plate 3 plates, 40 projection area, 41 projection area, 100 refrigeration cycle device, 101 compressor, 102 radiator, 103 expansion mechanism, 104 evaporator, 105 refrigerant piping, 106 blower, 107 blower, 321 recess, 331 first opening , 331-1 first opening, 331-2 first opening, 331-3 first opening, 332 second opening, 332-1 second opening, 332-2 second opening, 332-3 2nd opening, 333 obstruction part, 333-1 obstruction part, 333-2 obstruction part, 333-3 obstruction part, 341 first communication hole, 341-1 first communication hole, 351 second communication hole, 351-1 second communication hole, 360 flow path, X first direction, Y second direction, Z third direction, SA1 flow path cross section, SA2 flow path cross section, UWA windward area, DWA leeward area.

Claims (15)

  1.  第1熱交換部と、
     空気の流れる向きである第1方向において、前記第1熱交換部と並べて配置される第2熱交換部と、
     前記第1方向に沿って前記第1熱交換部と前記第2熱交換部とを接続し、前記第1熱交換部と前記第2熱交換部との間で冷媒を流通させる積層型ヘッダと
     を備え、
     前記第1熱交換部は、
     前記積層型ヘッダと間隔を空けて配置される液ヘッダと、
     前記液ヘッダから前記積層型ヘッダに向かう方向であって、前記第1方向と交差する第2方向に沿って延び、第1端部が前記液ヘッダに接続され第2端部が前記積層型ヘッダに接続される第1伝熱管と
     を有し、
     前記第2熱交換部は、
     前記積層型ヘッダと間隔を空けて配置されるガスヘッダと、
     前記第2方向に沿って延び、第1端部が前記ガスヘッダに接続され第2端部が前記積層型ヘッダに接続される第2伝熱管と
     を有し、
     前記積層型ヘッダは、
     前記第1伝熱管及び前記第2伝熱管が貫通する伝熱管側プレートと、
     前記第2方向において、前記積層型ヘッダの端部を形成する端部プレートと、
     前記伝熱管側プレートと前記端部プレートとの間に配置される第1プレートと、
     前記伝熱管側プレートと前記第1プレートとの間、又は前記第1プレートと前記端部プレートとの間のいずれかに配置される第2プレートと
     を有し、
     前記第1プレートと前記第2プレートとは、前記第1伝熱管と前記第2伝熱管との間で前記冷媒を流通させる流路を形成し、
     前記第1プレートは、
     前記第1プレートを前記第2方向に貫通して前記流路の一部を形成する第1開口部と、
     前記第1開口部よりも前記空気の流れの上流側に位置し、前記第1プレートを前記第2方向に貫通して前記流路の一部を形成する第2開口部と、
     前記第1開口部と前記第2開口部との間に設けられた妨害部と
     を有し、
     前記第2プレートは、前記第2プレートを前記第2方向に貫通し、前記第1開口部、前記第2開口部、及び前記妨害部に重ねて配置されて前記流路の一部を形成する第1の連通穴を有する
     熱交換器。
    a first heat exchange section;
    a second heat exchange section arranged in parallel with the first heat exchange section in a first direction, which is the direction in which air flows;
    a stacked header that connects the first heat exchange section and the second heat exchange section along the first direction and allows a refrigerant to flow between the first heat exchange section and the second heat exchange section; Equipped with
    The first heat exchange section includes:
    a liquid header spaced apart from the laminated header;
    A direction extending from the liquid header toward the laminated header and extending along a second direction intersecting the first direction, with a first end connected to the liquid header and a second end connected to the laminated header. a first heat exchanger tube connected to the
    The second heat exchange section includes:
    a gas header spaced apart from the stacked header;
    a second heat exchanger tube extending along the second direction, having a first end connected to the gas header and a second end connected to the laminated header;
    The laminated header includes:
    a heat exchanger tube side plate through which the first heat exchanger tube and the second heat exchanger tube pass;
    an end plate forming an end of the stacked header in the second direction;
    a first plate disposed between the heat exchanger tube side plate and the end plate;
    a second plate disposed either between the heat exchanger tube side plate and the first plate or between the first plate and the end plate;
    The first plate and the second plate form a flow path through which the refrigerant flows between the first heat exchanger tube and the second heat exchanger tube,
    The first plate is
    a first opening that penetrates the first plate in the second direction and forms a part of the flow path;
    a second opening located upstream of the air flow than the first opening, penetrating the first plate in the second direction and forming a part of the flow path;
    a blocking portion provided between the first opening and the second opening;
    The second plate passes through the second plate in the second direction, and is disposed overlapping the first opening, the second opening, and the obstruction portion to form a part of the flow path. A heat exchanger having a first communication hole.
  2.  前記第1熱交換部は、前記第2熱交換部よりも前記空気の流れの下流側に位置する
     請求項1に記載の熱交換器。
    The heat exchanger according to claim 1, wherein the first heat exchange section is located downstream of the air flow than the second heat exchange section.
  3.  前記第2プレートは、前記第1プレートと前記端部プレートとの間に配置され、
     前記第1プレートの前記第1開口部の外形の大きさは、前記第1伝熱管の前記第2端部の外形の大きさよりも大きく、
     前記第1伝熱管の前記第2端部は、前記第1プレートの前記第1開口部に挿入され、
     前記第1プレートの前記第2開口部の外形の大きさは前記第2伝熱管の前記第2端部の外形の大きさよりも大きく、
     前記第2伝熱管の前記第2端部は、前記第1プレートの前記第2開口部に挿入されている
     請求項1又は請求項2に記載の熱交換器。
    the second plate is disposed between the first plate and the end plate;
    The outer size of the first opening of the first plate is larger than the outer size of the second end of the first heat exchanger tube,
    the second end of the first heat exchanger tube is inserted into the first opening of the first plate;
    The outer size of the second opening of the first plate is larger than the outer size of the second end of the second heat exchanger tube,
    The heat exchanger according to claim 1 or 2, wherein the second end of the second heat exchanger tube is inserted into the second opening of the first plate.
  4.  前記端部プレートは、
     前記第2方向に曲面状に凹んでおり、前記第1の連通穴に重ねて配置されて前記流路の一部を形成する凹部を有する
     請求項3に記載の熱交換器。
    The end plate is
    The heat exchanger according to claim 3, further comprising a recess that is curved in the second direction and that is arranged to overlap the first communication hole and forms a part of the flow path.
  5.  前記端部プレートは、前記凹部が設けられる端面とは反対側の端面が、前記第2方向に曲面状に凸となっている
     請求項4に記載の熱交換器。
    The heat exchanger according to claim 4, wherein the end plate has an end face opposite to the end face where the recess is provided, which is curved and convex in the second direction.
  6.  前記第1熱交換部は、前記第2熱交換部よりも前記空気の流れの前記上流側に位置する
     請求項1に記載の熱交換器。
    The heat exchanger according to claim 1, wherein the first heat exchange section is located on the upstream side of the air flow than the second heat exchange section.
  7.  前記第2プレートは、前記伝熱管側プレートと前記第1プレートとの間に配置され、
     前記第1伝熱管の前記第2端部及び前記第2伝熱管の前記第2端部は、前記第2プレートの前記第1の連通穴に挿入され、
     前記第2方向において、前記第1伝熱管の前記第2端部及び前記第2伝熱管の前記第2端部を前記第1プレートに投影した場合、前記第1伝熱管の前記第2端部の投影領域の一部及び前記第2伝熱管の前記第2端部の投影領域の一部が前記妨害部に重なる
     請求項2又は請求項6に記載の熱交換器。
    The second plate is arranged between the heat exchanger tube side plate and the first plate,
    The second end of the first heat exchanger tube and the second end of the second heat exchanger tube are inserted into the first communication hole of the second plate,
    In the second direction, when the second end of the first heat exchanger tube and the second end of the second heat exchanger tube are projected onto the first plate, the second end of the first heat exchanger tube The heat exchanger according to claim 2 or 6, wherein a part of the projected area of the second end of the second heat exchanger tube and a part of the projected area of the second end of the second heat exchanger tube overlap with the obstructing part.
  8.  前記積層型ヘッダは、
     前記第1プレートと前記端部プレートとの間に設けられた、第3プレートを有し、
     前記第3プレートは、前記第3プレートを前記第2方向に貫通し、前記第1開口部、前記第2開口部、及び前記妨害部に重ねて配置されて前記流路の一部を形成する第2の連通穴を有する
     請求項7に記載の熱交換器。
    The laminated header includes:
    a third plate provided between the first plate and the end plate;
    The third plate passes through the third plate in the second direction, and is disposed overlapping the first opening, the second opening, and the obstruction part to form a part of the flow path. The heat exchanger according to claim 7, having a second communication hole.
  9.  前記第2方向において、前記第3プレートの厚さは、前記第2プレートの厚さよりも薄い
     請求項8に記載の熱交換器。
    The heat exchanger according to claim 8, wherein the thickness of the third plate is thinner than the thickness of the second plate in the second direction.
  10.  前記第2方向において、前記第2プレートの厚さは、前記第3プレートの厚さよりも薄い
     請求項8に記載の熱交換器。
    The heat exchanger according to claim 8, wherein the thickness of the second plate is thinner than the thickness of the third plate in the second direction.
  11.  前記端部プレートは、
     前記第2方向に曲面状に凹んでおり、前記第1開口部、前記第2開口部、及び前記妨害部に重ねて配置されて前記流路の一部を形成する凹部を有する
     請求項7に記載の熱交換器。
    The end plate is
    According to claim 7, the recess is curved in the second direction, and has a recess that is arranged to overlap the first opening, the second opening, and the obstruction part to form a part of the flow path. Heat exchanger as described.
  12.  前記端部プレートは、前記凹部が設けられる端面とは反対側の端面が、前記第2方向に曲面状に凸となっている
     請求項11に記載の熱交換器。
    The heat exchanger according to claim 11, wherein the end plate has an end face opposite to the end face where the recess is provided, which is curved and convex in the second direction.
  13.  前記妨害部の前記第2方向における先端の端面は、前記第2方向に曲面状に凸となっている
     請求項1~請求項12のいずれか一項に記載の熱交換器。
    The heat exchanger according to any one of claims 1 to 12, wherein the end face of the distal end of the obstruction portion in the second direction is curved and convex in the second direction.
  14.  第1熱交換部と、
     空気の流れる向きである第1方向において、前記第1熱交換部と並べて配置される第2熱交換部と、
     前記第1方向に沿って前記第1熱交換部と前記第2熱交換部とを接続し、前記第1熱交換部と前記第2熱交換部との間で冷媒を流通させる積層型ヘッダと
     を備え、
     前記第1熱交換部は、
     前記積層型ヘッダと間隔を空けて配置される液ヘッダと、
     前記液ヘッダから前記積層型ヘッダに向かう方向であって、前記第1方向と交差する第2方向に沿って延び、第1端部が前記液ヘッダに接続され第2端部が前記積層型ヘッダに接続される第1伝熱管と
     を有し、
     前記第2熱交換部は、
     前記積層型ヘッダと間隔を空けて配置されるガスヘッダと、
     前記第2方向に沿って延び、第1端部が前記ガスヘッダに接続され第2端部が前記積層型ヘッダに接続される第2伝熱管と
     を有し、
     前記積層型ヘッダは、
     前記第1伝熱管及び前記第2伝熱管が貫通する伝熱管側プレートと、
     前記第2方向において、前記積層型ヘッダの端部を形成する端部プレートと、
     前記伝熱管側プレートと前記端部プレートとの間に配置される第1プレートと
     を有し、
     前記第1プレートと前記端部プレートとは、前記第1伝熱管と前記第2伝熱管との間で前記冷媒を流通させる流路を形成し、
     前記第1プレートは、
     前記第1プレートを前記第2方向に貫通して前記流路の一部を形成する第1開口部と、
     前記第1開口部よりも前記空気の流れの上流側に位置し、前記第1プレートを前記第2方向に貫通して前記流路の一部を形成する第2開口部と、
     前記第1開口部と前記第2開口部との間に設けられた妨害部と
     を有し、
     前記端部プレートは、前記第2方向に凹んでおり、前記第1開口部、前記第2開口部、及び前記妨害部に重ねて配置されて前記流路の一部を形成する凹部を有する
     熱交換器。
    a first heat exchange section;
    a second heat exchange section arranged in parallel with the first heat exchange section in a first direction, which is the direction in which air flows;
    a stacked header that connects the first heat exchange section and the second heat exchange section along the first direction and allows a refrigerant to flow between the first heat exchange section and the second heat exchange section; Equipped with
    The first heat exchange section includes:
    a liquid header spaced apart from the laminated header;
    A direction extending from the liquid header toward the laminated header and extending along a second direction intersecting the first direction, with a first end connected to the liquid header and a second end connected to the laminated header. a first heat exchanger tube connected to the
    The second heat exchange section includes:
    a gas header spaced apart from the stacked header;
    a second heat exchanger tube extending along the second direction, having a first end connected to the gas header and a second end connected to the laminated header;
    The laminated header includes:
    a heat exchanger tube side plate through which the first heat exchanger tube and the second heat exchanger tube pass;
    an end plate forming an end of the stacked header in the second direction;
    a first plate disposed between the heat exchanger tube side plate and the end plate;
    The first plate and the end plate form a flow path through which the refrigerant flows between the first heat exchanger tube and the second heat exchanger tube,
    The first plate is
    a first opening that penetrates the first plate in the second direction and forms a part of the flow path;
    a second opening located upstream of the air flow than the first opening, penetrating the first plate in the second direction and forming a part of the flow path;
    and a blocking portion provided between the first opening and the second opening,
    The end plate has a recess that is recessed in the second direction and is disposed overlapping the first opening, the second opening, and the obstruction part to form a part of the flow path. exchanger.
  15.  冷媒を圧縮する圧縮機と、
     前記圧縮機から流出した前記冷媒を放熱させる放熱器と、
     前記放熱器から流出した前記冷媒を減圧させる膨張機構と、
     前記膨張機構から流出した前記冷媒を蒸発させる蒸発器と、
     前記蒸発器に空気を送る送風機と
     を備え、
     前記蒸発器は、請求項1~請求項14のいずれか一項に記載の熱交換器である
     冷凍サイクル装置。
    a compressor that compresses refrigerant;
    a radiator that radiates heat from the refrigerant flowing out from the compressor;
    an expansion mechanism that reduces the pressure of the refrigerant flowing out from the radiator;
    an evaporator that evaporates the refrigerant flowing out from the expansion mechanism;
    a blower that sends air to the evaporator;
    The evaporator is a heat exchanger according to any one of claims 1 to 14. A refrigeration cycle device.
PCT/JP2022/028884 2022-07-27 2022-07-27 Heat exchanger, and refrigeration cycle device WO2024023958A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/028884 WO2024023958A1 (en) 2022-07-27 2022-07-27 Heat exchanger, and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/028884 WO2024023958A1 (en) 2022-07-27 2022-07-27 Heat exchanger, and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2024023958A1 true WO2024023958A1 (en) 2024-02-01

Family

ID=89705843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028884 WO2024023958A1 (en) 2022-07-27 2022-07-27 Heat exchanger, and refrigeration cycle device

Country Status (1)

Country Link
WO (1) WO2024023958A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004225961A (en) * 2003-01-21 2004-08-12 Denso Corp Multi-flow type heat exchanger
WO2015063875A1 (en) * 2013-10-30 2015-05-07 三菱電機株式会社 Laminated header, heat exchanger, and air-conditioning apparatus
WO2015097876A1 (en) * 2013-12-27 2015-07-02 三菱電機株式会社 Stacked header, heat exchanger, and air conditioner
WO2020089966A1 (en) * 2018-10-29 2020-05-07 三菱電機株式会社 Heat exchanger and refrigeration cycle device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004225961A (en) * 2003-01-21 2004-08-12 Denso Corp Multi-flow type heat exchanger
WO2015063875A1 (en) * 2013-10-30 2015-05-07 三菱電機株式会社 Laminated header, heat exchanger, and air-conditioning apparatus
WO2015097876A1 (en) * 2013-12-27 2015-07-02 三菱電機株式会社 Stacked header, heat exchanger, and air conditioner
WO2020089966A1 (en) * 2018-10-29 2020-05-07 三菱電機株式会社 Heat exchanger and refrigeration cycle device

Similar Documents

Publication Publication Date Title
JP5617935B2 (en) Heat exchanger and air conditioner
US9494368B2 (en) Heat exchanger and air conditioner
US20060237178A1 (en) Heat exchanger
US10041710B2 (en) Heat exchanger and air conditioner
EP3480547B1 (en) Heat exchanger and refrigeration cycle device provided with heat exchanger
JP2017155989A (en) Heat exchanger and air conditioner
JP2019052784A (en) Heat exchanger and air conditioner
JP4760542B2 (en) Heat exchanger
JPWO2018225252A1 (en) Heat exchanger and refrigeration cycle device
WO2024023958A1 (en) Heat exchanger, and refrigeration cycle device
EP3224565B1 (en) Frost tolerant microchannel heat exchanger
WO2022030376A1 (en) Heat exchanger
KR102088829B1 (en) Refrigerator
WO2021001953A1 (en) Heat exchanger and refrigeration cycle device
KR20080089974A (en) Heat exchanger of air conditioner
WO2019026242A1 (en) Heat exchanger, and refrigeration cycle device
KR102161475B1 (en) Air conditioner system for vehicle
WO2022064554A1 (en) Heat exchanger, and air conditioner provided with heat exchanger
JP6582373B2 (en) Heat exchanger
WO2022085067A1 (en) Heat exchanger and refrigeration cycle device
WO2024089927A1 (en) Heat exchanger and refrigeration cycle device with said heat exchanger
JP7496832B2 (en) HEAT EXCHANGER, HEAT EXCHANGER UNIT, REFRIGERATION CYCLE DEVICE, AND METHOD FOR MANUFACTURING HEAT EXCHANGE MEMBER
WO2023199466A1 (en) Heat exchanger, and air conditioning device including same
WO2021192902A1 (en) Heat exchanger
JP2011058771A (en) Heat exchanger, and refrigerator and air conditioner including the heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953053

Country of ref document: EP

Kind code of ref document: A1