WO2024023927A1 - 推定装置、推定方法、推定モデル生成装置、推定モデル生成方法及びプログラム - Google Patents

推定装置、推定方法、推定モデル生成装置、推定モデル生成方法及びプログラム Download PDF

Info

Publication number
WO2024023927A1
WO2024023927A1 PCT/JP2022/028782 JP2022028782W WO2024023927A1 WO 2024023927 A1 WO2024023927 A1 WO 2024023927A1 JP 2022028782 W JP2022028782 W JP 2022028782W WO 2024023927 A1 WO2024023927 A1 WO 2024023927A1
Authority
WO
WIPO (PCT)
Prior art keywords
heart
estimation
function
estimation model
parameters
Prior art date
Application number
PCT/JP2022/028782
Other languages
English (en)
French (fr)
Inventor
亮 錦見
允裕 中野
邦夫 柏野
信吾 塚田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/028782 priority Critical patent/WO2024023927A1/ja
Publication of WO2024023927A1 publication Critical patent/WO2024023927A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms

Definitions

  • the present invention relates to an estimation device, an estimation method, an estimation model generation device, an estimation model generation method, and a program.
  • Biological waveforms such as electrocardiogram waveforms and heart sound waveforms, are widely used to understand the presence or absence of abnormalities in the body and its pathological condition. For example, abnormality detection and disease classification are performed by analyzing P waves, QRS waves, and T waves, which represent characteristics of electrocardiographic waveforms, through signal processing.
  • An object of the present invention is to estimate parameters indicating the function or state of the heart from waveforms caused by the heart.
  • One aspect of the present invention is to input a waveform caused by the heart to an estimation model learned by machine learning to output a parameter indicating the function or state of the heart by inputting a waveform caused by the heart.
  • This is an estimation device that estimates parameters indicating a function or state.
  • Parameters indicating the function or condition of the heart can be estimated from the waveform caused by the heart.
  • FIG. 1 is a diagram showing the configuration of an estimation system 1.
  • FIG. 3 is a flowchart showing the operation of the estimated model generation device 3.
  • FIG. 3 is a flowchart showing the operation of the estimation device 4.
  • FIG. 3 is a diagram showing parameters indicating the function or condition of the heart. It is a figure showing each layer of an estimation model.
  • FIG. 1 is a diagram showing the configuration of an estimation system 1.
  • the estimation system 1 includes a dataset generation device 2, an estimation model generation device 3, and an estimation device 4.
  • the data set generation device 2 generates a data set that includes a waveform caused by the heart and a parameter indicating the function or condition of the heart.
  • Waveforms caused by the heart include, for example, electrocardiographic waveforms that are the result of observing the electromotive force that occurs due to the electrical activity of cardiac myocardial cells in the heart, and heart sounds that are the result of observing vibrations that occur due to the mechanical activity of myocardial cells of the heart. It is a waveform.
  • Parameters indicating the function or state of the heart include, for example, conduction velocity, calcium handling, potassium channels, left ventricular shape, excitation propagation pattern, cell distribution, heart rate, and blood vessel pattern.
  • the data set generation device 2 generates a data set by calculating a waveform caused by the heart based on parameters indicating the function or condition of the heart.
  • the data set generation device 2 calculates a waveform caused by the heart, for example, by inputting parameters indicating the function or state of the heart into a simulator that simulates the behavior of the heart.
  • a simulator that simulates the behavior of the heart is, for example, UT-Heart (trademark).
  • the dataset generation device 2 outputs the generated dataset to the estimation model generation device 3.
  • the estimated model generation device 3 generates an estimated model based on the dataset input from the dataset generation device 2.
  • the estimation model is a model that inputs a waveform caused by the heart and outputs a parameter indicating the function or state of the heart.
  • the estimated model generation device 3 generates an estimated model by machine learning using a waveform caused by the heart as an explanatory variable and a parameter indicating the function or state of the heart as an objective variable.
  • the machine learning method is not limited, and includes, for example, neural network, random forest, support vector machine, logistic regression, or ensemble learning.
  • the estimated model generation device 3 outputs the generated estimated model to the estimation device 4.
  • the estimation device 4 stores the estimation model input from the estimation model generation device 3.
  • a waveform caused by the heart is input to the estimation device 4 .
  • the estimation device 4 inputs the waveform caused by the heart into the stored estimation model, and outputs the parameter indicating the function or condition of the heart, thereby estimating the parameter indicating the function or condition of the heart.
  • the estimation device 4 outputs parameters indicating the estimated function or state of the heart.
  • the output parameters are displayed, for example, on a display device.
  • FIG. 2 is a flowchart showing the operation of the estimation model generation device 3.
  • the estimated model generation device 3 acquires a dataset from the dataset generation device 2 (step S31). After that, the estimated model generation device 3 generates an estimated model by machine learning based on the data set (step S32). The estimated model generation device 3 outputs the generated estimated model to the estimation device 4 (step S33).
  • FIG. 3 is a flowchart showing the operation of the estimation device 4.
  • the estimation device 4 acquires the estimated model from the estimated model generation device 3 (step S41).
  • the estimation device 4 acquires the input waveform caused by the heart (step S42).
  • the estimation device 4 inputs the waveform caused by the heart into the stored estimation model and outputs the parameter indicating the function or condition of the heart, thereby estimating the parameter indicating the function or condition of the heart (step S43).
  • the estimation device 4 outputs the estimated parameters (step S44).
  • the estimation device 4 estimates parameters indicating the function or condition of the heart from the waveform caused by the heart by inputting the waveform caused by the heart into the estimation model and outputting the parameter indicating the function or condition of the heart.
  • the rhythmic and regular contraction of the heart is brought about by the movement of calcium between the myocardial sarcomeres and the myocardial endoplasmic reticulum in the cytoplasm. Therefore, if the value of ICa can be estimated, it may be possible to predict the main mechanism of decline in cardiac function in advance. In this way, the cause of an abnormality or disease can be estimated by estimating parameters indicating the function or condition of the heart.
  • the data set generation device 2 uses UT-Heart to generate electrocardiographic waveform data from parameters indicating the function or condition of the heart.
  • the parameters are 10 parameters: G, INa, ICa, NCX, IK, LV, EX, CELL, HR, and CIR. Note that these are examples of typical parameters related to the heart, and the parameters in the present invention are not limited to these.
  • the above ten parameters are parameters governing conduction velocity, calcium handling, potassium channels, left ventricular shape, excitation propagation pattern, cell distribution, heart rate, and blood vessel pattern.
  • G is a parameter representing the degree of fibrosis in the fiber direction and in the fiber orthogonal direction of an average human heart as a two-dimensional vector.
  • the first dimension (Lat) of G indicates the degree of fibrosis in the fiber direction of the heart
  • the second dimension (Con) of G indicates the degree of fibrosis in the direction perpendicular to the fibers of the heart.
  • Lat and Con in a state where collagen is excessively accumulated are each 100%.
  • INa is a parameter expressed by a one-dimensional vector indicating the sodium ion current in the human heart. Two values, 100% and 70%, were used for INa, assuming that the average human heart's sodium ion current is 100%.
  • ICa is a parameter expressed as a three-dimensional vector indicating the calcium ion current in the human heart.
  • the first dimension (SERCA) of ICa indicates the amount of SERCA (sarco/endoplasmic reticulum Ca2+-ATPase), and the second dimension (ICaL) of ICa indicates the magnitude of ICaL (L-type Ca2+ current).
  • NCX is a parameter that indicates the amount of Na/Ca exchanger in the human heart and is expressed as a one-dimensional vector.
  • IK is a parameter expressed as a four-dimensional vector indicating potassium ion current in the human heart.
  • the first dimension of IK (IKs) indicates the magnitude of the slow activation type of delayed rectification potassium current
  • the second dimension of IK (IKr) indicates the magnitude of the instantaneous activation type of delayed rectification potassium current.
  • the third dimension (Ito) of IK indicates the magnitude of the transient outward potassium current
  • the fourth dimension (IK1) of IK indicates the magnitude of the inward rectified potassium current.
  • (IKs, IKr, Ito, IK1) Three sets were used: (100%, 100%, 100%, 100%), (50%, 80%, 80%, 80%), and (30%, 50%, 30%, 50%).
  • LV is a parameter indicating the sphericity of the left ventricular shape. Discrete values of 0 and 1 were used for two patterns with different LVs. EX is a parameter indicating the pattern of excitement propagation. 0, 1, 2, and 3 were used for four different patterns of EX.
  • CELL is a parameter indicating the pattern of cell distribution. 0, 1, 2, 3, and 4 were used for five different patterns of CELL.
  • HR is a parameter indicating heart rate. A heart rate of 60 beats per minute was labeled with a discrete value of 0.
  • CIR (circulation) is a parameter derived from a blood vessel model, and is used to express heart failure and diastolic dysfunction. Parameters that take the value 0 correspond to normal patterns. In this embodiment, HR and CIR take only one discrete value, but are not limited to this. For example, as with other parameters, in HR, two or more heart rate patterns may be labeled with two or more discrete values, and in CIR, two or more parameters may be labeled with two or more blood vessel patterns. It may correspond to a pattern.
  • FIG. 4 shows an example of labeled discrete values.
  • G (100%, 100%) corresponds to 0, (120%, 80%) corresponds to 1, and (100%, 80%) corresponds to 2.
  • INa 100% corresponds to 0 and 70% corresponds to 1.
  • ICa (100%, 100%, 100%) corresponds to 0, and (50%, 70%, 150%) corresponds to 1.
  • NCX 100% corresponds to 0 and 150% corresponds to 1.
  • IK (100%, 100%, 100%, 100%) corresponds to 0, (50%, 80%, 80%, 80%) corresponds to 1, and (30%, 50%, 30% , 50%) corresponds to 2.
  • 0, 1 corresponds to each pattern
  • EX 0, 1, 2, 3 corresponds to each different pattern
  • CELL 0, 1, 2, 3, 4 corresponds to each different pattern.
  • the above correspondence relationship is just an example, and a different correspondence relationship may be used.
  • the data set generation device 2 generates a total of 2880 pieces of electrocardiographic waveform data based on patterns of discrete values of 10 parameters.
  • each of the 10 parameters is expressed as a one-hot vector, and the combined result is used. Therefore, the parameters are expressed as 25-dimensional vectors.
  • the electrocardiographic waveform data is data with 12 channels and 500 samples in length, representing one cycle of 12-dielectric electrocardiography.
  • Parameters may include continuous values.
  • G is a two-dimensional vector of Lat and Con
  • INa is a one-dimensional vector
  • ICa is a three-dimensional vector of SERCA
  • ICaL is a three-dimensional vector of SERCA
  • ICaL is a three-dimensional vector of SERCA
  • ICaL is a three-dimensional vector of SERCA
  • ICaL is a three-dimensional vector of SERCA
  • ICaL a three-dimensional vector of SERCA
  • ICaL a three-dimensional vector of SERCA
  • ICaL is a three-dimensional vector of SERCA
  • ICaL is a three-dimensional vector of SERCA
  • ICaL is a three-dimensional vector of SERCA
  • ICaL is a three-dimensional vector of SERCA
  • ICaL is a three-dimensional vector of SERCA
  • ICaL is a three-dimensional vector of SERCA
  • ICaL is a three-dimensional vector of SE
  • Parameters that are continuous values may be normalized.
  • the continuous values are normalized to take values from 0 to 1 based on the upper and lower limits of the continuous values. For example, when normalizing with a lower limit of 0% and an upper limit of 200%, 100% is normalized to 0.5 and 80% is normalized to 0.4.
  • the estimation model is a neural network consisting of 5 convolutional layers (conv), 5 pooling layers (pool), and 5 fully connected layers (fc).
  • the convolution layers and pooling layers are arranged alternately, and the processing of the convolution layers and pooling layers is repeated five times. Further, ReLU (normalized linear function) is calculated for the output from each convolutional layer and each fully connected layer, and the output is input to the next layer.
  • Electrocardiographic waveform data with 12 channels and 500 samples in length is input to the first convolution layer of the estimation model, processed by the convolution layer and pooling layer, and input to the 5-layer fully connected layer, which calculates the function or state of the heart. Outputs the indicated parameters.
  • FIG. 5 is a diagram showing each layer of the estimation model.
  • the parameters of each layer were described by Pytorch(TM).
  • the first convolutional layer (conv1) has 12 channels of input and 24 channels of output.
  • the kernel size (kernel_size) is 101, the stride is 1, and the padding is 50.
  • the kernel size (kernel_size) is 3, the stride is 2, the padding is 0, the dilation is 1, and ceil_mode is False.
  • the second convolutional layer (conv2) has 24 channels of input and 48 channels of output.
  • the kernel size (kernel_size) is 51, the stride is 1, and the padding is 25.
  • the third convolutional layer (conv3) has 48 channels of input and 96 channels of output.
  • the kernel size (kernel_size) is 25, the stride is 1, and the padding is 12.
  • the fourth convolutional layer (conv4) has 96 channels of input and 192 channels of output.
  • the kernel size (kernel_size) is 13, the stride is 1, and the padding is 6.
  • the kernel size (kernel_size) is 3 and the stride is 2, as in the first pooling layer.
  • padding is 0, dilation is 1, and ceil_mode is False.
  • the fifth convolutional layer (conv5) has 192 channels of input and 384 channels of output.
  • the kernel size (kernel_size) is 7, the stride is 1, and the padding is 3.
  • the kernel size (kernel_size) is 3, the stride is 2, and the padding is 0.
  • the first fully connected layer (fc1) has 384 channels of input and 192 channels of output.
  • the second fully connected layer (fc2) has 192 channels of input and 96 channels of output.
  • the third fully connected layer (fc3) has 96 channels of input and 48 channels of output.
  • the fourth fully connected layer (fc4) has 48 input channels and 24 output channels.
  • the fifth fully connected layer (fc5) has 24 input channels and 25 output channels.
  • the number of output channels of the fifth fully connected layer is created to match the number of dimensions of the parameter vector. For example, when all 10 parameters are expressed as discrete values, the number of output channels of the fifth fully connected layer is 25, and when G, INa, Ca, NCX, and IK are continuous values, the number of output channels is 25. The number of output channels of the five fully connected layers is 24.
  • the estimation model was trained using a batch size of 2048 electrocardiographic waveform data and a number of epochs of 200,000.
  • the initial values of the filter and bias of the convolutional layer, the weights of the fully connected layer, and the bias were uniformly distributed.
  • the learning rate (lr) was set to 0.001
  • the beta was set to 0.9,0.999
  • the eps was set to 1e-8.
  • the loss calculated by the optimizer was calculated by calculating the loss for each parameter output from the estimation model, averaging the calculated loss by batch size, and calculating the sum of each averaged parameter loss.
  • the losses were calculated by calculating Cross-entropy Loss for discrete values and by calculating the mean squared error (MSE) for continuous values.
  • the estimation device 4 outputs a 25-dimensional vector by inputting electrocardiographic waveform data of 12 channels and 500 samples in length representing one 12-lead electrocardiogram cycle to the above-trained estimation model.
  • parameters can be obtained by calculating the argmax of each partial vector expressed by a one-hot vector corresponding to each parameter.
  • the parameter is obtained by denormalizing the discrete value.
  • the data of one channel of electrocardiographic waveform data is data indicating one cycle, but is not limited to this.
  • time-axis data may be frequency-converted.
  • the electrocardiographic waveform data is 12 channels based on 12-lead electrocardiography, the electrocardiographic waveform data may have a different number of channels by increasing or decreasing the positions where electrocardiograms are simulated.
  • the estimation model may be configured to output continuous values instead of discrete values.
  • the estimation model is configured as a regression model. Further, the estimation model does not necessarily need to output all parameters, and may be configured to output specific parameters.
  • Part or all of the estimation system 1 in the embodiment described above may be realized by a computer.
  • a program for realizing this function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read into a computer system and executed.
  • the "computer system” herein includes the OS and hardware of peripheral devices.
  • the term "computer-readable recording medium” refers to portable media such as flexible disks, magneto-optical disks, ROMs, and CD-ROMs, and recording devices such as hard disks built into computer systems.
  • a "computer-readable recording medium” refers to a storage medium that dynamically stores a program for a short period of time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. It may also include a device that retains a program for a certain period of time, such as a volatile memory inside a computer system that is a server or client in that case.
  • the above-mentioned program may be one for realizing a part of the above-mentioned functions, or may be one that can realize the above-mentioned functions in combination with a program already recorded in the computer system. Further, part or all of the estimation system 1 may be realized using a programmable logic device such as an FPGA (Field Programmable Gate Array).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

心臓に起因する波形を入力として心臓の機能又は状態を示すパラメータを出力するように機械学習により学習された推定モデルに、心臓に起因する波形を入力することで心臓の機能又は状態を示すパラメータを推定する、推定装置。

Description

推定装置、推定方法、推定モデル生成装置、推定モデル生成方法及びプログラム
 本発明は、推定装置、推定方法、推定モデル生成装置、推定モデル生成方法及びプログラムに関する。
 心電波形や心音波形に代表される生体波形は、生体の異常の有無や病態を把握するために広く用いられている。例えば、心電波形の特徴を表すP波、QRS波及びT波を信号処理により解析することで、異常検知や疾病分類などが行われている。
 しかしながら、心電波形などの生体波形から異常や疾病の原因を推定することは難しい。
N. Pilia, M. H. Mesa, O. Dossel, and A. Loewe, "ECG-based Estimation of Potassium and Calcium Concentrations: Proof of Concept with Simulated Data," 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2610-2613, 2019.
 本発明は、心臓に起因する波形から心臓の機能又は状態を示すパラメータを推定することを目的とする。
 本発明の一態様は、心臓に起因する波形を入力として心臓の機能又は状態を示すパラメータを出力するように機械学習により学習された推定モデルに、心臓に起因する波形を入力することで心臓の機能又は状態を示すパラメータを推定する、推定装置である。
 心臓に起因する波形から心臓の機能又は状態を示すパラメータを推定することができる。
推定システム1の構成を示す図である。 推定モデル生成装置3の動作を示すフローチャートである。 推定装置4の動作を示すフローチャートである。 心臓の機能又は状態を示すパラメータを示す図である。 推定モデルの各層を示す図である。
 図1は、推定システム1の構成を示す図である。推定システム1は、データセット生成装置2、推定モデル生成装置3、推定装置4を備える。
 データセット生成装置2は、心臓に起因する波形と心臓の機能又は状態を示すパラメータとを含むデータセットを生成する。心臓に起因する波形は、例えば心臓の心筋細胞の電気的活動に伴い生じる起電力を観測した結果である心電波形や心臓の心筋細胞の力学的活動に伴い生じる振動を観測した結果である心音波形である。心臓の機能又は状態を示すパラメータは、例えば伝導速度、カルシウムハンドリング、カリウムチャネル、左室形状、興奮伝播パターン、細胞分布、心拍数、血管パターンなどである。
 データセット生成装置2は、心臓の機能又は状態を示すパラメータに基づいて心臓に起因する波形を算出することでデータセットを生成する。データセット生成装置2は、例えば心臓の挙動をシミュレートするシミュレータに心臓の機能又は状態を示すパラメータを入力することで心臓に起因する波形を算出する。心臓の挙動をシミュレートするシミュレータは、例えばUT-Heart(商標)である。
 データセット生成装置2は、生成したデータセットを推定モデル生成装置3に出力する。
 推定モデル生成装置3は、データセット生成装置2から入力されるデータセットに基づいて推定モデルを生成する。推定モデルは心臓に起因する波形を入力として、心臓の機能又は状態を示すパラメータを出力するモデルである。推定モデル生成装置3は心臓に起因する波形を説明変数とし、心臓の機能又は状態を示すパラメータを目的変数とする機械学習により推定モデルを生成する。機械学習の手法は限定されず、例えばニューラルネットワーク、ランダムフォレスト、サポートベクトルマシン、ロジスティック回帰又はアンサンブル学習である。
 推定モデル生成装置3は、生成した推定モデルを推定装置4に出力する。
 推定装置4は、推定モデル生成装置3から入力された推定モデルを記憶する。推定装置4には心臓に起因する波形が入力される。推定装置4は、記憶した推定モデルに心臓に起因する波形を入力し、心臓の機能又は状態を示すパラメータを出力させることで心臓の機能又は状態を示すパラメータを推定する。推定装置4は、推定した心臓の機能又は状態を示すパラメータを出力する。出力されたパラメータは例えば表示装置により表示される。
 図2は、推定モデル生成装置3の動作を示すフローチャートである。推定モデル生成装置3は、データセット生成装置2からデータセットを取得する(ステップS31)。その後、推定モデル生成装置3はデータセットに基づいて、機械学習により推定モデルを生成する(ステップS32)。推定モデル生成装置3は生成した推定モデルを推定装置4に出力する(ステップS33)。
 図3は、推定装置4の動作を示すフローチャートである。推定装置4は、推定モデル生成装置3から推定モデルを取得する(ステップS41)。推定装置4は、入力される心臓に起因する波形を取得する(ステップS42)。推定装置4は、記憶した推定モデルに心臓に起因する波形を入力し、心臓の機能又は状態を示すパラメータを出力させることで心臓の機能又は状態を示すパラメータを推定する(ステップS43)。推定装置4は、推定したパラメータを出力する(ステップS44)。
 以上より、推定装置4は、推定モデルに心臓に起因する波形を入力し心臓の機能又は状態を示すパラメータを出力させることで、心臓に起因する波形から心臓の機能又は状態を示すパラメータを推定することができる。例えば心臓が律動的に規則正しく収縮する機能は心筋のサルコメアと細胞質の心筋小胞体の間でカルシウムが移動することでもたらされることが知られている。したがってICaの値を推定することができれば、心機能低下の主要な機序をあらかじめ予見できる可能性がある。このように、心臓の機能又は状態を示すパラメータの推定により、異常や疾病の原因を推定することができる。
(具体例)
 以下、データセット、推定モデル及び推定モデルの生成方法の具体例を説明する。
 データセット生成装置2は、UT-Heartを使用して心臓の機能又は状態を示すパラメータから心電波形データを生成する。パラメータはG、INa、ICa、NCX、IK、LV、EX、CELL、HR、CIRの10個のパラメータである。なお、これらは心臓に関する代表的なパラメータを例示するものであり、本発明においてパラメータはこれらに限られるものではない。
 上記10個のパラメータは伝導速度、カルシウムハンドリング、カリウムチャネル、左室形状、興奮伝播パターン、細胞分布、心拍数、血管パターンを司るパラメータである。Gは平均的な人間の心臓の繊維方向及び繊維直交方向の線維化の度合いを2次元ベクトルで表すパラメータである。Gの1次元目(Lat)は心臓の繊維方向の繊維化度合いを示し、Gの2次元目(Con)は心臓の繊維直交方向の繊維化度合いを示す。コラーゲンが過剰に蓄積した状態におけるLat及びConをそれぞれ100%とする。(Lat, Con)は(100%,100%)、(120%,80%)、(100%,80%)の3組を用いた。
 INaは人間の心臓のナトリウムイオン電流を示す1次元ベクトルで表されるパラメータである。平均的な人間の心臓のナトリウムイオン電流を100%として、INaには100%と70%の2つの値を用いた。
 ICaは人間の心臓のカルシウムイオン電流を示す3次元ベクトルで表されるパラメータである。ICaの1次元目(SERCA)は、SERCA(sarco/endoplasmic reticulum Ca2+-ATPase)の量を示し、ICaの2次元目(ICaL)は、ICaL(L-type Ca2+ current)の大きさを示し、ICaの3次元目(CaRC)は、リン酸化亢進の度合いを示す。人間の心臓におけるそれぞれの平均値をそれぞれ100%として、(SERCA, ICaL, CaRC)=(100%, 100%, 100%)と(50%, 70%, 150%)の2組を用いた。
 NCXは人間の心臓のNa/Ca交換体の量を示し1次元ベクトルで表されるパラメータである。平均的な人間の心臓のNa/Ca交換体の量を100%として、NCXには100%と150%を用いた。
 IKは人間の心臓のカリウムイオン電流を示す4次元ベクトルで表されるパラメータである。IKの1次元目(IKs)は遅延整流カリウム電流の緩徐活性型の電流の大きさを示し、IKの2次元目(IKr)は遅延整流カリウム電流の瞬時活性型の電流の大きさを示し、IKの3次元目(Ito)は一過性外向きのカリウム電流の大きさを示し、IKの4次元目(IK1)は内向き整流のカリウム電流の大きさを示す。人間の心臓におけるそれぞれの平均値をそれぞれ100%として、(IKs, IKr, Ito, IK1)=
(100%, 100%, 100%, 100%), (50%, 80%, 80%, 80%), (30%, 50%, 30%, 50%)の3組を用いた。
 LVは左室形状の球形度を示すパラメータである。LVの異なる2つのパターンに対して0、1の離散値を用いた。
 EXは興奮伝搬のパターンを示すパラメータである。EXの異なる4つのパターンに対して0、1、2、3を用いた。
 CELLは細胞分布のパターンを示すパラメータである。CELLの異なる5つのパターンに対して0、1、2、3、4を用いた。
 HRは心拍数(heart rate)を示すパラメータである。一分間あたり60拍の心拍数に離散値0をラベル付けした。
 CIR(circulation)は血管モデルに由来するパラメータであり、心不全や拡張機能不全を表現するために用いられる。値0をとるパラメータは、正常パターンに対応する。
 本実施例においては、HR及びCIRは1つの離散値のみをとるが、これに限られない。例えば、他のパラメータ同様、HRにおいては2つ以上の心拍数のパターンに2つ以上の離散値がラベル付けされてもよいし、CIRにおいては、2つ以上のパラメータが2つ以上の血管のパターンに対応してもよい。
 これらのパラメータの表現法については様々な方法が考えられるが、本実施例においては簡単のため全て離散化した整数によってラベル付けを行った。図4にラベル付けを行った離散値の例を示す。Gにおいては(100%,100%)が0に対応し、 (120%,80%)が1に対応し、(100%,80%)が2に対応する。INaにおいては100%が0に対応し、70%が1に対応する。ICaにおいては(100%, 100%, 100%)が0に対応し、(50%, 70%, 150%)が1に対応する。NCXにおいては100%が0に対応し、150%が1に対応する。IKにおいては(100%, 100%, 100%, 100%)が0に対応し、(50%, 80%, 80%, 80%)が1に対応し、(30%, 50%, 30%, 50%)が2に対応する。LVにおいてはパターンごとに0、1が対応し、EXにおいては異なるパターンごとに0、1、2、3が対応し、CELLにおいては異なるパターンごとに0、1、2、3、4が対応する。なお、以上の対応関係は一例であって、異なる対応関係であってもよい。
 データセット生成装置2は、10個のパラメータの離散値のパターンにより、計2880個の心電波形データを生成する。データセットにおいて、10個のパラメータは、それぞれのパラメータがワンホットベクトルで表現され、結合されたものが使用される。よってパラメータは25次元のベクトルで表現される。心電波形データは、12誘電心電の1周期を示すチャンネル数12、長さ500サンプルのデータである。
 パラメータは連続値を含んでもよい。このとき、GはLatとConの2次元ベクトルであり、INaは1次元ベクトルであり、ICaはSERCA、ICaL、CaRCの3次元ベクトルであり、NCXは1次元ベクトルであり、IKは4次元ベクトルである。このとき、10個のパラメータはG、INa、ICa、NCX、IKは連続値であり、LV、EX、CELL、HR、CIRは離散値である。10個のパラメータは連続値のベクトルとワンホットベクトルで表現された離散値とが結合されたものが使用される。よって、このときパラメータは24次元のベクトルで表現される。
 なお、例えば、GとINaを連続値とし他のパラメータを離散値とするなど、連続値とするパラメータは任意に決定してもよい。
 連続値であるパラメータは正規化されてもよい。例えば連続値の上限値及び下限値に基づき、連続値が0から1までの値をとるように正規化される。一例としては下限値を0%、上限値を200%として正規化する場合、100%は0.5に正規化され、80%は0.4に正規化される。
 推定モデルは5層の畳み込み層(conv)、5層のプーリング層(pool)、5層の全結合層(fc)からなるニューラルネットワークである。畳み込み層とプーリング層とは交互に配置され、畳み込み層とプーリング層の処理は5回繰り返される。また、各畳み込み層と各全結合層からの出力はReLU(正規化線形関数)が計算され、次の層に入力される。推定モデルの第1畳み込み層にチャンネル数12、長さ500サンプルの心電波形データが入力され、畳み込み層とプーリング層とで処理され5層の全結合層に入力され、心臓の機能又は状態を示すパラメータを出力する。
 図5は、推定モデルの各層を示す図である。各層のパラメータをPytorch(商標)により記載した。第1の畳み込み層(conv1)は、12チャンネルの入力と24チャンネルの出力を有する。カーネルサイズ(kernel_size)は101であり、ストライド(stride)は1であり、パディング(padding)は50である。第1のプーリング層(pool1)において、カーネルサイズ(kernel_size)は3であり、ストライド(stride)は2であり、パディング(padding)は0、ディレーション(dilation)は1、ceil_modeはFalseである。第2の畳み込み層(conv2)は、24チャンネルの入力と48チャンネルの出力を有する。カーネルサイズ(kernel_size)は51であり、ストライド(stride)は1であり、パディング(padding)は25である。第3の畳み込み層(conv3)は、48チャンネルの入力と96チャンネルの出力を有する。カーネルサイズ(kernel_size)は25であり、ストライド(stride)は1であり、パディング(padding)は12である。第4の畳み込み層(conv4)は、96チャンネルの入力と192チャンネルの出力を有する。カーネルサイズ(kernel_size)は13であり、ストライド(stride)は1であり、パディング(padding)は6である。第2のプーリング層(pool2)、第3のプーリング層(pool3)、第4のプーリング層(pool4)において第1のプーリング層と同じくカーネルサイズ(kernel_size)は3であり、ストライド(stride)は2であり、パディング(padding)は0、ディレーション(dilation)は1、ceil_modeはFalseである。第5の畳み込み層(conv5)は、192チャンネルの入力と384チャンネルの出力を有する。カーネルサイズ(kernel_size)は7であり、ストライド(stride)は1であり、パディング(padding)は3である。第5のプーリング層(pool5) においてカーネルサイズ(kernel_size)は3であり、ストライド(stride)は2であり、パディング(padding)は0である。
 第1全結合層(fc1)は、384チャンネルの入力と192チャンネルの出力を有する。第2全結合層(fc2)は、192チャンネルの入力と96チャンネルの出力を有する。第3全結合層(fc3)は、96チャンネルの入力と48チャンネルの出力を有する。第4全結合層(fc4)は、48チャンネルの入力と24チャンネルの出力を有する。第5全結合層(fc5)は、24チャンネルの入力と25チャンネルの出力を有する。
 なお、第5全結合層の出力チャンネル数はパラメータのベクトルの次元数と一致するように作成される。例えば、10個のパラメータが全て離散値で表される場合には、第5全結合層の出力チャンネル数は25であり、G、INa、Ca、NCX、IKが連続値である場合には第5全結合層の出力チャンネル数は24である。
 次に、データセットを用いて推定モデルを生成する方法(学習させる方法)を説明する。心電波形データのバッチサイズを2048、エポック数を200,000により推定モデルを学習させた。畳み込み層のフィルタ、バイアス及び全結合層の重み、バイアスの初期値は一様分布とした。オプティマイザとしてはAdamを用い、Pytorchのデフォルトのパラメータを用いた。具体的には、学習率(lr)を0.001とし、ベータ(betas)を0.9,0.999とし、epsを1e-8とした。
 オプティマイザにおいて計算される損失は、推定モデルから出力されるパラメータごとに損失を計算し、計算した損失をバッチサイズで平均化し、平均化した各パラメータ損失の和をとることで計算した。離散値に対してはCross-entropy Lossを算出し、連続値に対しては平均二乗誤差(MSE)を計算することで損失をそれぞれ計算した。
 推定装置4は、上記学習をさせた推定モデルに12誘導心電1周期を示すチャンネル数12、長さ500サンプルの心電波形データを入力することで、25次元のベクトルを出力させる。ベクトルにおいて、各パラメータに対応するワンホットベクトルで表現された各部分ベクトルのargmaxを計算することで、パラメータを取得することができる。パラメータが連続的な値を示す場合、離散的な値を逆正規化することでパラメータを取得する。
〈他の実施形態〉
 以上、図面を参照してこの発明の一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。
 心電波形データの1チャンネルのデータは、1周期を示すデータであるがこれに限られない。例えば、時間軸のデータを周波数変換したものであってもよい。
 また、心電波形データは12誘導心電に基づき12チャンネルとしたが、心電をシミュレートする位置を増減させて異なるチャンネル数の心電波形データであってもよい。
 推定モデルは離散値でなく、連続値を出力するように構成されてもよい。このとき、推定モデルは回帰モデルとして構成される。
 また、推定モデルは必ずしも全てのパラメータを出力しなくてもよく、特定のパラメータを出力するように構成されてもよい。
 上述した実施形態における推定システム1の一部又は全部をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記録装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものを含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。また、推定システム1の一部または全部は、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。
1 推定システム、2 データセット生成装置、3 推定モデル生成装置、4 推定装置

Claims (6)

  1.  心臓に起因する波形を入力として心臓の機能又は状態を示すパラメータを出力するように機械学習により学習された推定モデルに、心臓に起因する波形を入力することで心臓の機能又は状態を示すパラメータを推定する、
     推定装置。
  2.  前記推定モデルは、心臓の機能又は状態を示すパラメータと前記パラメータに基づいて心臓に起因する波形を算出するシミュレータにより算出された心臓に起因する波形を含むデータセットを用いて学習されたものである、
     請求項1に記載の推定装置。
  3.  心臓の機能又は状態を示すパラメータと前記パラメータに基づいて心臓に起因する波形を算出するシミュレータにより算出された心臓に起因する波形を含むデータセットを用いて、心臓に起因する波形を入力として心臓の機能又は状態を示すパラメータを出力する推定モデルを生成する、
     推定モデル生成装置。
  4.  心臓の機能又は状態を示すパラメータと前記パラメータに基づいて心臓に起因する波形を算出するシミュレータにより算出された心臓に起因する波形を含むデータセットを用いて、心臓に起因する波形を入力として心臓の機能又は状態を示すパラメータを出力する推定モデルを生成する、
     推定モデル生成方法。
  5.  コンピュータを請求項1の装置として機能させるためのプログラム。
  6.  コンピュータを請求項3の装置として機能させるためのプログラム。
PCT/JP2022/028782 2022-07-26 2022-07-26 推定装置、推定方法、推定モデル生成装置、推定モデル生成方法及びプログラム WO2024023927A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/028782 WO2024023927A1 (ja) 2022-07-26 2022-07-26 推定装置、推定方法、推定モデル生成装置、推定モデル生成方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/028782 WO2024023927A1 (ja) 2022-07-26 2022-07-26 推定装置、推定方法、推定モデル生成装置、推定モデル生成方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2024023927A1 true WO2024023927A1 (ja) 2024-02-01

Family

ID=89705624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028782 WO2024023927A1 (ja) 2022-07-26 2022-07-26 推定装置、推定方法、推定モデル生成装置、推定モデル生成方法及びプログラム

Country Status (1)

Country Link
WO (1) WO2024023927A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018538120A (ja) * 2015-11-23 2018-12-27 メイヨ・ファウンデーション・フォー・メディカル・エデュケーション・アンド・リサーチ 検体評価のための生理学的電気的データの処理
JP2021522052A (ja) * 2018-04-26 2021-08-30 ベクトル メディカル インコーポレイテッド シミュレート心拍動曲線の較正
JP2022531292A (ja) * 2019-05-06 2022-07-06 メドトロニック,インコーポレイテッド 機械学習による不整脈検出の可視化

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018538120A (ja) * 2015-11-23 2018-12-27 メイヨ・ファウンデーション・フォー・メディカル・エデュケーション・アンド・リサーチ 検体評価のための生理学的電気的データの処理
JP2021522052A (ja) * 2018-04-26 2021-08-30 ベクトル メディカル インコーポレイテッド シミュレート心拍動曲線の較正
JP2022531292A (ja) * 2019-05-06 2022-07-06 メドトロニック,インコーポレイテッド 機械学習による不整脈検出の可視化

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PILIA NICOLAS; DOSSEL OLAF; LENIS GUSTAVO; LOEWE AXEL: "ECG as a tool to estimate potassium and calcium concentrations in the extracellular space", 2017 COMPUTING IN CARDIOLOGY (CINC), CCAL, 24 September 2017 (2017-09-24), pages 1 - 4, XP033343754, DOI: 10.22489/CinC.2017.265-080 *

Similar Documents

Publication Publication Date Title
Karatzia et al. Artificial intelligence in cardiology: Hope for the future and power for the present
Pullan et al. Mathematically modelling the electrical activity of the heart: from cell to body surface and back again
Tajik Machine learning for echocardiographic imaging: embarking on another incredible journey
EP3125141B1 (en) System, method, and program for biomedical simulation
US20240249111A1 (en) Machine learning based reconstruction of intracardiac electrical behavior based on electrocardiograms
Roy et al. Multimodal cardiovascular model for hemodynamic analysis: Simulation study on mitral valve disorders
Deng et al. ST-Net: Synthetic ECG tracings for diagnosing various cardiovascular diseases
Dusturia et al. Effect of myocardial heterogeneity on ventricular electro-mechanical responses: a computational study
Pilia et al. ECG as a tool to estimate potassium and calcium concentrations in the extracellular space
WO2024023927A1 (ja) 推定装置、推定方法、推定モデル生成装置、推定モデル生成方法及びプログラム
WO2024023929A1 (ja) 推定装置、推定方法、推定モデル生成装置、推定モデル生成方法及びプログラム
Laitala Using LSTM network to detect R-peaks from noisy ECG signals
Nanthini et al. Cardiac Arrhythmia Detection and Prediction Using Deep Learning Technique
Yuwono et al. Design of smart electrocardiography (ECG) using Modified K-Nearest Neighbor (MKNN)
Dumas et al. How genetic algorithms can improve a pacemaker efficiency
KR102657226B1 (ko) 심장 초음파 이미지 데이터를 증강하기 위한 방법 및 장치
CN117717352B (zh) 非侵入式房颤颤源定位的方法和所用扩散模型的训练方法
ROMAISSA Automated Heartbeat Classification and Cardiovascular Disease Detection Using Deep Learning
Balasundaram Morphologically constrained adaptive signal decompositions in studying ventricular arrhythmias
Karlsson Model-based Analysis of Individual Atrioventricular Node Conduction Dynamics During Atrial Fibrillation
Hanji et al. Intelligent combination of data capable of online weight update for the diagnosis of Heart disease
Yang et al. Whole heart modeling—Spatiotemporal dynamics of electrical wave conduction and propagation
Soro et al. Deep Cardiovascular Clinical Decision Support and Control System
Raman Prediction of Treatment Target for Ventricular Tachycardia using Multi-Task Machine Learning
Gajjar Comparative Analysis of Different Machine Learning Techniques for Hypertrophic Cardiomyopathy Detection Using ECG Data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953024

Country of ref document: EP

Kind code of ref document: A1